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Preface

In recent years, the range and complexity of porous medium flow and transport prob-

lems of interest has increased dramatically. Problems in the environment involve

water, gases, dissolved contaminants, and organic phases. They arise in agriculture,

hydrology, and petroleum engineering in regions ranging from the deep subsurface

to the near surface. In engineered systems, the behavior of filtration systems, fuel

cells, and chemical reactors are described as porous medium systems. Other porous

medium applications include diverse fields of study such as plant physiology, can-

cer tumor growth and treatment, and tomography. Interest in these problems has

created a need to be able to describe multiphase problems with a relatively slow

moving solid phase at a range of spatial scales. The thermodynamically constrained

averaging theory (TCAT) has been developed to address this need.

TCAT is different from other scale-change methods because it assures full com-

patibility of problem descriptions at small scales and the larger length scales. In-

cluded in the analysis are formulations of dynamic equations for phases, interfaces

between phases, common curves where interfaces come together, the geometric evo-

lution of spaces occupied by and between phases, and thermodynamics. The larger

scale descriptions are obtained in every case from averaging of smaller scale de-

scriptions. These equations are then employed in their own right and used to formu-

late an entropy inequality that guides closure of the equations.

This book is an introduction to the TCAT framework. It contains all the elements

of TCAT, but the applications considered are restricted to relatively simple cases.

Because interscale consistency of all variables is mandated, significant explicit no-

tation is employed to facilitate identification of the variables. Thus careful attention

is paid to sorting through the subtleties of the notation so that the resultant equations

can be seen to be both rigorous and meaningful.

The book consists roughly of two parts. The first half is focused on smaller scale

continuum formulations of conservation and thermodynamic equations for phases,

interfaces, and common curves. In the second half, tools for changing the scales of

the equations are developed, the tools are used to derive foundational components

of the theory, and the foundational components are used in turn to obtain closed

models at a larger scale for a range of applications.

v
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Specifically, Chap. 1 contains a qualitative overview of the elements of the TCAT

method that will be employed quantitatively in the subsequent chapters. Chapters 2–

5 are a self-contained presentation of principles needed for analyses at a length scale

where phases are treated as being juxtaposed. Conservation equations for material in

phases, interfaces, and common curves are developed in Chap. 2. These equations,

applied to phases, are the ones usually encountered at a small continuum scale.

The full dynamic equations for interfaces and common curves are an extension of

the typical formulations. The conservation equations are developed for species that

comprise an element of the system as well as for the elements as a whole. In Chap. 3,

classical irreversible thermodynamics is developed for each of the constituents of a

porous medium system. In Chap. 4, variational analysis is used to derive conditions

of equilibrium for the system at the continuum scale. The variational techniques

employed are derived in Appendix A. In Chap. 5, the equations and conditions de-

veloped in Chaps. 2–4 are combined to derive a closed equation set for a fluid phase.

In this chapter, the approach to obtaining closure relations for a porous medium sys-

tem is demonstrated, but by examining only a single fluid phase, the analysis is

greatly simplified.

In Chaps. 6–11, the mathematical and physical considerations needed for analy-

sis of systems at a larger scale, referred to as the macroscale, are provided. At this

scale, the system is conceptualized as being composed of overlapping continua. In

Chap. 6, the mathematical tools for scale change, derived in Appendix B, are applied

to the conservation equations to obtain larger scale continuum equations. Averaging

is applied in Chap. 7 to the thermodynamic relations, leading to a macroscale ther-

modynamic formalism that is unique to TCAT and fully consistent at the larger scale

and between scales. The small scale equilibrium conditions of Chap. 4 are also aver-

aged so that equilibrium conditions are expressed in terms of macroscale variables.

In Chap. 8, evolution equations are developed to describe the volume fractions of

each phase and other geometric variables that, on average, describe the distribution

of phases within an averaging region. The changes in these variables, which do not

exist at the smaller scale and cannot be described by conservation equations, are

described based on averaging theorems. In Chaps. 9–11, examples are presented of

application of the equations developed in Chaps. 6–8 to the description of porous

medium systems: single-fluid-phase flow is considered in Chap. 9; chemical species

transport in single-fluid-phase flow is developed in Chap. 10; and models for two-

fluid-phase flow are derived in Chap. 11. The work in these latter three chapters to

derive the desired forms requires substantial mathematical manipulations, which are

detailed in Appendix C.

After working through these chapters, and the exercises at the ends of the chap-

ters, one should have a firm grasp of the art and science of the TCAT approach.

The method can then be applied by the reader to more complex systems. Chap. 12

presents a forward thinking discussion of some of the challenges and possibilities

for confirming the mathematical descriptions that arise from TCAT and for support-

ing the discovery of parameter values in closure relations. Thus, we consider the

entire text to be introductory in that it opens the door to systematic TCAT analysis

and application but only hints at the applications that can be studied.
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The methodologies described here have been developed by the authors with input

obtained from many members of the scientific community. In particular, Professor

D. Andrew Barry of EPFL has taken on the often difficult task of serving as journal

editor for the reviews and publication of many of the research aspects of this work.

The mostly anonymous authors of the thorough and challenging reviews that were

obtained were very helpful in identifying aspects of the work that needed clarifica-

tion and further development. We have been fortunate over the years to work with

excellent students at the University of North Carolina (UNC) at Chapel Hill who

both took our courses and contributed to the research. We also offered a series of

short courses to students at the University of Stuttgart at the invitation of Profes-

sor Rainer Helmig, who has been an enthusiastic supporter of this work. Professor

Helge K. Dahle of the University of Bergen has also provided encouragement for

this work and opportunities to engage in enlightening and encouraging technical dis-

cussions on implementation of TCAT. These educational experiences, highlighted

by the insights and commitment of students, encouraged us to develop TCAT so

that it will be a more accessible analysis tool.

We have benefited from the efforts of additional collaborators. Professor Jan

Prins of the Computer Science Department at UNC Chapel Hill has contributed ex-

pertise enabling the development of efficient, large-scale simulators of microscale

systems. These simulators have been used to develop our mechanistic understand-

ing and to support the functional forms of closure relations advanced in this work.

The applied mathematics group at UNC Chapel Hill has supported this work in-

tellectually and through numerical methods and analysis collaborations, especially

Professors David Adalsteinsson, M. Gregory Forest, Jingfang Huang, and Richard

McLaughlin. Professor Dorthe Wildenschild of Oregon State University has worked

tirelessly to develop and apply high-resolution imaging methods that have informed

our understanding and helped guide our theoretical work. Professor Laura J. Pyrak-

Nolte of Purdue University has similarly contributed her expertise in micromodel

experimental methods that have honed our thinking. Professor Tim Kelley and his

group at North Carolina State University have contributed expertise in numerical

methods to implement and evaluate TCAT models. Professor Bernhard A. Schrefler

of the University of Padova has been an invaluable colleague, particularly in regard

to solid mechanics and in implementing TCAT models for simulation of biological

problems. Professor Kolumban Hutter, editor of the AGEM2 series, has provided

perceptive comments on our manuscript, and his unflagging and selfless support for

this project is greatly appreciated.

The authors have made every attempt to eliminate typographical and conceptual

errors and misstatements from the text. We are resigned to the fact that those ef-

forts have not been completely successful. We acknowledge the heroic efforts of

Ms. Robin Whitley in providing a careful proofreading of the text we prepared. Un-

fortunately, the authors retain ownership of all surviving typos, malapropisms, and

stray notational markings.

The authors wish to acknowledge research funding that has been provided during

the years it has taken to develop the TCAT methodology. In particular we wish to

note support from the U.S. National Science Foundation, the Basic Energy Sciences
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Program of the U.S. Department of Energy, and the Superfund Research Program

of the U.S. National Institute of Environmental Health Sciences. The University of

Bergen provided WGG an incomparable environment for working on this text using

support obtained from the International Research Training Group Non-linearities

and Upscaling in Porous Media (NUPUS) grant provided by the Norwegian Re-

search Council and from a guest researcher grant through the University of Bergen

Akademia agreement with Statoil. The University of North Carolina at Chapel Hill

has provided support to CTM through his appointment as the Okun Distinguished

Professor of Environmental Engineering and an environment that has enabled the

completion of this effort.

The authors would be terribly remiss not to mention the supportive environments

for this work encountered at home that involved many late nights, long weekends,

and distractions from social duties. Environments unconstrained by averages, fos-

tered by unlimited forbearance on the part of Genny Gray and Cherie Smith-Miller,

were beyond any reasonable expectation and are more than gratefully appreciated.
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Notation

Notation for variables in the text. Equation numbers are provided where unique

averages of macroscale quantities are defined and in other instances where deemed

helpful. Definitions are not provided for some terms that are used in context-specific

circumstances.

A chemical species in a ternary A-B-C system

Akα microscale affinity of reaction k in entity α , Eq. (5.37)

Akα macroscale affinity of reaction k in entity α , Eq. (10.31)

A∗
kα extended microscale affinity of reaction k in entity α , Eq. (5.38)

A partial mass area

Ân interfacial velocity coefficient relating to n-phase velocity

Âw interfacial velocity coefficient relating to w-phase velocity

A general extensive area

âw fourth-order tensor, Eq. (5.57)

â(n) coefficient tensor of order n
â equation coefficients

B chemical species in a ternary A-B-C system

B̂n common curve velocity coefficient relating to n-phase velocity

B̂w common curve velocity coefficient relating to w-phase velocity

b entropy body source density

C chemical species in a ternary A-B-C system

C Green’s deformation tensor, Eq. (3.130)

Cs macroscale Green’s deformation tensor, Eq. (7.17)

C partial mass Green’s deformation tensor, Eq. (3.180)

CP heat capacity at constant pressure

CV heat capacity at constant volume

ĉ closure coefficient

ĉss closure coefficient introduced in Eq. (11.91)

ĉwn closure coefficient introduced in Eq. (11.90)

ĉwns closure coefficient introduced in Eq. (11.94)

D reactant species, Eq. (10.70)

xix



xx Notation

D divergence theorem

D̂
α
AB binary macroscale diffusion tensor for species A and B in entity α , Eq.

(10.65)

D̂ diffusion tensor, Eq. (5.69)

D̂ diffusion coefficient, Eq. (5.70)

D set of material derivatives, e.g., Eq. (5.26), Eq. (9.23)

diα microscale rate of strain tensor based on species velocity viα , Eq. (2.16)

d∗iα microscale surficial rate of strain tensor based on velocity viα , Eq. (2.70)

d∗∗iα microscale common curve rate of strain tensor based on velocity viα , Eq.

(2.103)

diα macroscale rate of strain tensor, Eq. (6.56)

dα macroscale rate of strain tensor, Eq. (6.64)

E reactant species, Eq. (10.70)

E internal energy density

Eiα macroscale energy of species i in entity α per total volume, Eq. (6.103)

Eα macroscale energy of entity α per total volume, Eq. (6.119)

E partial mass internal energy

Eα,κ
i partial mass energy of species i in an entity averaged over the boundary of

the entity, Eq. (6.105)

Eα,κ
partial mass energy of an entity averaged over the boundary of the entity,

Eq. (6.127)

Ê Young’s modulus

Es macroscale deformation tensor, Eq. (9.95)

E internal energy

E particular partial derivative form of a total energy conservation equation

E iα particular partial derivative form of a macroscale species total energy

equation, Eq. (6.102) and Table 6.2

Eα particular partial derivative form of a macroscale entity total energy con-

servation equation, Eq. (6.118) and Table 6.3

E∗ particular material derivative form of a total energy conservation equation

E iα
∗ particular material derivative form of a macroscale species total energy

conservation equation, Eq. (6.117) and Table 6.2

Eα
∗ particular material derivative form of a macroscale entity total energy con-

servation equation, Eq. (6.131) and Table 6.3

Eα
∗∗ particular material derivative form of a macroscale entity total energy con-

servation equation, Eq. (6.203)

e internal energy per mass, Eq. (3.201)

e energy production rate density

eiα macroscale energy production rate density, Eq. (6.112)

ewns
N deviation term for the normal curvature, Eq. (8.55)

ewns
G deviation term for the geodesic curvature, Eq. (8.56)

ewn interface curvature deviation term, Eq. (8.44)
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ewn
J deviation term involving curvature defined in Eq. (11.33)

ewn
P deviation term involving pressure defined in Eq. (11.34)

ewn
γ deviation term involving surface tension defined in Eq. (11.35)

eαs
J deviation term involving curvature defined in Eq. (11.52)

eαs
P deviation term involving pressure defined in Eq. (11.53)

eαs
γ deviation term involving surface tension defined in Eq. (11.54)

es macroscale infinitesimal strain tensor

F reactant species, Eq. (10.70)

F scalar thermodynamic force

F density of F

F tensor thermodynamic force

F vector thermodynamic force

F set of thermodynamic forces

F general extensive property

F Helmholtz potential in Chapter 3

FT system functional, Eq. (4.13)

F partial derivative form of a general microscale conservation equation

F∗ material derivative form of a general microscale conservation equation

f general scalar function

f general tensor function

fkw gradient of a difference in microscale potentials, Eq. (5.84)

G gradient theorem

G Gibbs free energy

Gαβ microscale orientation tensor for αβ interface, Eq. (8.11)

GΩ generation rate, Eq. (2.5)

Gwns microscale orientation tensor for wns common curve, Eq. (8.47)
iκ→iα

G general macroscale transfer associated with body force potential of species

i in entity α , Eqs. (6.156) and (6.157) and Table 6.2
κ→α

G macroscale transfer associated with body force potential in entity α , Eq.

(6.164) and Table 6.3
κ→α
G0 macroscale transfer associated with body force potential in entity α , Eq.

(6.198)

G partial derivative form of a microscale body force potential balance equa-

tion

Giα particular partial derivative form of a macroscale species-based body force

potential balance equation, Eq. (6.152) and Table 6.2

Gα particular partial derivative form of a macroscale entity-based body force

potential balance equation, Eq. (6.159) and Table 6.3

G∗ particular material derivative form of a microscale body force potential

balance equation

Giα
∗ particular material derivative form of a macroscale species-based body

force potential balance equation, Eq. (6.158) and Table 6.2



xxii Notation

Gα
∗ particular material derivative form of a macroscale entity-based body

force potential balance equation, Eq. (6.165) and Table 6.3

Gα
∗∗ particular material derivative form of a macroscale entity-based body

force potential balance equation, Eq. (6.197)

g body force per unit mass, acceleration

H partial mass enthalpy

H enthalpy

h energy source density

hiα macroscale energy source density for species i in entity α , Eq. (6.104)

hα macroscale energy source density for entity α , Eq. (6.124)

hα
0 macroscale energy source density for entity α , Eq. (6.190)

I unit tensor

I′ unit tensor in a surface

I′′ unit tensor in a common curve

I′′′ null tensor

I
(n)
α unit tensor associated with 3− n-dimensional entity, α , where (n) is the

number of primes used

I set of entity indices

IC set of common curve indices

Icα connected set of indices for entity α , = I+cα ∪ I−cα
I+cα connected set of indices of one dimension higher than entity α
I−cα connected set of indices of one dimension lower than entity α
If set of fluid-phase indices

II set of interface indices

IP set of phase indices

IPt set of common point indices

Irxn set of chemical reaction indices

Is set of species indices

Is/N set of species indices except species N
I/S set of entity indices except the solid phase, s
IΓα set of common points that bound common curve α
IΩ pt index set of points

i species index

J first curvature equal to twice the mean curvature

J scalar thermodynamic flux

Jαβ
α macroscale average of first curvature, ∇′·nα , over αβ interface

J vector thermodynamic flux

J tensor thermodynamic flux

J set of thermodynamic fluxes

j jacobian

K second curvature equal to the Gaussian curvature

KEiα deviation kinetic energy per mass of species i in entity α , Eq. (6.107)

KEiακ species-based deviation kinetic energy relative to the macroscale velocity

averaged over the boundary, Eq. (6.108)
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KEα deviation kinetic energy per mass of entity α , Eq. (2.35)

KEακ entity-based deviation kinetic energy relative to the macroscale velocity

averaged over the boundary of the domain, Eq. (6.121)

Kiα
E density weighted average of KEiα , Eq. (6.109)

Kα
E entity-based macroscale deviation kinetic energy, Eq. (6.120)

Kα,κ
Ei average of a species deviation kinetic energy over the boundary of an en-

tity, Eq. (6.110)

Kα,κ
E average of a deviation kinetic energy over the boundary of an entity, Eq.

(6.122)

K̂i
M mass transfer coefficient for species i, e.g., Eq. (10.71)

K̂α
E heat transfer coefficient, e.g., Eq. (10.74)

K̂rxnk reaction rate coefficient, Eq. (5.79)

K̂S bulk modulus of the solid-phase material, Eq. (9.99)

K̂T bulk modulus of the solid-phase skeleton, Eq. (9.97)

K̂w closure coefficient

K̂kα reaction rate coefficient, Eq. (10.69)

k̂ coefficient tensor

k̂wn parameter for rate of relaxation of interfacial area, e.g., Eq. (8.61)

k̂wn
1 parameter for rate of relaxation of interfacial area, e.g., Eq. (11.41)

k̂wns parameter for rate of relaxation of common curve length, Eq. (8.72)

k̂θw heat conduction coefficient, Eq. (5.77)

k̂α
θ closure coefficient tensor for non-advective heat transfer in entity α

L partial mass common curve length

L set of Lagrange multipliers, Eq. (5.27)

L general extensive length

l unit vector tangent to a common curve

� length scale

�mo molecular length scale, Eq. (1.1)

�mi microscale length scale, Eq. (1.1)

�r
r resolution length scale, Eq. (1.1)

�ma macroscale length scale, Eq. (1.1)

�me megascale length scale, Eq. (1.1)

M material derivative theorem

Mv collection of terms in Eq. (9.36)

M mass

M set of masses of chemical species in Is
Mi set of masses of chemical species in Is excluding species i

M
iκ→iα

microscale transfer rate of mass of species i in entity κ to species i in

entity α per entity extent, Tables 2.3 and 2.4
iκ→iα

M macroscale transfer rate of mass of species i in entity κ to species i in

entity α per entity extent, Eq. (6.50) and Table 6.2
κ→α
M macroscale transfer rate of mass of entity κ to entity α per entity extent,

Eq. (6.61) and Table 6.3
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M particular partial derivative form of a mass conservation equation

Miα particular partial derivative form of a macroscale species mass conserva-

tion equation, Eq. (6.48) and Table 6.2

Mα particular partial derivative form of a macroscale mass conservation equa-

tion, Eq. (6.60) and Table 6.3

M∗ particular material derivative form of a mass conservation equation

Miα
∗ particular material derivative form of a macroscale species mass conser-

vation equation, Eq. (6.54) and Table 6.2

Miα
∗∗ particular material derivative form of a macroscale species mass conser-

vation equation, Eq. (6.74)

Mα
∗ particular material derivative form of a macroscale entity mass conserva-

tion equation, Eq. (6.62) and Table 6.3

MWi molecular weight of species i
m common point indicator

N number of chemical species, or the reference chemical species

Nrxn number of chemical reactions

n unit normal vector

n′ unit vector normal to surface boundary and tangent to the surface

n′′ unit vector tangent to curve oriented outward at endpoints of curve

ns interface between n and s phases

P grand canonical potential density

Pwn microscale term grouping defined in Eq. (11.26)

Pαs microscale term grouping defined in Eq. (11.48)

P grand canonical potential

P particular partial derivative form of a momentum conservation equation

P iα particular partial derivative form of a macroscale species momentum con-

servation equation, Eq. (6.81) and Table 6.2

Pα particular partial derivative form of a macroscale entity momentum con-

servation equation, Eq. (6.92) and Table 6.3

P∗ particular material derivative form of a momentum conservation equation

P iα
∗ particular material derivative form of a macroscale species momentum

conservation equation, Eq. (6.90) and Table 6.2

Pα
∗ particular material derivative form of a macroscale entity momentum con-

servation equation, Eq. (6.100) and Table 6.3

Pα
∗∗ particular material derivative form of a macroscale entity momentum con-

servation equation, Eq. (6.201)

Pα microscale property of entity α
Pi property i
p pressure

pc
wn microscale capillary pressure at wn interface, Eq. (4.92)

pT total pressure, Eq. (9.88)

p momentum production rate density

piα macroscale momentum production rate density, Eq. (6.80)
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Q
jκ→iα

general microscale transfer of energy from species j in entity κ to species

i in entity α , Tables 2.3 and 2.4
jκ→iα

Q general macroscale transfer of energy from species j in entity κ to species

i in entity α , Eqs. (6.113) and (6.115), Table 6.2
κ→α

Q general macroscale transfer of energy from entity κ to entity α , Eq.

(6.129), Table 6.3
κ→α
Q∗

0 energy exchange term between entities with dimensionality different by

two, Eqs. (6.191) and (6.192)
κ→α
Q0 entity-based energy exchange term that is a simple sum of species contri-

butions, Eq. (6.193)
κ→α
Q1 entity-based energy exchange term, Eq. (6.204)

q non-advective energy flux

qiα macroscale non-advective energy flux associated with species i in entity

α , Eq. (6.111)

qα macroscale non-advective energy flux associated with entity α , Eq. (6.123)

qα
0 non-advective energy flux for entity-based energy equation, Eq. (6.189)

qiα
g non-advective energy flux associated with mechanical processes involving

species i in entity α , Eq. (6.154)

qα
g non-advective energy flux associated with mechanical processes in entity

α , Eq. (6.163)

qα
g0 non-advective energy flux associated with mechanical processes in entity

α , Eq. (6.199)

Rkα microscale molar reaction rate k in entity α
Rkα macroscale molar reaction rate k in entity α
R̂ closure scalar

R̂
α

closure tensor

R̂
α
κ closure tensor involving α and κ entities

R set of mass densities of chemical species i ∈ Is
Ri set of masses of chemical species in Is excluding species i
IR real space

r mass production rate density

r microscale position vector used in Appendix B

r general integration variable

SΓ non-advective boundary source, Eq. (2.6)

SΩ body source independent of fluxes from adjacent entities

SΩT total body source, Eq. (2.5)

S entropy

S particular partial derivative form of an entropy balance equation

S iα particular partial derivative form of a macroscale species entropy balance,

Eq. (6.133) and Table 6.2
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Sα particular partial derivative form of a macroscale entity entropy balance,

Eq. (6.143) and Table 6.3

S∗ particular material derivative form of an entropy balance equation

S iα
∗ particular material derivative form of a macroscale species entropy bal-

ance, Eq. (6.134) and Table 6.2

Sα
∗ particular material derivative form of a macroscale entity entropy balance,

Eq. (6.144) and Table 6.3

Sα
∗∗ particular material derivative form of a macroscale entity entropy balance,

Eq. (6.195)

s entropy per mass, Eq. (3.201)

sα saturation of fluid phase α , Eq. (6.13)

T transport theorem

T wn collection of terms defined in Eq. (11.21)

T αs collection of terms defined in Eq. (11.43)

T wns collection of terms defined in Eq. (11.60)

T
jκ→iα

general microscale transfer of momentum from species j in entity κ to

species i in entity α , Tables 2.3 and 2.4
jκ→iα

T general macroscale transfer of momentum from species j in entity κ to

species i in entity α , Eqs. (6.83)–(6.85) and Table 6.2
jκ→iα
T∗ general macroscale transfer of momentum from species j in entity κ to

species i in entity α where the dimensionality of the entities differs by 2
κ→α

T general macroscale transfer of momentum from entity κ to entity α , Eq.

(6.97) and Table 6.3
κ→α
T0 macroscale transfer of momentum from entity κ to entity α , Eq. (6.202)

κ→α
T∗ general macroscale transfer of momentum from entity κ to entity α where

the dimensionality of the entities differs by 2, Eq. (6.98)

T∗ particular material derivative form of an Euler equation

T iα
∗ particular material derivative form of a macroscale Euler equation for a

species, Eqs. (7.44), (7.92), and (7.100) for a phase, interface, and com-

mon curve, respectively

T is
∗ particular material derivative form of a macroscale Euler equation for a

species in a solid, Eq. (7.78)

T s
∗ particular material derivative form of a macroscale Euler equation for a

solid, Eq. (7.80)

T α
∗ particular material derivative form of a macroscale Euler equation for an

entity, Eqs. (7.54), (7.96), and (7.102) for a phase, interface, and common

curve, respectively

TG∗ particular form of material derivative of body source potential

T iα
G∗ particular macroscale form of the material derivative of the species body

source potential, Eqs. (7.47), (7.95), and (7.101) for a phase, interface, and

common curve, respectively



Notation xxvii

T is
G∗ particular macroscale form of the material derivative of the species body

source potential in a solid phase, Eq. (7.79)
T s
G∗ particular macroscale form of the material derivative of the body source

potential of a solid phase, Eq. (7.81)
T α
G∗ particular macroscale form of the material derivative of the entity body

source potential, Eqs. (7.58), (7.97), and (7.103) for a phase, interface,
and common curve, respectively

t time
t stress tensor
ts solid-phase stress tensor, Eq. (4.25)
tsD deviatoric solid-phase stress tensor
ts macroscale solid-phase stress tensor, Eq. (9.85)
tα macroscale stress tensor, Eq. (6.28)
tT total stress tensor, Eq. (9.86)
U transformation function in Appendix A
U iα
∗ species-based internal energy equation, Eq. (6.206)

Uα
∗ phase-based internal energy equation, Eq. (6.207)

Uα
∗∗ phase-based internal energy equation, Eq. (6.209), expanded out as Eq.

(6.210)
u diffusion/dispersion vector
u vector of unknown functions in Appendix A
uiα macroscale diffusion/dispersion vector for species i in entity α , Eq. (6.71)
us macroscale displacement vector
uiα, jκ macroscale diffusion/dispersion of species i in one entity averaged over

the boundary of the entity, Eq. (6.99)
uα,κ

i macroscale diffusion/dispersion of a species in one entity averaged over a
lower-dimensional entity, Eq. (6.130)

V partial mass volume
V set of variables (also with subscripts 0, M, E, F , P, I, C and Q)
V extensive volume
V0 initial extensive volume of a solid
v velocity
vα,κ

i velocity of species i in an entity averaged over the boundary of the entity,
Eq. (6.82)

vα,κ velocity of flow in an entity averaged over the boundary of the entity, Eq.
(6.96)

viα, jκ average of a species velocity in an entity over the boundary of the entity,
Eq. (6.106)

W weighting function for averaging
w wetting phase
wn interface between w and n phases
wns common curve at boundary of wn, ws, and ns interfaces
ws interface between w and s phases
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w velocity of a domain boundary

wwns vector velocity of normal components of wns common curve, Eq. (8.51)

wαβ vector velocity of normal component of αβ interface, Eq. (8.38)

X group of exchange terms encountered in CEI derivation, Eqs. (C.33),

(C.75), and (C.108)

Xiα partial mass entity extent fraction, Eqs. (3.172), (3.190), and (3.194)

Xiα pressure- or tension-weighted macroscale partial mass entity extent frac-

tion, Eq. (7.7) and Eq. (7.25)

X
jκ→iα

general microscale transfer rate of a property from species j in entity κ to

species i in entity α per entity extent
jκ→iα

X general macroscale transfer rate of a property from species j in entity κ to

species i in entity α per entity extent

X position vector in a solid in the initial state

X transformation function in Appendix A

X tensorial partial mass volume fraction related to C, Eq. (3.185)

Xis tensorial macroscale partial mass volume fraction related to C, Eq. (7.19)

X set of exchange terms in a formulation

x position vector

x vector of independent variables in Appendix A

x∗ functional relation between x and X
zQ

jκ→iα
microscale exchange coefficient for energy, Eq. (2.80)

zT
jκ→iα

microscale exchange coefficient for momentum, Eq. (2.75)

zΦ
jκ→iα

microscale exchange coefficient for entropy

Greek Symbols

α entity index

α̂ isobaric thermal expansion coefficient

α̂B Biot coefficient, Eq. (9.92)

α̂Bs bulk compressibility of the solid, Eq. (9.112)

β entity index

β̂ isothermal compressibility

β̂w w phase compressibility, Eq. (9.113)

β̂s s phase compressibility, Eq. (9.114)

Γ boundary of a domain

ΓCm set of points that bound the curves in ΩC
Γvv portion of boundary of Ωv intersecting ΩV
Γv portion of boundary of Ωv coincident with boundary of ΩV
γ interfacial or surface tension; common curve lineal tension

γ entity index
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δ Dirac delta

δ first-order variation

δi j Kronecker delta

δ fixed-point variation

δ
′

fixed-point variation on a surface, Eq. (A.61)

δ
′′

fixed-point variation on a common curve, Eq. (A.78)

δ
(n)

fixed-point variation on an entity of dimension 3−n
ε porosity

ε small parameter in Appendix A

εα specific entity measure, Eq. (6.9)

η entropy density

η partial mass entropy

η iα macroscale entropy of species i in entity α per volume, Eq. (6.135)

ηα macroscale entropy of entity α per volume, Eq. (6.145)

ηα,κ
i macroscale partial mass entropy of species i per volume in an entity aver-

aged over the boundary of the entity, Eq. (6.137)

ηα,κ macroscale sum of weighted partial mass entropy per volume in an entity

averaged over the boundary of the entity, Eq. (6.147)

θ temperature

θ iα species entropy weighted macroscale temperature of species i in entity α ,

Eq. (7.5)

θ α entropy weighted macroscale temperature of entity α , Eq. (7.15)

θ αβ
α entropy-weighted average of microscale temperature θα over entity αβ ,

Eqs. (7.108) and (7.109)

κ entity index

κGwns microscale geodesic curvature, Eq. (4.86)

κNwns microscale normal curvature, Eq. (4.85)

κ̂ bulk viscosity

Λ entropy production rate

Λ iα macroscale entropy production rate associated with species i in entity α ,

Eq. (6.138)

Λ α macroscale entropy production rate associated with entity α , Eq. (6.149)

λ real positive scaling multiplier employed in Chapter 3

λ Lagrange multiplier

λ iα
E Lagrange multiplier for energy conservation equation of species i in entity

α
λ iα
G Lagrange multiplier for potential energy balance of species i in entity α

λ iα
M Lagrange multiplier for mass conservation equation of species i in entity

α
λ iα
T Lagrange multiplier for thermodynamic equation of species i in entity α

λ iα
T G Lagrange multiplier for derivative of potential energy of species i in entity

α
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λMα constant multiplier, Eq. (4.13)

λS constant multiplier, Eq. (4.13)

λλλ vector Lagrange multiplier

λλλ iα
P Lagrange multiplier for momentum conservation equation of species i in

entity α
μ chemical potential

μ̂ dynamic viscosity

νik stoichiometric coefficient for component i in reaction k
ν̂ Poisson’s ratio

ξξξ microscale coordinate system with origin at centroid of an REV

ρ mass density

σσσ solid-phase stress tensor, Eq. (3.135)

σσσ s macroscale solid-phase stress tensor, Eq. (7.18)

τ dissipative part of the stress tensor

τg general time scale

τt thermodynamic time scale

τττs factor of effective stress tensor, εsτττs

ϒC curve indicator function, Eq. (B.47)

ϒS surface indicator function, Eq. (B.18)

ϒV volume indicator function, Eq. (B.4)

ϒα indicator function for entity α , Eq. (A.33)

Φ
jκ→iα

general microscale transfer of entropy from species j in entity κ to species

i in entity α , Tables 2.3 and 2.4
jκ→iα

Φ general macroscale transfer of entropy from species j in entity κ to species

i in entity α , Eqs. (6.139) and (6.141) and Table 6.2
κ→α
Φ general macroscale transfer of entropy from entity κ to entity α , Eq.

(6.150) and Table 6.3
κ→α
Φ0 entity-based entropy exchange term that is a simple sum of species contri-

butions, Eq. (6.196)

ϕws,wn microscale contact angle between ws and wn interfaces

ϕws,wn macroscale measure of contact angle, Eqs. (8.65) and (8.66)

ϕϕϕ non-advective entropy flux

ϕϕϕ iα macroscale non-advective entropy flux associated with species i in entity

α , Eq. (6.136)

ϕϕϕα macroscale non-advective entropy flux associated with entity α , Eq. (6.148)

χ entity index

χκ
α fraction of boundary of entity α in contact with entity κ , Eq. (8.23)

Ψ body force potential density

Ψ iα species-based macroscale body force potential density, Eq. (6.153)

Ψ α entity-based macroscale body force potential density, Eq. (6.161)

ψ body force potential per unit mass
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ψα,κ macroscale average of body force potential density associated with one

entity averaged over a lower-dimensional entity, Eq. (6.162)

ψα,κ
i macroscale average of body force potential density associated with species

i in one entity averaged over a lower-dimensional entity, Eq. (6.155)

Ω domain

ΩC curve within global domain of interest

ΩC∞ extended curve domain

ΩPT set of points within global domain of interest

ΩS surface within global domain of interest

ΩSΩ extended surface integration region

ΩS∞ extended surface domain

ΩV a three-dimensional domain subset of the global domain

Ωc subdomain of ΩC within averaging region

Ωpt subdomain of ΩPT within averaging region

Ωs subdomain of ΩS within averaging region

Ωs0 undeformed solid-phase domain

Ωv subdomain of ΩV
Ω∞ global domain encompassing all of space

Ω̄ domain including its boundary

ω mass fraction

ωα,κ
i mass fraction of an entity averaged over the boundary of the entity, Eq.

(6.128)

Superscripts

i chemical species qualifier

k chemical species qualifier

n macroscale non-wetting phase qualifier

ns macroscale qualifier for interface between n and s phases

ss total surface of solid-phase qualifier

s macroscale solid-phase qualifier

T transpose

w macroscale wetting-phase qualifier

wn macroscale qualifier for interface between w and n phases

wns macroscale qualifier for common curve where wn, ws and ns interfaces

meet

ws macroscale qualifier for interface between w and s phases

α macroscale entity qualifier

α intrinsic average over entity α or macroscale property of entity α
α mass average over entity α
α uniquely defined average over α
∗ indicates a concentrated force in an exchange between entities with a dif-

ference in dimensionality greater than 1
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∗ indicates a functional form of a thermodynamic property, primarily used

in Chapter 3

∗ transformed quantity in Appendix A

above a superscript refers to a density weighted macroscale average

above a superscript refers to a uniquely defined macroscale average with

the definition provided in the text

′ vector tangent to a surface

′′ vector tangent to a common curve

Subscripts

E associated with the total energy conservation equation

E
∗ equation of state based on internal energy variables

eq equilibrium

F
∗ equation of state based on Helmholtz free energy variables

G
∗ equation of state based on Gibbs free energy variables

G associated with the potential energy equation

g microscale gas-phase qualifier

H
∗ equation of state based on enthalpy variables

i chemical species qualifier

k chemical species qualifier

k chemical reaction identifier

M associated with the mass conservation equation

n microscale non-wetting-phase qualifier

ns microscale qualifier for interface between n and s phases

P associated with the momentum conservation equation

s microscale solid-phase qualifier

ss refers to the total boundary of the s phase

T total

T associated with the thermodynamic equation

TG associated with the derivative of potential energy equation

V volume

v volume

w microscale wetting-phase qualifier

wn microscale qualifier for interface between w and n phases

wns microscale qualifier for common curve where wn, ws and ns interfaces

meet

ws microscale qualifier for interface between w and s phases

α microscale entity qualifier

αα refers to the total boundary of entity α
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Other Mathematical Symbols

Diα/Dt material derivative with microscale velocity viα , Eqs. (2.15), (2.69),

(2.102), (2.115)

Diα/Dt material derivative with macroscale velocity viα , Eqs. (6.55) and (7.36)

D∗s/Dt material derivative on a surface where the macroscale solid is employed,

Eq. (7.84)

D∗∗s/Dt material derivative on a curve where the macroscale solid is employed,

Eq. (7.98)

∂ ∗/∂ t partial time derivative at a point fixed on a surface, Eq. (2.55)

∂ ∗∗/∂ t partial time derivative at a point fixed on a common curve, Eq. (2.91)

∂ ∗∗∗/∂ t partial time derivative fixed to a common point, Eq. (2.115)

∂ (n)/∂ t partial time derivative at a point fixed on 3−n-dimensional entity, (n) is

replaced by n primes

∇∗ microscale surficial del operator, Eqs. (2.57) and (B.20)

∇∗∗ microscale common curve del operator, Eqs. (2.93) and (B.49)

∇∗∗∗ microscale common curve del operator, Eq. (B.72)

∇(n) microscale del operator for a 3− n-dimensional entity where (n) is the

number of primes

∇X gradient operator with respect to X coordinates

∇x gradient operator with respect to macroscale x coordinates

∇ξξξ gradient operator with respect to microscale ξξξ coordinates

div divergence operator, Eq. (2.10)

div∗ surface divergence operator, Eq. (2.58)

div∗∗ common curve divergence operator, Eq. (2.94)

(n) denotes the number of primes that should appear

ˆ a parameter defined at the scale indicated by the subscript or superscript

on the parameter

〈 fα→Ωβ ,Ωγ ,W =

( ∫
Ωβ

W fα dr

)
/

( ∫
Ωγ

W dr

)
, general average of microscale prop-

erty fα , Eq. (6.1)

f β
α = 〈 fα→Ωβ ,Ωβ

, Eq. (6.2)

f α = 〈 fα→Ωα ,Ωα
, intrinsic average, Eq. (6.3)

f β
α = 〈 fα→Ωβ ,Ωβ ,ρα

, general density-weighted average, Eq. (6.4)

f α = 〈 fα→Ωα ,Ωα ,ρα
, intrinsic density-weighted average, Eq. (6.5)

f β
iα = 〈 fiα→Ωβ ,Ωβ ,ρα ωiα

, general species mass density weighted average, Eq.

(6.6)

f iα = 〈 fiα→Ωα ,Ωα ,ρα ωiα
, intrinsic species mass density weighted average, Eq.

(6.7)

tr trace
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Abbreviations

AEI augmented entropy inequality

CEI constrained entropy inequality

CIT classical irreversible thermodynamics

EI entropy inequality

EPFL École Polytechnique Fédérale de Lausanne

EPP entropy production postulate

REV representative elementary volume

SEI simplified entropy inequality

TCAT thermodynamically constrained averaging theory

TCM thermodynamically consistent modeling

UNC University of North Carolina



Chapter 1
Elements of Thermodynamically Constrained
Averaging Theory

1.1 Overview

Mechanistic computational modeling of environmental systems presupposes the ex-

istence of a properly posed set of equations that adequately describes the underly-

ing physical, chemical, and biological processes at time and length scales consistent

with the problem being addressed. Efforts to improve the user interface, computa-

tional accuracy, or computational efficiency of a model will be fruitless if these im-

provements are applied to a fundamentally inappropriate system description. Nev-

ertheless, it seems fair to assert that far more effort has been employed in improving

the computational solution of a set of system-descriptive differential equations than

in improving the fidelity of mechanistic models represented by the equations them-

selves. Perhaps this is because visually appealing graphs of system performance

lend themselves more readily to dissemination among decision makers and general-

ists than do highly symbolized, superscripted, subscripted, multi-alphabetical equa-

tions that by themselves do not display system performance. Indeed, these equa-

tions are a way station between qualitative system descriptions and the appealing

plots and graphs whose quantitative accuracy seems somehow proportional to the

number of colors used and the awe-inspiring elements of the animation of those

colors. The “way station” tends to get lost between the recognition of an interesting

problem and the predicted evolution of system behavior or solution of the problem.

The scope and scale of environmental problems are virtually unlimited. They

span processes encompassing molecular interactions, microbial community growth,

subsurface flow in soils, sands, and fractures, riverine and estuarine flow and trans-

port, watershed hydrology, ocean flows and temperature oscillations, formation of

hurricanes and tornadoes, and global climate change. Additionally processes re-

lated to extraterrestrial elements and stresses such as tide generating forces and solar

storms can have enormous environmental impacts. Although all of these processes

are governed by a single set of natural laws, an attempt to model them using a sin-

gle equation framework would be unworkable. The present document is concerned

with modeling of flows in the subsurface or, more generally, in porous media. The

1W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_1,
� Springer International Publishing Switzerland 2014
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objective is to develop sets of equations appropriate for modeling properties of and

fluxes in porous medium systems.

Porous medium systems are defined to include a continuous solid skeleton and

a connected pore space that allows one or more fluids to flow though it. Though

the solid may deform, this movement, relative to that of the fluids, is usually small.

With the solid phase presumed present, porous media flow is commonly referred to

as single phase, or two phase, or multiphase depending on the number of immiscible

fluid phases involved. This description is important because of the significant dif-

ferences in physics and complexity that exist among these classes of applications.

Porous medium problems can also involve changes in the composition of phases

due to species transport within a phase and between immiscible phases, as well as

due to chemical or biological reactions. In addition, porous medium systems may be

at a relatively constant temperature or may undergo significant changes in temper-

ature. The number of phases, composition, thermal characteristics, and length and

time scales of processes in porous media lead combinatorially to a large number of

specific types of systems of relevance and interest.

Processes that occur routinely in natural, engineered, and organismic porous

medium systems can be described mechanistically using the fundamental equations

of mass, momentum, and energy conservation. The development of mathematical

models based on these equations that describe the processes at an appropriate scale

is an important scientific pursuit. While models are sometimes touted merely for

their predictive ability, in fact their utility lies most importantly in providing a sys-

tematic framework for studying processes, in determining which processes are being

modeled in a physically meaningful manner, and in identifying where data support

is needed. Ultimately, the ability of a model to describe the behavior of a porous

medium system of interest is a direct measure of the level of comprehensive scien-

tific understanding of that system.

The length scale of many porous medium applications is large compared to the

length scale of solid-phase features that comprise the skeleton of the system, such

as the grain diameter or the effective diameter of a flow channel. For these applica-

tions, it is impossible to define the morphology and topology of the pore structure,

including the location of the solid surfaces, over the full domain of interest. For

example, Fig. 1.1 is an image of a fabricated two-dimensional micromodel that is

600 microns on each side. This small region has been digitized using 106 pixels.

Describing a region like this in three dimensions would require 109 pixels. It should

be clear that besides the challenge of accessing a subsurface system for this degree

of characterization without destroying it, digitization of a region with a size on the

order of meters or larger would be infeasible. On top of this, efforts to describe the

movement of fluids, their properties, and their evolving interfaces in the multifluid

case would require layers of detail and data that are unthinkable to manage. On the

other hand, the mechanistic equations that describe the behavior of an individual

phase are well known only at the small scale. Thus, if a system under consideration

is to be described in a way that the flow paths and solid phase are accounted for

in an average sense and with a low-dimensional parameterization, it is necessary

also to average or upscale the defining equations to this more practical and useful



1.1 Overview 3

Fig. 1.1 Two-dimension micromodel with dimensions of 600×600 microns. Darker region is the
solid with lighter region the pore space [22]

scale. One method for achieving this change in equation scale is the thermodynam-
ically constrained averaging theory (TCAT). This approach can be employed to

perform consistent and rigorous upscaling of conservation, balance, and thermody-

namic equations. TCAT ensures that all approximations will be encountered explic-

itly such that resultant larger-scale models are consistent with smaller-scale variable

definitions and conventions. Therefore, modifications and extensions to equations

can be achieved systematically to incorporate needed degrees of detail.

The purpose of this chapter is to discuss the elements of the TCAT approach, as

well as the role of each element in the total formulation of the description of a prob-

lem of interest. This chapter does not provide mathematical details but is intended

to provide a qualitative explanation and overview of TCAT. In essence, TCAT is a

rigorous procedure based on conservation and thermodynamic principles for pro-

ducing consistent system models at a scale or scales of interest. Implementation of

the TCAT approach leads to models that describe many features and attributes at

the larger scale not typically identified using heuristic or other mathematical ap-

proaches. Included among these features are:

• consideration of important physical phenomena (e.g., interface reorganization

and orientation, driving forces for various fluxes);

• precise and consistent definitions of larger-scale variables in terms of microscale

precursors;
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• a hierarchy of sophistication in accounting for phenomena that influence system

behavior (e.g., interphase dynamics, chemical species transport, multiphase flow)

such that fidelity to observations can be achieved; and

• identification of experimental and computational approaches for evaluating the

quality of resultant models and refining them within the TCAT structure.

The rigor and consistency inherent in TCAT require detailed mathematical ma-

nipulations. The steps involved in TCAT analysis can be compartmentalized, and

the relations among the steps described concretely. This conceptual approach is em-

ployed subsequently in giving an overview of the TCAT approach. Mathematical

details are left to subsequent chapters. While the mathematical steps are extensive

and can be tedious, the TCAT framework itself is not difficult to describe. Thus, the

reader is encouraged to focus, at least at first, on an overview of the elements of the

method which provides motivation to dig into the mathematical manipulations. Oth-

erwise, a direct excursion into the mathematics without appreciating the elements of

TCAT can be frustrating, confusing, and off-putting. Perhaps more importantly, an

understanding of the TCAT approach and philosophy makes the differences between

this method and other methods clearer so that one can discern TCAT’s particular

attractive attributes. Because some of the elements of TCAT involve direct appli-

cation of mathematical relations, these need to be performed only once to provide

a “jumping in” point for subsequent TCAT analysis. By gaining an understanding

of TCAT, including appreciation of the parts that can be employed directly as well

as those that require insight, finesse, or approximation, the potential user can more

efficiently investigate systems of interest and their unique features.

1.2 Identification of Scales for Modeling

Prior to laying out the features of TCAT, we first consider length scales and time

scales. Because TCAT is a method that facilitates increasing the length scale at

which a problem is examined, it is important to first understand some of the issues

related to scale that are inherent in the method. It is useful to recognize that dealing

with scale is one of the great challenges in successfully formulating a myriad of

problems. Indeed references are made to the “tyranny of scale” in a wide range of

disciplines [9, 96, 110]. Here we discuss a framework for identifying various length

and time scales.

1.2.1 Length Scales

Porous medium systems can span length scales that range from millimeters to hun-

dreds of kilometers in processes including energy generation in hydrogen fuel cells,

geologic carbon storage, petroleum recovery, waste remediation, oxygen transport

in lungs, and water supply. In deciding what processes are to be considered and un-
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derstood in a system of interest, the issue of the scale at which the processes will

be studied is important. For example, in considering contamination of an aquifer

as a whole, the length scale of the system might be deemed to be relatively large.

However, if one is interested in growth of a microbial community at some location

in the aquifer, the length scale could be very small. Identification of the length scale

is related to the detail with which features of the system and of processes in the sys-

tem are to be described. Not only is the magnitude of the length scale of the system

of importance, but so also is the length scale of the features that describe the pore

morphology and topology when modeling porous medium systems. Models may be

developed at length scales where the pore structure is precisely defined such that

the location of individual fluid-phase boundaries within the pore structure are re-

solved accurately [e.g., 16, 20, 22, 33, 90, 94, 122]. Alternatively, models may be

defined in which the details of pore structure are not resolved and are instead treated

in an averaged sense [e.g., 18, 31, 73, 82, 91, 92]. Lastly, models may be derived

in which all of the details of pore structure within the system in one or more spatial

dimensions are neglected by averaging over the entire length of the system in those

dimensions. Models of this type are used, for example, to assess the total amount

of water stored in an aquifer or the overall fluxes of nutrients and water into a re-

gion [e.g., 3, 51]. This progression of models leads to representations with a range

of fidelity, with the appropriate representation dependent upon the questions being

investigated in the application.

Besides the inherent issue of defining length scales, the issue of separation of

those scales is important. Separation of scales means that one scale of observation

is separated from another by orders of magnitude. This quality carries with it the

property that variation in measurements is negligible with respect to changes in the

length scale of that measurement unless the length scale changes by several orders

of magnitude. This qualification is important because if the length scales are not

separated, collection of data will be strongly dependent on the scale employed. For

example, a measurement of the density of water at a particular location in an aquifer

will yield the same result whether it is based on a cubic centimeter or a liter of water.

The size of the measuring instrument, from a thimble to a bucket, does not impact

the value of density obtained in this instance. One can imagine that a measurement

of density obtained by collecting only several water molecules or by considering all

the water in a geothermal aquifer with high variability of temperature could yield a

result quite different from a measurement taken with a measuring device that col-

lects samples with a size on the order of a few centimeters. If the length scale were

important in measuring the density of water, all values reported in the literature

would have to be accompanied by an explicit mention of the length scale of the

measuring device. Fortunately, this is usually not the case in measuring density as

invariant measures may be obtained over a wide range of sampling length scales.

Length scale considerations are also important for measuring other properties of

interest such as temperature, pressure, velocity, and chemical concentration. When

gradients of a property of interest are large, the average value of that property can be

strongly dependent on the length scale of the measurement. Conversely the calcu-
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lated gradient of a property can be strongly influenced by the length scale employed

in measuring the property.

We will be considering cases where the length scales are widely separated such

that variables and parameters that appear in the equations can be considered to be

scale invariant (at least over a couple of orders of magnitude). This idealization

introduces the concept of a hierarchy of length scales. Thus, in working with specific

applications, we will not include explicit quantification of the length scale but will

only qualitatively categorize the scale of interest. We emphasize, however, that the

concept of “scale invariance” as employed here should not be understood to indicate

that an equation derived at a particular scale can be applied at any scale. Scale

invariance only means that, within a couple of orders of magnitude of length, the

equations, variables, and parameters need not be adjusted. This will become clearer

if we present the qualities of the various length scales of interest as they will be

employed here.

For the purposes of this text, we will identify five different, separated length

scales that satisfy the conditions

�mo 	 �mi 	 �r
r 	 �ma 	 �me . (1.1)

These scales, from smallest to largest, are referred to, respectively, as the molecular

scale, the microscale, the resolution scale, the macroscale, and the megascale. Al-

though the actual magnitudes of these scales will vary from system to system and

are, in fact, not associated with a specific length that is universally applicable, this

qualification of scales is useful for discussion of systems.1 The fact that the scales

are widely separated in length is as important to their definition as are their actual

sizes for purposes of facilitating subsequent discussion. Unfortunately, despite the

stipulation of a clear discrete set of separated length scales proposed here, many nat-

ural porous medium systems actually consist of a hierarchy of many different length

scales that may or may not have a clear separation [25]. While such systems occur

routinely and are important, these systems are outside the scope of our current fo-

cus. In a more general exposition, the TCAT approach can be employed, admittedly

with significant additional effort to account explicitly for length scale factors, for

the study of systems without a clear separation of length scales.2 For convenience,

a schematic of the five length scales is provided in Fig. 1.2.

The molecular scale, �mo, is identified as the mean free path for molecular col-

lisions within a phase in a system of interest, the average distance that a molecule

1 The terminology employed here is not universal. For example, what we refer to as the “micro-
scale” is commonly called the “macroscale” in thermodynamic vernacular. Thus one must exercise
caution in using these terms.
2 In scientific inquiry, it is always convenient and even comforting to have a precise set of defi-
nitions from which to work. We note that the study of porous media tends to deny such comfort.
The distinction between a mixture of solids and fluids vs. a porous medium system is imprecise;
immiscibility of fluid phases is not complete; the definition of length scales is fraught with caveats.
It is important to understand that the definitions are nevertheless made to provide an opportunity to
move forward while also acknowledging that the lack of precise definitions impacts one’s ability
to describe porous medium processes.
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Fig. 1.2 Schematic of the five length scale of importance (not to scale) with regard to a porous
medium system. An aquifer appears at the top. A small portion of the porous medium is at the
bottom left with the solid grains in red and fluid filling the space between the grains. At the bottom
right is a small sample of fluid that is composed of molecules. Measures of the molecular scale
(�mo), microscale (�mi), resolution scale (�r

r), macroscale (�ma), and megascale (�me) are indicated

travels between collisions with other molecules. For a gas, the larger the molecules

and the higher the density, the smaller the mean free path. For O2 at standard condi-

tions of pressure (1 bar) and temperature (25oC), �mo is approximately 7×10−8 m.

For a liquid, the collision scale is roughly the diameter of the molecule. The diameter

of a water molecule is approximately 3×10−10 m. For solids, in which the positions

of molecules relative to each other are approximately fixed, a quantity called the in-

elastic mean free path is employed. This length is the distance an electron beam will

travel through a solid before its intensity decays to e−1 of its initial value. At the

molecular scale, a system would have to be modeled as a discrete system in terms

of the molecules, their velocities, and their collisions. Molecular dynamic models

provide insight into chemical reactions of importance, but at too small a scale to be

able to model a porous medium.

Almost all of the attention here is focused on scales larger than the molecular

scale. The microscale, �mi, is often referred to in the porous medium literature as

�

�
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the pore scale. It is a scale at which all the phases, interfaces, and common curves

are resolved such that both the distribution of phases within the system and also

boundaries between the phases are identifiable. At the microscale, a phase behaves

as a continuum, rather than as a collection of discrete molecules. A continuum ap-

proximation neglects the fact the material is made of individual molecules but rather

envisions the space as being completely occupied by a substance that fills the space.

Continuum properties, such as mass density or momentum density, can be obtained

as averages of molecular scale properties over a region with a microscale length

scale. The formulation of physical laws used to describe a system at the microscale

makes use of the fact that the phases behave as continua with smooth variation of

properties such that principles of mass, momentum, and energy conservation may

be applied. Additionally, fully-dynamic, microscale, continuum conservation equa-

tions that describe interfacial and common curve processes in two and one spatial

dimension, respectively, may be formulated. An example of the microscale perspec-

tive is the description of the flow of water in a saturated porous medium where in-

dividual solid particles are described and resolved. The particle surfaces are treated

as boundaries of the fluid phase such that the gradients in fluid velocity in the space

between particles can be described continuously. At the microscale, phases are seen

to be next to each other with identifiable boundaries and distributions of material

within the system. Additionally, the quantities appearing in microscale continuum

equations involve a length scale large enough that measurements of these properties

are stable with respect to perturbations in the size of the measurement instrument.

A minimum length scale for such an average is typically an order of magnitude

larger than the molecular interaction scale. Thus, for O2 under standard conditions

of temperature and pressure, �mi is larger than 10−6 m (1 μm), while �mi for a liq-

uid microscale is roughly 2.5 orders of magnitude smaller than this. For a system

in which the gradient of a property being measured is zero, and remains zero as

the length scale of the sampling volume increases, the measurement of that prop-

erty will be unchanged as the microscale increases orders of magnitude above its

minimum value. Thus, the minimum �mi is related to some multiple of mean free

path while the maximum value of �mi is related to the scale of any heterogeneities

in the system. Even though the minimum values of �mi are different for a gas, liquid

and solid, modeling of a gas-liquid-solid porous medium system at the microscale

is usually accomplished when a common value of �mi is implicitly assumed to be

applicable to all phases.

The resolution scale, �r
r, is the length scale needed to resolve internal features

related to transport phenomena for a system of concern. The resolution scale is par-

ticularly important for porous media as it relates to the natural length scales of the

system. For a natural system, the average diameter of a sand grain is typically on

the order of 102 μm. If the grains are well sorted, such that all are approximately of

the same size, this would be the resolution scale. However, granular porous systems

may contain solid particles ranging in size from approximately 1 μm to 10−1 m or

larger. The features of a general porous system may include small pores, fractures

that are evident on a larger scale, boulders, and, perhaps, caves formed by a karsti-

fication process. Thus, although the molecular scale and the microscale can be de-
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fined within a relatively easily reasoned length, identification of the resolution scale

is complicated by the features one wishes to study and the distribution of the char-

acteristic lengths that describe those features. The resolution scale will vary widely

depending on the problem of interest.

The macroscale, �ma, is a scale at which each entity of the porous medium—

phase, interface, or common curve—can be treated as a continuum in the full space

of the porous medium. Thus at the macroscale, the porous medium system is mod-

eled as being composed of overlapping continua, simultaneously present at each

macroscale point. At this scale, the detailed microscale distribution of the locations

of adjacent phases is not resolved but is accounted for in an average sense. Phases

are described merely as occupying fractions of available space, and the interfacial

areas per volume between phases and common curve lengths per volume are con-

sidered. These densities, as well as porosity, the fraction of space not occupied by

solid phase, do not exist at the microscale but arise as a consequence of averaging.3

Descriptions of the system are expressed in terms of macroscale properties that are

averages of microscale properties over regions of a size characterized by the mac-

roscale length scale, �ma. For example, a macroscale velocity of a fluid phase is an

average of the microscale velocity of that phase within the pore space contained in

the macroscale volume.

The stipulation of separation of scales provides the condition that the value of the

macroscale average is insensitive to variations in the size of the averaging volume.

Satisfaction of this stipulation, in practice, requires the macroscale to be larger than

the resolution scale such that it incorporates a representative region of the porous

medium. At a minimum, �ma should be at least 10 times the resolution scale. More

stable values of porosity and other macroscale variables are typically obtained when

�ma is on the order of 102 times the resolution scale. For a well-sorted sample with

grain sizes on the order of 102 μm, these considerations result in a macroscale of ap-

proximately 10−2 m. However, depending upon how the fluids are distributed within

the porous medium system, the macroscopic length scale might have to be increased

to obtain stable values of interfacial areas per volume [77].

Within the mathematical framework to be developed here, the implicit assump-

tion is made that all macroscale variables may be specified at the same length scale,

regardless of the phase, interface, or common curve being modeled. This constraint

most certainly raises concerns about the stability of all macroscale quantities with

respect to changes in length scale. Additionally, in some systems there will be more

than one identifiable macroscopic length scale. For example, in a system composed

of a fractured porous medium, one macroscale may be employed relative to the pore

diameter or grain size while a larger macroscale can be identified relative to the

fractures. Modeling of the whole system requires that techniques be employed that

couple these two domains.

3 The creation of new parameters or variables that characterize a system is a common feature
of increasing scale size. At the microscale, for example, pressure, density, and temperature arise
while they do not exist at the molecular scale where molecular velocities and collisions describe
the system.
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The macroscale has also been referred to as the “Darcy scale”. This is a somewhat

misleading designation. At the macroscale, one models the spatial variability of

the quantities of interest. The conservation equations make use of terms involving

time and space derivatives. The use of the “Darcy” designation for this scale honors

fine experimental work that was conducted in the mid 19th century [11, 26, 27].

However, the work of Darcy consisted of column experiments performed to describe

the behavior of a system consisting of sand and a fluid as a single unit without

measurement of variability within the column. The total flow through the column

was measured as a function of the boundary conditions imposed at each end of the

column. Thus, Darcy’s experiments were not actually concerned with macroscale

properties, despite the fact that these properties are confusingly referred to as “Darcy

scale” properties. Darcy was concerned with system behavior at a larger scale.

The megascale, �me, is the length scale of the domain of the system of interest.

Note that a domain may have different megascopic length scales in different direc-

tions. For example, a groundwater aquifer may extend for kilometers in the lateral

direction while being only a few meters thick in the vertical direction. The megas-

cale must be much larger than �ma because macroscale quantities may be defined

only at points farther than �ma/2 from the boundary of the domain. Therefore, if

variations in properties and gradients of variables are to be defined meaningfully in

most of the domain, �me must be much larger than �ma. Note that in some cases, it is

useful to average from the microscale over a full system dimension corresponding to

a megascale representation in that dimension. When averaging occurs over a dimen-

sion, no variation of properties in that dimension is considered in the final equations

developed. For example, in modeling nearly horizontal flow in an aquifer, it may

be possible to obtain a good model while not accounting for vertical variations of

microscale and macroscale properties. Thus averaging from the microscale might

be employed that is macroscopic in the lateral directions (i.e., using a length scale

�ma such that �r
r 	 �ma 	 �me), whereas the vertical averaging would be over the

full vertical megascopic length scale of the system. Such a description can also be

obtained by three-dimensional averaging to the macroscale followed by integration

over the vertical.

For purposes of this work, attention is restricted to systems that are deterministic

in that for microscale modeling all entity boundaries are completely described. At

the macroscale all important properties of the system are considered to be determin-

istic and insensitive to small changes in the length scale, �ma. This representation

is consistent with the classical definition of a so-called representative elementary

volume (REV) [6, 10, 53, 85, 114, 120]. The actual physical size of �ma, and even

the existence of an REV according to the requirements posed above, depends upon

the characteristics of the physical system of concern.

In porous medium systems, more so than with single-phase systems, length scales

relate to the physical properties of the system and the way the system is conceptual-

ized. Selection of a microscopic length scale for modeling can result in the system

being a heterogeneous construct in which flow occurs in the spaces within the solid

matrix. A microscale point in the system is either in the solid or in the flow channels.

Interactions between phases are accounted for through boundary conditions. Use of
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a macroscopic length scale for modeling, on the other hand, models the system as

composed of overlapping homogeneous continua. Properties of all phases are de-

fined at each macroscopic point, but the volumetric densities of each phase may be

different at that point. The boundaries between phases in this instance have to be

accounted for in some average, macroscale sense.

Based on the size of a system being considered, the data available to support a

model, and the question that is being investigated, it is important to select the length

scale or scales at which a problem is to be described and observed. The selection

of these scales is not unique—an array of valid approaches may exist for a given

system. Mathematical tools can be employed to develop models corresponding to

the chosen scales. Some of these tools are described qualitatively in Subsection

1.3.5 and quantitatively in subsequent chapters.

1.2.2 Time Scales

A wide range of temporal scales occur in porous medium systems, just as is the case

for spatial scales. The temporal scales of concern are suggested by the phenomena

to be modeled and, sometimes, by the spatial scales of interest. For example, time

scales can be related to reaction rates, the time needed to achieve equilibrium, or the

volume of a fluid in a system relative to a volumetric flow rate. Chemical and bio-

logical reactions, advection, diffusion, dispersion, mass exchange, and many other

processes can be bases for identification of characteristic time scales of a system.

A system may have multiple time scales depending on the processes that are occur-

ring. Elucidation of these time scales and their comparison are valuable activities

that can provide considerable insight about a problem, process, or system of inter-

est. We will consider two different types of time scales denoted, respectively, as a

thermodynamic equilibrium time scale and a general time scale.

A thermodynamic time scale, designated as τt, is a measure of the time needed for

a thermodynamic property of a dynamic system to approach an equilibrium config-

uration. Note that boundary conditions on a system may preclude a system reaching

a full thermomechanical equilibrium in which all fluxes are zero, but the thermo-

dynamic time scale is related to the approach of thermodynamic variables to their

steady state values when boundary conditions are time invariant. For example, the

times required for a chemical reaction to approach equilibrium or for a thermal gra-

dient to approach a time invariant state are thermodynamic time scales. These scales

are associated with a length scale as well as some thermodynamic property of in-

terest. Therefore a functional expression may be proposed for a property Pi of the

form τti = τti(�i;Pi) where �i is the length scale associated with the process and

τti is the is the thermodynamic time scale for property i. The wording “approach”

equilibrium rather than “reach” equilibrium is employed in the description of the

thermodynamic time scale because many mathematical descriptions of these phe-

nomena predict that equilibrium is achieved only after an infinite amount of time.

Difficulties in defining when an equilibrium state is actually reached motivates the
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definition of the thermodynamic time scale for a process as, essentially, a measure of

the time to reach equilibrium for practical purposes. This definition, as with the se-

lection of all scales, lacks precision yet provides an opportunity for insight to assist

in selection of a useful measure of τt.
4

A general time scale will be denoted as τg and is related to a change in some

general property of the system, though not the approach of a process to equilibrium.

For example, a tidal period that impacts flow in an aquifer has a general time scale,

seasonal changes operate on a general time scale, releases of contamination into a

site may occur at some regular intervals. Based on this short list, it can be seen that

a system may have more than one general time scale. Thus, we can denote the ith
general time scale as τg = τg(�;Pi) where Pi is a process or set of processes that

impact time scale τgi (for example, the tidal forces exerted by the sun and the moon

on the earth) and �i is the length scale of observation of Pi.

Identification of relevant time scales for several processes that might be simul-

taneously occurring in a system can be a challenge. However, this is an important

prelude to the even more challenging task of modeling processes simultaneously

occurring at disparate time scales.

Many important and useful time scales exist in porous medium systems. As an

example, rates of recharge to the subsurface may be modeled on a decadal basis if

one is interested in long-term groundwater depletion. Annual models are of interest

if the infiltration is related to recent depletion trends. Monthly values of infiltration

are important for estimates of natural irrigation impacting crop growth. Daily or

hourly values of infiltration in response to a storm event are modeled when one con-

siders watershed response. In laboratory studies or in consideration of the initiation

of infiltration into a dry soil, a time scale on the order of minutes or seconds may

be appropriate. Studies of unsaturated flow often involve column studies in which

small changes in pressure are imposed on the system sequentially, with the system

relaxing to equilibrium between each step [e.g., 23]. In such cases, the dynamics

within a step occur at a smaller interval than the time required for equilibrium to be

achieved. Creating links among the models formulated at different time and space

scales is an active area of research.

In contrast to the spatial domain of a porous medium, the time domain is contin-

uous without heterogeneities regardless of the scale of study. The only boundaries

in the time domain are the beginning and end of the process. In some cases, one or

both boundaries can be considered to be at infinity for all practical purposes. Aver-

aging over an interval of time as well as over space does not alter the form of the

equations in comparison to averaging only over space. However, one must be aware

that the meanings of variables that have been time averaged are different from their

4 The term “thermodynamic time scale,” from a purist’s perspective, is a bit of an oxymoron.
Classical thermodynamics is not concerned with times of transition between equilibrium states,
kinetics, or the path taken to achieve equilibrium. It is only concerned with the fact of the existence
of different equilibrium states that result from the imposition of some stress on the system and the
changes in thermodynamic variables that accompany those completed transitions. Thus difficulties
in defining a thermodynamic time scale do not arise in classical thermodynamics; nor does the
question of how close to equilibrium a system must be to be declared to be “at” equilibrium.



13

meanings without time averaging. For example, a velocity with a high temporal fre-

quency of variability will have a lower frequency after being temporally averaged.

Because temporal averaging does not alter the equation forms, time averaging is

not explicitly applied in the formulations employed subsequently; but one must be

aware of the meanings of the various terms as averages over space and time when

applying the resulting formulas.

1.3 Thermodynamically Constrained Averaging Theory
Approach

In this section, we provide an overview of the TCAT approach and its elements to

serve as motivation for the calculations to appear in subsequent chapters that provide

the details of implementation of the method.

1.3.1 Overview

Figure 1.3 provides a schematic description of the elements of TCAT and the flow

of the derivation that makes use of these elements and ties them together. This figure

is color coded to indicate five different types of elements in boxes and an oval. In

most cases, arrows emanating from two elements combine to produce a third ele-

ment. Only production of evolution equations and of closure relations are produced

directly from a single existing element. A goal of this chapter is to provide a concise

qualitative roadmap of the essence of the elements in the figure and of the route to

production of the TCAT model. It is essential that this description be understood.

This elemental description will be referred to often and provides a preview of the

need to engage in some complicated manipulations. A reader who becomes disori-

ented on the trip through TCAT provided by the various chapters of the book should

refer to Fig. 1.3 to place the manipulations in context. Each of the elements involved

with the TCAT approach is discussed in the following subsections along with an in-

dication of how this element relates to other elements needed in the theory.

1.3.2 Microscale Conservation Principles

The methods of continuum mechanics can be used to write conservation equations

for conserved quantities such as mass, momentum, angular momentum, and en-

ergy within a domain of interest [14, 32, 50, 55, 67, 71, 83, 97, 104, 109]. These

approaches can also be used to write a balance equation for entropy. The entropy

equation is referred to here as a “balance” equation rather than a “conservation”

equation because entropy can be produced by physical processes such that a net in-

1.2 Identification of Scales for Modeling
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Fig. 1.3 Conceptual representation of the TCAT approach (after [46])

crease in total entropy can be achieved. The production must be accounted for in

consideration of system behavior recognizing that the global amount of entropy in

a closed system cannot decrease. Thus entropy is not conserved in the same sense

that mass, momentum, and energy are. Continuum mechanics is used routinely to

describe the behavior of phases, which occupy volumes, in terms of microscale vari-

ables. For example, such approaches are at the heart of fields such as fluid mechan-

ics, solid mechanics, and transport phenomena. Application of dynamic continuum

conservation equations for the properties of interfaces between phases and common

curves are not employed extensively, although restricted forms, known as jump con-

ditions, are commonly used to describe system behavior at discontinuities in phases

[19, 29].

Conservation equations involve relating the accumulation of a conserved quantity

to processes such as advective transport, non-advective transport, body sources of

the quantity, boundary sources of the quantity, and production. Conservation equa-

tions can be written for a conserved property of all elements of an entity or for a

species or component of the entity when a compositional system is considered. The

precise forms of these conservation equations depend upon the conserved quantity

of interest, the scale of the variables in the equation, the domain of the equation, and

the scale at which the equation is posed. For example, formulation of a differential

equation for a phase in terms of microscale quantities presumes that the locations

within the domain being studied are completely occupied by that phase, whether it

is a fluid or a solid phase. Appropriate conditions at the boundary of the domain

must also be specified, along with needed initial conditions.

A set of continuum equations written in terms of microscale variables typically

includes more unknowns than equations. Thus the equation set cannot be solved

without supplementary conditions on some of the variables in the equations so that

the overall number of equations and unknowns is equal. These additional equations
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are commonly referred to as closure relations or constitutive equations. Closure re-

lations are independent of the conservation equations and typically provide relations

among variables and derivatives of variables that appear in the equations. An exam-

ple of a closure relation is an equation of state that provides an expression for fluid

density as a function of pressure, temperature, and composition. Another example

of a closure relation is an explicit functional form of the microscale stress tensor as a

function of pressure and the rate of strain tensor. Typically, closure relations are ap-

proximate in nature and provide a description of a process that depends upon the ma-

terial being considered and the dynamic conditions. The functional form employed

commonly requires that values of some parameters or coefficients appearing in that

form be specified. For example, the functional form of the stress tensor includes

a coefficient known as the viscosity. The values, and in some cases the functional

forms of these coefficients, often depend on the fluid or solid that is being modeled;

and they are often referred to as material coefficients. The introduction of material

dependent coefficients into approximate closure relations sets these relations apart

from general conservation equations, which are exact in nature for systems written

at the appropriate scales and do not contain any material parameters. Closure re-

lations may originate from experimental, theoretical, or computational sources, or

some combination of these approaches. A successful microscale continuum model

is comprised of a solvable set of conservation equations, boundary conditions, and

initial conditions supplemented by an approximate set of closure relations that ade-

quately account for material properties and behavior.

After a microscale model consisting of a closed set of conservation equations

has been posed, it is necessary to solve the system of resulting partial differential

algebraic equations to apply the model. Analytical or numerical methods can be

used to affect such solutions. These methods are outside the scope of material to

be covered in this work. One very important point is that if one is concerned with

describing a system at a scale larger than the microscale, there is no need to make use

of microscale closure relations. Equations obtained at a larger scale will have need

for closure relations, but the forms of these relations and the material coefficients

that apply are generally different from microscale forms.

1.3.3 Microscale Thermodynamics

Modern thermodynamics originated as an observationally based science intended

to provide a description of the behavior of engines. At its core is the fact that it de-

scribes the equilibrium state of systems at or above a continuum scale. At the micro-

scale, this means describing, for example, the dependence of the internal energy of

material in a microscale volume on the entropy, volume size, and mass. All these are

extensive thermodynamic quantities that are additive. Thus, if two identical systems

are combined, the values of all four of the quantities in the combined system will

be double their values in each of the uncombined elements. The partial derivatives

of internal energy with respect to each of entropy, volume, and mass, while hold-
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ing the other two variables constant, defines the intensive thermodynamic quantities

temperature, pressure, and chemical potential, respectively. If two identical systems

are combined, the values of these intensive variables remain unchanged.

Starting from these elementary concepts, classical thermodynamics provides

functional forms among the variables in the system. Manipulations based upon the

mathematical properties of the functional forms can be used to deduce expected

changes in the thermodynamic state of a system subjected to various stresses such

as addition of heat, extraction of work, or a change in one of the variables. These

predicted changes can be compared to observations and values of parameters that

characterize a particular material, such as heat capacity or compressibility, that can

be deduced. Considerable effort over the last two centuries has resulted in classical

equilibrium thermodynamics becoming a well-developed and understood branch of

science [7, 17, 30].

A limitation of traditional thermodynamics is the fact that it deals with systems

at equilibrium; many systems of interest are not at equilibrium. The extension of

thermodynamics to treat some non-equilibrium systems is known as classical irre-

versible thermodynamics (CIT). CIT hypothesizes that large systems that are not in

formal equilibrium can be subdivided into subsystems for which the functional de-

pendences of classical equilibrium thermodynamics apply. In other words, although

the thermodynamic state of a system may be changing, the rate of change is slow

enough at a local point that equilibrium relations can be used with negligible er-

ror. This hypothesis is known as the local equilibrium assumption. Its utility can be

found in innumerable situations such as being able to measure the increasing tem-

perature of a heated pot of water or stating the atmospheric pressure associated with

a moving storm front. Although pressure and temperature are defined formally in

the context of equilibrium systems, their near-equilibrium counterparts are found

also to be very useful. Extension of thermodynamics to systems where changes are

occurring rapidly or when additional variables beyond those used classically impact

the thermodynamic state of the system is a continuing area of investigation. Exten-

sions to classical thermodynamics that take into account dependence of the state of a

system on previous states (memory), on fluxes, and on internal variables are among

the most commonly encountered [54, 60, 69, 76, 108]. For porous medium systems

we have studied, CIT, the simplest extension to classical thermodynamics, has been

found to be adequate for describing the dynamics.

Differentiation of an equilibrium thermodynamic equation can be used to deter-

mine the relations among changes in variables that are consistent with the under-

lying equilibrium behavior of the system, globally or locally depending upon the

theory and the system under consideration.

1.3.4 Microscale Equilibrium Conditions

Because microscale thermodynamics provides information about the state of a sys-

tem at equilibrium, it is important to know what those conditions of equilibrium
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actually are. Variational methods can be used to deduce precise statements of these

conditions [12, 13]. Based on this kind of analysis, one can obtain conditions of

equilibrium, such as the uniformity of temperature and uniformity of the sum of

the chemical plus body force potentials of a chemical species.5 Conditions at inter-

faces between phases and at common curves where discontinuities exist may also

be derived.

Precise statements of equilibrium conditions are useful in model formulation, es-

pecially in guiding the development of closure relations. Recall that closure relations

are approximate relations among variables that appear in conservation equations

needed to provide a solvable set of equations. In formulating the closure relations,

it is essential to ensure that, at the very least, any approximation is consistent with

equilibrium conditions. Having knowledge of what those equilibrium conditions

actually are is thus very important. Armed with this information, one can consider

how a variable might be modeled near equilibrium. As an example, we know that at

equilibrium the non-advective heat flux in a system is zero. We also can show that

at equilibrium, the temperature gradient is zero. Manipulations with the entropy

balance and conservation equations, to be discussed in detail in subsequent chap-

ters, show that the most important factor that drives a non-advective heat flux is the

temperature gradient. Since we know that the temperature gradient is zero at equi-

librium from a variational analysis, it is reasonable to propose as a first estimate that

the non-advective heat flux is proportional to the temperature gradient. The utility

of this closure approximation for a system of interest is subject to verification, but

we know that the relation is valid “very close” to equilibrium. Thus experimental or

computational efforts to confirm this relation are reduced to determining the defini-

tion of “very close” for a system as opposed to conditions for which a more complex

closure relation might be needed. As it turns out, for many systems the linear pro-

portionality relation is useful over a wide range of magnitudes of the temperature

gradient.

Knowledge of the equilibrium conditions is used in conjunction with the entropy

balance equation to suggest closure relations for many continuum systems [e.g.,

24, 28]. Closure relations obtained in this framework are valid near equilibrium

and do not violate the principle that dissipative processes produce entropy. Closure

relations with these two properties are said to be thermodynamically consistent.

The thermodynamically consistent modeling (TCM) approach incorporates closure

relations of this type, and is based on a range of thermodynamic postulates. TCM

contexts ranging from turbulence to solid mechanics are well-documented [e.g., 32,

50, 55, 56, 106].

The TCM approach relies upon access to conservation equations, the entropy bal-

ance, a thermodynamic formalism, and knowledge of the equilibrium state. These

components of the theory are most easily assembled at the microscale. For modeling

at scales above the microscale, the components of a TCM approach must be appro-

priate for that scale. Thus, a further requirement to ensure that the formalism to be

5 In this text, the primary body force potential of interest is the gravitational potential. However,
the derivations are not restricted to this case and also allow for the body force to be different for
each chemical species.
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applied is consistent is that the microscale relations must be systematically trans-

formed to the larger scale and incorporated into the theory such that consistency

across scales is assured. TCAT is a framework that accomplishes the transition of

all four elements of a TCM approach to a larger scale. In the immediately following

sections, we will examine the components of TCAT that accomplish this transition.

1.3.5 Averaging Theorems

An important objective of TCAT is the consistent upscaling of microscale quan-

tities and equations to larger spatial scales. The larger scales of concern can be

macroscale, megascale, or some combination of of these two scales in different co-

ordinate directions. For example, a fully macroscale model would be macroscale in

all three spatial dimensions. A model that is megascale in the vertical direction and

macroscale in the horizontal directions can be obtained by appropriate averaging.

Combinations of macroscopic and megascopic averaging in each spatial direction

are possible. In fact, the upscaling from the microscale need not be implemented

in a particular direction such that a resultant equation set would contain microscale

variability in some spatial direction; however, for porous media analyses, upscaling

in all directions is employed.

In addition to selecting the length scales for modeling in each dimension, one

must also consider the nature of an entity being upscaled. Entity types include fluid

and solid phases that are three-dimensional at the microscale as well as interfaces,

common curves, and common points, that are respectively two-, one-, and zero-

dimensional at the microscale. Because upscaled forms include averaged measures,

any microscale quantity can be upscaled to a combination of macroscale and megas-

cale dimensions.

Previous work has led to a set of theorems that can be used to upscale quanti-

ties and equations for phases to the macroscale [2, 35, 52, 75, 81, 101, 113]. This

set of theorems was extended to include theorems for averaging surface equations

[34] to the macroscale. Subsequent work [42, 44, 79] has added to this set by pro-

viding theorems that can be employed for systematic upscaling of common curve

and common point equations to the macroscale and for upscaling to the megascale

and to megascale and macroscale mixes. These theorems are important in that they

facilitate the conversion of averages of differential quantities to differentials of av-

erage quantities plus additional terms that account for exchanges at boundaries of

entities. Application of the theorems to microscale conservation, thermodynamic,

and entropy balance equations leads to larger scale equations expressed in terms of

larger scale quantities that are averages over regions in some subset of space that is

common to all the entities.

Complications arise when products of variables at the microscale must be up-

scaled because the average of a microscale product is not necessarily equal to the

product of averages of each factor. However, approaches for dealing with these prod-

ucts have been developed in some instances. In some cases, products of variables at
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a larger scale can be expressed as a product of the average individual variables with

a specified weighting of the average. When one factor is small relative to the other or

when a factor is essentially constant, the error in expressing the average of the prod-

uct as the product of averages is small. In other instances, the difference between

the upscaled product of terms and the product of individually upscaled terms can be

accounted for in approximate closure relations. In any event, the existence of these

terms and the method chosen to account for their effects is important information

that can be used when searching for possible instances where approximations have

led to a model found to have shortcomings in simulating a system.

