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Foreword

I have composed these laboratory experiments to introduce the physics of astronomical

inquiry for use in 200 and 300 level courses in physics and astronomy departments.

When competing with laboratory courses, particularly in biology and chemistry,

astronomy courses have been at a disadvantage.Astronomical exercises, using actual

data, often involve tedious calculations. In my experience, the student learns little

about astronomy and, far fromdiscovering its beauty, becomes disenchantedwith the

field. If the instructor chooses to assign standard introductory physics experiments,

then he not only fails to inculcate much of the beauty of astronomy, but he must also

justify their relevance to a course in astronomy. Computer-based simulations, with

their sophisticated graphics and often accurate renditions, provide the glamour of the

field but present little if any of the physics behind the phenomena.

This book presents experiments which will teach physics relevant to astronomy.

The astronomer, as instructor, frequently faces this needwhen his college or university

has no astronomy department and any astronomy course is taught in the physics

department. This book resolves this problem. The physicist, as instructor, will find

this intellectually appealing when faced with teaching a laboratory astronomy course.

From these experiments, the student will acquire important analytical tools,

learn physics appropriate to astronomy, and experience instrument calibration and

the direct gathering and analysis of data. Philosophically, the student will hopefully

gain an understanding that rational inquiry leads to an understanding of natural

processes. Experiments that can be performed in one laboratory session as well as

month-long and semester-long observation projects are included.

The length of explanatory material in these experiments distinguishes this book

from other laboratory manuals. This was needed for two reasons. First, my experi-

ence has been that graduate student teaching assistants may not be fully versed in all

the subject matter. The explanatory material provides the necessary background for

them. Second, the breadth of subjects cannot be found in any single source and I

wanted the book to be self-contained. Although introductory physics texts certainly

cover such subjects as heat capacity, blackbody radiation, the Bohr atom, and

polarization of electromagnetic waves, one must refer to electrical engineering or
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radio astronomy texts to explain radio antenna beam patterns and electrical skin

depth, books in radar astronomy to explain range-Doppler mapping, astronomy

texts to discuss Kirchhoff’s Laws, optics manufacturer’s instructions for the speci-

fications of reticulated eyepieces, books on the history of science or astronomy for

the various historical discussions, in particular the comparison of the Ptolemaic and

Copernican theories presented in the experiment on the orbit of Venus, and the

technical literature itself to explain diffuse reflection from planetary surfaces, for

some examples. All the requisite explanatory material has been comprehensively

presented here for the ease of the instructor, as well as the education of the student.

Several features aid the learning process. Except for the first two experiments, all

are arranged in the same way, introduction, theory, procedure and observations, and

calculations and analysis. All data are recorded and all calculations are performed

on the data sheets. These are following by discussion questions to test the student’s

understanding and to introduce additional, associated concepts.

Other pedagogical features include the frequent presentation of graphical repre-

sentations of equations. This will aid the student in obtaining intuition into phe-

nomena. I provide examples or exercises, particularly in the first two chapters, that

illustrate the application of the techniques to other areas of study. In this way, the

techniques become part of the student’s intellectual arsenal rather than simply a tool

for doing science. I liberally include references to the history of astronomy to show

the fruitful result of the development of rational inquiry less than 500 years ago. I

also take the liberty of injecting humor. Not only does this refresh the student, but

it’s also a nod to the joyful times spent with colleagues. The extraterrestrial is a

blatant advertisement for a subject that has captured the public attention and led to

private funding for state-of-the-art telescope facilities in times of ever-decreasing

federal support for astronomy. The book contains occasional references to the

search for extraterrestrial intelligent life.

The data recording and analysis are performed on worksheets and the student is

frequently asked to enter the results in tables. Although some may quibble with the

“recipe” nature of this presentation, it serves useful purposes. First, it guides the

student along in the data reduction process. Inadvertent errors early in the data

reduction, which will propagate to the end result, are thereby avoided. The student

is forced to be neat and well organized! Hopefully, the habits will become in-

grained. Third, it facilitates grading whether performed by the instructor or teaching

assistants. It also encourages standardized grading between teaching assistants,

simplifying the task for those who may speak English as a second language.

The experiments have been designed to enable completion in one laboratory

session of 2–3 h. Those experiments which would have required a greater amount of

time have been broken up into two parts.

I should comment upon the units used. I believe it would be confusing to the

student, for example, to use MKS (SI) units in measuring distances along an optical

bench. It would also be confusing, for example, to use cgs units in discussing the

orbits of the Galilean satellites. Accordingly, I use that system in a given context

which I believe is most appropriate. The values of the mathematical constants in

Appendix I are provided in both sets of units.
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First, I present experiments on mathematical tools and graphing techniques,

which should be part of every college student’s intellectual equipment but which

are often not. Facility in these techniques is achieved by usage in the subsequent

experiments. Typically, the student should read the various experiments before

coming to the laboratory and perform the data reduction in the week following.

Experiments 1 and 2would bemore amenable to a different format. The experiments

should be read before class, but the exercises should be done in the laboratory class

itself. The student will find this congenial, with the rush of the first 2 weeks of class

sometimes being overwhelming.

Inclusion of a section in the first experiment dealing with the collision of the

Milky Way and M31 was written for several reasons. First, of course, it provides a

good example of some of the techniques. It demonstrates that the various techni-

ques do not stand alone, but that often more than one is needed in a given analysis.

Third, the discovery of the decreased time scale for the collision of the Milky Way

and M31 received widespread coverage in 2009 and it is frequently discussed

during the course in the context of galactic cannibalism. I also wanted to use it as

a demonstration of the value of mathematical physics, that seemingly intractable

problems can be solved by the application of physics – here the conservation of

energy and velocity of propagation of pressure waves in a medium. Finally, the

result of the calculation is sufficiently intriguing that the student may well discuss it

with his roommate or friends, engendering interest in astronomy.

The experiments on telescope optics are fairly comprehensive, and therefore

performed in two laboratory sessions. Four experiments which can be conducted

over amajor portion of a semester, observations of theGalilean satellites, observations

of Venus, microwave observations of theMoon, and determination of local geograph-

ic latitude from observations of lengths of Sun-cast shadows, will give the student a

feel for observations. In addition, a numerical experiment onKepler’s laws is provided

which utilizes ephemeris data. The geographic latitude experiment includes an intro-

duction to the celestial sphere and the derivation of the zenith angle equation.

The experiments on the Galilean satellites, Kepler’s laws, and the orbit of Venus

will provide a short introduction to the history of astronomy. Throughout, the names

and birth and death dates are provided for notable contributors. In particular, theVenus

experiment compares the Ptolemaic and Copernican theories of the solar system.

The familiar laws of reflection are put into context in the real world by an

experiment on diffuse reflection from the Moon and terrestrial planets. Specular

reflection, scattering, polarization, and the electromagnetic wave are introduced in

this context. These labs, by introducing the concept of models, also provide an

introduction to the art of doing science. The formation of impact craters is discussed

in the context of the conservation of energy as well as mathematical models. Pure

physics experiments study blackbody radiation and spectral lines by way of the

Bohr atom. This knowledge is combined into an experiment on Kirchhoff’s Laws. I

include a study quantifying the changing color of the Sun with zenith angle in the

blackbody radiation experiment.

The subjects of radio and radar astronomy, areas which are normally not studied

in laboratory courses in astronomy, are presented. They give the student a feeling for
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the challenges of remote sensing of planetary surfaces and introduce the universal

wave equation, circular motion, the Doppler shift, single slit diffraction, electrical

skin depth, heat conduction, radiative transfer, and microwave radiometry. Because

of the lack of student familiarity with these subjects, as well as the same circum-

stance with most teaching assistants in physics, these two experiments are divided

into two parts. The first part of the radar experiment analyzes the radar echo from the

planet Mercury. The second part of the radar experiment studies rotating simulated

planetary or asteroid surfaces. The first part of the radio astronomy experiment deals

with calibration of the radiometers. In the second part of the radio astronomy

experiment, the student measures radiation coming from heated soil samples.

We have worked with vendors to develop affordable systems for use in the

experiments on radar and radio astronomy. Indeed, several companies have pro-

duced “toy” and hobbyist radar guns. We have worked with one to provide a system

which retains all frequencies produced in the echo and to allow that echo to be

analyzed in a personal computer. Because microwave radiometers for radio astron-

omy, particularly those with Dicke switches and internal noise calibration, are

expensive, colleges and universities with electrical engineering or astronomy

departments are encouraged to have them produced locally. For those without

such departments, a vendor is provided. Realizing that acquisition of such equip-

ment may not be feasible, the instructor may utilize an alternative to the radio

astronomy experiments in which only the sensing of the subsurface temperatures

among different soil samples is performed. The two experiments become a single

experiment in heat conduction rather than heat conduction and radiative transfer.

The radio astronomy experiments introduce the concepts of emissivity and the

Rayleigh-Jeans approximation. I wanted to place these experiments in Part 2 dealing

with the solar system. Because the subject of Experiment #17, which follows them

in Part 3, is blackbody radiation, the instructor may wish to perform this experiment

before the radio astronomy experiments.

From these various experiments, the studentwill acquire important analytical tools,

learn physics appropriate to astronomy, and experience instrument calibration and the

direct gathering and analysis of data. Some of the “art” of doing science, notably the

role of judgment, is presented in the experiment on the Galilean satellites.

Experiments that can be performed in one laboratory session as well as month-

long and semester-long observation projects are included. With a field trip to a

nearby observatory or a planetarium and observation of a possible lunar or solar

eclipse, the student will experience much of the excitement of astronomy while

being sugar-fed that most powerful analytical tool, mathematical physics.

An Instructor’s Guide includes solutions to the discussion questions that appear

at the end of each experiment, information about equipment and equipment ven-

dors, and other matters. It can be accessed online at http://www.springer.com/

materials/book/978-1-4614-3310-1, below the title “Additional Information.”

Access is password protected.

In the preface to the student that follows, I write that the goal of this book is to

show that everything in astronomy is based on physics, that mathematics is our

friend, specifically those mathematics in mathematical physics, and that the study
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of the electro-magnetic radiation from celestial objects enables us to understand

their nature. To improve this book, I would greatly appreciate any suggestions and

advice from colleagues to achieve those ends, as well as other ideas you may have.

Please send your comments to drlesgo@aol.com.

Leslie M. Golden

Foreword xi





Preface to the Student

Humanbeings arrive at truth in fourways: Faith, authority, revelation, andobservation.

All other animals rely only upon authority, by observing adults, and observation, by,

for example, tasting fruit or experiencing the changing of the seasons. Very few

species other than Man, although they, too, may experience territorialism, practice

genocide or wage organized war. This is perhaps a commentary on the truth-finding

role of faith, authority, and revelation in our consciousness.

The Role of Rational Inquiry

As tempting as it might be, these four methods cannot be organized historically.

All four have existed since man obtained consciousness and remain practiced

today. Similarly, they cannot be organized culturally. Native American popula-

tions, Chinese, the Maya and Incas, African tribes, Alaskan Indians, residents of

the sub-continent, Pacific island inhabitant, and other civilizations developed reli-

gions, leaders, god-figures, and rational science. When anthropologists study pre-

viously unknown tribes, they find all four methods of obtaining truth in operation.

Hope and prayer, shaman and village elders, miracles, and planning for the seasons,

for examples, manifest the four methods.

In Western civilization, a tradition of rational inquiry and literacy of the Greeks

was displaced by the revelation-inspired ignorance of the Dark Ages. Noteworthy

was the nearly universal illiteracy during that 1,000-year period, when revelation-

truth was communicated through art, notably religious paintings, drawings, and

stained glass. The development of advanced seaworthy ships during the Age of

Exploration and the consequent encounter with other civilizations with their own

religions, the availability of books after the invention of the printing press, and the

courage, insight, and brilliance of those who wondered about nature led to an

outbreak of intellectual freedom known as the Renaissance, literally “re-birth.”
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Leading the scientific Renaissance was the emphasis upon observation as the

means of reaching truth. The observations of Tycho Brahe (1546–1601), codified

by Johannes Kepler (1571–1630) into the laws which bear his name, the insistence

of Galileo Galilei (1564–1642) upon the power of observation, and Sir Isaac

Newton’s (1643–1727) synthesis of Kepler’s Laws with the Universal Law of

Gravitation which he discovered occurred in rapid succession. Although Hans

Lippershey (1570–1619) built the first telescope, it was Galileo’s observations of

the imperfective appearances of the surfaces of the Moon and Sun, the phases

of Venus, and the orbiting satellites of Jupiter which displayed the intellectual value

of direct observation to Europeans. In a well-studied era in the history of science,

many of these scholars and their followers faced intellectual and physical hardship

as they threatened the role of revelation.

As laws of nature were discovered, new mathematics was developed to allow

their analysis and to provide the ability for prediction. In this way, Rene Descartes

(1596–1650), Newton, and Gottfried Wilhelm Leibniz (1646–1716) developed the

calculus, Newton to analyze the motions of the planets. He realized that the state of

any system can be determined at any time if the rate of change of that system could

be written down and an initial state provided. Following the formulation of the laws
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of electricity and magnetism by Michael Faraday (1791–1867), Charles-Augustin

de Coulomb (1736–1806), and others, their unification by Sir James Clerk Maxwell

(1831–1879), including the strange magnetic force which counter intuitively occurs

at right angles to the direction of motion, required the development of vector

algebra. In the twentieth century, the discovery of general relativity by Albert

Einstein (1879–1955) provided an application for tensor algebra. Today, inscruta-

ble facts about the universe such as the existence of dark energy, the incredible

relative weakness of the gravitational force, and the only mildly-satisfactory Stan-

dard Model for sub-atomic particles provides the impetus for the development of

string theory.

Through it all, alone among all the sciences, stands the first science, astronomy.

The Renaissance pioneers of modern science were stimulated by astronomical

observations. The calculus was developed to explain the motions of the planets.

Galileo turned his telescope to the skies.

Uncommon for a laboratory book, I accordingly and happily include small bits

on the history of astronomy. These include some perspective on figures of the

Renaissance as well as on modern researchers such as Maarten Schmidt.

In this book, I try to show the unequalled power of observations in reaching

truth. Study of the complete scientific method is best done in philosophy of science

classes, and accordingly I do not dwell on other of its aspects, classification of

observations, formulation of hypothesis, prediction, and self-correction.

Astronomy as Physics

Displaying unashamedly a personal bias, I will state that physics provides the founda-

tion of all human inquiry,whether the construct is direct or applied. The only limitation

is appreciating these connections analytically is our limited intellect. In this way,

chemistry is based on physics, biology is based on chemistry, and psychology is

based on biology. Sociology is mass psychology and history can be considered

psychology with the added dimension of time. Engineering, astronomy, geology,

meteorology, and oceanography can be considered applied physics. Similarly, syn-

thetics and botany can be considered applied chemistry; medicine, zoology, genetics,

and paleontology can be considered applied biology; linguistics, philosophy, educa-

tion, and the arts can be considered applied psychology; anthropology, archaeology,

architecture, economics, the trades, agriculture, business, the military, philanthropy,

and politics and law can be considered applied sociology; and religion can be consid-

ered applied history. Any inability to analytically derive the direct connection to

physics results from our limited intelligence. (Unlike us, Hari Seldon in Isaac Asi-

mov’s Foundation series had the intellect to predict history from mass psychology).

The connection of physics to astronomy is direct and the two fields have much in

common. Both rely totally (except when emotions get in the way of researchers with

opposing views) on the scientific method, most notably the power of observation.

Both use the construct of mathematics to interpret these observations and to make

predictions.
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The one manner in which they differ is the role of the experiment. In physics,

most of the experiments are performed in a laboratory, whether it be in a small

room or a particle accelerator with a diameter measured in kilometers. In astron-

omy, except for those who study Moon rocks or meteoritic material, almost

everything we learn results from observing the electro-magnetic radiation, whether

it be light waves, radio waves, x-rays, or any other type, reaching us from celestial

objects. This is, in the words of at least one esteemed astronomer, “how we know

what we know” about the universe. (Because the goal of astronomy is to learn the

nature of celestial objects, and because no one yet can determine the origin of a

particular batch of cosmic rays, except for the solar wind particles, I do not

consider the study of cosmic rays as a bona fide subject in astronomy. Others

may differ with me on this issue.)

In this laboratory book, then, we will attempt to inculcate in you three things.

Everything in astronomy is based on physics; indeed, that’s the reason for the title

of the book! Second, mathematics is our friend, specifically those mathematics in

mathematical physics. Third, the study of the electro-magnetic radiation from

celestial objects enables us to understand their nature.

The Experiments

First, I provide mathematical tools. These are valuable to all in our society,

scientists and non-scientists. The ability to draw and understand graphs, in particu-

lar, is lacking in many who would be considered educated, but is required by

educators, government employees, businessmen, as well as NASA researchers.

The order of magnitude calculation, though practiced mainly by scientists, is a

valuable tool.

Astronomy, except, as noted, for the study ofMoon rocks, meteorites and, perhaps,

cosmic rays (to repeat, the inability to detect the object of origin makes their relevance

to astronomy questionable), relies on the remote observations of celestial objects

by telescopes. Two laboratory exercises discuss the optics of those instruments.

With these tools in hand, I turn to subjects of the solar system. Kepler’s Laws,

Newton’s Laws, and the Universal Law of Gravitation are presented. To give an

idea of how non-modern civilizations might deal with the path of the Sun over the

sky and the seasons, a semester-long project to determine the observer’s geograph-

ical latitude is provided. The formation of impact craters is discussed in the context

of the conservation of energy and mathematical models. The era of space explora-

tion relies heavily on remote sensing of the surfaces and subsurfaces of planets.

Diffuse reflection from the Moon and planetary surfaces, radar reflections from

rotating planets and asteroids, and microwave radiation from heated planetary

surfaces, with the associated physics of polarized light, the laws of reflection, the

Doppler shift, heat conduction, and radiative transfer are introduced in these

contexts. With an introduction to the techniques of radio astronomy having been

made, we also turn our radio telescope to observe the Moon.
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The observations of stars and galaxies rely upon the laws of radiation. A laboratory

on blackbody radiation introduces Planck’s law, Wien’s displacement law, and the

Stefan-Boltzmann Law. These are applied to determine the photospheric temperature

and energy output of the Sun. Studying the emission lines from a gas-discharge tube

introduces quantum mechanics. Finally, the knowledge of blackbody radiation and

discrete radiation are combined in a study of Kirchhoff’s Laws of Radiation.

Perhaps astronomers’ most important tool, in addition to the pencil and the

computer, Kirchhoff’s laws allow direct study of the composition, velocity, density,

temperature, and rotation of objects. Additional interpretation of spectra determines

nearly everything else we learn about them. Indeed, these laws lead to the discovery

of the very existence of barely or non-luminous objects such as cold interstellar and

intergalactic clouds and black holes, and objects whose radiation is dominated by

companion objects, such as extra-solar planets.

In this way, you will have encountered much of the physics behind astronomy.

You will hopefully learn that the laws of physics drive phenomena governing the

smallest particles to the largest clusters of galaxies, but that only observation can

provide the truth lying within those objects.

Oak Park, Illinois, USA Leslie M. Golden
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Galileo Galilei (1564-1642) revolutionized the study of nature by demanding that careful, objec-

tive observations must be a part of scientific inquiry. This is an essential part of the modern

“scientific method,” of which he can be considered to be the first practitioner. Galileo’s careful

drawings of sunspots, showing the Sun to be imperfect, caused much anguish among the autho-

rities of his time. (Yerkes Observatory)
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We don’t own the Earth; we simply share it.



Part I

Tools of the Astronomer

Introduction

Scientific progress relies on observation of nature and interpretation of those

observations by objective as opposed to subjective means. In astronomy, telescopes

are the tools of many of those observations. Interpretation is made through mathe-

matics. In this section you will be introduced to mathematical tools, graphing

techniques, and the telescope. Many of the concepts introduced will be used in

subsequent experiments. More than that, the mathematical tools and graphing

techniques will be useful to you in any future career.

Hence they will philosophize better who give assent to propositions that depend upon

manifest observations, than they who persist in opinions repugnant to the senses and

supported only by probable reasons.

From a letter to one of his patrons,

Galileo Galilei, Florence, 1612



Experiment 1

A Review of Mathematical Concepts and Tools

SUMMARY: In Experiment #1, “A Review of Mathematical Concepts and

Tools,” we reviewmathematical techniques that are commonly used in physics

and astronomy. These include familiar concepts such as exponential notation,

significant figures, and angular measure, as well as concepts such as order

of magnitude calculations and basic statistical measures. Several of the

techniques are combined to analyze the impending collision between the

Milky Way and Andromeda galaxies.

LEVEL OF DIFFICULTY: Moderate

EQUIPMENT NEEDED: Calculator.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_1, # Springer Science+Business Media New York 2013
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A. Introduction

From astronomy to business, as well as in many other fields, certain mathematical

tools are of great advantage. They can simplify calculations, prevent errors, and

yield quick estimates. Arithmetic operations such as conversion of units and the

calculation of percentage errors, while difficult for some, are also important to

master for success in many fields.

In this experiment, these and other mathematical tools will be presented. You

will achieve facility in their use by their repeated use in subsequent experiments.

B. Scientific Notation

In many of the sciences, in particular physics and astronomy, we deal with very

small or very large numbers. For example, the largest galaxy in the Local Group

of galaxies, of which the Milky Way is a member, is Andromeda, or M31.

The distance in kilometers to M31 can be calculated by multiplying the number

of light years (ly) to M31, 2.25 million ly, by the number of kilometers in a light

year, 9.46 trillion km/ly,

distance to M31 ¼ 2; 250; 000 ly� 9; 460; 000; 000; 000 km=ly

¼ 21; 300; 000; 000; 000; 000; 000 km:

In astronomy, we often use the unit of length known as the parsec. One parsec,
abbreviated as pc, is approximately equal to 3.26 ly. One million parsecs is

abbreviated as Mpc. The values of the light year and parsec, as well as other

physical constants and astronomical measurements, are provided in Appendix I.

We do not want to be encumbered by such calculations. They are time consuming

and we are likely to make errors in carrying the large number of zeroes. In practice,

our calculators will run out of display window space. We run into similar problems

in calculations dealing with very small numbers.

We, accordingly, desire a shorthand symbolism to deal with such very large and

very small numbers. The symbolism which has been adopted by scientists is that of

scientific notation. In scientific notation, numbers are represented by three parts,

a numerical part with a value between 1 and 10, the number 10, and an exponent to

which 10 is raised. A number represented in scientific notation therefore always

takes the form

□ � 10
□
.

The exponent locates the decimal point. It tells you the number of places to move

the decimal point to convert the number expressed in scientific notation to ordinary

decimal form. If the number to be represented by scientific notation is greater

than 1, then the exponent is positive because positive exponents tell us to move

4 1 A Review of Mathematical Concepts and Tools



the decimal point to the right. If the number to be represented in less than 1, then the

exponent is negative because negative exponents tell us to move the decimal point

to the left.

Thus,

108 ¼ 101 � 101 � 101 � 101 � 101 � 101 � 101 � 101 ¼ 100; 000; 000

and

10�8 ¼ 10�1 � 10�1 � 10�1 � 10�1 � 10�1 � 10�1 � 10�1 � 10�1

¼ 0:1� 0:1� 0:1� 0:1� 0:1� 0:1� 0:1� 0:1 ¼ 0:00000001:

In the M31 example above, because 12 figures lie to the right of the decimal

point, the number of kilometers in a light year would be represented in scientific

notation as

1 light year = 9:46� 1012 km:

The mass of the hydrogen atom, 0.000000000000000000000000001673 kg,

is represented in scientific notation as

mH¼ 1:673� 10�27 kg:

This tells us that 27 figures would lie to the left of the decimal point if mH were

expressed as a decimal fraction. Accordingly, the exponent we write is �27.

Now that we have agreed to use this symbolism for expressing small and

large numbers, we can appreciate its usefulness. First, it is much neater and requires

less writing than if we write out the numbers in decimal form. Second, using

scientific notation facilitates arithmetic. When multiplying or dividing numbers

including exponents, we simply add the exponents. It is easy to multiply and

divide numbers between 1 and 10. Third, because it is easy to perform arithmetic

on numbers between 1 and 10, we can avoid errors. Again, it is easy to compare

numbers when expressed in scientific notation. Just look at the exponents. Fifth,

and one of the most important advantages of using scientific notation to

experimentalists, it allows you to clearly express the number of “significant figures”

in a result. Finally, use of scientific notation makes it easy to make “order-of-

magnitude” calculations.

As an example of the advantage of using scientific notation in performing

arithmetic, say we wish to find the result of 230,000,000� 190,000/67,000. Con-

verting to scientific notation, this becomes 2.3� 108� 1.9� 105/(6.7� 104).

We then combine all the numbers between 1 and 10, and we combine all the

exponents, giving (2.3� 1.9/6.7)� 108+5�4. Performing the arithmetic then easily

gives the result, 0.65� 109. Because the number preceding the power of 10 is not

between 1 and 10, this is not yet in scientific notation, and we have one more

operation to perform, yielding 6.5� 108.
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Adding and subtracting numbers expressed in scientific notation can only be

done if the exponent portions are equal. Say, for example, we wish to subtract

3.11� 105 from 8.23� 107. These must first be expressed with equal exponents.

8:23� 107 � 3:11� 105 ¼ 8:23� 107 � 0:0311� 107

¼ ð8:23� 0:03Þ � 107

¼ 8:20� 107:

Any confusion in such arithmetic could always be resolved by simply writing the

number out without scientific notation, although that defeats the purpose of this

convenient shorthand.

As we will see in the following, scientific notation is our friend.

C. Significant Figures

When you perform a measurement, the precision of your measurement depends on

your equipment. If you measure, for example, the length of a table with equipment

of different precision, you might get 2.0 m, 2.043 m, or 2.0433604 m. The table is

the same. What has changed is the number of digits in which you have confidence,

two, four, and eight, in these cases. Scientists refer to those digits as the number of

significant figures in the measurement. They are the number of digits needed to

express a number to display the precision of its measurement.

(Whenever you write a decimal fraction of value less than 1, always place a

preceding zero to locate clearly the location of the decimal point. Do not write .44;

write 0.44 instead.)

In a measurement, the uncertainty of the final digit can be considered to be +0.5

to �0.5. For example, a measurement of 2.043 m means the real length of the table

is between 2.0425 m and 2.0435 m.

When you are recording data, you should include a final estimated figure beyond

the precision of the measuring instrument, even it happens to be zero. If your ruler

can measure only to 1 mm, for example, estimate the value of the next, uncertain,

digit as well as you can.

Because of ambiguities in the interpretation of the number “zero,” we express

numbers in scientific notation to clearly display their number of significant figures.

Zeroes to the left of non-zero digits are not significant. In 0.000386, only the 3, 8,

and 6 are significant. To express this clearly, we can rewrite this number as

3.86� 10�4. The number is easily seen to have three significant figures. No

ambiguity is present in this case.

Zeroes to the right of non-zero digits, however, present a problem. In the number

9340400, we do not know if the final zeroes are significant. They are needed to

place the decimal point, but they may also be significant. They are only significant

if they are the result of the measurement.
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If we rewrite the number as 9.34� 106, however, then we are stating that we

have three significant figures. If we rewrite it as 9.340� 106, then we are stating

that we have four, and if we rewrite it as 9.340400� 106 then we are stating that we

have seven significant figures. In this case, then, use of scientific notation unambig-

uously communicates the number of significant figures.

When we combine one or more measured quantities in a calculation, we also refer

to the number of significant figures in the calculated result. Specific common-sense

rules guide us in determining the number of significant figures in the result. In adding

and subtracting numbers, drop all the digits beyond the first uncertain figure. For

example, let us add 14.49, 7.99833, and 0.2631. Since only 14.49 is known to

hundredths, it makes no sense to add the digits beyond that place. Round the numbers

to the hundredths place, and then save time by dropping all digits beyond that

place before performing the calculation. Our result for the sum is 22.75. In general,

then, do not carry the result beyond the first digit containing an uncertain figure.

In multiplying and dividing, the result should have the same number of signifi-

cant figures as the term with the fewest. If we multiply 1.78� 14.339 and ignore

the significant figures, we will calculate 25.52342. Only the first three digits

are significant, however, so that the answer should be expressed as 25.5. To quote

more significant figures gives a false impression of the precision of the

measurements and your confidence in the final calculated result.

In such calculations, do not confuse the number of significant figures of

constants with those of measured quantities. The former have no bearing on the

number of significant figures in the calculated result. For example, the number p
is known to be 3.14159265. . .. The number of significant figures in a calculation

involving p is only determined by the precision in the measured quantities.

In the calculation of the circumference of a circle, C, from its radius, r, C¼ 2pr.
The presence of p does not mean that the calculated result has nine or more

significant figures. The presence of the 2 does not mean that the calculated result

has only one significant figure.

As a final comment, “precision” should be distinguished from “accuracy.”

Precision refers to the number of significant figures in a number. Accuracy refers

to the agreement between a number and the actual magnitude of the entity being

measured. Inaccurate results often result from the presence of systematic as

opposed to random errors.

The two should not be confused. For example, if we have a table which is known

to be 3.11 m long, then a measurement of 3 m would be an accurate measurement of

its length with low precision. A measurement of 3.1 m would be an accurate

measurement of its length with greater precision. A measurement of 4.015832 m,

on the other hand, would be an inaccurate measurement of its length quoted with

great precision.

A famous anecdote illustrates this difference. The people of an ancient Chinese

dynasty, who were forbidden to gaze upon the emperor, were asked to guess his

height. After thousands were polled, the height of the emperor, obtained by
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averaging all the responses, was announced to be (let’s say) 5.840273 ft. Of course,

despite the precision of this result it lacked accuracy, none of the people having ever

seen the emperor.

Unfortunately, one often finds figures which are quoted to high precision but

which have low accuracy. This is a favorite tactic in politics and advertising.

For example, “78.7% of doctors recommend Sugar Chewie Choco-Bombs to their

patients who chew gum” is more persuasive than “more than 3/4 of all doctors

recommend Sugar Chewie Choco-Bombs to their patients who chew gum.”

D. Order of Magnitude Calculations

An order of magnitude calculation is a calculation which leads to a result accurate

to one significant figure. It is performed using scientific notation, and the exponent

to which the 10 is raised is referred to as the “order of magnitude” of the result. As a

result, these calculations could also be considered “factor of 10” calculations. When

faced with a completely unfathomable problem, instead of making a wild guess or

relying on authority, faith, revelation, or bombast to impose an answer, this

technique can produce a meaningful estimate.

Making order of magnitude calculations is valuable not only in science but also

in many other disciplines, often being the only calculation that can be made. We can

transform a state of complete ignorance to a state of reasonable knowledge. An order

of magnitude calculation can settle disputes, aid in designing an experiment, help in

estimating costs, or allow evaluation of a suggested hypothesis.

In this technique, we replace the difficult problem of estimating the value of

some highly unknown quantity with the more manageable problem of estimating a

number of others, for each of which a reasonably accurate estimate can be deter-

mined by everyday experience, common sense, or quick reference. We multiply

these estimated factors together and more or less hope that the various errors will

balance each other, leading to a result for the original quantity in which we have

confidence to one significant figure.

For example, let us say we want to estimate the value of a quantity which we

can segment into five factors for each of which we have a reasonably accurate

estimate. We don’t really know the errors in the various factors, that implying

that we in fact know their true values. Then, if the first factor is incorrect by

being a factor of 2 too small, the second factor is incorrect by being a factor of

10 too large, the third is incorrect by being a factor of 4 too small, the fourth factor

is incorrect by being a factor of 2 too large, and the fifth is incorrect by being

a factor of 5 too small, when multiplied together the final result will be incorrect

by a factor of 2� 1/10� 4� 1/2� 5¼ 2, a remarkable achievement. The more

factors involved the better the chance that the errors will cancel and that the

estimated value will be close to the actual value. The technique will work if about
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as many of the individual estimates are incorrect by being too large as are

incorrect by being too large.

Before you begin, however, you should have a reasonable idea as to the kinds

of values you might expect. If you are estimating the number of people in California

who weigh more than 300 lb., you know that an answer of 5 or 100,000,000 will be

wrong. If you are estimating the number of $1 bills in circulation, you know that an

answer of 7 or 4� 1011 can’t be correct. Making this initial intelligent guess helps

ensure that your result makes sense.

Let us, for an illustration, try, to estimate the number of grains of sand on the

coastlines of the Earth. “Impossible!,” you say. Don’t be so sure. To do this we

need to know the number of grains of sand in a cubic volume, say a cubic

centimeter, and the total volume of coastline sand on Earth. Pick up a handful of

sand. One inch equals 2.54 cm, so a centimeter is about the size of a fingernail.

Let us say you can place 30 grains of sand along your fingernail. Then the number

of grains of sand in 1 cm3 is 30� 30� 30¼ 2.7� 104 grains/cm3. Because the rest

of our calculations will be done using kilometers, let us convert this result using

1 km3¼ 1015 cm3. That is, 2.7� 104 g/cm3¼ 2.7� 1019 grains/km3. We might

believe that this number is accurate to within a factor of 10.

Now, to find the volume of sand in the world, we can start with the circumfer-

ence of the Earth, about 40,000 km (25,000 miles). Although we might be able to

find this information in an encyclopedia, let’s say that the length of coastline is

about 20 times the circumference of the Earth, 20� 40,000 km¼ 8.0� 105 km.

For the width of sand along a typical coastline take 10 m, and for the depth take 1 m.

Although these are simply estimates from our own experience, we believe that they

are accurate to factors of 10. The typical width of a coastline covered with sand is

not, that is, closer to 100 m or 1 m than it is to 10 m, and the typical depth of sand

is not closer to 0.1 m (about 4 in.) or 10 m (about 33 ft) than it is to 1 m.

To obtain our order of magnitude estimate of the number of grains of sand on the

coastlines of the world, we then multiply these various factors.

# of grains of sand¼ð# of grains in 1km3Þ�ðvolume of sand in km3Þ
¼ ð2:7�1019grains=km3Þ� ½ð8:0�105 kmÞ�ð10�2 kmÞ�ð10�3 kmÞ�
¼ 2�1020 grains of sand:

Note that the final result is rounded to one significant figure. Because of the

hopeful balancing of the various errors in our estimates, we believe that this result

is accurate to within an order of magnitude. The true number of grains on the

coastlines of Earth, therefore, we believe to be roughly between 2� 1019 and

2� 1021. (An estimate of the number of stars in the universe, 300 billion stars per

galaxy times a billion galaxies or 3� 1020 stars, comes out to about this same

number, a useless if highly inconsequential fact.)

As is clear, performing order of magnitudes calculations is somewhat of an art.

No such thing as a correct answer exists.
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E. Conversion of Units

Conversion of units, although the source of much anguish, can be done easily using

a simple rule: We can multiply or divide any number by 1. To convert units, take the

conversion formula, divide one side by the other, and then multiply or divide the

number to be converted by this quotient.

For example, let us say we want to convert the diameter of the Earth in

kilometers, 12,756 km, to miles. We know,

1 mile = 1.61 kilometer:

Dividing one side of this equation by the other,

1 mile/1.61 km = 1:

To convert 12,756 km to miles we can multiply or divide by 1. The choice is

determined by our desire to cancel out the unwanted unit, in this case kilometer

(written in bold).

12,756 km � 1 ¼ 12; 756 km� (1 mile/1:61 kmÞ
¼ 7923 miles:

This recipe can be used in the conversion of any units.

As with order of magnitude calculations, you should have a reasonable idea of

the final result before you begin the conversion. That will be a guide as to whether

your result is sensible. In this way, you know that 400 miles cannot be the

equivalent of 3 km or 75,000 km. A decent guess might be between 100 and

1000 km.

F. Calculation of Errors

1. Percentage Errors

In experiments we often want to find the percentage error between a measurement

and a known value or a percentage difference between two quantities. If x is the

measured value of a quantity which is known to have a value of s, then the

percentage error is

percentage error ¼ x� s

s

��� ���� 100:
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If we are comparing quantity x1 to quantity x2, then the percentage difference

between them is

percentage difference ¼ x1 � x2
x2

����
����� 100:

In some situations, we can estimate the error in a measured quantity and wish to

then calculate the corresponding estimated percentage error in the measured quan-

tity. If Dx is the estimated error in a measured quantity xo, then,

estimated percentage error ¼ Dx
xo

����
����� 100:

The Greek capital letter delta, D, is used to denote differences in quantities.

In all these calculations, because percentages can only be positive, we calculate the

absolute values of the differences.

2. Propagation of Errors

Often we encounter a quantity which is the product of more than one variable, each

raised to a different power. If we know the uncertainties in the individual variables,

then we can calculate the uncertainty in the product. In general, if f(x,y)¼ a xn ym ,

then by taking the differentials and dividing the result by f(x,y) one finds

Df
f

¼ n
Dx
x

þ m
Dy
y
:

This is valid for any values of n and m, including non-integers.

G. Mean and Standard Deviation

You are most likely familiar with the techniques of calculating the mean and

standard deviation of a group of data. The mean is defined as the sum of the

individual values or measurements, xi, divided by the number of values. If we

have, for example, five measurements, x1, x2, x3, x4, and x5, then the mean is

xav ¼ x1 þ x2 þ x3 þ x4 þ x5
5

:
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This can be generalized, using the Greek letter sigma, S, to indicate a

summation,

xav ¼ 1

n

Xn
i¼1

xi;

where n is the number of individual values and the Greek letter S signifies the sum

of all the values. This is often simply called the “average.”

The standard deviation is a measure of the distribution of those individual values

about the mean. Again using the shorthand summation symbol, it is defined as

s ¼
Pn
i¼1

ðxi � xavÞ2

n� 1

2
4

3
5
1=2

:

For example, let us say we have a set of measurements taken by different people

of the size of a meteorite that we found in the desert. Those measurements are 17.8,

17.2, 18.1, and 17.7 mm. The mean is found to be

xav ¼ ð17:8þ 17:2þ 18:1þ 17:7Þ=4 mm

¼ 17:7 mm;

The standard deviation is calculated to be

s ¼ ½ð17:8� 17:7Þ2 þ ð17:2� 17:7Þ2 þ ð18:1� 17:7Þ2 þ ð17:7� 17:7Þ2�=3
n o1=2

¼ ½0:01þ 0:25þ 0:16þ 0:0�=3f g1=2
¼ 0.37 mm:

Sometimes the variance is quoted. This is simply the square of the standard

deviation,

s2 ¼
Pn
i¼1

xi � xavð Þ2

n� 1
:

We may want to calculate the mean of quantities which have different

uncertainties. In that case, we want to give less weight to the less certain quantities

and more weight to the more certain quantities. This is achieved by calculating a

weighted mean. If the weight assigned to measurement xi is wi, then the weighted

mean of the n quantities is

xav ¼
Pn
i¼1

wixi

Pn
i¼1

wi

:
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The standard deviation of n quantities with weights wi whose mean is xav is

s ¼
Pn
i¼1

½wi xi � xavð Þ�2

Pn
i¼1

wi

2
664

3
775
1=2

:

H. Angular Measurement

The hopelessly non-decimal system of angular measure comes to us from Babylo-

nian tradition through centuries of use. A full circle is divided into 360 degrees of
arc, a degree is subdivided into 60 minutes of arc, and a minute of arc is further

subdivided into 60 seconds of arc. For degrees, minutes, and seconds we use the

symbols �, 0 , and 00. (The Babylonians used the sexagesimal system, the base of

their counting being 60 rather than our 10. They also knew that the perimeter

of a hexagon is exactly equal to six times the radius of the circumscribed circle.

The number 6� 60¼ 360 is thereby associated with a circle, and would be a fairly

obvious choice by which to divide the circle if you were a Babylonian.)

An angular size can be given either in these units or in decimal form. For example,

2�300 could be rewritten 2.50�, and 270 2500 could be rewritten 27.420 .
We sometimes need to convert between degrees, minutes of arc, and seconds

of arc and degrees and decimal fractions of a degree. For example, to express 27.14�

in degrees, minutes of arc, and seconds of arc we note that 0.14� is the same as

0.14� � 60 (minutes of arc/degree)¼ 8.40 . Then we note that 0.40 is the same

as 0.40 � 60 (seconds of arc/minute of arc)¼ 2400 .
To transform from degrees, minutes of arc, and seconds of arc to degrees and

decimal fractions of a degree, we perform an addition. For example,

64
�
15

0
18

00 ¼ 64
� þ 15

60
0
per deg ree

þ 18

ð60 � 60Þ00 per deg ree

¼ 64
� þ 15

60

� ��

þ 18

3600

� ��

¼ 64
� þ 0:25

�þ0:005
�

¼ 64:255
�
:

Because the system of degrees, minutes, and seconds is essentially arbitrary,

it should be no surprise that it cannot be employed in the trigonometric cal-

culations developed independently by the Greeks. They discovered that the ratio

of the circumference, C, of any circle to its diameter, D, is the number
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p¼ 3.14159. . . 1 That is,C¼ pD. We frequently rewrite this in terms of the radius R
of the circle, C¼ 2p R.

To determine the kind of angular measure that must be employed in trigono-

metric calculations, examine a circle. In particular, what is the portion, s1, of the
circumference of a circle subtended by an angle of 1�? By a simple proportion,

1�

360�
¼ s1

2pR
;

or

s1 ¼ 2pR
360

:

In fact, this result is entirely general for any angle, y , in degrees, subtending any
portion of circumference, s,

y
360

¼ s

2pR
;

or

s ¼ 2pR
360

y: (1)

For y¼ 360�, s¼C¼ 2pR, as it must.

Now, note that we can rewrite (1) as

s ¼ y
ð360=2pÞR:

This tells us that if we express y in units, not of degrees, but in units of some

funny number 360/(2p), then we can write the portion of circumference simply,

without regard to any arbitrary Babylonian construct,

s ¼ Ry; (2)

where now y is in units of 360
2p .

1 The century-old anecdotal story that Johann Strauss, Jr., (1825–1899) composed the famous Blue

Danube Waltz while eating “pies” and therefore decided to denote that work as his “opus 314”

apparently was a hoax perpetrated by classical music-loving geometry theorists with an addiction

to apples. On the other hand, perhaps some music-loving astronomer made the whole thing up.
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Because of the importance of this number and its intimate association with the

radius of the circle, it is given a name, radian. One radian is a unit of angular

measurement equal to 360
�

2p ¼ 57.3�. Angles given in radians are said to be expressed
in circular measure. The lack of any constants in (2) tells us that this is the natural

unit for angular measure and, accordingly, the natural unit for trigonometry.

Note that the strange value for the unit of radian is not its fault. Nature made the

trigonometry of circles so that C¼ 2pR. The arbitrary (except to the Babylonians)

division of a circle into 360 parts determines the value of 57.3�.
Equation 2 is related to an important approximation that we will encounter

frequently, the small angle approximation. In (2), s is a portion of an arc length.

If R � s, that is, for objects at comparatively great distances, the curvature of the

circular arc can be neglected and s can be considered a linear length. In general, given
an object of measured angular size and known distance, as shown in Fig. 1, we

calculate the size of the object from tan y/2¼ s/(2R). If R � s, however, we can use

the small angle approximation for tangent to find s¼R y, which is (2). This condition
is, of course, frequently the case in astronomical observations. To apply (2), the

angular size of the object must be measured in radians.

I. Scale Factors

Scale factors are one of those concepts that are familiar to everyone, but when placed

before students can cause consternation. We are all familiar with the scale of a map.

The distance from Chicago to Springfield, Illinois, is about 180 miles. On a road map,

with a scale of 20 miles to 1 in., the distance on the map is about 9 in.

In astronomy, we often have to determine the scale of spectra or photographs of

star fields or galaxies. As a road map spans a range of miles, so a spectrum spans a

range of wavelengths and a photograph spans a range of seconds or minutes of arc.

To determine the scale of a road map, we could lay a ruler along the path from

one location to a second whose distance from the first is known. We could then read

off the number of inches between the two locations, divide by the known distance,

and then calculate that the scale of the map is so many miles per inch,

fmap ¼ DD
DL

;

Fig. 1 The size of an object

can be determined if its

distance and angular size

are known

I. Scale Factors 15



where DD is the distance between the locations in miles and DL is the number of

inches between them on the map. Henceforth, when we want to find the number

of miles between two locations, we measure the number of inches and multiply by

this scale factor.

With a spectrum or photograph, the procedure is exactly the same. To determine

the scale factor of a spectrum, we lay a ruler between two spectral lines each of

whose wavelengths is known, measure the number of millimeters between them,

and then find the scale factor by calculating

fspectrum ¼ Dl
DL

;

where Dl is the wavelength interval between the spectral lines in angstroms, the

unit of wavelength (1 Å¼ 10�8 cm), and DL is the distance between them in

millimeters. Henceforth, when we want to find the number of angstroms between

two spectral lines in this spectrum, we measure their separation in millimeters and

multiply by this scale factor.

To determine the scale factor of a photograph, we lay a ruler between two stars

or parts of a galaxy, the angular distance between which is known in seconds or

minutes of arc, measure the number of millimeters between them, and then find the

scale factor by calculating

fphoto ¼ Dy
DL

;

where Dy is the number of seconds or minutes or arc between the two stars or parts

of the galaxy, and DL is the distance between them in millimeters. Henceforth,

when we want to find the angular distance between two locations in this photo-

graph, we measure their separation in millimeters and multiply by this scale factor.

In determining a scale factor, use two points that are as widely separated as

possible. In this way, the errors in reading the ruler will be small compared with the

length being measured.

J. Julian Dates

Astronomers frequently need to determine the time interval between celestial

events, the time interval between the dates of their observations of celestial events,

or to coordinate observations of the same phenomenon, be it solar flares or

supernova explosions, for various examples. Using a calendar poses numerous

problems, such as different number of days in different months and leap years.

In calendars such as ours, division into time periods of different lengths, such as

months and years, causes unnecessary complications. More than that, different

cultures use different calendars and historical events in different calendars can be
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difficult to correlate chronologically. A simpler manner of keeping track of time,

in terms of the number of days in a sequence, was therefore needed. It is simply

more convenient to reckon time in one single unit, be it days or seconds, rather than

days, months and years.

The method of choice among astronomers is the Julian date. It is defined as the

number of days reckoned from 12:00 noon universal time on January 1, 4713

B.C.E. Universal time, or UT. Universal time is the time at the Prime Meridian,
the meridian or line of longitude where the longitude is defined to be 0�. Because
the meridian was chosen to pass through the Royal Observatory at Greenwich,

England, universal time was formerly referred to asGreenwich mean time, or GMT.

The date of January 1, 4713, was chosen as the zero date to commemorate the date

that aliens brought the first recipe for pistachio ice cream to the Earth.

In Julian days, the time during the day is expressed as decimal fractions of a day.

Midnight on January 1, 2000, for example, has a Julian date of 2451544.5. The

Julian date is frequently quoted without the first two digits. J.D. 2500000.0 will

occur on August 31, 2132 at noon UT.

Use of the Julian date greatly simplifies reckoning of time, being a simple

sequence of numbers increasing by unity from day to day. Some labor is required

to calculate the number of days that have passed between, for example, December

4, 2010, and June 18, 2013. Knowing that the respective Julian dates are 55534 and

56461 makes the task one of simple subtraction.

Figure 2 shows actual observations of the quasar 3C273B. This, as other galaxies

with active galactic nuclei, or AGN’s, are notable for many reasons, including the

brightnesses with time. From this graph, we can easily see that the brightness at

22 GHz frequency varies about 25% over a period of less than about 375 days. If the

Fig. 2 The flux density (brightness in radio wavelengths) of thesource 3C273B as a function of

Julian date. Using Julian dates facilitates the determination of time intervals. Observations at the

Hat Creek Radio Observatory (HCRO) by the author
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data were plotted instead against calendar date, determining the length of time of

this variation would be unnecessarily time-consuming.

For the purposes of the experiments in this book, we won’t bother with

converting local time to strict Julian dates, referred to the Prime Meridian. Instead,

we’ll simply use the Julian date as that at noontime at your particular location, with

its own time zone. This, if the change of date is altered to occur at midnight rather

than at noon, is sometimes referred to as the chronological Julian date.

K. The Method of Least Squares

In astronomy and physics we often find the need to find the best-fit curve to a set of

data. In general, if y is a function of independent variables x1, x2, x3, . . . xn,

y ¼ ao þ a1x1 þ a2x2 þ a3x3 þ :::þ anxn; (3)

then we wish to determine the value of the various coefficients ao, a1, a2, a3 . . . an.
The preferred method of doing this is the least squares method, based on the

criterion that the square of the deviations of the observed values of y to the curve

determined by the parameters ai is a minimum. This, in fact, is derived from the

maximum likelihood method of statistical analysis.

If (3) is multiplied in turn by 1 and the various values xi , and each of the n+ 1
resulting equation is summed over all the observations, we obtain a set of n+ 1
equations in n+ 1 unknowns. These can then be solved for the values of ai by any of
the well-known methods for solving simultaneous equations.

For the case of a linear equation of one independent variable,

y ¼ aþ bx;

the set of two equations in two unknowns is

Xn
i¼1

yi ¼ n aþ b
Xn
i¼1

xi (4)

Xn
i¼1

xiyi ¼ a
Xn
i¼1

xi þ b
Xn
i¼1

xi
2: (5)

In actual practice, the variables xi may be powers of independent variables,

trigonometric functions of independent variables, or other functions of the inde-

pendent variables. The least squares fit of Fig. 5 of Experiment #2, “A Review of

Graphing Techniques,” is one example of data fit by this method.
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L. Galaxies Collide!: The Impact of the Milky Way

and Andromeda Galaxies

To provide an example of how astronomers use mathematical physics to learn

about the universe, and to provide a real-world application of scientific notation,

significant figures, and the conversion of units, we will calculate the velocity at

which M31 will collide with the Milky Way galaxy. This calculation will be based

on the law of conservation of energy and some simplifying assumptions, and will

enable us to determine if an “air bag” will actually become deployed! Currently,

M31 is about 780,000 pc away and moving toward us with a relative velocity of

about 120 km/s.

As it “falls” toward us, M31 gives up some of its gravitational potential energy,
which is transformed into kinetic energy. We learn in physics that gravitational

potential energy is the energy a mass has by virtue of its presence in a gravitational

field and that kinetic energy is the energy a mass has by virtue of its motion.

The law of conservation of energy tells us that the energy of an isolated system

remains constant in time. Simplifying the problem by accounting only for gravita-

tional potential energy and kinetic energy, we therefore equate the energy of the

M31-Milky Way “system” at the present time with that at the time that the collision

occurs,

KEnow þ PEnow ¼ KEimpact þ PEimpact; (6)

using the conventional notation KE for kinetic energy and PE for gravitational

potential energy. The well-known formulas for kinetic energy of an object and the

gravitational potential energy between two objects are

KE ¼ 1

2
mv2;

where m is the mass of the object moving at a velocity v,
and

PE ¼ �Gm1m2

r
;
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where G is the constant of gravitation, G¼ 6.67� 10�11 Nt-m2/ kg2, m1 and m2 are

masses of the two objects which are pulling at each other, and r is the distance

between them. (This traditional but at first sight strange formula puts the arbitrary

zero reference point at infinity. Because only changes in energy are relevant, the

reference point can be placed anywhere. Objects whose separation is less than

infinite have smaller, therefore negative, values of gravitational potential energy.)

This equation results directly from Newton’s Universal Law of Gravitation describ-

ing the gravitational force between two objects of masses m1 and m2 which are

separated by a distance r,

F ¼ Gm1m2

r2
:

Identify m1 and m2 as the masses of M31 and the Milky Way, respectively.

Then (6) becomes

1

2
m1v

2
now � G

m1m2

rnow
¼ 1

2
m1v

2
impact � G

m1m2

rimpact
: (7)

We see that the mass of M31, m1, cancels out, and we can solve for the velocity

of impact,

vimpact ¼ 1:414

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
v2now þ Gm2

1

rimpact
� 1

rnow

� �s
: (8)

For the value of the distance at which impact occurs, rimpact, use the radius of the
Milky Way galaxy, about 15 kiloparsecs.

This irrelevance of the mass of M31 in (7) and (8) is no surprise. Indeed, it is

explained by none other than Sir Isaac Newton and Albert Einstein. Starting

when Newton in 1666 was aroused from whatever were his daydreams by the

falling British apple in that family garden in Woolsthorpe, Lincolnshire, physicists

eventually realized that all objects under a given force of gravity fall with the

same acceleration, independent of their mass. The equality of the inertial mass,
which describes the acceleration of any object under the action of any force via

Newton’s Second Law, F¼ma, with the gravitational mass, which describes the

strength, specifically, of the force of gravity acting on an object, was thereby

established. Einstein stated this in 1907 as one version of his equivalence principle.
As a result, on the moon, in a vacuum, and in any other environment lacking the

frictional drag resulting from an atmosphere, a feather, block of lead, or member of

Congress dropped from the same height at the same time will land at the same time.

One of the Apollo 15 astronauts, if any proof was needed, demonstrated this using a

falcon feather and a geological hammer.

It can be shown that the mass in the expression for kinetic energy is the same as

the inertial mass. It follows, therefore, that the masses m1 in the equation appearing
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either in the expressions for KE or those for PE are equal and will cancel out, as we

found out.

We cannot perform this calculation without first converting some units. We note

that the units of G are in meters and kilograms and the units of velocity are in km/s,

both consistent in the meter-kilogram-second system of units. Unfortunately, here

the mass is expressed in solar masses, the distances are expressed in parsecs and

kiloparsecs, and vnow is expressed in km/s.

We take a value for the MilkyWay mass of 580 billion solar masses. Then, using

the conversion factors

1 pc ¼ 3:086� 1016 m;

1 solar mass ¼ 1:99� 1030 kg;

1 km ¼ 1000 m;

and

1 kiloparsec ¼ 1000 parsecs;

we can convert the Milky Way mass, m2, to kilograms, rnow and rimpact to meters,

and vnow to meters per second. For purposes of calculation, note that the unit of

Newtons in the meter-kilogram-second (MKS) system of units, abbreviated Nt,

has the following equivalent: 1 Nt¼ 1 kg-m/sec2 . This unit appears in the value of

the gravitational constant, G. The equivalence follows from its definition via

Newton’s Second Law, F¼ma. Accordingly, the units of G can also be given

as m3/kg-sec2.

Then, with all the factors expressed in the meter-kilogram-second system

of units, we will be able to solve the above equation for vimpact in meters per

second.

Thus,

m2 ¼ 5:80� 1011solar masses

¼ 5:80� 1011solar masses� 1:99� 1030kg

1 solar mass

¼ 1:15� 1042kg;

rnow ¼ 780; 000 pc

¼ 7:80� 105pc� 3:086� 1016m

1 pc

¼ 2:41� 1022 m;
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rimpact ¼ 15; 000 pc

¼ 1:50� 104pc� 3:086� 1016m

1 pc

¼ 4:63� 1020 m;

and

vnow ¼ 120
km

s

¼ 1:20� 102
km

s
� 103m

1 km

¼ 1:20� 105
m

s
:

We see the parameters have three significant figures. The results of the conver-

sion of units, therefore, also have three significant figures.

The calculation of (8) is then easily performed using scientific notation,

vimpact ¼ 1:414

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1:20�105

m

s

� �2

þ6:67�10�11 m3

kg� s2
�1:15�1042kg

s
:

� 1

4:63�1020m
� 1

2:41�1022m

� � :

Note that both terms under the radical sign have the dimensions of m2/s2. In

the second term, we can cancel out the units of kilograms and one of the three units

of meters and perform the arithmetic,

vimpact ¼ 1:414

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:720� 1010

m2

s 2
þ 7:67� 1031

m2

s 2
� 2:12� 10�21

r

¼ 1:414

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17:0� 1010

m2

s 2

r

¼ 5:83� 105
m

s
:

Converting the result to km/s yields vimpact¼ 583 km/s.

Whether or not a shock wave will be created when the two galaxies collide

depends on the velocity of impact compared to the velocity with which pressure

waves move in the interstellar space of the Milky Way. If the collision velocity is

greater than the speed of the pressure waves, then the pressure waves cannot move

the interstellar material out of the way fast enough to avoid a build-up. That leads to

a shock wave. Sound waves are, in fact, pressure waves, so that another way of

expressing this condition is whether the velocity of impact is greater than the speed
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of sound in interstellar space. The related interaction between an aircraft and the

atmosphere is described as supersonic, faster than sound.

The velocity of pressure waves in a given medium depends on the temperature of

the medium and the gas under consideration. For hydrogen, the major constituent

of interstellar gas, at a temperature of 10 K the speed of sound is about 150 km/s.

This compares to the speed of sound in air of about 340 m/s, or about 0.34 km/s.

(This explains the time delay between seeing a lightning bolt and hearing the

thunder, the lightning bolt traveling at the speed of light, which is much larger

than the speed of sound in air. By counting the seconds before you hear the thunder,

you can thereby determine an approximate distance to a lightning bolt.)

The impact velocity of 583 km/s is significantly greater than the velocity of

pressure waves, the “speed of sound,” in interstellar space. A significant shock

wave will be created. That shock wave, resulting in a build-up of interstellar gas and

dust, leads to a flurry of star formation. That build-up of matter and the large

amount of radiation emanating from the large number of newly-born stars create

Brewster Rockit’s “air bag”!

Note that if the mass of the Milky Way is in fact smaller than 580 billion solar

masses, the impact velocity will be smaller, whereas if the mass of the MilkyWay is

larger than 580 billion solar masses, the impact velocity will be larger. This has a

direct effect on the amount of time it will take for the two objects to collide. (That

research in 2009 showed the mass of the Milky Way galaxy to be indeed greater

than this figure, leading to a decreased time scale for its collision with M31, was

provided to the cartoonist of “Brewster Rockit: Space Guy!” by the author. We also

advised the cartoonist that the Milky Way is now known to be a barred spiral.

Referring back to the cartoon strip, we see that he is obviously a good student!)
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M. Mathematical Concepts Experiment Exercises

STUDENT’S NAME ________________________________________________

These various mathematical tools will be of great value to you in any quantitative

field, in business, the social sciences, the arts, as well as in the physical sciences.

The following will help you master them. Show all your calculations.

Circle those numbers which are given in proper scientific notation.

1. .11� 104

2. 0.11� 104

3. 1.1� 103

4. 11.0� 102

5. 8.9� 1017

6. 8.9� 10�17

7. 8.90416� 1017

8. 8.90416� 10�17

9. 0.6� 101

10. 6.0� 101

Express the following in scientific notation. Assume that all have four significant

figures.

11. 1,989,000,000,000,000,000,000,000,000,000 kg

12. 299,800,000 m/s

13. 0.00000000006668 Nt-m2/kg2

14. $30,000,000,000
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STUDENT’S NAME ________________________________________________

Circle the larger of the following pairs of numbers.

15. a) 9.9� 102 b) 1.01� 107

16. a) 6.6� 106 b) 6.6� 108

17. a) 1.44897� 10�7 b) 8.4� 10�3

18. a) 5� 104 b) 5� 10�4

Perform the following calculations, showing your intermediate steps without using

a calculator. Express the results in scientific notation.

19. (8.2� 1068)� (2.00� 107) ¼

20. (3.0� 10�16) � (6.0� 104) ¼

21. (2.2� 1052)� (5.0� 10�14) � (2.0� 1021) ¼

In the following two exercises, each figure is given to two significant figures.

Express the result with the correct number of significant figures, showing your

intermediate steps.

22. 4.2� 104� 5.2� 102 ¼

23. 7.7� 1012 + 2.3� 1011 ¼
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STUDENT’S NAME ________________________________________________

Express the results of the following calculations with the correct number of

significant figures.

24. 14.448 + 1.89 + 66.0302 ¼

25. 4.4 + 14.332 + 109 ¼

26. 14.339 + 3.14� 22.1 ¼

27. 1.119� 4.39 ¼

28. 194 � 22.02 ¼

29. (72.29 + 1.8) � 3.039 ¼
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STUDENT’S NAME ________________________________________________

30. Calculate to the correct number of significant figures from the following

formula the volume of a sphere whose radius r is measured to be 3.08 cm.

V ¼ 4

3
pr3; where p ¼ 3:14159265:

31. The velocity of recession v of the most distant objects in the universe, quasars,

can be calculated from their Doppler shift by the formula z ¼ Dl
l ¼ v

c , where Dl
is the Doppler shift of light of wavelength l observed from the quasar, and the

speed of light c¼ 3.00� 105 km/s. (This formula is derived as Eq. (6) of

Experiment #9, “Determination of the Rotation Rate of Planets and Asteroids

by Radar: Part I: Observations of Mercury,”.) If a given quasar has a Doppler

shift of Dl¼ 583 Å for light of wavelength 3646 Å, calculate its velocity of

recession. Give your answer to the correct number of significant figures.

(1 Å¼ 10�8 cm)

32. “Chicago Slim” Golden (who famously stated “da only famous card-counters

are da ex-card-counters”) spends 3 weeks in Las Vegas playing blackjack. He’s

on the tables between 10 and 14 h each and every day, plays about 30 hands

each hour, and wagers between $2 and $10 on every hand, most frequently

toward the low end. Estimate the total amount of money he has wagered

(“action”) during his “vacation.” Note your assumptions. (Do not calculate

high and low amounts. Estimate one best value.)
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STUDENT’S NAME ________________________________________________

33. Some believe that the oceans of the Earth were created by a long-lasting

continuous worldwide deluge. Estimate the number of years required to fill

the ocean basins of the Earth to their current depth. Note your assumptions.

34. Estimate the cost to the U.S. taxpayer when 100 United States Senators

campaign for re-election. Include taxpayer-supported services provided to

Senators that they might utilize in their re-election campaigns. Clearly note

all your assumptions and units. Compare this to the $5 million annual cost of

the Search for Extraterrestrial Intelligence (SETI) program, cancelled by the

same group. (Extra credit: Compare the likelihood of finding extraterrestrial

intelligence to the likelihood of finding intelligence in the United States

Senate).
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STUDENT’S NAME ________________________________________________

35. Estimate the time that Santa has available to travel to and work in each

individual home in the world that celebrates the yuletide holiday. Note your

assumptions.

Convert the following numbers into the unit requested.

36. 50 kg into grams (1 kg¼ 1000 g)

37. 1.45� 1023 m into parsecs (1 pc¼ 3.086� 1016 m)

38. 1500 m into miles (1 mi¼ 1.61 km; 1 km¼ 1000 m)

39. 108 spiral galaxies into solar masses (one spiral galaxy contains about 3� 1011

solar-type stars)

40. A table whose length is known to be 8.40 m is measured to have a length of

8.35 m. Calculate the percentage error in the measurement.
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STUDENT’S NAME ________________________________________________

41. Barnard’s star, a nearby star that is thought to possess a planetary system, has

an apparent visual magnitude of 9.54m. A student astronomer measures its

apparent magnitude at 9.36m. What is the percentage error in the measurement?

42. These are the average heights of a group of extraterrestrial visitors. Find their

mean and standard deviation. 17.8 m, 19.2 m, 16.3 m, 17.2 m, 16.9 m

43. Convert 27.14� into degrees, minutes, and seconds of arc.

44. Convert 41�500 into degrees and decimal fraction of a degree.
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STUDENT’S NAME ________________________________________________

45. Convert 7�100 5600 into degrees and decimal fraction of a degree.

46. A galaxy is known to be at a distance of 150 Mpc (1 Mpc¼ 106 pc). It subtends

an angle of 2500 of arc. Calculate its diameter in parsecs. Compare this to the

diameter of the Milky Way galaxy, about 30,000 pc, or 30 kpc.

47. Using a ruler calibrated in millimeters and the wavelengths in angstroms

provided, determine the scale factor of the following portion of the solar

spectrum in angstroms per millimeter (Å /mm).
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STUDENT’S NAME ________________________________________________

48. The galaxy pictured in the drawing, similar to NGC 4303, an SBc galaxy in the

Virgo cluster of galaxies, has an angular size of 110 of arc, about 1/3 the angular
diameter of the moon. (NGC is the abbreviation for “New General Catalog.”)

Determine the scale factor of the drawing in minutes of arc per millimeter (min

of arc/mm).

NGC 4303

3 mm

49. In the sketch of a star field below, we are told that the scale factor is 47 seconds

of arc per millimeter. Determine the angular distance between the stars labelled

A and B. (Most photographs in astronomy, particularly for research purposes,

are presented in the negative image, more easily analyzed than the positive

image to which we are accustomed.)
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STUDENT’S NAME ________________________________________________

50. The calculation to determine the velocity of impact of M31 and the Milky Way

galaxy assumed that the mass of the Milky Way was 580 billion solar masses.

Research in 2009 indicated that that Milky Way mass was larger, 710 billion

solar masses, about equal to that of M31.

a) Using (8), calculate the velocity of impact that would result if the Milky

Way has a mass of 710 billion solar masses. Show all your calculations here,

displaying all the units.

b) In supersonic flight, the termMach number (Ernst Mach, 1838–1916) refers

to the ratio of the velocity of supersonic flight to the speed of sound in the

medium. Calculate the Mach number describing the velocity of impact of

M31 with a Milky Way of mass equal to 710 billion solar masses.

51. The Julian date corresponding to December 4, 2011, is 55899.

a. How many days will have elapsed from December 4, 2011, until June 7,

2013? Show your calculations here.

b. The Julian date corresponding to June 7, 2013, is 56450. Perform the same

calculation using Julian dates.

Removing these DATASHEETS from the bookmay damage the binding. Youmight

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.
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Experiment 2

A Review of Graphing Techniques

SUMMARY: In Experiment #2 “A Review of Graphing Techniques,” we

review the proper techniques for graphing data. This includes determination of

slopes, interpolation, and extrapolation.

LEVEL OF DIFFICULTY: Low

EQUIPMENT NEEDED: Calculator.

A. Introduction

When we perform an experiment, we usually vary one parameter of the experiment

and measure the effect on another parameter. For example, we might vary the

height of a ball above the ground and then measure the amount of time needed for it

to fall to the ground.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_2, # Springer Science+Business Media New York 2013
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The parameter whose values are varied by the experimenter is called the

independent variable. The parameter whose value changes as a result is called the

dependent variable. In most physical situations, more than one independent vari-

able can affect the value of the dependent variable. For example, if we perform the

falling ball experiment on Mars, Mercury, and the Earth, we will quickly discover

that the gravity of the particular planet will also affect the time needed for the ball to

fall to the ground.

Experimental results can be presented either in a table or graphically. In a table

we provide the independent variable in the left-hand column and the dependent

variable in the right-hand column. In a graph, we plot the independent variable

along the x-axis and the dependent variable along the y-axis.

Graphing is a more visual means of presentation than displaying data in a

table. You can easily discover relationships between variables and interpret

data. You can, for example, determine if the dependent variable varies sensi-

tively with changes in the independent variable or if it only slightly varies as

the independent variable changes. You can see if the relationship is a straight-

line or linear relationship, or one that is more complex. Because of its impor-

tance in interpreting experimental data, we must be experts in the techniques

of graphing.

In many cases, if the data are believed to represent a physical law, we desire to

determine a mathematical equation which represents the data. In this case, the

independent variable will appear on the right hand side of the equation, and the

dependent variable will appear on the left hand side of the equation.

An equation has several major advantages over the representation of data in a

table or graphically. It is the simplest means of representation, it allows for all

physically possible values of the variables, and it enables mathematical manipula-

tion in order to, for example, allow predictions and testing of hypotheses, important

elements of the scientific method.

Well-known graphical methods for determining the equation representing

linearly-related data exist. In actual scientific practice, numerical rather than graph-

ical methods are used, but for the purpose of many classroom laboratory

experiments, and for quick analyses of real linearly-related scientific data, the

graphical technique is not only simpler but also adequate.

In this experiment, we will master the techniques of graphing and the graphical

determination of the equation representing linearly-related data.

B. Graphing Technique

The goal of presenting data in graphical form is clarity. Besides a few generally

accepted rules, graphing technique is an art guided by common sense and clarity of

presentation.

By convention, the independent variable values are plotted along the x-axis,

also called the abscissa scale. The dependent variables are plotted along the
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y-axis, also called the ordinate scale. If the values of the variables to be plotted

are all positive, you need only provide the first quadrant of the Cartesian rectan-

gular coordinate system on the graph paper, and the origin is placed near the lower

left-hand corner of the paper. If both variables have both positive and negative

values, then all four quadrants are needed and the origin will be placed somewhere

near the center of the graph paper.

THE TITLE. The title should be short but informative in the format of

“____________ as a Function of ___________.” Avoid using such terms as “vs.,”

“in regard to,” “comparison of,” “against,” and so on. You should also avoid titles

that are overly descriptive. If, for example, you were plotting the variations in

brightness observed at the Hat Creek Radio Observatory from quasar 3C273B

from December 4, 2010 to December 4, 2012, an appropriate title would be

“Variations in Brightness of 3C273B as a Function of Time.”

DRAWTHE TWO SCALES AND PLACE TICKMARKS. Determine the range of

the values for the abscissa and ordinate scales. Then use as much of the paper as you

can to spread out the data and pick corresponding intervals for tick marks. Draw

little lines at the tick marks and note the corresponding values. Note the following

elements of good technique.

1. Choose sensible values for the intervals to ease your plotting of data. This is

more important than using the entire sheet of paper. Use even numbers rather

than odd numbers. Generally, intervals whose last digit is 1, 2, or 5 are best.

Using other intervals makes it difficult to read numbers off the graph.

2. If the values are less than 1, always place a zero to mark the tens place. This

prevents mistakes in placing the decimal point. Write, that is, 0.5 instead of .5,

and �0.10 instead of �.10.

3. The intervals on the ordinate and abscissa scales need not be the same.

4. You need not write a number by every division of the graph paper.

5. You need not use the value zero. Many times, a value of zero is meaningless.

6. Avoid using the edge of the graph paper. This causes crowding of the scale titles

and tick mark values and makes extrapolation (see the next section) difficult or

impossible.

7. Put the titles of the axes outside and next to the axes, not at the edges of the graph

paper.

8. Note the values of the abscissa and ordinate where the scales intersect.

9. To aid in setting up the scales, remember, you are free to orient the graph paper

either with the long axis up and down, or with the long axis left to right.

SCALE TITLES. Outside the axes, write the name or algebraic symbol of the

variables which are being plotted as independent and dependent variables, and the

units of those variables. If they take on very large or very small numbers, you might

want to economize writing by noting in parentheses below their name that the

values being plotted are some factor of the actual data.

Here’s an example of well-constructed abscissa and ordinate scales with their

titles, for a graph of density of lunar soil as a function of depth, Fig. 1.

B. Graphing Technique 37



PLOTTING DATA POINTS. Use symbols that make it easy to find the data points

on the graph paper. Avoid tiny little dots. They are difficult to locate and will be

obscured after drawing a line or curve through the data. Open or filled-in circles,

circles with a dot in the center, little triangles, little squares, or a short vertical line

crossed with a short horizontal line, either alone or encircled, are frequently used

to locate data points. Do not write the coordinates of each point either on the graph

or on the coordinate axes. Remember, our goal is clarity of presentation. If several

sets of data are plotted on the same graph, use different symbols to distinguish them.

A “key” should then be provided, identifying each group of data points.

If you are plotting experimental data and have an estimate of the possible range

of values, error bars are placed above and below the plotted point to indicate the

uncertainty. These are drawn as short horizontal lines above and below the data

point joined by a vertical line that passes through the data point. The location of the

short horizontal lines above and below the data point demonstrates the estimated

range of values. If all the data have the same range of possible values, you can

simply place one error bar within the borders of the graph to indicate its magnitude

rather than superimposing them on each plotted data point.

Figure 2 is an example of appropriately plotted data for a hypothetical graph of

“Number of Visible Nighttime Stars as a Function of Distance from Downtown Las

Vegas, Nevada.” The error bars would represent the variation of stars seen, let us

say, from night to night or between those lucky students chosen to perform the

observations.

FITTING A CURVE. In almost all real-life situations, random measurement error

will ensure that not all the data points lie on a smooth curve. In the physical

7.0
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Fig. 1 Example of a graph with well-constructed abscissa and ordinate scales
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sciences, however, we believe that some physical law relates the values of the

dependent to independent variables, so that indeed a smooth curve representing the

mathematical form of that physical law should represent the data. Also, if additional

error-free data were available between the points, we assume that all the points

would lie on a smooth curve. With such considerations, when we try to fit data

graphically, we do not draw a jagged line or a curve with many tiny wiggles so that

each data point lies exactly on the curve. Rather, we try to draw the best smooth

curve possible.

We draw the straight or curved line by eye in order of either increasing or

decreasing values of the abscissa, paying attention to fit the general trend of the data

Fig. 2 An example of appropriately plotted data for a hypothetical graph of “number of visible

nighttime stars as a function of distance from downtown Las Vegas, Nevada.” The data are

hypothetical (That’s science-talk for “I made them up”)
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and not allowing any one or two data points to overly influence the form or position

of the curve. Not all of the data points will fall on the curve. Do not draw the curve

by simply connecting the first and last data points. Their uncertainty is as great as

any other data points and they should not be overly weighted in determining the

form or position of the curve. Numerical procedures exist to perform curve fitting

rigorously, but usually drawing a good line by eye will yield a curve remarkably

close to the curve which would be determined numerically.

Note that software programs that draw a smooth curve through data usually force

the curve to pass through each data point. That does not usually represent physical

reality. Whereas a curve that represents physical reality will pass close to data

points that possess very small error bars, it can pass quite a distance from data

points with large error bars. The commercial software programs will force the curve

to pass through all data points, independent of their accuracy as represented by the

size of the error bars.

If you are drawing a straight line with a ruler, place the ruler on its edge and

rotate it until that edge represents the general trend of the data well. Then lay the

ruler flat and draw the straight line along that edge. Unless you are using a

transparent ruler, laying the ruler flat will hide the data points underneath it.

One of the few instances in which a curve should be forced through a point is

when the dependent and independent variables are known to be directly propor-

tional. In this case, the curve will also pass through the origin.

C. Analysis of Graphs

1. Slopes and Y-Intercepts of Straight-Line Graphs

Frequently you will be asked to determine the value of the slope of a straight line.
The slope tells you the rate of increase or decrease of the dependent variable with

changes in the independent variable. Pick two points on the straight line, widely

separated to minimize the error resulting from the thickness of your pencil. Any two

points will give the same result. Note that in general the two points will not be

actual data points. Algebraically, we represent the coordinates of a point as (x,y). To
distinguish different points we use subscripts. Thus, two points can be represented

as (x1, y1) and (x2, y2).
To display your understanding of slope, on the graph paper draw a triangle

composed of a horizontal line between the abscissa values of the two points, a

vertical line between the ordinate values of the two points, and the segment of

the straight line graph between the two points as the hypotenuse of the triangle.

Then read off the coordinates of the two points on the line and calculate the slope.

You may also want to write the values of the coordinates next to the points on the

line. Always write the general formula for the slope,
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m ¼ y2 � y1
x2 � x1

;

and then substitute the values for the coordinates. This equation is often written

m ¼ Dy
Dx

;

where D, the Greek letter delta, is used to designate the difference in two values.

Figure 3 presents the proper procedure for determining the slope of a straight

line. The data are hypothetical, the expansion of a loaf of baking raisin bread often

used to illustrate Hubble’s law of expansion (see exercise #1 in Section E later).

Here we can read the values of the two chosen points to be y2 ¼ 0.65 mm/s,

x2 ¼ 5.1 cm, y1 ¼ 0.24 mm/s, and x1 ¼ 0.85 cm. The slope is calculated as

m ¼ 0:65� 0:24

5:1� 0:85

mm=s

cm

¼ 0:41

4:2

mm=s

cm

¼ 0:98
mm=s

cm

Fig. 3 Example of determining the slope of a straight line. The “raisin bread” model is often used

to illustrate Hubble’s law
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The units are provided explicitly. Note that if the straight line is sloping down-

wards, then y2 � y1 < 0 and Eq. (2) shows that the slope will be negative in value.

The y-intercept is defined as the value of the ordinate for the value of x ¼ 0.

Accordingly, if you are asked to determine the value of the y-intercept your graph
must extend to a value of x ¼ 0. Reading off the value of ordinate where the line

intercepts the y-axis will not give the value of the y-intercept if the independent

variable scale does not include zero.

Slope also has meaning for curved line graphs. At every point on a curve, you

can draw a straight line tangent to the curve. The slope of that straight line is then

defined as the slope of the curve at that point.

You can determine the uncertainty in the slope and y-intercept of a straight line
graphically. Draw the worst line which you think can still represent the data. If error

bars accompany the data, use their extremities to guide you in drawing this line.

Find its slope and y-intercept. Then the differences in these values of the slope and

y-intercept from the best values you have previously determined are measures of

their uncertainties. We write these uncertainties as plus or minus figures. For

example, a slope of 0.018 with an uncertainty of 0.002 would be written

m ¼ 0:018� 0:002:

Again, numerical procedures exist to find these uncertainties, but in many cases

the graphical approach yields comparable values.

2. Interpolation

Interpolation is the process of determining the value of a dependent variable within

the range of values of independent variable in the experiment, but for a value of the

independent variable for which the value of the dependent variable has not been

directly measured. You find the value graphically by reading the value off the best-

fit straight line or curve.

3. Extrapolation

Extrapolation is the process of determining the value of a dependent variable for a

value of the independent variable beyond the range of the experimental data. You

find the value graphically beyond the data points. If the graph is a straight line,

simply extend the straight line with a straight edge and read the value off the graph.

If the graph is curved, sketch or use a French curve to draw an extension of the

curve through the value of the independent variable of interest. Then read the value

off the graph.
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4. Error Estimates from Graphical Representation of Data

Although the method of least squares discussed in Sect. K of Experiment #1, “A

Review of Mathematical Concepts and Tools,” can provide a measure of the

goodness of fit, a graphical method also exists based on the same principles. If

the best-fit straight line to a set of n data is given by y ¼ a + b x, and the n data

points are {xi , yi}, the mean of the square of the deviations from the best-fit straight

line is given by

s2 ¼ 1

n

Xn
i¼1

yi � aþ bxið Þ½ �2: (1)

The square root of this is then a measure of the goodness of the fit. This method

is easily generalized to data which are not linearly related.

D. Examples of Well-Constructed Graphs

1. Alien Beacons

Figure 4 is an example of a well-constructed graph. Radio astronomer Ronald

Bracewell (1921–2007) of Stanford University has suggested that technically-

advanced civilizations might send unmanned probes throughout the galaxy

searching for other life. Once they would detect such life, they would go into

orbit around that planet, observe, and signal back to the home planet the location

and the nature of inhabitants of that planet.

If, of course, those being observed found the Bracewell Probe they might

consider destroying it. To avoid this, the advanced civilization could program the

probes to communicate with other nearby probes if life was discovered. They could

be programmed to send signals back to their home planet communicating the

distance of each from the newly-discovered planet by, for example, sending pulses

whose period depends on the distance from that planet, Table 1.

Let us say that we on Earth have been detected by such an advanced civilization.

Those probes might be signalling back our location by using data similar to that

given in the table. The closer the probe to us, the shorter would be the pulse. That’s

their “road map” to Earth, and its water and interesting, perhaps succulent, life forms.

We plot those data. The axes are drawn with intervals that are sensible and which

enable utilization of most of the graph paper. Tick marks are drawn from the

intervals that are labeled, but not all of the major divisions on the graph paper are

chosen to be labeled. The axes are drawn within the margins of the graph paper and

the names of the independent and dependent variables and their units are adjacent.

The title is clearly written in the proper form. Data points are clearly visible. Error
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Fig. 4 Bracewell probes may now be signalling our presence to extraterrestrial intelligence

civilizations. This hypothetical (again) graph displays the attributes of a well-constructed graph

Table 1 Bracewell probe monitoring of earthlings

Distance from Bracewell probe-beacon

to earth (pc)

Time delay between pulses transmitted

to home planet (ms)

104 0.068 � 0.05

450 0.282 � 0.05

740 0.581 � 0.05

890 0.620 � 0.05

2000 1.329 � 0.05

3400 2.128 � 0.05
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bars provide a measure of the uncertainty in the time delay measurements.

The errors here are taken, for illustration, as plus or minus 0.05 ms.

The analysis of the graph is aided by constructions on the graph itself.

A straight line is fit by eye to the data. (Note that it is not a perfect straight

line. This results from experimental error in the measurements of the time

between pulses by the aliens and the position of the Bracewell probes having

been changed over the eons by the gravitational pulls of passing stars.) The slope

is determined by drawing a triangle near the extremities of the line and the

coordinates to be used are written on the graph paper. The line is extended through

the ordinate axis to aid in determining the value of the y-intercept. Arrows locate

the positions of the abscissa for which interpolated and extrapolated values of the

ordinate are to be determined. The slope is

m ¼ Dy
Dx

¼ 1:92� 0:50

3000� 735

ms

pc

¼ 6:27� 10�4 ms

pc
;

carried to three significant figures. Its units are provided explicitly. The y-intercept
is read off the graph to be 0.03 milliseconds. The time delay at 2500 pc is read by

interpolation to be 1.61 milliseconds and the time delay at 5000 pc is read by

extrapolation to be 3.14 milliseconds.

If we were asked to determine the uncertainties in these values of the slope and

y-intercept, an additional line would be drawn through the data which is the worst

fit that to our eye would still represent the data. Its slope and y-intercept would be

determined and the absolute value of the differences in these values from those

determined by the best-fit straight line would be the uncertainties.

2. The Microwave Phase Effect of the Planet Mercury

In the actual practice of physics and astronomy, a straight line does not generally

represent data. In the following graph, a more general situation is found. The error

bars vary widely and the best fit to the data is highly non-linear. Such guidelines as

the title of the graph, the choice of intervals for the axes, the titles of axes, and the

presentation of data with error bars hold no matter the form of the graph, Fig. 5.
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Fig. 5 Brightness temperature of the planet Mercury as a function of time. This example of a well-

constructed graph displays the phase effect of Mercury at microwave wavelengths. The curve is

the best fit mathematical model to the data, taken at the Hat Creek, California, radio observatory of

the University of California, Berkeley, at 22 GHz (1.35 cm wavelength). The physics which is the

basis of the model calculations is described in Experiments #14 and #15, “Thermal Radiation from

a Planetary Subsurface: Part I: Calibration and Initial Measurements,” and “Thermal Radiation

from a Planetary Subsurface: Part II: Soil Sample Measurements,”. “IC” and “SC” refer to the

dates of inferior and superior conjunction of Mercury during the observations. Observations by

the author
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STUDENT’S NAME ________________________________________________

E. Graphing Techniques Experiment Exercises

For the first two sets of data, construct a graph and draw the best straight-line curve.

Find the slope and y-intercept, and determine their uncertainties. Show all your

calculations on the DATA SHEET.

1. Leading to one of the most important discoveries in modern astronomy, if not

the greatest, Edwin Hubble (1889–1953) in the 1920s used the new 100-in.

telescope onMt. Wilson to analyze the light coming from a special type of star in

distant “nebulae,” the early name given to galaxies. These fuzzy cloud-like

objects had been observed by human beings for thousands of years (benefitting

from skies free from smog and light pollution) and in more modern times

catalogued by, among others, Charles Messier (1730–1817) in the famous

Messier catalog of 1784. Hubble determined the distances of these galaxies

from the period-luminosity relationship for Cepheid variable stars discovered by

Henrietta Leavitt (1868–1921) and combined them with Vesto Slipher’s

(1875–1969) measurements of the redshifts determined for the galaxies from

their spectra. Working with Milton L. Humason (1891–1972), Hubble discov-

ered that the distances and redshifts were proportional, although with consider-

able scatter (the cause of which is now well-understood), and in 1929 Hubble

and Humason announced their empirical Redshift Distance Law of galaxies,

now commonly known as Hubble’s law.