The essential notion is that averaging theorems have been developed that system-

atically change the scales of equations, and the variables in those equations, from the

microscale to combinations of the macroscale and megascale. These theorems relate

derivatives of averages to averages of derivatives and can be applied to conservation

equations, the entropy balance equation, and to microscale thermodynamic expres-

sions describing the processes occurring in phases, interfaces, or common curves.

As will be discussed in Subsection 1.3.8, these theorems can also be used purely

as mathematical expressions that provide relations among larger scale entity mea-

sures, such as volume fractions, interfacial area densities, and common curve length

densities. These additional equations are needed if one is to have a closed system

of larger scale equations that accounts for the dynamic effects due to changes in the

subscale morphology and topography in a porous medium.

1.3.6 Larger-scale Conservation Principles

Microscale conservation and balance equations are transformed to a larger scale by

making use of averaging theorems. The designation of an equation as “larger” scale

refers to it being a representation of system behavior at a macroscale, megascale, or

some combination of these two scales, all of which are larger than the microscale.

Conservation of mass, momentum, angular momentum, and energy equations for

phases, interfaces, common curves and common points can be written directly at

the microscale. By using averaging theorems to convert equations to a larger scale,

one ensures that processes and properties are all properly accounted for including

geometric densities, exchanges between entities, and deviations between microscale

quantities and macroscale counterparts.

When considering the microscale, a point will lie in a single entity and have

properties only of that entity associated with it. At the larger scales, properties as-

sociated with a point are averages of the microscale properties of all the entities in

the system in the vicinity of that point. The concept of the REV is used to determine

the size of the region associated with each point. To be more precise, we can extend

the usual REV concept by appending a number to indicate the number of spatial

dimensions that are treated at the macroscale, while 3 minus that number will be the

number of dimensions treated at the megascale. Thus REV-3 is an averaging region

that is macroscopic in all three spatial dimensions; REV-2 is a larger scale averaging
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region that is macroscopic in two spatial dimensions and megascopic in the remain-

ing spatial dimension; REV-1 is a larger scale averaging region that is macroscopic

in one spatial dimension and megascopic in the remaining two spatial dimensions;

and REV-0 is a larger scale averaging region that is megascopic in all three spatial

dimensions. After averaging a microscale equation to a larger scale, all variables

that appear in the equation are descriptive of the system at the larger scale. In some

instances, a larger scale variable is simply the average of a microscale quantity; in

other cases, the larger scale variable is an average of a microscale precursor plus

some additional terms that account for microscale processes not directly observable

at the larger scale.

A substantial advantage of formally averaging the microscale equations up to a

larger scale rather than postulating them directly at the larger scale, as with the the-

ory of mixtures [4, 5, 15, 47], is that the larger scale variables are expressed precisely

in terms of microscale precursors. This is in contrast to the mixture theory approach

wherein conservation equations are posed directly at a larger scale thus preclud-

ing the ability to connect variables across scales. Although physical intuition may

lead an individual to pose a sensible multiphase model directly at the macroscale or

megascale, this is most certainly not universally true. Averaging eliminates the need

to invoke intuition in formulation of conservation equations at the larger scale. Ad-

ditionally, in general it is not possible to infer the values and distributions of smaller

scale variables from their values at a larger scale. However, with averaging, larger

scale variables are known in terms of averages of smaller scale functional forms.

The fact that connections among variables between scales is provided means that

smaller scale measurements can be incorporated into the larger scale verification

and parameterization of closed models.

The take away message is that careful averaging from the microscale to the larger

scale leads to precise definitions of all variables. This quality is highly desirable in

a mechanistic model that is to be used in conjunction with a physical problem of

interest rather than just as a mathematical proposition.

1.3.7 Larger-scale Thermodynamics

Within the parlance of scale as employed herein, thermodynamic theories typically

are developed and applied at the microscale for which a point lies entirely within a

phase, in an interface, or on a common curve [84]. Since thermodynamics strictly

provides information only at equilibrium about the relations among variables and

about the state of the system, extensions are needed both to describe systems at

larger scales and to describe them away from equilibrium. Formal averaging from

the microscale to a larger scale making use of averaging theorems provides the route

to obtaining macroscale thermodynamic relations that are consistent across scales.

This formal procedure that provides thermodynamic relations valid at the same scale

as the conservation equations is a key feature of TCAT that distinguishes it from

other methods used to formulate mechanistic models at larger scales. The thermo-
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dynamic relations obtained also help in identification of macroscale conditions that

must pertain if the thermodynamic relations are to be valid when the system is evolv-

ing with time or where spatial gradients in properties exist.

Although bypassing the details and mathematical challenges of rigorously chang-

ing the scale of the thermodynamic formalism is tempting, the consequences of im-

plementing such an approach are troublesome. Nevertheless, there seem to be two

primary approaches to avoiding the averaging that ensures thermodynamic consis-

tency across scales: ignoring thermodynamics altogether and ignoring microscale

thermodynamics in favor of a thermodynamic structure hypothesized directly at the

larger scale.

Ignoring thermodynamics in a mechanistic modeling process may seem pos-

sible for an isothermal system. In such a case, internal energy and temperature

are not modeled. Thus, if one can find a way to determine closure relations with-

out appealing to the second law of thermodynamics, the importance of thermody-

namics is eliminated. This approach has been employed in deriving equations for

porous media systems involving flow, mass transport, and chemical reaction [e.g.,

10, 43, 102, 115] and has also been employed in some heat transfer analyses [e.g.,

86, 116]. The peril with this approach lies in the fact that information from thermo-

dynamics is not available to guide formulation of closure relations among variables.

Furthermore, the constraint provided by the second law could be violated. In any

event, it would seem to be prudent to try to incorporate as much relevant informa-

tion as possible into a model; and the thermodynamic behavior of fluids and solids

is certainly relevant.

The other approach that is sometimes taken is an ad hoc extension of thermody-

namics to the larger scale. This approach entails essentially guessing a thermody-

namic form at the larger scale, usually based at least in part on the microscale form

of the theory relied upon. Although this form can have the mathematical appear-

ance of the microscale thermodynamic approach with judicious choice of notation,

in fact this approach can be deficient in ascribing a physical property to each symbol

[68, 69, 76, 111, 117, 118]. The lack of a transition from microscale thermodynamic

expressions to macroscale forms through formal averaging is problematic because

variables are not precisely defined, interscale relations of variables are not estab-

lished, and the appropriate form of the equation cannot be assured. To avoid these

shortcomings, TCAT requires that microscale thermodynamics be used as the foun-

dation for establishing larger scale thermodynamics derived to be at the same scale

as the larger scale conservation equations being used.

As shown in Fig. 1.3, the averaging theorems are applied to both the micro-

scale thermodynamic equations and the microscale equilibrium conditions in order

to derive the larger scale counterparts of these modeling components. The larger

scale equilibrium conditions are important to know because they provide insight

that is extremely helpful in postulating forms of closure relations directly at the

larger scale.
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1.3.8 Evolution Equations

At the larger scale certain geometric quantities emerge in model formulation, such

as the volume fraction of a phase, the specific interfacial area, the specific common

curve length, and the common point density. These quantities arise through the for-

mal averaging process, are a part of larger scale mechanistic models, and are func-

tions of time and space. In larger scale models, they replace the specification of the

microscale juxtaposition of entities and their variability in time and space. They are

simpler measures of phase morphology than what is observable at the microscale,

and they are not as precise. These geometric quantities are additional unknowns in

the conservation and thermodynamic equations in comparison to the microscale sit-

uation. Their evolution is not accounted for by conservation equations, since they

are not conserved quantities. Rather the kinematics of these mathematical entities is

described in terms of averages of differential geometric relations that describe mic-

roscale interface and common curve deformations. The relations are complex except

for the simplest geometries [78]. For example, interfacial areas can be created and

destroyed within a two-fluid porous medium system through rearrangement of the

fluid phases present. Because of the complex geometry of the pore space, a descrip-

tion of the evolution of the growth or reduction of the interface between the fluids is

not simple. In cases when the solid is fixed, the total amount of solid-fluid surface

area may be constant, but the fractions of that solid surface in contact with each

of the fluids can vary with time and space. Because the movement and change of

geometric quantities is independent of conservation principles, the need to describe

their evolution is part of the closure problem for larger scale models.

As indicated in Fig. 1.3, the purely mathematical relations provided by the aver-

aging theorems can be used directly to produce exact equations that relate the behav-

ior of geometric variables in various ways. These kinematic equations are referred

to here as evolution equations, because they describe the changes in the geometric

variables over time. Because these mathematical equations are independent of con-

servation and thermodynamic principles, they are of utility in addressing the larger

scale closure problem. While the evolution equations derived are exact in form, they

contain terms that are difficult to evaluate exactly except in very simple cases that

are not achieved in porous medium problems. Therefore, approximations must be

made. When the approximations are well founded and the errors in the equations

are small, the evolution equations provide not only important additional constraints

for producing a closed model but also physical insight into the behavior of a given

system that is not available with conservation equations alone.

1.3.9 Constrained Entropy Inequality

TCAT-based model formulation makes use of an entropy inequality (EI) at the larger

scale of interest. The balance of entropy for each species in each entity comprising

the system can be formally averaged to the larger scale. Then, since the change of
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scale provides a set of balances that all apply at the same point, these equations

can be added together to provide a single, larger scale entropy balance equation.

Because the entropy production at a point is non-negative, the terms in the EI can

be summed to be equal to the production term with the conclusion that this sum

must be non-negative in accord with the second law of thermodynamics. The pur-

pose of this arrangement of terms is to connect the mechanistic description of the

dissipative processes producing entropy, such as stress, chemical species diffusion,

and heat conduction, to the corresponding terms in the EI. The dissipative processes

are responsible for entropy production and the terms accounting for these processes,

commonly referred to as “forces,” must be represented by closure relations. These

terms include the stress tensor, the mass diffusive flux, and the non-advective heat

flux for all the entities in the system. To make use of the EI to guide formulation of

the closure relations, it is necessary to relate the entropy fluxes and generation terms

that appear in the EI to fluxes and generation terms that appear in the conservation

equations. Thus, the larger scale conservation equations, consisting of a collection

of terms on one side of the equation that sum to zero on the other side of the equa-

tion, serve as constraints on the larger scale entropy inequality. These constraints

are imposed through the use of Lagrange multipliers multiplied by the equations

that are then summed with the EI. Note that since these additional equations are all

identically zero, the expanded EI still holds exactly.

Although the manipulations described bring the entropy-producing terms in the

conservation equations into the EI, entropy itself does not explicitly appear in any

of the terms of the conservation equations. An additional relation is needed be-

tween the rate of change of entropy per volume and the rate of change of energy per

volume, both of which appear in the expanded EI. Thermodynamics provides this

connection. Relations among thermodynamic variables and their rates of change at

the larger scale can be derived by integration of the microscale forms using averag-

ing theorems. Then with the terms in the larger scale equation arranged such that

the equation is a group of terms that sum to zero, a Lagrange multiplier can be

used to impose the thermodynamic condition as an additional constraint on the EI.

This summation of the entropy balance with the conservation and thermodynamic

equations will be referred to as the augmented entropy inequality (AEI).

The presence of the Lagrange multipliers in the AEI provides an opportunity to

cancel some terms by judicious specification of these multipliers. The goal of the

specification process is to eliminate terms such that only those specifically contribut-

ing to entropy generation (i.e., irreversible processes) appear in the final form. In the

TCAT approach, this means that the material derivatives in the equations are elimi-

nated as far as possible because this isolates the surviving entropy-producing terms.

The next step is solution for the forms of the Lagrange multipliers that are substi-

tuted back into the AEI to facilitate cancellation of corresponding terms. Guided

by the larger scale equilibrium conditions, the equation is rearranged as possible

to a sum of terms involving a product of factors that are called a thermodynamic
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“flux” and “force”. The resulting inequality is referred to as a constrained entropy

inequality (CEI).6

The CEI is an important expression that applies under (i) restrictions associated

with the nature of phenomena being modeled (e.g., specification of the number of

phases, single species, two-fluid-phase, etc.), (ii) assurance that conditions needed

for the continuum approach to hold apply, and (iii) selection of the thermodynamic

theory. A CEI that satisfies these three conditions is an exact expression. Although

the CEI is conceptually straightforward to develop, it requires significant mathe-

matical manipulation. Because it is exact, it provides a convenient starting point, or

perhaps a restarting point, for deriving approximate closure relations after impos-

ing a selected set of restrictions on system behavior. The existence of a CEI for a

class of problems enables the development of hierarchies of models of varying so-

phistication without the need to reformulate the CEI from the beginning for each

iteration.

1.3.10 Simplified Entropy Inequality

While the exactness property of the CEI is appealing, the equation is not strictly

in the force-flux form needed for deriving closure relations. Furthermore, in some

instances, subsets of the phenomena included in a CEI are not of interest, allow-

ing for simplification of the CEI. An example would be an isothermal system such

that temperature differences between entities and temperature gradients within en-

tities are both zero. Imposition of these restrictions in describing a system simpli-

fies the associated CEI but diminishes its generality. These kinds of restrictions are

called secondary restrictions because they provide conditions on the phenomena be-

ing modeled beyond the three listed in the last section, called primary restrictions,

that define the general composition of the system, its entities, and the scale of mod-

eling.

To convert the CEI to a form consisting only of flux-force terms at the larger

scale, certain terms, usually involving averages of products of microscale quanti-

ties, must be approximated. The specification of the approximation must necessar-

ily blend physical insight and mathematical analysis if the approximation is to have

utility. After secondary restrictions and subsequent approximations are applied, the

equation that results is referred to as a simplified entropy inequality (SEI) which is

comprised only of larger scale force-flux products for which each factor is zero at

equilibrium. This is the form needed to motivate closure relations.

6 The quantities referred to as fluxes and forces may be scalar, vector, or tensor terms. They share
the characteristic that they go to zero at equilibrium. It has been pointed out [61] that at the mic-
roscale the definitions of fluxes and forces can be permuted without impact. The main objective
is to obtain a sum of products involving factors that are all zero at equilibrium. We have found
that identifying various macroscale groupings as forces vs. fluxes can make the equation closure
process more straightforward.
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Because each form of an SEI is built on some approximations, it is more apt to

change than the CEI, which is exact for a given class of problems under a set of mild

conditions. A range of forms of an SEI can be obtained from a single CEI depending

on the approximations imposed. For example a restriction of a general CEI to a two-

species, isothermal system leads to an SEI different from that obtained considering

a larger number of species in a non-isothermal system. The approximations used

to derive an SEI may also change as insight develops and new approximations are

proposed. The key point is that a particular exact CEI is a useful starting point for

the derivation of many different SEI’s that describe subsets of the general system.

1.3.11 Closure Relations

Closed mechanistic models require that the number of equations be equal to the

number of unknowns in the formulation. Conservation and thermodynamic equa-

tions alone do not yield such a formulation but must be supplemented with addi-

tional equations that are called closure relations. In essence, closure relations, also

referred to as constitutive equations, provide functional relations among variables

existing in the equations. In relation to what has been discussed previously, variables

identified as larger scale “fluxes” are expressed as functions of larger scale “forces,”

both of which appear in the equations. Because porous medium systems consist of

phase, interface, common curve, and common point entities, the fluxes in each of

these entities need to be expressed in terms of system forces. Fluxes for which clo-

sure relations are typically sought include the non-advective heat and mass transport

and stress tensors. When working on macroscale or megascale porous medium sys-

tems, some fluxes are encountered that do not appear in single-phase microscale

formulations. These include the relaxation rates of interface configurations to their

equilibrium configurations and the stress on the solid phase surface exerted by multi-

ple fluid phases. Parameters that arise in the process of closure relation development

are commonly referred to as material coefficients. We emphasize that when closing

microscale systems, microscale material coefficients such as viscosity and thermal

conductivity are encountered. These coefficients are useful for modeling a system at

the scale of development. However, when a system is modeled at a larger scale, the

coefficients that arise account for effective processes as they impact the larger scale

system behavior. Thus microscale and larger scale material coefficients are different

in magnitude and in the scope of the processes being accounted for.

Because closure relations are approximations, they are not unique but rather de-

pend on the assumptions made about system behavior. What is desired is that the

closure relations be sufficiently accurate that they provide a useful description of

a process of interest over a range of conditions in the system and, better yet, over

a range of system types. All closure relations are required to be consistent with

the second law of thermodynamics. The SEI plays a central role in assuring that

proposed closure relations meet this requirement. The SEI can be examined term by

term with approximations for independent fluxes being postulated that do not violate
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the inequality. Put another way, closure relations should never be formulated such

that an independent process could destroy entropy because the second law dictates

that such a situation is physically unrealistic. Closure relations may be stipulated

for each independent flux to bring the number of equations up to a value closer to

the number of unknowns that appear in a model. Besides the closure relations de-

rived for dissipative processes using the SEI, additional relations are needed, such

as equations of state and evolution equations, so that the total number of unknowns

is matched by the total number of equations.

The material coefficients mentioned previously add a layer of complication be-

cause they are quantities that do not originally appear in the equation set. Therefore,

relations are needed also for these coefficients. Typically, these coefficients are given

a numerical value or a functional form in which the parameters of the form are spec-

ified. If these parameters are to be useful, they must be independently measurable

or specified. In other words, if one wishes to abuse a relation between variables

by assuring that it is satisfied for all cases by adjusting the parameters in the rela-

tion for the sole purpose of assuring the equality, this can be done. However, such

an approach has no value in modeling a system for which all parameters should

be specified based on some system characteristics. A closure relation that has pa-

rameters that are highly sensitive to system conditions, and thus a narrow range of

applicability, is not useful for modeling processes as it does not describe physics.

When such a situation arises one should go back to the CEI, examine the quality of

the subsequent approximations made to obtain the SEI, and take steps to develop an

improved closure relation.

1.3.12 Closed Models

Closed models are solvable mechanistic representations of physical systems. The

models are composed of some set of conservation equations, thermodynamic re-

lations, evolution equations, and closure relations. For such a closed model to be

utilized for simulation, it must be supplemented with appropriate boundary and ini-

tial conditions so that the equations can be solved, either analytically or approxi-

mately using numerical methods. For most problems involving porous media flow,

heterogeneities, coefficient variability, and the geometry of the domain being stud-

ied preclude success in obtaining analytical solutions. The literature is rich with

numerical simulations of porous medium problems. These are not considered in this

work. Our objective is to provide methods for development of equations that de-

scribe porous medium processes so that the numerical methods employed can be

applied to appropriate equations.

Because a closed model makes use of approximations to obtain the closure con-

ditions, caution must be exercised to ensure that the assumptions leading to the

approximations apply to a specific problem of interest. Assumptions that are inap-

propriate for a particular situation will still lead to a set of closed, solvable equations.

The simulations performed with these equations may provide appealing results. The
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fact that the equations being solved are the equations that “everyone uses” may add

credibility. However, if the assumptions inherent in a model are not correct for a

situation, the solution of the equations will not describe processes occurring in the

system. The model will be inaccurate. This situation is the case with all mechanistic

models regardless of how they are formulated. When ad hoc approaches are used

for one or more components of the model formulation approach, the only recourse

that exists when a model fails to represent adequately a system of concern is to try

different ad hoc approaches.

The TCAT framework, in contrast to ad hoc and other procedures, provides the

opportunity to systematically revise models because all elements are developed by

upscaling and all restrictions and approximations are specifically noted. If a simu-

lation based on TCAT equations is found to be inadequate, all assumptions made in

formulating the model can be reexamined because they are explicit. Experimental

and computational work can be undertaken to support or refute assumptions em-

ployed in producing an SEI from a CEI. The need for a higher order closure relation

for a particular flux may be identified with the resultant form motivated by the SEI.

Porous medium systems of concern are complicated and multiscale in nature. There-

fore the need to iterate on the formulation of a model should be expected and, in-

deed, be a tool that helps identify the parts of a system that are not well understood.

The TCAT framework ensures that a path for completely systematic and scientific

analysis of models can be found.

1.3.13 Subscale Modeling and Applications

Model validation is a process whereby a mechanistic model is compared to a sys-

tem that it is intended to represent. In many environmental systems, the validation

process can include the comparison of a model with a system, or set of systems,

that is experimentally observed for the purpose of sequentially isolating important

elements of the system. By performing comparisons between the model and exper-

imental results, over a range of conditions, the breadth of conditions for which a

model form is valid can be established. The broader the range for which a model is

valid, the more confidence one can have in the model, and the greater its utility.

For an increasing number of multiscale systems, computational validation is

possible. In many cases it is possible to simulate a porous medium system at the

microscale where all phase distributions are known and evolve with time. One

widely used method for microscale simulation is the lattice Boltzmann method [e.g.,

1, 21, 48, 49, 57, 62–66, 70, 74, 87, 89, 90, 99, 100, 103, 105, 107, 112, 119, 121].

Another makes use of pore network models that attempt to capture the key morpho-

logical features of a porous medium system of interest [e.g., 8, 72, 88, 93, 95, 98].

When the physics are well-described at the microscale and the computational tools

used to approximate the microscale situation are sufficiently accurate, the behavior

of a system can be simulated with high fidelity. The microscale simulations provide

a basis for determining larger scale parameters and variables. They also provide
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guidance in postulating specific forms of larger scale closure relations that may

only be known in a general functional form. Thus subscale modeling and simula-

tion plays an important role both in constructing final forms of TCAT models and

in validating conditions under which the models are of utility.

If a larger scale TCAT model fails to describe a system well enough to answer

questions about the system behavior, microscale simulation can assist in determin-

ing the cause of the failure. The dense information available from a microscale sim-

ulation can be useful in pinpointing the restriction or approximation imposed on

the TCAT model that must be revisited. Modeling multiphase flow in porous media

is difficult. Bringing to bear a variety of consistent methods to address the problem

provides synergistic potential for identifying and gaining understanding of processes

and hence advancing the state of modeling.

1.4 Summary

In this chapter, we have introduced an overview of the basic qualitative notions

essential for understanding the TCAT approach to formulating mechanistic models

at scales larger than the microscale. Each component of TCAT involves significant

mathematical manipulations. By outlining these components and their individual

role in the model formulation process, the foundation has been laid for a complete

conceptual understanding of the TCAT approach to be developed and applied in this

book. Our hope is that this conceptual understanding will provide a safe haven if the

reader finds that the mathematical details of the theory seem to lose context.

We intend that this book will facilitate understanding and implementation of

TCAT at a variety of levels. If the conceptual bases of TCAT are properly under-

stood, it will not be necessary for a reader of this book to understand all of the

details of every component of TCAT in order to use or even develop useful TCAT

models. For example, the body of TCAT work accomplished to date has resulted in

the derivation of several CEI’s and SEI’s, along with a large number of conserva-

tion equations, at larger scales. If one understands the TCAT process at a qualitative

level, these available results can be used as a starting point for model formulation

and verification. Similarly, a reader may wish to focus on the verification of a given

TCAT model by performing microscale simulations. The available formulation, re-

strictions, and approximations provide a means to accomplish such a validation with

rigor.

The ambitious reader will choose to master all aspects of TCAT. This class of

reader will need to thoroughly understand the overview presented in this chapter

and also the details of each of the components of the theory. Introductions to these

details are included in the chapters that follow, while additional details can be gained

by reference to the growing TCAT literature [36–41, 45, 58, 59, 79, 80]. This book

is not a self-contained encyclopedia of TCAT details, including very lengthy and, at

times, tedious calculations. Rather, it is a gateway to the method that will hopefully
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make engagement with many compelling and subtle aspects of the approach more

feasible.

Exercises

1.1. How many data points would be needed to image the solid phase skeleton at a

resolution of 6 microns, the same resolution employed in producing Fig. 1.1, for a

three-dimensional region that is 1 m on a side?

1.2. Provide an example of a property that exhibits length scale dependence. Prepare

a sketch of the value of that property as a function of length scale and explain the

behavior.

1.3. For each of the following systems

• identify the physical description of each of the five length scales introduced in

Eq. (1.1);

• identify a question that could be addressed appropriately by developing a model

at each scale; and

• identify a question that could be addressed appropriately by a developing a model

that makes use of more than one scale.

a. fuel cell

b. water supply aquifer

c. river

d. watershed

e. petroleum reservoir
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Chapter 2
Microscale Conservation Principles

2.1 Overview

TCAT models are developed by formally upscaling conservation and balance equa-

tions, thermodynamic relations, and equilibrium conditions from the microscale to

a macroscale, a megascale, or some combination of the two scales. A prerequisite

of a TCAT implementation is thus the full set of microscale equations that are to be

upscaled. The purpose of this chapter is to provide the necessary understanding and

forms of the microscale conservation and balance equations. Microscale thermody-

namics will be presented in Chap. 3 and the microscale equilibrium conditions will

be developed in Chap. 4.

Recall that the microscale is sufficiently large to allow the use of a continuum,

rather than a molecular, representation of the physical system and sufficiently well

resolved that the geometry of each entity is completely represented. This means that

phases are viewed as being juxtaposed and a geometric description of the regions oc-

cupied by each phase is employed. The interfacial areas between phases, common

curves where three phases come together, and common points where four phases

come together are all parts of the problem description. Solution for the locations of

the boundaries of the phases may be necessary for the microscale problem (i.e., for

the case of a moving boundary problem [4]). Certain extensive quantities are known

to be conserved or balanced within each of the entity types. Extensive properties of

a system, such as mass, momentum, angular momentum, energy, entropy, and elec-

trical charge, are additive.1 The total amount of an extensive quantity in a system is

the sum of the amounts of the extensive quantity associated with each element of the

system. Intensive quantities are not additive. For example, temperatures, pressures,

and chemical potentials are not additive. A system that is formed as a combination

of two identical systems possesses twice the amount of extensive properties of each

contributing system, while the intensive properties of the individual and combined

1 Although conservation of electrical charge is an important principle that has applicability in
porous media problems such as fuel cells and capillary electrochromatography [5, 11, 13], this is
not covered in this book.
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systems are the same. Conservation and balance equations are not derived for inten-

sive quantities, only for extensive quantities. Conservation and balance equations

describe the rate of change of the amount of an extensive quantity in a region. They

account for flows of the property into and out of the region as well as sources and

generation of the quantity. Formulation of these equations in terms of microscale

properties is the subject of this chapter.

Traditional treatments of conservation principles are primarily concerned with

conservation of properties of a phase. Exchanges between phases at interfaces be-

tween phases are accounted for by jump conditions [e.g., 6]. Our study adopts a

more comprehensive approach. For porous medium problems, the dynamics of pro-

cesses occurring at microscale discontinuities, including interfaces, common curves,

and common points, are important to the system behavior. By their nature, porous

media are highly heterogeneous from a microscale perspective due to these discon-

tinuities. Thus, it is imperative that all important features of conservation and bal-

ance principles involving these entities be accounted for in larger scale equations,

as well as at the microscale. Therefore, we will make use of general conservation

and balance equations not only for phases but also for interfaces, common curves,

and common points. Conservation principles will be developed for material in an

entity as a whole and also based on each species that may be present in an entity.

Summation of the species-based forms of conservation relations will provide the

entity-based forms; for an entity consisting of a single chemical species, the entity-

and species-based forms are identical.

The ability to account for processes occurring in regions of discontinuity be-

tween phases in porous media is conceptually appealing. However, in practice this

ability comes only with significant overhead due to the expansion in the number of

conservation equations that must be employed. A brief count will reinforce this no-

tion. There are four different types of entities: phases, interfaces, common curves,

and common points. For each entity, we can consider three types of conservation

and balance equations by formulating them for each chemical species, for an entity

composed of a single chemical species, and by considering the entity equations as

accounting for the behavior of all species collectively. This suggests that 12 different

classes of equations exist. For each of these 12 classes there are nine conservation

or balance equations, excluding conservation of charge. These are the scalar mass

conservation, energy conservation, and entropy balance equations plus the vector

momentum and angular momentum equations, each of which consists of three com-

ponents. Thus, we can potentially form 108 different conservation or balance equa-

tions. For common points, the radius of possible rotation is zero so that we need

not consider the nine possible equation types of angular momentum counted above.

Thus, there are 99 equations that may potentially be employed in modeling a system.

All of these equations are not needed to describe a given system (e.g., for a single-

fluid-phase porous media system, no common curves or common points exist; if one

employs conservation equations for all species in an entity, the entity-based equa-

tion is not needed). For some systems, more than 99 equations will be employed

since species-based equations can be employed for each chemical species present in

each entity. By considering the differences in the full set of equations, however, we
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will have a basis for selection of equations to be used to model a system of interest.

The focus of this chapter is on providing examples of the derivation of the equations

and on listing the equations of importance.

Several approaches exist for deriving the microscale conservation and balance

equations. One approach is to derive a general conservation equation for each type

of entity and to specify the appropriate mapping between the general conservation

equation and the physical phenomena of interest for a particular conservation equa-

tion. We will follow this approach because it provides the opportunity to minimize

the calculations that must be performed in comparison to ignoring similarities and

developing equations for each conserved quantity by independent calculations.

2.2 General Conservation and Balance Principles

This section proceeds by first presenting a conceptual conservation or balance equa-

tion that describe the physical processes that must be considered in the formula-

tion of an appropriate equation. Then, in the subsequent subsections, the conceptual

physical description provided is translated into a mathematical form that is appro-

priate for each of the four types of entities.

2.2.1 General Qualitative Formulation

Because we are interested in changes with time of extensive properties, we will de-

velop equations that describe the rate of change of a property in a domain of interest.

A change in the amount of a property in a region must be due to advective transport

of the property across the boundary, the rate at which the property is added within

the domain due to body sources, non-advective boundary fluxes of the property, and

generation of the property within the domain. These mechanisms can be combined

in a conceptual balance equation that accounts for the rate of change of the extensive

property within a domain as[
Rate of

Accumulation

]
+

[
Net Outward

Advective Flux

]
−
[

Body

Sources

]

−
[

Non-advective

Boundary Sources

]
−
[

Rate of

Generation

]
= 0 . (2.1)

The dimensions, or units, of Eq. (2.1) are the dimensions of the extensive property

being considered per time. The challenge is to convert this verbal equation into

an appropriate and useful mathematical form. The ease with which this can be done

depends on the extensive property that is being conserved and physical insight about

the forms of the source and generation terms. Insight exists based on the shared

2.1 Overview
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human experience over centuries that has resulted in detailed studies of physical

systems including highly resolved experimental results and computational analyses

across many scales.

Equation (2.1) can be used to formulate microscale conservation equations by

first considering a megascale region whose boundary is resolved at the microscale.

There are several aspects of this region that should be noted. The extent and location

of the region are not necessarily fixed. Note, however, that for the extensive property

of interest to enter (or exit) the region, it must be transported in a direction normal

to the boundary of the region. Thus, the normal velocity of advective transport at the

boundary relative to the velocity of the boundary is important, not just the velocity

alone. Advection tangent to the surface, or normal to the surface but at the same ve-

locity as the normal velocity of the boundary, will not result in a flux of a property of

interest into or out of the system. The boundaries of a region need not be coincident

with any physical boundary, but can be located as is convenient or desirable to iden-

tify a particular study region. For example, a portion of an interface between phases

may be considered rather than the entire interface; or a volume can be considered

that moves through a larger system at some selected velocity to model the rate of

change of the extensive property in that volume. For convenience here, though not

generally required, the domains will be selected such that microscale properties are

continuous within the region and are first-order differentiable with respect to space.

If a fluid is in a porous medium, the microscale domain chosen is such that it consists

exclusively of that fluid. An interface between fluids, for example, will be studied in

a surficial domain that contains only that interface type. Additionally, the require-

ment of first order differentiability is employed so that the normal to an interface

domain is unique and the tangent to a common curve is unique. This condition does

not preclude the ability to consider piecewise continuous or disconnected regions

in identifying a domain. For the continuum mechanical approach taken here, small

changes in the size of a region should in turn lead to small changes in respective

extensive quantities.

2.2.2 General Quantitative Formulation

Suppose it is desired to develop a conservation equation for an extensive property

in a region Ω with boundary Γ. When considering a phase, Ω is a volumetric re-

gion with surface Γ ; for an interface property, Ω is a surface region with bounding

curve Γ ; for a curve, Ω is a one-dimensional region with end points at Γ. Note that

while a volume always has a boundary, a closed surface or a closed common curve

will not have a boundary. Common points have no boundaries. Now designate the

extensive property of interest as F. Furthermore, let the point value per unit region

(i.e., the density of F) be indicated as F . Thus for a spatial domain, F has units of

the extensive property per unit volume; while for a surficial domain, F has units of

the extensive property per unit area; and so forth. In formulating a balance equation,

it is important to take into account the fact that although F is an extensive quantity,
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it may vary at the microscale throughout the region such that F is not necessarily

equal to the product of F at any given point in Ω and the extent of the integration

region, which could be a volume, area, length, or number of points depending upon

the type of entity represented by Ω . Additionally, the material within the region

might not have a uniform microscale velocity; and the fluxes at the boundary are

not necessarily uniform across the boundary. Thus, the successful development of

a conservation equation with units of the extensive quantity per unit time must de-

pend upon integral expressions over the domains and their boundaries. For example,

the extensive property, F, is related to its density distribution within a domain, F ,

according to

F=
∫
Ω

F dr . (2.2)

The rate of accumulation term in Eq. (2.1) for extensive property F is expressed as[
Rate of

Accumulation

]
=

dF

dt
=

d

dt

∫
Ω

F dr . (2.3)

The net rate of advective transport out of Ω is related to the advective flux across

the boundary, Γ. Denote the advective velocity as v, the velocity of the boundary of

the domain as w and the unit normal vector to the boundary oriented to be positive

outward as n. The amount of F that will cross the boundary depends upon the density

distribution F at the boundary and the normal advective velocity, v·n, relative to the

normal velocity of the boundary, w·n. The rate of depletion of F in the region of

interest due to advective flux across the boundary, the second term in Eq. (2.1), is[
Net Outward

Advective Flux

]
=
∫
Γ

F (v−w) ·ndr . (2.4)

It is helpful to realize that the sign of (v−w) ·n determines whether the flux is into

(negative) or out of (positive) the region.

The body source rate of supply of F per unit of domain is denoted SΩT , where

the subscript T indicates that we are considering the total body source which can be

broken into components as will be seen subsequently. The rate of generation within

the body per unit of domain is denoted GΩ . These two quantities may be integrated

over the domain so that the third and fifth terms in Eq. (2.1) are expressed as[
Body

Sources

]
+

[
Rate of

Generation

]
=
∫
Ω

SΩT dr+
∫
Ω

GΩ dr . (2.5)

The supply of F at the boundary due to processes other than advection still in-

volves transfer across the boundary and therefore is in the direction normal to the

boundary. Because non-advective transport may also occur in directions tangent to

the boundary, it is important to isolate the component of this transport that is normal
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to the boundary. The non-advective transfer of F per unit of boundary in the normal

direction is denoted as SΓ ·n so that the fourth term in Eq. (2.1) is accounted for as[
Non-advective

Boundary Sources

]
=
∫
Γ

SΓ ·ndr . (2.6)

Substitution of Eqs. (2.3)–(2.6) into Eq. (2.1) yields the general conservation

equation,

d

dt

∫
Ω

F dr+
∫
Γ

F (v−w) ·ndr−
∫
Ω

SΩT dr−
∫
Γ

SΓ ·ndr−
∫
Ω

GΩ dr= 0 . (2.7)

The particular forms that the integrands take in this equation depend upon the ex-

tensive quantity being conserved or balanced and the geometric dimensionality of

the region being considered.

Equation (2.7) provides a good beginning point to develop conservation and bal-

ance equations for properties of entities as a whole, whether those entities be vol-

umes, surfaces, curves, or common points. A small twist has to be accommodated

in considering common curves and points due to their geometric character. For in-

stance, the boundary of a curve is the points at the end of the curve. Thus the in-

tegral over the boundary of a common curve has to be simplified to be explicitly

represented as a sum over the end points of the curve. This issue will be treated in

detail when developing the equations for the common curve explicitly.

2.2.3 Species-based Quantitative Formulation

In most porous medium systems of interest, a phase will consist of multiple species.

For example, a water phase may contain not only hydrogen and oxygen, but also

a wide range of other inorganic and organic species—hundreds of different species

in some cases. Species-based models are important under two conditions. First, the

composition of a phase may be of interest intrinsically. This would be the case if a

species in the phase were a contaminant of interest and it were important to model

the spatial and temporal distribution of the species. Second, the composition of a

phase can influence its physical or chemical properties and hence its behavior. For

example, changes in the mass fraction of an inorganic salt can affect the density or

viscosity of a water phase. Similar comments apply for other entities as well. There-

fore, species-based, or compositional, porous medium models can be important.

In the interest of generality, we will be developing conservation and balance

equations for the properties of individual species in an entity. The species-based

equations can be obtained by identification of the chemical species processes corre-

sponding to terms in Eq. (2.7). The equations obtained apply directly for the single-

species and multiple-species situations. Summation of a species conservation equa-
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tion over all species impacting the entity yields a conservation or balance equation

for the entity as a whole. Here we provide the general species-based form. The

“derivation” involves little more than the introduction of some subscript notation

into Eq. (2.7).

Because we are studying species in phase, interface, common curve, and common

point entities, it is helpful to make use of notation that identifies both the species

and the entity of interest. We will make use of subscripts to designate quantities of

interest as being microscale properties.2 The subscript i is used to designate an indi-

vidual chemical species from among the full set of chemical species in the system.

The subscript α is used to indicate the entity that is being considered. For exam-

ple, in the general equation, Fiα would be the density of the microscale property of

interest for chemical species i in entity α . The domain of all species in entity α is

Ωα and the boundary of that domain is Γα . Neither the domain nor the boundary

depends on the chemical species being considered in the entity. The outwardly di-

rected normal from the boundary of Ωα is the unit vector nα . Each chemical species

may have a different advective velocity so that the velocity of species i in entity α
is designated as viα . Although each species may have a different velocity, thereby

requiring the use of subscript i to differentiate among the species present, the veloc-

ity of the boundary of the domain is species independent. Therefore, the boundary

velocity is denoted as wα . The body source, non-advective surface source, and the

generation terms in Eq. (2.7) all may depend on the species being considered and

the entity. Therefore, the subscript iα will be appended to each of these. Thus, the

general conservation equation for an extensive property of a chemical species in an

entity α can be written in terms of microscale variables as:

d

dt

∫
Ωα

Fiα dr+
∫
Γα

Fiα (viα −wα) ·nα dr−
∫

Ωα

SΩT iα dr

−
∫
Γα

SΓiα ·nα dr−
∫

Ωα

GΩ iα dr= 0 for i ∈ Is,α ∈ I , (2.8)

where Is is the set of species indices and I is the set of entity indices, which includes

the indices of phases (IP), interfaces (II), common curves (IC), and common points

(IPt) such that I= IP∪II∪IC∪IPt. We will refer to all of the sets of indices as index

sets.

With Eq. (2.8) as a starting point, we will make use of theorems that allow equa-

tions for an entire entity to be localized so that they apply at any point in the entity.

The theorems depend on the dimensionality of the entity. The entity types will be

considered in turn, starting with phases and proceeding in order to entities of lower

dimensionality. We will then identify the quantities that appear in the general equa-

tions based on the processes of interest so that they are particularized to the members

of the set of conservation and balance equations.

2 It is perhaps premature, but may be helpful, to note that while subscripts are used for microscale
quantities, superscripts will be used to designate larger scale quantities in subsequent chapters.
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Fig. 2.1 Arbitrary closed volume Ωα ⊂ IR3 containing phase α ∈ IP with boundary Γα ⊂ IR2. Unit
vector nα is normal to Γα and oriented to be positive outward from Ωα

2.3 Conservation and Balance Principles for a Phase

The objectives of this section, which focuses on conservation and balance equations

for phases, are twofold. First, the general conservation equation for a species-based

extensive property given in Eq. (2.8) will be changed from the given form appropri-

ate for a phase as a whole to a form that is appropriate at any microscale point in

the phase. Second, particular forms of the conservation and balance equations will

be developed for mass, momentum, energy, and entropy.

2.3.1 General Microscale Point Forms

The study of conservation of a property of an α phase, where α ∈ IP, requires that

the region of study, Ωα with boundary Γα be a closed volume, as depicted in Fig.

2.1. The fact that this phase occupies volume can be expressed as Ωα ⊂ IR3, which

states that the domain is in three-dimensional real space. The extent of α is the

volume it occupies, Vα . The boundary is a two-dimensional surface, implying that

Γα ⊂ IR2, and the extent of Γα is measured by the area Aαα . The double subscript

on A is used to indicate the total boundary area of Ωα , regardless of any other phase

or phases also contacting Γα .

Equation (2.8) can be focused further for the specific case of species-based con-

servation of a phase property and then reduced to a point form. With just the minor

tweak of restricting I to be IP, and with proper identification of the integrand terms,

Eq. (2.8) becomes a statement of mass, momentum, or energy conservation, or an

entropy balance, for a species in a phase. Each of these equations will be formulated

after first reducing the equation to point form.
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The conversion of Eq. (2.8), with I restricted to IP, to the form that applies at

a point within a phase requires that the surface integral terms be converted to vol-

ume integrals. This task can be accomplished making use of mathematical theo-

rems. Because a variety of theorems will be relied upon in this work, we adopt

a previously established convention to name these theorems [8, 12] of the form

<letter>[i,( j,k), l]. For a transport theorem <letter> is T while <letter> is re-

placed by D for a divergence theorem. Gradient theorems, which are similar to di-

vergence theorems, replace <letter> with G. Theorems involving material deriva-

tives and averages of deviations between quantities at different scales are designated

as M theorems. The index i indicates the dimensionality of the microscale domain,

j refers to the number of macroscale dimensions that make use of differential opera-

tors, k is the number of macroscale dimensions over which integration occurs, and l
is the number of megascale dimensions. For the theorems of this chapter, conversion

is from the megascale, with integrals over the entire domain, to integrals over the

microscale. Thus both j and k are zero.

Two theorems are employed to eliminate the surface integrals in Eq. (2.8). The

transport theorem is as follows [3, 8, 10, 15]:

Theorem 2.1 (T[3,(0,0),3]) For a smooth continuous and differentiable function f
defined over a domain Ωα ⊂ IR3 that may deform with time t due to velocity wα of
closed boundary Γα with outward normal from the boundary nα ,

d

dt

∫
Ωα (t)

f dr=
∫

Ωα (t)

∂ f
∂ t

dr+
∫

Γα (t)

f wα ·nα dr . (2.9)

Physically, when f is the density of some conserved quantity, the left side of Eq.

(2.9) represent the change in the total amount of the conserved quantity with time

over the entire domain. This change is accounted for on the right side by changes

of the property density within Ωα and movement of the domain boundary Γα that

could affect both the location of Ωα where changes in f are being studied and the

size of Vα .

Also of use for manipulations with integrals over the boundary of the domain is

the divergence theorem [3, 8, 10, 15]:

Theorem 2.2 (D[3,(0,0),3]) For a smooth continuous and differentiable tensor func-
tion f defined over a domain Ωα ⊂ IR3 that may deform with time t due to velocity
wα of closed boundary Γα with outward normal from the boundary nα ,

∫
Ωα (t)

div fdr=
∫

Γα (t)

f·nα dr , (2.10)

where div is a divergence operator that contracts the last index of f.

If f is a vector or a symmetric second order tensor, then div f may be written equiv-

alently as ∇·f. In general, if f is a second order tensor, div f is equal to ∇·fT, where

the superscript T indicates the transpose. Physically, Eq. (2.10) equates the sum of
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the net outward fluxes from all points within the spatial domain on the left side to

the flux across the domain boundary on the right side.

With f replaced by Fiα , and f replaced by Fiα viα in one instance and by SΓiα in

another, Eqs. (2.9) and (2.10) can be used to eliminate the surface integrals from Eq.

(2.8) giving

∫
Ωα

[
∂Fiα

∂ t
+∇·(viα Fiα)−SΩT iα −divSΓiα −GΩ iα

]
dr= 0 for i ∈ Is,α ∈ IP .

(2.11)

For a phase, the body source does not include fluxes from adjacent entities that act as

body sources because a point within a phase is not in contact with any other entities;

other entities are encountered only at the boundary of the phase. The portion of the

total body source that is independent of adjacent entities is designated as SΩ iα , such

that, for a phase,

SΩT iα = SΩ iα for i ∈ Is,α ∈ IP . (2.12)

Because the integration volume is arbitrary, Eq. (2.11) must hold for any volume

that is sufficiently large to meet the previously noted continuum hypothesis require-

ments. This fact implies that the integrand itself must be zero at each microscale

point within the volume. Recall that a value of a microscale quantity at a point im-

plies an average about a volume with a length scale that is long compared to the

mean distance between molecules. Thus the general point conservation equation for

an extensive property of a species per unit microscale volume in a phase is

∂Fiα

∂ t
+∇·(viα Fiα)−SΩ iα −divSΓiα −GΩiα = 0, for i ∈ Is,α ∈ IP . (2.13)

This equation may also be written equivalently using the material derivative as

Diα Fiα

Dt
+Fiα I:diα −SΩ iα −divSΓiα −GΩiα = 0, for i ∈ Is,α ∈ IP , (2.14)

where the material derivative is defined as

Diα
Dt

=
∂
∂ t

+viα ·∇ ; (2.15)

the symmetric rate of strain tensor for species i in phase α is defined as

diα =
1

2

[
∇viα +(∇viα)

T
]

; (2.16)

and I is the unit tensor. Because our interest in the microscale is primarily to provide

equations for transformation to the larger scale, we will work mostly with micro-

scale equations in the form of Eq. (2.13) because mathematical theorems for change

in scale are more directly available for the partial time derivative than the material
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derivative. We emphasize, however, that Eqs. (2.13) and (2.14) are exactly equiva-

lent.

When a phase consists of only one chemical species, the subscript i may be

deleted from Eqs. (2.13)–(2.16) to obtain the general equation for a phase. When

a phase is composed of multiple species, a conservation equation for a property

of the phase as a whole may be obtained by summing all the conservation equa-

tions for that property based on the species present. Then judicious choice of the

variables deemed to be characteristic of the phase as a whole, rather than of species-

based properties, results in the phase-based conservation equation. This procedure

is best accomplished based on the particular property being conserved or balanced

to ensure that the phase-based variables are properly defined in terms of the species-

based variables.

2.3.2 Specific Conservation and Balance Principles

Specific conservation and balance equations can be derived directly from general

Eq. (2.13), or the equivalent form given by Eq. (2.14), by selecting a property to be

conserved or balanced and then specifying the mapping between the general vari-

ables in the equations and specific applicable physical quantities. These quantities

must be specified such that all of the operative processes that affect the conservation

or balance principle are included in the equation. The discussion here will focus on

the physical basis for the respective mapping assignments, and the resulting equa-

tion forms will be listed.

The mappings for conservation of species mass, momentum, and energy and for

the balance of species entropy are given in Table 2.1. A notation that will prove to

be convenient is introduced such that M, P , E , S , and G represent equations for

conservation of mass, momentum, and energy, and balance of entropy and gravita-

tional potential, respectively, written in partial time derivative form. Additionally,

we make use of the notation M∗, P∗, E∗, S∗, and G∗ to denote the corresponding,

and equivalent, equations written using material derivatives. In the table each of the

conservation equation types is subscripted with the species qualifier, i ∈ Is, and the

entity qualifier, α ∈ IP to indicate that the equations apply to that species and phase.

Conservation and balance equations for phase entities accounting for the species

collectively rather than individually are given in Table 2.2. Each of the properties

appropriate for the conservation equation of interest is given. Note that the sum of

a set of species-based equations for a property over all species present is equal to

the corresponding phase-based equation. Based on this fact, it is tempting to think

that an entry in Table 2.2 is equal to the sum over all species of the corresponding

entry in Table 2.1. However this is not so for all terms! Rather the relations between

the phase-based and species-based terms must be determined carefully such that

multiple definitions for a designated quantity do not arise.

Table 2.1 can be used along with Eq. (2.13) or Eq. (2.14), which are repeated for

convenience at the top of the table, to write a full set of species-based conservation
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Table 2.1 Physical variables for species-based phase equations in partial derivative or material
derivative form. Miα , Piα , Eiα , Siα , and Giα correspond, respectively, to conservation of mass,
momentum, and energy, and balance equations of entropy and body force potential for species i in
phase α

Fiα =
∂Fiα

∂ t
+∇·(viα Fiα )−SΩ iα −divSΓiα −GΩ iα = 0 for i ∈ Is,α ∈ IP

or

F∗iα =
Diα Fiα

Dt
+Fiα I:diα −SΩ iα −divSΓiα −GΩ iα = 0 for i ∈ Is,α ∈ IP

Fiα Fiα SΩ iα SΓiα GΩ iα

Miα ρα ωiα — — riα

Piα ρα ωiα viα ρα ωiα giα tiα piα + riα viα

Eiα Eiα +ρα ωiα
viα ·viα

2
ρα ωiα giα ·viα +hiα tiα

T·viα +qiα eiα +piα ·viα + riα
viα ·viα

2

Siα −Λiα ηiα biα ϕϕϕ iα Λiα

Giα Ψiα −ρα ωiα giα ·viα — ρα ωiα
∂ψiα

∂ t
+ riα ψiα

and balance equations for a phase. For example, making use of the table, one obtains

the equation of conservation of mass of a chemical species in partial time derivative

form as:

Miα =
∂ (ρα ωiα)

∂ t
+∇·(ρα ωiα viα)− riα = 0 for i ∈ Is,α ∈ IP , (2.17)

where ρα is the mass density equal to mass of α phase per volume of α phase;

ωiα is the mass fraction of species i in phase α (i.e., the fraction of the mass of

the phase that is due to the presence of species i); and the generation term, riα ,

accounts for the set of reactions that produce species i in phase α by conversion

from other species. Many simultaneous reactions that either produce or consume

species i may be operative. Therefore, riα is a variable that represents the net result

of some set of intraphase biogeochemical reactions. The precise form of these re-

actions will be system dependent, and the mathematical representation of riα may

be mechanistically rigorous or an approximation that tries to account for the im-

portant elements of the reaction. One example of an approximate relation for riα
would be the representation of a complex reaction pathway by only accounting for

the rate-limiting step. Another case is the approximation of a higher order reaction

by a lower order expression when the mass fraction of one of the reactants is ap-

proximately constant. Simplifications of these types are commonplace. Finally, note

that in Eq. (2.17) there are no non-advective sources of the species because the only

mechanisms for modification of the amount of a chemical constituent at a point are

advection and reaction.

The species mass conservation equation in material derivative form, M∗iα , may

also be obtained directly from Table 2.1 as
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Table 2.2 Physical variables for entity-based phase equations in partial derivative or material form.
Mα , Pα , Eα , Sα , and Gα correspond, respectively, to conservation of mass, momentum, and
energy, and balance equations of entropy and body force potential in phase α

Fα =
∂Fα

∂ t
+∇·(vα Fα )−SΩα −∇·SΓα − ∑

i∈Is

GΩ iα = 0 for α ∈ IP

or

F∗α =
Dα Fα

Dt
+Fα I:dα −SΩα −∇·SΓα − ∑

i∈Is

GΩ iα = 0 for α ∈ IP

Fα Fα SΩα SΓα GΩ iα

Mα ρα — — —

Pα ρα vα ρα gα tα —

Eα
Eα +ρα

( vα ·vα

2
+KEα

)
ρα gα ·vα +hα tα ·vα +qα —

+ ∑
i∈Is

ρα ωiα uiα ·giα

Sα −Λα ηα bα ϕϕϕα Λiα

Gα
Ψα −ρα gα ·vα − ∑

i∈Is
ρα ωiα giα ·uiα − ∑

i∈Is
ρα ωiα ψiα uiα ρα ωiα

∂ψiα

∂ t
+riα ψiα

M∗iα =
Diα(ρα ωiα)

Dt
+ρα ωiα I:diα − riα = 0 for i ∈ Is,α ∈ IP . (2.18)

Mathematically, this equation is equivalent to Eq. (2.17), and the two equations are

interchangeable. Throughout the text, however, we will be careful to make use of the

notation Miα vs. M∗iα to distinguish between the forms of the species conservation

equation being employed. In many cases, one form as opposed to the other is more

appropriate for a particular analysis.

There are a couple of ways to obtain an equation of mass conservation for the α
entity as a whole as in the Mα row in Table 2.2. For example, the material derivative

form for mass conservation is

M∗α =
Dα ρα

Dt
+ρα I:dα = 0 for α ∈ IP . (2.19)

Note that there are no terms specific to any species or any chemical reaction term

in this equation. Unlike the species mass, which can be generated by transformation

from a different chemical species, the total mass of all species combined in an entity

is not impacted by reactions such that

∑
i∈Is

riα = 0 . (2.20)

Although Eq. (2.19) applies whether or not a phase is composed of multiple species,

it cannot distinguish among the conservation behaviors of different species. If there

is only one species present, then the species-based and phase-based equations are

equivalent since ωiα = 1, viα = vα , and riα = 0 in the species-based equation.
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Even though the conservation equation for a phase can be obtained as a sum over

all the species, this process is not as direct using the material derivative forms as with

the partial derivative forms. This is because the velocity in the material derivative

can be different for each species. Thus, it is easiest to obtain the phase-based mass

conservation equation from the species-based form as

Mα =
∂ρα

∂ t
+∇·(ρα vα) = 0 for α ∈ IP (2.21)

by summing Eq. (2.17) over all species. By making use of the fact that, by definition,

the sum of the mass fractions of all species is 1 such that

∑
i∈Is

ωiα = 1 , (2.22)

and by choosing vα to be the velocity of the center of mass of the material, the

barycentric velocity, defined as

vα = ∑
i∈Is

ωiα viα , (2.23)

one obtains Eq. (2.21). Then Eq. (2.19) is obtained directly from Eq. (2.21) by mak-

ing use of the definition of the material derivative. We can also define the diffusion

velocity of a chemical species, uiα , as the species velocity relative to the barycentric

velocity such that

uiα = viα −vα . (2.24)

Therefore Eqs. (2.23) and (2.24) can be combined to show that the diffusion velocity

must satisfy the constraint that

∑
i∈Is

ωiα uiα = 0 . (2.25)

These last two equations dictate that for a system composed of N chemical con-

stituents, only N −1 of the mass fractions and diffusion velocities are independent;

the remaining value of each can be calculated, respectively, from Eqs. (2.22) and

(2.25).

Tables 2.1 and 2.2, respectively, can be used to obtain the conservation of mo-

mentum vector equation for a species in a phase

Piα =
∂ (ρα ωiα viα)

∂ t
+∇·(ρα ωiα viα viα)−ρα ωiα giα −∇·tiα

T

−piα − riα viα = 0 for i ∈ Is,α ∈ IP , (2.26)

and for the phase as a whole3

3 Because it is somewhat tangential to our objectives here, we will not prove that the stress tensor
for an entity is symmetric while the species-based stress tensor is not necessarily symmetric. In the
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Pα =
∂ (ρα vα)

∂ t
+∇·(ρα vα vα)−ρα gα −∇·tα = 0 for α ∈ IP , (2.27)

where t is the stress tensor, g is the body force per unit mass, and piα represents the

interspecies transfer of momentum from all other species within phase α to species

i.
The conservation of momentum equation relates the change in momentum per

volume to the advective transport of momentum, surface forces, body forces, and,

for the species-based equation, to inter-species momentum transfer processes. The

stress tensor accounts for the effects of material behavior in response to surface

forces that act on the entity, such as pressure and frictional effects. The mathemati-

cal form of the stress tensor depends upon material properties and is approximated

by what is called a constitutive or closure relation. The body force per unit mass

accounts for the effects of gravity, Coriolis effects, and electromagnetic forces that

act at all points within the entire domain of the phase, Ωα . While the conservation

equation formulated can include all of these body forces, we are primarily concerned

with gravitational effects.

Just as riα represents the net effect of all reactions on the mass production rate of

species i per volume, piα +riα viα includes two terms that account for the net transfer

of momentum from all other species to species i due to interspecies collisions and

reactions, respectively.4 The net transfer to all species must be zero such that

∑
i∈Is

(piα + riα viα) = 0 . (2.28)

The body force per unit mass for the phase, gα is the barycentric sum of the forces

acting on each species with

gα = ∑
i∈Is

ωiα giα . (2.29)

Because momentum transferred between species does not impact the total momen-

tum of the system, the sum of the transfer term over all species must be zero. It is a

useful exercise to show that obtaining Eq. (2.27) from Eq. (2.26) by summing over

all species requires that the entity-based stress tensor be related to the species-based

stress tensor according to:

tα = ∑
i∈Is

(tiα −ρα ωiα uiα uiα) . (2.30)

Tables 2.1 and 2.2 can also be used directly to state the conservation of energy

equations for a species in a phase and for a phase, respectively, as

entity-based equations, either the stress tensor or its transpose may be used equivalently because
of symmetry [1, 7, 9].
4 A different perspective on the velocity that should multiply riα in the generation term of Eq. (2.26)
has been provided in [16]. However, this issue is not important if one notes that a complementary
definition of piα can account for any choice of velocity.
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Eiα =
∂
∂ t

(
Eiα +ρα ωiα

viα ·viα

2

)
+∇·

[(
Eiα +ρα ωiα

viα ·viα

2

)
viα

]
−ρα ωiα giα ·viα −hiα −∇·

(
tiα

T·viα +qiα
)

− eiα −piα ·viα − riα
viα ·viα

2
= 0 for i ∈ Is,α ∈ IP (2.31)

and

Eα =
∂
∂ t

[
Eα +ρα

(vα ·vα

2
+KEα

)]
+∇·

{[
Eα +ρα

(vα ·vα

2
+KEα

)]
vα

}
−ρα gα ·vα − ∑

i∈Is

ρα ωiα giα ·uiα −hα −∇·(tα ·vα +qα) = 0 for α ∈ IP .

(2.32)

In these equations, E is the internal energy per volume, which is due to random

molecular motion and the chemical bonds present; KEα is a kinetic energy term

due to velocity fluctuations of the species relative to the barycentric velocity of

the phase; q is the non-advective heat flux; h is an energy body source term (e.g.

radiation); and eiα accounts for the internal energy transferred to species i from all

other species. We note that the net transfer of internal and kinetic energy (due to

collisions and reaction) among all the species present must be zero such that

∑
i∈Is

(
eiα +piα ·viα + riα

viα ·viα

2

)
= 0 . (2.33)

The energy equation warrants careful consideration to ensure that it is well un-

derstood on a physical basis. Consider Eq. (2.32), the microscale conservation of

energy equation for a phase. The quantity being conserved is the sum of internal

and kinetic energy. Internal energy of a phase is obtained as the sum of the species

internal energies with

Eα = ∑
i∈Is

Eiα . (2.34)

Kinetic energy for the phase equation has two components. The leading order com-

ponent, ρα vα ·vα/2, is based on the barycentric velocity of the phase and the density

of the phase. The second component, ρα KEα , provides an addition to this term due

to the deviations of the individual species velocities from the barycentric velocity of

the phase. To gain insight into this situation, consider a microscale point where the

barycentric velocity as defined in Eq. (2.23) is zero. The case that vα = 0 does not

imply that all species velocities are zero but merely that the sum of these velocities

weighted by their respective mass fractions is zero. Kinetic energy does not depend

on the direction of the velocities as it only involves velocity squared. Thus the de-

viations of species velocities from the barycentric velocity make a contribution to

kinetic energy beyond that of the barycentric velocity. By summing Eq. (2.31) over

all species and requiring that the result provides the conservation of phase energy

equation, one can show that
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KEα = ∑
i∈Is

ωiα
uiα ·uiα

2
. (2.35)

The first divergence term in Eq. (2.32) accounts for the net outward flux of inter-

nal plus kinetic energy resulting from advective transport. The non-advective sur-

face sources of energy are included in the next divergence term. The first of these

terms is tα ·vα , where tα is the same quantity defined in Eq. (2.30). This is the rate

of work done on the system per volume due to surface forces resulting from stress.

This interpretation follows because stress is a force per area and the product with

velocity yields the rate of work per area. The second non-advective flux is qα , and

it is the heat flux into the system that contributes to a change in the system energy.

The heat flux vector is another quantity for which a closure relation is needed.

The product ρα gα ·vα is a body source of energy. The product ρα gα is a force

per volume and the dot product of this product with velocity yields a rate of work

per volume. If the force per volume is different for each species in the system, the

summation term in Eq. (2.32) will contribute an additional body source due to a

non-uniform distribution of chemical species in the system. The energy of a system

can also be influenced by an additional type of body source, which is indicated as

hα . This source accounts for non-mechanical physical processes such as radiative

transport. The dimensions of this term are energy contributed to the system per

volume per time. By using the fact that the sum of the body source terms based on

the species over all species must equal the body source terms for the phase, one

obtains

hα = ∑
i∈Is

hiα . (2.36)

Terms similar to those described above for the phase-based energy equation ap-

pear also in the species-based form of Eq. (2.31). The physical descriptions of the

terms are similar, although they pertain to species rather than to the entity as a whole.

One important difference is the presence of the last three terms on the left side of Eq.

(2.31) that account for inter-species transfer of energy. The quantity riα viα ·viα/2 ac-

counts for the rate of change in kinetic energy of the species per volume that accom-

panies a chemical reaction. The term piα ·viα is the rate of work done on species i
due to collisions with other species. Finally, eiα accounts for any other contributions

of energy to species i due to interactions with other species. Because these terms all

involve inter-species exchanges of energy, their collective sum over all species must

be zero, as stated in Eq. (2.33).

Finally, with tα defined as in Eq. (2.30), one can show that in terms of species-

based quantities,

qα = ∑
i∈Is

{
qiα +

[
tiα

T −
(

Eiα +ρα ωiα
uiα ·uiα

2

)
I
]
·uiα

}
. (2.37)

This equation states that some processes associated with species movement relative

to the barycentric velocity are accounted for on a phase basis as part of the non-

advective surface source. We have stated that qα is a “heat” flux vector, and this
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is the case if one considers the apparent mechanical processes in brackets to be

subscale sources of energy. Alternatively, one can recognize that qα is composed

of heat conduction effects plus energy transport due to variability in the species

velocities.

The species-based and entity-based entropy balances for a phase can be obtained,

respectively, from Tables 2.1 and 2.2 as

Siα =
∂ηiα

∂ t
+∇·(ηiα viα)−biα −∇·ϕϕϕ iα = Λiα for i ∈ Is,α ∈ IP (2.38)

and

Sα =
∂ηα

∂ t
+∇·(ηα vα)−bα −∇·ϕϕϕα = Λα ≥ 0 for α ∈ IP , (2.39)

where η is the entropy per volume, ϕϕϕ is an entropy flux vector, b an entropy source,

and Λ is an entropy generation rate.

Entropy is postulated to be an extensive thermodynamic variable and thus the

balance equation is written for an entropy density, which is consistent in form with

the conservation equations. The balance equations account for the rate of change

of entropy, the advective flux, the non-advective flux, the body source and, on the

right side, a generation term. In Eq. (2.38), Λiα accounts for exchange of entropy of

species i with other species in addition to the generation of entropy by irreversible,

dissipative processes. Because it is impacted by both these processes, Λiα can be

either positive or negative.

Summation of the species entropy equation over all species yields Eq. (2.39).

The definitions of the phase-based variables in terms of the species-based quantities

are:

ηα = ∑
i∈Is

ηiα , (2.40)

ϕϕϕα = ∑
i∈Is

(ϕϕϕ iα −ηiα uiα) , (2.41)

bα = ∑
i∈Is

biα , (2.42)

and

Λα = ∑
i∈Is

Λiα . (2.43)

In contrast to the situation with the conservation equations where the sum over the

species of generation terms equals zero, the sum of the generation terms for the

entropy balance is non-zero. The portion of Λiα that is due to entropy exchanges

between species will sum to zero, but the portion that is due to irreversible processes

will sum such that Λα ≥ 0. The non-negative character of the right side of Eq. (2.39)

indicates that entropy is not a conserved quantity. The generation rate per volume,

Λα , will be zero only when all processes in the system are occurring reversibly
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(e.g., at equilibrium). In other instances Λα will be non-zero and is required to be

non-negative by the second law of thermodynamics.

One other equation that will prove useful is the relation between the rate of

change of the body force potential energy per unit volume and the body force per

unit mass. Because the body force potential, usually specified to be the gravitational

potential, does not appear in any of the conservation equations, we have to develop

an additional condition based on mathematical identities, conservation of mass, and

the definition of the body force per volume in terms of the potential.

The body force potential per unit volume of species i in phase α , Ψiα , is defined

as

Ψiα = ρα ωiα ψiα . (2.44)

Application of the product rule to this identity yields the definition of TG∗iα as

TG∗iα =
DiαΨiα

Dt
−ψiα

Diα(ρα ωiα)

Dt
−ρα ωiα

Diα ψiα

Dt
= 0 . (2.45)

We may also define the body force potential per mass, ψα , and the body force

potential, Ψα , on entity bases, respectively, as

ψα = ∑
i∈Is

ωiα ψiα (2.46)

and

Ψα = ∑
i∈Is

ρα ωiα ψiα = ∑
i∈Is

Ψiα = ρα ψα . (2.47)

The material derivative of Ψα , taken using the α phase velocity, is

TG∗α =
DαΨα

Dt
− ∑

i∈Is

ψiα
Dα(ρα ωiα)

Dt
− ∑

i∈Is

ρα ωiα
Dα ψiα

Dt
= 0 . (2.48)

Another useful expression relates the change in potential to gravity and mass

conservation. This will be obtained next. The species mass conservation equation in

terms of a material derivative, M∗iα as given in Eq. (2.18), may be used to eliminate

Diα(ρα ωiα)/Dt from Eq. (2.45). Also the definition of the material derivative in Eq.

(2.15) may be used to expand Diα ψiα/Dt so that we convert Eq. (2.45) to

DiαΨiα

Dt
+ψiα (ρα ωiα I:diα − riα)−ρα ωiα

∂ψiα

∂ t
−ρα ωiα viα ·∇ψiα = 0 . (2.49)

The body force potential per unit mass of species i in phase α , ψiα , is related to the

body force per mass, giα , according to

∇ψiα +giα = 0 . (2.50)

Substitution of this identity into Eq. (2.49) and use of the definition provided in

Eq. (2.44) provides the microscale balance equation for the body force potential of
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chemical species i in phase α ,

G∗iα =
DiαΨiα

Dt
+Ψiα I:diα +ρα ωiα giα ·viα −ρα ωiα

∂ψiα

∂ t
− riα ψiα = 0

for i ∈ Is,α ∈ IP . (2.51)

This equation has attributes that make it similar in form to the conservation and

balance equations. Thus its elements have been collected as appropriate, and the

equation appears in Table 2.1.

For the phase entity, summation of Giα over all species and rearrangement into

material derivative form yields

G∗α =
DαΨα

Dt
+Ψα I:dα +∇·

(
∑

i∈Is

ρα ωiα ψiα uiα

)
+ρα gα ·vα

+ ∑
i∈Is

ρα ωiα giα ·uiα − ∑
i∈Is

ρα ωiα
∂ψiα

∂ t
− ∑

i∈Is

riα ψiα = 0

for α ∈ IP . (2.52)

2.4 Conservation and Balance Principles for an Interface

Interfaces are the second type of entity of interest in the development of conserva-

tion and balance equations. Interfaces are the regions in a multiphase system that

exist at the boundary between two phases. Because interfaces are boundaries of

three-dimensional entities, they are two-dimensional objects. As a result of their

dimensionality, interfaces do not occupy any volume in a system. This makes the

notion of conservation principles within an interface seem, perhaps, a bit elusive.

Different phases contain matter in different states and typically of different chem-

ical composition. As a result of these differences, a heterogeneity in composition

and resulting chemical forces can exist at the interface between two phases. Cor-

respondingly, physical quantities such as density, mass fractions, and others can

change significantly as one moves from the interior of one phase to the interior of

an adjoining phase. This transition region is treated conceptually as an interface.

Quantities that are assigned to an interface account mechanistically for underlying

heterogeneous molecular structure and forces. Some species, such as surfactants,

accumulate at interfaces so the molecular structure may be very different at the

boundary between two phases from that in the bulk phase; there is always a tran-

sition from the composition in one bulk phase to the composition in another bulk

phase.

Furthermore, in multiphase systems, interfaces play a crucial role as the location

where mass, momentum, energy, and entropy can be exchanged between adjoining

phases. The extent of the interfacial area thus affects the degree and rate at which

exchanges occur and can easily be seen to be a crucial quantity in the description of
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system behavior. Conventional multiphase models do not explicitly model the full

dynamics of interfaces and interface properties, although jump conditions between

phases are commonly formulated. By formulating conservation and balance equa-

tions for interfaces, we will produce the fundamental relations needed to properly

account for the impacts of interfaces between phases.

In this section, conservation and balance laws for interfaces will be developed.

As with the study of phases, general conservation equations will first be presented.

Then particular forms of these equations will be tabulated and discussed for both

species-based and entity-based equations of mass, momentum, and energy conser-

vation along with the entropy and body force potential balances.

2.4.1 General Microscale Point Form

The study of conservation of an interfacial property is developed for a surface do-

main, Ωα , with boundary curve Γα , where α ∈ II as depicted in Fig. 2.2. This no-

tation specifies that α is in the index set of interfaces, such that Ωα ⊂ IR2. This

means that the interface is a surface in two-dimensional space. The extent of Ωα is

designated as the area Aα . The boundary curve is a one-dimensional entity such that

Γα ⊂ IR1. Its extent is measured by the length Lαα . Interfaces exist as the boundary

between two phases. If the phases on each side of the interface α are designated as

β ∈ IP and γ ∈ IP then Ωα = Ω̄β ∩ Ω̄γ where the overbar on Ω indicates a union

of a domain with its boundary, for example, Ω̄β = Ωβ ∪Γβ . At points on the inter-

face, outward normal vectors from each adjacent phase can be denoted as nβ and

nγ where nβ = −nγ . On Γα , outwardly directed unit vectors from Ωα that are nor-

mal to Γα and tangent to Ωα are denoted as nα . The interface moves with velocity

wα . However, wα ·nβ = vα ·nβ on Ωα because a microscale particle on the interface

whose normal velocity is different from the normal velocity of the interface will no

longer be on the interface and thus does not contribute to the measure of the veloc-

ity of the interface. The tangential velocity of material in the interface need not be

equal to the tangential velocity of the interface. The velocity of the boundary of the

interface in the direction tangent to the interface and normal to Γα , wα ·nα , relates

to the stretching or contracting of the interface at its edges. Flow can occur across

this boundary, in the same way that flow crosses the boundary of a volume, so that

this velocity is not necessarily equal to the velocity of flow. Conservation and bal-

ance equations associated with an interface must necessarily take into account the

translation and deformation of the interface.

With the preceding definitions and considerations, a species-based general con-

servation or balance equation follows directly from Eq. (2.8) as

d

dt

∫
Ωα

Fiα dr+
∫
Γα

Fiα (viα −wα) ·nα dr−
∫

Ωα

SΩT iα dr
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Fig. 2.2 Arbitrary finite, non-closed surface in the region Ωα ⊂ IR2 containing interface α ∈ II

with boundary Γα ⊂ IR1. Unit vector nα is normal to Γα and oriented to be outward positive from
and tangent to Ωα . Unit vector nβ is normal to Ωα and positive outward from phase β on one side
of the interface while unit vector nγ is also normal to Ωα but is positive outward from phase γ on
the other side of the interface such that at any point on the surface, nβ ·nγ =−1

−
∫
Γα

SΓiα ·nα dr−
∫

Ωα

GΩ iα dr= 0, for i ∈ Is,α ∈ II . (2.53)

This equation is notationally identical and conceptually similar to the corresponding

equation for a phase, Eq. (2.8), with the differences being that the surface domain

is two-dimensional, the boundary is one-dimensional, and all densities are per unit

area rather than per unit volume.

The conversion of Eq. (2.53) for an interface to the form that applies at a point

within the interface requires that the integrals over Γα be transformed to integrals

over Ωα . Part of this task can be accomplished making use of the surface transport

theorem [8]:

Theorem 2.3 (T[2,(0,0),2]) For a smooth continuous and differentiable function f
defined over a domain Ωα ⊂ IR2 that may deform with time t due to velocity wα of
the domain and of its closed boundary, Γα , designate the normal to Ωα as nβ , the
normal to Γα that is tangent to Ωα as nα , and define the unit tensor I′α = I−nβ nβ .
Then,

d

dt

∫
Ωα (t)

f dr=
∫

Ωα (t)

∂ ′ f
∂ t

dr−
∫

Ωα (t)

f wα ·
(
∇′·I′α

)
dr+

∫
Γα (t)

f wα ·nα dr , (2.54)

where the partial derivative with respect to time for a point fixed to Ωα is defined as
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∂ ′

∂ t
=

d

dt
−wα ·∇′ ; (2.55)

and ∇′· and ∇′ are the surface divergence and surface gradient operators, respec-
tively, defined as

∇′·=
(
I′α ·∇

)
· (2.56)

and
∇′ = I′α ·∇ . (2.57)

Note that I′α is the unit tensor in the surface α (i.e., in diagonal form, the entries on

the diagonal associated with tangential directions in the surface are both 1, while

the component associated with the normal direction is zero). When f is the density

of a conserved quantity and Ωα is an interface between phases, the left side of Eq.

(2.54) is the change in the total amount of the conserved quantity with time over

the interfacial area. The three terms on the right side of Eq. (2.54) contribute to this

change, respectively, due to the change in f at a point fixed on the surface, due to

expansion of the size of the surface because of deformation of its shape, and due to

changes in the size of the surface due to movement of the boundary curve.

Also of use in transforming the general conservation equation is the surface di-

vergence theorem [8]:

Theorem 2.4 (D[2,(0,0),2]) For a smooth continuous and differentiable tensor func-
tion f defined over a domain Ωα ⊂ IR2 that may deform with time t due to velocity wα
of the domain and of its closed boundary, Γα , designate the normal to Ωα as nβ , the
normal to Γα that is tangent to Ωα as nα , and define the unit tensor I′α = I−nβ nβ .
Then, ∫

Ωα (t)

div′ fdr=−
∫

Ωα (t)

f·
(
∇′·I′α

)
dr+

∫
Γα (t)

f·nα dr , (2.58)

where div′ is the surface divergence operator that contracts the last index of f and
∇′· is the surface divergence operator defined as

∇′·=
(
I′α ·∇

)
· . (2.59)

Because

∇′·I′α =−
(
∇′·nβ

)
nβ , (2.60)

Equation (2.58) can be written as

∫
Ωα (t)

[
div′ f−

(
∇′·nβ

)
f·nβ

]
dr=

∫
Γα (t)

f·nα dr . (2.61)

Application of the product rule to the second term gives

∫
Ωα (t)

div′
(
f− f·nβ nβ

)
dr=

∫
Γα (t)

f·nα dr . (2.62)
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However,

f− f·nβ nβ = f·
(
I−nβ nβ

)
= f·I∗α . (2.63)

Substitution of Eq. (2.63) into Eq. (2.62), provides an alternative, but equivalent,

form of D[2,(0,0),2] as:

∫
Ωα (t)

div∗
(
f·I∗α

)
dr=

∫
Γα (t)

f·nα dr . (2.64)

With f replaced by Fiα in transport theorem Eq. (2.54), f replaced by Fiα viα
in divergence theorem Eq. (2.58), and f replaced by SΓiα in alternative divergence

theorem Eq. (2.64), relations are obtained that allow the boundary integrals to be

eliminated from Eq. (2.53). The result is the following:

∫
Ωα

[
∂ ∗Fiα

∂ t
+∇∗·(viα Fiα)+Fiα (viα −wα) ·(∇∗·I∗α)

]
dr

−
∫

Ωα

[
SΩT iα +div∗

(
SΓiα ·I∗α

)
+GΩ iα

]
dr= 0 for i ∈ Is,α ∈ II . (2.65)

In this equation, (viα −wα) ·(∇∗·I∗α) = 0 because this quantity is the difference be-

tween the species velocity and the interface velocity in the direction normal to the

surface multiplied by the surface curvature. As discussed previously, this velocity

difference is zero. Also the total body source is composed of two components. The

first is due to external sources acting on the entity. The second is due to the fact

that at every point within the surface, an adjacent phase can impact the properties

of the surface. Thus, fluxes from a phase to an interface at a point are treated as part

of the body source. To make this explicit, we break the body source into these two

components according to

SΩT iα = SΩ iα + ∑
κ∈I+cα

∑
j∈Is

X
jκ→iα

, (2.66)

where I+cα is the connected set for interface α that is of higher dimensionality (i.e.,

phases in the connected set), and X
jκ→iα

is the body source component due to transfer

of the property being conserved from species j in entity κ to species i in entity α .

Because the extent of the surface domain, Ωα , is arbitrary, the integrand in Eq. (2.65)

must be zero at every microscale point, not just when integrated over the domain.

Application of these conditions provides the general microscale point form of the

surface conservation equation,

∂ ∗Fiα

∂ t
+∇∗·(viα Fiα)−SΩ iα − ∑

κ∈I+cα

∑
j∈Is

X
jκ→iα

−div∗
(
SΓiα ·I∗α

)
−GΩ iα = 0

for i ∈ Is,α ∈ II . (2.67)
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This equation may also be written in terms of the material derivative as

Diα Fiα

Dt
+Fiα I

∗
α :d∗iα −SΩ iα − ∑

κ∈I+cα

∑
j∈Is

X
jκ→iα

−div∗
(
SΓiα ·I∗α

)
−GΩ iα = 0

for i ∈ Is,α ∈ II , (2.68)

where
Diα
Dt

=
∂ ∗

∂ t
+viα ·∇∗ (2.69)

and

d∗iα =
[
∇∗viα +

(
∇∗viα

)T
]
. (2.70)

The general microscale conservation equation given as Eq. (2.67) is a more con-

venient form to work with than Eq. (2.68) for deriving larger scale equations because

of the forms of the theorems used to affect the change. Considerations for changing

the species equations indicated to forms that apply for a surface entity as a whole

are the same as those discussed in the first full paragraph following Eq. (2.16). In

the following section, we will provide the specific conservation and balance equa-

tions for interfaces. Note that, although the appearance of the general forms for the

surface and phase equations as given by Eqs. (2.67) and (2.13) are quite similar, the

contributions to specific body source terms will be seen to be very different because

of the transfer from adjacent phases to the interface.

2.4.2 Specific Conservation and Balance Principles

Specific conservation and balance equations can be stated by proper identification of

the variables that appear in Eq. (2.67) or its equivalent version, Eq. (2.68). Here a full

set of microscale conservation and balance equations for an interface is provided.

This is accomplished in a manner similar to that employed with phases in Sect.

2.3.2.

The prime conceptual extension required for interfaces in comparison to phases

is related to the fact that transfer of a property at the boundary of a phase is with

the domain of an interface. Therefore, processes that are accounted for as boundary

conditions for phase equations are parts of the body source terms for interface equa-

tions. These additional terms are related to advective and non-advective boundary

sources for the phases that are body sources for the interface. The domain of an

α interface, Ωα , is the boundary of two phases on each side of the interface. Note

that an interface is defined such that it is the boundary between a particular pair of

phases; a different pair of phases is separated by a different interface. Also, if a third

phase is present, the interface may have an edge boundary that is a common curve.