The proportionality means that the further a galaxy is from Earth, the faster it

is moving away. More generally, realizing that the Earth does not occupy a

special place in the universe, the greater the distance between any two galaxies,

the greater their relative speed of separation. This discovery was the first

observational support for the Big Bang theory of the beginning to the universe

and an expanding universe, thereby providing support for the general theory of

relativity which predicted the expansion. It was indeed a momentous discovery.

The data of Table 2 are similar to those used by Hubble and Humason. The

slope of the line that you will determine is referred to as the “Hubble constant,” a

measure of the expansion rate of the universe.
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STUDENT’S NAME ________________________________________________

Best straight line:

y-intercept ¼ __________

Calculation of slope:

Worst straight line that still represents the data:

y-intercept ¼ __________

Calculation of slope:

Calculation of uncertainty in y-intercept:

Calculation of uncertainty in slope:

Table 2 Velocity of recession of galaxies

Distance

of galaxy (Mpc)

Velocity of recession

from earth (km/s)

41 1050

142 14,613

360 23,700

880 39,000

1100 61,000
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STUDENT’S NAME ________________________________________________

2. Graph the data of Table 3, the determination of apparent magnitudes of stars

from their photographic images.

Best straight line:

y-intercept ¼ __________

Calculation of slope:

Worst straight line that still represents the data:

y-intercept ¼ __________

Calculation of slope:

Table 3 Photography of stars

Size of photographic

image (mm)

Apparent magnitude

of stars (magnitudes)

3.20 12.5

2.60 12.9

2.50 13.2

2.65 13.4

2.15 14.0

1.75 14.2
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STUDENT’S NAME ________________________________________________

Calculation of uncertainty in y-intercept:

Calculation of uncertainty in slope:
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STUDENT’S NAME ________________________________________________

3. Graph the data of Table 4, the acceleration of gravity above the surface of the

Earth. These data do not follow a linear relationship.

a) Draw the best smooth curve through the data.

b) Determine the slope at 2000 km above the surface of the Earth.

Table 4 Acceleration due to gravity

Height above

earth (km)

Acceleration due

to earth gravity (m/s2)

0 9.80

1000 7.32

2000 5.68

3000 4.53

4000 3.70

5000 3.08

6000 2.60

7000 2.23

8000 1.93

9000 1.69

10,000 1.49
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STUDENT’S NAME ________________________________________________

c) Determine the slope at 6000 km above the surface of the Earth.

d) Interpolate graphically to find what the acceleration of an object due to

the Earth’s gravity would be at a distance of 8500 km above the surface

of the Earth.

ANSWER: __________

e) Extrapolate by extending the curve and estimate the acceleration of an object

due to the Earth at the distance of 14,000 km above the surface of the Earth.

ANSWER: __________

Removing these DATASHEETS from the bookmay damage the binding. Youmight

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these

DATA SHEETS.
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Experiment 3

The Optics of Telescopes:

Part I. Image Size and Brightness

SUMMARY: In Experiment #3 “The Optics of Telescopes: Part I. Image Size

and Brightness,” you will study telescope optics by aligning various types of

light sources and lenses on a platform. In this experiment, we study those

characteristics which determine image size and image brightness.

LEVEL OF DIFFICULTY: Moderate

EQUIPMENT NEEDED: Optical bench, frosted light bulb; unfrosted light

bulb; converging (double-convex) lenses of various focal lengths; black

pieces of cardboard; photometer; light baffles.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_3, # Springer Science+Business Media New York 2013
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A. Introduction

A telescope is a device for gathering light from a distant object and for magnifying

the resulting image. In its simplest form, a telescope is composed of a converging

lens to collect light, the objective, and a screen placed at the focus of the lens on

which to view the image that the lens creates. Instead of a screen, astronomical

telescopes have an eyepiece placed close to the focus which enables the image to be

magnified. As seen in Fig. 1, an eyepiece is simply another converging lens. Tubing

is placed around the entire assembly to keep out stray light.

In astronomical research for most of the twentieth century, the eyepiece might be

replaced by a photographic plate, which was a high quality photosensitive emulsion

on glass manufactured specifically for astronomical use by Eastman Kodak Corpo-

ration. This enabled time exposures so that objects too dim for the eye to detect

could be detected and a permanent record of the image could be created. In modern

telescopes more sophisticated detection and recording devices such as photometers,

spectrographs, and charged-coupled detectors are used. In all cases, the physics of

the light-gathering aspects of the telescope remains the same.

In this experiment and in Experiment #4, “The Optics of Telescopes: Part II.

Magnification and Chromatic Aberration,” we will investigate the optics of

refracting telescopes by ray tracing and by using several lenses, eyepieces, filters,

and sources of light. We will investigate (1) the increase of image size with focal

length of the objective, (2). the effect of focal length and aperture on the brightness

of an image, (3) the variation of magnification with focal lengths of the objective

and eyepiece, and (4) the phenomena of chromatic aberration and its variation with

the focal length of the objective lens.

B. Theory

1. Telescope Characteristics

The important characteristics of a telescope are its collecting area, focal length,
resolving power, and magnifying power. The collecting area is approximately equal

Fig. 1 Two lenses encased in tubing constitute a simple refracting telescope
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to the cross-sectional area of the objective lens. In most types of telescope designs,

part of the lens is blocked from viewing the sky, and in these cases the collecting

area is slightly less than the cross-sectional area of the lens.

The focal length is the distance from the center of the objective lens along its axis
of symmetry, or optical axis, to the location of the focused image of the distant

object. An extended object forms an image on a plane perpendicular to the optical

axis at the focal point called the focal plane. The resolving power or resolution is a

measure of the smallest detail that the telescope can distinguish, either two small

adjacent objects or fine details in an extended object.

An extended object viewed through a telescope appears larger, and therefore

closer, than when viewed by the unaided eye. More precisely, the magnifying

power, or power, of a telescope is the ratio of the angular size of the image as

viewed through the telescope to the angular size of the object viewed by the unaided

eye. For example, an eyepiece that makes an object which is 1 minute of arc in

angular size appear to be 100 minutes of arc in angular size when seen through the

telescope is said to yield 100 power. (Binoculars are rated by two numbers, such as

7 � 35. The first number is the magnifying power and the second is the diameter of

the objective lens, or aperture, in millimeters.)

2. Telescope Relationships

Geometrical optics and the physics of waves provide mathematical relationships

between these characteristics of a telescope and the diameter and focal length of the

objective lens and the focal length of the eyepiece.

If D is the diameter of the aperture, then the collecting area is approximately the

area of a circle of diameter D,

A ¼ p
D2

4
; (1)

where blockage of the incoming light beam has been neglected.

Study of the phenomenon of diffraction of waves and the optics of image

formation provides the Rayleigh criterion (Lord Rayleigh, 1842–1919) for the

angular resolution of two images as

Dy ¼ 1:22
l
D

radians:

This applies to any kind of wave, including sound waves and ocean waves as

well as the electro-magnetic waves such as visible light that astronomers employ to

observe celestial objects.

If we express l in angstroms (Å) and D in centimeters, then Dy in seconds of

arc is
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Dy ¼ 0:00251
l
D
: (2)

At optical wavelengths, this relationship can be approximated by 12/D seconds

of arc, where D is measured in centimeters. For example, a 10-cm aperture at a

wavelength of 5000 Å yields a resolving power of about 1.2 seconds of arc.

Equation 2 quantifies the ability to distinguish two separate objects, for example,

the two stars in a binary pair, as well as the ability to observe details on a single

object. These could be, for examples, craters on the Moon, gas filaments in a

remnant of a supernova explosion, or agricultural artifacts such as rectangular

patterns of crop fields on a planet being searched for evidence of intelligent life.

The magnifying power, m, of a telescope with objective focal length fo and

eyepiece focal length fe can be shown by the geometry of the telescope and

trigonometry to be

m ¼ telescope image size

unaided image size

¼ fo
fe
: (3)

From (3), it would appear that any telescope can be made to provide any

magnifying power simply by using an eyepiece of sufficiently short focal length.

In practice, three effects limit the magnifying power that can be achieved. First,

atmosphere turbulence limits air quality, or seeing, to 1/4 of arc at the best sites in

the world, and more typically 1 second of arc. Increasing magnification to enable

seeing detail below these sizes magnifies turbulence and causes the image to

shimmer wildly. Second, as magnification is increased, the image gets increasingly

faint as the same amount of light is spread out over an increasingly large area.

Finally, the physics of light waves, as expressed by the Rayleigh criterion, provides

a fundamental limit to the resolution of details. A telescope of aperture D cannot

resolve details smaller than the limit given in (2). Magnification beyond this limit

just magnifies a fuzzy image.

As a result of these limitations, the maximum useful magnifying power for most

telescopes on most nights is about 20 power per centimeter of aperture.

3. Properties of an Image

The important properties of an image are its size and its brightness. The size of an
image is determined by the focal length of the objective lens: The larger the focal

length, the larger the image of a given object. For an object of angular size a
seconds of arc and a lens of focal length fo, the image size s is given by
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s ¼ a fo
206265

; (4)

where 206,265 is the number of seconds of arc in a radian, and the image size and

focal length are measured in the same units, for example, centimeters. The Moon,

30 minute of arc in angular size, observed through a telescope with 100 cm focal

length, will accordingly have an image size of

s ¼ ð30 min of arcÞ � ð60 sec of arcÞ
1 min of arc

� 100 cm � 1

206265 sec of arc

¼ 0:87 cm:

The small size of this image may surprise you. The advantage of the telescope, as

shown in Fig. 1, is the close proximity of an eyepiece to a bright image, allowing

magnification of the image.

The brightness of the image depends on two factors. First, the greater the collecting

area, the more light is collected to be concentrated in producing the image. Accord-

ingly, the brightness of the image is proportional to the square of the lens diameter, or

aperture. Second, increasing the size of the image spreads out this light, reducing its

brightness. For a given eyepiece, the larger the focal length of the objective, the

greater the size of the image, as expressed in (4). The brightness is therefore inversely

proportional to the square of the focal length. Mathematically, then, the brightness, b,
of a source of intrinsic brightness, B, is related to the aperture,D, and focal length, fo,
of the telescope by, omitting constants,

b ffi B
D

fo

� �2

: (5)

(In photography, the ratio fo
D is called the “f-number” of the lens. An f-number of

f
1:4 means that fo

D ¼ 1.4. A lens with a small f-number, that is, a large diameter and a

short focal length, is referred to as “fast.” As can be seen from (5), such a lens forms

an image whose brightness is large, so that the time required to chemically form an

image on photographic paper is small.)

4. Ray Tracing

In one of the following experiments, you will have to predict the size and position of

the image created by a lens. This is done by a graphical technique called ray tracing.
Ray tracing utilizes three characteristics of so-called thin lenses: (1) rays parallel

to the optical axis pass through the focal point of the lens, (2) parallel rays which are

not parallel to the optical axis focus at an off-axis point in the focal plane, and (3)

rays pass through the center of the lens undeviated.
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General discussions of ray tracing in physics courses deal with objects which are

not far from the lens. In the case of telescopes, we are interested in very distant

objects. In this case, every point object, or the individual points of an extended object,

generates a group of parallel rays of light which are observed by the telescope.

Ray tracing follows these steps for the converging lenses used as objectives in

refracting telescopes, Fig. 2:

1. Draw a horizontal straight line to represent the optical axis of the lens, place

equally spaced markings along it to an appropriate scale, and draw a vertical line

at one of themarkings near the left end of the optical axis to represent the position,

C, of the lens. You may also want to draw the curved boundaries of the lens for

illustrative purposes.

2. Mark the focal point, F, of the lens on the optical axis at an arbitrary distance to

the right of the lens.

3. Draw three rays parallel to the optical axis, one passing through the top of the

lens, bent downward at the lens so as to pass through the focal point, one through

the center, and one through the bottom of the lens, bent upwards at the lens so as

to pass through the focal point. These rays represent the light from the center of

the object being viewed.

4. Measure an angle equal to one-half the angular size of the object. At that angle

draw additional three parallel rays passing downward through the lens. These will

come to focus at an off-axis point, B, on the focal plane below the optical axis.

5. Repeat step 4 using three parallel rays passing upward through the lens from the

same angle. These will come to focus at an off-axis point, A, on the focal plane

above the optical axis. The resulting image, of linear size s, will be inverted

Fig. 2 Ray tracing with a converging thin lens of an object a ¼ 20� in angular size. The object is
considered to be at infinity, so that the rays from the top of the object are parallel, coming to focus at

pointA in the focal plane, the rays from the bottom of the object are parallel, coming to focus at point

B in the focal plane, and the rays from the center of the object are parallel, coming to focus at pointF
in the focal plane. The image size can be shown by such a diagram to be proportional to the angular

size of the object and the focal length of the lens. The rays are bent or “refracted” at each interface

with the air, but for purposes of illustration they are frequently displayed as simply being bent in the

center of the lens
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compared to the appearance of the object viewed with the unaided eye.

(In binoculars, prisms are included to yield an erect rather than inverted image.)

As an example of the usefulness of ray tracing, the formula of (4) can be easily

derived. In Fig. 2, by similar triangles, we see that the angle ff BCA ¼ a. In the

triangle DABC, then, we have tan a/2 ¼ (s/2)/fo. For small angles, tan a/2 ¼ a/2,
so that s ¼ a fo, with a expressed in radians. Because there are 206,265 seconds of

arc in a radian, this becomes s ¼ a fo/206,265, with a now expressed in seconds of

arc. This is Eq. (4).

The important subject of chromatic aberration is discussed in Experiment #4,

“The Optics of Telescopes: Part II. Magnification and Chromatic Aberration”.

C. Procedure and Observations

1. Equipment

In optics experiments, the source of light, lenses, mirrors, eyepieces, and other

optical components are set on a straight, metallic track about a meter in length

called an optical bench. The components are placed in frames which are clamped

onto the optical bench by leaf springs or set screws, and the frames are positioned

along the bench at locations marked by a graduated scale. When you are placing the

components on the bench, make sure that each lies along the optical axis by turning

on the source of light and then adjusting the height of each frame so that the light

passes through the center of the component. Figure 3 shows a simple optical bench.

A light source passes through a lens and the image is formed on a piece of cardboard.

Fig. 3 The three pieces of equipment on this optical bench are held in place by clamps at positions

along a graduated scale
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2. Image Size: Effect of Objective Focal Length

First demonstrate the effect of focal length on the image size by ray tracing. Draw

two configurations on the DATA SHEET, one for a lens with a focal length of 2 cm

and one for a lens with a focal length of 4 cm. Assume the object being observed is

40� wide, the angular size of the nearby Gum Nebula supernova remnant. This is a
gas cloud created one million years ago by the explosion of a massive star in the

constellation Vela. Inside of the nebula is another supernova remnant, the Vela

supernova remnant, estimated to be 11,000 years old, Fig. 4. On your drawings, use

ray tracing to determine the extent of the image of the Gum Nebula created by each

of the two lenses. Measure the heights, s, of the images to the nearest 0.1 mm if

possible and enter the results on the DATA SHEET.

We will now observe the unfrosted light bulb. Place it at the far end of the optical

bench, simulating a location at astronomical distances. Place a converging lens well

down the bench from the bulb and place a screen consisting of a piece of black

cardboard on the side of the lens opposite the light bulb. Move the image screen

back and forth until a clear image of the light bulb filament appears on it, assuring

that it is located at the focus. This configuration is shown in Fig. 3. Measure the

Fig. 4 The Vela supernova remnant, part of the Gum Nebula. Stretching over 40� in the sky in the
southern constellations of Vela and Puppis, the Gum Nebula is itself a supernova remnant, the

result of a star that exploded about one million years ago. It continues to expand, at the rate of

20 km/s. The Vela supernova remnant is estimated to be 11,000 years old and stretches about 5�

over the sky. The Vela pulsar is located at its center. In astronomy, visual images are often

presented in the negative, to better view asteroids, stars, galaxies, and gas clouds, such as this

object, as dark objects against a light background. The many little black dots in this photo are

images of stars in the region of the Vela constellation, a small portion of the our MilkyWay galaxy
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distance of the lens from the image screen, the focal length fo of the lens, and the

size of the image, s, on the image screen. You can use any dimension of the image

as a measure of its size, but for consistency measure the height. Enter these values

on the DATA SHEET to the nearest 0.1 mm.

Repeat this procedure for several more lenses of different focal lengths to

determine the focal lengths of the lenses and the sizes of the images.

3. Image Brightness: Effect of Collecting Area
and Focal Length

Place a frosted light bulb at the far end of the optical bench, simulating a location at

astronomical distances, and put the black blinder over it. The blinder is simply a

piece of black cardboard with a small hole punched in it to create a “point source”

for us to observe.

Place a converging lens well down the bench from the light bulb and place a

screen on the side of the lens opposite the light bulb. Move the image screen back

and forth until the image of the frosted light bulb is as small as possible.

Now, replace the image screen with a photometer. Position the photometer so

that its aperture is as close to the position of the screen as possible. Make sure the

beam of light from the frosted light bulb passes into the photometer sensor. Then

move the photometer slowly about that position and secure it on the optical bench at

the location yielding the highest reading.

We have in this way accurately determined the position of the focal plane of the

lens.Measure to the nearest 0.1mm if possible the distance from the lens to the image

screen, the focal length fo of the lens, and enter the value on the DATA SHEET.

Now place a baffle in front of the lens so that only a portion of it can be

illuminated by the point source. The baffle is simply another piece of black

cardboard with a circular hole cut out from its center. The diameter of the circular

hole should be smaller than the diameter of the lens. Measure the diameter of the

hole you’ve cut out of the baffle, D. Enter it and the intensity reading of the

photometer in the top row of Table 3 of the DATA SHEET.

Repeat the intensity reading with baffles with circular holes of different

diameters. Then repeat the entire procedure for two additional lenses. Enter all

your results in Table 3 of the DATA SHEET.

D. Calculations and Analysis

1. Image Size: Effect of Objective Focal Length

From the ray tracing, divide the heights, s, of the images by the focal lengths fo of
the two hypothetical lenses. Enter the results in Table 1 of the DATA SHEET.
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You should find similar values for s/fo from the two tracings.

The ratio s/fo is the angular size a of the light bulb filament in radians as seen

from the lens. Multiply s/fo by 206,265 seconds of arc/radian to get the angular size
of the light bulb filament in seconds of arc. Perform these calculations on the DATA

SHEET and enter the results in Table 1 of the DATA SHEET.

Construct a graph of observed image size in centimeters as a function of focal

length in centimeters and find its slope. By (4), this slope should be a/206,265, the
angular size of the light bulb filament in radians. Compare the slope to the value you

calculated directly above for a. Perform these calculations on the DATA SHEET.

Determine the y-intercept. It should be close to zero.

Perform the same calculations for the image sizes determined using the actual

lenses on the optical bench. Enter the results in Table 2 of the DATA SHEET.

Perform all your calculations on the DATA SHEET.

2. Image Brightness: Effect of Collecting Area
and Focal Length

From the values of D and fo calculate (D/fo)
2, the square of the ratio of the baffle

diameters to the focal lengths of the various lenses. Show your calculations on the

DATA SHEET. Enter the results in Table 3 of the DATA SHEET.

Construct a graph of the image brightnesses you entered on the DATA SHEET

as a function of (D/fo)
2. Fit a straight line to the data and determine the y-intercept.

As seen from (5), it should be close to zero.
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E. Telescope Optics Experiment I Data Sheets

1. Image Size

STUDENT’S NAME ________________________________________________

RAY TRACING

a. Ray tracing of Gum Nebula with lens of focal length fo ¼ 2 cm. The straight line

represents the optical axis.

b. Ray tracing of Gum Nebula with lens of focal length fo ¼ 4 cm. The straight line

represents the optical axis.

Are the two values of s/fo equal? ______ If not, how can you explain the

difference?

Seconds of arc:

Table 1 Ray tracing

Lens

Focal length

fo (cm)

Image height

s (cm)

a ¼ s/fo
(radians)

a ¼ 206,265 s/fo
(sec of arc)

1 2

2 4

E. Telescope Optics Experiment I Data Sheets 63



STUDENT’S NAME ________________________________________________

Calculation of the slope of the graph of image size in centimeters as a function of

the focal length in centimeters:

Calculation of percentage difference between the slope and a in radians from

above:

Value of y-intercept of the graph: of image size as a function of focal length

__________

Is the value of the y-intercept close to zero? If not, provide an explanation of the

difference.
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STUDENT’S NAME ________________________________________________

OPTICAL BENCH OBSERVATIONS: IMAGE OF LIGHT BULB

Calculation of the angular size of the light bulb in seconds of arc:

Calculation of the slope of the graph of image size in centimeters as a function of

the focal length in centimeters:

Calculation of percentage difference between the slope and a/206,265 ¼ in radians

from above:

Value of y-intercept of the graph: of image size as a function of focal length

__________

Is the value of the y-intercept close to zero? If not, provide an explanation of the

difference.

Table 2 Light bulb image

Lens

Focal length fo
(cm)

Image height s

(cm)

a ¼ s/fo
(radians)

a ¼ 206,265 s/fo
(sec of arc)

1

2

3

4

5
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2. Image Brightness

STUDENT’S NAME ________________________________________________

Lens 1: fo ¼ _________ cm

Lens 2: fo ¼ _________ cm

Lens 3: fo ¼ _________ cm

Show your calculations of (D/fo)
2 here.

Table 3 Image brightness

Lens Baffle D (cm) (D/fo)
2 Intensity

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3
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STUDENT’S NAME ________________________________________________

Value of y-intercept ¼ ______________

Is the value of the y-intercept close to zero? If not, provide an explanation of the

difference.
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STUDENT’S NAME ________________________________________________

F. Telescope Optics Experiment I Discussion Questions

In the following, write the formula that has led you to your answer.

1. In the image brightness part of the experiment, describe the variation of intensity

reading with (D/fo )
2.

2. We want to observe the smallest craters we possibly can on the Moon. All other

specifications of the telescope the same, would we want to use a telescope with a

focal length of 50 cm or one with a focal length of 100 cm? Why? Show the

calculations that lead you to your answer.

3. Which of the above focal length telescopes would we use to observe the distant

planet Pluto? Why? Show the calculations that lead you to your answer.

4. The Rayleigh criterion (Lord Rayleigh, 1842–1919) for resolution of two images

is Dy ¼ 1:2 l
D radians, where l and D are given in the same unit, for example,

centimeters. Show that, if we express l in angstroms (Å) and we express D in

centimeters, then Dy in seconds of arc is given by (2).
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STUDENT’S NAME ________________________________________________

5. This is a drawing, from memory, of a being from another planet that I encoun-

tered while camping near Roswell, New Mexico. He (she, it) introduced himself

as “XyTk@2.” Let’s talk about the superior sensory adaptations of XyTk@2.

Use (2) to calculate your answers. Show all your calculations here.

a. If the pupil of the eyeball of XyTk@2 is 10 cm in diameter, what is the

smallest object he could resolve in sunlight of 6500 Å wavelength?

b. If the antennae of XyTk@2 can be spread to 0.5 m separation, what is the

smallest object he could resolve using a 70-cm wavelength radar?
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STUDENT’S NAME ________________________________________________

c. If the ears of XyTk@2 are 80 cm apart, what is the smallest separation

between two sound speakers radiating at 3000 Hz that he could resolve?

Assume the speed of sound on his planet is 1000 m/s. (The speed of sound at

sea level on the Earth is about 340 m/s.)

d. What general statement can you make about the ability to resolve an image

and the wavelength of observation?

6. Many organisms exist on XyTk@2’s planet that like to eat members of his

species. The most voracious one, the all-consuming IRS1040, is about 4 m in

size and can run at a speed of 30 m/s while making loud, strange gurgling sounds

at all radio and sound wavelengths. XyTk@2 needs 10 s to hide in his home once

he discovers an IRS1040 creature approaching him.

a. What angular resolution must XyTk@2 have in any sensory device to detect

it in time to hide? Use (2) to calculate your answer.

b. Which sensory device or devices would enable XyTk@2 to detect an

approaching IRS1040 in time to hide? Compare the resolving power of the

sensory device to your answer of part a).
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STUDENT’S NAME ________________________________________________

7. Based on your answers to part a), b), and c) of question #5, and your answer to

question #6, what is the most likely description of XyTk@2’s home planet that

has led to XyTk@2’s evolution of these sensory adaptations? More than one

description may be correct. Explain your answer in terms of the ability of

members of XyTk@2’s species to detect the presence of their predators.

1. Very distant from a dim red star, with a thick atmosphere.

2. Very close to a dim red star, with a thick atmosphere.

3. Very distant from a dim red star, with a thin atmosphere.

4. Very close to a dim red star, with a thin atmosphere.

5. An atmosphere with constant radio-noise generating thunderstorms.

6. A planetary surface with tall, smooth rock columns left over from an age of

volcanic activity.

ANSWER: _________________

8. On another camping trip to Roswell, I saw a fellow who had apparently been

dating a relative of XyTk@2, and he told me that the members of the alien

species referred to themselves as “VisiGhots” or “Ghots,” for short. Assume that

the pupil of the alien is again 10 cm in diameter. Assume the pupils of the human

being are 5 mm in diameter and that his eyes are separated by 12 cm. Show all

your calculations here.
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STUDENT’S NAME ________________________________________________

a. Compare the brightnesses of the image of a given object as seen by the two

beings by calculating their ratio. Assume the focal lengths of the eyeballs of

the two beings are the same.

b. Compare the angular resolutions obtainable by the two beings by calculating

their ratio.

9. The “log telescope” depicted in the cartoon is about 12 in. in diameter. What

angular resolution would it provide if observing light of 5000 Å wavelength?

Show all your calculations here.
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STUDENT’S NAME ________________________________________________

Removing these DATASHEETS from the bookmay damage the binding. Youmight

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Experiment 4

The Optics of Telescopes: Part II. Magnification

and Chromatic Aberration

SUMMARY: In Experiment #4, “The Optics of Telescopes: Part II. Magnifi-

cation and Chromatic Aberration,” we continue our study of telescope optics,

in this experiment studying magnification and chromatic aberration using the

optical bench, lenses, and color filters.

LEVEL OF DIFFICULTY: Moderate

EQUIPMENT NEEDED: Optical bench; unfrosted light bulb; converging

(double-convex) lenses of various focal lengths; black pieces of cardboard,

photometer; light baffles; eyepieces of various focal lengths; color filters.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_4, # Springer Science+Business Media New York 2013
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A. Introduction

We continue with our study of the properties of telescopes with an examination of

the magnification of telescopes and the phenomenon of chromatic aberration. The

equipment setup is the same as in Experiment #3, “The Optics of Telescopes: Part I.

Image Size and Brightness”.

B. THEORY: Chromatic Aberration

The type of telescope built with lenses, as shown in Fig. 1 of Experiment #3,

“The Optics of Telescopes: Part I. Image Size and Brightness,” is called a refracting
telescope or refractor. The light rays from the celestial object are refracted, or bent,

by theobjective lens to the focus. (Binoculars are essentially twin refracting telescopes,

mounted together.) The focal length of a lens depends in part on the material out of

which the lens is constructed, being inversely proportional to n�1, where n is the index
of refraction of the material. It is defined in such a way that light passing through

materials of comparatively high values of n is refracted at comparatively large angles.

The value of n for a given material, however, varies with wavelength. For most

glass materials, n is about 1.5 for visible wavelengths. It increases slightly in value

from the long wavelengths of red light to the short wavelengths of violet light,

Fig. 1. Accordingly, because the violet light is bent through a larger angle than the

red light, the focal length will decrease slightly as we observe light through this

range of colors, Fig. 2. That is, each wavelength has its own slightly different focal

length. This effect, chromatic aberration, known since construction of the earliest

telescopes, is largely corrected in modern refracting telescopes by using a com-

pound lens, two lenses of different types of glass cemented together.

Reflecting telescopes, or reflectors, utilize mirrors to collect and focus the light.

Because the light does not then pass through glass or other refractive substance, no

chromatic aberration occurs. This is one reason that modern telescopes are

reflectors rather than refractors.

C. Procedure and Observations

1. Magnification: Objective and Eyepiece Focal Lengths

The first part of the procedure is similar to that of Sect. C.2 in Experiment #3,

“The Optics of Telescopes: Part I. Image Size and Brightness”. Place the unfrosted

light bulb at the far end of the optical bench, simulating a location at astronomical

distances. Place a converging lens with the largest focal length available well down

the bench from the light bulb and place a screen on the side of the lens opposite

the light bulb. As in Experiment #3, “The Optics of Telescopes: Part I. Image
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Size and Brightness,” the screen is simply a piece of black cardboard on which to

view the various images.

Move the image screen back and forth until a clear image of the light bulb

filament appears on it, assuring that it is located at the focus. Measure to the nearest

0.1 mm if possible the distance from the lens to the image screen, the focal length fo
of the lens, and the size of the image, s, on the image screen. You can use any

dimension of the image as a measure of its size, but for consistency measure the

height. Enter these values on the DATA SHEET.

Fig. 2 The light passing through the objective lens of a refracting telescope experiences chro-

matic aberration if the lens is constructed of only one material

Fig. 1 The index of refraction for various glasses as a function of wavelength. The variation of n

with wavelength results in such well-known phenomena as the dispersion of white light into colors

by a prism, the creation of rainbows, and chromatic aberration in refracting telescopes
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Now remove the image screen and replace it with an eyepiece. Move the

eyepiece slowly away from the lens until an image of the light bulb filament is

seen. Measure the distance, d, along the bench from the lens to the eyepiece. Enter

its value in Table 2a of the DATA SHEET.

Repeat this procedure for several eyepieces. Then repeat the entire procedure for

two lenses of smaller focal length. Enter their values for d in Table 2b and Table 2c
of the DATA SHEET, respectively.

2. Chromatic Aberration

As in Sect. 2 of Experiment #3, “The Optics of Telescopes: Part I. Image Size and

Brightness,” place the unfrosted light bulb at the far end of the optical bench, simulating

a location at astronomical distances. Place a converging lens with the largest focal

length available well down the bench from the light bulb and place a screen on the side

of the lens opposite the light bulb.Move the image screen back and forth until the image

of the frosted light bulb is as small as possible, assuring that it is located at the focus.

Measure the distance to the nearest 0.1 mm if possible from the lens to the image

screen, the focal length fo of the lens, and enter this value on the DATA SHEET.

Now place various color filters over the lens and move the image screen along the

track until point images are again obtained. Enter these values, f, in Table 3a of the
DATA SHEET. Also enter the approximate wavelength of the transmitted light

using the values in Table 1.

Repeat this procedure for a lens with the smallest focal length available. Enter

these values of f in Table 3b of the DATA SHEET.

D. Calculations and Analysis

1. Magnification: Objective and Eyepiece Focal Lengths

For each lens, calculate the angular size a of the object in radians by dividing s by
fo. Enter these values on the DATA SHEET to the nearest 0.1 mm.

Table 1 Correspondence

between wavelength

and colors
Color

Approximate

wavelength (Å)

Red 6300–7000

Orange 5900–6300

Yellow 5700–5900

Green 5000–5700

Blue 4500–5000

Violet 4000–4500
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Subtract fo from this distance to find the focal length of the eyepiece, fe. You can
then calculate the angular size b of the magnified image in radians by dividing s by
fe. Also calculate the magnification, m ¼ b/a. Enter the results in Table 2a, etc., of

the DATA SHEET.

Construct a graph of fo/fe as a function of magnification, m, on the graph paper

provided. Fit a straight line to the data. As seen from Eq. (3), the slope of this line

should be close to 1. Determine the slope and the percentage error in the slope.

Perform all calculations on the DATA SHEET.

2. Chromatic Aberration

For each lens, calculate the values of f � fo. Enter the results in Table 3a, etc., of the
DATA SHEET.

For each lens, construct a graph of the difference f � fo as a function of

wavelength. Plot both sets of data on the same graph, but use different symbols to

distinguish them. Determine the slopes of the two curves. Perform all calculations

on the DATA SHEET.
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STUDENT’S NAME ________________________________________________

E. Telescope Optics Experiment II Data Sheets

1. Magnification

Lens #1: fo ¼ _________ cm

s ¼ _________ cm

a ¼ s/fo ¼ _________ radians

Lens #2: fo ¼ _________ cm

s ¼ _________ cm

a ¼ s/fo ¼ _________ radians

Lens #3: fo ¼ _________ cm

s ¼ _________ cm

a ¼ s/fo ¼ _________ radians

Table 2b Magnification with lens #2

Eyepiece d (cm) fe ¼ d � fo (cm) b ¼ s/fe (radians) m ¼ b/a

1.

2.

3.

Table 2a Magnification with lens #1

Eyepiece d (cm) fe ¼ d � fo (cm) b ¼ s/fe (radians) m ¼ b/a

1.

2.

3.

Table 2c Magnification with lens #3

Eyepiece d (cm) fe ¼ d � fo (cm) b ¼ s/fe (radians) m ¼ b/a

1.

2.

3.
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STUDENT’S NAME ________________________________________________

Graph of fo/fe as a function of magnification

Calculation of slope:

Calculation of percentage error in slope:
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2. Chromatic Aberration

STUDENT’S NAME ________________________________________________

Large focal length lens

focal length of lens for white light, fo ¼ ______________ cm

Small focal length lens

focal length of lens for white light, fo ¼ ______________ cm

Graph offo – fe as a function of wavelength

Calculation of slope for lens #1:

Table 3b Chromatic aberration with small focal length lens

Filter color Wavelength of filter (Å) f (cm) f � fo (cm)

1.

2.

3.

4.

5.

Table 3a Chromaticaberration with large focal length lens

Filter color Wavelength of filter (Å) f (cm) f � fo (cm)

1.

2.

3.

4.

5.
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Calculation of slope for lens #2:
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STUDENT’S NAME ________________________________________________

F. Telescope Optics Experiment II Discussion Questions

In the following, write the formula that has led you to your answer.

1. Two binoculars have lenses with a 50 mm aperture, but one has a magnifying

power of 5� and the other 10�.

a. Which binoculars provides the larger image size to the user? Why?

b. Which gives a brighter image? Why?

c. Which would be easier to hold still and thus minimize the effect of unsteadi-

ness in your hands (which is magnified as much as the image)? Why?

2. A telescope can be equipped with two eyepieces, one of focal length 5 cm and

the other of focal length 1 cm.

a. Which would give a better view of a distance galaxy? Why?

b. Which would give a better view of the planet Mars? Why?

3. In the chromatic aberration part of the experiment, describe the shape of the

graph of f � fo as a function of wavelength. How is it related to Fig. 2?

4. For the lens you used in studying chromatic aberration, what is the distance

between the focal points for light of wavelength 3500 Å and light of wavelength

6500 Å? Show your calculations here.
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5. Referring to Fig. 2, at which region of the electro-magnetic spectrum would the

effect of chromatic aberration be the least or greatest, the infrared region or the

ultraviolet region. Explain your answers.

Removing these DATASHEETS from the bookmay damage the binding. Youmight

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Part II

The Solar System

Introduction

As the closest of the astronomical objects, the planets, Moons, comets, and asteroids

of the solar system were the first celestial objects to be studied during the rebirth

of human rationalism called the Renaissance. Tycho Brahe, Galileo Galilei,

Johannes Kepler, Sir Isaac Newton, and others observed the planets and the Moon

and arrived at laws of nature, without reliance on the always unreliable “eyewitness

testimony,” faith, revelation, authority, or bombast. Some of the experiments involve

observations carried out over a portion of a semester or an entire semester, all

thereby providing insight into the experiences of these scientists.

The two-part experiments on reflection of light from planets and the Moon,

determination by radar of the rotation rates of planets and asteroids, and thermal

radiation from planetary subsurfaces present more recent techniques. These signifi-

cantly complement the manned and unmanned space program, probably the greatest

technological achievement of mankind, in providing knowledge of the solar system.

Challenging experiments, they provide insight into the analysis techniques of

real astronomical research.

Sunset and evening star,

And one clear call for me!

—Alfred Lord Tennyson (1809–1892)



Experiment 5

Earth: The Seasons and Local Latitude

SUMMARY: In Experiment #5, “Earth: The Seasons and Local Latitude,”

you will determine your latitude on the Earth by measuring the length of the

shadow cast by a meter stick at noontime and comparing those measurements

to those expected at various latitudes. Your measurements will be made over

most of the semester.

LEVEL OF DIFFICULTY: Low

EQUIPMENT NEEDED: Meter stick.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_5, # Springer Science+Business Media New York 2013
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A. Introduction

The seasons of the Earth result from the tilt of the rotational axis of the Earth and its

revolution about the Sun. As shown in Fig. 1, the rotational axis of the Earth is tilted

by 23.4� to the plane of the orbit of the Earth about the Sun. As a result, as the Earth
revolves about the Sun in its yearly motion, the rays from the Sun at a given hour,

for example, noontime, hit the Earth at different angles.

In the northern hemisphere, the angle at a given hour as measured from the

zenith is relatively small during the summer and is relatively large during the

winter. In the autumn and spring, the angle is intermediate in value. The direct

rays of summer provide the most energy per unit area and are therefore the most

effective in heating the surface of the Earth. The slanting rays of winter provide the

least energy per unit area and are the least effective in heating the surface. Such

variations result in the seasons. (Two other effects of the changing angle also

contribute, the shorter winter days compared to summer days and the longer path

through the atmosphere that the slanted rays of the Sun traverse during winter

compared to summer, causing greater absorption of energy in the atmosphere

during the winter than during the summer.)

The amount of seasonal variation of the angle of the rays of the Sun depends on

the geographical latitude, l. At the equator, l ¼ 0�, the Sun never gets lower than

23.4� in the sky at noontime. At the poles, l ¼ 90� north and l ¼ 90� south, the Sun
never rises for the 6 months between the dates of the autumnal equinox (about

September 21) and the vernal equinox (about March 21). In fact, for all northern

latitudes greater than l ¼ 67.5� north and all southern latitudes greater than

l ¼ 67.5� south, the Sun does not rise for at least one complete day during the winter.

In this experiment, we will measure the variation of the angle of the rays of the

Sun indirectly, by measuring the length of the shadow cast by a meter stick or pole

of known length. We will then use those measurements to determine our geograph-

ical latitude. Figure 2a, for example, shows the length of shadow, L, cast by a pole

of length, H, at noontime at position P on the surface of the Earth.

Fig. 1 The rays of light from the Sun are incident upon different geographical latitudes on the

Earth at different angles as the Earth makes its annual revolution about the Sun. This causes the

seasons
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B. Theory: The Celestial Sphere and Zenith Angle Equation

Although instruments of high precision allow us to determine the angle of the Sun

from the zenith, we will use a simple and ancient technique to do so. As can be seen

in Fig. 2, the length of shadow, L, cast by a stick of heightH placed perpendicular to

the ground depends on the angle the Sun makes with the zenith. Besides the time of

day, this angle depends on the date of the year and the geographical latitude, l, of the
observer. We will accordingly use the length of the shadow as an indicator of the

angle of the Sun from the zenith.

The length of the shadow cast by the Sun as a function of the geographical

latitude is a special case of the more general zenith angle equation, which relates to
the position in the sky of any celestial object. To examine that general case,

consider the celestial sphere, defined in spherical geometry by Fig. 3. The center

Fig. 2 (a) The length of shadow cast by a stick of length H, at a given time of day, depends on the

day of the year and geographical latitude. The configuration shown is that of the date of the winter

solstice (about December 21), when the Sun is lowest in the sky and the day is shortest in the

northern hemisphere. (b) Closeup of the geometry explicity showing the dependence of the length

of the shadow on the zenith angle, z
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of the celestial sphere is the center of the Earth, and great circles represent the

equator and the ecliptic.

Two additional great circles locate the object of interest and the observer. Both

are perpendicular to the great circle of the equator and therefore pass through the

north and south celestial poles. The object is imagined to be located on a great circle

at an angle h, the hour angle, from that of the observer, which itself passes through

the local zenith. The portion of this latter great circle visible from horizon to

horizon of the observer is called the meridian. In other words, the meridian in the

context of an observation could be defined as the locus of points in the sky for which

the hour angle of the object of interest is zero.

In the coordinate system used in astronomy, the position of an object is given by

its right ascension and declination. The latter is the angle d measured upwards or

downwards to the object from the celestial equator. The former, denoted by a in

Fig. 3, is the angle measured eastwards along the celestial equator from the

reference point of the vernal equinox. (A common error among the uninitiated is

to consider the vernal equinox as a moment in time. In fact, as shown in Fig. 4, it is a

position in the sky, defined by the intersection of the ecliptic and celestial equator.

Fig. 3 The celestial sphere and its spherical geometry is used to define astronomical coordinate

systems and thereby position measurements
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The associated moment in time is that at which the Sun is located in the sky at the

position of the vernal equinox.)

Distant objects such as stars have fixed positions in the sky. As a result, as the

Earth rotates, the hour angle of the object changes. For solar system objects, whose

positions are not fixed in the sky, the additional complication of their motion exists.

That is, if the Earth were suddenly to stop rotating, the stars and galaxies would

keep their same position in the sky whereas the planets, Sun, and Moon would

continue to move, creating some major problems for astrologers. That, of course,

would be the least of our worries.

With the celestial sphere defined, to determine the value of z we employ a sly

trick. We instead find the value of cos z, from which we can then, of course, find z.
You will remember from vector algebra that the dot product of two vectors �a and �b
is defined as

a � b ¼ aj j b
�� �� cos y;

Fig. 4 Normalized shadow length as a function of time for values of the geographical latitude l
from 10� to 50�. The graph is reproduced with a larger scale on the DATA SHEET for analysis of

your observations

B. Theory: The Celestial Sphere and Zenith Angle Equation 93



where the angle between the two vectors is y. If we, therefore, can find two vectors

in the celestial sphere between which the angle is z, we need only create the dot

product of those vectors, and voila, cos z would appear.

What two vectors define the zenith angle? The zenith angle is defined as the angle

between the local overhead point, or zenith, and the object of interest. First, we define a

coordinate system within the celestial sphere. Because we’re interested in a given

celestial object, it makes sense to define that coordinate system based on a plane

passing through the object as well as the two celestial poles. If it passes through the

object of interest, then its intersection with the celestial sphere will be a portion of a

great circle, on which we can perform trigonometry. If it passes through the object of

interest, then, as we will soon see, we need only worry about two components of the

two vectors.

The relevant portion of that plane is the darkly-shaded triangle in Fig. 2. As also

shown in Fig. 3, the unit vectors of that coordinate system are î, ĵ, and k̂. In terms of

that coordinate system, the unit vector in the direction of the object of interest, r̂, is
expressed as,

r̂ ¼ cos d îþ sin d k̂:

The unit vector in the direction of the local zenith, ẑ, is first projected onto the k̂
direction and onto the equatorial plane, shown in the lightly-shaded triangle in

Fig. 3, and then the component in the equatorial plane is projected onto the îand

ĵdirections by use of the hour angle, h. This yields components,

ẑ ¼ cos l cos h îþ cos l sin h ĵþ sin l k̂:

Because a unit vector has a magnitude, by definition, of unity, showing r̂j j and
ẑj j explicitly in Fig. 3 is not needed. We do this solely to identify the origin of their

components.

With the unit vectors r̂ and ẑ now defined, we perform their dot product to find

the cosine of the zenith angle,

r̂ � ẑ ¼ cos z

cos z ¼ sin l sin dþ cos l cos d cos h: (1)

(Note that the jth component is irrelevant, a result of our choice of the plane

defining our coordinate system passing through the object of interest.)

This is the world-famous formula for the zenith angle. It has wide applications. It

is used by engineers and architects to determine the shadow imprint of buildings,

meteorologists to determine the rising and setting time of the Sun, Moon, and

planets, and astronomers to determine where to point their telescopes to observe a

given object. Astrologers never heard of it. In particular, in the alt-az telescope

mount, short for “altitude-azimuth,” the altitude angle is 90� � z, measured from

the horizon upwards rather than from the zenith downwards.
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Let’s apply (1) to determine the length of the day, the time between sunrise and

sunset. Sunrise and sunset would be defined as z ¼ 90� so that cos z ¼ 0. Then
solving (1) for cos h,

cos h ¼ � tan l tan d: (2)

Using the declination of the Sun on the given day and your latitude, you can now

determine the hour angles at which the Sun rises and sets. Although (2) does not

appear to have two solutions, being not, for example, a quadratic, recall that the

trigonometric functions have an ambiguity in the four quadrants. In particular,

positive values of cosine of the same absolute value occur in the first and fourth

quadrants and negative values of the same absolute value occur in the third and

fourth quadrants.

Let us calculate the length of the day on which the Earth passes through the vernal

equinox. Then the declination of the Sun is zero, so that (2) becomes simply cos
h ¼ 0, independent of the latitude. The solutions for h are, of course, � 90�. With

the correspondence of 15 degrees of arc to 1 h of time for a rotating Earth, we see that

the day is 12 h long, 6 h from sunrise to noon and 6 h from noon to sunset. This is

what we experience on the Earth at all latitudes on the date of the vernal equinox.

Note that by “noon” we mean “astronomical noon,” defined as h ¼ 0, the Sun

appearing on the meridian. Because of the manner in which time zones are defined,

the times of sunrise and sunset published in your newspaper will generally not agree

with the astronomical times calculated from (1). Time zones extend over 15� of

longitude, but the Sun is directly overhead only at a specific longitude, obviously

not within the entire time zone. The times of sunrise and sunset that appear in the

newspaper, in short, are adjusted for the actual longitude of location of your city. (In

addition, during the day the Sun itself has moved and its declination has changed, if

only slightly. The calculation above has used a single value for the declination,

zero, during the entire day. Greater accuracy results by using the declinations of the

Sun at sunrise and sunset. The error in the length of the day introduced by such an

approximation is typically a few minutes of time, small enough not to offend any

self-respecting rooster.)

The equation relevant to our experiment is a special case of (1). We will observe

the Sun directly overhead, that is, along the meridian. Accordingly, (2) becomes

cos z ¼ sin l sin dþ cos l cos d;

which by a familiar trigonometric identity becomes

cos z ¼ cos ðl� dÞ:

From Fig. 2b, we see that tan z ¼ L/H. Therefore,

L ¼ H tan ðl� dÞ: (3)

B. Theory: The Celestial Sphere and Zenith Angle Equation 95



That’s the variation of the length of shadow L of a vertical pole measuring stick

of height H, when the Sun passes through the prime meridian, as a function of the

declination of the Sun, d, and geographical latitude, l.
To determine the value of d at a given time on a given date, we could look it up.

We know, however, that it varies sinusoidally with the date as the Earth orbits the

Sun. Accordingly, we can be clever and simply write

d ¼ i sin 2p
t� to
365:25

;

where i is the inclination of the axis of the Earth to its orbit, 23.45�, and to is the date
of the vernal equinox, about March 21, when d ¼ 0. The quantity t � to is then the
number of days of the measurement reckoned from the vernal equinox. From (3),

then, we get

L ¼ H tan l� i sin
2pðt� toÞ
365:25

� �
: (4)

This is now the variation of the length of shadow, L, of a vertical pole measuring

stick of height, H, when the Sun passes through the prime meridian, as a function of

the date, t, and geographical latitude, l.
Note in (4) that roughly 90 days past the vernal equinox, the summer solstice, the

sine factor will be equal to 1 and L will be minimum, and that roughly 270 days past

the vernal equinox, the winter solstice, the sine factor will be equal to�1 and L will

be maximum. This agrees with our experience and gives us confidence in the above

equation, if we needed further assurance. In such equations as this one, we state that

L is a function of t, and the parameter of the equation is the geographical latitude, l.

C. Procedure and Observations

In this experiment, we will measure the length of the shadow cast by a measuring

stick at noontime over a period of months, plot its variation, and by comparison

with predicted variations for several latitudes determine our geographical latitude.

The longer the measuring stick you can find the better. The fuzziness of the end of

the shadow is then small with respect to the total length of the shadow and reduces

uncertainty in the measurements. A long pole, a 3-m stick, or a yardstick are

preferred to a 1-ft ruler.

Two precautions must be observed to get useful measurements of the length of

the shadow cast by your measuring stick. First, the measurement must be made

when the Sun passes through the meridian, that is, on the imaginary circle passing

from the north pole, through the point directly overhead, to the south pole.

Unfortunately, a clock can only be taken as an approximate guide for the passage of

the Sun through themeridian for two reasons. First, if daylight savings is in effect, then
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passage of the Sun through the meridian will occur around 1:00 p.m. rather than 12:00

noon. Second, all the clocks within a given time zone will read the same, but the

passage of the Sun through the meridian will occur at different times depending on

your geographical longitude. Without access to a table of local astronomical time for

your longitude, a simple way to determine passage of the Sun through the meridian is

to wait until the shadow of your measuring stick is aligned exactly north–south. (This

is one of the principles of the sundial.) Knowing that the shadow will be the shortest

during the day when the Sun passes through the meridian can also be used as an aid.

The second precaution youmust take is to ensure that themeasuring stick is exactly

perpendicular to the ground. For this, you can use a plumb bob, a weight attached to a

string. Hold the string above the ground so that the weight points to the center of the

Earth, and therefore perpendicular to the ground. Then line up your measuring stick

parallel to the string. Alternatively, if little or no wind is present, you can simply grab

one end of themeasuring stick and lower it slowly until it touches the ground. It should

then be perpendicular to the ground. To get reduce themeasurement uncertainties, you

should repeat the measurement of the shadow several times and average the results.

In Table 2 of the DATA SHEET enter the date of your observation and the length

of the shadow cast as close to noontime as possible. Because we will deal with the

ratio L/H in our analysis, you need not use the same length pole for all observations.

Doing this, however, might avoid some confusion. In case you use measuring sticks

of different lengths, enter in Table 2 of the DATA SHEET the length of the

measuring stick or sticks. Enter all lengths in centimeters.

D. Calculations and Analysis

In Table 2 of the DATA SHEET enter the number of days the date of your

observations are past the date of the vernal equinox. Use Table 1 or the Days-

of-the-Year tables of Appendix III to determine that figure. Divide the length of the

Table 1 Days past

the date of the vernal

equinox (March 21)

Date Days

April 1 10

May 1 40

June 1 71

July 1 101

August 1 132

September 1 163

October 1 193

November 1 224

December 1 254

January 1 285

February 1 316

March 1 344
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shadow cast divided by the height of the measuring stick and enter the result in

Table 2 of the DATA SHEET.

The variation of the length of shadow L of a vertical measuring stick of height H,
when the Sun passes through the meridian, as a function of the date, t, and

geographical latitude, l, is given by (4).

For the analysis, we will plot the theoretical predictions of this equation for

various values of geographical latitude, a “family of curves parameterized by l.”
We will plot our experimental data and then determine our geographical latitude by

seeing where our data lie in comparison to the theoretical curves.

Because different students may use measuring sticks of different heights, we will

deal with the ratio L/H, which is independent of the particular measuring stick used

and which is, from (4),

L

H
¼ tan l� i sin

2ðt� toÞ
365

� �
: (5)

In Fig. 4, values of L/H from (5) are given as a function of t � to, the number of

days past the vernal equinox, for values of the geographical latitude, l, from 10� to
50�. Positive (negative) value means that the shadow points northward (southward)

for northern latitudes. This sense is reversed for southern latitudes. Figure 4 is

reproduced, enlarged, on the DATA SHEET for your analysis.

Plot your values from the DATA SHEET for the ratio L/H as a function of t � to
on Fig. 4 as reproduced on the DATA SHEET. You will find that your data probably

does not lie along any given curve. If your measurements have been careful,

however, your data should lie entirely between two adjacent curves.
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STUDENT’S NAME ________________________________________________

E. Seasons and Local Latitude Experiment Data Sheets

Table 2 Shadow measurements

Date

Days past

vernal equinox

Shadow length,

H (cm)

Length of measuring

stick used, L (cm) L/H

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

(continued)
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Table 2 (continued)

Date

Days past

vernal equinox

Shadow length,

H (cm)

Length of measuring

stick used, L (cm) L/H

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
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STUDENT’S NAME ________________________________________________

Graph your values for L/H as a function of the number of days past the vernal

equinox on the figure below.
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STUDENT’S NAME ________________________________________________

Estimate your geographical latitude by the location of your plotted data between

two of the family of curves.

Experimental value for geographical latitude ¼ __________.

What error in this number would you estimate from the range of values in your

plotted data and your judgment as to their position within the two curves?

Estimated error in geographical latitude ¼ ___________.

On a globe or in an atlas, look up the location of your city and find its geographical

latitude.

Actual geographical latitude ¼ _________.

Compare the experimentally determined geographical latitude and your actual lati-

tude. Calculate the percentage error in your result. Show all your calculations here.

Compare this calculated percentage error to the estimated error that you noted

above in question #2.

F. Seasons and Local Latitude Experiment

Discussion Questions

1. Discuss the sources of error in your determination of your local latitude.

a. In which direction, larger or smaller latitude, would you expect to err if your

measurements were not taken exactly at noon? Why?

b. In which direction, larger or smaller latitude, would you expect to err if your

pole was not held exactly vertical, but was tilted in turn to the north, to the

east, to the south, or to the west? Why?
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STUDENT’S NAME ________________________________________________

2. Using (2), showing your calculations here, calculate the length of the day at your

latitude at,

a. The winter solstice, for which the declination of the Sun is �23.4�

b. The summer solstice, for which the declination of the Sun is 23.4� .

c. Calculate the length of the day at a latitude of 25� at the winter solstice.

d. Based on your results for part a. and part c., why are those people who travel

from the northern states to live in Florida during the winter called

“snowbirds” or “sunbirds”?

3. Again using (2), and showing all calculations here,

a. Calculate the zenith angle of the Sun at noontime at your latitude at the winter

solstice.

b. Calculate the zenith angle of the Sun at noontime at your latitude at the

summer solstice.
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STUDENT’S NAME ________________________________________________

c. On the figure below, draw lines approximately at the two zenith angles

calculated in parts a) and b) to show the relative elevations of the Sun at

the winter and summer solstices at noontime at your latitude.

Removing these DATA SHEETS from the book may damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.
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Experiment 6

The Surface Roughness of the Moon.

Reflection and Scattering

from a Planetary Surface:

Part I. Surface Materials

SUMMARY: In Experiment #6, “The Surface Roughness of the Moon. Reflec-

tion and Scattering from a Planetary Surface: Part I. Surface Materials,” which

provides a taste of how astronomers really perform their research, we study the

reflection of light from simulated planetary surfaces. A bright light shines

parallel beams of light onto sand boxes filled with common Earth soils and

rocks. A photometer which can be rotated on a stand measures the amount of

light being reflected into different angles from the vertical. With the use of a

polarizing filter, we also measure the amount of polarized light reflected from

each of the soil samples. In Experiment #7, “The Surface Roughness of the

Moon. Reflection and Scattering from a Planetary Surface: Part II. Beads and

SurfaceCoverage,”wewillmeasure the sizes of the particles of each sample and

determine if the amount of polarization depends upon those sizes.

LEVEL OF DIFFICULTY: Moderate to High. This challenging experiment

requires moderate skill in making careful measurements.

EQUIPMENT NEEDED: Sand boxes filled with pebbles, pea gravel, and

rocks; photometer mounted on rotatable stand; plumb bob; light baffles;

500-Watt halogen lamp; polarizing filters.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_6, # Springer Science+Business Media New York 2013
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A. Introduction

Look upwards at the Moon on the night of a full or near-full Moon. We see by

reflected sunlight the entire lunar disk. At its other phases, we see varying portions

of the lunar disk. Why is there such a phase effect?Why, in particular, can the Moon

appear “full”? As we will see in this experiment, the Moon exhibits a phase effect

because the lunar surface is rough, not smooth.

The lunar phases are shown in Fig. 1, a view of the Earth-Moon system looking

downward on the solar system from interplanetary space. The inner circles show the

Moon as illuminated by the Sun, the side of the Moon facing the Sun in full sunlight

and the side of the Moon facing away from the Sun in shadow. The outer circles

display the appearance of the lunar disk from the Earth as the Moon revolves about

the Earth in its monthly orbit. This is what we refer to as the phase effect.

The structure and composition of the surface of moons and planets can be

analyzed by their reflected sunlight. These include the Moon, Mercury, asteroids,

the Galilean satellites, and even the rings of Saturn. Mars can also be studied, but its

atmosphere reduces the effectiveness of the technique. The atmosphere both

scatters light out of the incoming radiation, rendering it diffuse rather than the

collimated rays needed, and scatters the light which is being reflected back to the

observer. If we ever get to explore other solar systems, one of the primary

techniques will be to study the reflected light from its worlds.

Fig. 1 The phases of the Moon result from its rough surface reflecting sunlight as the Moon

revolves about the Earth in its monthly orbit. The inner disks show the half of the Moon

illuminated by the Sun. The outer disks show the appearances of the Moon from the Earth at the

various phases noted
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Astronomers can determine the roughness of the Moon or planetary surface

from the Earth. This is done by observing the intensity of light emanating from

different portions of the apparent disk of the object. As can be seen from Fig. 2, by

observing the radiation at different angles from the sub-Earth point, you determine

the ability of the surface material to reflect radiation in that direction. This, of

course, requires the ability that the telescope can resolve the disk of the Moon or

planet.

In Experiments #6, “The Surface Roughness of the Moon. Reflection and

Scattering from a Planetary Surface: Part I. Surface Materials,” and Experiments #7,

“The Surface Roughness of the Moon. Reflection and Scattering from a Planetary

Surface: Part II. Beads and Surface Coverage,” we will study reflection and

scattering from simulated planetary surface materials. We will use our results to

reach some conclusions about the material on the lunar surface and, in Experiment

“The Surface Roughness of the Moon: Reflection and Scattering from a Planetary

Surface,” the amount of surface covered by the small glass beads discovered by

the Apollo astronauts during their excursions over the lunar surface.

Fig. 2 Observing the intensity of light from different portions of the apparent disk of a planet or

the Moon (point P’) enables us to determine the ability of the surface material at a corresponding

location (point P) to reflect light in a given direction, given by the angle of observation, e
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B. Theory

1. Reflection

The story of reflection and scattering is told in two parts. First, we discuss the

radiation that falls on the surface, the incident radiation. Figure 3 shows the familiar

geometry that explains how the slanting rays of winter result in less energy from the

Sun heating the surface of the Earth. We examine a beam of sunlight of width L. Its
“depth” into the paper is a constant d. In (a), the rays are incident from directly

overhead. In (b), the rays hit the surface at the angle of incidence, i. Let the amount

of energy in the beam be So. Then the intensity of light per unit area hitting the

surface from directly overhead is

Eð0Þ ¼ So
dL

: (1)

where E(0) refers to the intensity at an angle of incidence i ¼ 0.

Because of the slant of the rays, the same energy with which the directly

overhead rays illuminate an area of size d x L would illuminate a larger area of

size d x s, where s ¼ L
cos i

, Fig. 3b. The resulting intensity of the sunlight

illuminating the surface with an angle of incidence i is therefore, in comparison

to (1),

EðiÞ ¼ So
d L

cos i

;

or

EðiÞ ¼ So cos i

d L
:

Fig. 3 The radiation incident

onto a surface is spread out as

the inverse of the cosine of

the angle of incidence, i. This
“foreshortening” is the major

cause of the seasons. It also

enables us to understand

reflection from the

idealization referred to as a

Lambert surface
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By (1) we can rewrite this as

EðiÞ ¼ Eð0Þ cos i: (2)

That’s the familiar cosine reduction of the amount of solar energy hitting the

surface in winter because of “foreshortening,” but it holds for any situation in which

we are comparing rays incident from directly overhead to rays incident at a slant.

Now, this is purely a geometrical effect, having nothing to do with the nature of

the surface material. That kind of information is obtained by studying the light

reflected from the surface.

Two idealized cases for reflection exist. If the surface is smooth compared to the

wavelength of the incident radiation, then the reflection obeys the laws of reflection
of geometrical optics, Fig. 4. These state that the angle of reflection is equal to the

angle of incidence and that the incident ray, the reflected ray, and the normal to the

surface all lie in the same plane. For any angle of incidence, the light is reflected

into a single angle of observation. The phenomenon in which light is reflected

according to the familiar laws of reflection is referred to as specular reflection.
(This is derived from the Latin word “speculum,” meaning mirror). Aside from

calm bodies of water, purely specular reflection results mainly from man-made

objects. That, for example, governs the geometric optics which describe reflections

within telescopes, as discussed in Experiments #3 and #4, “The Optics of

Telescopes: Part I. Image Size and Brightness” and “The Optics of Telescopes:

Part II. Magnification and Chromatic Aberration”.

This type of reflection would be observed from a sphere whose surface was

covered with smooth glass. If such an object were in the sky, it would reflect

sunlight back to us only from a small portion of its surface. If the lunar surface, for a

real-life example, were smooth compared to the wavelengths of light, and if the Sun

were a point object in the sky, then we would only see a point on the Moon, Fig. 5,

and no phase effect would occur. Here, two configurations during the waning

gibbous phase of the Moon are shown. As is seen, that point would be located at

the center of the portion of the Moon illuminated by the Sun and visible from the

Earth, the so-called “sub-Earth point.”

(In fact, because the Sun is about 30 minutes of arc in angular size as seen from

the Earth or Moon, and not a point in the sky, the angular region we would see by

reflection from a fictional smooth moon would have greater extent than a point.

Using the geometry of the Earth-Moon system, the size of this illuminated region

can be found to be less than 10 seconds of arc. Because the images of stars as seen

through our atmosphere are a few seconds of arc in size, this would appear to be

a large, bright star. Venus, on the other hand, as described in Experiment #11,

“The Orbit of Venus,” is about 60 seconds of arc in size when it is closest to

the Earth. The Moon, if a perfect reflector, would accordingly be only about

1/10th of this size.)

Naturally-occurring surfaces, such as those of the Moon and terrestrial planets,

are rough. They can be sandy, boulder-strewn, or mountainous. Such surfaces do
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not produce specular reflection; the laws of reflection shown in Fig. 4 do not apply.

This roughness enables us to see phases of the Moon rather than a point of light.

In the case of such natural-occurring surfaces, individual rays from a beam of

light are reflected in different directions from small smooth spots, again according

to the laws of reflection. Such light, reflected off of a rough surface, is referred to as

quasi-specular reflection or sometimes as diffuse reflection.
The second idealization for a reflecting surface is a Lambert surface (Johann

Lambert, 1728–1777). A Lambert surface is an ideal diffuser in that it scatters light

incident at any angle with an equal intensity in all directions, Fig. 6. The light is said
to be scattered isotropically. No matter the direction of observation, from directly

above or to the side, a photometer reading will be the same. Surfaces which

approximate a Lambert surface are more common in nature than those which

produce specular reflection.

Fig. 4 Specular reflection. (a) The light reflected from a surface which is smooth on scales of the

wavelengths of light obeys the laws of reflection. (b) A smooth sphere will reflect light in only one

direction, determined by the laws of reflection applied to a plane tangent to the sphere at the point

at which the ray of light is incident on the sphere
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2. Scattering

We have now introduced the term scattering. The definition of scattering off of a

planetary surface is a little less definite than the definition of scattering, for

example, by a gas, atoms, molecules, or imperfections in a crystal. For these, the

type of scattering is defined by the relative sizes of the wavelength of light and the

scattering particles.

Fig. 5 If the Moon were a smooth surface, no phases would be observed. Only a bright patch of

light less than 10 s of arc in diameter at the sub-Earth point would be visible from the Earth

Fig. 6 The scattering of the light incident on a Lambert surface is isotropic
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When discussing light interacting with a surface, some physicists and

astronomers simply distinguish specular reflection and the pure diffuse reflection

occurring with a Lambert surface. Commonly, the term scattering in this context

refers to those processes in which radiation is reflected into angles other than those

predicted by the laws of reflection that govern specular reflections. Quasi-specular

reflections as well as reflections from a Lambert surface would thus be considered

the result of scattering whereas unscattered reflections are referred to as specular

reflections. For objects large compared to the wavelength, geometric optics well

describe their interaction with light, and the interaction is not described as

scattering.

Here, we will employ the following terminology. We will refer to the light being

observed by the photometer as reflected light. We will reserve the term “scattering”

for the sometimes complicated combination of multiple interacting processes of

reflection, refraction, and absorption that occur on the top layer of the surface and

within the subsurface layers of facets that produce the reflected light.

The light reflected from a Lambert surface brightness must and does, of course,

follow the purely geometrical effect of (2). In other words, the light reflected from

a Lambert surface depends on the angle of incidence, but is independent of the

angle of observation. Figure 7 shows this dependence in three dimensions.

For comparison, you will be asked in an exercise to provide the corresponding

graph for the intensity of reflected light for specular reflection.

The lunar surface, in fact, approximates a Lambert surface, with notable

differences. Perhaps the most striking occurs at a perfect full Moon, when the

subsolar point on the Moon is observed. This results from the presence of small

glass beads and which is the subject of Experiment #7, “The Surface Roughness of

the Moon: Reflection and Scattering from a Planetary Surface: Part II. Beads and

Surface Coverage”.

Fig. 7 A two-dimensional representationn of a three-dimensional graph of reflection from a

Lambert surface. For a given angle of incidence, the reflection into any angle of observation is

constant for this idealized surface. The variation with angle of incidence is purely geometrical,

resulting from the same effect of slanting of incident rays that is the major cause of the seasons
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3. Geometry of the Reflection

The simple geometry of Fig. 4 is not adequate to represent quasi-specular reflection

or the diffuse reflection of Fig. 6. Instead, we must refer to a three-dimensional

geometry such as in Fig. 8. The light can be reflected into any angle measured from

the vertical as well as in the azimuthal direction. As mentioned above, on the Moon

or a planetary surface, this occurs by a combination of interactions. The incident

light can undergo specular reflection at the top layer of the surface, or can penetrate

into the surface and undergo absorption and refraction, or can reflect off one or

more surfaces below the top layer.

Partially because of the possible confusion between the terms reflection and

scattering referred to earlier, the angle of observation is sometimes referred to as the

“emittance angle.” Hence it is labeled “e” in Fig. 8.

In this experiment wewill simplify matters greatly by using light incident directly

from above. The incident angle, i, that is, will be zero. With that simplification, we

can construct a graph of the appearance of these various types of reflections.

Figure 9 shows the graph of amount of reflected light as a function of the angle of

observation, e, for this case of i ¼ 0. The intensity values have all been normalized

to their value at e ¼ 0 for ease of comparison. For the idealization of specular

reflection, the light will be reflected back directly upwards. For reflection from a

Lambert idealized surface, the amount of reflected light is the same for every angle.

(Note that the straight line corresponds to the locus of points forming a straight line

on the topmost portion of the three-dimensional graph of Fig. 7.) For intermediate

cases, the reflected light is maximum near e ¼ 0 but has a finite value for other

angles. For all but specular reflection, the reflection will also occur at azimuthal

Fig. 8 In general, light emanating from a rough surface does not obey the laws of reflection of

specular reflection. The angle i and the angle e are not equal, and the plane of incidence is not co-

planar with the plane of emission. The angle of incidence, i, and the angle of observation, e, are
defined with respect to the normal to the surface at the point of incidence
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Fig. 9 Depending on the roughness of theMoon or planetary surface, the intensity of reflected light

as a function of the angle of observation will vary from a sharp function to a flat curve. Most natural

materials produce intermediate shapes such as shown for the case “quasi-specular reflection”
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angles. Most natural materials reflect by neither of the idealizations of specular

reflection nor a Lambert surface but according to such intermediate cases.

The reflective properties of a surface depend not only on the roughness of the

surface, a result of the size and shape of the particles, but also the composition and

darkness of the surface material, the presence of slopes, and the physical structure

such as the amount of void space among the particles. We all know, for example,

that dark coal reflects light poorly whereas a wall painted white reflects light well.

In this experiment we will study only the effect that surface roughness has on

reflection. Accordingly, all the soil sample materials are painted with the same

white paint. This will also ensure a strong reflection easily detected by the

photometer.

In this experiment, we will study the reflection and scattering characteristics of

various soil samples. By comparison to observations of the Moon, we can get an

idea of the type of material on its surface.

4. The Polarization of Light

In one of the greatest achievements in the history of science, physicist Sir James

Clerk Maxwell (1831–1879) combined the forces of electricity and magnetism into

the electro-magnetic force by writing the famous Maxwell’s equations. The impor-

tance of this synthesis is comparable to that of Newton’s Universal Law of

Gravitation. He was then able to show that those equations implied the existence

of electromagnetic waves, Fig. 10, and showed that these waves travel through

space at the speed of light. The result is evident everywhere in our world. From

television to computers, automobile motors to satellite communications, and elec-

tric shavers to cell phones, all work because of the application of Maxwell’s

discovery. Because of this and his other contributions, particularly in the kinetic

theory of gases, he is considered with Sir Isaac Newton and Albert Einstein as one

of the three greatest physicists of all time.

Light is an electromagnetic wave, as are g-rays, x-rays, ultraviolet rays, infrared
rays, and radio waves. Because the electric and magnetic fields are perpendicular to

the direction of motion of the waves, they are an example of a transverse wave.

Water waves and the waves you create on a jump rope are also transverse waves.

Looking at Fig. 10, one wonders whether nature prefers one orientation of the

wave over another. That is, does nature prefer the diagram be rotated by some angle

about the direction of motion? In fact, most natural sources of electromagnetic

waves emit electromagnetic waves of all orientations. No preferred orientation

exists; on average, half of the electrical and magnetic vibrations are each in

perpendicular planes. When electromagnetic waves interact with matter, however,

a preferred orientation frequently is created. These interactions include the familiar

transmission, reflection, refraction (bending), and scattering phenomena. This

results in a phenomenon that is familiar, the polarization of light.
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Polarization resulting from reflection is well known. The glare from the sea and

the blinding sunlight reflecting off of the hood of a car result when reflection

polarizes the incident sunlight, so that a large fraction has one preferred orientation.

Polarized sunglasses reduce the glare by filtering out those rays. If the light is 100%

polarized, then the all of the electrical vibrations of the light waves occur in a single

plane and all of the magnetic vibrations of the light waves occur in another plane,

perpendicular to that of the electrical vibrations as shown in Fig. 10.

The light reflected from the idealized Lambert surface, however, by definition

will not be polarized, even if the incident light itself is polarized. Any polarization

that might result from a single reflection would get randomized by the complex

interactions that occur within the surface layer. In fact, “Lambert’s law” is a

definition of “diffuse reflection”: Incident light of any polarization and angle of

incidence that is diffusely reflected will be isotropic and unpolarized.

Depending on the nature of the surface, scattering of sunlight from the particles

of a planetary surface can result in partial polarization of the reflected light. In the

experiment, we will also study the extent to which the light reflecting off of the

various soil samples becomes polarized.

Magnetic Field Variation

λ

Electric Field Variation

Direction of Propagation of Wave

Fig. 10 An electromagnetic wave carries energy through space in its electrical and magnetic

fields. As many waves, it is sinusoidal, with the magnetic and electrical variations perpendicular to

each other as well as to the direction of motion, or propagation. The wave travels at the speed of

light, and the electrical and magnetic components, as shown, have the same wavelength, l, and
frequency. These are attributes of all electromagnetic waves, from the shortest wavelength

gamma-rays, to the longest wavelength radio waves. If we consider the drawing as representing

one polarization of the wave, the other polarization would be visualized by rotating the wave 90�

clockwise (or counterclockwise) about the direction of motion
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C. Procedure and Observations

1. Equipment

Three types of soil are placed in separate shallow sand boxes.We use sand, pebbles or

pea gravel, and stones. A 500-Watt halogen lamp is mounted several feet (see below)

above the table on which the sand boxes will be placed, Fig. 11. To prevent the light

entering the photometers of the other experimenters in the lab, baffles are placed to the

sides of the halogen lamp. The result resembles stage lights such as used in the theatre.

A photometer on a stand is positioned about 1 ft above the sand box and

displaced about 1 ft from the plumb line from the lamp to the sand box. The

photometer is able to pivot looking downwards from the vertical to an angle of

b ¼ 65� from the vertical. Attached to the photometer are baffles to limit the field

of view and a sleeve into which a polarizing filter can be inserted. From the

geometry of Fig. 11, we can see that the angles b and e are equal.
We know that the lunar surface is composed of a mixture of different types of

soil materials, differing in size, shape, and composition. By using sand, pebbles or

pea gravel, and stones in the experiment we are attempting to simulate one of the

characteristics of the lunar material, the particle size. Astronomers and physicists

routinely develop a model to simulate natural phenomena, either mathematically or

in the laboratory. Because we are not modeling the composition of the soil

Fig. 11 The experimental

apparatus. A lightbulb

provides the “sunlight”

and a photometer, which

can rotate in orientation,

measures the reflected light

at different angles. A sand

box is filled with various soil

samples to simulate different

types of planetary surfaces.

Because in this experiment

the incident angle i is zero,
the angles b and e are equal
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materials, only the particle size, and because we want to ensure a large reflection,

the materials are all painted white.

The light source that we use to simulate sunlight must have two properties. First,

it must illuminate the soil sample bed uniformly over the surface that will be viewed

by the photometer. Second, the rays should be parallel, as the Earth receives light

from the distant Sun. Uniform illumination can be achieved using a diffuser, such as

a piece of frosted glass or a piece of plexiglas which is lightly sanded. Parallel rays

can be achieved using a piece of polarizing sheet or a collimating lens.

Neither of these is adequate for our purposes. Polarizing sheets produces

polarized light, whereas sunlight is unpolarized and indeed part of the experiment

is to detect how unpolarized light becomes polarized when scattered. A collimating

lens or short focal length condenser lens, on the other hand, does not provide a wide

enough beam to illuminate all of the surface area of the soil sample bed that will be

viewed by the photometer at large angles.

Instead of those strategies, we can satisfy both the requirements of both a

uniformly illuminated surface and parallel rays requirements geometrically if we

place the light bulb at a sufficiently far distance. Figure 12 shows the geometry. We

would like angle g to be close to zero. Because

sin
g
2
¼ s=2

d
; (3)

where s is the width and length of the area to be illuminated and d is the distance to
the light bulb, this would mean that the light bulb would have to be at a great

distance from the sphere. In practice, let us consider a value of g ¼ 20� as tolerable.
Then we can use the small angle formula, Eq. (2) of Experiment #1, “A Review of

Mathematical Concepts and Tools,” to rewrite (3) as,

d � s

g
:

Remembering to express g in radians by dividing our 20� by 360/2p¼ 57.3�/rad,
we find d ¼ 5.7 ft would illuminate a 2-ft square area of the sand box. The lamp

should be placed at least this far above the surface of the sand box. Use a plumb

Fig. 12 Using the small angle approximation, we can determine how far to place the light bulb

from the sand box surface to ensure that approximately parallel rays of light are incident upon it

over a large portion of the surface

118 6 The Surface Roughness of the Moon. . .

http://dx.doi.org/10.1007/978-1-4614-3311-8_1
http://dx.doi.org/10.1007/978-1-4614-3311-8_1


bob to orient the lamp so that the rays of light are perpendicular upon the surface of

the sand box

2. Observations

Place the sand box of sand under the lamp. Rotate the photometer so that it makes a

5� angle with the vertical. Enter the photometer reading in the second column of

Table 1a of the DATA SHEET. Place the polarizing filter into the sleeve to measure

polarized light and repeat the measurement. We will refer to that orientation as

“horizontal” polarization. Enter the photometer reading in the third column of

Table 1a of the DATA SHEET. Remove the polarizing filter, rotate it 90� so that

it will now measure the other sense of polarized light, insert the rotated filter back

into the sleeve, and repeat the measurement. Enter the photometer reading in the

third column of Table 1a of the DATA SHEET. We will refer to that orientation as

“vertical” polarization. Carefully note which orientation of the polarizing filter you

have used in each measurement for future reference in the experiment.

Rotate the photometer 10� so that it now makes an angle of 15� with the vertical.
Repeat the three measurements and enter the results on the DATA SHEET. Make

sure that the measurements with the polarizing filter are consistently entered

according to their orientation as “horizontal” or “vertical.” Continue rotating the

photometer by 10� and making the three measurements until you have reached the

maximum 65� angle we will employ. On completion, you will have made

measurements at 5�, 15�, 25�, 35�, 45�, 55�, and 65�.
Repeat the same series of measurements with the sand boxes containing pebbles

or pea gravel and stones. Enter all results in Tables 1b and 1c, respectively, of the

DATA SHEET.

D. Calculations and Analysis

1. Degree of Polarization

From the measurements of total reflection intensity, “horizontal” polarization

intensity, and “vertical” polarization intensity for each soil sample entered on

Tables 1a, 1b, and 1c, calculate a “degree of polarization” in percent by the

following formula,

D ¼ IH � IV
IT

� 100; (4)

where the subscripts refer to horizontal, vertical, and total. The values of D will

range from �100%, for the case in which all the reflection has been “vertically”
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polarized, through zero, for the case in which no polarization has occurred, to

+100%, for the case in which all the reflection has been “horizontally” polarized.

Perform all calculations on the DATA SHEET and enter your results in the right-

hand column of Tables 1a, 1b, and 1c for the three soil samples of sand, pebbles or

pea gravel, and stones, respectively.

2. Geometrical Correction Factor

Before additional analysis of the measurements is made, they must be corrected for

a geometrical effect. (These corrections were not needed in the calculation of the

degree of polarization, because the correction factors we will find would cancel out

in (4).) As can be seen from Fig. 13, as the photometer is rotated at increasingly

larger angles from the vertical, reflections from increasingly larger areas of the

surface are being received. If A0 is the area from which reflection is received when

the photometer is pointed directly downwards, then the area from which reflection

is received when the photometer is pointed at an angle e from the vertical has

increased by a factor equal to its increased length. This would bias those

observations and a correction is required.

To determine the correction factor, examine Fig. 13b, c. The angle from which

reflection is received by the photometer is labeled ao. If the distance from the

photometer support to the beginning of the reception area is x and the distant to

the far extent of the reception area is s, then the total linear extent of the footprint of
the photometer is l ¼ s � x. That’s what we need to determine. The width w of the

footprint remains the same, where in general A ¼ lw.
From the geometry of Fig. 13c

L ¼ s� x

¼ H ½tanðbþ ao
2
Þ � tanðb� ao

2
Þ� :

Using trigonometric identities, this can be shown to be identical to

L ¼ H
2 sin ao

cos ao þ cos 2b
: (5)

We don’t know the value of ao, but we know it is small. Now that we’ve

separated ao from b, which is not necessarily small, we can therefore simplify (5)

by the small angle approximations to the sine and cosine,

L ¼ H
2ao

1þ cos 2b
: (6)
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Fig. 13 The measurements must be corrected for the slanted region on the surface from which the

reflected light is received. The photometer receives reflected light in an angle ao. That angle is

spread out over a distance L which changes as the photometer is rotated. (a) A three-dimensional

schematic with the photometer viewing the surface from directly overhead. (b) A three-

dimensional schematic with the photometer viewing the surface at an oblique view. (c) The

geometry for determination of the correction factor in which, for clarity, the photometer is

shown in a side view. Note that angle ß is equal to the angle of observation, e



To check, if b ¼ 0, then L ¼ Hao, and if b ¼ 90�, then L ¼ 1. This is exactly

the behavior we expect. A measurement taken with the photometer pointed directly

downwards would not need to be corrected whereas one at 90� would be seeing an

“infinite” amount of area.

To put (6) into a form that can be used for any values of H and ao,

f � L

aoH
¼ 2

1þ cos 2b
: (7)

This is the correction factor we will use, dividing the observations by the values

of f as a function of the observation angle, b. As its graph, Fig. 14, shows, the

correction becomes appreciable for observation angles great than about 40�, an
effect you can observe by shining a flashlight beam against a wall. (It is interesting

to note that this is the same formula employed in using “side-looking” radar to map

the surface of planets from orbiting satellites as well as in airplane-borne radar for

agricultural and geological applications on Earth.)

Note that this is not the same as the cos i effect resulting from foreshortening,

(2). That refers to parallel rays incident on a surface at an angle of incidence i. This
correction refers to the finite field of view of a detector placed near the surface of

interest and oriented at an angle of observation e (as angle ao approaches zero, then
angle b can be identified with the angle of observation, e). The cos i factor is

irrelevant to the experiment, the angle of incidence being a constant 0�.
On the DATA SHEET, calculate the values of f from (7) or by reading the value

off of Fig. 14 corresponding to the values of the angles of observation, b. Enter
those values in Tables 2a, 2b, and 2c of the DATA SHEET. Correct the values for

total reflection, “horizontal” polarization, and “vertical” polarization entered in

Tables 1a, 1b, and 1c by dividing by those factors. Enter the results in Tables 2a,

2b, and 2c.

Fig. 14 The correction factor

for viewing the surface

of the sand box at a slant

becomes appreciable

for angles greater than

about 40�
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3. Analysis

Construct three graphs, one for each of the soil materials. On each, plot both the

total reflection and the degree of polarization as a function of the angle of observa-

tion. To distinguish the two sets of data, use the left hand vertical scale to provide

the tick marks and scale for the total reflection and the right-hand vertical scale to

provide the tick marks and scale (from�100 to +100) for the degree of polarization

results. Draw smooth lines through the data points. Continue the smooth curve

carefully, graphically extrapolating to 0� angle of observation.
From the graph of total reflection intensity as a function of the angle of

observation for each soil sample, read the values at 0� and 50� and enter them

on the DATA SHEET as I0 and I50. Calculate the ratio C ¼ I50
Io

for each soil sample

on the DATA SHEET and enter the results in Table 3. We have thereby defined a

“coefficient of roughness.” It can vary from a value of zero for specular reflection to

unity for reflection from a Lambert surface. Quasi-specular reflection will result in

an intermediate value.

In Experiment #7, “The Surface Roughness of the Moon: Reflection and Scatter-

ing from a Planetary Surface: Part II. Beads and Surface Coverage,” we will

determine the sizes of the sand particles, pebbles or pea gravel, and stones. We

will then construct a graph of the coefficients of roughness as a function of particle

size.
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STUDENT’S NAME ________________________________________________

E. Surface Roughness Experiment I Data Sheets

Table 1b Photometer intensity readings at various angles of observation (material: pebbles or pea

gravel)

y
Total

reflection

“Horizontal”

polarization

“Vertical”

polarization

Degree of

polarization

5�

15�

25�

35�

45�

55�

65�

Table 1c Photometer intensity readings at various angles of observation (material: stones)

y
Total

reflection

“Horizontal”

polarization

“Vertical”

polarization

Degree of

polarization

5�

15�

25�

35�

45�

55�

65�

Table 1a Photometer intensity readings at various angles of observation (material: sand)

y
Total

reflection

“Horizontal”

polarization

“Vertical”

polarization

Degree of

polarization

5�

15�

25�

35�

45�

55�

65�
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Table 2b Corrected readings at various angles of observation (material: pebbles or pea gravel)

y
Geometrical

correction factor f

Corrected total

reflection

Corrected “horizontal”

polarization

Corrected “vertical”

polarization

5�

15�

25�

35�

45�

55�

65�

Table 2a Corrected readings at various angles of observation (material: sand)

y
Geometrical

correction factor f

Corrected total

reflection

Corrected “horizontal”

polarization

Corrected “vertical”

polarization

5�

15�

25�

35�

45�

55�

65�

Table 2c Corrected readings at various angles of observation (material: stones)

y
Geometrical

correction factor f

Corrected total

reflection

Corrected “horizontal”

polarization

Corrected “vertical”

polarization

5�

15�

25�

35�

45�

55�

65�
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F. Surface Roughness Experiment Discussion Questions

1. Compare the curves of total intensity as a function of angle of observation

between sand, pea gravel, and stone soil samples. Refer to the graphs to provide

your answer.

a. Are the total intensities greater for any type? Explain the difference in terms

of the sizes of these particles and the reflection and scattering of the incident

light.

b. Do you expect this kind of result? Why or why not?

2. Compare the curves of degree of polarization as a function of angle of observa-

tion between sand, pea gravel, and stone soil samples. Refer to the graphs to

provide your answer.

a. Are the total intensities greater for any type? Explain the difference in terms

of the sizes of these particles and the reflection and scattering of the incident

light.

b. Do you expect this kind of result? Why or why not?

Table 3 Coefficients of roughness

Soil sample I0 I50 C ¼ I50/I0

Sand

Pebbles or Pea Gravel

Stones
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3. Because the Moon has different terrain, some rocky, some lava-covered, and

some a mixture, the curve for the Moon of intensity of reflected radiation as a

function of angle of observation is not smooth as are those of Fig. 9. Assume you

are observing the Moon from the Earth near full Moon.

a. Which type of material, large, round boulders or rough lava fields with much

void space, would cause a dip or enhancement in this curve at an angle of

observation of zero degrees (that is, the sub-Earth point)? Which would occur

and which of the materials would be the cause? Why?

b. Similarly, which type of material would cause a dip or enhancement in this

curve at an angle of observation of 45� degrees? Which would occur and

which of the materials would be the cause? Why?

4. Look at the Moon with binoculars or a small telescope when it is close to being

full. The mare or lava plains are darker than the other regions because of the

intrinsic darkness of the material. If all the material on the Moon were the same

intrinsic darkness, what would be the relative brightness of the mare now?
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5. To restrict ourselves to the one variable of particle size we painted all the soil

sample particles white. Based on the graphs of the intensity of reflected light as a

function of angle of observation that you have determined, draw what you think

the reflection curves for each of the three soil samples would have been if we had

painted the soil sample particles gray. To enable comparison, place all three on

the graph to the left below. Do the same if we had painted the soil sample

particles black, again placing all three on the graph to the right below. Provide

tick marks and identify the values of the intervals between appropriate tick

marks on the axes.

Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Experiment 7

The Surface Roughness of the Moon.

Reflection and Scattering from a Planetary

Surface: Part II. Beads and Surface Coverage

SUMMARY: In the second part of our study of the reflection of light from a

planetary surface we study how the small glassy beads found on the lunar

surface by Apollo astronauts effect the reflective properties of the surface and

the polarization of the reflected light. We place successively larger numbers

of materials simulating the beads below the illuminating light bulb and, as in

Experiment #6, “The Surface Roughness of the Moon: Reflection and Scat-

tering from a Planetary Surface: Part I. Surface Materials,” measure the

reflected light.

LEVEL OF DIFFICULTY: Moderate to High. This challenging experiment

requires moderate skill in making careful measurements.

EQUIPMENT NEEDED: Sand boxes filled with sand; photometer mounted

on rotatable stand; plumb bob; light baffles; 500-Watt halogen lamp;

polarizing filters; micrometer; small spherical beads, such as plastic pearls,

ball bearings of various sizes, or particles of silica gel.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_7, # Springer Science+Business Media New York 2013
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A. Introduction

In Part I of this experiment we measured the reflected intensity from sand, pebbles

or pea gravel, and stones. We measured the total intensity and the intensity in the

two polarized components. In this part of the experiment, we will examine the

effect on the reflections on the presence of small spherical beads and the particle

size. We will then use these results to derive an estimate of the fraction of the lunar

surface covered by small glass beads.

B. Theory: Glass Beads on the Lunar Surface

As noted in Experiment #6, “The Surface Roughness of the Moon: Reflection

and Scattering from a Planetary Surface: Part I. Surface Materials,” the lunar

surface approximates a Lambert surface, with notable differences. Perhaps the

most striking occurs at a perfect full Moon, when the subsolar point on the Moon

is observed. On the Earth, we never see the perfectly full Moon. When the

alignment required for that occurs, we in fact see a lunar eclipse. The Apollo

astronauts, however, were easily able to observe the amount of reflection at the

exact subsolar point. They found, remarkably, that the exact subsolar point is

about 30% brighter than the sub-Earth point during any full Moon as observable

from the Earth.

Looking down at the lunar surface, they saw small objects of various colors,

green and orange, depending on their chemical composition. (Black ones are

also seen, the crystallization products of the orange glasses.) These small glass

beads possess various shapes, described as spheres, teardrops, and flakes.

Although the sizes vary, a typical dimension is 0.03 mm. Created on the surface

of the Moon and, presumably, planetary surfaces by meteoroid impact-caused

shock melting and rapid cooling and as cooling products of volcanic eruptions,

these small glass beads reflect the direct rays of the Sun by specular reflection,

significantly increasing the amount of reflected light. We will study that effect in

Experiment #7, “The Surface Roughness of the Moon: Reflection and Scattering

from a Planetary Surface: Part II. Beads and Surface Coverage”. It will enable us

to get an estimate of the fraction of the lunar surface that is on the average

covered by these beads.

These glass particles are not insignificant trace constituents of the lunar surface.

The impact-generated glasses are ubiquitous, found everywhere, on the lunar

surface. Samples from the rays of the major impact crater Copernicus, for example,

are composed of 70–90% of these glass particles. Those of volcanic origin consti-

tute major fractions of the soil material near those features. (Some of these beads,

more remarkably, contain small amounts of water!)
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C. Procedure and Observations

1. Particle Sizes

We also want to measure the particle sizes. With a micrometer, measure the sizes

of the grains of sand, pebbles or pea gravel, and stones. Express all results in

millimeters. Measure at least five of each object, and calculate the average. In

measuring the stones, because they are not circular, measure the largest and

smallest diameters and take the average for each of the stones you measure. If

the sand particles you are using are too small to accurately measure, lay a number

of them down side to side and then use a ruler to measure the length of the sand

line you have created. Divide by the number of sand particles to get an average

size. Perform your calculations on the DATA SHEETS. Enter your results in

Table 1 of the DATA SHEET.

Similarly measure the sizes of the various materials you use to simulate the glass

beads. Performyour calculations on theDATASHEETS. Enter your results in Table 2

of the DATA SHEET.

2. Glass Bead Enhancement

Let us examine the full Moon effect observed by the Apollo astronauts. Put the sand

box containing sand under the lamp and photometer. Move the photometer down

next to the lamp so that its view of the surface is not obscured by the photometer.

Use a plumb bob to orient the lamp so that the rays of light are perpendicular upon

the surface of the sand box. Enter the photometer readings of total intensity and

intensity in the two polarizations in the first row of Tables 3a, 3b, and 3c.

The small glass beads found on the lunar surface are about 0.03 mm in size. Such

material is not readily available, but we can simulate the effect with plastic pearls,

ball bearings of various sizes, and the particles of silica gel used commercially as

desiccants. Choose three sizes of particles for use. Use the smallest group of

particles you can locate, hopefully about 1 mm in size. The largest group of

particles you use should be at least about 1 cm (about 3/8 of an inch). That will

give us a range of an order of magnitude in “bead” size. All particles should be

painted white to maximize the maximum reflections.

Place some of the group of the largest beads that you have available onto the

surface of the sand. Cover about 10% of the surface centered under the photome-

ter field with them. Count the number of beads that you have placed on the surface

and enter the result in Table 4. Repeat the three measurements of total intensity

and intensity in the two polarizations. Enter the photometer readings of total

intensity and the intensity in the two polarizations in the second row of Table 3a

of the DATA SHEET.

A simple geometric argument can provide a fairly accurate estimate of the

number of beads needed to attain the 10% coverage. If the area of the sand box
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that the baffled light bulb illuminates is a square of side L and if the bead has a

radius R, as determined in the next section, then the coverage resulting from placing

N beads on the surface will be,

% Covered ¼ N
pR2

L2
� 100;

as shown in Fig. 1. For the desired coverage of 10%, this provides

N ¼ L2

10 pR2
: (1)

For example, if the length of the illuminated square sides is have a length of

25 cm and the radius of the beads size is 1 cm, then N ¼ 20 beads are needed to

obtain the 10% coverage initially desired.

With the lights in the laboratory dimmed, turn on the light bulb and measure the

length of the side of the area that is illuminated. Calculate the values of N needed

for each of the bead sizes. Perform these calculations on the DATA SHEET.

Cover an additional 10% of the surface with these beads by doubling the number

of beads you have placed on the surface. Repeat the three measurements of total

intensity and intensity in the two polarizations. Continue adding beads and making

measurements until you have covered about 70% of the surface. Enter these

photometer readings of total intensity and the intensity in the two polarizations in

the third through eighth rows of Table 3a of the DATA SHEET.

Remove the large beads from the surface. Place beads of intermediate size on the

surface, again covering about 10% of the surface centered under the photometer

Fig. 1 To calculate the number of beads needed to cover 10% of the surface of the sand box, we

can employ the geometry shown
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field with the smallest beads you have available. Count the number of beads that

you have placed on the surface and enter the result in Table 4. Repeat the sequence

of measurements that you made with the largest beads. Enter the photometer

readings of total intensity and the intensity in the two polarizations in Table 3b of

the DATA SHEET.

Remove those intermediate-sized beads and cover about 10% of the surface

centered under the photometer field with the smallest beads you have available.

Count the number of beads you have placed on the surface to achieve this 10%

coverage and enter the result in Table 4. Repeat the sequence of measurements. As

with the large and intermediate-sized beads, enter the photometer readings of total

intensity and intensity in the two polarizations for the various levels of coverage.

Enter these readings in Table 3c of the DATA SHEET.

D. Calculations and Analysis

1. Coefficients of Roughness

In Experiment #6, “The Surface Roughness of the Moon: Reflection and Scattering

from a Planetary Surface: Part I. Surface Materials,” we calculated coefficients of

roughness from the curves of total reflected intensity as a function of angle of

observation. These values were entered in Table 3a, etc. Using the results for the

sizes of the sand, pea gravel, and stones, construct a graph of those coefficients of

roughness, C, as a function of particle size. Draw a smooth curve through the three

data points. Because of the large number of graphs we will be constructing, we will

enumerate the graphs. They are all found on the DATA SHEET following Table 7.

This is Graph 1 on the DATA SHEET.

2. Bead Reflection Enhancement

We placed three sizes of beads on the surface to cover, in turn, 10–70% of it.

Calculate the degree of polarization by Eq. (4) of Experiment #6, “The Surface

Roughness of the Moon: Reflection and Scattering from a Planetary Surface:

Part I. Surface Materials,” and enter the respective results in the right-hand column

of Tables 3a, 3b, and 3c.

Construct a graph of the degree of polarization as a function of bead surface

coverage for each bead size. Because only seven data points have been produced for

each bead size, you should be able to plot these values on the same graph. Clearly

distinguish which points represent the results for each bead size by using different

symbols. Those frequently used include a filled-in circle, a cross (+), a triangle, or a

dot in the center of a circle. This is Graph 2 on the DATA SHEET. If plotting all

three on the same graph makes it overly cluttered, then graph each separately. Draw
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a smooth line between each set of seven data points. These graphs indicate how the

degrees of polarization vary with the presence of the different sized beads.

In addition to creating polarized reflected light, the beads should also increase

the amount of reflected light compared to the amount reflected from the surface

with no beads. You have provided the latter results in the first rows of Tables 3a, 3b,

and 3c. Calculate the percentage increases in reflected intensity for each bead size

in total intensity and the two polarization components. Perform your calculation on

the DATA SHEET and enter your results in Tables 5a, 5b, and 5c, which corre-

spond to the three sizes of beads used. Henceforth, we will refer to these percentage

increases as “enhanced” intensities, either enhanced total intensities or enhanced

intensities in the two polarizations.

Construct a graph of percentage increases in the intensities from Table 5a, etc., as

a function of bead surface coverage for each bead size. On each of the three graphs,

graph the enhanced total intensity as well as the enhanced intensities in the two

polarizations. As with the graph of the degree of polarization, because only seven

data points have been produced for each bead size, you should be able to plot these

values on the same graph. Clearly distinguish which points represent the results for

the enhanced total and enhanced intensities in the two polarization components by

using different symbols. This is Graph #3 on the DATA SHEET. If plotting the

enhanced total intensity and the enhanced intensities in the two polarization

components on the same graphmakes it overly cluttered, then graph each separately.

Draw a smooth line between each set of seven data points. These graphs indicate

how the intensities of reflected light increase with the presence of the beads.

3. Bead Surface Coverage on the Lunar Surface

The presence of small glass beads on the lunar surface are considered the cause of

the 30% enhanced reflection observed by the Apollo astronauts at the subsolar point

over that observed on Earth from the sub-Earth point during any full Moon. Our

experimental data enable us to estimate the percentage coverage of the lunar surface

by such beads.

To do this, we construct additional graphs of the data for enhanced total intensity

corresponding to the various percentages of bead coverage. For ease of comparison

and plotting, copy the data from Table 5 into Table 6. This will provide a summary

of the measurements for each bead side. Copy the measurements in the second

column of Table 5a into the second column of Table 6, the measurements in the

second column of Table 5b into the third column of Table 6, and the measurements

in the second column of Table 5c into the last column of Table 6. Calculate the

logarithms to base 10 of the square of the bead sizes and enter those results in the

third row of Table 6 of the DATA SHEET.

Construct a graph of the enhanced total intensity from Table 6 as a function of

the logarithm of the square of the bead size. Four graphs are provided. Plot the data

for 10% and 20% bead surface coverage on Graph 4a, the data for 30% and 40%
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bead coverage on Graph 4b, the data for 50% and 60% bead coverage on Graph 4c,

and the data for 70% bead coverage on Graph 4d. These all appear on the DATA

SHEET. We use the square of the bead size because that is a measure of the area of

the bead from which the incident light will be reflected. We use the logarithm

because the range of abscissa will be several orders of magnitude. Although this is

much smaller than the smallest bead size, extend the abscissa scale down to

1 � 10�4 mm2, the square of 0.01 mm. Construct the graph with an abscissa

range from 1 � 10�4 to 103 mm2.

Plot three points corresponding to the three bead sizes. Draw a smooth curve

through those three points and extrapolate the curve through 9 � 10�4 mm2. This

corresponds to the 0.03 mm size of the glass beads that the Apollo astronauts

discovered on the lunar surface. On these four graphs, we plot only the total enhanced

intensity. That is what the astronauts estimated while on the lunar surface.

Figure 2 shows the expected appearance of your graph. Each of the four graphs

should look generally like this hypothetical example.

Draw a vertical line at the abscissa position of 9 � 10�4 mm2, labeled point A in

the hypothetical graph. This corresponds to the 0.03 mm size of the lunar glass

beads. That vertical line will intercept the curve you have drawn, at point B in the

Fig. 2 Hypothetical results for enhanced total intensity as a function of bead size for bead coverage

of 50%. The analysis allows determination of the enhanced intensity expected from 50% coverage of

the 0.03 mm-sized glass beads found on the lunar surface. This datum is used in Figure 3
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hypothetical graph. Draw a horizontal line from point A to the ordinate axis,

intersecting the ordinate axis at point C. Read the value off the ordinate axis and

enter it into Table 7. These graphs, based on hypothetical data, would have told us

that with a 50% coverage, the size of the glass beads found on the lunar surface will

enhance the total intensity of the reflected light by about 35%. This example is

provided to guide you only; do not take it as an indication of what your actual

results will be.

After the construction of these graphs for each percentage of coverage, from

10% to 70%, you will have seven data points for the total intensity enhancement.

Next, we will construct a graph of these seven points. It is a graph of the enhanced

total intensity as a function of the percentage of coverage, but now for the 0.03 mm

size glass beads. Note, that we wouldn’t have to perform these graphing chores if

we in fact had 0.03 mm glass beads available. This is Graph 5 on the DATA

SHEET.

Your result will look something like Fig. 3. Draw a smooth curve through the

points. Now, similar to the exercise with Fig. 2, we know that the enhanced

reflection from the lunar surface is about 30%. Draw a horizontal line from the

ordinate scale at the 30% enhancement level, point A. That line will intercept

the curve, at point B. Draw a vertical line from point B to where it intercepts the

abscissa axis, at point C. That yields the percentage of the surface that is covered

Fig. 3 Hypothetical results for enhanced total intensity as a function of surface bead coverage for

0.03mm-sized glass beads.Knowing that reflection from the subsolar point is enhancedby30%by the

presence of these beads, we can determine the percentage of the actual lunar surface covered by them
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with 0.03 mm size beads to provide the 30% enhancement level observed by the

Apollo astronauts. Enter that result for the enhanced total intensity on the DATA

SHEET. For example, in the hypothetical example, we have found that on the

average 36% of the lunar surface is covered by the 0.03 mm-sized beads.

To provide some insight into this analysis, note that we could have performed

the analysis with a two-dimensional representation of a three-dimensional graph.

(The results would likely have been less precise). We would plot the enhanced

intensities as a function of both the bead size and percentage of coverage and then

construct intersecting planes corresponding to the 0.03 mm size of the glass beads

found on the Moon and the 30% enhancement observed at the subsolar point.

Figure 4 displays an example of how this analysis would be performed. In practice,

astronomers would perform the analysis numerically by a least squares fit.

Fig. 4 The analysis described in the text to determine the surface coverage of 0.03 mm-sized glass

beams to yield a 30% subsolar enhanced reflection from the Moon can be performed using a two-

dimensional representation of a three-dimensional graph. The measurements will define an

irregularly-shaped plane in the 3-d space. The intersection of that plane with a vertical plane

located at 9 � 10�4 mm2 and a horizontal plane located at 30% will define a point. The mutual

intersection point is shown by the arrow. The value of that point on the “bead coverage” abscissa

scale is the percentage coverage of the 0.03 mm-sized beads on the lunar surface. The hypothetical

data shown here would yield a result of about 34%. This determination is highly dependent on the

model and various assumptions
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E. Surface Roughness Experiment II Data Sheets

Calculation of average particle size

Sand:

Pebbles or Pea Gravel:

Stones:

Table 1 Particle sizes of soil sample material

Sand

Pebbles or

pea gravel

Stones: large

diameter

Stones: small

diameter

All stones:

average diameter

Soil

sample

Particle

size (mm)

Particle size

(mm)

Particle size

(mm)

Particle size

(mm) Particle size (mm)

1

2

3

4

5

Average
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Calculation of average bead size

Large:

Intermediate:

Small:

Table 2 Bead particle sizes

Bead Large size Intermediate size Small size

Particle size (mm)

1

2

3

4

5

Average
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Table 3b Photometer intensity readings at 0� angle of observation (material: sand with interme-

diate size beads)

Soil sample coverage

Total

reflection

“Horizontal”

polarization

“Vertical”

polarization

Degree of

polarization

Without beads

10% bead coverage

20% bead coverage

30% bead coverage

40% bead coverage

50% bead coverage

60% bead coverage

70% bead coverage

Table 3a Photometer intensity readings at 0� angle of observation (material: sandwith large beads)

Soil sample coverage

Total

reflection

“Horizontal”

polarization

“Vertical”

polarization

Degree of

polarization

Without beads

10% bead coverage

20% bead coverage

30% bead coverage

40% bead coverage

50% bead coverage

60% bead coverage

70% bead coverage
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Table 3c Photometer intensity readings at 0� angle of observation (material: sand with

Intermediate-Sized beads)

Soil sample coverage

Total

reflection

“Horizontal”

polarization

“Vertical”

polarization

Degree of

polarization

Without beads

10% bead coverage

20% bead coverage

30% bead coverage

40% bead coverage

50% bead coverage

60% bead coverage

70% bead coverage
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Calculate the number N of beads needed from (1) here.

Size of Illuminated area L ¼ ____________

N for large beads:

Nlarge ¼ _________

N for intermediate-sized beads:

Nintermediate ¼ _________

N for small beads:

Nsmall ¼ _________

Table 4 Number of beads of different sizes (needed to cover 10% of experimental surface)

Beads Number, N, to cover 10% of surface

Large

Intermediate size

Small
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Calculations of % Increases; Large Beads

Table 5a Analysis of bead photometer intensity readings (ratio of intensities with and without

beads on surface) (material: sand with large beads

Soil sample coverage

% increase total

intensity

% increase “horizontal”

polarizations

% increase “vertical”

polarizations

Without beads

10% bead coverage

20% bead coverage

30% bead coverage

40% bead coverage

50% bead coverage

60% bead coverage

70% bead coverage
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Calculations of % Increases; Intermediate Size Beads

Table 5b Analysis of bead photometer intensity readings (ratio of intensities with and without

beads on surface) (material: sand with Intermediate-Sized beads)

Soil sample coverage

% increase total

intensity

% increase “horizontal”

polarizations

% increase “vertical”

polarizations

Without beads

10% bead coverage

20% bead coverage

30% bead coverage

40% bead coverage

50% bead coverage

60% bead coverage

70% bead coverage
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Calculations of % Increases; Intermediate-Sized Beads

Table 5c Analysis of bead photometer intensity readings (ratio of intensities with and without

beads on surface) (material: sand with small beads)

Soil sample

% increase total

intensity

% increase “horizontal”

polarizations

% increase “vertical”

polarizations

Soil sample coverage

10% bead coverage

20% bead coverage

30% bead coverage

40% bead coverage

50% bead coverage

60% bead coverage

70% bead coverage
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Table 6 Summary of enhanced total intensity measurements from Table 5

Bead Small Intermediate Large

Bead size (mm)

Bead size squared (mm2)

Log (bead size squared)

Soil sample coverage

10% bead coverage

20% bead coverage

30% bead coverage

40% bead coverage

50% bead coverage

60% bead coverage

70% bead coverage

Table 7 Enhanced total intensity results for extrapolated 0.03 mm size beads

Soil sample coverage Intensity

10% bead coverage

20% bead coverage

30% bead coverage

40% bead coverage

50% bead coverage

60% bead coverage

70% bead coverage
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Graph 1 Coefficients

of roughness as a function

of particle size

Graph 2 Degree

of polarization as a function

of bead coverage

Graph 3a Increases in

enhanced intensities as a

function of bead coverage

for small beads
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Graph 3b Increases

in enhanced intensities as

a function of bead coverage

for intermediate-sized beads

Graph 3c Increases

in enhanced intensities as

a function of bead coverage

for large beads
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Graph 4a Enhanced intensities as a function of square of the bead size for 10% and 20%

coverage

Graph 4b Enhanced intensities as a function of square of the bead size for 30% and 40%

coverage
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Graph 4d Enhanced intensities as a function of square of the bead size for 70% coverage

Graph 4c Enhanced intensities as a function of square of the bead size for 50% and 60%

coverage
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F. Surface Roughness Experiment Discussion Questions

1. The surface of the Moon is close to being a Lambert surface, with the exception

of enhanced reflectivity at the subsolar point and enhanced reflectivity near the

limb. Accordingly, if we calculate the coefficient of roughness was calculated

for the Moon, it would be close to 1.0. (We ignore the enhanced reflections

resulting from the presence of the glass beads.) Based on the graph you

constructed from the calculated values of C for sand, pebbles or pea gravel,

and stones, what would material would you consider as being the dominant

constituent of the lunar surface, or would a combination of materials be

indicated? Explain your answer.

2. The enhanced reflections from the 0.03 mm-sized glass beads on the Moon result

from specular reflection. By examining the percentage increases for the total

intensity compared to those for the two polarized components on the graphs you

constructed from the data of Table 5, what can you say about the type of

radiation that results from specular reflection of unpolarized light? Explain

your answer.

Graph 5 Enhanced intensities as a function of bead coverage for 0.03 mm size beads
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3. Experiments #6 and #7, “The Surface Roughness of the Moon: Reflection and

Scattering from a Planetary Surface: Part I. Surface Materials,” and “The Surface

Roughness of the Moon: Reflection and Scattering from a Planetary Surface:

Part II. Beads and Surface Coverage,” introduced a model for the reflection of

light from the Moon and planetary surfaces. Of the various characteristics of the

surface soil, only the roughness was considered. That was explicitly stated. In

Experiment #7, “The Surface Roughness of the Moon: Reflection and Scattering

from a Planetary Surface: Part II. Beads and Surface Coverage,” we used that

model to determine the percentage of coverage of the lunar surface with 0.03 mm

glass beads needed to provide an enhanced 30% subsolar reflection.

a. Discuss the assumptions made in this analysis that were not explicitly stated.

b. Which of the assumptions do you think are most likely to affect the accuracy

of this determination of the glass bead coverage on the Moon?

4. Assume that you are observing the Moon at the infrared wavelength of 1 mm.

Construct a smooth graph of the intensity of reflected light as a function of the

angle of observation that you would expect for each of the three soil sample

materials whose average particle sizes you calculated on the DATA SHEET.

Refer to the discussion of scattering in Sect. B.1 of Experiment #6, “The Surface

Roughness of the Moon: Reflection and Scattering from a Planetary Surface:

Part I. Surface Materials,” Fig. 9 of Experiment #6, “The Surface Roughness of

the Moon: Reflection and Scattering from a Planetary Surface: Part I. Surface

Materials,” and the determination of average particle sizes that you tabulated in

Table 1 in providing your graphical answer. On all the graphs in this and the next

two questions, provide tick marks and identify the values of the intervals

between appropriate tick marks on the axes.
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5. Repeat question #4 for observations at the microwave radio wavelength of 5 cm.

6. Repeat question #4 for observations at the FM radio wavelength of 1 m.

7. Using Fig. 1 of Experiment #6, “The Surface Roughness of the Moon: Reflection

and Scattering from a Planetary Surface: Part I. Surface Materials,” as a guide,

show the appearances of the Moon as seen from the Earth as it revolves around

the Earth if the Moon were a perfectly spherical mirror.
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8. Similarly, show the appearances of the Moon as seen from the Earth as it

revolves around the Earth if the Moon was painted a non-reflecting black color.

9. Figure 7 of Experiment #6, “The Surface Roughness of the Moon. Reflection

and Scattering from a Planetary Surface: Part I. Surface Materials,” presented

the three-dimensional graph representing reflection from a Lambert surface.

Below is the same graph “paper,” but it is blank. Draw the graph that represents

specular reflection.

Removing these DATASHEETS from the bookmay damage the binding. Youmight

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Experiment 8

The Formation of Impact Craters

SUMMARY: In Experiment #8, “The Formation of Impact Craters,” we study

how the kinetic energy of impacting objects form craters on the surfaces of

Moons and planets. We drop projectiles onto various soil samples and

measure the diameter of the crater and the height of the crater rims and then

compare those measurements with the kinetic energy of the projectiles upon

impact.

LEVEL OF DIFFICULTY: Low.

EQUIPMENT NEEDED: Sand boxes filled with dry fine sand, wet fine sand,

and coarse sand; platform with graduated scale; baseball-sized objects such as

tennis balls, baseballs, and wood and metal spheres; pole; straight edge; ruler;

meter stick; mass-measuring scale; moderate-sized drinking glass or

container.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_8, # Springer Science+Business Media New York 2013
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A. Introduction

The existence of craters on the surfaces of the Moon, planets, and their Moons has

been known since 1610 when Galileo observed such features on the Moon. Indeed,

that observation is one of those historic events that showed that the celestial objects

were not perfect, not of divine origin, and that brought rationality into the study of

natural phenomena. Figure 1 shows the famous Copernicus crater on the near side

of the Moon, essentially the same as how Galileo saw it with his telescope but with

greater resolution.

Craters are made in two ways, one by interior agents and the other by exterior

agents. The former are created by volcanic eruptions. In these, the magma material

is ejected and forms a shield of elevated material. A caldera, a crater created when

the underlying lava withdraws and the surface subsides, often appears at the center.

The Olympus Mons volcano on Mars, 700 km wide and 25 km (82,000 ft) high,

displays such features. That the entire structure is above the level of the surrounding

plains is one major means of establishing craters to be of volcanic origin, as shown

in Fig. 2.

Fig. 1 Copernicus crater, one of the most prominent features on the near side of the Moon, is

about 93 km wide and 3.8 km deep. It was formed about 800 million years ago by the impact of an

object several kilometers in diameter. Ejecta created the prominent rim as well as the radial

material, the so-called rays. The Apollo 12 astronauts collected samples from one of the rays

coming from Copernicus. Note that all of the craters in the photo, no matter their size, are circular

in shape, indicating origins by hypervelocity impacts. Knowing the latitude of Copernicus on the

Moon and the position of the Sun enables determination of the height of the crater rim by

measurement of the length of its shadow in comparison to the known diameter of the crater and

use of the zenith angle equation

156 8 The Formation of Impact Craters



The majority of craters are created by the impact of exterior agents, meteoroids,

from microscopic to many kilometers in size, and comets. In general, these objects

when considered as creators of impact craters are referred to as impactors. Unless
the angle of impact is very shallow, the craters so-formed are nearly circular. They

often have a central peak, the result of the surface material being forced downwards

into the subsurface and then pushed outwards by the increased pressure they

experience by the compressed subsurface material.

These two types of craters have many features in common, which has historically

led to debate on their origin. Both types of craters have ray systems. In volcanic

craters, long trails of molten lava as well as explosively ejected rocks radiate from

the crater. In impact craters, in comparison, ejected material forms streaks of

material as well as trains of secondary or tertiary craters as fragmented material

skips along the surface. Again, both types of craters are often seen aligned with

others, but for different reasons. As compared to the trains of secondary and tertiary

impact craters, volcanic craters can be found aligned on planets on which active

molten interiors lead to continental drift. Volcanoes appear along the fault lines

created by colliding plates. In addition, as the continents glide over the underlying

mantle over geological time-scales, “hot spots” create a string of volcanoes. A well-

known example is the Hawaiian Islands. A string of craters resulting from vulcanism

can also be created by subsistence. An example of this is the system associated with

crater Davy photographed by the Apollo 14 astronauts. When the lava that upwelled

through linear faults in the surfaces cooled and the subsurface molten lava receded,

the domes collapsed creating caldera-like features. Erosional processes such as

settling under the force of gravity, impacts of subsequent smaller meteoroids, dust

storms, or, on Earth, weathering, causes slumping of the material of the inner and

outer slopes of the crater rims of both impact and volcanic craters.

In this experiment, we will simulate the creation of meteorite craters by dropping

objects of various masses from various heights onto sand boxes containing different

types of soil material. We will then compare the energy of impact of the object with

the shape of the resulting crater. In this way we have in effect calibrated the impact

process and can now examine other craters and determine the energy of the impactors

which created them from the shape of the craters. We will also study whether

excavation of the crater or ejection of its material dominates as the mode of crater

formation and the effect of the density of the surface material on the crater shape.

Fig. 2 Craters created by volcanic processes and impact events can be distinguished by their

profiles. All of the former are elevated above the surrounding undisturbed surface. The bowl of

impact craters will generally lie below the level of the surrounding surface. In some craters

observed on the Moon and planets, the impact released fluid magma from below the surface and

this volcanic material flooded the crater so that the bowl is in fact level with the surface
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B. Theory

1. Impact Energy

Analysis of photographs taken of the surfaces of the Moon, Mars, Mercury, and the

moons of various planets along with laboratory hypervelocity impact studies

inspired by such explorations, particularly those of the Moon, have led to an

understanding of the process of impact crater formation. The theory is based on

the conservation of energy.

The kinetic energy of the impacting projectile is transferred upon impact to the

planetary or moon surface by pushing and lifting forces, heat transfer, and creation

of sound and seismic waves, converting the energy into many forms. The projectile

provides kinetic energy to the material of the crater, excavating it from the crater

interior and expelling it as ejecta, forming the crater rim, the blanket of ejected

material beyond the rim, and the rays of material beyond the ejecta blanket; internal

energy to some of the material, deforming, fragmenting, pulverizing, melting, or

vaporizing it; and kinetic energy of compression and rarefaction of subsurface

material as sound or seismic waves. Of these various manifestations of the conver-

sion of energy, the most easily measured in existing craters are the diameter of the

crater and the height of the crater rim.

An estimate of the impact velocity that occurs on planets and moons in the solar

system can be found by examining Kepler’s laws, or simply taking the known

orbital data which are consistent with Kepler’s laws. For the Earth, for example, we

know that the semi-major axis is a ¼ 1 A.U. ¼ 1.50 � 1011 m, and that the orbital

period is P ¼ 356.3 days. The velocity of the Earth in its orbit is therefore, after

converting days to seconds, 2pa/P ¼ 30 km/s. This will be the velocity of objects in

orbit at the distance of the Earth. As the object falls to the surface, it will gain an

additional kinetic energy. The actual velocity upon impact will depend on the

nature of the orbit of the impactor, which determines the angle at which it intercepts

the Earth in its orbit. Roughly, the impact velocity of objects hitting the surfaces of

objects in the solar system range from 5 to 50 km/s.

These high velocities explain the finding that nearly all impact craters are

circular. In 1893, geologist G.K. Gilbert (1843–1918) was the first to suggest that

the craters on the Moon resulted from large meteor impacts in the famous article in

the Bulletin of the Philosophical Society entitled “The Moon’s Face, A Study of the

Origin of its Features.” A major problem that opponents found with Gilbert’s theory

was the circular shape of lunar craters. Any objects impacting the lunar surface at an

angle other than the exact vertical would have been expected, they claimed, to

create oblong craters.

Realizing that the high velocity of impact leads to the creation of shock waves

resolves this problem. The velocity of the impacting objects in so-called hyperve-

locity impacts is greater than the speed of sound of the surface material. The

material, that is, cannot move aside out of the path of the speeding projectile and

a shock wave is created in which the projectile, be it a meteoroid or comet, explodes
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on impact at a depth which can be shown to be several projectile diameters below

the surface. Instead of boring through the material and creating an oblong crater, the

explosion creates a spherical shock wave resulting in a circular crater at the point of

impact. Gilbert was right. Non-uniform geology of the surface material, not the

angle of impact, causes any lack of circularity.

In our experiment, our projectiles (thankfully) do not attain these velocities. We

can calculate the kinetic energy of the projectile on impact by conservation of

energy. If the projectile has a mass m and is dropped at rest from a height H, then,
with the surface of the soil sample as the reference for the gravitational potential

energy, we have

1

2
mvi

2 ¼ mgH; (1)

where vi is the velocity of impact, the height H is measured from the surface, and

the acceleration of gravity g ¼ 9.8 m/s2. Falling from a height of 3 m, (1) provides

the impact velocity as vi ¼
ffiffiffiffiffiffiffiffiffi
2gH

p ¼ 7.7 m/s. This is a factor of 4000 less than the

velocity of actual solar system objects impacting the Earth and the Moon. In order

to obtain a circular crater, in our experiment setup we therefore drop the projectile

from directly above the sand box.

In our case, the conservation of energy is simplified. We do get conversion of the

kinetic energy of the projectile into internal energy, but not in sufficient amounts to

melt or vaporize the material. Waves are created in the subsurface material, but they

contain much less energy than in hypervelocity impact events. As a result, a

significantly larger amount of the kinetic energy of the impacting projectile results

in excavation of the crater and creation of the crater rims and ejecta blanket than in

the case of impacts on planetary and moon surfaces. The smaller the kinetic energy

of the impacting projectile, the greater the relative amounts of energy converted to

excavation and creation of the crater rim and ejecta blanket compared to conversion

to internal energy.

2. Mathematical Model of Crater Formation

By ignoring all effects except excavation and ejection of material, we can create

some simplified mathematical models of the process. In excavation, an amount of

mass is dislodged from the surface essentially by a pushing force. For simplicity of

the model, we take this pushing action to be free of heat gain or loss, that is,

adiabatic. Because it is reasonable to assume that the depth of the crater will scale

with the diameter of the crater, this amount of mass can be taken to be proportional

to the density of the material and the cube of the diameter of the crater, D. The
pushing force does work on the material in the crater, providing it kinetic energy

until it comes to rest. The energy of impact E leading to the displacement of mass

through the pushing force is thereby proportional to D3.
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In ejection, the material is provided kinetic energy which is converted into

gravitational potential energy as the material is lifted and then is converted back

to kinetic energy as the material falls back down to the surface. It is again

reasonable to assume that the height to which the material is lifted to enable it to

be ejected from the crater is proportional to the diameter of the crater. Matter, for

example, must be ejected great distances to be ejected from large craters. In this

case, then, we can model the amount of energy provided for ejection by mgH. The
mass is proportional to the density of the material and D3 and h is proportional toD,
so that the total amount of energy converted in ejection is proportional to the

density of the material and D4.

Of course, both processes are active. In actual crater formation, large amounts of

energy are converted to internal energy and waves as well.

Based on this simplified model of our laboratory experiment, we can write

D ¼ aE1=3 þ bE1=4: (2)

The coefficients a and b depend on various factors, including the density of the

material.

If we were preparing a research paper, we would determine the values of these

coefficients by a least-squares regression and thereby evaluate the relative impor-

tance of the two processes. By evaluating the coefficients a and b in this way we

could determine which process, if either, dominates in the laboratory in the creation

of the crater. Here we can try to take a short cut. We rewrite (2) as

D ¼ aE1=3 1þ k1=E
1=12

� �
;

where k1 ¼ b/a. Taking the logarithm of both sides, we find

log D ¼ log aþ 1

3
log Eþ log 1þ k1=E

1=12
� �

: (3)

This tells us that the extent to which a plot of log D as a function of log E differs

from a straight linewith a slope of 1/3 indicates the importance of the ejection process

in the energy balance. Now, for reasonable values of value of k1, the third term will

become small for large values of E. Rewriting (2) in this form will therefore not

greatly aid us in discriminating between the two models. Instead we choose the less

sophisticated procedure of simply graphing log D as a function of log E,

log D ¼ log c1 þ n log E; (4)

and seeing if the slope n is closer to 1/3 or 1/4. We will then be able to write the D
(E) relationship as

DðEÞ ¼ c1 E
n: (5)
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Although we cannot determine the relative amounts of kinetic energy of the

projectile that are converted to these modes compared to the internal energy and

wave modes, we might expect that the relative importance would be similar in

crater formation on moons and planetary surfaces. Whatever their relative impor-

tance, the total amount of energy converted to these modes is a lower limit to the

total energy of the impacting projectile, other energies being converted into these

internal energy and wave modes.

Similarly, we can study the relative importance of these two processes in the

creation of the crater rim. Instead of (2), we have the corresponding equation for the

height of the crater rim, h,

h ¼ c E1=3 þ d E1=4:

As with the crater diameter analysis, we will graph log h as a function of log E,

log h ¼ log c2 þ m log E; (6)

and see if the slope m is closer to 1/3 or 1/4. We will then be able to write the

relationship as

hðEÞ ¼ c2 E
m: (7)

It is altogether possible that the two processes differ in importance in creation of

the crater bowl itself and the crater rim. After all, it makes sense that formation of

the crater bowl would be dominated by the pushing force of excavation whereas

formation of the crater rim would be dominated by the lifting force of ejection. You

will examine such considerations in this experiment.

The density of the surface material will also affect the morphology of the

resulting crater. The force created by the shock wave or, in our experiment, the

subsonic impact, depends only on the impacting body. The more dense the affected

volume of surface material the more inertia it will present to being dislodged.

Simply by F ¼ ma, the resulting acceleration of the ejected crater material will be

inversely proportional to its mass.

We therefore examine the crater morphology resulting from the projectiles

dropped into three different soil samples of different densities. These are dry fine

sand, wet fine sand, and coarse sand.

3. Measurable Crater Parameters

Although we can readily determine the energy of impact of the falling object, we

need to be able to identify that energy with some characteristic of the shape of the

resulting crater. Of the many characteristics of the crater morphology, we can
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identify its depth, profile, diameter or radius, height of the crater rim, and maximum

distance of ejected material. As on the planets and moons themselves, the most

easily measured of these in our laboratory are the diameter of the crater and the

maximum height of the crater rim, Fig. 3.

C. Procedure and Observations

Because in our experiment a shock wave is not created with the resultant vaporiza-

tion of the projectile and violent ejection of surface material, we must choose

projectiles with particular properties so that their kinetic energy is the only variable

that determines the crater morphology. Our projectiles must, first, excavate sub-

stantially more material than simply the size of the projectile. Otherwise, our crater

will simply be the size of the projectile. That means that the projectile must be

substantially massive and must be dropped from a sufficiently large height. Follow-

ing E ¼ mgH, these conditions will ensure the projectiles obtain a large enough

kinetic energy to excavate substantial material. To prevent the size of the projectile

itself from influencing the results, it should be themuch smaller than the dimensions,

particularly depth, of the sand box. The density of the projectile material should be

sufficiently great that air resistance does not slow the projectile in its fall, reducing

its kinetic energy. Finally, to provide a wide range in the value of the impact kinetic

energy, the projectiles should vary widely in mass and a wide range of heights from

which they are dropped should be used.

If we vary the height of the drop from about 1/3 m, about 1 ft, to 3 m, we will

have a range of about a factor of 10 in the drop height. If the masses of the

projectiles vary by another factor of 10, we will have a sufficient range of a factor

of one hundred for the projectile kinetic energies. If your laboratory does not have

space for 3-m high platforms, a maximum height of 1 m will still provide an order

of magnitude range in projectile kinetic energies.

Baseball-sized object such as tennis balls, cloth baseballs, league baseballs, or

machined wood, aluminum, steel, or lead balls, all of the same size, will provide

these attributes. Measure the diameter of each of the projectiles and enter the result

in centimeters in Table 1 of the DATA SHEET. The diameters should be very

nearly the same. Weigh each of the projectiles and enter the masses in grams in

Table 1.

Fig. 3 We will relate the diameter of the crater and the height of the crater rim to the kinetic

energy of the projectile upon impact
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To determine the density of the three soil samples, we will compare the mass of a

sample of given volume to that of water. Weigh a moderate-sized drinking glass or

other container, and enter the result, mc, in Table 2 of the DATA SHEET. Fill the

glass with water, measure its mass using the scale, and enter the result, mc þ mw, in

Table 2. Similarly, fill the glass with each soil sample, measure their masses using

the scale, and enter the results, mc þ m1, mc þ m2, and mc þ m3, in Table 2.

We use an assembly such as depicted in Fig. 4 to provide accurate measurements

of the height of the projectile drop. Beginning at a height of about 1/3 m, drop one

of the projectiles onto the sand box containing the dry fine sand. If the excavation is

simply the size of the projectile, the datum is not of value and you should drop the

projectile from a greater height. Enter the type and mass of the projectile in columns

2 and 3 of Table 3a of the DATA SHEET and the height of the drop, H, in column 4

of Table 3a of the DATA SHEET. Note that the height of the drop must be reckoned

to the layer of the soil sample not the base of the platform.

We now measure the diameter of the crater and the height of the crater rim. To

measure the diameter of the crater, simply lay a pole, straight edge, or meter stick

across the top of the crater rim and passing over the center of the crater. Do this

twice, orienting the pole, straight edge, or meter stick along two different position

angles along the circumference of the crater. Enter your results in columns 5 and 6

in Table 3a of the DATA SHEET. Your use of either a pole, straight edge, or meter

stick depends on the actual diameter of the crater created.

Fig. 4 The projectile is dropped from a hole in a platform that fits into slats attached to a

graduated scale. Target sand boxes contain various soil samples. The height of the drop can be

varied by moving the platform to slots at different heights
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To measure the height of the crater rim, we could simply hold a meter stick

perpendicular to the sand box. If the height is small, however, this technique could

suffer from significant random errors. We could, alternatively, simulate the tech-

nique used to measure the heights of craters on the Moon, Mercury, and Mars, in

which the length of the shadow cast by the Sun is measured. Here we would

correspondingly measure the shadow that the crater rim casts when illuminated

by a lamp with a narrow beam. This, too, however, may be subject to significant

random errors. Instead, it is simpler to use a straight edge and the geometry of

similar triangles.

The technique is illustrated in Fig. 5. Carefully place one end of a pole, straight

edge, or meter stick so that it touches the surface of the sand box containing the dry

fine sand at a point several inches beyond the crater rim. This is point c in Fig. 5b.

With the elevated tip of the pole, straight edge, ormeter stick pointing generally in the

diametrically-opposed direction, rotate it slowly downward until it just touches the

top of the crater rim. That point is point b in Fig. 5b.While you hold the pole, straight

edge, or meter stick at that position, your lab partner should now move a ruler or

meter stick, whichever is more appropriate depending on the height of the crater rim,

under the far end of the pole, straight edge, or meter stick until it just makes contact.

That point is point a in Fig. 5b. This completes a right triangle which is similar to the

right triangle formed with the height of the crater rim as one side, as shown in Fig. 5.

The pole, straight edge, or meter stick and the surface of the sand box define an

angle whose sine is proportional to the height of the crater rim. Measure the

Fig. 5 The height of the crater rim, h1, can be determined using similar triangles. As shown in part

(a), the distance s2 from the surface to the top of a ruler or meter stick is the length of the hypotenuse

of the larger of two similar triangles. Part (b) displays the similar triangles. The elevation angle, e, is
the complement of the zenith angle, z. If we identify s2 as being measured along the path of a beam

of light from the Sun which casts a shadow, this procedure simulates the technique by which

heights of mountains and crater rims are determined on the moons and planets of the solar system
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distance, s2, from point a to point c and enter the result in column 2 of Table 3b of

the DATA SHEET. Measure the distance, s1, from point b to point c and enter the

result in column 5 of Table 3b of the DATA SHEET.

By lowering the pole or straight edge in the diametrically-opposed direction, as

noted, you will obtain the largest possible values of s1 and s2, thereby reducing the

percentage error in their measurements.

Lay the pole, straight edge, ormeter stick across the crater rim at a second position

along the circumference of the crater and repeat the measurements of s1 and s2. Enter
those values in columns 3 and 6, respectively, of Table 3b of the DATA SHEET.

Remove the projectile from the sand box and smooth out the surfacewith a straight

edge, raise the platform, and drop the projectile again from a greater height. Repeat

the measurements at four or five heights and enter the results in Tables 3a and 3b.

Repeat this sequence of drops from various heights for the other projectiles,

dropping them over the sand box containing dry fine sand. You need not use the

same heights for each projectile, although you might find that convenient. Enter all

results in Tables 3a and 3b.

Then repeat the sequence of measurements for each projectile dropped from

different heights for the sand box filled with wet fine sand and the sand box

filled with coarse sand. Enter these measurements in Tables 4a, etc., and 5a, etc.,

respectively, of the DATA SHEET.

As mentioned, using the lengths of shadows cast by the Sun is one method that is

used to measure the heights of mountains and crater rims on the Moon, Mars,

Mercury, and moons of other planets. Knowing the hour angle and declination of

the Sun as observed from the object whose height is desired, and its latitude, the

zenith angle equation, Eq. (2) of Experiment #5, “Earth: The Seasons and Local

Latitude,” is calculated. Then the trigonometry of Fig. 5 can provide the height of

the crater or mountain.

D. Calculations and Analysis

The data entered in Table 2 of theDATASHEET enable us to determine the densities

of the three soil sample materials. Subtract the mass of the container, mc, from the

mass of the container holding the water, mc + mw, to obtain the mass of the water

alone,mw. Enter the result in column 6 of Table 2. Similarly, subtract the mass of the

container, mc, from the masses of the containers holding the three soil samples,

mc + m1,mc + m2, andmc + m3, to obtain themasses of the three soil samples alone.

Because we know that the density of water is 1 g/cc, the ratio of the masses of the soil

samples to that of the water will yield the densities of the three soil samples, r1, r2,
and r3 . Perform those calculations and enter the results in columns 10 through 12 of

Table 2 of the DATA SHEET. Show all your calculations on the DATA SHEET.

Calculate the average values of the two measurements each of crater diameter, D,
length s1, and length s2 entered in columns5 and6ofTables 3a, 4a, and 5aof theDATA

SHEET for the three soil samples, respectively. Enter the results for the average crater
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diameter in column 7 of Tables 3a, 4a, and 5a. Enter the results for s2av and s1av in
columns 4 and 7, respectively, of Tables 3b, 4b, and 5b of the DATA SHEET.

From the values of s1av, h2, and s2av calculate the heights of the various crater

rims by h1 ¼ s1av h2//s2av and enter the results in column 8 of Tables 3b, 4b, and 5b

for the three soil samples, respectively. Show all your calculations on the DATA

SHEET.

From the values of m and H of each projectile as entered in Tables 3a, 4a, and 5a

dropped onto the three soil samples, respectively, we can determine the energy of

the projectile on impact. You can either calculate the kinetic energy of impact from

(1) or use Fig. 6, which graphs mgH for various values of mass of the impacting

Fig. 6 The gravitational potential energy,mgH, of an object of mass m dropped from a heightH is

shown as a function ofH, withm as a parameter. The lines represent the case for masses from 0.5 to

5.0 kg. The values for other heights or masses can be interpolated. Alternatively, (1) can be used

directly. For purposes of entering the data in the tables of the DATA SHEET, 1 J ¼ 107 ergs
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object and the height from which it is dropped. Enter the results in column 2 of

Tables 6, 7, and 8 for the three soil samples, respectively. Show all your

calculations on the DATA SHEET.

Henceforth, we will designate h, without the subscript, as the height of the crater
rim. To graph log D and log h as a function of log E, you can either use the log-log

graph paper that is provided on the DATA SHEET or you can use rectangular

coordinate graph paper, in which case you will have to calculate the logarithms of

D, h, and E. If you or your instructor chooses the latter, then calculate the

logarithms of D, h, and E and enter the results in columns 3, 4, and 5 of Tables 6,

7, and 8 for the three soil samples, respectively.

Construct a graph of log D as a function of log E on your rectangular coordinate

graph paper or on the log-log graph paper provided on the DATA SHEET. Use

different symbols for each soil sample and draw a smooth curve through each set of

data. Label the curves accordingly. If a straight line approximates the smooth curve

well, determine its slope and y-intercept and then express the results as in (5). Show

all your calculations on the DATA SHEET.

Similarly, construct a graph of log h as a function of log E on the graph provided

on the DATA SHEET and, if a straight line approximates the smooth curve well,

determine its slope and y-intercept and then express the results as in (7). Show all

your calculations on the DATA SHEET.

With the slopes and y-intercepts determined, construct graphs of their values as a

function of the density of the soil sample material. Using the graph paper provided

on the DATA SHEET, plot the results for the y-intercepts using the left-hand

ordinate scale and the results for the slopes using the right-hand ordinate scale.

Construct two such graphs, one for the y-intercepts and slopes of the log D – log E
equation and one for the y-intercepts and slopes of the log h – log E equation.
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E. Formation of Impact Craters Experiment Data Sheet

Length of ruler or meter stick, h2 ¼ ________ cm

Calculations of density of soil sample material:

Table 1 Projectile data

Projectile type Diameter (cm) Mass, m (g)

Table 2 Soil sample density measurements

mC

(g)

mC þ
mW (g)

mC þ
m1 (g)

mC þ
m2 (g)

mC þ
m3 (g)

mW

(g)

m1

(g)

m2

(g)

m3

(g)

r1 ¼
m1/mW

(g/cc)

r2 ¼
m2/mW

(g/cc)

r3 ¼
m3/mW

(g/cc)

168 8 The Formation of Impact Craters



STUDENT’S NAME ________________________________________________

Table 3a Projectile impact for dry fine sand: crater diameter

Expt.

number

Projectile

type

Mass

m (g)

Height of

drop, H

(cm)

Measurement #1

of crater

diameter, D (cm)

Measurement #2

of crater

diameter, D (cm)

Average,

Dav (cm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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Table 3b Projectile impact for dry fine sand: height of crater rim

Expt.

number

Measurement

#1 of length

s2 (cm)

Measurement

#2 of length

s2 (cm)

Average

length

s2av (cm)

Measurement

#1 of length

s1 (cm)

Measurement

#2 of length

s1 (cm)

Average

length

s1av (cm)

Crater rim

height

h1 ¼
s1avh2/s2av

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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Table 4a Projectile impact for wet fine sand: crater diameter

Expt.

number

Projectile

type

Mass

m (g)

Height of

drop, H

(cm)

Measurement #1

of crater

diameter, D (cm)

Measurement #2

of crater

diameter, D (cm)

Average,

Dav (cm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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Table 4b Projectile impact for wet fine sand: height of crater rim

Expt.

number

Measurement

#1 of length

s2 (cm)

Measurement

#2 of length

s2 (cm)

Average

length

s2av (cm)

Measurement

#1 of length

s1 (cm)

Measurement

#2 of length

s1 (cm)

Average

length

s1av (cm)

Crater rim

height

h1 ¼
s1av h2/s2av

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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Table 5a Projectile impact for coarse sand: crater diameter

Expt.

number

Projectile

type

Mass,

m (g)

Height

of drop,

H (cm)

Measurement #1

of crater

diameter, D (cm)

Measurement #2

of crater

diameter, D (cm)

Average,

Dav (cm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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Table 5b Projectile impact for coarse sand: height of crater rim

Expt.

number

Measurement

#1 of length

s2 (cm)

Measurement

#2 of length

s2 (cm)

Average

length

s2av (cm)

Measurement

#1 of length

s1 (cm)

Measurement

#2 of length

s1 (cm)

Average

length

s1av (cm)

Crater rim

height

h1 ¼ s1av
h2/s2av

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

174 8 The Formation of Impact Craters



STUDENT’S NAME ________________________________________________

Calculations of height of crater rim for dry fine sand:

Calculations of height of crater rim for wet fine sand:

Calculations of height of crater rim for coarse sand:
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You need only fill in columns 3, 4, and 5 of Tables 6 through 8 if you choose to plot

the data on rectangular coordinate graph paper. If you use the log-log graph paper

provided below, then only fill in column 1 of these tables.

Calculations of impact energy for dry fine sand:

Table 6 Logarithmic data for dry fine sand

Experiment

number

Impact energy,

E ¼ mgH (ergs) log Da log ha log Ea

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

aYou need fill in these columns only if you’re using rectangular graph paper
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Calculations of impact energy for wet fine sand:

Table 7 Logarithmic data for wet fine sand

Experiment

number

Impact energy,

E ¼ mgH (ergs) log Da log ha log Ea

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

aYou need fill in these columns only if you’re using rectangular graph paper
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Calculations of impact energy for coarse sand:

Table 8 Logarithmic data for coarse sand

Experiment

number

Impact energy,

E ¼ mgH (ergs) log Da log ha log Ea

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

aYou need fill in these columns only if you’re using rectangular graph paper
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Whether you use rectangular graph paper or the log-log sheet below, label the axes

and plot the crater diameter as a function of impact energy. If you use your own

rectangular graph paper, graph the data of Tables 6 through 8 for the three soil

samples, respectively. If you use the log-log graph paper below, graph the values of

Tables 3a through 5a for the three soil samples, respectively. Use different symbols

for each type of soil. Draw a smooth curve through each set of data and label the

corresponding curves accordingly. If the curves are close to a straight line, deter-

mine the slopes and y-intercepts, and write the result in the form of (5). Show all

your calculations here.

Log of crater diameter, D, as a function of impact kinetic energy of projectile, E

Dry fine sand, calculation of slope:

Slope ¼ _________________

y-intercept ¼ _____________

Equation: ________________
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Wet fine sand, calculation of slope:

Slope ¼ _________________

y-intercept ¼ _____________

Equation: ________________

Coarse sand, calculation of slope:

Slope ¼ _________________

y-intercept ¼ _____________

Equation: _______________
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Whether you use rectangular graph paper or the log-log sheet below, label the axes and

plot the height of the crater rim as a function of impact energy. If you use your own

rectangular graph paper, graph the data of Tables 6 through 8 for the three soil samples,

respectively. If you use the log-log graph paper below, graph the values of Tables 3b

through 5b for the three soil samples, respectively. Use different symbols for each type

of soil. Draw a smooth curve through each set of data and label the corresponding

curves accordingly. If the curves are close to a straight line, determine the slopes and y-
intercepts, and write the result in the form of (7). Show all your calculations here.

Log of height of crater rim, h, as a function of impact kinetic energy of projectile, E

Dry fine sand, calculation of slope:

Slope ¼ _________________

y-intercept ¼ _____________

Equation: ________________
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Wet fine sand, calculation of slope:

Slope ¼ _________________

y-intercept ¼ _____________

Equation: ________________

Coarse sand, calculation of slope:

Slope ¼ _________________

y-intercept ¼ _____________

Equation: _______________
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Graph of y-intercept and slope of the equations of log D as a function of log E for

the three soil samples as a function of the density of the soil samples. Use different

symbols to represent the two variables.

Describe and explain any systematic variation that you find.
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Graph of y-intercept and slope of the equations of log h as a function of log E for the

three soil samples as a function of the density of the soil samples. Use the left

ordinate scale for the y-intercept and the right ordinate scale for the slope. Use

different symbols to represent the two variables.

Describe and explain any systematic variation that you find.
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F. Formation of Impact Craters Experiment

Discussion Questions

1. Copernicus crater on the Moon is about 93 km wide.

a. Using the results you found for the dependence of crater diameter as a

function of impactor energy for the dry fine sand, determine the energy of

the impactor that formed this lunar feature. Show your calculations here.

b. Assuming that the impactor had a velocity of 10, 20, and 30 km/s, calculate

the diameter of the impactor. Assume that the impactor was spherical and

that it had a density of typical stony meteorites, about 3.0 g/cm3 . Show your

calculations here.

10 km/s:

20 km/s:

30 km/s:

2. The rim of Copernicus crater is about 1 km in height. It varies around the rim

because of slumping of the rim from gravitational forces and erosion by other

meteoroids over geologic time, one of the processes referred to as crater
degradation.

a. Using the results you found for the dependence of crater rim height as a

function of impactor energy for the dry fine sand, determine the energy of

the impactor that formed this lunar feature. Show all your calculations here.
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b. Assuming that the impactor had a velocity of 10, 20, and 30 km/s, calculate

the diameter of the impactor for each case. Assume that the impactor was

spherical and that it had a density of typical stony meteorites, about 3.0 g/

cm3 . Show your calculations here.

10 km/s:

20 km/s:

30 km/s:

3. The energy estimated for the impactor that created Copernicus crater has been

estimated as about 1 � 1023 J. (This is one million times greater than the

energy of the explosion of Mt. St. Helens in 1980.) Our results above should

be substantially smaller.

a. Calculate the ratio of the energy found in question #1a and 1 � 1023 J.

b. Explain the difference between these energies.

4. Compare the results you obtained for the energy of the impactor in questions

(1) and (2). If they differ, offer suggestions as to why in terms of the procedure

used in the experiment and possible errors of measurement as well as the

mathematical model.

5. The 1.2 km-diameter Barringer Meteor Crater near Winslow, Arizona, was

formed about 25,000 years ago by the impact of a large meteoroid. The mass of

the meteoroid has been estimated at 300,000 t, or about 2.7 � 108 kg.
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a) Assuming all of the impact kinetic energy was converted to excavating the

crater, what diameter is predicted by your results for the fine sand? Assume

the meteoroid velocity upon impact was 11 km/s. Show your calculations

here.

b) If this disagrees substantially with the known diameter, explain the

discrepancy.

F. Formation of Impact Craters Experiment Discussion Questions 187



STUDENT’S NAME ________________________________________________

6. We obtained curves for three types of soil materials.

a) Compare the results obtained for the slope and y-intercept for each soil

material.

b) If significant differences appear, explain them in terms of the densities of

the three soil materials.

7. Secondary impact craters are often seen to be elliptical in shape. Why are they

not circular as are their parent craters?

8. From kinematics, we know that the time needed for an object to fall a distance

H from rest can be found from H ¼ 1
2
g t2. In the below, show all your

calculations.

a) For a mass of 1 kg dropped from a height of 3 m, determine from Fig. 6 the

amount of energy stored in gravitational potential energy and then calculate

the amount of power generated by that mass when it falls the 3 m. Recall

1 Watt ¼ 1 Joule/second.

b) How many seconds would that power keep a 100-Watt light bulb burning?

c) Derive the general formula to calculate the amount of power generated

when an object of mass m falls a distance H. It should be independent of t.
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d) The “surface” gravity on the planet Jupiter is 2.53 times greater than that on

Earth. Using the general formula you derived in part (c), by what factor

would the power generated increase for the same mass dropped from the

same height on Jupiter?

9. You are asked to design an experiment to study hypervelocity impacts in the

laboratory. In addition to the equipment used in the current experiment, what

type of equipment would be needed?
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10. With all the potable water on the Earth having been polluted with pesticides

and urban runoff, you’re the geology/hydrology officer on a spacecraft whose

mission is to discover water on alien worlds. You’ve discovered a heavily-

cratered planet and have determined the distributions of the diameters of

meteorite impact craters in three regions, shown below.

a. Which region is the most likely to possess the most amounts of water?

__________

b. Why?

c. What are the major assumptions you have made that allow you to compare

these three regions?
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Region 1

Region 2

Region 3
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Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Experiment 9

Determination of the Rotation Rate of Planets

and Asteroids by Radar:

Part I. Observations of Mercury

SUMMARY: InExperiment #9, “Determination of theRotationRate of Planets

and Asteroids by Radar: Part I. Observations of Mercury,” and Experiment

#10, “Determination of the Rotation Rate of Planets and Asteroids by

Radar: Part II. Observations of Simulated Planets,” we examine how radar

systems provide information on the rotation rate and surface topography of

planets and asteroids. In Experiment #9, “Determination of the Rotation

Rate of Planets and Asteroids by Radar: Part I. Observations of Mercury,”

we analyze radar echoes obtained from the planet Mercury. In Experiment

#10, “Determination of the Rotation Rate of Planets and Asteroids by

Radar: Part II. Observations of Simulated Planets,” we calibrate a radar

transmitter and microwave receiver and then determine the rotation rate of

simulated planets and asteroids by bounding radar signals off of them.

LEVEL OF DIFFICULTY: Low

EQUIPMENT NEEDED: Straight-edge.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_9, # Springer Science+Business Media New York 2013
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A. Introduction

Ever since man looked at the Moon with a discerning eye, it became clear that the

Moon keeps the same side pointed to the Earth. The man in the Moon, so to speak,

always looks right at us. The time it takes for the Moon to revolve about the Earth,

the orbital period, is approximately the same as the time it takes for the Moon to

rotate on its axis, the rotation period, both about 28 days. This synchronous rotation
results from a tidal interaction between the Earth and the Moon.

Accordingly, the planet Mercury, because of its proximity to the Sun, was

thought to also experience a tidal interaction that would lead to synchronous

rotation. Its rotation period was thought to be the same as its orbital period, about

88 days, and it would keep the same face pointed to the Sun. Because of this

proximity, features on Mercury can only be observed well when it is at its greatest

distance from the Sun in the sky, the so-called configurations of eastern elongation
and western elongation. Those difficult visual observations seemed to confirm the

synchronous rotation.

In 1965, however, astronomers Gordon Pettengill and Richard Dyce, using the

powerful radar system associated with the newly completed 1000-ft radio telescope

at Arecibo, Puerto Rico, bounced radar waves off of Mercury. They made the

momentous discovery that the rotation period was actually about 59 days, two-

thirds of the orbital period. That discovery was subsequently explained

theoretically.

Venus and asteroids are similarly susceptible to radar measurements of their

rotation periods. Radar has also been used to study Mars, the Galilean satellites of

Jupiter, the rings of Saturn, and Titan, the largest moon of Saturn. In this experi-

ment, we will analyze actual observations of radar echoes from Mercury. In

Experiment #10, “Determination of the Rotation Rate of Planets and Asteroids by

Radar: Part II. Observations of Simulated Planets,” we will use a radar system to

study radar echoes from rotating spheres covered with various types of material.

B. Theory

1. Red Shifts and Blue Shifts

The technique is based on the Doppler shift principle. In Fig. 1, our extraterrestrial

with superior sensory adaptations, XyTk@2, is observing a wave approaching him

from a stationary source. In 1 s, XyTk@2 sees ten waves go by. The frequency of

the wave emitted by the source is accordingly 10 cycles per second, f ¼ 10 Hz,

where we use the unit of Hertz, abbreviated Hz, for cycles per second. The time

interval between emission of waves is the same as the time for the one cycle of the

wave to move by, the period, P. Then it must be that f ¼ 1/P.
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The wave is moving, let us say, at a velocity of 20 m/s to the right, c ¼ 20 m/s.

Because ten wave crests pass by in 1 s traveling at 20 m/s, the distance from wave

crest to wave crest must be 2 m. That is one measure of what we mean by the

wavelength. If the wave were traveling at 30 m/s, then the wavelength would have

to have been 3 m. This can be generalized in the well-known relationship between

frequency and wavelength of any kind of wave, the universal wave equation,

l ¼ c

f
: (1)

Let’s suppose that the source of the waves begins to move toward XyTk@2 at

10 m/s. Now XyTk@2 would see an additional ten waves each second; that is,

f ¼ 20 Hz. Because the speed of the wave being emitted remains the same, the

wavelength as observed by XyTk@2 becomes, from (1), 1 m; that is, l ¼ 1 m. The

wavelength from the source moving toward XyTk@2 has been shortened. Simi-

larly, if the source of the radiation began to move away from XyTk@2, fewer

waves would be seen in a second, the frequency would decrease, and the wave-

length would increase.

This is the Doppler effect. To derive the formula which expresses the mathemat-

ics behind the Doppler effect, we want to relate the wavelength and frequency of the

wave observed when the source is at rest to those observed when it is moving. By

the universal wave equation, (1), we have

l1 ¼ c

f1
(2)

Fig. 1 The universal wave equation relates the frequency and wavelength of any wave. A change

or “shift” in the magnitude of the frequency and wavelength occurs if the source of the waves

and the observer are in relative motion
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and

l2 ¼ c

f2
; (3)

where the subscript 2 refers to the situation in which the source is moving toward

the observer and the subscript 1 refers to that in which the source is stationary.

According to special theory of relativity, the speed of light, c, is constant no matter

the relative motion of the source and the observer.

Now, look at the crest of a wave after it was emitted by the source moving toward

XyTk@2. In an amount of timeDt, the crest of thewave hasmoved a distance dw ¼ c
Dt, where the subscriptw refers to the crest of thewave. The source itself hasmoved a

distance equal to ds ¼ v Dt. If at that instance the source emits a second wave, then

the distance between its crest and the crest of the previously emitted wave is

l2 ¼ dw � ds

¼ cDt� vDt:

As we reasoned, the distance between wave crests, that is, the wavelength, has

decreased.

We used an arbitrary time interval to examine the two waves, Dt. Let’s identify
that time interval as the period, the amount of time between emission of successive

waves. Because the frequency f of the wave is the number of waves emitted per

second, we realize that 1/f is in fact equal to the period P. In words, the distance

between the two wave crests has been decreased by the distance the source moved

in one period. We find then that the decreased wavelength is given by

l2 ¼ c� v

f1

This equation, with either (2) or (3), gives us a system of two equations in two

unknowns. Using (2), we can substitute for f1,

l2 ¼ c� v

c=l1
;

or

l2 ¼ l1

�
1� v

c

�
: (4)

(If we had used (3) instead, we would have obtained the corresponding relation-

ship between f1 and f2, which could then be converted back into (4).)

The negative sign tells us that for objects moving toward the observer, the

wavelength decreases. This is referred to as a blue shift.
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If we had performed the derivation with the object moving away from XyKt@2,

we would have found that the sign is reversed and he would experience an increased

wavelength given by

l2 ¼ l1

�
1þ v

c

�
: (5)

Here, the wavelength increases, a so-called red shift.
Because the velocity v is a vector, it can take either positive or negative values

depending on the direction of the motion of the source. As a result, the latter

equation suffices for both approaching and receding cases.

By convention, the wavelength of the radiation from an object at rest is referred

to as lo, so that the wavelength observed from a moving object is usually written as

l ¼ lo

�
1þ v

c

�
:

In astronomy, the Doppler formula is usually given in terms of the change in the

wavelength relative to the rest wavelength. Denoting the rest wavelength as lo,
Dl ¼ l� lo. From the above equation we therefore define a parameter z as

z � Dl
lo

¼ v

c
: (6)

This is the familiar formula for the Doppler shift in terms of the velocity of

motion of the emitting object relative to the speed of light.

To summarize, if the object is moving away from us, the wavelength increases so

that Dl > 0, the velocity is positive, and the object is said to have a red shift. If the
object is moving toward us, the wavelength decreases so that Dl < 0, the velocity is

negative, and the object is said to have a blue shift. Because most astronomical

objects for which Doppler shifts are measured have red shifts, the parameter z is
actually referred to as the redshift.

For cases in which v << c, this is a good approximation. For values of v close to
c, the more general expression derived from Einstein’s theory of special relativity

must be used. That is the formula from which the large values of redshift quoted for

distant objects such as quasars are derived.

2. Doppler Shifts for Rotating Objects

In Fig. 2, we look down upon a rotating planet or asteroid. One side of the object is

rotating toward the observer and one side is rotating away from the observer. Any

radiation emitted from the side rotating toward the observer will be blue-shifted,

and any radiation emitted from the side rotating away from the observer will be
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red-shifted. The further from the center of the visible disk, the greater the magni-

tude of the wavelength shift.

As a result, when a radar signal of wavelength lois reflected off of a rotating

object, the echo is spread out over a band of wavelengths centered at lo. At the blue
end of the band, the shift is given by (4). At the red end of the band, the shift is given

by (5). The total wavelength bandwidth of the radar echo would therefore seem to be,

BWl ¼ 2v

c
lo:

Now, this is not quite the correct answer for the radar echo wavelength

bandwidth. Because this is an echo, the wavelength shifts are twice that produced

by a source which is simply emitting. The wavelength is altered when the

transmitted radar pulse impinges on the surface element as well as when it is

reflected back to Earth. You can understand this by remembering that the Doppler

shift occurs when objects are in relative motion. The element of surface receives

a radar signal from the Earth as it moves at a given velocity, v. The wavelength

it sees is accordingly Doppler shifted from the wavelength emitted by the radar.

It reflects back that Doppler shifted wavelength, but the radar receiver on the

Earth sees the surface element in motion with the same velocity v and receives a

wave that is further Doppler shifted. The result is a Doppler shift that is twice as

large as if the planet was not rotating.

Rotating
Toward

Observer

Rotating
Away From
Observer

Fig. 2 The top view of a rotating planet or asteroid shows that the Doppler shifts of the radar echo

are positive on one side and negative on the other side of the sub-observer point
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Accordingly, we have to multiply by a factor of two to obtain the observed

bandwidth of the echo. The total wavelength bandwidth of the radar echo is therefore

BWl ¼ 4v

c
lo; (7)

where the velocity v is that at the equator.
Observations of radar echoes are made using a multi-channel detector, or

spectrum analyzer. These detect the frequency bandwidth rather than the wave-

length bandwidth. From (1), by differentiating l as a function of f,

BWl

BWf
¼ Dl

Df

����
���� ¼ c

f 2o
:

With (7), the total frequency bandwidth of the radar echo is therefore

BWf ¼ 4v

lo
: (8)

This yields the velocity of the edge of the equator in terms of the frequency

bandwidth of the echo,

v ¼ lo
4
BWf : (9)

This relationship will be utilized in Experiment #10, “Determination of the

Rotation Rate of Planets and Asteroids by Radar: Part II. Observations of Simulated

Planets”.

We can relate this easily to the rotation period of the planet or asteroid. From the

equations of circular motion, we know that the velocity of an object in circular

motion is equal to the circumference of the circle divided by the time required to

traverse the circumference,

v ¼ 2pR
P

: (10)

Here the “circle” is the equator of the planet or asteroid and R is its radius.

Combining (9) and (10), we can determine the period of rotation from observations

of the bandwidth,

P ¼ 8pR
lo

1

BWf
: (11)
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The larger the frequency bandwidth of the echo return, the smaller the period,

that is, the more quickly the object is rotating.

Equation 10 can also be rearranged to yield the rotation period P,

P ¼ 2pR
v

: (12)

The bandwidth of the radar echo is measured and yields, by (9), the velocity of

the edge of the disk. Knowing the radius of the planet or asteroid, that value of

bandwidth yields the rotation period, P, by (11).

Not all locations on the sphere move with the velocity v found in (10). The

geometry of Fig. 3 shows that the closer the point on the planetary surface is to the

sub-Earth point, the lower the velocity in the line-of-sight. This is the component of

velocity which determines the amount of Doppler shift. In general, the velocity in

the line of sight is given by

vy ¼ v
x

R
; (13)

where v is the rotational velocity of the planet as given in (10), and x/R is the

fractional part of the radius of the planet from the sub-Earth point toward the edge

of the visible planetary disk, as shown in Fig. 3.

Although we’ve performed this derivation for a position at the equator, the

relationship of (13) holds at any planetary latitude. The effective radius of the

“circle” at a latitude l is R(l) ¼ R cos l; it decreases in size from R at the equator to

zero at the pole. The velocity of rotation of an element of the planetary surface,

however, also decreases with latitude, as v cos l. This follows from (10),

Fig. 3 The velocity

of a given portion of a

planetary surface along the

direction of the line-of-sight,

designated as vy , varies
with its angular position, y.
This is a top view of a

planet rotating with its axis

of rotation perpendicular

to the line-of-sight
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vðlÞ ¼ 2pRðlÞ
P

¼ 2pR cos l

P
¼ v cos l:

As a result, generalizing (13) for any latitude l,

vyðlÞ ¼ vðlÞ x

RðlÞ

¼ v cos l
x

R cos l
:

The two factors of cos l cancel out, so that vy depends only on x, the distance

from the center of the apparent disk of the planet to the location of interest, and not

the latitude.

If strips of the planetary disk are characterized in this way by representative

values of vy, we can draw a figure such as Fig. 4. By studying the radar echo with

different Doppler shifts we can resolve at least strips of the planetary surface,

without the need for telescopes possessing high angular resolution. The smaller

the bandwidth of the impinging radar and the faster the planet rotates, the greater

the resolution in strips over the surface.

3. Range-Doppler Radar Mapping

The surface of a planet or asteroid can also be resolved in distance. A natural

reference point is the intersection of a line drawn between the radar site and the

Limb of Sphere

Rotating
Toward

Observer

Lines of Equal
Doppler Shift

Axis of Rotation of Sphere

Rotating
Away From
Observer

Sub-Radar Point

Fig. 4 Because of the rotation of the planet, strips of surface of given velocities in the line-of-sight

produce the same range of Doppler shifts
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center of the planet with the surface of the object being studied. This intersection is

referred to as the sub-radar point. For distant objects such as the Moon, planets, and

asteroids, it is located simply at the center of the visible disk of the object as seen

from the Earth.

As we see in Fig. 5, portions of the surface at increasingly greater distance from

the sub-radar point become illuminated at increasingly later times. Region 1 is

illuminated before region 2, and so on, region 6 being the last to be illuminated.

Their radar echoes similarly are received at Earth from the surface at differing

times. Consequently, if the radar receiver samples the radar echo in small time

intervals, the radar echo from the various annular regions concentric with the

sub-radar point can be detected and analyzed separately. This is referred to as

gated reception. For a given sampling time interval, the smaller the duration of the

radar pulse and the larger the planet the greater the resolution in distance over the

surface.

With the ability to resolve strips of surface from the Doppler-shifted frequency

and annular regions from the gated echo, the surface of the planet or asteroid can be

resolved into areas. This is referred to as delay-Dopplermapping or range-Doppler
mapping, Fig. 6. It allows significant resolution of a planetary surface without

the need for telescopes possessing high angular resolution.

Most of the echo arises from reflection from areas on the planet that are

perpendicular to the impinging radar beam. For a smooth or nearly smooth surface,

these areas are located at and near the sub-radar point. If the surface is not perfectly

smooth, material on the surface with sizes comparable to the wavelength of the

radar will also create an echo because some of their facets will be perpendicular to

the incident radar. In this way, for example, a radar with a wavelength of 1 cm will

be partially reflected by pebbles distant from the sub-radar point. A radar with a

wavelength of 70 cm (about 2.3 ft), such as the Arecibo radar, will be partially

reflected by small boulders distant from the sub-radar point.

The range-Doppler technique has two shortcomings. An ambiguity exists

between the northern and southern hemispheres, it being impossible without further

Fig. 5 The radar signal impinges on annular regions at greater distances from the sub-radar point

at increasingly larger times. The corresponding echoes also take an increasingly longer time to

return to Earth for reception
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information to distinguish the radar echo coming from regions symmetrically

placed north and south of the equator. Second, the resolution differs over the disk

of the planet or asteroid. Near the poles, the areas whose echoes are received are

relatively small, and centralized. Near the equator, where the lines of equal Doppler

shift become tangent to the circles of equal echo delay, the areas whose echoes are

received are relatively large, and elongated. Additional information is needed to

somewhat reduce these problems. Astronomers must compensate for the different

surface areas from which the echo is received when they analyze their data.

4. Radar Systems

In Experiment #10, “Determination of the Rotation Rate of Planets and Asteroids

by Radar: Part II. Observations of Simulated Planets,” we will observe the radar

echo from rotating spheres covered with various materials, a simulation of the

surfaces of planets and asteroids. The use of radar in planetary studies and in our

experiment is more complex than in its commercial use to simply detect relative

speeds. In general, the radar beam at a microwave frequency, f1 is emitted by a radio

antenna and impinges on, or “illuminates,” a target, in our case spheres simulating

the planets. The target reflects the radar beam that impinged on it back at a

microwave Doppler-shifted frequency, f2 to an antenna which collects the radar

echo and the signal is processed by a radio receiver. In that receiver, the transmitted

signal and the echo are combined or “mixed” in such a way as to produce two new

signals, one signal at a frequency equal to the sum of f1 and f2 and the other signal at

Limb of Planet

Rotating
Toward

Observer

Circles of Equal
Radar Echo Delay Axis of Rotation of Planet

1

2
3

4
5
6
7

Sub-Radar Point

Roatating
Away From
Observer

Lines of Equal
Doppler Shift

Fig. 6 Range-Doppler mapping allows resolution of the surface of a rotating planet or asteroid
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a frequency equal to the difference of f1 and f2. The former is discarded electroni-

cally and the latter, which is at the low audio frequencies from 0 Hz to about

20 kHz, is processed to yield the relative speed. In commercial radar, that audio

signal is displayed as a digital readout.

A complication exists in planetary studies and in our simulation experiment. The

echo consists not of a signal with a single Doppler-shifted frequency, but a signal

spread out over a finite bandwidth of frequencies composed of different Doppler-

shifted signals reflected from different regions of the rotating surfaces. The receiver

must therefore mix all the frequencies in the bandwidth down to audio frequencies

and the strength of each such part of the echo must be measured separately. This

measurement is performed by a spectrum analyzer.
The spectrum analysis can be done either electronically or by computer soft-

ware. We will use the latter. The audio bandwidth is sent to the input of a computer

sound card and the software produces a display of the echo strength as a function of

frequency, the spectrum of the echo. This then allows us to discriminate visually

between echoes of different Doppler shifts originating from different regions of the

surface of the spheres.

C. Procedure and Observations: Radar

Observations of Mercury

Here we will analyze radar observations of the planet Mercury. Our own radar

observations will be performed in Experiment #10, “Determination of the Rotation

Rate of Planets and Asteroids by Radar: Part II. Observations of Simulated Planets”.

Figure 7 shows actual radar echoes from Mercury, obtained using the Arecibo

radar telescope and published in 1967 by Rolf Dyce, Gordon Pettengill, and Irwin

Shapiro. The radar had a wavelength of 70 cm, the pulses were 100 ms (1 microsec-

ond ¼ 10�6 s), and the average transmitted pulse had a peak strength of 2 MW,

equivalent to about 20,000 light bulbs. Each successive graph in the sequence

shows the echoes with an increasing radar delay, the signals coming from annular

regions increasingly distant from the sub-Earth point. You can see the decreasing

strength of the echoes for the reflections near the limb. There, much of the 70 cm

radar beam is reflected out into space, not back toward the Earth. That any echo

occurs results from the roughness of the surface.

From (10), we can calculate the speed of rotation at the equator of Mercury. With

a radius R ¼ 2,440 km and a rotation period P ¼ 59 days, we find v ¼ 3 m/s.

In practice, observational complexities occur. The echo is not smooth. This

results from only partially from the physical effect of interest, the varying roughness

of the surface over the disk. This is also caused by differing sizes of areas fromwhich

the echo is received and the difficulty in observing faint echoes from distant objects

in the presence of noise in the radio receiver. In analyzing their data, astronomers

calculate the compensations needed for those two effects as well as the contribution

to the Doppler shifts from the motions of Earth and Mercury in their orbits.
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As can be seen from the notation inside Fig. 7, the graphs display the echo from

nearly distinct annular regions. Although the pulses were 100 ms long, the echoes in
the graphs are separated by 90 ms. Accordingly, we can sum up the contributions to

the echo represented in each graph to determine approximately the total amount of

energy in the echo. The result will be used in Experiment #10, “Determination of

the Rotation Rate of Planets and Asteroids by Radar: Part II. Observations of

Simulated Planets”.

Figure 7 is reproduced enlarged on the DATA SHEET. On it, draw thin vertical

lines from bottom to top at the locations of the abscissa tick marks. Also draw thin

vertical lines from bottom to top at the midway points between the tick marks. Draw

an additional vertical line at the location of the sub-Earth point.

RELATIVE
DELAY

ASSUMED
CENTER

SCALE
FACTOR

3- 60 mS

120 mS

210 mS

300 mS

390 mS

0 10 2.0 3.0

RELATIVE FREQUENCY (c/s)

4.0 5.0 6.0 7.0 8.0

0 8

3

1

1

1

Fig. 7 The 1967 radar observations of Mercury at a wavelength of 70 cm
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We also need to draw horizontal lines on the five graphs. Each graph has a

baseline. On each graph, draw thin horizontal lines vertically spaced by 1/4 cm,

about 0.1 of an inch, above the baseline. Label those horizontal from 0 to 10. They

will represent arbitrary levels of echo intensity.

As a result you will have a series of grid lines superimposed on each graph. Your

results should look like Fig. 8, the radar echo of Fig. 7 at a delay of 390 ms.

D. Calculations and Analysis

At each abscissa point on the enlarged radar observations graph on the DATA

SHEET, estimate the ordinate values of the radar echo for each delay. You should

be able to do this to the nearest 0.1 of a unit. For example, in Fig. 8, at the abscissa

location of 0.5 c/s (or Hz), the height of the curve is about 0.8 units. Enter any

values less than zero, such observations resulting from the noise in the Arecibo

radar system, as zero. Enter your results in Table 1 of the DATA SHEET.

In performing this exercise, be careful to align the data correctly in c/s in Table 1 of

theDATASHEET.Youwill note that the bottom two graphs corresponding to relative

delays of 300 ms and 390 ms have greater range in abscissa values than the others.
The top three graphs in Fig. 7 have larger scale factors than the rest. The data

were presented in this way by the researchers for ease of presentation. For our

analysis, however, we must adjust the data in those top three graphs before adding

the columns together to get the total radar echo. Multiply the values that you entered

into Table 1 from the graphs corresponding to relative delays of �60 ms, 0 ms, and
120 ms by the factors 3, 8, and 3, respectively, and enter the results in the respective
rows of Table 2 of the DATA SHEET. For the other graphs, simply copy the entries

of Table 1 into Table 2.

After you have corrected those three lines of data, add the numbers in each

column to get the total radar echo at that frequency displacement. Enter those sums

in the bottom row of Table 2 of the DATA SHEET.

Construct a graph of the resulting totals, plotting intensity in our arbitrary units

as ordinate against frequency displacement as abscissa. Draw a smooth curve

between the data points. This is the total radar echo from Mercury represented by

the observations of Fig. 7, summed over all the echo delay intervals.

Fig. 8 To analyze the data

of Fig. 7, draw grid lines such

as shown here
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E. Rotation Rate by Radar Experiment I Data Sheets

Radar observations of Mercury
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Table 1 Mercury radar echo

Graph 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Sub-

Earth 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

�60 ms 0 0 0 0

0 ms 0 0 0 0

120 ms 0 0 0 0

210 ms 0 0 0 0

300 ms

390 ms

Table 2 Adjusted mercury radar echo data

Graph 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Sub-

Earth 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

�60 ms
� 3

0 0 0 0

0 ms
� 8

0 0 0 0

120 ms
� 3

0 0 0 0

210 ms 0 0 0 0

300 ms

390 ms

SUM
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Graph of total Mercury radar echo
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F. Rotation Rate by Radar Experiment

I Discussion Questions

1. In deriving the equation for the Doppler shift, we wrote (4). As the speed of

the source approaches the speed of the wave, the wavelength gets smaller

and smaller and the waves “bunch up.” Assume we are dealing with sound

waves. Describe the common experience you hear when a source of sound

actually moves as fast or faster than the speed of sound, about 1000 ft/s at

ground level.