At the microscale, we will only be interested in members of the connected set that

are of higher order dimensionality than the entity of interest. Thus if the two phases

that bound interface α are designated as β and γ , we can define the set of phase
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Table 2.3 Physical variables for species-based interface equations in partial derivative or material
form. Miα , Piα , Eiα , Siα , and Giα correspond, respectively, to conservation of mass, momentum,
and energy, and balance equations of entropy and body force potential for species i in interface α

Fiα =
∂ ′Fiα

∂ t
+∇′ ·(viα Fiα )−SΩ iα − ∑

κ∈I+cα

∑
j∈Is

X
jκ→iα

−div′
(
SΓiα ·I′α

)
−GΩ iα = 0 for i ∈ Is,α ∈ II

F∗iα =
Diα Fiα

Dt
+Fiα I

′
α :d′iα −SΩ iα − ∑

κ∈I+cα

∑
j∈Is

X
jκ→iα

−div′
(
SΓiα ·I′α

)
−GΩ iα = 0 for i ∈ Is,α ∈ II

Fiα Fiα SΩ iα X
jκ→iα

SΓiα GΩ iα

Miα ρα ωiα — δi j M
iκ→iα

— riα

Piα ρα ωiα viα ρα ωiα giα δi jviκ M
iκ→iα

+ T
jκ→iα

tiα piα + riα viα

Eiα
Eiα +ρα ωiα

viα ·viα

2
ρα ωiα giα ·viα δi j

(
Eiκ

ρκ ωiκ
+

viκ ·viκ

2

)
M

iκ→iα
tiα

T·viα eiα +piα ·viα

+hiα +v jκ · T
jκ→iα

+ Q
jκ→iα

+qiα +riα
viα ·viα

2

Siα −Λiα ηiα biα δi j
ηiκ

ρκ ωiκ
M

iκ→iα
+ Φ

jκ→iα
ϕϕϕ iα Λiα

Giα

Ψiα −ρα ωiα giα ·viα δi j M
iκ→iα

ψiα — ρα ωiα

[
∂ ′ψiα

∂ t

+giα ·
(
I− I′α

)
·viα

]
+riα ψiα

Inter-entity Exchange Terms

M
iκ→iα

= nκ · [ρκ ωiκ (viκ −vα )] for κ ∈ I+cα

T
jκ→iα

=− zT
jκ→iα

t jκ ·nκ for κ ∈ I+cα

Q
jκ→iα

=− zQ
jκ→iα

q jκ ·nκ for κ ∈ I+cα

Φ
jκ→iα

=− zΦ
jκ→iα

ϕϕϕ jκ ·nκ for κ ∈ I+cα

entities bounded by interface α as the connected set Icα ∩ IP = {β ,γ}, where Icα is

the connected set of phases and common curves to interface α and IP is the index

set of phases in the system. A simpler notation can be employed by denoting the

connected set of higher order that bounds an entity as I+cα and one of lower order as

I−cα . Thus, if α refers to an interface, Icα ∩IP = I+cα is the set of phases connected to

the interface and Icα ∩IC = I−cα is the set of common curves bounding the interface.

We note also that I+cα ∪ I−cα = Icα .

Specific forms of conservation and balance equations for properties of a chemical

species in an interface are given in Table 2.3. Summation of a particular conservation

or balance equation over all species in the interface results in the equations provided

in Table 2.4. We will examine these equations in some detail and also indicate the

relation between interface-based variables and species-based variables.

The point form of the microscale mass conservation equation for a chemical

species i in an interface α is obtained from Table 2.3 based on the variables in-

cluded in row Miα . Substitution of these variables into Eq. (2.67), which is also the
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Table 2.4 Physical variables for entity-based interface equations in partial derivative or material
form. Mα , Pα , Eα , Sα , and Gα correspond, respectively, to conservation of mass, momentum,
and energy, and balance equations of entropy and body force potential in interface α

Fα =
∂ ′Fα

∂ t
+∇′ ·(vα Fα )−SΩα − ∑

κ∈I+cα

X
κ→α

−div′
(
SΓα ·I′α

)
−GΩα = 0 for α ∈ II

F∗α =
Dα Fα

Dt
+Fα I

′
α :d′α −SΩα − ∑

κ∈I+cα

X
κ→α

−div′
(
SΓα ·I′α

)
−GΩα = 0 for α ∈ II

Fα Fα SΩα X
κ→α

SΓα GΩ iα

Mα ρα — M
κ→α

— —

Pα ρα vα ρα gα vκ M
κ→α

+ T
κ→α

tα —

Eα

Eα ρα gα ·vα

(
Eκ

ρκ
+

vκ ·vκ

2
+KEκ

)
M

κ→α
tα ·vα +qα —

+ρα
vα ·vα

2
+hα +vκ · T

κ→α
+ Q

κ→α
+ρα KEα + ∑

i∈Is
ρα ωiα giα ·I′α ·uiα

Sα −Λα ηα bα
ηκ

ρκ
M

κ→α
+ Φ

κ→α
ϕϕϕα Λα

Gα

Ψα −ρα gα ·vα + ∑
i∈Is

∑
κ∈I+cα

M
iκ→iα

ψiα − ∑
i∈Is

ρα ωiα ψiα uiα ∑
i∈Is

ρα ωiα

[
∂ ′ψiα

∂ t

− ∑
i∈Is

ρα ωiα giα ·I′α ·uiα +giα ·
(
I− I′α

)
·viα

]
+ ∑

i∈Is
riα ψiα

Inter-entity Exchange Terms

M
κ→α

= ∑
i∈Is

M
iκ→iα

for κ ∈ I+cα

T
κ→α

= ∑
j∈Is

∑
i∈Is

[
T

jκ→iα
+δi j(viκ −vκ ) M

iκ→iα

]
for κ ∈ I+cα

Q
κ→α

= ∑
j∈Is

∑
i∈Is

{
Q

jκ→iα
+(v jκ −vκ )· T

jκ→iα
+δi j

[
Eiκ

ρκ ωiκ
+

uiκ ·uiκ
2

−
(

Eκ

ρκ
+KEκ

)]
M

iκ→iα

}
for κ ∈ I+cα

Φ
κ→α

= ∑
j∈Is

∑
i∈Is

{
Φ

jκ→iα
+δi j

[
ηiκ

ρκ ωiκ
− ηκ

ρκ

]
M

iκ→iα

}
for κ ∈ I+cα

equation at the top of the table, yields

Miα =
∂ ′(ρα ωiα)

∂ t
+∇′·(ρα ωiα viα)− ∑

κ∈I+cα

M
iκ→iα

− riα = 0 for i ∈ Is,α ∈ II ,

(2.71)

where ρα is the mass per area, ωiα is the mass fraction of species i, viα is the

velocity of species i (which, in the normal direction to the interface, is equal to the

interface velocity), M
iκ→iα

is an effective body source for the species i in the interface

due to transfer of i from the phases within I+cα to interface α , and riα is the rate of

generation of species i in interface α due to any and all chemical reactions within

the interface. This equation is very similar to the mass conservation equation for a
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species in a phase given as Eq. (2.17). The differences are: the time derivative is at a

fixed point in a surface rather than in a phase; the divergence term models outward

flux in the surface rather than in three-dimensions; and there is a new term, M
iκ→iα

.

In the bottom portion of Table 2.3, the explicit form of M
iκ→iα

is given in terms of the

properties of the phases at the interface. Note that κ takes on the index values of the

two phases adjacent to the α interface.

The point form of the total mass conservation equation is most directly obtained

by substituting the variables in the Mα row of Table 2.4 into the equation at the top

of the table. The result is

Mα =
∂ ′ρα

∂ t
+∇′·(ρα vα)− ∑

κ∈I+cα

M
κ→α

= 0 for α ∈ II . (2.72)

Equation (2.72) can be obtained directly by summing Eq. (2.71) over all chemical

species if one makes use of the definition of the barycentric velocity as given by

Eq. (2.23) for the interface as well as for the adjacent phases. Also, the traditional

jump conditions for mass exchange between phases can be obtained when the inter-

face is considered massless such that ρα and riα are both zero. The species-based

jump condition is the statement that the summation in Eq. (2.71) is equal to zero.

For the interface entity as a whole, the condition is that the summation in Eq. (2.72)

is zero. On a physical basis, both of these jump conditions state that at a point at

the boundary of a phase where material leaves that phase, it immediately enters the

adjacent phase. The more general mass conservation equations for the interface ad-

ditionally allow for material to stay in the interface, move in the interfacial surface,

and participate in chemical reactions.

The microscale conservation of momentum equations for a species in an interface

and for all species in the interface entity as a whole can be obtained, respectively,

from Tables 2.3 and 2.4 as

Piα =
∂ ′(ρα ωiα viα)

∂ t
+∇′·(ρα ωiα viα viα)−ρα ωiα giα

− ∑
κ∈I+cα

∑
j∈Is

(
δi jviκ M

iκ→iα
+ T

jκ→iα

)

−∇′·
(
I′α ·tiα

T
)
−piα − riα viα = 0 for i ∈ Is,α ∈ II (2.73)

and

Pα =
∂ ′(ρα vα)

∂ t
+∇′·(ρα vα vα)−ρα gα

− ∑
κ∈I+cα

(
vκ M

κ→α
+ T

κ→α

)
−∇′·

(
I′α ·tα

)
= 0 for α ∈ II . (2.74)

The notation employed should be clear based on discussions of the phase equa-

tions, although there are two additional elements. The quantity δi j in Eq. (2.73) is
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the Kronecker delta, equal to 1 when i = j and zero otherwise. This is necessary

because the term it multiplies is momentum transfer between a bounding phase and

the interface that accompanies mass exchange between these entities. Thus, only

when species i in the phase κ ∈ I+cα is involved in inter-entity mass transfer will that

impact the momentum of species i in the interface. On the other hand, stress effects

can be exerted by a species in a phase on a different species in the interface. The

quantity zT
jκ→iα

introduced in the definition of T
jκ→iα

at the bottom of Table 2.3 is the

fraction of stress tensor t jκ (i.e., the stress associated with species j in phase κ) that

is exerted on species i in interface α . Thus, zT
jκ→iα

will satisfy the condition

∑
i∈Is

zT
jκ→iα

= 1 for j ∈ Is,κ ∈ I+cα ,α ∈ II . (2.75)

We note also that the surface entity-based stress tensor, tα , is defined in terms of the

surface species-based stress tensor exactly as in Eq. (2.30) for a phase.

For the situation where the interface is massless, full momentum equations for

a species and for an entity simplify to jump conditions for the momentum of the

species and of the phase entity, respectively, as

− ∑
κ∈I+cα

∑
j∈Is

nκ ·
[

δijρκ ωiκ (viκ −vα)viκ − zT
jκ→iα

tjκ
T

]
−∇′·

(
I′α ·tiα

T
)
= 0

for i ∈ Is,α ∈ II (2.76)

and

− ∑
κ∈I+cα

nκ · [ρκ (vκ −vα)vκ − tκ ]−∇′·
(
I′α ·tα

)
= 0 for α ∈ II , (2.77)

where the expression for the exchange of momentum between the interface and

the adjacent phases has been substituted into the momentum equation; and terms

containing ρα for α ∈ II have been dropped because the interface is massless. In

practice, the most commonly employed form of the microscale momentum jump

condition is Eq. (2.77) with the divergence term dropped when interfacial tension

effects are unimportant. In subsequent chapters, the full dynamic equations will be

employed.

The species-based conservation of energy equation for an interface can be writ-

ten, based on the entries in Table 2.3, as

Eiα =
∂ ′

∂ t

(
Eiα +ρα ωiα

viα ·viα

2

)
+∇′·

[(
Eiα +ρα ωiα

viα ·viα

2

)
viα

]
−ρα ωiα giα ·viα −hiα

− ∑
κ∈I+cα

∑
j∈Is

[
δi j

(
Eiκ

ρκ ωiκ
+

viκ ·viκ

2

)
M

iκ→iα
+v jκ · T

jκ→iα
+ Q

jκ→iα

]
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−∇∗·
[
I∗α ·
(
tiα

T·viα +qiα
)]

− eiα −piα ·viα − riα
viα ·viα

2
= 0 for i ∈ Is,α ∈ II . (2.78)

The conservation of energy equation for an interface as a whole is

Eα =
∂ ∗

∂ t

[
Eα +ρα

(vα ·vα

2
+KEα

)]
+∇∗·

{[
Eα +ρα

(vα ·vα

2
+KEα

)]
vα

}
−ρα gα ·vα − ∑

i∈Is

ρα ωiα giα ·I∗α ·uiα −hα

− ∑
κ∈I+cα

[(
Eκ

ρκ
+

vκ ·vκ

2
+KEκ

)
M

κ→α
+vκ · T

κ→α
+ Q

κ→α

]

−∇∗·
[
I∗α ·(tα ·vα +qα)

]
= 0 for α ∈ II . (2.79)

The definition of Q
jκ→iα

in Eq. (2.78) provided at the end of Table 2.3 makes use of

the parameter zQ
jκ→iα

. The purpose of this parameter is to account for the fact that

contributions to heat conduction from phase κ due to species j can be to species i
in interface entity α . This parameter, or actually set of parameters with the range of

indices, satisfies the condition

∑
i∈Is

zQ
jκ→iα

= 1 for j ∈ Is,κ ∈ I+cα ,α ∈ II . (2.80)

Note that Eq. (2.79) may also be obtained directly as the sum of Eq. (2.78) over all

species i in interface entity α . This is left as an exercise.

The energy jump condition between phases that is usually employed is obtained

by dropping all the terms except for the summations over I+cα in Eq. (2.78) or Eq.

(2.79). This simplification is appropriate under conditions where the mass density

of the interface, ρα , is negligible, the rates of change and the surficial fluxes of

the internal energy of the interface are small, the body sources of energy due to

processes such as radiation are negligible, and the work and heat transfer due to

movement in the surface is negligible. The statement that a term is “negligible”

or “small” is relative to the advective and non-advective fluxes of energy to the

interface from the adjacent phases.

The balance of entropy equation for a species in an interface can be assembled

from Table 2.3 as

Siα =
∂ ∗ηiα

∂ t
+∇∗·(ηiα viα)−biα − ∑

κ∈I+cα

∑
j∈Is

(
δi j

ηiκ

ρκ ωiκ
M

iκ→iα
+ Φ

jκ→iα

)

−∇∗·
(
I∗α ·ϕϕϕ iα

)
= Λiα for i ∈ Is,α ∈ II . (2.81)

The overall balance of entropy equation for an interface from the entries in Table

2.4 is
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Sα =
∂ ∗ηα

∂ t
+∇∗·(ηα vα)−bα − ∑

κ∈I+cα

(
ηκ

ρκ
M

κ→α
+ Φ

κ→α

)

−∇∗·
(
I∗α ·ϕϕϕα

)
= Λα for α ∈ II . (2.82)

The discussion following Eq. (2.43) regarding Λiα and Λα for α ∈ IP applies to the

preceding equations as well for α ∈ II such that Λα ∪ 0.

The body force potential per unit area acting on species i in interface α is written

analogously to Eq. (2.44) for a volume as

Ψiα = ρα ωiα ψiα , (2.83)

with the corresponding expression for the material derivative,

TG∈iα =
DiαΨiα

Dt
−ψiα

Diα(ρα ωiα)

Dt
−ρα ωiα

Diα ψiα

Dt
= 0 . (2.84)

The potential for the surface entity as a unit, Ψα , is defined as in Eq. (2.47); its

material derivative is as in Eq. (2.48). Recall that for the surface expressions ρα is

mass per area while for the phases, ρα is mass per volume.

The rate of change of the body force potential acting on an interface is conve-

niently written in terms of surface differential operators. Use of mass conservation

M∈iα based on Table 2.3 to eliminate Diα(ρα ωiα)/Dt from Eq. (2.84) and expan-

sion of Diα ψiα/Dt according to Eq. (2.69) yields

DiαΨiα

Dt
+ψiα


ρα ωiα I

∗
α :d∗iα − riα − ∑

κ∈I+cα

M
iκ→iα




−ρα ωiα
∂ ∗ψiα

∂ t
−ρα ωiα viα ·∇∗ψiα = 0 . (2.85)

Only the surface components of the gradient of the body force potential appear in

this equation. Thus, we make use of the identity

∇∗ψiα + I∗α ·giα = 0∗ . (2.86)

With this relation and Eq. (2.83) employed, Eq. (2.85) becomes the microscale bal-

ance equation for the body force potential per unit area of chemical species i in

interface α

G∈iα =
DiαΨiα

Dt
+Ψiα I

∗
α :d∗iα +ρα ωiα giα ·viα − ∑

κ∈I+cα

M
iκ→iα

ψiα

−ρα ωiα
∂ ∗ψiα

∂ t
−ρα ωiα giα ·

(
I− I∗α

)
·viα − riα ψiα = 0 for i ∈ Is,α ∈ II .

(2.87)
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The elements of this equation are distributed in the appropriate columns of Table

2.3.

For the interface entity, summation of Giα over all species and rearrangement to

obtain G∗α results in

G∗α =
DαΨα

Dt
+Ψα I

′
α :d′α +∇′·

(
∑

i∈Is

ρα ωiα ψiα I
′
α ·uiα

)

+ρα gα ·vα + ∑
i∈Is

ρα ωiα giα ·I′α ·uiα − ∑
i∈Is

∑
κ∈I+cα

M
iκ→iα

ψiα

− ∑
i∈Is

ρα ωiα
∂ ′ψiα

∂ t
− ∑

i∈Is

ρα ωiα giα ·
(
I− I′α

)
·viα − ∑

i∈Is

riα ψiα = 0

for α ∈ II . (2.88)

The contributions to this equation are provided in Table 2.4.

2.5 Conservation and Balance Principles for a Common Curve

Common curves5 are the third type of entity of interest in the development of con-

servation and balance equations. Common curves are the regions in a multiphase

system that exist where three phases, and also three interfaces, meet. As boundaries

of two-dimensional entities, they are one-dimensional regions. Common curves oc-

cupy neither volume nor area in a system. The measure of the extent of a common

curve is its length.

Common curves play a role in providing the location where mass, momentum,

energy, and entropy can be exchanged among the interfaces that meet at a curve.

The common curve length thus affects the amount of the exchanges and is of inter-

est. Conventional multiphase dynamic models do not explicitly deal with common

curves nor do they evolve the extent of common curve lengths with time. By formu-

lating full conservation and balance equations for common curves, we will provide

the opportunity to include common curve phase dynamics, exchanges of proper-

ties at the curve, and the length of curves present in the model. We will present

the general and then particular forms of microscale species-based and entity-based

conservation and balance equations for common curves.

5 Although these features of a system are usually referred to as common “lines”, we use the desig-
nation common “curves” in recognition of the fact that these one-dimensional regions usually have
non-zero curvature.
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Fig. 2.3 Arbitrary curve in the region Ωα ⊂ IR1 containing common curve α ∈ IC with boundary
Γα ⊂ IR0 consisting of the two end points of the curve. Unit vector nα is outward positive from
and tangent to Ωα at Γα . Unit vector lα is tangent to Ωα . Also depicted is interface β with domain
Ωβ ⊂ IR2 whose boundary is composed, at least partly, of Ωα which is the curve where interface β
and two other interfaces between phases meet. Unit vector nβ is normal to Ωα and tangent to Ωβ

2.5.1 General Microscale Point Form

The procedure for development of conservation and balance equations for a com-

mon curve is almost identical to that employed in developing expressions for phases

and interfaces. However, particular attention must be given to the geometry of the

common curve that requires a little modification to the general conservation equa-

tion for entity properties, Eq. (2.7), or appropriate definition of variables in Eq. (2.8)

for species properties.

The domain of a common curve, indicated as entity α ∈ IC, that exists where

three phases, indicated as β , γ , and δ ∈ IP, meet is Ωα such that Ωα = Ω̄β ∩ Ω̄γ ∩
Ω̄γ .6 A schematic diagram of the common curve is provided in Fig. 2.3. The fact that

Ωα is a curve means that Ωα ⊂ IR1. The extent of the curve is its length, which is

denoted as Lα . The boundary of the curve consists of the two end-points of the curve

denoted Γα1 and Γα2 where Γαm ⊂ IR0 for m∈ IΓα and IΓα = {1,2}. In contrast to the

phase and interface boundaries, for which the boundary is continuous, the boundary

of a common curve is formed by two disconnected points. The outward unit vectors

that are tangent to Ωα at the two end points are denoted nα . The unit vector tangent

to the curve is lα . Therefore at one end of Ωα , nα ·lα = 1 and at the other end,

nα ·lα = −1. The velocity of the common curve is denoted as wα . In directions

normal to the common curve, the velocity of material in the common curve must be

equal to the velocity of the common curve such that (vα −wα) ·(I− lα lα) = 0. We

6 A common curve is also the location where three interfaces meet. If the indexes of the interfaces
that exist between pairs of the three phases β , γ , and δ are denoted as βγ , βδ , and γδ , the domain
of the common curve can alternatively be defined as Ωα = Ω̄βγ ∩ Ω̄βδ ∩ Ω̄γδ .
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will denote the unit tensor for the curve as the 3×3 tensor I′′α for the curve such that

I′′α = lα lα .

A general conservation equation based on species i in common curve entity α can

be developed with reference to Eq. (2.8). A notational change must be introduced

to account for the fact that the integral over the boundary reduces to a sum over two

end points for a common curve. Thus the general balance equation is

d

dt

∫
Ωα

Fiα dr+ ∑
m∈IΓα

Fiα (viα −wα) ·nα |Γαm
−
∫

Ωα

SΩT iα dr

− ∑
m∈IΓα

SΓiα ·nα |Γαm
−
∫

Ωα

GΩ iα dr= 0, for i ∈ Is,α ∈ IC . (2.89)

In this equation, all densities are per unit length, the domain of integration is a one-

dimensional curve, and the summations are over the two end points that form the

boundary of the curve. In the case when the common curve is closed, the summation

terms do not appear. However, reduction of this equation for an entire curve to the

part appropriate for a microscale segment inherently changes the equation to apply

to a microscale segment that is not closed.

The conversion of this conservation equation for a common curve to the form

that applies at a point along a curve requires that the boundary summation terms be

converted to integrals over the common curve. Part of this task can be accomplished

making use of the transport theorem [8]:

Theorem 2.5 (T[1,(0,0),1]) For a smooth continuous and differentiable function f
defined over a domain Ωα ⊂ IR1 that may deform with time t due to velocity wα
of the domain and with boundary end points Γαm where m ∈ IΓα , designate the unit
tangent to the domain as lα , the outward vector tangent to the domain at the end
point boundaries as nα , and the unit tensor I′′α = lα lα . Then,

d

dt

∫
Ωα (t)

f dr=
∫

Ωα (t)

∂ ′′ f
∂ t

dr−
∫

Ωα (t)

f wα ·
(
∇′′·I′′α

)
dr+ ∑

m∈IΓα

f wα ·nα |Γαm(t) ,

(2.90)

where the partial derivative with respect to time for a point fixed to Ωα is defined as

∂ ′′

∂ t
=

d

dt
−wα ·∇′′ ; (2.91)

and ∇′′· and ∇′′ are the curve divergence and curve gradient operators, respectively,
defined as

∇′′·= (I′′α ·∇)· (2.92)

and
∇′′ = I′′α ·∇ . (2.93)
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When in diagonal form, the tensor, I′′α has an entry of 1 on the diagonal element

aligned with the curve tangent and zeroes elsewhere. When f is the density of a

conserved quantity with units of the property per unit length, the left side of Eq.

(2.90) is the change in the total amount of the conserved quantity with time over the

curve. This is equated to the three terms on the right that account, respectively, for

the changes in the quantity per time due to changes in the density of the property at

points on the curve, changes in the quantity due to movement of the curve that causes

its curvature to change (i.e., the curve can change its length without movement of

its end points), and movement of the end points of the curve that cause it to increase

or decrease in length.

Also of use in transforming the general conservation equation is the curve diver-

gence theorem [8]:

Theorem 2.6 (D[1,(0,0),1]) For a smooth continuous and differentiable tensor func-
tion f defined over a domain Ωα ⊂ IR1 that may deform with time t due to velocity
wα of the domain and with boundary end points Γαm where m ∈ IΓα , designate the
unit vector tangent to the domain as lα , the outward vector tangent to the domain at
the end boundaries as nα , and the unit tensor I′′α = lα lα . Then,

∫
Ωα (t)

div′′ fdr=−
∫

Ωα (t)

f·
(
∇′′·I′′α

)
dr+ ∑

m∈IΓα

f·nα |Γαm(t) , (2.94)

where ∇′′· is the curve divergence operator defined as

∇′′·=
(
I′′α ·∇

)
· ; (2.95)

and div′′ is the divergence operator along the curve that contracts the last index of
f.

It is left as an exercise to show that

div′′ f+ f·
(
∇′′·I′′α

)
= div′′

(
f·I′′α

)
. (2.96)

Making use of this relation, we can write an alternative, but equivalent, form of Eq.

(2.94) as ∫
Ωα (t)

div′′
(
f·I′′α

)
dr= ∑

m∈IΓα

f·nα |Γαm(t) . (2.97)

With f replaced by Fiα in transport theorem Eq. (2.90), with f replaced by Fiα viα
in divergence theorem Eq. (2.94), and f replaced by SΓiα in alternative divergence

theorem Eq. (2.97), equations are obtained that allow the boundary terms in Eq.

(2.89) to be eliminated. The result is

∫
Ωα

[
∂ ′′Fiα

∂ t
+∇′′·(viα Fiα)+Fiα (viα −wα) ·

(
∇′′·I′′α

)]
dr
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−
∫

Ωα

[
SΩT iα +div′′

(
SΓiα ·I′′α

)
+GΩiα

]
dr= 0 for i ∈ Is,α ∈ IC . (2.98)

In this equation, ∇′′·I′′α is a vector accounting for the curvature of the domain and

is normal to the curve. The vector product of this term with viα −wα is zero because

mass in the curve moving in a direction normal to the curve moves at the velocity

of the curve. The total body source for the curve is composed of three components.

External sources acting on the entity are the first component. The common curve

is located where three interfaces meet. These interfaces interact with the common

curve and can exchange properties with the curve. Thus, at every point on the curve,

the exchanges with the interfaces can be considered a second element of a body

source. The third component arises from interaction of the common curve with a

phase at locations where the surface has a unique normal. At these locations, in-

teractions between the common curve and the phase is modeled as a concentrated

force. This singularity, in general, can be composed of advective and non-advective

components. Its mathematical form is the same as an interaction term from an in-

terface to a common curve. In subsequent analysis of particular cases, although it is

possible that an advective flow could occur directly from a common curve to a phase,

this will not be considered. The non-advective component will be incorporated as it

impacts common curve dynamics.7 The concentrated interaction term will thus be a

non-advective flux, such as stress or heat conduction. With these considerations in

mind, we express the body source explicitly in terms of these three components as

SΩT iα = SΩ iα + ∑
κ∈I+cα

∑
j∈Is

X
jκ→iα

+
1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
j∈Is

X∗
jκ→iα

, (2.99)

where I+cα is the connected set for common curve α that is of higher dimensionality

(i.e., interfaces in the connected set), I+
cβ is the higher order connected set to these

interfaces (i.e., phases), and X
jκ→iα

and X∗
jκ→iα

are the body source components due

to transfer of the property being conserved from species j in entity κ to species i in

entity α . For emphasis, a superscript ∗ is used to indicate a transfer term between

a phase and a common curve is only non-zero if a concentrated force is operative

where the normal direction to the solid is unique. The factor of 1/2 appears with the

last term because the double sum over entities will encounter each phase twice.

Because the domain of integration is arbitrary, the integrand itself—not just the

integral—must be zero. With the considerations of the last paragraph, the general

microscale conservation or balance equation at a point on a common curve is then

obtained from Eq. (2.98) as

7 This interaction can be conceptualized crudely as transport from a phase to a common curve
through zero area. For such a transfer to occur, the quantity being transported would have some
magnitude highly concentrated at the curve. The non-advective concentrated component of stress
can be thought of as a normal force exerted by the solid that balances the forces of interfaces at the
surface.
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∂ ′′Fiα

∂ t
+∇′′·(viα Fiα)−SΩ iα − ∑

κ∈I+cα

∑
j∈Is

X
jκ→iα

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
j∈Is

X∗
jκ→iα

−div′′
(
SΓiα ·I′′α

)
−GΩiα = 0 for i ∈ Is,α ∈ IC . (2.100)

This equation may also be written in terms of the material derivative as

Diα Fiα

Dt
+Fiα I

′′
α :d′′iα −SΩ iα − ∑

κ∈I+cα

∑
j∈Is

X
jκ→iα

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
j∈Is

X∗
jκ→iα

−div′′
(
SΓiα ·I′′α

)
−GΩiα = 0 for i ∈ Is,α ∈ IC , (2.101)

where
Diα
Dt

=
∂ ′′

∂ t
+viα ·∇′′ (2.102)

and

d′′iα =
[
∇′′viα +

(
∇′′viα

)T
]
. (2.103)

Although Eqs. (2.100) and (2.101) are equivalent forms, the former is more conve-

nient to work with for averaging to obtain larger scale equations.

2.5.2 Specific Conservation and Balance Principles

A comparison of the general point equation for a common curve, Eq. (2.100), with

the corresponding equation for a surface, Eq. (2.67), indicates that the equations

appear to be different only in the domain, the number of primes in the differen-

tial operator and the unit tensor, and in the exchanges with entities two-dimensions

higher. When a single prime is used, the differentiation occurs on a surface, while

a double prime indicates differentiation on a curve. Both definitions of the mate-

rial derivatives given by Eqs. (2.69) and (2.102) are time derivatives following the

movement of a particle and are equivalent. An important difference between the sur-

face and curve equations is related to the definition of the source terms, SΓiα . Based

on the similarities, Tables 2.3 and 2.4 can be used to motivate the specific forms

of equations for common curves with allowances made for the particular features of

the common curve equations. The corresponding results for species and entity equa-

tions are collected in Tables 2.5 and 2.6, respectively. In these tables, the domain of

α has been changed from II to IC and the single prime (′) is replaced by a double

prime (′′) in all instances. The connected set, I+cα , refers to the three interfaces that

meet to form the common curve. The specific balance equations for a common curve

are obtained with minor cosmetic differences in notation and will be listed here in

their partial time derivative forms. The forms in terms of material derivatives also

follow directly.

The most noticeable change between the interface and common curve equation

is the presence of the asterisk terms as body sources. These terms appear in the
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Table 2.5 Physical variables for species-based common curve equations in partial derivative or
material derivative form. Miα , Piα , Eiα , Siα , and Giα correspond, respectively, to conservation
of mass, momentum, and energy, and balance equations of entropy and body force potential for
species i in common curve α . Terms with an asterisk describe exchanges between a common curve
and a phase. Exchange terms are written in terms of microscale variables at the end of the table

Fiα =
∂ ′′Fiα

∂ t
+∇′′ ·(viα Fiα )−SΩ iα − ∑

κ∈I+cα

∑
j∈Is

X
jκ→iα

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
j∈Is

X∗
jκ→iα

−div′′
(
SΓiα ·I′′α

)
−GΩ iα = 0 for i ∈ Is,α ∈ IC

F∗iα =
Diα Fiα

Dt
+Fiα I

′′
α :d′′iα −SΩ iα − ∑

κ∈I+cα

∑
j∈Is

X
jκ→iα

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
j∈Is

X∗
jκ→iα

−div′′
(
SΓiα ·I′′α

)
−GΩ iα = 0 for i ∈ Is,α ∈ IC

Fiα Fiα SΩ iα X
jκ→iα

SΓiα GΩ iα

Miα ρα ωiα — δi j M
iκ→iα

— riα

Piα ρα ωiα viα ρα ωiα giα δi jviκ M
iκ→iα

+ T
jκ→iα

tiα piα + riα viα

Eiα
Eiα ρα ωiα giα ·viα δi j

(
Eiκ

ρκ ωiκ
+

viκ ·viκ

2

)
M

iκ→iα
tiα

T·viα eiα +piα ·viα

+ρα ωiα
viα ·viα

2
+hiα +v jκ · T

jκ→iα
+ Q

jκ→iα
+qiα +riα

viα ·viα

2

Siα −Λiα ηiα biα δi j
ηiκ

ρκ ωiκ
M

iκ→iα
+ Φ

jκ→iα
ϕϕϕ iα Λiα

Giα

Ψiα −ρα ωiα giα ·viα δi j M
iκ→iα

ψiα — ρα ωiα

[
∂ ′′ψiα

∂ t

+giα ·
(
I− I′′α

)
·viα

]
+riα ψiα

Inter-entity Exchange Terms

M
iκ→iα

= nκ · [ρκ ωiκ (viκ −vα )] for κ ∈ I+cα M∗
jκ→iα

= 0 for β ∈ I+cα ,κ ∈ I+
cβ

T
jκ→iα

=− zT
jκ→iα

t jκ ·nκ for κ ∈ I+cα ; T∗
jκ→iα

=− z∗T
jκ→iα

t∗jκ ·nκ for β ∈ I+cα ,κ ∈ I+
cβ

Q
jκ→iα

=− zQ
jκ→iα

q jκ ·nκ for κ ∈ I+cα ; Q∗
jκ→iα

=− z∗Q
jκ→iα

q∗
jκ ·nκ for β ∈ I+cα ,κ ∈ I+

cβ

Φ
jκ→iα

=− zΦ
jκ→iα

ϕϕϕ jκ ·nκ for κ ∈ I+cα Φ∗
jκ→iα

=− z∗Φ
jκ→iα

ϕϕϕ∗
jκ ·nκ for β ∈ I+cα ,κ ∈ I+

cβ

body force terms for the momentum, energy, and entropy equations. These terms

account solely for exchanges between a phase and a common curve on the boundary

of the phase when the normal to the phase is unique at the common curve. If the

normal is non-unique, an exchange between the phase and the common curve is

accomplished through the interfaces. The quantity exchanged to the common curve

must come from a concentrated flux in the phase, which contributes to the common

curve dynamics as a body source. This arises through modeling of the small surface

region where the concentrated source exists as a common curve with no width. In

Tables 2.5 and 2.6, it can be seen that, for the sake of generality, the summation

occurs over the three phases that meet at the common curve. However, at most only
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one of the phases can have a smooth boundary at the common curve. Thus, for

a phase κ , if nκ is not unique at a common curve, the concentrated momentum,

energy, and entropy fluxes of phase κ must all be zero at the common curve.

For the porous media problems we will be studying, only the solid phase will

be allowed to have a unique boundary normal at the common curve. Thus the con-

centrated fluxes will be zero for fluid phases but may be non-zero for the solid. We

have not considered advective fluxes from a phase to a common curve. The con-

centrated terms could be important, for example, in describing the forces acting in

the normal direction to the solid exerted by interfaces that meet at a common curve.

Alternatively, a common curve with very high heat conductivity on a smooth sur-

face of a phase could exchange heat directly with the phase. The concentrated flux

terms are defined at the bottom of Tables 2.5 and 2.6. The factor 1/2 appears in the

definitions because, if one makes use of the prescribed summations, each phase is

encountered twice. The counterparts to these terms that account for exchanges be-

tween the common curve and the interfaces that meet at the common curve retain

the same definitions as provided at the bottom of Tables 2.3 and 2.4.

Based on the Miα row of Table 2.5, the point microscale conservation of mass

equation for species i in common curve α is given by

Miα =
∂ ′′(ρα ωiα)

∂ t
+∇′′·(ρα ωiα viα)− ∑

κ∈I+cα

M
iκ→iα

− riα = 0

for i ∈ Is,α ∈ IC . (2.104)

From row Mα of Table 2.6 or from summation of Eq. (2.104) over all species in

Ωα , the point microscale conservation of mass equation for a common curve α is

Mα =
∂ ′′ρα

∂ t
+∇′′·(ρα vα)− ∑

κ∈I+cα

M
κ→α

= 0 for α ∈ IC . (2.105)

The conservation of momentum equation for a species in a common curve based

on Table 2.5 is written as

Piα =
∂ ′′(ρα ωiα viα)

∂ t
+∇′′·(ρα ωiα viα viα)−ρα ωiα giα

− ∑
κ∈I+cα

∑
j∈Is

(
δi jviκ M

iκ→iα
+ T

jκ→iα

)
− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
j∈Is

T∗
jκ→iα

−∇′′·
(
I′′α ·tiα

T
)
−piα − riα viα = 0 for i ∈ Is,α ∈ IC . (2.106)

The entity-based conservation of momentum equation for a common curve that

makes use of information in Table 2.6 is

Pα =
∂ ′′(ρα vα)

∂ t
+∇′′·(ρα vα vα)−ρα gα − ∑

κ∈I+cα

(
vκ M

κ→α
+ T

κ→α

)
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Table 2.6 Physical variables for entity-based common curve equations in partial derivative or ma-
terial derivative form. Mα , Pα , Eα , Sα , and Gα correspond, respectively, to conservation of mass,
momentum, and energy, and balance equations of entropy and body force potential in common
curve α . Terms with an asterisk describe possible exchanges between the common curve and a
phase with a unique normal at the common curve. Exchange terms are at the end of the table

Fα =
∂ ′′Fα

∂ t
+∇′′ ·(vα Fα )−SΩα − ∑

κ∈I+cα

X
κ→α

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

X∗
κ→α

−div′′
(
SΓα ·I′′α

)
−GΩα = 0 for α ∈ IC

F∗α =
Dα Fα

Dt
+Fα I

′′
α :d′′α −SΩα − ∑

κ∈I+cα

X
κ→α

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

X∗
κ→α

−div′′
(
SΓα ·I′′α

)
−GΩα = 0 for α ∈ IC

Fα Fα SΩα X
κ→α

X∗
κ→α

SΓα GΩα

Mα ρα — M
κ→α

— — —

Pα ρα vα ρα gα vκ M
κ→α

+ T
κ→α

T∗
κ→α

tα —

Eα

Eα ρα gα ·vα

(
Eκ

ρκ
+

vκ ·vκ

2
vκ · T∗

κ→α
tα

T·vα —

+ρα
vα ·vα

2
+hα +KEκ

)
M

κ→α
+ Q∗

κ→α
+qα

+ρα KEα + ∑
i∈Is

ρα ωiα giα ·I′′α ·uiα +vκ · T
κ→α

+ Q
κ→α

Sα −Λα ηα bα
ηκ

ρκ
M

κ→α
+ Φ

κ→α
Φ∗

κ→α
ϕϕϕα Λα

Gα

Ψα −ρα gα ·vα ∑
i∈Is

M
iκ→iα

ψiα — − ∑
i∈Is

ρα ωiα ψiα uiα ∑
i∈Is

ρα ωiα

[
∂ ′′ψiα

∂ t

− ∑
i∈Is

ρα ωiα giα ·I′′α ·uiα +giα ·
(
I− I′′α

)
·viα

]
+ ∑

i∈Is
riα ψiα

Inter-entity Exchange Terms

M
κ→α

= ∑
i∈Is

M
iκ→iα

for κ ∈ I+cα

T
κ→α

= ∑
j∈Is

∑
i∈Is

[
T

jκ→iα
+δi j(viκ −vκ ) M

iκ→iα

]
for κ ∈ I+cα

Q
κ→α

= ∑
j∈Is

∑
i∈Is

{
Q

jκ→iα
+(v jκ −vκ )· T

jκ→iα
+δi j

[
Eiκ

ρκ ωiκ
+

uiκ ·uiκ
2

−
(

Eκ

ρκ
+KEκ

)]
M

iκ→iα

}
for κ ∈ I+cα

Φ
κ→α

= ∑
j∈Is

∑
i∈Is

{
Φ

jκ→iα
+δi j

[
ηiκ

ρκ ωiκ
− ηκ

ρκ

]
M

iκ→iα

}
for κ ∈ I+cα

T∗
κ→α

=−nκ ·t∗κ = ∑
i∈Is

∑
j∈Is

T∗
jκ→iα

for β ∈ I+cα ,κ ∈ I+
cβ

Q∗
κ→α

=−nκ ·(t∗κ ·vκ +q∗
κ ) = ∑

i∈Is
∑

j∈Is

[
(v jκ −vκ )· T∗

jκ→iα
+ Q∗

jκ→iα

]
for β ∈ I+cα ,κ ∈ I+

cβ

Φ∗
κ→α

=−nκ ·ϕ∗
κ = ∑

i∈Is
∑

j∈Is
Φ∗

jκ→iα
for β ∈ I+cα ,κ ∈ I+cβ

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

T∗
κ→α

−∇′′·
(
I′′α ·tα

)
= 0 for α ∈ IC . (2.107)
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The species-based and entity-based conservation of energy equations for a com-

mon curve, extracted from Tables 2.5 and 2.6 are, respectively,

Eiα =
∂ ′′

∂ t

(
Eiα +ρα ωiα

viα ·viα

2

)
+∇′′·

[(
Eiα +ρα ωiα

viα ·viα

2

)
viα

]
−ρα ωiα giα ·viα −hiα

− ∑
κ∈I+cα

∑
j∈Is

[
δi j

(
Eiκ

ρκ ωiκ
+

viκ ·viκ

2

)
M

iκ→iα
+v jκ · T

jκ→iα
+ Q

jκ→iα

]

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
j∈Is

(
v jκ · T∗

jκ→iα
+ Q∗

jκ→iα

)

−∇′′·
[
I′′α ·
(
tiα

T·viα +qiα
)]

− eiα −piα ·viα − riα
viα ·viα

2
= 0

for i ∈ Is,α ∈ IC (2.108)

and

Eα =
∂ ′′

∂ t

[
Eα +ρα

(vα ·vα

2
+KEα

)]
+∇′′·

{[
Eα +ρα

(vα ·vα

2
+KEα

)]
vα

}
−ρα gα ·vα − ∑

i∈Is

ρα ωiα giα ·uiα −hα

− ∑
κ∈I+cα

[(
Eκ

ρκ
+

vκ ·vκ

2

)
M

κ→α
+vκ · T

κ→α
+ Q

κ→α

]

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

(
vκ · T∗

κ→α
+ Q∗

κ→α

)
−∇′′·

[
I′′α ·(tα ·vα +qα)

]
= 0 for α ∈ IC .

(2.109)

The balance of entropy equation for a species in a common curve-based on Table

2.5 is

Siα =
∂ ′′ηiα

∂ t
+∇′′·(ηiα viα)−biα − ∑

κ∈I+cα

∑
j∈Is

(
δi j

ηiκ

ρκ ωiκ
M

iκ→iα
+ Φ

jκ→iα

)

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
j∈Is

Φ∗
jκ→iα

−∇′′·
(
I′′α ·ϕϕϕ iα

)
= Λiα

for i ∈ Is,α ∈ IC . (2.110)

The entropy balance summed over all species is

Sα =
∂ ′′ηα

∂ t
+∇′′·(ηα vα)−bα − ∑

κ∈I+cα

(
ηκ

ρκ
M

κ→α
+ Φ

κ→α

)
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− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

Φ∗
κ→α

−∇′′·
(
I′′α ·ϕϕϕα

)
= Λα for α ∈ IC . (2.111)

Finally, the expression for the derivative of the body force potential on a curve

that appears in Table 2.5 may be inferred from Table 2.3 for an interface or derived in

a manner similar to that used to obtain the entry in that table. The resulting equation

is

G∗iα =
DiαΨiα

Dt
+Ψiα I

′′
α :d′′iα +ρα ωiα giα ·viα − ∑

κ∈I+cα

M
iκ→iα

ψiα

−ρα ωiα
∂ ′′ψiα

∂ t
−ρα ωiα giα ·

(
I− I′′α

)
·viα − riα ψiα = 0 for i ∈ Is,α ∈ IC .

(2.112)

For the common curve entity, the expression for G∗α is obtained as

G∗α =
DαΨα

Dt
+Ψα I

′′
α :d′′α +∇′′·

(
∑

i∈Is

ρα ωiα ψiα I
′′
α ·uiα

)

+ρα gα ·vα + ∑
i∈Is

ρα ωiα giα ·I′′α ·uiα − ∑
i∈Is

∑
κ∈I+cα

M
iκ→iα

ψiα

− ∑
i∈Is

ρα ωiα
∂ ′′ψiα

∂ t
− ∑

i∈Is

ρα gα ·
(
I− I′′α

)
·vα

− ∑
i∈Is

riα ψiα = 0 for i ∈ Is,α ∈ IC . (2.113)

Additionally, the expressions for TG∗iα and TG∗α for the common curve are the

same in appearance as the corresponding expressions for phases and interfaces, Eqs.

(2.45) and (2.48), respectively. When applied to a common curve, the densities that

appear in these expressions are mass per common curve length.

2.6 General Multispecies Formulation for a Common Point

Common points are the fourth type of entity of interest in the development of con-

servation and balance equations. Common points are the regions in a multiphase

system that exist where four phases meet, which is also the confluence of four com-

mon curves. Common points are zero-dimensional objects that do not occupy any

volume, area, or length in a system. The measure of the extent of a common point

entity is the number of these points in the system.

The notion of conservation and balance principles for common points parallels

the notion of these principles for an interface and common curve, with some notable

differences. Small regions exist in a system composed of four or more phases where
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material properties undergo sharp changes due to the coalescence of these phases.

Such a region of transition is treated conceptually as a common point.

Common points also play a role as locations at the end of common curves where

mass, momentum, energy, and entropy can be exchanged among common curves

that meet. The density of common points thus affects property exchanges and is

a quantity of interest. Conventional multiphase porous medium models do not ex-

plicitly consider common point properties or their evolution with time. Here, con-

servation and balance equations for common points will be formulated so that they

will be available for use in explicitly analyzing their impact on system behavior.

We note that these points typically are of higher order importance in comparison to

interfaces and common curves. Although they are difficult to model, only exist in

systems composed of four or more phases, and have limited impact, the formula-

tion of a comprehensive model requires that they be included at the onset. If it is

desired to exclude these entities from a model, then an explicit assumption or set of

assumptions can be employed and then examined in hindsight.

2.6.1 General Microscale Point Form

The equations for conservation or balance of a common point property apply to a

domain, Ωα , where α ∈ IPt and IPt is the index set of the various types of common

points as determined by which phases meet at the point. Thus α is in the index set

of common points for which Ωα ⊂ IR0 and whose extent is equal to the number

of points in the system denoted Nα . Because common points are zero dimensional,

they do not have boundaries. This makes them different from the other entity types.

Rather common points are formed where four phases meet such that Ωα = Ω̄β ∩
Ω̄γ ∩ Ω̄δ ∩ Ω̄ε where β , γ , δ , and ε ∈ IP.8

The easiest way to obtain the form of the microscale point conservation equa-

tion is by inference based on the form of Eq. (2.13) for a phase, Eq. (2.67) for an

interface, and Eq. (2.100) for a common curve. We note a progression of increase

in the primes in the equation as the dimensionality decreases such that the general

species-based microscale equation for a common point is inferred to be

∂ ′′′Fiα

∂ t
+∇′′′·(viα Fiα)−SΩT iα −div′′′

(
SΓiα ·I′′′α

)
−GΩ iα = 0

for i ∈ Is,α ∈ IPt . (2.114)

In this equation, the partial time derivative with three primes is an evaluation while

holding none of the three spatial coordinates fixed. In other words, it is a time deriva-

tive evaluated moving with the common point. Note that a common point moves at

8 A common point is also the confluence of four common curves. When the common curves exist
at the locations where three phases come together and the indexes of the four phases are β , γ , δ
and ε , the indexes of the common curves can be denoted as βγδ , βγε , βδε , and γδε . The domain
of the common point can alternatively be indicated as Ωα = Ω̄βγδ ∩ Ω̄βγε ∩ Ω̄βδε ∩ Ω̄γδε .
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the same velocity as the material in the point and all species in the point. Therefore

∂ ′′′

∂ t
=

d

dt
=

Diα
Dt

=
Dα
Dt

. (2.115)

In addition, ∇′′′· and div′′′ indicate divergence operators with all coordinates held

constant. Therefore, the terms involving these operators are zero. From a physical

perspective, a property constrained to exist only at a point cannot vary in space.

Therefore, Eq. (2.114) reduces to

∂ ′′′Fiα

∂ t
−SΩT iα −GΩ iα = 0 for i ∈ Is,α ∈ IPt . (2.116)

Specific forms for this equation can be developed by inserting symbols from Table

2.3 or Table 2.4. However, the meanings of the symbols are such that the items

chosen for Fiα have units of quantity per point while SΩiα and GΩiα have units

of the quantity per point per time. When the common point has no properties, the

surviving terms provide a jump condition for common curve properties at the point

such that what leaves one curve must enter the other curves.

As an example, the microscale conservation equation for a chemical species at a

common point is obtained, based on Eqs. (2.115) and (2.116) and Table 2.3 as

M∗iα =
Diα (ρα ωiα)

Dt
− ∑

κ∈I+cα

M
iκ→iα

− riα = 0 for i ∈ Is,α ∈ IPt , (2.117)

where ρα ωiα is the mass of species i at common point α . In this equation, we have

not allowed for concentrated direct mass exchange between the common point and

phases or interfaces. The values that κ takes on are the index values of the four

common curves that terminate at the common point. Thus the summation term is

the net flux of species i from the common curves to the common point. This sum

will be zero if the mass of i at the common point does not change with time and

there is no net reaction or set of reactions riα that produce species i.
For the momentum equation, the form taken is slightly more complex if one

includes the concentrated non-advective fluxes in the equation. A common point

can interact with a phase directly if the point lies on the boundary of a phase at a

location where the normal to the boundary is unique. Additionally, if the point lies

at the edge of an interface where the normal to the edge of the interface that is also

tangent to the interface is unique a term needs to be included that accounts for the

interaction with the interface. The entity-based general form of the body source term

is

SΩT α = SΩα + ∑
κ∈I+cα

X
κ→α

+
1

2
∑

β∈I+cα

∑
κ∈I+

cβ

X∗
κ→α

+
1

6
∑

χ∈I+cα

∑
β∈I+cχ

∑
κ∈I+

cβ

X∗
κ→α

for α ∈ IPt , (2.118)
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where the single summation accounts for exchanges with the common curves, the

double sum accounts for exchanges with interfaces, and the triple sum accounts for

exchanges with phases. These latter two groups can be employed when the normal

to the entity is unique at the common point. Thus, for example, the momentum

equation for a common point entity is

P∗α =
Dα (ρα vα)

Dt
−ρα gα − ∑

κ∈I+cα

(
vκ M

κ→α
+ T

κ→α

)

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

T∗
κ→α

− 1

6
∑

χ∈I+cα

∑
β∈I+cχ

∑
κ∈I+

cβ

T∗
κ→α

= 0 for α ∈ IPt . (2.119)

Listing of the remaining conservation equations of mass, momentum, and energy

and of the entropy balance equation for species-based and entity-based quantities is

straightforward based on Eqs. (2.116) and (2.119) along with the notation for quan-

tities given in the tables for interfaces and common curves. Note that the meanings

of the quantities is altered for the common point equations. The explicit conserva-

tion statements are not listed here simply because, except for the inclusion of the

concentrated flux from a phase to the common point, the equations are redundant

with previous equations and listings. Additionally, we will not be exploring sys-

tems with four or more phases such that common point dynamics will not enter our

analyses.

2.7 Summary

A cornerstone of mechanistic modeling is the continuum equations for conserva-

tion of mass, momentum, and energy, along with the balance equation of entropy.

TCAT builds upon microscale conservation and balance equations as a foundation

for formulation of larger-scale models. The purpose of this chapter was to develop

the general point-form microscale conservation equations for a phase, an interface, a

common curve, and a common point. These general point-form conservation equa-

tions were expressed for a species in an entity and for an overall entity that includes

all species in the entity.

The general conservation and balance equations account for the different dimen-

sionality of the entities and for the fact that higher dimensional entities serve as

body sources for lower dimensional entities. The general conservation or balance

equation for a species property can be written as

Fiα =
∂ (n)Fiα

∂ t
+∇(n)·(viα Fiα)−SΩT iα −div(n)

(
SΓiα ·I(n)α

)
−GΩ iα = 0

for i ∈ Is,α ∈ I,n = 3−dim α, (2.120)

or

2.6 General Multispecies Formulation for a Common Point
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F∗iα =
Diα Fiα

Dt
+Fiα I

(n)
α :d(n)−SΩT iα −div(n)

(
SΓiα ·I(n)α

)
−GΩ iα = 0

for i ∈ Is,α ∈ I,n = 3−dim α , (2.121)

where dim α is the integer dimensionality of entity α such that 0 ≤ dim α ≤ 3,

(n) indicates the number of primes that appear in the equation with the primed

time derivative, divergence operator, and strain tensor previously defined. We have

adopted the convention of using the leftmost quantity to indicate an equation type

(e.g., F =M for mass conservation), and a specific form in terms of a partial deriva-

tive is indicated when there is no “∗” in the subscript while a particular material

derivative form corresponds to a designation with the “∗” in the subscript. The body

source SΩT iα includes contributions from the next higher dimensional entity when

dim α = 0, 1, or 2, from an entity two dimensions higher when dim α = 0 or 1,

and from a phase entity to a common point when dim α = 0. The conservation

or balance equation for an entity-based quantity is identical to Eq. (2.120) and Eq.

(2.121) with the subscript i deleted. This is obtained by summing Eq. (2.120) over

all species in the entity, and then rearranging if the material derivative form is de-

sired. One needs to recognize, however, that although the sum of the species-based

conservation equation in an entity provides the entity-based equation, the sum of an

individual species-based variable does not always equal the corresponding variable

for the entity.

Specific conservation and balance equations for each entity are formulated by

mapping the physical variables for a given conservation or balance statement to

the placeholder variables in the general equations. This approach allows for the

simple identification of all microscale conservation and balance equations that will

be built upon in this work. Exercises at the end of this chapter provide opportunities

to master the concepts important to the derivations here.

Lastly, derivation of the conservation of angular momentum equations has not

been included here because the role of this equation is primarily to demonstrate

whether or not a stress tensor is symmetric. In this book, which is only an intro-

duction to the TCAT approach, we will consider the stress tensor for an entity to be

symmetric but allow the stress tensor for a species in an entity to be non-symmetric

[1, 2, 14].

Exercises

2.1. Show that Eq. (2.37) may be written in the equivalent form:

qα = ∑
i∈Is

[
qiα +

(
tiα

T −ωiαtα
T
)
·(viα −vα)

]
− ∑

i∈Is

[
(Eiα −ωiα Eα)+ρα ωiα

(viα −vα) ·(viα −vα)

2

]
(viα −vα) .

(2.122)
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This form, though a bit lengthier, shows that the difference between qα and the sum

over all species of qiα is a set of terms that are all products of deviations.

2.2. Show that Eq. (2.33) may equivalently be written

∑
i∈Is

(
eiα +piα ·uiα + riα

uiα ·uiα

2

)
= 0 .

2.3. Show that the following definitions of a material derivative are equivalent:

Dα
Dt

=
∂
∂ t

+vα ·∇ =
∂ ′

∂ t
+vα ·∇′ =

∂ ′′

∂ t
+vα ·∇′′ . (2.123)

2.4. Show that in the summation of Eq. (2.73) over i ∈ Is to obtain Eq. (2.74), one

obtains

∑
i∈Is

∑
j∈Is

nκ ·
[

δijρκ ωiκ viκ (viκ −vα)− zT
jκ→iα

tjκ
T

]
= nκ · [ρκ vκ (vκ −vα)− tκ ] for α ∈ I,κ ∈ I+cα , (2.124)

where tκ is defined as in Eq. (2.30) and vκ is the barycentric velocity.

2.5. Show the following:

a. Equation (2.79) can be obtained as the sum of Eq. (2.78) over all species i in

interface entity α .

b. The definitions of tα where α ∈ II and tκ where κ ∈ Icα used in Eq. (2.79) satisfy

Eq. (2.30).

c. The definitions of qα where α ∈ II and qκ where κ ∈ Icα used in Eq. (2.79)

satisfy Eq. (2.37).

2.6. Equation (2.30) defines the surface stress tensor in terms of species stress tensor.

Show that for a surface, this equation also satisfies

tα ·I′α = ∑
i∈Is

[
tiα ·I′α −ρα ωiα I

′
α ·(viα −vα)(viα −vα) ·I′α

]
for α ∈ II .

2.7. Prove Eq. (2.96) which states

div′′ f+ f·
(
∇′′·I′′α

)
= div′′

(
f·I′′α

)
for α ∈ IC .

2.8. Show that for an α entity composed of two chemical species, designated as A
and B, the general form of KEα given in Eq. (2.35) may be simplified to
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KEα = ωAα ωBα
(vAα −vBα) ·(vAα −vBα)

2
.

2.9. Write the explicit form of the momentum equation for a massless common point

and provide a physical explanation for the terms in this equation.

2.10. The body force potential for a species, ψiα , and the body force per mass of the

species, giα , are related for all entities as given by Eq. (2.50) for a phase such that

∇ψiα +giα = 0 for i ∈ I .

a. Show that for a phase the entity-based identity is

∇ψα +gα = ∑
i∈Is

∇ωiα (ψiα −ψNα) for α ∈ IP ,

where N ∈ Is is a reference species and ψα is defined for any entity as in Eq.

(2.46).

b. Obtain the corresponding relation between ∇′ψα and gα when α ∈ II.
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Chapter 3
Microscale Thermodynamics

3.1 Overview

Models of a system that are mechanistically based make use of the full range of

physical principles that influence system behavior. Paramount among these are the

conservation and balance equations as derived in Chap. 2. In addition to these ex-

pressions, the thermodynamic properties of the entities in the system, as well as

of the system as a whole, impact the observed behavior. The thermodynamic rela-

tions that are hypothesized to describe a system impact how that system is mod-

eled and the fidelity of the model compared to the actual behavior of the system.

Thermodynamics plays a role not only in describing system properties and param-

eters but also in identifying limits on system behavior that might be observed. For

example, thermodynamic considerations have led to equations of state for materi-

als, definitions of compressibility, and definitions of heat capacity. Thermodynamics

also rules out perpetual motion machines, identifies the interconversion of heat and

work, and specifies the direction of heat exchange when a hot and a cold body come

into contact. These features of system dynamics are outside the scope of constraints

provided by conservation and balance equations.

Thermodynamic considerations play a key role in the formulation of closure re-

lations for the conservation and balance equations so that the number of unknowns

in the developed model equations matches the number of equations. Although ther-

modynamic relations may be employed at any length scale to obtain closure of con-

servation and balance equations at that scale, the TCAT method ensures that these

relations are consistent across scales. Thus, a thermodynamic formalism will be hy-

pothesized at the microscale, and the relations obtained will be transformed to a

larger scale by a systematic mathematical procedure.

The purpose of this chapter is to introduce some basic concepts from thermody-

namics that are relied upon throughout the remainder of the book. Thermodynamics

has a rich, subtle, and complex history; the exposition provided here does no justice

to this discipline. The focus is on a few of the basic principles such that we can

proceed with the development of TCAT models. This focus is somewhat at odds

87W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_3,
� Springer International Publishing Switzerland 2014
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with the development of the field of thermodynamics itself, which originated and

has evolved as a field of study that is inextricably linked to and motivated by appli-

cations of profound interest in science and engineering. Nevertheless, the principles

that result here find application in every complete and closed model to be formulated

in subsequent chapters.

Classical thermodynamics deals with systems at equilibrium. All classical sys-

tems in which change is occurring tend to evolve to states that can be defined solely

by intrinsic properties rather than by initial conditions or any knowledge of a path

of change that may have been followed. When such a system becomes independent

of applied external boundary conditions, the system is said to be in an equilibrium

state. Equilibrium states are therefore static and independent of time. It is these equi-

librium states that are described by classical thermodynamic relations.1 Equilibrium

thermodynamics (ET) can be subdivided further into the early thermodynamics of

Clausius and Kelvin and more modern Gibbsian thermodynamics. [15, 51]. The for-

mer was developed by deriving important energy and work concepts based on the

observations of the behavior of a system in response to various changes in variables

or system construction. The observations led to the establishment of the internal

energy and entropy functions. With the Gibbsian approach, the concepts of inter-

nal energy and entropy are assumed to be known. Coupling these quantities with

a set of postulates about system behavior leads to useful mathematical relations

among the variables. These two approaches to thermodynamics are consistent with

each other but provide alternative perspectives. The motivation behind the devel-

opment of Gibbsian thermodynamics was to obtain a framework within which the

equilibrium properties of thermodynamics systems could be characterized [33]. The

development here will proceed from the Gibbsian perspective making use of the

postulational approach to equilibrium thermodynamics [1, 8, 25, 32, 47].

Because we are interested in the evolution of dynamic systems as described

by conservation and balance equations, there is a need to extend thermodynam-

ics beyond its classical roots so that it can contribute to dynamic descriptions of

non-equilibrium systems. Several theoretical approaches to this extension can be

found including classical irreversible thermodynamics (CIT), rational thermody-

namics (RT), extended irreversible thermodynamics (EIT), rational extended ther-

modynamics (RET), and the theory of internal variables (TIV). These approaches

share the goal of being able to incorporate non-equilibrium processes into thermody-

namic descriptions. Insightful reviews of the elements of the methods can be found

in the literature ([e.g., 20, 26, 31, 35, 39]). In short, CIT is the simplest extension to

classical thermodynamics. It presumes that although a system may be changing in

time and space, at each instant and location a quasi-equilibrium state exists such that

local expressions of dependences of energy on independent variables follow directly

from equilibrium thermodynamics [11, 18, 24, 49]. CIT is discussed in Sect. 3.11

1 For descriptive clarity, it would be better if classical “thermodynamics” were actually called
classical “thermostatics” because it does not describe the dynamic nature of a system; it only
describes static states that precede and follow a dynamic event. Classical thermodynamics provides
no information about the rate of transition between equilibrium states or of the states of the system
when not at equilibrium.
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following the description of equilibrium thermodynamics. The other methods are

mentioned briefly in Sect. 3.12, primarily for breadth purposes as they are neither

detailed nor relied upon for the models developed in this book.

In this chapter, our focus will be on Gibbsian equilibrium thermodynamics and

its extension to classical irreversible thermodynamics for microscale systems. CIT

provides the simplest non-equilibrium theory that supports the development of con-

sistent multiscale, multiphase porous medium models. By using the CIT approach,

we will be able to connect thermodynamic expressions effectively with conserva-

tion principles. This enables the formulation of models that are consistent with both

conservation principles and equilibrium thermodynamics and also guides the formu-

lation of valid closure conditions that apply away from equilibrium. Any of the other

non-equilibrium approaches could be employed, but the relatively simple CIT form

is adequate for the purposes of this book. We note that whatever non-equilibrium

formulation is selected, the change in scale of equations to a larger scale for use

with larger scale conservation and balance equations will have to be accomplished

in a consistent fashion.

Porous medium systems are composed of fluids, solids, interfaces, common

curves, and common points. The most frequently encountered application of equi-

librium thermodynamics and CIT is to fluids. The procedures and equations are the

same for both liquids and gases. A fluid flows such that it takes the shape of its

container. Also, if a tangential force, or shear stress, is applied to the surface of a

fluid, the fluid will deform to mitigate the force. If the force is withdrawn, the fluid

will not return to its original shape. For natural porous medium systems, the most

common fluids encountered are air and water, but petroleum and synthetic organics

are also commonly encountered. Solids, on the other hand, do not assume the shape

of a container. Here, we will limit our discussion to elastic solids, that is solids

that return to their original shape if a shear stress is applied to cause deformation

and is then relieved. This precludes consideration of solids that are inelastic or are

permanently deformed or fractured by application of a very high degree of stress.

Note that in specifying this type of deformation, we are referring, for example, to

the individual grains that make up the solid phase of a porous medium system when

modeling the microscale. Modeling of the matrix structure as elastic is also typi-

cal. For natural porous media, commonly encountered solids are rock, sand, silt,

and clay.2 Accounting for the different responses of fluids and solids to stresses re-

quires that their thermodynamic formulations be based on different postulates. Ad-

ditionally, the Gibbsian approach to the thermodynamics of interfaces and common

curves will be presented because these entities are extremely important to the be-

havior of multiphase systems. Here, fluid-fluid interfaces and fluid-solid interfaces

will be modeled based on the same thermodynamic postulates. Common points will

be treated as singularities in the system that possess no thermodynamic properties.

2 Although one can easily define solids and fluids, there are some materials that defy easy classi-
fication or whose behavior changes from solid to fluid depending on the applied stress. Examples
include Silly Putty R©, asphalt, and toothpaste. In this text we will assume that identification of the
materials of interest as fluids or solids is unambiguous.
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This restriction can be relaxed if it is desired to incorporate more complex common

points.

3.2 Essence of Equilibrium Thermodynamics

Despite an absence of a sophisticated understanding of molecular dynamics, the

field of quantitative equilibrium thermodynamics developed in the nineteenth cen-

tury. Statistical mechanics and the kinetic theory of gases, which today support the

relations of equilibrium thermodynamics, did not evolve until the twentieth century.

Statistical mechanics provides understanding of the atomic and molecular behav-

ior that give rise to the observed larger scale properties of systems. However, these

larger scale properties and the relations among them can also be developed based

on postulates about equilibrium systems. We note that at the molecular scale, atoms

and molecules are in motion and can be moving to new locations within a system.

Equilibrium was defined in Sect. 3.1 as being a static state, one that is independent

of time. Thus, at the molecular scale, because of the continual rearrangement of

molecules, one might infer that equilibrium does not occur.3 Despite the molecular

rearrangements in a fluid, an equilibrium configuration can be achieved at a larger

continuum scale where the properties of a fluid observed at that scale are indepen-

dent of time and space. A solid also can achieve a configuration at the continuum

scale such that its properties are constant and at equilibrium. We will develop our

formalism for thermodynamics here without reference to the molecular state, rec-

ognizing that when considering objects at a larger scale, some important system

dynamics become subscale processes that must nevertheless be accounted for. This

discussion points to the important fact that a condition of equilibrium at a large scale

does not necessarily imply equilibrium at a smaller scale.

Before proceeding, we caution that the naming conventions employed for scales

of observation must be clearly defined. Although there is little ambiguity about what

is meant by the molecular scale, the fact that different larger observational scales are

important in different fields has led to different conventions for identifying scales.

Most thermodynamics texts use “microscale” to refer to the molecular scale and

use the term “macroscale” to refer to a continuum scale. For equilibrium thermody-

namics where system properties are uniform, there is no need to designate or dif-

ferentiate between a range of continuum scales. For purposes of the present book,

we refer to the smallest continuum scale as the “microscale.” At the microscale,

phases are juxtaposed with identifiable interfaces separating them. Because varia-

tion of properties in space is of importance in the multiphase systems of interest

here, we also make use of the term “macroscale” to indicate a larger scale where

the distinct boundaries between phases are not distinguishable. At the macroscale,

phases are viewed as overlapping continua with each occupying a fraction of space.

3 It is useful to note that freedom of molecular motion is much less in a solid than in a fluid.
Additionally, a temperature of absolute zero is one where all molecular motion stops such that, for
an isolated system, equilibrium would be achieved at the molecular scale.
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The interfaces between phases are only known in an average sense, making use of

area measures such as the amount of interfacial area per volume and, perhaps, the

average orientation of those areas. From a macroscale perspective, it is still possible

to consider spatial variations in the properties of a system. The macroscale can be

considered as a larger scale that filters out high spatial frequency variability of a

property. The length scale of a system as a whole, or in a direction that the system

spans, is referred to as the “megascale.” At the megascale, variability of a property

is not accounted for; rather the system is characterized as a whole by an average

value of that property. The three different scales are important for formulation of

problems with spatial variability. For equilibrium systems with no spatial variability

of properties, the distinction among length scales is unimportant.

The origin of thermodynamic studies lies in a desire to provide relations among

the properties of matter at equilibrium [8]. The development of thermodynamic for-

mulas from a classical nineteenth century perspective considers systems and seeks

relations for changes in system variables such as temperature, volume, and energy

in response to heat being added to the system, pressure change, chemical reactions,

or other stresses [e.g., the approach found in 12, 19, 36, 50]. An alternative, and

equally valid, approach is to base the development of thermodynamic relations on

a set of postulates about system behavior. Then, from these postulates, the thermo-

dynamic equations can be developed. This more mathematical approach, in fact,

requires few, yet simple, postulates to develop a thermodynamic framework that is

consistent with the more physically based approach. We will follow the postula-

tional approach here because of its elegance and because it provides the most direct

path to obtaining the relations we need to integrate into the TCAT approach to mod-

eling. The postulational approach is clearly developed in [8] and has been referred

to as Callen’s postulational approach [25].

3.3 Fluid-phase Equilibrium Thermodynamics

In this section, we will make use of Callen’s postulational approach to obtain the

fundamental functional form, the differential form, the Euler form, and the Gibbs-

Duhem equation for a fluid phase. These equations are the fundamental relations

on which equations of state and differential relations among variables are built. The

presentation here is brief, concentrating on the elements of equilibrium thermody-

namics of fluid phases that are most important to the implementation of the TCAT

approach.

3.3.1 Fundamental and Differential Forms

The first postulate will be posed here in the context of a single fluid phase com-

posed of N chemical species. The discussion refers to what is traditionally called a

3.2 Essence of Equilibrium Thermodynamics
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“simple” system. Such a system is large, homogeneous, and isotropic. Surface ef-

fects at the boundary of the system can be neglected. Electrodynamic effects are not

considered. Furthermore, at this point, gravitational forces, which would impact the

homogeneity of the system, are also not included in the formulation. Gravitational

effects will be accounted for subsequently when we consider smaller scale aspects

of a system. Similarly, at a later time we will consider thermodynamic formulations

for solids, surfaces, and common curves. For a fluid phase as a whole, equilibrium

states are postulated to exist that are described completely by the phase’s internal

energy, E, volume, V, and by the mass of each of the N chemical species present,

Mi, where the subscript i refers to each of the species. If the species present are

denoted by members of the index set Is, then i ∈ Is. A function, called entropy and

denoted as S, is described in terms of these variables by a functional form S
∗ such

that

S= S
∗(E,V,M1,M2, ...,MN) . (3.1)

Further it is assumed that the values assumed by the variables E, V, and Mi in the

absence of constraints are those that maximize S at equilibrium.

For analysis of multispecies systems, the designation of the string of masses, M1,

M2, ..., MN , can become clumsy and, at times, lack precision. This problem will be

avoided here by introducing a couple of frequently occurring sets. Let us define the

set of all species masses in the entity of interest, M, as

M= {Mi|i ∈ Is} , (3.2)

where Is is the set of species indices {1,2, ...,N}. Thus, for example, Eq. (3.1) can

be expressed as

S= S
∗(E,V,M) . (3.3)

The set of all species masses excluding the mass of species i is designated as Mi
and is defined formally as

Mi =
{
M j|( j ∈ Is)∧ ( j �= i)

}
. (3.4)

The set Mi is convenient when taking derivatives of variables with respect to Mi.

Both M and Mi will be employed subsequently.

There are three particular attributes of Eq. (3.3) that are important to mention.

First, internal energy and entropy are quantities that are presumed to exist. Second,

this equation is posed completely in terms of extensive variables, that is variables

that are additive when combining systems at the same equilibrium state such that its

value is proportional to the size or mass of the system. Extensive variables, such as

volume or mass, can be contrasted with intensive variables, such as temperature or

mass density, whose values are independent of system extent. The third important

point is that Eq. (3.3) applies to fluids at equilibrium. In addition to the definition of

equilibrium provided previously relating to time invariance, Callen [8] has provided

the noteworthy observation that a system is in an equilibrium state if its properties

are consistently described by thermodynamic theory. This observation is somewhat

less restrictive than the formal definition of equilibrium in that one might imagine
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a system whose properties are changing slowly such that they are still described by

Eq. (3.3) even though the system is not in an equilibrium state. This final observation

will prove important subsequently in the discussion of CIT.

Introduction of S as function dependent upon a set of extensive variables is math-

ematically acceptable, but physical intuition is helpful as well. This is not a simple

matter in the case of entropy. A common, but flawed, perspective is that entropy is

a measure of the disorder in a system. A better definition is that entropy is a mea-

sure of the extent to which the energy in a system is distributed over the range of

states that are possible. An example that can add some clarity is the case when a

gas is confined within a small portion of an isolated system by internal barriers.

An isolated system is one that does not allow the exchange of heat or mass across

its fixed boundaries. If the internal barriers are removed, the gas will redistribute

itself throughout the system. This redistribution results also in a redistribution of

energy and an increase in the entropy of the system. When such systems are ex-

amined from a molecular viewpoint with statistical mechanics used to relate that

viewpoint to the larger scale, it can be shown that entropy is related to the potential

number of distributional states of matter at the molecular scale, with the observed

state corresponding to the most probable state [e.g., 22].

To arrive at the functional form for entropy, S, one needs to postulate some prop-

erties that will be accommodated by the form of the functional relation, S∗. First,

we postulate that some extremum properties apply to the fundamental thermody-

namic function, namely that in addition to S being a maximum at equilibrium, E is

a minimum at equilibrium. Second, we postulate that S for a composite system must

be additive over the subsystems and be continuous, differentiable, and a monotoni-

cally increasing function of E. These posited conditions are simple and convenient,

yet they imply a great deal when exercised in conjunction with Eq. (3.3). Because

of the additivity property of all extensive variables, the functional form of S∗ can

be ascertained to be a homogeneous first-order function with certain inversion and

extremum properties.

The monotonicity between S and E and the smoothness property of this relation

are such that (
∂S∗

∂E

)
V,M

> 0 . (3.5)

The subscripts are employed to indicate explicitly the variables that are being held

constant, which is a traditional approach in thermodynamics to ensure that an ac-

curate and precise thermodynamic framework is built upon the posited form of the

fundamental function.

Based on Eq. (3.5), Eq. (3.3) can be inverted to obtain an expression for energy

as the dependent variable with

E= E
∗(S,V,M) . (3.6)

We will work primarily with this functional form of the fundamental equation, while

noting that the functional form given by Eq. (3.3) is equally valid.

The first-order homogeneous property implies that
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λE∗(S,V,Mi) = E
∗(λS,λV,λM) , (3.7)

where λ is any real positive scaling multiplier and λM indicates that all of the

masses in set M are multiplied by λ . Equation (3.7) can be understood as a logi-

cal consequence of the properties of extensive variables that ensure that combined

identical systems are additive in terms of their extensive variables; these extensive

variables fully specify the thermodynamic state of the system. If the entropy, vol-

ume, and masses of chemical species in an equilibrium system are all increased by

a factor λ , the energy of the system will also increase by the factor λ .

The change in energy in a system due to differential changes in the independent

variables can be examined by computing the first differential of Eq. (3.6), which is

dE=

(
∂E∗

∂S

)
V,M

dS+

(
∂E∗

∂V

)
S,M

dV+ ∑
i∈Is

(
∂E∗

∂Mi

)
S,V,Mi

dMi . (3.8)

Recall that Mi is the set of masses of chemical species in the system excluding Mi.

The partial derivatives in Eq. (3.8) occur routinely in thermodynamics and out of

convenience they are given named symbols to identify the intensive thermodynamic

quantities they represent. These are

θ =

(
∂E∗

∂S

)
V,M

, (3.9)

−p =

(
∂E∗

∂V

)
S,M

, (3.10)

and

μi =

(
∂E∗

∂Mi

)
S,V,Mi

, (3.11)

where θ is the temperature, p is the fluid pressure, and μi is the chemical potential

of species i. Substitution of Eqs. (3.9)–(3.11) into Eq. (3.8) yields the differential

form

dE= θ dS− p dV+ ∑
i∈Is

μi dMi . (3.12)

Because temperature, pressure, and chemical potential are defined as derivatives of

the internal energy, which itself depends on entropy, volume, and species masses,

these intensive variables must also each depend on the three extensive independent

variable groups, with

θ = θE∗ (S,V,M) , (3.13)

p = pE∗ (S,V,M) , (3.14)

and

μi = μE∗i (S,V,M) . (3.15)
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The subscript E∗ is used to distinguish formally between an intensive quantity, on

the left side of the equation, and the function that describes the intensive quantity

on the right. These relations are the equations of state for the formulation in terms

of internal energy.

Based on Eqs. (3.5), (3.6), and (3.7), we know that

λE= E
∗(λS,λV,λM) (3.16)

and

λS= S
∗(λE,λV,λM) . (3.17)

Differentiation of Eq. (3.16) gives the equation analogous to Eq. (3.8)

d(λE) =
(

∂E∗

∂ (λS)

)
λV,λM

d(λS)+
(

∂E∗

∂ (λV)

)
λS,λM

d(λV)

+ ∑
i∈Is

(
∂E∗

∂ (λMi)

)
λS,λV,λMi

d(λMi) . (3.18)

Note that all quantities multiplied by λ are extensive quantities. Therefore Eq. (3.18)

must apply regardless of the non-zero value of λ . Indeed, Eq. (3.8) is just the special

case of Eq. (3.18) when λ = 1. This also means that we can write more general

definitions of temperature, pressure, and chemical potential as

θ =

(
∂E∗

∂ (λS)

)
λV,λM

for λ �∝ 1

S
, (3.19)

−p =

(
∂E∗

∂ (λV)

)
λS,λM

for λ �∝ 1

V
, (3.20)

and

μi =

(
∂E∗

∂ (λMi)

)
λS,λV,λMi

for λ �∝ 1

Mi
, (3.21)

where the value of λ is arbitrary. Although the value of λ is arbitrary, some of the

definitions given in Eqs. (3.19)–(3.21) cannot be made for some particular choices

of λ , as indicated. Furthermore, Eqs. (3.13)–(3.15) can be written in more general

forms

θ = θE∗ (λS,λV,λM) , (3.22)

p = pE∗ (λS,λV,λM) , (3.23)

and

μi = μE∗i (λS,λV,λM) . (3.24)

In view of Eqs. (3.22)–(3.24), it follows that rescaling an equilibrium system does

not change the values of the intensive thermodynamic quantities. This means that

the equations of state for the intensive thermodynamic quantities are homogeneous
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zero-order equations. Thus while combining two identical systems at equilibrium

doubles the internal energy, the entropy, the volume, and mass of each species, this

combination leaves temperature, pressure, and chemical potentials unchanged. The

intensive thermodynamic variables are unaffected by any combination of identical

equilibrium systems. While this has been shown mathematically, it also makes phys-

ical sense.

3.3.2 Euler Equation for Internal Energy

The general functional form and the mathematical properties of the fundamental

energetic equation of equilibrium thermodynamics can be used to derive an explicit

functional form for internal energy. Substitute Eqs. (3.19)–(3.21) into Eq. (3.18) to

obtain

d(λE) = θ d(λS)− p d(λV)+ ∑
i∈Is

μi d(λMi) . (3.25)

Expansion of the differentials using the product rule then yields

Edλ +λ dE=λ

(
θ dS− p dV+ ∑

i∈Is

μ dMi

)

+

(
θS− pV+ ∑

i∈Is

μiMi

)
dλ . (3.26)

The terms multiplied by λ , the second term on the left and the first group of terms

in parentheses on the right, cancel according to Eq. (3.12), leaving

Edλ =

(
θS− pV+ ∑

i∈Is

μiMi

)
dλ . (3.27)

Because dλ is arbitrary, the quantities on the left and right sides of this equation

that multiply dλ must be equal to preserve the equality such that

E= θS− pV+ ∑
i∈Is

μiMi . (3.28)

Equation (3.28) is called the Euler equation for the internal energy of a fluid phase.

Equation (3.28) is a very important equation. It provides the explicit form for

internal energy, which was originally only posited in the fundamental functional

form of Eq. (3.6). Because Eqs. (3.13)–(3.15) indicate that θ, p, and μi for all i are

functions of S, V, and M, the internal energy itself is confirmed as being a function

only of these extensive variables that fully specify the thermodynamic state of a

system.
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One other important expression that results from Eqs. (3.16), (3.17), and (3.25)

is the heat capacity at constant volume and composition, CV , which is defined as

λCV =

(
∂E∗

∂θ

)
λV,λM

= θ
(

∂S∗

∂θ

)
λV,λM

. (3.29)

Selection of λ = 1 gives the extensive heat capacity as the energy per unit of tem-

perature.

3.3.3 Gibbs-Duhem Equation for a Fluid

In addition to the Euler equation as provided by Eq. (3.28) and the differential re-

lation for internal energy in Eq. (3.12), there is a third fundamental equation of

importance, the Gibbs-Duhem equation. This equation is readily derived.

First, take the differential of Eq. (3.28) to obtain

dE= θ dS+Sdθ − p dV−Vdp + ∑
i∈Is

(μi dMi +Mi dμi) . (3.30)

Equation (3.12) can then be applied to this expression to eliminate the terms involv-

ing dE, dS, dV, and dMi, leaving

0 = Sdθ −Vdp + ∑
i∈Is

Mi dμi , (3.31)

which is the Gibbs-Duhem equation.

The Gibbs-Duhem equation expresses a differential equality among the changes

in intensive variables that must exist within a system when moving from one equilib-

rium state to a second equilibrium state. The fact that Eq. (3.31) provides a means for

relating the change in some set of intensive variables to a remaining set of intensive

variables will prove to be of significant value in the development of TCAT models.

It also serves as a constraint ensuring that variables designated as “temperature” or

“pressure” at some larger scale are well defined such that they are constrained by

the requirements of the Gibbs-Duhem equation.

Some caution is needed in the use of the Gibbs-Duhem equation. One might be

inclined to solve this differential equation for one missing equation of state through

integration when the other equations of state are known. However, this approach

introduces a constant of integration that is unresolved. This should not be surpris-

ing because complete specification of the Euler equation requires identification of

all equations of state for a system. If one equation of state is unknown, the Euler

equation can only be specified within a constant. However, the Euler equation along

with its three associated equations of state completely specifies the thermodynamic

properties of a system.
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3.4 Normalized Internal Energy Formulation

Eq. (3.28) is the explicit form of the internal energy function given in Eq. (3.6).

Alternatively, it can be thought of as the explicit form of Eq. (3.16) with λ = 1.

Thus, with the general coefficient λ included in the energy statements, we have the

expressions given, respectively, as Eqs. (3.16) and (3.25),

λE= E
∗(λS,λV,λM) (3.32)

and

d(λE) = θ d(λS)− p d(λV)+ ∑
i∈Is

μi d(λMi) . (3.33)

Two other equations can be obtained to complete the set by multiplying the Euler

equation and the Gibbs-Duhem equation, Eqs. (3.28) and (3.31) respectively, by λ
such that

λE= θλS− pλV+ ∑
i∈Is

μiλMi (3.34)

and

0 = λSdθ −λVdp + ∑
i∈Is

λMi dμi . (3.35)

At the risk of redundancy, we emphasize that these expressions apply to equilib-

rium systems that have uniform properties and that Eq. (3.33) applies to differential

changes in variables associated with a change in equilibrium states.

It has been stated previously that λ is a positive, real, scaling multiplier. Al-

though Eqs. (3.32)–(3.35) are written with extensive independent variables, it is

sometimes more convenient to work in terms of these extensive variables normal-

ized by a certain quantity. For instance, the conservation of energy equation for a

phase is written in terms of the internal energy per volume, and it is useful to be able

to relate this quantity to a thermodynamic expression. By judicious selection of λ ,

the expressions can be made applicable for describing the system behavior in terms

of densities of the extensive variables or values of the variables per unit mass. Some

instances are demonstrated here, although we note that selection of a value of λ is

not restricted to the physically convenient values employed.

As a first example, select λ = 1/V. Then Eqs. (3.32)–(3.35) become, respectively

E

V
= E

∗(
S

V
,
V

V
,
M

V
) , (3.36)

d

(
E

V

)
= θ d

(
S

V

)
− p d

(
V

V

)
+ ∑

i∈Is

μi d

(
Mi

V

)
, (3.37)

E

V
= θ

S

V
− p

V

V
+ ∑

i∈Is

μi
Mi

V
, (3.38)

and
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0 =
S

V
dθ − V

V
dp + ∑

i∈Is

Mi

V
dμi . (3.39)

Because the equilibrium variables are uniform, E/V can be replaced by the energy

per volume, E, S/V can be replaced by the entropy per volume, η , and Mi/V is

equal to the mass of species i per volume, written as ρωi where ρ is the mass per

volume and ωi is the mass fraction of species i. Note that V/V= 1 and its derivative

is zero. Thus the thermodynamic equations in terms of energy per volume simplify

to

E = E
∗(η ,1,R) , (3.40)

dE = θ dη + ∑
i∈Is

μi d(ρωi) , (3.41)

E = θη − p + ∑
i∈Is

μiρωi , (3.42)

and

0 = η dθ − dp + ∑
i∈Is

ρωi dμi , (3.43)

where R is the set of masses per volume of the chemical species such that

R= {ρωi|i ∈ Is} . (3.44)

This equation set has several interesting features. Equation (3.40) provides the

fact that the functional form given as E∗ is the same for both E and E, although the

independent variables that appear are different. For E as opposed to E, there is one

less independent variable (i.e., V is replaced by 1), and the entropy density and mass

densities of the species replace entropy and mass of the species. From Eq. (3.41) we

obtain definitions of temperature and chemical potential, respectively, making use

of Eq. (3.40), as

θ =

(
∂E∗

∂η

)
R

(3.45)

and

μi =

(
∂E∗

∂ (ρωi)

)
η,Ri

. (3.46)

where, analogously to Mi defined in Eq. (3.4), Ri is defined as

Ri = {ρω j|( j ∈ Is)∧ ( j �= i)} . (3.47)

These definitions of θ and μi are equivalent to those given in Eqs. (3.9) and (3.11)

(or Eqs. (3.19) and (3.21) with λ = 1/V). However, no definition of pressure is

obtained as a partial of the internal energy function that is analogous to Eq. (3.10)

or Eq. (3.20). This can be understood, perhaps most easily, with reference to Eq.

(3.20). If one sets λ = 1/V in this equation, the differentiation is with respect to

a constant, which is meaningless. Although pressure is not obtained as a partial
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derivative of energy density with respect to some quantity, the equation set Eqs.

(3.40)–(3.43) is still applicable to the case where the system volume is varying.

Equations of state for the intensive variables have been provided in Eqs. (3.22)–

(3.24) where λ may be selected arbitrarily. If λ = 1, the intensive state variables

are dependent on the extensive variables, S, V, and M. However, if λ = 1/V, the

equations of state become

θ = θE∗ (η,1,R) , (3.48)

p = pE∗ (η,1,R) , (3.49)

and

μi = μE∗i (η,1,R) . (3.50)

Thus, the number of independent variables is reduced by one.

In some instances, it may be convenient to work with energy per mass. Equations

for this situation are obtained directly from Eqs. (3.32)–(3.35) by selecting λ =
1/M. Because this text makes use of energy density in preference to energy per

mass, the calculations are not provided here. However, they are encouraged in the

exercises at the end of the chapter.

3.5 Other Thermodynamic Potentials

Thermodynamics involves studying the equilibrium state of a system based upon the

values of a set of independent variables. When the independent variables are S, V,

and M, the fundamental form of internal energy, E, can be specified. Although spec-

ification of these variables determines the energy, equations of state are also needed

for θ(S,V,M), p(S,V,M), and μi(S,V,M) to complete the evaluation of the inter-

nal energy in conjunction with an Euler equation. Unfortunately, control of the in-

dependent variables, particularly S, may be experimentally difficult or inconvenient.

Thus, supporting experimental measurements can be simplified by controlling vari-

ables other than the natural independent variables for internal energy. For easiest

coordination of these experiments with thermodynamic relations, a transformation

of variables can be employed that does not lose any information contained in the

fundamental form for E along with the equations of state. A range of useful alterna-

tive energy forms, or potentials, can be derived in a general context using Legendre

transformations [8]. Here, we will adopt a less elegant and general approach in the

interest of brevity but will develop the Helmholtz free energy, enthalpy, and the

Gibbs free energy potentials.
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3.5.1 Helmholtz Free Energy

Start with defining a new energy function, F, referred to as the Helmholtz potential

or Helmholtz free energy, according to

λF= λE−θλS . (3.51)

Note that λ is carried along simply to facilitate development of subsequent expres-

sions. The differential of Eq. (3.51) is

d(λF) = d(λE)−θ d(λS)−λSdθ . (3.52)

Substitution of Eq. (3.33) into this expression to eliminate d(λE) and cancellation

of the terms involving θ d(λS) yields

d(λF) =−λSdθ − p d(λV)+ ∑
i∗Is

μi d(λMi) . (3.53)

This expression of the differential means that λF is fundamentally a function of θ,

λV, and λM that can be expressed as

λF= F
∗ (θ,λV,λM) , (3.54)

where F
∗ is the functional form, with

−λS=

(
∂F∗

∂θ

)
λV,λM

, (3.55)

−p =

(
∂F∗

∂ (λV)

)
θ,λM

for λ →∝ 1

V
, (3.56)

and

μi =

(
∂F∗

∂ (λMi)

)
θ,λV,λMi

for λ →∝ 1

Mi
. (3.57)

Additionally, the Euler form of the Helmholtz free energy function may be obtained

by substituting Eq. (3.28) into Eq. (3.51) to eliminate E, leaving

λF=−pλV+ ∑
i∗Is

μiλMi . (3.58)

The preceding essentially defines an energy potential wherein the independent

variable S is replaced by θ. The validity of this transformation requires that θ be a

monotonic function of S such that their functional dependence can be inverted. If

the transformation is allowable, the defined Helmholtz potential function, plus its

corresponding equations of state, contains the complete information of the system,

just as the internal energy function contains complete information. The benefit of

working with F rather than E is that temperature, as an independent variable, is
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easier to control and observe than entropy in an experimental setting. The equations

of state for the derived variables in Eqs. (3.55)–(3.57) are expressed as

λS= SF∗ (θ,λV,λM) , (3.59)

p = pF∗ (θ,λV,λM) , (3.60)

and

μi = μF∗i (θ,λV,λM) , (3.61)

where the subscript F∗ is used to distinguish the functional form from the vari-

able and to emphasize that the equations of state here are those associated with the

Helmholtz free energy rather than those associated with the internal energy given by

Eqs. (3.22)–(3.24). We note that although the functional forms and dependences of

variables are different, the meaning and values of the variables themselves are not

changed.

By selecting λ = 1 in the preceding equations, we will obtain the thermodynamic

expressions for the Helmholtz energy of a system at equilibrium. Here, with an eye

toward applicability in TCAT modeling, we will select λ = 1/V to obtain expres-

sions for the Helmholtz potential per unit volume denoted as F . From Eqs. (3.54),

(3.58), and (3.53), respectively, we obtain the fundamental functional dependence

of F , its Euler form, and its differential as

F = F
∗ (θ,1,R) , (3.62)

F =−p + ∑
i∈Is

μiρωi , (3.63)

and

dF =−η dθ + ∑
i∈Is

μi d(ρωi) . (3.64)

In terms of derivatives of the functional form of F , the entropy and chemical poten-

tial are obtained from Eqs. (3.55) and (3.57) with λ = 1/V as

−η =

(
∂F∗

∂θ

)
R

(3.65)

and

μi =

(
∂F∗

∂ (ρωi)

)
θ,Ri

. (3.66)

Finally, the state equations for entropy per volume, pressure, and chemical potential

follow directly from Eqs. (3.59)–(3.61) in the forms

η = SF∗ (θ,1,R) , (3.67)

p = pF∗ (θ,1,R) , (3.68)

and
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μi = μF∗i (θ,1,R) . (3.69)

Note that for the case where the fluid phase is composed of a single chemical con-

stituent, R= {ρ}; and the state equations provide variables as functions of temper-

ature and density.

3.5.2 Enthalpy

Another energy function that is commonly employed is the enthalpy, H, defined as

λH= λE+ pλV . (3.70)

The differential of this expression is

d(λH) = d(λE)+ p d(λV)+λVdp . (3.71)

Substitution of Eq. (3.33) into Eq. (3.71) to eliminate d(λE) and cancellation of the

terms involving p d(λV) yield

d(λH) = θ d(λS)+λVdp + ∑
i∈Is

μi d(λMi) . (3.72)

This expression of the exact differential shows that λH is a function of λS, p, and

λM. Thus, the fundamental functional dependence of λH is

λH=H
∗ (λS, p,λM) , (3.73)

where H
∗ is a functional form, and

θ =

(
∂H∗

∂ (λS)

)
p,λM

for λ �∝ 1

S
, (3.74)

λV=

(
∂H∗

∂ p

)
λS,λM

, (3.75)

and

μi =

(
∂H∗

∂ (λMi)

)
λS,p,λMi

for λ �∝ 1

Mi
. (3.76)

Note that if we invert Eq. (3.73), an alternative functional form to Eq. (3.17) for the

entropy is

λS= S
∗
H (λH, p,λM) . (3.77)

Additionally, substitution of Eq. (3.28) into Eq. (3.70) to eliminate λE yields the

Euler form of the enthalpy,
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λH= θλS+ ∑
i∈Is

μiλMi . (3.78)

The manipulations in this section have led to an energy potential, enthalpy, that in

comparison with the internal energy makes use of p as a fundamental independent

variable rather than λV. The validity of this transformation requires that p be a

monotonic function of λV such that their functional dependence can be inverted. If

the transformation is allowable, the defined fundamental enthalpy function with its

associated equations of state contains the complete information of the system, in the

same way that the internal energy function, along with its associated state equations,

contains complete information. The utility of the enthalpy is in describing or making

measurements of systems where p rather than V is held constant such that H is easier

to work with than E. The equations of state for the derived variables in Eqs. (3.74)–

(3.76) are

θ = θH∗ (λS, p,λM) , (3.79)

λV= VH∗ (λS, p,λM) , (3.80)

and

μi = μH∗i (λS, p,λM) . (3.81)

Here the subscript H∗ is used to distinguish the functional form from the variable

and from other state equations for the dependent variable written in terms of differ-

ent independent variables (e.g., Eqs. (3.22)–(3.24)). Although the equations of state

are written with different functional dependences, all variables appearing in equa-

tions of state have the same meaning and values regardless of which energy function

is being discussed.

Selection of λ = 1 in the preceding equations provides the thermodynamic ex-

pressions for the enthalpy of a system at equilibrium. Here we will provide the

equations that result when λ = 1/V as the enthalpy density is more useful for TCAT

purposes. The enthalpy per volume is denoted as H. From Eqs. (3.73), (3.78), and

(3.72), respectively, we obtain the expressions for the functional dependence of H,

its Euler form, and its differential as

H =H
∗ (η, p,R) , (3.82)

H = θη + ∑
i∈Is

μiρωi , (3.83)

and

dH = θ dη + dp + ∑
i∈Is

μi d(ρωi) . (3.84)

In terms of derivatives of the functional form of H, the temperature and chemical

potential are obtained from Eqs. (3.74) and (3.76) as

θ =

(
∂H∗

∂η

)
p,R

(3.85)
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and

μi =

(
∂H∗

∂ (ρωi)

)
η,p,Ri

. (3.86)

Finally, the state equations for temperature and chemical potential follow directly

from Eqs. (3.79) and (3.81) in the forms

θ = θH∗ (η, p,R) (3.87)

and

μi = μH∗i (η, p,R) . (3.88)

Note that with λ = 1/V, Eq. (3.75) may be integrated directly to obtain

H
∗ (η, p,R) = p + f (η,R) , (3.89)

where f is a function of integration. From Eq. (3.70) with λ = 1/V and Eq. (3.40)

it is clear that

f (η,R) = E
∗ (η,1,R) . (3.90)

Thus, Eq. (3.80) does not actually provide an additional state equation when λ =
1/V as it only provides redundancy of the definition of enthalpy.

The enthalpy function is also used as a basis for defining the general heat capacity

at constant pressure and composition, CP. Based on Eqs. (3.72), (3.73), and (3.77),

we obtain the definitions

λCP =

(
∂H∗

∂θ

)
p,λM

= θ
(

∂S∗
H

∂θ

)
p,λM

. (3.91)

Selection of λ = 1 gives the extensive heat capacity for a constant pressure process

while selection of λ = 1/V gives the heat capacity at constant pressure per unit

volume.

3.5.3 Gibbs Free Energy

The introduction of the Helmholtz free energy and the enthalpy in the preceding

sections involved a change in a single independent variable, from entropy to tem-

perature for Helmholtz free energy and from volume to pressure for the enthalpy.

Another option is to introduce an energy measure that involves a change in both

these variables. This measure is the Gibbs free energy, G, defined by

λG= λE−θλS+ pλV . (3.92)

If we take the differential of this expression and substitute in Eq. (3.33) to eliminate

d(λE), the differential of the Gibbs free energy is obtained as



106 3 Microscale Thermodynamics

d(λG) =−λSdθ +λVdp + ∑
i∈Is

μi d(λMi) . (3.93)

Because this is an exact differential form, the general functional form of λG is

λG=G
∗ (θ, p,λM) , (3.94)

where G
∗ is a functional form subject to

−λS=

(
∂G∗

∂θ

)
p,λM

, (3.95)

λV=

(
∂G∗

∂ p

)
θ,λM

, (3.96)

and

μi =

(
∂G∗

∂ (λMi)

)
θ,p,λMi

for λ �∝ 1

Mi
. (3.97)

Substitution of Eq. (3.28) into Eq. (3.92) to eliminate λE yields the Euler form of

the Gibbs free energy,

λG= ∑
i∈Is

μiλMi . (3.98)

The Gibbs free energy is convenient to work with in an experimental setting since

pressure and temperature are independent variables, and these are relatively easy to

control and monitor. The transformation from internal energy to Gibbs free energy

requires smoothness of the relation between the pairs of interchanged variables. If

the transformation is allowable, the Gibbs free energy with the equations of state

contains the complete information of the system. The equations of state for the de-

rived variables in Eqs. (3.95)–(3.97) are then

λS= SG∗ (θ, p,λM) , (3.99)

λV= VG∗ (θ, p,λM) , (3.100)

and

μi = μG∗i (θ, p,λM) . (3.101)

Here the subscript G∗ indicates that these equations of state are written in terms of

the natural independent variables of the Gibbs free energy.

Selection of λ = 1 in the preceding equations provides the thermodynamic ex-

pressions for the Gibbs free energy of a system at equilibrium. Here we will provide

the equations that result when λ = 1/V. The Gibbs free energy per volume is de-

noted as G =G/V. From Eqs. (3.94), (3.98), and (3.93), respectively, we obtain the

expressions for the functional dependence of G, its Euler form, and its differential

as

G =G
∗ (θ, p,R) , (3.102)
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G = ∑
i∈Is

μiρωi , (3.103)

and

dG =−η dθ + dp + ∑
i∈Is

μi d(ρωi) . (3.104)

Expressions for the entropy per volume and the chemical potential obtained from

Eqs. (3.95) and (3.97) are

−η =

(
∂G∗

∂θ

)
p,R

(3.105)

and

μi =

(
∂G∗

∂ (ρωi)

)
θ,p,Ri

. (3.106)

Finally, the state equations for entropy per volume and chemical potential follow

directly from Eqs. (3.79)–(3.81) with the dependence given by the forms

η = ηG∗ (θ, p,R) (3.107)

and

μi = μG∗i (θ, p,R) . (3.108)

Similarly to H, only two equations of state are needed in considering G, while the

number of independent variables in the expression for G is one more than for E and

F .

3.5.4 Comments on Energy Potentials

In the preceding definitions of potentials, we have expressed each potential in terms

of a different set of independent variables. For example, E depends on η and R while

F depends on θ and R. These are the fundamental dependences that, in concert

with associated state equations, contain all the thermodynamic information about

the system. However, since θ depends on η and R as given by equation of state Eq.

(3.48), it is possible to alternatively express E as a function of θ and R. Callen [8]

points out, however, that such an alternative is not a fundamental relation as it does

not contain all possible thermodynamic information about the system. This is one

of the reasons that it is important to identify the variables being held constant when

differentiating a thermodynamic potential with respect to an independent variable.

It is for this reason that functions with an asterisk were used to explicitly denote the

functional dependence being employed in the relations in this section. The energy

potentials that have been discussed here are all expressed in terms of their associated

fundamental independent variables.
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One must also be careful in working with potentials scaled by λ in contrast to the

extensive variables. For example, pressure is defined as the negative of the partial of

F with respect to volume while holding temperature and the masses of the chemical

species constant. However, if one is writing relations in terms of Helmholtz free

energy per volume, F , no corresponding differentiation exists that defines the pres-

sure. However, if one is working with Helmholtz free energy per mass, obtained by

setting λ = 1/M where M is the mass of the system, then a definition of pressure in

terms of a differential of this function can be obtained. This point is explored further

in the exercises at the end of the chapter.

An extremely important principle that must be observed when working with ther-

modynamic relations is to be careful and clear in identifying functions and indepen-

dent variables. Without observing this principle, one can be in a position of making

alternative definitions of intensive variables in ways that are inconsistent with each

other. For example, stating that temperature is the partial of internal energy with

respect to entropy is correct only if one states that the volume and masses of each

component of the system are being held constant. The partial derivative of internal

energy with respect to entropy while holding pressure and masses constant is not

equal to the temperature. In the next section we will reinforce the important nature

of the explicit listing and accounting for functional dependence.

3.6 Relation between CP and CV

To determine the relation between forms of the heat capacity, one can make use of

equations of state that arise when writing the various forms of the energy potentials.

For example, in formulating the Helmholtz free energy, we obtained the equation of

state for the entropy in Eq. (3.59). The differential of this expression is

d(λS) =
(

∂SF∗
∂θ

)
λV,λM

dθ +

(
∂SF∗

∂ (λV)

)
θ,λM

d(λV)

+ ∑
i∈Is

(
∂SF∗

∂ (λMi)

)
θ,λV,λMi

d(λMi) . (3.109)

Equation (3.29) defines CV in terms of the partial of S∗ with respect to temperature.

However, any functional form of entropy is still the entropy. Therefore, the partial

derivative in the first term in Eq. (3.109) is equal to λCV/θ and we obtain

d(λS) =
λCV

θ
dθ+

(
∂SF∗

∂ (λV)

)
θ,λM

d(λV)+ ∑
i∈Is

(
∂SF∗

∂ (λMi)

)
θ,λV,λMi

d(λMi) .

(3.110)

This differential of λS can be examined further by making it with respect to θ while

holding p and λM constant. These conditions were selected with an eye toward

getting a desired form for the derivative of λS. If we apply these conditions, Eq.
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(3.110) becomes(
∂ (λS)

∂θ

)
p,λM

=
λCV

θ
+

(
∂SF∗

∂ (λV)

)
θ,λM

(
∂ (λV)

∂θ

)
p,λM

. (3.111)

The quantity on the left side is related to the heat capacity at constant pressure

according to the definition of Eq. (3.91) so that we obtain

λCP

θ
=

λCV

θ
+

(
∂SF∗

∂ (λV)

)
θ,λM

(
∂ (λV)

∂θ

)
p,λM

. (3.112)

Note that Eq. (3.55) may be differentiated with respect to λV while holding θ
and λM constant to obtain

−
(

∂SF∗
∂ (λV)

)
θ,λM

=

[
∂

∂ (λV)

(
∂F∗

∂θ

)
λV,λM

]
θ,λM

, (3.113)

where use has been made of the fact that λS = SF∗ . Differentiation of Eq. (3.56)

with respect to θ while holding λV and λM constant provides

−
(

∂ p
∂θ

)
λV,λM

=

[
∂

∂θ

(
∂F∗

∂ (λV)

)
θ,λM

]
λV,λM

. (3.114)

The right sides of these last two equations are equal because the order of differenti-

ation is irrelevant. Therefore, the left sides must also be equal such that4(
∂SF∗

∂ (λV)

)
θ,λM

=

(
∂ p
∂θ

)
λV,λM

. (3.115)

Following substitution of Eq. (3.115) into Eq. (3.112) to eliminate the partial of

entropy with respect to volume, we obtain

λCP

θ
=

λCV

θ
+

(
∂ p
∂θ

)
λV,λM

(
∂ (λV)

∂θ

)
p,λM

. (3.116)

The derivative of pressure in Eq. (3.116) can be rearranged directly based on the

functional dependence of Eq. (3.60) to show that(
∂ p
∂θ

)
λV,λM

=−
(

∂ p
∂ (λV)

)
θ,λM

(
∂ (λV)

∂θ

)
p,λM

. (3.117)

4 Equalities such as Eq. (3.115), which are obtained by equating second derivatives of energy po-
tentials with respect to two different independent variables, are called Maxwell relations. They are
very useful in performing thermodynamic calculations and in replacing quantities that are diffi-
cult to control or measure directly (e.g., the left side of Eq. (3.115)) with quantities that are more
convenient (e.g., the right side of Eq. (3.115)).
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which may be substituted into Eq. (3.116) to obtain

λCP

θ
=

λCV

θ
−
(

∂ p
∂ (λV)

)
θ,λM

[(
∂ (λV)

∂θ

)
p,λM

]2

. (3.118)

The compressibility under isothermal conditions is denoted as β̂ . It is the relative

decrease in volume due to an increase in pressure and is defined as

β̂ =− 1

λV

(
∂ (λV)

∂ p

)
θ,λM

. (3.119)

The thermal expansion coefficient under isobaric conditions is denoted α̂ and mea-

sures the relative change in volume due to a change in temperature. It is defined as 

α̂ =
1

λV

(
∂ (λV)

∂θ

)
p,λM

. (3.120)

Substitution of these expressions into Eq. (3.118) provides the simplification

λCP

θ
=

λCV

θ
+λV

α̂2

β̂
. (3.121)

After division by λ and multiplication by θ, we obtain

CP = CV +θV
α̂2

β̂
. (3.122)

This equation makes use of four of the principal parameters that are employed in

describing the thermodynamic behavior of fluids, the two heat capacities, the iso-

thermal compressibility, and the coefficient of thermal expansion. The derivation

demonstrates that specification of the independent variables being held constant

when differentiating a function is essential. In instances when the independent vari-

ables associated with a functional specification can be implied unambiguously, such

as when using the natural fundamental independent variables with internal energy

as in Eq. (3.6), they can be specified implicitly. However, when performing thermo-

dynamic manipulations, it is helpful to make the specifications explicit.

3.7 Solid-phase Equilibrium Thermodynamics

As mentioned in Sect. 3.1, solids behave differently from fluids in that they can

sustain a shear stress at equilibrium. Accounting for this property of solids adds

additional complications to the specification of the principles of solid thermody-

namics. In some instances when the detailed behavior of the solid is not of primary
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interest, or when the solid deformation only needs to be modeled approximately,

the difference between solids and fluids can be effectively accounted for simply by

modeling the solid as a highly viscous fluid. If one wishes to follow this approach,

the thermodynamic formalism applied for fluids is directly applicable to a solid as

well. In a more general approach, a thermodynamic formalism can be proposed that

accounts for the fact that in addition to changes in volume, the state of the solid is

related to its state of stress. Here we will restrict our attention to elastic solids, a

more complex material than a fluid, but a relatively simple solid nonetheless.

An elastic solid is characterized by the fact that its deformation is dependent on

the applied stress. When the stress is removed, the elastic solid reverts to its original

shape. Also, the history of the deformation is considered to be unimportant, as is

the rate at which the deformation occurs, in determining the thermodynamic state

of the elastic solid system. The stress that is applied is related to the strain which

causes distances between the points in the solid to change. Thus, the thermodynamic

formulation for a solid will replace the scalar V as an independent variable in the

postulated form of E with a tensor that accounts for not only the change in volume

but also the change in distances between points in the solid.

To develop the tensor that is needed, we consider a solid phase both before and

after a deformation. Let a position vector X represent a location in the solid phase

at some instance prior to deformation. After the deformation has occurred, the point

at position X is considered to have been displaced to a position x. Each point in

the system may be displaced so that we can note that the final position of a point

depends on its position before the deformation. This situation can be expressed as

x = x∗(X) . (3.123)

where x∗ is the function that transforms from the initial location to the final location.

A point near the position X is next considered such that its location prior to defor-

mation is X+ dX. Following the deformation, the location of the point is x+ dx
such that

x+ dx = x∗(X+ dX) . (3.124)

Combination of Eqs. (3.123) and (3.124) to eliminate x yields

dx = x∗(X+ dX)−x∗(X) . (3.125)

If we make a Taylor series expansion around the initial location we obtain

x∗(X+ dX) = x∗(X)+ (∇X x∗)T
∣∣∣
X
·dX+ ... , (3.126)

where the higher order terms in the expansion are not listed because they are consid-

ered negligible. The indicated dot product is between dX and the gradient operator

with respect to X coordinates. Substitution of Eq. (3.126) into Eq. (3.125) then gives

dx = (∇X x∗)T
∣∣∣
X
·dX . (3.127)
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The square of the change in length between two points is

dx2 = dx·dx . (3.128)

Substitution of Eq. (3.127) into the right side of this equation yields

dx2 =
[
∇X x∗·(∇X x∗)T

]∣∣∣
X

:dXdX . (3.129)

The measure of strain known as the Green’s deformation tensor, or the right Cauchy-

Green deformation tensor, C, is defined as

C= ∇X x∗·(∇X x∗)T , (3.130)

and it is more conveniently written as

C= ∇X x·(∇X x)T , (3.131)

making use of Eq. (3.123).

With this measure of strain, which incidentally is not the only measure of strain

possible [e.g., 6, 13, discuss other measures of strain such as the Lagrangian and

Eulerian strain tensor and the left Cauchy-Green deformation tensor], we have a

quantity that can be used both to indicate the deformation of the solid and its dilata-

tion (change in volume) from an initial configuration. Recall that the initial postulate

of the form of internal energy for a fluid was in terms of extensive variables. The

Green’s deformation tensor is an intensive variable as its value will be unchanged

when two identical systems are combined. However, an extensive variable can be

constructed by multiplying C by the initial volume of the solid, V0. Thus the tensor

V0C will replace V in the postulated form of the solid-phase internal energy. With

reference to Eq. (3.16), the solid-phase internal energy is postulated to be described

as

λE= E
∗(λS,λV0C,λM) . (3.132)

This form for the solid-phase internal energy replaces the single variable, V, em-

ployed when describing a fluid with the six different unique components of the

symmetric tensor, C, multiplied by the initial system volume, V0.

Differentiation of Eq. (3.132) gives the equation similar to Eq. (3.18)

d(λE) =
(

∂E∗

∂ (λS)

)
λV0C,λM

d(λS)+
(

∂E∗

∂ (λV0C)

)
λS,λM

:d(λV0C)

+ ∑
i∈Is

(
∂E∗

∂ (λMi)

)
λS,λV0C,λMi

d(λMi) . (3.133)

All quantities multiplied by λ are extensive quantities. Here, as with the exposition

of the fluid phase, we have included the parameter λ in anticipation of looking at

the formulation in terms of extensive variables, by selection of λ = 1, or in terms

of energy per volume or mass depending on the value selected for λ . For the solid,
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temperature, the symmetric stress tensor5, and chemical potential are defined, re-

spectively, as

θ =

(
∂E∗

∂ (λS)

)
λV0C,λM

for λ �∝ 1

S
, (3.134)

σσσ =

(
∂E∗

∂ (λV0C)

)
λS,λM

for λ �∝ (C−1)i j , (3.135)

and

μi =

(
∂E∗

∂ (λMi)

)
λS,λV0C,λMi

for λ �∝ 1

Mi
, (3.136)

where the value of λ is arbitrary. The constraint on λ indicated in Eq. (3.135) is nec-

essary for specification of the (i, j) member of σσσ . With these definitions employed

in Eq. (3.133), we obtain the differential of the internal energy of the solid as

d(λE) = θ d(λS)+σσσ :d(λV0C)+ ∑
i∈Is

μi d(λMi) . (3.137)

The equations of state for the intensive thermodynamic parameters for the solid are

written as

θ = θE∗ (λS,λV0C,λM) , (3.138)

σσσ = σσσE∗ (λS,λV0C,λM) , (3.139)

and

μi = μE∗i (λS,λV0C,λM) . (3.140)

These equations of state are homogeneous zero-order equations. When scaling the

size of the homogeneous system, the values of the intensive thermodynamic vari-

ables are not affected.

Subsequent manipulations with the solid-phase thermodynamic equations are

analogous to those employed when considering fluid phases. Because Eq. (3.132)

is first order homogeneous, it follows directly, in conjunction with Eq. (3.137), that

the Euler form for internal energy of a solid analogous to Eq. (3.34) is

λE= θλS+σσσ :λV0C+ ∑
i∈Is

μiλMi . (3.141)

With λ = 1, the Euler equation is expressed for the full system. Selection of λ = 1/V
yields

E = θη +σσσ :
C

j
+ ∑

i∈Is

μiρωi , (3.142)

5 The quantity σσσ is equal to one half the classical second Piola-Kirchhoff stress tensor [21], one of
many measures of stress that are encountered in solid mechanics.
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where j is the jacobian, the ratio of the volume of the system after deformation to its

volume before deformation, j = V/V0. The corresponding Gibbs-Duhem equation

is

0 = η dθ +
C

j
:dσσσ + ∑

i∈Is

ρωi dμi . (3.143)

Transformation from internal energy to other energy potentials is accomplished for

solids in a manner similar to that employed for fluids. Thus, these manipulations are

not supplied here but are encouraged in the exercises at the end of the chapter.

In summary, the mechanics and thermodynamics of solids is a complex field be-

cause of the different behaviors that solids can exhibit when subjected to stress. The

formulation presented here is for anisotropic elastic solids. We do not account for

solid fatigue, fracturing, or plasticity. The presentation here is abbreviated and is

intended simply to provide enough information on the equilibrium thermodynamics

of elastic solids to support their incorporation into models of porous medium flow.

Those interested in more comprehensive introductions to and knowledge of the be-

havior of solids and the description of that behavior are referred to the literature

[e.g., 1, 2, 5, 13, 44]. However, it is useful to understand that the mathematical de-

scription of solid properties is usually developed in the context of mechanics, with a

thermodynamic approach in the context of postulation of energy dependences being

employed less frequently.

3.8 Interface and Common Curve Equilibrium Thermodynamics

Because the TCAT models of concern involve not only phases but also interfaces

that exist between two phases and common curves that form at the boundary of

three phases, thermodynamic expressions are needed for these entities. Interfaces

and common curves are, in fact, idealized entities that account for the change in

properties of a phase in the vicinity of other phases because of molecular interaction

forces between phases. The manifestation of these forces is well known in basic

physical analysis, and significant progress has been made in incorporating these

phenomena into thermodynamic theory [7, 16, 17, 41, 48, 57].

At the molecular scale, the change in molecular orientation and inter-molecular

potential varies in space. For a two-fluid-phase system the region of largest change

often occurs as one approaches the transition between phases. This same behav-

ior exists at larger scales. One way to account for such sharp gradients in material

properties is to introduce interface entities, which can have mass, momentum, en-

ergy, entropy, and thermodynamic properties. This approach is reasonable when the

length scale of the transition is much less than the length scale of the phases on

each side of the transition region. This approach will be adopted here, where we

will consider interfaces to be two-dimensional regions that separate phases and con-

sider common curves to be one-dimensional regions that form where interfaces that

separate three pairs of phases come together.



3.8 Interface and Common Curve Equilibrium Thermodynamics 115

Although interfaces and common curves provide additional thermodynamic prop-

erties to those of phases, their impact on many systems can be neglected. For exam-

ple, if the curvature of an interface or common curve multiplied by the characteristic

length of a phase is much less than 1, contributions of these regions to the system

thermodynamic behavior will be negligible. For multiphase porous medium sys-

tems where the diameter of a pore, which is roughly the characteristic length of the

fluid phase, is often of the same order of magnitude as the radius of curvature of

the interface or common curve, the interfaces and curves can play prominent roles

in determining the system behavior. Thus, it will be important to account for the

mechanics and thermodynamics of these entities in a general TCAT model.

To develop the thermodynamic description of interfaces and common curves, a

similar approach is employed to that used for phases. The internal energy is postu-

lated to be a function of extensive variables such that the Euler equation obtained

is first order homogeneous. After that has been accomplished, the manipulations to

obtain the definitions of the intensive variables, equations of state, and the Gibbs-

Duhem equation follow analogously.

3.8.1 Interface Thermodynamics

The most important task in describing the equilibrium thermodynamics of an in-

terface is the selection of the independent variables on which the internal energy

depends. We first hypothesize that this dependence will be a variant of Eq. (3.32)

for a phase that occupies volume by replacing V with A, the area of the interface.

Additionally, it seems reasonable that the energy might depend on the curvature

of the interface. However, since extensive independent variables are sought, it may

be appropriate to multiply these curvatures by the interfacial area. Thus, the inde-

pendent variables will all be extensive quantities. From these thoughts, the internal

energy for a surface is postulated to have the functional dependence

λE= E
∗(λS,λA,λM,JλA,KλA) , (3.144)

where J is the first curvature (equal to the sum of the principal curvatures) and K is

the second, or Gaussian, curvature (equal to the product of the principal curvatures)

[3, 4]. The first and second curvatures, derived from the principal curvatures, are

selected for this expression rather than the principal curvatures themselves because

they are invariants of the surface.

For the case of a spherical interface, J2 = 4K such that only one of the curva-

tures must be specified. For flat interfaces, both J and K equal zero. In this instance

the interfacial curvatures are not included in the formulation. Indeed, we will adopt

the convention here, for simplicity rather than necessity, that the curvatures of the

interface do not become large enough in the systems we will model that they need

to be included in the postulation of thermodynamic dependence. Although this con-

vention restricts the thermodynamic formulation, it has been found experimentally
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to be a good approximation for many systems. The influence of curvature on surface

thermodynamic properties is rarely included. Thus the expression for the interfacial

thermodynamics is

λE= E
∗(λS,λA,λM) . (3.145)

With this form, Eqs. (3.16)–(3.24) are reproduced with A replacing V as an exten-

sive independent variable and γ , the surface tension, replacing −p in the definitions

and resulting equations with

γ =

(
∂E∗

∂ (λA)

)
λS,λM

for λ �∝ 1

A
. (3.146)

The derivation will not be presented explicitly. However, the Euler equation ob-

tained is

λE= θλS+ γλA+ ∑
i∈Is

μiλMi ; (3.147)

its differential is

d(λE) = θ d(λS)+ γ d(λA)+ ∑
i∈Is

μi d(λMi) ; (3.148)

and the corresponding Gibbs-Duhem equation is obtained as

0 = λSdθ +λAdγ + ∑
i∈Is

λMi dμi . (3.149)

Selection of λ = 1 in the preceding equations gives the forms of the Euler

and Gibbs-Duhem equations in terms of extensive variables. Rather than selecting

λ = 1/V as was done for the phases to obtain equations in terms of densities, we

select λ = 1/A to obtain densities for surfaces as quantities per unit area. Thus, for

example, Eq. (3.147) will be

E = θη + γ + ∑
i∈Is

μiρωi , (3.150)

where E is internal energy per area, η is entropy per area, and ρ is mass per area.

When working with phases, it is common to re-express extensive variables on

a per unit mass basis by selecting λ = 1/M. A similar approach could be adopted

with surfaces, but it has a serious pitfall. In many instances, it will be convenient to

model surfaces as being massless. In those cases, surface properties per unit mass of

surface are ill-defined. For this reason, when employing thermodynamic relations,

we will work with density forms with variables defined per unit measure of the

extent of the entity (e.g., volume, area, length, or number).
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3.8.2 Common Curve Thermodynamics

For curves, the selection of independent variables is somewhat more complex than

for surfaces. The normal curvature, geodesic curvature, and geodesic torsion, all

properties inherent to the curve, could impact its thermodynamic state. Additionally,

one might hypothesize that the angles between the surfaces that meet at the common

curve would impact the common curve state. Alternative ways to incorporate these

variables have been proposed [4, 57]. Here we will adopt an approach similar to

that employed with surfaces and presume that the amount of distortion of the curve

from a straight line and the angles between the interface that meet to form the curve

have negligible impact on its thermodynamic state. Again, this is not a necessary

assumption but is reasonable for many systems and allows for simplification.

With these considerations, the functional dependence presumed for the common

curve is

λE= E
∗(λS,λL,λM) , (3.151)

where L is the extent of the common curve, its length. Therefore the expression for

the derivative, the definitions of the intensive variables and the equations of state

analogous to Eqs. (3.16)–(3.24) are obtained with L replacing V as an extensive

independent variable and γ , the lineal tension, replacing p. The lineal tension is

defined as

−γ =

(
∂E∗

∂ (λL)

)
λS,λM

for λ �∝ 1

L
. (3.152)

Note that the symbol γ is used for both lineal and interfacial tension, but with differ-

ent signs in their definition. Interfacial tension behaves such that it is positive, i.e.,

the interfacial energy increases as a surface is stretched. The lineal tension, on the

other hand, can be negative or positive depending on the behavior of the curve with

some curves being resistant to stretching, such that their lineal tension is negative as

defined here, while other curves are resistant to compression, such that their lineal

tension is positive. Of course, the introduction of the minus sign in the definition of

γ for a curve is an arbitrary selection. The main point is that pressure and surface

tension are defined such that they are always positive while the sign of lineal tension

is material dependent.

For a common curve, the Euler equation for internal energy is

λE= θλS− γλL+ ∑
i∈Is

μiλMi , (3.153)

and the corresponding Gibbs-Duhem equation is obtained as

0 = λSdθ −λLdγ + ∑
i∈Is

λMi dμi . (3.154)

The Euler and Gibbs-Duhem equations for a common curve are thus obtained in

terms of extensive variables when λ = 1. Because the domain of the curve is one-

dimensional, the densities of the extensive variables are quantities per length of
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curve. Thus selection of λ = 1/L expresses Eq. (3.153) as

E = θη − γ + ∑
i∈Is

μiρωi , (3.155)

where E is internal energy per length, η is entropy per length, and ρ is mass per

length.

With common curves, as with interfaces, the selection of λ = M is allowable.

However, this choice can restrict the applicability of the resultant form, since mod-

eling of massless common curves in terms of quantities per unit mass provides an

inherent contradiction. Thus, at the microscale, densities expressed per unit length

are more widely applicable.

3.9 Microscale Multiphase System Notation

The equilibrium thermodynamic framework detailed to this point has not employed

notation that points particularly to one phase, interface, or common curve. Because,

in general, we will be concerned with systems that involve multiple phases, a need

exists to supplement the notation employed to distinguish among entities. For mic-

roscale quantities, as discussed in this chapter, we will use subscripts to designate

the various entities, following the same approach as in Chap. 2. For example, the

Euler equation describing the internal energy density function of a fluid, Eq. (3.42),

can be written as

Eα = θα ηα − pα + ∑
i∈Is

μiα ρα ωiα for α ∈ If ; (3.156)

and the corresponding microscale Gibbs-Duhem equation, Eq. (3.43), is

0 = ηα dθα − dpα + ∑
i∈Is

ρα ωiα dμiα , for α ∈ If , (3.157)

where α identifies the phase and If is the index set of fluid phases. For a system

composed of three fluid phases, two liquids and a gas, along with a solid phase, we

will denote the liquid phase that preferentially wets the solid as w, the non-wetting

phase as n, and the gas phase as g. Therefore, in this instance, If = {w,n,g}, and the

Euler form for the wetting phase is written

Ew = θwηw − pw + ∑
i∈Is

μiwρwωiw . (3.158)

Note that in some physical systems where the surface properties of the solid are

not uniform, a phase may be wetting in one region and non-wetting in a different

region of space. Thus, the subscript designations might be selected differently to
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distinguish among fluid phases. Here, we will not explicitly concern ourselves with

this notational issue.

In the derivations in this text, we will examine porous medium systems that have

a single solid phase along with the fluid phases. A subscript s will be used to identify

a microscale property of the solid. For example, the subscripted form of the internal

energy Euler equation for a solid, Eq. (3.142), is

Es = θsηs +σσσ s:
Cs

js
+ ∑

i∈Is

μisρsωis . (3.159)

The corresponding Gibbs-Duhem equation, based on Eq. (3.143), is

0 = ηs dθs +
Cs

js
:dσσσ s + ∑

i∈Is

ρsωis dμis . (3.160)

In multiphase systems, the thermodynamic properties of the interfaces between

phases and of the common curves must be accounted for. A subscript notation is

employed to account for these entities. For example, if a system is composed of w,

n, and s phases, three different types of interfaces can be identified, depending on

which phases they separate. These are designated as the wn, ws, and ns interfaces

where the two letters designate the adjacent phases. The order of the indices is not

important (e.g., a wn interface is equivalent to an nw interface), but we will make

use only of one option. With this convention, the Euler equation for an interface

given by Eq. (3.147) can be expressed

Eα = θα ηα + γα + ∑
i∈Is

μiα ρα ωiα for α ∈ II , (3.161)

where II is the set of interface indices such that II = {wn,ws,ns}. If a particular in-

terface is of interest, such as the one between the w and n phases, the Euler equation

for this interface can be written as

Ewn = θwnηwn + γwn + ∑
i∈Is

μiwnρwnωiwn . (3.162)

The convention for using subscripts to identify microscale properties is extended

to apply to common curve thermodynamics as well. Thus, for example, the Eu-

ler equation for the internal energy of a common curve follows directly from Eq.

(3.153) as

Eα = θα ηα − γα + ∑
i∈Is

μiα ρα ωiα for α ∈ IC , (3.163)

where IC is the set of common curve indices. For a three-phase system composed

of w, n, and s phases, IC = {wns} and the order of indices is inconsequential. If a

gas phase, g, is added to the three phases, then IC = {wns,wng,wsg,nsg} because

four different types of common curves can be formed. The Euler equation for the

wns common curve can be written specifically as
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Ewns = θwnsηwns − γwns + ∑
i∈Is

μiwnsρwnsωiwns . (3.164)

The apparent digression here regarding notation is made because keeping the no-

tation straight so that systems, phases, interfaces, and common curves are clearly

denoted along with their scales is absolutely crucial to the TCAT formulation. This

can lead to some rather daunting looking expressions. However, if the meaning of

the notation is kept in mind, it will not be a serious obstacle to understanding what

is being denoted and modeled.

3.10 Partial Mass Quantities

The definitions of the energy for fluids, solids, interfaces, and common curves as

given in Eqs. (3.28), (3.141), (3.147), and (3.153), respectively, apply to entities as

a whole. In some instances, it will be useful to have measures of thermodynamic

variables that are properties of species within the entity. Such a quantity has already

been employed in denoting μiα as the chemical potential of species i in entity α .

Thermodynamic relations for species are employed here using partial mass quanti-

ties, which are particular derivatives of extensive thermodynamic properties of an

entity with respect to the mass of a species of interest while holding temperature,

the masses of all other species, and an appropriate measure of stress constant.6 Par-

tial mass quantities express how an extensive thermodynamic property changes with

the mass of one of the species while the designated variables are held constant. For

convenience, partial mass quantities for the various entities of interest are defined in

the following subsections.

3.10.1 Fluid Phase

We begin with Eq. (3.28), subscripted to designate that this is the microscale ex-

pression for the internal energy of fluid phase α composed of the species in the set

Is,

Eα = θαSα − pαVα + ∑
k∈Is

μkαMkα for α ∈ If . (3.165)

Recall the set Mi defined in Eq. (3.4) which consists of all species in the entity

except for species i. This set may be used to refer to species in entity α with the

notation Miα . Thus the differential of Eq. (3.165) with respect to Miα while holding

6 Typically, partial molar quantities are employed. These are obtained by differentiating the exten-
sive thermodynamic quantities with respect to the number of moles of a chemical species. Thus,
partial mass and partial molar properties may be interchanged by multiplying by the molecular
weight of the species. For our purposes, the partial mass forms are more easily directly integrated
into our equations.
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pα , θα , and the masses of all species except i constant is(
∂Eα

∂Miα

)
pα ,θα ,Miα

= θα

(
∂Sα

∂Miα

)
pα ,θα ,Miα

− pα

(
∂Vα

∂Miα

)
pα ,θα ,Miα

+μiα .

(3.166)

By definition, the partial derivatives in this expression are partial mass quantities

denoted using overbars, so that Eq. (3.166) may be written as

Eiα = θα η iα − pαV iα +μiα , (3.167)

where, for example,

Eiα =

(
∂Eα

∂Miα

)
pα ,θα ,Miα

. (3.168)

The partial mass quantities are properties per unit mass of species i. They can be

converted to quantities per unit volume of fluid entity α by multiplying them by

ρα ωiα so that Eq. (3.167) becomes

Eiα = θα ηiα − pα Xiα +ρα ωiα μiα for α ∈ If , (3.169)

where

Eiα = ρα ωiα Eiα , (3.170)

ηiα = ρα ωiα η iα , (3.171)

and

Xiα = ρα ωiαV iα . (3.172)

The sums of Eiα and of ηiα over all species i yield Eα and ηα , respectively. Addi-

tionally, the sum of Xiα over all species i is equal to 1. Thus, the sum of Eq. (3.169)

over all species provides the Euler equation for the energy per volume of a fluid

entity as given in Eq. (3.156).

After all terms have been moved to the left side of the equation, the differential

of Eq. (3.169) is

dEiα −θα dηiα + pα dXiα −μiα d(ρα ωiα)−ρα ωiα (dμiα)|pα ,θα
= 0

for i ∈ Is,α ∈ If , (3.173)

where the vertical bar with the subscripts indicates the differential of μiα is taken

while holding pα and θα constant such that

(dμiα)|pα ,θα
= ∑

k∈Is

(
∂ μiα

∂Mkα

)
pα ,θα ,Miα

dMkα . (3.174)

Thus, the species-based Gibbs-Duhem equation is
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ρα ωiα dμiα +ηiα dθα −Xiα dpα−ρα ωiα (dμiα)|pα ,θα
= 0 for i ∈ Is,α ∈ If .

(3.175)

We comment that the relations among thermodynamic potentials introduced in

Sect. 3.5 are preserved when written in terms of partial mass quantities. For ex-

ample, we can begin with Eq. (3.78) with λ selected to equal 1. We then append

the subscript to designate an entity, α . Differentiation with respect to Mkα while

holding pα , θα , and the masses of all species except k constant gives(
∂Hα

∂Mkα

)
pα ,θα ,Mkα

= θα

(
∂Sα

∂Mkα

)
pα ,θα ,Mkα

+μkα , (3.176)

or

Hkα = θα ηkα +μkα . (3.177)

Multiplication by ρα ωkα provides

Hkα = θα ηkα +ρα ωkα μkα for k ∈ Is,α ∈ I . (3.178)

3.10.2 Solid Phase

Development of the partial mass expressions for a solid phase is similar to that

for a fluid phase but takes into account the dependence of energy on V0sCs rather

than on just the volume, Vs. The Euler equation for an elastic solid is Eq. (3.141)

modified by selecting λ = 1 and by adding the subscript s to refer to the solid-phase

properties. Thus we begin with

Es = θsSs +σσσ s:V0sCs + ∑
k∈Is

μksMks . (3.179)

The differential of this equation taken with respect to Mis while holding σσσ s, θs, and

all species masses other than i, Mis, constant yields(
∂Es

∂Mis

)
σσσ s,θs,Mis

= θs

(
∂Ss

∂Mis

)
σσσ s,θs,Mis

+σσσ s:

(
∂ (V0sCs)

∂Mis

)
σσσ s,θs,Mis

+μis .

(3.180)

The partial derivatives in this expression are partial mass quantities. Therefore Eq.

(3.180) may be written

Eis = θsη is +σσσ s:
Cis

js
+μis . (3.181)

Multiplication by ρsωis to change the partial mass quantities to a per-unit-volume

basis yields
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Eis = θsηis +σσσ s:
Xis·Cs

js
+ρsωisμis , (3.182)

where

Eis = ρsωisEis , (3.183)

ηis = ρsωisη is , (3.184)

and

Xis = ρsωisCis·C−1
s , (3.185)

with

I= ∑
i∈Is

Xis . (3.186)

After all terms have been moved to the left side, the differential of Eq. (3.182) is

dEis −θsdηis −σσσ s:d

(
Xis·Cs

js

)
−μisd(ρsωis)−ρsωis (dμis)|σσσ s,θs

= 0 for i ∈ Is .

(3.187)

The species-based Gibbs-Duhem equation in the solid phase is

ρsωisdμis +ηisdθs +
Xis·Cs

js
:dσσσ s −ρsωis (dμis)|σσσ s,θs

= 0 for i ∈ Is . (3.188)

3.10.3 Interface

The derivation of partial mass quantities for an interface is analogous to the deriva-

tion for the fluid phases with pressure replaced by negative interfacial tension and

volume replaced by area. The starting point is Eq. (3.147) with subscripts added

to indicate the surface being considered. Because the development of the differen-

tials of the species differential of energy and of the species Gibbs-Duhem equation

follows Eqs. (3.165)–(3.175) so closely, only the results for the interface will be

provided here.

Based on the partial mass Euler equation, we obtain

Eiα = θα ηiα + γα Xiα +ρα ωiα μiα for α ∈ II , (3.189)

where

Xiα = ρα ωiα Aiα (3.190)

and the other quantities are defined as in Eqs. (3.170)–(3.171). Remember that the

energy, entropy, and mass densities in Eq. (3.189) are all per unit area of interface.

The sum of Eq. (3.189) over all species gives the Euler equation for energy per area.
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Taking the differential of Eq. (3.189) and moving all terms to the left side, we

obtain

dEiα −θα dηiα − γα dXiα −μiα d(ρα ωiα)−ρα ωiα (dμiα)|γα ,θα
= 0

for i ∈ Is,α ∈ II . (3.191)

The species-based Gibbs-Duhem equation is

ρα ωiα dμiα +ηiα dθα +Xiα dγα−ρα ωiα (dμiα)|γα ,θα
= 0 for i ∈ Is,α ∈ II .

(3.192)

3.10.4 Common Curve

Common curve results are virtually the same as those for the interface with differ-

ences residing in the sign on tension, use of length instead of area, and the fact that

densities that arise are per unit length. The Euler equation, differential, and Gibbs-

Duhem equations, provided without derivations, are

Eiα = θα ηiα − γα Xiα +ρα ωiα μiα for i ∈ Is,α ∈ IC , (3.193)

where

Xiα = ρα ωiα Liα ; (3.194)

dEiα −θα dηiα + γα dXiα −μiα d(ρα ωiα)−ρα ωiα (dμiα)|γα ,θα
= 0

for i ∈ Is,α ∈ IC ; (3.195)

and

ρα ωiα dμiα +ηiα dθα −Xiα dγα−ρα ωiα (dμiα)|γα ,θα
= 0 for i ∈ Is,α ∈ IC .

(3.196)

3.11 Classical Irreversible Thermodynamics (CIT)

In the preceding portions of this chapter, we have rather briefly developed some ba-

sic relations that apply to a system at equilibrium. We have noted that in considering

equilibrium for a phase, an interface, or a common curve, the intensive properties

of the entity are uniform. We have written equilibrium thermodynamic relations for

these entities both in terms of the extensive properties of the system (e.g., E, S, V,

and Mi for a fluid phase) and in terms of the densities of the extensive properties (E,

η, and ρωi). The differential operator “d” that appears in some of the equations de-

veloped refers to infinitesimal changes in quantities as a system transitions between
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equilibrium states. These equilibrium relations are useful, but the requirement of

studying systems at equilibrium presents a serious constraint if one is concerned

with dynamic, evolving systems.

Consider the concept of temperature, defined for a phase in Eq. (3.19), based

on the change in the functional form of equilibrium internal energy with respect

to entropy. With the requirement of equilibrium, the idea of “temperature” has no

meaning when a system is not at equilibrium such that its “measure of hotness”

varies with time and space. If the equilibrium requirement is enforced, then we

cannot talk about the daytime temperature at an outdoor location, or the temperature

of a roast in the oven, or of virtually any object not contained in a highly controlled

environment. Thus, to make thermodynamics relevant for dynamic systems, we have

to be able to relax the constraints of equilibrium without compromising the utility

of the framework for some range of problems. This relaxed system is defined by

classical irreversible thermodynamics, CIT.

CIT is an assumed extension to equilibrium thermodynamics that generalizes it

for application to irreversible processes. This approach has been expounded upon

with insight and rigor by de Groot and Mazur [11]. Inherent in this approach is the

stipulation that deviation from an equilibrium state be “small” where small is meant

to be close enough to equilibrium that CIT applies. The idea behind this approach

is that at any point in the system, the functional dependence of E∗ determined from

equilibrium analysis applies, even when the system is not at equilibrium. The values

of the independent, and thus dependent, variables need not be constant. The formu-

lation is made in terms of property densities, rather than properties of the system as

a whole.

For instance, if we consider a fluid phase, the functional form that applies is Eq.

(3.40) at any point and time such that

Eα = E
∗
α [ηα(x, t),1,Rα(x, t)] for α ∈ If . (3.197)

Thus the energy per volume will be a function of position and time through the

dependence of entropy and mass densities on position and time. Furthermore, the

intensive variables will also be functions of space and time.

The assumption that underlies CIT is referred to as the local equilibrium as-

sumption. In essence it states that each part of a system under consideration can be

considered at each moment in time to be in thermal equilibrium. With this assump-

tion, the differentials need not just refer to transitions between equilibrium states but

also can be changes occurring at a point with variability in time and space included.

Therefore, Eq. (3.41) can be written as a time derivative at a point for a fluid phase

as
∂Eα

∂ t
= θα

∂ηα

∂ t
+ ∑

i∈Is

μiα
∂ (ρα ωiα)

∂ t
for α ∈ If . (3.198)

Additionally, the differential may be considered to be a spatial derivative such that

∇Eα = θα ∇ηα + ∑
i∈Is

μiα ∇(ρα ωiα) for α ∈ If . (3.199)
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The influence of time can be understood in the context of a thermometer. A ther-

mometer will give an accurate reading of a varying temperature at a location if it

equilibrates quickly enough with the temperature at the point where the measure-

ment is being taken. In other words, specification of the temperature accurately by

the thermometer occurs if the thermometer is at equilibrium with the conditions at

the point as they are changing. If the temperature changes too quickly, the local

equilibrium assumption between the medium and the thermometer will be violated.

If the temperature is changing extraordinarily quickly, the definition of temperature

itself for the medium may not be possible. This latter case is typically not an issue

for porous medium systems, but could come into play, for example, when an explo-

sion or if a fracturing event occurs. Similar scenarios can be envisioned for pressure

and chemical potential.

The ability to incorporate spatial variability into a theory is important for pro-

cesses such as boiling water on a stove, observing the spread of a contaminant in

a solvent, and flow caused by a pressure gradient. In these cases, if the equilib-

rium functional form is satisfied at a point, and the variability from point to point is

smooth, then non-equilibrium spatial dependence within the system can be modeled.

If one considers thermodynamic relations for interfaces or common curves at

the microscale, it is important to recognize that time or space differentials must

be constrained to be on the surface or curve of interest. For example, consider the

differential of surface energy given in Eq. (3.148). This equation can be expressed in

terms of differentials of extensive quantities per unit area by selection of λ = 1/A.

Then the partial time derivative constrained to remain on the surface is

∂ ′Eα

∂ t
= θα

∂ ′ηα

∂ t
+ ∑

i∈Is

μiα
∂ ′(ρα ωiα)

∂ t
for α ∈ II . (3.200)

In developing closure relations for conservation and balance equations, we will

see that material derivatives of the thermodynamic identities will be useful. Such

derivatives are simple combinations of a partial time derivative added to a velocity

dotted with the gradient of a quantity. For convenience, and easy access, the forms

that may come in handy are collected in Table 3.1. All the equations in the table are

obtained by replacing the differential of an Euler equation with the material deriva-

tive of the Euler equation, a replacement that is consistent with the local equilibrium

assumption of CIT.

The second law of thermodynamics deals with the observation that an irreversible

transition between equilibrium states of a system produces entropy globally. Based

on CIT, the assumption is made that during the transition between equilibrium states,

when a system is undergoing dynamic change, the rate of entropy production of

each subsystem of the total system is non-negative. This extension of equilibrium

thermodynamics facilitates the derivation of closure relations for some processes

in dynamic systems that are not described by conservation or evolution equations.

Within the CIT framework, systems are considered to have no memory so that the

thermodynamic state of the system at any instant and at any location is described by

the equilibrium functional form (e.g., Eq. (3.197) for a fluid phase).



3.11 Classical Irreversible Thermodynamics (CIT) 127

Table 3.1 Material derivatives of thermodynamic Euler equations for use in CIT formulation. The
first four rows are for species-based energy equations. Rows five through eight are entity-based.
The last four rows may each be obtained as a summation over all species for the corresponding
entity. All equations may be obtained from the energy differential expressions in Chap. 3

Material Derivatives of Euler Equations

Entity Expression

α ∈ If T∗iα =
Diα Eiα

Dt
−θα

Diα ηiα

Dt
+ pα

Diα Xiα

Dt
−μiα

Diα (ρα ωiα )

Dt
−ρα ωiα

(
Diα μiα

Dt

)∣∣∣∣
pα ,θα

= 0

s T∗is =
DisEis

Dt
−θs

Disηis

Dt
−σσσ s:

Dis

Dt

(
Xis·

Cs

js

)
−μis

Dis (ρsωis)

Dt
−ρsωis

(
Disμis

Dt

)∣∣∣∣
σσσs ,θs

= 0

α ∈ II T∗iα =
Diα Eiα

Dt
−θα

Diα ηiα

Dt
− γα

Diα Xiα

Dt
−μiα

Diα (ρα ωiα )

Dt
−ρα ωiα

(
Diα μiα

Dt

)∣∣∣∣
γα ,θα

= 0

α ∈ IC T∗iα =
Diα Eiα

Dt
−θα

Diα ηiα

Dt
+ γα

Diα Xiα

Dt
−μiα

Diα (ρα ωiα )

Dt
−ρα ωiα

(
Diα μiα

Dt

)∣∣∣∣
γα ,θα

= 0

α ∈ If T∗α =
Dα Eα

Dt
−θα

Dα ηα

Dt
− ∑

i∈Is

μiα
Dα (ρα ωiα )

Dt
= 0

s T∗s =
DsEs

Dt
−θs

Dsηs

Dt
−σσσ s:

Ds

Dt

(
Cs

js

)
− ∑

i∈Is

μis
Ds (ρsωis)

Dt
= 0

α ∈ II T∗α =
Dα Eα

Dt
−θα

Dα ηα

Dt
− ∑

i∈Is

μiα
Dα (ρα ωiα )

Dt
= 0

α ∈ IC T∗α =
Dα Eα

Dt
−θα

Dα ηα

Dt
− ∑

i∈Is

μiα
Dα (ρα ωiα )

Dt
= 0

The CIT approach has been used with great success for the situation where each

subsystem is a microscale point. However, its application at a larger scale must be

undertaken with caution. For instance, for a system as a whole in which spatial

and temporal variability of thermodynamic quantities must be accounted for, the as-

sumption of “local” equilibrium, with the “locality” being the entire system, clearly

does not apply. Besides the inherent mathematical complications, physically one can

understand that there is no unique way to define intensive thermodynamic variables

that characterize a non-uniform system [14].

The problem of defining physically and mathematically reasonable thermody-

namic variables at the macroscale appropriate for analysis of porous medium sys-

tems is also challenging when the variable is not constant at the macroscale. The

TCAT approach addresses this problem by directly averaging the microscale ther-

modynamic relations and then modeling in terms of the averages of these variables

that arise. This circumvents the need to employ ad hoc macroscale functional forms

for energy that lead to variables unrelated to the basic tenets of equilibrium thermo-

dynamics and which rely on some axioms that are controversial at the microscale

and become more problematic at a larger scale [33, 35, 39, 54–56]. In cases where

the local equilibrium assumption applies at a macroscale locality, the issue of ac-

counting for subscale variability is eliminated.
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Recall that from a microscale perspective, the boundaries of a phase are well

defined. This does not preclude a system from being comprised of more than one

phase. When multiple phases exist, specification of the conditions that apply at equi-

librium becomes more complicated because of the presence of interfaces and com-

mon curves that support discontinuities in properties between phases and which, in

their own right, impact the system behavior. Additionally, the impact of external po-

tentials, such as gravity, must be accounted for in a thermodynamic theory capable

of describing the porous medium systems of interest. A thorough examination of the

microscale equilibrium conditions for these systems is the topic of the next chapter.

3.12 Other Thermodynamic Theories

Thermodynamic theories provide supplemental constraints to the conservation and

balance equations developed in Chap. 2. When employing the TCAT approach, we

average the thermodynamic relations expressed in terms of microscale variables to

a larger scale. Any consistent microscale thermodynamic theory can be employed.

However, it is important that the thermodynamic relations not be postulated directly

at the larger scale when the system is not at equilibrium because the meaning of the

new thermodynamic variables would be ambiguous.

In subsequent chapters, we employ CIT as described in section 3.11 because it is

the simplest extension beyond equilibrium thermodynamics that also provides some

useful results. However, because other thermodynamic approaches may also be em-

ployed, some are mentioned here along with their features, as in [20]. Incorporation

of these approaches is feasible in the TCAT framework and may assist in model de-

velopment when the particular features of the thermodynamic theory are important

in describing the material properties.

3.12.1 Rational Thermodynamics (RT)

Rational thermodynamics (RT) [9, 13, 23, 43, 46, 52, 54] is a class of thermody-

namic approaches. In brief, RT and its extensions make use of an expanded set

of independent variables that energy depends upon and that also accounts for the

impact of the path of change of the system. This approach has proven to be a use-

ful component of methods for deriving constitutive equations [26]. The method is

mathematically rigorous and is built on principles that lead to certain mathematical

forms for the energy and constitutive functions [13]. Although the principles have

some mathematical appeal, it has been pointed out that they are actually only work-

ing hypotheses [39] or useful rules [54]. Among these rules are the requirement that

if an independent variable is present in one of the constitutive equations, it must

initially be presumed to be present in all. The rule of memory states that present

effects are dictated by past as well as present values of independent variables.
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Rational mechanics has provided some advances in obtaining general closure

relations for complex solids. For modeling porous medium systems, the two rules

mentioned above impose some generality that is needlessly complicated. Of greater

concern is the fact that RT assumes notions that are precisely defined in equilibrium

thermodynamics to exist in any dynamic state. In RT, absolute temperature and en-

tropy are considered to be primitive concepts that are believed to apply far from

equilibrium; but they have no precise physical interpretation or physical relation to

their ET counterparts [39]. Materials are allowed to have a memory, and the concept

of local equilibrium is not necessarily enforced. The absence of correspondence of

variables in RT with those defined classically is further complicated in porous media

studies when the variables are introduced at a larger scale. Inherently, the relations

between some variables across scales is absent such that the RT framework can lead

to a mathematically elegant but physically lacking equation set.

3.12.2 Extended Irreversible Thermodynamics (EIT)

Extended irreversible thermodynamics (EIT) [27–31, 34, 35, 38, 42, 45] is an ap-

proach to microscale thermodynamics that extends the local equilibrium assump-

tion employed with CIT by also allowing internal energy to depend on the local

dissipative fluxes. This approach tries to account for shorter wave length and high

frequency phenomena. At equilibrium the fluxes will be zero. Thus at equilibrium,

or when the dependence on these fluxes is small, the EIT formulation is identical

to CIT. The range of applicability of EIT non-equilibrium thermodynamics is con-

sidered to be broader than that obtained with CIT because memory, non-local, and

non-linear effects are incorporated into the formulation through the extended de-

pendence of energy on fluxes. The extension of this approach to the macroscale for

cases of large dissipative fluxes may be possible if the microscale EIT formulation

can be consistently averaged.

3.12.3 Theory of Internal Variables (TIV)

The theory of internal variables (TIV) [10, 37, 39, 40, 53] has been developed to

model systems that have internal structure and is most often applied to nonlinear

materials. The idea behind this method is to expand the dependence of energy on

independent variables to include some that provide measures of that internal struc-

ture. Thus the approach can be considered to be an extension of CIT that adds some

state variables to the set that is traditionally employed based on classical equilib-

rium thermodynamic considerations. The classic intensive variables are considered

controllable or observable while the newly introduced independent variables are

not. Rather, these internal variables of state describe the internal structure hidden

from the observer. Appropriate and astute selection of these internal variables de-
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pends heavily on the scale at which the system is being observed and the dissipative

behavior that is being modeled. The expansion of the list of variables at the mic-

roscale has some similarities to systematic transformation of CIT to a macroscale

wherein internal variables relating to the geometric properties arise naturally. How-

ever, application of TIV to porous medium systems would require that the additional

variables added at the microscale be transformed to the larger scale.

3.13 Summary

In this chapter, we have introduced some basic elements of microscale thermody-

namics. Thermodynamics plays a central role in the development of TCAT models

and is used for establishing conditions that proposed closure relations must neces-

sarily satisfy. While the field of thermodynamics is immense, we have presented

the essence of equilibrium thermodynamics as developed from a postulational ap-

proach. Subsequently, we introduced classical irreversible thermodynamics as an

extension of equilibrium thermodynamics. Using CIT, one can model the variability

of thermodynamic quantities in time and space. This approach is built on the hy-

pothesis that the functional forms, useful in describing equilibrium systems, can be

applied unaltered for systems away from equilibrium. This hypothesis is referred to

as the local equilibrium assumption.

In this introduction, focus has been on the establishment of Euler and Gibbs-

Duhem equations, as well as on the definitions of intensive thermodynamic vari-

ables. This has been accomplished for fluid and solid phases, interfaces between

phases, and common curves where three phases meet. The local equilibrium ex-

tension to equilibrium thermodynamics has been experimentally verified in studies

of many physical systems. The CIT formulation is the one that will be averaged

subsequently in the TCAT framework to increase the scale at which a system is

modeled. Averaging assures that the thermodynamic formulation at the larger scale

is consistent with smaller scale definitions of variables and with the tenets of ther-

modynamics. In some systems where gradients or fluxes are large or rapidly varying

in time, it may be necessary to build the thermodynamic formalism on a more com-

plex foundation than CIT. Some alternatives have been mentioned, but they will not

be explored further here.

This chapter does not delve into applications, determination of state equations,

measurement approaches, or considerations that are important for ascertaining the

most advantageous thermodynamic formulation for a given system (i.e., which ele-

ments of the system must be explicitly modeled). These topics are important for a

complete implementation of thermodynamic principles and describing the behavior

of single and multiphase systems. However, only the thermodynamic issues of im-

mediate need for the objectives of this book have been introduced. For a more com-

prehensive introduction to thermodynamic theory, which is recommended, some

excellent texts devoted to that topic are available [1, 8, 11, 35, 39].
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Exercises

3.1. Consider the normalized internal energy function for a fluid phase α as dis-

cussed in Sect. 3.4. In this exercise, the energy will be normalized with respect to

the mass of the system by selecting λ = 1/Mα . Denote the energy per mass of the

phase as eα and the entropy per mass as sα .

a. Obtain the Euler form of the energy equation.

b. Show that the differential form of the Euler equation is

deα = θα dsα +
pα

ρ2
α

dρα + ∑
i∈Is

μiα d(ωiα −ωNα) for α ∈ If , (3.201)

where the subscript N refers to one of the chemical species present chosen as a

reference species.

c. Find the general functional forms of the equations of state needed to complete

the thermodynamic description of fluid phase α .

d. Obtain the Gibbs-Duhem equation for this phase and show that it is consistent

with Eq. (3.43).

3.2. Based on the definition of the Helmholtz free energy for a fluid phase given as

Eqs. (3.62)–(3.69), find the Gibbs-Duhem equation and determine if it is consistent

with Eq. (3.43) obtained when working with the internal energy function.

3.3. Derive Eq. (3.122) starting from the differential of the equation of state encoun-

tered in working with the Gibbs free energy as Eq. (3.99).

3.4. Transform the internal energy equation for a solid phase to an expression for the

enthalpy. Give expressions for the enthalpy, the differential of enthalpy, the equa-

tions of state, and the Gibbs-Duhem equation.

3.5. Derive the relation between CP and CV for a solid.

3.6. Show that the interfacial tension for a surface may be defined equivalently to

Eq. (3.146) as

γα =

(
∂F∗

α
∂Aα

)
θα ,Mα

for α ∈ II . (3.202)

3.7. Show that for a massless interface, the interfacial tension is equal to the

Helmholtz free energy density.

3.8. The grand canonical potential is another potential that can be employed in ther-

modynamic analysis. Denote it as Pα where, for a phase,

λPα = λEα −θα λSα − ∑
i∈Is

μiα λMiα for α ∈ I . (3.203)
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a. If λPα = P
∗
α where α ∈ If, determine the Euler form for λPα and the fundamen-

tal independent variables on which P
∗
α depends.

b. if λPs = P
∗
s , determine the Euler form for λPs and the independent variables on

which P
∗
s depends.

c. Show that for a massless common curve, Pα = −γα for α ∈ IC where Pα is the

grand canonical potential per unit length of common curve.

3.9. Show that

dμiα = dμiα |θα
+θα

(
Hiα −μiα

)
d

(
1

θα

)
for i ∈ Is,α ∈ If . (3.204)
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Chapter 4
Microscale Equilibrium Conditions

4.1 Overview

The role of classical thermodynamics is to represent the equilibrium state of a sys-

tem and the change in system properties that occurs due to a transition between

states. Because the TCAT method describes system dynamics at “near” equilib-

rium dynamic conditions, it is essential to know what the actual equilibrium condi-

tions are. The second law of equilibrium thermodynamics requires that entropy pro-

duction associated with a spontaneous, irreversible change of system state be non-

negative. When CIT is employed as the thermodynamic framework, this statement

transforms to a requirement that the rate of entropy generation be non-negative at all

times for a dynamic system. Since TCAT involves the description of dynamic sys-

tems near equilibrium, we need to ensure that the closure relations used to describe

irreversible processes are consistent with the principle of non-negative entropy gen-

eration. By having knowledge of the conditions that must apply at equilibrium, we

will be able to develop consistent closure relations.

The purpose of this chapter is to formulate equilibrium conditions for micro-

scale systems of varying complexity, where the complexity results from juxtaposed

phases, interfaces, common curves, and common points. The approach to obtain-

ing these conditions is based on variational analysis of the total energy of a system.

This analysis is based on the fact that at equilibrium, a system is at a minimum en-

ergy state. Therefore, any perturbation of independent variables that describe this

state must result in no change in energy. This is analogous to saying that the slope

of a function is zero at its minimum. To facilitate the analysis, we will consider

expressions for the variation of independent system variables and also variational

analysis of integral functionals. The emphasis here is on utilizing the expressions

that result to develop conditions of equilibrium for a multiphase system. Derivation

of the elements of variational calculus employed here may be found in the literature

[7, 8, 18]. Some of the underlying theory is provided in Appendix A of this book

along with the derivation of three variational theorems that will be employed in this

work. This chapter provides an explanation of the rationale behind using a varia-

135W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_4,
� Springer International Publishing Switzerland 2014
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tional approach to obtain equilibrium conditions as well as some useful variational

relations. These will be employed to develop equilibrium conditions for a single

fluid phase and for two fluids in an elastic porous medium. Besides developing con-

ditions that will prove to be useful for closure of TCAT models, the manipulations

also demonstrate the approach that can be employed if alternative thermodynamic

formalisms are proposed.

4.2 Components of Variational Analysis

With classical thermodynamics, equilibrium conditions for a homogeneous system

are often developed from thermal, chemical, and mechanical considerations of sys-

tem behavior [e.g., 6, 9, 10, 14, 16]. For more complex systems, such as multiphase

porous medium systems with deformable solids, interfaces, and common curves, the

challenges to determining equilibrium conditions are more significant. To respond

to this challenge, we will employ variational methods to derive a full set of micro-

scale equilibrium conditions. The analysis here will be restricted to systems whose

individual entities can be described using CIT, as described in Chap. 3.

Variational methods are widely used to solve optimization problems in which an

integral of a functional is posed such that a minimum to a problem of interest is

determined. Variational principles are also described as replacing local rules with

global conditions that can then be exploited to obtain the local conditions [8]. It is

this latter perspective that we will be employing. We will provide expressions for the

total energy of a multiphase system and then make use of variational manipulations

to determine what local conditions are implied by a requirement of equilibrium. In

particular, we will make use of the fact that thermodynamic equilibrium implies

that a system is at a state of minimum energy. Because the change in energy with

respect to perturbations in the independent variables at equilibrium will thus be zero,

examination of the perturbations around the equilibrium state will provide relations

among variables at equilibrium.

The application here is related to the roots of variational analysis in that we will

seek a minimum of a functional posed in terms of an integral expression. This use is

different from usual applications of basic variational methods in that the expression

we wish to minimize involves a sum of integrals over different types of entities (vol-

umes, interfaces, and common curves), subject to a set of constraints. Fundamental

aspects and relations of variational analysis that are important for our derivation are

considered for volumes, interfaces, and curves in Appendix A. The mathematical

results found there are used to develop the microscale equilibrium conditions for

a multiphase system in the present chapter. Variational methods have been used to

determine equilibrium conditions for systems involving interfaces, common curves,

and common points [2–4], although we will consider a somewhat simpler case in

which the effects of interface and common curve curvature on the internal energy

density are neglected [11, 12, 15].
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The variational analysis will require two sets of information. The first is expres-

sions for the variation of microscale quantities that will be integrated over their

appropriate domains. The second is the set of equalities that relate the variation of

an integral to the integral of the variation of an integrand. These two sets of equal-

ities are summarized here based on the understanding of variational methods from

Appendix A and the derivations therein.

4.3 Variation of Microscale Quantities

A variational analysis of an integral leads to formulation of expressions for varia-

tions of variables that appear in the integrand under study. Some of these variables,

such as the entropy per volume for a phase, are independent quantities, and their

variations remain in the analysis. However, the variation of other variables, such as

phase density, gravitational potential, and the Green’s deformation tensor, can be

related to changes in other quantities. These other changes are primarily related to a

variation in position, and these interrelations must be specified. Variational analysis

requires that independent variations be scrutinized. Thus, it is important to ensure

that the variations of microscale variables that appear in the analysis are indeed in-

dependent. Some of the important and useful relations are collected in Table 4.1.

For clarity, δx in the table is subscripted with the indicator of the entity being con-

sidered.

Although the derivation of the relations, for the most part, will not be provided

here, it may be helpful to note that the expressions are very similar to those that

are obtained in taking time derivatives. Correspondence is obtained if one replaces

the variational operator with a material derivative, a fixed point operator with a

partial time derivative, and δx with a velocity. This correspondence should not be

too surprising as it has been pointed out that a variation is akin to a derivative [7].