2. Mercury spins on its axis once every 58.6 days. Its diameter is 4879 km. From

(10), calculate the velocity of a point at its equator. Show your calculations here.

3. Perform the same calculation for the Earth as you did for Mercury in question

#2. The diameter of the Earth at the equator is 12,756 km.

4. Figure 7 provides observations of the radar echo of Mercury at a frequency of

430MHz, equivalent to a wavelength of 70 cm. From the frequency bandwidth of

the radar echo shown in Fig. 7, calculate the inferred velocity of a point on the

equator of Mercury. Show your calculations here. Note: It may differ from the

result of question #2.

5. Calculate the percentage difference between the results for the velocity on the

equator of Mercury that you calculated from question #2 and question #4. Show

your calculations here. How can you explain any difference? Is that difference in

the direction you would expect?
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6. You have prepared a graph showing the total radar echo from all annular regions

of Mercury as a function of frequency displacement from the frequency of the

radar signal of 430 MHz. From that graph, sketch what the graph of the total

radar echo would look like for a planet similar in topography and diameter to

Mercury but rotating twice as fast as Mercury.

Is the total amount of energy in the echo changed? Why or why not?

7. We have assumed in the experiment that the planet rotates about an axis

perpendicular to our line-of-sight. Assume such a planet was tilted toward the

Earth by a substantial angle. How would the radar echo change? Explain your

answer by a diagram.
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8. Similarly, assume the planet of question #6 was tilted toward the Earth by a 90�

angle so that its axis of rotation points directly at the Earth. How would the

radar echo change now? Explain your answer by a diagram.

9. The graphs of the radar echoes from Mercury have wiggles in them. Suggest

some causes for the wiggles.

10. Here are the gated radar echoes from a hypothetical observation. Seven

features are identified. The range-Doppler map of the planet provides the

corresponding locations whose radar echo created the features. (Because of

north–south hemisphere ambiguity, we are assuming that all features are

present on the northern hemisphere.) Provide the location on the range-Doppler

map corresponding to the lettered features in Table 3.
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11. Diffuse and specular reflection, phenomena of optics that we studied in Exper-

iment #6, “The Surface Roughness of the Moon: Reflection and Scattering

from a Planetary Surface: Part I. Surface Materials,” and #7, Experiment “The

Surface Roughness of the Moon: Reflection and Scattering from a Planetary

Surface: Part II. Beads and Surface Coverage,” occur for all types of waves.

Recall that a condition for specular reflection is the surface being smooth

compared to the wavelength of the incident radiation.

a. Describe the total radar echo from Mercury in terms of specular or diffuse

reflection.

b. The Moon at visible wavelengths is close to a Lambert surface. The surface

of Mercury is similar to that of the Moon, would you expect the surface of

Mercury to be close to a Lambert surface at 70-cm wavelength? Explain

your answer.

Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach that graph to these DATA

SHEETS.

Table 3 Correspondences for question #10

Feature Location

1

2

3

4

5

6

7
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Experiment 10

Determination of the Rotation Rate

of Planets and Asteroids by Radar:

Part II. Observations of Simulated Planets

SUMMARY: Just like ET, we use a spinning turntable to great advantage in

Experiment #10, “Determination of the Rotation Rate of Planets and Asteroids

by Radar: Part II. Observations of Simulated Planets”. We place spheres

covered by different types of material to simulate rotating planets and

asteroids, and then bounce radar signals off of them. As we learned in

Experiment #9, “Determination of the Rotation Rate of Planets and Asteroids

by Radar: Part I. Observations of Mercury,” the characteristics of the radar

echo enables us to determine the rotation rate of the simulated planets,

roughness of their surfaces, and the presence of topographic features.

LEVEL OF DIFFICULTY: Moderate to High

EQUIPMENT NEEDED: Radar system; 1-foot and 2-foot radar support

stands; spectrum analyzer or spectrum analyzer software; personal computer;

electric household fan; two sets of spheres of packaging Styrofoam or other

light-weight non-metallic material; vinyl record turntable adjustable to 33 1/3

and 78 rpm; 1/4-inch diameter wooden dowel; 4-foot diameter circular disk

of aluminum foil-covered cardboard or wood; large pieces of cardboard;

staples, nails, paper clips, aluminum foil; wire, string, or Velcro; planimeter

(optional); safety goggles.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_10, # Springer Science+Business Media New York 2013
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A. Introduction

In Experiment #9, “Determination of the Rotation Rate of Planets and Asteroids by

Radar: Part I. Observations of Mercury,” we introduced the theory of radar range-

Doppler mapping and analyzed a radar echo from the planet Mercury. Here, we will

use an actual radar system to bounce microwave radar off simulated rotating planets

and asteroids. The rotation is achieved by placing the simulated planets onto the

turntable of a record player. Use of a spectrum analyzer, spectrum analyzer

software, or a suitable oscilloscope then enables us to determine the rotation

speed of our simulated planets and the effect on the echo of different surface

materials.

B. Theory

1. Our Rotating Planets

Our planets will be spheres covered with various thin metallic materials of different

sizes. These thinmaterials are not transparent to radar. It may be surprising, but even a

single sheet of aluminum foil strongly reflects the microwave signals. It is found and

can be shown theoretically that the echo reflected off metals, because they are good

conductors of electrical currents, originate from a shallow, thin layer. The depth of the

effective layer fromwhich the echo radiates is accordingly called the skin depth and it
varies only slightly among different metals. At the microwave frequencies of this

experiment, the skin depth can be shown to be about 1mm(1 � 10�6m), Fig. 1. This is

much smaller than the thickness of a piece of aluminum foil.

We simulate rotating planets by placing these spheres onto an elongated spindle

of the turntable of a record player. The turntable can be spun at 33 1/3 rpm

(revolutions per minute) and 78 rpm, corresponding to 0.56 rps (revolutions per

second) and 1.30 rps, respectively.

By definition, the rotation rate, s, in revolutions per second is related to the

period of rotation of the turntable, P, and therefore that of the spheres, by

s ¼ 1

P
; (1)

where the period, P, is given in seconds. (We use s for “spin” rate to enable us to

avoid using f , for revolution frequency, which could cause confusion with the use

of f for the frequency of electro-magnetic radiation).

The velocity of the equator of a sphere of radius R can be found by noting that

in a length of time equal to the period, the equator traverses a distance of 2pR.
Accordingly, by combining (1) with Eq. (10) of Experiment 9, “Determination of
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the Rotation Rate of Planets and Asteroids by Radar: Part I. Observations of

Mercury,” the velocity of the edge is given by

v ¼ 2pRs: (2)

When using radar to explore the planets and asteroids, gated delay allows

resolution of the surface in annular regions and the Doppler effect allows resolution

of the surface in strips of frequency displacement. With Mercury, for example, we

found the echo was delayed up to 450 ms (microseconds) in time from the sub-radar

point to the limb, a result of the 2440 km radius of the planet. Because of those

delays, we had to sum up the contributions to the echo from the various delays to

obtain the total amount of energy reflected.

Here, however, we are dealing with spheres of diameters measured in feet. The

corresponding delay, given by t ¼ R/c, where R is the radius of the sphere, is only

about 3 � 10�9 s., that is, 0.003 ms. As a result, we obtain no resolution in delay. In
the laboratory, therefore, instead of the resolution of the surface displayed in Fig. 6

of Experiment #9, “Determination of the Rotation Rate of Planets and Asteroids by

Radar: Part I. Observations of Mercury,” we have only that of its Fig. 4. Because our

Fig. 1 Electrical skin depth as a function of frequency. The skin depth is inversely proportional to

the square root of both the frequency of the radiation and the conductivity of the metal. Better

conductors have more shallow skin depths. The straight line (on the log-log graph) closely

represents the behavior of most metals, little difference between their skin depth variation with

frequency existing. Intuitively, the variation makes sense – the smaller the wavelength the more

shallow the skin depth. 1 mm ¼ 1 � 10�6 m
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simulated planet is small and the speed of light large, we obtain an echo from the

entire hemisphere containing all the reflected energy.

2. Radar System Conversion of Microwave
to Audio Frequencies

The transmitted signals and therefore reflected signals in radar systems are at

microwave wavelengths, 2.6 GHz (11.5 cm) in the system we will be using. To

facilitate the actual analysis of radar echoes in radar systems, however, the micro-

wave echoes are first converted to audio frequencies, those frequencies less than

about 20 kHz, by a process called mixing. In this process, the reflected signals are

combined electronically with the transmitted signals to produce signals at a fre-

quency equal to the difference between those of the reflected and transmitted

signals. The resulting frequencies, referred to as intermediate frequencies or IF,

are at audio frequencies.

The audio frequencies produced can be easily calculated. The total radar Dopp-

ler shift coming from a moving object, following the argument leading to Eq. (8) of

Experiment #9, “Determination of the Rotation Rate of Planets and Asteroids by

Radar: Part I. Observations of Mercury,” is Df ¼ 2 v/c fo, where v is the velocity of
the moving object, c is the speed of light, and fo is the frequency of the transmitted

signal. The IF frequency is defined as fIF ¼ fo � freflected, where freflected is the

frequency of the reflected signal. We know, however, that freflected ¼ fo � Df,
where the plus and minus signs refer to a receding (red-shifted) or approaching

(blue-shifted) object, respectively. Simply, then, we find

f IF ¼ f o � ðf o � Df Þ;

or,

f IF ¼ � 2v=c f o (3)

C. Procedure and Observations

1. Simulated Planet Surface Material

The simulated planets consist of a sphere onto which various metallic materials are

embedded. We will use spheres of two different sizes. Depending on the material

available, they can be constructed out of various low-density materials such as the

packaging material commonly, but incorrectly, referred to as Styrofoam (which is
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in fact a building material), exercise or beach balls of pliable plastic filled with

expanding foam, foam rubber, or plastic Earth globes covered with a layer of foam

rubber. Exercise balls, in particular, range in size from 1 to 3 ft in diameter.

Packaging Styrofoam is a poor reflector of radar and is suggested as the preferred

alternative. If you cannot obtain spheres made of packaging Styrofoam, you can

construct then by gluing pieces of packaging Styrofoam together and then forming

the composite into a spherical shape using a heat gun. Using a blade to sculpt the

material will tend to rip it apart.

Alternatively, you can create the larger spheres in particular by stuffing spherical

objects. For this, slice open beach balls, exercise balls, or similar balls of pliable

plastic, stuff them with pieces of packaging Styrofoam and then tape the balls

closed.

We will utilize six different spheres, three “small-size” and three “large-size”

spheres. Depending on the material you have available and the size of your

laboratory, you can use 1-ft, 2-ft, 3-ft, or 4-ft diameter spheres. Because we will

be comparing echoes from the various spheres, it is best to use the same technique

and materials to construct all of the three spheres of a given size.

Onto them are placed various metallic objects. We use metallic objects to ensure

a strong radar echo. Although rocks, sand, soils, and baseballs all reflect radar, they

are not metallic and echoes from them are not as strong as those from metallic

objects. (Although they are not metals, the atoms and molecules of non-metallic

materials oscillate when an electromagnetic wave is incident upon them and those

oscillations create the reflected electromagnetic wave we detect as an echo).

Three types of metallic objects are embedded into spheres of each size. Ordinary

staples will simulate the roughness of sand. Nails and paper clips simulate the

roughness of pebbles. Crumpled-up pieces of aluminum foil, stapled onto the

spheres, simulate rocks. Sand, pebbles, and rocks are created by various geological

processes, for example, water and wind erosion of rocks, erosion of mountains, and

volcanic eruptions. Of course, all three types of objects are present on the surfaces

of planets and asteroids. With our microwave radar, the presence of these “peebles”

and “rocks” will create a rough surface so that we can obtain a radar echo from the

surface even at an appreciable distant from the sub-radar point.

With amicrometer or ruler, measure the widths of the metal portion of the staples,

paper clips, and nails. Obtain several measurements of the scale of the roughness of

the crumpled-up pieces of aluminum foil. Enter the results on DATA SHEET.

2. Record Player Turntable: The Planetary Rotation

We simulate rotating planets by putting these spheres onto a rotating platform, the

turntable of a vinyl record player, Fig. 2. The spheres are placed onto the elongated

spindle of the turntable of the record player. A 1/8-in. hole is created through the

sphere from top to bottom into which the elongated spindle of the turntable of a

record player can be inserted. To create the elongated spindle, a hole can be drilled
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through the center of a 1/4-in. diameter wooden dowel which is then placed over the

existing turntable spindle.

Depending on the rotation speed of the turntable, the surfaces of the spheres attain

various velocities. From (2), when the turntable is run at 78 rpm, equivalent to

1.30 rps, the surfaces of 1-ft, 2-ft, 3-ft, and 4-ft diameter spheres attain velocities of

1.3, 2.5, 3.7, and 5.0 m/s (or 16.3 ft/s), respectively. When the turntable is run at

33 1/3 rpm, the corresponding velocities are 0.5, 1.1, 1.6, and 2.1 m/s (or 7.0 ft/s),

respectively. If your laboratory has equipment with a platform that can rotate twice as

rapidly, it can be used instead of the 33 1/3 rpm rate. The 5.0 m/s speed corresponds to

18 km/h (or 11miles/h). (I think thatmy colleague, ET the Extraterrestrial, who used a

similar turntable to communicate to his friends in their spaceship, would approve

and maybe use this experiment in his astronomy classes once he retires from his

movie career.)

NOTE: At these velocities, the metallic objects embedded in the spheres can

pose a danger. Make sure that the staples, nails, and paper clips are inserted securely

into the spheres. Whenever the turntables are turned on, wear safety goggles.

Fig. 2 The experimental setup. Spheres with imbedded metallic material are mounted on an

elongated spindle of a record turntable. To ensure that spillover is not a problem, an absorbing

piece of cardboard is placed behind the turntable
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Such velocities for the edge of the sphere are adequate for our experiment

by serving two purposes. First, with the S-band radar of 11.5-cm wavelength that

we will be using, they produce a radar echo, found from (8) of Experiment #9,

“Determination of the Rotation Rate of Planets and Asteroids by Radar: Part I.

Observations of Mercury,” with up to a 175 Hz bandwidth for a 4-ft diameter sphere

spinning at 78 rpm, well resolved with the 1–5 Hz resolution that can be obtained

with a spectrum analyzer or spectrum analyzer software. A 1-ft diameter sphere

spinning at 33 1/3 rpm produces an 18 Hz bandwidth, still easily resolved.

Second, we will then be able to distinguish radar echoes from the rotating

spheres from any signals bouncing off of individuals walking about in the labora-

tory. Although a typical walking gait speed for adults is about 1.3 m/s, those

moving about the laboratory would be walking appreciably more slowly.

Individuals in the laboratory pose little problem for other reasons. Clothing and

flesh are poor microwave reflectors whereas the metallic materials which have been

placed on the rotating spheres are excellent microwave reflectors. Also, the other

students in the laboratory will be much further from your receiver than the rotating

sphere. Because the intensity of the echo radiation decreases proportionally to the

inverse square of the distance, their echoes will be that much fainter. We will also

be placing the radar system sufficiently close to the rotating spheres to minimize

reception from other sources.

As illustrated in Fig. 3 of Experiment #9, “Determination of the Rotation Rate of

Planets and Asteroids by Radar: Part I. Observations of Mercury,” echoes reflected

from portions of the rotating spheres that are not at the edge of the visible disk as

viewed from the radar receiver have a smaller velocity in the line-of-sight than

echoes reflected from the limb. For the reasons mentioned, however, echoes from

walking students should not interfere even with these portions of the radar echo.

Two practical difficulties arise with the use of a turntable. The turntable spindle

itself does not rotate. The elongated spindle is created simply to prevent the spheres

from wobbling as they rotate on the turntable. Various techniques of securing the

spheres to the turntable, however, can be employed. A piece of wire or string can

be tightly wound around the base of the turntable and then wrapped over the top of

the sphere. Alternatively, after removing or compressing a small portion of the

sphere, causing a slight flattening, Velcro can be glued onto the flattened portion

and on corresponding places on the turntable adjacent to, and surrounding, the

spindle. Of course, these techniques can be used in combination. To prevent any

small bias which may affect the experimental results, whichever techniques are

chosen should be employed on all the spheres of a given size.

The second practical difficulty concerns free rotation of the spheres. The rotation

of the spheres may be encumbered by the armature assembly of the turntable. To

prevent this, either the armature can be removed or the spheres can be elevated

above the armature by placing them on top of a packaging Strofoam platform of

relatively small dimensions. This sits directly on the turntable and is secured to it by

one or more of the above techniques. The spheres would then be secured to the

platform rather than the turntable.
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3. The Radar System

Radar systems of high power used by professional astronomers are expensive, but

inexpensive low-power systems are adequate to receive echoes from a distance of

several meters to hundreds of meters. The radar system we will use, the Lab-RAD

(“Radar Analysis and Display”) radar system, was designed specifically for use by

students of Laboratory Experiments in Physics for Modern Astronomy by engineers

at International Design Engineering Associates (I. D. E. A.) in Lexington,

Massachusetts (www.labRAD.co, ideaseth@verizon.net, 1-781-862-1238).

Radar systems are designated historically by names corresponding to their

frequency ranges and corresponding wavelength ranges as shown in Table 1. Sports

radar guns used to determine the speed of thrown baseballs, for example, operate in

Ka-band and government agencies interested in generating revenue by measuring

automobile speeds operate in X-band. The Lab-RAD operates in S-band, at 2.6

GHz, or 11.5-cm wavelength, approximately 4.5 in. The internal antenna is 1.1 in.

long, a quarter-wave antenna common in electronics.

The results obtained with the system are sensitive to the precise location of the

quarter-wave antenna within its housing. You should not expect to get the same

exact results using different systems even if you observe the same rotating sphere.

The Lab-RAD requires a standard 12-V DC, 200 milliamperes (mA), power

supply and emits a beam sufficiently powerful to detect echoes from objects the

size of moderately-large automobiles at a distance of about 200 m. This range is

more than sufficient to receive echoes in the laboratory from our rotating spheres

even if they’re covered with material that reflects microwaves poorly. If your

laboratory does not have DC power supplies available, the Lab-RAD can utilize

various types of battery packs. These include eight or, preferably, nine alkaline “D”

cell batteries, two 6-V or one 12-V lantern battery, or a 12-V NiCad pack such

as used in video cameras or cellular telephones. Retailers such as Radio Shack sell

inexpensive battery holders appropriate to any of the battery types selected by

your instructor. Note that after the radar is turned on, it emits a continuous stream

of signals until it is turned off.

Table 1 Standard names

of the radar frequency bands
Band name Frequency (GHz) Wavelength (cm)

L band 1–2 30.0–15.0

S band 2–4 15.0–7.5

C band 4–8 7.5–3.8

X band 8–12 3.8–2.5

Ku band 12–18 2.5–1.7

K band 18–27 1.7–1.1

Ka band 27–40 1.1–0.75

V band 40–75 0.75–0.40

W band 75–110 0.40–0.27
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As seen from (3), mixing in the Lab-RAD between the transmitted microwaves

signal and the microwave signal reflected from our spheres produces an IF audio

signal up to about 87 Hz, a total bandwidth of about 175 Hz, for a 4-ft diameter

sphere spinning at 78 rpm. Although this mixing, as noted, is the normal operating

mode for all radar systems, the manufacturer has configured the output of the Lab-

RAD for our use to include a modified phone jack and a standard 3.5 mm stereo

phone plug cable. One plug goes into the phone jack and the other plug goes into

either the input of spectrum analyzer hardware, an appropriate oscilloscope, or the

sound card jack of your computer, as described in the next section. The IF signal is

then available for display and analysis, as shown in Fig. 3.

For reasons describe in the next section, the Lab-RAD translates the radar echo

in frequency so that it is centered at 1 kHz. As a result, your echo will be centered,

not about the physically-meaningful 0 Hz, that is, DC, but about 1 kHz.

The bandwidth of the echo is unaltered.

4. Spectrum Analyzer Software

Spectral analysis enables us to measure the intensity of the radar echoes from our

simulated planets simultaneously over a range of frequencies. This can be performed

either by spectrum analyzer hardware or by simulating the hardware by spectrum

analyzer software. Unless already available in your laboratory, the former

instruments, costing from thousands to tens of thousands of dollars, are not feasible

for our use. Some models of the familiar oscilloscope, however, do have spectrum

Fig. 3 Simplified schematic of the Lab-RAD radar system. The 2.6 GHz signal is sent both to the

antenna for transmission as the radar beam and to the mixer. The mixed signal, at audio

frequencies, is sent to the computer by a cable and a spectrum analyzer, spectrum analyzer

software, or a suitable oscilloscope displays the spectrum of the echo. The power supplies attached

to the amplifiers and local oscillator are not shown
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analysis capability that can process signals from 0 Hz to higher frequencies. Among

these, the Tektronix TDS 210 series oscilloscopes are relatively inexpensive and

process signals fromDC to about 10MHz,much greater than our needs. Their output

can be stored on a Secure Digital (SD) memory card or sent directly to a computer

through standard serial (RS-232) connectors to display graphs of the intensity of the

echo as a function of frequency and for analysis, printing, and storage.

Spectrum analyzer software also enables us to measure the intensity of the radar

echo from our simulated planets simultaneously over a range of frequencies. Once the

audio signal is input into your computer sound card from the Lab-RAD, the spectrum

analyzer software will display graphs of the intensity of the echo as a function of

frequency. The data are stored on your computer by the software for analysis. The

programs allow different total bandwidths to be displayed, and we can choose 20 Hz,

which is greater than the 18 Hz bandwidth wewill obtain from a 1-ft diameter sphere

spinning at 33 1/3 rpm, up to 200 Hz, which is greater than the 175 Hz bandwidth we

will obtain from a 4-ft diameter sphere spinning at 78 rpm. The modified Sigview

FFT (“Fast Fourier Transform”) Spectrum Analyzer software that we recommend

for possible use was designed specifically for use by students of Laboratory

Experiments in Physics for Modern Astronomy by engineers at SignalLab (Europe)

(http://www.sigview.com; Mr. Goran Obradovic, info@sigview.com).

Unlike spectrum analyzer hardware and appropriate oscilloscopes, which have a

flat frequency response upwards from 0 Hz, if you use spectrum analyzer software

the response of your computer to the radar echo is limited by the frequency response

of the computer sound card. Because these are designed to respond approximately

to the range of human hearing, from 20 to 20,000 Hz, the response of computer

sound cards below frequencies of 40–50 Hz is less than at higher frequencies (see,

for example, http://jimmyauw.com/2006/08/09/sound-card-comparison/). This means

that significant portions of the radar echo, particularly from near the subradar point,

would normally not be detected.

To compensate for this, the Lab-RAD translates the radar echo in frequency so that

it is centered at 1 kHz.As a result, your echowill be centered, not about the physically-

meaningful 0 Hz but about 1 kHz. The bandwidth of the echo will be the same.

The range of frequencies detectable by spectrum analyzer software and the

minimum frequency detectable, and therefore the frequency resolution, depend on

the sampling rate of the sound card in your computer and the duration of the echo

sampled. As we show in Appendix IV, the entire range of echo frequencies in our

experiment is detectable. For the rotation speeds of the turntable, the frequency

resolution and therefore minimum frequency detectable is approximately 1 Hz.

Different spectral analyzer software programs provide the measure of intensity

in different ways. Some provide the actual power in the echo, in Watts per Hertz. In

that case, the total power in the echo can be obtained by simple addition of the

contributions in each frequency interval. Others provide the decibel measure of the

power. The decibel level is a dimensionless measure related to the power by

PdB ¼ 10 log
P

Po
; (4)
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where P is the power in Watts per Hertz and Po is its reference level. If the spectral

analysis software you are using provides the echo strength in decibels, you must

convert it to actual power before adding the contributions from different frequency

intervals by calculating Po times the antilog of PdB/10 , that is,

P ¼ 10
PdB
10 Po: (5)

In addition to its various mathematical advantages, animal perception, for

example, of sound and light, is closer to logarithmic than linear. Decibel notation

is widely used in engineering.

5. Calibration of the Radar System and Background Noise

The first time you use the radar, you should perform a simple experiment to ensure

that it can detect a band of frequencies present in the echo. Place a simple electric

household fan a few feet in front of the radar. You might want to wrap aluminum

foil around the blades of the fan, removing the protective cover if necessary, to

obtain a stronger echo, but an echo will be obtained even from a fan with plastic

blades. Rotate the fan so that it makes about a 45� angle with the line-of-sight to the
radar. Then turn on the fan and the radar. The spectrum analyzer computer screen

display should show a finite width of frequencies in the echo. The width of the

display should change both as you change the rotational speed of the fan and as you

change its orientation with respect to the radar.

Effective use of the radar requires determination of three factors. We must

calibrate the scale by determining a value of Doppler shift for a known velocity,

determinate the magnitude of background interference and system noise, and

determine the appropriate amplification, or gain, of the amplitude of the echo

signal. Concerning the first factor, unlike the calibration when receiving echoes

from objects moving with a single speed, such as automobiles, we have an easily

calibrated situation. The sub-radar point will provide the largest echo, and has a

zero relative velocity with respect to the radar. The other parts of the echo received

from the rotating sphere are essentially symmetric in frequency, the only

asymmetries arising from differences in roughness from the placement of the

metallic objects on the surface.

Potentially strong microwave signals in the laboratory are produced by fluores-

cent lights and power mains and electrical lines operating at 60 Hz. Because we

want to determine the total energy in the radar echo, we must measure these

spurious sources of noise as well as the noise in the system itself. To do so, we

simply measure the output with the radar not firing.

Make sure that none of the other experimenters in the laboratory are firing their

radar transmitters. You might say, “Measuring noise levels, please do not use your

radar.” Once you are assured of no interference, point the radar at a 5-ft square

piece of cardboard, standing upright, in front of which your spheres will be placed.

Make sure no fluorescent lights are in the line-of-sight. Then start the spectrum

C. Procedure and Observations 225



analyzer, spectrum analyzer software, or suitable oscilloscope and print out a copy

of the computer screen image of the echo. That will be a record of the level of noise

produced not only by the background in the laboratory but also by the system itself.

Concerning the third factor, in general the appropriate setting of gain depends on

the desire to amplify signals above the noise while operating in the stable range of

the electronics. In single frequency radar systems such as radar guns, the gain

setting governs the amplification of a signal at a single audio frequency after it has

been digitized for LED readout. It does not govern the amplification of the radio

frequency echo itself. Instead of digitization, the Lab-RAD system sends the band

of frequencies in the radio frequency echo directly to the spectrum analyzer or to

the computer for display by the spectrum analyzer software. Accordingly, no need

exists for a gain setting in the Lab-RAD. Your spectrum analyzer software may

allow you to change the vertical scale of the display.

The magnitude of the echo received depends on several factors, the size of the

reflecting object, its distance, and how it disperses in frequency the transmitted

beam on reflection. The latter depends on the surface characteristics of the object

and whether or not it rotates. Unlike the use of radar to detect, for example,

automobile speeds, the Lab-RAD radar system detects portions of relatively small

objects, segments of the surfaces of the rotating spheres, each moving at different

speeds. The relatively small size of the reflecting regions will reduce the magnitude

of the echo in each frequency interval compared to the magnitude of an echo

reflected from a non-rotating object. In addition, our spheres are not completely

covered with metallic material. These factors will reduce the magnitude of the echo

compared to the outdoor scenario. On the other hand, our rotating spheres are

relatively close to the radar system and we will place them so that they intercept

and therefore reflect most of the transmitted radar beam. These two factors will

increase the magnitude of the echo. As a result of these various considerations,

easily detectable signals are created in our laboratory.

6. Positioning the Radar System

We must ensure that the radar system is located at such a distance that the radar

beam fully illuminates the hemisphere of the sphere facing the radar. If it does not,

then we will not be receiving echoes with the largest redshifts and blueshifts and

will not be able to accurately determine the rotational velocity of our spheres. As

well, we don’t want the transmitted radar signal to spill over the edges of the

spheres. This not only wastes some of the energy, decreasing the amount of energy

to be reflected and then detected by our receiver, but it also leads to interference

problems for your own laboratory setup and for those of other students in the

laboratory.

Figure 4 shows the relevant geometry. The radar beam has a finite angular size,

y. As the radar system is moved away from the target, a larger and larger portion of
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its surface is illuminated. At the same time, assuming the entire transmitted beam is

intercepted by the target, the intensity of the echo decreases as 1/d2.
In fact, Fig. 4 oversimplifies the nature of the radar beam in both transmission

and reception. As we will see in Experiment #15, “Thermal Radiation from a

Planetary Subsurface: Part II. Soil Sample Measurements,” the beam is actually a

single slit diffraction pattern with a main lobe and side-lobes. As a result, our

determination of the distance of the radar from the sphere for full illumination is not

as perfectly well defined as Fig. 4 would imply.

In this simplified model of the beam, full illumination of the target will occur at a

distance, d, given by tan y/2 ¼ R/d, where R is the radius of the target, Fig. 4.

We can imagine two ways of determining the position necessary for full illumi-

nation. First, we could move the radar increasingly far from a flat disk whose radius

is that of the sphere that will be used to simulate the planets until the radar spills

over the side of the target. As we move the radar away from the target disk to a

distance d, the echo signal from the target disk will decrease as 1/d2 . Once we get
sufficiently far from the target disk that the radar beam spills over the edge of the

disk, then the amount of transmitted radiation to be reflected will decrease addi-

tionally by the ratio pR2/pr2, where R is the radius of the target disk and r is the

Fig. 4 In this top view, the radar is moved successively further away from the reflecting rotating

target until the target is fully illuminated. At this distance, d, the bandwidth of the echo will be its

largest, and will not increase with further distance
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radius of the transmitted beam when it has reached the target disk. Only that

fraction of the beam will now be reflected. The beam size r when it has reached

the target disk, however, is related by tan y ¼ r/d to the distance, d, of the

transmitter to the target. Accordingly, once the distance is sufficiently great, the

strength of the echo will decrease by another factor of 1/d2 so that the total

diminution will go as 1/d4.
Unfortunately, this change of dependence on d, while strong, is not strong

enough to be a reliable basis for determining the distance d at which the full sphere

would be illuminated. One of several problems is that the echo from the outer parts

of the target disk would be observed in the side-lobes of the radar antenna, masking

the effect.

The second technique, and the one we will use, observes the increasing width of

the echo received as the radar is moved from the actual target sphere. As you move

the radar away to increasingly greater distances from the target sphere the band-

width of the radar echo will increase until the entire surface is illuminated. If you

move the radar to greater distances the intensity of the echo will decrease at

all Doppler shifts as 1/d2 but the bandwidth of the echo will not increase. That

will tell you that you have illuminated the entire hemisphere of the sphere visible

from the radar.

We will use one of the small-size spheres. Using, for example, the 1-ft diameter

sphere allows us to determine the full-illumination distance with measurements

twice as close to the sphere than if we had used a 2-ft diameter sphere, as shown in

Fig. 5. This would provide a four-fold increase in echo intensity, providing more

accurate results. From similar triangles, we see that the full-illumination distance

for a 2-ft diameter sphere will simply be twice the value determined using a 1-ft

diameter sphere, as shown in Fig. 5. Other ratios in distance apply, of course, if you

are using small-size and large-size spheres whose diameters are not in that ratio. We

will spin the small-size sphere at the smallest rotation rate available. This will result

Fig. 5 By similar triangles, the distance, d, for the radar to fully illuminate a 4-ft diameter sphere

will be twice that to fully illuminate a 2-ft diameter sphere, if those are the sizes of spheres you will

be using
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in a spread of the echo energy over a relatively small bandwidth, producing the

highest intensity of the echo over the echo bandwidth that we can achieve.

The dependence of the bandwidth of the echo on distance is approximately linear.

As shown in Fig. 6, the component of the rotational velocity toward the radar is

vr ¼ Ro cos a, where R is the radius of the sphere and a is the angle measured as

shown. We can express tan y/2 in terms of this geometry as R cos a/(d-R sin a).
NeglectingR sin a compared to d, this simplifies to tan y/2 ¼ R/d cos a.We therefore

find that vr � od tan y/2, so that vr is proportional to d. In other words, as the radar is
moved further from the target the width of the Doppler-shifted echo will increase

linearly with d until full illumination is achieved. This is easily observed.

Place the small-size sphere covered with crumpled-up aluminum foil on the

elongated spindle of the turntable. This highly reflecting material will provide the

largest echo. Place a 5-ft square piece of cardboard upright behind the sphere. Place

the radar system about 1 foot from the target on the 1-ft radar stand and point it

directly at the center of the sphere. Measure the distance and enter it in Table 2 of

the DATA SHEET in centimeters.

To avoid stray signals from the other radar systems in the laboratory, including

the radar transmissions themselves, their echoes, and reflections of these

transmissions and echoes, it is best that none of the other experimenters in the

laboratory are firing their radar transmitters while you make your observations. You

might say, “Observing, please do not use your radar.” Once you are assured of no

interference, and if no other students have informed you that they are currently

observing, turn on the radar. Put on your safety goggles, turn on the rotating

turntable, spinning it at 33 1/3 rpm, the lowest rotation rate available, and start the

spectrum analyzer software.

If you are displaying the echo on a computer, print out a copy of the computer

screen image. Youwill notice on the computer screen a finitewidth of the echo signal.

Enter in Table 2 of the DATA SHEET the frequency, f1, at which the signal is

detectable at the low frequency end and the frequency, f2, at which the signal is

detectable at the high frequency end of the bandwidth. Also enter the value of

frequency, fo, for which the intensity is greatest.
Move the radar system successively at slightly greater distances further from

the target and repeat the observations. Obtain a printout of each computer screen.

As you move the radar antenna further and further away from the target, the values

of f1 should decrease and the values of f2 should increase. The values of fo should

Fig. 6 The bandwidth of the

echo as seen from the radar is

approximately proportional to

the distance of the radar from

the target
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remain the same. Continue moving the radar system further from the target until no

significant change in the values of f1 or f2 occurs. Then turn off the radar system and

the turntable. Enter that distance on the DATA SHEET in centimeters. The com-

puter printout of this particular computer screen, for the crumpled-up aluminum

stapled onto the small-size sphere, will be used for the analysis of the following

section. Identify that printout by writing “aluminum foil, small-size sphere,

33 1/3 rpm” on it along with your name and that of your lab partner.

With the radar transmitter at this position you will totally illuminate the small-

size spheres simulating the planets and asteroids with little or no spillover. Multiply

that distance by the appropriate ratio to determine the distance from the large-size

sphere at which full illumination will occur and enter that result on the DATA

SHEET. Even with this precaution, place the 5-ft square piece of cardboard upright

behind the turntable platform to ensure that spillover is not a problem.

From the geometry of Fig. 6, full illumination of the sphere will occur for

tan y/2 ¼ R/d. The width of the illuminating beam will depend on your construc-

tion of the housing portion of the RG7 radar. With a beam, for illustration, of about

60�, the distance, d, from a 1-ft diameter sphere for full illumination will be about

0.9 ft or 0.3 m. The corresponding distance from a 2-ft diameter sphere will be

about 1.7 ft or 0.5 m.

7. Observations of Simulated Planets

Keep the radar system located at the distance you have just determined and keep the

small-size sphere with the crumpled-up aluminum foil on the extended spindle of

the turntable. Set the turntable to 78 rpm and turn it on. Every time you turn on the

turntable, put on your safety goggles.

As in the previous section, we want to avoid stray signals from the other radar

systems in the laboratory. Accordingly, it is best that none of the other experimenters

in the laboratory are firing their radar transmitters while youmake your observations.

Youmight say, “Observing, please do not use your radar.” Once you are assured of no

interference, and if no other students have informed you that they are currently

observing, turn on the radar. If you are displaying the echo on a computer, print out

a copy of the computer screen image. Then turn off the turntable and radar. Identify

that printout by writing “aluminum foil, small-size sphere, 78 rpm” on it along with

your name and that of your lab partner.

Remove the sphere with the crumpled-up aluminum foil and place the small-size

sphere with the imbedded staples on the extended spindle of the turntable. Reset the

turntable speed to 33 1/3 rpm, turn it on, and turn on the radar. If you are displaying

the echo on a computer, print out a copy of the computer screen image. As before,

identify the printout by writing the material, sphere size, and speed of the turntable

on it along with your name and that of you lab partner. Repeat the procedure with

the turntable speed at 78 rpm. Turn off the turntable and the radar.
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Remove the sphere with the imbedded staples and place the small-size sphere

with the imbedded nails and paper clips on the extended spindle of the turntable.

Repeat the sequence of observations. If you are displaying the echo on a computer,

print out a copy of the computer screen image for both rotation speeds. Turn off the

turntable and the radar.

Now move the radar system to the appropriate distance from the turntable, twice

if, for example, you are using 1-ft diameter and 2-ft diameter spheres. We will now

obtain the radar echo from the three large-size spheres. Place the radar system on

the 2-ft radar stand. With the radar system pointed directly at the center of the

spheres, repeat the pairs of observations for the crumpled-up aluminum foil,

imbedded staples, and imbedded nails and paper clips at both rotation speeds. In

each case, if you are displaying the echo on a computer, print out a copy of the

computer screen image. When you have completed the observations, you will have

12 printouts of the computer screen, radar echoes for six spheres rotated at 78 and

33 1/3 rpm.

D. Calculations and Analysis

1. The Soil Samples

You obtained several measures of the roughness of the aluminum foil. Average

those values and enter the result on the DATA SHEET.

2. System Calibration

Using the printout of the computer screen of background and system noise, estimate

the intensities in 5 Hz intervals. If this is not convenient with the spectral analyzer

software you are using, choose a more appropriate interval. Enter the range of

frequencies in the channel and the noise results in Table 3 of the DATA SHEET.

Add up the intensities and enter the value, IN , in the bottom row of Table 3 of the

DATA SHEET. If the spectral analyzer software you are using provides results in

decibels, convert those values to measures of power using (5). An additional

column is provided in Table 3 to display the results of those conversions.

3. Echo Intensities

Using the printout of the computer screen of the sets of echoes obtained with the

small-size and large-size spheres, we will estimate the intensity in 1 Hz intervals

above the level of background and system noise as entered in Table 3. If this
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frequency interval is not convenient with the printout obtained with the spectrum

analyzer software you are using, choose a more appropriate interval.

Enter the range of frequencies in each frequency channel in column 2 of Table 4a

of the DATA SHEET. Using the printout of the computer screen of the six sets of

echoes received from the small-size spheres, estimate the values of the raw

intensities of the echoes in Table 4a of the DATA SHEET.

If the spectral analysis software you are using provides results in decibels,

convert those values to measures of intensity using (5). If this was needed, enter

the results of those conversions in Table 4b. For bookkeeping purposes, also copy

the values of the range of frequencies in each frequency channel from column 2 of

Table 4a into column 2 of Table 4b.

We can now estimate the level of intensity above the background and system

noise. To get these estimates, at each frequency interval on each computer screen

printout draw a horizontal line representing the level of intensity of the background

and system noise that you entered in Table 3 of the DATA SHEET. Your result will

look like Fig. 7.

Now subtract the values of background and system noise from the values of raw

intensity entered in Table 4a (or Table 4b if conversion was necessary). To most

effectively avoid errors, this can be done graphically using the computer printouts.

Alternatively, you can subtract the values entered in Table 3 from those entered in

Table 4a (or Table 4b). Enter those results in Table 4c. If the result of any

subtraction is less than zero, enter zero for the result. For bookkeeping purposes,

also copy the values of the range of frequencies in each frequency channel from

column 2 of Table 4a into column 2 of Table 4c.

Add up the contributions to the intensities from each frequency interval. Enter

the result in the bottom row of Table 4c on the DATA SHEET. This is a measure of

the intensity of the total radar echo, corrected for the background and system noise.

Summarize those values in Table 6 of the DATA SHEET.

Note that if you have a planimeter available in your laboratory, you can

determine the corrected intensity of the total radar echo directly, without the

calculations, by measuring the area between the echo curve and the background

and noise levels on your computer screen printouts corresponding to Fig. 7.

Using the printout of the computer screen of the six sets of echoes obtained with

the large-size spheres, perform these same calculations. Enter the raw data in

Table 5a, the converted data from decibels, if needed, in Table 5b, and the

difference between the raw data and the background and system noise in Table 5c.

Add up the contributions to the intensities from each frequency interval. Enter the

result in the bottom row of Table 5c on the DATA SHEET. This is a measure of the

total radar echo, corrected for the background and system noise. Summarize those

values in Table 6 of the DATA SHEET.

Construct a graph of the echo energy as a function of the particle size of the three

“soil samples.” Use the graph paper provided on the DATA SHEET. Clearly

distinguish the 12 data points as to rotation rate of the turntable, sphere diameter,

and nature of the material on the surface by drawing a line connecting the data for a

given sphere diameter and using a different symbol for the two rotation rates.
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4. Rotational Velocities

From (2) and knowledge of the radii of the spheres, calculate the rotational

velocities in m/s of the spheres at rotation rates of 33 1/3 and 78 rpm. Show your

calculations on the DATA SHEET and enter the results in Table 7 of the DATA

SHEET. Copy the results into the third column of Table 8. Note that the velocities

do not depend on the nature of the soil material so that each result will be copied

into three rows.

From the printout of each of the computer screens, estimate the minimum and

maximum frequencies at which an echo was received. Enter those results in Table 8

Fig. 7 (a) Spectrum analyzer software provides the echo strength as a function of frequency.

(b) The intensity of the echo in each frequency interval must be reduced by the intensity of

background and system noise, observed separately without the radar transmitting a signal toward

the spheres. If the result that you calculate is negative, consider the intensity of the echo to be zero
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of the DATA SHEET, calculate their differences, the echo bandwidth f2 � f1 , and
enter those results in Table 8. Equation 9 of Experiment #9, “Determination of the

Rotation Rate of Planets and Asteroids by Radar: Part I. Observations of Mercury,”

provides the period of rotation of the planet in terms of the observed radar echo

bandwidth,

v ¼ lo
4
BWf ; (6)

where BWf is identified here as f2 � f1. From the echo bandwidths tabulated in

Table 8, calculate the value of the rotational velocities and enter them in the final

column of Table 8 of the DATA SHEET. Perform all your calculations on the

DATA SHEET.

Using the results of columns 3 and 7 in Table 8, construct a graph comparing the

two rotational velocities. Use the graph paper provided on the DATA SHEET.

Clearly distinguish the 12 data points as to rotation rate of the turntable, sphere

diameter, and nature of the material on the surface by using different symbols for

the data points.
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STUDENT’S NAME ________________________________________________

E. Rotation Rate by Radar Experiment II Data Sheets

1. Soil Material

Thickness of staples: ________ mm

Thickness of paper clips: ________ mm

Thickness of nails: ________ mm

Scale of crumpled-up aluminum foil folds: _________ mm

_________ mm

_________ mm

_________ mm

Calculation of average value of crumpled-up aluminum folds

Average value of aluminum foil folds: _________mm

2. System Calibration

Distance from small-size spheres for full illumination: ______________ cm

Distance from large-size spheres for full illumination: ______________ cm

Table 2 Positioning the radar

Measurement

number

Distance

(cm)

Maximum

frequency, f1

Minimum

frequency, f2

Frequency of

maximum echo, fo
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STUDENT’S NAME ________________________________________________

Table 3 Background and system noise levels

Channel

number

Channel

range

(Hz) Intensity

(Converted

from dB)

Channel

number

Channel

range

(Hz) Intensity

(Converted

from dB)

1 21

2 22

3 23

4 24

5 25

6 26

7 27

8 28

9 29

10 30

11 31

12 32

13 33

14 34

15 35

16 36

17 37

18 38

19 39

20 40
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STUDENT’S NAME ________________________________________________

3. Echo Intensities

Table 4a Raw echo intensities from small-size diameter rotating spheres

Channel

number

Channel

range

(Hz)

Intensity

33 1/3 rpm

“sand”

Intensity

33 1/3 rpm

“pebbles”

Intensity

33 1/3 rpm

“rocks”

Intensity

78 rpm

“sand”

Intensity

78 rpm

“pebbles”

Intensity

78 rpm

“rocks”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
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STUDENT’S NAME ________________________________________________

Table 4b Intensities converted from dB (if needed) small-size diameter rotating spheres

Channel

number

Channel

range

(Hz)

Intensity

33 1/3 rpm

“sand”

Intensity

33 1/3 rpm

“pebbles”

Intensity

33 1/3 rpm

“rocks”

Intensity

78 rpm

“sand”

Intensity

78 rpm

“pebbles”

Intensity

78 rpm

“rocks”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
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STUDENT’S NAME ________________________________________________

Table 4c Intensities corrected for background and system noise small-size diameter rotating

spheres

Channel

number

Channel

range (Hz)

Intensity

33 1/ rpm

“sand”

Intensity

33 1/ rpm

“pebbles”

Intensity

33 1/ rpm

“rocks”

Intensity

78 rpm

“sand”

Intensity

78 rpm

“pebbles”

Intensity

78 rpm

“rocks”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

TOTAL
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Table 5a Raw echo intensities from large-size diameter rotating spheres

Channel

number

Channel

range

(Hz)

Intensity

33 1/ rpm

“sand”

Intensity

33 1/ rpm

“pebbles”

Intensity

33 1/ rpm

“rocks”

Intensity

78 rpm

“sand”

Intensity

78 rpm

“pebbles”

Intensity

78 rpm

“rocks”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

(continued)

240 10 Determination of the Rotation Rate of Planets and Asteroids by Radar. . .



STUDENT’S NAME ________________________________________________

Table 5a (continued)

Channel

number

Channel

range

(Hz)

Intensity

33 1/ rpm

“sand”

Intensity

33 1/ rpm

“pebbles”

Intensity

33 1/ rpm

“rocks”

Intensity

78 rpm

“sand”

Intensity

78 rpm

“pebbles”

Intensity

78 rpm

“rocks”

27

28

29

30

31

32

33

34

35

36

37

38

39

40
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STUDENT’S NAME ________________________________________________

Table 5b Intensities converted from dB (if needed) large-size diameter rotating spheres

Channel

number

Channel

range

(Hz)

Intensity

33 1/ rpm

“sand”

Intensity

33 1/ rpm

“pebbles”

Intensity

33 1/ rpm

“rocks”

Intensity

78 rpm

“sand”

Intensity

78 rpm

“pebbles”

Intensity

78 rpm

“rocks”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

(continued)
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STUDENT’S NAME ________________________________________________

Table 5b (continued)

Channel

number

Channel

range

(Hz)

Intensity

33 1/ rpm

“sand”

Intensity

33 1/ rpm

“pebbles”

Intensity

33 1/ rpm

“rocks”

Intensity

78 rpm

“sand”

Intensity

78 rpm

“pebbles”

Intensity

78 rpm

“rocks”

27

28

29

30

31

32

33

34

35

36

37

38

39

40
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Table 5c Intensities corrected for background and system noise large-size diameter rotating

spheres

Channel

number

Channel

range

(Hz)

Intensity

33 1/ rpm

“sand”

Intensity

33 1/ rpm

“pebbles”

Intensity

33 1/ rpm

“rocks”

Intensity

78 rpm

“sand”

Intensity

78 rpm

“pebbles”

Intensity

78 rpm

“rocks”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

(continued)
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STUDENT’S NAME ________________________________________________

Table 5c (continued)

Channel

number

Channel

range

(Hz)

Intensity

33 1/ rpm

“sand”

Intensity

33 1/ rpm

“pebbles”

Intensity

33 1/ rpm

“rocks”

Intensity

78 rpm

“sand”

Intensity

78 rpm

“pebbles”

Intensity

78 rpm

“rocks”

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

TOTAL
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STUDENT’S NAME ________________________________________________

Graph of corrected echo energy as a function of soil sample particle size

Table 6 Corrected echo energies

Simulated planet Rotation rate (rpm) Corrected echo energy

small-size sphere: “sand” 33 1/3

small-size sphere: “pebbles” 33 1/3

small-size sphere: “rocks” 33 1/3

small-size sphere: “sand” 78

small-size sphere: “pebbles” 78

small-size sphere: “rocks” 78

large-size sphere: “sand” 33 1/3

large-size sphere: “pebbles” 33 1/3

large-size sphere: “rocks” 33 1/3

large-size sphere: “sand” 78

large-size sphere: “pebbles” 78

large-size sphere: “rocks” 78
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STUDENT’S NAME ________________________________________________

Description of graphical results

Is there a dependence of total energy on particle size? Would you expect such a

dependence? Why or why not?

Is there a dependence of total energy on the diameter of the spheres? Would you

expect such a dependence? Why or why not?

Is there a dependence of total energy on rotation rates of the turntable? Would you

expect such a dependence? Why or why not?

4. Rotational Velocities

Calculation of rotational velocities

Rotational velocity of small-size sphere at 33 1/3 rpm:

Rotational velocity of small-size sphere at 78 rpm:

Rotational velocity of large-size sphere at 33 1/3 rpm:

Rotational velocity of large-size sphere at 78 rpm:

Table 7 Rotational velocities of the turntable edge

Simulated planet 33 1/3 rpm 78 rpm

small-size sphere

large-size sphere
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STUDENT’S NAME ________________________________________________

Table 8 Rotational velocities from echo

Simulated

planet

Rotation

rate

(rpm)

Corresponding

rotational

velocity ¼ v1
(m/s)

Minimum

frequency

f1 (Hz)

Maximum

frequency

f2 (Hz)

Echo

bandwidth

f2 � f1
(Hz)

Deduced

rotational

velocity

v2 (m/s)

small-size

sphere:

“sand”

33 1/3

small-size

sphere:

“pebbles”

33 1/3

small-size

sphere:

“rocks”

33 1/3

small-size

sphere:

“sand”

78

small-size

sphere:

“pebbles”

78

small-size

sphere:

“rocks”

78

large-size

sphere:

“sand”

33 1/3

large-size

sphere:

“pebbles”

33 1/3

large-size

sphere:

“rocks”

33 1/3

large-size

sphere:

“sand”

78

large-size

sphere:

“pebbles”

78

large-size

sphere:

“rocks”

78
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STUDENT’S NAME ________________________________________________

Calculation of deduced rotational velocity from (6)

small-size sphere: “sand” 33 1/3 rpm:

small-size sphere: “pebbles” 33 1/3 rpm:

small-size sphere: “rocks” 33 1/3 rpm:

small-size sphere: “sand” 78 rpm:

small-size sphere: “pebbles” 78 rpm:

small-size sphere: “rocks” 78 rpm:

large-size sphere: “sand” 33 1/3 rpm:

large-size sphere: “pebbles” 33 1/3 rpm:

large-size sphere: “rocks” 33 1/3 rpm:

large-size sphere: “sand” 78 rpm:

large-size sphere: “pebbles” 78 rpm:

large-size sphere: “rocks” 78 rpm:
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STUDENT’S NAME ________________________________________________

Comparison of the rotational velocities determined by the turntable rotation rate

(ordinate) and the echo bandwidth (abscissa):

If the radar echo produced exactly the expected values, the points you plot should

fall along the straight line. In general they do not. For data points representing

which rotation rates, sphere diameters, and material is the difference significant?

Provide explanations of any differences.
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STUDENT’S NAME ________________________________________________

F. Rotation Rate by Radar Experiment II Discussion Questions

1. Let’s say we are trying to determine the rotation rate of a spherical asteroid and

that at the moment of observation an extremely high chain of mountains appears

at the edge of the disk. How would that affect the period of rotation determined

by the radar? Show which equations of Experiment #9, “Determination of the

Rotation Rate of Planets and Asteroids by Radar: Part I. Observations of

Mercury” you use to reach your conclusion.

2. Below is a simplified drawing of a radar echo. For the same planet, assume that

the edge of the planet moving toward us has a chain of high mountains and that

the edge of the planet moving away from us has a deep and wide chasm along

the equator, of greater extent than the vast Valles Marineris on Mars. Draw the

appearance of the radar echo that would now be observed.

Explain your answer.
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STUDENT’S NAME ________________________________________________

3. Here are simplified drawings of total radar echoes from four hypothetical

planets. Two are covered with ice, and therefore smooth on a scale of our

radar wavelength, and two have rough surfaces. Two are twice as large as the

other two. They all rotate at the same velocity. Which radar echo, 1, 2, 3, and 4,

comes from which planet?

a. smooth surface and large diameter planet _________

b. smooth surface and small diameter planet _________

c. rough surface and large diameter planet _________

d. rough surface and small diameter planet _________

Explain your answers.
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STUDENT’S NAME ________________________________________________

4. Radar is not useful to determine the rotation rate of the cloud-enshrouded planets

of Jupiter and Saturn. The planets are sufficiently distant that the strength of the

echoes would be very weak and the thick atmospheres would absorb the incident

radar signals. Assume that these problems don’t exist. Based on your knowledge

of these two planets, provide at least two other reasons that radar can’t be used to

determine their rotation rates.

5. In Experiment #9, “Determination of the Rotation Rate of Planets and Asteroids

by Radar: Part I. Observations of Mercury,” we calculated that the velocity at the

equator of Mercury resulting from its rotation is about 3 m/s. Assume this yields

a radar echo bandwidth of 10 Hz.

a. Calculate the velocity at the equator of the Earth resulting from the rotation of

the Earth.

b. If XyTk@2 were observing the Earth using radar at the same frequency, what

would be the bandwidth of the radar echo he would determine? Show all your

calculations here.

F. Rotation Rate by Radar Experiment II Discussion Questions 253

http://dx.doi.org/10.1007/978-1-4614-3311-8_9
http://dx.doi.org/10.1007/978-1-4614-3311-8_9


STUDENT’S NAME ________________________________________________

6. Asteroids in an assemblage would continually affect each other by gravity and

collisions. As a result, the distribution of their rotation speeds might be expected

to be described by the same unimodal shaped curve that governs the speed of

molecules in a gas, the Maxwellian distribution. Let’s say astronomers obtain

the radar echoes of hundreds of asteroids and the distribution of their total radar

bandwidths is not unimodal but rather bimodal as shown. Assume the asteroids

in the sample to be the same shape and the same size, so that the observed

bandwidths of the radar echo are simply proportional to the rotation speed.

Provide two or more possible explanations of these (hypothetical) results.
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7. Let’s say that XyTk@2was observing the Earth with the radar of question #5 at the

time that San Francisco was at the sub-radar point. Sketch the appearance of

the resulting radar echo, summed over all delays. Use the result of question #5b

and Eq. (8) of Experiment #9, “Determination of the Rotation Rate of Planets and

Asteroids by Radar: Part I. Observations of Mercury,” to provide the range on the

abscissa axis.

8. In Sect. E of Experiment #9, “Determination of the Rotation Rate of Planets and

Asteroids by Radar: Part I. Observations of Mercury,” you provided a graph of

the total radar echo of the planet Mercury at a wavelength of 70 cm. As

discussed there, the velocity of the limb of Mercury resulting from its rotation

is 3 m/s. In the present experiment, the velocity at the surface of a 2-ft diameter

sphere is similar, 2.5 m/s when rotated at 78 rpm. Answer the following if your

experiment employed a sphere with a diameter close to two feet.

a. Compare the graph of the total radar echo of the planet Mercury with those for

the 2-ft diameter spheres rotated at 78 rpm covered with each of the three

surface materials. Does the graph of the total radar echo of Mercury resemble

any of our three total radar echoes?

b. Do you expect a resemblance? Why or why not?

9. In Experiment #17, “Blackbody Radiation,” you will studyWien’s displacement

law. This tells us that many warm objects radiate the maximum of their radiation

at a wavelength inversely proportional to the temperature of the object,

lmax ¼ 0:3

T
;

where lmaxis given in cm and T is given in K.
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a. If the temperature of the laboratory is 25�C, what is the value of lmax of the

radiation it is emitting? Show your calculations here.

b. Our radar emits at a wavelength of 11.5 cm. Will the radiation being emitted

by the room create a substantial problem with our experimental results?

Show your calculations here.

c. At what room temperature would a problem with our experiment occur?

Show your calculations here.

10. Diffuse and specular reflection, phenomena of optics that we studied in Experi-

ment #6 and #7, “The Surface Roughness of the Moon: Reflection and Scattering

from a Planetary Surface: Part I. Surface Materials,” and “The Surface Rough-

ness of the Moon: Reflection and Scattering from a Planetary Surface: Part II.

Beads and Surface Coverage,” occur for all types of waves. Recall that a

condition for specular reflection is the surface being smooth compared to the

wavelength of the incident radiation.

a. For which of the surface materials with which we covered our spheres

would you expect to see a radar echo that would be close to specular

reflection?

b. Do the printouts of the computer screens of those echoes indicate specular

reflection? If not, provide an explanation.

c. What kind of material could we place on the surface of our rotating spheres

to obtain radar echoes that would produce specular reflection at our 11.5-cm

wavelength?
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Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

Attach the printouts of the computer screens to these DATA SHEETS or your

photocopies.
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Experiment 11

The Orbit of Venus

SUMMARY: InExperiment #11, “TheOrbit ofVenus,” weemploy a reticulated

eyepiece attached to a modest telescope to observe the planet Venus as it orbits

the Sun. Holding the telescope fixed in position, you will determine the field of

view of the telescope by tracking a bright star. This will enable you to determine

the angular size of Venus at various times. Graphing that data will enable

determination of its orbital period.

LEVEL OF DIFFICULTY: Low

EQUIPMENT NEEDED: Binoculars or small telescope; reticulated eyepiece.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_11, # Springer Science+Business Media New York 2013
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A. Introduction

When Galileo Galilei (1564–1642) pointed the telescope he had built (after hearing

of the invention of such instruments by a Dutch optician, Hans Lippershey

(1570–1619) ) to the skies, he made four momentous discoveries about the solar

system. He found spots on the Sun, craters on the Moon, and satellites revolving

around Jupiter, and he discovered that Venus, the brightest object in the sky when

visible, displays phases like the Moon. The first two discoveries showed that the

objects of the solar system were imperfect, contrary to accepted belief. The last two

provided observational proof of the theory of Nicolaus Copernicus (1473–1543) that

the Sun, not the Earth, was the center of the solar system. He saw that the satellites of

Jupiter revolve about Jupiter. The phases of Venus showed that it revolves about the

Sun. At least one object was thereby shown to orbit the Sun. Some of Galileo’s

observations of sunspots are reproduced on the back cover of this book.

More precisely, Galileo observed that different portions of the surface of Venus

were in sunlight, displaying its phases, as it changed its size and angular distance

from the Sun with time. He saw that when Venus was nearly fully illuminated it was

small in size but close to the Sun in the sky, that when Venus was half-illuminated it

was intermediate in size but far from the Sun, and that when Venus was nearly dark

it was large in size and, again, close to the Sun. This clearly indicated that Venus

was in orbit about the Sun.

In this experiment, we shall observe Venus. By measurement of its angular size

and observation of its phases, we will be able to plot Venus in its orbit and

demonstrate that its oribt is heliocentric, that is, Sun-centered, rather than geocen-
tric, or Earth-centered. Using that graph, we will be able to determine the length of

the year on Venus, the time it takes for Venus to complete one orbit about the Sun,

its orbital period.
More specifically, we will observe Venus and determine its distance by observ-

ing it through a telescope to which is attached a reticulated eyepiece. The apparent

angular size measured through the telescope, yapp, will be converted to the true

angular size of Venus, ytrue, at the time of the observation. The angular size of

Venus at the known distance of closest approach, yo, then allows us to calculate its

distance. Performing this operation over several months, and being aware of its

changing phases, will allow us to establish that Venus has a heliocentric orbit, to

map out its orbit, and to calculate its orbital period.

B. Theory: Interpretations of the Orbit of Venus

1. The Ptolemaic System

For more than 1500 years, the strange movement of Venus observed in the sky

as well as the movements of the Sun, Moon, and the other planets known to
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antiquity, Mercury, Mars, Jupiter, and Saturn, was explained in terms of a model

that was geocentric. The Earth, after all, was considered to be the center of the

universe.

A complicated, purely geometric model was used to explain both the motions of

these objects, the variations in the speed and direction of theirmotion as seen from the

Earth, and the changes in the apparent distances of the planets from the Earth. The

system of epicycles (“on the circle” in Greek) and eccentric, that is, non-concentric,

circles that was devised is called Ptolemaic after the Greek astronomer, mathemati-

cian, geographer, and astrologer Ptolemy (Claudius Ptolemaeus, ca. 90–ca. 168), a

Roman citizen who lived in Egypt, but wrote in the Greek language. It is so named

although the system had been developed by earlier Greek astronomers, including the

originator, Apollonius of Perga (ca. 262 B.C.E.–ca. 190 B.C.E.), and, most notably,

Hipparchus (second century B.C.E.) of Rhodes. Indeed, Hipparchus used the system

extensively nearly 500 years before Ptolemy synthesized and extended it to explain

his geocentric theory in his major work in astronomy, the Almagest.
As shown in Fig. 1, the Ptolemaic system was, in fact, not purely geocentric, the

center of the system being slightly displaced in space from Earth. The motion of the

planet was actually centered about a point halfway between the Earth and another

point, called the equant. That midway point was the center of the so-called deferent
circle. Circles called epicycles, on which the object was located, both rotated in

uniform circular motion and revolved along the deferent in uniform circular

motion. Each of the seven objects required a different equant and a different

deferent, in addition to their own epicycle. The deferents, to add additional com-

plexity, were eccentric as opposed to concentric.

The model was accepted as the correct cosmological model by European and

Islamic astronomers and was endorsed by Aristotle and powerful political forces.

Because of its influence, the Ptolemaic system is sometimes considered as synony-

mous to the geocentric model and, indeed, similar ideas were held in ancient China.

It was gradually replaced by the heliocentric model of Nicolaus Copernicus

Fig. 1 In the Ptolemaic

system of the universe,

the Sun, Moon, and planets

are postulated to reside

on circles, the epicycles,

which themselves rotate and

move along a second circle,

the deferent
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(1473–1543), Galileo Galilei (1564–1642), and Johannes Kepler (1571–1630). This

model was provided a rational basis by the mathematical physics of Sir Isaac

Newton, marking the beginning of the modern age of scientific inquiry. The

heliocentric theory, in fact, had been proposed by Greek astronomers, notably

Aristarchus of Samos, 310–230 B.C.E., but was rejected in favor of Aristotle’s

support of geocentric, Earth-centered theories.

2. The Simplicity of the Heliocentric Model

With the planets orbiting the Sun, however, we can explain their movement in the

sky, in particular that of Venus, in terms of simple geometry. Figure 2 shows Venus

and Earth at arbitrary locations along their orbits, assumed for simplicity to be

perfectly circular.

By the law of cosines, that generalization of the Pythagorean Theorem for non-

right triangles, we can determine the value of the side of the triangle L,

L2 ¼ RV
2 þ RE

2 � 2RVRE cos b:

The angle b is the difference between the angles that the two planets make with

the Sun. This can be calculated easily, knowing that the Earth and Venus complete

an orbit in 365.2 days and 224.7 days, respectively. The date of reference, to, is
arbitrary. Defining it here as the date of inferior conjunction b is given as

b ¼ 2pðt� toÞ 1

365:2
� 1

224:7

� �
: (1)

Accurate values of those angles, without the simplifying assumption of perfectly

circular orbits, are tabulated in astronomical tables for each planet as its

Fig. 2 The phase angle, a,
of Venus as observed from

the Earth can be calculated

at any position in its orbit

by application of the law

of cosines. The angle b is

the difference in heliocentric

longitudes of the two planets.

In this configuration, Venus

is an evening star
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heliocentric longitude. The zero degree reference for heliocentric longitude is the

location of the vernal equinox.

Once the value of L as a function of t is known, a second application of the law of

cosines provides the phase angle, a, the angular distance between the Sun and

Venus as observed from the Earth,

RV
2 ¼ L2 þ R2

E � 2LRE cos a;

from which

cos a ¼ RV
2 � L2 � RE

2

�2LRE
:

The inverse cosine then provides the phase angle a as a function of t.
A simple application of the law of cosines, then, explains the strange motion of

Venus in the sky. Hundreds of years of complex adjustments of the geometry of the

Ptolemaic system compared to the simplicity of the heliocentric model is an

example of the quasi-principle in science known as Occam’s Razor (William of

Ockham, ca. 1285–ca. 1349): The simplest explanation is usually the correct

explanation. This has wide application in any field of rational inquiry.

3. The Configurations of the Interior Planets

The aspect of Venus as seen from the Earth has a cycle of about 584 days, its synodic
period. During this period, the various positions of Venus in its orbit correspond to

geometric relationships, or configurations, with respect to the Earth. The more unique

configurations are given names, Fig. 3. Inferior conjunction is the configuration in

which Venus lies directly between the Earth and the Sun. In superior conjunction,
Venus lies directly on the far side of the Sun. Inwestern elongation, Venus is as far to
the west as it can be seen, a morning star. In eastern elongation, Venus is as far to the
east as it can be seen, an evening star. The planet Mercury, also interior to the Earth in

the solar system, exhibits similar configurations.

Note that when Venus is at elongation, a line drawn from the Earth to Venus will

be tangent to the orbit of Venus. In other words, at elongation Venus lies at the right

angle of a right triangle formed by the Sun, Earth, and Venus. This was the basis for

Copernicus’ determination of the distance to Venus in terms of the distance of the

Earth from the Sun, the astronomical unit, abbreviated A.U. , Fig. 4.

When Venus is at large angular distances from the much brighter Sun, it can be

observed. After being difficult to see for about one month because of its proximity

to the Sun near inferior conjunction, Fig. 5, Venus can be observed west of the Sun

for about 6–7 months. It is then difficult to see for the next 5–6 months near superior

conjunction, and then becomes visible east of the Sun for the next 6–7 months.

It alternates being an evening and morning star, being visible in the few hours

before the Sun sets or in the few hours before it rises.
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4. Determination of the Distance of Venus

We can determine the distance of Venus from the Earth from its angular size by a

simple proportion. From the sketch of the appearance of Venus, we can then

determine the location of Venus in its orbit.

At its closest approach to Earth, the angular diameter of Venus is 60.3 seconds of

arc. This occurs at inferior conjunction, when Venus and the Earth are aligned on

Fig. 4 At elongation, the

distance from Venus to the

Sun can be determined by

trigonometry. Measurement

of the angle a allows its

calculation by RV ¼ RE sin a.
This was the basis for

Copernicus’ determination of

the distance to Venus in terms

of the distance of the Earth

from the Sun, the A.U. The

configuration shown is

eastern elongation, at which

Venus is an evening star.

Venus appears in its half

phase, half of its visible disk

being illuminated by the Sun

Fig. 3 The standard

terminology of conjunctions

and elongations applies

to the two interior planets,

Mercury and Venus
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the same side of the Sun, Fig. 8. At this time, Venus is at a distance 1.0000

A.U.–0.7233 A.U. = 0.2767 A.U. from the Earth.

In Fig. 6, an object of linear size, D, is located at a distance, d. These are

related by

tan
y
2
¼ D=2

d
: (1)

If d >> D, then y is small. For small angles, sin y/2 � y/2 and cos y/2 � 1, so

that

tan
y
2
¼ sin y

2

cos y
2

� y
2
:

Accordingly (1) becomes

y
2
¼ D=2

d
;

or, as was stated equivalently in (2) of Experiment #1, “A Review of Mathematical

Concepts and Tools,”

y ¼ D

d
:

Now, as shown in Fig. 7, if D is the diameter of Venus, d1 and d2 are its distances
from the Earth at two different times, and y1 and y2 are its observed angular sizes at
those times, then

d1
d2

¼ y2
y1

:

In particular, if L = 0.2767 A.U. is the distance of closest approach of Venus to

Earth, and yo = 60.300 is the angular diameter of Venus at that time, then for any

other measured angular diameter, y, the distance d of Venus in A.U. is given by

d

L
¼ yo

y
;

where y is measured in seconds of arc, or

d ¼ L
yo
y
:

B. Theory: Interpretations of the Orbit of Venus 265

http://dx.doi.org/10.1007/978-1-4614-3311-8_12
http://dx.doi.org/10.1007/978-1-4614-3311-8_12


1

6 4 2

60 30 0 30

Eastern
Elongation

2012

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

2013

Inferior
Conjunction

Western
Elongation

S
ynodic P

eriod =
 584 days

Superior
Conjunction

Eastern
Elongation

60

0
Sun

2 4 6

Degrees East
of the Sun

Morning Sky
Hours Before Sunrise

Degrees West
of the Sun

Evening Sky
Hours After Sunset

8
15
22
29
5

12
19
26
4

11
18
25
1
8

15
22
29
6

13
20
27
3

10
17
24
1
8

15
22
29
5

12
19
26
2
9

16
23
30
7

14
21
28
4

11
18
25
2
9

16
23
30
6

13
20
27
3

10
17
24
3

10
17
24
31
7

14
21
28
5

12
19
26
2
9

16
23
30
7

14
21
28
4

11
18
25
1
8

15
22
29
6

13
20
27
3

10
17
24
1
8

15
22
29

Fig. 5 The phase plot,

or elongation calendar, for

Venus for 2012 and 2013.

The planet is easily observed

as the brightest “star” in the

sky over much of the year.

The elongations in

subsequent years can be

determined knowing that

the synodic period

of Venus is 584 days
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Using the above known values,

d ¼ 0:2767� 60:300

y
A:U:

¼ 16:700

y
A:U: (2)

For each measurement of y in seconds of arc we can then find the distance to

Venus in A.U.

5. Determination of the Orbital Period by Kepler’s Second Law

To determine the orbital period, we need not observe Venus over its entire orbit. We

can, instead, take advantage of Kepler’s Second Law, which will be discussed in

Experiment #12, “Kepler’s Laws of Planetary Motion,” and the near circularity of

the orbit of Venus. Kepler’s Second Law states that the radius vector from the focus

of the elliptical orbit, the Sun, to the location of Venus in its orbit sweeps out equal

areas in equal times. With the good approximation that the orbit of Venus is

Fig. 6 Small angle approximation geometry

Fig. 7 The angular diameter, y, of an object whose size, D, is small compared to its distance from

the observer, d, is approximately inversely proportional to its distance. Accordingly, d1/d2 ¼ y2/y1
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circular, we therefore know that the length of time for it to traverse an angular

distance of 360� and complete an orbit about the Sun, the orbital period, P, is related
to the time interval between two observations separated by an angular distance Dy
by a simple proportion,

P

360o
¼ Dt

Dy
;

where Dt is the amount of time for Venus to traverse an angular distance Dy in its

orbit, measured in degrees. The period then follows as

P ¼ 360o
Dt
Dy

: (3)

C. Procedure and Observations

1. Observing Venus

The days in which Venus is not obscured by the Sun and can be observed are

displayed in the phase plot, frequently referred to as an elongation calendar, Fig. 5.
This shows the phase angle of Venus as a function of date. The synodic period is the
time for the completion of a full cycle of the phases, 584 days for Venus. Accord-

ingly, although this phase plot displays the phases of Venus only for 2011 and 2012,

Fig. 8 The configuration

of the Sun, Venus, and the

Earth referred to as inferior

conjunction. See also Fig. 3

268 11 The Orbit of Venus



the same pattern repeats at 584-day intervals. (In fact, because the number of

days in five synodic periods is the same as the number of days in eight Earth

years, a total of about 2920 days, the phase plot/Earth calendar association repeats

every 8 years.)

Use the phase plot as a guide to your observing. The Earth rotates on its axis a

full 360� in 24 h, or 15� every hour. If we somewhat subjectively say that the Sun

obscures Venus when it is within 10� of the planet in the sky, then this corresponds
to about 40 min of time before sunrise or after sunset. We see that Venus is not

obscured, by this 10� definition, the vast majority of time in its synodic cycle. If,

however, you prefer a dark sky and want to observe Venus at least 2 h before sunrise

or after sunset, corresponding to 30� in the sky, then the phase plot shows that you

are restricted to observations during the 5 months bracketing eastern elongation and

the 5 months bracketing western elongation. The Sun is within 30� in the sky of

Venus during 7 months around superior conjunction and 1 1/2 months around

inferior conjunction.

2. Reticulated Eyepieces for Observations

We will need a telescope with a reticulated eyepiece for angular size

measurements of Venus and polar graph paper on which to draw its orbit..

These eyepieces come in various forms. As shown in Fig. 9, they will typically

have a grid, linear scale, or concentric circles in a “bull’s eye” configuration either

etched on, or composed of fine wire emplaced in, the glass located in the focal

plane of the eyepiece. These scales allow measurement of the apparent size of an

object, the angular separation between double-star components, or, in Experiment

#13, “The Galilean Satellites of Jupiter,” the angular separation between Jupiter

and the Galilean satellites. (It also helps astronomy professors point out objects to

inexperienced observers at public demonstrations or stargazing parties.)

The Meade 12 mm focal length Illuminated Reticle Astrometric Eyepiece is an

illuminated reticle device suitable for our purposes. As shown in Fig. 10, it possesses

Fig. 9 An eyepiece with a grid (a) either etched or composed of fine wire allows measurement of

the apparent size of an object, the angular separation between double-star components, or, in our

case, the angular separation between Jupiter and the Galilean satellites. An eyepiece with a linear

scale (b) or a “bull’s eye” of concentric circles (c) can also be used
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four reticle scales etched onto the glass: (1) A linear scale, (2) a semicircular position-

angle scale, similar to a protractor, (3) a 360� position-angle scale, and (4) four

concentric circles with the inner circles having diameters of 1/2, 1/4, and 1/10 that of

the outermost circle, all bisected by a double cross-hair. Either the first or the fourth

scales can be used to measure the angular size of an object or the angular separation

between two objects. A red light illuminates the reticle scales for ease ofmeasurement.

Aswith all eyepieces, it can be rotated in its housing in the telescope. Thiswill allow us

in Experiment #13, “The Galilean Satellites of Jupiter,” to align the linear scale with

the line in the sky between Jupiter and the Galilean satellites.

Reticulated eyepieces are also available from the major hobby telescope

manufacturers and manufacturers of medical microscopes. Celestron Telescopes

refers to them as “microguide eyepieces” (part #94171). Orion telescopes refers to

them as “illuminated reticule eyepieces” (part #12355). American Optical

manufactures eyepieces for medical applications. Most of these have linear

graduated scales placed on the eyepieces.

Fig. 10 TheMeade 12mm focal length Illuminated Reticle Astrometric Eyepiece is an illuminated

reticle device suitable for our purposes. It possesses four reticle scales etched onto the glass: (1) A

linear scale, (2) a semicircular position-angle scale, similar to a protractor, (3) a 360� position-angle
scale, and (4) four concentric circles with the inner circles having diameters of 1/2, 1/4, and 1/10 that

of the outermost circle, all bisected by a double cross-hair. The eyepiece can be rotated in its housing

in the telescope to align its linear scale in a given direction. We will use this feature in Experiment

#13, “The Galilean Satellites of Jupiter,” to align the linear scale with the line in the sky between

Jupiter and the Galilean satellites
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3. Calibration of the Telescope Field of View

When Venus is visible, observe it through the telescope to which is attached a

reticulated eyepiece. Carefully sketch the appearance of Venus, indicating the

changing size of the disk and distinguishing the portion illuminated by sunlight

from the portion which is dark.

We want to determine the angular size of Venus. We must clearly distinguish the

angular size of the magnified image of Venus as seen through the telescope, the

apparent angular size, from the angular size of Venus as seen with the unaided eye,

the true angular size. We measure the former, but for this experiment we require the

latter. The two are related by the magnification of the telescope.

Measurement of the apparent angular sizes of astronomical objects as seen

through a telescope is not trivial. In some professional telescopes, a device

known as a filar micrometer is placed at the focal plane of the eyepiece. The linear

size of the object of interest as measured by the micrometer together with the

known focal length of the eyepiece then yields the apparent angular size. Unfortu-

nately, filar micrometers are expensive and are generally found only at astronomi-

cal observatories.

In the absence of such a device we can calibrate the telescope, that is, determine

by alternative means the apparent angular size of its field of view. Knowing the

number of grid spacings in the reticulated eyepiece, we can then determine the

angular distance between grid lines. This will allow fairly precise measurements of

the apparent angular size of objects such as Venus.

We will use star crossing, or star tracking, to perform this calibration. The
telescope is so positioned that a bright star appears at the left edge of the field of

view. The telescope is then locked in place and, as the Earth rotates under the star,

the star moves through the field of view. The amount of time required for the star to

traverse the field of view along a diameter to the opposite side, knowing that the

Earth rotates 360� in 24 h, or 150 per minute, allows calculation of the angular size

of the field of view. For example, if the star traverses the field of view in 5 min then

the angular size of the field of view is 150/min � 5 min ¼ 750. If the reticulated

eyepiece has 10 grid spacings, then the angular distance between grid spacings is

750/10 ¼ 7.50.
Actually, this is true only for a star on the celestial equator. To understand this,

consider a time exposure photograph of the night sky. As the Earth rotates for a

given period of time through a given angle, stars near the celestial equator traverse a

comparatively large arc length in the sky whereas stars far from the celestial equator

traverse a comparatively small arc length in the sky. For example, as the Earth

rotates the North Star does not move at all. Astronomers refer to the angular

position of an object north or south of the celestial equator as its declination, d.
The position of an object along the celestial equator is referred to as its right
ascension. From the geometry of the sphere, it can be shown that, for a given

interval of right ascension, the arc length at declination d is reduced by the factor

cos d from its value at the celestial equator, at which location by definition d ¼ 0.
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Now imagine you are looking through a telescope first at a star at a low

declination and then at a star at a relatively high declination. The field of view of

the telescope is of course the same, but the star at the higher declination requires

more time to pass through that field of view than does the star at the lower

declination. It can be shown that the ratio of these time intervals is again cos d.
The technique to determine the apparent angular size of the field of view of

a telescope can then be summarized mathematically as follows. If you observe that

a star at declination d takes Dt minutes to traverse the field of view, then the

apparent angular size of the field of view is

yfield ¼ 15 cos dDt minutes of arc:

This is the technique we will use in this experiment to calibrate the telescope,

that is, determine the angular size of its field of view.

The angular distance, ygrid, between grid lines of the reticulated eyepiece of the

telescope is then found by dividing this apparent angular size of the field of view by

the number of grid spacings, N, in the eyepiece,

Dygrid ¼ 15 cos d
Dt
N
minutes of arc:

Knowing this angular distance between grid lines enables us to determine the

apparent angular size of Venus.

In this technique, you need not in fact wait for the star to traverse the entire

field of view. You can time the star as it traverses adjacent grid lines or several

grid lines. It is best to use the entire field of view, however, because then we

minimize the effects of timing errors and the fuzziness of the star image. Because

of errors in the timing of the motion of the star and blurriness in its image resulting

from poor seeing, you should do this star tracking experiment twice and average

the results.

A list of the 25 brightest stars is provided in Table 1. Use the brightest star which

is visible at the time of the year that you are performing the experiment to calibrate

the reticulated eyepiece.

(We might consider using visual binary stars, double stars which are physically

associated, in orbit about each other, to perform this calibration. Many stars, about

5–10% of all stars, are in binary pairs, so that a double star can often be found in

the sky near to where you are observing. This technique, however, requires that

you know the separation of the stars at the time of your observation. Unfortunately,

the angular separation provided in catalogs is the maximum angular separation

whereas the separation changes with time as the two stars orbit each other.

In addition, on the night of your observations you should, but might not, have a

bright pair of stars in the sky available with an angular separation in the sky

significantly greater than the seeing, the amount that a stellar image is smeared

out by the atmosphere. We therefore choose to use the star tracking procedure to

calibrate the telescope.)
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4. The Observations

To calibrate the grid spacing of the reticulated eyepiece, perform two star crossing

calibration experiments. Enter on the DATA SHEET the name of the star you are

using and its declination from Table 1. Enter in Table 4 of the DATA SHEET the

beginning and ending time in seconds of each trial and the number of grid spacings,

N, traversed during each of the two star trail time intervals. The number of grid

spacings traversed need not be exactly the same for both trials.

On various days over two to three months measure the apparent angular

diameter of Venus by counting the number of grid spacings, n, on the reticulated

eyepiece within which its image appears. Estimate the apparent angular diameter

to the nearest 0.1 of a grid spacing if possible. Be sure to measure the entire disk

Table 1 The brightest stars

Star Name

Position

(2000.0)
Apparent

magnitude

(V)

Spectral

type

Absolute

magnitude

Distance

D (pc)R.A. Dec.

1. a CMa A Sirius 06 45 08.9 �16 42 58 �1.46 Al V 1.4 2.6

2. a Car Canopus 06 23 57.1 �52 41 44 �0.72 F0 la �8.5 360

3. a Boo Arcturus 14 15 39.6 +19 10 57 �0.04 K2 IIIp �0.2 280

4. a Cen A Rigil

Kentaurus

14 39 36.7 �60 50 02 0.00 G2 V +4.4 1.3

5. a Lyr Vega 18 36 56.2 +38 47 01 0.03 A0 V +0.5 8.1

6. a Aur Capella 05 16 41.3 +45 59 53 0.08 G8 III +0.3 13

7. b Ori A Rigel 05 14 32.2 �08 12 06 0.12 B8 la �7.1 280

8. a CMi A Procyon 07 39 18.1 +05 13 30 0.38 F5 IV +2.6 3.5

9. a Ori Betelgeuse 05 55 10.2 +07 24 26 0.50 M2 lab �5.6 95

10. a Eri Achernar 01 37 42.9 �57 14 12 0.46 B5 IV �1.6 26

11. b Cen

AB

Hadar 14 03 49.4 �60 22 22 0.61 B1 II �5.1 140

12. a Aql Altair 19 50 46.8 +08 52 06 0.77 A7 IV-V +2.2 5.1

13. a Tau A Aldebaran 04 35 55.2 +16 30 33 0.85 K5 III �0.3 21

14. a Vir Spica 13 25 11.5 �11 09 41 0.98 B1 V �3.5 79

15. a Sco A Antares 16 29 24.3 �26 25 55 0.96 M1 Ib 4.7 100

16. a PsA Formalhaut 22 57 38.9 �29 37 20 1.16 A3 V +2.0 6.7

17. b Gem Pollux 07 45 18.9 +28 01 34 1.14 K0 III +0.2 11

18. a Cyg Deneb 20 41 25.8 +45 16 49 1.25 A2 la �7.5 560

19. b Cru Beta Crucis 12 47 43.2 �59 41 19 1.25 B0 III �5.0 130

20. a Leo A Regulus 10 08 22.2 +11 58 02 1.35 B7 V �0.6 26

21. a Cru A Acrux 12 26 35.9 �63 05 56 1.41 B1 IV �3.9 110

22. e CMa A Adhara 06 58 37.5 �28 58 20 1.50 B2 II �4.4 150

23. l Sco Shaula 17 33 36.4 �37 06 14 1.63 B2 IV �3.0 84

24. g Ori Bellatrix 05 25 07.8 +06 20 59 1.64 B2 III �3.6 110

25. b Tau Elnath 05 26 17.5 +28 36 27 1.65 B7 III �1.6 40
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of Venus, not simply the portion illuminated by sunlight. At those phases when

more than half of Venus is in sunlight, you can measure the apparent angular

radius diameter directly, from which you can calculate the apparent angular

diameter. At the other phases, you will have to estimate the portion of Venus

that is in darkness.

Enter the calendar date, the time in military time, and the number of grid

spacings, n, in Table 4 of the DATA SHEET. Draw a sketch of the appearance of

Venus in column 7 of Table 4 of the DATA SHEET. Each sketch should show

a circular disk. Try to represent the phase of Venus by shading the part of the disk

that is not illuminated by the Sun. Include lines representing the eyepiece grid on

the sketch.