At this point, we are peeking ahead with an eye toward providing the relations

that will be needed when performing variational analysis of the system energy. Not

all of the relations that appear in Table 4.1 will be needed for all problems; some

of them will not be needed for any of the analyses performed here. Nevertheless,

the relations do provide a basic set of tools if one wishes to study a more complex

thermodynamic formulation for energy. As an example calculation of one of the

entries in the table, we study the Green’s strain tensor.

4.3.1 Variation of Green’s Strain Tensor

The Green’s deformation tensor—also known as the right Cauchy-Green deforma-

tion tensor Cs—appears in the expression for the internal energy of the solid per unit

volume as in Eq. (3.159). Strain involves deformation of the solid; and a change in

volume is accounted for by the jacobian, js. Therefore, some common features of

4.2 Components Variational Analysis
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Table 4.1 Collection of expressions for the variation of various microscale functions associated
with phases, interfaces, and common curves for subsequent use in analysis of equilibrium condi-
tions

Domain Quantity Expression

Fixed-point Variation δ fα = δ fα −δxα ·∇ fα

Fluid Energy Density δEα = θα δηα + ∑
i∈Is

μiα δ (ρα ωiα )

Phase Solid Energy Density δEs = θsδηs +σσσ s:δ
(
Cs

js

)
+ ∑

i∈Is
μisδ (ρsωis)

α ∈ IP Mass Density δρα =−ρα ∇·δxα

Gravitational Potential δψα = 0

Jacobian δ jα = jα ∇·δxα

Green’s Strain δCs = ∇X xs·
(

∇(δxs)+ [∇(δxs)]
T
)
·(∇X xs)

T

Fixed-point Variation δ
′
fαβ = δ fαβ −δxαβ ·∇′ fαβ

Energy Density δ
′
Eαβ = θαβ δ

′
ηαβ + ∑

i∈Is
μiαβ δ

′(
ραβ ωiαβ

)
Interface Gravitational Potential δ

′
ψαβ =−gαβ ·nα nα ·δxαβ =−gαβ ·

(
I− I′αβ

)
·δxαβ

αβ ∈ II Unit Normal δnα =−
(
∇′δxαβ

)
·nα

Surface Tensor δ I′αβ = nα ∇′δxαβ ·nα +
(
nα ∇′δxαβ ·nα

)T

First Curvature
Jαβ =∇′ ·nα

δ
′
Jαβ =−

(
nα ·δxαβ

)(
J2

αβ −2Kαβ

)
−∇′ ·

[
∇′ (nα ·δxαβ

)]
Second Curvature

Kαβ = 1
2

(
J2
αβ −∇′nα :∇′nα

) δ
′
Kαβ =−

(
nα ·δxαβ

)
Kαβ Jαβ −

(
Jαβ I

′
αβ −∇′nα

)
:∇′ [∇′ (nα ·δxαβ

)]

Fixed-point Variation δ
′′

fαβγ = δ fαβγ −δxαβγ ·∇′′ fαβγ

Common Energy Density δ
′′
Eαβγ = θαβγ δ

′′
ηαβγ + ∑

i∈Is
μiαβγ δ

′′(
ραβγ ωiαβγ

)
Curve Gravitational Potential δ

′′
ψαβγ =−gαβγ ·

(
I− lαβγ lαβγ

)
·δxαβγ =−gαβγ ·

(
I− I′′αβγ

)
·δxαβγ

αβγ ∈ IC Unit Tangent δ lαβγ = lαβγ ·∇′′δxαβγ ·
(
I− lαβγ lαβγ

)
Curvature
καβγ=lαβγ ·∇lαβγ

δκαβγ = lαβγ ·∇′′ (lαβγ ·∇′′δxαβγ
)
− lαβγ ·∇′′ [lαβγ ·

(
∇′′δxαβγ

)
·lαβγ

]
lαβγ

both quantities can be accounted for if δCs and δ js are written in terms of δxs rather

than presuming that they are independent variables. The goal of this subsection is to

derive the relation between δCs and δxs so that the variational problem to be studied

can be expressed in terms of a clear set of conditions that must hold at equilibrium.

Recall the definition of the Green’s deformation tensor from Eq. (3.131)

Cs = ∇X xs·(∇X xs)
T . (4.1)

We wish to evaluate the fixed-point variation of this tensor. Note that the tensor

depends upon a derivative of xs, the location of a solid particle, with respect to Xs,

which is the initial position of the particle. With Xs not subject to variation, we can

seek the variation of Cs. This is the variation of the change of a system from one

deformed state to another deformed state without changing the initial configuration.

The variation of Cs can be written as

δCs = δ
[
∇X xs·(∇X xs)

T
]
. (4.2)
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By the product rule for a variation, expansion of this expression yields

δCs = δ (∇X xs) ·(∇X xs)
T +∇X xs·δ

[
(∇X xs)

T
]
. (4.3)

The order of the differentiation and variational operators may be interchanged to

obtain

δCs = ∇X (δxs) ·(∇X xs)
T +∇X xs· [∇X (δxs)]

T . (4.4)

The variation δxs is a function of xs (Xs). Thus, the chain rule shows that

∇X (δxs) = ∇X xs·∇(δxs) , (4.5)

which can be used to write Eq. (4.4) as

δCs = ∇X xs·∇(δxs) ·(∇X xs)
T +∇X xs· [∇(δxs)]

T ·(∇X xs)
T . (4.6)

This expression, in turn, may be factored to the expression for the variation of Cs,

δCs = ∇X xs·
(

∇(δxs)+ [∇(δxs)]
T
)
·(∇X xs)

T . (4.7)

The fixed point variation of Cs, i.e., the perturbation in Cs imposed at a fixed

spatial location, xs, may be obtained using the definition of a fixed point variation

in space of an arbitrary function given in the first line of Table 4.1. The result is

δCs = δCs −δxs·∇Cs . (4.8)

However, ∇Cs = 0 so that δCs = δCs and Eq. (4.7) may be written

δCs = ∇X xs·
(

∇(δxs)+ [∇(δxs)]
T
)
·(∇X xs)

T . (4.9)

Equation (4.9) has been entered for convenience into Table 4.1.

The calculation of some of the other entries in Table 4.1 are left as exercises. The

objective here is to utilize the expressions for variations for physical problems rather

than provide all the underlying derivations, some of which can be found elsewhere

[e.g., 2, 12].

4.4 Variation of Energy Integrals

The objective of this chapter is to provide an approach to determining the thermo-

dynamic conditions that apply to a multiphase system at equilibrium. Although the

conditions will be different depending on the specific system under consideration,

some general principles apply that suggest an appropriate path of analysis. One con-

dition is that a closed system at equilibrium is at a state of minimum energy such

that any perturbations around that state will increase the energy. A second condition

4.3 Variation of Microscale Quantities
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is that the entropy of the equilibrium system is at a maximum such that any pertur-

bation in the system away from equilibrium would cause the entropy to decrease.

The third condition is that at equilibrium, chemical reactions will cease such that the

masses of each of the chemical species will be constant. Any perturbation about the

equilibrium state will cause a species mass to either increase or decrease, depending

on the reaction. From these observations, the equilibrium state is observed to be one

where small variations result in zero change in the total energy and entropy of the

system and in zero change of the mass of each chemical species.

Another common feature of the multiphase systems of interest is that they contain

multiple entity types. For example, a porous medium system composed of a fluid and

solid will consist of two phase entities and an interfacial entity that is the boundary

between the two phases. Each of these entities has thermodynamic properties and is

described by thermodynamic relations as discussed in Chap. 3. Similarly, a system

composed of two fluids and a solid will have three phase entities, three interface

entities with each being an interface between a pair of phases, and a common curve

where the three interfaces meet. Common points can exist in four-phase systems,

but we will not consider such systems here.

For the systems under consideration, the equilibrium conditions of minimum en-

ergy, maximum entropy, and fixed mass of each species will apply to the system

as a whole, rather than to individual entities, because the entities interact with each

other and cannot be treated in isolation. The interaction leads to some conditions

that must apply in the interior of a system beyond those conditions obtained for a

single phase system. On the interior of a domain, boundaries between entities will

adjust their locations and extents (area, length, or number) in reaching an equilib-

rium state. Equilibrium states may be achieved that have different distributions and

morphology of entities. However any equilibrium state must be one of minimum

energy, maximum entropy, and unchanging species masses. Because the system as

a whole is considered, the situation is complicated because we stipulate only the ex-

ternal boundary of the system, not the boundary of each individual entity within the

system. The extent of the entities may vary as may their locations and morphology.

The energy, entropy, and species masses of a system are obtained as integrals

over the domain of each entity of the local values expressed on a per unit entity

basis. The equilibrium energy is composed of both the internal and the potential

energy contributions. Thus, the total system energy, ET , is

ET = ∑
α∈I

∫
Ωα

(Eα +Ψα) dr , (4.10)

where I is the index set of entities and Ωα is the domain of entity α . The system

entropy, ST , is likewise obtained as an integral of point values over all entities with

ST = ∑
α∈I

∫
Ωα

ηα dr . (4.11)
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Table 4.2 Relations for variation of integrals over phases, interface, and common lines as derived
in Appendix A. For clarity, the notation δxα is introduced to denote the variation of a location
within the domain of entity α while δxαα is employed to denote the variation of the location of
the boundary of entity α

δFα = δ
∫

Ωκ

fα dr for α ∈ I

Domain Variational Relation Eq.

Phase δFα =
∫

Ωα

δ fα dr+
∫

Γα

fα nα ·δxαα dr (A.53)
α ∈ IP

Interface δFα =
∫

Ωα

δ
′
fα dr− ∫

Ωα

fα ∇′·I′α ·δxα dr+
∫

Γα

fα nα ·δxαα dr (A.64)
α ∈ II

Common Curve δFα =
∫

Ωα

δ
′′

fα dr− ∫
Ωα

fα ∇′′·I′′α ·δxα dr+ ∑
κ∈Γα

( fα nα ·δxαα )|κ (A.84)
α ∈ IC

Common Point δFα = ∑
κ∈Ωα

δ
′′′

fα

∣∣∣
κ

inferred
α ∈ IPt

The total mass of chemical species i in the domain, MiT , is obtained as a sum over

all entities according to

MiT = ∑
α∈I

∫
Ωα

ρα ωiα dr for i ∈ Is , (4.12)

where Is is the index set of chemical species.

Equations (4.10)–(4.12) can be combined to obtain a functional for the system,

FT , defined as

FT = ET −λSST − ∑
i∈Is

λMiMiT , (4.13)

where λS and λMi are a set of unspecified constant Lagrange parameters that ensure

consistency of units in combining these integrals. We can take the variation of Eq.

(4.13) to obtain

δFT = δET −λSδST − ∑
i∈Is

λMi δMiT , (4.14)

where the variation of the coefficients is zero because they are constants. The func-

tional FT has the interesting property that its variation will be zero at equilibrium for

any values of λS and λMi because δET is zero (since ET is a minimum), δST is zero

(since ST is a maximum), and δMiT is zero for all species i (since no reactions occur

at equilibrium that would cause a change in mass of a chemical species). Thus the

determination of conditions for equilibrium has been expressed as the determination

of the conditions for which

δFT = 0 . (4.15)
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Substitution of Eqs. (4.10)–(4.12) into Eq. (4.14) subject to the equilibrium con-

straint of Eq. (4.15) gives the equilibrium condition as

0 = ∑
α∈I

⎡
⎣δ

∫
Ωα

(Eα +Ψα) dr−λSδ
∫

Ωα

ηα dr− ∑
i∈Is

λMi δ
∫

Ωα

ρα ωiα dr

⎤
⎦ (4.16)

or

0 = ∑
α∈I

δ
∫

Ωα

(
Eα +Ψα −λSηα − ∑

i∈Is

λMi ρα ωiα

)
dr . (4.17)

We emphasize that the integrals appearing in Eq. (4.16) are over phases, inter-

faces, and common curves, depending upon the domain of entity α so that this

equation is a variational expression that accounts for the system as a whole, which

is composed of all of the entities in the index set I.

To use Eq. (4.17) to deduce equilibrium conditions, we must be able to relate the

variations of integrals to integrals involving the variations of microscale quantities.

In other words, we need to interchange the order of integration and variation. This

interchange is different depending on whether the domain is a volume, interface, or

common curve. Derivations of the theorems that facilitate this interchange may be

found in Appendix A and the results appear, for convenience, in Table 4.2. Recall

that variation at the external boundaries of the domain is not considered as we are

concerned with internal conditions. Thus a variation of an integral over a phase is

due to variation of the quantities in the integrand and to the variation of the boundary

of the phase within the system. These boundaries coincide with interfaces and com-

mon curves. The equation for the variation of an integral over a phase is Eq. (A.53)

in the table (and Appendix A). The contributions due to integrand variation and

boundary variation are accounted for, respectively, as the two terms on the right side

of the equation. The variation of an integral over an interface is comprised of varia-

tion of the quantities in the integrand and variation of the boundary of the interface

coincident with a common curve. These effects are given, respectively, as the first

and third terms on the right side of Eq. (A.64) in the table. In addition, an interface

may deform without its boundary points varying, providing another contribution to

the variation of an integral over an interface. This deformation is represented in the

second integral on the right side of Eq. (A.64). The variation of an integral over a

common curve is due to the variation of the integrand, deformation of the curve, and

movement of common points at the end of pieces of the curve. These elements of

the variation of the integral over a curve are accounted for, respectively, by the three

terms on the right side of Eq. (A.84) derived in Appendix A and appearing in Table

4.2.

Examination of the entries in Table 4.2 shows that the forms of the variations are

all similar and thus can be expressed in a single form given in Eq. (A.86),
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δFα =
∫

Ωα

δ
(n)

fα dr−
∫

Ωα

fα ∇(n)·I(n)α ·δxα dr+
∫
Γα

fα nα ·δxαα dr for α ∈ I .

(4.18)

In this equation, n = 3−dimα , and (n) is replaced by n primes to obtain the form

for each entity. Additionally, when n = 2, the case of a common curve, the last

integral in the equation is replaced by a summation. We can also infer the form

for the variation of a common point property, and this is given in the table. This

inference is based on the facts that I′′′α = 0 and a point has no boundary.

To obtain a general expression for the variational analysis of multiphase systems,

we employ the three theorems in Table 4.2 in Eq. (4.17) by identifying the portions

of the summation that are over phases, interfaces, and common curves. In the interest

of keeping the equations short, the general form of Eq. (4.18) will be employed;

explicit expansion for terms corresponding to the specific entities is postponed until

later. Application of Eq. (4.18) to Eq. (4.17) yields

0 = ∑
α∈I

∫
Ωα

[
δ
(n)

Eα +δ
(n)

Ψα −λSδ
(n)

ηα − ∑
i∈Is

λMiδ
(n)
(ρα ωiα)

]
dr

− ∑
α∈I

∫
Ωα

(
Eα +Ψα −λSηα − ∑

i∈Is

λMiρα ωiα

)
(∇(n)·I(n)α )·δxα dr

+ ∑
α∈I

∫
Γα

(
Eα +Ψα −λSηα − ∑

i∈Is

λMiρα ωiα

)
nα ·δxαα dr , (4.19)

where n = 3−dimα and integrals over points imply summations.

Next we will particularize Eq. (4.19) to a form that retains generality but is tar-

geted at porous medium analysis with one phase being a solid (i.e., α = s). Because

the expression for energy of an elastic solid as given by Eq. (3.159) is different from

that for a fluid, as in Eq. (3.156), it is useful to separate the summation over phases

in Eq. (4.19) to a part that is over the fluid phases and a part over a solid phase. The

index set of phases, IP, satisfies the relation IP = If ∪ IS where If is the index set

of fluid phases and IS is the solid phase index set. In this instance, IS = {s}. For

convenience, we will also make use of the notation I/S to indicate the index set of

all entities except the solid phase such that I= IS ∪ I/S. Additionally, we will make

use of the following information to re-express certain terms in the equation:

• CIT representations of microscopic energy densities for the fluid phase, the elas-

tic solid, the interface, and the common curve are given by Eqs. (3.156), (3.159),

(3.161), and (3.163) respectively. These definitions are used to eliminate the en-

ergy densities from Eq. (4.19).

• Common points will be considered to have no thermodynamic properties of their

own. Rather they are simply junctions where common curves meet. Thus, in
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any summations, quantities that would be properties of common points can be

dropped (i.e., Eα , ρα , Ψα , and ηα are all zero for α ∈ IPt).

• The variations δ
(n)

Eα for α ∈ I are eliminated from Eq. (4.19) using equalities

in Table 4.1.

• Use is made of the identity Ψα = ∑
i∈Is

ρα ωiα ψiα for α ∈ I.

• The identities involving variations of gravity potentials in Table 4.1 are used in

the equation with δ
(n)

ψiα =−giα ·(I− I
(n)
α )·δxα .

Incorporating the changes annotated above into Eq. (4.19) yields

0 = ∑
α∈I

∫
Ωα

[
(θα −λS)δ

(n)
ηα + ∑

i∈Is

(
μiα +ψiα −λMi

)
δ
(n)
(ρα ωiα)

]
dr

+ ∑
α∈I

∫
Γα

[
(θα −λS)ηα + ∑

i∈Is

(
μiα +ψiα −λMi

)
ρα ωiα

]
nα ·δxαα dr

− ∑
α∈I

∫
Ωα

[
(θα −λS)ηα + ∑

i∈Is

(
μiα +ψiα −λMi

)
ρα ωiα

]
(∇(n)·I(n)α )·δxα dr

− ∑
α∈II

∫
Ωα

γα(∇′·I′α)·δxα dr+ ∑
α∈IC

∫
Ωα

γα(∇′′·I′′α)·δxα dr

− ∑
α∈If

∫
Γα

pα nα ·δxαα dr+ ∑
α∈II

∫
Γα

γα nα ·δxαα dr− ∑
α∈IC

∫
Γα

γα nα ·δxαα dr

− ∑
α∈II

∫
Ωα

ρα gα ·
(
I− I′α

)
·δxα dr− ∑

α∈IC

∫
Ωα

ρα gα ·
(
I− I′′α

)
·δxα dr

+
∫

Ωs

σσσ s:δ
(
Cs

js

)
dr+

∫
Γs

σσσ s:
Cs

js
ns·δxss dr . (4.20)

This equation consists of groups of terms multiplied by variations of microscopic

quantities. However, the fixed-point variation of Cs/ js is not independent of vari-

ations in xs. Therefore, prior to applying this equation to particular systems, it is

necessary to further analyze this term.

4.4.1 Analysis of the Integral of σσσ s:δ (Cs/ js)

The term of interest is the next to the last term in Eq. (4.20), the integral over the

solid domain. Apply the product rule to this term to obtain
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∫
Ωs

σσσ s:δ
(
Cs

js

)
dr=−

∫
Ωs

[
σσσ s:Cs

j2
s

δ js −
1

js
σσσ s:δCs

]
dr . (4.21)

Make use of the expressions for δ jα and δρα in Table 4.1 (or the fact that ρs js is,

by definition, constant) to show that

δ js =− js
ρs

δρs . (4.22)

Thus Eq. (4.21) becomes

∫
Ωs

σσσ s:δ
(
Cs

js

)
dr=

∫
Ωs

(
σσσ s:Cs

ρs js
δρs +

1

js
σσσ s:δCs

)
dr . (4.23)

Table 4.1 provides an identity for δCs so that we can further manipulate this equa-

tion to ∫
Ωs

σσσ s:δ
(
Cs

js

)
dr=

∫
Ωs

(
σσσ s:Cs

ρs js
δρs

)
dr

+
∫

Ωs

{
2

js

[
(∇X xs)

T ·σσσ s·∇X xs

]
:
1

2

[
∇(δxs)+ [∇(δxs)]

T
]}

dr . (4.24)

We identify the solid phase stress tensor, ts, as

ts =
2

js
(∇X xs)

T ·σσσ s·∇X xs . (4.25)

Because ts is symmetric, its insertion into Eq. (4.24) yields

∫
Ωs

σσσ s:δ
(
Cs

js

)
dr=

∫
Ωs

[
σσσ s:Cs

ρs js
δρs + ts:∇(δxs)

]
dr . (4.26)

This last equation may be modified by writing it in terms of the deviatoric stress

tensor, tsD, where

tsD = ts −
ts:I

3
I . (4.27)

This change gives

∫
Ωs

σσσ s:δ
(
Cs

js

)
dr=

∫
Ωs

σσσ s:Cs

ρs js
δρs dr+

∫
Ωs

[
tsD:∇(δxs)+

ts:I

3
∇·(δxs)

]
dr . (4.28)

Making use of the relation between the total and fixed point variations and the ex-

pression for δρα in Table 4.1, we can show that
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∇·(δxs) =− 1

ρs
δρs −

1

ρs
(δxs) ·∇ρs . (4.29)

We use this expression to eliminate ∇·(δxs) from Eq. (4.28) and obtain, after rear-

rangement,

∫
Ωs

σσσ s:δ
(
Cs

js

)
dr=

∫
Ωs

[
tsD:∇(δxs)−

(
ts:I

3ρs
∇ρs

)
·δxs

]
dr

+
∫

Ωs

(
σσσ s:Cs

ρs js
− ts:I

3ρs

)
δρs dr . (4.30)

Apply the product rule and the divergence theorem to the first term so that the equa-

tion becomes∫
Ωs

σσσ s:δ
(
Cs

js

)
dr=−

∫
Ωs

(
∇·tsD +

ts:I

3ρs
∇ρs

)
·δxs dr

+
∫

Ωs

(
σσσ s:Cs

ρs js
− ts:I

3ρs

)
δρs dr+

∫
Γs

ns·tsD·δxs dr . (4.31)

It will prove convenient to revert back to the full stress tensor from the deviatoric

tensor by using Eq. (4.27). Then after minor rearrangement, we obtain

∫
Ωs

σσσ s:δ
(
Cs

js

)
dr=−

∫
Ωs

[
∇·ts −ρs∇

(
ts:I

3ρs

)]
·δxs dr+

∫
Ωs

(
σσσ s:Cs

ρs js
− ts:I

3ρs

)
δρs dr

+
∫
Γs

ns·ts·δxs dr−
∫
Γs

ts:I

3
ns·δxs dr . (4.32)

With ts defined as in Eq. (4.25), we use the fact that

ts:I= 2
σσσ s:Cs

js
(4.33)

to further simplify Eq. (4.32) to

∫
Ωs

σσσ s:δ
(
Cs

js

)
dr=−

∫
Ωs

[
∇·ts −ρs∇

(
ts:I

3ρs

)]
·δxs dr

+
∫

Ωs

(
σσσ s:Cs

3ρs js

)
δρs dr+

∫
Γs

ns·ts·δxs dr−
∫
Γs

2σσσ s:Cs

3 js
ns·δxs dr . (4.34)

As a last step in anticipating future utility of this expression, it will prove conve-

nient to make use of the fact that the unit tensor, I, can be decomposed according to
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I= I′ss +nsns on Γs such that

∫
Γs

ns·ts·δxs dr=
∫
Γs

ns·ts·I′ss·δxs dr+
∫
Γs

(ns·ts·ns)ns·δxs dr . (4.35)

Thus, Eq. (4.34) becomes

∫
Ωs

σσσ s:δ
(
Cs

js

)
dr=−

∫
Ωs

[
∇·ts −ρs∇

(
ts:I

3ρs

)]
·δxs dr+

∫
Ωs

(
σσσ s:Cs

3ρs js

)
δρs dr

−
∫
Γs

2σσσ s:Cs

3 js
ns·δxs dr+

∫
Γs

ns·ts·I′ss·δxs dr+
∫
Γs

(ns·ts·ns)ns·δxs dr . (4.36)

There is one particular feature of this equation that deserves mention. The integrands

of the integrals over Γs contain δxs rather than δxss. This is a variation in the position

vector of a solid phase coordinate. It is different from the variation of the position

vector of the boundary of the solid phase. These two variations can be different if

solid material is transferring into the interface. In all the integrals over Γα in Eq.

(4.20), δxαα is the variation of the coordinate on the boundary of entity α . This

distinction is important in subsequent equations.

This completes the mathematical analysis of this subsection. Equation (4.36) will

be used in conjunction with Eq. (4.20) to obtain the variational form for analyzing

equilibrium of a multiphase system. The analysis of this section will not have to be

repeated for the various specific systems of interest.

4.4.2 General Condition of Equilibrium

The preceding subsection is provided so that the mathematical derivation of the

condition for equilibrium will be complete. If one is only interested in the result,

then Eq. (4.36) can be taken on faith and substituted into Eq. (4.20) to continue the

derivation of the physically important restriction. If we make this substitution and

rearrange terms we obtain

0 = ∑
α∈I

∫
Ωα

(θα −λS)δ
(n)

ηα dr+ ∑
α∈I

∫
Γα

(θα −λS)ηα nα ·δxαα dr

− ∑
α∈I

∫
Ωα

(θα −λS)ηα(∇(n)·I(n)α )·δxα dr

+ ∑
α∈I/S

∑
i∈Is

∫
Ωα

(
μiα +ψiα −λMi

)
δ
(n)
(ρα ωiα)dr
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+ ∑
α∈I/S

∑
i∈Is

∫
Γα

(
μiα +ψiα −λMi

)
ρα ωiα nα ·δxαα dr

− ∑
α∈I/S

∑
i∈Is

∫
Ωα

(
μiα +ψiα −λMi

)
ρα ωiα(∇(n)·I(n)α )·δxα dr

+ ∑
i∈Is

∫
Ωs

(
μis +ψis +

σσσ s:Cs

3 jsρs
−λMi

)
δ (ρsωis)dr

+ ∑
i∈Is

∫
Γs

(
μis +ψis +

σσσ s:Cs

ρs js
−λMi

)
ρsωisns·δxss dr

− ∑
α∈II

∫
Ωα

γα(∇′·I′α)·δxα dr+ ∑
α∈IC

∫
Ωα

γα(∇′′·I′′α)·δxα dr

− ∑
α∈If

∫
Γα

pα nα ·δxαα dr+ ∑
α∈II

∫
Γα

γα nα ·δxαα dr− ∑
α∈IC

∫
Γα

γα nα ·δxαα dr

− ∑
α∈II

∫
Ωα

ρα gα ·
(
I− I′α

)
·δxα dr− ∑

α∈IC

∫
Ωα

ρα gα ·
(
I− I′′α

)
·δxα dr

−
∫

Ωs

[
∇·ts −ρs∇

(
ts:I

3ρs

)]
·δxs dr

+
∫
Γs

ns·ts·I′ss·δxs dr+
∫
Γs

(
ns·ts·ns −

2σσσ s:Cs

3 js

)
ns·δxs dr . (4.37)

The motivation for the preceding algebraic manipulations was to group terms

that multiplied a common variational term integrated over the same domain. Since

the independent variations are arbitrary, equilibrium will hold only if the multipliers

of independent variations are zero. This stipulation will be examined further in the

next sections in the context of two particular systems of interest: a porous medium

system with a single fluid phase and a porous medium system with two fluid phases.

Equation (4.37) will be employed as the starting point in the development of equi-

librium conditions for these systems.

4.5 Single-fluid-phase Porous Medium System

A single-fluid-phase porous medium system consists of a fluid phase, designated as

the w entity, a solid phase, designated as the s entity, and the interface between the

phases, denoted as the ws entity. Thus, the index set for the phases, IP, is

IP = {w,s} (4.38)
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and the index set for the interface, II, is

II = {ws} . (4.39)

Since there are no common curves or common points for a two-phase system, the

index sets for common curves, IC, and for common points, IPt, are the null set,

indicated as

IC = {∅} (4.40)

and

IPt = {∅} . (4.41)

The index set for the entire system is denoted as I and is defined as

I= IP ∪ II = {w,s,ws} . (4.42)

The only fluid phase is the w phase and therefore the index set of fluids, If, is

If = {w} . (4.43)

With this selection of indices to designate the phases and interfaces, Eq. (4.37)

may be written in the form particular to the system of interest. There are no in-

tegrals/summations over common curves/points, and there is no boundary of the

interface. Identities on the ws interface that apply for this two phase system are

nwnw = I− I′ws (4.44)

and

(∇′·nw)nw =−∇′·I′ws . (4.45)

Because the variation of the boundary of a phase in the normal direction is equal to

the variation of the boundary entity coordinate in the normal direction, the variation

δxαα can be expressed according to

nα ·δxαα = nα ·δxws in integrals over Γα for α ∈ IP . (4.46)

The resulting simplification of Eq. (4.37) for a single-fluid-phase porous medium

is thus

0 = ∑
α∈I

∫
Ωα

(θα −λS)δ
(n)

ηα dr+ ∑
α∈IP

∫
Γα

(θα −λS)ηα nα ·δxws dr

+
∫

Ωws

(θws −λS)ηws(∇′·nw)nw·δxws dr

+ ∑
α∈I/S

∑
i∈Is

∫
Ωα

(
μiα +ψiα −λMi

)
δ
(n)
(ρα ωiα)dr
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+ ∑
i∈Is

∫
Γw

(
μiw +ψiw −λMi

)
ρwωiwnw·δxws dr

+ ∑
i∈Is

∫
Ωws

(
μiws +ψiws −λMi

)
ρwsωiws(∇′·nw)nw·δxws dr

+ ∑
i∈Is

∫
Ωs

(
μis +ψis +

σσσ s:Cs

3 jsρs
−λMi

)
δ (ρsωis)dr

+ ∑
i∈Is

∫
Γs

(
μis +ψis +

σσσ s:Cs

ρs js
−λMi

)
ρsωisns·δxws dr

+
∫

Ωws

[
γws(∇′·nw)−ρwsgws·nw

]
nw·δxws dr−

∫
Γw

pwnw·δxws dr

−
∫

Ωs

[
∇·ts −ρs∇

(
ts:I

3ρs

)]
·δxs dr

+
∫
Γs

ns·ts·I′ss·δxs dr+
∫
Γs

(
ns·ts·ns −

2σσσ s:Cs

3 js

)
ns·δxs dr . (4.47)

To arrange Eq. (4.47) to a form that provides equilibrium conditions, we have

to express it in terms of independent variations. Therefore, we make the following

observations and substitutions:

• The boundaries of the w and s phases are the ws interface. Therefore, integrals

over Γs and Γw may be changed to integrals over Ωws when convenient; and I′ss
may be replaced by I′ws.

• Because ns =−nw on Ωws, ns may be eliminated from Eq. (4.47) when desired.

Use of this information in Eq. (4.47), followed by rearrangement and grouping of

terms in the resultant expression, yields

0 = ∑
α∈I

∫
Ωα

(θα −λS)δ
(n)

ηα dr+ ∑
α∈IP

∫
Γα

(θα −λS)ηα nα ·δxws dr

+
∫

Ωws

(θws −λS)ηws(∇′·nw)nw·δxws dr

+ ∑
α∈I/S

∑
i∈Is

∫
Ωα

(
μiα +ψiα −λMi

)
δ
(n)
(ρα ωiα)dr

+ ∑
i∈Is

∫
Γw

(
μiw +ψiw −λMi

)
ρwωiwnw·δxws dr
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+ ∑
i∈Is

∫
Ωws

(
μiws +ψiws −λMi

)
ρwsωiws(∇′·nw)nw·δxws dr

+ ∑
i∈Is

∫
Ωs

(
μis +ψis +

σσσ s:Cs

3ρs js
−λMi

)
δ (ρsωis)dr

+ ∑
i∈Is

∫
Γs

(
μis +ψis +

σσσ s:Cs

3ρs js
−λMi

)
ρsωisns·δxws dr

−
∫

Ωs

[
∇·ts −ρs∇

(
ts:I

3ρs

)]
·δxs dr

+
∫

Ωws

[
γws(∇′·nw)−ρwsgws·nw − pw − 2σσσ s:Cs

3 js

]
nw·δxws dr

+
∫

Ωws

ns·ts·I′ws·δxs dr+
∫

Ωws

(
ns·ts·ns −

2σσσ s:Cs

3 js

)
ns·δxs dr . (4.48)

The equilibrium conditions can be determined directly by requiring that each of the

coefficients of independent variations be zero. This also serves to determine the val-

ues of the constant Lagrange multipliers, λS and λMi . These equilibrium conditions

will be stated explicitly in the next subsection.

4.5.1 Equilibrium Conditions

The coefficients of each of the variations of entropy, δηw, δηs, and δ
′
ηws, must be

zero. Thus,

θw = θs = θws = λS , (4.49)

which means that the equilibrium temperatures of all entities are equal to each other

and constant, since λS is a constant. Additionally, the coefficients of each of the

variations of the mass density of each chemical species in each entity must be zero

such that

μiw +ψiw = μis +ψis +
σσσ s:Cs

3ρs js
= μiws +ψiws = λMi for i ∈ Is . (4.50)

This condition specifies that for each chemical species, the sum of its chemical plus

gravitational potentials will be constant and equal for a species in the fluid phase

or the interface. Note that this sum of potentials for one species is not equal to

that for another species. In extending the equality to include species in the solid

phase, the additional term must be included that accounts for the deformation of

the solid phase. The equilibration of temperatures and of potentials presumes that

heat and mass, respectively, may be exchanged between entities. If these cannot be
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transferred between entities, one can show that the equilibrium condition is simply

that the quantities indicated must still be constant but may take on different values

in different entities. The requirements of Eqs. (4.49) and (4.50) ensure that the first

eight integrals in Eq. (4.48) will be zero. We now turn to the last four integrals in

this equation.

The variations in each of the last four integrals are independent because they are

involved with different integration domains or in different directions on the bound-

ary. The variations in the direction normal to the ws interface, −nw·δxws and ns·δxs,

will only be equal if there is no mass change occurring. Thus, these are independent

variations at the boundary. The requirement that each coefficient of the independent

variations must be zero at equilibrium gives four additional conditions of equilib-

rium:

∇·ts −ρs∇
(
ts:I

3ρs

)
= 0 for x ∈ Ωs , (4.51)

pw +
2σσσ s:Cs

3 jsρs
− (∇·nw)γws +ρwsnw ·gws = 0 for x ∈ Ωws , (4.52)

ns·ts·ns −
2σσσ s:Cs

3 js
= 0 for x ∈ Ωws , (4.53)

and

ns·ts·I′ws = 0′ for x ∈ Ωws . (4.54)

Equation (4.51) is consistent with the equilibrium condition satisfied by conserva-

tion of momentum Eq. (2.27), as can be proven as an exercise; it adds no informa-

tion beyond what the momentum equation provides. Equation (4.52) states that the

normal forces exerted at the interface by the w and s phases are balanced by gravi-

tational effects associated with the mass per area of the interface and the interfacial

tension on a curved interface. For convenience, combine Eqs. (4.52) and (4.53) to

provide the alternative, and perhaps more intuitive, equilibrium relation,

pw +ns·ts·ns − (∇·nw)γws +ρwsnw ·gws = 0 for x ∈ Ωws . (4.55)

This equation is an extension of the Young-Laplace equation [5, 13, 19] that de-

scribes capillary forces between fluids. Here, the condition applies to an interface

between a fluid and a solid and also takes into account the possibility of the mass

per area of the interface being non-zero. When the interface is massless and flat, the

last two terms on the left side of Eq. (4.55) will be zero such that the normal forces

exerted by the phases are equal at equilibrium.

4.6 Two-fluid-phase Porous Medium System

As a second example application of the use of variational methods to determine

equilibrium conditions, we consider a two-fluid-phase porous medium system. The
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analysis is similar to that performed in Sect. 4.5 for a single-fluid porous medium,

although somewhat more complicated because the physics of the system are more

involved. Equation (4.37) serves as a useful starting point for the equilibrium anal-

ysis. Expansion of the summations over entities to the form needed to describe the

three-phase system leads to a long equation. However, by careful identification of

the appropriate index sets, we can dispose of some of the equilibrium conditions

expeditiously and focus our effort on extraction of the equilibrium conditions that

supplement those achieved for the simpler single-fluid-phase porous medium sys-

tem.

4.6.1 Identification of Index Sets

The system of interest consists of a fluid phase, w, that preferentially wets the solid

phase, s, and a second fluid phase, n, that is a non-wetting phase. For this system,

there are three interface entities, denoted as wn, ws, and ns, that separate pairs of

phases and serve as the boundaries of the phases. Additionally, a common curve

entity denoted as wns is the boundary of an interface and is also the location where

the three interfaces, as well as three phases, meet. For this type of porous medium

system, the index set for the phases, IP, is

IP = {w,n,s} ; (4.56)

the index set for the interfaces, II, is

II = {wn,ws,ns} ; (4.57)

and the index set for the common curve, IC, is

IC = {wns} . (4.58)

In the designation of interfaces and common curves, the order of the indices is irrel-

evant. This system has no common points, so the index set for the entire system, I,

is

I= IP ∪ II ∪ IC = {w,n,s,wn,ws,ns,wns} . (4.59)

Since there are two fluid phases, the index set for the fluids is If where

If = {w,n} . (4.60)

With these index sets, Eq. (4.37) may be applied directly to a two-fluid-phase porous

medium system. We will make use of experience gained in the previous section

to identify some of the equilibrium conditions rather than working with the fully

expanded equation explicitly.
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4.6.2 Identification of Simpler Equilibrium Conditions

Equilibrium conditions for multiphase systems should not contradict any conditions

for single-phase or two-phase systems. They should be extensions of those con-

ditions and should be consistent in trivial cases, such as when one phase has no

properties and occupies no space. Based on this idea, we can immediately deduce

the simpler equilibrium conditions for the two-fluid-phase porous medium system

and then spend more effort on obtaining extensions.

The coefficients of independent variations in Eq. (4.37) must all be zero. Each of

the fixed variations of entropy is independent of all other variations such that their

coefficients must be zero. Therefore,

θw = θn = θs = θwn = θws = θns = θwns = λS . (4.61)

The equalities provide the unsurprising condition that at equilibrium, the tempera-

tures of all entities in thermal contact are equal and constant.

The variations of the mass densities of the chemical species are also independent

such that their coefficients must be zero. This stipulation provides

μiw +ψiw = μin +ψin = μis +ψis +
σσσ s:Cs

3ρs js
= μiwn +ψiwn

= μiws +ψiws = μins +ψins = μiwns +ψiwns = λMi for i ∈ Is . (4.62)

This set of equalities states the conditions for which transfer of chemical species be-

tween entities does not occur. At equilibrium, the sum of chemical and gravitational

potentials, plus an additional contribution for the solid phase deformation, for each

chemical species will be equal in all entities and constant. Different species may

take on different constant values.

The last simple condition is obtained by the observation that there is only one

term associated with δxs within the solid domain. This is the second to the last

integral term in Eq. (4.37). Therefore, the coefficient of this variation must be zero

so that, identically to Eq. (4.51) for the single- fluid phase case,

∇·ts −ρs∇
(
ts:I

3ρs

)
= 0 for x ∈ Ωs . (4.63)

This condition should not be surprising as one would expect that the condition of

stress equilibrium within the solid phase should be independent of the number or

distribution of fluid phases it contacts. On the other hand, equilibrium conditions at

the boundary of the solid phase should depend on interactions with other entities.

The equilibrium conditions provided by Eqs. (4.61)–(4.63) allow for simplifica-

tion of the variational equilibrium relation Eq. (4.37) applied to the two-fluid-phase

system. In the next subsection, we will work with the remaining terms in that equa-

tion to obtain the additional conditions of equilibrium.
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4.6.3 Equilibrium Variational Analysis

The identification of the simple equilibrium conditions in the last subsection allows

many of the terms in Eq. (4.37) to be eliminated. The remaining part of the equation

that must be examined, in light of the system entities, is

0 =
∫
Γs

(
2σσσ s:Cs

3 js

)
ns·δxss dr− ∑

α∈II

∫
Ωα

γα(∇′·I′α)·δxα dr

+
∫

Ωwns

γwns(∇′′·I′′wns)·δxwns dr− ∑
α∈If

∫
Γα

pα nα ·δxαα dr+ ∑
α∈II

∫
Γα

γα nα ·δxαα dr

− ∑
α∈II

∫
Ωα

ρα gα ·
(
I− I′α

)
·δxα dr−

∫
Ωwns

ρwnsgwns·
(
I− I′′wns

)
·δxwns dr

+
∫
Γs

ns·ts·I′ss·δxs dr+
∫
Γs

(
ns·ts·ns −

2σσσ s:Cs

3 js

)
ns·δxs dr . (4.64)

With use of the index sets identified in Sect. 4.6.1, the summations over entities may

be expanded out. Additionally, we make use of equations for the tensor I′α analogous

to Eqs. (4.44) and (4.45) and also recognize that I′′wns = lwnslwns. Thus we obtain

0 =
∫
Γs

(
2σσσ s:Cs

3 js

)
ns·δxss dr+

∫
Ωwn

(∇′·nw)γwnnw·δxwn dr

+
∫

Ωws

(∇′·nw)γwsnw·δxws dr+
∫

Ωns

(∇′·nn)γnsnn·δxns dr

+
∫

Ωwns

γwns
(
lwns·∇′′lwns

)
·δxwns dr−

∫
Γw

pwnw·δxww dr

−
∫
Γn

pnnn·δxnn dr+
∫

Γwn

γwnnwn·δxwnwn dr+
∫

Γws

γwsnws·δxwsws dr

+
∫

Γns

γnsnns·δxnsns dr−
∫

Ωwn

(ρwngwn·nw)nw·δxwn dr

−
∫

Ωws

(ρwsgws·nw)nw·δxws dr−
∫

Ωns

(ρnsgns·nn)nn·δxns dr

−
∫

Ωwns

ρwnsgwns·(I− lwnslwns) ·δxwns dr+
∫
Γs

ns·ts·I′ss·δxs dr
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+
∫
Γs

(
ns·ts·ns −

2σσσ s:Cs

3 js

)
ns·δxs dr . (4.65)

The objective now is to express all the integrals in the preceding equation that are

over boundaries of entities as integrals over the domains of entities.

The domains of integration are related to one another in that interfaces are bound-

aries of phases, and the common curve is the boundary of the interfaces1. Because

we are not considering concentrated forces from the fluid phases at the common

curve, for the w phase we can change the integrals over the boundaries of the fluid

phases to integrals over interface entities, noting that

Γw = Ωws ∪Ωwn . (4.66)

For the n phase, the corresponding equation is

Γn = Ωwn ∪Ωns . (4.67)

The normal component of the variation of a phase boundary is equal to the normal

component of the variation of the entity that comprises the phase boundary. There-

fore we obtain∫
Γw

pwnw·δxww dr=
∫

Ωwn

pwnw·δxwn dr+
∫

Ωws

pwnw·δxws dr (4.68)

and ∫
Γn

pnnn·δxnn dr=
∫

Ωwn

pnnn·δxwn dr+
∫

Ωns

pnnn·δxns dr . (4.69)

These decompositions are directly implemented in the two-fluid pressure integrals

of Eq. (4.65).

The solid phase boundary is treated slightly differently because we need to ac-

count for a concentrated stress that may act at the common curve. We will consider

solids to satisfy the condition that ns is unique at every point on the solid surface.

However, the force exerted on the surface by the common curve may require the

solid to deform or sustain a strain. Recall that the common curve is an idealization

that has only a length dimension. The location where three phases come together

is not actually a curve with no width but is a small region where properties change

abruptly. The fact that fluids at equilibrium do not sustain a strain makes them dif-

ferent from solids, such that the decompositions of Eqs. (4.68) and (4.69) are useful

for changing the domains of integration. At the smooth solid, we note that the solid

stress may respond to the common curve forces such that

ts = t∗s δ (x−xwns), (4.70)

1 Recall that we are not considering the external boundary of the domain since all variations are
specified to be zero at the boundaries.
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where δ (x−xwns) is a Dirac delta function for a curve that acts on the surface at the

coordinates of the common curve, xwns. Integration of the concentrated force at the

common curve over a surface simplifies to an integral over the common curve with

∫
Γs

[ns·t∗s δ (x−xwns)·ns]ns·δxs dr=
∫

Ωwns

(ns·t∗s ·ns)ns·δxs dr (4.71)

and ∫
Γs

ns·t∗s δ (x−xwns)·I′ss·δxs dr=
∫

Ωwns

ns·t∗s ·I′ss·δxs dr . (4.72)

Thus integration of the solid stress contributions over Γs requires that the domain of

the common curve, Ωwns, as well as the domains of the fluid-solid interfaces, Ωws
and Ωns, be considered. We obtain

∫
Γs

(ns·ts·ns)ns·δxs dr=
∫

Ωws

(ns·ts·ns)ns·δxs dr+
∫

Ωns

(ns·ts·ns)ns·δxs dr

+
∫

Ωwns

(ns·t∗s ·ns)ns·δxs dr (4.73)

and ∫
Γs

ns·ts·I′ss·δxs dr=
∫

Ωws

ns·ts·I′ws·δxs dr+
∫

Ωns

ns·ts·I′ns·δxs dr

+
∫

Ωwns

ns·t∗s ·I′ss·δxs dr . (4.74)

From similar reasoning, we obtain the equation

∫
Γs

2σσσ s:Cs

3 js
ns·δxs dr=

∫
Ωws

2σσσ s:Cs

3 js
ns·δxs dr+

∫
Ωns

2σσσ s:Cs

3 js
ns·δxs dr

+
∫

Ωwns

2σσσ∗
s :Cs

3 js
ns·δxs dr . (4.75)

Also of interest is the first term on the right side of Eq. (4.65). The expression of

this integral over Γs as an integral over Ωws, Ωns, and Ωwns is similar to Eq. (4.75).

However, one important difference is that the variation δxss must be converted to

variations of the entity coordinates. With this in mind, we obtain

∫
Γs

2σσσ s:Cs

3 js
ns·δxss dr=

∫
Ωws

2σσσ s:Cs

3 js
ns·δxws dr+

∫
Ωns

2σσσ s:Cs

3 js
ns·δxns dr
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+
∫

Ωwns

2σσσ∗
s :Cs

3 js
ns·δxwns dr . (4.76)

Lastly, consider the three integrals of surface tension over the boundaries of the

surface domain. For the two-fluid-phase system, there is only one common curve

type, and this common curve is the boundary domain of all of the interfaces. The

integrals of the surface tension have a common form, and the transformation to

integrals over Ωwns is written

∫
Γα

γα nα ·δxαα dr=
∫

Ωwns

γα nα ·δxwns dr for α ∈ II . (4.77)

Substitution of Eqs. (4.68) and (4.69) as well as Eqs. (4.73)–(4.77) into Eq. (4.65)

eliminates all the integrals over entity boundaries in favor of integrals over entities.

If the integrands for integrals over common domains are collected, Eq. (4.65) may

be re-expressed as

0 =−
∫

Ωwn

[
pwnw + pnnn +(ρwngwn·nw)nw − (∇′·nw)γwnnw

]
·δxwn dr

−
∫

Ωws

[
pwnw −

(
2σσσ s:Cs

3 js

)
ns +(ρwsgws·nw)nw − (∇′·nw)γwsnw

]
·δxws dr

−
∫

Ωns

[
pnnn −

(
2σσσ s:Cs

3 js

)
ns +(ρnsgns·nn)nn − (∇′·nn)γnsnn

]
·δxns dr

+
∫

Ωws

ns·ts·I′ws·δxs dr+
∫

Ωns

ns·ts·I′ns·δxs dr

+
∫

Ωws

(
ns·ts·ns −

2σσσ s:Cs

3 js

)
ns·δxs dr+

∫
Ωns

(
ns·ts·ns −

2σσσ s:Cs

3 js

)
ns·δxs dr

+
∫

Ωwns

(
ns·t∗s ·ns −

2σσσ∗
s :Cs

3 js

)
ns·δxs dr+

∫
Ωwns

ns·t∗s ·I′ss·δxs dr

+
∫

Ωwns

(
2σσσ∗

s :Cs

3 js

)
ns·δxwns dr

+
∫

Ωwns

[γwnnwn + γwsnws + γnsnns −ρwnsgwns·(I− lwnslwns)] ·δxwns dr

+
∫

Ωwns

γwns
(
lwns·∇′′lwns

)
·δxwns dr . (4.78)
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Further simplification can be achieved by making use of some equalities involving

the normal vectors.

At the interface between phases, the normals to the respective phases are in op-

posite directions such that

nn =−nw for x ∈ Ωwn , (4.79)

ns =−nw for x ∈ Ωws , (4.80)

and

ns =−nn for x ∈ Ωns . (4.81)

Because the solid surface is taken to be smooth such that it has a unique normal

direction at every point, the normals at the common curve pointing outward from,

and tangent to, the ws and ns interfaces will satisfy the condition that

nns =−nws for x ∈ Ωwns . (4.82)

The unit vector nwn at the common curve can be related to the normal and tangent

to the surface according to

nwn = cosϕws,wnnws − sinϕws,wnns for x ∈ Ωwns , (4.83)

where ϕws,wn is the angle between the ws and wn interfaces at the common curve.

Also, along the wns common curve the identity exists such that the curvature can

be expressed as

∇′′·I′′wns = lwns ·∇′′lwns = lwns ·∇′′lwns ·nsns + lwns ·∇′′lwns ·nwsnws . (4.84)

Then the normal curvature, κNwns, and the geodesic curvature, κGwns, are defined,

respectively, as

κNwns = lwns ·∇′′lwns ·ns for x ∈ Ωwns (4.85)

and

κGwns = lwns ·∇′′lwns ·nws for x ∈ Ωwns (4.86)

so that Eq. (4.84) may be written

lwns ·∇′′lwns = κNwnsns +κGwnsnws for x ∈ Ωwns . (4.87)

We will also make use of the definitions of the unit tensors with

I′ss = lwnslwns +nwsnws for x ∈ Ωwns (4.88)

and

I− lwnslwns = nsns +nwsnws for x ∈ Ωwns . (4.89)

Judicious introduction of the identities involving the unit vectors and unit tensors

allows for further regrouping of the integrals in Eq. (4.78) to obtain an equation
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that contains a set of quantities which must be zero since they multiply independent

variations over different domains. This equation is

0 =−
∫

Ωwn

[
pw − pn +ρwngwn·nw − (∇′·nw)γwn

]
nw·δxwn dr

−
∫

Ωws

[
pw +

2σσσ s:Cs

3 js
+ρwsgws·nw − (∇′·nw)γws

]
nw·δxws dr

−
∫

Ωns

[
pn +

2σσσ s:Cs

3 js
+ρnsgns·nn − (∇′·nn)γns

]
nn·δxns dr

+
∫

Ωws

(
ns·ts·ns −

2σσσ s:Cs

3 js

)
ns·δxs dr+

∫
Ωns

(
ns·ts·ns −

2σσσ s:Cs

3 js

)
ns·δxs dr

+
∫

Ωws

ns·ts·I′ws·δxs dr+
∫

Ωns

ns·ts·I′ns·δxs dr+
∫

Ωwns

ns·t∗s ·I′ss·δxs dr

+
∫

Ωwns

(
ns·t∗s ·ns −

2σσσ∗
s :Cs

3 js

)
ns·δxs dr

+
∫

Ωwns

(γwn cosϕws,wn + γws − γns −ρwnsgwns·nws + γwnsκGwns)nws·δxwns dr

−
∫

Ωwns

(
γwn sinϕwn,ws +ρwnsgwns·ns − γwnsκNwns −

2σσσ∗
s :Cs

3 js

)
ns·δxwns dr .

(4.90)

We now examine the equilibrium conditions that are implied by this equation.

4.6.4 Additional Equilibrium Conditions

Based upon the first integral in Eq. (4.90), the equilibrium condition on the wn
interface is

pw − pn +ρwngwn·nw − (∇′·nw)γwn = 0 for x ∈ Ωwn . (4.91)

This is the Young-Laplace equation [3, 5, 13, 19] for a fluid-fluid interface, sup-

plemented to account for the possibility that ρwngwn·nw could be significant. The

capillary pressure, pc
wn, is defined as the product of interfacial tension and interfa-

cial curvature according to

pc
wn =−(∇′·nw)γwn . (4.92)
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Therefore, under the two conditions that the interfacial mass density is negligible

and the system is at equilibrium, Eq. (4.91) provides the relation

pc
wn = pn − pw . (4.93)

The following conditions are worth listing explicitly:

• Capillary pressure is a state property of a fluid-fluid interface equal to the inter-

facial tension multiplied by the curvature.

• Capillary pressure is equal to the interfacial pressure difference of the phases

on each side of the interface at equilibrium when the interfacial density term is

negligible, but it can be identified according to Eq. (4.92) even when pressure

equilibrium has not been achieved.

• Identification of a contact angle where a fluid-fluid interface meets a solid surface

is not intrinsic to the definition of capillary pressure.

These observations will be revisited subsequently in describing porous media pro-

cesses at a larger scale.

From the second and third integrals in Eq. (4.90), we obtain the conditions

pw +
2σσσ s:Cs

3 js
+ρwsgws·nw − (∇′·nw)γws = 0 for x ∈ Ωws (4.94)

and

pn +
2σσσ s:Cs

3 js
+ρnsgns·nn − (∇′·nn)γns = 0 for x ∈ Ωns . (4.95)

These conditions are consistent with Eq. (4.52) obtained at the solid surface for

the single-fluid-phase case. They express the balance of the normal forces at the

solid surface at equilibrium. Based on the fourth and fifth integrals in Eq. (4.90), we

deduce

ns·ts·ns −
2σσσ s:Cs

3 js
= 0 for x ∈ Ωws or x ∈ Ωns . (4.96)

Therefore, equilibrium conditions Eqs. (4.94) and (4.95) may, alternatively, be ex-

pressed as

pw +ns·ts·ns +ρwsgws·nw − (∇′·nw)γws = 0 for x ∈ Ωws (4.97)

and

pn +ns·ts·ns +ρnsgns·nn − (∇′·nn)γns = 0 for x ∈ Ωns . (4.98)

The sixth, seventh, and eighth integrals in Eq. (4.90) dictate the equilibrium con-

ditions

ns·ts·I′ws = 0′ for x ∈ Ωws , (4.99)

ns·ts·I′ns = 0′ for x ∈ Ωns , (4.100)

and

ns·t∗s ·I′ss = 0′ for x ∈ Ωwns . (4.101)
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These equations express the conditions on the lateral stress on the solid surface,

including at common curve locations, and replicate the findings of Eq. (4.54) for the

single-fluid-phase case on the solid surface, though no common curve exists for that

case.

The last three integrals in Eq. (4.90) involve the independent variations on the

common curve. The multipliers of these variations must be zero, so three equilib-

rium conditions can be obtained. The first of these is

ns·t∗s ·ns −
2σσσ∗

s :Cs

3 js
= 0 for x ∈ Ωwns . (4.102)

This equation provides an alternative representation of an equilibrium concentrated

force acting at a common curve.

The second condition, which is an extension of the Young equation [1, 17, 19],

gives a balance of forces acting on the common curve normal to the curve and

tangent to the solid surface. This equation is

γwn cosϕws,wn + γws − γns −ρwnsgwns·nws + γwnsκGwns = 0 for x ∈ Ωwns . (4.103)

The first three terms comprise those most commonly associated with the Young

equation, while the last two are extensions. The terms involving surface tensions

account for the lateral forces exerted on the curve by the interfaces. The fourth term

is the gravitational force tangent to the solid surface, which would be important

only if the common curve mass density is significant. The fifth term accounts for a

tendency of the common curve to locate on the surface due to common curve tension

and the geodesic curvature. This force is similar to the tendency of a string circle

being shortened around a sphere to slide along the surface to a smaller region rather

than stay put and become tightened (except at the equator of the sphere).

The final equilibrium condition is a balance of forces at the common curve in

the direction normal to the solid surface and is obtained from the last integral in Eq.

(4.90) as

−γwn sinϕwn,ws −ρwnsgwns·ns + γwnsκNwns +ns·t∗s ·ns = 0 for x ∈ Ωwns , (4.104)

where equilibrium Eq. (4.102) has been invoked to replace 2σσσ∗
s :Cs/3 js. The first

term in this equation is the normal force exerted by the wn interface on the solid

surface at the common curve. The second term accounts for the gravitational force

exerted in the direction normal to the surface on a common curve with non-zero

mass density. The third term is a normal force exerted due to the tension of the

common curve. The final term is the normal stress at the solid surface due to the

interaction of the common curve with the solid.

The conditions discussed in this subsection, along with the conditions in subsec-

tion 4.6.2, provide the set of microscale equilibrium conditions for a porous medium

system comprised of two fluids and an elastic solid. These conditions are important

for microscale modeling of processes within the solid and the pore space. When
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modeling at the macroscale, appropriately scaled averages of these conditions must

also be satisfied.

4.7 Summary

In this chapter, we have examined the conditions that hold at equilibrium in mic-

roscale porous medium systems using a variational analysis. The generality of this

method makes it attractive for analysis of multiphase systems, although it is not

commonly employed in the porous medium literature. The mathematical elements

that provide insights into and background for the variational analysis applied here is

provided in Appendix A. The variational problem was formulated as one for which

the equilibrium state has minimum internal energy, maximum entropy, and no chem-

ical reactions occurring. Based on a CIT formulation of the material thermodynam-

ics, equilibrium analyses were performed for single-fluid-phase and for two-fluid-

phase porous medium systems with an elastic solid.

The equilibrium conditions derived in this chapter will guide the formulation

of closed models at both the microscale and, with some additional work, at the

macroscale. The methods employed are general, powerful, and applicable to other

systems that may be of interest.

Exercises

4.1. Derive the following variational relations that are given in Table 4.1. (Note:

Some of these derivations are more challenging than others!)

a. Jacobian:

δ jα = jα ∇·δxα .

b. Unit normal vector to surface of phase α with δxαα being the variation of the

location of the surface of the phase:

δnα =−
(
∇′δxαα

)
·nα .

c. Surface curvature:

δ
′
Jαβ =−

(
nα ·δxαβ

)(
J2

αβ −2Kαβ

)
−∇′·

[
∇′ (nα ·δxαβ

)]
,

where the second curvature, Kαβ is defined as

2Kαβ = J2
αβ − (∇′nα):(∇′nα) . (4.105)

d. Surface gravitational potential:

4.6 Two-fluid-phase Porous Medium System
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δ
′
ψαβ =−gαβ ·nα nα ·δxαβ .

4.2. Obtain the equilibrium conditions for a single-phase system composed only of

a fluid.

4.3. Obtain the equilibrium conditions for a single-phase system composed only of

an elastic solid.

4.4. Show that for an elastic solid phase, the equilibrium condition given by Eq.

(4.51) as

∇·ts −ρs∇
(
ts:I

3ρs

)
= 0

is consistent with the equilibrium condition required by the microscale momentum

balance obtained from Eq. (2.27) as

∇·ts +ρsgs = 0 .

4.5. Show that making use of the equilibrium condition given by Eq. (4.50) and

the Gibbs-Duhem equation given by Eq. (3.143), one can re-express equilibrium

condition Eq. (4.51) as 〈
∇·ts −∇σσσ s:

Cs

js

〉
Ωs,Ωs

= 0 . (4.106)

4.6. Prove the identity given as Eq. (4.84),

∇′′·I′′wns = lwns ·∇′′lwns = lwns ·∇′′lwns ·nsns + lwns ·∇′′lwns ·nwsnws .

4.7. Obtain the conditions of equilibrium for a three-fluid-phase system with no

solid phase. (Hint: for a three-fluid-system, the boundary surfaces of the phases will

not necessarily be smooth at the common curve, and the fluid phases do not sustain

a concentrated force at the curve.)
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Chapter 5
Microscale Closure for a Fluid Phase

5.1 Overview

The TCAT approach outlined in Fig. 1.3 includes many interrelated components,

including conservation and balance equations, thermodynamics, equilibrium condi-

tions, entropy inequalities, and closure relations. Each of these components must be

established at the scale of interest. If the scale of interest is the microscale, then all

the necessary components to build a complete, closed, mechanistic model are avail-

able from the preceding chapters. In the present chapter, we will illustrate how these

components can be employed to deduce a range of models. The concepts will be em-

ployed to analyze relatively simple cases that, nevertheless, have wide applicability

to continuum modeling of real systems.

Because the models considered in this chapter are at the microscale, a simplified

version of the general multiscale model formulation procedure outlined in Fig. 1.3

is possible. The simplification that occurs is depicted in Fig. 5.1 where the elements

needed for a macroscale formulation have been deleted. The simplifications occur

because there is no need to change the scale of conservation and balance laws for-

mulated at the microscale and because no geometric evolution equations, as approx-

imated from averaging theorems, arise. This latter simplification occurs because the

locations of phases and the interfaces between phases are determined in detail in a

microscale model. In contrast, at the macroscale the distribution of phases and in-

terfaces is only accounted for in an average sense. At either scale, the determination

of the distribution of entities in a multiphase porous medium system is one of the

most challenging aspects of the problem in comparison to the case of flow of fluids

where all interfaces are fixed.

Mechanistic models are formulated as systems of conservation equations and clo-

sure relations, with the former being exact, subject to a mild set of restrictions, and

the latter being approximate, non-unique mathematical constructs. The thermody-

namically constrained approach developed here assures consistency of the approx-

imations with the second law of thermodynamics by generating a set of necessary

conditions that must be satisfied by posited closure relations. The forms of these

167W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_5,
� Springer International Publishing Switzerland 2014
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Fig. 5.1 Conceptual representation of the microscale closure approach (after [2])

closure relations may be suggested and supported by experimental observations,

theoretical considerations (e.g., statistical mechanics, kinetic theory), or subscale

simulations (e.g., molecular dynamics). Because approximations are involved in for-

mulating closure relations, a hierarchy of models of varying sophistication can be

obtained depending on the the complexity and accuracy of those approximations.

The need for closure relations lies in the fact that there are more unknowns in the

conservation equations than there are equations. The closure procedure typically

replaces an unknown function with a functional form that depends on system vari-

ables and some additional parameters. If the parameters assume essentially constant

values over a range of operating conditions for a particular system, the replacement

of the unspecified function with the closure relation is useful. A closure relation for

which the parameter values must be varied dramatically over a narrow range of op-

erating conditions of a system in order to model system behavior is not useful as this

situation suggests that the underlying mechanisms that account for system behavior

are not being properly captured. However, some systems have an inherent variation

in physical properties that necessarily requires physical parameters to vary, often

markedly, even for carefully constructed models. Such heterogeneous systems are

not the focus of this work.

Because of the need to test the robustness and range of applicability of a closure

relation for a mechanistic model, it is appropriate and beneficial for a model for-

mulation framework to be posed in terms of a formal mathematical structure. Such

a structure should provide pathways for model improvements so that refinements

can be made iteratively. Iterations involve working to ensure that the sophistication

of the model matches the complexity of the active mechanisms of the application

being considered. When this is the case, the mechanistic model will yield a useful

description of the physical system.
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The mathematical structure employed here makes use of general conservation

and thermodynamic equations that are focused for particular applications by use of

primary restrictions, secondary restrictions, approximations, and closure approxi-

mations. The primary restrictions describe the basic components (i.e., number of

species, types of entities, etc.) of a class of system of concern. These primary re-

strictions dictate the set of conservation, balance, and thermodynamic equations

that must be employed in formulating a constrained entropy inequality (CEI). The

CEI is developed from the conservation and thermodynamic relations without any

additional mathematical approximations. Model closure requires formulation of a

simplified entropy inequality (SEI), which is based on the CEI but makes use of

various mathematical and physical approximations. These approximations are in-

formed by equilibrium conditions, which assist in arranging the entropy inequality

to a form involving products of independent fluxes and forces. All forces and fluxes

are zero at equilibrium, such that entropy generation, which is accounted for by

these products, is also zero at equilibrium. Finally, the SEI is used as a constraint on

the forms of closure relations. The closure relations postulated are approximate and

not unique but serve as possibly useful expressions. The forms obtained can then be

checked for validity through a model validation investigation.

This mathematical structure will be demonstrated by examining a specific exam-

ple of a single-fluid-phase system in the following sections. The example shows how

the approaches summarized in the various boxes in Fig. 5.1 are employed to derive

a closed model. The steps employed can be applied to other systems as desired.

5.2 System Definition

As an example of a microscale system to be analyzed, we consider a single fluid

phase, denoted as w. The system is not necessarily isothermal. Additionally, phase w
may be composed of more than one chemical species, with the index set of chemical

species Is. The chemical species may react and may be distributed non-uniformly in

the system. Because the analysis is at the microscale, a point in the system contains

only phase w, and the domain of study is Ωw. The boundary of this domain, Γw,

could be composed of interfaces with other phases or could be simply an external

boundary when no other phases are present. This system is posed using two primary

restrictions.

Primary Restriction 5.1 (System and Scale) The system of concern consists of a
single fluid phase w in domain Ωw with boundary Γw composed of N chemical
species with index set i ∈ Is. The spatial scale of concern is the microscale, �mi,
with �mo 	 �mi 	 �r

r where �mo and �r
r are the molecular and resolution scales of

the system.1

1 Recall the descriptions of length scales provided in conjunction with Eq. (1.1).

5.1 Overview
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Primary Restriction 5.2 (Phenomena Modeled) The phenomena to be modeled
consist of the transport of the mass of the chemical species comprising the w phase
and of the momentum and energy of the w phase as functions of space and time.

These primary restrictions specify the system to be considered, stipulate the

length scale at which phenomena will be described, and indicate the phenomena to

be modeled. These restrictions are important in identifying the conservation equa-

tions to be selected to describe the system. These restrictions are helpful in focusing

attention on a system of interest such that the appropriate generality of the system

description can be obtained. For example, one could seek a model for the momen-

tum of the chemical species in the system rather than for the momentum of the phase

as a whole. Although such an analysis is possible and provides a more general set of

equations than those stipulated in Primary Restriction 5.2, the additional mathemati-

cal effort required for the derivation and subsequent experimental and computational

studies of the posited closure relations may not be worthwhile for many cases.

Thermodynamic considerations also require that an appropriate thermodynamic

theory be chosen and applicable to the system of concern. We will use CIT for all

models considered, including the microscale models of concern in this chapter. This

approach can be formulated as a primary restriction.

Primary Restriction 5.3 (Thermodynamic Basis) Classical irreversible thermo-
dynamics (CIT) provides an accurate description of the equilibrium and near-
equilibrium states of the microscale system.2

This primary restriction means that we will make use of a relatively simple

thermodynamic description of the system. This precludes modeling some high fre-

quency phenomena, systems with memory, and processes where the local equilib-

rium assumption does not apply. These limitations are not important to a wide array

of phenomena, but a different thermodynamic framework can be employed if need

be.

In light of these primary restrictions, we now turn to the task of formulating

the closure relations for fluid w based on the conservation equations from Chap. 2,

thermodynamic formulas from Chap. 3, and the equilibrium relations from Chap. 4.

This will be accomplished by focusing sequentially on each of the boxes and arrows

in Fig. 5.1.

5.3 Conservation and Thermodynamic Equations

The starting point for development of a closed mechanistic model for the fluid phase

w will be the identification of the equations that comprise the elements of the three

boxes in the top left corner of Fig. 5.1. In an effort to minimize the length of equa-

tions while still retaining clarity, we will, when possible, make use of the symbol-

ism employed previously to indicate equations rather than writing the full equations

2 The issue of “nearness” to equilibrium has been discussed in Sect. 3.11.
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(e.g., Miw = 0 as obtained from Eq. (2.17) or Table 2.1). The conservation equa-

tions for a fluid phase are found in Sect. 2.3.2 while the thermodynamic relations

rely on Sects. 3.4 and 3.11.

5.3.1 Entropy Inequality

The entropy inequality is the first system element identified in Fig. 5.1. The primary

restrictions turn our attention to a fluid system comprised of multiple species. For the

single-fluid-phase system, the entropy balance for each chemical species is obtained

from the last row of of Table 2.1 as

S∗iw = Λiw for i ∈ Is , (5.1)

where Λiw is the rate of entropy production at a microscale point associated with

species i in phase w. The second law of thermodynamics requires that entropy pro-

duction at a point be non-negative. However, each microscale point is “occupied”

by more than one species. Thus, we cannot say whether Λiw will be non-negative.

However if we sum over all species at the point, we will obtain an entropy balance

such that

∑
i∈Is

S∗iw = S∗w = ∑
i∈Is

Λiw = Λw ≥ 0 . (5.2)

The fact that the inequality is non-negative asserts that irreversible processes involv-

ing all chemical constituents will produce entropy at a location while, at equilibrium,

Λw = 0. Note that the expression for S∗w may be obtained equivalently as the sum

of expressions for S∗iw in Table 2.1 or directly from the last line of Table 2.2. At this

point in the development, we will write the entropy inequality as

∑
i∈Is

S∗iw = Λw ≥ 0 . (5.3)

Should we decide to work with only the entity of the w phase as a whole, then this

expression may be written in the form

S∗w = Λw ≥ 0 . (5.4)

Our quest here is to obtain an expression for Λw in terms of the fluxes and the

forces that drive those fluxes in the system of interest, thereby generating entropy. To

achieve this objective, it is necessary to consider the implications of the conservation

equations on allowable system behavior and to identify the appropriate equations.
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5.3.2 Conservation Equations

The second box in the top left corner of Fig. 5.1 is the conservation equations.

Conservation equations for mass, momentum, and energy of each chemical species

have been obtained and are provided in Table 2.1. For the mass conservation of the

species, the equations in material derivative form are denoted as

M∗iw = 0 for i ∈ Is ; (5.5)

for momentum conservation we have

P∗iw = 0 for i ∈ Is ; (5.6)

and the total energy of each species is conserved according to

E∗iw = 0 for i ∈ Is . (5.7)

Note that we have N scalar conservation equations for both chemical species and

energy along with 3N components of the vector momentum equation.

One additional equation from Table 2.1 that we will employ is the expression for

the body force potential, taken here to be the gravitational potential. This equation

is denoted as

G∗iw = 0 for i ∈ Is . (5.8)

Strictly speaking, this is not a conservation equation but is a balance equation that

has been obtained by making use of conservation of mass and the relation between

the body force potential and the body force per unit mass.

5.3.3 Thermodynamic Relations

The third box in Fig. 5.1 is the thermodynamic identities. Here we have elected to

employ the CIT thermodynamic framework. With the assumptions inherent in this

formulation as an extension to classical equilibrium thermodynamics, we are able to

write relations among the rates of change of thermodynamic variables. For a species

in a fluid phase, the appropriate rate of change expression is that given in the first

line of Table 3.1. Thus the thermodynamic expression is

T∗iw = 0 for i ∈ Is . (5.9)

The body force potential for a species in the w phase, Ψiw, equals ρwωiwψiw, as

given by Eq. (2.44) with α replaced by w. Therefore the material derivative of Ψiw
is related to the material derivatives of the independent variables according to Eq.

(2.45), which may be written

TG∗iw = 0 for i ∈ Is . (5.10)
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Because it is a form that relates only material derivatives, this equation is collected

here in the thermodynamic section. Indeed, it relates the material derivative of po-

tential energy to other system variables.

5.4 Constrained Entropy Inequality

According to Fig. 5.1, the next step in the microscale closure approach is to com-

bine the entropy inequality with the conservation and balance equations as well as

the thermodynamic equations to obtain a constrained entropy inequality. The con-

servation, balance, and thermodynamic equations are the relations that supplement

the physics described by the entropy equation by ensuring that the entropy gener-

ation process does not violate other physical principles. Several steps are involved

in constraining the entropy inequality so that it provides the entropy generation in

terms of irreversible processes. These steps will be followed here.

5.4.1 Introduction of Constraints

Entropy production is a result of dissipative processes such as heat conduction, the

flow of matter, mechanical dissipation, chemical reactions, and electrical currents

leading to irreversible processes [5]. Because of these entropy-producing processes,

the entropy production rate is typically represented as the product of a set of ther-

modynamic fluxes and thermodynamic forces such that for a system,

Λ = ∑
i∈Ps

JiFi + ∑
j∈Pv

J j·F j + ∑
k∈Pt

Jk:Fk , (5.11)

where Ji, J j, and Jk are thermodynamic fluxes corresponding to scalar, vector, and

tensor types, respectively; Fi, F j, and Fk are thermodynamic forces of the scalar,

vector, and tensor types, respectively; and Ps, Pv, and Pt are index sets of scalar,

vector, and tensor dissipative processes that produce entropy.

An important property of Eq. (5.11) is that each factor in all products must be

zero at equilibrium—the state of minimum energy, maximum entropy, and zero en-

tropy production rate. Another property is that each member of the set of fluxes

must be independent of all other fluxes, and each member of the set of forces must

be independent of all other forces. Collectively, this is referred to as the flux-force

independence condition. Because of the symmetry required by the flux-force in-

dependence condition, the identification of each factor in the products given in Eq.

(5.11) as a “force” or “flux” is arbitrary as long as the independence condition is met

[5]. However, in some instances it is more convenient to define a particular factor as

a force rather than a flux, or vice versa. These considerations lead to formulation of

an entropy production postulate:

5.3 Conservation and Thermodynamic Equations
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Postulate 5.1 (Entropy Production Postulate, EPP) The rate of production of en-
tropy, Λ , may be expressed as a sum of inner products of members of a set of fluxes J
and conjugate members of a companion set of forces F with both J and F comprised
of members that are zero at equilibrium and independent of all other members in the
respective set but which can depend upon one or more members of the companion
set.

The EPP provides guidance for the development of a form of the entropy in-

equality (EI) that will be of most use in developing closure relations, and it leads to

linearized approximations for a set of fluxes in terms of members of a set of mutu-

ally independent forces in the near-equilibrium regime. It is important that the forces

and fluxes that we identify as “independent” indeed be independent. We are guided

in this pursuit by insight into the system summarized by the equilibrium conditions

developed in Chap. 4. Our goal is thus to develop an EI that is in strict force-flux

form. This form will be used to aid the development of closure relations needed to

produce well-posed models.

For the single-phase system specifically being considered here, the entropy bal-

ance is given by Eq. (5.3). This is an equation that provides the elements of the

entropy production rate in terms of entropy transport, but it does not give the en-

tropy production rate in the form of Eq. (5.11). Thus we seek to alter the form of the

entropy balance while preserving the inequality that it provides.

If quantities that are equal to zero are added to the left side of Eq. (5.3), the

inequality will not be altered. Thus we may add the conservation, balance, and ther-

modynamic expressions to this equation, each multiplied by an arbitrary Lagrange

multiplier, which can be selected to ensure dimensional consistency and to facili-

tate the arrangement of contributions to Λw into force-flux form. Thus, Eq. (5.3) is

augmented to produce the expression

∑
i∈Is

S∗iw + ∑
i∈Is

λE iwE∗iw + ∑
i∈Is

λλλP iw·P∗iw + ∑
i∈Is

λMiwM∗iw

+ ∑
i∈Is

λGiwG∗iw + ∑
i∈Is

λT iwT∗iw + ∑
i∈Is

λT GiwTG∗iw = Λw ≥ 0 , (5.12)

where the subscripted λ ’s and λλλ are Lagrange multipliers, and the equation forms

are as indicated in the preceding section.

It is possible at this point to formulate a strategy for determining the Lagrange

multipliers en route to a closed, detailed description of the system that includes

the full dynamics of each species in the system. However, proceeding on this route

carries a large overhead in the number of coefficients and functional forms that

will have to be determined in closing the system. For example, we would have to

determine and parameterize stress tensors, heat conduction vectors, and other fluxes

for each of the chemical species. Rather than following this complicated path, we

will restrict the analysis to a simpler approach, noting that if the resulting relations

are inadequate for describing the system, we can revert back to a more complete

analysis. Primary Restriction 5.2 states that the model to be employed will make use

of species mass balance equations but will assume that the momentum and energy



5.4 Constrained Entropy Inequality 175

transport in the system can be accounted for on an entity basis. This restriction is

enforced by selecting the Lagrange multipliers as

λE iw = λEw for i ∈ Is , (5.13)

λλλP iw = λλλPw for i ∈ Is , (5.14)

λGiw = λGw for i ∈ Is , (5.15)

λT iw = λT w for i ∈ Is , (5.16)

and (5.17)

λT Giw = λT Gw for i ∈ Is . (5.18)

To see how these choices affect the constrained entropy inequality, we substitute

the Lagrange multipliers that are independent of species into Eq. (5.12) and move

the multipliers that no longer depend on i outside the summations to obtain

∑
i∈Is

S∗iw +λEw ∑
i∈Is

E∗iw +λλλPw· ∑
i∈Is

P∗iw + ∑
i∈Is

λMiwM∗iw

+λGw ∑
i∈Is

G∗iw +λT w ∑
i∈Is

T∗iw +λT Gw ∑
i∈Is

TG∗iw = Λw ≥ 0 . (5.19)

The summations over species-based equations have been shown to result in the

entity-based equations. Thus, performing the summations as possible we obtain

S∗w +λEwE∗w +λλλPw·P∗w + ∑
i∈Is

λMiwM∗iw

+λGwG∗w +λT wT∗w +λT GwTG∗w = Λw ≥ 0 . (5.20)

The conservation and balance equations that are denoted in this equation, on an

entity basis for all properties except mass, have already been developed and their

expanded forms can be substituted in.

5.4.2 Selection of Lagrange Multipliers

Because the Lagrange multipliers each multiply an expression that is equal to zero,

the values of the multipliers can be selected arbitrarily without impacting the cor-

rectness of Eq. (5.20). However, it is our objective here to arrive at an expression

for Λw that consists of products of independent fluxes and forces that drive those

fluxes. This is achieved by eliminating material derivatives from the expression as

far as possible. Equations for S∗w, E∗w, P∗w, and G∗w are taken from Table 2.2; the

equation for M∗iw is given in Table 2.1; the equation for TG∗w is Eq. (2.48) with

α = w; and the expression for T∗w is the fifth row of entries in Table 3.1.

We substitute the appropriate expressions into Eq. (5.20). However, for the mo-

ment we are interested in eliminating the material time derivatives. Therefore, only

these terms are listed in the following equation with the remaining terms designated
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simply using ellipses. With this convention, Eq. (5.20) becomes[
Dwηw

Dt
+ . . .

]
+λEw

{
Dw

Dt

[
Ew +ρw

(vw·vw

2
+KEw

)]
+ . . .

}

+λλλPw·
[

Dw(ρwvw)

Dt
+ . . .

]
+ ∑

i∈Is

λMiw

[
Diw(ρwωiw)

Dt
+ . . .

]

+λGw

[
DwΨw

Dt
+ . . .

]
+λT w

[
DwEw

Dt
−θw

Dwηw

Dt
− ∑

i∈Is

μiw
Dw (ρwωiw)

Dt

]

+λT Gw

[
DwΨw

Dt
− ∑

i∈Is

ψiw
Dw(ρwωiw)

Dt
− ∑

i∈Is

ρwωiw
Dwψiw

Dt

]
= Λw ≥ 0 .

(5.21)

Some of the time derivatives in Eq. (5.21) can be expressed in terms of other

variables or expanded using the product rule. These changes are pursued so that the

number of independent time derivatives is minimized. The relations employed are

Dw

Dt

(
ρw

vw·vw

2

)
= vw·

Dw(ρwvw)

Dt
− vw·vw

2
∑

i∈Is

Dw(ρwωiw)

Dt
, (5.22)

Dw(ρwKEw)

Dt
= ∑

i∈Is

uiw·uiw

2

Dw(ρwωiw)

Dt
+ ∑

i∈Is

ρwωiw
Dw

Dt

(uiw·uiw

2

)
,

(5.23)

and

Diw(ρwωiw)

Dt
=

Dw(ρwωiw)

Dt
+uiw·∇(ρwωiw) . (5.24)

In these equations, use has been made of the definitions of variables given in Eqs.

(2.24) and (2.35) and of the fact that the sum of the mass fractions in the phase is

1. Substitution of these last three identities into the energy and species conservation

parts of Eq. (5.21) yields[
Dwηw

Dt
+ . . .

]
+λEw

{
DwEw

Dt
+vw·

Dw(ρwvw)

Dt
− vw·vw

2
∑

i∈Is

Dw(ρwωiw)

Dt

+ ∑
i∈Is

uiw·uiw

2

Dw(ρwωiw)

Dt
+ ∑

i∈Is

ρwωiw
Dw

Dt

(uiw·uiw

2

)
+ . . .

}

+λλλPw·
[

Dw(ρwvw)

Dt
+ . . .

]
+ ∑

i∈Is

λMiw

[
Dw(ρwωiw)

Dt
+uiw·∇(ρwωiw)+ . . .

]

+λGw

[
DwΨw

Dt
+ . . .

]
+λT w

[
DwEw

Dt
−θw

Dwηw

Dt
− ∑

i∈Is

μiw
Dw (ρwωiw)

Dt

]
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+λT Gw

[
DwΨw

Dt
− ∑

i∈Is

ψiw
Dw(ρwωiw)

Dt
− ∑

i∈Is

ρwωiw
Dwψiw

Dt

]
= Λw ≥ 0 .

(5.25)

This equation contains 3N + 6 material derivatives where N is the number of

chemical species. These derivatives are the set

D=

{
Dwηw

Dt
,

DwEw

Dt
,

Dw(ρwvw)

Dt
,

DwΨw

Dt
,

Dw(ρwωiw)

Dt
,

Dw

Dt

(uiw·uiw

2

)
,

Dwψiw

Dt

}
for i ∈ Is , (5.26)

where the third element in this set is a three component vector, and the fifth through

seventh elements each contain N components. However, the sixth element consists

of only N−1 independent material derivatives (because of Eq. (2.25)). On the other

hand, Eq. (5.25) contains 7+N Lagrange multipliers in the set

L= {λEw,λλλPw,λMiw,λGw,λT w,λT Gw} for i ∈ Is , (5.27)

where the vector λλλPw has three components, and there are N components of λMiw.

Because the material derivatives of uiw·uiw and ψiα each appear only once in Eq.

(5.25), it will not be possible to eliminate them from the equation unless the La-

grange multipliers of their time derivatives are set to zero. Thus we will ignore the

last two elements of the set in Eq. (5.26), leaving 6+N material derivatives, one

less than the number of Lagrange multipliers. This extra multiplier must be chosen

judiciously.

Recall that in Chap. 4, equilibrium conditions were determined by examining the

variation of the internal plus potential energies. If we set

λT Gw = λT w , (5.28)

the last two terms in brackets in Eq. (5.25) will combine to give an expression for

the derivative of Ew+Ψw in terms of the variables on which this sum depends. Thus,

we make this selection.

We can now write a linear algebra form to determine the Lagrange multipliers

that will eliminate the 6+N material derivatives,⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
(uiw·uiw

2
− vw·vw

2

)
−μiw −ψiw

0 1 vw 0 0

0 0 1 0 1

0 0 0 1 1

0 0 0 0 −θw

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λMiw
λλλPw

λEw
λGw
λT w

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0

0

0

0

−1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (5.29)

The rows of the matrix are formed, in order, by collecting coefficients of the material

derivatives of the densities of species mass, momentum, internal energy, body force

potential, and entropy. We have compressed the N species mass densities and the



178 5 Microscale Closure for a Fluid Phase

three momentum terms to a single line, noting that these equations are of a similar

form.

Since Eq. (5.29) is in upper triangular form, it may be readily solved by inspec-

tion for the Lagrange multipliers to obtain⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λMiw
λλλPw

λEw
λGw
λT w

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
1

θw

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μiw +ψiw − vw·vw

2
+

uiw·uiw

2
vw

−1

−1

1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (5.30)

These results are then substituted back into Eq. (5.20) to obtain the augmented en-

tropy inequality

S∗w − 1

θw
E∗w +

vw

θw
·P∗w +

1

θw
∑

i∈Is

(
μiw +ψiw − vw·vw

2
+

uiw·uiw

2

)
M∗iw

− 1

θw
G∗w +

1

θw
T∗w +

1

θw
TG∗w = Λw ≥ 0 . (5.31)

This general augmented entropy inequality will next be simplified.

5.4.3 Reduction to the CEI

When the indicated conservation and balance equations are substituted into Eq.

(5.31), the result is a rather long equation. Fortunately, a number of terms will can-

cel. For example, the multipliers of the conservation laws have explicitly been se-

lected so that the material derivatives will cancel out. In addition, some other terms

will cancel so that the long equation simplifies significantly. There are no particu-

larly subtle algebraic manipulations that have to be performed, with the most com-

plex maneuver being the application of the product rule to a derivative. Thus, we

will not provide the step-by-step algebraic details but will only note that if the indi-

cated particular balance and conservation equations are substituted into Eq. (5.31)

and terms are cancelled without making any additional approximations, the follow-

ing result can be obtained with appropriate collection of terms:

−bw +
1

θw

[
hw − ∑

i∈Is

ρwωiw
Dw

Dt

(uiw·uiw

2

)]

−∇·
{

ϕϕϕw − 1

θw

[
qw + ∑

i∈Is

(
μiw +

uiw·uiw

2

)
ρwωiwuiw

]}

+
1

θw

[(
ηwθw −Ew + ∑

i∈Is

ρwωiwμiw

)
I+ tw

]
:dw
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− 1

θw
∑

i∈Is

ρwωiwuiw·∇
(

μiw +ψiw +
uiw·uiw

2

)

−
[

qw + ∑
i∈Is

(
μiw +

uiw·uiw

2

)
ρwωiwuiw

]
·∇
(

1

θw

)

− 1

θw
∑

i∈Is

(
μiw +

uiw·uiw

2

)
riw = Λw ≥ 0 . (5.32)

This arrangement of terms is most certainly not unique. It has been motivated by a

desire to arrange the equation into a collection of fluxes and forces that are all zero

at equilibrium.

Although we could proceed directly with this equation, we will make several

substitutions that will provide an alternative expression. First, we make use of the

Euler equation for fluid phase energy given in Eq. (3.156), which may be rearranged

to

pw = ηwθw −Ew + ∑
i∈Is

ρwωiwμiw , (5.33)

to simplify the multiplier of dw in Eq. (5.32). Second, we make use of Eq. (3.204),

subject to the local equilibrium assumption, to obtain

∇μiw = ∇μiw|θw
+θw

(
Hiw −μiw

)
∇
(

1

θw

)
. (5.34)

Substitution of these last two equations into Eq. (5.32) yields

−bw +
1

θw

[
hw − ∑

i∈Is

ρwωiw
Dw

Dt

(uiw·uiw

2

)]

−∇·
{

ϕϕϕw − 1

θw

[
qw + ∑

i∈Is

(
μiw +

uiw·uiw

2

)
ρwωiwuiw

]}

+
1

θw
(pwI+ tw) :dw

− 1

θw
∑

i∈Is

ρwωiwuiw·∇
(

μiw|θw
+ψiw +

uiw·uiw

2

)

−
[

qw + ∑
i∈Is

(
Hiw +

uiw·uiw

2

)
ρwωiwuiw

]
·∇
(

1

θw

)

− 1

θw
∑

i∈Is

(
μiw +

uiw·uiw

2

)
riw = Λw ≥ 0 . (5.35)

An additional refinement follows from the notion that no mass is created or de-

stroyed by chemical reactions. Chemical reactions involve the conversion of mass

contained in a set of reactant species to the equivalent mass contained in a set of

product species. In the current system, we are interested in reactions that occur
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within phase w, commonly referred to as homogeneous phase reactions to distin-

guish them from heterogeneous reactions that occur at the boundary of the phase.

This designation does not require that the phase be homogeneous in composition

or temperature but only indicates that the reaction could occur anywhere within the

phase. Homogeneous phase reaction equations are provided routinely in chemistry,

chemical kinetics, and chemical engineering contexts [e.g., 4, 14, 15] to explain

phenomena that have been observed or that can be predicted. Homogeneous re-

action equations can be further categorized as describing elementary reactions or

complex reactions. Simply put, elementary reactions occur as written while com-

plex reactions involve a number of intermediate steps that can produce species not

present when the reaction is completed. Complex reactions are typically described

phenomenologically rather than by explicitly listing the details of the reaction mech-

anism.

The type of reaction does bear on the appropriate form of a chemical reaction

rate expression. For example, monomolecular elementary reactions are first order,

meaning they depend linearly on the concentration of a single reactant. Elementary

reactions resulting from the collision of two different molecules depend linearly

on the concentration of each species and are thus second order overall. Elementary

reactions resulting from the simultaneous collision of three species are third order

reactions. Elementary reactions of higher than third order have not been observed

[15], which implies the reasonable notion that the simultaneous collision of four or

more molecules is unlikely to occur. Complex reactions can be of integer or a frac-

tional order; so they can take on more elaborate effective reaction rate expressions

than elementary reactions.

The individual reactions that contribute to overall production of species i in phase

w can be accounted for according to

riw = ∑
k∈Irxn

νikMWiRkw , (5.36)

where Irxn is the set of Nrxn reactions, νik is the stoichiometric coefficient for com-

ponent i in reaction k, MWi is the molecular weight of species i and Rkw is the molar

rate of reaction k. Note that νik is negative if species i is being consumed in reaction

k, positive if species i is being produced in reaction k, and zero if species i does

not participate in reaction k. The affinity of reaction k, denoted Akw, is a measure of

disequilibrium of the reaction with

Akw = ∑
i∈Is

μiwνikMWi . (5.37)

The affinity can be shown to be related to the partial derivative of the Gibbs free

energy with respect to the extent of completion of the reaction holding pressure and

temperature constant; it is zero at equilibrium [1]. Here, for convenience, we make

use of a slight variant of the standard definition of the affinity, denoted A∗
kw, where
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A∗
kw = ∑

i∈Is

(
μiw +

uiw·uiw

2

)
νikMWi . (5.38)

With these definitions, Eq. (5.36) followed by Eq. (5.38) may be substituted into the

last summation in Eq. (5.35) to yield the CEI

−bw +
1

θw

[
hw − ∑

i∈Is

ρwωiw
Dw

Dt

(uiw·uiw

2

)]

−∇·
{

ϕϕϕw − 1

θw

[
qw + ∑

i∈Is

(
μiw +

uiw·uiw

2

)
ρwωiwuiw

]}

+
1

θw
(pwI+ tw) :dw − 1

θw
∑

i∈Is

ρwωiwuiw·∇
(

μiw|θw
+ψiw +

uiw·uiw

2

)

−
[

qw + ∑
i∈Is

(
Hiw +

uiw·uiw

2

)
ρwωiwuiw

]
·∇
(

1

θw

)

− 1

θw
∑

k∈Irxn

RkwA∗
kw = Λw ≥ 0 . (5.39)

We note that the changes made following Eq. (5.32) to arrive at Eq. (5.39) do

not alter the essence of the entropy inequality. The rearrangements do have implica-

tions on the forms of the closure relations and associated coefficients that will have

to be considered. Because closure is an approximate process, the fact that some

representations of the approximations will be superior to others should not be sur-

prising. However, for the moment we are getting ahead of the story. Equation (5.39)

has been developed based on the entropy inequality, conservation and balance equa-

tions, thermodynamic relations in the CIT framework, and selection of the Lagrange

multipliers with an eye toward eliminating the material derivatives. The selection of

the Lagrange multipliers had the effect of stipulating that the formulation is in terms

of species mass balance equations with entity-based momentum and energy equa-

tions. No mathematical approximations have been employed such that Eq. (5.39)

can serve as a starting point for a range of closure formulations and for study of sys-

tems restricted to be less general than that described to this point (e.g., isothermal,

single species).

5.5 Simplified Entropy Inequality

The next step in the derivation of closed equations, based on Fig. 5.1, is to make

further use of the equilibrium conditions to inform the CEI of Eq. (5.39) so that it

provides a form of entropy production consistent with Eq. (5.11).

5.4 Constrained Entropy Inequality
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5.5.1 Introduction of Approximations

The constraint on Lagrange multipliers imposed by Primary Restriction 5.2 led to

entity-based forms of the momentum and energy equations rather than their species-

based forms in Eq. (5.20). This means that the problem is formulated in terms of a

phase velocity, vw, and N −1 independent dispersion velocities, uiw. If Primary Re-

striction 5.2 had not been imposed, the formulation would have been in terms of

the momentum of each of the N species with their velocities, viw, appearing explic-

itly in the full set of species-based momentum equations. In fact using entity-based

equations is slightly less general, but it reduces the complexity of the closure issue

in that, for example, a single closure approximation must be obtained for tw rather

than closure relations for each of the N tensors, tiw. This simpler approach does

carry a penalty in that the non-linear quantities uiw·uiw/2 for each species arise in

CEI Eq. (5.39). The presence of this term is nettlesome and has received some at-

tention [1]. The most common solution to the presence of this term is to assume that

the magnitude of the diffusion velocity squared is small relative to the terms with

which it is combined such that it can be neglected. This leads to the statement:

SEI Approximation 5.1 (Diffusive kinetic energy) When entity-based momentum
and energy equations are employed in developing the CEI for a multispecies micro-
scale entity α , the quantity uiα ·uiα/2, where i ∈ Is, is considered to have negligible
impact on the entropy inequality and may be eliminated.

Application of this approximation to Eq. (5.39) then gives

−bw +
1

θw
hw −∇·

[
ϕϕϕw − 1

θw

(
qw + ∑

i∈Is

μiwρwωiwuiw

)]

+
1

θw
(pwI+ tw) :dw − 1

θw
∑

i∈Is

ρwωiwuiw·∇
(

μiw|θw
+ψiw

)

−
(

qw + ∑
i∈Is

Hiwρwωiwuiw

)
·∇
(

1

θw

)
− 1

θw
∑

k∈Irxn

RkwAkw = Λw ≥ 0 .

(5.40)

As a second approximation, we consider the system to be thermomechanically

simple at the microscale. For such a system, the body source of entropy is equal

to the energy source divided by the temperature. Additionally, the non-advective

entropy flux is equal to the non-advective energy flux, consisting of heat flux and

heat transfer due to mass dispersion, divided by the temperature. This approximation

is stated

SEI Approximation 5.2 (Thermomechanically simple system) For a microscopic
thermomechanically simple system, the entropy source term is equal to the entity-
based energy source divided by the temperature; and the entropy flux term is equal
to the entity-based energy flux term divided by the temperature such that
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−bα +
1

θα
hα = 0 (5.41)

and

ϕϕϕα − 1

θα

(
qα + ∑

i∈Is

μiα ρα ωiα uiα

)
= 0 (5.42)

for entity α .

If a system is thermomechanically complex, the right sides of Eqs. (5.41) and (5.42)

will not necessarily be zero, thus requiring some additional effort in obtaining clo-

sure equations. This situation will not be considered here. Thus the entropy inequal-

ity given by Eq. (5.40) simplifies by SEI Approximation 5.2 for phase w to

1

θw
(pwI+ tw) :dw − 1

θw
∑

i∈Is

ρwωiwuiw·∇
(

μiw|θw
+ψiw

)

−
(

qw + ∑
i∈Is

Hiwρwωiwuiw

)
·∇
(

1

θw

)
− 1

θw
∑

k∈Irxn

RkwAkw = Λw ≥ 0 . (5.43)

5.5.2 Consideration of Equilibrium Conditions

Progress toward obtaining an SEI composed of a sum of products of forces and

fluxes with each being zero at equilibrium can be assessed by considering the SEI

obtained as compared to the desired form of Eq. (5.11). Equation (5.43) is composed

of four terms, each of which is a product of two quantities. Note that the second and

fourth terms involve summations over all species and all chemical reactions, re-

spectively. The forces in each of the terms are, respectively, dw, ∇
(

μiw|θw
+ψiw

)
,

∇(1/θw), and Akw. The first three of these independent variables have each been

shown to be zero in the equilibrium analysis of Chap. 4. The affinity was defined

such that it is zero at equilibrium. The multipliers of each of these forces is des-

ignated as a flux, and each of these fluxes must also be zero at equilibrium. Thus,

Eq. (5.43) is an SEI for a multispecies, heat-conducting fluid in which diffusion and

chemical reactions are occurring, subject to the two SEI Approximations being sat-

isfied.3 At the microscale, the development of this SEI from the CEI of Eq. (5.39)

was straightforward. Later, in considering macroscale porous medium systems, it

will be seen that additional assumptions will be needed to obtain a force-flux form

for an SEI from a CEI.

3 By Eq. (2.25), only N − 1 of the diffusive fluxes, uiw, are independent. This will be taken into
account subsequently in Sect. 5.6.2 when developing closure relations.
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5.6 Closure Relations

The utility of the SEI is in providing guidance for closure relations needed to make

up for the deficit in the number of equations needed to specify the number of vari-

ables in those equations. Of course one could arbitrarily generate some additional

closure relations and hope that they will reproduce the system physics, but pro-

ceeding in this manner would carry little chance of success. A more systematic

approach makes use of the SEI. One should remember that regardless of what clo-

sure method is employed, the closure relations are only approximations that may

be used to model some systems effectively but are typically appropriate for only a

limited range of operating conditions. The process of closure introduces coefficients

into the formulation that are dependent on material properties. From one perspec-

tive, closure may be seen as merely replacing one set of unknown variables with a

different set of unknown coefficients. However, a successful closure process will re-

sult in coefficients that can be specified for a particular system whose dynamics can

then be modeled. If a set of closure relations is not appropriate for a system, then

these relations can be altered in light of system behavior, insights, and by relaxing

assumptions that have been made. Closure relations are inherently different from

general conservation equations which must not be violated in that they introduce

approximations for insertion into those equations in an effort to make the equations

solvable.

In light of this discussion, it is important to identify the number of equations

available, the number of variables for which closure relations can be postulated from

the SEI, and the number of additional relations that must be employed to completely

close the problem description. We will address these issues in the next subsections

for the single-phase system described in the preceding sections.

5.6.1 Count of Variables

For the case of a fluid phase, as we are modeling it, there are N species mass conser-

vation equations (M∗iw from Table 2.1), three components of the vector momentum

conservation equation (P∗w from Table 2.2), one energy equation (E∗w from Table

2.2), and the SEI in Eq. (5.43). Thus the total number of equations is N +5. The set

of unknowns that arises in these equations, V, is

V= {ρw,ωiw,vw,Ew,Λw,ψiw,giw,hw,KEw,θw,

pw,μiw,Hiw,riw,Akw,tw,uiw,qw,Rkw} for i ∈ Is,k ∈ Irxn . (5.44)

Note that each vector in Eq. (5.44) has three spatial components and the symmetric

tensor tw has six independent components. The quantities ψiw and Hiw, as well as

the components of giw, all have N independent members, one for each species; N−1
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independent values of ωiw, uiw, μiw, and riw exist.4 Additionally Rkw and Akw each

consist of Nrxn members. Thus, a total of 11N +13+2Nrxn independent unknowns

exist.

If we consider the conservation equations plus the SEI to account for the N + 5

variables ρw, ωiw, vw, Ew, and Λw, the deficit in equations is reduced to 10N +8+
2Nrxn. The N body force potentials, ψiw, have to be specified for the problem; and

the 3N components of giw are then obtained from Eq. (2.50). These 4N stipulations

reduce the equation deficit to 6N + 8+ 2Nrxn. The external body source of energy,

hw, is another quantity that must be specified for the system. Additionally, as has

been discussed, the deviation kinetic energy, KEw, arises because the momentum

and energy of the w phase are treated on a per entity basis. Such a treatment is

appropriate only if KEw is negligible. Thus, we approximate it as zero. These two

observations reduce the need for equations or conditions to 6N +6+2Nrxn.

Next, the thermodynamic framework is investigated to supply additional infor-

mation. Equations for θw, pw, and the N −1 independent values of μiw are obtained

from the thermodynamic equations of state, Eqs. (3.48)–(3.50), respectively, applied

to the w phase. However, a complication arises because these equations make use of

the entropy per volume, ηw, which does not appear in the variables identified in V.

Fortunately, the Euler thermodynamic relation for Ew provided by Eq. (3.158) gives

an additional constraint. Thus, these four relations reduce the count of unknowns

in excess of equations by N + 1. Also needed are relations for the N values of the

partial mass enthalpy, Hiw, which must be compiled as a function of pw, θw, and

composition according to the definition given in Eqs. (3.176) and (3.177). Thus, a

total of 2N +1 conditions are identified through thermodynamic relations, reducing

the excess of variables to 4N +5+2Nrxn.

The N −1 independent values of riw are related to the chemical reactions Rkw by

Eq. (5.36) when the molecular weights of the molecules and the stoichiometric co-

efficients of the reactions are known. Similarly, the Nrxn variables Akw are accounted

for by Eq. (5.37) applied to each species. Thus, the number of equations still needed

is reduced to 3N +6+Nrxn.

This equation deficit can be eliminated if expressions are found for the 6 inde-

pendent members of tw, 3(N − 1) members of uiw, 3 elements of qw, and the Nrxn

independent reactions, Rkw. These variables are all fluxes found in the force-flux

pairing of the SEI, Eq. (5.43). We reiterate that functional forms for these variables

in terms of other system variables can be proposed based on experimental studies or

other sources of insight. The SEI serves as a useful relation that provides guidance

in the selection of the equations, and some of the results obtained are found to be

good models of many systems.

In light of the fact that only N − 1 vector values of uiw and N − 1 values of

μiw are independent, only these values should appear in the SEI if closure is to be

accomplished. In particular, the second force flux pair in Eq. (5.43) is of primary

interest in determining the closure relation for the diffusive transport vector. In the

following subsection, we will re-express this term.

4 Only N − 1, rather than N, independent components of these quantities exist because of the
constraints given by Eqs. (2.22), (2.25), (3.43), and (2.20), respectively.
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5.6.2 Diffusive Flux Rearrangement

Only N − 1 independent diffusive flux vectors exist because, based on Eq. (2.25),

the Nth value can be calculated if the first N −1 are known according to

∑
i∈Is/N

ωiwuiw =−ωNwuNw , (5.45)

where Is/N indicates that the summation is over all species in Is except the Nth

species. The diffusion term in Eq. (5.43) can be expanded to obtain

∑
i∈Is

ρwωiwuiw·∇
(

μiw|θw
+ψiw

)
= ∑

i∈Is/N

ρwωiwuiw·∇
(

μiw|θw
+ψiw

)
+ρwωNwuNw·∇

(
μNw|θw

+ψNw
)
. (5.46)

Substitution of Eq. (5.45) into this expansion to eliminate ωNwuNw and collecting

terms provides

∑
i∈Is

ρwωiwuiw·∇
(

μiw|θw
+ψiw

)
= ∑

i∈Is/N

ρwωiwuiw·∇
[

μiw|θw
+ψiw −

(
μNw|θw

+ψNw
)]

. (5.47)

The presence of the potentials of the Nth species as reference values suggests that

the Nth species should be identified to be one that is present in significant amounts,

such as the solvent. The right side of Eq. (5.47) is in independent force-flux form

with both the diffusive fluxes and the gradients of potentials being zero at equilib-

rium. Substitution of Eq. (5.47) into Eq. (5.43) then yields the SEI

1

θw
(pwI+ tw) :dw − 1

θw
∑

i∈Is/N

ρwωiwuiw·∇
[

μiw|θw
+ψiw −

(
μNw|θw

+ψNw
)]

−
(

qw + ∑
i∈Is

Hiwρwωiwuiw

)
·∇
(

1

θw

)
− 1

θw
∑

k∈Irxn

RkwAkw = Λw ≥ 0 . (5.48)

5.7 Special Cases

The SEI of Eq. (5.48) is a rather general form. There are some simpler single-phase

systems for which the entropy generation rate can be described as a subset of this

general form. Several of these will be listed here along with the restrictions that

apply.
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5.7.1 Single-species Phase

When the w fluid phase is composed of just a single species, the diffusive velocity

is zero because the species velocity is trivially equal to the phase velocity. Addi-

tionally, no chemical reactions can be occurring since such reactions would have to

produce another species from a reactant. Thus, Eq. (5.48) simplifies to

1

θw
(pwI+ tw) :dw −qw·∇

(
1

θw

)
= Λw ≥ 0 . (5.49)

The terms that remain in this equation are responsible for entropy generation due to

dissipative processes within the flow (i.e., viscous effects) and non-advective heat

transport (i.e., conduction) within the phase.

5.7.2 Single-species, Isothermal Phase

If a phase is composed of a single species and is isothermal such that the temperature

is uniform and no heat is being conducted, the SEI for a single phase reduces further

to
1

θw
(pwI+ tw) :dw = Λw ≥ 0 . (5.50)

This equation indicates that the entropy production can be accounted for by consid-

ering only viscous dissipation.

The two simplified cases considered here make study of the specific systems

to which they apply easier than dealing with the full SEI of Eq. (5.48). They also

demonstrate how knowledge of a general SEI, and its antecedent CEI, can serve

as a starting point for development of the corresponding equations for a simpler

system. Also, we note that the special cases considered can be developed as special

instances of the general model for which coefficients in closure relations are zero.

Thus a model can be simplified either at the level of formulation of an SEI or at a

later stage, after the SEI has been used to obtain closure relations. We now turn to

the analysis indicated in the lower right corner of Fig. 5.1, which involves use of the

SEI to develop closure relations.

5.8 Conjugate Force-flux Closure

The SEI of Eq. (5.48), as well as the special cases of Eqs. (5.49) and (5.50), are

forms of the EI that consist of a sum of force-flux pairs on the left side. This SEI was

derived under various limiting conditions from the CEI and provides a statement of

necessary conditions that must be satisfied by allowable forms of closure relations.

At equilibrium, each member of a force and flux pair must equal zero. Away from

5.7 Special Cases
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equilibrium, the dissipative fluxes in the force-flux pairs produce entropy. Thus, we

seek closure relations such that each independent flux is indeed zero at equilibrium

and, when appearing in the SEI, will provide non-negative entropy production for

all values of the independent forces. Forms of the closure relations that satisfy these

conditions are not unique. In this subsection, we explore a simple family of closure

relations based upon individual consideration of pairs of a flux and the force it mul-

tiplies, known as its conjugate force. More complicated closure approximations are

possible, and an example of cross-coupled closure relations is given in Sect. 5.9.

5.8.1 Stress Tensor

Consider the first force-flux pair in Eq. (5.48). If we examine the entropy producing

attributes of the stress tensor in isolation from other entropy producing processes,

we consider the expression

1

θw
(pwI+ tw) :dw ≥ 0 . (5.51)

We know that at equilibrium the force dw = 0. The flux multiplying this force must

also be zero at equilibrium so that at equilibrium

tw =−pwI . (5.52)

This condition states that the static part of the stress tensor is due to fluid pressure

and is isotropic in form. Away from equilibrium, we can write

tw =−pwI+ τττw , (5.53)

where τττw = 0 at equilibrium. In this expression, we assume that the dynamic aspects

of the system do not impact the fact that pw is a thermodynamic variable defined at

equilibrium (i.e., a local equilibrium assumption is applied) and τττw is termed the

viscous stress tensor, since it is the dissipative part of the stress tensor that accounts

for entropy production.

Equations (5.51) and (5.53) can be combined to write

1

θw
τττw:dw ≥ 0 , (5.54)

or, since temperature is positive,

τττw:dw ≥ 0 . (5.55)

Thus, the closure problem for the stress tensor is reduced to determining the func-

tional form of the symmetric viscous stress tensor, τττw, that satisfies Eq. (5.55) re-
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gardless of the value of dw, is zero at equilibrium, and provides a useful description

of at least some physical systems.

The mathematical aspects of this problem can be approached by assuming τττw is

a function of dw such that τττw = 0 when dw = 0. A Taylor series expansion around

this equilibrium state then gives

τττw (dw) = τττw (0)+
∂τττw

∂dw

∣∣∣∣
dw=d∗w

:dw , (5.56)

where d∗w is the value of dw for which the identity is satisfied. Because τττw (0) = 0,

this equation may also be written

τττw = âw:dw , (5.57)

where âw is a fourth order tensor. In the best of circumstances, âw will be a constant

tensor for the system, meaning that the indicated linear dependence of τττw on dw is

a good model. If the fluid is taken to be isotropic, the equality given by Eq. (5.57)

must be invariant with respect to rotations of the coordinate system. This stipulation

imposes the restriction that for the w phase of interest, âw must be isotropic. It can

be shown that an isotropic fourth order tensor may be written in terms of three

parameters so that Eq. (5.57) may be greatly reduced to 5

τττw = â1dw + â2d
T
w + â3II:dw . (5.58)

Because dw is symmetric, dw = dT
w, and Eq. (5.58) simplifies to

τττw = 2μ̂wdw + â3II:dw , (5.59)

where 2μ̂w = â1 + â2 such that now only two parameters need to be determined, â3

and μ̂w. It is common practice to calculate the trace of τττw, which is

I:τττw = (2μ̂w +3â3) I:dw . (5.60)

Rather than seeking a value for â3, we define 3κ̂w = 2μ̂w + 3â3 and let μ̂w and κ̂w
be the two unknown parameters. This gives the final form of τττw as

τττw = 2μ̂wdw +

(
κ̂w − 2

3
μ̂w

)
II:dw . (5.61)

In this expression, μ̂w is called the dynamic viscosity and κ̂w is the bulk viscosity.

The bulk viscosity is only important at locations where rapid expansion or compres-

sion of a fluid occurs, such as that due to shock waves. It provides a measure of

the difference between the mechanical pressure in a dynamic system and the ther-

modynamic pressure and thus, in essence, extends the range of applicability of the

5 The condition of isotropy of a fourth order tensor is most easily written in indicial notation as
âi jkl = â1δikδ jl + â2δilδ jk + â3δi jδkl where δi j is a Kronecker delta. With dw written in indicial
form as d jk, Eq. (5.58) is then obtained using vector notation.
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local equilibrium assumption in studying a system undergoing rapid compression

or expansion. The bulk viscosity is often neglected and is not needed when the flow

occurs with I:dw = 0.

Substitution of Eq. (5.61) into Eq. (5.55) provides the condition

τττw:dw = 2μ̂wdw:dw +

(
κ̂w − 2

3
μ̂w

)
(I:dw)

2 ≥ 0 . (5.62)

In this equation, dw:dw is a non-negative quantity, as is (I:dw)
2. It is easy to see that

Eq. (5.62) is always satisfied if the dynamic and bulk viscosities are non-negative.

The question that remains worth considering is whether τττw, as proposed in Eq.

(5.61), actually describes the viscous behavior of any fluids such that the general

total stress, as defined by Eq. (5.53), can be written for those cases as

tw =−pwI+2μ̂wdw +

(
κ̂w − 2

3
μ̂w

)
II:dw . (5.63)

Fluids that do obey Eq. (5.63) indeed exist and are referred to as Newtonian flu-

ids. If a Newtonian fluid fills the gap between two solid, horizontal, parallel planes,

lateral translation of one plane will result in the fluid at each plane surface moving

at the velocity of the surface with the velocity profile changing linearly between the

two surfaces. The greater the viscosity, which is a measure of internal friction in the

fluid, the greater the force that is needed to cause one plane to translate while hold-

ing the other fixed. For a Newtonian fluid, the force required to translate one plate is

proportional to the area of the plates and the velocity of translation; the force is in-

versely proportional to the distance between the plates. The dynamic viscosity is the

coefficient of proportionality. Newtonian behavior has been found to be common for

many small molecular weight fluids, such as water, air, and simple alcohols. More

complex fluids, such as ketchup, paint, blood, and large molecular weight polymers,

are non-Newtonian.

The extension of the concept of Newtonian behavior of a fluid to multiple di-

mensions leads to the expression for the stress tensor given by Eq. (5.63). A key

issue in determining the utility of this relation is whether the coefficients μ̂w and

κ̂w are constant, or nearly constant, for a particular fluid over a range of laminar

flow operating conditions. A closure analysis that leads to coefficients with a high

level of unexplainable variability for a particular system most likely indicates that

some of the physics of the problem is not being accounted for correctly, but is being

buried in the coefficients. The fact that the relatively simple Newtonian expression,

obtained from a linear analysis, does not universally describe fluid behavior should

not be surprising. Perhaps what is surprising is the fact that many fluids are indeed

modeled well by this simple equation.

Substitution of Eq. (5.63) into the momentum equation P∗w constructed from

Table 2.2 gives
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Dw (ρwvw)

Dt
+ρwvwI:dw −ρwgw +∇pw −∇·

[
2μ̂wdw +

(
κ̂w − 2

3
μ̂w

)
II:dw

]
= 0 .

(5.64)

Consider the special case when the fluid is incompressible. This condition is im-

posed by requiring that Dwρw/Dt = 0, which means that, although the density of

the fluid in a system need not be uniform, the density of a fluid particle remains

unchanged as it moves through the system. Based on mass conservation equation

M∗w, Eq. (2.19), the incompressibility condition implies that I:dw = 0. If μ̂w is

constant, these conditions reduce Eq. (5.64) directly to

ρw
Dwvw

Dt
−ρwgw +∇pw −2μ̂w∇·dw = 0 . (5.65)

From the rate of strain tensor defined as in Eq. (2.16), we obtain

∇·dw =
1

2
∇·
[
∇vw +(∇vw)

T
]
=

1

2

[
∇2vw +∇(∇·vw)

]
. (5.66)

However, ∇·vw = I:dw so that the second term in the bracket is zero. Substitution of

Eq. (5.66) back into Eq. (5.65) then gives

ρw
Dwvw

Dt
−ρwgw +∇pw − μ̂w∇2vw = 0 . (5.67)

Equation (5.67) is the Navier-Stokes equation for an incompressible, Newtonian

fluid with a constant viscosity. More complex equations encountered along the way

in simplifying the general momentum equation to this form are sometimes also re-

ferred to as the Navier-Stokes equation.

The closure procedure employed here has provided an approximation for the six

independent elements of the symmetric tensor, tw. If we are interested in a single-

species, isothermal phase, no additional closure relations are needed (i.e., no diffu-

sion velocities or reactions and no non-advective heat flux). Thus the full equation

set would be closed; and the system is solvable, subject to specification of boundary

conditions.

5.8.2 Diffusion Vector

Now let us turn to the second force-flux pair in Eq. (5.48). Consideration of this

term in isolation from other processes gives the conjugate relation

− ∑
i∈Is/N

ρwωiwuiw·∇
[

μiw|θw
+ψiw −

(
μNw|θw

+ψNw
)]

≥ 0 . (5.68)

Linearization of the dependence of the flux on only its conjugate force yields

uiw =−D̂iw·∇
[

μiw|θw
+ψiw −

(
μNw|θw

+ψNw
)]

for i ∈ Is/N . (5.69)
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The negative sign is employed so that if this expression is substituted back into Eq.

(5.68), the entropy generation will be positive when D̂iw is positive semi-definite.

The fluid is considered to be isotropic, and the only isotropic tensor is the scaled

unit tensor. Therefore, for an isotropic fluid,

D̂iw = D̂iwI . (5.70)

With this minor modification, that nevertheless reduces the number of parameter

values that must be determined, the diffusion expression becomes

uiw =−D̂iw∇
[

μiw|θw
+ψiw −

(
μNw|θw

+ψNw
)]

for i ∈ Is/N . (5.71)

Equation (5.71) applies to each of the N −1 species in a multispecies system while

the diffusion expression for the Nth species is obtained from Eq. (5.45). The use of

only the conjugate force limits the applicability of this diffusion expression to cases

where the diffusing chemical species are present in low enough concentrations that

their interaction with each other is unimportant in comparison to their interactions

with the Nth species, the solvent.

We observe, additionally, that if the only body force that acts on the system is

gravity,

ψiw = ψw for i ∈ Is . (5.72)

In this common case, closure relation Eq. (5.71) simplifies to

uiw =−D̂iw∇
(

μiw|θw
− μNw|θw

)
for i ∈ Is/N . (5.73)

5.8.3 Non-advective Heat Flux

Next consider the third term from Eq. (5.48) as an isolated entropy producing pro-

cess. This leads to an expression for entropy generation,

−
(

qw + ∑
i∈Is

Hiwρwωiwuiw

)
·∇
(

1

θw

)
≥ 0 . (5.74)

This expression quantifies the entropy generated by heat conduction and the trans-

port of enthalpy that accompanies diffusion. Linearization of this expression around

the equilibrium state for the conjugate force gives

qw + ∑
i∈Is

Hiwρwωiwuiw =−k̂θw·∇
(

1

θw

)
. (5.75)

Because of fluid isotropy, the tensor of proportionality, k̂θw, is a non-negative scalar

multiplied by the unit tensor so that
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qw =−k̂θw∇
(

1

θw

)
− ∑

i∈Is

Hiwρwωiwuiw . (5.76)

Application of the product rule to the gradient term yields the alternative represen-

tation,

qw =
k̂θw

θ 2
w

∇θw − ∑
i∈Is

Hiwρwωiwuiw . (5.77)

When interdiffusion is negligible, or if the fluid is composed of only one species,

Eq. (5.77) reduces to the expression known as Fourier’s law where the non-advective

heat transfer is proportional to the temperature gradient. Note that in our expression

of this law, no minus sign appears because of the sign convention chosen for qw in

the energy equation such that it provides a source of energy at a point rather than

a sink. Also, it has been found experimentally that k̂θw tends to be proportional

to θ 2
w so that k̂θw/θ 2

w in Eq. (5.77) has small variation over a significant range of

temperature.

5.8.4 Chemical Reaction

The last force-flux pair in Eq. (5.48) accounts for entropy production due to chemi-

cal reactions. In isolation from other processes, this term provides the entropy gen-

eration condition

− ∑
k∈Irxn

RkwAkw ≥ 0 . (5.78)

In turn, this suggests the linearized expression for each reaction of the form

Rkw =−K̂rxnkAkw for k ∈ Irxn . (5.79)

Although this expression provides a description of the chemical reaction rate in

terms of the affinity, this form is rarely used in practice. Instead, chemical reac-

tion rates are typically determined via laboratory experiments, or subscale theory,

yielding an expression for rates in terms of concentrations of reactants. Because this

approach to determining reaction pathways and rates is more accurate and general

than a linearization approach, experimentally or mechanistically based expressions

are used in modeling. Discussions of relations between reaction rates and affinities

may be found in the literature [e.g., 5, 6].

5.9 Cross-coupled Closure

The conjugate closure relations given in Sect. 5.8 represent the simplest set of con-

ditions that are consistent with the entropy inequality and with experimental obser-

5.8 Conjugate Force-flux Closure
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vations that conjugate pairs are of leading order importance. Because of these fea-

tures, this simple approach to obtaining closure relations is often used in developing

mechanistic models of transport phenomena at the microscale. The derivations of

the Navier-Stokes equation and of Fourier’s law of heat conduction are classical ex-

amples of the applicability and utility of the results of conjugate closure. However,

this is not the full story.

Careful experimental observations have shown that fluxes can be caused by

forces other than the conjugate force alone. For example, species diffusion can re-

sult from a temperature gradient; this is known as the Soret effect. Similarly, non-

advective heat transport can be caused by a gradient in chemical potential; this is

known as the Dufour effect. Diffusion of each chemical species can be influenced

by the diffusion of all the other chemical species present. These cross-coupled mech-

anisms illustrate symmetries collectively referred to as the Onsager reciprocal rela-

tions [8, 9]. The bases for these symmetries is rooted in the consequences of molec-

ular reversal and its manifestation at the microscale. Kinetic theory can be used to

prove these symmetries.

A second observation regarding coupled symmetries was made by Nobel Lau-

reate Ilya Prigogine regarding the nature of the forces and fluxes that admit cross

coupling [6, 11]. This observation is based on the Curie symmetry principle [13];

roughly speaking, it restricts coupled phenomena to be of similar character. For ex-

ample, for isotropic systems a force may not be coupled with fluxes whose ranks

differ from that of the force by an odd number [1, 7, 10]. Scalar forces, such as

affinities, have greater symmetry than anisotropic forces such as gradients in chem-

ical and gravitational potential, so these effects cannot be coupled. Similarly, tensor

forces cannot be coupled with vector forces. The net result of the symmetry princi-

ple is a restriction on the form of cross-coupled approximations.

One last observation is needed regarding cross-coupled closure methods. For sys-

tems involving directional forces such as a magnetic field, the normal form of the

Onsager reciprocal relations, which generalize the dependence of fluxes on forces in

addition to the conjugate forces when local equilibrium may be presumed, does not

apply. Since we are not considering electromagnetic fields in this work, this com-

plication will not be relevant to our discussion, but should be kept in mind for those

wishing to extend TCAT methods to more complex systems.

The generalization of the dependence of each of the four fluxes on the forces in

SEI Eq. (5.48) can be expressed as the dependence of each flux on the full set of

forces, requiring that the flux be zero at equilibrium, and performing a Taylor series

expansion around the equilibrium state for all of the forces for each flux. The results

for the fluxes in Eq. (5.48) are

τττw = â
(4)
τd :dw − ∑

k∈Is/N

â
(3)
kτ f ·fkw − â

(3)
τθ ·∇

(
1

θw

)
− ∑

k∈Irxn

â
(2)
kτAAkw , (5.80)

uiw = â
(3)
iud :dw − ∑

k∈Is/N

â
(2)
iku f ·fkw − â

(2)
iuθ ·∇

(
1

θw

)
− ∑

k∈Irxn

â
(1)
ikuAAkw
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for i ∈ Is/N , (5.81)

qw + ∑
k∈Is

Hkwρwωkwukw =â
(3)
qd :dw − ∑

k∈Is/N

â
(2)
kq f ·fkw − â

(2)
qθ ·∇

(
1

θw

)

− ∑
k∈Irxn

â
(1)
kqAAkw , (5.82)

and

Riw = â
(2)
iRd :dw − ∑

k∈Is/N

â
(1)
ikR f ·fkw − â

(1)
iRθ ·∇

(
1

θw

)
− ∑

k∈Irxn

â
(0)
ikRAAkw for i ∈ Irxn .

(5.83)

A superscript in parentheses indicates the order of the coefficient tensor, and fkw is

used as a shorthand notation with

fkw = ∇
[

μkw|θw
+ψkw −

(
μNw|θw

+ψNw
)]

(5.84)

when ψkw is species dependent, or in simplified form as

fkw = ∇
(

μkw|θw
− μNw|θw

)
(5.85)

when Eq. (5.72) applies.

We are studying an isotropic system. No isotropic first- or third-order tensors

exist, so these coefficient tensors are zero. The procedure for handling an isotropic

fourth-order tensor has been demonstrated in the previous section. The only second-

order isotropic tensor is a scalar multiplying the unit tensor. Thus, Eqs. (5.80)–(5.83)

simplify, respectively, to

τττw = 2μ̂wdw +

(
κ̂w − 2

3
μ̂w

)
II:dw − ∑

k∈Irxn

âkτAIAkw , (5.86)

uiw =− ∑
k∈Is/N

âiku f fkw − âiuθ ∇
(

1

θw

)
for i ∈ Is/N , (5.87)

qw + ∑
k∈Is

Hkwρwωkwukw =− ∑
k∈Is/N

âkq f fkw − âqθ ∇
(

1

θw

)
, (5.88)

and

Riw = âiRdI:dw − ∑
k∈Irxn

âikRAAkw for i ∈ Irxn . (5.89)

Recall that according to the symmetry principle, fluxes should not depend on forces

of a rank that differs by an odd number. The last terms in Eq. (5.86) and the first

term in Eq. (5.89) involve forces that differ from the order of their fluxes by 2. Thus
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the effective force contributions of these terms are allowable. Equations (5.87) and

(5.88) exhibit the cross-coupling of mass diffusion due to non-advective heat trans-

fer (Soret effect) and heat transfer due to diffusive mass transfer (Dufour effect),

respectively. Not to be overlooked is the cross coupling that is indicated for diffu-

sive transfer of species i due to gradients in potentials of the other chemical species

present. This force is not accounted for if only conjugate forces are considered.

The issue of the magnitudes of the various coefficients that appear in Eqs. (5.86)–

(5.89) is, for the most part, beyond the scope of what we wish to consider here. We

will note that the conjugate force-flux relation is the dominant one. Additionally,

when the constitutive forms are substituted back into SEI Eq. (5.48), the coefficient

values must be such that violation of this inequality principle is not possible. We

observe that the set of closure relations listed provides the 3N +6+Nrxn additional

equations needed such that the equation system is solvable. However, this good news

should not obscure the fact that the unknown fluxes have been obtained as functions

of the forces at a cost of 1+ 2N + 2Nrxn +(N − 1)2 +(Nrxn − 1)2 parameters that

must be specified. This trade is worthwhile if the parameters can be determined to

be essentially material parameters that do not depend on the processes in the sys-

tem. When the parameters associated with cross-coupling can all be set to zero, the

unknown parameter set is reduced to 2+N +Nrxn members. Extensive discussion

of the symmetry principle, Onsager’s theory, and bounds and properties of the pa-

rameters can be found in the literature [e.g., 1, 3, 5, 8, 10, 12].

5.10 Summary

In this chapter, we have illustrated how closure relations for a microscale system

can be derived based upon a constrained statement of the second law of thermo-

dynamics. The analysis followed the steps indicated in Fig. 5.1. The components

of this analysis included the entropy inequality augmented by Lagrange multipli-

ers acting on conservation and balance equations, thermodynamic principles, and

equilibrium conditions. These components were derived in previous chapters. To

enable the analysis to lead to an expression for the entropy generation rate due to

irreversible processes in terms of force-flux pairs, Lagrange multipliers were cho-

sen to eliminate material derivatives. The result of this analysis led to a constrained

entropy inequality, which did not involve application of any approximations to the

initial set of equations. The general CEI can serve as a starting point for analyses

of systems other than those considered here. Approximations were employed to ar-

rive at a strict force-flux form of the entropy inequality, which was referred to as

the simplified entropy inequality (SEI). The SEI provides guidance to the selection

of closure relations needed to account for a deficit in equations needed to solve for

the system unknowns. The SEI was used to derive closure relations involving the

linearized relations between forces and fluxes. It was shown that even these linear

forms provide expressions that have been shown to be useful in modeling systems

(e.g., Newtonian stress tensor, Navier-Stokes equation, Fourier heat flux, Soret and
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Dufour effects). The closure relations provide a hierarchy of parameterized models

in that simpler systems can be modeled as special cases (i.e., an isothermal system,

a single-species phase, non-reacting fluid).

The only element of Fig. 5.1 that was not given attention here is the lower left cor-

ner involving subscale modeling and applications. Indeed, the focus of this chapter

was on a theoretical approach to closure. Once closure is completed, two important

issues arise. First, one must ascertain if any real physical systems behave in accord

with the derived approximate equations. If no systems are found or if a system of

interest does not behave according to the equations developed, the closure approach

must be reassessed and modified with restrictions relaxed. Second, if systems ex-

ist that behave according to the physics described by the model, the parameters in

the model must still be evaluated for the system of interest. For example, values of

the dynamic viscosity, μ̂α , have been tabulated for a large number of fluids over

a range of temperatures. These are obtained from experimental measurements on

model systems and from methods for calculating fluid properties. This kind of sup-

port is essential to ensuring that the equations developed are applicable. For chem-

ical reactions, mechanistic models that have been developed are superior to simply

modeling a reaction as being proportional to the affinity.

The procedure detailed in this chapter is applicable to microscale systems in

general. All elements of the closure procedure also have parallels for the larger

scale TCAT models to be derived in subsequent chapters. Focusing on the relatively

simple single-fluid-phase system afforded the opportunity to introduce important

elements of the TCAT approach without the complexity that will accompany mul-

tiphase systems. A comparison of Fig. 5.1 with Fig. 1.3 provides an indication of

the additional steps that are needed if a model is to be formulated at the macroscale

rather than at the microscale. The elements of the tools needed to transform equa-

tions to a larger scale, as needed for TCAT analysis of a porous medium system, are

the subject of the next chapter.

Exercises

5.1. Prove that an alternative form for the diffusion force-flux pair is

∑
i∈Is

ρwωiwuiw·∇
[

μiw|θw
+ψiw −

(
μNw|θw

+ψNw
)]

= ∑
i∈Is/N

ρwωiwuiw·
[

∇
(

μiw|θw
+ψiw

)
+ ∑

k∈Is/N

ωkw

ωNw
∇
(

μkw|θw
+ψkw

)

− 1

ρwωNw

(
∇pw + ∑

k∈Is

ρwωkw∇ψkw

)]
. (5.90)
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5.2. Show that if the mechanical pressure, pwmech is the average normal stress such

that pwmech =−tw:I/3, then for a single component fluid

pwmech = pw +
κ̂w

ρw

Dwρw

Dt
,

confirming that bulk viscosity is important when fast rates of density change con-

tribute to a normal stress in excess of the thermodynamic pressure.

5.3. Consider a single-phase, single-species, isothermal, elastic solid. Develop the

closed form of the stress tensor for this system.

5.4. For a single-species phase, the SEI is given by Eq. (5.49). Make a count of

variables and equations that shows whether or not any additional equations will be

needed to obtain a closed system description.

5.5. For a fluid phase w composed of two chemical species, A and B, show that fAw
given in Eq. (5.84) may be written as

fAw = ∇
(

μAw|θw
+ψAw

)
−∇

(
μBw|θw

+ψBw
)

;

and obtain the expression for fBw.
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Chapter 6
Macroscale Conservation Principles

6.1 Overview

In the preceding chapter, we demonstrated how the elements of the TCAT approach,

as depicted in Fig. 5.1, are used to obtain a closed set of microscale equations.

The procedure for the development of macroscale equations is similar. However, an

additional step is required to transform the microscale relations to the macroscale

prior to applying the closure procedure. Fig. 6.1 highlights the elements that are

needed to transform the conservation and balance equations to the macroscale.

Figure 6.1 indicates that to achieve a change in scale, averaging theorems are

needed. These theorems facilitate a rigorous and systematic procedure for achiev-

ing the change in scale of the microscopic equations. Because volume, interface,

common curve and common point entities all can arise in multiphase systems, fam-

ilies of theorems are needed for each of these entity classes. For completeness, the

theorems are derived in detail in Appendix B. However, the main objective here is to

employ the theorems as available tools for the development of TCAT models. Thus,

mastery of the use of the theorems, rather than of their formulation, is the point of

emphasis consistent with the approach of Fig. 6.1.

Recall that the macroscale is an averaged scale where conditions at a point are

expressed in terms of averages of microscale conditions in some neighborhood of

that point. This neighborhood is called the representative elementary volume (REV).

Whereas the microscale perspective sees phases, interfaces, and common curves as

juxtaposed entities, the averaging process gives rise to a representation of the sys-

tem whereby phases each occupy a fraction of the volume associated with the REV.

In addition, measures of interfacial area, common curve length, and the number of

common points per volume arise. These entity densities do not exist at the mic-

roscale, but are a byproduct of the increase in length scale. An essential feature,

however, is that if details are known at the microscale, averaging of certain aspects

of these microscale details must result in macroscale quantities that are well-defined

in terms of the microscopic precursors. This interscale consistency provides a link

between the microscale and the macroscale that is important in model development,

201W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_6,
� Springer International Publishing Switzerland 2014
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Fig. 6.1 TCAT elements of interest in Chap. 6 (after [6])

closure, and validation. The ability to include interface, common curve, and com-

mon point equations at the macroscale is a quality of TCAT model formulation that

is important for proper accounting of microscale physics using macroscale equa-

tions. The absence of these interface and common curve macroscale equations in

traditional modeling approaches is a major shortcoming that impedes the formu-

lation of mechanistic, physics-based closure approximations. In some cases, this

absence means that the equations employed for modeling are incomplete; in other

cases, the absence means that the assumptions inherent in the model employed are

unknown.

The set of equations to be averaged here includes mass, momentum, and energy

conservation plus entropy balances. These equations are obtained for species in an

entity and for the entity as a whole. They are formulated for phases, interfaces, and

common curves1. If one is to model the full set of conservation equations for each

chemical species in each entity of the system, the size of the set of equations to

be employed increases rapidly as the number of phases and species increases. The

formulation of the actual set of equations can be handled by making some simplifi-

cations. One must make decisions about tradeoff between simplicity and accuracy,

about detailed and general parameterization, and about computational requirements

to solve the equation set. In this chapter, we will develop the species-based conser-

vation and balance equations as well as equations that apply to an entity as a whole.

1 Conservation and entropy balance equations at the microscale for a common point have been
provided in Sect. 2.6, and the averaging theorem for these equations is obtained in Appendix B as
Eq. (B.73) for completeness. However, subsequent focus is on systems with three phases or fewer
that do not have common points. It will be seen, nonetheless, that because of the similarity of the
forms of the equations, the inclusion of common point equations follows directly. Parameterization
of these equations provides challenges in a case where common point physics impacts system
behavior.
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In subsequent applications, we will make use of combinations of these equations. A

similar approach was used in the microscale fluid phase example of Chap. 5, where

closure relations were obtained treating the mass conservation of each species sepa-

rately while combining the species-based momentum and energy equations to obtain

phase-based equations.

The sections that follow provide fundamental considerations and notation for the

averaging to be done, develop appropriate forms of the averaging theorems, and

apply the theorems and notation to conservation and balance equations for phases,

interfaces, and common curves. Although the next section, which discusses the no-

tation used to identify macroscale quantities, may seem a bit mundane, experience

suggests that mastering the notation prior to developing and working with the larger-

scale equations is wise.

6.2 Averaging Conventions and Notation

The term “averaging” is typically employed to denote normalized integration over

a region. Averaging yields measures of the underlying distribution of the quantity

being averaged, but these measures do not contain all of the information associ-

ated with the scale over which integration is performed. Roughly speaking, a set of

smaller scale information provides a more detailed description of a system. How-

ever, the loss of information that accompanies observing a system at a larger scale is

often a worthwhile trade off. For example, in transitioning the study of an ideal gas

from the molecular perspective to the microscopic perspective, a tremendous loss

of information about the individual molecules is inherent in using the ideal gas law

rather than equations of molecular dynamics. However, the ideal gas law is of great

utility in describing well a large array of gas states. What we seek in averaging mic-

roscale equations is an appropriate compression of information such that sufficient

detail is retained to represent a system of interest at the larger scale with useful ac-

curacy. This is especially important in porous medium systems because microscale

details of the flow within the space between pores is not generally available. Even if

one designs a porous medium composed of spherical solid grains of various sizes,

calculation of the fluid dynamics within the space between the spheres for a system

of more than a few million spheres is computationally overwhelming. Modeling of

real porous media systems, such as groundwater aquifers or petroleum reservoirs,

requires that the system behavior be described at a scale larger than the space be-

tween grains. With TCAT, this larger scale description is obtained by averaging the

microscale conservation, balance, and thermodynamic equations and then closing

them systematically.

When averaging porous medium systems, the integrals of microscale quantities

are typically normalized by the size of the REV so that the larger scale quantities

obtained are values that apply on the length scale of the REV. It is important to keep

the normalization factor the same for all conservation equations so that equations

of common type can be added together. For example, if the momentum for all the

6.1 Overview
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species is described by equations having units of momentum per averaging volume

per time, these equations may be directly added together to give the momentum per

volume per time for the REV as a whole.

Writing ratios of integral expressions and including those ratios in conservation

equations is notationally clumsy. Explicit writing of the integrals can be avoided

by defining an averaging operator that implies all the elements of the integration in

shorthand form. We define the averaging operator as

〈Pα〉Ωβ ,Ωγ ,W :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωβ

WPα dr

∫
Ωγ

W dr
for dimΩβ > 0, dimΩγ > 0

∑
κ∈Ωβ

Pα κWκ∫
Ωγ

W dr
for dimΩβ = 0, dimΩγ > 0

∑
κ∈Ωβ

Pα κWκ

∑
κ∈Ωγ

Wκ
for dimΩβ = 0, dimΩγ = 0

, (6.1)

where Pα is a microscale property of entity α to be averaged, W is a weighting func-

tion, Ωβ is a domain of integration of the function and Ωγ is the region of integration

used in normalizing the averaging process. If W is not specified, it is assumed to be

1. Note that for cases when dimΩβ = 0 or dimΩγ = 0, the “integration” is actually

a summation over a set of common points and both the function being averaged and

the weighting function are evaluated at the common points, κ .

Of course, a microscale function may only be integrated over a domain in which

it exists. Thus, it may be surprising to see a property of entity α being averaged over

the domain β . This situation exists because of the properties of a porous medium

system. For example, consider a porous medium consisting of a fluid phase, w, a

solid phase, s, and the interface between these phases, denoted as ws. A micro-

scale property of the w phase, fw, averaged over the volume occupied by the w
phase within an averaging volume without a weighting function and normalized

with respect to the volume occupied would be denoted 〈 fw〉Ωw,Ωw
. A calculation of

〈 fw〉Ωs,Ωw
is meaningless since fw does not exist in the s phase. However, in some

instances, it may be desirable to average the value of fw over the boundary of the

w phase, Γw, normalized relative to that integration region. This would provide an

average value of fw on the boundary of Ωw. Such an average would be denoted

〈 fw〉Γw,Γw
. We note that Γw has the same extent as Ωws, the domain of the interface.

Thus, it may be convenient to replace 〈 fw〉Γw,Γw
with 〈 fw〉Ωws,Ωws

. When such no-

tation is employed, it is important to remember that this latter expression actually

implies an average of fw over the boundary of the w phase that is in contact with

the ws interface. The interface itself may have values of fws that are different from
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fw evaluated at the interface. The change in notation from a more precise indication

of averaging over a boundary to averaging over an adjacent surface entity must be

undertaken particularly carefully in instances when concentrated forces act on the

surface, as discussed with regard to the solid phase stress tensor in Sect. 4.6.3.

The definition of the averaging operator in Eq. (6.1) is generally useful, but still

can be notationally awkward. Therefore, three principal special cases of averaging

that arise routinely are designated with further abbreviated, but less explicit, nota-

tion. These averages are referred to as the intrinsic average, the mass average, and

uniquely defined averages.

6.2.1 Intrinsic Averages

The general intrinsic average is the case when Ωβ = Ωγ and W = 1 in Eq. (6.1). A

general intrinsic average is denoted by adding an unadorned superscript, referring

to the region of integration, to the microscale quantity being averaged such that

f β
α = 〈 fα〉Ωβ ,Ωβ

. (6.2)

For the special case where, additionally, α = β , the subscript on the intrinsic average

is dropped to obtain

f α = 〈 fα〉Ωα ,Ωα
. (6.3)

We emphasize that the presence of a superscript indicates an upscaled quantity. The

compressed notation for the general and special phase averages conveys a precise

meaning for a macroscale variable in terms of a microscale precursor, thereby pro-

viding a desirable connection between quantities at different length scales.

6.2.2 Mass Averages

The mass average, or mass density weighted average, is obtained when the mass

density of the entity associated with the quantity being averaged is the weighting

function, W , in Eq. (6.1) and β = γ . The general mass average is indicated as

f β
α = 〈 fα〉Ωβ ,Ωβ ,ρα

, (6.4)

where the superscript with an overline denotes a mass average. As with the intrinsic

average, when α is additionally equal to β , the subscript is deleted in the general

mass average such that

f α = 〈 fα〉Ωα ,Ωα ,ρα
. (6.5)

Properties of species are also sometimes calculated by weighting with the mass

density of that species. The notation employed, analogous to that introduced in Eqs.
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(6.4) and (6.5), is

f β
iα = 〈 fiα〉Ωβ ,Ωβ ,ρα ωiα

(6.6)

and

f iα = 〈 fiα〉Ωα ,Ωα ,ρα ωiα
. (6.7)

Properties of a species in an entity may also be weighted by the mass density of

the entity resulting in the specific average given by

f iα = 〈 fiα〉Ωα ,Ωα ,ρα
. (6.8)

Note that the overbar on f iα extends only over the entity qualifier and not the species

qualifier.

6.2.3 Unique Averages

A uniquely defined average is, as the name implies, some defined quantity expressed

in terms of an average of microscale quantities, perhaps in combination with some

macroscale quantities. Frequently, uniquely defined averages occur as the sum of

averaged quantities. Uniquely defined averages are indicated by a superscript with

a double overbar, such as f α , where the superscript typically refers to the domain

of an entity or of a species-entity pair. The uniquely defined averages can only be

related to their precursors by providing the definition in terms of the explicit aver-

aging operator. The double overbar serves as a flag that indicates a unique definition

for the upscaled variable is being used, with this definition stated in the text. The

kind of averaging that has occurred is different for different properties that make

use of the unique averaging shorthand.

6.2.4 Examples of Averaging Notation

It is helpful to consider some specific examples of the use of the averaging notation

that will arise as the averaged conservation equations are developed. Recall that in

applying the averaging operator, we will be considering the properties of the phase,

interface, and common curve entities associated with an averaging volume that oc-

cupies domain Ω. The domains of various entities are denoted with a subscript on

Ω.

A specific entity measure (i.e., specific volume, area, or common curve length)

is defined as

εα = 〈1〉Ωα ,Ω , (6.9)

where εα is a volume fraction when α ∈ IP, a specific interfacial area when α ∈ II,

and a specific common curve length when α ∈ IC, where the index sets of phases, in-
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terfaces, and common curves are denoted by IP, II, and IC, respectively. For porous

media, when one phase is a solid, the porosity is defined as

ε = ∑
α∈If

εα = 1− εs , (6.10)

where If is the index set of fluid phases. The volume fraction of a phase may equiv-

alently be defined by making use of the indicator function as

εα = 〈ϒα〉Ω ,Ω for α ∈ IP , (6.11)

where ϒα equals 1 in the α phase and zero in all other phases.

Note that while the sum of volume fractions of all phases equals 1,

∑
α∈IP

εα = 1 , (6.12)

a similar condition does not apply for interfaces and common curves. Specific inter-

facial areas and specific common curve lengths sum to the total specific interfacial

area for all interfaces and total common curve length for all common curves, respec-

tively, which is not bounded.

A fluid saturation is defined as the fraction of the non-solid portion of the aver-

aging volume domain occupied by that fluid. This is written as

sα = 〈1〉Ωα ,Ωf
for α ∈ If , (6.13)

where Ωf = ∪α∈If
Ωα is the domain of the fluid phases. An equivalent definition is

sα = 〈ϒα〉Ω ,Ω ,(1−ϒs)
for α ∈ If . (6.14)

The macroscale mass density is defined as an intrinsic average of the form

ρα = 〈ρα〉Ωα ,Ωα
for α ∈ I . (6.15)

When α ∈ IP, ρα is the mass per volume of the phase; when α ∈ II, ρα is the mass

per area of the interface; when α ∈ IC, ρα is the mass per length of the common

curve. Thus, the dimensions of ρα , and other quantities as well, change depending

upon the entity qualifier.

Next, consider the macroscale velocity, which is most commonly expressed as a

mass-averaged quantity of the form

vα = 〈vα〉Ωα ,Ωα ,ρα
for α ∈ I , (6.16)

where the overbar indicates the weighting function is W = ρα . In some cases, it is

desired to obtain the mass averaged velocity of an entity at the boundary where the

entity is in contact with a particular different phase. For instance, the mass average

of the velocity of an α phase over the portion of the boundary of that phase in
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contact with an αβ interface that is the boundary between the α and β phases might

be written formally as

vαβ
α = 〈vα〉Γα ,Γα ,ραϒαβ

for α ∈ IP,αβ ∈ II . (6.17)

The single overbar notation of a mass average velocity cannot be employed here

because integration is over the boundary of the α phase, restricted to contributions

from the portion of the surface adjacent to the β phase. We can make use of the

mass average notation, however, if we designate the domain of integration as Ωαβ .

This gives

vαβ
α = 〈vα〉Ωαβ ,Ωαβ ,ρα

for α ∈ IP,αβ ∈ II . (6.18)

The quantities on the left sides sides of Eqs. (6.17) and (6.18) are equal. However,

with the notation in the latter equation, one does not have to refer back to a unique

definition; this velocity is expressed as a mass average.

Other averages arise that are not readily expressible as mass or intrinsic averages.

Some of these averages can be manipulated so that they can be expressed in terms

of these more convenient forms. For example, consider a bulk mass density given

by 〈ρα〉Ωα ,Ω , which is not an intrinsic average. A rearrangement of the domains of

integration gives

〈ρα〉Ωα ,Ω = 〈1〉Ωα ,Ω 〈ρα〉Ωα ,Ωα
= εα ρα . (6.19)

The advantage of expressing the bulk density as the product εα ρα is that both of

these quantities have already been defined; therefore, it is not necessary to define a

new variable. In general, when averaging we seek to define the fewest number of

macroscale variables, to define macroscale variables in terms of microscale precur-

sors, and to employ variables that are experimentally accessible.

Similar to the notion used to express the bulk density, the average of the product

of density and velocity can be expressed in terms of simpler variables by changing

the integration domains. Thus,

〈ρα vα〉Ωα ,Ω = 〈1〉Ωα ,Ω 〈ρα〉Ωα ,Ωα
〈vα〉Ωα ,Ωα ,ρα

= εα ρα vα , (6.20)

where again it can be noted that the product is expressed in terms of previously

defined macroscale variables. If we are interested in the mass-weighted average of

the species velocity, the weighting function is the mass of that species per entity,

ρα ωiα . Then the average can be decomposed exactly to give

〈ρα ωiα viα〉Ωα ,Ω = 〈1〉Ωα ,Ω 〈ρα〉Ωα ,Ωα
〈ωiα〉Ωα ,Ωα ,ρα

〈vα〉Ωα ,Ωα ,ωiα ρα
. (6.21)

With the averages on the right expressed using the notation that has been introduced,

we obtain

〈ρα ωiα viα〉Ωα ,Ω = εα ρα ω iα viα . (6.22)
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Note that the mass density weighted mass fraction has an overbar only over the

entity designation α because it is the mass density of that entity that provides the

weighting function rather than the mass density of species in the α entity, ρα ωiα .

We will express averages of products in terms of products of averages routinely,

always being careful to seek exact expressions when possible.

Finally, consider a slightly more complicated example involving the stress tensor

and a dyadic product of velocities. This quantity will be seen to arise when averaging

the momentum equation. The term of interest is

〈tα −ρα vα vα〉Ωα ,Ω =
〈
tα −ρα

[
vα +

(
vα −vα

)][
vα +

(
vα −vα

)]〉
Ωα ,Ω

.

(6.23)

The average on the left side of Eq. (6.23) poses a problem, because the average of the

dyadic product of velocities cannot be expressed completely in terms of previously

defined average quantities. Because of this, the terms in brackets on the right are

used as expansions of the microscale velocity by adding and subtracting macroscale

velocities. The equality is exact. Since a macroscale quantity is an average over the

domain, it is a constant within an averaging operator. A consequence of this is〈
ρα vα vα

〉
Ωα ,Ω

= 〈ρα〉Ωα ,Ω vα vα = εα ρα vα vα . (6.24)

Also, based on Eq. (6.20), we note〈
ρα

(
vα −vα

)
vα
〉

Ωα ,Ω
= 〈ρα vα〉Ωα ,Ω vα −〈ρα〉Ωα ,Ω vα vα = 0 . (6.25)

Combination of the identities in Eqs. (6.24) and (6.25) with Eq. (6.23) yields

〈tα −ρα vα vα〉Ωα ,Ω =
〈
tα −ρα

(
vα −vα

)(
vα −vα

)〉
Ωα ,Ω

− εα ρα vα vα .

(6.26)

This equation can conveniently be written as

〈tα −ρα vα vα〉Ωα ,Ω = εαtα − εα ρα vα vα , (6.27)

where

tα =
〈
tα −ρα

(
vα −vα

)(
vα −vα

)〉
Ωα ,Ωα

. (6.28)

Thus, the average of a sum of a microscale stress tensor plus a term involving a

dyadic product of microscale velocities has been manipulated so that it can be ex-

pressed in terms of a uniquely defined macroscale stress tensor plus a dyadic product

involving macroscale velocities. The dyadic velocity fluctuation product is included

in the definition of the larger scale stress tensor because this contribution to stress

mirrors the definition that evolves from smaller scale theories, such as kinetic theory.

In other words, the subscale velocity fluctuations, not observable at the macroscale,

essentially contribute to the stress tensor that is observed at the macroscale. This is

a clear example of the use of a defined double-barred quantity. It will be seen subse-
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quently that a closure relation is needed for this macroscale stress tensor, as it was

for the microscale tensor, in terms of macroscale variables. Product breaking and

term grouping of this nature will occur routinely in the development of the full set

of conservation and balance equations that we desire. By keeping this example in

mind, it will not be necessary to completely detail all the decompositions employed

as the procedures used are essentially identical to those shown in this last example.

6.3 Averaging Theorems

As can be seen from Fig. 6.1, the averaging theorems are the primary workhorse

for changing microscale equations to macroscale equations. Averaging theorems

are applied to terms in conservation, balance, and thermodynamic equations. In the

last section, a notational convention for averages was presented, and an example

of product breaking was used to show how larger scale quantities can be defined

in terms of smaller scale ones. The contribution of the averaging theorems is that

they allow for an exchange of the order of averaging and differentiation so that the

average of a derivative becomes the derivative of an average plus some ancillary

terms.

The averaging theorems are tools employed in TCAT analysis and are not in

themselves important products of the analysis. Put another way, the theorems facil-

itate the analysis, but these theorems can be used without understanding the details

of the derivation. Readers wishing to understand how these non-standard theorems

are derived can consult Appendix B.

The general averaging theorems are derived in Appendix B. The forms presented

there apply to volumes, surfaces, curves, and points within an averaging volume.

The resultant theorems are mathematical relations that apply without physical con-

sideration of a system under study. Because we are interested in multiphase porous

medium systems, it is useful to translate the notation used in the theorems to a more

specific form with physical implications. For example, averaging over a volume is

actually averaging over a particular phase; the boundary of a phase is an interface

between phases. It will be helpful if the theorem notation reflects these facts for our

applications. Additionally, we can upscale the equations using the general averaging

operator that has been introduced. Later, when applying the restated theorems to a

particular conservation equation, we will also be able to write some of the general

averaged terms as intrinsic, mass weighted, or unique averages. For the moment, we

will concentrate simply on relating the general geometric aspects of the theorems to

the particular geometry of porous media.

As a prelude, we note that the naming convention for the theorems employed

here is <letter>[m,(3,0),0] where <letter> is either D, G, or T depending on

whether the theorem involves the divergence, the gradient, or the time derivative.

The letter “m” takes on integer values from 0 to 3 depending on the dimensional-

ity of the operator and the microscale region (e.g., 1 for a common curve, 3 for a

volume). The number “3” in the second position indicates that the resultant opera-
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tor and average are macroscopically three-dimensional. The first “0” indicates that

none of the macroscopic spatial dimensions is modeled by considering fluxes across

the boundary of the averaging volume (as opposed to derivative forms within the

averaging volume), and the final “0” indicates that no megascale averaging is be-

ing done. In some cases, beyond the scope of what is being considered here, it is

useful to perform megascale averaging over one or more dimensions. Appropriate

theorems for those cases are available [5] and have been recently applied to porous

media problems [4, 7].

6.3.1 Averaging Theorems for Phases

The three averaging theorems for phases are based on the theorems for volumes,

Eqs. (B.12), (B.13), and (B.17) for the spatial divergence operator, gradient oper-

ator, and partial time derivative, respectively. Introduction of averaging notation is

superficially straightforward but is based on some subtle points that will be empha-

sized in dealing with the divergence operator theorem, D[3,(3,0),0], in detail.

Theorem D[3,(3,0),0] is given by Eq. (B.12) as

∫
Ωv

∇·fdr= ∇·
∫

Ωv

fdr+
∫
Γvi

n·fdr , (6.29)

where f is a vector function of interest, Ωv is the portion of the total averaging do-

main, Ω, over which integration is being performed, Γvi is the portion of the bound-

ary of Ωv that separates it from the rest of the space within Ω, and n is a unit normal

vector on Γv that is outwardly directed from Ωv. We emphasize that Γvi is not a closed

boundary as it does not include the external boundary of the full averaging volume

that is part of the full boundary of Ωv.

For application to a porous medium, the region of integration is the region occu-

pied by a phase α ∈ IP, denoted Ωα with a boundary within the full averaging region

denoted Γαi. The function f and the unit normal, n, are microscale properties of the

α phase, and will be designated by a subscript. Thus, Eq. (6.29) for application to a

porous medium system is written

∫
Ωα

∇·fα dr= ∇·
∫

Ωα

fα dr+
∫

Γαi

nα ·fα dr for α ∈ IP . (6.30)

We will normalize this relation with respect to the full volume of the averaging

region. Because this volume is specified to be constant, in contrast to the volumes

of the phases within Ω which vary with time and position, this volume can be moved

inside the divergence operator. Thus, the explicit equation we obtain is
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∫
Ωα

∇·fα dr

∫
Ω

dr

= ∇·

⎛
⎜⎜⎜⎜⎜⎝

∫
Ωα

fα dr

∫
Ω

dr

⎞
⎟⎟⎟⎟⎟⎠+

∫
Γαi

nα ·fα dr

∫
Ω

dr

. (6.31)

This equation can be readily expressed using the averaging operator notation of Eq.

(6.1) as

〈∇·fα〉Ωα ,Ω = ∇·〈fα〉Ωα ,Ω + 〈nα ·fα〉Γαi,Ω for α ∈ IP . (6.32)

An additional change can be made to this expression after noting that Γαi has the

same mathematical coordinates as the interface domain that separates the α phase

from adjacent phases. Therefore the last term in Eq. (6.32) can conveniently be ex-

pressed as an integral over the interface domains at the boundary of the phase, with

one caveat. As was discussed in Sect. 4.6.3, it is possible that a concentrated force

may act at the surface of a phase, particularly on a solid surface. In general, such a

force could act at any point on the surface. This force is accounted for in the form

of Eq. (6.32). However, if we subdivide Γα and consider portions of it separately,

concentrated forces that act on the edges of the portions would be overlooked. For

porous media, the location of a concentrated force on the solid surface will be at a

common curve. When such a force acts, it is not possible to express the integral over

Γαi as a sum of integrals over just the interface domains because the concentrated

force acts at the boundary between these domains. Thus, this singularity must be

handled separately so that we write

〈nα ·fα〉Γα ,Ω = ∑
κ∈I−cα

〈nα ·fα〉Ωκ ,Ω +
1

2
∑

β∈I−cα

∑
κ∈I−

cβ

〈nα ·f∗α〉Ωκ ,Ω for α ∈ IP .

(6.33)

In the single summation term in this equation, I−cα is the index set of interfaces

that comprise the connected set of phase α . This is the set of entities that form

the boundary of entity α . For example, if we consider a system composed of three

phases, w, n, and s, the connected set I−cw is the interfaces ws and wn. In the double

sum term, the connected sets of interfaces to α have the index β . The connected

set to these interfaces consists of both phases and common curves. Thus, the second

summation is over the connected set to the β interfaces that are of dimensionality

less than that of the interface denoted as the set I−
cβ . Therefore, κ is the index of a

common curve. The factor of 1/2 arises because the common curve is a connected

set to both interfaces, so the double sum will encounter this common curve twice.

For the three phase w-n-s system, κ corresponds to the locus of the wns common

curve. The common curves in contact with the α phase must be accounted for if a

concentrated force acts at that location. This force is designated using a superscript

*. In the absence of any concentrated force, the term involving the double sum is

zero, and the integral over Γαi is equivalent to the integral over the domain of the

interface entities that separate Ωα from adjacent phases. We emphasize that the



6.3 Averaging Theorems 213

Table 6.1 Convenient forms of the averaging theorems for porous media analysis based on general
forms derived in Appendix B

Entity Name Averaging Theorem Eq.

D[3,(3,0),0]
∗∇·fα 〉Ωα ,Ω = ∇·∗fα 〉Ωα ,Ω + ∑

κ→I−
cα

∗nα ·fα 〉Ωκ ,Ω (B.12)

+
1

2
∑

β→I−
cα

∑
κ→I−

cβ

∗nα ·f∪α 〉Ωκ ,Ω

Phase
G[3,(3,0),0]

∗∇ fα 〉Ωα ,Ω = ∇∗ fα 〉Ωα ,Ω + ∑
κ→I−

cα

∗nα fα 〉Ωκ ,Ω (B.13)

α → IP +
1

2
∑

β→I−
cα

∑
κ→I−

cβ

∗nα f ∪α 〉Ωκ ,Ω

T[3,(3,0),0]

〈
∂ fα

∂ t

〉
Ωα ,Ω

=
∂
∂ t

∗ fα 〉Ωα ,Ω − ∑
κ→I−

cα

∗nα ·vκ fα 〉Ωκ ,Ω (B.17)

−1

2
∑

β→I−
cα

∑
κ→I−

cβ

∗nα ·vκ f ∪α 〉Ωκ ,Ω

D[2,(3,0),0]
∗∇∈·fα 〉Ωα ,Ω = ∇·

〈
I∈α ·fα

〉
Ωα ,Ω

−
〈
∇∈·I∈α ·fα

〉
Ωα ,Ω (B.36)

+ ∑
κ→I−

cα

∗nα · fα 〉Ωκ ,Ω

Interface
G[2,(3,0),0]

∗∇∈ fα 〉Ωα ,Ω = ∇·
〈
I∈α fα

〉
Ωα ,Ω

−
〈
∇∈·I∈α fα

〉
Ωα ,Ω (B.37)

α → II + ∑
κ→I−

cα

∗nα fα 〉Ωκ ,Ω

T[2,(3,0),0]

〈
∂ ∈ fα

∂ t

〉
Ωα ,Ω

=
∂
∂ t

∗ fα 〉Ωα ,Ω +∇·
〈(
I− I∈α

)
·vα fα

〉
Ωα ,Ω (B.46)

+
〈
∇∈·I∈α ·vα fα

〉
Ωα ,Ω

− ∑
κ→I−

cα

∗nα ·vκ fα 〉Ωκ ,Ω

D[1,(3,0),0]
∗∇∈∈·fα 〉Ωα ,Ω = ∇·∗lα lα ·fα 〉Ωα ,Ω −∗lα ·∇∈∈lα · fα 〉Ωα ,Ω (B.66)

+ ∑
κ→I−

cα

∗nα · fα 〉Ωκ ,Ω

Curve
G[1,(3,0),0]

∗∇∈∈ fα 〉Ωα ,Ω = ∇·∗lα lα fα 〉Ωα ,Ω −∗lα ·∇∈∈lα fα 〉Ωα ,Ω (B.67)
α → IC + ∑

κ→I−
cα

∗nα fα 〉Ωκ ,Ω

T[1,(3,0),0]

〈
∂ ∈∈ fα

∂ t

〉
Ωα ,Ω

=
∂
∂ t

∗ fα 〉Ωα ,Ω +∇·∗(I− lα lα ) ·vα fα 〉Ωα ,Ω (B.71)

+∗lα ·∇∈∈lα ·vα fα 〉Ωα ,Ω − ∑
κ→I−

cα

∗nα ·vκ fα 〉Ωκ ,Ω

Point
T[0,(3,0),0]

〈
∂ ∈∈∈ fα

∂ t

〉
Ωα ,Ω

=
∂
∂ t

∗ fα 〉Ωα ,Ω +∇·∗vα fα 〉Ωα ,Ω (B.73)
α → IPt

decomposition suggested by Eq. (6.33) does not formally indicate integration of the

property of an α phase over a surface entity, which has its own properties. However,

because of the geometry that exists for a porous medium system, this notational

decomposition is convenient.
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Equation (6.33) can be substituted into Eq. (6.32) to obtain the divergence av-

eraging theorem D[3,(3,0),0] provided as the first entry in Table 6.1. No additional

notational conventions are needed to obtain G[3,(3,0),0] from the general form, Eq.