In the analysis below, we will be drawing arcs at the distance from the Earth

determined for Venus on polar graph paper. The arcs so created, however, do not

uniquely define the orbit of Venus. As you will see, many circles could be drawn

passing through all of them. To determine the orbit, one trick involves observing

Venus at its half phase, either as a morning or evening star. At that configuration,

we know that the triangle formed by Earth, Sun, and Venus is a right triangle with

Table 2 Heliocentric

longitude of the Earth,

l, for days reckoned from

the vernal equinox,

March 21

Days l Days l Days l

0 0 125 123 250 246

5 5 130 128 255 251

10 10 135 133 260 256

15 15 140 138 265 261

20 20 145 143 270 266

25 25 150 148 275 271

30 30 155 153 280 276

35 35 160 158 285 281

40 39 165 163 290 286

45 44 170 168 295 291

50 49 175 173 300 296

55 54 180 177 305 301

60 59 185 182 310 306

65 64 190 187 315 311

70 69 195 192 320 315

75 74 200 197 325 320

80 79 205 202 330 325

85 84 210 207 335 330

90 89 215 212 340 335

95 94 220 217 345 340

100 99 225 222 350 345

105 104 230 227 355 350

110 108 235 232 360 355

115 113 240 237 365 360

120 118 245 242
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its 90� angle at Venus, as shown in Fig. 4. Knowing the distance from the Earth to

Venus at that half phase will provide a point on the orbit of Venus. Your

observations, therefore, should include one or more taken on days as close to the

half phase as possible. Those dates correspond to the dates of the configuration of

elongation, provided on the phase plot of Fig. 5.

D. Calculations and Analysis

1. Calibration of the Telescope Field of View

Calculate the star crossing time for each of the two trials by subtracting the

beginning time from the ending time. Enter the results in Table 4 of the DATA

SHEET. Divide each by the respective number of grid spacings traversed and then

calculate the mean of these two quotients. Calculate cos d, 15 cos d Dt, and Dygrid,
the angular distance between grid lines in minutes of arc. Show these calculations

on the DATA SHEET and enter the results in Table 4 of the DATA SHEET.

2. Telescope Magnification

The true angular size of Venus, ytrue, is calculated by dividing the apparent angular
size by the magnification of the telescope. As given by Eq. (3) of Experiment #3,

“The Optics of Telescopes: Part I. Image Size and Brightness,”

m ¼ yapp
ytrue

¼ fo
fe
;

where fo is the focal length of the objective and fe is the focal length of the eyepiece.
Enter the two focal lengths on the DATA SHEET and calculate the magnificationm.

3. The Orbit of Venus

For each observation, calculate the apparent angular size of Jupiter, yapp, by

multiplying n by the angular distance between grid spacings, Dygrid. Then calculate
the true angular as ytrue ¼ yapp/m . The distance from the Earth to Venus at the time
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of the observation is then found from (3). Show these calculations on the DATA

SHEET and enter the results in Table 4 of the DATA SHEET.

Demonstration of the heliocentric nature of the orbit of Venus and determination

of its orbital period will be made using polar graph paper. A polar graph is

reproduced on the DATA SHEET. We assume for simplicity that the orbit of the

Earth is circular, represented by the circular perimeter of the graph.

Determine the scale of the graph by measuring its radius. Enter that result on the

DATA SHEET below the graph.

The radial coordinate on the polar graph is the distance from the Sun. The angular

coordinate is the heliocentric longitude, l, of the Earth. By definition, l ¼ 0 occurs

on the date of the vernal equinox, March 21. Because the year is 365.2 days long, the

Earth moves about 1� of heliocentric longitude each day. The correspondence is not

exact, however, and you must refer to Table 2 to accurately plot the heliocentric

longitude of the Earth on a given date reckoned from the date of the vernal equinox.

For each observation, locate Earth in its orbit. You may want to refer to the

Days-of-the-Year Table in Appendix III to facilitate your determination of the

number of days past March 21, which you need to find the heliocentric longitude

for the days of your observations. Plot the successive data points around the graph

in a counterclockwise direction, the direction of motion of the planets about the Sun

as viewed looking down on the solar system.

From each location of the Earth, use a compass to draw an arc with a radius equal

to the distance determined by (3), converted to centimeters according to the scale

factor of the graph. Extend the arc from the outer circle representing the orbit of the

Earth to about half the distance to the center, which is the graphical location of the

position of the Sun. In this way, the arc will be certain to intersect the orbit of Venus

that you will determine.

A circular arc centered on the Earth will intersect the orbit of Venus in two

locations. As shown in Fig. 11, if Venus is east of the Sun, it will be an evening star.

If Venus is to the west of the Sun, it will be a morning star. The appearance of

Venus differs between the two positions. When east of the Sun, the illuminated

portion of the visible disk of Venus is to the west. When west of the Sun, the

illuminated portion of the visible disk of Venus is to the east.

Knowing this allows you to determine which of the two possible crossings

represents the position of Venus on the date of observation. At that position on

your graph draw a small circle to represent Venus, shading in the hemisphere of

Venus that is in shadow as in Fig. 11.

Repeat this for every observation. Figure 12 presents a hypothetical example of

the results you might get after four observations made during the fall.

The actual position of Venus along the various arcs requires determination of its

distance from the Sun. This can be determined from the observation of Venus at

elongation. As shown in Fig. 12, the angle between the radius vector from the Sun

to Venus and the line between the Earth and Venus is a right angle. That uniquely

determines the position of Venus along the arc that was drawn.

Once that position has been determined, use a compass to draw a circle with a

radius equal to the distance of the Sun to Venus, RV. That is the orbit of Venus,
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assumed circular. Mark the intersection of that circle with the various other arcs to

note the location of Venus at the time of the various other observations.

Measure the length of RV and convert it to A.U. using the scale factor of the

graph. Calculate the percentage error between RV and the known value of 0.7233 A.

U. on the DATA SHEET.

Galileo recognized that Venus had a heliocentric orbit by observing how the

appearance of its phases changed as the visible disk varied in size. Make a horizontal

sketch on the DATA SHEET of the various phases of Venus that you observed and

the angular size yapp that you determined, both as entered in Table 4, arranged in

either monotonically increasing or monotonically decreasing order of yapp.

4. The Orbital Period

We can now determine the orbital period of Venus. Choose a pair of observations

from Table 4 of the DATA SHEET. In Table 5 of the DATA SHEET, enter the date

and time of the two observations and, from the table of Julian dates in Appendix II,

the corresponding Julian dates. Enter the Julian dates to the nearest hour, expressing

Fig. 11 When determining the angular diameter of Venus, allowance must be made for the

portion of the disk which is not illuminated by the Sun. Whether Venus is a morning or evening

star enables you to determine its position relative to the Sun and the Earth
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each hour as 0.04 of a day. For example, if an observation were made at 2 p.m. on

December 4, 2012, it would be entered as J.D. 55265.08 on the DATA SHEET.

Although each sector of the polar graph paper is 10� in angular width, you should
be able to estimate the actual position to 1�–2�. This can be done between any pair

of observations of the position. The greater the separation, however, the smaller

will be the errors in the values of y2 and y1 compared to the value of y2 � y1.
On the polar graph, extend radii to the perimeter at the dates of these two

observations and read off the corresponding heliocentric longitudes, l. Try to

estimate the value of l to the nearest degree. Enter the values of the heliocentric

longitudes in Table 5 of the DATA SHEET.

Fig. 12 Hypothetical results for mapping out the orbit of Venus. At each observation, the angular

diameter of Venus allows determination of the distance of Venus from the Earth, placing it

somewhere along an arc. The narrow lines indicate which arc is associated with each position of

the Earth at the time of the observation. At elongation, when Venus is at half phase, the right

triangle allows us to determine the actual radial position of Venus from the Sun. Assuming a

circular orbit, that allows us to draw a circle through the other arcs, in that way locating the

position of Venus at the various times of observation. The angular coordinate is the heliocentric

longitude of the Earth, whose zero angle position is the date of the vernal equinox, March 21.

This example, therefore, displays hypothetical observations taken in September, October, and

November
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Repeat this for several pairs of observations. Use those with widely separated

dates to minimize the errors introduced by your reading of the heliocentric

longitude.

If Venus traverses an angular distance Dy in its orbit during a length of time

Dt days, then we can calculate the period of its orbit P by (3). Enter your results for

the orbital period as determined by each pair of observations in Table 5 of the

DATA SHEET. Average these to provide the best estimate of the orbital period and

enter your result on the DATA SHEET. Show all your calculations on the DATA

SHEET.
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STUDENT’S NAME ________________________________________________

E. Venus Experiment Data Sheets

1. Calibration of the Telescope Eyepiece

Name of the star selected: ___________

Declination of the star, d ¼ ___________

First timing:

Time for star to cross field of view, Dt1 ¼ __________ seconds

Second timing:

Time for star to cross field of view, Dt2 ¼ __________ seconds

Dt1/N1 ¼ ___________ seconds

Dt2/N2 ¼ ___________ seconds

Mean Dt/N ¼ _________________ seconds

Mean Dt/N ¼ _________________ minutes of time

cos d ¼ __________

Angular distance between grid or scale spacings,

Dygrid ¼ 150 cos d Dt
N ¼ __________ minutes of arc

2. Telescope Magnification

Focal length of objective, fo ¼ _____________

Focal length of eyepiece, fe ¼ _____________

Telescope magnification, m ¼ fo/ fe ¼ ___________

Table 3 Star tracking calibration of eyepiece

Trial

Start

time

End

time N

Dt/N
(sec)

Mean Dt/N
(sec)

d of

star

cos

d

Dygrid ¼
150 cos d Dt/N
(min of arc)

1

2
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Table 4 Observations of Venus

Observation Date Time n

yapp ¼ n Dygrid
(sec of arc)

ytrue ¼ yapp/m
(sec of arc)

Distance, d

(A.U.) Sketch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
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STUDENT’S NAME ________________________________________________

Perform your calculations of yapp, ytrue, and the distance here.

Table 5 Determination of orbital period of Venus

Sets of

observations Date Time J.D.

Heliocentric

longitude, l D(J.D.) D l Period

Observation 1

Observation 2

Observation 1

Observation 2

Observation 1

Observation 2

Observation 1

Observation 2

Observation 1

Observation 2

Observation 1

Observation 2

Observation 1

Observation 2

Observation 1

Observation 2
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STUDENT’S NAME ________________________________________________

Calculation of Period

Set #1:

Set #2:

Set #3:

Set #4:

Set #5:

Set #6:

Set #7:

Set #8:

Calculation of average value for period:
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STUDENT’S NAME ________________________________________________

Polar graph paper for plotting positions of Earth and Venus. The circle corresponds

to 1 A.U.

Scale factor: 1 A.U. ¼ _____________ cm
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STUDENT’S NAME ________________________________________________

Conversion of RV to A.U.:

Calculation of the percentage error between RV and 0.7233 A.U. :

From Table 5, show the correspondence between the appearance of the visible disk

of Venus and its apparent angular size.

Phases:

yapp :

F. Venus Experiment Discussion Questions

1. In honor of the 50th anniversary of the landing of Apollo 11 on the Moon,

Brewster Skywalker has enrolled in an astronomy class for the fall semester of

2019.

a) Referring to the phase plot, what month will Venus be near either eastern or

western elongation in the fall of 2019? Show your calculations below.

b) Will it be an evening or morning star?
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STUDENT’S NAME ________________________________________________

2. “Crop circles” are geometric patterns, more than 10,000 by some count, cut out

of agricultural fields in many countries, 90% in southern England. Here are

several suggested origins.

1) They are road signs placed by extraterrestrial intelligent space travelers to

guide fellow extraterrestrials to sources of water and delectable food.

2) They are logic games developed by highly intelligent prairie dogs.

3) They were carved out as a hoax by tractors driven by troublesome farmer

youth with too much time on their hands.

4) They are patterns of beetle infestation caused by artistically-inclined beetles

with a sense of humor who got A’s in geometry.

a) Under each possibility, list some of the assumptions that would be

required for the explanation to be viable.

b) Using Occam’s Razor, what is the most likely origin of these features?

Answer: ______
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STUDENT’S NAME ________________________________________________

3. “Lucky” Eddie Malvolio got into a horrible car accident but came out of it with

only minor bruises. Here are several suggested explanations.

1) When he went to heaven, his relatives told him, “We’re not ready for you

yet,” and pushed him back to Earth.

2) He was wearing a seat belt.

3) The Lord greeted him at the Pearly Gates and said to him, “My computer is

down and so you shall be My messenger to the Earthlings of the Earth and

for this I shall grant you eternal life,” and brought him back to life.

4) He was just lucky.

a) Under each possibility, list some of the assumptions that would be

required for the explanation to be viable.

b) Using Occam’s Razor, what is the most likely explanation of Lucky

Eddie’s luck?

Answer: ______
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STUDENT’S NAME ________________________________________________

4. The orbital period of Venus is known to be 224.7 days. Calculate the percent-

age error in the value you determined. Show your calculations here.

5. Other than errors in measuring the angular size of the disk of Venus, what are

the sources of error in this determination?

6. The same technique could be applied to determine the orbital period of

Mercury. What is the major difficulty with such a determination? Make a

sketch of the inner planets of the solar system to explain your answer.

7. The planets interior to the Earth, Mercury and Venus, exhibit phases as they go

around the Sun. The planets exterior to the Earth do not. Why not? Make a

sketch of the solar system to explain your answer.
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STUDENT’S NAME ________________________________________________

8. Depending on the epoch of your observations, Venus may have been close to

one or more of the configurations referred to as eastern elongation, inferior

conjunction, western elongation, or superior conjunction. From your graph,

estimate the dates for any of these configurations that may have occurred

during your observations.

a. date of eastern elongation:

b. date of inferior conjunction:

c. date of western elongation:

d. date of superior conjunction:

9. At which of the configurations is the distance to Venus the smallest, and

therefore the angular diameter as viewed from the Earth the greatest?

10. At which of the configurations is the distance to Venus the greatest, and

therefore the angular diameter as viewed from the Earth the smallest?

11. On your graph of the orbit of Venus, draw a line from the position of the Earth

on the first date of your observation tangent to the orbit of Venus. Let y be the

angle between this line and the line between the Earth and the Sun. Measure y
using a protractor and find its sine.

y ¼
sin y ¼
What is the significance of sin y?

12. Calculate the percentage error between this value and the known semi-major

axis of Venus, 0.7233 A.U.

Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Experiment 12

Kepler’s Laws of Planetary Motion

SUMMARY: In Experiment #12, “Kepler’s Laws of Planetary Motion,” you

will study Kepler’s Laws of Planetary Motion as applied to the planets

Mercury and Mars. Using published astronomical position data, you will

create graphs of their orbits on polar graph paper. Using those orbits, you

will then test Kepler’s Second Law, the equal area law, and Third Law, the

period-semimajor axis relationship.

LEVEL OF DIFFICULTY: Low

EQUIPMENT NEEDED: Ruler; planimeter (optional).

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_12, # Springer Science+Business Media New York 2013
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A. Introduction

A burst of scientific activity in Europe in the sixteenth and seventeenth centuries

accompanying the Renaissance yielded an understanding of planetary motions that

survived unchallenged until Einstein’s development of the General Theory of

Relativity in the early twentieth century. Even today, the results of the Renaissance

investigations, in particular those of Sir Isaac Newton, remain the basis of our

understanding of how the planets revolve about the Sun.

The observational data that yielded these discoveries were obtained by the

Danish astronomer Tycho Brahe (1546–1601). After his death, his young assistant

Johannes Kepler (1571–1630) utilized the data to derive an accurate description of

the orbit of Mars. Kepler, in contrast to earlier scientists who had tried to fit the orbit

of Mars to a circle, showed that the orbit of Mars was an ellipse with the Sun at one

focus. With such a realization, Kepler was able to show that all of the planets have

elliptical orbits with the Sun at one focus. This is now known as Kepler’s First Law

of Planetary Motion.

The historical, scientific, religious, and philosophical importance of this cannot

be overstated. The perfection of a circle was shown to no longer describe the orbits

of the planets. In this experiment, we will determine the orbits of Mercury and Mars

about the Sun and study if they agree with Kepler’s findings. We will also study

comets and how the non-gravitational effect of their jets alters their orbits.

B. Theory

1. Kepler’s Laws

Rather than their staying at one distance from the Sun, Kepler’s First Law showed

that the distances of planets from the Sun change over their orbit. In particular,

following the terms perigee and apogee for an ellipse in general, the location in its

orbit at which an object gets closest to the Sun is called the perihelion of the orbit

and the location in its orbit at which an object gets furthest from the Sun is called

the aphelion of the orbit.

The shape of an elliptical orbit is quantified by providing its eccentricity, defined

as the distance between the two foci divided by themajor axis. For those solar system

objects with close to circular orbits, such asmost of the planets, because both foci are

inside the Sun this is impossible to calculate. Instead, an equivalent means of

calculating the eccentricity is used. Noting that 2f + 2p ¼ 2a, where f is the distance
from the center of the orbit to a focus, p is the perihelion distance of the object in its
orbit, and a is the semi-major axis, we see that e ¼ 2f/2a can be expressed as

e ¼ 1� p

a
: (1)
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This is the expression we will use in our analysis of the orbits of Mercury

and Mars.

Kepler also determined the speeds of the planets in their orbits and the sizes of

the orbits. He found that the further a planet is from the Sun in its orbit, the slower it

moves. More precisely, he expressed this geometrically by stating that a line drawn

from the Sun to the planet sweeps out equal areas of the orbit in equal times, as

shown in Fig. 1. If you consider such a line as the height of a triangle with the

distance traveled along the orbit during a small time period the base of the triangle,

then you can understand that the equal area in equal times requirement demands

that the further the planet is from the Sun (the height of the triangle), the less

distance the planet must move in a given period of time (the base of the triangle)

and hence the slower its motion must be. This geometrical statement has become

known as Kepler’s Second Law of Planetary Motion.

Because an ellipse cannot be described by a single radius, Kepler studied

the length of the semi-major axes of the elliptical orbits as a measure of their

size. The semi-major axis of an ellipse is one-half the major axis, the line

connecting the aphelion and perihelion points. It can be considered the longest

“diameter” of the ellipse.

Kepler discovered that the magnitude of the semi-major axis of a planet was

related to the amount of time needed for the planet to complete an orbit about the

Sun, the period of the orbit, or orbital period. Mathematically, he found that the

cube of the semi-major axis is proportional to the square of the period. This is

Kepler’s Third Law of Planetary Motion.

If the period, P, is measured in years, and a, the semi-major axis, is measured

in astronomical units, then Kepler’s Third Law is stated mathematically in a

simple form,

P2 ¼ a3: (2)

Nothing magical exists in this simple form of Kepler’s Third Law. It is simply

the result of our choice of units for P and a. Because 1 A.U. is defined as the

distance from the Earth to the Sun, and because our orbital period is the year, for

this equation to hold for the Earth, 12 ¼ 13 without the complication of any

constants.

Fig. 1 Kepler’s first and

second laws. The orbit of any

object about the Sun is an

ellipse with the Sun at one

focus. In equal periods of

time, the area swept out by a

line from the Sun to the planet

is a constant
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In common language, Kepler’s three laws tell us that the planets in their orbits are

not always at the same distance from the Sun, that the velocity of the planets along

their orbits depends on their distance from the Sun, and that the greater the average

distance between a planet and the Sun during its orbit the greater is its period.

Kepler’s Laws, however, are descriptive, telling us how the planets move but

without any explanation, and it might be wondered if fundamental laws of nature

are hidden within them. This was indeed shown to be the case by Sir Isaac Newton

(1642–1727), arguably the greatest scientist of all time. His Newton’s Laws of

Motion and Universal Law of Gravitation can be used to mathematically derive

Kepler’s Laws of Planetary Motion.

Kepler’s Laws were the first mathematical formulations to correctly describe

nature, and therefore can be considered as the beginning of the field of mathemati-

cal physics. The repercussions of this development, both philosophically and

practically, are fundamental: It both revolutionized our way of thinking about

nature, that its behavior can be expressed by the human construct known as

mathematics, and also made our modern technological world possible.

2. Comets and Kepler’s Second Law

Kepler’s Laws assume the existence of only one force, the gravitational force. We

know, however, that other forces act on objects in orbit about the Sun. The other

objects in the solar system exert a gravitational force, the solar wind particles and

radiation exerts pressure on objects, and collisions with dust particles exert a drag

frictional force, for a few examples.

Comets, however, feel an additional force, a rocket-like thrust arising from the

ejection of gas and dust through surface vents from beneath their surfaces. When a

comet gets close to the Sun, the surface ice on the side of the comet facing the Sun

sublimes or is melted, creating these pathways for the material below to escape. It

does so explosively. The so-called jets were directly observed in 1986 by Soviet,

Japanese, and European spacecraft flying by Halley’s comet on its return to the inner

solar system as part of its 76-year orbital travels. The European Giotto spacecraft got

as close as 600 km from the nucleus of the comet. As with any jet propulsion,

Newton’s third law tells us that the force the comet nucleus exerts on the gas

molecules and dust particles to eject them is equal to a force in the opposite direction

that the particles exert on the comet nucleus. The components of that force lead to

both a rotation of the comet nucleus and an acceleration or deceleration along its

orbit.

We can estimate the acceleration and deceleration of the comet that results from

this force. The material ejected is evaporated ammonia, methane, and water vapor,

and dust. Ammonia (NH3), methane (CH4), and water (H2O) molecules are com-

posed of 17, 16, and 18 nucleons, respectively, and a dust molecule, for example,

SiO2 or FeO, is composed of 60 nucleons and 72 nucleons, respectively. For a rough

estimate, then, say a typical ejected molecule is composed of 50 nucleons. With a

mass of the proton of 1.67 � 10�24 g and an estimated loss of 1030 molecules per
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second when the comet is close enough to the Sun to have an active set of jets, we

multiply these factors together to find a mass loss of about 8 � 104 kg/s.

To find the effective acceleration and deceleration we remember that linear

momentum is defined as p ¼ mv so that the acceleration is given by

a ¼ 1

m

dp

dt
:

To calculate this we need to know the velocity with which the molecules are

ejected from an initial rest state. This has been estimated from the 1986 flyby

studies of Halley’s comet to be about 1 km/s. From conservation of linear momen-

tum, the change in the acceleration of the comet is then

ac ¼ 1

mc

dpe
dt

(3)

where dpe is the change in momentum, pe ¼ me v, of a mass me of material ejected

from the comet in the time dtmoving at a velocity, v, andmc is the mass of the comet.
Comet nuclei vary in mass from 1012 to 1016 kg, similar to the masses of small

asteroids. Use mc ¼ 1014 kg as a typical value, close to the 2.2 � 1014 kg value

ascribed to Halley’s Comet. Substituting the values for mass loss, ejection velocity,

and comet mass in (3), we find the acceleration or deceleration to be about

8 � 10�7 m/s2.

We can compare this to the acceleration resulting from the gravitational force of the

Sun,Gmsun/r
2, wheremSun is themass of the Sun. Taking as an example r ¼ 1A.U., or

1.5 � 1011 m, we find 6 � 10�3 m/s2. As expected, the acceleration resulting from

the gravitational force is much greater than that resulting from the jet force, but it is

only about four orders of magnitude greater for the particular illustrative numbers

we’ve used. Although the effect may be small, it is, however, detectable. I. In fact,

observations of the trajectories of some comets before the Halley flybys of 1986 led

astronomers to hypothesize that the jets existed.

When the comet is near the Sun, the jet effect results in a slight deceleration at

approach, that is, before perihelion, and a slight acceleration when the comet

recedes, that is, past perihelion. These effects almost exactly balance, so that the

overall effect on the period of the comet is negligible. The only net effect results

from the receding comet having a slightly lower mass than when it was

approaching, a result of the mass ejection.

C. Procedure and Observations

In this experiment, we shall use observational data published in the Astronomical
Almanac and its predecessor the American Ephemeris and Nautical Almanac,
the authoritative annual compilation of celestial phenomena, to test Kepler’s Laws.

Of the planets which orbit the Sun in a relatively small amount of time, onlyMercury

and Mars have sizable orbital eccentricities; that is, only they have appreciably
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elliptical orbits. Venus, the Earth, and Jupiter, by comparison, have nearly circular

orbits. We will accordingly examine only the orbits of Mercury and Mars.

We will graph the orbit of these two planets and find that they are elliptical in

shape. We will then test Kepler’s First, Second, and Third Laws.

On the two polar graph papers on the DATA SHEET, plot the orbits of Mercury

and Mars about the Sun using the data from the Ephemeris. The angular coordinate
is the longitude and the length coordinate is the radius vector as provided in the

Ephemeris. The longitudes are heliocentric, relative to the Sun.

Represent the position of the Sun at the center of the graph paper. On each graph,

note the scale you are using, for example, 10 cm ¼ 1 A.U., by definition the size of

the semi-major axis of the Earth, and draw a line at the bottom of the graph paper

whose length according to this scale represents 1 A.U. Choose your scale to use a

reasonably large portion of the graph paper.

For Mercury, we will use the data reproduced from the Ephemeris for 1969, the
year man first landed on the Moon. That historic date, marking one of the greatest

events in the history of mankind, was July 20. For Mars, data is reproduced from the

Ephemeris for 1994 and 1995, 1994 being the year that extraterrestrial intelligent

civilizations were first detected in our galaxy and communication was established

with them, successfully persuading them, in return for a 1956 mint-condition

Mickey Mantle baseball card, not to attack Earth and destroy all sources of its

overly loud rock music. (That would have been one of the greatest events in the

history of mankind.) Write the corresponding Julian Date (J.D.) as provided in the

Ephemeris next to each data point in the orbit.

D. Calculations and Analysis

1. Kepler’s First Law

Mark the locations of aphelion and perihelion in each orbit. On each graph, draw a

straight line from the perihelion position on the orbit to the Sun and through the Sun

to the diametrically-opposite point on the orbit. That line is the major axis. Measure

the distance from Sun to the perihelion point and the length of the major axis, both in

centimeters. Enter the results in Table 1 of the DATA SHEET. Calculate the

eccentricity of the orbit according to (1), and enter that result in Table 1 of the

DATA SHEET. The accepted values for the eccentricity of the orbits ofMercury and

Mars are 0.206 and 0.093, respectively. Calculate the percentage error between these

values and the values you have determined.

2. Kepler’s Second Law

To testKepler’s SecondLaw,weneed tomeasure the areas swept out by a line from the

Sun to the planet for equal time intervals in the orbit. In the graph of the orbit for each
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planet, drawa line from theSun to a position on the orbit. Then drawa second line from

the Sun to a position on the orbit a certain time interval later, perhaps a week for

Mercury and amonth forMars. The deciding consideration is to provide a large enough

area to reduce the error resulting from the measurement technique we shall use.

To determine the area, the simplest procedure is to use a planimeter. If your

laboratory does not have these, a square grid is superimposed on the graph paper to

enable determination of areas by counting the number of squares and fractional

squares. Count the number of squares within the triangular-shaped sector determined

by the two “radii” and the path swept out by the orbit. First count the number of full

squares and then estimate the sum of the areas of partial squares. Enter your results as

“full” and “partial” in Table 2 and Table 3 of the DATA SHEET for Mercury and

Mars, respectively. Add them and enter the total result in these tables. Also enter the

Julian dates corresponding to the two points along the orbit defining the area.

Repeat this procedure and calculate an average value for the area.

Do this a total of five times for different triangular-shaped sectors along the

orbit, labeling each sector as #1, #2, and so on. For at least two of the

measurements, use a time interval equal to two, three, or more times as long as

the first time interval. Use of larger areas will help reduce the percentage errors in

the area determination and will allow us to graph the results with a large range of

ordinates and abscissas. For each triangular-shaped sector determine the area twice

and average the results. Enter your results for the areas and the Julian dates of the

points along the orbit defining the area in Tables 2 and 3 of the DATA SHEET for

Mercury and Mars, respectively.

Calculate the time interval for the radius vector to sweep out the areas by

subtracting the two values of Julian dates defining the areas.

For each planet, construct a graph of the average area as a function of the time

interval using the graph paper supplied on the DATA SHEET. For each planet,

calculate the slope of the curve on the DATA SHEET.

3. Kepler’s Third Law

To test Kepler’s Third Law, we need to determine the length of the semi-major axis of

the orbit of each planet. For each, carefully measure the length in centimeters of the

largest “diameter” of the orbit, the major axis. Repeat the measurement and then

calculate the average value. One-half of this value is the length of the semi-major axis

in centimeters. Enter your results and perform your calculations on theDATASHEET.

To use the simple form of (1) for Kepler’s Third Law, we must convert the units

of the semi-major axes for Mars and Mercury from centimeters to A.U. To do this,

divide the values obtained for the semi-major axis of each planet by the scale factor,

the number of centimeters you have chosen to represent 1 A.U. when you plotted

each orbit. Enter your results for a and a3 on the DATA SHEET.

The period of the orbit is the time needed for the planet to go around the Sun.

You can determine the period from the table of positions reproduced from the
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Ephemeris by subtracting the values of the Julian dates (J.D.) on successive

appearances of the planet at the same heliocentric longitude. Divide this difference

by 365.2 days/year to find the period in years, P ¼ D(J.D.)/365.2. Enter your results
for P and P2 on the DATA SHEET.

On a piece of graph paper, plot P2 as a function of a3. For a third data point, use

the values for the Earth. Because P is measured in years and a is measured in A.U.,

these values are simply P2 ¼ 1 and a3 ¼ 1. Fit a straight line to these three points.

Estimate the value of the y-intercept and enter it on the DATA SHEET. Calculate

the slope on the DATA SHEET. The y-intercept should be close to 0, and the slope

should be close to 1.
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STUDENT’S NAME ________________________________________________

E. Kepler’s Laws Experiment Data Sheets

1. Kepler’s First Law

Plot the orbit of Mercury on this polar graph paper.
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STUDENT’S NAME ________________________________________________

Plot the orbit of Mars on this polar graph paper.
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STUDENT’S NAME ________________________________________________

The accepted value for the eccentricity of the orbit of Mercury is e ¼ 0.206.

Calculate the percentage difference between the value you obtained and the

accepted value below and enter the result in Table 1.

The accepted value for the eccentricity of the orbit of Mars is e ¼ 0.093. Calculate

the percentage difference between the value you obtained and the accepted value

below and enter the result in Table 1.

2. Kepler’s Second Law

THE ORBIT MEASUREMENTS

Table 1 Orbital eccentricity

Planet Mercury Mars

Perihelion distance, p (mm)

Major axis (mm)

Semi-major axis, a (mm)

Eccentricity, e

Accepted value for e 0.206 0.093

Percentage error in e

Table 2 Mercury orbit measurements

Size of area

measurement #1

Size of area

measurement #2

Area

number Full partial total Full partial total

Average size

of area

J.D.

#1

J.D.

#2

Time

interval

1

2

3

4

5
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Table 3 Mars orbit measurements

Measurement of

area #1

Measurement of

area #2

Area

number Full partial total Full partial total

Average size

of area

J.D.

#1

J.D.

#2

Time

interval

1

2

3

4

5
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GRAPH OF AREA AS A FUNCTION OF TIME INTERVAL

Either use graph paper or the axes below to plot the swept out area as a function of

time interval. Use the top graph for Mercury and the bottom graph for Mars.
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STUDENT’S NAME ________________________________________________

Are these two graphs a straight line? Should they be? Explain your answer.

Mercury slope determination:

Mars slope determination:

3. Kepler’s Third Law

ORBIT MEASUREMENTS

Calculation of semi-major axis in centimeters converted to semi-major axis in A.U.

Show your calculations here.

Mercury:

Mars:

Referring to the Ephemeris, calculate the period P in years by finding the difference

of Julian dates (J.D.) of successive appearances of the planet at the same heliocentric

longitude and then dividing by 365.2 days/year, P ¼ D (J.D.)/365.2.

Table 4 Semi-major axis measurements

Planet

Major axis

measurement

#1 (cm)

Major axis

measurement

#2 (cm)

Average

major axis

(cm)

Semi-

major

axis (cm)

Semi-major

axis ¼ a

(A.U.) a3

Mercury

Mars
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GRAPH OF P2 AS A FUNCTION OF a3

Either use graph paper or the axes below to plot the swept out the square of the

orbital period as a function of the cube of the semi-major axis. Plot the data points

for Mars, Mercury, and the Earth. Draw your best line through the data. It should be

a straight line.

y-intercept ¼ __________ (yr)2

Calculation of slope:

Table 5 Orbital period determination

Planet

Reference

heliocentric

longitude

Julian date

#1 (days)

Julian date

#2 (days)

D (J.D.)

(days)

P ¼
D (J.D.)/365

(years) P2

Mars

Mercury
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F. Kepler’s Laws Experiment Discussion Questions

HYPOTHETICAL ORBIT

1. Locate the aphelion and perihelion positions of the hypothetical object whose

orbit is shown in the figure and mark those positions with the letters “A” and “P.”

At which position in its orbit is the speed of the object the greatest, aphelion or

perihelion? _________________

2. Measure the perihelion distance, P, and the major axis in centimeters, and

calculate the value of the semi-major axis, a.

P ¼ ________________

major axis ¼ __________

a ¼ _______________

Calculate the eccentricity of the orbit of this using (1).

How does this value compare to those of Mercury and Mars?

3. Five sectors of approximately the same area are shaded. Estimate the lengths of

the arcs traversed in each sector and enter the results in Table 6. According to

Kepler’s Second Law, the object traverses those sectors in the same amount of

time. Those arc lengths are therefore proportional to an average of the orbital

angular velocity of the object in those sectors.

Also estimate the length of the radius vector from the Sun to the center of each

sector and enter those results in Table 6.
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STUDENT’S NAME ________________________________________________

4. Kepler’s Second Law results from the law of conservation of angular momen-

tum. Expressed in polar coordinates, angular momentum is,

L ¼ m r2 _y; (4)

where m is the mass of the body and its coordinates in its orbit are r and y. Show
that this implies Kepler’s Second Law. Use a diagram to illustrate your answer.

5. From (4), the graph of _yas a function of 1/r2 should be a straight line for each planet.
For the data of the five sectors of the orbit as tabulated in Table 6, plot those data.

What are the causes of the deviation, if any, from a perfect straight line?

Table 6 Hypothetical orbit analysis

Sector Length of arc (mm) Radial distance to center of arc (mm)

1–2

3–4

4–5

5–6

6–7
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ORBIT OF HALLEY’S COMET

The orbit of Halley’s Comet between 1910 and 1986 is reproduced below. For our

purposes, assume the comet was at the same perihelion position in 1910 as on

February 9, 1986. It will be at aphelion in the year 2024, coming soon, and return to

our region of the solar system in July, 2061. Halley’s Comet has a special place in

the human consciousness, having an orbital period of 76 years, a length of time

approximately equal to the human life span. Most people get to see it once, and only

once. Use the second figure, the orbit, slightly enlarged with a square grid of lines

superimposed upon it, in the following analysis.
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6. Draw lines from the Sun to the position of the comet in 1972, 1977, 1983, 1986,

1915, 1921, and 1926. We have then defined the following sectors of the orbit:

5 years in the intervals 1972–1977, 1910–1915, and 1921–1926, and 6 years in

the intervals 1977–1983 and 1915–1921. Despite the different shapes of the

sectors in each group, Kepler’s Second Law tells us that their areas must be the

same.

Mark the approximate position of Halley’s Comet on the current date.

Determine the areas of each sector by either using a planimeter or counting the

number of square and fractional divisions of the superimposed square grid that

lie within the sector. Enter your results here.

5-year interval

Area of sector 1972–1977: ___________

Area of sector 1910–1915: ___________

Area of sector 1921–1926: ___________

6-year interval

Area of sector 1977–1983: ___________

Area of sector 1915–1921: ___________
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7. a. Calculate the average of the areas swept out in 5-year intervals, A5.

b. Calculate the standard deviation among these values.

c. Plot the values of these three areas as a function of the distance of the comet

from the Sun on the graph provided. The distance can be measured from the

figure by a ruler calibrated in centimeters. Draw a vertical line on the graph

corresponding to the standard deviation you found in part c.

d. Is the graph a straight line? If not, explain any variation that you see. Do you

expect to see any deviation from a straight line?
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8. Calculate the average of the areas swept out in 6-year intervals, A6.

9. Compare the ratio of two above average areas,
A6

A5

, to the ratio of the 6-year and

5-year time intervals for sweeping out the areas, that is,
6 years

5 years
¼ 1:2.

10. You’re designing an experiment to test the jet effect on the orbits of comets.

Circle the letter of the following comet or comets that would be the best for

your experiment.

a. Low-mass comet with a highly eccentric orbit.

b. High-mass comet with a highly eccentric orbit.

c. Low-mass comet with a nearly circular orbit.

d. High-mass comet with a nearly circular orbit.

e. Any comet with a highly eccentric orbit.

f. Any comet with a nearly circular orbit.

11. In the experiment of question #10, we are going to test the jet effect by

comparing the amount of time for the comet to pass through two equal areas

of its orbit. In the figure on the following page, the large circle represents the

distance from the Sun at which the surface temperature of a dark object would

be 0�C. In the context of the search for extraterrestrial life, this marks the outer

boundary of the so-called zone of habitability or ecosphere.
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Through which two sectors of the orbit would it be best to compare the duration of

passage of the comet? Assume the areas of sectors 1 and 6 are equal. (Don’t let the

figure influence your answer to question #10.) Hint: The answer is not as simple as

it may at first sight appear.

Answer: Compare the time for the comet to pass through segment ______ and

segment ______.

Provide the reasoning behind your answer. Hint #2: You may want to include some

diagrams.

Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Experiment 13

The Galilean Satellites of Jupiter

SUMMARY: In Experiment #13, “The Galilean Satellites of Jupiter,” we

investigate the orbits of the Galilean satellites of Jupiter using the same

reticulated eyepiece-telescope setup as we used in Experiment #11, “The Orbit

of Venus,” to investigate the orbit of Venus. This experiment will provide you a

feel for the “art” of doing science as you resolve ambiguities in which satellite

corresponds to the images you observe. Performing observations similar to those

made by Galileo, you will determine the orbital period of these satellites, search

for relationships between those orbital periods, anddetermine themass of Jupiter

itself.

LEVEL OF DIFFICULTY: Moderate

EQUIPMENTNEEDED: Binoculars or small telescope; reticulated eyepiece.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_13, # Springer Science+Business Media New York 2013
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A. Introduction

In 1610, Galileo Galilei (1564–1642) used one of the telescopes that he had built to

discover the four largest moons of Jupiter. Of these so-called Galilean satellites, Io

and Europa, the innermost two, are about the same size as our moon, and Ganymede

and Callisto, the outermost two, are about the same size as the planet Mercury.

Galileo observed that these objects move back and forth from one side of Jupiter to

the other, always lying in the same plane, and reasoned that they were associated

with and, in fact, orbiting Jupiter.

In this experiment, we will observe these four moons of Jupiter, and determine

the length of time, or orbital period, each takes to complete an orbit about Jupiter

and the semi-major axes of their orbits. We will then calculate the mass of Jupiter

using Kepler’s Third Law of Planetary Motion.

The actual performance of scientific research requires judgment, approximations,

correcting for observational effects and biases, and distinguishing important from

unimportant factors. These abilities are part of what is often referred to as “physical

intuition.” Possessing good physical intuition can determine whether one is simply a

good scientist or a Nobel Prize winner. In this experiment you will experience some

of the “art” of doing science in practice.

B. Theory: The General Form of Kepler’s Third Law

According to Kepler’s First Law of Planetary Motion, the planets move in elliptical

orbits about the Sun, with the Sun at one focus. Kepler’s Third Law of Planetary

Motion states that the square of the orbital period of the planets is proportional to the

cube of the semi-major axes of their orbits. Soon after Galileo’s discovery of the

Galilean satellites, it was discovered that their orbits also obeyKepler’s laws.With the

discovery by IsaacNewton of theUniversal LawofGravitation andNewton’s Laws of

Motion, it was shown that any body in orbit about another also obeys Kepler’s laws.

When Newton provided the theoretical basis for Kepler’s Laws in terms of his

laws of motion and the Law of Universal Gravitation, he showed that both Kepler’s

First Law and Third Law, as written as (1) of Experiment #12, “Kepler’s Laws of

Planetary Motion,” required generalization. If mT is the total mass of the objects of

interest, (1) of Experiment #12, “Kepler’s Laws of Planetary Motion,” must be

rewritten,

P2 ¼ a3

mT
:

Here, as in (1) of Experiment #12, “Kepler’s Laws of Planetary Motion,” P is in

years, a is in A.U., and mT is in solar masses.We can easily understand how Kepler

arrived at his result, the mass of the Sun being much greater than the mass of any of

the planets.
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In the meter-kilogram-seconds system of units, Kepler’s Third Law is written in

its general form,

P2 ¼ 4p2a3

Gðm1 þ m2Þ ; (1)

where

P ¼ orbital period,

G ¼ constant of gravitation,

m1 ¼ mass of one of the bodies,

m2 ¼ mass of the other body,

a ¼ semi-major axis of the elliptical orbit.

If P is measured in seconds, m1 and m2 are measured in kilograms, and a is

measured in meters, then,

G ¼ 6:67 � 10�11 N � m2

kg2
:

In many cases in astronomy, such as objects in orbit about the Sun, the mass of

one body is much greater than the mass of the other. In the present case, the mass of

Jupiter, MJ ¼ 1.91 � 1027 kg, is much greater than the masses of any of the

Galilean satellites. Accordingly, (1) can be simplified to

P2 ¼ 4p2a3

GMJ
: (2)

We can solve the above equation forMJ in terms of a, the semi-major axis of the

orbit and its period, P,

MJ ¼ 4p2a3

GP2
: (3)

This is the equation we will use to determine the mass of Jupiter after having

determined the semi-major axes and orbital periods of the Galilean satellites.

C. Procedure and Observations

To distinguish the satellites from Jupiter in the sky, you will need the same small or

moderate-sized telescope with a reticulated eyepiece that we used in Experiment

#11, “The Orbit of Venus”. We will use the number of spacings between the grid

lines or rulings to measure the size of the visible disk of Jupiter and the angular

distances of the satellites from the center of the visible disk of Jupiter.
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As can be seen from the elongation calendar for Jupiter, Fig. 1, during the vast

majority of its 398.9-day synodic period Jupiter is sufficiently far from the Sun to

allow observations. Observations are only difficult when Jupiter is near conjunc-
tion, the configuration in which it is on the opposite side of the Sun from the Earth

and is therefore a daytime star, as shown in Fig. 2.

Over a period of 1 or 2 months, observe Jupiter and the Galilean satellites on at

least ten days and sketch their relative positions in Table 1 of the DATA SHEET.

We will want to determine the orbital periods with a precision of minutes.

Accordingly, enter the time of your observation to the nearest minute in Table 1

of the DATA SHEET. Use military time (8 a.m. ¼ 0800 h, 12:00 noon ¼ 1200 h,

8 p.m. ¼ 2000 h, 11:59 p.m. ¼ 2359 h, and so on.) One of the satellites has a period

of less than 2 days. It would therefore be helpful if you can make at least one pair of

observations separated by at least several hours on the same night.

Over its 398.9-day synodic period, the angular size of Jupiter changes as shown in

Fig. 3b.When Jupiter is on the same side of the Sun as the Earth and aligned with the

Sun, the configuration is called opposition, as shown in Fig. 2. At that time it is closest

to the Earth and its angular size is largest.When Jupiter is at conjunction, it is furthest

from the Earth and its angular size is smallest. The angular distances from Jupiter to

its satellites vary in the same manner. Observations near opposition, therefore, will

result in the least relative errors in the angular distances of the satellites.

We want to estimate the errors in our observations. Because the Galilean

satellites are starlike in size, the atmosphere will cause their image to shimmer

and shake, just like “twinkling” stars (♫ “four satellites a-twinkling”). Techniques

such as adaptive optics, which compensate for the shimmering by monitoring the

atmosphere and adjusting the shape of the telescope mirror, or speckle interferome-
try, in which many very short exposures are compared to determine which portions

of the image repeat from exposure to exposure, can be used to eliminate much of the

seeing problems. The naked eye, however, can also discriminate. As you observe,

the images of the satellites will move around. Try to determine the actual position of

the satellites by taking an average location of their images. Seeing will vary from

night to night. Estimate the resultant uncertainty in the positions of the satellites and

enter those estimates in column 5 of Table 1 of the DATA SHEET. Provide the

uncertainty in seconds of arc. The satellites at opposition are about 0.1 s of arc in

size, point objects for our purposes.

Having entered the date and military time of our observation and sketched the

appearance of the satellites with respect to Jupiter, we now use the reticulated

eyepiece to determine the angular distance of each of the satellites from Jupiter. We

do this by comparing that distance with the angular diameter of Jupiter itself.

Count the number and fractional number of grid lines or rulings from limb to

limb of Jupiter, nJ. Try to estimate nJ to the nearest tenth. Enter that value in column

2 of Table 2 of the DATA SHEET.

Now count the number and fractional number of grid lines or rulings from the

center of the visible disk of Jupiter to each satellite image, nS. Because only the

largest telescopes under excellent seeing conditions can resolve even the largest of

the Galilean satellites, the satellites, as noted, will appear as points in the sky. Enter
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Fig. 1 The elongation calendar for Jupiter for 2012 and 2013. Jupiter is visible without interfer-

ence from the Sun for most of the year. The elongations in subsequent years can be determined

using the synodic period of Jupiter of 398.9 days
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the values of nS in column 5 of Table 2 of the DATA SHEET. At this point in the

experiment, we do not know which satellite image corresponds to which satellite.

Accordingly, the satellite images are simply labeled “Image A,” “Image B,” “Image

C,” and “Image D” in Table 2.

At the times of some of your observations, not all four of the Galilean satellites

may visible. Because the plane of their orbits is close to the ecliptic, rather than

being at an angle skewed to the ecliptic, they both pass behind Jupiter as seen from

the Earth, a phenomenon called occultation, and they pass in front of Jupiter as seen
from the Earth, in which case they are said to be in transit. Professional telescopes
can observe the satellites in transit, but the modest-sized telescopes used in this

experiment lack the resolution required. If you believe a given satellite is not visible

because it has been occulted by Jupiter or is in transit, enter “o” or “t,” respectively,

in column 5 of Table 2.

Fig. 2 The configurations of Jupiter share nomenclature with those of the other exterior planets.

With the orbit of Jupiter having a semi-major axis of 5.2 A.U., the distance of Jupiter from the

Earth varies from about 4 A.U. at opposition to about 6 A.U. at conjunction. Its angular size as

viewed from the Earth varies accordingly
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Note that, although at times you may see less than four satellites, if you ever

detect a fifth object with your modest telescope, it is most likely a large alien

spacecraft leading the Jovian Invasion of Earth (“¬╠ :O’╪”), predicted in an

ancient Etruscan manuscript recently discovered, dust-covered, in a heretofore

unknown chamber of the Cairo Museum. If you see such an object while

performing this experiment, immediately contact an astronomer in your neighbor-

hood, notify the (unlisted) U.S. Department of Ufology, start packing canned goods

and bottled water, and then hide under your covers. DO NOT PANIC! (You may

want to ask your professor for an extension of time to complete the lab).

The experiment can still be performed with a good pair of binoculars of at least

10 power, preferably 20 power, but you will not be able to obtain results of the same

precision. If you are using binoculars, estimate the number and fractional number of

Jupiter diameters from the center of the visible disk of Jupiter to each of the

satellites as best as you can. With the angular size of Jupiter read from Fig. 3b for

the date of observation, you can then determine the angular distance of each

satellite from the center of the visible disk of Jupiter.

Fig. 3 The distance between the Earth and Jupiter (a) and its angular size as seen from the

Earth (b) as a function of time, reckoned from January 1, 2012, through April 20, 2014. The

angular size of the visible disk of Jupiter changes as its distance from the Earth changes as both

orbit the Sun
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D. Calculations and Analysis

1. The Complications

Analysis of these data is not trivial. As a result, it requires a combination of

astronomical clues and detective reasoning. The correspondence between each

image you observe and the various satellites must be determined, an ambiguity in

the position of the satellites in their orbits, whether on the near or far side of Jupiter,

must be resolved, correction must be made for the changing distance of Jupiter from

the Earth during the span of the observations, and allowance must be made for the

changing relative aspect of the satellites and Jupiter as Jupiter and the Earth revolve

around the Sun.

Because the span of time of 1 or 2 months during which you will perform these

observations is much less than the synodic period of Jupiter, we will ignore the last

factor. This effect in more precise investigations would need consideration. For

example, suppose that some advanced intelligent Jovian civilization put a geosyn-

chronous satellite above Jupiter, similar to our communication satellites. As Jupiter

and the Earth orbit the Sun, that satellite would appear to move relative to Jupiter

simply because of our changing aspect.

The correspondence problem is the most severe. Although Ganymede and

Callisto are about 50% larger than Io and Europa, their surface material does not

reflect light as well as those of Io and Europa. The surface of Io, with its active

sulfur volcanoes, and the surface of Europa, largely water ice, reflect light better

than the largely dust-covered surfaces of Callisto and Ganymede. Relative

brightnesses, therefore, don’t help us appreciably. The yellowish tinge of Io

might be of help on a clear night with a very good telescope.

A major aid comes from the orbits themselves. Because Io and Europa are closer

to Jupiter than are Ganymede and Callisto, they will therefore, by Kepler’s Second

Law, have smaller periods than Ganymede and Callisto. All four satellites revolve

about Jupiter in the prograde direction, that is, in the same sense as all the planets

revolve about the Sun, clockwise as viewed looking down on the solar system.

The position ambiguity problem is illustrated in Fig. 4. Because the orbits of the

satellites are very nearly in the ecliptic plane and therefore viewed essentially edge on,

when they are viewed from the Earth an ambiguity exists in their position in their orbit.

That is, a satellite could either be on the side of its orbit near to theEarth or on the side of

its orbit far from the Earth, as shown in Fig. 4. As seen through our modest telescopes,

theGalilean satelliteswill appear as point objectswhether theyare on thenear side or far

side of Jupiter.

Note in Fig. 4 that the line of sight to the center of Jupiter’s visible disk and the

line of sight to the satellite are depicted as being parallel. With the angular distances

of the satellites from Jupiter being small, of the order of a few minutes of arc to

dozens of minutes of arc, this is an excellent approximation.

Their prograde motion can help resolve the ambiguity with observations closely

spaced in time. An example is shown in Fig. 5. Here the satellite in its orbit around

Jupiter must be on the far side of the planet. If it had been on the near side of the
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Fig. 4 This represents a top view of the orbit of a Galilean satellite. As viewed from the Earth, an

ambiguity exists as to whether the satellite is on the near side of its orbit or on the far side of its orbit

as viewed from the Earth. In (a), the satellite is observed as it moves from position 1 to position 2. It

is further from the Earth at position 2 than at the earlier observed position 1. In (b), the observations

of the satellite occur at a greater time interval, as it moves from position 3 to position 4. In this case,

it is further from the Earth at position 3 than at the later observed position 4. Knowing that the orbital

motion is prograde, such ambiguities in the position of the satellite in its orbit can be resolved by

observing at closely spaced intervals in time. Jupiter is considered to be located at the center of the

polar graph paper
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planet, then, assuming the time between observations is small compared to the

orbital period, the image would have been closer to Jupiter at the earlier time than at

the later time. Using a short span of time between observations is especially

important in examining the orbit of Io, the satellite with the smallest period.

The problem posed by the changing distance of Jupiter from the Earth as both

planets orbit the Sun is illustrated in Fig. 6. As this distance changes, the angular

distances of its satellites from Jupiter change, even if they are at the same configu-

ration relative to Jupiter and the Earth. This problem can be easily resolved by our

having measured the angular diameter of Jupiter as well as the angular distance

from the center of the visible disk of Jupiter to the satellites.

Note that this complication is especially important if you observe the Galilean

satellites over much more than a month. The semi-major axis of the orbit of Jupiter

is 5.2 A.U. Accordingly, its distance from the Earth can vary from 4.2 A.U. at

opposition to 6.2 A.U. at conjunction, Fig. 2. (In fact, because its orbit is not

perfectly circular, Jupiter gets slighter closer at opposition and slightly further at

conjunction than these distances.) That means that the angular size of Jupiter, which

we use to calibrate the angular distances of the satellites from Jupiter, will vary.

That variation is provided in Fig. 3b. As can be seen, the angular diameter of Jupiter

varies from 33 s of arc to 50 s of arc, so that if the observations are performed over

the several months of an entire semester, the angular size of Jupiter can vary by as

much as 25%. Measurement of the angular distances of the satellites must allow for

the same variation.

That the angular diameter of Jupiter itself changes proportionally allows us to

determine a correction factor. If, on a given date, nJ is the number of grid lines

enclosing the visible disk of Jupiter, b is the angular diameter of Jupiter, and nS is
the number of grid lines from the center of the visible disk of Jupiter to the satellite,

Fig. 5 A single satellite in this hypothetical example is seen to move from the right to the left, or
eastward, with respect to Jupiter on successive observations. This is a view in the ecliptic plane,

represented by the horizontal line, which is nearly co-planar with the planes defined by the orbits

of the Galilean satellites. Knowing that the orbit is prograde, we conclude that the satellite must, in

this case, be on the far side of Jupiter from the Earth
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then the angular distance a from the center of the visible disk of Jupiter to the

satellite is given by

a ¼ nS
nJ

b (4)

The values of the angular size of Jupiter in seconds of arc, b, through June 30,

2013 can be found from Fig. 3b. Alternatively, the angular size of Jupiter can be

obtained from http://pds-rings.seti.org/tools/ephem2_jup.html or similar websites.

(If you use this particular site, the relevant data will be obtained by clicking

Modified Julian Date; Year, Month, Day, Hour, Minute; Jupiter projected equato-

rial radius; and Earth-Jupiter distance. The equatorial radius is provided in seconds

of arc, which must be doubled to obtain the total angular size of the disk of Jupiter,

and the Earth-Jupiter distance is provided in kilometers, which must be converted to

A.U. by using the conversion factor 1 A.U. ¼ 1.496 � 108 km. Enter the dates of

interest in the format MM-DD-YYYY.)

For each date of observation enter the value of b in column 3 of Table 2 of the

DATA SHEET. Calculate the values of a by (4) and enter those results in column 6

of Table 2. Show your calculations on the DATA SHEET.

Fig. 6 At the left side of the figure are top views of Jupiter and the Earth in the solar system. As

the distance between the Earth and Jupiter changes, the angular distance between Jupiter and each

of its satellites changes, even for the same configuration. As shown at the right side of the figure, a
view of the system through the reticulated eyepiece attached to a telescope, as the distance from

the Earth to Jupiter changes the angular diameters of Jupiter and a satellite change by the same

proportion as the change in angular distance between the two objects. This enables us to calculate a

factor to correct for the changing distance
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2. Date of the Observation

To be able to easily graph the times of your observations, we will convert the day

and military time of the observation to the more convenient Julian day and decimal

fractional day. The table of Julian dates in Appendix II provides the correspondence

between calendar days and Julian days through June, 2013.

If your observation, for example, occurs on December 4, 2011, at 9:00 p.m., the

date would be 55892.875, the fraction 0.875 being the 7/8th of the day

corresponding to 9 p.m. Because we perform our observations over only 1or

2 months, we need not enter more than the three digits immediately to the left of

the decimal point. Ignore, that is, the “55.” Enter the calculated date in column 3 of

Table 1. Show all your calculations on the DATA SHEET. Copy the results entered

in column 3 of Table 1 into column 1 of Table 2.

3. Determination of the Orbit

The orbital period of an object is the time necessary for the object to repeat a given

geometrical relation to the object about which it revolves, in this case Jupiter. To

determine the orbital period and semi-major axes of the orbits, one can imagine two

techniques. One could determine the location of each satellite at each epoch on a

top view of the Jupiter-satellite system by calculating its position angle in its orbit,

y, from the observed angular distance, a. The position angle is a function of time,

varying as the satellite moves along its orbit. It depends on the period of the orbit, P,
as y(2p [t�to]/P). To ensure that h ¼ 0 when the satellite is aligned with Jupiter and

the Earth, to is taken to be the time when the satellite is at the mid-point of its transit

over the visible disk of Jupiter.

This is illustrated in Fig. 7, in which d is the distance from the Earth to Jupiter at

the time of the observation, y is the position angle of a given satellite in its orbit, a is
the semi-major axis of its orbit, and a is the observed angular distance of the

satellite. We assume, for simplicity, that the orbits are circular, an excellent

approximation. If we can draw this orbit, then the orbital period can be found by

using the data from pairs of observations. We would calculate the time needed for

the satellite to traverse a given angular distance in its orbit and then use a simple

proportion to calculate the orbital period.

It can be easily shown from the geometry of Fig. 7 that

sin y ¼ ðd � a cos yÞ tan a
a

:

Using this technique of calculating y, therefore, requires knowledge of both d, the
distance from theEarth to Jupiter, anda, the semi-major axis of the orbit of the satellite.

This would be the case even if we neglected s ¼ a cos y � d in the numerator.
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In this experiment, however, wewant to determine a as well as the orbital period. This
approach, although instructive, is therefore not appropriate.

The second technique, and the one we will use, is to examine a graph of the

positions of the satellites as a function of time. From the geometry of the larger of

the two triangles in Fig. 7,

tan a ¼ h

d � s
:

Because the distance from the Earth to Jupiter, d, ranges from about 4.2 to 6.2A.U.,

hundreds of millions of kilometers, whereas the semi-major axis of Callisto, the

satellite most distant from Jupiter, is less than two million kilometers, we here do

neglect s in this equation compared to d,

tan a ¼ h

d
: (5)

From the geometry of the smaller of the two triangles,

h ¼ a sin y: (6)

Note that h, d, and a must be in the same units.

Determine the value of d in A.U. from Fig. 3a for the date of observation.

Figure 3a provides the values of d in A.U. Convert the readings from the graph to

kilometers using the conversion factor 1 A.U. ¼ 1.496 � 108 km and enter the

result in column 7 of Table 2. From the value of a entered in column 6 of Table 2

and the value of d, calculate h from (5). Enter the result in column 8 of Table 2.

Show your calculations on the DATA SHEET.

We then graph the values of h as a function of Julian date of the observation. The

result after a number of days of observationwill be numerous points on the graph of h as
a function of date. The experiment, then, evolves into a game of “connect the dots.”

From (6),we see that thevalues ofh for a given satellitewill vary sinusoidallywith time.

Your task is to determine which sets of dots belong to each of the four sine curves

Fig. 7 We can determine the angular position in the orbit, y, corresponding to the observed

angular displacement, a, from the known distance to Jupiter, d, and the semi-major axis of the orbit

of the satellite, a. This approach., however, is unsatisfactory for our purposes, which is to

determine the semi-major axes of the satellites as well as their orbital periods. Viewed from

above the solar system, the orbital motion is counterclockwise, or prograde
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corresponding to the four Galilean satellites. Figure 8 shows what your results might

look like after observations spanning a period of about 20 days.

On the graph provided on the DATA SHEET, you should assign each abscissa

tick mark to one-half or one-quarter days. The orbital periods of Io and Europa are

just a few days and it will be difficult to discern the sine curve representing them if

the abscissa tick marks are separated by a whole day.

The sine curves for each satellite will be characterized by an amplitude, period,

and phase angle. Because their semi-major axes are large, the sine curves for

Ganymede and Callisto are fairly easily discerned. Those for Io and Europa are

more difficult to discern. As you obtain more and more observations, you will be

able to more effectively isolate the four curves from each other. As an aid as you

perform this exercise, remember that the orbit of each satellite will extend as far to

the east as it will to the west on the h – date graph.

When you think you have been able to discriminate between the data points

representing the four satellites, draw smooth sine curves connecting each set of

data. Because of experimental error, a given sine curve will not pass through all the

data points for a given satellite.

In the next section, you will calculate uncertainties in the values of h arising

from seeing conditions. Using those uncertainties to generate error bars would

clutter the h-date graph. Instead of doing so, calculate the uncertainties as described
in the next section and be aware of their magnitudes as you draw your sine curves

through the experimental data.

Fig. 8 This is an example of the graph you might get after plotting observations spanning a period

of about 20 days. To determine the orbital periods and semi-major axes of the four satellites, you

must have enough observations at appropriate time intervals to be able to “connect the dots” with

sine curves, one for each satellite. Error bars calculated from the seeing conditions are not included

so as to avoid muddling the plot
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Read the amplitude of each sine curve from the ordinate scale. That will be the

best-fit value for semi-major axis of the given satellite, ao. Measure the distance

between peaks of each sine curve to obtain the best-fit value for the orbital period,

Po. If your data span only a portion of a period, you can measure the distance

between a peak and the h ¼ 0 position, corresponding to alignment of Jupiter, the

satellite, and the Earth, to obtain the value of Po/4 from which you can determine Po.
Enter those results in columns 2 and 3 of Table 3 of the DATA SHEET.

Calculate the four values for MJ that result from those best-fit values of ao and Po

from (3) and enter the results in column 4 of Table 3. Show your calculations on the

DATA SHEET.

4. Error Analysis

We want to account for experimental error. From (5), using the small angle

approximation of tan a ~ a, an error in a will propagate into an error in h by

Dh ¼ d Da, where Da must be expressed in radians. With Jupiter at a distance of

5 A.U. and a seeing uncertainty of 2 s of arc, for example, this uncertainly would be

Dh ¼ (5 � 1.5 � 108 km) � (2/3600�2p/360) ¼ 7300 km. This is a significant

source of uncertainty, more than 10% of the semi-major axes of the two innermost

Galilean satellites, Io and Europa. Figure 9 provides a graph of these uncertainties,

Fig. 9 Seeing creates an uncertainty in the determination of the angular distance of the satellites

from Jupiter. This graph provides the error in position as a function of the distance between Jupiter

and the Earth for various seeing conditions
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parameterized by the seeing conditions. For the values of seeing entered in column

5 of Table 1 of the DATA SHEET, calculate the resulting error in h by Dh ¼ d Da
and enter the result in column 9 of Table 2. Show your calculations on the DATA

SHEET.

When you plot your data points on the h-date graph, as noted above, do not

provide corresponding error bars. That would clutter the h-date graph.
We can estimate the uncertainty in the determination of the semi-major axes and

orbital periods of the Galilean satellites graphically. In addition to fitting a sine

curve that best represents the data of each satellite, draw the worst-fit sine curves

which you think still represent the data for each satellite. For this purpose, lightly

draw a few representative error bars corresponding to the errors in h as entered in

column 9 of Table 2 arising from seeing conditions. Determine the semi-major axes

and orbital periods for these curves and enter the results in columns 5 and 6 of

Table 3 of the DATA SHEET. The absolute value of the differences between the

best-fit parameters and these provide an estimate of the error in their

determinations. Enter those values in columns 7 and 8 of Table 3 of the DATA

SHEET. Show all your calculations on the DATA SHEET.

We can now calculate the best value for the mass of Jupiter by combining the

determinations from the four satellite orbits. Copy the results for ao and Po from

Table 3 into columns 2 and 3 of Table 4. Also, copy the results for Da and DP from

Table 3 into columns 4 and 5 of Table 4. Calculate the respective ratios and enter

the results in columns 6 and 7 of Table 4.

The general expression for the percentage error in a derived quantity

f(x,y) ¼ a xn + b ym was shown in Sect. F of Experiment #1, “A Review of Mathe-

matical Concepts and Tools,” to be

Df
f

¼ n
Dx
x

þ m
Dy
y
:

Applying this formula to (3), the relative error in the mass of Jupiter determined

from the analysis of the orbits of each satellite would be

DMJ

MJ
¼ 2

Da
a

þ 3
DP
P

: (7)

Calculate those values and enter the results in column 8 of Table 4 of the DATA

SHEET. Show all your calculations on the DATA SHEET.

With those relative errors, we can now calculate the weighted average of the four

determinations of MJ, using the formula presented in Sect. G of Experiment #1,

“A Review of Mathematical Concepts and Tools”. For the weights, we use the

reciprocal of the squares of the relative errors, DMJ /MJ. In this way, the

determinations which are highly uncertain will be given small weight whereas

those that are highly certain will be given large weights. Calculate this weighted

average on the DATA SHEET and enter the result. Then calculate the standard
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deviation in this value, again using the weighted value formula presented in Sect.

G of Experiment #1, “A Review of Mathematical Concepts and Tools”. Enter the

result on the DATA SHEET.

The accepted value for the mass of Jupiter is MJ ¼ 1.90 � 1027 kg. On the

DATA SHEET, compare the value for the weighted average you have calculated

with this accepted value by calculating the percentage error.

The accepted semi-major axes and orbital periods for the satellites are provided

in Table 5. Using your results from columns 2 and 3 of Table 3, calculate the

absolute values of the differences between your best-fit values and the accepted

values and enter the results in columns 4 and 5 of Table 5. Calculate the percentage

errors in your determinations and enter the results in Table 5. Show your

calculations on the DATA SHEET.
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STUDENT’S NAME ________________________________________________

E. Galilean Satellites Experiment Data Sheet

Sketch the configurations of Jupiter and the four Galilean satellites on each of the

days of observation. Give the date of observation in Julian days and decimal days.

Table 1 Observed positions of the Galilean satellites

Observation

date

Military

time

Date

(J.D.)

Drawing of relative

positions

Estimated error in positions “seeing”

(sec of arc)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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STUDENT’S NAME ________________________________________________

Calculation of data in J.D. from observation data and military time of the

observation
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STUDENT’S NAME ________________________________________________

Table 2 Observations of Galilean satellites

Date

(J.D.)

Number

of grid

lines

enclosing

Jupiter, nJ

Angular

diameter

of

Jupiter, b
(sec of

arc)

Satellite

image

Number

of grid

lines to

image,

nS

Angular

distance to

satellite

a ¼ nS/nJ
b (sec of

arc)

Earth

distance

to

Jupiter,

d (km)

Physical

distance

to

satellite,

h ¼
d sin a
(km)

Error in

h resulting

from

seeing

(km)

1. Image A

Image B

Image C

Image D

2. Image A

Image B

Image C

Image D

3. Image A

Image B

Image C

Image D

4. Image A

Image B

Image C

Image D

5. Image A

Image B

Image C

Image D

6. Image A

Image B

Image C

Image D

(continued)
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Table 2 (continued)

Date

(J.D.)

Number

of grid

lines

enclosing

Jupiter, nJ

Angular

diameter

of

Jupiter, b
(sec of

arc)

Satellite

image

Number

of grid

lines to

image,

nS

Angular

distance to

satellite

a ¼ nS/nJ
b (sec of

arc)

Earth

distance

to

Jupiter,

d (km)

Physical

distance

to

satellite,

h ¼
d sin a
(km)

Error in

h resulting

from

seeing

(km)

7. Image A

Image B

Image C

Image D

8. Image A

Image B

Image C

Image D

9. Image A

Image B

Image C

Image D

10. Image A

Image B

Image C

Image D

E. Galilean Satellites Experiment Data Sheet 339



STUDENT’S NAME ________________________________________________

Table 2 Observations of Galilean satellites

Date

(J.D.)

Number

of grid

lines

enclosing

Jupiter, nJ

Angular

diameter

of

Jupiter, b
(sec of

arc)

Satellite

image

Number

of grid

lines to

image,

nS

Angular

distance

to satellite

a ¼ nS/nJ
b (sec of

arc)

Earth

distance

to

Jupiter,

d (km)

Physical

distance

to

satellite,

h ¼ d

sin a
(km)

Error in

h resulting

from

seeing

(km)

11. Image A

Image B

Image C

Image D

12. Image A

Image B

Image C

Image D

13. Image A

Image B

Image C

Image D

14. Image A

Image B

Image C

Image D

15. Image A

Image B

Image C

Image D

16. Image A

Image B

Image C

Image D

(continued)
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Table 2 (continued)

Date

(J.D.)

Number

of grid

lines

enclosing

Jupiter, nJ

Angular

diameter

of

Jupiter, b
(sec of

arc)

Satellite

image

Number

of grid

lines to

image,

nS

Angular

distance

to satellite

a ¼ nS/nJ
b (sec of

arc)

Earth

distance

to

Jupiter,

d (km)

Physical

distance

to

satellite,

h ¼ d

sin a
(km)

Error in

h resulting

from

seeing

(km)

17. Image A

Image B

Image C

Image D

18. Image A

Image B

Image C

Image D

19. Image A

Image B

Image C

Image D

20. Image A

Image B

Image C

Image D
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Calculation of angular distance from Jupiter to the satellites

Calculation of physical distance from Jupiter to the satellites

Calculation of error in h resulting from seeing
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The h-date graph for the Galilean satellites
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Calculation of the value of MJ

Io:

Europa:

Ganymede:

Callisto:

Calculation of the difference between accepted value for semi-major axes of

satellites and best fit value

Io:

Europa:

Ganymede:

Callisto:

Table 3 Mass of Jupiter and estimated errors in satellite parameters

Satellite

Best Fit

value for

a ¼ ao
(km)

Best Fit

value for

P ¼ Po
(days) MJ (kg)

Worst Fit

value for

a ¼ a*

(km)

Worst Fit

value for

P ¼ P*

(days)

Da ¼
|ao�a*|

(km)

DP ¼
|Po�P*|

(days)

Io

Europa

Ganymede

Callisto
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Calculation of the difference between accepted value for orbital periods of satellites

and best fit value

Io:

Europa:

Ganymede:

Callisto:
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Calculation of Relative Error, DMJ/MJ

Io:

Europa:

Ganymede:

Callisto:

Calculation of weighted average value of MJ

Calculation of standard deviation in weighted average value of MJ

Calculation of the percentage error between accepted value for MJ and the weighted

average value

Table 4 Calculation of errors in determination of Mj

Satellite ao (km) Po (days) Da (km) DP (days) Da/ao DP/Po DMJ/MJ

Io

Europa

Ganymede

Callisto
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Calculation of percentage errors in semi-major axes

Io:

Europa:

Ganymede:

Callisto:

Calculation of percentage errors in orbital periods

Io:

Europa:

Ganymede:

Callisto:

Table 5 Errors in semi-major axes and orbital periods

Satellite

Accepted

value for a

(km)

Accepted value

for P (days)

|a�ao|

(km)

|P�Po|

(days)

Percentage

error in a

Percentage

error in P

Io 422,000 1.77

Europa 671,000 3.55

Ganymede 1,070,000 7.16

Callisto 1,880,000 16.69
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F. Galilean Satellites Experiment Discussion Questions

1. To show your understanding of the nature of an ellipse, draw an ellipse of

arbitrary size in the space below. Label the major axis, the semi-major axis,

the position of the two foci, and the aphelion and perihelion points.

2. As seen looking downward on the plane of the solar system, in what direction

(clockwise or counterclockwise) do the satellites orbit Jupiter?

3. How does this direction compare (“same” or “opposite”) with

a. the direction of rotation of Jupiter about its axis? _________

b. the direction of revolution of Jupiter around the Sun? _________

c. the direction of revolution of the Earth around the Sun? _________

d. the direction of revolution of the Moon around the Earth? _________

e. the direction of rotation of the Earth about its axis? _________

f. the direction of rotation of the Sun on its axis? _________

4. At certain times in their orbits, the satellites disappear from view. How do you

explain this?

5. An astronomy professor on Ganymede uses pirated copies of this laboratory

book for his (her, its) own class. Our present Experiment #13, “The Galilean

Satellites of Jupiter,” has been altered to determine the orbital period and semi-

major axis of our Moon, which are then used to determine the mass of the Earth.

Because we have only one moon, the experiment is greatly simplified. A major

difficulty, however, is present. Use a top view of the solar system to explain this

difficulty.
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6. We have determined errors in the semi-major axes and orbital periods in two

ways, by comparing the best-fit values to the worst-fit values and by comparing

the best-fit values to the accepted values. The former are summarized in columns

4 and 5 of Table 4 and the latter are summarized in columns 4 and 5 of Table 5.

Do the results of the two methods of determining the errors agree? If any

disagreement is significant, provide possible explanations.

Compare Da and |a�ao|

Io:

Europa:

Ganymede:

Callisto:

Compare DP and |P�Po|

Io:

Europa:

Ganymede:

Callisto:

Provide explanations of any significant differences
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7. A regularity exists among the orbital periods of the Galilean satellites.

a. Calculate the ratio of the accepted orbital periods of Europa, Ganymede, and

Callisto to that of Io. Show your calculations here.

Europa/Io:

Ganymede/Io:

Callisto/Io:
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b. You will notice a regularity. Describe it.

c. If the satellites are aligned on one side of Jupiter on a given date, how many

days will be required for the innermost three satellites to again appear in the

same configuration?

d. Explain your answer.

8. A hypothetical configuration of the Galilean satellites is shown. Assume for the

point of the exercise that each satellite is at the apogee of its orbit. Vertical lines

are overlaid for use in measuring the distances of the satellites from Jupiter. (The

objects are not drawn to scale).

a. Make a drawing showing the locations of the satellites from both the top and

side views 12 days later. Ignore any changing perspective resulting from

Jupiter and the Earth revolving about the Sun. On the top view, indicate with

arrows the direction of motion of each satellite about Jupiter. On the side

view, that seen from the Earth, provide the satellite names. As an aid, create

the top view first.

b. Which satellites, if any, may not be visible from the Earth? Why?

F. Galilean Satellites Experiment Discussion Questions 351



STUDENT’S NAME ________________________________________________

9. One of the effectswe neglectedwas the changing aspect of Jupiter and its satellites

as the Earth and Jupiter revolve about the Sun in their orbits. Assume Jupiter is

near opposition and that your observations span a significant amount of time, a

month or more. How will these motions affect the values you find for the orbital

periods? Draw a top view of the solar system displaying the orbit of the Earth and

Jupiter and the orbit of the satellites about Jupiter to explain your answer.

10. As of 2011, Jupiter has 63 known satellites, including the four the Galilean

satellites. Kepler’s laws, of course, apply equally to all of them. Using Kepler’s

Third Law of Planetary Motions, use the known orbital periods of the orbits of

these satellites to determine their semi-major axes. Express the results in both

A.U. and the number of Jupiter radii, 71,500 km.

a) Amalthea, orbital period of 12 h.

b) Sinope, orbital period of 758 days.

11. The figure shows a top view of hypothetical planet Shvitz in orbit around its

central star. The semi-major axis of the circular orbit is 0.3 A.U.
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a. On the h-date graph paper provided, draw the portion of the sinusoidal path that

would be observed from an external observer between the two epochs noted.

b. Determine the orbital period of the object in days and convert it to years.

Show all necessary calculations here.

c. From the expression for Kepler’s Third Law given in (2) of Experiment #12,

“Kepler’s Laws of Planetary Motion,” calculate the mass of the star in solar

masses required to yield an object with such an orbit.

d. From Table 6 of the characteristics of main sequence stars, what would be

the spectral classification of such a star and the associated surface

temperature?

Type: _______

Surface temperature: ______

F. Galilean Satellites Experiment Discussion Questions 353

http://dx.doi.org/10.1007/978-1-4614-3311-8_12


STUDENT’S NAME ________________________________________________

e. Would this object be a suitable location for the evolution of life? Explain

your answer.

Removing these DATA SHEETS from the book may damage the binding. You

might consider entering the data and performing your calculations in the book, and

then photocopying the DATA SHEETS for submission to your instructor for

grading.

Table 6 Characteristics of main sequence stars

Spectral type Mass (solar masses) Surface temperature (K) Color of star

O > 16 >28,000 Blue to violet

B 3.3–16 10,000–28,000 White to blue

A 1.7–3.3 7500–10,000 White

F 1.1–1.7 6000–7500 Yellow to white

G 0.8–1.1 5000–6000 Orange to yellow

K 0.4–0.8 3500–5000 Red to orange

M < 0.4 2000–3500 Red
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Experiment 14

Thermal Radiation from a Planetary

Subsurface: Part I. Calibration

and Initial Measurements

SUMMARY: In Experiment #14, “Thermal Radiation from a Planetary Sub-

surface: Part I. Calibration and Initial Measurements,” and Experiment #15,

“Thermal Radiation from a Planetary Subsurface: Part II. Soil Sample

Measurements,” we demonstrate how astronomers determine the nature of

planetary surfaces using remote sensing, in this case of microwave radio

waves. You will place thermometers at various depths into several soil samples

that simulate the materials of planetary surfaces and heat the surface with

incandescent light bulbs. At the same time you will observe the radio radiation

being emitted by the subsurface layers of the soils. Experiment #14 “Thermal

Radiation from a Planetary Subsurface: Part I. Calibration and Initial

Measurements,” introduces these concepts and calibrates (an act that all

astronomers perform) the 11 GHz radio receiver using an ice-water bath and a

boiling-water bath and obtains ameasure of its gain variability bymeasuring the

radiation from soil samples at room temperature.

LEVEL OF DIFFICULTY: Moderate

EQUIPMENT NEEDED: Fragmented granite rock, coarse sand, water, and

ice; 2.5 � 2.5 � 2-ft sand boxes; 2.5 � 2.5 � 1-ft water containers; Ku-

band radiometer with horn antenna; digital thermometers; meter stick;

micrometer; thin sheets of plastic bubble-wrap; plumb bob.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_14, # Springer Science+Business Media New York 2013
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A. Introduction

In addition to the visible radiation which enables us to see the nighttime stars

twinkling through our atmosphere, astronomers “see” objects in the universe at

every other wavelength region of the electro-magnetic spectrum. Telescopes are

built to detect the very shortest wavelengths from gamma rays and x-rays to the

longest radio wavelengths.

The maximum radiation for objects whose temperatures are Earthlike occurs in

the infrared range of wavelengths, slightly more than 7000 Å to about 1 mm

(7 � 10�5 cm to 0.1 cm). (This follows from the relationship that is an excellent

approximation to many real objects, the Planck Blackbody Radiation Law, the
subject of Experiment #17, “Blackbody Radiation”). The radiation at many of

these wavelengths, however, is absorbed by the gases in the atmospheres of planets

and do not reach our Earth-bound detectors. For planets without atmospheres, the

radiation at infrared wavelengths can provide information about the top few

millimeters of the surface. The somewhat longer wavelength rays of microwave
radiation, 1–100 cm, however, emanate from comparatively deeper subsurface

layers and can penetrate through the atmospheres. Astronomers accordingly study

planets with both infrared and microwave instruments in addition to optical

telescopes.

In this experiment and Experiment #15, “Thermal Radiation from a Planetary

Subsurface: Part II. Soil Sample Measurements,” you will examine the physics and

one of the techniques by which astronomers learn about the subsurface material of

the terrestrial-like objects in the solar system, that is, the rocky planets and moons.

In Experiment #14, “Thermal Radiation from a Planetary Subsurface: Part I.

Calibration and Initial Measurements,” you will become familiar with the micro-

wave equipment by performing calibration and a “trial run” of soil samples at room

temperature, determine estimates of random errors in the radiometer and tempera-

ture readings, and evaluate the variation of gain of the receiver with time. In

Experiment #15, “Thermal Radiation from a Planetary Subsurface: Part II. Soil

Sample Measurements,” you will heat the soil samples and take measurements of

the resulting enhanced radiation.

B. Theory

1. Planetary Heat Balance

As shown in Fig. 1, the radiation from the Sun or other parent star impinges upon

the surface of a planet or moon. Some of that radiation is simply reflected back into

space. The rest heats the surface and that heat is transferred downwards into the

subsurface by the familiar processes of heat conduction and radiation. That
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material, now warmed, emits radiation outwards. It is that radiation which is

detected by the microwave or infrared detectors.

The amount of microwave or infrared radiation received, and how it varies with

the amount of solar or stellar radiation illuminating the surface of the planet or

moon, depends on the composition of the surface and subsurface material and its

structure. Analysis of that radiation using the physics of heat conduction and

radiative transfer enables astronomers to determine the chemical and physical

properties of the soil.

Two extreme cases illustrate the technique. If, for one extreme, the material were

a poor conductor of heat, then the subsurface would not be well heated and the

majority of the microwave radiation we would detect would emanate from near the

surface, independent of the ability of the subsurface material to radiate. The amount

of radiation detected would be nearly proportional to the amount of surface

illuminated by the Sun or parent star. It is as if the surface was a good reflector.

Because of the similarity to the phases of the Moon and planets that are observed in

visible light as their position relative to the Sun changes, such studies are frequently

referred to as studies of the phase effect.
On the other hand, if the material were a good conductor of heat but a poor

radiator of microwave or infrared radiation, then the subsurface layers would be

warmed but would retain their warmth for long periods of time and radiation would

be detected even when the surface was not illuminated. The amount would be

constant, a nearly uniformly-warmed planetary disk independent of the phases. The

Fig. 1 The radiation from the

Sun or other parent star heats

the surface of a planet or

moon. That heat is conducted

and radiated downwards and

the heated subsurface layers

radiate blackbody radiation

outwards. This radiation is

observed in the microwave

and infrared portions

of the electromagnetic

spectrum. That the

wavelengths of sunlight

are much smaller than the

wavelengths of microwave

and infrared radiation is

indicated by the relative

wave sizes (not to scale)
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situation with real soil materials, of course, lies between these extremes, and

detailed analysis of the microwave and infrared radiation enables astronomers to

determine the conductive and radiative properties of the soil, from which they learn

its composition and structure.

The actual physics underlying these concepts, the theory of heat conduction

within a planetary surface and the radiation of energy back into space, is presented

in Experiment #15, “Thermal Radiation from a Planetary Subsurface: Part II. Soil

Sample Measurements”.

2. Insolation

The radiation from a source spreads out into space according to the inverse square

law. If, that is, So is the intensity of a source, then at a distance R the radiation has

diminished according to

I ¼ So
4pR2

: (1)

The energy that the Earth receives from the Sun, for example, as we will study in

Experiment #18, “The Surface Temperature and Energy Output of the Sun,” is

approximately 1368 W on every square meter of the surface of the Earth, or

1,368 W/m. This, ISun, is referred to as the solar constant. By (1), at the distance

of Mars, as shown in Table 12 of Experiment #15, “Thermal Radiation from a

Planetary Subsurface: Part II. Soil Sample Measurements,” that radiation intensity

is decreased by a factor of (1.5)2 ¼ 2.25. The “solar constant” at Mars is less than

one-half of that at Earth.

Knowing the semi-major axes of the planets in their orbit about the Sun (Table

10 of Experiment #15, “Thermal Radiation from a Planetary Subsurface: Part II.

Soil Sample Measurements,”) we can calculate the “solar constants” for all the

planets. These are presented in Fig. 2. (The solar constant for the Earth is defined as

the energy received at its mean distance from the Sun, not at a distance equal to its

semi-major axis. These two figures differ significantly only for Mercury and Pluto,

with their highly eccentric orbits,)

3. Radio Telescopes: Beam Patterns

A microwave radiometer, a “meter” with which to measure the intensity of radio

waves, detects the radiation from the soil samples. Radiometers consist of a low-

noise radio receiver with a suitable antenna. Just like a radio or television collects

radio waves from transmitting stations, the antenna collects the emitted microwave

radiation from the object being study, here, our soil samples. The receiver converts
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the microwave signal into a proportional output voltage. When used to observe

celestial objects, a radiometer functions as a radio telescope.
Although radio telescopes and optical telescopes both collect electro-magnetic

radiation, the difference in the wavelengths they receive and the difference in the

size of the collector, be it a mirror or an antenna, create significant differences in the

portion of the sky that they detect. In general, radio telescope antennas receive

radiation from a substantial solid angle in space, as shown in Fig. 3. If an object is

present in a portion of the sky at which the antenna is pointed, then the antenna will

receive radiation from that object. If multiple objects are within the solid angle

viewed by the antenna, then the antenna will receive radiation from each. This, of

course, is also the case in optical astronomy, but the distinction lies in the size of the

field of view, square seconds or square minutes of arc view for optical telescopes

compared to many square degrees for radio telescopes composed of a single

antenna.1

As this implies, unlike optical telescopes, microwave antennas receive radiation

from directions other than close to the direction to which they are pointed. Most of

the radio radiation is received in the primary or main lobe or main beam aligned

Fig. 2 The energy received per second from the Sun at given distances in the solar system

decreases as the inverse square of the distance. The positions of the planets are represented by dots.
At the Earth, the value for the energy received per second is 1368 W/m2, the solar constant

1 Radio telescope interferometers are composed of more than one antenna, or element, separated
by substantial distances and connected electronically or by later computer analysis. Separating

them by substantial distances effectively increases the diameter of the antenna; the interferometer

simulates a larger antenna in its resolving power but without the corresponding collecting area. In

this way, continental-wide spacings of up to the diameter of the Earth can be attained, a configu-

ration referred to as very-long baseline interferometer, or VLBI. As a result, beam sizes not only of

seconds of arc but of thousandths of seconds of arc can be obtained, much better than that of

traditional optical telescopes. Future astronomers will hopefully be able to observe with telescopes

consisting of elements located on both the Earth and the Moon. Optical interferometers have also

been developed.
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with the axis of the antenna. The larger the antenna, the smaller the width of the

main lobe, as shown in Fig. 4. Antennas, however, also receive radiation with much

decreased sensitivity from other directions, in the side lobes.
Figure 5 shows the sensitivity pattern for one antenna design with the side

lobes shown out to 60� from the axis of the antenna. As the graph shows, the main

lobe is about 50� in angular diameter. At an angle of about 10� from the axis the

sensitivity has been reduced to about 1% of that in the directly- forward direction.

Various terms describe an antenna pattern. The beam width between first
nulls, or BWFN, is the difference between those angles at which the beam pattern

first becomes zero with increasing angular distance from the maximum of the beam

pattern. The half power beam width, or HPBW, is the angular distance between

those angles for which the beam pattern is half of its maximum value. The level

Fig. 3 Radio telescopes receive radiation from all objects located within a solid angle in the sky in

the direction to which the telescope is pointing. This simplified figure does not display the lobe

structure of the antenna power pattern. The surface of a sphere of radius R is 4pR2. Accordingly, a

solid angle s subtended by an area A has the value s ¼ A/R2

Fig. 4 Large antennas provide greater spatial resolution than small antennas. Their beam patterns

have smaller lobes, proportional to l/D. The side lobes of the beam patterns are not shown in this

representation
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of sensitivity of the side lobes is often provided in decibels below that of the

main lobe.

For those students who have studied optics, this pattern may remind you of the

diffraction pattern of a single slit. Indeed, the physics and mathematics describing

the beam of a radio antenna is the same as the physics and mathematics of a single

slit diffraction pattern.

That mathematics provides the antenna pattern/diffraction pattern shown in

Fig. 6.2 As shown in Fig. 6, BWFN ¼ 2 l/D radians for an antenna that is equally

sensitive to incoming radiation over its entire aperture. This is referred to as uniform
illumination, a term borrowed from a uniformly-lit diffraction slit in visible light.

Although you may have thought of diffraction as an optical phenomenon, it

occurs for all waves, in particular for that part of the electro-magnetic spectrum

referred to asmicrowaves. (You can hear voices from around the corner of a building

because sound or acoustic waves, too, undergo diffraction.) Instead of the slit being
on the order of a micron (1 m ¼ 10�6 m) in size and the wavelength being in the

visible region of approximately 4000–7000 Å (0.4–0.7 m), here the “slit” size is

centimeters in size and the wavelength is in the microwave range of 1–100 cm.

Shockingly enough, because for both the beamwidth is approximately l/D, we find

Fig. 5 A microwave antenna

receives radiation from

directions far from the axis

of the antenna. For many,

such as the antenna whose

pattern is provided here, the

sensitivity in the main lobe

is greatly reduced for angles

greater than 10–15� from
the axis. It is even smaller

in the side lobes. This graph

shows the antenna power

pattern with the abscissa

representing the angle

linearly. Antenna patterns are

often also displayed in polar

coordinates, as shown in

Fig. 12

2 The diffraction pattern shows the electric field. In radiometry, the lobe structure is the antenna

power pattern. If E(y) is the electric field pattern, assumed cylindrically symmetrical, then the

power pattern is P(y) ¼ E(y) E*(y), where E*(y) is the complex conjugate of E(y).
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that l/D ¼ (0.5 m)/(1 m) ¼ 0.5 radians for the beamwidth of the primary lobe of

the pattern produced by the diffraction grating is of the same order of magnitude as

l/D ¼ (2.7 cm)/(8 cm) ¼ 0.32 radians for the beamwidth of the primary lobe of

the radio telescope we will be using in this experiment. In contrast, a 1-m diameter

optical telescope will have a corresponding beamwidth, more often described by the

corresponding resolving power (Eq. (2) of Experiment #3, “The Optics of Telescopes:

Part I. Image Size and Brightness,”) of l/D ¼ (0.5 m)/(106 m) ¼ 5 � 10�7 radians,

or about 0.1 seconds of arc. All these results, however, come from the same physics!

It is that difference in relative size of wavelength and the collector size that

create the differences in field of view that are detected in the two types of

telescopes. In optical astronomy, the wavelength of observation is many orders of

magnitude smaller than the dimensions of the collecting lens or mirror; in radio

astronomy, they are similar in size.

4. Radio Telescopes: Bandwidths

Another major difference between radio and optical astronomy is the range of

wavelengths that can be simultaneously detected. Unlike optical astronomy,

where the entire range of optical wavelengths can be reflected by a mirror and

Fig. 6 A uniformly-illuminated square aperture (top) produces an electric field pattern (bottom) of
the same form as a single slit diffraction pattern. The width of the beam between the first nulls, or

BWFN, is equal to 2 l/D radians. The width of the beam at half-power, or HPBW, of the associated

power pattern is approximately equal to l/D radians. The maximum of the first side lobes of the

power pattern is a factor of 20 less than the maximum of the main lobe
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therefore detected at the same time, in radio astronomy we are limited to only a

small range or bandwidth of wavelengths.

This results from both the physics of wave propagation and technological

considerations. Whether the receiver consists of a resonant cavity, as in a radio,

or a waveguide, as in a radio telescope, only certain wavelengths can be selected

out of the radiation gathered by the antenna. In addition, in many radio receivers the

radiation collected by the antenna is mixed with a local oscillator signal in order to
convert it to lower frequencies, referred to as intermediate frequencies, abbreviated
IF, for contrast with the terminology of radio frequencies, or RF. These altered

signals deliver the same astronomical information but suffer much less attenuation

than the higher frequency signals in processing by the receiver. The center of the RF

bandwidth that is detected depends upon the local oscillator frequency with which

that incoming radiation is mixed. In this experiment, for example, the RF signals

gathered by the antenna in the 1 GHz bandwidth of 10.7–11.7 GHz are mixed with a

local oscillator frequency of 9.75 GHz so that a 1 GHz IF bandwidth of signals

between 950 and 1950 MHz is actually detected by the receiver.

As a result of these considerations, a different receiver is required for each such

separate bandwidth at which the sky is desired to be observed. Changing receivers

is effectively tuning the radiometer to a different frequency, as one would tune a

television or a radio. In some advanced radio telescopes, the incoming radiation is

divided up and mixed with different local oscillators signals. These enable the

creation of multi-channel receivers.

5. Radio Telescopes: Radio Astronomy Targets

It should be noted that radio telescopes don’t simply provide the ability to observe a

given object at a wavelength different from those of optical telescopes. Objects that

are invisible in optical radiation, for example, the dust-shielded center of the Milky

Way galaxy or the massive radio-emitting regions adjacent to active galaxies, are

detectable in radio waves. Certain physical phenomena create radiation in the radio

wavelength region and not in the optical region, for example, the famous

21-centimeter line of neutral hydrogen and emission from interstellar molecules.

Again, some physical phenomena create radiation in the radio wavelengths of

greater intensity than in the optical region. As with infrared, x-ray, and gamma

ray astronomy, radio astronomy provides new windows to the universe.

Unfortunately, this interest has not spread to amateur astronomers. With CCD

detectors, amateur astronomers can obtain excellent visual images with small

telescopes even in the suburbs of large cities. (The author’s Near Earth Asteroid

Reconnaissance Project utilizes this resource.) The proliferation of radio interference

from military and commercial satellites, radar, microwave transmitters, and hand-

held personal communication devices since the 1950s produces disturbingly large

interference in radio frequencies. Except for the Sun, natural phenomena that would

be of interest to amateurs produce signals that are weak in intensity and broadband,
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requiring expensive equipment. In addition, more appeal attaches to the image of a

bright star cluster or nebula than the pen recording or ammeter display of radio

receiver static. It is interesting, nonetheless, to know that one of the first detections of

radio astronomical extraterrestrial signals was made in 1937 by a radio engineer and

amateur astronomer in his backyard, Grote Reber of Wheaton, Illinois. (He

constructed a 31-ft diameter parabolic antenna for the purpose!)

C. Procedure and Observations

The experimental equipment has three components. They are the soil sample

material which simulates the planetary or moon soil, incandescent light bulbs to

simulate the Sun or a star (used in Experiment #15, “Thermal Radiation from a

Planetary Subsurface: Part II. Soil Sample Measurements,”) and amicrowave radiom-
eter to detect the radiation emanating from the subsurface layers of the sample

material. As with a radio, a microwave radiometer consists of an antenna, a receiver,

and a device to record the received signal. (In your radio, this device is a speaker; in

the microwave radiometer it is a voltage meter or ammeter). Thermometers are placed

under the microwave receiver at various depths of the sample material to measure the

temperatures at those depths.

1. The Soil Samples

We utilize three types of readily available material, which are similar to material we

expect may be present on the surfaces of planets and rocky moons. Granite is an

igneous rock, largely composed of silicon dioxide, or quartz, formed when magma

cools slowly upon ejection from volcanoes. We use fragmented granite to simulate

the soils of volanic regions of the Moon, Venus, and Mars. Sand is composed of

finely fragmented sandstone, a sedimentary rock composed mainly of broken-up

granite, quartz, and feldspars, a group of common rock-forming igneous minerals,

after it undergoes compression. Feldspars are aluminum silicates combined with

other elements. We use sand to simulate dried river beds such as we believe are

found on Mars. The third sample is this sand immersed in water to within 10 cm of

its surface. Some believe that Mars has a permanent layer of ice beneath the surface,

or permafrost, such as exists in the arctic region of Earth. This sample represents a

soil that might exist if a permafrost layer melts, for example near the equator during

Martian summer.

We will use coarse sand. If the sand were fine grained, the water in the third

sample would seep upwards so that the effective depth of the wet sand would

decrease with time. The early and late measurements would be taken of essentially

different material.
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Both granite and sandstone are composed mainly of the chemical elements

oxygen and silicon. The chemical formula for quartz is SiO2. These two elements

together account for nearly 75% by mass of all the elements in the crust of the Earth

and are the two most common elements in the crusts of the terrestrial planets. Being

common, both granite and sand are excellent choices for our soil sample material

In addition, the ability of these substances to radiate when heated, as measured

by their emissivities, differs widely. As shown in Table 1 of Experiment #15,

“Thermal Radiation from a Planetary Subsurface: Part II. Soil SampleMeasurements,”

the emissivity of granite is about 0.45 whereas that of sand varies from 0.76 to 0.90.

(The relationship between emissivity and the amount of radiation provided by a

heated object is discussed in Experiment #17, “Blackbody Radiation”.) Astronomi-

cal studies have shown that the heat conduction within planetary soils includes a

contribution from a radiative term. As a result, this difference in emissivitymay have

an effect in our experiments.

With a ruler, measure the diameter of a number of pieces of the granite rock.

With a micrometer, measure the diameter of a number of grains of the coarse sand.

Enter the results in Table 1 of the DATA SHEET.

2. The Incandescent Light Bulbs and Sand Boxes

In Experiment #15, “Thermal Radiation from a Planetary Subsurface: Part II. Soil

Sample Measurements,” we will heat the soil samples and measure the radiation

they then emit. As shown in Fig. 7, sets of four 150-W incandescent light bulbs, one

set for each sand box, are mounted on rigid stationary platforms to heat the soil

samples. Here we will measure the radiation emitted from the soil samples at room

temperature.

The soil samples are placed in sand box containers. Thermocouples or digital

thermometers calibrated in the Celsius scale are located just below the surface of

the samples and at five depths, 1, 3, 10, 25, and 60 cm, about 2 ft. We don’t want to

measure the temperature at the surface, but just below it, at a depth of about 0.5 cm,

or 1/4 of an inch. The depth of the sand boxes should be slightly greater than the

60 cm depth at which the deepest thermometer will be placed. Even if the heat from

the lamps would penetrate deeper than that in the 75 min during which the soil

samples will be heated, the 2.7 cm-wavelength radiation from greater depths will

not contribute significantly to the detected signal. Holes in the side of the sand box

are drilled into which the thermometers or thermocouples are inserted. The sensors

of the thermometers should be placed within the material, directly below the

microwave radiometer. For their reading, they can be pulled out of the sand box.

As shown in Fig. 7, the soil samples containers sit on platforms mounted on

casters. They can be rolled back and forth from below the light bulb assembly to

below a stationary microwave receiver. To ensure no bias occurs in either heating

the soil samples or measuring their emission, care must be taken to ensure that each

soil sample box is located at the same location directly under the center of the two
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assemblies. To accomplish this positioning under the radiometer, a plumb bob is

attached to the side of the antenna, as shown in Fig. 8. This can be done with a

simple piece of tape. Each time an assembly is rolled into position below the

radiometer, attach the plumb bob. It should hang directly over the center of the

sand box. After positioning the sand box correctly, remove the plumb bob to

prevent it radiating a spurious signal into the antenna.

When calibration measurements are being taken rather than measurements of the

emission from the soil samples, the sand boxes should be placed sufficiently distant

from the radiometer to ensure that no radiation enters the main lobe or close side

lobes of the antenna. Care should also be taken to position the sand boxes distant

from the antennae of other groups in the laboratory.

The sample of sand partially immersed in water requires a bit of care to prepare.

Fill the sand box to within 10 cm of its surface with the coarse sand. Then pour in

water until the top is moist, but not soaked. Then fill in the rest of the sand box with

the sand. To ensure that this water is at room temperature, it should stand overnight

in the laboratory.

The microwave radiometer we will use detects only one of the two linear

polarizations of radiation. To prevent a bias in your measurements, the material

in the sand boxes should be stirred to prevent any clumping of material in a given

direction.

Fig. 7 The soil sample sand boxes sit on a platform which can be rolled into position under the

antenna or remain under a suspended rigid light bulb assembly of four incandescent light bulbs. A

separate assembly heats each of the three soil samples. These will be used in Experiment #15,

“Thermal Radiation from a Planetary Subsurface: Part II. Soil Sample Measurements”
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The areal dimensions of the sand box depend upon the radiometer specifications.

This is discussed in section “Radio Telescopes: Bandwidths” later.

3. The Radiometer

A microwave radiometer detects the radiation from the soil samples. As shown

in Fig. 8, it is suspended over the soil samples for their measurement. The radiom-

eter we will use, the model RTL-11H Portable Radio Telescope, was designed

specifically for use by students of Laboratory Experiments in Physics for Modern
Astronomy by microwave engineers at Spacek Labs in Santa Barbara, California.

This is the same lab that has designed microwave systems for the Cassini space-

craft, CLOUDSAT satellite, TIROS-K satellites, and other space and Earth-based

applications. The system can be obtained from the designers (email:jpolivka@

spaceklabs.com) or, if your university has an electrical engineering department,

its staff can put together the system with the specifications that will be described.

Fig. 8 A sand box is shown in position under the suspended antenna for measurement of the

radiation emitted by the soil samples. A removable plumb bob can be hung from the side of the

antenna to ensure that it is located directly over the center of the sand box so that the nearest side

lobes see only the soil sample
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For the antenna, although either a horn antenna or a small parabolic dish, such as

used by home microwave receivers, can be used, we have chosen the less expensive,

compact horn antenna. Figure 9 shows that to be used in our system. Because we will

design the setup of the equipment (see below) so that the beam will almost entirely

view the soil sample box, the higher directivity of the parabolic dish is not needed. The

horn antenna as designed by the Spacek engineers has dimensions of 6 cm by 10 cm

and provides a 20 dB gain compared to an isotropic radiator. As shown by Eq. (4) of

Experiment #10, “Determination of the Rotation Rate of Planets and Asteroids by

Radar: Part II. Observations of Simulated Planets,” a 20 dB gain is equivalent to a

factor of 102 ¼ 100 increase in directional properties over a non-directional antenna.

The receiver we will use in the radiometer operates in Ku-band at

10.7–11.7 GHz, or 2.6–2.8 cm wavelength, slightly larger than 1 in. This is the

band of television signals broadcast by the Astra 1KR satellite, launched in 1988.

We use this receiver for several reasons. Being commercially produced, Ku-band

receivers are inexpensive. Smaller wavelength (higher frequency) systems are more

expensive. Longer wavelength (smaller frequency) systems have beam patterns

which would require sand boxes holding our soil samples to be unwieldy large. In

addition, many television systems, radar systems, and data and sensor transmission

devices utilize frequencies below 10 GHz and their associated harmonics, thereby

creating spurious, undesired signals.

Figure 10 shows the schematic of the receiver. It lacks two important

components of sophisticated professional radio astronomy receivers. First, being

Fig. 9 (a) The Ku-band horn antenna is shown observing the radiation from a pyramidal

microwave absorber. Photograph by Dr. J. Polivka, Spacek Labs. (b) The actual components of

the RTL-11H are shown, clockwise from upper left: The horn antenna, the waveguide connecting

the horn to the LNB and the LNB, the F/F cable (RG-6 designation) which connects the LNB to the

IF Processor Box, the IF Processor Box, and the power supply. Screws are provided to connect the

horn to the waveguide leading to the LNB. Photograph by the author
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a simple total power receiver, it does not employDicke switch systems, in which the

receiver input is switched rapidly between the signals from the source of interest

and a comparison noise source. (Such systems are also available from Spacek Labs

at increased cost.) Such systems greatly reduce the effect of gain variations of the

various components of the receiver so that the sensitivity of the system depends

mainly on system noise, not gain variations. Second, professional receivers employ

alternating observations of the celestial source and two objects of known tempera-

ture, such as loads or noise diodes, to calibrate the output of the radiometer.

For the sake of affordability and simplicity, our system lacks both these features.

We accordingly require calibration that is not only frequently performed but which

also uses external references of known temperatures and emissivities. This is

discussed in section “Radio Telescopes: Radio Astronomy Targets” later.

The radiometer has only moderate gain, or amplification, stability, with a

maximum drift of 10 K/min. Terminal jacks allow connection to a digital voltmeter

(DVM) or an analog-to-digital converter (ADC) for input into a personal computer

if a digital record is desired. Although the schematic displays a microammeter, its

output terminals provide a DC output in millivolts. Accordingly, we will refer to the

output of the system as millivolts. As noted above, the radiometer detects only one

of the two linear polarizations of radio waves.

As will be discussed in section “Radio Telescopes: Bandwidths” below, we will

place the systemat a height of 1.3m, 4 ft, above the sand box. The cable connecting the

Fig. 10 The receiver for the RTL-11H system. This is a simple total power (non-switched

between the signal and a reference) receiver. The intermediate-frequency (IF) signal from the

LNB is sent via cable to the IF Processor Box where it is converted into a voltage in the detector

and then amplified. The resulting voltage is displayed on a microammeter. An F/F cable connects

the two boxes as well as delivering the power from the power supply back to the LNB. Terminal

jacks allow connection to a digital voltmeter (DVM) or an analog-to-digital converter (ADC) for

input into a personal computer if a digital record is desired. No internal loads are provided for

calibration. This simplifies the system but we then require frequent calibration using external

references of known temperatures and emissivities
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LNB to the IF Processing Box, as shown in Fig. 10, is about 3 ft long. Accordingly, the

IF Processing Box itself will be placed on a platform above the sand box.

In using this system indoors, you should try tominimize the amount of fluorescent

lights which are turned on. Themany 150-W light bulbs used to heat the soil samples

should create enough light in the laboratory that no fluorescent lights are needed.

Although fluorescent bulbs generate visible light by the recombination of ionized

atoms, the many free electrons generate microwave noise of intensity equivalent to

that of a blackbody heated to a temperature of about 10,000 K. The fluorescent bulbs,

of course, are in the ceiling and do not directly radiate into the horn antenna of the

RTL-11H. That noise, however, can be reflected into the antenna by metal, people,

and the calibration water baths and soil samples themselves.

A system similar to the RTL-11H and also designed by the Spacek Labs

engineers, the RTL-11 Portable Radio Telescope, uses the same receiver but a

larger parabolic dish antenna, Fig. 11. With a diameter of 32 cm, slightly larger than

1 ft, it provides a 5� main lobe and maximum side lobes 18 dB lower (a factor of

about 60) than the main lobe. Although this system is less expensive than the RTL-

11H, the necessity to locate the antenna at significant heights above the soil sample,

because of the greater distance from large compared to small antennas at which the

beam pattern forms, may make this system unsuitable for an indoor laboratory

environment. In addition, the side lobes, being much stronger than those of the

RTL-11H, may receive significant emission from people in the laboratory, includ-

ing their hands. These are the concerns which led us to adopt the RTL-11H for use

Fig. 11 The RTL-11 Portable Radio Telescope utilizes the same Ku-band receiver as that

designed for our purposes, but uses the more directional 32-cm (1-ft) diameter parabolic antenna
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in this experiment and in Experiment #15, “Thermal Radiation from a Planetary

Subsurface: Part II. Soil Sample Measurements”.

4. Sand Box Dimensions

Knowing the specifications of our receiver and the wavelength of observation, we

can determine the appropriate dimensions of the sand box holding our soil samples.

With uniform illumination over its aperture, the horn antenna at 2.7 cm-wavelength

provides HPBWs in the two directions, given by l/D, of y1 ¼ (2.7 cm)/(6 cm)

¼ 25.8� by y2 ¼ (2.7 cm)/(10 cm) ¼ 15.5�. The first side lobe can be calculated to
be depressed below the maximum of the main lobe by 13 dB, equivalent to a factor

of 101.3 ¼ 20. Because, furthermore, the angular extent of the first side lobe is

much smaller than that of the main lobe, as shown in Figs. 5 and 6, the error

incurred by the side lobe viewing an object at ambient temperature, such as the table

or floor on which the sand boxes sit, is less than 5%.

As in Experiment #10, “Determination of the Rotation Rate of Planets and

Asteroids by Radar: Part II. Observations of Simulated Planets,” the microwave

radiation gathered by the antenna is mixed with radiation provided by a local

oscillator. Because the receiver will be close to the soil sample in the laboratory,

some of that radiation could be reflected by the soil sample and detected by the

radiometer. To minimize this effect, the Spacek engineers suggest that the antenna

and LNB portion of the receiver should be placed at least 1 m above the soil

samples. We will place the system at a height of 1.3 m, 4 ft, above the sand box.

We can now determine the required size of the sand box. Figure 12 shows the

geometry for a simplified antenna pattern. The required sand box size is accord-

ingly, L ¼ 2D tan y/2. With the radiometer placed 1.3 m above the soil samples, the

dimensions of sand boxes required to intercept the entire main lobe of the antenna

beam are calculated to be about 60 cm by 34 cm, or about 24 in. by 14 in.

With either the RTL-11 or the RTL-11H radiometer, we should use somewhat

larger square sand boxes for several reasons. We want to ensure that the main lobe

of the antenna beam pattern falls entirely on the soil sample and that a minimum

amount of radiation from other objects in the laboratory gets into the side lobes. The

large angular extent of the beam pattern and anticipated imprecision in positioning

the antenna directly over the center of the sand box create these concerns. A larger

size will also allow much of the radiation coming from the incandescent light bulbs

to fall on the surface of the soil samples and will prevent a significant loss of heat by

conduction through the sides of the sand box walls. The latter consideration is

especially important if the RTL-11 system with its large side lobes is being used.

We also prefer to use square sand boxes. Because the narrow part of the aperture

of the horn generates a larger beam in the perpendicular direction than does the

wide dimension, the large side of a rectangular sand box should be oriented

perpendicular to the long dimension of the horn, as shown in Fig. 8. The confusion
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that can easily result from this suggests using a square sand box of the dimension

corresponding to the smaller of the horn dimensions.

With such considerations, two and one-half foot square sand boxes are

employed. Such dimensions will minimize the amount of stray radiation received

in both the main lobe and the side lobes from any objects in the laboratory other

than the calibration and soil samples.

As noted above, the depth of the sand boxes should be slightly greater than

60 cm, about 2 ft. The resulting 2.5 � 2.5 � 2-ft dimensions of the sand boxes is

equivalent to 12.5 ft3 of soil sample material.

5. Radiometer Calibration: Use of Water Baths

As in all quantitative astronomical observations, we must first calibrate our instru-

ment, here the microwave radiometer. This has two aspects. First, we want to

calibrate the radiometer scale. Instead of using internal loads as is done in profes-

sional radio astronomy, in the laboratory we can use a simple technique. We take a

substance which is an excellent radiator of microwaves, that is, having an emissiv-

ity close to unity, and measure its radiation at widely-separated temperatures.

Second, we want to monitor the changes of the gain of the total power receiver

with time, which arise from numerous factors including time-varying voltage of the

power supply and time-varying ambient temperature.

Fig. 12 With the distance

of the radiometer above

the sand box determined

and the angular size of the

main beam known, the size

of the sand box required to

intercept the entire main

beam can be calculated.

A somewhat larger sand box

should be used to reduce

the amount of stray radiation

received from other objects

in the laboratory in the side

lobes. This simplified view

of the antenna power pattern

is plotted using polar

coordinates
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Assuming a linear dependence of the voltage output of the radiometer on the

temperature of the test object, we can determine the calibration scale by taking two

measurements. This is the same as determining the slope and y-intercept of the
straight line relating the voltage reading and the temperature of the object.

Subsequent voltage readings of our soil samples can then be converted to the

effective temperature of the soil samples either numerically or graphically. Because

we will be performing this calibration frequently, we will use the numerical

approach. (The various constants in the Rayleigh-Jeans approximation, discussed

in Experiment #17, “Blackbody Radiation,” are common to all measurements, and

therefore need not be included explicitly in this mathematical procedure.)

Several objects can serve the purpose of being a calibration target. They should

have two characteristics. First, their actual physical temperature should be known

or measureable accurately. Second, the emissivity of the material at Ku-band

should be close to 1.0, which means that it emits the maximum amount of radiation

given its temperature and reflects very little radiation at these frequencies.

Both a thick layer of wet newspapers, with its dark ink, and charcoal grilling

briquets have emissivities close to 1.0 and are suggested by the Spacek Labs

engineers. To avoid the mess with those samples, we can use microwave absorbers.
A suitable microwave absorber for our purposes is a commercially-produced piece

of dark foam material with 2–3 in. diameter cones extending upwards from the

surface, a foam pyramidal absorber, as shown in Fig. 8. For all three materials, we

could use the ambient temperature for one measurement and heat them to a high

temperature in an oven or with a heat gun and then measure its temperature with a

thermometer or infrared thermocouple placed just inside the surface of the material

for the second measurement. This technique, suggested by Spacek engineers,

however has two problems. First, the material will quickly cool, so that the

measured temperature and the actual temperature when observed by the radiometer

will differ. Second, folds in the newspaper, void spaces among the briquets, and

tears in the material of the foam leads to different portions of the samples cooling

differentially so that the temperature over the entire sample will vary. These

materials, therefore, are not preferred as calibration targets.

Instead we will use containers of water. The first will be an ice-water bath,

whose temperature is accurately known to be T ¼ 273.2 K. The second will be a

boiling-water bath, whose temperature is accurately known to be T ¼ 373.2 K.

Using water also has two problems. The first problem concerns steam coming

from the boiling-water bath. Not only will the water vapor enter the antenna, but it

also radiates at microwave wavelengths, a process that will be discussed in Experi-

ment #17, “Blackbody Radiation”. To eliminate this problem, we place a thin sheet

of plastic over the boiling-water bath.

Because the emissivity of plastic is not 1.0, its use causes two subsididary

problems. First, of course, we have effectively changed the emissivity of the

water by covering it with plastic. To correct for this, we will also observe an

ambient-temperature water bath, both uncovered and covered with the plastic

sheet. Second, the plastic will reflect some of the microwaves bouncing around

the laboratory, from the walls, electrical circuits, and people, into the antenna. To
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minimize this problem, we will use not a flat plastic sheet but a thin sheet of plastic

bubble-wrap to create a rough, less reflective surface.

Water not having an emissivity equal to 1.0, but rather about 0.97, poses a

second problem for its use in calibration. It will reflect about 3% of the radiation

that impinges on it. This will not be a severe problem with the rough surfaces of the

ice-water bath and the two baths covered with the thin sheet of plastic bubble-wrap.

To minimize it with the uncovered ambient-temperature water bath, gently stir the

container of water immediately prior to its measurement. Our calibration

measurements will be corrected for the non-unity emissivity of water.

The water containers should have the same areal dimensions as the soil sample

box, 2.5 � 2.5 ft. A depth of 1 ft is sufficient for the calibration. This amounts to

about 47 gal of water for each of the three containers. Because of the weight of this

amount of water, the three water containers are also seated on a platform mounted

on casters for rolling into position under the antenna. One container of water should

stand overnight in the laboratory to enable it to reach room temperature.

6. Radiometer Calibration: The Procedure

In this experiment we will measure the signal from unheated soil samples, which we

will refer to as “nighttime” observations. With all the samples at room temperature,

this will enable us to gain experience in using the radiometer, determine the random

errors in the temperature measurements and the magnitude of gain variations, and

discover if any systematic differences in the signals from the three soil samples

exist, either among them or with depth. In Experiment #15, “Thermal Radiation

from a Planetary Subsurface: Part II. Soil Sample Measurements,” we will use this

experience to measure the signal from the heated soil samples. Throughout the

experiment, try to keep your hands from under the antenna. Your body emits

radiation at the 11 GHz frequency of the experiment.

We want to prevent spurious signals being received by the radiometer. As noted

above, when the following calibration measurements are being taken, the sand boxes

of soil samples, even though they are at room temperature, should be placed suffi-

ciently distant from the antenna to ensure that no radiation from them enters themain

lobe or close side lobes of the antenna. Similarly, when soil samplemeasurements are

being taken in the next section of the experiment, the water baths should be placed

sufficiently distant from the antenna. Care should also be taken to position the sand

boxes distant from the antennae of other groups in the laboratory.

First, we must set the zero and gain settings of the microammeter. Because all

the measured signals will be greater than the signal received from the ice-water

bath, we use an observation of the ice-water bath to establish the zero of the

microammeter. Attach the plumb bob to the antenna and roll the ice-water bath

into position below the antenna. Adjust the position of the water container until its

center is directly under the plumb bob. Remove the plumb bob. Read the signal

from this bath and set the zero of the microammeter to read about one-fifth of the
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total scale. This is a reading of 10 divisions if the microammeter scale has a total of

50 divisions. Enter the position of this zero setting on the DATA SHEET.

We now use the signal received from the boiling-water bath to set the gain of the

microammeter. Roll the ice-water bath from below the antenna and roll the boiling-

water bath into position under it, again using the plumb bob to center it under the

antenna. The boiling-water bath should be covered by a thin sheet of plastic bubble-

wrap. Read the signal from the boiling-water bath, and adjust the gain of the

microammeter so that it reads about three-quarters of the microammeter scale.

Enter the position of this gain setting on theDATASHEET. For consistency between

observations, use the same zero and gain settings throughout the experiment.

Also enter the microammeter reading obtained with the boiling-water bath in

column 2 of Table 2 of the DATA SHEET. If you are using an analog-to-digital

converter to record the data, enter that result in Table 2.

With the zero and gain settings now set, roll the boiling-water bath from under

the antenna, roll the ice-water bath into position using the plumb bob, and reread the

signal from the ice-water bath. Enter the result in column 1 of Table 2 of the DATA

SHEET. If you are using an analog-to-digital converter to record the data, enter that

reading in Table 2.

Wenowmeasure the signal from the ambient-temperaturewater bath, bothwith and

without anoverlaid thin sheet of plastic bubble-wrap, in order to determine a correction

factor for the emissivity of the plastic sheet. Use different thin sheets of bubble-wrap

plastic for the ambient-temperature water bath and the hot-water bath measurements.

Roll the ice-water bath frombelow the antenna and roll the ambient-temperaturewater

bath into position under it. Remember to gently stir the uncovered ambient-

temperature water bath to create a rough, less reflective surface. Enter these

microammeter readings in columns 3 and 4 of Table 2 of the DATA SHEET. If you

are using ananalog-to-digital converter to record thedata, enter those results inTable2.

7. “Nighttime” Soil Sample Measurements

We will perform some “trial runs” of the observations that we will perform

repeatedly in Experiment #15, “Thermal Radiation from a Planetary Subsurface:

Part II. Soil Sample Measurements”. There we will measure the soil temperatures

and signals emitted by the heated soil samples. Here we measure the unheated,

“nighttime” soil temperatures and signals. As noted above, to prevent a bias in your

measurements resulting from the measurement of only one of the two linear

polarizations of radiation by the radiometer, the material in the sand boxes should

be stirred to prevent any clumping of material in a given direction. In all these

measurements, use the plumb bob suspended from the antenna to ensure that the

antenna is positioned directly above the center of the sand boxes.

We measure the signals from each of the sand boxes in turn. Roll the sand box

containing the granite soil sample into position under the antenna. Attach the plumb

bob to the antenna and adjust the position of the sand box until its center is directly
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under the plumb bob. Remove the plumb bob. Enter the beginning time of the

observation in Table 3 of the DATA SHEET. Read the signal and enter the result in

Table 3 of the DATA SHEET. Then roll the sand box away from the antenna.

Repeat these measurements using the soil sample box containing sand and the

soil sample box containing sand partially immersed in water. Enter the results in

Table 3 of the DATA SHEET.

To obtain a measure of the gain stability of the receiver of the RTL-11H

radiometer, repeat these measurements a total of four times, separated by 5-min

intervals. Enter all results in Table 3 of the DATA SHEET. Enter the ending time of

the observation in Table 3 of the DATA SHEET.

These “nighttime” signals may not be exactly the same, varying with

characteristics of the materials such as their emissivities and surface roughnesses,

which are related to the sizes of their constituent particles.

8. “Nighttime” Temperature Measurements

For each of the soil samples, obtain the thermometer readings at each depth. Enter

the results in columns 2, 3, and 4 of Table 4 of the DATA SHEET in degrees K. All

the temperatures should be the same, close to room temperature, about 74�F,
equivalent to 23�C or 296 K. Their variation will provide one measure of the random

statistical random errors we will expect in the measurements of Experiment #15,

“Thermal Radiation from a Planetary Subsurface: Part II. Soil SampleMeasurements”.

D. Calculations and Analysis

1. The Soil Sample

Calculate the mean values of the sizes of the granite, rocks, and coarse sand that you

entered in Table 1 of the DATA SHEET. Also calculate the standard deviations of

these two mean values. Show all your calculations on the DATA SHEET. Enter the

results in Table 1 of the DATA SHEET.

2. Radiometer Calibration

Divide the output of the radiometer received from the “Ambient Water Bath

Without Plastic Sheet” from column 3 of Table 2, by the output received from

the “Ambient Water Bath With Plastic Sheet” from column 4 of Table 2. Enter the

result, the correction factor, fs, in column 5 of Table 2.
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Multiply the value of the boiling-water bath output in column 2 of Table 2 by the

correction factor, fs. Enter the result in column 6 of Table 2. This is now the value of

the boiling-water bath output corrected for the emissivity of the plastic sheet.

We now determine the calibration equation, which will allow us to convert the

microammeter reading from the radiometer to temperatures,

T ¼ aþ bV:

where V is the microammeter reading and T is the temperature of the soil sample at

11 GHz. Calculate the coefficients a and b of the calibration equation, using

Ti ¼ aþ b Vi

Tb ¼ aþ b Vb;

where the temperature of the ice-water bath is Ti ¼ 273.2 K, the temperature of the

boiling-water bath is Tb ¼ 373.2 K, and Vi and Vb are the microammeter readings

when observing the ice-water bath and (corrected) boiling-water bath, respectively.

The solution of these two equations in two unknowns is easily shown to be

a ¼ Tb � ðTb � TiÞ=ðVb � ViÞVb (2)

b ¼ ðTb � TiÞ=ðVb � ViÞ: (3)

Using the data in Table 2, solve for the values of a and b. Show all your

calculations on the DATA SHEET.

A correction for the non-unity value of the emissivity of water must be made to

these data. To correct for a representative value of emissivity of 0.97, it is easily

shown that we must multiply the values of a and b, and therefore the calibrated

temperatures, by an additional factor fe ¼ 1.03. We therefore arrive at the corrected

calibration equation,

T ¼ feðaþ b VÞ: (4)

3. Soil Sample Observations and Gain Variations

With this corrected calibration equation, convert the values of soil sample output from

column 4 of Table 3 of theDATASHEET to calibrated soil sample output. Enter those

values in column 5 of Table 3. Show all your calculations on the DATA SHEET.

For each soil sample, calculate the mean and standard deviation among the four

calibrated temperatures that you have entered in column 5 of Table 3. Show your

calculations on the DATA SHEET and enter the results in columns 6 and 7 of

Table 3 of the DATA SHEET.
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To determine if the mean calibrated temperatures vary with physical

characteristics of the soil sample, namely the surface roughness, construct a graph

of the mean calibrated intensity as a function of particle size. Use the graph paper

on the DATA SHEET or your own graph paper. Use the standard deviations from

Table 1 for the size of error bars along the abscissa scale and the standard deviations

from column 7 of Table 3 for the size of error bars along the ordinate scale. You will

have two points on the graph, one corresponding to the granite and one

corresponding to the dry sand.

To evaluate the magnitude of gain variations of the receiver of the RTL-11H

radiometer, construct a graph of the four measurements for each soil sample of the

calibrated output as a function of time. Use the graph paper on the DATA SHEET

or your own graph paper. For the first datum in each set of four, use the beginning

time as entered in column 2 of Table 3 for the abscissa value. For the last datum in

each set of four, use the ending time as entered in column 3 of Table 3 for the

abscissa value. For the second and third data, use an interpolated time. Use different

symbols for the three soil samples. For the zero of the abscissa scale, use a time

equal to the nearest whole hour before the first observation. Show error bars

corresponding to the standard deviations you have entered in column 7 of Table 3

of the DATA SHEET.

Draw a best-fit straight line through each of the three sets of four data points

corresponding to the three soil samples and determine the y-intercept and slope of
the three straight lines. These slopes are measures of the gain variation in the

receiver of the RTL-11H radiometer over the period of about an hour in which we

made the observations. Perform all your calculations on the DATA SHEET.

We can also use these results to get an estimate of the uncertainty in the

measurement of the signals. In general, we need to calculate the squares of the

deviations of the data points from the best-fit straight line. This is done using

Eq. (1) of Experiment #2, “A Review of Graphing Techniques”. Perform the

calculation on the DATA SHEET for each of the three sets of four data points

corresponding to the three soil samples. (If the straight line that you drew through

the data of the various soil samples is perfectly flat, then the standard deviation

you entered in column 7 of Table 3 will be close in value to this result, depending

on how closely the y-intercept you determined equals the mean value entered in

column 6 of Table 3.)

The average of these three square deviations provides our estimate of the random

errors in the measurement of the radiation intensity. Calculate that average and then

calculate the square root to obtain the error estimate, sI. Perform all your

calculations on the DATA SHEET.

4. “Nighttime” Temperature Measurements

In Table 4 of the DATA SHEET, you entered the values of temperature at six depths

for each soil sample. Calculate the mean values and standard deviations at each of
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the six depths of the three values of temperatures measured for the three soil

samples. Enter the results in Table 4 of the DATA SHEET.

Construct a graph on the graph paper provided on the DATA SHEET or on a

piece of your own graph paper of these six mean temperatures as a function of depth

and draw a best-fit straight line to the data. Construct error bars based on the values

of the standard deviations entered in Table 4. Because all temperatures should be

about the same, room temperature, the line should have zero slope indicating no

dependence on depth.

Calculate the mean value, <T> room, and standard deviation, sroom, of all 18
temperature measurements. This is a measure of the statistical uncertainty in the

measurement of the subsurface temperatures. Show all your calculations on the

DATA SHEET.
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STUDENT’S NAME ________________________________________________

E. Planetary Subsurface Experiment I Data Sheet

1. Soil Samples

Calculation of mean particle size, granite:

Calculation of standard deviation, granite:

Calculation of mean particle size, sand:

Calculation of standard deviation, sand:

Table 1 Size of soil material

Sample Granite Coarse sand

1

2

3

4

5

6

7

8

9

10

Mean value

Standard deviation
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2. Calibration Data

STUDENT’S NAME ________________________________________________

Zero setting of the radiometer: _________

Gain setting of the radiometer: _________

Determination of calibration equation. Show your calculations here.

y-intercept, a ¼ _____ slope, b ¼ _____

Table 2 Calibration data and measured “nighttime” readings

Ice-water

bath

output, Vi

(millivolts)

Boiling

water bath

output, V0
b

(millivolts)

Ambient water

bath without

plastic sheet,

V1 (millivolts)

Ambient

water bath

with plastic

sheet, V2

(millivolts) fs ¼ V1/V2

Corrected

boiling water

bath output,

Vb ¼ fs V
0
b

(millivolts)
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3. “Nighttime” Soil Sample Observations

STUDENT’S NAME ________________________________________________

Table 3 Observed and calibrated outputs

Sample/observation

Beginning

time

Ending

time

Output

(millivolts)

Calibrated

output (K)

Mean

value

Standard

deviation

Granite Obs. #1

Granite Obs. #2

Granite Obs. #3

Granite Obs. #4

Sand Obs. #1

Sand Obs. #2

Sand Obs. #3

Sand Obs. #4

Sand in water Obs. #1

Sand in water Obs. #2

Sand in water Obs. #3

Sand in water Obs. #4
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STUDENT’S NAME ________________________________________________

Calibrated Outputs

Show your calculations of the calibrated outputs calculated from (4),T ¼ fe (a + bV),
for each of the four measurements of each soil sample.

Granite:

Sand:

Sand partially immersed in water:

Mean values and standard deviations

Show your calculations here of the means and standard deviations of the calibrated

outputs for each soil sample.

Granite:

Mean value of granite calibrated outputs (K) ¼ __________

Standard deviation of granite calibrated outputs (K) ¼ _________

Sand:

Mean value of sand calibrated outputs (K) ¼ __________

Standard deviation of sand calibrated outputs (K) ¼ _________

Sand partially immersed in water:

Mean value of sand partially immersed in water

calibrated outputs (K) ¼ ______________________

Standard deviation of sand partially immersed in water

calibrated outputs (K) ¼ ______________________
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STUDENT’S NAME ________________________________________________

Graph of the mean calibrated intensity as a function of particle size

Graph of the mean calibrated intensity as a function of particle size.

Do you find a variation?

Do you expect to find a variation? Explain your answer.

Graph of the four measurements of the calibrated output as a function of time
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STUDENT’S NAME ________________________________________________

Use different symbols for the three soil samples.

Calculation of the y-intercept and slope of the line for each soil sample.

Granite:

y-intercept ¼ _________ K

slope ¼ ________ K/minute

Sand:

y-intercept ¼ _________ K

slope ¼ ________ K/minute

Sand partially immersed in water:

y-intercept ¼ _________ K

slope ¼ ________ K/minute
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STUDENT’S NAME ________________________________________________

Calculation of the squares of the deviations of the data from the best-fit curve

Granite:

Sand:

Sand partially immersed in water:

Calculation of the average of those three squares of the deviations and its square

root

Uncertainty, sI ¼ __________

4. “Nightime” Temperature Measurements

Do you find a variation of temperature with depth?

Table 4 “Nighttime” temperatures

Depth

(cm)

Granite

(K)

Sand

(K)

Sand immersed in

water (K)

Mean value

(K)

Standard deviation

(K)

0.5

1

3

10

25

60
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STUDENT’S NAME ________________________________________________

Do you expect one? Explain your answer.

Calculation of mean temperature and standard deviation

Show your calculations here of the means and standard deviations of the

temperatures at each depth.

Calculation of mean temperature and standard deviation, 0.5 cm:

< T > ¼ _________
s ¼ ________
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STUDENT’S NAME ________________________________________________

Calculation of mean temperature and standard deviation, 1 cm:

< T > ¼ _________
s ¼ ________

Calculation of mean temperature and standard deviation, 3 cm:

< T > ¼ _________
s ¼ ________

Calculation of mean temperature and standard deviation, 10 cm:

< T > ¼ _________
s ¼ ________

Calculation of mean temperature and standard deviation, 25 cm:

< T > ¼ _________
s ¼ ________

Calculation of mean temperature and standard deviation, 60 cm:

< T > ¼ _________
s ¼ ________

Calculation of the mean temperature and standard deviation of all 18 measurement.

Show your calculations here.

< T > room ¼ _________
sT-room ¼ ________
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STUDENT’S NAME ________________________________________________

Graph of mean values of temperatures as a function of depth for “nighttime”

observations
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STUDENT’S NAME ________________________________________________

F. Planetary Subsurface Experiment I Discussion Questions

1. For the “nighttime” measurements of intensity, compare the intensities received

from each of the soil samples on your graph. Do they agree within their standard

deviation or are do they differ significantly? If they differ significantly, how can

you explain that?

2. The temperature of the ice bath is 273.2 K. The temperature of your body is

about 98.6�F, or 310 K. If you were using a microwave antenna that had very

poor directional characteristics, so that a side lobe received radiation from the

entire surface of your hand at 100% efficiency, what temperature would the

calibrated microwave radiometer detect rather than 273.2 K? Assume that your

hand is placed next to the ice water bath container, that the main lobe of the

antenna pattern has 100% efficiency, and that the main lobe obtains radiation

from the entire surface of an ice water bath which is 80 cm on a side.

a. What additional parameter must be estimated to enable you to make this

calculation? Provide a value for that parameter here.

b. Perform the calculation.

c. Calculate the percentage error that would result from the presence of the

strong side lobe.

3. You have created a graph of the mean calibrated intensities as a function of

particle size.

a. Does it show a variation with particle size?
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STUDENT’S NAME ________________________________________________

b. If so, which type of particle is associated with the greatest mean value of

intensity?

c. The color of granite rock can be pinkish or gray depending on its composi-

tion. The sand that you used may be dark or light. As you will learn in

Experiment #17, “Blackbody Radiation,” dark-colored objects generally

have greater values of emissivity than light-colored objects. Depending on

the color of the material that you used, did this effect increase or decrease any

difference between the two values of mean calibrated intensities?

Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Experiment 15

Thermal Radiation from a Planetary

Subsurface: Part II. Soil Sample Measurements

SUMMARY: In Experiment #15, “Thermal Radiation from a Planetary Sub-

surface: Part II. Soil Sample Measurements,” you will continue the

investigations of Experiment #14, “Thermal Radiation from a Planetary

Subsurface: Part I. Calibration and Initial Measurements”. Here, incandescent

light bulbs shine upon the surface of the soil samples, simulating the Sun,

while thermometers record the changing temperatures at various depths with

time. You will use a microwave receiver operating at 11 GHz to detect the

radiation being emitted by the subsurface layers and compare the results

among the various soil samples.

LEVEL OF DIFFICULTY: Moderate

EQUIPMENT NEEDED: Fragmented granite rock, coarse sand, water, and

ice; 2.5 � 2.5 � 2-ft sand boxes; 2.5 � 2.5 � 1-ft water containers; Ku-

band radiometer with horn antenna; digital thermometers; meter stick; thin

sheets of plastic bubble-wrap; heating coils; plumb bob; 150-W incandescent

bulbs and socket assembly, light baffles.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_15, # Springer Science+Business Media New York 2013
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A. Introduction

In Experiment #14, “Thermal Radiation from a Planetary Subsurface: Part I.

Calibration and Initial Measurements,” we were introduced to the heating of a

surface by a source such as the Sun or a star, the conduction of heat from the surface

to subsurface layers, and the outward-directed radiation that results from those

warmed subsurface layers. We calibrated the microwave radiometers used for the

experiment and measured the radiation received when the soil samples are all at

room temperature. In this experiment, we will turn on the source of the heat,

incandescent light bulbs, and perform the same measurements. We will discover

how the radiation changes with the various materials and with the length of time of

exposure to the energy source.

This experiment requires almost constant recording of data. Instead of two or

three students working together, groups of four students should be assigned to each

station. Two should record the temperature measurements and two should record

the measurements from the microwave radiometer. Halfway through the laboratory

class period, the roles can be interchanged so that each student will get experience

in each mode and so that the first pairs can share the techniques in data acquisition

that they have acquired with the second pairs.

B. Theory

Let us say we have a source of energy of intensity So shining upon a surface, given

in energy per second per unit area. In the case of the Sun, this incident energy is

called the insolation. The heated surface radiates energy depending on its tempera-

ture and physical characteristics of the material of which it is composed. The

dependence on temperature is given by Planck’s Radiation Law, an idealized

description of materials radiating with perfect efficiency which is the subject of

Experiment #17, “Blackbody Radiation”.

Real materials don’t radiate with perfect efficiency, however, and that lack of

perfection is incorporated by a dimensionless factor of value less than unity called

the emissivity, e, a characteristic of the surface material. The emissivity of crushed

or fragmented rocky materials is typically 0.7–0.9. Some very dark-colored

materials have an emissivity close to 1. Light-colored materials have lower values

of emissivity. Emissivities for some common materials are provided in Table 1. (In

general, emissivity varies with the temperature of the sample and the wavelength of

the radiation being observed).

Once the surface is heated, the energy that is not radiated outward from the

surface propagates downward by the process of heat conduction. This is one of the
three familiar modes of heat transfer, along with convention and radiation.

The equation of heat conduction, a special case of the diffusion equation, follows
from the law of conservation of energy. It is known empirically (Fourier’s Law;
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Jean Baptiste Joseph Fourier, 1768–1830) that the rate of flow of heat across a

surface is proportional to the gradient of the temperature across that surface; that is,

in time Dt the amount of heat flowing across a surface of area A is,

DQ ¼ �kth
dT

dx
A Dt;

where in one dimension the gradient is the ordinary spatial derivative and where the

constant of proportionality kth is the thermal conductivity of the material, having the

dimensions of Watts/m-K. This represents the common experience that the greater

the temperature variation the greater the amount of heat that flows in a given interval of

time. The negative sign represents heat flowing from the warmer to the colder region.

From conservation of energy, absent any other sources of energy, this flow of

heat of DQ across the surface into the material of thickness Dx and the resulting

temperature rise leads to an equal increase DQ in the internal energy in the material

manifested by a change over time in its temperature, DT,

DQ ¼ cpr DT A Dx;

where the specific heat capacity, cp, is a characteristic of the material describing the

temperature response of the material to the introduction of heat and r is its density.

The increase in internal energy in the material over a given time period is accounted

for entirely by the flow of heat across the boundary in that time period.

By using the integral calculus to sum over finite time periods and a finite distance,

the heat conduction equation relating these two phenomena can be derived. The

resulting distribution of temperature as a function of t and x depends, therefore, on
the thermal conductivity, the specific heat capacity, and the density of the material. It

provides the rate of change of temperature at all locations in the medium. An

example of the solution of the heat conduction equation along a bar in which these

properties have been given uniform values is provided graphically in Fig. 1.

Table 1 Emissivities

of some materials
Material Emissivity

Aluminum foil 0.04

Basalt 0.72

Granite 0.45

Graphite powder 0.97

Gravel 0.28

Gypsum (CaSO4·2H2O) 0.085

Ice (rough or smooth) 0.966–0.985

Limestone 0.96

Sand 0.76–0.90

Soil (dry) 0.92

Soil (saturated with water) 0.95

Water 0.95–0.98
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The result in one dimension is

dT

dt
¼ k

rcp

d2T

dx2
; (1)

where k/(rcp) is referred to as the thermal diffusivity. From (1), the thermal

diffusivity thereby characterizes the transient heat flow through a material. Because

materials with large values of thermal diffusivity have relatively large values

of dT/dt, they relatively quickly change their temperature in the presence of

temperature gradients. This makes sense. They have large thermal conductivities

and low capacity to absorb energy without experiencing an increase in temperature.

As a result, when heated they reach thermal equilibrium with their surroundings

relatively quickly.

From (1), we can interpret the appearance of Fig. 1. Examine the curvature

of the temperature profile, that is, the change with depth of the gradient,

d2T/dx2 ¼ d/dx (dT/dx), at a given time. Where the curvature is negative, such as

near x ¼ 0, the temperature gradient decreases with depth. Equation (1) shows that

the rate of change of the temperatures at those depths is negative, so that the

temperature is decreasing with time. That is shown by the subsequent graphs. On

the other hand, at depths at which the curvature is positive, so that the temperature

Fig. 1 The solution of the heat conduction equation in one dimension for initial temperatures

varying as shown from T1 to T2 along a uniform bar of length L. The time interval between each

frame is constant, but of arbitrary size
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gradient increases with depth, the rate of change of the temperatures is positive.

This indicates that the temperature is increasing at those depths.

At the extremes, if the material has a thermal diffusivity of zero, then the

temperatures at any depth will not change with time as the insolation varies. The

material is a perfect insulator. If the material has a large thermal diffusivity, then the

temperatures will change rapidly with time as the insolation varies.

In deriving this equation, we have assumed that k, r, and cp are constants. In fact,
thermophysical studies of theMoon, lunar rocks, and the planet Mercury have shown

that k is a function of temperature and depth in a planetary surface, r is a function of

depth, and cp is a function of temperature. In Particular, the thermal conductivity

depends not only on actual physical contact between soil particles but also on a

transfer of energy between particles by radiation. This radiative contribution has been

found from studies of lunar soils to have a T3 dependence. As a result, at high

temperature it can provide a greater contribution to the thermal conductivity than

the actual physical contact. The thermal conductivity has an additional contribution

on planets with atmospheres, where energy is transferred between soil particles by

collisions with gasmolecules. Accordingly, we see that energy transport by condition

in planetary surface can in fact occur by all three familiar modes, conduction,

convection, and radiation. In general, solution of the heat conduction equation for

planetary subsurfaces must therefore be performed numerically.

Examining equation (1), we see that a characteristic depths can be determined from

deimensional analysis.The resultingdiffusion coefficient ordiffusiondepth is givenby

DðtÞ ¼
ffiffiffiffiffiffiffi
k

rcp

s
t: (2)

It is reasonable to consider this as the depth to which a temperature change has

occurred as a function of time.

Table 2 provides the thermal diffusivities of some materials. The values range five

orders of magnitudes among natural materials. These values are not determined by

simply combining the factors of k, r, and cp. Instead they are determined directly in

laboratory studies as a functionof temperature. The values provided are representative.

Once the subsurface layers are warmed by heat conduction to a temperature T,
they radiate as blackbodies. That energy propagates outwards through the material

by the process of radiative transfer. In this, the heated material not only radiates as

a blackbody but also absorbs some radiation impinging upon it from the lower

levels, as shown in Fig. 2. This process depends only on the density of the material

and its electrical absorption coefficient, kelec,

dI

dx
¼ rkelec Bðn; TÞ � I½ �;

where typical values for kelec are 0.05 cm2/g and B(n,T) is the formula for Planck’s

Radiation Law, Eq. (1) of Experiment #17, “Blackbody Radiation”. The Planck

curve for an idealized object at 6000 K, close to the effective temperature of the

Sun, is shown in Fig. 1 of Experiment #17, “Blackbody Radiation”.
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The intensity of radiation we receive thereby depends on these many

characteristics of the soil material and its temperature. That is why astronomers

find such studies to be of great value. The values of characteristics for some

materials are provided in Table 3. The density r of water is by definition 1 g/cm3.

The porous igneous rock, pumice, has a smaller density than this, depending on its

porosity, and actually floats in water.

In the microwave region of the electromagnetic spectrum at which these types of

studies are made and at which we are performing our experiment, B(n,T) is

approximately proportional to T with fair to excellent precision. For a body at

Earth-like temperatures of 300 K, the approximation is very good for l > 2.5 mm.

In our experiment at a wavelength of about 2.7 cm, the approximation is excellent.

This is not only a good approximation, but it is also very convenient. The

measurement by a microwave radiometer of the emitted radiation is then directly

proportional to the temperature of the emitting body. For us, the calibration of the

Table 2 Thermal

diffusivities of some

materials
Substance

Thermal diffusivity

(m2/s)

Wood (yellow pine) 8.2 � 10�8

Water 1.4 � 10�7

Silicon dioxide (polycrystalline) 8.3 � 10�7

Sandstone 1.2 � 10�6

Quartz 1.4 � 10�6

Air (1 atm, 300 K) 2.2 � 10�5

Water vapor (1 atm, 400 K) 2.3 � 10�5

Iron 2.3 � 10�5

Aluminum 8.4 � 10�5

Copper 1.1 � 10�4

Pyrolytic graphite flow parallel to layers 1.2 � 10�3

Pyrolytic graphite is a synthetic material whose thermal

properties make it useful in the manufacture of such items as

heat sinks, rocket nozzles, and heating elements

Fig. 2 In the process of radiative transfer in a planetary surface, a volume element of material

of density r and electrical absorption coefficient kelec both absorbs incoming radiation and emits

additional radiation according to its temperature
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microwave radiometer in Experiment #14, “Thermal Radiation from a Planetary

Subsurface: Part I. Calibration and Initial Measurements,” by reference to the

known temperatures of an ice-water bath and a boiling-water bath means that our

measurements of the heated soil materials we are about to perform can be directly

converted to temperature. For real materials, B(n,T) is also proportional to the

emissivity, e, of the material.

C. Procedure and Observations

1. The Incandescent Light Bulbs

As shown in Fig. 7 of Experiment #14, “Thermal Radiation from a Planetary

Subsurface: Part I. Calibration and Initial Measurements,” sets of four 150-W incan-

descent light bulbs are mounted on rigid stationary platforms, one set for each sand

box. They simulate the radiation coming from the Sun or any other star about which

planets are located. The light bulbs are closely spaced to ensure heating of the soil

samples directly below them. The heights of the light bulb assembly can be adjusted.

Your laboratory may choose to use infrared lamps as the source of radiation.

Although the light bulbs will be turned off when measurements of the radiation

from the soil samples are actually being made, they will still be hot and radiating

energy, heating the antenna and receiver. Accordingly, they are shielded from the

microwave radiometer by baffles, such as pieces of styrofoam, to prevent radiation

from the light bulbs from entering the antenna. Styrofoam itself has a sizable

emissivity of 0.60, but because it will be seen in the side lobes of the antenna it

will not contribute substantial amounts of radiation. Gypsum, the component of dry

wall, with an emissivity of 0.085, is also suitable, although its greater density may

create a problem in mounting.

When a sand box is rolled into position under the radiometer, the light bulbs

should be turned off. After measurements are made of the signals from the sand box

Table 3 Thermal properties of common materials

Material Density (kg/m3)

Specific heat

(J/kg-K)

Thermal conductivity

(W/m-K)

Water 1000 4186 0.58

Pumice 641 200 0.5–2.5

Solid rock (granite) 2691 790 2–7

Sand 1602 835 0.30

Wet sand 1922 1931 2.20

Dry soil 1249 800 1.5

Wet soil 1602 1480 2–4

Air, 300 K 1.3 1100 0.024
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and the soil temperatures, the sand box is rolled back under the light bulb assembly

and the light bulbs are turned back on.

On the Earth, the surface is heated by sunlight for hours as the Sun passes

through the sky. We, in the laboratory, lack this time luxury but we need to have

significant amounts of energy reaching the surfaces of the soil samples in no more

than 1 h in order to provide measurable effects. This requires the light bulbs to be

placed relatively close to the surface of the soil samples, no more than 15 cm above

the surface. Using a meter stick, check to see that the light bulbs assemblies for the

three soil samples are located so that the light bulbs are 15 cm above the surfaces

of each of the soil samples. To enable valid comparison of the results among the

three soil samples, the light bulb assemblies should be the same heights above each

sand box.

2. Radiometer Calibration

In Experiment #14, “Thermal Radiation from a Planetary Subsurface: Part I.

Calibration and Initial Measurements,” we measured the signals from unheated

soil samples, which we referred to as “nighttime” observations. Here, we will use

this experience to measure the signals from heated soil samples.

As discussed in Experiment #14, “Thermal Radiation from a Planetary Subsur-

face: Part I. Calibration and Initial Measurements,” in these indoor observations,

you should try to minimize the amount of fluorescent lights which are turned on.

The many 150-W light bulbs used to heat the soil samples should create enough

light in the laboratory that no fluorescent lights are needed. Although fluorescent

bulbs generate visible light by the recombination of ionized atoms, the many free

electrons generate microwave noise of intensity equivalent to that of a blackbody

heated to a temperature of about 10,000 K. The fluorescent bulbs, of course, are in

the ceiling and do not directly radiate into the horn antenna of the RTL-11H. That

noise, however, can be reflected into the antenna by metal, people, and the calibra-

tion water baths and soil samples themselves.

The gain variations expected with the RTL-11H radiometer requires that we

calibrate the system by measuring the signals from the ice-water bath and boiling-

water bath frequently. In Experiment #14, “Thermal Radiation from a Planetary

Subsurface: Part I. Calibration and Initial Measurements,” we calibrated the system

only once. Here, the measurements of the soil temperatures will delay the time

between measurements of the signals from the soil samples. Accordingly, it is

prudent at first to calibrate the system before measuring the signals from each soil

sample. If during your observations you find that the signals from the ice-water bath

and boiling-water bath do not change rapidly over a few minutes, then you can

reduce the frequency of your calibration measurements and perform the calibration

before each set of observations of the three soil samples.

Measuring the signals from the ambient-temperature water bath, to determine

the emissivity of the thin sheet of plastic bubble-wrap, need only be performed
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once. In all these calibration measurements, use the plumb bob suspended from the

antenna to ensure that the antenna is positioned directly above the center of the

water containers. Use different thin sheets of plastic bubble-wrap for the ambient-

temperature water bath and the hot-water bath.

First, as in Experiment #14, “Thermal Radiation from a Planetary Subsurface:

Part I. Calibration and Initial Measurements,” we must set the zero and gain settings

of the microammeter. Because all the measured signals will be greater than the

signal received from the ice-water bath, we use an observation of the ice-water bath

to establish the zero of the microammeter. Attach the plumb bob to the antenna and

adjust the position of the water container until its center is directly under the plumb

bob. Remove the plumb bob. Read the signal from this bath, and set the zero of the

microammeter to read about one-fifth of the total scale. This is a reading of 10

divisions if the microammeter scale has a total of 50 divisions. Enter the position of

this zero setting on the DATA SHEET.

We now use the signal received from the boiling-water bath to set the gain of the

microammeter. Roll the ice-water bath from below the antenna and roll the boiling-

water bath into position under it, again using the plumb bob to center it under the

antenna. The boiling-water bath should be covered by a thin sheet of plastic bubble-

wrap. Read the signal from the boiling-water bath, and adjust the gain of the

microammeter so that it reads about three-quarters of the microammeter scale.

Enter the position of this gain setting on the DATA SHEET. For consistency

between observations, use the same zero and gain settings throughout the experi-

ment. These settings should be very close to those obtained in Experiment #14,

“Thermal Radiation from a Planetary Subsurface: Part I. Calibration and Initial

Measurements”.

Because this measurement is going to be used as the first calibration for the

granite soil sample, enter the time as the “Actual Time Begin” in row 2, column

2, of Table 4 of the DATA SHEET. Enter the microammeter reading obtained with

the boiling-water bath in row 5, column 2, of Table 4 of the DATA SHEET. If you

are using an analog-to-digital converter to record the data, enter that result in

Table 4.

With the zero and gain settings now set, roll the boiling-water bath from under

the antenna, roll the ice-water bath into position using the plumb bob, and reread the

signal from the ice-water bath. Enter the result in row 4, column 2, of Table 4 of the

DATA SHEET. If you are using an analog-to-digital converter to record the data,

enter that reading in Table 4.

We now measure the signal from the ambient-temperature water bath, both with

and without an overlaid thin sheet of plastic bubble-wrap, in order to determine a

correction factor for the emissivity of the similar thin sheet of bubble-wrap plastic

that is placed over the boiling-water bath. This water bath should be left to stand

overnight to ensure that its temperature reaches room temperature. The result for

the correction factor, fs, that we will calculate later should be very similar to that of

Experiment #14, “Thermal Radiation from a Planetary Subsurface: Part I. Calibra-

tion and Initial Measurements,” but the possibility of a different room temperature

and the effect it may have on the emissivity of the plastic material recommends that

the calibration be performed here as well.
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Roll the ice-water bath from below the antenna and roll the ambient-temperature

water bath into position under it. Measure the signal with and without the overlaid

plastic sheet. Remember to gently stir the uncovered ambient-temperature water

bath to create a rough, less reflective surface. Enter these microammeter readings

on the DATA SHEET. If you are using an analog-to-digital converter to record the

data, enter those results on the DATA SHEET.

As noted, at first repeat the calibration of the system using the ice-water bath and

the boiling-water bath before each observation of the soil samples. As you proceed,

you may be able to reduce the frequency of calibrations. In either case, you need not

repeat the determination of the emissivity of the thin sheet of plastic bubble-wrap.

During the laboratory session, the boiling water in the boiling-water bath will

cool. To keep its temperature as close to 373.2 K as possible, keep it covered with

the thin sheet of plastic bubble-wrap and submerge several plugged-in resistive

electric coils below the surface when the signal from the boiling-water bath is not

being measured.

3. Heated Soil Sample Measurements

We now measure the temperatures within the soil samples and the radiation emitted

by the soil samples as the soil samples are heated. Some coordination among

students and attention to detail is needed to ensure we get good quality data.

First, as noted in Experiment #14, “Thermal Radiation from a Planetary Subsur-

face: Part I. Calibration and Initial Measurements,” the microwave radiometer we

will use detects only one of the two linear polarizations of radiation. To prevent a

bias in your measurements, the material in the sand boxes should be stirred to

prevent any clumping of material in a given direction.

One pair of students should perform the soil temperature measurements and a

second pair of students shouldmeasure the signals. Repeat this cycle ofmeasurements

every 15 min, at 15, 30, 45, 60, and 75 min. The roles of the pairs of students can be

alternated after the first three cycles have been completed. If you haven’t done so

during the data taking, share the techniques you have developedwith each other at this

point. Throughout the experiment, try to keepyour hands fromunder the antenna.Your

body emits radiation at the 11 GHz frequency of the experiment.

We do not want the soil samples to significantly cool during the measurement of

their temperatures and emissions. When the soil samples are rolled out from under

the incandescent light bulbs into position under the antenna, they will begin to cool

by radiating energy. To minimize this, the sand boxes should be rolled into position

under the antenna quickly so that the temperature and signal measurements can be

performed as soon as possible after heating of the soil samples has ceased.

After the soil temperatures and signals from the soil samples have been

measured, quickly roll the sand boxes out from under the antenna and back under

its set of incandescent light bulbs and turn the lamps back on. With care, the effect

will not be great. The heat loss is greatest near the surface, to which measurements

of the 2.7 cm-wavelength radiation is not particularly sensitive. In all these
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measurements, use the plumb bob suspended from the antenna to ensure that the

antenna is positioned directly above the center of the sand boxes. Some loss of heat

by conduction through the walls of the sand box will occur.

During the entire sequence of observations, the boiling-water bath should be

covered with its thin sheet of plastic bubble-wrap.

We want to prevent spurious signals being received by the radiometer. Conse-

quently, when soil sample measurements are being taken, the water baths should be

placed sufficiently distant from the antenna to ensure that no radiation from them

enters the main lobe or close side lobes of the antenna. Similarly, when calibration

measurements are being taken, the sand boxes of soil samples, whether heated or at

room temperature, should be placed sufficiently distant from the antenna. Care

should also be taken to position the water baths and soil samples far from the

antennae of other groups in the laboratory.

With this preparation, we now measure the signal from each of the sand boxes in

turn. Our first measurement, corresponding to a time, t ¼ 0, will be of unheated

samples. As in Experiment #14, “Thermal Radiation from a Planetary Subsurface:

Part I. Calibration and Initial Measurements,” all these temperatures should be the

same, close to room temperature, about 74�F, equivalent to 23�C or 296 K.

Roll the sand box containing the granite soil sample into position under the

antenna. One pair of students should attach the plumb bob to the antenna and adjust

the position of the sand box until its center is directly under the plumb bob. Remove

the plumb bob. Measure the signal received by the radiometer and enter the result in

row 6, column 2, of Table 4 of theDATASHEET. The second pair of students should

pull out the thermometers from each depth, read the temperatures, and enter the

temperatures in degrees K in rows 8 through 13, column 2, of Table 4 of the DATA

SHEET.After all readings have been entered, enter the “Actual TimeEnd” in row14,

column 2, of Table 4 of the DATA SHEET. Then roll the sand box away from the

antenna. Position it under the incandescent light bulbs and turn them on. Rotate the

baffles so that the light does not shine on the RTL-11H antenna or receiver.

As we did with the granite soil sample, we now calibrate the radiometer for the

first measurement of the sand soil sample. Roll the ice-water bath into position

under the antenna, and adjust its position until its center is directly under the plumb

bob. Remove the plumb bob. Measure the signal with the microammeter. Enter the

time as the “Actual Time Begin” in row 2, column 2, of Table 5 of the DATA

SHEET. Enter the microammeter reading in row 4, column 2, of Table 5 of the

DATA SHEET. If you are using an analog-to-digital converter to record the data,

enter that result in Table 5. Roll the ice-water bath from under the antenna. Remove

the heating coils from the boiling-water bath and unplug them. Then roll the

boiling-water bath under the antenna, using the plumb bob to ensure it is directly

centered under the antenna. Enter the microammeter reading bath in row 5, column

2, of Table 5 of the DATA SHEET.

Roll the boiling-water bath from under the antenna, place the heating coils under

its surface, and plug them in. Roll the sand box containing sand under the antenna

and position it, as always, using the plumb bob. Remove the plumb bob. Measure

the signal received by the radiometer and enter the result in row 6, column 2, of

Table 5 of the DATA SHEET. The second pair of students should pull out the
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thermometers from each depth and enter the temperatures in rows 8 through 13,

column 2, of Table 5 of the DATA SHEET. After all readings have been entered,

enter the “Actual Time End” in row 14, column 2, of Table 5 of the DATA SHEET.

Then roll the sand box away from under the antenna. Position it under the incan-

descent light bulbs and turn them on. Rotate the baffles so that the light does not

shine on the RTL-11H antenna or receiver.

Repeat the same sequence for the sand box containing sand partially immersed

in water. Enter those data in the corresponding rows and columns of Table 6 of the

DATA SHEET. After its measurement, enter the “Actual Time End” in row 14,

column 2, of Table 6 of the DATA SHEET. Then roll the sand box away from under

the antenna. Position it under the incandescent light bulbs and turn them on. Rotate

the baffles so that the light does not shine on the RTL-11H antenna or receiver.

Repeat these sequences of calibration and measurement of the soil temperatures

and signals from the soil samples at approximately 15 min intervals. In each case,

enter the beginning time, calibrate, measure the temperatures and signal from the

soil sample, and enter the ending time. All data are entered in Tables 4, 5, and 6 of

the DATA SHEET for the granite, sand, and sand partially immersed in water soil

samples, respectively.

As you will learn, measurement of microwave signals is an art. To ensure the data

are comparable, remember to perform the following operations. Keep the ceiling

fluorescent bulbs off as much as possible. When a soil sample has been rolled under

the antenna for measurement, turn its incandescent light bulbs off. When it is rolled

back under the lamp assembly, turn the lamps back on. When the boiling-water bath

is about to bemeasured, remove and unplug the heating coils.When its measurement

is completed, replace and plug the heating coils back in. Keep the boiling-water bath

covered with the thin sheet of plastic bubble-wrap. Because you may fall behind in

your measurements, you need to record the actual time you begin each measurement

cycle and the actual time you complete each measurement cycle. At some time

during the laboratory session, sufficient water may have evaporated from the

boiling-water bath that it may need to be partially refilled. Try to do this more rather

than less frequently so that the small amounts of water are added, allowing the

boiling-water bath to stay hot enough to remain boiling.

When you are completed, turn off all the incandescent light bulbs and unplug the

heating coils inserted into the boiling-water bath.

D. Calculations and Analysis

1. Calibration and Gain Variation

Determine the correction factor, fs by dividing the reading from the ambient-

temperature water bath without the plastic sheet by the reading from the ambient-

temperature water bath with the plastic sheet.
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For each of the pairs of calibration observations of the ice-water bath and

boiling-water bath, calculate the values of the calibration equation coefficients, a
and b, by Eqs. (2) and (3) of Experiment #14, “Thermal Radiation from a Planetary

Subsurface: Part I. Calibration and Initial Measurements”. Show your calculations

on the DATA SHEET. Remember to first multiply the value of the reading from the

hot-water bath by the correction factor, fs, for the emissivity of the plastic sheet.

Summarize the results in Table 7 of the DATA SHEET. In column 2 of Table 7

enter the values of “Actual Time Begin” from Tables 4, 5, and 6 corresponding the

various calibration experiments.

To see the gain variation more clearly, construct a graph of the values of a and b
as a function of the “Actual Time Begin.” Use different symbols to distinguish

among the three soil samples. Describe the magnitude and trend of the gain

variation on the DATA SHEET.

Using the various calibration equations, fromEq. (4) of Experiment #14, “Thermal

Radiation from a Planetary Subsurface: Part I. Calibration and Initial Measurements,”

T ¼ fe (a + b V), calculate the calibrated outputs for each soil sample measurement.

Enter the results in Table 8 of the DATA SHEET. Enter the “Actual End Time” from

Tables 4, 5, and 6 corresponding to the measurement of the soil samples.

2. Heat Penetration Graphs

On the graph paper provided on the DATA SHEET or your own sheet of graph

paper, construct a graph of the calibrated outputs of the soil samples as a function of

time. For the values of time use the “Actual Time End” provided in Table 8. Those

are the times closest to the actual times of observation of the emission from the soil

samples. Plot the data for all three soil samples on the same graph, thereby

producing a family of curves with the soil sample as the parameter. Use different

symbols for each of the soil samples.

In Sect. E.3 of Experiment #14, “Thermal Radiation from a Planetary Subsur-

face: Part I. Calibration and Initial Measurements,” you calculated a standard

deviation of calibrated outputs, sI. On the heat penetration graph, use that value

of standard deviation to place error bars on the data. Draw a smooth curve through

the six data points for each soil sample. These being experimental data, the line

should represent the trend but need not pass directly through all the data points. It

should, however, fall within or reasonably close to all the error bars placed on the

data points. These three curves show how the radiation changed with the length of

time of exposure to the incandescent light bulbs.

Figure 3 shows how this graph should be designed. This should not be taken to

indicate the nature of the experimental results you may find.
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3. Temperature Profile Graphs

On the graph paper provided on the DATA SHEET or your own sheets of graph

paper, construct a graph of the temperatures of the soil as a function of depth for

each nominal time of measurement. For the values of time use the “Actual Time

End” provided in Table 8. Those are the times closest to the actual times of

measurement of the temperatures. Plot the data for all three soil samples on the

same graph, thereby producing a family of curves with the soil sample as the

parameter. If necessary for clarity, use different symbols for the different soil

samples, labeled accordingly.

In Sect. E.4 of Experiment #14, “Thermal Radiation from a Planetary Subsur-

face: Part I. Calibration and Initial Measurements,” you calculated a standard

deviation of room temperature measurements, sT-room. On the temperature profile

graph, use that value of standard deviation to place error bars on the data. Draw a

smooth curve through the six data points for each soil sample corresponding to the

depth of the thermometers. These being experimental data, the line should represent

the trend but need not pass directly through all the data points. It should, however,

fall within or reasonably close to all the error bars placed on the data points.

This will produce a total of six graphs, corresponding to the six nominal times of

observation. If necessary for clarity, use different symbols for the different soil

samples, labeled accordingly. These three curves show how the temperature

changed with depth with time of exposure to the incandescent light bulbs.

Figure 4 shows how these graphs should be designed. Again, this should not be

taken to indicate the nature of the experimental results you may find.

Fig. 3 Example of an “heat

penetration graph,” calibrated

output as a function of time
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Fig. 5 Example of an “effective depth graph,” depth of emission divided by wavelength as a

function of time

Fig. 4 Example of a “temperature profile graph,” thermometer temperature as a function of depth
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4. Effective Depth Graphs

From the heat penetration graph of each soil sample, read the value of calibrated output

from the smooth curve for each of the six nominal times of measurement. On the

corresponding six temperature profile graphs, place a circle on the curve of the

particular soil sample at the value of temperature which equals that calibrated output.

Those circles will correspond to a given depth as read on the abscissa scale. Figure 5

shows how these circles should be placed on the temperature profile graphs.

We recall that the radiative transfer equation, (1), shows that the radiation arises

from all depths in the subsurface. The depths at which the subsurface temperature

equals the calibrated output can be considered a quasi-“effective” depth from which

the radiation is emitted.

In Table 9 of the DATA SHEET, summarize the values of depth, d, at which
the subsurface temperatures and calibrated outputs are equal. To adjust the depths

according to the wavelength of observation, in the rightmost three columns

enter the values of these depths divided by the wavelength, l ¼ 2.7 cm, of

observation, d/l.
On the graph paper provided on the DATA SHEET or your own sheet of graph

paper, construct a graph using the data of Table 9 of the values of d/l at which the

calibrated output equals the subsurface temperature as a function of the nominal

times of observation. Plot the data for all three soil samples on the same graph,

thereby producing a family of curves with the soil sample as the parameter. If

necessary for clarity, use different symbols for the different soil samples, labeled

accordingly.

Draw a smooth curve through the six data points for each soil sample

corresponding to the nominal times of observation. These being experimental

data, the line should represent the trend but need not pass directly through all the

data points.

Connect the points for each soil sample with a smooth curve, but, again, be sure

to represent the trend of the data, not any preconceived ideas. Figure 5 shows how

these graphs should be designed. Figure 5 should not be taken as indicating the

nature of the experimental results you may find.

Figures 3, 4, and 5 illustrate how the graphs should be constructed. The arrows

refer to a specific datum, the observation of the intensity of radiation at 2.7-cm-

wavelength from the granite soil sample at the nominal time of 15 min. In Fig. 3, at

15 min the calibrated intensity is 317 K. This corresponds in Fig. 4 to a depth of

55 cm. Dividing 55 cm by the wavelength of 2.7 cm gives a value of d/l ¼ 20,

which is the location of the data point in Fig. 5.

Describe on the DATA SHEET any difference in the graphs between the soil

samples, noting in particular the effect of values of emissivity and thermal

diffusivity.
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5. Diffusion Depths

From the temperature profile graphs for each soil sample for each time, we can

estimate the depths to which the energy has reached as a function of time for each

soil sample. Estimate the greatest depth at which the temperature has risen above

room temperature at each nominal time. Enter those estimates in Table 10 on the

DATA SHEET. Construct a graph of those results, plotting the results for all three

soil samples on the same graph.
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E. Planetary Subsurface Experiment II Data Sheets

Calibration of thin sheet of plastic bubble-wrap:

Ambient water bath without plastic sheet, V1 ¼ ______ (millivolts)

Ambient water bath with plastic sheet, V2 ¼ ______ (millivolts)

fs ¼ V1/V2 ¼ _________

Table 4 Measured temperatures and outputs: granite

Nominal Times t ¼ 0 min t ¼ 15 min t ¼ 30 min t ¼ 45 min t ¼ 60 min t ¼ 75 min

Actual time begin

Output

(millivolts)

Ice-water bath

Boiling-water

bath

Soil sample

Temperatures (K)

0.5 cm

1 cm

3 cm

10 cm

25 cm

60 cm

Actual time end
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Table 5 Measured temperatures and outputs: sand

Nominal Times t ¼ 0 min t ¼ 15 min t ¼ 30 min t ¼ 45 min t ¼ 60 min t ¼ 75 min

Actual time begin

Output (millivolts)

Ice-water bath

Boiling-water bath

Soil sample

Temperatures (K)

0.5 cm

1 cm

3 cm

10 cm

25 cm

60 cm

Actual time end
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Table 6 Measured temperatures and outputs: sand immersed in water

Nominal Times t ¼ 0 min t ¼ 15 min t ¼ 30 min t ¼ 45 min t ¼ 60 min t ¼ 75 min

Actual time begin

Output (millivolts)

Ice-water bath

Boiling-water bath

Soil sample

Temperatures (K)

0.5 cm

1 cm

3 cm

10 cm

25 cm

60 cm

Actual time end
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Determination of calibration equations

Show your calculations here. Remember to first multiply the value of the reading

from the hot-water bath by the correction, fs, for the emissivity of the plastic sheet

determined above.

Granite:

t ¼ 0 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 15 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 30 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 45 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 60 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 75 min.

y-intercept, a ¼ _____ slope, b ¼ _____
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Sand:

t ¼ 0 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 15 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 30 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 45 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 60 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 75 min.

y-intercept, a ¼ _____ slope, b ¼ _____
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Sand partially immersed in water:

t ¼ 0 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 15 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 30 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 45 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 60 min.

y-intercept, a ¼ _____ slope, b ¼ _____

t ¼ 75 min.

y-intercept, a ¼ _____ slope, b ¼ _____
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Graph of values of a and b. Graph the data for a using the left-hand ordinate scale

and the data for b using the right-hand ordinate scale as a function of the “Actual

Time Begin.” Use different symbols for the different soil samples.

Describe the gain variation you have determined.

Table 7 Summary of calibration equation parameters

Sample Granite Sand Sand in water

Nominal

times

(min)

Actual

time

begin a (K)

b

(K/millivolt) a (K)

b

(K/millivolt) a (K)

b

(K/millivolt)

t ¼ 0

t ¼ 15

t ¼ 30

t ¼ 45

t ¼ 60

t ¼ 75
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Calculations of the calibrated outputs

Show your calculations of the calibrated outputs calculated from Eq. (4) of Experi-

ment #14, “Thermal Radiation from a Planetary Subsurface: Part I. Calibration and

Initial Measurements,” T ¼ fe (a + b V).

Granite:

Sand:

Sand partially immersed in water:

Table 8 Calibrated outputs

Sample Granite Sand

Sand in

water

Nominal

times

(min)

Actual

time

end T (K)

Actual

time end T (K)

Actual

time

end T (K)

t ¼ 0

t ¼ 15

t ¼ 30

t ¼ 45

t ¼ 60

t ¼ 75
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Heat penetration graph

Table 9 Depths (cm) at which calibrated radiation output equals subsurface temperature

Soil sample Granite Sand Sand in water Granite Sand Sand in water

d d d d/l d/l d/l
Nominal times (min)

t ¼ 0

t ¼ 15

t ¼ 30

t ¼ 45

t ¼ 60

t ¼ 75
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Construct the “temperature profile” graphs on the page following the next page

before constructing the below “effective depth” graph.

Effective depth graph

Do the heat penetration graphs, temperature profile graphs, and effective depth

graphs differ for the sand partially immersed in water sample soil compared to those

for the granite and sand sample soils? Describe any differences.

Can you detect any effect arising from the relative emissivities and thermal

diffusivity for granite, sand, and water?

What contribution to such an effect would the void space between the granite rocks

provide?
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After a certain amount of time, a steady state should exist in which the amount of

heat conducted into the subsurface is balanced by the amount of radiation emitted

outwards. It will be manifested by the graph of d/l as a function of time

approaching an asymptote. If this has occurred in any of the soil samples, at

about what number of minutes into the heating did it become evident for each?

Temperature profile graphs
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Table 10 Diffusion Depths (cm)

Soil Sample Granite Sand Sand in water

D D D

Nominal Times

t ¼ 0 min.

t ¼ 15 min.

t ¼ 30 min.

t ¼ 45 min.

t ¼ 60 min.

t ¼ 60 min.

t ¼ 75 min.
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F. Planetary Subsurface Experiment II Discussion Questions

1. The experiment uses incandescent light bulbs to simulate a star heating the

surface of its planets. Why did the experiment not use fluorescent bulbs?