(B.13) in Appendix B. For theorem T[3,(3,0),0], one additional convention is re-

quired. Note that the last term of Eq. (B.17) involves the velocity of that boundary

in the direction normal to the boundary, n·w. For the α phase, we can denote this

as nα ·wα . In the nα direction, the velocity of the boundary is equal to the velocity

of the material in the boundary. Thus, we replace nα ·wα by nα ·vκ where κ ∈ I−cα
and break the boundary into parts, depending on the interface present, when writing

T[3,(3,0),0]. Caution is advised, however. Although the normal components of the

velocity of Γαi and of Ωκ for κ ∈ I−cα must be the same, the tangential components

need not be the same. The velocity of the boundary in the tangential direction can be

different from the velocity of the material moving within the boundary in the same

way that the average velocity of fluid flowing between two plates can be different

from the velocity of the plates in the tangential direction but must be equal to the

velocity of the plates in the normal direction2.

6.3.2 Averaging Theorems for Interfaces

It is useful to also explore briefly the notational conventions that are used with

the averaging theorems for interfaces. We will begin with the general form of

D[2,(3,0),0] given as Eq. (B.36),

∫
Ωs

∇′·fdr= ∇·
∫

Ωs

I′·fdr−
∫

Ωs

∇′·I′·fdr+
∫
Γsi

n′·fdr , (6.34)

where f is a vector function of interest that is a property of the interface entity in the

two-dimensional domain Ωs that is within the averaging volume Ω; Γsi is the portion

of the boundary of Ωs that separates it from other interfaces within Ω; n′ is a unit

vector normal to Γsi and tangent to Ωs; I is the unit tensor; and I′ is the unit tensor

minus the dyad of the normal to the surface and thus is a tensor in the surface. Note

that f is a three-dimensional vector that may have components tangent and normal

to the interface. This equation may be adapted to the microscale notation so that the

surface is identified with the index α where α ∈ II. Thus Eq. (6.34) may be rewritten

as ∫
Ωα

∇′·fα dr= ∇·
∫

Ωα

I′α ·fα dr−
∫

Ωα

∇′·I′α ·fα dr+
∫

Γαi

nα ·fα dr for α ∈ II . (6.35)

2 The distinction between the velocity of a domain and the velocity of material within the domain
has been a source of confusion and error in modeling porous medium systems [3, 6].
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Although the domain of integration is an interface, we will normalize Eq. (6.35)

with respect to the total volume of the averaging region. The normalized equation is

∫
Ωα

∇′·fα dr

∫
Ω

dr

= ∇·

⎛
⎜⎜⎜⎜⎜⎝

∫
Ωα

I′α ·fα dr

∫
Ω

dr

⎞
⎟⎟⎟⎟⎟⎠−

∫
Ωα

∇′·I′α ·fα dr

∫
Ω

dr

+

∫
Γαi

nα ·fα dr

∫
Ω

dr

, (6.36)

which may be written using the notational convention of Eq. (6.1) as〈
∇′·fα

〉
Ωα ,Ω

= ∇·
〈
I′α ·fα

〉
Ωα ,Ω

−
〈
∇′·I′α ·fα

〉
Ωα ,Ω

+ 〈nα ·fα〉Γαi,Ω for α ∈ II .

(6.37)

In this equation, the last term represents an integral over the boundary of the inter-

face which is coincident with a common curve.

For the case of a two-phase porous media system, no boundaries of surfaces exist

within the system. For a three-phase system, there will be at most one common

curve type. When the system is composed of four or more phases, the boundary of

the surface will be coincident with common curve segments and common points that

lie on the boundary. At the locations of these common points, concentrated forces

can occur. Thus the boundary may be decomposed to portions represented as the

domain of the bounding common curve with

〈nα ·fα〉Γα ,Ω = ∑
κ∈I−cα

〈nα · fα〉Ωκ ,Ω +
1

2
∑

β∈I−cα

∑
κ∈I−

cβ

〈nα ·f∗α〉Ωκ ,Ω for α ∈ II .

(6.38)

In this equation I−cα is the index set of entities connected to the interface with di-

mension less than that of the interface (i.e. a dimension of 1), which includes the

common curves at the edge of interface α . The double sum accounts for common

points along the boundary curve where concentrated, singular forces act.

The D[2,(3,0),0] theorem is obtained by substitution of Eq. (6.38) into Eq. (6.37).

The result is provided in Table 6.1 with the common point terms omitted since these

will not be considered in subsequent analysis. Thus the term involving integration

over the boundary of the interface is represented simply as an integral over the com-

mon curve domains that are coincident with this boundary. Theorems G[2,(3,0),0]

and T[2,(3,0),0] are also provided in the table. They are obtained by making nota-

tional changes to their general forms, Eqs. (B.37) and (B.46), following the same

considerations as provided here explicitly for D[2,(3,0),0] and noting that the nor-

mal velocity of the boundary of the surface is equal to the velocity of the material

in the common curve κ , where κ ∈ I−cα .
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6.3.3 Averaging Theorems for Common Curves

For the common curve, the general divergence theorem is D[1,(3,0),0], given in Eq.

(B.66) as ∫
Ωc

∇′′·fdr= ∇·
∫

Ωc

ll·fdr−
∫

Ωc

l·∇′′l·fdr+ ∑
κ∈Γci

n′′·f |κ , (6.39)

where f is a three-dimensional vector function of interest that is a property of the

common curve entity in the one-dimensional domain, Ωc, that is within the averag-

ing volume, Ω; Γci is the boundary domain of the common curve consisting of the

points at the end of the curve segments; n′′ is a unit vector tangent to the common

curve and outwardly directed at the end points of the common curve domain; and

l is a unit vector tangent to the common curve. Adaptation of this equation to the

microscale notation with the curve identified by the index α gives

∫
Ωα

∇′′·fα dr= ∇·
∫

Ωα

lα lα ·fα dr−
∫

Ωα

lα ·∇′′lα ·fα dr+ ∑
κ∈Γαi

nα ·fα |κ for α ∈ IC .

(6.40)

Normalization of this equation by the averaging domain then provides

∫
Ωα

∇′′·fα dr

∫
Ω

dr

= ∇·

⎛
⎜⎜⎜⎜⎜⎝

∫
Ωα

lα lα ·fα dr

∫
Ω

dr

⎞
⎟⎟⎟⎟⎟⎠+

∫
Ωα

lα ·∇′′lα ·fα dr

∫
Ω

dr

+

∑
κ∈Γαi

nα ·fα |κ
∫
Ω

dr

. (6.41)

Introduction of the notation convention of Eq. (6.1) yields〈
∇′′·fα

〉
Ωα ,Ω

= ∇·〈lα lα ·fα〉Ωα ,Ω +
〈
lα ·∇′′lα ·fα

〉
Ωα ,Ω

+ 〈nα ·fα〉Γαi,Ω for α ∈ IC .

(6.42)

The boundary term in this expression can be handled quite readily. The boundary

of the common curve is a collection of points that are coincident with common

points. Thus, the average over the boundary of the common curve is a summation

such that

〈nα ·fα〉Γαi,Ω = ∑
κ∈I−cα

〈nα ·fα〉Ωκ ,Ω . (6.43)

Because the boundary of the common curve is a discrete set of points, there is no

need to be concerned about singular functions that occur at locations where the

boundary is discretized into subdomains, as with the boundary of a phase or inter-

face. Thus insertion of Eq. (6.43) into Eq. (6.42) provides the entry for D[1,(3,0),0]

that appears in Table 6.1. Theorems G[1,(3,0),0] and T[1,(3,0),0] are also provided

in the table based on Eqs. (B.67) and (B.71) with appropriate modification of no-

tation, including the fact that the velocity of the common point on the boundary is

equal to the velocity of material associated with the common point.
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6.3.4 Averaging Theorem for Common Points

Neither the D[0,(3,0),0] nor the G[0,(3,0),0] averaging theorems exist for a common

point because the microscale spatial derivative of a function that exists only at a

point is undefined. Theorem T[0,(3,0),0] given in Eq. (B.73) is

∑
κ∈Ωpt

∂ ′′′ f
∂ t

∣∣∣∣
κ
=

∂
∂ t

(
∑

κ∈Ωpt

f |κ

)
+∇·

(
∑

κ∈Ωpt

(v f )|κ

)
. (6.44)

Because the common points have no boundaries, there is no need to give special

consideration to any boundary terms. Additionally, the notation convention of Eq.

(6.1) applies to sums over points as well as integration over regions. Statement of

the averaging theorem in the simplified notation is accomplished easily by explic-

itly noting that the microscale properties apply to a function in Ωα for α ∈ IPt.

Normalization with respect to the averaging volume provides the last row in Table

6.1.

6.4 Application of Averaging Process

With the averaging theorems in hand, Fig. 6.1 indicates that the next desired step is

to transform the microscale equations to macroscale forms. The microscale equa-

tions have been developed in Chap. 2. Entity- and species-based microscale equa-

tions for phases and interfaces appear in Sects. 2.3 and 2.4, respectively. In these

sections, tables are given where the equations are collected. The microscale equa-

tions for phases are transformed to the macroscale using the [3,(3,0),0] family of

averaging theorems, while the equations for an interface make use of the [2,(3,0),0]

family. The equations for a common curve are similar in essence to those for an in-

terface. Thus, rather than being formally derived, they are inferred from the interface

forms and are given in Sect. 2.5. These equations are converted to the macroscale

using theorems in the [1,(3,0),0] family. The common point conservation equations

may similarly be derived based on the general microscale form given in section 2.6

using equation T[0,(3,0),0]. As will be seen, the similarities in form of all macro-

scale equations for a particular property also suggest direct inference of macroscale

common point conservation equations.

Implementation of the averaging process is straightforward. It consists of apply-

ing the averaging operator, 〈·〉Ωα ,Ω , to a microscale conservation equation, making

use of the averaging theorems to exchange the order of differentiation and averag-

ing, and then breaking the products so that all quantities are expressed in terms of

phase averages, mass-weighted averages, or unique averages. Averaging is applied

to the partial derivative forms of the microscale equations. For example, the average

of general equation Eq. (2.120) gives

6.3 Averaging Theorems
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〈Fiα〉Ωα ,Ω =

〈
∂ (n)Fiα

∂ t

〉
Ωα ,Ω

+
〈

∇(n)·(viα Fiα)
〉

Ωα ,Ω
−〈SΩT iα〉Ωα ,Ω

−
〈

div(n)
(

SΓiα ·I(n)α

)〉
Ωα ,Ω

−〈GΩ iα〉Ωα ,Ω = 0

for i ∈ Is,α ∈ I,n = 3−dim α . (6.45)

The T averaging theorem from the [dim α , (3, 0), 0] family will be applied to the

time derivative, and the D theorem from this family will be applied to the two terms

involving the divergence operator.3 After application of the averaging theorems,

the resultant expressions can be evaluated using the averaging operator. What is

not obvious is the selection of the definitions of macroscale quantities such that

they will not vary from one equation to the next. For example, the mass density of

a phase should be the same macroscale quantity in the mass, momentum, energy,

entropy, and gravitational potential equations. This definition will be seen to fall out

easily. Definitions that are more complex and not obvious involve the stress tensor,

the non-advective energy flux, and other terms. Thus we will derive the equations

paying particular attention to the definitions of the variables.

6.5 Macroscale Principles for a Phase

The goal of this section is to develop the sets of macroscale conservation and bal-

ance equations for a species in a phase and for the material comprising the phase

as a whole. The definitions and notational conventions developed in Sect. 6.2 will

be used. The derivation of equations will proceed from conservation of mass to

momentum, energy, entropy, and the gravitational potential with emphasis on the

definitions employed for unique averages. The macroscale phase equations devel-

oped in this section are the larger-scale conservation and entropy equations in Fig.

6.1.

6.5.1 Conservation of Mass

The microscale conservation of mass equation for a species in a phase may be found

in Table 2.1 and is given also as Eq. (2.17). Application of the averaging operator to

this equation yields

〈Miα〉Ωα ,Ω =

〈
∂ (ρα ωiα)

∂ t

〉
Ωα ,Ω

+ 〈∇·(ρα ωiα viα)〉Ωα ,Ω −〈riα〉Ωα ,Ω = 0

3 Recall that the ∇(n)· operator contracts the first index of the quantity it operates on, the index
of viα , while the div(n) operator contracts the last index of the quantity it operates on, the second

index of I
(n)
α .
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for α ∈ IP . (6.46)

Application of T[3,(3,0),0] and G[3,(3,0),0] from Table 6.1 to the first and second

terms, respectively, exchanges the order of averaging and differentiation such that

〈Miα〉Ωα ,Ω =
∂
∂ t

〈ρα ωiα〉Ωα ,Ω +∇·〈ρα ωiα viα〉Ωα ,Ω −〈riα〉Ωα ,Ω

− ∑
κ∈Icα

〈ρα ωiα (vκ −viα) ·nα〉Ωκ ,Ω = 0 for α ∈ IP . (6.47)

The double summation in the averaging theorems accounting for concentrated

forces, or singularities, is dropped in the mass balance equation because no such

processes for flow are considered to occur here. The connected set of entities given

by Icα includes all the interfaces that separate the α phase from adjacent phases.

With the macroscale mass density, ρα , defined by Eq. (6.15), the mass-averaged

mass fraction and velocity, ω iα and viα , defined by Eq. (6.22), and the volume

fraction of α defined according to Eq. (6.9), Eq. (6.47) may be rewritten as

Miα :=
∂
(

εα ρα ω iα
)

∂ t
+∇·

(
εα ρα ω iα viα

)
− εα riα − ∑

κ∈Icα

iκ→iα
M = 0

for α ∈ IP , (6.48)

where riα is the intrinsic average production rate of species i. The equation desig-

nation Miα satisfies the definition

Miα := 〈Miα〉Ωα ,Ω . (6.49)

It refers specifically to the statement of terms as indicated on the right side of Eq.

(6.48) but not to any rearrangement of these terms that also would satisfy Eq. (6.49).

We emphasize that the defining statement of Eq. (6.49) confirms that Miα is an

averages species mass conservation equation; Eq. (6.48) defines the specific form of

the macroscale species conservation that Miα connotes. We also have denoted the

mass exchange of species i between the α and κ entities when κ ∈ Icα as

iκ→iα
M =

{
−〈ρα ωiα (viα −vκ) ·nα〉Ωκ ,Ω if κ ∈ I−cα
〈ρκ ωiκ (viκ −vα) ·nκ〉Ωα ,Ω if κ ∈ I+cα

. (6.50)

When α ∈ IP, as is the present case, only the first of these options is encountered.

However, in anticipation of subsequent work with interfaces and common curves

that can exchange mass with entities of both higher and lower dimensionality, we

provide the general definition in Eq. (6.50).

It is very important to recognize that the mass density, mass fraction, and unit

normal in Eq. (6.50) are all the properties of the higher-dimensional entity partici-

pating in the exchange. Thus, a simple exchange of the α and κ indices, regardless
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of which refers to a phase and which to an interface, provides

iκ→iα
M =−

iα→iκ
M (6.51)

since the mass exchange from a κ entity to an α entity is the negative of the ex-

change from the α entity to a κ entity. This means that the following definition

holds:
iα→iκ

M =−〈ρα ωiα (vκ −viα) ·nα〉Ωκ ,Ω for κ ∈ I−cα . (6.52)

However, in contrast to what one might be tempted to write by a simple exchange

of the α and κ indices in this equation,

iκ→iα
M �=−〈ρκ ωiκ (vα −viκ) ·nκ〉Ωα ,Ω for κ ∈ I−cα . (6.53)

In working with exchange terms, the properties in the averaging operator are al-

ways those of the higher dimension entity (with the exception of the velocity of the

boundary), and the integration is over the lower-dimensional entity.

Equation (6.48) can be written in material derivative form, after applying the

product rule to the second term and then regrouping, as

Miα
∗ :=

Diα
(

εα ρα ω iα
)

Dt
+ εα ρα ω iα I:diα − εα riα − ∑

κ∈Icα

iκ→iα
M = 0

for α ∈ IP , (6.54)

where the material derivative with respect to the mass-averaged species velocity is

Diα

Dt
=

∂
∂ t

+viα ·∇ , (6.55)

the macroscale rate of strain tensor is defined as

diα =
1

2

[
∇viα +

(
∇viα

)T
]
, (6.56)

and

I:diα = ∇·viα . (6.57)

Observe that diα is defined using double overbar notation because it is not simply an

average of its microscale precursor but instead is defined in terms of a mass averaged

velocity. The designation Miα
∗ refers specifically to the species mass conservation

form given in Eq. (6.54). Although Miα =Miα
∗ = 0, it is useful to retain the notion

that each refers to a species mass conservation equation written in a particular way.

For convenience, the forms of species conservation given as Miα and Miα
∗ in Eqs.

(6.48) and (6.54), respectively, are readily accessible from Table 6.2.
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Table 6.2 Physical variables for species-based macroscale equations in partial derivative or ma-
terial form. Miα , P iα , E iα , S iα , and Giα correspond, respectively, to conservation of mass, mo-
mentum, and energy, and balance equations of entropy and body force potential for species i in
entity α . In the last term, (n) = 3−dimα , is the number of primes that appear where dimα is the

dimensionality of the α entity. Singularity terms in Siα
Ω are denoted with an asterisk

F iα :=
∂Fiα

∂ t
+∇·

(
viα Fiα

)
−Siα

Ω − ∑
κ∈Icα

∑
j∈Is

jκ→iα
X − 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
j∈Is

jκ→iα
X∗

−div
(

εα Siα
Γ

)
− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

〈
S∗

Γiα
·nα

〉
Ωκ ,Ω

−Giα
Ω = 0 for i ∈ Is,α ∈ I

F iα
∗ :=

Diα Fiα

Dt
+Fiα I:diα −Siα

Ω − ∑
κ∈Icα

∑
j∈Is

jκ→iα
X − 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
j∈Is

jκ→iα
X∗

−div
(

εα Siα
Γ

)
− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

〈
S∗

Γiα
·nα

〉
Ωκ ,Ω

−Giα
Ω = 0 for i ∈ Is,α ∈ I

F iα Fiα Siα
Ω

jκ→iα
X Siα

Γ Giα
Ω

Miα εα ρα ω iα — δi j
iκ→iα

M — εα riα

P iα εα ρα ω iα viα εα ρα ω iα giα δi j
iκ→iα

M vα,κ
i +

jκ→iα
T tiα εα

(
piα + riα viα

)

E iα Eiα εα ρα ω iα giα ·viα δi j
iκ→iα

M

(
Eα ,κ

i tiα
T

·viα εα
(

eiα +piα ·viα

+εα ρα ω iα viα ·viα

2
+εα hiα +

vα ,κ
i ·vα ,κ

i

2
+Kα,κ

Ei

)
+qiα +riα viα ·viα

2

+εα ρα ω iα Kiα
E +εα hiα +

jκ→iα
T ·viα, jκ +

jκ→iα
Q +riα Kiα

E

)

S iα −Λ iα η iα εα biα δi j
iκ→iα

M ηα,κ
i +

jκ→iα
Φ ϕϕϕ iα Λ iα

Giα Ψ iα −εα ρα ω iα giα ·viα δi j
iκ→iα

M ψα,κ
i +

iκ→iα
G qiα

g

〈
ρα ωiα

[
∂ (n)ψiα

∂ t

−εα hiα +viα ·
(
I− I

(n)
α

)
·giα

]〉
Ωα ,Ω

+〈riα ψiα 〉Ωα ,Ω

Inter-entity Exchange Terms

iκ→iα
M =

〈
M

iκ→iα

〉
Ωα ,Ω

for dim κ > dim α

iκ→iα
M =

〈
M

iκ→iα

〉
Ωκ ,Ω

for dim κ < dim α

jκ→iα
T =

〈
T

jκ→iα
+δi j M

iκ→iα
(viκ −vα

iκ )

〉
Ωα ,Ω

for dim κ > dim α

jκ→iα
T =

〈
T

jκ→iα
+δi j M

iκ→iα
(viα −vκ

iα )

〉
Ωκ ,Ω

for dim κ < dim α

jκ→iα
Q =

〈
Q

jκ→iα
+ T

jκ→iα
·(v jκ −vα

jκ )+δi j M
iκ→iα

[
Eiκ +KEiακ −

(
Eα

iκ +Kα
Eiκ

)]〉
Ωα ,Ω

for dim κ > dim α

jκ→iα
Q =

〈
Q

jκ→iα
+ T

jκ→iα
·(viα −vκ

iα )+δi j M
iκ→iα

[
Eiα +KEiακ −

(
Eκ

iα +Kκ
Eiα

)]〉
Ωκ ,Ω

for dim κ < dim α

jκ→iα
Φ =

〈
Φ

jκ→iα
+δi j M

iκ→iα
(η iκ −ηα

iκ )

〉
Ωα ,Ω

for dim κ > dim α

jκ→iα
Φ =

〈
Φ

jκ→iα
+δi j M

iκ→iα
(η iα −ηκ

iα )

〉
Ωκ ,Ω

for dim κ < dim α
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For the α phase as a whole, we begin with Eq. (2.21), which is also available

from Table 2.2. Introduction of the averaging operator to this equation gives

〈Mα〉Ωα ,Ω =

〈
∂ρα

∂ t

〉
Ωα ,Ω

+ 〈∇·(ρα vα)〉Ωα ,Ω = 0 for α ∈ IP . (6.58)

Application of averaging theorems T[3,(3,0),0] and D[3,(3,0),0] yields

〈Mα〉Ωα ,Ω =
∂
∂ t

〈ρα〉Ωα ,Ω +∇·〈ρα vα〉Ωα ,Ω

− ∑
κ∈Icα

〈ρα (vκ −vα) ·nα〉Ωκ ,Ω = 0 for α ∈ IP . (6.59)

Making use of the notation for the various averages, we simplify the statement of

this equation to

Mα :=
∂
(

εα ρα
)

∂ t
+∇·

(
εα ρα vα

)
− ∑

κ∈Icα

κ→α
M = 0 for α ∈ IP , (6.60)

where the mass exchange from the κ interface to the α phase satisfies the first line

of the more general definition

κ→α
M = ∑

i∈Is

iκ→iα
M =

{
〈ρα (vκ −vα) ·nα〉Ωκ ,Ω if κ ∈ I−cα
〈ρκ (vκ −vα) ·nκ〉Ωα ,Ω if κ ∈ I+cα

. (6.61)

After rearrangement to material derivative form, Eq. (6.60) becomes

Mα
∗ :=

Dα
(

εα ρα
)

Dt
+ εα ρα I:dα − ∑

κ∈Icα

κ→α
M = 0 for α ∈ IP , (6.62)

where the material derivative with respect to the mass-averaged phase velocity is

Dα

Dt
=

∂
∂ t

+vα ·∇ . (6.63)

and the rate of strain tensor is defined as

dα =
1

2

[
∇vα +

(
∇vα

)T
]
. (6.64)

The distinction between the forms of the equations denoted by the notation Mα vs.

Mα
∗ is important to recognize. Equations (6.60) and (6.62) are collected in Table

6.3.

Summation of Eq. (6.48) over all species in phase α should provide an expression

for the mass conservation equation equivalent to Eq. (6.60). Thus, we calculate,
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Table 6.3 Physical variables for entity-based macroscale equations in partial derivative or material

form. Mα , Pα , Eα , Sα , and Gα correspond, respectively, to conservation of mass, momentum,
and energy, and balance equations of entropy and body force potential for entity α . In the last term,
(n) = 3− dimα is the number of primes that appear, where dimα is the dimensionality of the α
entity. Singularity terms denoted in Sα

Ω with an asterisk are set to zero unless dimα = 3

Fα :=
∂Fα

∂ t
+∇·

(
vα Fα

)
−Sα

Ω − ∑
κ∈Icα

κ→α
X − 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

κ→α
X∗

−div
(

εα Sα
Γ

)
− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

〈
S∗

Γα ·nα
〉

Ωκ ,Ω −Gα
Ω = 0 for α ∈ I

Fα
∗ :=

Dα Fα

Dt
+Fα I:dα −Sα

Ω − ∑
κ∈Icα

κ→α
X − 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

κ→α
X∗

−div
(

εα Sα
Γ

)
− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

〈
S∗

Γα ·nα
〉

Ωκ ,Ω −Gα
Ω = 0 for α ∈ I

Fα Fα Sα
Ω

κ→α
X Sα

Γ Gα
Ω

Mα εα ρα —
κ→α
M — —

Pα εα ρα vα εα ρα gα
κ→α
M vα,κ +

κ→α
T tα —

Eα Eα εα ρα gα ·vα
κ→α
M
(

Eα,κ
tα ·vα —

+εα ρα vα ·vα

2
+εα hα +

vα,κ ·vα,κ

2
+Kα,κ

E

)
+qα

+εα ρα Kα
E +εα hα +

κ→α
T ·vα,κ +

κ→α
Q

Sα −Λ α ηα εα bα
κ→α
M ηα,κ +

κ→α
Φ ϕϕϕα Λ α

Gα Ψ α −εα ρα gα ·vα
iκ→iα

M ψα,κ +
κ→α
G qα

g ∑
i∈Is

〈
ρα ωiα

[
∂ (n)ψiα

∂ t

−εα hα +viα ·
(
I− I

(n)
α

)
·giα

]〉
Ωα ,Ω

+ ∑
i∈Is

〈riα ψiα 〉Ωα ,Ω

Inter-entity Exchange Terms

κ→α
M =

〈
M

κ→α

〉
Ωα ,Ω

for dim κ > dim α

κ→α
M =

〈
M

κ→α

〉
Ωκ ,Ω

for dim κ < dim α

κ→α
T =

〈
T

κ→α
+ M

κ→α
(vκ −vα

κ )
〉

Ωα ,Ω
for dim κ > dim α

κ→α
T =

〈
T

κ→α
+ M

κ→α
(vα −vκ

α )
〉

Ωκ ,Ω
for dim κ < dim α

κ→α
Q =

〈
Q

κ→α
+ T

κ→α
·(vκ −vα

κ )+ M
κ→α

[
Eκ +KEακ +KEκ −

(
Eα

κ +Kα
Eκ

)]〉
Ωα ,Ω

for dim κ > dim α

κ→α
Q =

〈
Q

κ→α
+ T

κ→α
·(vα −vκ

α )+ M
κ→α

[
Eα +KEακ +KEα −

(
Eκ

α +Kκ
Eα

)]〉
Ωκ ,Ω

for dim κ < dim α

κ→α
Φ =

〈
Φ

κ→α
+ M

κ→α
(ηκ −ηα

κ )
〉

Ωα ,Ω
for dim κ > dim α

κ→α
Φ =

〈
Φ

κ→α
+ M

κ→α
(ηα −ηκ

α )
〉

Ωκ ,Ω
for dim κ < dim α
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while exchanging the order of differentiation and summation,

∑
i∈Is

Miα =
∂
∂ t

(
∑

i∈Is

εα ρα ω iα

)
+∇·

(
∑

i∈Is

εα ρα ω iα viα

)

− ∑
i∈Is

εα riα − ∑
κ∈Icα

(
∑

i∈Is

iκ→iα
M

)
= 0 for α ∈ IP . (6.65)

A comparison of this equation with Eq. (6.60) shows immediately that the two equa-

tions are identical when

Mα = ∑
i∈Is

Miα , (6.66)

1 = ∑
i∈Is

ω iα , (6.67)

vα = ∑
i∈Is

ω iα viα , (6.68)

0 = ∑
i∈Is

riα , (6.69)

and

κ→α
M = ∑

i∈Is

iκ→iα
M for κ ∈ Icα . (6.70)

Besides being mathematically necessary, these conditions are also physically rea-

sonable.

For some applications, we will make use of the macroscale diffusion velocity

defined as

uiα = viα −vα . (6.71)

With this definition, Eqs. (6.67) and (6.68) show that when entity α is composed of

N chemical species, only N −1 of the diffusion velocities are independent since

∑
i∈Is

ω iα uiα = 0 . (6.72)

Thus, a problem can be posed equivalently in terms of vα along with N−1 diffusion

velocities, uiα , or in terms of N species velocities, viα .

With Eq. (6.71) substituted into Eq. (6.48) we obtain

∂
(

εα ρα ω iα
)

∂ t
+∇·

(
εα ρα ω iα vα

)
+∇·

(
εα ρα ω iα uiα

)
− εα riα − ∑

κ∈Icα

iκ→iα
M = 0 for α ∈ IP . (6.73)
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This equation may be rearranged to a material derivative form as

Miα
∗∗ :=

Dα
(

εα ρα ω iα
)

Dt
+ εα ρα ω iα I:dα +∇·

(
εα ρα ω iα uiα

)
− εα riα − ∑

κ∈Icα

iκ→iα
M = 0 for α ∈ IP , (6.74)

where we have used the notation Miα
∗∗ to distinguish this particular form of species

mass conservation from those in Miα and Miα
∗ .

Clearly, several notationally different but mathematically equivalent forms of the

conservation of mass equation for a species in a phase can be written. Each of the

forms introduced will be of use in certain situations. However, all of the different

forms are equivalent statements of the same principle. The equations derived here

resemble equations that appear routinely in the literature. However, here the equa-

tions have been formulated by careful averaging from microscale precursors, which

has provided macroscale variables that are all explicitly defined in terms of micro-

scale variables. These definitions provide the bases for connections across length

scales. Similar connections will be sought for all macroscale equations that we de-

velop. These precise definitions and interscale relations are essential components of

TCAT models that enable specification of experimental measurements and micro-

scale simulation approaches to test the resultant TCAT models.

6.5.2 Conservation of Momentum

A similar approach to that detailed in deriving macroscale mass conservation equa-

tions for a phase can be used to derive conservation of momentum equations for a

species in a phase and for the phase as a whole. To develop the macroscale species

momentum equation, we begin with the microscale form, Eq. (2.26), which can also

be constructed based on Table 2.1. Averaging of Piα over Ωα within an averaging

volume and using the domain of the volume as the normalizing region yields

〈Piα〉Ωα ,Ω =

〈
∂ (ρα ωiα viα)

∂ t

〉
Ωα ,Ω

+ 〈∇·(ρα ωiα viα viα)〉Ωα ,Ω −〈ρα ωiα giα〉Ωα ,Ω

−
〈
∇·tiα

T
〉

Ωα ,Ω
−〈piα〉Ωα ,Ω −〈riα viα〉Ωα ,Ω = 0

for i ∈ Is,α ∈ IP . (6.75)

Averaging theorem T[3,(3,0),0] is applied to the time derivative term, and D[3,(3,0),0]

is applied to the two terms involving the average of the divergence so that we have

〈Piα〉Ωα ,Ω =
∂
∂ t

〈ρα ωiα viα〉Ωα ,Ω +∇·〈ρα ωiα viα viα〉Ωα ,Ω −〈ρα ωiα giα〉Ωα ,Ω
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− ∑
κ∈Icα

〈ρα ωiα viα (vκ −viα) ·nα〉Ωκ ,Ω −∇·
〈
tiα

T
〉

Ωα ,Ω

− ∑
κ∈Icα

〈tiα ·nα〉Ωκ ,Ω − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

〈t∗iα ·nα〉Ωκ ,Ω

−〈piα〉Ωα ,Ω −〈riα viα〉Ωα ,Ω = 0 for i ∈ Is,α ∈ IP . (6.76)

Note that since the microscale divergence of the stress tensor designates contraction

with the second index on the stress by using the transpose of the tensor, the unit

normal in the boundary terms also contracts the second index. Because no concen-

trated flow at the common curve was considered in the mass conservation equation,

no concentrated momentum flux at the common curve is included here. However, a

singularity of the stress tensor is allowed by the term with the double summation.

We now break the average of the product ρα ωiα viα into a product of averages

using Eq. (6.22). Also the average of tiα
T −ρα ωiα viα viα can be changed to terms

involving the average of products analogously to Eq. (6.27) using the species based

stress tensor and velocity vectors. Applying these two procedures to Eq. (6.76),

defining some unique averages, and regrouping of terms yields

〈Piα〉Ωα ,Ω =
∂
∂ t

(
εα ρα ω iα viα

)
+∇·

(
εα ρα ω iα viα viα

)
− εα ρα ω iα giα

− ∑
κ∈Icα

〈[tiα +ρα ωiα viα (vκ −viα)] ·nα〉Ωκ ,Ω

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

〈t∗iα ·nα〉Ωκ ,Ω −∇·
(

εαtiαT
)

− εα piα − εα riα viα = 0 for i ∈ Is,α ∈ IP , (6.77)

where

giα = 〈giα〉Ωα ,Ωα ,ρα ωiα
, (6.78)

tiαT =
〈
tiα

T −ρα ωiα

(
viα −viα

)(
viα −viα

)〉
Ωα ,Ωα

, (6.79)

and

piα =
〈

piα + riα

(
viα −viα

)〉
Ωα ,Ωα

. (6.80)

Finally, the summation terms that involve exchanges from the α phase to inter-

faces in its connected set and to the common curve can be expressed in special forms

to obtain

P iα :=
∂
∂ t

(
εα ρα ω iα viα

)
+∇·

(
εα ρα ω iα viα viα

)
− εα ρα ω iα giα

− ∑
κ∈Icα

iκ→iα
M vα,κ

i − ∑
κ∈Icα

∑
j∈Is

jκ→iα
T − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
j∈Is

jκ→iα
T∗
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−∇·
(

εαtiαT
)
− εα piα − εα riα viα = 0 for i ∈ Is,α ∈ IP , (6.81)

where

vα,κ
i =

{
vκ

iα if κ ∈ I−cα
vα

iκ if κ ∈ I+cα
. (6.82)

For a phase, the connected set consists only of interfaces. Thus, the only option from

Eq. (6.82) that is needed for use in Eq. (6.81) is vα,κ
i = vκ

iα . Interfaces and common

curves interact with entities of both higher and lower dimensionality. Therefore,

the options in Eq. (6.82) will both come into play subsequently when considering

equations for those entities. Additionally when dim κ <dim α , as is the case here,

jκ→iα
T =

〈[
zT

jκ→iα
tiα +δi jρα ωiα

(
viα −vκ

iα

)
(vκ −viα)

]
·nα

〉
Ωκ ,Ω

(6.83)

and

∑
j∈Is

zT
jκ→iα

= 1 . (6.84)

On the other hand, if dim κ >dim α , as will arise for interfaces and common curves,

jκ→iα
T =−

〈[
zT

jκ→iα
t jκ +δi jρκ ωiκ

(
viκ −vα

iκ

)
(vα −viκ)

]
·nκ

〉
Ωα ,Ω

(6.85)

and

∑
i∈Is

zT
jκ→iα

= 1 . (6.86)

The conditions for
jκ→iα
T∗ are the same as for

jκ→iα
T , except the latter parts that are

multiplied by δi j are excluded as they would be associated with a concentrated inter-

entity mass exchange.

The summation terms in Eq. (6.81) account for momentum transfer from the

connected set of interfaces to species i in the α phase. These transfers occur as a

byproduct of mass transfer, due to interfacial stress, and because of any concen-

trated forces on the surface of the α phase that act where interfaces meet at the

surface. Because stress can be transferred from all species in the interface to species

i in the α phase, a summation over all species is employed for the stress term. Addi-

tionally, we observe that the inter-entity transfer terms are expressed universally in

terms of variables in a higher-dimensional entity evaluated at the entity boundary,

which is comprised of lower-dimensional entities. What is transferred from one en-

tity must go into an adjacent entity for overall system conservation to be satisfied.

For example, it follows that, based on Eqs. (6.51) and (6.82),

iα→iκ
M vα,κ

i =
iα→iκ

M vκ
iα =−

iκ→iα
M vκ

iα for α ∈ IP,κ ∈ Icα (6.87)
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and
jκ→iα

T =−
iα→ jκ

T for α ∈ IP,κ ∈ Icα . (6.88)

The introduction of the parameters zT is arbitrary in that any set that satisfies

Eq. (6.84) is allowable. However, the coefficient is used here to account for the fact

that the stress on a species in the interface can be exerted by any species in the

adjacent phases. The particular selection of the set of coefficients indicated here

makes the subsequent combination of terms possible. The selection of these coef-

ficients accounts for the exchange between species i in the α phase and species j
in the κ ∈ Icα interface. The macroscopic momentum conservation equation, Eq.

(6.81), appears in Table 6.2. The momentum exchange terms in this table are forms

that are notationally simpler but not as transparent in the identification of variables

as those given in Eqs. (6.83) and (6.85). Additionally, Table 6.2 lists a momentum

exchange term, the double sum of δi j
iκ→iα
M∗ vα,κ

i +
jκ→iα
T∗ , that involves entities that

are two dimensions higher than the entity of interest. For a phase or interface, no

such higher-dimensional entity exists, so the term is ignored. It will be shown sub-

sequently that this term arises naturally in the analysis of common curve momen-

tum. Similar terms involving concentrated sources also appear for the momentum,

energy, and entropy equations in both Tables 6.2 and 6.3. These terms may be non-

zero when the α entity is a common curve or common point, as will be discussed

in some detail. Furthermore, a double sum of
〈

S∗
Γiα

·nα

〉
Ωκ ,Ω

is listed that involves

integration over entities two dimensions lower than the entity of interest. This term

is zero for common points and common curves, but could be included in analyses of

a phase or interface. For a phase, this term accounts for interaction with the common

curve; while for an interface, this term would account for interactions with common

points. In the absence of a concentrated non-advective flux, this term is zero.

The material derivative form of the macroscale species momentum equation is

obtained by first applying the product rule to the second term in Eq. (6.81) so that

∇·
(

εα ρα ω iα viα viα
)
= viα ·∇

(
εα ρα ω iα viα

)
+ εα ρα ω iα viα I:diα . (6.89)

Substitution of this relation into Eq. (6.81) and combining terms to obtain the mate-

rial derivative with respect to viα gives

P iα
∗ :=

Diα

Dt

(
εα ρα ω iα viα

)
+ εα ρα ω iα viα I:diα − εα ρα ω iα giα

− ∑
κ∈Icα

iκ→iα
M vα,κ

i − ∑
κ∈Icα

∑
j∈Is

jκ→iα
T − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
j∈Is

jκ→iα
T∗

−∇·
(

εαtiαT
)
− εα piα − εα riα viα = 0 for i ∈ Is,α ∈ IP . (6.90)

The conservation of momentum for a phase entity may be obtained by averaging

Eq. (2.27) from the microscale to the macroscale or by summing Eq. (6.81) over
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all N species in the phase. Both approaches must, and do, provide the same result.

Here, we will illustrate the summation approach to obtain

∑
i∈Is

P iα =
∂
∂ t

(
∑

i∈Is

εα ρα ω iα viα

)
+∇·

(
∑

i∈Is

εα ρα ω iα viα viα

)

− ∑
i∈Is

εα ρα ω iα giα − ∑
i∈Is

∑
κ∈Icα

iκ→iα
M vα,κ

i − ∑
i∈Is

∑
κ∈Icα

∑
j∈Is

jκ→iα
T

− 1

2
∑

i∈Is

∑
β∈I−cα

∑
κ∈I−

cβ

∑
j∈Is

jκ→iα
T∗ − ∑

i∈Is

∇·
(

∑
i∈Is

εαtiαT

)

− ∑
i∈Is

(
εα piα + εα riα viα

)
= 0 for i ∈ Is,α ∈ IP . (6.91)

Making use of the definitions given in Eqs. (6.67)–(6.71), we obtain

Pα :=
∂
∂ t

(
εα ρα vα

)
+∇·

(
εα ρα vα vα

)
− εα ρα gα − ∑

κ∈Icα

κ→α
M vα,κ

− ∑
κ∈Icα

κ→α
T − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
T∗ −∇·

(
εαtα

)
= 0 for α ∈ IP , (6.92)

where

Pα = ∑
i∈Is

P iα , (6.93)

gα = ∑
i∈Is

ω iα giα , (6.94)

tα = ∑
i∈Is

[
tiαT −ρα ω iα uiα uiα

]
, (6.95)

vα,κ =

{
vκ

α if κ ∈ I−cα
vα

κ if κ ∈ I+cα
, (6.96)

κ→α
T = ∑

i∈Is

∑
j∈Is

(
jκ→iα

T +δi j
iκ→iα

M uα,κ
i

)
, (6.97)

κ→α
T∗ = ∑

i∈Is

∑
j∈Is

jκ→iα
T∗ =

{
〈t∗α ·nα〉Ωκ ,Ω if dim κ < dim α

−〈t∗κ ·nκ〉Ωα ,Ω if dim κ > dim α
,

(6.98)

and

uα,κ
i = vα,κ

i −vα,κ . (6.99)
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The material derivative form of the phase momentum conservation equation is

obtained directly from Eq. (6.92) after applying the product rule to the second term

as

Pα
∗ :=

Dα

Dt

(
εα ρα vα

)
+ εα ρα vα I:dα − εα ρα gα − ∑

κ∈Icα

κ→α
M vα,κ

− ∑
κ∈Icα

κ→α
T − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
T∗ −∇·

(
εαtα

)
= 0 for α ∈ IP . (6.100)

Equations (6.92) and (6.100) are readily accessible from Table 6.3.

6.5.3 Conservation of Energy

The conservation of energy equation for a species in a phase can be derived using an

approach similar to that used for deriving equations of conservation of mass and mo-

mentum. The microscale conservation of energy equation that provides the starting

point is Eiα , Eq. (2.31). This equation is also available from Table 2.1. Application

of the averaging operator 〈·〉Ωα ,Ω to this equation yields

〈Eiα〉Ωα ,Ω =

〈
∂
∂ t

(
Eiα +ρα ωiα

viα ·viα

2

)〉
Ωα ,Ω

+
〈

∇·
[(

Eiα +ρα ωiα
viα ·viα

2

)
viα

]〉
Ωα ,Ω

−〈ρα ωiα giα ·viα〉Ωα ,Ω −〈hiα〉Ωα ,Ω −
〈
∇·
(
tiα

T·viα +qiα
)〉

Ωα ,Ω

−〈eiα〉Ωα ,Ω −〈piα ·viα〉Ωα ,Ω −
〈

riα
viα ·viα

2

〉
Ωα ,Ω

= 0 for α ∈ IP .

(6.101)

Averaging theorem T[3,(3,0),0] is applied to the time derivative, and D[3,(3,0),0] is

applied to the two divergence terms. Macroscale quantities are then defined in the

resultant equations that are consistent with those obtained previously. Additionally,

some new macroscale quantities are defined. While the steps are similar to those

previously used, the energy equation is the most complicated of the conservation

equations. Therefore, the manipulations needed to produce the desired forms, while

similar in nature to those already illustrated, are somewhat longer. Completion of

the necessary manipulations provides the macroscale equation

E iα :=
∂
∂ t

[
Eiα + εα ρα ω iα

(
viα ·viα

2
+Kiα

E

)]
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+∇·
{[

Eiα + εα ρα ω iα

(
viα ·viα

2
+Kiα

E

)]
viα

}
− εα ρα ω iα giα ·viα

− εα hiα − εα hiα − ∑
κ∈Icα

iκ→iα
M

(
Eα,κ

i +
vα,κ

i ·vα,κ
i

2
+Kα,κ

Ei

)

− ∑
κ∈Icα

∑
j∈Is

jκ→iα
T ·viα, jκ − ∑

κ∈Icα
∑

j∈Is

jκ→iα
Q

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
j∈Is

jκ→iα
T∗ ·vκ

iα − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
j∈Is

jκ→iα
Q∗

−∇·
(

εαtiα T·viα + εα qiα
)

− εα eiα − εα piα ·viα − εα riα

(
viα ·viα

2
+Kiα

E

)
= 0 for α ∈ IP . (6.102)

We have made use of Eq. (3.170) which relates the microscale partial mass energy,

Eiα , to the species energy per volume, with Eiα = ρα ωiα Eiα . In Eq. (6.102), the

new unique macroscale variables are defined as

Eiα = 〈Eiα〉Ωα ,Ω , (6.103)

hiα =
〈

ρα ωiα

(
giα −giα

)
·
(

viα −viα
)〉

Ωα ,Ωα
, (6.104)

Eα,κ
i =

{
Eκ

iα if κ ∈ I−cα

Eα
iκ if κ ∈ I+cα

, (6.105)

viα, jκ =

{
vκ

iα if κ ∈ I−cα
vα

jκ if κ ∈ I+cα
, (6.106)

KEiα =
1

2

(
viα −viα

)
·
(

viα −viα
)
, (6.107)

KEiακ =

⎧⎪⎨
⎪⎩

1

2

(
viα −vκ

iα
)
·
(
viα −vκ

iα
)

if κ ∈ I−cα

1

2

(
viκ −vα

iκ
)
·
(
viκ −vα

iκ
)

if κ ∈ I+cα

, (6.108)

Kiα
E =

1

2

〈(
viα −viα

)
·
(

viα −viα
)〉

Ωα ,Ωα ,ρα ωiα
, (6.109)

Kα,κ
Ei =

{
Kκ

Eiα = 〈KEiακ〉Ωκ ,Ωκ ,ρκ ωiκ
if κ ∈ I−cα

Kα
Eiκ = 〈KEiακ〉Ωα ,Ωα ,ρα ωiα

if κ ∈ I+cα
, (6.110)

qiα =

〈
qiα + tiα

T·
(

viα −viα
)
−ρα ωiα

[
Eiα −Eiα
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+

(
viα −viα

)
·
(

viα −viα
)

2
−Kiα

E

](
viα −viα

)〉
Ωα ,Ωα

,

(6.111)

and

eiα =

〈
eiα +piα ·

(
viα −viα

)

+ riα

⎡
⎣
(

viα −viα
)
·
(

viα −viα
)

2
−Kiα

E

⎤
⎦〉

Ωα ,Ωα

. (6.112)

The new exchange term,
jκ→iα

Q , is defined with dim κ <dim α , as is the case here

for a phase, as

jκ→iα
Q =

〈{
zQ

jκ→iα
qiα + zT

jκ→iα

(
viα −vκ

iα

)
·tiα +δi jρα ωiα (vκ −viα)

×
[

Eiα +

(
viα −vκ

iα
)
·
(
viα −vκ

iα
)

2
−
(

Eκ
iα +Kκ

Eiα

)]}
·nα

〉
Ωκ ,Ω

, (6.113)

subject to

∑
j∈Is

zQ
jκ→iα

= 1 . (6.114)

If dim κ >dim α , as can occur with an interface or common curve exchanging en-

ergy with a higher-dimensional entity, then

jκ→iα
Q =−

〈{
zQ

jκ→iα
q jκ + zT

jκ→iα

(
v jκ −vα

jκ

)
·t jκ +δi jρκ ωiκ (vα −viκ)

×
[

Eiκ +

(
viκ −vα

iκ
)
·
(
viκ −vα

iκ
)

2
−
(

Eα
iκ +Kα

Eiκ

)]}
·nκ

〉
Ωα ,Ω

, (6.115)

and

∑
i∈Is

zQ
jκ→iα

= 1 . (6.116)

For the concentrated exchange,
jκ→iα
Q∗ , the latter part of these definitions that are

multiplied by δi j are not considered here as they would be associated with concen-

trated inter-entity mass exchange.

Note that hiα is an apparent body source of energy at the macroscale due to sub-

scale velocity fluctuations when the external body force per mass, giα , is species-

dependent. When the only external body force per mass is gravity, this term will be

zero. The exchange terms account for energy transfer due to phase change (
iκ→iα

M ),
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transfer due to mechanical interaction between the α phase and the interface (
iκ→iα

T ),

and heat exchange (
iκ→iα

Q ). The concentrated energy exchange terms are included

here as well. The concentrated heat conduction between a phase and the common

curve will typically be negligible, but the mechanical interaction terms can be useful

if one is trying to model mechanical conditions at a common curve thoroughly. The

other terms defined have close analogues in the microscale equation. Because the

boundary of the phase exists within the region of interest, effects at the boundary

become part of the energy equation at the macroscale rather than boundary condi-

tions for the microscale representation.

The material derivative form of energy conservation may be obtained from Eq.

(6.102) as

E iα
∗ :=

Diα

Dt

[
Eiα + εα ρα ω iα

(
viα ·viα

2
+Kiα

E

)]

+

[
Eiα + εα ρα ω iα

(
viα ·viα

2
+Kiα

E

)]
I:diα − εα ρα ω iα giα ·viα

− εα hiα − εα hiα − ∑
κ∈Icα

iκ→iα
M

(
Eα,κ

i +
vα,κ

i ·vα,κ
i

2
+Kα,κ

Ei

)

− ∑
κ∈Icα

∑
j∈Is

jκ→iα
T ·viα, jκ − ∑

κ∈Icα
∑

j∈Is

jκ→iα
Q

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
j∈Is

jκ→iα
T∗ ·vκ

iα − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
j∈Is

jκ→iα
Q∗

−∇·
(

εαtiα T·viα + εα qiα
)

− εα eiα − εα piα ·viα − εα riα

(
viα ·viα

2
+Kiα

E

)
= 0 for α ∈ IP . (6.117)

The elements of Eqs. (6.102) and (6.117) are collected in Table 6.2 with alternative

notation used to express the exchange terms as averages of microscale quantities.

For most applications, it is sufficient to solve for the energy of an entity as a

whole rather than for the energy of the species that comprise the entity. To derive

the energy equation for a phase, either of two approaches can be taken. One option

is to average the microscale conservation of energy equation for a phase, Eq. (2.32),

to the macroscale and simplify using theorems T[3,(3,0),0] and D[3,(3,0),0]. The

second option is to start with Eq. (6.102), describing species conservation of energy,

and sum this equation over all species. Either approach must lead to the same result.

Because certain groupings of terms appear as derived quantities, care must be taken

in the definition of defined quantities to ensure that the two derivation methods do

indeed provide variables that are defined identically in the equation obtained.

The conservation of energy equation for a phase can thus be written as
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Eα :=
∂
∂ t

[
Eα + εα ρα

(
vα ·vα

2
+Kα

E

)]

+∇·
{[

Eα + εα ρα
(

vα ·vα

2
+Kα

E

)]
vα
}
− εα ρα gα ·vα

− εα hα − εα hα − ∑
κ∈Icα

κ→α
M

(
Eα,κ

+
vα,κ ·vα,κ

2
+Kα,κ

E

)

− ∑
κ∈Icα

κ→α
T ·vα,κ − ∑

κ∈Icα

κ→α
Q − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
T∗ ·vκ

α

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
Q∗ −∇·

(
εαtα ·vα + εα qα

)
= 0 for α ∈ IP . (6.118)

The variables that appear for the first time in this equation are defined as

Eα = ∑
i∈Is

Eiα , (6.119)

Kα
E = ∑

i∈Is

ω iα

(
Kiα

E +
uiα ·uiα

2

)
, (6.120)

KEακ =

⎧⎪⎨
⎪⎩

1

2

(
vα −vκ

α
)
·
(
vα −vκ

α
)

if κ ∈ I−cα

1

2

(
vκ −vα

κ
)
·
(
vκ −vα

κ
)

if κ ∈ I+cα

, (6.121)

Kα,κ
E =

{
Kκ

Eα = 〈KEακ〉Ωκ ,Ωκ ,ρκ
if κ ∈ I−cα

Kα
Eκ = 〈KEακ〉Ωα ,Ωα ,ρα

if κ ∈ I+cα
, (6.122)

qα = ∑
i∈Is

[
qiα + tiα T·uiα −ρα ω iα uiα

(
Eiα

+
uiα ·uiα

2
+Kiα

E

)]
,

(6.123)

hα = ∑
i∈Is

(
hiα +ρα ω iα giα ·uiα

)
, (6.124)

hα = ∑
i∈Is

hiα , (6.125)

Eκ
α = ∑

i∈Is

ω iκ
iα Eκ

iα , (6.126)

Eα,κ
= ∑

i∈Is

ωα,κ
i Eα,κ

i , (6.127)

and

ωα,κ
i =

{
ω iκ

iα , if κ ∈ I−cα
ω iα

iκ , if κ ∈ I+cα
. (6.128)
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The new exchange term is

κ→α
Q = ∑

i∈Is

∑
j∈Is

{
jκ→iα

Q +
jκ→iα

T ·uiα, jκ +δi j
iκ→iα

M

[
Eα,κ

i

+
uα,κ

i ·uα,κ
i

2
+Kα,κ

Ei −
(

Eα,κ
+Kα,κ

E

)]}
for κ ∈ Icα , (6.129)

where

uiα, jκ = viα, jκ −vα,κ . (6.130)

The material derivative form of the phase-based total energy equation is obtained

directly from Eq. (6.118) as

Eα
∗ :=

Dα

Dt

[
Eα + εα ρα

(
vα ·vα

2
+Kα

E

)]
+

[
Eα + εα ρα

(
vα ·vα

2
+Kα

E

)]
I:dα

− εα ρα gα ·vα − εα hα − εα hα − ∑
κ∈Icα

κ→α
M

(
Eα,κ

+
vα,κ ·vα,κ

2
+Kα,κ

E

)

− ∑
κ∈Icα

κ→α
T ·vα,κ − ∑

κ∈Icα

κ→α
Q − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
T∗ ·vκ

α

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
Q∗ −∇·

(
εαtα ·vα + εα qα

)
= 0 for α ∈ IP . (6.131)

For integrating smaller scale information into macroscale models, it is important

to know macroscale variables as averages of microscale variables. For convenience,

the energy exchange terms in Table 6.3 are given in forms that are equivalent to

Eq. (6.129), but written explicitly as averages involving microscale exchange terms.

Showing that the alternative forms are equivalent is left as an exercise.

6.5.4 Balance of Entropy

The partial derivative form of the microscale entropy balance equation for species i
in phase α is provided as Eq. (2.38). Application of the averaging operator to each

term yields

〈Siα〉Ωα ,Ω =

〈
∂ηiα

∂ t

〉
Ωα ,Ω

+ 〈∇·(ηiα viα)〉Ωα ,Ω −〈biα〉Ωα ,Ω −〈∇·ϕϕϕ iα〉Ωα ,Ω

=〈Λiα〉Ωα ,Ω for α ∈ IP . (6.132)



236 6 Macroscale Conservation Principles

The contributions from other species to entropy production associated with species

i, as well as the impacts of irreversible processes, are included in Λiα . Averaging

theorem T[3,(3,0),0] may be applied to the partial time derivative and G[3,(3,0),0] to

the two divergence terms. Because ηiα , biα , ηiα , and Λiα do not appear in the mass,

momentum, or energy equations, the definitions of larger scale averages need not be

concerned with macroscale definitions provided for the conservation equations. The

macroscale entropy inequality is thus obtained as

S iα :=
∂η iα

∂ t
+∇·

(
η iα viα

)
− εα biα − ∑

κ∈Icα

iκ→iα
M ηα,κ

i − ∑
κ∈Icα

∑
j∈Is

jκ→iα
Φ

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
j∈Is

jκ→iα
Φ∗ −∇·

(
εα ϕϕϕ iα

)
= Λ iα for α ∈ IP , (6.133)

or, in material derivative form, as

S iα
∗ :=

Diα η iα

Dt
+η iα I:diα − εα biα − ∑

κ∈Icα

iκ→iα
M ηα,κ

i − ∑
κ∈Icα

∑
j∈Is

jκ→iα
Φ

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
j∈Is

jκ→iα
Φ∗ −∇·

(
εα ϕϕϕ iα

)
= Λ iα for α ∈ IP . (6.134)

The variables in these equations are defined according to

η iα = 〈ηiα〉Ωα ,Ω , (6.135)

ϕϕϕ iα =
〈

ϕϕϕ iα −ηiα

(
viα −viα

)〉
Ωα ,Ωα

, (6.136)

ηα,κ
i =

{
ηκ

iα if κ ∈ I−cα
ηα

iκ if κ ∈ I+cα
, (6.137)

and

Λ iα = 〈Λiα〉Ωα ,Ω . (6.138)

The new exchange term,
jκ→iα

Φ , with dim κ <dim α , is

jκ→iα
Φ =

〈[
zΦ

jκ→iα
ϕϕϕ iα +δi jρα ωiα

(
η iα −ηκ

iα

)
(vκ −viα)

]
·nα

〉
Ωκ ,Ω

, (6.139)

and

∑
j∈Is

zΦ
jκ→iα

= 1 . (6.140)

If dim κ >dim α ,
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jκ→iα
Φ =−

〈[
zΦ

jκ→iα
ϕϕϕ jκ +δi jρκ ω jκ

(
η jκ −ηα

jκ

)
(vα −v jκ)

]
·nκ

〉
Ωα ,Ω

, (6.141)

and

∑
i∈Is

zΦ
jκ→iα

= 1 . (6.142)

Summation of Eq. (6.133) over all species i ∈ Is yields the balance of entropy

equation

Sα :=
∂ηα

∂ t
+∇·

(
ηα vα

)
− εα bα − ∑

κ∈Icα

κ→α
M ηα,κ − ∑

κ∈Icα

κ→α
Φ

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
Φ∗ −∇·

(
εα ϕϕϕα

)
= Λ α for α ∈ IP . (6.143)

This equation can be rearranged to the material derivative form,

Sα
∗ :=

Dα ηα

Dt
+ηα I:dα − εα bα − ∑

κ∈Icα

κ→α
M ηα,κ − ∑

κ∈Icα

κ→α
Φ

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
Φ∗ −∇·

(
εα ϕϕϕα

)
= Λ α for α ∈ IP . (6.144)

The entity-based unique averages and the exchange terms that appear in these last

two equations are defined as follows:

ηα = ∑
i∈Is

η iα , (6.145)

bα = ∑
i∈Is

biα , (6.146)

ηα,κ = ∑
i∈Is

ωα,κ
i ηα,κ

i , (6.147)

ϕϕϕα = ∑
i∈Is

(
ϕϕϕ iα −ρα ω iα η iα uiα

)
, (6.148)

Λ α = ∑
i∈Is

Λ iα , (6.149)

and

κ→α
Φ = ∑

i∈Is

∑
j∈Is

[
jκ→iα

Φ +δi j
iκ→iα

M
(

ηα,κ
i −ηα,κ

)]
. (6.150)

For the concentrated entropy exchange, if any,
κ→α
Φ∗ will not include a mass exchange

component in our exposition.
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6.5.5 Body Force Potential

A microscale equation for the body force potential for a species in a phase, Ψiα =
ρα ωiα ψiα , has been provided in Table 2.1. The equation for the body force poten-

tial is different from a conservation equation because it involves the impact of an

externally applied force on the system behavior. The material derivative form is Eq.

(2.51), and the partial derivative form follows from rearrangement of that equation

or from the table. The averaging operator 〈·〉Ωα ,Ω may be applied to obtain

〈Giα〉Ωα ,Ω =

〈
∂Ψiα

∂ t

〉
Ωα ,Ω

+ 〈∇·(Ψiα viα)〉Ωα ,Ω + 〈ρα ωiα giα ·viα〉Ωα ,Ω

−
〈

ρα ωiα
∂ψiα

∂ t

〉
Ωα ,Ω

−〈riα ψiα〉Ωα ,Ω = 0 for i ∈ Is,α ∈ IP .

(6.151)

Application of the averaging operator and theorems, T[3,(3,0),0] and D[3,(3,0),0],

followed by breaking products to obtain familiar or newly defined variables results

in

Giα :=
∂Ψ iα

∂ t
+∇·

(
Ψ iα viα

)
+ εα ρα ω iα giα ·viα + εα hiα

− ∑
κ∈Icα

iκ→iα
M ψα,κ

i − ∑
κ∈Icα

iκ→iα
G −∇·

(
εα qiα

g

)

−
〈

ρα ωiα
∂ψiα

∂ t

〉
Ωα ,Ω

−〈riα ψiα〉Ωα ,Ω = 0 for i ∈ Is,α ∈ IP , (6.152)

where

Ψ iα = εα ρα ω iα ψ iα = 〈Ψiα〉Ωα ,Ω , (6.153)

qiα
g =−

〈
ρα ωiα

(
ψiα −ψ iα

)(
viα −viα

)〉
Ωα ,Ωα

, (6.154)

and

ψα,κ
i =

{
ψκ

iα if κ ∈ I−cα
ψα

iκ if κ ∈ I+cα
. (6.155)

When κ ∈ I−cα ,

iκ→iα
G =

〈(
ψiα −ψκ

iα

)
ρα ωiα (vκ −viα) ·nα

〉
Ωκ ,Ω

, (6.156)

while when κ ∈ I+cα ,
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iκ→iα
G =

〈(
ψiκ −ψα

iκ

)
ρκ ωiκ (viκ −vα) ·nκ

〉
Ωα ,Ω

. (6.157)

The material derivative form of Eq. (6.152) is obtained by rearranging the first

two terms to obtain

Giα
∗ :=

DiαΨ iα

Dt
+Ψ iα I:diα + εα ρα ω iα giα ·viα + εα hiα

− ∑
κ∈Icα

iκ→iα
M ψα,κ

i − ∑
κ∈Icα

iκ→iα
G −∇·

(
εα qiα

g

)

−
〈

ρα ωiα
∂ψiα

∂ t

〉
Ωα ,Ω

−〈riα ψiα〉Ωα ,Ω = 0 for i ∈ Is,α ∈ IP . (6.158)

To obtain the phase-based equation for the gravitational potential equation, we

adopt the approach of summing Eq. (6.152) over all species i ∈ Is, which is equiva-

lent to what will be obtained by averaging Gα , yielding

Gα :=
∂Ψ α

∂ t
+∇·

(
Ψ α vα

)
+ εα ρα gα ·vα + εα hα − ∑

κ∈Icα

κ→α
M ψα,κ

− ∑
κ∈Icα

κ→α
G −∇·

(
εα qα

g

)
− ∑

i∈Is

〈
ρα ωiα

∂ψiα

∂ t

〉
Ωα ,Ω

− ∑
i∈Is

〈riα ψiα〉Ωα ,Ω = 0 for i ∈ Is,α ∈ IP , (6.159)

where

Gα = ∑
i∈Is

Giα , (6.160)

Ψ α = ∑
i∈Is

Ψ iα , (6.161)

ψα,κ = ∑
i∈Is

ωα,κ
i ψα,κ

i , (6.162)

qα
g = ∑

i∈Is

(
qiα

g −ρα ω iα ψ iα uiα
)
, (6.163)

and

κ→α
G = ∑

i∈Is

[
iκ→iα

G +
iκ→iα

M
(

ψα,κ
i −ψα,κ

)]
. (6.164)

After rearrangement to material derivative form, Eq. (6.159) becomes

Gα
∗ :=

DαΨ α

Dt
+Ψ α I:diα + εα ρα gα ·vα + εα hα
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− ∑
κ∈Icα

κ→α
M ψα,κ − ∑

κ∈Icα

κ→α
G −∇·

(
εα qα

g

)

− ∑
i∈Is

〈
ρα ωiα

∂ψiα

∂ t

〉
Ωα ,Ω

− ∑
i∈Is

〈riα ψiα〉Ωα ,Ω = 0 for i ∈ Is,α ∈ IP .

(6.165)

Note that in entering the last two terms into Tables 6.2 and 6.3, use is made

of a notation involving the number of primes associated with the time derivative.

The exponent (n) is equal to zero for the case of a three-dimensional phase for

which I
(0)
α = Iα = I. The reason for introducing this notation will become apparent

subsequently.

6.6 On the Forms of Macroscale Equations

At this point, having completed the derivation of the conservation and balance equa-

tions for phases at the macroscale, it is tempting to simply charge ahead to obtain

the equations for interfaces, common curves, and even common points. However, it

is prudent instead to pause for a moment and consider the implications of the last

section.

The character of the macroscale is such that one is unable to distinguish micro-

scale features such as the distribution of interfaces and phases. Rather, a macroscale

point is somewhat of a black box within which conservation of properties associated

with different species and entities may be described. From this perspective, it is rea-

sonable, if not essential, to expect that the descriptions of conservation of properties

of phases should be the same as those for interfaces. For example, mass conservation

describes the amount of mass associated with a phase or interface contained within

the averaging volume. If one is denied the opportunity to investigate processes at

a smaller scale, the conservation equations should take the same forms. Thus the

equation describing the amount of mass per total volume, plus the net outward flux,

minus the rate of generation, minus the mass transferred to adjacent entities should

be the same regardless of the entity with which the mass is associated. Note that this

is not the case at the microscale when differential operators act in three-, two-, one-,

or zero-dimensional space, depending on the entity.

The microscale conservation equations for phases, interfaces, and common curves

were given in Tables 2.1–2.6. Subsequent discussion suggested how corresponding

equations for common points could be deduced from these results. A general form

of the microscale equations was provided in partial derivative form as Eq. (2.120)

and in material derivative form as Eq. (2.121). The general forms, however, are

built on different partial time derivatives and divergence operators. Transfer of these

equations to a larger scale makes use of averaging theorems that are different de-

pending on the dimensionality of the microscale equations being averaged. Besides

facilitating the scale change, these theorems should, perhaps remarkably, eliminate
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the differences among the equation forms due to entity type, so that equations for all

entities will appear the same. This occurs because entity type is not observable from

the macroscale perspective. Thinking along these lines provides a fast track to the

species- and entity-based equations. We can simply use the equations that appear in

Tables 6.2 and 6.3 with appropriate definitions of the entity densities, εα , and of the

mass densities.

There are only three instances where explicit knowledge of entity type is re-

quired. The first instance is in the average of the generation terms, Giα
Ω , for the body

force potential. For this average, the partial time derivative is constrained to have

fixed entity coordinates and the unit tensor components tangent to the entity, I
(n)
α ,

are indicated. At the macroscale, if the averaging were completed, these indicators

would drop out. The second instance is in the appearance of the concentrated flux

exchange terms in the momentum, energy, and entropy equations. These are the ex-

change terms with an asterisk. The existence of these discontinuities at common

points will be excluded such that similar terms that would appear at the common

points for an interface equation are zero. We do have to account for the concentrated

flux term as it impacts the common curve equations. The third instance relates to the

fact that the connected sets of phases consist only of interfaces. Interfaces have con-

nected sets that consist of the two phases on each side along with the common curves

that form the boundary. Common curves have both surfaces and common points as

connected sets. Common points have only common curves as connected sets. Thus,

in expanding out the summations over κ ∈ Icα , it is important to know the entities

over which the summations are carried out. These terms account for the way that

entities interact and thus describe the essential general configuration of the system.

Because averaging to the macroscale obscures the microscale dimensional char-

acter of the entities, the equations that result for the various entities are identical

except for the exchange terms. Thus the averaging operations applied to the inter-

faces and common curves can be bypassed simply by writing down the result based

on examination of the averaged phase equations. Nevertheless, in the next section

we will outline the averaging procedure for an interface, and in the subsequent sec-

tion for a common curve. This serves to confirm our expectations.4

Before becoming too euphoric over the fact that the detailed calculations of Sect.

6.5 for phases need not be repeated for other entities, one should be aware that

it is the general forms of the conservation equations that are entity-independent.

A significant amount of work remains to determine closure forms for Siα
Ω and Siα

Γ

for species-based formulations or for Sα
Ω and Sα

Γ for entity-based formulations. In-

deed, proper use of the expressions in the tables for all entities in conjunction with

a thermodynamic framework that leads to a systematic closure procedure is quite

challenging. However, we can take solace in the fact that the hard work needed to

4 An alternative way to confirm the generality of the form of the macroscale equation is to apply
the general forms of the averaging theorems given as Eqs. (B.74) and (B.75) to the general form
of the balance equation in Eq. (2.120). It will be seen that the resulting macroscale equation is
independent of the dimensionality of the microscale equation.
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obtain the general conservation and balance equations at the macroscale is essen-

tially completed just by working on the phase equations.

6.7 Macroscale Principles for an Interface

The goal of this section is to confirm that the macroscale equations derived for a

phase in Tables 6.2 and 6.3 apply to an interface as well. The derivations will be

independent of those which lead to the equations in the table, thus confirming that

the table provides general results. The approach is to begin with an interface mic-

roscale conservation equation, apply theorems T[2,(3,0),0] and D[2,(3,0),0], break

averages of products into products of average quantities, and rearrange the equation

to a final form. The entity-based equation can be obtained either by averaging the

corresponding microscale entity-based equation or by summing the species based

form.

Macroscale interface equations account, in an averaged sense, for variations in

physicochemical properties rooted in molecular interactions that occur near the

boundaries of two phases. Conceptually, interfaces do not occupy volume, but the

conservation equations account for excess mass, momentum, energy, potential, and

entropy that is assigned to the boundary between the phases. For example, physi-

cally significant quantities such as interfacial tension and interface orientation are

manifestations of interfacial quantities of relevance to the formulation of macroscale

models. After averaging, interfacial quantities are expressed as the relevant quantity

per volume of the system. The extent of the interface is the area per volume, or the

specific interfacial area.

6.7.1 Example: Conservation of Species Mass

The conservation of mass equation is the simplest expression, so we will use this

equation as a starting point to demonstrate the derivation procedure for conversion of

microscale interface equations to the macroscale. By formulating the conservation

of mass equation for an interface in detail, we will demonstrate the process taken

to derive all of the macroscale interface equations. Consider an interface between

phases designated as the α interface. The connected set for a microscale point on

the interface consists of the phases on each side. For example, when α = ws, where

the w phase is on one side of the interface and the s phase is on the other side, the

connected set consists of the two phases such that Icws ∩ IP = I+cws = {w,s}. From a

microscale perspective, this is the complete connected set that needs to be consid-

ered. However, from a macroscale perspective, the boundary edge of the interface

is also part of the connected set. These edges are formed by common curves. At the

microscale, boundary conditions for the interface are specified at the common curve.

From a macroscale perspective, the common curves are entities that interact with in-
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terfaces, as do phases. Thus, from a macroscopic perspective, if three or more phases

are present such that a common curve can exist, the common curve is counted as part

of the connected set of entities and is obtained as I−cα = Icα ∩ IC for α ∈ II. Thus,

continuing the example, if the ws interface exists in a system composed of w, n, and

s phases, the connected set for the ws interface is Icws = I+cws∪I−cws = {w,s,wns}. In

other words, for the microscale equations of Chap. 2, connected sets of importance

are of one-dimension higher than the entity of interest. Phases have no connected

sets; interfaces are in the connected sets of a common curve. However, from a mac-

roscale perspective, connected sets to an entity are adjacent entities of both one

higher dimension and one lower dimension. Interfaces are important parts of the

connected sets of phases; both phases and common curves are important members

of the connected sets of interfaces.

Consider an interface in domain Ωα between two phases such that the species

conservation of mass equation, Miα , is given by Eq. (2.71) or can be obtained from

Table 2.3. Application of the averaging operator 〈·〉Ωα ,Ω to this equation yields

〈Miα〉Ωα ,Ω =

〈
∂ ′(ρα ωiα)

∂ t

〉
Ωα ,Ω

+
〈
∇′·(ρα ωiα viα)

〉
Ωα ,Ω

− ∑
κ∈I+cα

〈
M

iκ→iα

〉
Ωα ,Ω

−〈riα〉Ωα ,Ω = 0 for i ∈ Is,α ∈ II . (6.166)

Implementation of theorem T[2,(3,0),0] to rearrange the time derivative and theorem

D[2,(3,0),0] to rearrange the surface divergence term yields

〈Miα〉Ωα ,Ω =
∂
(

εα ρα ω iα
)

∂ t
+∇·

(
εα ρα ω iα viα

)
− ∑

κ∈I+cα

〈
M

iκ→iα

〉
Ωα ,Ω

− εα riα + ∑
κ∈I−cα

〈ρα ωiα (viα −vκ) ·nα〉Ωκ ,Ω = 0 . (6.167)

The two exchange terms in this expression have been defined previously in Eq.

(6.50) and using the inter-entity exchange term notation in the bottom part of Table

6.2. Since α refers to an interface entity, dimα = 2. When κ ∈ I+cα , κ refers to a

phase, but when κ ∈ I−cα , κ refers to a common curve. Therefore the transfer of mass

of species i to the α interface is accounted for by the two exchange terms with

iκ→iα
M = 〈ρα ωiα (vκ −viα) ·nα〉Ωκ ,Ω for κ ∈ I−cα (6.168)

and

iκ→iα
M =

〈
M

iκ→iα

〉
Ωα ,Ω

for κ ∈ I+cα . (6.169)

Substitution of these last two relations into Eq. (6.167) gives
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〈Miα〉Ωα ,Ω =
∂
(

εα ρα ω iα
)

∂ t
+∇·

(
εα ρα ω iα viα

)
− εα riα

− ∑
κ∈I+cα

iκ→iα
M − ∑

κ∈I−cα

iκ→iα
M = 0 . (6.170)

However the summations over the phase and over the common curve can be com-

bined as a single sum over the complete connected set of α , Icα . Therefore, with

∑
κ∈Icα

iκ→iα
M = ∑

κ∈I+cα

iκ→iα
M + ∑

κ∈I−cα

iκ→iα
M , (6.171)

Equation (6.170) may be rewritten

Miα :=
∂
(

εα ρα ω iα
)

∂ t
+∇·

(
εα ρα ω iα viα

)
− εα riα − ∑

κ∈Icα

iκ→iα
M = 0

for i ∈ Is,α ∈ II . (6.172)

Equation (6.172) is identical in form to the species conservation equation ob-

tained for a phase α as given by Eq. (6.48). In the interface equation, ρα has units

of mass per area; εα is area per volume such that εα ρα is mass per averaging vol-

ume associated with interface entity α . In Eq. (6.48), ρα is mass per volume of

phase α and εα is the volume of phase entity α per averaging volume. Similarly,

riα is the macroscopic rate of generation of species i per extent of entity α . If one

keeps these notational distinctions in mind, the equations are identical in appear-

ance. Note also that since both the phase and interface equation have dimensions of

mass per volume, the two equations can be added together to express the total mass

conservation in the phase and interface being considered per unit volume. Of course,

if these equations are added, it is simpler to designate the phase using one index and

the interface using another. Typically, when we want to make such a distinction, we

choose a single index for the phase, such as α = w for a wetting fluid phase, and

a double index for the interface, such as α = ws for the interface between a w and

s phase. This kind of distinction becomes useful when considering the system as

a whole, as in the development of closure relations, and was employed previously

in Table 4.1 in developing variational relations. For now, we simply note that Eq.

(6.172), the expression for conservation of mass of a species i in an interface α , can

be extended to apply to any entity in the system with

Miα :=
∂
(

εα ρα ω iα
)

∂ t
+∇·

(
εα ρα ω iα viα

)
− εα riα − ∑

κ∈Icα

iκ→iα
M = 0

for i ∈ Is,α ∈ I . (6.173)
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The only difference between this equation and Eqs. (6.172) and (6.48) is the ex-

tension of the set of domains to which it applies to include common curves and

common points. Thus, the mass conservation equation in Table 6.2, based on analy-

sis of a phase entity, applies to other entities as well.

6.7.2 Comment on Interface Equations

The derivation of interface equations can proceed, if desired, by averaging the mic-

roscale equations to the macroscale. The result, as has been stated, is the set of

equations in Tables 6.2 and 6.3. Because these equations are already available, and

the steps to their derivation have been provided, it seems not to be worthwhile to

engage in the manipulations needed to develop the equations in this text. Detailed

derivations can be found elsewhere [1, 2, 7, 8] if desired. We note that definitions

of unique averaged variables and conditions on variables are the same as in Eqs.

(6.66)–(6.72) encountered when averaging mass conservation; Eqs. (6.78)–(6.80),

(6.83)–(6.84), and (6.94)–(6.98) introduced in the context of momentum conser-

vation; Eqs. (6.103)–(6.112) and (6.119)–(6.130) introduced when averaging the

energy equation; Eqs. (6.135)–(6.138) and (6.145)–(6.149) relating to macroscale

entropy balance variables; and Eqs. (6.153)–(6.154) and (6.160)–(6.163) that arise

in obtaining the macroscale body force potential equation. For convenience the vari-

ables in these equations are collected in the notation section along with reference to

the equation numbers where they are defined.

Although the macroscale equation formulas are universal with regard to entity, it

is useful to make a few remarks about the microscale variables in the equations. One

of the strengths of the TCAT method in comparison to other methods is that it retains

connections between microscale and macroscale variables. Sometimes, examination

of the ways that microscale variables impact the definitions of larger scale variables

is useful. Whether the domain of a microscale variable is within a phase or located

on an interface can be important. Failure to recognize this difference can lead to

misunderstanding and errors in developing closure relations.

In Eq. (2.24), the microscale diffusion velocity is defined as

uiα = viα −vα . (6.174)

In a three-dimensional phase domain, diffusion can occur in all directions so that

this definition provides the possibility for transport in any direction. However, in a

two-dimensional domain, diffusion cannot occur in the domain in a direction normal

to the domain. The velocity of all species in the direction normal to the surface must

be equal to each other and to the velocity of the surface. This may be expressed as

viα ·
(
I− I′α

)
= vα ·

(
I− I′α

)
for i ∈ Is,α ∈ II . (6.175)

As a consequence

uiα ·
(
I− I′α

)
= 0 for i ∈ Is,α ∈ II . (6.176)
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Recognition of this fact can be useful in developing closure relations for surface

entities.

Another point of interest is the generation term of the body force potential equa-

tion. From Eq. (6.152) for α ∈ IP and Table 6.2, we know that

Giα
Ω =

〈
ρα ωiα

∂ψiα

∂ t

〉
Ωα ,Ω

+ 〈riα ψiα〉Ωα ,Ω . (6.177)

Here we will concentrate on the first term on the right side for the case of an in-

terface. A time derivative fixed to a point on an interface must take into account

the fact that the interface can move in a direction normal to the surface. The time

derivative with surface coordinates of an interface entity α held fixed is related to

the time derivative with spatial coordinates fixed according to

∂
∂ t

=
∂ ′

∂ t
−vα ·

(
I− I′α

)
·∇ . (6.178)

Application of this identity to the first term on the right of Eq. (6.177) produces〈
ρα ωiα

∂ψiα

∂ t

〉
Ωα ,Ω

=

〈
ρα ωiα

∂ ′ψiα

∂ t

〉
Ωα ,Ω

−
〈
ρα ωiα vα ·

(
I− I′α

)
·∇ψiα

〉
Ωα ,Ω

.

(6.179)

However, ∇ψiα =−giα so this equation becomes〈
ρα ωiα

∂ψiα

∂ t

〉
Ωα ,Ω

=

〈
ρα ωiα

∂ ′ψiα

∂ t

〉
Ωα ,Ω

+
〈
ρα ωiα vα ·

(
I− I′α

)
·giα

〉
Ωα ,Ω

.

(6.180)

The form on the left side of this equation is appropriate for use when α ∈ IP, while

the equivalent term on the right is more appropriate for α ∈ II. This change in nota-

tion is accounted for in expressing the generation term for the gravitational potential

in Tables 6.2 and 6.3.