2. Table 10 below provides the average distances of the planets in the solar system

from the Sun. Let us say that we have discovered a planetary system about

another star and that one of the planets is twice as far from its parent star as the

other. Call the near planet “Planet Yxtph” and the far planet “Planet Kqlpr,” in a

language spoken by a civilization whose location I cannot divulge for reasons of

national security and public tranquility.

a) Which set or sets of two planets in the solar system does this factor of two

approximately represent?

b) The Stefan-Boltzmann Law that you will study in Experiment #17, “Black-

body Radiation,” tells us that the total amount of radiation emitted per unit

surface area per second of an idealized object known as a blackbody is,

F ¼ sT4; (3)

where T is the surface temperature, expressed in degrees K, and the Stefan-

Boltzmann constant s ¼ 5.67 � 10�8 W/m2-K4. Assume that all of the

radiation incident on these two planetary surfaces is absorbed by, and thereby

heats, the surfaces, so that an equilibrium is established between the incom-

ing stellar radiation and the blackbody radiation described by the Stefan-

Boltzmann Law. Using the Stefan-Boltzmann Law and Eq. (1) of Experiment

#14, “Thermal Radiation from a Planetary Subsurface: Part I. Calibration and

Initial Measurements,” if the surface temperature at noon on Planet Yxtph is

30�C, what is the surface temperature at noon on Planet Kqlpr? Show your

calculations here.
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3. This experiment is performed while we are submersed in the atmosphere of the

Earth. How would you expect the results to be changed if the experiment was

performed on the surface of an object such as that of Mercury or the Moon,

which lack significant atmospheres? How would, in particular, the mechanism of

heat conduction be affected?

4. Similarly, how would the mechanism of radiative transport of energy be affected

if the experiment were performed on an essentially airless planet?

5. From (1), calculate the amount of time it would take for the temperature to

increase from 300 to 320 K in a medium whose density is 1.2 g/cm3 (1200 kg/

m3), specific heat is 1000 J/kg-K, thermal conductivity is 2 W/m-K and whose

value of D2T
Dx2 is 3 K/cm2. Show your calculations here.
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6. The specific heat of water is by far the highest of any common substance,

Table 3. Helium gas, unknown until it was discovered in the spectrum of the

Sun, has a specific heat of the Sun has as specific heat pf 5190 J/kg-K nearly five

times larger than of air and 24% larger than that of water. Compare the heat

penetrmined temperature profile and effective depth graphs to those determined

here for sand to those that might be determined if we observed the microwave

radiation from the subsurface of a planet covered with sand that had a pure

helium atmosphere. For the sake of this comparison use the temperature profile

graph you determined at a nominal time of thirty minutes.
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7. Assuming constant values for the parameters k, r, and cp, the diffusion depth,

D(t), varies as the square root of t, equation (2). For a thermal diffusivity of

1.2 � 10�6 m2/s, the graph of D(t) is shown in Figure 6.

a) Compare the graph you have constructed for the three soil samples with that

of Figure 6. Does each follow the square root dependence?

b) If they do not, explain the discrepancy between the graph for each soil sample

which differs from Figure 6

Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.

Fig. 6 Diffusion depth as a function of time has a square root dependence for constant values of

thermal diffusivity
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Table 11 Planetary semi-major axes

Planet Semi-major axis (AU)

Mercury 0.39

Venus 0.72

Earth 1.0

Mars 1.5

Jupiter 5.2

Saturn 9.5

Uranus 19.2

Neptune 30.1

Pluto 39.5
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Experiment 16

The Microwave Phase Effect of the Moon

SUMMARY: In this Experiment #16, “The Microwave Phase Effect of the

Moon,” we connect the receiver of the RTL-11H radio telescope to a

communications antenna and observe the Moon over the period of a

month. We graph the variation of the 11 GHz emission and the phase

angle of the Moon as a function of time and compare the two curves.

LEVEL OF DIFFICULTY: Moderate.

EQUIPMENT NEEDED: Water; ice; 2.5 � 2.5 � 1-ft water containers;

Ku-band radiometer with horn antenna; communications antenna; meter

stick; thin sheets of plastic bubble-wrap; plumb bob.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_16, # Springer Science+Business Media New York 2013
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A. Introduction

Radio astronomy had its beginnings in the 1930s in the observations of radio

engineers Karl Jansky (1905–1950) at Bell Telephone Laboratories in Holmdel,

New Jersey, and Grote Reber (1911–2002) of Wheaton, Illinois. Vigorous observ-

ing programs in radio astronomy began following World War II, and although

astronomers studied emission from the galaxy and surveyed the entire sky for

extragalactic objects they also looked to the nearest objects in the sky for signals.

TheMoonwas first detected in 1946 and later observations showed that its thermal

emission varied with the phases of the Moon. This, of course, was expected. The

emission from theMoon in visible wavelengths varies with the phase, the greater the

portion of the visible disk illuminated the brighter theMoon. At radio wavelengths, a

smaller temperature variation with phase and a phase delay were observed compared

to the observations at infrared wavelengths, which emanate from the very surface of

the Moon. In addition, a lack of symmetry of the temperatures about the date of the

full Moon was observed. These findings indicated that the microwave radiation was

being emitted from regions below the lunar surface.

In this experiment, we will use the RTL-11H radio telescope receiver that we

used in Experiments #14 and #15, “Thermal Radiation from a Planetary Subsur-

face: Part I: Calibration and Initial Measurements,” and “Thermal Radiation from a

Planetary Subsurface: Part II: Soil Sample Measurements,” to observe the variation,

or phase effect, of intensity of the 11 GHz signal from the Moon over a lunation, the
complete cycle of its phases. If an eclipse occurs during your school semester, it too

will be observed.

B. Theory

1. Thermal Diffusivity of the Lunar Subsurface Material

As can be seen from Fig. 1 of Experiment #15, “Thermal Radiation from a

Planetary Subsurface: Part II: Soil Sample Measurements,” a time delay exists

between the heating of the surface of a planet or moon and the flow of that heat to

subsurface layers. This makes intuitive sense. The extent of that delay, however,

depends upon the values of the thermophysical parameters of the subsurface

material such as the heat capacity and thermal conductivity. The heat conduction

equation, Eq. (1) of Experiment #15, “Thermal Radiation from a Planetary Subsur-

face: Part II: Soil Sample Measurements,” is parameterized by the thermal diffu-

sivity, thereby explicitly showing this dependence. As discussed there, if the

subsurface material possesses large thermal conductivities and small heat capacities

the surface heat will be conducted rapidly to the subsurface layers. If, in contrast,

the subsurface material possesses small thermal conductivities and large heat

capacities the surface heat will be conducted slowly to the subsurface layers.
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In astronomical studies of the surfaces of moons and planets, this enables

determination of the nature of the subsurface material. Professional astronomers

construct models of the subsurface, including temperature dependences of the

thermal conductivity and heat capacity and the depth dependence of the density.

Comparing the models calculated for different values of these parameters and the

observations, the values of the parameters can be determined. Figure 5 of Experi-

ment #2, “A Review of Graphing Techniques,” is an example of this technique

applied to the planet Mercury.

2. Microwave Phase Effect of the Moon

Here we will utilize a less elaborate means to display the effect of thermal

diffusivity in the time lag between heating of the surface of the Moon and the

radiation it emits. We measure the amount of heat the surface of the Moon receives

by the fraction of its surface that is illuminated by the Sun, the phase of the Moon.

We measure the amount of energy the Moon radiates from its subsurface using the

radio telescope of Experiments #14 and #15, “Thermal Radiation from a Planetary

Subsurface: Part I: Calibration and Initial Measurements,” and “Thermal Radiation

from a Planetary Subsurface: Part II: Soil Sample Measurements”.

Figure 1 shows the microwave phase effect of the Moon at 1.25-cm wavelength

compared to the infrared phase effect, which is essentially the radiation from the

lunar surface and can be considered as representing the fraction of the surface that is

Fig. 1 The microwave phase effect of the Moon. The radiation received from the Moon at 1.25 cm

wavelength (24 GHz frequency) lags the phase of the Moon. This indicates that the radiation

emanates from the subsurface. The 1.25 cm wavelength observations, made by Australian

radiophysicists J. H. Piddington (1910–1997) and H.C. Minnett (1917–2003) in 1949, were the

first over the entire lunar phase cycle
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illuminated by the Sun. Three effects are seen. A time lag occurs between the phase

curve and the thermal radiation detected by the radio telescope. The amplitude of

the variation at microwave frequencies is smaller than that at the surface. Finally,

unlike the sinusoidal variation of the phase curve, the microwave variation is

asymmetric, with a broader maximum about the time of the full Moon than

minimum about the time of the new Moon. This can be quantified by comparing

the width in time of the curve about a value of temperature equal to half of the

maximum temperature to the width in time of the curve about a value of tempera-

ture equal to half of the minimum temperature, Fig. 2. All three effects result from

values of the thermal diffusivity for real materials being finite.

The Apollo lunar explorations showed that the material of the mountainous

highly-cratered highlands regions of the Moon have different composition that

than of the dark maria regions. The former are composed mainly of feldspars, a

rock rich in aluminum, whereas much of the maria material is composed of basaltic

rocks, which have relatively large amounts of iron. The difference in density, color

and therefore absorptive and emissive abilities, and thermophysical parameters

results in different thermal diffusivities. High-resolution microwave studies of the

Moon would demonstrate such differences. Here, observing the entire Moon at one

time, the effect will not be detectable.

3. Lunar Eclipses

A total eclipse of the Moon, which can occur from zero to three times a year,

provides an excellent opportunity to evaluate the thermal diffusivity of the lunar

Fig. 2 The asymmetry of the microwave phase curve, a hypothetical example of which is shown,

can be quantified by comparing the width of the curve about the maximum and minimum

temperatures
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subsurface material over a period of just a few hours. The orbital period of the

Moon around the Earth is 27.3 days. Because it traverses 360� in this time interval,

it moves 0.55 degrees of arc every hour. Although the angular diameter of the Moon

varies from 29.2 to 33.3 minutes of arc depending on the distance of the Moon from

the Earth, which varies slightly because of the eccentricity of the lunar orbit, the

mean value is 0.52 degrees of arc, or 31.2 minutes of arc. The Moon moves its own

angular diameter across the sky in about 1 h.

The geometry of the total lunar eclipse for the case in which the Moon passes

directly through the center of the umbra is shown in Fig. 3. From pairs of similar

triangles, we have two sets of two equations in two unknowns. As shown in Fig. 3,

solving these for x and b, and y and g, respectively, we can then calculate the

physical extent of the umbra, su, and penumbra, sp , at the location of the Moon

during a total eclipse. The results are about 2.7 lunar diameters and 4.8 lunar

diameters, respectively.

Figure 4 shows the contact points for a total lunar eclipse as defined by NASA.

Totality, the appearance of maximum darkness, is defined as that portion of the

eclipse between the events of U2 (umbra-2) and U3, when the Moon is entirely

within the umbra. (In fact, viewers of lunar eclipses observe the Moon to have a

Fig. 3 Using small angle approximations based on the distance from the Earth to the Sun being

much greater than the diameter of either object, the physical size of the umbra, su, and penumbra,

sp, at the location of the Moon during a total eclipse can be expressed in terms of known quantities.

The umbra is found to stretch about 2.7 lunar diameters and the penumbra is found to stretch about

4.8 lunar diameters. The images are not shown to scale
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reddish tinge during totality, resulting from the refraction of the rays of the Sun by

the atmosphere of the Earth.) Because the umbra extends 2.7 lunar diameters and the

Moon moves about one lunar diameter every hour, from the moments of U2 through

U3 the Moon will move an additional 1.7 lunar diameters through the umbra.

As a result of the coincidence of the size of the Moon and the angular velocity of

the Moon as viewed from the Earth, we accordingly find that the lunar surface

experiences totality for about an hour during a total eclipse. Depending on the

distance of the Moon from the Earth and the declination of the Moon, which

determines its trajectory through the shadow, totality can last as long as about

1.7 h, or about 100 min.

Similarly, it takes approximately an hour for the Moon to first enter the shadow

of the Earth, the ingress portion of the total eclipse, and an hour for it to exit from

the shadow of the Earth, the egress portion of the total eclipse. In contrast to Fig. 1,
we conclude that the illumination changes rapidly in a total eclipse, Fig. 5.

The parameters of partial and total eclipses umbral eclipses through 2014 are

provided in Table 1. Such data are available at various websites, for example, http://

www.mreclipse.com/Special/LEprimer.html.

4. Measuring the Temperature of a Celestial Source

The detection of radio emission from celestial objects requires its distinction from

other sources of radio noise. At radio wavelengths, the Rayleigh-Jeans approxima-

tion to the Planck blackbody curve, discussed in Experiment #17, “Blackbody

Radiation,” shows that the emission is proportional to the temperature of the object.

That is what we want to detect.

Fig. 4 The contact points of

a total lunar eclipse. The

darkly-shaded region of the

shadow is the umbra and the

lightly-shaded region is the

penumbra as in Fig. 3. In the

case depicted, the Moon

passes directly through the

center of the umbra. Totality

occurs between portions

designated as U2 and U3. The

images are not shown to scale

432 16 The Microwave Phase Effect of the Moon

http://www.mreclipse.com/Special/LEprimer.html
http://www.mreclipse.com/Special/LEprimer.html
http://dx.doi.org/10.1007/978-1-4614-3311-8_17
http://dx.doi.org/10.1007/978-1-4614-3311-8_17


Other sources of radio noise exist. First, the background, including the atmo-

sphere of the Earth, emits radiation, yielding a temperature of the background,

Tback. This is discussed below. Other sources of background radiation, such as trees,
buildings, human bodies, cell phones, and the transmission of communication

satellites are a problem, but can be eliminated by careful planning of the

observation.

Fig. 5 A total eclipse of theMoon allows determination of the thermal properties of the subsurface

material. This idealized light curve of the visible brightness of the Moon illustrates that ingress,

totality, and egress are all approximately 1 h in duration. In fact, the different brightnesses between

maria and highland regions makes the light curve moderately irregular in shape

Table 1 Partial lunar umbral eclipses and total lunar eclipses through 2014

Date Appearance

Maximum

fraction

within umbra

Minimum

fraction

illuminated

Duration

(totality

in italics)

Visibility in

geographical

sequence

Declination

of Moon on

date

June 4,

2012

Partial 0.370 0.630 2 h 7 min Asia,

Australia,

Pacific,

Americas

+13.0

April 25,

2013

Partial 0.015 0.985 0 h 27 min Europe,

Africa,

Asia,

Australia

+3.0a

April 15,

2014

Total 1.00 0.00 3 h 35 min Australia,

Pacific,

Americas

+2.0a

1 h 18 min

October

8,

2014

Total 1.00 0.00 3 h 20 min Asia,

Australia,

Pacific,

Americas

+3.0a

0 h 59 min

a Because of the low declination of the Moon on these dates, care must be taken to avoid possible

interference with emissions from geosynchronous communication satellites
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Second, the various components of the radio receiver themselves emit radiation.

The noise from radio receivers is well studied by radio engineers. If Tsys is the

temperature equivalent to the noise generated by the receiver, the noise figure, F, is
defined as

Tsys¼ ðF� 1ÞT290;

where T290 is the ambient temperature, usually taken to be equal to 290 K. Often,

the radio engineers quote the noise figure in decibels, Fdb ¼ 10 log(F).
The manufacturer has measured the noise figure of the RTL-11H radio telescope

as 1.5 dB, which is equivalent to a system noise temperature Tsys ¼ 120 K.

The temperature that is recorded from a celestial object depends on its brightness

and the collecting area of the antenna. It is referred to as the antenna temperature,
Ta. The total temperature sensed by the radiometer when pointing at a celestial

object is accordingly

Ttot¼TaþTsysþTback:

5. The Brightness of the Sky at 11 GHZ

Figure 6 shows the contributions of various sources to the brightness of the sky from

100 MHz to 100 GHz in frequency. The minimum of the curve near the 21 cm line

of neutral hydrogen and the four lines of the hydroxyl radical (OH), the neutral form

of the hydroxyl ion, near 18 cm led Bernard Oliver, one of the early researchers into

the possibility of communicative extraterrestrial life, to refer to it as the water hole,
where species meet. A simplified version of this diagram was first published in Sky
and Telescope magazine in 1960 by Frank Drake, the first astronomer to mount a

radio search (Project Ozma) for extraterrestrial intelligent signals.

The 21 cm line results from the hyperfine transition, the change in the energy of
the hydrogen atom when the configuration of the magnetic dipole moment of the

hydrogen atom being parallel to that of the proton spontaneously changes to a

configuration in which the two moments are in opposite directions. This is some-

times referred to as the “spin-flip” transition. This emission provides great infor-

mation to astronomy, allowing radio astronomers, for example, to map out the

spiral arms of the Milky Way galaxy. It was first suggested as a possible mechanism

for creation of a spectral line in the radio part of the electro-magnetic spectrum by

Dutch astronomer Hendrick van de Hulst (1918–2000) in 1945. The OH lines result

from its electric dipole transition.

The contribution from the galaxy noted in Fig. 6 arises from relativistic electrons

orbiting stellar and interstellar magnetic field lines. It depends on the distribution of

energies of the electrons, but it typically leads to a n�0.7 dependence on frequency.
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The quantum limit arising from the receiver itself is proportional to frequency, n. At
11 GHz the major contribution to the emission from the sky is water vapor in the

atmosphere.

We should note that this graph, reproduced in one form or another in many

publications, is an oversimplification of the true situation. First, the galactic non-

thermal contribution varies widely depending on the direction in which you are

viewing the galaxy. The minimum non-thermal radiation is viewed if the telescope

is pointed out of the galactic plane, toward galactic latitude b ¼ 90�. It is signifi-
cantly greater if the telescope is pointed along the galactic plane, in particular

toward the galactic center. Many discussions of the water hole show only the

minimum contribution of the non-thermal radiation. Figure 6 shows the difference

between the emission viewed at b ¼ 90� and b ¼ 10�.
Although the non-thermal radiation is not bright at 11 GHz, at lower frequencies

it can dominate observations of planetary objects. Figure 7 shows the correspon-

dence between the celestial coordinate system of right ascension and declination

and the galactic coordinate system between declinations of �10� and 10�. Within

10� galactic latitude of the galactic plane, shown by the shaded regions, synchrotron
emission is enhanced. If you are not using the RTL-11H radio telescope but rather

Fig. 6 The radio spectrum has a quiet area near where the constituents of water, hydrogen and

OH, have prominent spectral lines. Galactic non-thermal radiation and the emission from water

vapor and oxygen in the atmosphere are weak in the so-called “water hole” region. Those who

study the possibility of extraterrestrial life consider this to be a likely part of the spectrum for

intelligence civilizations to beam signals and to search for signals from other civilizations. The

signals from the galaxy are greater than shown here if the galactic plane is viewed and the signals

from the atmosphere are greater than shown here if the line of sight is not at the zenith
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one operating at a frequency less than 1 GHz you should avoid observing the Moon

if its position is such that its right ascension and declination fall within this 20� band
of galactic latitudes.

As a second simplification, the atmospheric contribution varies widely

depending on the moisture in the air and the angle of view. The curve in Fig. 6

represents a view to the zenith, resulting in a minimum path length through the

atmosphere. Viewing the sky at lower elevations greatly increases the atmospheric

contribution by the familiar sec z relation, where z is the zenith angle. The

dependence on the atmospheric contribution at 11 GHz is shown in Fig. 8.
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Fig. 7 This graph shows the correspondence between the celestial coordinate system of right

ascension and declination and the galactic coordinate system between declinations of �10� and

10�. Within 10� galactic latitude of the galactic plane, shown by the shaded regions, synchrotron

emission is enhanced. Although it is not particularly strong at 11 GHz, if you are instead using a

receiver operating at frequencies less than about 1 GHz, you should avoid making observations of

the Moon if its position is such that its right ascension and declination fall within this band of

galactic latitudes

Fig. 8 The brightness of the sky at 11 GHz. As with observations at most wavelengths, it is

proportional to the secant of the zenith angle except when observing very close to the horizon
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6. Measuring the Sky Brightness

The atmosphere poses an additional problem. The radiation from the Moon is

absorbed as it passes through the atmosphere and the atmosphere itself emits

radiation. This is described by the equation of radiative transfer for radiation

passing through a gas, similar to that for the equation of radiative transfer for

radiation passing through a soil as described in Fig. 2 and Eq. (3) of Experiment

#15, “Thermal Radiation from a Planetary Subsurface: Part II: Soil Sample

Measurements”. In professional astronomical investigations, our observations

would be corrected by consideration of such factors.

Here, however, we will not consider these factors for several reasons. First,

we’re not interested in the actual temperature of the Moon, only in how it varies

with phase. Second, as shown in Figs. 1, 6, and 8, the contribution of the atmosphere

in emission will be much less than the contribution of the Moon itself. Finally, we

can keep the contributions from the atmosphere relatively constant if we constrain

the times of our observations. We should observe only on clear nights, minimizing

the amount of water vapor in our line-of-sight to the Moon. If we observe at times

when the Moon is as close to overhead as possible, we will minimize the path length

in the atmosphere through which the radiation of the Moon must pass in arriving at

our telescope. In other words, avoid making observations of the Moon within a few

hours of its rising or setting.

C. Procedure and Observations

1. The Telescope

In this experiment we will use the receiver of the same RTL-11H telescope that was

used in Experiments #14 and #15, “Thermal Radiation from a Planetary Subsur-

face: Part I: Calibration and Initial Measurements,” and “Thermal Radiation from a

Planetary Subsurface: Part II: Soil Sample Measurements,” but with a larger antenna.

This receiver, with the 32-cm diameter parabolic dish antenna of the RTL-11 radio

telescope, was designed to measure the emission at 11 GHz from the Sun. This

antenna, however, lacks sufficient collecting area to permit the receiver to detect the

signals from the Moon, which are approximately 80–100 times weaker at this

wavelength than those from the Sun. The small horn antenna of the RTL-11H

telescope is even less capable of collecting sufficient signal from the Moon.

A parabolic dish antenna of 8–9 ft in diameter provides sufficient collecting area

to detect the Moon above the noise of the RTL-11 receiver. Dishes of this size,

fortunately, are commonly used as communication antennas, placed on the grounds

or roof-tops of buildings of educational and other institutions. We will accordingly

replace the receiver installed on the communications antenna with the receiver of

the RTL-11H radio telescope and use it to detect the emission from the Moon.
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Depending on the materials out of which they are constructed, these antennas

can be fairly massive. If that is the case with the antenna you will be using, and if

the antenna cannot be locked down into position, several students should be

providing support during the observations. A technician from your school is also

encouraged to participate.

Antennas are mounted in either of two ways. In the altitude-azimuth or alt-
azimuth mount, the antenna is positioned about horizontal and vertical axes, to

provide rotation in the altitudinal and azimuthal direction, respectively. In the polar
mount, the antenna is positioned about an axis pointing to the north pole and an axis
perpendicular to that axis, to provide rotation in the directions of right ascension

and declination. For our purposes in positioning a potentially massive antenna, the

latter mount is preferred. The antenna can be locked in declination position and then

simply rotated by hand as the Moon moves.

Because the dish is larger than the aperture of the horn antenna, the beam will be

smaller. As discussed in Experiment #15, “Thermal Radiation from a Planetary

Subsurface: Part II: Soil Sample Measurements,” the HPBW will be approximately

l/D radians. At our wavelength of l ¼ 2.7 cm and a value ofD ¼ 96 in.�2.54 cm/in.

¼ 183 cm, we find BWHP ¼ 0.63�. This is only slightly larger than the angular

diameter of the Moon.

Such a beam width has two important results. First, we have a good chance of

observing the Moon without interference from trees and buildings. Communication

satellite signals are sufficiently strong, however, that their reception by the side

lobes of the antenna beam may still be a problem. Second, this relatively small

beam makes it somewhat difficult to point the telescope at the Moon. As a result, we

want to attach a guiding “telescope” to the antenna.

2. The Optical Guide

Professional telescopes have accurate guiding mechanisms with which to point the

telescope and to track a given object over the period of observation. Many amateur

optical telescopes have small guiding telescopes attached to them to enable location

of objects within their larger field of view. In radio astronomy, determination of the

pointing characteristics of a newly-constructed telescope is performed by a star

pointing experiment. In this, as with the amateur optical telescope, an optical

telescope is attached to the side of the radio antenna. As the antenna is pointed to

different portions of the sky, the difference between the positions provided by the

readout of the telescope steering gears and the accurately known position of bright

stars are determined. In addition to our inability to “see” objects in radio

wavelengths through a radio telescope, this pointing experiment is needed to

determine the change of direction of the pointing of massive antennas as they sag

under the force of gravity.

In this experiment, because the Moon is so bright, we can simply use a circular

piece of plastic pipe as our guide telescope! We only need to be able to attach it
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securely to the rim of the communications antenna to enabling our keeping the

antenna pointed at the Moon. A circular piece of cardboard such as from a roll of

kitchen towels could also be used if it can be secured to the antenna and kept from

bending in the wind.

As shown in Fig. 9, we want to align the circular guide “telescope” with the axis

of the communications antenna. This is done easily by viewing the Moon with the

receiver that is already installed on the antenna. With the assistance of a technician

from your school, release the antenna from its locked position. Before moving the

antenna, make sure that you have recorded its position so that it can be repositioned

to point at the communications satellite after your use. Move the antenna about its

two axes so that it points as closely to the direction of the Moon as you can aim.

Then move it about that direction until the signal using the receiver in place is

greatest, indicating that the Moon lies completely within the beam of the antenna.

Now attach the circular guide to the rim of the telescope and orient it so that it looks

directly at the center of the Moon and lock it down securely in place. Henceforth,

you can use the circular guide to point the antenna to the Moon. Of course, if you

prefer you can forego this procedure and simply point the antenna at the Moon and

move it about until obtaining the maximum microwave signal.

If the signal from the communications antenna you are using cannot be directly

read, use the IFProcessorBox from theRTL-11Hradiometer for the alignment. Inside

the laboratory, disconnect the RTL-11H receiver from the horn antenna. On the RTL-

11H radiometer, a cable connects the LNB to the IF Processor Box. Disconnect that

Fig. 9 A hollow plastic pipe

can be used as a guide

telescope to facilitate pointing

of the radio telescope at the

Moon
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cable from the LNB. Take the cable and its connected to the IF Processor Box outside

to the communications antenna. Disconnect the LNB of the communications antenna

from its receiver. Now, use the RTL-11H cable to connect the LNB of the

communications antenna to the IF Processor Box. You can now use the radiometer

to measure the signal of the Moon and thereby align the optical guide. You may

require the assistance of a technician from your school to perform this operation.

3. Avoiding Interfering Signals

The advantage of observing outdoors is the lack of concern about reflection of

microwaves off of walls and radiation from interior wiring. Other sources of

interference, however, do exist outdoors.

Figure 5 represents only celestial and atmospheric sources of radiation. At

microwave frequencies, trees, buildings, and people also emit significant radiation.

These can be somewhat controlled if we are careful to point the antenna away from

such objects, that is, far above the horizon. In addition, cellular phones emit signals

near the intermediate frequencies of the LNB. No one should be using their cell

phones during the observations.

More troublesome is the presence of communication satellites. The LNB of the

RTL-11H radio telescope is tuned to the very frequency of these communication

satellite transmissions. Because the communication satellites are located in geosyn-

chronous orbits located above the equator, their declinations are all within a few

degrees of zero. This implies that the observations with the 11 GHz receiver of the

Moon, the orbit of which lies close to the ecliptic plane, should be performed when

the Moon is far from the celestial equator, the zero of declination (see Fig. 3 of

Experiment #5, “Earth: The Seasons and Local Latitude”). In other words, the

observations should be made when the declination of the Moon is close to 23� if you
are located in the northern hemisphere or when the declination of the Moon is close

to – 23� if you are located in the southern hemisphere. The website http://faculty.

physics.tamu.edu/krisciunas/ra_dec_moon.html provides the right ascension and

declination of the Moon for all the dates of a given calendar year.

In summary, the best times to observe theMoonwith the 11GHz receiver are when

the Moon is at large declinations and when it is distant from the horizon. The former

constraint minimizes the chance of interference from communication satellites. The

latter constraint will minimize the contribution of the emission from the atmosphere

and enable you to avoid possible interference from trees and buildings.

4. Microwave Phase Effect: Calibration

We will observe the Moon with the IF Processor Box of the RTL-11H telescope

connected to the LNB of the communications antenna on 15–20 clear nights over a
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period of at least 1 month at times when the Moon is highest in the sky. Before each

observation of the Moon, we will calibrate the telescope inside the laboratory as in

Experiments #14 and #15, “Thermal Radiation from a Planetary Subsurface: Part I:

Calibration and Initial Measurements,” and “Thermal Radiation from a Planetary

Subsurface: Part II: Soil Sample Measurements,” by observing an ice-water bath

and a boiling-water bath covered with a thin sheet of plastic bubble-wrap. On the

first day of observation we will determine the emissivity of the thin sheet of plastic

bubble-wrap by also measuring emission from an ambient-temperature water bath.

The thin sheet of plastic bubble-wrap covers the boiling water to prevent steam

from entering the antenna and to eliminate emission from the water vapor itself.

Having a non-smooth surface, it also minimizes reflections of microwave signals

from the walls and people in the laboratory into the antenna. Measurements of the

ambient-temperature water bath with and without the thin sheet of plastic bubble-

wrap will provide a measure of the change of emissivity that results from placing

the plastic over the water.

Use different thin sheets of plastic bubble-wrap for the ambient-temperature

bath and the boiling-water bath. Remember to gently stir the uncovered ambient-

temperature water bath to create a rough, less reflective surface. In all these

calibration measurements, use the plumb bob suspended from the antenna to ensure

that the antenna is positioned directly above the center of the water containers.

The water containers should have the same areal dimensions as the soil sample

box, 2.5 � 2.5 ft. A depth of 1 ft is sufficient for the calibration. This amounts to

about 47 gal of water for each of the three containers. Because of the weight of this

amount of water, the three water containers are also seated on a platform mounted

on casters for rolling into position under the antenna. One container of water should

stand overnight in the laboratory to enable it to reach room temperature.

The zero and gain settings of the microammeter are set as in Experiments #14

and #15, “Thermal Radiation from a Planetary Subsurface: Part I: Calibration and

Initial Measurements,” and “Thermal Radiation from a Planetary Subsurface: Part

II: Soil Sample Measurements”. Because all the measured signals will be greater

than the signal received from the ice-water bath, we use an observation of the ice-

water bath to establish the zero of the microammeter. Attach the plumb bob to the

antenna and roll the ice-water bath into position below the antenna. Adjust the

position of the water container until its center is directly under the plumb bob.

Remove the plumb bob. Read the signal from this bath and set the zero of the

microammeter to read about one-fifth of the total scale. This is a reading of 10

divisions if the microammeter scale has a total of 50 divisions. Enter the position of

this zero setting on the DATA SHEET.

We now use the signal received from the boiling-water bath to set the gain of the

microammeter. Roll the ice-water bath from below the antenna and roll the boiling-

water bath into position under it, again using the plumb bob to center it under the

antenna. The boiling-water bath should be covered by a thin sheet of plastic bubble-

wrap. Read the signal from the boiling-water bath, and adjust the gain of the

microammeter so that it reads about three-quarters of the microammeter scale.
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Enter the position of this gain setting on the DATA SHEET. For consistency

between observations, use the same zero and gain settings in all future observations.

Also enter the microammeter reading obtained with the boiling-water bath in

column 5 of Table 2 of the DATA SHEET. If you are using an analog-to-digital

converter to record the data, enter that result in Table 2.

With the zero and gain settings now set, roll the boiling-water bath from under

the antenna, roll the ice-water bath into position using the plumb bob, and reread the

signal from the ice-water bath. Enter the result in column 4 of Table 2 of the DATA

SHEET. If you are using an analog-to-digital converter to record the data, enter that

reading in Table 2.

On the first day of observation, read the signals from the ambient-temperature

water bath both with and without the overlaid thin sheet of plastic bubble-wrap, in

order to determine a correction factor for the emissivity of the plastic sheet. Use

different thin sheets of bubble-wrap plastic for the ambient-temperature water bath

and the hot-water bath measurements. Roll the ice-water bath from below the

antenna and roll the ambient-temperature water bath into position under it. Remem-

ber to gently stir the uncovered ambient-temperature water bath to create a rough,

less reflective surface. Enter these readings on the DATA SHEET. If you are using

an analog-to-digital converter to record the data, enter those readings on the DATA

SHEET.

5. Microwave Phase Effect: Observations of the Moon

If you have not already done so in aligning the optical guide to the communications

antenna, disconnect its LNB from its receiver. Before moving the antenna to

facilitate your doing this, make sure that you have recorded its position so that it

can be repositioned to point at the communications satellite after your use. Your

school may require the assistance of a technician to perform these operations.

We now repeat the procedure of connecting the IF Processor Box of the RTL-

11H telescope to the LNB of the communications antenna. Inside the laboratory,

disconnect the RTL-11H receiver from the horn antenna. On the RTL-11H receiver,

a cable connects the LNB to the IF Processor Box. Disconnect that cable from the

LNB. Take the cable and its connected IF Processor Box outside to the

communications antenna. Now, use the RTL-11H cable to connect the LNB of

the communications antenna to the IF Processor Box. You can now use the

radiometer to measure the signal of the Moon and thereby align the optical guide.

You may require the assistance of a technician from your school to perform this

operation.

To ensure that all the connections are secure, point the telescope at your

classmates or at a nearby building. Their microwave emissions should lead to an

increase in the microammeter reading.

The signals from the Moon and dark sky will be appreciably smaller than those

received in the laboratory from the water calibration samples. The water samples
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provide a strong signal at 273.2–373.2 K. Including the 120 K system noise

temperature, the total measured temperatures vary from 393 to 493 K, a range of

a factor of 1.3. The gain setting can be relatively small. In the observations of the

dark sky and Moon, the signals and therefore antennas temperatures are signifi-

cantly smaller. As a result, the gain setting should be greater to allow sufficient

precision in the reading of the microammeter scale.

We now determine the zero and gain settings for the observations of the Moon.

Because all the measured signals will be greater than the signal received from the

dark sky, we use an observation of the dark sky to establish the zero of the

microammeter. With the optical guide as an aid, point the telescope at a portion

of the dark sky one or two Moon diameters from the Moon. If a large signal is read

on the microammeter, you may be looking near a communications satellite. Move

the antenna until you observe a small signal. Now adjust the zero of the

microammeter to read about one-fifth of the total scale, a reading of 10 divisions

if the microammeter has a total of 50 divisions.

We use the signal received from the Moon to set the gain of the microammeter.

With the optical guide as an aid, point the antenna directly at the center of the

Moon. Adjust the gain setting on the microammeter so that it reads about three-

quarters of the microammeter scale. If you are observing a crescent phase of the

Moon, the gain setting should be set so that it reads about one-half of the

microammeter scale. We anticipate that gibbous and full phases of the Moon will

be associated with larger amounts of microwave emission. Enter the microammeter

output in column 9 of Table 3 of the DATA SHEET. If you are using an analog-to-

digital converter to record the data, enter those results in Table 3. Enter the date and

time of your observation in columns 2 and 3, respectively, of Table 3 of the DATA

SHEET.

For consistency between observations on all observing nights, enter the position

of these zero and gain settings on the DATA SHEET and use the same zero and gain

settings in all future observations.

As described above, the beam of the antenna will be appreciably smaller than

that of the horn antenna. Depending on the size of your antenna, it may be

approximately the size of the lunar disk itself. If you have not installed the optical

guide on the antenna, you should move the antenna manually both upwards and

downwards and to the sides about the position of the Moon until you obtain the

maximum output. As with guided observations, adjust the gain setting on the

microammeter until a sizable reading above the zero level is read and enter the

microammeter output in column 9 of Table 3 of the DATA SHEET.

We will now examine the area around the Moon to ensure that no communica-

tion satellites are present whose transmissions are entering the side lobes of the

antenna. Move the antenna off of the Moon one or two Moon diameters to the north

and obtain an output reading. Enter it in column 5 of Table 3 of the DATA SHEET.

Similarly, move the antenna one or two Moon diameters to the south, east, and west

of the Moon and obtain an output reading. Enter those values in columns 6, 7, and

8 of Table 3 of the DATA SHEET.
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From Fig. 8, we see that the temperature of the sky at 11 GHz should not be

greater than 10 or 20 K. If you observe substantially larger temperatures on a clear

night in any of the off-Moon observations, you most likely are receiving emission

from trees, buildings, people, or a satellite, or significant thin clouds are in the

atmosphere. We will treat the results from the Moon for that particular night with

suspicion when analyzing the data later.

Your school will probably have only one communications antenna available for

use for this experiment. As a result, the various laboratory teams should calibrate

their RTL-11H receivers in the laboratory and then in turn walk outside, connect

their receiver, perform the measurements of the Moon and dark sky, and then

disconnect their receiver to make room for that of the next team. Note that as the

night progresses, some teams may find interference by communication satellites

which were not experienced by other teams. That simply results from the Moon

changing its position over the sky with time. Varying meteorological conditions

will also affect the brightness of the dark sky.

The final team making measurements of the Moon should disconnect their RF

Processor Box from the LNB of the communications antenna, reconnect the

receiver of the communications antenna, and reposition the antenna to look at the

communications satellite. You may require the aid of a technician to perform these

operations.

6. Lunar Eclipses

If you are fortunate to have a significant partial lunar eclipse or a total lunar eclipse

occurring during your school semester, observations can be made of the event over

a period of several hours. The observations should span the time interval from

before the Moon enters the shadow of the Earth to after the Moon emerges from the

shadow. Observations should be made during the ingress, totality, or near maxi-

mum obscuration if the eclipse is partial, and egress portions of the eclipse.

Perform the same procedure as you did in observing the microwave phase effect.

If you have not aligned an optical guide to the communications antenna, do so

following the steps in section “The Optical Guide” above. Using the same zero and

gain settings for calibration as you used in observing the phase effect of the Moon,

perform the calibration inside the laboratory using the water baths. Enter the results

in Table 5 on the DATA SHEET. Then disconnect the IF Processor Box from the

LNB of the RTL-11H telescope and connect it to the LNB of the communications

antenna.

To make sure that all the connections are secure, point the telescope at your

classmates or at a nearby building. Their microwave emissions should lead to an

increase in the microammeter reading.

Some time before the eclipse is scheduled to begin, and using the same zero and

gain settings for observations of the eclipse as you used in observing the phase

effect of the Moon, observe the sky near the Moon to ensure that no spurious signals
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are being received from communication satellites or nearby trees and buildings. If

the values are significantly higher than those predicted by Fig. 6, move the antenna

to a nearby position and observe again. Enter the time of the calibration and the

output of the receiver in columns 2 and 3 of Table 6 of the DATA SHEET.

As the eclipse begins, try to keep the antenna pointed at the Moon as it moves

over the sky with the rotation of the Earth. You may want to have your laboratory

partners alternate holding the antenna in position while another reads the output.

You want to make sure that the reading is significantly larger than what you

obtained with the blank sky, indicating that you are indeed pointing the antenna

at the Moon. If the signal suddenly increases substantially, a communications

satellite may have entered one of the side lobes of the antenna. Making at least

10 observations will enable determination of the amount of uncertainty in the

observations. Enter the time of the observations and the microammeter reading in

columns 2 and 3 of Table 6 of the DATA SHEET. If you are using an analog-to-

digital converter to record the data, enter those results in Table 6.

After the eclipse has ended, disconnect the RF Processor Box from the LNB of

the communications antenna, reconnect the receiver of the communications

antenna, and reposition the antenna to look at the communications satellite. You

may require the aid of a technician to perform these operations.

D. Data Reduction and Analysis

1. Radiometer Calibration

We first calibrate the radiometer as in Experiments #14 and #15, “Thermal Radiation

from a Planetary Subsurface: Part I: Calibration and Initial Measurements,” and

“Thermal Radiation from a Planetary Subsurface: Part II: Soil Sample

Measurements”. Divide the output of the radiometer received from the “Ambient-

temperature Water Bath Without Plastic Sheet” as entered on the DATA SHEET by

the output received from the “Ambient-temperature Water Bath With Plastic Sheet”

to obtain the value of the correction factor, fs. Enter the result on the DATA

SHEET. Because this factor corrects for the emissivity of the plastic sheet, it will

not change over the span of your observations and need only be determined once.

We are assuming that the emissivity of the plastic material is not temperature-

dependent so that the value determined with the ambient water bath is the same as

the value when placed on the boiling-water bath. If the plastic bubble-wrap

degrades from repeated usage with the boiling-water bath, then the material should

be replaced.

Multiply the values of the boiling-water bath output in column 5 of Table 2 of

the DATA SHEET by the correction factor, fs. Enter the result in column 6 of

Table 2. This is now the value of the boiling water bath output corrected for the

emissivity of the plastic sheet to be used in calculation of the calibration equation.
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As in Experiments #14 and #15, “Thermal Radiation from a Planetary Subsur-

face: Part I: Calibration and Initial Measurements,” and “Thermal Radiation from a

Planetary Subsurface: Part II: Soil Sample Measurements,” we now determine the

calibration equation for each observation, which will allow us to convert the

microammeter reading from the radiometer to temperatures,

T ¼ aþ bV:

Here V is the microammeter reading and T is the temperature of the Moon at

11 GHz. For each observation, calculate the coefficients a and b of the calibration

equation, using

Ti ¼ aþ b Vi

Tb ¼ aþ b Vb;

where the temperature of the ice-water bath is Ti ¼ 273.2 K, the temperature of the

boiling-water bath is Tb ¼ 373.2 K, and Vi and Vb are the microammeter readings

when observing the ice-water bath and (corrected) boiling-water bath, respectively.

The solution of these two equations in two unknowns is easily shown to be

a ¼ Tb � ðTb � TiÞ=ðVb � ViÞVb

b ¼ ðTb � TiÞ=ðVb � ViÞ:

Two corrections must be made to these data. First, as in Experiments #14 and

#15, “Thermal Radiation from a Planetary Subsurface: Part I: Calibration and

Initial Measurements,” and “Thermal Radiation from a Planetary Subsurface: Part

II: Soil Sample Measurements,” we must correct for the non-unity value of the

emissivity of water. To correct for a representative value of emissivity of 0.97, you

can show that we must multiply the values of a and b, and therefore the calibrated

temperatures, by an additional factor fe ¼ 1.03. Second, we have used a different

gain of the microammeter for the calibration and actual Moon observations. The

temperatures must therefore similarly be multiplied by the ratio, rg , of the gain used
for the Moon observations to the gain used for the calibration. With the corrected

calibration equation,

T¼fergðaþbVÞ; (1)

convert the value of lunar output for each observation from column 9 of Table 3 of

the DATA SHEET to calibrated lunar output. Enter those values in column 10 of

Table 3. Show all your calculations on the DATA SHEET.

Construct a graph of the values of a and b as a function of time to determine the

variation of gain during the period of the observations. If any value of pairs of

values differs significantly from the trend, treat the result for the temperature of the

Moon on that date with suspicion.
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2. Graph of the Microwave Phase Effect

The U.S. Naval Observatory web site, http://www.usno.navy.mil/USNO/astronom-

ical-applications/data-services/frac-Moon-ill, provides the fraction of the lunar

surface illuminated at noon or midnight on any date in a given time zone. The

values are provided in tabular form. Provide your local time zone at the website and

then read the value for the fraction of lunar surface illuminated on the date of

observation from the table generated. Enter that value in the final column of Table 3

of the DATA SHEET.

The fraction of the lunar surface illuminated may vary by as much as 25% on

successive days near first and last quarter phases. This is a significant variation. The

U.S. Naval Observatory website, however, provides these data for your local time

so that no iteration between the tabulated values for successive dates is needed.

Even if your observations occur as much as 4 h before or after midnight your error

will be no more than 4/24 � 25% ¼ 4%.

Convert the calendar date of observation to the Julian date using the tables of

Appendix III and enter the result in column 3 of Table 3 of the DATA SHEET. Using

your own graph paper or the graph paper provided on the DATA SHEET, construct a

graph of the fraction of lunar surface illuminated and the calibrated output of the

radiometer as a function of Julian date. Draw a smooth curve through the points. If

you found evidence for the presence of communication satellite transmissions in

your observations, do not consider those points when drawing the smooth curve.

Three indices can be calculated from this graph to represent the effect of finite

values of the thermal diffusivity. Using this graph, determine both the time lag

between the maximum of the illuminated surface curve and the 11 GHz variation,

and the amplitude of the 11 GHz variation. In order to determine a measure of the

asymmetry in the variation, first draw a horizontal line at the value of temperature

T ¼ 1/2 (Tmax � Tmin), where Tmax is the maximum temperature observed, and Tmin
is the minimum temperature observed. Then determine the width of the variation in

time to half of the maximum value and to half of the minimum value, as shown in

Fig. 2. Show these calculations on the DATA SHEET and enter your results in

Table 4 of the DATA SHEET.

Figure 1 is reproduced on the DATA SHEET, with grid lines, to facilitate

measuring. Determine the time lag between the 1.25-cm wavelength phase curve

and the infrared phase curve, the amplitude of the 1.25-cm wavelength variation,

and the width of the variation in time to half of the maximum value, D2, and to half

of the minimum value, D1. Calculate the ratio D2/D1. In Experiment #15, “Thermal

Radiation from a Planetary Subsurface: Part II: Soil Sample Measurements,” we

determined the effective depth of the emitted radiation as a function of time for

various soil samples. The fragmented granite is most similarly to lunar material.

Enter the value for d/l for the granite after the maximum amount of time of heating,

perhaps 75 min, in column 7 of Table 4 of the DATA SHEET. Multiply that value

by the two wavelengths for which we have data, 1.25 and 2.7 cm, to determine the
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effective depth from which radiation from those depths is emitted. Enter your

results in the final two columns of Table 4 of the DATA SHEET.

Using your own graph paper or the graph paper provided on the DATA SHEET,

construct a graph of the time lag and ratio D2/D1 using the left ordinate scale, and

the amplitude in degrees K using the right ordinate scale, all as a function of the

effective depth. Clearly distinguish the points being graphed by using different

symbols.

3. Graph of the Lunar Eclipse

As in section “Radiometer Calibration” above, determine the values of a and b of

the calibration equation and then correct them for the emissivity of water used in the

calibration, fe and the ratio of the gains, rg. With the corrected calibration equation,

(1), convert the values of lunar output from column 3 of Table 6 of the DATA

SHEET to calibrated lunar output. Enter those values in column 4 of Table 6. Show

all your calculations on the DATA SHEET.

We will compare the variation of the microwave signal with the light curve of

the eclipse, the fraction of the surface illuminated as a function of the time elapsed

from the beginning of the eclipse. The minimum fraction of the lunar disk

illuminated, as tabulated in Table 1, and the beginning and ending times of ingress,

totality, and egress provide the data needed to draw the light curve. Websites such

as http://eclipse.gsfc.nasa.gov/eclipse.html or http://www.spacedex.com/lunar-

eclipse/ provide the Universal Times, that is, the local time at Greenwich, England,

of those events. Your local time depends on the time zone in which you are located.

Note that the visibility of the Moon depends on your location. Depending on the

latitude and longitude of your location, only portions of the duration of the eclipse

may be visible. As the Earth rotates, different parts of the Moon are visible from

different parts of the Earth.

Those websites or others may also provide the fraction of the lunar disk

illuminated during the eclipse. If those data are available, enter them in column 7

of Table 6 of the DATA SHEET.

Using your own graph paper or the graph paper provided on the DATA SHEET,

draw a smooth curve through the points defined by the times of beginning and end

of ingress, egress, and totality. In the case of a partial eclipse, use the time of the

minimum fraction of the disk illuminated. If you have more detailed data available,

entered in column 7 of Table 6, use that. Note that the ingress and egress portions of

the eclipse are part of a sine wave, but that the portion of totality will be a flat line.

The result is the light curve of the eclipse. On the same graph paper, construct a

graph of the calibrated output of the radiometer.
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STUDENT’S NAME ________________________________________________

E. Data Sheet

1. Microwave Phase Effect

Zero setting of the microammeter for calibration: _________

Gain setting of the microammeter for calibration, gc: _________

Ambient-temperature water bath without plastic sheet, V1 ¼ ___________

Ambient-temperature water bath with plastic sheet, V2 ¼ ___________

fs ¼ V1/V2 ¼ __________

Zero setting of the microammeter for Moon observations: _________

Gain setting of the microammeter for Moon observations, gm: _________

rg ¼ gm/gc ¼ _______
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Table 2 Calibration measurements

Observation

Calendar

date Time

Ice-water bath

output, Vi

(millivolts)

Boiling-water

bath output, V0
b

(millivolts)

Corrected boiling-

water bath output,

Vb ¼ fs V
0
b (millivolts)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
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STUDENT’S NAME ________________________________________________

Graph of the values of a and b as a function of time. Use the left ordinate scale for a
and the right ordinate scale for b.
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Determination of the calibration equation and calibrated lunar outputs

Show your calculations of the calibrated lunar outputs calculated from (1), T ¼ fe rg
(a + b V).

Observation 1:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 2:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 3:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 4:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 5:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 6:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________
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Observation 7:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 8:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 9

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 10:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 11:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 12:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________
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Observation 13:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 14:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 15:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 16:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 17:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 18:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________
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Observation 19:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 20:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 21:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 22:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________
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Observation 23:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 24:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________

Observation 25:

y-intercept, a ¼ _____ slope, b ¼ _____

Calibrated lunar output ¼ ___________
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Graph of the fraction of the lunar surface illuminated and the calibrated output of

the 11 GHz radiometer as a function of Julian date.

Table 4 Analysis of microwave phase curves

Wavelength

of curve, l
(cm)

Time

lag

(days)

Amplitude

(K)

Width at

maximum,

D2 (days)

Width at

minimum,

D1 (days)

D2/

D1

(d/

l)granite

Effective

Depth ¼
(d/l)granite
x l (cm)

1.25

2.7
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Graph of the time lag and ratio D2/D1 using the left ordinate scale, and the amplitude

in degrees K using the right ordinate scale, as a function of effective depth. Clearly

distinguish the points being graphed by using different symbols

2. LUNAR ECLIPSE

This section is only relevant if an eclipsed was observed during your school

semester.

Zero setting of the microammeter for calibration: _________

Gain setting of the microammeter for calibration, gc ¼ _________

Zero setting of the microammeter for Moon observations: _________

Gain setting of the microammeter for Moon observations, gm ¼ _________

rg ¼ gm/gc ¼ _______

Table 5 Calibration of receiver for eclipse measurements

Target Output (millivolts) Temperature (K)

Ambient water bath without plastic, V1

Ambient water bath with plastic, V2

fs ¼ V1/V2

Ice-water bath output, Vi 273.2

Boiling-water bath output, V0
b 373.2

Corrected boiling output, Vb ¼ fs V
0
b 373.2
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Determination of the calibration equation for each observation. Perform all your

calculations here.

y-intercept, a ¼ ___________

slope, b ¼ __________
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Table 6 Eclipse data

Observation Time

Output

(millivolts)

Calibrated

output (K)

Decimal

time

Disk fraction within

umbraa

Prior to eclipse

Dark sky

Moon

During ingress

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

During egress

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

After eclipse

Dark sky

Moon

a If the data are available
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Calibrated lunar output during eclipse. Show your calculations of the calibrated

lunar outputs calculated from (1), T ¼ fe rg (a + b V).

Observation 1:

Observation 2:

Observation 3:

Observation 4:

Observation 5:

Observation 6:

Observation 7:

Observation 8:

Observation 9:
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Observation 10:

Observation 11:

Observation 12:

Observation 13:

Observation 14:

Observation 15:

Observation 16:

Observation 17:

Observation 18:

Observation 19:

Observation 20:
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Graph of light curve and 11 GHz temperature results from Table 6.

E. Data Sheet 465



STUDENT’S NAME ________________________________________________

F. Discussion Questions for Microwave Phase Effect

of the Moon

1. Describe the difference of the time lag, the ratio D2/D1 of widths, and the

effective depth of origin of the emissions at the wavelengths of 1.25 cm and

2.7 cm. At which wavelengths of observation are each of the three effects the

greatest or the least?

2. Below are two series of hypothetical graphs of the variation of temperature with

depth in a planetary or moon subsurface at three times, assuming the same

insolation as a function of time. The two graphs represent material of different

thermal diffusivity.

Which of the sets of graphs represent material with the greater thermal

diffusivity? Explain your answer in terms of the heat conduction equation,

Eq. (2) of Experiment #15, “Thermal Radiation from a Planetary Subsurface:

Part II: Soil Sample Measurements”. Provide qualitative estimates of the values

of dT/dt and the curvature of the T(x) curves, that is, the change with depth of the
gradient, d2T/dx2 ¼ d/dx (dT/dx).
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3. If you observed an eclipse as part of the experiment, the microwave emission from

the Moon would be found to be nearly flat as a function of time during the eclipse

whereas the fraction of the lunar surface illuminated varied from 100% to 0% and

back to 100%. Explain this in terms of the depth from which the microwave

radiation was emitted and the thermal diffusivity of the subsurface material.

4. Let us say that an eclipse is observed of a moon of unknown origin and

composition, and that the microwave emission varied proportionally to the

fraction of the lunar surface illuminated.

a. What can you deduce about the value of the thermal diffusivity of the

subsurface material? Explain your answer.

b. From Table 1 of Experiment #15, “Thermal Radiation from a Planetary

Subsurface: Part II: Soil Sample Measurements,” which substance would be

most similar to the material of which this hypothetical moon is composed?

5. Because the antenna used in this experiment has a BWHP of size about equal to

the angular diameter of the Moon, it receives emission from the entire visible

disk. Using a larger telescope could resolve the disk. Referring to the heat

conduction equation, Eq. (1) of Experiment #15, “Thermal Radiation from a

Planetary Subsurface: Part II: Soil Sample Measurements,” and Table 1 of

Experiment #15, “Thermal Radiation from a Planetary Subsurface: Part II:

Soil Sample Measurements,” as the eclipse proceeds what part or parts of the

lunar disk, if any, would provide the most useful information about the nature of

the subsurface material? Assume that the ingress, totality, and egress portions of

the eclipse are of equal duration. Explain your answer.

6. Shown below are the microwave phase curves for four different hypothetical

moons, all revolving about the same planet so that they receive the same amount

of insolation from the parent star. Observations were made at either 2-cm

wavelength or 5-cm wavelength. Which of the following describes which of

the observations and the moon being observed? Provide the best answer for each

question.
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a. Which moon most likely has a subsurface composed largely of volcanic

material rich in iron and nickel? Explain your answer.

b. Which moon most likely has a subsurface composed largely of sand of

fragmented and powdered silicate rocks? Explain your answer.
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c. Two of the moons have subsurfaces that are known to be identical in

composition. Which was observed at 2-cm wavelength? Explain your answer.

d. Two of the moons have subsurfaces that are known to be identical in

composition. Which was observed at 5-cm wavelength? Explain your answer.

e. Which moon would be most likely as the habitat for a primitive form of life?

Explain your answer.
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7. Some investigators believe that UFO’s can be explained as alien spacecraft.

Some of those also believe that the Moon is composed of green cheese. Food

engineers have measured the thermal diffusivity of cheese and find it to be

approximately equal to that of water, roughly independent of water, fat, and

protein content, and age. Based on a value of thermal diffusivity for water as

given in Table 2 of Experiment #15, “Thermal Radiation from a Planetary

Subsurface: Part II: Soil Sample Measurements,” draw a representation of the

microwave phase curve for such a moon. So that your observational results of

our Moon at 11 GHz can be used as a guide, imagine that such a moon is also

observed at 11 GHz.

Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Part III

Measuring the Stars and Beyond

Introduction

The ability to observe and analyze the electro-magnetic radiation from objects

in space in order to determine their physical and chemical nature stands among

the greatest intellectual achievements of mankind. In this section, we introduce

two major types of radiation, blackbody radiation and discrete spectral radiation.

The energy output of the Sun, which is, as with most stars, a good approximation

to a blackbody, is studied. The knowledge of blackbody radiation and spectral

radiation is combined in a study of the powerful Kirchhoff’s Laws.

Go and catch a falling star

—John Donne (1573–1631)



Experiment 17

Blackbody Radiation

SUMMARY: In Experiment #17, “Blackbody Radiation,” we study blackbody

radiation by passing a known amount of electrical current through a light bulb

and then measuring the amount of radiation emitted by a photometer. The

total amount of radiation emitted at all wavelengths and the wavelength at

which the radiation is maximum are also measured.

LEVEL OF DIFFICULTY: Moderate

EQUIPMENT NEEDED: 100-Watt incandescent bulb; variable power sup-

ply; ammeter; color filters; photometer; ruler.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_17, # Springer Science+Business Media New York 2013
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A. Introduction

In 1918 physicist Max Planck (1858–1947) applied the new theory of quantum

mechanics to explain the radiation observed from warm objects. He derived the

formula for the intensity of radiation produced by an idealized object at a given

temperature as a function of frequency. He assumed that electromagnetic energy is

carried by particles, photons, whose energy is quantized in little quantities

according to E ¼ hn, where n is the frequency of the electromagnetic radiation

and h is Planck’s constant, h ¼ 6.63 � 10�27 erg-s (or cm2-gm/s). Planck then

derived the following formula for the intensity of radiation produced per volume in

a frequency interval centered at n by an idealized object at temperature T,

Bðn; TÞ ¼ 8ph
c3

� �
n3

ehn=kT � 1
; (1)

where the frequency of radiation n is related to the wavelength of the radiation l by

n ¼ c

l
;

c is the speed of light in a vacuum, c ¼ 3.0 � 1010 cm/s, and k isBoltzmann’s constant
(Ludwig Boltzmann, 1844–1906), k ¼ 1.38 � 10�16 erg-s/K (or cm2-gm/s2- K).

This formula is derived assuming the object absorbs all the radiation that

impinges upon it, reflecting none. Accordingly, it is referred to as a blackbody,
the radiation is referred to as blackbody radiation, and the formula is known as

Planck’s Blackbody Radiation Law, or simply Planck’s Law. Because no object in

nature absorbs all radiation impinging on it, this law is an idealization and the

equation describes what is referred to as an “ideal” blackbody.

Although no real material follows this formula exactly, the radiation produced

by many objects in nature closely approximates it. One of the closest is a box whose

interior is painted black and which is enclosed except for a small opening from

which to observe the radiation. In nature, the radiation from stars, the surfaces of

planets, bricks, incandescent light bulbs, and innumerable other objects closely

follow the formula. This includes the universe itself, cooling as it has expanded

following its creation in the big bang of 12–15 billion years ago.

Two limiting cases exist depending on the relative values of hn and kT. For
wavelengths sufficiently long so that hn < < kT, (1) becomes the Rayleigh-Jeans
Approximation (James Jeans, 1877–1946),

Bðn; TÞ ¼ 8pn2

c3
kT:

At Earthlike temperatures of 300 K, the approximation is very good for l > 2.5

mm. At the microwave wavelength of 2.7 cm used in Experiments #14 and #15,
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“Thermal Radiation from a Planetary Subsurface: Part I: Calibration and Initial

Measurements,” and “Thermal Radiation from a Planetary Subsurface: Part II: Soil

Sample Measurements”, and “The Microwave Phase Effect of the Moon,” the

approximation is excellent.

For wavelengths sufficiently short so that hn >> kT, (1) becomes the Wien
Radiation Law (Wilhelm Wien, 1864–1928),

Bðn; TÞ ¼ 8phn3

c3

� �
e�

hn
kT:

In this experiment we will examine the radiation coming from both the Sun and

an incandescent light bulb. We will determine the effective temperature of the Sun.

We will compare the energy sent to the filaments of the light bulb through a simple

electric circuit with the energy that it radiates.

B. Theory

1. Blackbody Relationships

Some important mathematical relationships can be derived from Planck’s law using

the methods of calculus. By integrating the formula over all wavelengths, we find

that the total amount of radiation emitted per second per unit area of the radiating

surface is proportional to T4. This, the Stefan-Boltzmann Law (Josef Stefan,

1835–1893), is a strong dependence indeed, indicating, for example, that doubling

the temperature of a body increases the amount of radiation it produces by a factor

of 16.

By differentiating the law with respect to the wavelength, l, we find that the

maximum of the radiation occurs at a wavelength proportional to 1/T. This, Wien’s
displacement law, often referred to simply as Wien’s law, tells us that a correspon-

dence exists between the color of a star and the temperature of the region from

which the radiation of the star reaches us, typically the photosphere.
For example, a star that appears to be red (a relatively large wavelength) has a

smaller “surface” temperature, about 2000–4000 K, and a star that appears to be

blue (a relatively small wavelength) has a larger “surface” temperature, about

10,000–20,000 K. In this way, by observing their colors, we determine the temper-

ature of the visible surfaces of stars. Table 1 provides colors, corresponding surface

temperatures, and the nomenclature for the familiar stellar classification of main
sequence stars on the Hertzsprung-Russell diagram.

These relationships were in fact known by experimenters in the 19th century

before Planck’s law was discovered. The precise mathematical relationships thus

derived from Planck’s law are, first, the total amount of radiation over all
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wavelengths emitted by a blackbody per second per unit surface area of the

blackbody, or energy flux,

F ¼ sT4; (2)

where the Stefan-Boltzmann constant s ¼ 5.67 � 10�8 W/m2- K 4 if the radiation

is measured in Joules and the surface area is measured in square meters.

Wien’s displacement law is

lmax ¼ k
T
; (3)

where the constant,

k ¼ 2:9� 107 A
o
�K:

This relationship is informative. It tells us that the wavelength at which the

intensity of radiation is maximum for objects of temperatures 3,000–10,000 K,

such as stars, is in the visible portion of the electro-magnetic spectrum; that the

wavelength at which the intensity of radiation is maximum for dust particles in

interstellar space, with temperatures about 3–10 K, is in the infrared, about 1 mm

wavelength; and that the wavelength at which the intensity of radiation is maxi-

mum for gases heated to millions of degrees, such as near black holes, is in the x-

ray portion of the spectrum, about 30 Å. Indeed, to learn all we would like to

know about the universe we must study it in all parts of the electro-magnetic

spectrum.

In general, the Rayleigh-Jeans Approximation represents Planck’s Law well for

wavelengths of the blackbody spectrum much greater than the wavelength of

maximum radiation and the Wien Radiation Law represents Planck’s Law well

for wavelengths of the blackbody spectrum much less than the wavelength of

maximum radiation.

We can use (1) to construct graphs of the intensity of blackbody radiation as a

function of wavelength l for any temperature. Figure 1 displays the blackbody

curves for an ideal blackbody at various temperatures. These have the characteristic

appearance of a Planck radiation curve, a steeply rising portion, a maximum, and a

Table 1 Characteristics

of main sequence stars
Spectral type Surface temperature (K) Color of star

O >28,000 Blue to violet

B 10,000–28,000 White to blue

A 7500–10,000 White

F 6000–7500 Yellow to white

G 5000–6000 Orange to yellow

K 3500–5000 Red to orange

M 2000–3500 Red
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long tail to large frequencies. Note that the total amount of radiation, the area under

the curve, increases markedly with increasing T, as shown by (2), and that the

frequency at which the radiation is maximum increases with increasing frequency,

as shown by (3).

In this experiment we shall test these relationships for an incandescent light bulb

and by observations of the Sun.

Fig. 1 Blackbody curves provide the intensity of radiation for all frequencies (or wavelengths).

The curves depend only on the temperature of the blackbody and that dependence, as can be seen,

is marked. For the blackbody curve at 6000 K, the approximate surface temperature of the Sun, the

maximum radiation occurs in the visual region of the electromagnetic spectrum. Blackbody curves

can be expressed either as a function of frequency or as a function of wavelength
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2. Ohm’s Law

An incandescent bulb glows because it is radiating energy at wavelengths visible to

the eye. We can consider the filament of the bulb as simply a resistor through which

current passes. The energy per second, or power, produced in it is then given by

P ¼ V I, where V is the voltage across the resistor and I is the current passing

through the resistor. These are related by the well-known Ohm’s law of electricity,

V ¼ I R, where R is the resistance of the filament, a characteristic of its dimensions

and composition. Except for a small amount of energy absorbed by the glass and

base of the light bulb, all the electrical energy that passes through the filament is

converted into energy that is radiated outwards.

3. Color Filters

Astronomers employ various auxiliary equipment attached to telescopes to learn

about the objects they are seeing. The first, of course, was the naked eye. These

include photographic plates, although now hardly used except for instructional

purposes and by amateur astronomers, color filters, such as those you might use

with your camera, photometers, similar to those on your camera, and the modern

charge coupled detectors or CCD’s. To spread out the spectra to see the details of

absorption and emission lines, scientists and astronomers, beginningwith the famous

experiment on the nature of light by Sir Isaac Newton, used, first, prisms, and now

spectrographs. In this experiment we shall use color filters to analyze the light.

Historically, the temperatures of the visible surfaces of stars were determined by

the technique we will use for the light bulb and the Sun, by using color filters and

comparing the amount of radiation passing through the filters to the photometer. In

modern times, spectra of stars give more precise values.

A color filter is simply a piece of plastic or glass which allows transmission of a

particular color of light. In reality, it is impossible to create a color filter which

allows only a single or very small wavelength interval, and, because such a filter

would transmit only a small amount of light, making analysis difficult, this would

not be useful. In fact, color filters have a finite bandpass, a term borrowed from

electronics to signify an interval of wavelengths. Figure 2 shows bandpasses for

some standard filters. Table 2 provides the effective wavelength of those filters and

a measure of the width of the bandpass, its “full-width at half-maximum.” This term

refers to the difference in the wavelengths at which the light transmitted through the

filter is half as large as the maximum amount of transmitted light.

Using (1), we can also calculate the relative intensities of blackbody radiation at

different wavelengths for an object at a given temperature. Some of these results are

provided in Table 3. For example, for the radiation from the 4000 K object, we see

that the ratio of the intensities of the radiation at the wavelength of l ¼ 5500 Å,

corresponding to yellow, to that at 4400 Å, corresponding to blue, is 2.78. In general

478 17 Blackbody Radiation



by measuring these intensities and comparing them to numbers such as those

provided in Table 3, we can determine the temperature of the object. Historically,

astronomers referred to the filter that passes the light centered near 5500 Å as V for

“visual.” That color is green-yellow, and we will refer to it by the letter “Y” to avoid
possible student’s confusion with the color violet and to prevent confusion with V
which we will use for voltage.

Fig. 2 Color filters were historically used to analyze the light from stars. As with all filters, the

ultraviolet, blue, visible, red, and infrared filters, the most commonly used, allow transmission of a

range of wavelengths referred to as their bandpass

Table 2 Color filter characteristics

Filter

Effective

wavelength (Å)

Full-width at half

maximum (Å)

U (ultra-violet) 3735 485

B (blue) 4443 831

V (visible; that is, green-yellow) 5483 827

R (red) 6855 1742

I (infrared) 8637 1970
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Figure 3 presents a graph of the data of Table 3 with a smooth curve drawn

through the data. Because these are theoretically-determined values rather than

experimental data, the curve is constructed to pass through all the data of Table 3.

Although relatively standard, the yellow and blue filters that you may use may not

have the same characteristics as those from which the ratios of Table 3 and Fig. 3

were determined. In this case, use the corresponding figure determined from the

filters available in your laboratory. (In professional astronomical work, the com-

parison of the intensity measured through the two filters is expressed in terms of the

stellar magnitudes observed at the two colors. The ratio of the intensity in the two

colors is then related to the difference of the logarithms. In this way, the color index
is defined as B�V ¼ 2.5 log (IV /IB), where here B and V are in stellar magnitudes

and we adhere to the historical usage of V for the measurement through the visual

filter. Because other color indices can also be defined, this is also referred to as the

B-V color.)

Table 3 Y/B colors for

blackbody temperatures
Intensity ratio

yellow/blue filters

Temperature

of blackbody (K) Color

0.775 20,000 Blue

1.00 10,000 White

1.19 8000 Yellow-white

1.67 6000 Yellow

2.78 4000 Orange

6.25 2000 Red

Fig. 3 A graph of the data

of Table 3. If the yellow

and blue filters available

in your laboratory

do not have the same

characteristics as those

of Table 3, you

will construct a similar

graph for use

in the experiment
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4. The Effective Temperature of the Sun

The rising and setting Sun on a cloudless day appears red, a result of the

wavelength-dependent Rayleigh scattering (Lord Rayleigh, 1842–1919) of the

radiation from the Sun out of the line-of-sight by molecules and fine particles of

dust in the atmosphere. The blue rays get scattered by the atmosphere leaving the

red rays to reach us. The longer is the path through which the rays of the Sun travel,

the greater is the effect, Fig. 4. That path length is proportional to the secant of the

zenith angle. The amount of scattering also depends on meteorological conditions,

in particular the amount of dust in the atmosphere.

Note that even if you view the Sun directly overhead, some of its blue rays have

been scattered, making it appear more yellow than it would appear if viewed in

space by astronauts or lunar colonists, we should ever be so lucky. In this experi-

ment, we will observe the color of the Sun at different zenith angles to quantify this

effect. Because the intensity of the sunlight at all wavelengths is diminished

because of its passage through the atmosphere, we must deal with the ratio of the

intensities observed in two colors at a given time rather than the actual value of the

intensities.

C. Procedure and Observations

1. The Sun

We will examine the change in the effective color of the Sun as it passes through

the sky. At the very beginning of the laboratory session, on a cloudless day, take the

photometer outside. Put the photometer directly in sunlight, as perpendicular

to the rays of the Sun as possible, and in turn place the filters over the photometer.

Fig. 4 The path length

of rays from the Sun through

an atmosphere of thickness

h to the observer on the

ground is proportional to sec z
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To ensure that the photometer window is perpendicular to the rays, simply rotate

it slowly until the maximum reading is obtained.

Enter the readings in Table 4 of the DATA SHEET. Enter the time of day

of your observations (standard time, not Daylight Savings Time) in Table 4 in

military time.

Repeat this at a time near the middle of the laboratory session and also at the very

end of the laboratory session, when your measurements of the incandescent light

bulb have all been concluded. A three-hour long laboratory session provides approx-

imately a factor of three in sec z in the spring months and a factor of four in sec z in
the fall months, providing sufficient discrimination in path length of the rays of the

Sun through the atmosphere for our data reduction and graphical purposes.

2. Incandescent Light Bulb

We will use a standard 100-W household incandescent bulb, a variable power

supply connected to the light bulb, an ammeter to measure the amount of current

going into the light bulb, color filters, and a photometer to measure the intensity of

the radiation coming from the light bulb and through the color filters. We will

determine the amount of energy that the power supply delivers to the light bulb and

compare it to the amount of radiation that the light bulb produces.

Variable power supplies provide a DC voltage. Some also have adjustable

currents. If the power supplies in your laboratory lack the adjustable current feature,

then your lab technician can construct a simple circuit with a rheostat to provide the

variable current.

The light bulb is connected to the variable power supply. Turn it on and rotate

the rheostat on the variable power supply to provide only a small amount of current

to the light bulb. Increase the current so that the color of the light bulb is moderately

dull red. Enter the voltage delivered by the power supply, the amount of current in

the circuit, as read on the ammeter, and describe the color of the light bulb in

Table 6 of the DATA SHEET.

Place your hand near the light bulb and in column 5 of Table 6 of the DATA

SHEET describe the sensation of heat you feel, if any. We want to try to quantify

this amount of heat. In Table 6 ascribe the number “1” to it. Similarly, enter a

number “1” to describe the brightness of the light bulb in column 6 of Table 6.

These will be reference values for our later observations.

Move the photometer to a distance from the light bulb so that the intensity reads

toward the lower end of the photometer scale. In all the following measurements,

keep the photometer at the same distance from the light bulb. Measure that distance

and enter it on the DATA SHEET.

Because the photometer will receive radiation from the ambient light in the

room, we need to turn off all the lights before making our measurements. Now place

the yellow and blue filters in turn over the light bulb. Enter the readings of the
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photometer resulting from the light passing through each filter in columns 7 and 8,

respectively, of row 1 of Table 6 of the DATA SHEET.

Remove the blue filter from in front of the light bulb. Increase the amount of

voltage being delivered by the power supply so that the light bulb brightens to a

reddish-yellow color. In row 2 of Table 6 of the DATA SHEET, enter the voltage

and current readings. Describe the color of the light bulb and describe the sensation

of heat you feel with the brighter light by ascribing a number to it. Is it, for example,

twice or three times as warm? Similarly, enter a number providing the relative

brightness of the light bulb. With the ambient light in the room off, place the yellow

and blue filters in turn over the light bulb. Enter the readings of the photometer

resulting from the light passing through each filter in columns 7 and 8, respectively,

of row 2 of Table 6 of the DATA SHEET.

Increase the amount of voltage once again so that the color of the light bulb is

white. Repeat the observations and enter your result in Table 6. If the photometer

readings have pegged the meter, perform these observations again with a smaller

voltage setting on the power supply.

Increase the amount of voltage once again so that the color of the light bulb is

whitish-blue. Repeat the observations and enter your result in Table 6. If the

photometer readings have pegged the meter, perform these observations again

with a smaller voltage setting on the power supply.

D. Analysis and Calculations

1. The Sun

On the DATA SHEET, calculate the ratio, Y/B, of photometer readings through the

yellow and blue filters for your three observations of the Sun. As above, from

Table 3 find the corresponding color of the Sun. From Fig. 3, find the apparent

surface temperature of the Sun corresponding to the values of Y/B. If the Y and B
filters you are using do not have the same characteristics as those represented in

Table 3, use the graph you have correspondingly prepared. From (3), calculate the

wavelength for which the radiation from the Sun is the maximum. Enter the results

in Table 4 of the DATA SHEET. Perform your calculations on the DATA SHEET.

To analyze the changing color of the Sun as it travels across the sky as a function

of the layer of atmosphere through which the radiation passes, we need to calculate

its zenith angle at the three times we observed from Eq. (1) of Experiment #5,

“Earth: The Seasons and Local Latitude”. To do that, we need the right ascension,

declination, and hour angle of the Sun at these times. To calculate the hour angle,

we need the local sidereal time, or LST.
From internet websites, for example, http://faculty.physics.tamu.edu/krisciunas/

ra_dec_sun.html, or a printed Ephemeris of the Sun, find the right ascension, RA,

and declination, d, of the Sun on your date of observation. The right ascension is
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provided in hours, minutes, and seconds of time. Convert that to hours and decimal

fraction of hours. The declination is given in degrees, minutes, and seconds of arc.

Convert that to degrees and fraction of a degree. Perform those calculations on the

DATA SHEET and enter the results in Table 5.

From internet websites, for examples, http://tycho.usno.navy.mil/sidereal.html

or http://www.jgiesen.de/astro/astroJS/siderealClock/, or a printed Ephemeris or

almanac, find the local sidereal time, LST, corresponding to your longitude and the

three local times of your observations of the Sun. The former website is simple to

use, but will provide the LST only at the time you access the site. The latter website

is more complex to use, but also provides data for international cities and you can

enter any local standard time. It also provides the declination of the Sun at the time

you provide. As with the right ascension, convert the LST to hours and decimal

fraction of hours and enter the result in Table 5.

With LST and RA known, we find the values of the hour angles, HA, at which

the Sun was observed from the standard astronomical relationship,

HA ¼ LST� RA:

You can then calculate the hour angle, HA, of your observations in the unit of

hours. Enter the result for the hour angle in Table 5.

Convert the hour angle from hours to degrees by the conversion factor, 1 h of

time ¼ 15o of arc. (The Earth rotates 360o in 24 h.) Enter that result in Table 5 of

the DATA SHEET.

From the zenith angle equation, using the values of the declination of the Sun on

the date of your observation and the hour angles at the three times of your

observations, calculate the values of cos z of the Sun at the three times. Recall

that we used the letter h for hour angle in the zenith angle equation. Then calculate

and enter sec z ¼ 1/cos z in Table 5 of the DATA SHEET. Show all your

calculations on the DATA SHEET.

Using the axes provided on the DATA SHEET, construct a graph of both Y/B
and the corresponding apparent temperature of the Sun as derived from Fig. 3 and

entered in Table 4 as a function of sec z. Provide the scale for Y/B on the left

ordinate line and the scale for the temperature on the right ordinate line. For

reference, draw a line at the known 5800 K temperature of the surface of the Sun

on the right ordinate scale.

Draw a smooth curve through the points and extrapolate the curve to a a value of

sec z ¼ 1, a zenith angle of zero degrees, corresponding to a view directly over-

head. Provide the corresponding values of Y/B and apparent temperature on the

DATA SHEET.

Although it makes no trigonometric sense to extrapolate the curve to smaller

values of sec z itself, remembering Fig. 4 we see that the path length of the rays of

the Sun is h sec z. Extrapolating the curve to a value of “sec z ¼ 0,” is therefore

equivalent to extrapolating to the case of no atmosphere. Read the values of Y/B and

the corresponding apparent temperature of the surface of the Sun from that extrap-

olation and enter the results on the DATA SHEET.
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2. Incandescent Light Bulb

On the DATA SHEET, calculate the value of the power provided by the variable

power supply, P ¼ V I. Calculate the ratio of photometer readings, Y/B, through the
yellow and blue filters for each setting of the variable power supply. Dividing will

cause the various constants, such as the collecting area of the photometer, to cancel.

Enter those results in Table 7 of the DATA SHEET. Show all your calculations on

the DATA SHEET.

For each of the values of Y/B, interpolate using Fig. 3 (or the corresponding

curve if the filters in your laboratory have characteristics different from those of

Tables 2 and 3) to determine the temperature of the light bulb filament for each

setting of the variable power supply. Enter the results in Table 7 of the DATA

SHEET.

Equation 2 provides the energy flux, the total amount of radiation over all

wavelengths emitted by a blackbody per unit surface area of the blackbody.

Using the temperatures you have found, calculate that amount on the DATA

SHEET. Equation 3 provides the wavelength, lmax, at which the radiation from a

blackbody of a given temperature is maximum. Using the temperatures you found,

calculate that value for each setting of the variable power supply. Enter the results

for both in columns 5 and 7, respectively, of Table 7 of the DATA SHEET.

If we assume that the total amount of electrical power provided to the light bulb

is converted into radiation, we can use (2) to calculate the surface area of the light

bulb filament. For each setting of the variable power supply, determine the surface

area of the light bulb filament by dividing the power delivered by the variable

power supply, entered in column 2 of Table 7, by the energy flux, entered in column

5 of Table 7. Enter the results in column 6 of Table 7. These values for the light bulb

surface area should be about the same. Find the average value of the four surface

area calculations. If one of the values differs widely from the others, do not include

it in this calculation. Perform all your calculations on the DATA SHEET.
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STUDENT’S NAME ________________________________________________

E. Blackbody Radiation Experiment Data Sheet

1. The Sun

Show all your calculations here.

Table 4 Yellow and blue filter readings of the Sun

Observation

Photometer

reading

yellow filter

Photometer

reading

blue filter

Local

time Y/B

Color

of the

Sun

Apparent surface

temperature of

the Sun (K)

lmax

(Å)

Initial

Middle

Final

Calculation of wavelength of maximum emission, lmax

Observation 1:

Observation 2:

Observation 3:
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STUDENT’S NAME ________________________________________________

Table 5 Zenith angle calculations of the Sun

Observation

Local

time

LST

(hours)

RA

(hours)

HA

(hours)

HA

(degrees)

d
(degrees) cos z sec z

Initial

Middle

Final

Conversion of RA from Hours, Minutes, Seconds to Hours

Observation 1:

Observation 2:

Observation 3:

Conversion of d from Degrees, Minutes, and Seconds of arc to Degrees

Observation 1:

Observation 2:

Observation 3:
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STUDENT’S NAME ________________________________________________

Conversion of LST from Hours, Minutes, Seconds to Hours

Observation 1:

Observation 2:

Observation 3:

Calculation of Hour Angle

Calculation of hour angle by HA ¼ LST – RA.

Observation 1:

Observation 2:

Observation 3:

Conversion of hour angle from hours to degrees by the conversion factor, 1 h of

time ¼ 15o

Observation 1:

Observation 2:

Observation 3:
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STUDENT’S NAME ________________________________________________

Calculation of the values of cos z and sec z of the Sun.

The latitude of your city: _________

Calculation of sec z

Observation 1:

.Observation 2:

Observation 3:

Graph of both V/B and the corresponding apparent temperature of the Sun as a

function of sec z.

Y/B for sec z ¼ 1: ___________

Corresponding surface temperature for sec z ¼1: _____ K

E. Blackbody Radiation Experiment Data Sheet 489



STUDENT’S NAME ________________________________________________

Y/B for “no atmosphere”: ___________

Corresponding surface temperature: ____________ K

2. Incandescent Light Bulb

Distance of light bulb from photometer: _________

Table 6 Power supply and light bulb data

Power

supply

setting

Voltage

reading,

V (volts)

Ammeter

reading, I

(amperes)

Subjective

color

Subjective

heat level

Subjective

brightness

Photometer

reading

yellow filter

Photometer

reading

blue filter

#1

#2

#3

#4

490 17 Blackbody Radiation



STUDENT’S NAME ________________________________________________

Table 7 Light bulb analysis

Power supply

setting

P ¼ V � I

(W) Y/B

Corresponding

temperature, T

(K)

F ¼ s T4

(W/m2)

Filament

area ¼ P/F

(m2)

lmax

(Å)

#1

#2

#3

#4

Show your calculations here.

Variable Power Supply Setting #1

Power delivered ¼ V � I ¼ ________ Watts

Ratio of Y/B ¼ __________

Interpolated value of light bulb temperature from Figure 3: T ¼ __________ K

Energy per second radiated per unit surface area of filament:

F ¼ sT4 ¼ ____________________ Watts/m2

P/F ¼ ______________________ m2

lmax ¼ 2.9 � 107/T ¼ ________________ Å

Variable Power Supply Setting #2

Power delivered ¼ V � I ¼ ________ Watts

Ratio of Y/B ¼ __________

Interpolated value of light bulb temperature from Figure 3: T ¼ __________K

Energy per second radiated per unit surface area of filament:

F ¼ sT4 ¼ ____________________ Watts/m2

P/F ¼ ______________________ m2

lmax ¼ 2.9 � 107/T ¼ ________________ Å
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Variable Power Supply Setting #3

Power delivered ¼ V x I ¼ ________ Watts

Ratio of Y/B ¼ __________

Interpolated value of light bulb temperature from Figure 3: T ¼ __________ K

Energy per second radiated per unit surface area of filament:

F ¼ sT4 ¼ ____________________ Watts/m2

P/F ¼ ______________________ m2

lmax ¼ 2.9 � 107/T ¼ ________________ Å

Variable Power Supply Setting #4

Power delivered ¼ V x I ¼ ________ Watts

Ratio of Y/B ¼ __________

Interpolated value of light bulb temperature from Figure 3: T ¼ __________ K

Energy per second radiated per unit surface area of filament:

F ¼ sT4 ¼ ____________________ Watts/m2

P/F ¼ ______________________ m2

lmax ¼ 2.9 � 107/T ¼ ________________ Å

Calculation of the average value of the three surface area calculations

If one of the values differs widely from the others, do not include it in this

calculation.

Average area ¼ ___________________ m2
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F. Blackbody Radiation Experiment Discussion Questions

1. Figure 1 presents the blackbody spectrum for an object at three different

temperatures. Calculate the product of the estimated wavelength at which each

curve attains a maximum and the temperature represented by that curve. They

should all equal, to uncertainties in your estimate, k ¼ 2.9 � 107 Å-K,

demonstrating Wien’s displacement law.

2. The radius of the Sun is 6.96 � 1010 cm. Using (2), calculate the total amount of

radiation emitted by the Sun from its entire surface, its luminosity, based on an

effective surface temperature of 5800 K.

3. Table 3 presents the colors of blackbodies corresponding to their temperatures.

Using the temperatures you found from Fig. 3 for the light bulb filament, how do

the corresponding colors of Table 3 compare to the colors you described for the

light bulb as its filament was heated?

4. In the last part of the light bulb part of the experiment, you determined a surface

area for the light bulb filament. In fact, typical surface areas for the filaments of

incandescent light bulbs are about 80 mm2, or 8.0 � 10�5 m2.

a. How does this compare to the average area you determined?

b. What is the origin of the discrepancy, if any?
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5. Your subjective descriptions of the brightnesses of the light bulb were entered in

Table 6 of the DATA SHEET.

a. How do those descriptions compare with the calculation of the energy emitted

by the light bulb in Table 7?

b. Discuss any bias that might have been introduced by your use of an arithmetic

scale for your description of the brightness.

6. If you touch the light bulb after it has been turned off, it is hot to the touch.

It should be radiating energy. Why can’t you see that shut-off light bulb glow?

7. As you increase the power going into the light bulb, your hand felt an increased

warmth. In which part of the electro-magnetic spectrum is that “warmth”

radiated?

8. From the measurements of the radiation from the light bulb, you calculated the

values of lmax for each setting of the power supply. Compare the color

corresponding to that wavelength from Table 3 to the subjective color you

entered in Table 6 of the DATA SHEET. Do they agree? If not, how can you

explain the discrepancy in the color your eye and brain detects from those colors

provided in Table 3?
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9. If you observed the Sun low in the sky, the blue rays would have been scattered

by the atmosphere and the Sun will appear more yellow than if viewed

overhead. Indeed, as we all have observed, the Sun appears reddish if viewed

near the horizon. Even if you view the Sun directly overhead, some of its blue

rays have been scattered, making it appear more yellow than it would appear if

viewed in space by astronauts or lunar colonists. It might be green. The

temperature of the apparent surface of the Sun is known to be 5800 K.

Calculate the percentage difference between this value and that which you

determined for the Sun being directly overhead.

10. This difference in the temperature you determined for the Sun without the

presence of an atmosphere, that is, the “sec z ¼ 0” temperature, and 5800 K

may surprise you.

a. What in the experimental method, including the time of day, may have

caused the difference in the values? Explain your answer.

b. What observing technique is used to more precisely determine the color of

the Sun, one that is not affected by such factors?

11. Some stars are known to pulsate, actually changing their size. At the same time,

the outer atmosphere of a star behaves like an ideal gas, and cools as it expands.

The pulsating star, then, experiences both a change in its size and in the

temperature of its visible surface. At what part of its pulsation cycle would

you expect the luminosity of the star, which we observe, to be greatest, when it

is large or when it is small? Why? What equation can you use to show this?
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12. Most diurnal, as opposed to nocturnal, creatures on the Earth have evolved eyes

which are most sensitive to yellow. Why is this the case?

13. Let us say that you meet a being that is visiting from a planet whose parent star

has an apparent surface temperature of one-half that of the Sun.

a. To what color would you expect that being’s eyes to be most sensitive?

Why? Refer to an appropriate equation in providing your answer.

Similarly, let us say that you meet a being that is visiting from a planet whose

parent star has a visible surface temperature that is twice that of the Sun.

b. To what color would you expect that being’s eyes to be most sensitive?

Why? Refer to an appropriate equation in providing your answer.

14. An ordinary flame is a composite blackbody. The emission originates from hot

microscopic-sized pieces of carbon. The part of the flame closest to the ignited

material is blue, then with increasing distance it becomes yellow and then red.

a. Can you explain the changes in color? Refer to an appropriate equation in

providing your answer.

b. If you put a white sheet of paper a few inches above the flame, it will get

tarnished with soot. This tells us that the material simply didn’t “vanish into

thin air.” Rather, above the red flame, the soot is still present, but not visible.

Describe the radiation it is emitting?
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15. The effective blackbody temperature of the hot gas circling about some large

black holes is about three million degrees Kelvin.

a) At what wavelength will the maximum radiation from this so-called “accre-

tion disk” occur? Show all calculations here.

b) In what portion of the electro-magnetic spectrum, such visible or infrared, is

this wavelength located?

c) Compare the total amount of radiation emitted by a unit volume of a

blackbody at this temperature to the total amount of radiation emitted by

a unit volume of the photosphere of the Sun, at a temperature of about

5800 K.

d) Assume that we have a black hole with an accretion disk of the same size as

the Sun located at the same distance as the Sun. If it takes 30 min to get a

sunburn, how long would it take to get a “black hole burn” of the same

severity? Assume that the sunburn and black hole burn result from radiation

of all wavelengths.
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e) This entire comic strip was suggested by the author to the cartoonist, nearly

verbatim. How much should the author have been paid for his writing?

Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Experiment 18

The Surface Temperature and Energy

Output of the Sun

SUMMARY: In Experiment #18, “The Surface Temperature and Energy

Output of the Sun,” we observe solar radiation raising the temperature of

a jar of water. Determining the time needed for the temperature to rise a

given amount is a measure of the energy received from at the Earth from

the Sun and, knowing our distance from the Sun, its rate of energy output.

We also measure the solar radiation using a solar cell.

LEVEL OF DIFFICULTY: Moderate

EQUIPMENT NEEDED: Glass jar of regular shape, cylindrical or square;

water; cork stopper; digital thermometer; black ink; meter stick; solar cell;

light baffles.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_18, # Springer Science+Business Media New York 2013
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A. Introduction

The Sun is a fairly typical star. With a mass of 1.99 � 1033 g and a radius of

6.96 � 1010 cm, it has existed for five billion years, most spent converting hydrogen

into helium in its core regions by nuclear fusion. Its surface temperature and energy

output locate it on the main sequence region of the Hertzsprung-Russell diagram and

it will exist there for another five billion years until that nuclear fuel is spent.

The heat generated by these fusion reactions propagates upwards through the Sun

by two modes of heat transfer, radiation and convection, until it reaches the visible

surface, about 170,000 years after it was created. From there we receive the energy

that sustains most life on Earth. (Some deep ocean life is now known to be sustained

by radioactivity-generated geothermal energy and nutrients emanating from under-

sea vents.)

The amount of energy per second that the Sun emits over all wavelengths, its

luminosity, Lo, is well studied. Indeed, it is known that the luminosity varies

slightly. The amount of energy reaching the mean distance of the Earth from the

Sun per second per unit surface area is referred to as the solar constant, So.
Actually, the solar constant isn’t really constant. The output of the Sun varies

randomly, has cycles, and as the Sun evolves on the main sequence over hundreds

of millions of years its output increases slightly. Furthermore, the distance of the

Earth from the Sun changes as the Earth revolves about the Sun in its orbit. We

should also remember that the solar constant is defined as the amount of energy per

second impinging upon a unit area at the mean distance of the Earth from the Sun,

but some of that energy is absorbed by the atmosphere of the Earth or reflected back

into space. Not all of it actually reaches the surface of the Earth, where we will be

measuring its strength.

The concept of the solar constant is crucial in the study of the possibility of the

existence of extraterrestrial life. The further one travels outwards from a star, the

greater is the decrease in the intensity of the starlight. Eventually, your exploratory

spacecraft reaches a distance where any water would freeze. On the other hand, as

you approach the star, eventually you will reach a distance at which any water

would boil. Only in the intermediate region could water-based life evolve and exist

on the surface. This region is referred to as the zone of habitability or habitable
zone. It is also referred to as the ecosphere. (Note, however, that advanced

colonizing species might have the technology to modify their environment and

survive on planets outside of the habitable zone.) One renowned AstroComedian

refers to it as the “Goldilocks Zone,” because it’s neither too hot nor too cold, but

“just right.”

Numerous methods of measuring the solar constant exist. They vary from the

simplest, observing the warming of a glass of water, to measurement by microwave

radiometers, solar cells, and high-precision thermoelectric devices. In this experi-

ment we will use two methods, warming of a glass of water and direct measurement

by solar cells.
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B. Theory

1. Solar Energy Output and Lifetime

As with any fuel source, such as coal or the wood in a fireplace, once we know the

mass of an object and its rate of fuel consumption, we can determine its expected

lifetime. Although the luminosity of the Sun measures the energy per second

coming from its visible surface, that energy ultimately is derived from nuclear

reactions in its center. We can therefore estimate the expected lifetime of the Sun by

the simple equation

t ¼ f
Mo

r
; (1)

where t is the expected lifetime,Mo is the mass of the fuel available to the Sun, f is
the fraction of that mass which is converted into energy through the process of

nuclear fusion, and r is the rate at which its mass is consumed. If M is given in

grams and r is given in grams per second, then t is given in seconds.

We have to distinguish the mass of the fuel from the total mass of the Sun. Only

that material in the core of the Sun, which is sufficiently hot and dense to undergo

nuclear fusion, creates the luminosity of the Sun. This is about 10% of the total solar

mass of 1.99 � 1033 g. That is, in (1), f is about 0.10. The value of r is determined

from the luminosity of the Sun.

Study of the nuclear reactions converting hydrogen into helium shows that only

about 0.04% of the matter is actually converted. Although this seems inefficient, it

is about ten times more efficient than the process of nuclear fission and about 109

times more efficient than consumption by combustion (fire).

We cannot directly measure the luminosity of the Sun, that requiring us to

actually sit on its surface. Instead, we do so by employing the inverse square law

of radiation intensity, as illustrated in Fig. 1, together with Ro, our known distance

from the Sun, and the solar constant,

Distance from Source

3D

2D

D

Source

B

A

B/4 B/9

4A 9A

Area

Brightness

Fig. 1 The brightness

of radiation decreases as the

inverse square of the distance

of the observer from the

source of radiation. The

radiation spreads out in space
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So ¼ Lo

4pRo
2
; (2)

where Ro ¼ 1 A.U. You’ll recognize 4pr2 as the surface area of a sphere. Here, that
sphere is an imaginary one with its center at the center of the Sun and its radius

equal to the mean distance of the Earth from the Sun.

By measuring the solar constant, we can then calculate the luminosity of the Sun

by, rewriting (2),

Lo ¼ 4pRo
2So: (3)

Combining (1) and (3), and recognizing that in fact r ¼ Lo, we then can find the

expected lifetime of the Sun from our measurement of the solar constant,

t ¼ f
Mo

Lo
: (4)

To explicitly show the value of So in this result, we can also write, using (3),

t ¼ f
Mo

4pRo
2So

: (5)

2. Relationship Between Surface Temperature
and Luminosity of a Star

Knowing the total energy output of the Sun, that is, its luminosity, and assuming the

Sun radiates like a blackbody, we can use the Stefan-Boltzmann Law, Eq. 2 of

Experiment #17, “Blackbody Radiation,” to calculate the temperature of its visible

surface. The total amount of radiation emitted over all wavelengths per second per

unit surface area of a blackbody, or energy flux, is

F ¼ sT4; (6)

where the Stefan-Boltzmann constant s ¼ 5.67 � 10�8 W/m2- K 4. The luminosity

is simply the amount of radiation emitted by the entire surface,

L ¼ 4pR2 F;

where R is the radius of the body, assumed spherical, an excellent approximation

for most stars. Substituting (6),

L ¼ 4pR2sT4:
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Solving this equation for T then allows us to find the temperature of the visible

surface from the luminosity of the star,

T ¼ L

4pR2s

� �1
4

: (7)

The weak dependence of T upon L is striking. Compare two stars of the same

radius, but differing in luminosity by, for example, a factor of 100. The surface

temperatures differ only by a factor of 1001/4 ¼ 3.2. In other words, we can get a

good estimate of the surface temperature of the Sun even if our value for the solar

constant is appreciably inaccurate.

3. Specific Heat Capacity

The specific heat capacity or simply specific heat of a substance measures the

temperature response of a unit mass of that substance to the introduction of heat.

This manifests a property of all matter, that a finite amount of heat is required to

increase its temperature. The formal definition of specific heat is the heat absorbed

to raise one unit mass of a substance by 1�, and is designated by the letter c,

DQ ¼ mcDT: (8)

This heat can be transferred by any of the three modes of transfer, radiation,

conduction, or convection.

The term has a meaning similar to that in colloquial English. As we speak of

someone with a high capacity for pain, for example, as one who can experience a

large amount of it without reaction, so a substance with a high specific heat is one

that can absorb a large amount of heat without having its temperature significantly

increase.

Equation 8 also applies to cooling. If a warm body is placed into a cool

environment, then the specific heat describes the decrease in temperature that the

warm body experiences as it loses heat.

We will use the heat-absorbing ability of water as a measuring device. We

measure the increase in temperature of a container of water placed in sunlight

over a given period of time, and knowing the specific heat of water we can use (8) to

determine the amount of heat absorbed. Dividing by the time needed for the

absorption and the effective area of the container of water, we get a close approxi-

mation to the amount of energy per unit time per unit area delivered by the Sun at

the surface of the Earth, the solar constant.

If the mass of water so warmed is m and the temperature is measured to have

increased by DT, then by the definition of specific heat the amount of heat absorbed

by the water from the Sun through its radiation is, from (8) above,
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DQ ¼ mcwDT; (9)

where the subscript w indicates the use of water.

Let Dt be the amount of time we wait for the water to absorb an amount of heat

DQ from the sunlight before we measure the increased temperature. Then, dividing

by Dt to explicitly show the increase in temperature per second, the heat absorbed

per second is

DQ
Dt

¼ mcw
DT
Dt

:

The solar constant is measured in energy per unit area per unit time,

So ¼ DQ
Dt Abottle

: (10)

where we identify the Sun as the source of the heat warming the water and the area

in our case is Abottle , the area of the side of the bottle facing the Sun.

As a result, once we have measured DT we can calculate our value for the solar

constant from

So ¼ fs m cw
DT
Dt

1

Abottle
: (11)

where we have now included a factor fs to correct for the slanted rays of the Sun,

discussed in the next section.

A shortcoming of this technique results form the high specific heat of water, as

shown in Table 3 of Experiment #15, “Thermal Radiation from a Planetary Subsur-

face: Part II: Soil Sample Measurements,”. This means that a large amount of heat

must be absorbed to raise the temperature of water only 1�. Our experiment would

be more sensitive to the heat input if another substance were used, such as a metal,

gas, or sand. These, however, present their own problems in either measuring the

temperature increase and/or accounting for loss of heat by radiation and heat

conduction.

4. Sun Elevation Correction

Either by using heating of water or solar cells, a complication exists with orienting

our “sensor.” As we examined in Experiment #5, “Earth: The Seasons and Local

Latitude,” the rays of the Sun do not generally strike the surface of the Earth

directly. To measure the brightness of the Sun accurately, we need to orient the

surface of the water or solar cell exactly perpendicular to the rays of the Sun.
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A second problem arises from the absorption of energy by the atmosphere, its

molecules, dust, and man-made pollutants, as the light rays pass through the

atmosphere. Corrections for both can be performed by rotating the sensor by eye

so that the rays are impinging upon it directly, but error will certainly be introduced.

Instead, the geometry of Fig. 2, similar to that of Fig. 2b of Experiment #5,

“Earth: The Seasons and Local Latitude,” can be used. We can correct our

measurements by dividing by sin a, where a is the angle between the ground and

the direction to the Sun. As in Experiment #5, “Earth: The Seasons and Local

Latitude,” we place a meter stick or other measuring device perpendicular to the

ground. Measuring the length of the shadow, L, we can determine the tangent of the

angle,

tan a ¼ H

L
: (12)

From this, we can correct our measurement by calculating and then dividing by

sin a. You can show that the following is a trigonometric identity,

sin2a ¼ tan2a
tan2aþ 1

;

so that we can calculate sin a directly, using equation (12), as

measuring stick

shadow

H

L

αα

Fig. 2 The energy of the Sun reaching the ground is reduced by a number of effects. The

atmosphere reflects and absorbs some energy, and the energy delivered by the rays reaching the

ground is reduced in intensity depending on their slant. Correction for the former can be partially

made knowing the angle of elevation of the Sun, a. Correction for the latter can be made

completely with this information. The angle a can be determined by comparing the length of a

measuring stick to the length of its shadow
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sin2a ¼ H2

H2 þ L2
:

The correction factor for the Sun angle is then

fs ¼ 1

sin a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ L2

H2

r
:

Note, for the Sun directly overhead, a ¼ 90o, L ¼ 0, and sin a ¼ 1, yielding no

correction, as should be the case. Similarly, for the Sun near the horizon, a is small,

L is large, and sin a is small, so that dividing by sin a leads to a large correction,

again as should be the case.

We can divide all the terms under the square root sign by H to simplify the

calculation,

fs ¼ 1

sin a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L

H

� �2s
(13)

A graph of this correction factor is provided in Fig. 3. In determining the

correction, you can use either (13) or this graph.

Fig. 3 Correction factor for the Sun angle as a function of the shadow length divided by the height

of the measuring stick
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C. Procedure and Observations

1. Measurement by Heating of Water

We will be using a bottle of either square or rectangular cross-section. If you are

using a bottle of rectangular cross-section, use the larger of the sides. Measure the

dimensions of the surface of the side of the bottle, h and l, and enter that information

in Table 1 of the DATA SHEET. Calculate the area of that side. Weigh the empty

bottle and enter its mass in Table 1 of the DATA SHEET.

Carefully measure 100–200 ml, that is, 100–200 cm3, of water and pour it into

the bottle. Weigh the bottle now and enter the total mass of bottle plus water in

Table 1 of the DATA SHEET. Place a few drops of black ink into the water to

increase its ability to absorb the sunlight. Put a cork or other insulating stopper in

which a hole has been drilled to accept a thermometer and insert it into the bottle

top. So that the sunlight will be incident upon the bottle only on one face, the other

sides of the bottle should be shielded from the Sun by cardboard or other material

once you allow the sunlight to fall upon the bottle.

Take the assembly outside and let it sit in the shade until the temperature of the

water in the bottle no longer increases. If your laboratory is at room temperature,

and the outside temperature is hot, this may take a half an hour. Because glass has a

low thermal conductivity of 1.1 W/m-K, which can be compared to other

substances as seen in Table 3 of Experiment #15, “Thermal Radiation from a

Planetary Subsurface: Part II: Soil Sample Measurements,” the heat takes a while

to pass from the air to the water.

Once the temperature of the water has stabilized, move the assembly into the

sunlight and orient it so that the face whose dimensions you have measured faces

the Sun. Enter the value of the stabilized water temperature and the time in Table 3

of the DATA SHEET. Measure the length L of shadow cast by your meter stick or

other measuring device of height H to enable calculation of the correction factor, fs.
Enter the values of H and L in Table 2 of the DATA SHEET.

Allow the water to increase in temperature by 3� or 4�, and when you can read a
convenient number from the thermometer note the time. Depending on the time of

day, this may take 15 min to half an hour. Enter both the increased temperature and

the time in Table 3 of the DATA SHEET. Measure the length of the shadow cast by

your measuring device again at this time. Enter that datum in Table 2 of the DATA

SHEET.

Remove the bottle from the sunlight, pour cool water over it to reduce its

temperature and repeat the measurement cycle. Alternatively, if you have more

than one such bottle available, you can allow all three to sit in the sunlight together

and measure the temperature of the first after, say, 15 min, the second after 30 min,

and the third after 45 min.
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2. Measurement by Solar Cells

Solar cells are rated by the amount of electrical power they produce given an

amount of solar energy they receive. Place the solar cell array flat on the ground.

Measure the power output. Repeat the measurement of the power output at least one

more time. Enter the results in Table 4 of the DATA SHEET.

Because we are interested in the amount of solar energy reaching the ground per

unit time and per unit area, we must measure the area of the solar cells and then

multiply by the total number of solar cells in the array. Note that the solar cells have

a boundary area which does not receive the sunlight. It is, therefore, best to measure

the area of an individual solar cell rather than the size of the array and then, as

stated, multiply by the number of cells in the array.

Enter the area of the individual cells, Acell , and the number of cells in the array,

N, in Table 4 of the DATA SHEET. Measure the length of the shadow cast by the

Sun, L, and the length of the measuring stick, H, and enter both results in Table 4 of
the DATA SHEET.

D. Calculations and Analysis

1. Measurement by Heating of Water

For each measurement cycle, calculate the amount of water in the bottle by

subtracting the masses of the empty and full bottles. Enter the results in the final

column of Table 1 of the DATA SHEET. Similarly, calculate the mean values of L
for each measurement cycle, divide it by H to obtain Lmean/H, and calculate the

correction factor, fs, by (13) or read it from Fig. 3. Enter all values in Table 2 of the
DATA SHEET.

For eachmeasurement cycle, calculate the interval of time duringwhich the water

received sunlight, Dt, and the temperature increase,DT. Then calculateDT/Dt. Enter
those results in Table 3 of the DATA SHEET.

To enable comparison of your calculation of the solar constant with its accepted

value in Watts per square meter, convert the masses of water from grams to

kilograms and convert the area of the side of the bottle facing the Sun from square

centimeters to square meters.

Perform all your calculations on the DATA SHEET.

2. Measurement by Solar Cells

Average the results for the output of the solar cell array and enter the result, Pcell, in

Table 4 of the DATA SHEET. Calculate the total collecting area, ATotal , by
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multiplying the size of the individual solar cells in square meters, Acell, by the

number of cells in the array, N. Enter the result in Table 4 of the DATA SHEET.

With the values of L and H entered in Table 4, calculate the correction factor, fs,
using (13) or read it from Fig. 3. Multiply your result for the mean power output of

the solar cell array by the correction factor and divide by the area of the array. Enter

the result in Table 4 of the DATA SHEET. Then calculate the value for the solar

constant as So ¼ fs Pcell/ATotal. Show all your calculations on the DATA SHEET.

3. Experimental Errors

The accepted value for the solar constant is 1367.7 W/m. On the DATA SHEET,

calculate the percentage error between this value and the values you determined by

the two methods used in this experiment.
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STUDENT’S NAME ________________________________________________

E. Energy Output of the Sun Experiment Data Sheets

1. Water Heating

Calculation of mass of water in bottle

Calculation of the mean value of L, Lmean/H, and the correction factor. fs

If you are using the same bottle for each of the three groups of measurements, you

need measure only once the area of the side onto which the sunlight will fall. Show

your calculations of Lmean and the correction factor, fs, using (13), unless you are

using Fig. 3 to determine the correction factor, here.

Table 3 Temperature increase measurements

Bottle Start time End time Dt (s) Start temp. (oC) End temp. (oC) DT (oC) DT/Dt (oC/s)

#1

#2

#3

Table 1 Preliminary data: water bottle size and water mass

Bottle H (cm) w (cm)

Area

Abottle (cm
2)

Mass of empty

bottle (g)

Mass of full

bottle (g)

Difference ¼
water mass (g)

#1

#2

#3

Table 2 Correction factor measurements

Bottle H (cm) Start L (cm) Final L (cm) Mean value of L , Lmean

Lmean/

H fs

#1

#2

#3
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STUDENT’S NAME ________________________________________________

Calculation of the mean value of the three determinations of DT/Dt

DT
Dt

� �
mean

¼ ___________ (oC/s.)

Convert the values for m from grams to kilograms and the value for Abottle from cm2

to m2. Show your calculations here.

m ¼ __________ kg

Abottle ¼ ___________ m2.

From (11),

So ¼ fsm cw
DT
Dt

� �
mean

1

Abottle
:

Using cw ¼ 4186 J/kg-oC and the values for m, Abottle, and
DT
Dt

� �
mean

you have

determined above, calculate So.

So ¼ ____________ Joules/ m2-s.
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STUDENT’S NAME ________________________________________________

2. Solar Cell

First measurement of output of solar cell, Pcell: ________________ W

Second measurement of output of solar cell, Pcell: ________________ W

Mean value of solar cell output: ________________ W

Show your calculations here.

Total collecting area ¼ ___________________ m2

Correction Factor, fs ¼ ____________________

Value for Solar Constant ¼ fs Pcell/ATotal ¼ ___________________ W/m2

3. Experimental Errors

The accepted value for the solar constant is 1367.7 W/m. Calculate the percentage

error between this value and the values you determined by the two methods used in

this experiment.

a. Heating of water measurement

b. Solar cell measurement

Table 4 Solar cell measurements

Average

output,

Pcell Acell N

ATotal

¼ N x Acell

Shadow

length, L

Length of

measuring

stick, H fs

So ¼
fs Pcell/ ATotal

512 18 The Surface Temperature and Energy Output of the Sun



STUDENT’S NAME ________________________________________________

F. Energy Output of the Sun Experiment Discussion Questions

1. Using the accepted value for the solar constant of 1367.7 W/m2, use (3) to

calculate the luminosity of the Sun, its total energy output in Joules per second.

2. Using (4), calculate the lifetime of the Sun in billions of years that results from the

Sun expending its fuel at the rate given by the luminosity you have calculated.

3. Knowing the luminosity of the Sun, its total energy output per second, and

assuming the Sun radiates like a blackbody, we can use the Stefan-Boltzmann

Law, Eq. (2) of Experiment #17, “Blackbody Radiation,” to calculate the

temperature of its visible surface. The radius of the Sun is 6.96 � 108 m.

Calculate this temperature.

4. In the determination of the solar constant by the heating of water, we placed a

stopper on the water bottle. Besides allowing us to insert the thermometer, why

was this necessary?

5. Using (2) and the Stefan-Boltzmann Law, Eq. (2) Experiment #17, “Blackbody

Radiation,” find the distances from the Sun outwards into the solar system that

define the “zone of habitability.” Recall that the Stefan-Boltzmann Law provides

the amount of energy per second emitted by a blackbody per unit surface area. The

inner boundary of the “zone of habitability” is the distance at which water would

boil from the heat of the Sun, and its outer boundary is the distance at which water

would freeze. To simplify your calculations, use the solar constant leading to a

temperature on Earth of 288 K to create a proportion To actually determine the

temperature on the surface of a planet, one must account for many effects such as

reflection of sunlight by clouds, absorption of solar energy in the atmosphere,

reflection of sunlight at the surface, the emissivity of the surface material, and

conduction of heat into the subsurface. Thismanner of calculating the boundaries of

the zone of habitability is defined by assuming perfect blackbodies are located in

space so that all the energy in the sunlight is heating the surface. Show your

calculations here.
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STUDENT’S NAME ________________________________________________

6. Referring to Table 11 of Experiment #15, “Thermal Radiation from a Planetary

Subsurface: Part II: Soil Sample Measurements,” which planets of the solar

system lie within the zone of habitability of the Sun that you have defined in

question #5?

7. The value you have derived for the solar constant will be less than the accepted

value. One problem for which we have corrected is the slanting angle of the rays

of the Sun. What are other problems with measuring the solar constant (a) on the

surface of the Earth and, (b) in particular, by using a water bottle to perform the

measurement?

8. Using the accepted value of the solar constant, calculate the total amount of solar

energy incident on a hemisphere of the Earth per second. The equatorial radius

of the Earth is 6378 km. Compare this to the power generated by a large

municipal power plant, 1 GW, or 1 � 109 W.
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STUDENT’S NAME ________________________________________________

9. If we did not know the value of the distance from the Earth to the Sun, the A.U.,

from other methods, we could calculate it from the value of the solar constant

and a value for the temperature of the visible surface of the Sun determined, for

example, from its blackbody curve or spectrum. From (3),

Ro ¼ Lo
4pSo

� �1=2
;

where Lo is given by the Stefan-Boltzmann law, Eq. 2 of Experiment #17,

“Blackbody Radiation”. Calculate the value of the A.U. in kilometers using

the accepted value of the solar constant and a value for the luminosity of the Sun

of 3.83 � 1026 J/s.

10. The zone of habitability can be calculated by the distance from the parent

star and its luminosity. This, however, does not directly predict the surface

temperature of a planet. For example, planetary atmospheres can increase the

temperature of a planetary surface by effectively providing insulation. In

the extreme, as on Venus, a greenhouse effect makes the surface temperature

high enough to melt lead, although Venus may in fact be in the zone of

habitability of the Sun (see your answer to question #5). For extra credit,

what do you think are the odds that the destruction of urban forests for

developments such as parking lots and soccer fields, the annihilation of the

rain forest for agriculture, mining, lumber, or housing—trees being the natural

cooling infrastructure of the Earth, and the injection of carbon dioxide into the

atmosphere by vehicles will increase global warming during your lifetime and

lead to a greenhouse effect so severe that life will no longer be sustainable on

Earth?

Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.
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Experiment 19

The Theory of Atomic Spectra

SUMMARY: In Experiment #19, “The Theory of Atomic Spectra,” we study

the emission lines from the hydrogen atom in terms of the Bohr theory of

the atom. The light coming from a hydrogen discharge tube is spread into its

constituent wavelengths by a diffraction grating. Determination of the angular

positions of those lines yields a value for the Rydberg constant.

LEVEL OF DIFFICULTY: Moderate

EQUIPMENT NEEDED: Hydrogen discharge tube; diffraction grating

spectrometer.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_19, # Springer Science+Business Media New York 2013
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A. Introduction

That electrons, when bound to a nucleus in an atom, can be found possessing only

discrete values of energy and are located only in corresponding discrete energy
levels is one of the major elements of quantum mechanics. The twentieth century

understanding of the various aspects of this field revolutionized how we view

matter and its interaction with radiation. Among its many ramifications for science

and technology, it provides astronomers with the ability to identify the substances

present in celestial objects simply by analyzing the radiation we receive from them.

Indeed, observations of the electro-magnetic radiation from celestial objects,

along with the mathematical modeling of the processes that produces it, provides an

understanding of such characteristics as their composition, structure, motion, and

temperature, their very nature. It is the major way we learn about them. In this

experiment, we will study one model, the Bohr model of hydrogen and its predic-

tion of the nature of the visible light we receive from hydrogen atoms.

B. Theory

1. Atomic Spectra

The atoms of every element, be it hydrogen, oxygen, or calcium, for example, are

distinguished by the number of protons and neutrons in their nuclei, and by the number

of electrons surrounding those nuclei. If the atom is electrically neutral, then the number

of protons and number of electrons are equal. If the atom is ionized by losing one or

more electrons, then these numbers differ. In either case, the electrons can be found in

only select discrete energy levels. When the electrons move between these energy

levels, they may absorb or emit photons of a corresponding wavelength. Because

each atom or ion is distinct, the pattern of these wavelengths is distinct. Laboratory

studies provide these spectra for the elements. Just as fingerprints and to an extent

cursive signatures are unique among individuals, so these spectral “fingerprints” or

“signatures” are unique among the chemical elements. Figure 1, for example, shows the

spectrum of the carbon atom in the visible portion of the electro-magnetic spectrum.

Fig. 1 The spectrum of the carbon atom in the visual
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This and similar spectra for other chemical elements are created by passing light

from an incandescent lamp through a chamber of, in this case, carbon gas and then

focusing that light onto a piece of metal through which a thin slit has been cut. The

light coming out of the slit is then passed through a prism which disperses the light

into its constituent wavelengths. The result is an image of that slit for the various

wavelengths. Because the image of a slit is a straight line, the image of the slit

corresponding to a given wavelength is called a spectral line.
We also use the term spectrum to refer to the pattern of radiation that we observe

from celestial objects. In this case, however, the individual spectra of many atoms

may be present. Figure 2 is a portion of the spectrum, for example, of the Sun.

Astronomers perform a detective job when they examine the spectrum of a celestial

object such as a star and then determine which elements are present by comparing

that spectrum with those observed in the laboratory for the chemical elements

suspected of being present in that object.

2. The Bohr Atom

The simplest element, hydrogen, is composed of a single electron surrounding a

single proton. We expect, and find, that its spectrum is the simplest of all the

elements. The nature of that spectrum was explained by (Niels Bohr, 1885–1962) in

work that gained for him the Nobel Prize in 1922, at the age of 37!

According to the Bohr model of the hydrogen atom electrons can be found only

in definite orbits about the atomic nucleus. These orbits are designated by a

quantum number n ¼ 1, 2, 3, 4, . . . and are characterized by the energy that the

electrons in the orbits possess. The difference in the energy or energy levels
between two orbits n and m is given by

DEmn ¼ Rh c
1

m2
� 1

n2

� �
; n>m; (1)

where the Rydberg constant (Johannes Rydberg, 1854–1919),

R¼ 1:097� 105 cm�1;

Fig. 2 A portion of the solar spectrum centered at 4700 Å. Such spectra are created by passing

sunlight through a dispersive device such as a prism or diffraction grating. Atoms in the solar

atmosphere remove light of characteristic wavelengths, resulting in the pattern of darkened absorp-

tion lines. Comparison to spectra of atoms obtained in the laboratory allows astronomers to

determine which elements are present in the atmosphere of the Sun, as well as in those of other stars
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Planck’s constant (Max Planck, 1858–1947),

h ¼ 6:625� 10�27 erg-s,

and the speed of light (G-d, -1 to + 1),

c ¼ 3:0� 1010 cm/s:

As a result of the wave-particle duality of light, the energy E of a photon (“particle-

like” description) is related to the wavelength (“wave-like” description) of the

associated radiation by

E ¼ hc

l
: (2)

Using the universal wave equation, Eq. (1) of Experiment #9, “Determination of

the Rotation Rate of Planets and Asteroids by Radar: Part I. Observations of

Mercury,” this can also be written as

E ¼ hf ;

where f is the frequency of the radiation corresponding the wavelength l.
Electrons in atoms and molecules move between energy levels by changes

referred to as transitions. When a beam of light hits a hydrogen atom, for example,

a photon whose energy corresponds to a given interval between Bohr energy levels

will be absorbed if the electron of the hydrogen atom is in the lower energy level. For

example, if the electron in a hydrogen atom is in energy level 1 and a photon of

energy E ¼ hc/l ¼ E13 hits that hydrogen atom, then the electron will be given

enough energy to kick it up to energy level 3. Similarly, if the electron in a hydrogen

atom is in energy level 3 and a photon of energy E ¼ hc/l ¼ E37 hits the atom, then

the electron will be given enough energy to kick it up to energy level 7. This

particular process is in general called photo-excitation.
Collisions between hydrogen atoms or between other atoms or molecules and

hydrogen atoms can also “excite” the hydrogen atom by kicking its electron up to

higher energy states, by way of collisional excitation.
As with all physical systems, atoms and molecules are most stable in their

“unexcited” or ground states. A hydrogen atom which has been photo-excited or

collisionally excited will return to its unexcited state, on its own accord, by having

its electron fall to the m ¼ 1 energy level either by one or a series of energy level

jumps. This process is called photo-deexcitation or spontaneous emission.
Deexcitation can also occur by collisional deexcitation, in which the electron

gives up its energy to the other colliding particle.
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3. Hydrogen Energy-Level Diagram

Such processes can be described by an energy-level diagram, such as that of Fig. 3

for the hydrogen atom. In absorption, the atom absorbs the energy of a photon, and

the electron jumps up to a higher energy level, indicated by an upward-pointing

arrow. In emission, the atom releases a photon and the electron falls down to a

lower energy level, indicated by a downward-pointing arrow. Series of such

absorptions or emissions are distinguished by their common lower energy level.

The quantum nature of matter ensures that all such transitions occur between

specific energy levels, guaranteeing that the energies of photons absorbed or

emitted have specific values. (In addition, in the process of ionization, an electron

absorbs sufficient energy to completely free it from the atom.)

Combining (1) and (2) yields the wavelength of radiation corresponding to a

jump between two energy levels, m to n, in the hydrogen atom,

1

l
¼ R

1

m2
� 1

n2

� �
; n>m: (3)

As can be seen from this equation, the greater the difference between m and n,
the greater the difference between 1/m2 and 1/n2, and the smaller the wavelength of

the photon absorbed or emitted by the hydrogen atom. This is consistent with larger

jumps in Fig. 3 corresponding to larger energies E ¼ hc/l.
For example, when the electron in the hydrogen atom performs downward

energy level jumps by spontaneous emission, the hydrogen atom releases photons.

The energy, and therefore wavelength, of these photons corresponds to the two

energy levels of the jump, described by (3).
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Fig. 3 The energy-level diagram of hydrogen. The Lyman, Balmer, and Paschen series in

emission are created by photons being released by the atom and its electron falling to a lower

energy level, designated by n ¼ 1, 2, and 3, respectively. The energy unit of eV, or electron volts,

is convenient to describe the energy levels of electrons in atoms
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As the hydrogen atom deexcites by spontaneous emission, some jumps occur

down to energy level m ¼ 1. The relatively small wavelengths of these jumps

correspond to ultraviolet light and are referred to as the Lyman series. These are

seen in the spectra of highly red-shifted objects such as quasars.

Other jumps occur down to energy level 2. The wavelengths of these jumps

correspond to visible light, were described by Balmer (Johann Balmer, 1825–1898)

in 1885, and are accordingly called the Balmer series. From (3), the wavelengths

are given by

1

l
¼ R

1

4
� 1

n2

� �
: (4)

These emissions, referred to as Ha, Hb, Hg, and so on, are seen in the spectra of
stars, and are the emissions that will be studied in this experiment. You will observe

several of the energy level jumps of hydrogen in the Balmer series and determine

the value of the Rydberg constant, R.
Note that these relationships of quantum mechanics govern only emission and

absorption by atoms. As can be seen by (3) or (4) for the hydrogen atom, as the

energy levels n to which the electron is excited or from which it is deexcited

increases, the differences between 1/l corresponding to adjacent values of n
becomes small. For example, the wavelength difference in the Balmer series

between interactions with energy levels 3 and 4 can be calculated from (4) to be

1702 Å whereas that between energy levels 50 and 51 is only 0.02 Å. Instead of the

emissions or absorptions being widely separated in wavelength, they become nearly

adjacent in wavelength and the radiations become less and less distinct, forming a

continuous spread of wavelengths.

This is what we would expect. When electrons are flying about freely in space,

not bound to atoms, they emit or absorb energy following classical as opposed to

quantum mechanics. They produce a continuum of radiation, not radiation that is

quantized. As the electron gets farther and farther from the nucleus, its behavior

becomes more and more like electrons that are free.

C. Procedure and Observations

1. Equipment

To perform the experiment we require a source of excited hydrogen and an instru-

ment which will take this light and spread it out into its constituent wavelengths. The

source of excited hydrogen is a familiar hydrogen discharge tube, similar to neon or

other fluorescent lights. The hydrogen discharge tube contains hydrogen molecules

under low pressure. When a high voltage is applied, typically of the order of 5000

volts, the electrical force strips electrons off of some of the hydrogen molecules.

Although these voltages far exceed those needed to ionize the atoms, the electrons
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are thereby able to attain sufficient speeds that their impact with the molecules

dissociates many into their constituent atoms. The collisions also impart kinetic

energy to the atoms and, most important for the emission of photons, excites the

atoms into higher energy levels. The result is a gas containing many collisionally-

excited hydrogen atoms. The resulting photo-deexcitation produces emission lines

not only in the visible but also in the infrared and ultra-violet.

A non-excited hydrogen discharge tube would not produce the desired results.

Far from having its electrons in familiar Bohr orbits, the two electrons in the

hydrogen atom are shared by both atoms and as they move about the nuclei of the

two constituent atoms their paths resemble large ovals and figure eights. The energy

levels, in short, are not described by (1).

The instrument is a transmission diffraction grating spectroscope, Fig. 4. A

diffraction grating is a piece of glass or transparent plastic onto which has been

cut a large number of fine parallel, evenly spaced grooves. The space between each

pair of grooves acts as a slit and the light passing through each “slit” experiences

diffraction.When parallel light rays are incident upon the grating, the rays of a given

wavelength that have been diffracted from the various slits interfere with each other.

The nature of the interference for each distinct wavelength, l, depends on l/D, where
D is the space between grooves. At most angles, the interference is destructive and

very little light appears.

At certain angles, however, the waves interfere constructively and a maximum

intensity of light appears, symmetrically to the left and to the right of the axis of the

diffraction grating in very narrow beams. These angles correspond to differences in

the paths of the light of one, two, and so on number of wavelengths, and give rise to

“first order,” “second order,” and so on spectra, at successively larger angles from

the axis of the diffraction grating. The first order spectra are by far the brightest and

will be those studied in this experiment.

The rays of each different wavelength present in the incident light constructively

interfere at a different angle; each color of light reaches a maximum intensity at a

different angle. This enables us to associate each particular wavelength of light

present in the incident beam with a particular angle of bending.

Fig. 4 In this schematic drawing, a diffraction grating spectrometer is shown observing the

emission lines from a hydrogen discharge tube. The collimator ensures that the rays of light

incident on the grating are parallel
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As can be seen from Fig. 5, the longer the wavelength the greater the angle at

which the waves will constructively interfere. From Fig. 5b, we can determine the

wavelength corresponding to a given angle of observation,

sin y ¼ l
d
; (5)

so that

l ¼ d sin y: (6)

This explicitly shows that light of comparatively longer wavelengths will con-

structively interfere at comparatively larger angles. Equations (5) and (6) represent

the first order spectra. In general, constructive interference will occur at angles given

by

sin y ¼ Nl
d

; (7)

where the angles for the Nth order maxima are found for values of N ¼ 1, 2, 3, . . ..
In the transmission diffraction grating spectroscope, light is beamed onto the

grating. The light from the light source passes through a collimator, producing
parallel rays incident upon the grating as is needed to achieve constructive interfer-

ence. A telescope, which can be rotated about the grating, focuses and observes the

light coming from the grating at any angle. A common diffraction grating has 600

grooves or lines per millimeter, which corresponds to a distance between each of

the 600 lines of d ¼ 1.667 � 10�4 cm, as shown in Fig. 5. If the grating you are

using differs, your value of d will be different.

2. Observations

The jumps from energy levels 5, 4, and 3 to energy level 2 are identified by their

distinctive wavelengths, corresponding to the colors dark blue, cyan, and red,

Fig. 5 (a) Constructive interference of rays from a diffraction grating. (b) Closeup of the

geometry
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respectively. Cyan is a light blue/green color, familiar perhaps as one of the four

inks used most commonly in color printing. It is similar to turquoise. We want to

measure the angles through which each color is bent, and then determine the

wavelengths of those colors by the geometry of the diffraction grating.

The reference for our angular position measurements is the axis of the diffraction

grating, y0. As can be seen from Fig. 4, at this position the light rays are not

deflected. The intensity of light will be greatest.

To establish this reference configuration, move the telescope of the spectroscope

close to the source and point the telescope directly at it. Then slide the telescope of

the spectroscope along its track so that its axis is aligned, as well as you can position

it, along the axis of the diffraction grating. Slide the telescope carefully along its

track until you see the bright red line in the center of the field of view of the

telescope corresponding to no deflection. Enter the value for this angular position of

the telescope as y� in column 2 of Table 1 of the DATA SHEET. For many

instruments it will be close to 180�. Enter the angular position as indicated on the

scale; do not simply write “180.” Note that the vernier scale on many spectroscopes

enables measurement of angles to 0.05� if denominated in degrees or 10 if

denominated in minutes of arc. Make certain you understand the scale on the

vernier scale you are using.

Several techniques will aid in ensuring the accuracy of your measurements.

First, make sure that the telescope points directly at the bulb to get as bright of

images as possible. Second, rotate your telescope so that the slit and cross-hairs in

the telescope are parallel to the hydrogen discharge tube. Otherwise the lines

viewed through the telescope will be at an angle to the cross-hairs and an unambig-

uous determination of the position angle of the lines will be difficult to obtain.

Again, when trying to locate the various lines, it is useful to open the slit wide, thus

allowing a large amount of light into the spectroscope. Then close the slit until the

line is thin to enable a precise measurement of the angular position of the telescope.

Failure to close the slit can lead to errors of 5–10 minutes of arc. Also, position your

apparatus to prevent stray light from the hydrogen discharge tubes and lamps of

other experimenters from entering into your telescope. These stray lights may

confuse your measurements and make it difficult to see dim lines.

Now move the telescope along its track to the right until the dark blue line is in

the center of the field of view of the telescope. Enter the value of the angle, y1, in
column 3 of Table 1 of the DATA SHEET. Move the telescope to the left, passing

over the bright line corresponding to no deflection, until you see a second dark blue

line. Measure the angle when that dark blue line is in the center of the field of view

of the telescope, y2, and enter its value in column 5 of Table 1 of the DATA

SHEET. You may see another, fainter dark blue line as you move the telescope.

That corresponds to the jump from energy level 6 to energy level 2, but because of

its faintness will not be used in the experiment.

Repeat this procedure to get the values of y1 and y2 for the cyan and red lines.

Enter the respective values in columns 3 and 5 of Table 1 of the DATA SHEET.

Move the telescope further along its track to determine if you can in fact see the

second order diffraction spectra.
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D. Calculations and Analysis

1. Determination of the Wavelength
from the Angular Displacements

Because we are only interested in values of the angle y relative to the axis of the

diffraction grating, we next calculate the differences between y1 and y0, and

between y2 and y0. We must be careful, however, to calculate the absolute value

of the differences, |y1�y0| and |y2�y0|. If we did not do this, when we averaged

values of the differences we would always get close to zero.

Calculate the values of |y1�y0| and |y2�y0| for each line and enter the results in

columns 4 and 6 of Table 1 of the DATA SHEET. Then average the pairs of values

to obtain the value of |y�y0|av for the each line and enter the results in column 7 of

Table 1 of the DATA SHEET.

Substituting each value of |y�y0|av for y in (6), we can then calculate thewavelength
using the particular value of d, for example, 1.667 � 10�4 cm, corresponding to the

number of lines per millimeter of the diffraction grating of your spectroscope. Enter

your result for l, both in centimeters and angstroms, themore commonly employed unit

for optical wavelengths (remember that 1 Å ¼ 10�8 cm) in columns 8 and 9, respec-

tively, of Table 1 of theDATASHEET. Showyour calculations on theDATASHEET.

Calculate the values of 1/l in cm�1 and enter them in column 10 of Table 1.

Remembering that dark blue, cyan, and red are the colors of light resulting from

jumps from energy levels n ¼ 5, 4, 3 to energy level 2, respectively, enter the

respective values of n and n2 in columns 11 and 12 of Table 1.

2. The Value of the Rydberg Constant

We can now determine the value of R graphically. Plot the values of 1/l in units of

cm�1 as ordinate as a function of the values of 1/n2 as abscissa.
From (4), the value of the slope of the line should be (� R). Determine the value

of R by finding the slope of the line using two widely separated points on the graph

and dividing the difference between their ordinates by the difference in their

abscissas. Show your calculations on the DATA SHEET.

A second determination of R can be made from the value of the y-intercept. We

can rewrite equation (4) as,

1

l
¼ R

4
� R

1

n2

� �
:

Therefore,when1/n2 ¼ 0, thevalue of1/l isR/4. From thegraph, estimate the value

of the y-intercept and equate it toR/4. This allows a second determination ofR. Enter its
value on the DATA SHEET. We thus have two determinations of the value of R.
Average them to get your best value and enter this value on the DATA SHEET.
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E. Atomic Spectra Experiment Data Sheets

Show your calculations here.

Dark Blue Line:

Cyan Line:

Red Line:

Table 1 Angular displacements and wavelengths

Line y0 y1 |y1�y0| y2 |y2�y0| |y�y0|av l (cm) l (Å) 1/l (cm�1) n 1/n2

Dark blue

Cyan

Red
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Graph of 1/l as a function of 1/n2

Calculation of slope:

Corresponding value of R: ________

Value of y-intercept ¼ ________

Corresponding value of R: ________

Average value of R: ________

Error Analysis

Calculate the percentage error between the average value of R compared to the

accepted value, R ¼1.096 � 105 cm�1.

Discuss the sources of error in your determination of R.
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F. Atomic Spectrum Experiment Discussion Questions

1. Compare your values for the wavelengths of dark blue, cyan, and red light with

the actual range of values as given in Table 2.

If agreement is not found, provide possible explanation for the discrepancy.

2. From (7), calculate the angles of ydark blue, ycyan, and yred at which the second

order diffraction maxima should appear. If your values of wavelength in Table 2

agree with the actual values, use your values; if not, use a typical value for the

wavelengths of these colors from Table 2.

Dark Blue Line:

Cyan Line:

Red Line:

Table 2 Colors of the visible spectrum

Color Wavelength range (Å) Your wavelength, l (Å)

Red 6300–7000

Orange 5900–6300

Yellow 5700–5900

Green 5000–5700

Blue 4500–5000

Violet 4000–4500
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3. In 1963, astronomer Marteen Schmidt (born 1929) noted that the strange spec-

trum observed from the starlike object 3C273 was in fact the familiar pattern of

the Balmer lines from hydrogen displaced in wavelength to the red. The formula

for the redshift of an object with a velocity, v, in the line of sight is ((6) of

Experiment #9, “Determination of the Rotation Rate of Planets and Asteroids by

Radar: Part I. Observations of Mercury,”)

z ¼ Dl
l

¼ v

c
;

whereDl is theDoppler shift of light of wavelength l observed from the object and

the speed of light c ¼ 3.00 � 1010 cm/s. Schmidt calculated the implied redshift

and discovered that this starlike objectwas not in our galaxy, but at a great distance.

Using the actual spectrum taken by Schmidt, we will determine the redshift of

3C273. Note that the wavelengths associated with Hd, Hg, and Hb are those

provided below the comparison spectrum obtained in the laboratory (at, of

course, a velocity v ¼ 0 cm/s).

a) Determine the scale factor for the spectrum in angstroms per millimeter. Note

that the spectrum of 3C273 and the comparison spectrum have the same scale.

b) Calculate Dl/l for each of the three redshifted lines Hd, Hg, and Hb and

average the three results.

c) Using that average, what is the implied velocity with which 3C273 is moving

away from us? Show all your calculations here.
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4. Typical hydrogen discharge tubes operate by the application of 5000 V to the gas

of molecular hydrogen. Based on an understanding of Fig. 1, why wouldn’t a

much larger voltage be suitable for everyday use as well as for this experiment?

5. Although hydrogen is the simplest atom and has the simplest spectrum, some

elements have spectra similar to hydrogen.

a. Draw a schematic diagram of each atom or ion, referring if necessary to the

Periodic Table of the Elements.

1) The calcium atom, Ca

2) The helium atom, He.

3) Singly-ionized helium, He+

4) Doubly-ionized helium, He++.

5) The lithium atom, Li.

6) Singly-ionized lithium, Li+.

7) Doubly-ionized lithium, Li++.

b. Which of these would you expect to have spectra similar to hydrogen? Why?

6. The spectrum of the calcium atom in the visible, Fig. 1, is reproduced below.

Draw the absorption lines corresponding to the Ha, Hb, and Hg lines at their

approximate appropriate wavelengths on this spectrum.

4,000
Blue

wavelength (Å) 7,000
Red

a. Calculate the scale factor of the spectrum as shown in angstroms per

centimeter.
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b. Calculate the position of the Ha line from the left-hand margin of 4000 Å and

then draw the corresponding spectral line.

c. Calculate the position of the Hb line from the left-hand margin of 4000 Å and

the draw the corresponding spectral line.

d. Calculate the position of the Hg line from the left-hand margin of 4000 Å and

then draw the corresponding spectral line.

7. The diffraction grating spectrometer used in the experiment had 600 grooves or

lines per millimeter, which corresponds to a distance between each of the 600

lines of d ¼ 1.667 � 10�4 cm. What would be the angular displacement at

which the Ha, Hb, and Hg lines would be observed using a diffraction grating

spectrometer having 900 grooves per millimeter, corresponding to a distance

between grooves of d ¼ 1.111 � 10�4 cm? Show your calculations here.

Ha:

Hb:

Hg:

Removing these DATA SHEETS from the bookmay damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach that graph to these

DATA SHEETS.
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Experiment 20

Discovering the Nature of Objects in Space:

Kirchhoff’s Laws of Radiation

SUMMARY: In Experiment #20, “Discovering theNature of Objects in Space:

Kirchhoff’s Laws of Radiation,” we investigate the important Kirchhoff’s

Laws, which enable astronomers to determine some of the physical and

chemical conditions characterizing celestial objects. Using a light source

similar to the hydrogen discharge tube of Experiment #19, “The Theory of

Atomic Spectra,” and an incandescent light bulb, you will investigate the

creation of emission and absorption lines in simulated clouds of interstellar

gas or stellar atmospheres.

LEVEL OF DIFFICULTY: Moderate

EQUIPMENT NEEDED: Optical bench; mercury discharge tube or helium

discharge tube; light baffles; diffraction grating spectrometer; frosted light

bulb and light socket; photometer; rheostat.

L.M. Golden, Laboratory Experiments in Physics for Modern Astronomy:
With Comprehensive Development of the Physical Principles,
DOI 10.1007/978-1-4614-3311-8_20, # Springer Science+Business Media New York 2013
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A. Introduction

In the preceding experiments, we have studied how astronomers gather data, some of

the methods used to analyze data, and then studied some of the physical laws behind

motion and the radiation we receive from various types of objects. In two of the latter

experiments, we dealt with laboratory equipment that simulated idealized astronomi-

cal objects, emission line radiation from a hot gas and blackbody radiation from a

heated solid object. The radiation from actual astronomical objects may approach

those idealizations, but in general the radiationwe receive from them ismore complex.

To enable interpretation of the radiation we receive from those objects, we need

to understand what produces the actual spectra we receive. Stars, for example, are

hot objects producing radiation whose spectra are similar to those of a blackbody at

the same temperature, but which have in addition, depending on the star, absorption

lines, emission lines, or both. Planets with atmospheres also produce such compos-

ite spectra. Depending on the particular situation, the radiation from gas clouds in

interstellar space exhibit emission lines, absorption lines, or both.

B. Theory

Gustav Kirchhoff (1824–1887) provided the description of the conditions which

produce spectra from astronomical objects. Although they are referred to as

Kirchhoff’s Laws, they do not have the stature of laws of nature such as Newton’s

Laws or the Universal Law of Gravitation, but rather summarize what we know

about spectral lines and blackbody radiation. This is not to diminish their impor-

tance. Without them, the complex radiation we receive from astronomical objects

would be largely undecipherable.

I. A hot solid, liquid, or sufficiently dense gas radiates a continuous blackbody emission

spectrum in which all wavelengths are present.

II. A low-density, hot gas produces a bright line or emission line spectra, the wavelengths

of which are characteristic of the chemical composition of the gas.

III. A low-density, cool gas seen in front of a hotter solid, liquid, or sufficiently dense gas

produces an absorption line spectrum, the wavelengths of which are characteristic of the

chemical composition of the gas, superimposed on the blackbody emission spectrum of the

hotter object.

We studied the idealization of Kirchhoff’s first law in Experiment #17, “Black-

body Radiation”. We studied the idealization of Kirchhoff’s second law in Experi-

ment #19, “The Theory of Atomic Spectra”. In this experiment, we will study

Kirchhoff’s third law.

We should note an implication of Kirchhoff’s Laws. Given a low-density gas of

a given composition, the wavelengths of the radiation seen in emission if the gas

is heated (second law) are exactly the same wavelengths absorbed if the gas is seen

in front of a hot background object (third law). It follows that a given cloud of
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low-density gas will produce an emission line spectrum if viewed alone, but will

produce an absorption line spectra if viewed in front of a hot solid, liquid, or

sufficiently dense gas. Nothing about the gas cloud has changed, only whether or

not it is viewed in front of another object. That is the basis of the experiment we will

be performing.

These various scenarios of Kirchhoff’s Laws are shown in Fig. 1. As we learned

in Experiment #19, “The Theory of Atomic Spectra,” each chemical element has its

own characteristic spectrum. Kirchhoff’s Laws, then, enable us to determine the

chemical composition of a cloud of gas and its temperature relative to a background

object from examination of its spectra.

Close examination of Fig. 1, however, shows that study of spectra can tell us

more than the chemical composition of the gas and its temperature relative to a

background object. First, the depths of the absorption lines or the height of the

emission lines, as the case may be, tell us the amount of such gas presence, its

chemical abundance. To the extent that the gas is composed of more than one

material, we can determine the relative abundances of those constituents. Second,

just as examination of the blackbody curve can tell us its temperature, so the depths

of the absorption lines or the height of the emission lines, as the case may be, among

the various lines of a given gas tell us its temperature. (This requires knowledge of

the branch of physics called quantum mechanics.) Third, although Fig. 1 does not

display this explicitly, the width of the absorption or emission lines, as the case may

be, tell us the density of the gas and the rotational speed of the gas, and is an

additional measure of the temperature of the gas. Fourth, the extent to which the

wavelengths of the absorption lines or the emission lines, as the case may be, are

displaced from those wavelengths known for the substance from laboratory

measurements or theory, the relative velocity of the gas with respect to us can be

determined. Such analyses are the subject of spectroscopy.

T1 T2

I

I

I
T1 > T2

λ

λ

λ

Fig. 1 Kirchhoff’s Laws of radiation. The wavelengths of radiation absorbed by a gas cooler than

a background object are exactly the same as those emitted by a hot gas of the same chemical

composition
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Although this is not one of Kirchhoff’s Laws, one additional scenario exists.

“IV.” A low-density, hot gas seen in front of a cooler solid, liquid, or sufficiently dense gas

produces an emission line spectrum, the wavelengths of which are characteristic of the

chemical composition of the gas, superimposed on the blackbody emission spectrum of the

hotter object.

Many astronomical objects show both emission lines and absorption lines in

their spectra. The Sun, for example, has many absorption lines produced near its

visible surface as well as emission lines produced in the extremely hot outer regions

of the corona.

C. Procedure and Observations

We will utilize equipment similar to that which we have used in previous

experiments. This includes an optical bench, incandescent light bulb, diffraction

grating spectroscope, photometer, and rheostat. Instead of a hydrogen discharge

tube we will use either a mercury discharge tube or a helium discharge tube. Both

elements exist at room temperature as single atoms. The prominent lines of these

two elements in the visible are summarized in Tables 1 and 2. Mercury has eight

prominent lines in the visible, but because mercury also emits lines in the ultraviolet

any large mercury discharge tubes must be used with care. Baffles may be advisable

if your lab uses this source.

Other light sources that your laboratory may have available are not as suitable

for our purposes. Sodium has seven prominent lines in the visible, but the pairs of

Table 1 Prominent visible

lines of mercury
Color Relative intensity

Violet 3.0

Violet 1.5

Blue 5.0

Blue-green 0.5

Green 20

Yellow 2.0

Yellow 10

Red 1.3

Table 2 Prominent visible

lines of helium
Color Relative intensity

Blue 2.9

Blue 2.1

Aqua 1.9

Green 2.6

Yellow 3.8

Red 2.9

Blue 2.9
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green, yellow-orange, and orange lines are separated in wavelength by only a few

angstroms and may not be easily distinguished. More importantly, the sodium D-
lines of yellow-orange color far exceed the other lines in intensity. The multiplicity

of lines in the visible spectrum of both argon and neon create unnecessary com-

plexity for analysis. In addition, the lines of neon are concentrated in the yellow to

red region. Your choice of light source will depend on the equipment available in

your particular laboratory.

The equipment set-up is a slight modification of that used in Experiment #19,

“The Theory of Atomic Spectra,” (see its Fig. 4). Place the socket for the light bulb

on the optical bench. The spectral line light source, either themercury discharge tube

or the helium discharge tube, will be located on the optical bench on the near side of

the light bulb. Both positions are aligned with a collimator, Fig. 2. If you cannot

physically place the light bulb socket and the spectral line light source on the optical

bench, employ it as a straight edge to align these light sources. The current going into

the light bulb socket can be varied by a rheostat. As in Experiment #19, “The Theory

of Atomic Spectra,” we will move the telescope along its track and observe the

angular displacement of the spectral lines that appear. We will also observe the

blackbody emission from the light bulb.

1. Continuous Blackbody Spectrum: Kirchhoff’s First Law

We must first align the axis of the diffraction grating with the optical bench. Turn

on the spectral line light source. As in Experiment #19, “The Theory of Atomic

Spectra,” move the telescope of the spectroscope close to the source and point the

telescope directly at it. Then slide the telescope of the spectroscope along its track

so that its axis is aligned, as well as you can position it, along the axis of the

Fig. 2 A socket for placement of an incandescent light bulb is added to the experimental set-up of

Experiment #19, “The Theory of Atomic Spectra”. The current to the light bulb socket can be

varied using a rheostat
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diffraction grating. Slide the telescope carefully along its track until you see the

bright line in the center of the field of view of the telescope corresponding to no

deflection. On the DATA SHEET, enter the value for this angular position of the

telescope as y�. For many instruments it will be close to 180�.
Enter the angular position as indicated on the scale; do not simply write “180.”

Note that the vernier scale on the spectroscope enables measurement of angles to

0.05� if denominated in degrees or 10 if denominated in minutes of arc.

Turn off the spectral line light source. Place the light bulb in the socket and turn

it on. Increase the voltage from the rheostat until the light is a moderately bright

white color. Call this intensity Ib. Enter the setting of the rheostat on the DATA

SHEET. Move the telescope along its track to the right and, with the photometer

placed up against the telescope eyepiece, measure the intensity of the light using

every 2� from the reference angle of y� + 2 to an angle of y� + 32�. To prevent

stray light from entering the photometer, place light baffle material such as tin foil

or a dark cloth around the photometer input. Enter those values of intensity in

Table 3 of the DATA SHEET.

Turn the light bulb off. When the light bulb has cooled, remove it from the

socket.

2. Emission Line Spectrum: Kirchhoff’s Second Law

We will now repeat the first part of Experiment #19, “The Theory of Atomic

Spectra,” with our spectral line light source of choice. Move the telescope back

to its axis position, the angle of y0. Turn on the spectral line light source. Adjust the
rheostat so that the light emitted is bright. Enter the reading on the rheostat as V1 on

the DATA SHEET. As in Experiment #19, “The Theory of Atomic Spectra,” move

the telescope along its track to the right until a spectral line is in the center of the

field of view of the telescope. Enter the value of the angle as y1 in Table 4 of the

DATA SHEET. Move the telescope to the left, passing over the bright line

corresponding to no deflection, until you see a second spectral line of the same

color. Measure the angle when that line is in the center of the field of view of the

telescope. Enter the value of the angle as y2 in Table 4 of the DATA SHEET.

Estimate the brightness of the emission line by a number from 1 to 5, with 5

being the brightest. Enter this value in Table 4 of the DATA SHEET.

Repeat this procedure for the other lines described in Table 1 or Table 2,

depending on your choice of spectral line light source.

3. Absorption Line Spectrum: Kirchhoff’s Third Law

To observe the absorption line spectrum, we simply leave the spectral line light

source off. Move the telescope to the y0 position, the axis of the spectrometer. Turn

on the light bulb. We want the setting of the rheostat to be the same as that which
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resulted in an intensity of Ib in part 1 above. To ensure this, measure the intensity of

the light at the y0 on-axis position and compare it to the intensity entry in Table 3. If

the photometer reading is not the same, change the setting of the rheostat until the

readings agree.

Because this color is white, the temperature of the gas is greater than that of the

gas in the spectral line light source, which is of course at room temperature.

We now repeat the measurements of part 2 above. Now, however, you will not

be seeing the spikes of intensity from the emission lines, but rather a dimming of the

intensity. These absorption lines are more difficult to observe than the spikes of

emission, as you might imagine, but you can use as a guide the angular

displacements that you entered in Table 4. Enter in Table 5 of the DATA SHEET

the angular displacements of the absorption lines and the photometer readings of

their brightness.

D. Calculations and Analysis

1. Continuous Blackbody Spectrum: Kirchhoff’s First Law

To determine the wavelengths corresponding to these angles of observation, sub-

stitute each value of |y � y0| for y into Eq. (6) of Experiment #19, “The Theory

of Atomic Spectra,” recalling that d ¼ 1.667 � 10�4 cm. As in Experiment #19,

“The Theory of Atomic Spectra,” if the grating you are using differs from that with

600 lines per millimeter, your value of d will be different. Enter your results for l in
the right-hand column of Table 3 of the DATA SHEET both in centimeters and

angstroms. Show your calculations on the DATA SHEET.

Construct a graph of those data, intensity as a function of angle. Draw a smooth

line through the data points. This is the continuous spectrum emitted by the light

bulb. Your observations will span a significant portion of the visible electro-

magnetic spectrum and, as a result, the familiar shape of the blackbody curve

should be apparent, as shown in Fig. 1 of Experiment #17, “Blackbody Radiation”.

2. Emission Line Spectrum: Kirchhoff’s Second Law

Calculate the values of the absolute differences between y1 and y0, and between

y2 and y0. Average the values of |y1 � y0| and |y2 � y0| to obtain the value of

|y � y0|av for the dark blue, cyan, and red lines and enter their values in Table 4 of

the DATA SHEET.

To determine the wavelengths corresponding to the three angles of observation,

substitute each value of |y � y0|av for y in Eq. (6) of Experiment #19, “The Theory
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of Atomic Spectra”. Enter your results for l in Table 4 of the DATA SHEET both in

centimeters and angstroms. Show all your calculations on the DATA SHEET.

Construct a graph of the emission line spectrum, brightness as a function of

wavelength using your estimated brightness values as the ordinate. Use the same

abscissa scale that you used in constructing the blackbody spectrum graph.

This is the emission line spectrum.

3. Absorption Line Spectrum: Kirchhoff’s Third Law

Find the mean values, |y � y0|av, of the angular displacements to the right and to the

left of the y0 on-axis position, and the mean values, Iav, of the corresponding

photometer readings. Calculate the wavelengths corresponding to the mean angular

displacements. Enter your results in Table 5 of the DATA SHEET. Show all your

calculations on the DATA SHEET.

On the graph you constructed in part 1 above, draw lines representing the

decreased intensities at the wavelength locations of the absorption lines. As in

Fig. 1, so that they are easily seen, draw the lines with some small finite width. This

is the absorption line spectrum superimposed on the continuum arising from the

light bulb.

We have created two graphs, one of the emission line spectrum and one of the

absorption line spectrum. Both the height of the lines in the former and the depth of

the lines in the latter indicate the number of atoms emitting or absorbing, respec-

tively, the particular line from your spectral line light source. Construct a third

graph, the strength of the absorption lines as a function of the strength of the

emission lines. The graph will have only four to seven points, depending on

which spectral line light source you used and whether you were able to distinguish

the closely-spaced lines of sodium if you used the sodium vapor lamp. Note on the

graph which data point refers to which line. Because your emission line

brightnesses were only estimates, provide error bars which represent the precision

you would ascribe to your subjective estimate.
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E. Kirchhoff’s Law Experiment Data Sheets

1. Continuous Blackbody Spectrum: Kirchhoff’s First Law

y0 ¼ ________________

Voltage setting on rheostat to obtain moderately bright white light intensity of Ib:

__________

Show your calculations of the wavelengths here.

Table 3 Continuum spectrum

|y � y0|
(degrees) I l (cm) l ()

|y � y0|
(degrees) I l (cm) l (Å)

2 18

4 20

6 22

8 24

10 26

12 28

14 30

16 32
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Graph of the continuous spectrum

2. Emission Line Spectrum: Kirchhoff’s Second Law

Setting of rheostat to obtain bright emission V1 ¼ ______________

Show your calculations of |y � y0|av and l here for each line

Table 4 Emission line spectrum

Line

(color) y0 y1 |y1 � y0| y2 |y2 � y0| |y � y0|av l (cm) l (Å) Brightness
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Graph of the absorption line spectrum

3. Absorption Line Spectrum: Kirchhoff’s Third Law

Show your calculations of |y � y0|av, Iav, and l here for each line.

Table 5 Absorption line spectrum

Line

(color) y0 y1 |y1 � y0| I1 y2 |y2 � y0| I2 |y � y0|av Iav l (cm) l (Å)
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Graph of the absorption line spectrum

Graph of the strength of the absorption lines as a function of the strength of the

emission lines
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F. Kirchhoff’s Law Experiment Discussion Questions

1. In this experiment we used either a mercury discharge tube or a helium discharge

tube. Why did we not choose to use the same hydrogen discharge tube that we

used in Experiment #19, “The Theory of Atomic Spectra”?

2. The graph of absorption line strength as a function of emission line strength has

some uncertainty resulting from the subjective estimate of the emission line

strength, in contrast to the measurements of the intensity of the continuous

emission and the absorption lines using the photometer.

a. Nonetheless, do you detect a pattern? Is the line, for example, a monotoni-

cally increasing straight line?

b. Do you expect it to be? Why or why not?

3. We noted that a low-density, hot gas seen in front of a cooler solid, liquid, or

sufficiently dense gas produces an emission line spectrum superimposed on the

blackbody emission spectrum of the hotter object. Following Fig. 1, draw a

sketch of the appearance of such a spectrum.
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4. A spectrum is observed to be a blackbody continuum with both absorption and

emission lines present. Following Fig. 1, draw a schematic sketch of the object

from which this radiation might be received. As in Fig. 1, show the relative

temperature of the components of the object.

5. Question #31 of Experiment #1, “A Review of Mathematical Concepts and

Tools,” discussed the redshift of quasars. Draw a sketch of what the spectrum

of a very distant quasar, between which and the Earth are located two clouds of

cool intergalactic gas, might look like. Assume that one of the clouds is closer to

the quasar than to our MilkyWay galaxy, so that it has a redshift which, although

smaller than that of the quasar, is still large. Assume that the second cloud is

closer to the Milky Way galaxy than the first but still sufficiently far to have a

sizeable redshift. Clearly note which lines are from which cloud.

6. You constructed a graph of the blackbody curve of the light bulb as part of the

analysis of the continuous blackbody spectrum. Compare its shape to the various

blackbody curves of Fig. 1 of Experiment #17, “Blackbody Radiation”. What is

your estimate of the temperature of the light bulb filament on the basis of that

comparison? Make your estimate based on the shape of the curve and Wien’s

displacement law. Describe the basis for your estimate.
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STUDENT’S NAME ________________________________________________

7. Knowing that absorption lines are created by a relatively cool gas in the

atmosphere of its associated star, astronomers study those absorption lines to

discover properties of the star. In particular, by observing the width of the

absorption lines they can determine its rotation rate. Just as we observed in

Experiments #9 and #10, “Determination of the Rotation Rate of Planets and

Asteroids by Radar: Part I: Observations of Mercury,” and “Determination of the

Rotation Rate of Planets and Asteroids by Radar: Part II: Observations of

Simulated Planets,” with radar observations of the planets, the Doppler effect

tells us that the more rapidly rotating the star the broader the absorption lines, a

phenomenon referred to as rotational broadening. In this context, the different

terminologies, “bandwidth” in microwaves and spectral line “width” in visible

waves, refer to the same phenomena but in different parts of the electro-

magnetic spectrum.

Here are idealized small portions of the spectra of two stars. One represents

the spectrum of Vega, an A0-type star and the brightest summer nighttime star in

the northern hemisphere (see Table 1 of Experiment #11, “The Orbit of Venus”).

The other represents the spectrum of the Sun, which rotates at the equator once

every 27 days. With a radius of 7 � 105 km, this corresponds to a velocity at its

surface of 1.9 km/s. (Because of the relative temperatures of these two stars, the

spectrum for the Sun is sloping upwards at these wavelengths whereas that for

Vega is sloping downwards, as explained by Wien’s displacement law.)

4400 4404 4408 4412 4416 4420 4424 4428 4432

4000 4100 4200 4300 4400 4520 4600

Vega

Sun

Wavelength in Angstroms

Wavelength in Angstroms

4700 4800 4900
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STUDENT’S NAME ________________________________________________

a) Determine the scale factor of the two spectra. Show your calculations here

and enter the results in Table 6.

Vega scale factor : __________ Å/mm

Sun scale factor : __________ Å/mm

b) Measure the widths of the indicated absorption lines of Vega and the Sun

centered at 4410 Å. As you will quickly learn, an art exists in determining the

widths of spectral lines. For consistency among student groups, use one-half

the depth of the line as the reference point at which to determine the spectral

line width. Enter the results in Table 6.

c) Calculate the surface velocity of Vega using a proportion based on the

modified Doppler shift formula, Dl/l ¼ 2 v/c. Because one edge of the star
approaches us at the velocity v while the other edge recedes from us at the

velocity v, the rotational-broadened line has twice the width provided by the

Doppler shift formula, (6) of Experiment #9, “Determination of the Rotation

Rate of Planets and Asteroids by Radar: Part I: Observations of Mercury”.

Show your calculations here.

Table 6 Rotational broadening

Star Scale factor Dl (mm) Dl (Å)

Vega

Sun

548 20 Discovering the Nature of Objects in Space. . .

http://dx.doi.org/10.1007/978-1-4614-3311-8_9
http://dx.doi.org/10.1007/978-1-4614-3311-8_9


STUDENT’S NAME ________________________________________________

d) That velocity is related to the rotation period by v ¼ 2p R/P, where R is the

radius of the star and P is the rotation period. Based on new observations

using optical interferometry, the estimate of the equatorial radius of Vega

was updated in 2006 to be equal to about 2.7 solar radii. Derive an equation

providing the rotation period of Vega in terms of the rotation period of the

Sun and the width of the absorption lines of the two stars.

e) Calculate the rotation period of Vega in days using that equation. Can you

think of any other celestial object that has a similar rotation period?

f) Isn’t nature wondrous? Aren’t mathematics and reason fabulous tools with

which to discover and marvel at the workings of nature? (Your final grade in

this course may depend on the answer to these two questions.)

Removing these DATA SHEETS from the book may damage the binding. You might

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

If you used graph paper other than that provided, attach those graphs to these DATA

SHEETS.
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Appendix I

Physical Constants and Astronomical

Measurements

Speed of light in a vacuum, c = 3.00 � 105 km/s = 3.00 � 1010 cm/s

Acceleration due to gravity, g = 9.8 m/s2 = 980 cm/s2

Gravitational constant, G = 6.67 � 10-11 N-m2/kg2 = 6.67 � 10-8 dyne-cm2/g2

Boltzmann’s constant, k = 1.38 � 10-23 J/K = 1.38 � 10-16 erg/K

Stefan-Boltzmann constant, σ = 5.67 � 10-8 W/m2-K4 = 5.67 � 10-5 erg/s-cm2-K4

Planck’s constant, h = 6.63 � 10-34 J-s = 6.63 � 10-27 erg-s

Astronomical Unit, 1 A.U. = 1.496 � 108 km

Light year, 1 ly = 9.46 � 1012 km

Parsec, 1 pc = 3.09 � 1013 km (= 3.26 ly = 206,265 A.U.)

Equatorial radius of the Earth = 6378 km

Mass of the Earth = 5.97 � 1024 kg

Radius of the Moon = 1738 km

Mass of the Moon = 7.35 � 1022 kg

Equatorial radius of the Sun = 6.96 � 105 km

Mass of the Sun = 1.99 � 1030 kg

Luminosity of the Sun = 3.83 � 1026 W

Effective temperature of the Sun = 5780 K

World human population in 1500 = 450 million

World human population in 2012 = 7000 million
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Appendix II

Julian Dates

Julian Days, abbreviated J.D., is the time reckoning used by astronomers. This table

provides the Julian dates for given calendar dates at 0 hours universal time, the time

at Greenwich. For simplicity, we have deleted both the leading two digits, 24, and

the 0.5 fraction of a day. The result is the so-called Modified Julian data, MJD = JD

�2400000.5. We have chosen to begin the table on January 11, 2012, so that one

Julian date is provided for each month, except for the final entry. The interval

between entries is 30 days.

TABLE OF JULIAN DATES (January 11, 2012 through

December 31, 2013)

Modified

Julian Date Year Month Day

Days from

1/11/2012

55937 2012 1 11 0

55967 2012 2 10 30

55997 2012 3 11 60

56027 2012 4 10 90

56057 2012 5 10 120

56087 2012 6 9 150

56117 2012 7 9 180

56147 2012 8 8 210

56177 2012 9 7 240

56207 2012 10 7 270

56237 2012 11 6 300

56267 2012 12 6 330

56297 2013 1 5 360

56327 2013 2 4 390

56357 2013 3 6 420

56387 2013 4 5 450

56417 2013 5 5 480

56447 2013 6 4 510

56477 2013 7 4 540

(continued)
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(continued)

Modified

Julian Date Year Month Day

Days from

1/11/2012

56507 2013 8 3 570

56537 2013 9 2 600

56567 2013 10 2 630

56597 2013 11 1 660

56627 2013 12 1 690

56657 2014 12 31 720
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Appendix III

Day-of-the-Year Tables

For convenience, you might want to refer to a table of the days of the year. These

provide the ordinal number of each calendar date. For example, January 1 is the first

day of the year and December 4 is the 338th day of the year (in a non-leap year).

Note that some refer, incorrectly, to days-of-the-year as the Julian date. Many desk

calendars also provide the number.

Day-of-the-year (Non-leap years)

Date Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 1 32 60 91 121 152 182 213 244 274 305 335

2 2 33 61 92 122 153 183 214 245 275 306 336

3 3 34 62 93 123 154 184 215 246 276 307 337

4 4 35 63 94 124 155 185 216 247 277 308 338

5 5 36 64 95 125 156 186 217 248 278 309 339

6 6 37 65 96 126 157 187 218 249 279 310 340

7 7 38 66 97 127 158 188 219 250 280 311 341

8 8 39 67 98 128 159 189 220 251 281 312 342

9 9 40 68 99 129 160 190 221 252 282 313 343

10 10 41 69 100 130 161 191 222 253 283 314 344

11 11 42 70 101 131 162 192 223 254 284 315 345

12 12 43 71 102 132 163 193 224 255 285 316 346

13 13 44 72 103 133 164 194 225 256 286 317 347

14 14 45 73 104 134 165 195 226 257 287 318 348

15 15 46 74 105 135 166 196 227 258 288 319 349

16 16 47 75 106 136 167 197 228 259 289 320 350

17 17 48 76 107 137 168 198 229 260 290 321 351

18 18 49 77 108 138 169 199 230 261 291 322 352

19 19 50 78 109 139 170 200 231 262 292 323 353

20 20 51 79 110 140 171 201 232 263 293 324 354

21 21 52 80 111 141 172 202 233 264 294 325 355

22 22 53 81 112 142 173 203 234 265 295 326 356

23 23 54 82 113 143 174 204 235 266 296 327 357

(continued)
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(continued)

Date Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

24 24 55 83 114 144 175 205 236 267 297 328 358

25 25 56 84 115 145 176 206 237 268 298 329 359

26 26 57 85 116 146 177 207 238 269 299 330 360

27 27 58 86 117 147 178 208 239 270 300 331 361

28 28 59 87 118 148 179 209 240 271 301 332 362

29 29 88 119 149 180 210 241 272 302 333 363

30 30 89 120 150 181 211 242 273 303 334 364

31 31 90 151 212 243 304 365

Day-of-the-year (Leap years)

Date Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 1 32 61 92 122 153 183 214 245 275 306 336

2 2 33 62 93 123 154 184 215 246 276 307 337

3 3 34 63 94 124 155 185 216 247 277 308 338

4 4 35 64 95 125 156 186 217 248 278 309 339

5 5 36 65 96 126 157 187 218 249 279 310 340

6 6 37 66 97 127 158 188 219 250 280 311 341

7 7 38 67 98 128 159 189 220 251 281 312 342

8 8 39 68 99 129 160 190 221 252 282 313 343

9 9 40 69 100 130 161 191 222 253 283 314 344

10 10 41 70 101 131 162 192 223 254 284 315 345

11 11 42 71 102 132 163 193 224 255 285 316 346

12 12 43 72 103 133 164 194 225 256 286 317 347

13 13 44 73 104 134 165 195 226 257 287 318 348

14 14 45 74 105 135 166 196 227 258 288 319 349

15 15 46 75 106 136 167 197 228 259 289 320 350

16 16 47 76 107 137 168 198 229 260 290 321 351

17 17 48 77 108 138 169 199 230 261 291 322 352

18 18 49 78 109 139 170 200 231 262 292 323 353

19 19 50 79 110 140 171 201 232 263 293 324 354

20 20 51 80 111 141 172 202 233 264 294 325 355

21 21 52 81 112 142 173 203 234 265 295 326 356

22 22 53 82 113 143 174 204 235 266 296 327 357

23 23 54 83 114 144 175 205 236 267 297 328 358

24 24 55 84 115 145 176 206 237 268 298 329 359

25 25 56 85 116 146 177 207 238 269 299 330 360

26 26 57 86 117 147 178 208 239 270 300 331 361

27 27 58 87 118 148 179 209 240 271 301 332 362

28 28 59 88 119 149 180 210 241 272 302 333 363

29 29 60 89 120 150 181 211 242 273 303 334 364

30 30 90 121 151 182 212 243 274 304 335 365

31 31 91 152 213 244 305 366
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Appendix IV

Fast Fourier Transform Spectrum

Analyzer Software

Spectrum analyzer software allows us to display the intensity of the echo signal as a

linear function of frequency without using spectrum analyzer hardware. A brief

explanation of how it works will enable you to understand the display of the echo

signal you will be observing on the computer screen.

Such software calculates the familiar Fourier transform of a signal of finite time

duration, in our case the radar echo. The actual computations utilize the fast Fourier
transform (FFT), a Fourier transform algorithm which greatly reduces the number

of computations, and therefore the time, required to achieve the Fourier transform.

Although FFTs were first discussed in 1965, the genius mathematician and physi-

cist Carl Friedrich Gauss (1777–1855) had described the critical concept by 1805.

The range of frequencies you can detect (f1, f2) and the frequency resolutionDf you
can obtain with FFT spectrum analyzer software depend on two characteristics of the

experimental setup. These are the sampling rate, r, of the sound card in your computer

and the length of time, T, the signal is detected by the spectrum analyzer software.

Typical computer sound cards have a sampling rate of 44.1 kHz. This means that

they can detect frequencies of up to 22 kHz. To understand this, imagine a signal of

1 Hz observed for 1 s, as in Fig. 1. Only if the signal is sampled at least twice during

this period, a sampling rate of 2 Hz, will it be identifiable as a 1 Hz signal. We can

generalize this finding to the statement that the maximum frequency, f2, detectable
will be one-half of the sampling rate. Audio frequencies, those detectable by the

human ear, range from 20 Hz to 20 kHz. This choice of a 44.1 kHz sampling rate for

the sound card is therefore common because it enables the computer to detect the

very highest frequencies that we can hear.

At the other end of the frequency bandwidth, the minimum frequency you can

detect, f1, and therefore the frequency resolution, Df = f1, is equal to 1/T, where T is

the length of time you are observing the signal. This also makes sense. If you observe

a signal for 5 s, say, then the longest wave that would have gone through one complete

cycle, and is therefore detectable, has a frequency of once every 5 s, as in Fig. 2.

Any longerwave, of smaller frequency, will not have completed a complete cycle and

would therefore not be unambiguously detectable. The corresponding minimum

detectable frequency is 0.2 Hz, that is, 1/T.
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Fig. 2 The minimum frequency detectable by FFT spectrum analyzer software is 1/T, where T is

the length of time observed. This is also the frequency resolution available

Fig. 1 The maximum frequency detectable by FFT spectrum analyzer software is one-half of the

sampling rate
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In summary, the frequency interval will be (1/T, r/2). The frequency resolution

will be Df = 1/T. A signal of 1 s length would result in a frequency resolution of

1 Hz.

Sound engineers and software developers often refer to the “block length” of the

signal processed rather than the length of time. The block length is defined as

the number of samples processed at the given sampling rate. If B is the block length,

then we have trivially T = B/r and the frequency interval would be expressed

as (r/B, r/2). With this notation, the frequency resolution would be expressed as

Df = r/B.
Our spheres will be rotating on the turntable at 33 1/3 rpm and 78 rpm,

corresponding to 0.55 and 1.3 revolutions per second. As a result, a complete

rotation occurs in 1.8 and 0.77 s, respectively. We need only observe the rotating

spheres these lengths of time. The corresponding frequency resolutions, given as

1/T, are therefore 0.55 and 1.3 Hz. Observing the echoes a greater length of time

would, by the principle of the Fourier transform, seem to provide information of

smaller frequency resolution, but in fact this information would not be physically

meaningful because the same echo would repeat itself as the spheres rotate.

Nonetheless, we will observe for greater lengths of time. This will enable the

software to average out spurious signals such as those generated by other students

moving about in the laboratory.
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