6.8 Macroscale Principles for a Common Curve

Macroscale common curve equations account in an averaged sense for variations in

physicochemical properties rooted in molecular interactions that occur in the neigh-

borhood where three phases or three interfaces meet. Although curves can be formed

at the intersection of more than three phases, we will not consider these rare events

in the formulation that follows. Conceptually, common curves do not occupy vol-

ume or surface area, but their conservation and balance equations account for vari-

ability of mass, momentum, energy, potential, and entropy properties that actually

exist in the region of the conceptualized curve. For example, a physically significant

quantity such as curvilineal tension is a manifestation of molecular behavior in the

vicinity of a proposed common curve location that may be of relevance to the for-



6.8 Macroscale Principles for a Common Curve 247

mulation of some macroscale models. After averaging, common curve conservation

equations are expressed in terms of the rate of change of the property per averaging

volume of the system that contains the common curve. The extent of the common

curve in the averaging domain is expressed as the common curve length per volume,

also called the specific common curve length. For an α common curve, it is denoted

εα . Thus, a universal notation is used to designate volume, surface, and common

curve densities such that one must be careful to associate the symbol with the ap-

propriate entity. In some instances, to make this clear, a common curve property is

designated using three indices, such as εwns which would indicate a specific com-

mon curve length associated with locations where wn, ws, and ns interfaces come

together.

The formulation of the common curve equations follows the now familiar pat-

tern of applying the averaging operator 〈·〉Ωα ,Ω to a microscale common curve

equation of interest, rearranging the average quantities using Theorems T[1,(3,0),0]

and D[1,(3,0),0], and defining the macroscale properties after breaking products

as needed. The equations can be developed in terms of species-based equations,

which may subsequently be summed over the species to produce the common curve

entity-based equations. Alternatively, the microscale common curve equations may

be averaged directly. Regardless of the approach used, the definitions of macroscale

quantities are consistent.

The mechanics of this formulation have been established and demonstrated in

detail for phases in Sect. 6.5 and for the species mass conservation equation of an

interface in Sect. 6.7.1. Considerations of the form of the macroscale equation in

Sect. 6.6 suggest the macroscale conservation equations for common curves will

be identical in appearance to those for the phase equations as collected in Tables

6.2 and 6.3. Thus, although the equations for the common curves can be derived as

an independent exercise, it seems prudent to forego providing the manipulations in

favor of simply asserting that the results are found in the two tables. One example

derivation is provided in the next subsection purely for illustrative purposes. Note

that the definitions of the macroscale variables in these equations in terms of micro-

scale precursors are independent of the entity considered. Only the averaging region

is different. Additionally, if a concentrated non-advective force is exerted at a com-

mon curve on a smooth solid surface, this phenomenon must be accounted for in the

macroscale common curve equation. These are the exchange terms with an asterisk

that involve forces exerted by a phase on a common curve.

6.8.1 Example: Conservation of Common Curve Momentum

Consider a common curve domain, Ωα , where three interfaces meet such that the

entity-based conservation of momentum equation, Pα , is given by Eq. (2.107) or

can be obtained from Table 2.6. Application of the averaging operator 〈·〉Ωα ,Ω to

this equation yields
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〈Pα〉Ωα ,Ω =

〈
∂ ′′(ρα vα)

∂ t

〉
Ωα ,Ω

+
〈
∇′′·(ρα vα vα)

〉
Ωα ,Ω

−〈ρα gα〉Ωα ,Ω

− ∑
κ∈I+cα

〈
vκ M

κ→α
+ T

κ→α

〉
Ωα ,Ω

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

〈
T∗

κ→α

〉
Ωα ,Ω

−
〈
∇′′·

(
I′′α ·tα

)〉
Ωα ,Ω

= 0 for α ∈ IC . (6.181)

Theorems T[1,(3,0),0] and D[1,(3,0),0] from Table 6.1 are employed to re-express

the time derivative and curve divergence terms, respectively, such that

〈Piα〉Ωα ,Ω =
∂
∂ t

(
εα ρα vα

)
+∇·

(
εα ρα vα vα

)
− εα ρα gα

− ∑
κ∈I+cα

〈
vκ M

κ→α
+ T

κ→α

〉
Ωα ,Ω

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

〈
T∗

κ→α

〉
Ωα ,Ω

+ ∑
κ∈I−cα

〈nα · [ρα (vα −vκ)vα − tα ]〉Ωκ ,Ω −∇·
(

εαtα
)
= 0

for α ∈ IC . (6.182)

Based on the definitions of exchange terms at the bottom of Table 6.3, Eqs. (6.50)

and (6.82)–(6.85) we can see that〈
vκ M

κ→α
+ T

κ→α

〉
Ωα ,Ω

=
κ→α
M vα,κ +

κ→α
T for κ ∈ I+cα ,

(6.183)

〈nα · [ρα (vα −vκ)vα − tα ]〉Ωκ ,Ω =−
κ→α
M vα,κ −

κ→α
T for κ ∈ I−cα ,

(6.184)

and 〈
T∗

κ→α

〉
Ωα ,Ω

=
κ→α
T∗ for β ∈ I+cα ,κ ∈ I+

cβ . (6.185)

Equation (6.183) accounts for exchanges between the common curve and the con-

nected set of interfaces; Eq. (6.184) accounts for exchanges between the common

curve and common points. Equation (6.185) accounts for concentrated sources that

model exchanges between the common curve and a phase when the phase has a

unique normal to the common curve. Substitution of Eqs. (6.183)–(6.185) back into

Eq. (6.182) while combining the exchanges between the common curve and the

connected sets into a single expression yields

Pα :=
∂
∂ t

(
εα ρα vα

)
+∇·

(
εα ρα vα vα

)
− εα ρα gα − ∑

κ∈Icα

κ→α
M vα,κ

− ∑
κ∈Icα

κ→α
T − 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

κ→α
T∗ −∇·

(
εαtα

)
= 0 for α ∈ IC . (6.186)
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Equation (6.186) is identical in form to the phase momentum equation given as

Eq. (6.92), except that a different double sum term appears. For the phase equation, a

double sum occurs over a concentrated force term for an entity that is lower order by

two dimensions, i.e., over a common curve property. For the common curve equa-

tion, the summation is over an entity two dimensions higher. This term accounts for

the interaction of the common curve of interest with a phase. If α refers to a three-

dimensional phase, no five-dimensional entity will exist so that this summation is

dropped. However, for α denoting a common curve, which is microscopically one-

dimensional, interaction with a phase can occur when the normal to the phase at the

common curve is unique, and a concentrated force acts at that location. Thus the

additional term in Eq. (6.186) accounts for this possibility where T∗
κ→α

has been ap-

propriately defined at the bottom of Table 2.6. Conversely, no double sum term for

an entity of two dimensions lower than a common curve appears, because no such

entity exists.

Similar agreement between forms of the conservation equations in various en-

tities applies such that the equations in Tables 6.2 and 6.3 may be applied to any

entity. This feature is one of the significant mathematical differences between the

microscale conservation equations and their macroscale counterparts. At the micro-

scale the dimensionality of the entity impacts the equation forms; at the macroscale,

the interaction between an entity and connected and adjacent entities accounts for

the differences in system behavior.

6.8.2 Comment on Common Curve Equations

Although the forms of the macroscale equations for phases, interfaces, common

curves, and, for that matter, common points are identical, one should not lose sight

of some of the distinguishing features of common curves that will impact closure

relations. Fluxes of mass, momentum, or energy in the common curves at the micro-

scale are only in directions tangent to the common curve. Thus, for example, if one

imagines a situation where common curves are all straight lines oriented in the same

direction, no non-advective heat flux will be induced in the curves by a temperature

gradient that is orthogonal to the common curves. At the macroscale, the effects of

average orientation of the curves in a system will be important in consideration of

how the system behaves. Two systems composed of the same materials that have

the same values of εα for all entities will not necessarily respond identically to an

imposed external force because the subscale distribution of entities and the orien-

tations of those entities can be different. Orientation, at least on average, must be

accounted for in closure equations if common curve dynamics are to be modeled

properly.

The number of entities in a porous medium system increases rapidly as the num-

ber of phases increases. Although a two-phase system has 3 entities, a three-phase

system can have 7 entities, and a four-phase system can have 15 entities. Modeling

the conservation equations for each chemical species in each entity is a huge task,
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even at the macroscale. It seems reasonable to assume that lower-dimensional enti-

ties will have less importance in accurate description of system behavior than will

higher-dimensional entities. Therefore, although we can develop closed equations

for common curves, it is usual to exclude the properties of common curves from

a full model. In adopting this approach, one must be aware, however, that an error

is incurred when this aspect of system dynamics is excluded. Although some might

argue that the TCAT approach is too complex because it explicitly includes common

curve dynamics in the general formulation, we believe that any model that does not

include common curve dynamics should exclude them explicitly. Detail provided

by the TCAT approach can help pinpoint situations where exclusion of common

curve dynamics could be a significant source of error that contributes to the failure

of standard models.

6.9 Mixed Forms of Macroscale Equations

The forms of the inter-entity exchange terms for both the species-based and phase-

based forms of the conservation and balance equations have been provided in Ta-

bles 6.2 and 6.3. Although these forms are complete, the actual expression used

in formulating a problem description often will consist of mixes of the two forms.

For example, when the description of species mass conservation must be more re-

fined than that of species momentum transport, species-based mass conservation

equations can be used in conjunction with entity-based momentum equations. In in-

stances when this type of mixed formulation is employed, the inter-entity exchange

terms in entity-based equations as well as the non-advective flux terms must be re-

visited. Although the definitions of these terms are unchanged, it is helpful in devel-

oping closure relations to examine the components that go into the definitions. For

example, rather than modeling
κ→α

Q as a whole as given in Eq. (6.129), it is some-

times advantageous to model the various terms that contribute to this expression

separately. The implications of this concept are explored in the following subsec-

tions.

6.9.1 Species-based Equations

The first case is when the full set of species-based conservation equations for mass,

momentum, and energy along with the body force potential and entropy balance

equation are employed in describing the system, and constitutive equations are also

defined on a species basis. The exchange terms will also all be species-based so that

the set of exchange terms, X, in this instance is

X= {
iκ→iα

M ,
jκ→iα

T ,
jκ→iα

Q ,
jκ→iα

Φ ,
iκ→iα

G } for α ∈ I;κ ∈ Icα ; i, j ∈ Is . (6.187)
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The definitions of these exchange quantities were given in the last section. These

definitions are useful if one is interested in employing microscale experimental data

to determine appropriate forms for these macroscale expressions. In actuality, these

terms are typically parameterized directly at the macroscale. These efforts do not

require microscale information but only seek to obtain macroscale closure relations.

6.9.2 Entity-based Energy and Entropy

A reduction in the equation set can be achieved by writing the entropy, energy, and

body force potential equations in terms of entity-based quantities while leaving the

momentum and mass equations in terms of species. The species-based conserva-

tion equations employed are the mass and momentum equations in Table 6.2. The

entity-based energy conservation, entropy balance, and force potential equations are

taken from Table 6.3. The problem with this mixed formulation is that while some

quantities appear in the species-based equations as species-based properties (e.g.,
iκ→iα

M , tiα ,
jκ→iα

T ), only their entity-based forms (e.g.,
κ→α
M , tα ,

κ→α
T ) appear in the

entity-based equations. Thus it is necessary to express these entity-based forms in

terms of species-based variables employed in the species-based equations.

Remember that the entity-based equations are obtained as a sum of the species-

based equations over the N species in the entity. Thus, for the present case, we obtain

a reduction in the number of variables relating to energy, but there is no reduction

in the number of variables relating to mass and momentum transfer processes. In

the energy equation from Table 6.3, we replace entity-based variables by their cor-

responding summations as given by Eqs. (6.70), (6.94), (6.95), (6.97), and (6.98).

Also, the definitions provided in Eqs. (6.119)–(6.129) are employed. This honors

the species-based detail of the mass and momentum equations while still allowing

the energy description to be simplified.

With these considerations, the total energy equation becomes

Dα

Dt

{
Eα + εα ρα

[
vα ·vα

2
+ ∑

i∈Is

ω iα

(
Kiα

E +
uiα ·uiα

2

)]}

+

{
Eα + εα ρα

[
vα ·vα

2
+ ∑

i∈Is

ω iα

(
Kiα

E +
uiα ·uiα

2

)]}
I:dα

− ∑
i∈Is

εα ρα ω iα giα ·
(

vα +uiα
)
− ∑

i∈Is

εα hiα − εα hα

− ∑
κ∈Icα

∑
i∈Is

iκ→iα
M

⎡
⎣Eα,κ

i +

(
vα,κ +uα,κ

i

)
·
(

vα,κ +uα,κ
i

)
2

+Kα,κ
Ei

⎤
⎦

− ∑
κ∈Icα

∑
i∈Is

∑
j∈Is

jκ→iα
T ·

(
vα,κ +uiα, jκ

)
− ∑

κ∈Icα
∑

i∈Is

∑
j∈Is

jκ→iα
Q
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− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
i∈Is

∑
j∈Is

jκ→iα
T∗ ·

(
vκ

α +uκ
iα

)
− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
i∈Is

∑
j∈Is

jκ→iα
Q∗

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
i∈Is

∑
j∈Is

jκ→iα
T∗ ·

(
vα

κ +uα
iκ

)
− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
i∈Is

∑
j∈Is

jκ→iα
Q∗

−∇·
{

∑
i∈Is

[
εαtiαT·

(
vα +uiα

)]}
−∇·

{
∑

i∈Is

[
εα qiα − εα ρα ω iα uiα

×
(

Eiα
+

(
vα +uiα

)
·
(

vα +uiα
)

2
+Kiα

E

)]}
= 0 . (6.188)

The summations involving
jκ→iα
T∗ and

jκ→iα
Q∗ over entities two dimensions lower than

α are zero unless α is a phase (since common point singularities are being ne-

glected); and the summations of these quantities over entities two dimensions higher

are included only when α ∈ IC.

In this equation, we can identify the following groups of terms that should each

be defined for use with the entity-based energy equation:

qα
0 = ∑

i∈Is

qiα −ρα ω iα uiα

(
Eiα

+

(
vα +uiα

)
·
(

vα +uiα
)

2
+Kiα

E

)
,

(6.189)

hα
0 = ∑

i∈Is

hiα , (6.190)

κ→α
Q∗

0 = ∑
i∈Is

∑
j∈Is

jκ→iα
Q∗ for β ∈ I−cα ,κ ∈ I−

cβ , (6.191)

κ→α
Q∗

0 = ∑
i∈Is

∑
j∈Is

jκ→iα
Q∗ for β ∈ I+cα ,κ ∈ I+

cβ , (6.192)

and

κ→α
Q0 = ∑

i∈Is

∑
j∈Is

jκ→iα
Q for κ ∈ Icα . (6.193)

The subscript “0” denotes that these terms are different from those defined previ-

ously without the “0”. In fact, these terms are simpler than the former ones, indica-

tive of the fact that some of the system physics is retained explicitly in the mass

and momentum equations when they are not summed over all species. Thus the

constitutive equations needed for Eqs. (6.189)–(6.193) should be simpler than those

when all the conservation equations are formulated on an entity basis. Of course,

this comes at the price of solving more momentum and mass conservation equa-

tions along with developing additional constitutive equations for quantities such as
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tiα and
jκ→iα

T for each species. Insertion of Eqs. (6.189)–(6.193) into Eq. (6.188)

yields

Dα

Dt

{
Eα + εα ρα

[
vα ·vα

2
+ ∑

i∈Is

ω iα

(
Kiα

E +
uiα ·uiα

2

)]}

+

{
Eα + εα ρα

[
vα ·vα

2
+ ∑

i∈Is

ω iα

(
Kiα

E +
uiα ·uiα

2

)]}
I:dα

− ∑
i∈Is

εα ρα ω iα giα ·
(

vα +uiα
)
− εα hα

0 − εα hα

− ∑
κ∈Icα

∑
i∈Is

iκ→iα
M

⎡
⎣Eα,κ

i +

(
vα,κ +uα,κ

i

)
·
(

vα,κ +uα,κ
i

)
2

+Kα,κ
Ei

⎤
⎦

− ∑
κ∈Icα

∑
i∈Is

∑
j∈Is

jκ→iα
T ·

(
vα,κ +uiα, jκ

)
− ∑

κ∈Icα

κ→α
Q0

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

∑
i∈Is

∑
j∈Is

jκ→iα
T∗ ·

(
vκ

α +uκ
iα

)
− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
Q∗

0

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

∑
i∈Is

∑
j∈Is

jκ→iα
T∗ ·

(
vα

κ +uα
iκ

)
− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

κ→α
Q∗

0

−∇·
{

∑
i∈Is

[
εαtiαT·

(
vα +uiα

)]}
−∇·

(
εα qα

0

)
= 0 . (6.194)

Similar manipulations for the entropy balance give

Sα
∗∗ =

Dα ηα

Dt
+ηα I:dα − εα bα − ∑

κ∈Icα
∑

i∈Is

iκ→iα
M ηα,κ

i − ∑
κ∈Icα

κ→α
Φ0

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
Φ∗ − 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

κ→α
Φ∗ −∇·

(
εα ϕϕϕα

)
= Λ α , (6.195)

where
κ→α
Φ0 = ∑

i∈Is

∑
j∈Is

jκ→iα
Φ . (6.196)

For the body force potential, we obtain

Gα
∗∗ =

DαΨ α

Dt
+Ψ α I:dα + ∑

i∈Is

εα ρα ω iα giα ·
(

vα +uiα
)
+ εα hα

0
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− ∑
κ∈Icα

iκ→iα
M ψα,κ

i − ∑
κ∈Icα

∑
i∈Is

κ→α
G0 −∇·

(
εα qα

g0 − ∑
i∈Is

εα ρα ω iα ψ iα uiα

)

− ∑
i∈Is

〈
ρα ωiα

[
∂ (n)ψiα

∂ t
+viα ·

(
I− I

(n)
α

)
·giα

]〉
Ωα ,Ω

− ∑
i∈Is

〈riα ψiα〉Ωα ,Ω = 0 , (6.197)

where

κ→α
G0 = ∑

i∈Is

iκ→iα
G (6.198)

and

qα
g0 = ∑

i∈Is

qiα
g . (6.199)

Recall that in Eq. (6.197) n = 3−dimα .

The consequence of this formulation is that the diffusion velocity is explicitly

included in the equations as appropriate while the flux terms in the energy and en-

tropy equations are dealt with on an entity basis. The set of exchange terms between

connected sets is given by

X= {
iκ→iα

M ,
jκ→iα

T ,
κ→α
Q0 ,

κ→α
Φ0 ,

κ→α
G0 } for α ∈ I;κ ∈ Icα ; i, j ∈ Is . (6.200)

Note the similarity of this set with that employed when all the conservation and

balance equations are species based, Eq. (6.187). The reduction in the number of

exchange terms corresponds to the reduction in the number of equations. A formu-

lation in terms of these equations will not need a closure relation for the diffusion

velocity because the N species momentum equations are posed in terms of the phase

velocity, vα , and N −1 diffusion velocities, uiα [2].

6.9.3 Entity-based Momentum, Energy, and Entropy

Probably the most widely used modeling framework for environmental problems,

if not all flow and transport problems, involves accounting for mass transport of

chemical species while considering momentum and energy transport on an entity

basis. To incorporate this approach into the momentum and energy equations, there

is a need to make use of an alternative collection of terms in formulating exchange

processes and non-advective fluxes.

The species mass transport equation is employed as in Table 6.2. The momentum

equation is re-expressed as
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Pα
∗∗ =

Dα

Dt

(
εα ρα vα

)
+ εα ρα vα I:dα − ∑

i∈Is

εα ρα ω iα giα

− ∑
κ∈Icα

∑
i∈Is

iκ→iα
M

(
vα,κ +uα,κ

i

)
− ∑

κ∈Icα

κ→α
T0 − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
T∗

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

κ→α
T∗ −∇·

(
εαtα

)
= 0 for α ∈ I , (6.201)

where
κ→α
T0 = ∑

i∈Is

∑
j∈Is

jκ→iα
T . (6.202)

Equation (6.201) is obtained from Table 6.3, or Eq. (6.100), by substituting in the

identities given by Eqs. (6.70), (6.94), and (6.97). Thus, it is still an entity-based

equation; but the exchange terms and the gravitational term have been left in more

general forms that account for species behavior.

The appropriate form of the energy equation can be developed based on Eq.

(6.131) or, more directly, by rearranging Eq. (6.194). In either case, the result is

Eα
∗∗ =

Dα

Dt

{
Eα + εα ρα

[
vα ·vα

2
+ ∑

i∈Is

ω iα

(
Kiα

E +
uiα ·uiα

2

)]}

+

{
Eα + εα ρα

[
vα ·vα

2
+ ∑

i∈Is

ω iα

(
Kiα

E +
uiα ·uiα

2

)]}
I:dα

− ∑
i∈Is

εα ρα ω iα giα ·
(

vα +uiα
)
− εα hα

0 − εα hα

− ∑
κ∈Icα

∑
i∈Is

iκ→iα
M

⎡
⎣Eα,κ

i +

(
vα,κ +uα,κ

i

)
·
(

vα,κ +uα,κ
i

)
2

+Kα,κ
Ei

⎤
⎦

− ∑
κ∈Icα

κ→α
T0 ·vα,κ − ∑

κ∈Icα

κ→α
Q1

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
T∗ ·vκ

α − 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
Q∗

1

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

κ→α
T∗ ·vα

κ − 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

κ→α
Q∗

1

−∇·
(

εαtα ·vα + εα qα
)
= 0 , (6.203)

where
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κ→α
Q1 =

κ→α
Q0 + ∑

i∈Is

∑
j∈Is

jκ→iα
T ·uiα, jκ . (6.204)

The entropy balance and the body force potential equation, Eqs. (6.195) and

(6.197), respectively, are not affected by having momentum conservation expressed

on an entity basis. The exchange terms between entities and their connected sets are

comprised of the set

X= {
iκ→iα

M ,
κ→α
T0 ,

κ→α
Q1 ,

κ→α
Φ0 ,

κ→α
G0 } for α ∈ I;κ ∈ Icα ; i ∈ Is . (6.205)

The reduction of the size of this set due to momentum being formulated on an entity

basis is accompanied by the requirement that the energy transfer term account for

inter-entity mechanical effects due to diffusion.

6.10 Internal Energy Equation

In some instances, it is desirable to model the internal energy, or thermal, aspects of

a problem rather than the total energy. In those cases, it is convenient to make use

of an internal energy equation rather than the total energy equation. It is essential

to realize that the internal energy equation is not an additional independent relation.

Rather, it arises from splitting off the elements of the total energy equation that

are related to thermal processes and accounting for the transfer of energy into its

mechanical part. Mathematically, the fact that the internal energy equation is not

an independent relation can be seen from the fact that it is derived by combining

the total energy, momentum, and mass conservation equations for the purpose of

eliminating the time derivative of the kinetic energy. This has the additional effect of

eliminating terms in the equation related to mechanical processes. The formulation

of an internal energy equation is not unique.

6.10.1 Species- and Entity-based Equations

As an example, we can form the species-based internal energy equation, U iα
∗ , from

the species-based conservation equations as

U iα
∗ := E iα

∗ −viα ·P iα
∗ +

viα ·viα

2
Miα

∗ = 0 , (6.206)

where the energy, momentum, and species conservation equations are taken from

Table 6.2. Note that this equation is merely a sum of the total energy equation with

other conservation equations that makes use of particular velocities as coefficients.

Those coefficients are arbitrary in assuring that the sum of the equations is zero
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because each of the equations is itself zero. This particular combination of equations

eliminates the material derivative of viα ·viα so that the species-based internal energy

equation is written in terms of a material derivative of Eiα +Kiα
E . The Kiα

E term

accounts for subscale species motion and can be thought of as contributing to the

effective internal energy.

If one works from the entity-based equations of Table 6.3, then the entity-based

internal energy equation, Uα
∗ , is proposed to be

Uα
∗ := Eα

∗ −vα ·Pα
∗ +

vα ·vα

2
Mα

∗ = 0 . (6.207)

The sum of the species-based mass, momentum, and total energy equations over

all species yields the respective entity-based equations. However, if one sums Eq.

(6.206) over all species, the resulting collection of terms is different from those on

the right side of Eq. (6.207). In fact, because viα = vα +uiα , it can be seen that

∑
i∈Is

U iα
∗ = Uα

∗ − ∑
i∈Is

uiα ·
[
P iα

∗ −
(

vα +
uiα

2

)
Miα

∗

]
= 0 . (6.208)

Although the forms of the equations obtained by summing a species-based internal

energy equation as opposed to obtaining them from the entity-based conservation

equations are different, both are equally valid. They are obtained by combining col-

lections of terms that sum to zero, but the collections are combined differently. If

one chose to formulate Eq. (6.206) using entity velocities rather than species ve-

locities as the weighting factors, the sum of the resultant species equation over all

species would be equivalent to the result obtained in Eq. (6.207).

The differences between forms lies in the fact that the breaking of the total energy

equation into its internal and mechanical energy parts occurs at a different point

in the two approaches. The cleavage point is immaterial as long as the transfer of

energy between the elements of the equation is accounted for properly. Because

the total energy equation accounts for all the energy in the system, it is unique;

summation of the unique species-based equations must yield the unique entity-based

equation. However, internal energy is only part of the system energy. The use of

arbitrary velocity coefficients along with momentum and mass equations to attempt

to formulate an equation called the internal energy equation provides different forms

depending on the way terms are combined.

6.10.2 Mixed Formulation with Species Conservation

When working with mixed forms of macroscale equations, the selection of appro-

priate coefficients for formulation of an internal energy equation is also subjective.

It is difficult to decide whether to make use of species or entity based velocities

in combining terms. For later use, we will define the internal energy equation for
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the case when the momentum and energy equations are entity-based but the mass

conservation equations are species-based as

Uα
∗∗ := Eα

∗∗ −vα ·Pα
∗∗+ ∑

i∈Is

vα ·vα

2
Miα

∗∗ = 0 , (6.209)

where Eα
∗∗ is taken from Eq. (6.203), Pα

∗∗ is provided in Eq. (6.201), and Miα
∗∗ is

given by Eq. (6.74).

Substitution of the specific forms into Eq. (6.209) and rearrangement of terms

yields

Uα
∗∗ :=

Dα

Dt

[
Eα + ∑

i∈Is

εα ρα ω iα

(
Kiα

E +
uiα ·uiα

2

)]

+

[
Eα + ∑

i∈Is

εα ρα ω iα

(
Kiα

E +
uiα ·uiα

2

)]
I:dα

− ∑
i∈Is

εα ρα ω iα giα ·uiα − εα hα
0 − εα hα

− ∑
κ∈Icα

∑
i∈Is

iκ→iα
M

⎡
⎣Eα,κ

i +

(
vα,κ +uα,κ

i −vα
)
·
(

vα,κ +uα,κ
i −vα

)
2

+Kα,κ
Ei

⎤
⎦

− ∑
κ∈Icα

κ→α
T0 ·

(
vα,κ −vα

)
− ∑

κ∈Icα

κ→α
Q1

− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
T∗ ·

(
vκ

α −vα
)
− 1

2
∑

β∈I−cα

∑
κ∈I−

cβ

κ→α
Q∗

1

− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

κ→α
T∗ ·

(
vα

κ −vα
)
− 1

2
∑

β∈I+cα

∑
κ∈I+

cβ

κ→α
Q∗

1

− εαtα :dα −∇·
(

εα qα
)
= 0 . (6.210)

This equation can be used as an alternative to the total energy equation when one

wishes to focus on the internal energy aspects of a problem. Either equation, how-

ever, is satisfactory because one is obtained from the other in conjunction with mass

and momentum conservation equations.

6.11 Summary

In this chapter, we have detailed the approach needed to upscale equations from the

microscale to the macroscale, as depicted in Fig. 6.1. Specifically, in this chapter we
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have provided forms of the averaging theorems useful for modeling porous medium

flow based on the general derivations in Appendix B. The theorems are listed in

Table 6.1 for phases, interfaces, common curves, and common points. The theorems

for phases were applied to the microscale phase equations to obtain macroscale con-

servation and balance equations for species in a phase and for phases as a whole.

These results are collected in Tables 6.2 and 6.3. Although one could proceed by

averaging the appropriate microscale equations for lower dimensional entities using

the corresponding averaging theorems, we adopted a streamlined procedure. Based

on understanding of the macroscale conceptualization of a system, we argued that

the general macroscale equations should be identical regardless of the entity type

considered. Thus, the result of deriving macroscale equations from their microscale

precursors using the appropriate averaging theorems can be obtained without do-

ing the detailed work. The equations are provided in Tables 6.2 and 6.3. The only

adjustments required for different entities are in identifying the connected sets. We

chose not to allow concentrated forces at common points.

Rather than leaving the averaged equations in terms of averaging operators, the

equations were handled with the goal of assuring consistency of the definitions of

variables across equations. Thus, although some variables are defined as intrinsic

averages over the entity and others are density weighted averages, a good number of

variables are defined in a unique manner. Definitions of the uniquely defined vari-

ables are provided in every instance, and the definitions are retained for all equations

in which the variable appears. This is necessary to achieve the goal of producing the

fewest possible number of physically reasonable macroscale variables so that the

closure problem can be minimized. Thus, averages of products are expressed as

products of averages with additional deviation terms; other techniques are used to

break products in a way that leads to consistent formulations. The deviation terms,

which account for microscale processes not explicitly modeled at the macroscale,

are retained within the definitions of macroscale variables.

Although the macroscale conservation equations are of the same form regardless

of the entity being considered, the equations become different through application

of a closure procedure. This closure procedure will be seen to be similar to that

employed in Chap. 5 for a single fluid phase. Thus, closure expressions will be de-

veloped for quantities such as the non-advective energy and momentum diffusion

within an entity. Additionally, the terms expressing the exchanges of properties be-

tween entities have to be modeled. The expressions are obtained in TCAT using

the full path depicted in Fig. 1.3, not just the parts of that figure highlighted in this

chapter and in Fig. 6.1.

Although we now have macroscale conservation and balance equations, the two

figures cited indicate that the averaging theorems must also be applied to microscale

thermodynamic equations and equilibrium conditions to complete the transfer of

all microscale perspectives to the macroscale. This will be the focus of the next

chapter as we build all the elements needed to obtain closed dynamic equations for

macroscale processes. The use of averaging theorems to obtain evolution equations

is considered subsequently.
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Exercises

6.1. Show that the definition of tα given in Eq. (6.95) is the same definition that

one would obtain if momentum Eq. (6.92) is obtained directly from averaging Eq.

(2.27).

6.2. Show that the definition of
κ→α

T given in Eq. (6.97) is the same definition that

one would obtain if momentum Eq. (6.92) is obtained directly from averaging Eq.

(2.27).

6.3. Show that the definition of qα given in Eq. (6.123) is the same definition that

one would obtain if energy Eq. (6.118) is obtained directly from averaging Eq.

(2.32).

6.4. Show that the definition of tiαT given in Eq. (6.79) obtained by averaging over a

phase entity is identical to that obtained by averaging the species momentum equa-

tion for a common curve.

6.5. Show that the expressions for the energy exchange term,
κ→α

Q , given in Table

6.3 and Eq. (6.129), are equivalent.

6.6. Derive the entity-based macroscale momentum equation for a common curve

from the microscale equations using the averaging theorems in the [1,(3,0),0] family.

6.7. Sometimes it is convenient to formulate the energy equation making use of the

body force potential instead of the body force per unit entity measure. Assume the

body force potential is independent of time and acts equally on all species (e.g., this

is the way gravity behaves).

a. Combine Giα with E iα to obtain this modified species-based energy equation.

b. Combine Gα with Eα to obtain this modified entity-based energy equation.

c. Show that your answer to part b is consistent with the result obtained by summing

your answer to part a over all species.
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Chapter 7
Macroscale Thermodynamics

7.1 Overview

A unique feature of the TCAT approach is the treatment of thermodynamics at

the macroscale. Alternative averaging theories either ignore thermodynamics com-

pletely or introduce thermodynamics directly at the macroscale using the rational

thermodynamics approach. Both of these approaches sometimes violate known mic-

roscale thermodynamic principles. In any event, without interscale consistency of a

thermodynamic formulation, it is not possible to relate experimental measurements

and variables across scales. The physical meaning of quantities such as tempera-

ture, pressure, and entropy that are designated symbolically at the macroscale can

be obscured. By averaging microscale thermodynamic theory to the macroscale,

TCAT ensures consistency and provides unambiguous opportunities for obtaining

meaningful closure relations, cross-scale simulations, and support for the macro-

scale theories from small scale simulations.

In the TCAT approach, any consistent microscale thermodynamic theory can

serve as the basis for the macroscale thermodynamic formalism. Some reasonable

candidates are mentioned briefly in Sect. 3.12. However, we choose to use Classical

Irreversible Thermodynamics (CIT), described in Sect. 3.11, because it is relatively

simple and has been used successfully in describing the behavior of many systems

at the microscale. Within the TCAT framework, as depicted in Fig. 7.1, the micro-

scale thermodynamic relations and equilibrium expressions are converted to a larger

scale of interest using the averaging conventions and theorems described in the last

chapter. This approach yields a rigorous thermodynamic basis for macroscale ther-

modynamic variables that are defined precisely in terms of microscale precursors.

Thus, the procedure for change in scale of thermodynamic expressions mimics that

employed for changing the scale of conservation and balance equations. The fact

that TCAT uses averaging of thermodynamic expressions will be shown to be a sig-

nificant point of departure from other averaging theories that resolves some long

standing, and recently introduced, problems that exist with alternative approaches.

263W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_7,
� Springer International Publishing Switzerland 2014
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Fig. 7.1 TCAT elements of interest in Chap. 7 (after [2])

In the sections of this chapter, three main topics are considered. First, CIT ther-

modynamic expressions are averaged from the microscale to the macroscale and

the results are discussed. Specific macroscale relations of interest include the Euler

forms, the differential expressions, and the Gibbs-Duhem equations for species and

for entities. Second, dynamic equations are derived that relate the rates of change of

macroscale thermodynamic variables. These relations are obtained both for species

and for entities in forms that are particularly useful for constraining the macroscale

entropy inequality. Third, the microscale equilibrium conditions are averaged to the

macroscale. These conditions provide a basis for the postulation of near-equilibrium

closure relations in the context of the constrained entropy inequality.

7.2 Macroscale Euler Equations

The macroscale Euler equations are derived by averaging the microscale forms. The

main issue that arises in performing this procedure is the need to break products

so that macroscale variables can be defined appropriately. We will provide some

explicit examples of the averaging that occurs and tabulate the results.

7.2.1 Fluid Phase

Euler equations for a fluid phase may be obtained on a species basis or for the

entity as a whole. In both cases, the starting point is the corresponding microscale
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Table 7.1 Macroscale Euler equations for phases, interfaces, and common curves. Equation num-
bers refer to microscale precursors

Entity Basis Euler Equation Eq.

Phase Species i ∈ Is Eiα −θ iα η iα + εα pα Xiα − εα ρα ω iα μ iα = 0 (3.169)

α ∈ If Entity Eα −θ α ηα + εα pα − ∑
i∈Is

εα ρα ω iα μ iα = 0 (3.156)

Solid Species i ∈ Is Eis −θ isη is − εsσ s:
Xis·Cs

js − εsρsω i sμ is = 0 (3.182)

Entity Es −θ sηs − εsσ s:
Cs

js − ∑
i∈Is

εsρsω i sμ is = 0 (3.159)

Interface Species i ∈ Is Eiα −θ iα η iα − εα γα Xiα − εα ρα ω iα μ iα = 0 (3.189)

α ∈ II Entity Eα −θ α ηα − εα γα − ∑
i∈Is

εα ρα ω iα μ iα = 0 (3.161)

Curve Species i ∈ Is Eiα −θ iα η iα + εα γα Xiα − εα ρα ω iα μ iα = 0 (3.193)

α ∈ IC Entity Eα −θ α ηα + εα γα − ∑
i∈Is

εα ρα ω iα μ iα = 0 (3.163)

Euler form. The species-based Euler equation for a fluid phase, rearranged from Eq.

(3.169), is

Eiα −θα ηiα + pα Xiα −ρα ωiα μiα = 0 for i ∈ Is,α ∈ If . (7.1)

Application of the averaging operator 〈·〉Ωα ,Ω to this equation gives

〈Eiα〉Ωα ,Ω −〈θα ηiα〉Ωα ,Ω + 〈pα Xiα〉Ωα ,Ω −〈ρα ωiα μiα〉Ωα ,Ω = 0 . (7.2)

The need now is to break the averages of products to define products of macroscale

properties. In performing this operation, it is essential to keep in mind that macro-

scale definitions for volume fraction (unique average εα defined in Eq. (6.9)), den-

sity (intrinsic average ρα ), mass fraction (density weighted average ω iα ), energy

density (unique average Eiα defined in Eq. (6.103)), and entropy density (unique

average η iα defined in Eq. (6.135)) have already been provided in the last chapter.

These definitions must be honored.

The fact that macroscale entropy density has already been defined suggests that

the second term on the left side of Eq. (7.2) be expressed as

θ iα η iα = 〈θα ηiα〉Ωα ,Ω . (7.3)

We make use of the unique definition of entropy density, as provided in Eq. (6.135),

η iα = 〈ηiα〉Ωα ,Ω , (7.4)
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and define an entropy weighted temperature, θ iα , as

θ iα = 〈θα〉Ωα ,Ωα ,ηiα
. (7.5)

It is interesting to note that although all species will have the same temperature, θα ,

at a microscale point, their macroscale temperatures need not be equal because the

weighting function for averaging is different for each species. If the microscale tem-

perature is constant within an averaging region, all macroscale species temperatures

will be equal. However, when a temperature gradient exists, the different weighting

functions for the different species could lead to different macroscale temperatures.

Whether or not such a difference needs to be considered in a model depends on

length scale and the magnitude of the error introduced by neglecting this effect in

comparison to other sources of error.

Because macroscale analogs of pressure and Xiα have not been encountered pre-

viously, it seems reasonable that we could define a macroscale pressure as an Xiα -

weighted average or define Xiα as a pressure-weighted average. We choose the latter

approach and define

εα pα Xiα = 〈pα Xiα〉Ωα ,Ω for i ∈ Is,α ∈ If , (7.6)

where

Xiα = 〈Xiα〉Ωα ,Ωα ,pα
for i ∈ Is,α ∈ If . (7.7)

This definition preserves the condition that the sum of Xiα is equal to 1 in the macro-

scopic form

1 = ∑
i∈Is

Xiα . (7.8)

The last term in Eq. (7.2) is expressed in terms of a density-weighted chemical

potential such that

εα ρα ω iα μ iα = 〈ρα ωiα μiα〉Ωα ,Ω for i ∈ Is,α ∈ If . (7.9)

Retaining the definition of Eiα given in Eq. (6.103),

Eiα = 〈Eiα〉Ωα ,Ω , (7.10)

we can write Eq. (7.2) in terms of macroscale variables,

Eiα −θ iα η iα + εα pα Xiα − εα ρα ω iα μ iα = 0 for i ∈ Is,α ∈ If . (7.11)

This equation has been entered as the first line of Table 7.1.

To obtain the Euler equation based on the fluid phase entity as a whole, two ap-

proaches are possible. One method is to begin with Eq. (3.156) and average it. Note

that Eq. (3.156) is equal to the sum of Eq. (3.169) over all species. This microscale

equality must be retained at the macroscale. Thus, the sum of Eq. (7.11) over all
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species must be consistent with the entity-based form obtained directly by averag-

ing with

∑
i∈Is

(
Eiα −θ iα η iα + εα pα Xiα − εα ρα ω iα μ iα

)
= 0 for α ∈ If . (7.12)

Making use of Eq. (6.119), which defines Eα as the sum of Eiα over all species, Eq.

(6.145), which defines ηα as the sum of η iα over all species, and of Eq. (7.8), we

obtain

Eα −θ α ηα + εα pα − ∑
i∈Is

εα ρα ω iα μ iα = 0 for α ∈ If . (7.13)

We have made use of the fact that

∑
i∈Is

θ iα η iα = ∑
i∈Is

〈θα ηiα〉Ωα ,Ω =

〈
θα ∑

i∈Is

ηiα

〉
Ωα ,Ω

= 〈θα ηα〉Ωα ,Ω , (7.14)

so that

θ α = 〈θα〉Ωα ,Ωα ,ηα
. (7.15)

Equation (7.13) is entered into Table 7.1. It is straightforward to show that this result

is also obtained by averaging Eq. (3.156).

7.2.2 Solid Phase

The derivation of the solid phase Euler equations follows the same path as that

for the fluid phases. The results of the derivation are given in Table 7.1. The main

issue in these expressions is the proper definition of the unique averages that arise.

In particular, for the species-based equation, the term involving the stress is rather

complex. We note that the stresses that appear in this relation are defined relative to

the undeformed coordinate system. Thus we can write〈
σ s:

Xis·Cs

js

〉
Ωs,Ω

= 〈σ s:(Xis·Cs)〉Ωs0,Ω , (7.16)

where the jacobian has been used to change the region of integration from the de-

formed region occupied by the solid to the initial domain, Ωs0. Then we define

Cs = 〈Cs〉Ωs0,Ωs0
, (7.17)
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where the intrinsic average notation is used because the average is calculated and

normalized over the domain where the function is defined1. We then define

σ s:Cs = 〈σ s:Cs〉Ωs0,Ωs0
(7.18)

and

σ s:
(
Xis·Cs

)
= 〈σ s:(Xis·Cs)〉Ωs0,Ωs0

. (7.19)

These last two relations provide the definitions for the unique averages σ s and Xis.

Equation (7.19) can revert to the average over Ωs that we seek. If we change the

normalizing volume to Ω, then the equation becomes

εs0σ s:
(
Xis·Cs

)
= 〈σ s:(Xis·Cs)〉Ωs0,Ω , (7.20)

where

εs0 = 〈1〉Ωs0,Ω . (7.21)

However, εs = jsεs0. Therefore, we can substitute this identity into Eq. (7.20) and

change the domain of integration on the right side to Ωs by reintroducing the mic-

roscale jacobian so that we obtain

εsσ s:
Xis·Cs

js =

〈
σ s:

Xis·Cs

js

〉
Ωs,Ω

. (7.22)

This is the expression that appears in Table 7.1.

For the entity-based solid thermodynamics, the identity employed is

εsσ s:
Cs

js =

〈
σ s:

Cs

js

〉
Ωs,Ω

, (7.23)

which follows the derivation from Eq. (7.18) to Eq. (7.22). Summation of Eq. (7.22)

over all species provides the desirable condition of consistency with Eq. (7.23) when

I= ∑
i∈Is

Xis = ∑
i∈Is

Xis . (7.24)

7.2.3 Interface and Common Curve

The derivation of the Euler equation for an interface or common curve is almost

identical to that employed for a fluid phase. The only differences are the replacement

1 One could argue correctly that the macroscopic Green’s tensor should be denoted as Cs0 for
perfectly consistent notation. However, the addition of the superscript “0” is unnecessarily cum-
bersome and is thus not used.
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of pressure with interfacial tension in the case of an interface and with lineal tension

for a common curve. Then the definition of the variable Xiα , as provided in Eq.

(7.7), is modified slightly such that

Xiα = 〈Xiα〉Ωα ,Ωα ,γα
for i ∈ Is;α ∈ II ∪ IC . (7.25)

The Euler equations for interfaces and common curves are listed in Table 7.1.

7.3 Macroscale Energy Differentials

Although the macroscale Euler equations are cosmetically similar to their micro-

scale precursors, with the main notational difference being the presence of super-

scripts rather than subscripts, these equations are substantively different. At the mic-

roscale, the energy density is a function of mass and entropy densities, as given in

Eq. (3.197) for a fluid phase under the CIT formalism. However, it has been noted

that in inhomogeneous systems, a larger scale energy is no longer a function only

of these same variables at a larger scale [3]. The importance of this observation is

typically overlooked when one formulates the thermodynamics directly at the larger

scale, effectively assuming that a local equilibrium assumption applies at the larger

scale. This fact can be demonstrated by examining the differentials of macroscale

energy in Table 7.1 for a fluid.

The differential of the energy expression for species i in a fluid phase α is ob-

tained from Eq. (7.11), the first line in Table 7.1. as

dEiα −θ iα dη iα + pα d
(

εα Xiα
)
−μ iα d

(
εα ρα ω iα

)
−η iα dθ iα + εα Xiα dpα − εα ρα ω iα dμ iα = 0 for i ∈ Is,α ∈ If . (7.26)

The last three terms on the left side of this equation may be rewritten in terms of the

averaging operator so that Eq. (7.26) becomes

dEiα −θ iα dη iα + pα d
(

εα Xiα
)
−μ iα d

(
εα ρα ω iα

)
−
〈

ηiα dθ iα
〉

Ωα ,Ω
+ 〈Xiα dpα〉Ωα ,Ω −

〈
ρα ωiα dμ iα

〉
Ωα ,Ω

= 0 . (7.27)

The microscale Gibbs-Duhem equation provided as Eq. (3.175) can be averaged

to obtain

〈ηiα dθα〉Ωα ,Ω −〈Xiα dpα〉Ωα ,Ω + 〈ρα ωiα dμiα〉Ωα ,Ω

−
〈

ρα ωiα (dμiα)|pα ,θα

〉
Ωα ,Ω

= 0 for i ∈ Is,α ∈ If . (7.28)

Addition of this equation to Eq. (7.27) then gives

7.2 Macroscale Euler Equations
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dEiα −θ iα dη iα + pα d
(

εα Xiα
)
−μ iα d

(
εα ρα ω iα

)
−
〈

ρα ωiα (dμiα)|pα ,θα

〉
Ωα ,Ω

+
〈

ηiα d
(

θα −θ iα
)〉

Ωα ,Ω

−〈Xiα d(pα − pα)〉Ωα ,Ω +
〈

ρα ωiα d
(

μiα −μ iα
)〉

Ωα ,Ω
= 0

for i ∈ Is,α ∈ If . (7.29)

The last three terms on the left side involve averages of differentials of differences

between microscale and macroscale quantities. For the case of a system that is es-

sentially homogeneous within each averaging volume, these averages will be zero so

that the terms drop out. In that instance, the equation for the differential of energy is

the same as the microscale expression in Eq. (3.173). This confirms the observation

that when a system is not homogeneous, the dependence of microscale energy on

independent variables will be different from the dependence of macroscale energy

on independent variables. The TCAT approach includes this additional dependence

as a natural consequence of averaging the thermodynamic expression. When these

terms do not appear, there is an inherent assumption that local equilibrium applies

at the macroscale.

The species-based Gibbs-Duhem equation may be obtained by subtracting Eq.

(7.26) from Eq. (7.29) so that

η iα dθ iα − εα Xiα dpα + εα ρα ω iα dμ iα −
〈

ρα ωiα (dμiα)|pα ,θα

〉
Ωα ,Ω

+
〈

ηiα d
(

θα −θ iα
)〉

Ωα ,Ω
−〈Xiα d(pα − pα)〉Ωα ,Ω

+
〈

ρα ωiα d
(

μiα −μ iα
)〉

Ωα ,Ω
= 0 for i ∈ Is,α ∈ If . (7.30)

This equation differs from the microscale Gibbs-Duhem form in the presence of the

deviation terms that account for situations where the local equilibrium assumption

does not apply at the macroscale.

For the fluid phase entity, the differential of energy may alternatively be obtained

by summing Eq. (7.26) over all species i ∈ Is or by taking the differential of the

Euler expression for a fluid phase in Table 7.1. In either case, the result is

dEα −θ α dηα + pα dεα − ∑
i∈Is

μ iα d
(

εα ρα ω iα
)

−ηα dθ α + εα dpα − ∑
i∈Is

εα ρα ω iα dμ iα = 0 for α ∈ If . (7.31)

Summation of Eq. (7.27) over all species i provides the differential of the energy as

dEα −θ α dηα + pα dεα − ∑
i∈Is

μ iα d
(

εα ρα ω iα
)

+
〈

ηα d
(

θα −θ α
)〉

Ωα ,Ω
−〈d(pα − pα)〉Ωα ,Ω
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+ ∑
i∈Is

〈
ρα ωiα d

(
μiα −μ iα

)〉
Ωα ,Ω

= 0 for α ∈ If . (7.32)

The Gibbs-Duhem equation obtained as a sum of Eq. (7.30) over all species is

ηα dθ α − εα dpα + ∑
i∈Is

εα ρα ω iα dμ iα +
〈

ηα d
(

θα −θ α
)〉

Ωα ,Ω

−〈d(pα − pα)〉Ωα ,Ω + ∑
i∈Is

〈
ρα ωiα d

(
μiα −μ iα

)〉
Ωα ,Ω

= 0 for α ∈ If .

(7.33)

The deviation terms in the last two equations will drop out for a system that is

homogeneous at the macroscale.

The analysis in this section has been in the context of a fluid phase for the pur-

pose of showing that terms accounting for macroscale inhomogeneity arise in the

expression for the differential of macroscale energy and in the Gibbs-Duhem equa-

tion. Virtually identical analyses provide the same conclusion if considering a solid

phase, an interface, or a common curve. If the extra terms are overlooked, as happens

when one hypothesizes the thermodynamic formalism directly at the macroscale, the

meaning of the surviving quantities in the equations can be unclear. For example,

suppose that one omits the terms involving deviations from Eq. (7.32) such that the

differential of energy is described as

dEα −θ α dηα + pα dεα − ∑
i∈Is

μ iα d
(

εα ρα ω iα
)
= 0 for α ∈ If . (7.34)

For this equality to be satisfied when the deviation terms are important, the defini-

tions of the macroscale variables must be something other than their explicit defini-

tions obtained from averaging. Thus, although one can proceed with this simplified

equation and claim that pα is a macroscale pressure, the actual meaning of the quan-

tity designated as pα , as well as other macroscale variables, is obscure. Supporting a

developed model experimentally or across scales when the meaning of the variables

that appear is unclear is not possible.

With this background on the importance of handling differentials of macroscale

thermodynamic relations rigorously, we now turn to the derivation of dynamic ex-

pressions involving material time derivatives of the Euler equations. These equa-

tions are important elements of the full theory because they establish the relations

between changes in entropy density in the entropy balance equation and changes in

energy and mass densities that appear in the conservation equations.

7.4 Fluid Energy Dynamics

The purpose of this section is to derive a form of the material derivative of the Euler

equation for chemical species in a fluid and for the fluid entity. The equations de-

7.3 Macroscale Energy Differentials
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veloped are of utility in constraining the macroscale entropy inequality in the same

way that the microscopic expression for T∗α with α = w ∈ If from Table 3.1 was in-

troduced in Sect. 5.4.1 as a constraint on the microscale entropy inequality. We will

also derive equations for the material derivative of the body force potential analo-

gous to the microscale expressions given in Eqs. (2.45) and (2.48) for a species and

an entity, respectively. Although the material derivative of an Euler equation is sim-

ple to state, and indeed will be stated here, this first expression is not in a form that

is most useful for porous medium analysis. We will therefore manipulate the equa-

tion further to its most useful form for application. These manipulations anticipate

subsequent needs. The full derivation could be postponed until implementation with

the entropy inequality for a system of interest. However, it is convenient to complete

the derivation in this chapter and make use of the result.

7.4.1 Fluid Species Energy

The Euler equation for the species energy in a fluid phase is given in Eq. (7.11) and

also Table 7.1. The material derivative of this equation taken with velocity viα is

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt
−η iα Diα θ iα

Dt

+
Diα(εα pα Xiα)

Dt
− εα ρα ω iα Diα μ iα

Dt
= 0 for i ∈ Is,α ∈ If . (7.35)

For porous medium analysis, it is appropriate to consider velocities relative to the

solid movement. Thus we make use of the identity

Diα

Dt
=

Ds

Dt
+
(

viα −vs
)
·∇ (7.36)

and apply this to the last three derivatives in Eq. (7.35), the derivatives of quantities

that do not appear in the conservation or entropy balance equations, to obtain

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt

−η iα Dsθ iα

Dt
+

Ds(εα pα Xiα)

Dt
− εα ρα ω iα Dsμ iα

Dt

−
[
η iα ∇θ iα −∇(εα pα Xiα)+ εα ρα ω iα ∇μ iα

]
·
(

viα −vs
)
= 0 . (7.37)

The multipliers of material derivatives based on the solid phase velocity can each

be expressed as an average of a microscale quantity. Therefore, since the material

derivatives are macroscale quantities, Equation (7.37) may be re-expressed using

the averaging operator notation such that
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Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt

−
〈

ηiα
Dsθ iα

Dt

〉
Ωα ,Ω

+
Ds

Dt
〈pα Xiα〉Ωα ,Ω −

〈
ρα ωiα

Dsμ iα

Dt

〉
Ωα ,Ω

−
[
η iα ∇θ iα −∇(εα pα Xiα)+ εα ρα ω iα ∇μ iα

]
·
(

viα −vs
)
= 0 . (7.38)

The microscale Gibbs-Duhem equation for a chemical species in a fluid phase is

given by Eq. (3.175). If the differentials in this equation are replaced by Ds/Dt, the

result is

ηiα
Dsθα

Dt
−Xiα

Ds pα

Dt
+ρα ωiα

Dsμiα

Dt
−ρα ωiα

(
Dsμiα

Dt

)∣∣∣∣
pα ,θα

= 0

for i ∈ Is,α ∈ If . (7.39)

We apply the averaging operator to Eq. (7.39) and add the result to Eq. (7.38). After

collecting terms, we have

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt

+

〈
ηiα

Ds(θα −θ iα)

Dt

〉
Ωα ,Ω

+

〈
ρα ωiα

Ds(μiα −μ iα)

Dt

〉
Ωα ,Ω

+
Ds

Dt
〈pα Xiα〉Ωα ,Ω −

〈
Xiα

Ds pα

Dt

〉
Ωα ,Ω

−
[
η iα ∇θ iα −∇(εα pα Xiα)+ εα ρα ω iα ∇μ iα

]
·
(

viα −vs
)

−
〈

ρα ωiα

(
Dsμiα

Dt

)∣∣∣∣
pα ,θα

〉
Ωα ,Ω

= 0 . (7.40)

Application of the product rule to Xiα Ds pα/Dt yields

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt

+

〈
ηiα

Ds(θα −θ iα)

Dt

〉
Ωα ,Ω

+

〈
ρα ωiα

Ds(μiα −μ iα)

Dt

〉
Ωα ,Ω

+
Ds

Dt
〈pα Xiα〉Ωα ,Ω −

〈
Ds(pα Xiα)

Dt

〉
Ωα ,Ω

+

〈
pα

DsXiα

Dt

〉
Ωα ,Ω

−
[
η iα ∇θ iα −∇(εα pα Xiα)+ εα ρα ω iα ∇μ iα

]
·
(

viα −vs
)
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−
〈

ρα ωiα

(
Dsμiα

Dt

)∣∣∣∣
pα ,θα

〉
Ωα ,Ω

= 0 . (7.41)

Observe that a difference in material derivatives can be expanded to show that

Ds

Dt
〈 fα〉Ωα ,Ω −

〈
Ds fα

Dt

〉
Ωα ,Ω

=
∂
∂ t

〈 fα〉Ωα ,Ω +vs·∇〈 fα〉Ωα ,Ω

−
〈

∂ fα

∂ t

〉
Ωα ,Ω

−vs·〈∇ fα〉Ωα ,Ω for α ∈ IP . (7.42)

Averaging theorems T[3,(3,0),0] and G[3,(3,0),0] from Table 6.1 are applied to the

last two terms in this equation, respectively. The resulting identity is the theorem

Ds

Dt
〈 fα〉Ωα ,Ω −

〈
Ds fα

Dt

〉
Ωα ,Ω

= ∑
κ∈Icα

〈
nα ·

(
vκ −vs) fα

〉
Ωκ ,Ω

+
1

2
∑

β∈I−cα

∑
κ∈I−

cβ

〈
nα ·

(
vκ −vs) f ∗α

〉
Ωκ ,Ω

for α ∈ IP . (7.43)

Application of this theorem in Eq. (7.41), where fα = pα Xiα , and assuming that the

fluid does not support a concentrated pressure function on its surface so that p∗α = 0,

results in

T iα
∗ :=

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt
+ ∑

κ∈Icα

〈
nα ·

(
vκ −vs) pα Xiα

〉
Ωκ ,Ω

+

〈
ηiα

Ds(θα −θ iα)

Dt

〉
Ωα ,Ω

+

〈
ρα ωiα

Ds(μiα −μ iα)

Dt

〉
Ωα ,Ω

+

〈
pα

DsXiα

Dt

〉
Ωα ,Ω

−
〈

ρα ωiα

(
Dsμiα

Dt

)∣∣∣∣
pα ,θα

〉
Ωα ,Ω

−
[
η iα ∇θ iα −∇(εα pα Xiα)+ εα ρα ω iα ∇μ iα

]
·
(

viα −vs
)
= 0

for i ∈ Is,α ∈ If . (7.44)

To make it easier to find this equation if performing a full TCAT analysis, a pointer

to this defining equation for T iα
∗ is provided in Table 7.2.
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Table 7.2 Macroscale dynamic equations for energy are located by the information in this table

Entity Basis T iα
∗ or T α

∗ T iα
G∗ or T α

G∗
Phase Species i ∈ Is Eq. (7.44) Eq. (7.47)

α ∈ If Entity Eq. (7.54) Eq. (7.58)

Solid Species i ∈ Is Eq. (7.78) Eq. (7.79)

α = s Entity Eq. (7.80) Eq. (7.81)

Interface Species i ∈ Is Eq. (7.92) Eq. (7.95)

α ∈ II Entity Eq. (7.96) Eq. (7.97)

Curve Species i ∈ Is Eq. (7.100) Eq. (7.101)

α ∈ IC Entity Eq. (7.102) Eq. (7.103)

7.4.2 Fluid Species Potential Energy

A dynamic relation for the body force potential is also necessary. The macroscale

potential is defined in Eq. (6.153). The material derivative of this expression is

DiαΨ iα

Dt
−ψ iα Diα(εα ρα ω iα)

Dt
− εα ρα ω iα Diα ψ iα

Dt
= 0 . (7.45)

Making use of the material derivative expansion in Eq. (7.36) to rewrite the last

material derivative, we obtain

DiαΨ iα

Dt
−ψ iα Diα(εα ρα ω iα)

Dt
− εα ρα ω iα Dsψ iα

Dt

− εα ρα ω iα
(

viα −vs
)
·∇ψ iα = 0 for i ∈ Is,α ∈ If . (7.46)

Introduction of the averaging operator for the third material derivative on the left

gives the final expression,

T iα
G∗ :=

DiαΨ iα

Dt
−ψ iα Diα(εα ρα ω iα)

Dt
−
〈

ρα ωiα
Dsψ iα

Dt

〉
Ωi,Ω

− εα ρα ω iα
(

viα −vs
)
·∇ψ iα = 0 for i ∈ Is,α ∈ If . (7.47)

This equation is pointed to in Table 7.2.
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7.4.3 Fluid-phase Energy

The macroscale Euler equation for the fluid phase was obtained as Eq. (7.13) and

is also compiled in Table 7.1. The material derivative of this energy function taken

making use of the entity velocity is

Dα Eα

Dt
−θ α Dα ηα

Dt
− ∑

i∈Is

μ iα Dα(εα ρα ω iα)

Dt

−ηα Dα θ α

Dt
+

Dα(εα pα)

Dt
− ∑

i∈Is

εα ρα ω iα Dα μ iα

Dt
= 0 for α ∈ If . (7.48)

Applying the identity

Dα

Dt
=

Ds

Dt
+
(

vα −vs
)
·∇ (7.49)

to the derivatives of temperature, pressure, and chemical potential allows Eq. (7.48)

to be rewritten as

Dα Eα

Dt
−θ α Dα ηα

Dt
− ∑

i∈Is

μ iα Dα(εα ρα ω iα)

Dt
−ηα Dsθ α

Dt

+
Ds(εα pα)

Dt
− ∑

i∈Is

εα ρα ω iα Dsμ iα

Dt

−
[

ηα ∇θ α −∇(εα pα)+ ∑
i∈Is

εα ρα ω iα ∇μ iα

]
·
(

vα −vs
)
= 0 . (7.50)

As with the species version, selectively introducing the averaging operator back into

this equation yields

Dα Eα

Dt
−θ α Dα ηα

Dt
− ∑

i∈Is

μ iα Dα(εα ρα ω iα)

Dt
−
〈

ηα
Dsθ α

Dt

〉
Ωα ,Ω

+
Ds

Dt
〈pα〉Ωα ,Ω − ∑

i∈Is

〈
ρα ωiα

Dsμ iα

Dt

〉
Ωα ,Ω

−
[

ηα ∇θ α −∇(εα pα)+ ∑
i∈Is

εα ρα ω iα ∇μ iα

]
·
(

vα −vs
)
= 0 . (7.51)

The material derivative of the microscale Gibbs-Duhem Eq. (3.43) is

0 = ηα
Dsθα

Dt
− Ds pα

Dt
+ ∑

i∈Is

ρα ωiα
Dsμiα

Dt
for α ∈ If . (7.52)



7.4 Fluid Energy Dynamics 277

Application of the averaging operator to Eq. (7.52) followed by addition to Eq.

(7.51) yields

Dα Eα

Dt
−θ α Dα ηα

Dt
− ∑

i∈Is

μ iα Dα(εα ρα ω iα)

Dt
+

〈
ηα

Ds(θα −θ α)

Dt

〉
Ωα ,Ω

+
Ds

Dt
〈pα〉Ωα ,Ω −

〈
Ds pα

Dt

〉
Ωα ,Ω

+ ∑
i∈Is

〈
ρα ωiα

Ds
(

μiα −μ iα
)

Dt

〉
Ωα ,Ω

−
[

ηα ∇θ α −∇(εα pα)+ ∑
i∈Is

εα ρα ω iα ∇μ iα

]
·
(

vα −vs
)
= 0 . (7.53)

Finally, the averaging theorem relation given by Eq. (7.43) may be used with fα =
pα to obtain the dynamic equation

T α
∗ :=

Dα Eα

Dt
−θ α Dα ηα

Dt
− ∑

i∈Is

μ iα Dα(εα ρα ω iα)

Dt

+ ∑
κ∈Icα

〈
nα ·

(
vκ −vs) pα

〉
Ωκ ,Ω

+

〈
ηα

Ds(θα −θ α)

Dt

〉
Ωα ,Ω

+ ∑
i∈Is

〈
ρα ωiα

Ds
(

μiα −μ iα
)

Dt

〉
Ωα ,Ω

−
[

ηα ∇θ α −∇(εα pα)+ ∑
i∈Is

εα ρα ω iα ∇μ iα

]
·
(

vα −vs
)
= 0 for α ∈ If .

(7.54)

It is important to note that Eq. (7.54) may alternatively be obtained by summing Eq.

(7.44) over all species, proving that

T α
∗ = ∑

i∈Is

T iα
∗ . (7.55)

The proof of this relation is left as an exercise.

7.4.4 Fluid-phase Potential Energy

Based on Eqs. (6.153) and (6.161), the macroscale body force potential is defined

such that

Ψ α − ∑
i∈Is

εα ρα ω iα ψ iα = 0 for α ∈ If . (7.56)

The material derivative of this expression based on the entity velocity is
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DαΨ α

Dt
− ∑

i∈Is

ψ iα Dα(εα ρα ω iα)

Dt
− ∑

i∈Is

εα ρα ω iα Dα ψ iα

Dt
= 0 . (7.57)

Making use of Eq. (7.49) and introducing the averaging operator, we then obtain

T α
G∗ :=

DαΨ α

Dt
− ∑

i∈Is

ψ iα Dα(εα ρα ω iα)

Dt
− ∑

i∈Is

〈
ρα ωiα

Dsψ iα

Dt

〉
Ωα ,Ω

− ∑
i∈Is

εα ρα ω iα
(

vα −vs
)
·∇ψ iα = 0 for α ∈ If . (7.58)

This equation is noted in Table 7.2.

7.5 Solid-phase Energy Dynamics

The derivation of the dynamic conditions for a solid phase follows the same lines

as for a fluid phase but is somewhat complicated by the stress representation of an

elastic solid. Therefore, a full derivation follows for the species-based equation. The

dynamic condition for the phase-based equation can be obtained from this result.

7.5.1 Solid Species Energy

The macroscale Euler equation for a species in a solid phase has been obtained from

the microscale form, Eq. (3.182), and is provided in Table 7.1. The material deriva-

tive of this equation calculated with the velocity of the species as the observation

velocity is

DisEis

Dt
−θ is Disη is

Dt
−μ is Dis(εsρsω i s)

Dt
−η is Disθ is

Dt

− Dis

Dt

(
εsσ s:

Xis·Cs

js

)
− εsρsω i s Disμ is

Dt
= 0 for i ∈ Is . (7.59)

Examination of Eq. (7.59) reveals that the first three material derivatives are of

a form consistent with terms arising in the conservation and balance equations. The

remaining three material derivative terms have no counterparts in the conservation

and balance equations. Because we anticipate that the most useful form of the dy-

namic species energy equation will include the first three material derivatives but

be void of the last three material derivative expressions, further manipulations are

needed. In short, we are seeking a form of Eq. (7.59) that has components of a

force-flux form other than material derivatives that can easily be made to vanish.
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This objective motivates the substantial manipulations detailed below that lead to

the desired form of the dynamic condition.

Making use of the identity given in Eq. (7.36) with α replaced by s, we change

the last three material derivatives in Eq. (7.59) so that they are relative to the solid

phase macroscale velocity. The result is

DisEis

Dt
−θ is Disη is

Dt
−μ is Dis(εsρsω i s)

Dt
−η is Dsθ is

Dt

− Ds

Dt

(
εsσ s:

Xis·Cs

js

)
− εsρsω i s Dsμ is

Dt

−
[

η is∇θ is +∇

(
εsσ s:

Xis·Cs

js

)
+ εsρsω i s∇μ is

]
·
(

vis −vs
)
= 0 . (7.60)

The fourth through sixth terms may now be re-expressed by introducing the averag-

ing operator, 〈·〉Ωs,Ω , in anticipation of making use of the microscale Gibbs-Duhem

equation. With this equivalent notation, we obtain

DisEis

Dt
−θ is Disη is

Dt
−μ is Dis(εsρsω i s)

Dt
−
〈

ηis
Dsθ is

Dt

〉
Ωs,Ω

− Ds

Dt

〈
σ s:

Xis·Cs

js

〉
Ωs,Ω

−
〈

ρsωis
Dsμ is

Dt

〉
Ωs,Ω

−
[

η is∇θ is +∇

(
εsσ s:

Xis·Cs

js

)
+ εsρsω i s∇μ is

]
·
(

vis −vs
)
= 0 . (7.61)

As a prelude to further work on Eq. (7.61), we express the microscopic Gibbs-

Duhem equation, Eq. (3.188), in terms of the material derivative making use of the

macroscale solid phase velocity so that

ηis
Dsθs

Dt
+Xis·

Cs

js
:
Dsσ s

Dt
+ρsωis

Dsμis

Dt
−ρsωis

(
Dsμis

Dt

)∣∣∣∣
σ s,θs

= 0

for i ∈ Is . (7.62)

Making use of the product rule to rearrange the second term in this equation and

averaging the result using the operator 〈·〉Ωs,Ω , we obtain〈
ηis

Dsθs

Dt

〉
Ωs,Ω

+

〈
Ds

Dt

(
σ s:

Xis·Cs

js

)〉
Ωs,Ω

−
〈

σ s:
Ds

Dt

(
Xis·

Cs

js

)〉
Ωs,Ω

+

〈
ρsωis

Dsμis

Dt

〉
Ωs,Ω

−
〈

ρsωis

(
Dsμis

Dt

)∣∣∣∣
σ s,θs

〉
Ωs,Ω

= 0 . (7.63)
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This equation may be added directly to Eq. (7.61). After collecting similar terms

that are being averaged, we obtain

DisEis

Dt
−θ is Disη is

Dt
−μ is Dis(εsρsω i s)

Dt

+

〈
ηis

Ds(θs −θ is)

Dt

〉
Ωs,Ω

+

〈
ρsωis

Ds(μis −μ is)

Dt

〉
Ωs,Ω

− Ds

Dt

〈
σ s:

Xis·Cs

js

〉
Ωs,Ω

+

〈
Ds

Dt

(
σ s:

Xis·Cs

js

)〉
Ωs,Ω

−
〈

σ s:
Ds

Dt

(
Xis·

Cs

js

)〉
Ωs,Ω

−
[

η is∇θ is +∇

(
εsσ s:

Xis·Cs

js

)
+ εsρsω i s∇μ is

]
·
(

vis −vs
)

−
〈

ρsωis

(
Dsμis

Dt

)∣∣∣∣
σ s,θs

〉
Ωs,Ω

= 0 . (7.64)

We make use of the theorem given by Eq. (7.43) with α = s and fα =σ s:Xis·Cs/ js
to obtain

Ds

Dt

〈
σ s:

Xis·Cs

js

〉
Ωs,Ω

−
〈

Ds

Dt

(
σ s:

Xis·Cs

js

)〉
Ωs,Ω

= ∑
κ∈Ics

〈
ns·
(
vκ −vs)σ s:

Xis·Cs

js

〉
Ωκ ,Ω

+
1

2
∑

β∈I−cs

∑
κ∈I−

cβ

〈
ns·
(
vκ −vs)σ∗

s :
Xis·Cs

js

〉
Ωκ ,Ω

, (7.65)

where we have allowed for the possibility that the solid phase may sustain a con-

centrated stress at a common curve on its surface. Substitution of Eq. (7.65) into Eq.

(7.64) yields

DisEis

Dt
−θ is Disη is

Dt
−μ is Dis(εsρsω i s)

Dt
− ∑

κ∈Ics

〈
ns·
(
vκ −vs)σ s:

Xis·Cs

js

〉
Ωκ ,Ω

− 1

2
∑

β∈I−cs

∑
κ∈I−

cβ

〈
ns·
(
vκ −vs)σ∗

s :
Xis·Cs

js

〉
Ωκ ,Ω

+

〈
ηis

Ds(θs −θ is)

Dt

〉
Ωs,Ω

+

〈
ρsωis

Ds(μis −μ is)

Dt

〉
Ωs,Ω

−
〈

σ s:
Ds

Dt

(
Xis·

Cs

js

)〉
Ωs,Ω
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−
〈

ρsωis

(
Dsμis

Dt

)∣∣∣∣
σ s,θs

〉
Ωs,Ω

−
[

η is∇θ is +∇

(
εsσ s:

Xis·Cs

js

)
+ εsρsω i s∇μ is

]
·
(

vis −vs
)
= 0 . (7.66)

Some additional advantage for subsequent study can be gained by rearranging the

material derivative of Xis·Cs/ js.
We make use of the identity

Ds

Dt
=

Ds

Dt
−
(
vs −vs) ·∇ (7.67)

to show that 〈
σ s:

Ds

Dt

(
Xis·

Cs

js

)〉
Ωs,Ω

=

〈
σ s:

Ds

Dt

(
Xis·

Cs

js

)〉
Ωs,Ω

−
〈

σ s:

[(
vs −vs) ·∇(Xis·

Cs

js

)]〉
Ωs,Ω

. (7.68)

Application of the product rule to the derivatives that appear on the right side of this

equation yields〈
σ s:

Ds

Dt

(
Xis·

Cs

js

)〉
Ωs,Ω

=

〈
σ s:

[
DsXis

Dt
·
(
Cs

js

)]〉
Ωs,Ω

+

〈
σ s:

[
Xis·

DsCs

Dt

(
1

js

)]〉
Ωs,Ω

+

〈
σ s:

[
Xis·Cs

Ds

Dt

(
1

js

)]〉
Ωs,Ω

−
〈

∇·
[(

vs −vs)σ s:

(
Xis·

Cs

js

)]〉
Ωs,Ω

+

〈
∇·
(
vs −vs)[σ s:

(
Xis·

Cs

js

)]〉
Ωs,Ω

+

〈(
vs −vs) ·∇σ s:

(
Xis·

Cs

js

)〉
Ωs,Ω

. (7.69)

Substitution of the identities [1]

Ds

Dt

(
1

js

)
=− 1

js
I:ds (7.70)

and

DsCs

Dt
= 2(∇X xs) ·ds·(∇X xs)

T (7.71)

into Eq. (7.69) provides
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σ s:

Ds

Dt

(
Xis·

Cs

js

)〉
Ωs,Ω

=

〈
σ s:

[
DsXis

Dt
·
(
Cs

js

)]〉
Ωs,Ω

+

〈[
2

js
(∇X xs)

T ·σ s·Xis·(∇X xs)

]
:ds

〉
Ωs,Ω

−
〈

σ s:

[
Xis·Cs

1

js
I:ds

]〉
Ωs,Ω

−
〈

∇·
[(

vs −vs)σ s:

(
Xis·

Cs

js

)]〉
Ωs,Ω

+

〈(
I:ds − I:ds

)[
σ s:

(
Xis·

Cs

js

)]〉
Ωs,Ω

+

〈(
vs −vs) ·∇σ s:

[(
Xis·

Cs

js

)]〉
Ωs,Ω

. (7.72)

In writing this equation, use has been made of the previously established definitions

of the rate of strain tensors with ∇·
(
vs −vs

)
= I:ds − I:ds. The microscale species

stress tensor may be designated tis, where

tis =
2

js
(∇X xs)

T ·σ s·Xis·(∇X xs) . (7.73)

Incorporating this definition into Eq. (7.72) and rearranging terms gives〈
σ s:

Ds

Dt

(
Xis·

Cs

js

)〉
Ωs,Ω

=

〈
σ s:

[
DsXis

Dt
·
(
Cs

js

)]〉
Ωs,Ω

+

〈
∇·
{[

tis −σ s:

(
Xis·

Cs

js

)
I

]
·
(
vs −vs)}〉

Ωs,Ω

−
〈[

σ s:

(
Xis·

Cs

js

)
I− tis

]
:ds
〉

Ωs,Ω

−
〈[

∇·tis −∇σ s:

(
Xis·

Cs

js

)]
·
(
vs −vs)〉

Ωs,Ω
. (7.74)

Theorem D[3,(3,0),0] from Table 6.1 may be applied to the second term on the

right side of Eq. (7.74) to show that〈
∇·
{[

tis −σ s:

(
Xis·

Cs

js

)
I

]
·
(
vs −vs)}〉

Ωs,Ω

= ∇·
〈[

tis −σ s:

(
Xis·

Cs

js

)
I

]
·
(
vs −vs)〉

Ωs,Ω

+ ∑
κ∈Ics

〈
ns·
[
tis −σ s:

(
Xis·

Cs

js

)
I

]
·
(
vs −vs)〉

Ωκ ,Ω

+
1

2
∑

β∈I−cs

∑
κ∈I−

cβ

〈
ns·
[
t∗is −σ∗

s :

(
Xis·

Cs

js

)
I

]
·
(
vs −vs)〉

Ωκ ,Ω
. (7.75)
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Additionally, we note that〈[
σ s:

(
Xis·

Cs

js

)
I− tis

]
:ds
〉

Ωs,Ω
= εsσ s:

(
Xis·C

s

js

)
I:ds − εstis:ds . (7.76)

Substituting these last two equalities into Eq. (7.74) gives us〈
σ s:

Ds

Dt

(
Xis·

Cs

js

)〉
Ωs,Ω

=

〈
σ s:

[
DsXis

Dt
·
(
Cs

js

)]〉
Ωs,Ω

+∇·
〈[

tis −σ s:

(
Xis·

Cs

js

)
I

]
·
(
vs −vs)〉

Ωs,Ω

+ ∑
κ∈Ics

〈
ns·
[
tis −σ s:

(
Xis·

Cs

js

)
I

]
·
(
vs −vs)〉

Ωκ ,Ω

+
1

2
∑

β∈I−cs

∑
κ∈I−

cβ

〈
ns·
[
t∗is −σ∗

s :

(
Xis·

Cs

js

)
I

]
·
(
vs −vs)〉

Ωκ ,Ω

− εsσ s:

(
Xis·C

s

js

)
I:ds + εstis:ds

−
〈[

∇·tis −∇σ s:

(
Xis·

Cs

js

)]
·
(
vs −vs)〉

Ωs,Ω
. (7.77)

Finally, substituting Eq. (7.77) back into Eq. (7.66) and rearranging the terms pro-

vides

T is
∗ :=

DisEis

Dt
−θ is Disη is

Dt
−μ is Dis(εsρsω i s)

Dt

− ∑
κ∈Icα

〈
ns·(vκ −vs)σ s:

Xis·Cs

js

〉
Ωκ ,Ω

− ∑
κ∈Ics

〈
ns·tis·

(
vs −vs)〉

Ωκ ,Ω

− 1

2
∑

β∈I−cs

∑
κ∈I−

cβ

〈
ns·(vκ −vs)σ∗

s :
Xis·Cs

js

〉
Ωκ ,Ω

− 1

2
∑

β∈I−cs

∑
κ∈I−

cβ

〈
ns·t∗is·

(
vs −vs)〉

Ωκ ,Ω
+

〈
ηis

Ds(θs −θ is)

Dt

〉
Ωs,Ω

+

〈
ρsωis

Ds(μis −μ is)

Dt

〉
Ωs,Ω

−
〈

σ s:

[
DsXis

Dt
·
(
Cs

js

)]〉
Ωs,Ω

−
〈

ρsωis

(
Dsμis

Dt

)∣∣∣∣
σ s,θs

〉
Ωs,Ω

−∇·
〈[

tis −σ s:

(
Xis·

Cs

js

)
I

]
·
(
vs −vs)〉

Ωs,Ω

− εstis:ds + εsσ s:

(
Xis·C

s

js

)
I:ds
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+

〈[
∇·tis −∇σ s:

(
Xis·

Cs

js

)]
·
(
vs −vs)〉

Ωs,Ω

−
[

η is∇θ is +∇

(
εsσ s:

Xis·Cs

js

)
+ εsρsω i s∇μ is

]
·
(

vis −vs
)
= 0

for i ∈ Is . (7.78)

This equation is used when the energy of the solid is considered on a species basis.

This equation number is entered in Table 7.2 for convenient reference.

7.5.2 Solid Species Potential Energy

The dynamic condition for the body force potential is the same as that for a fluid

phase as given by Eq. (7.47) with α = s such that

T is
G∗ :=

DisΨ is

Dt
−ψ is Dis(εsρsω i s)

Dt
−
〈

ρsωis
Dsψ is

Dt

〉
Ωs,Ω

− εsρsω i s
(

vis −vs
)
·∇ψ is = 0 for i ∈ Is . (7.79)

7.5.3 Solid-phase Energy

There are at least three ways to obtain the dynamic energy equations for the solid

phase as a whole. The first is analogous to what was done for the species in Sect.

7.5.1. This involves starting with the Euler equation for the solid phase entity as

found in Table 7.1, taking the material derivative (making use of the entity velocity),

and manipulating the resultant form. The step-by-step derivation in Sect. 7.5.1 can

be used as a guide. The second approach is to sum Eq. (7.78) over all species and

make use of definitions of entity properties in terms of sums of species properties to

arrive at the desired result. The third approach is to observe differences between Eqs.

(7.44) and (7.54) for the fluid phase. We then can infer that a similar simplification

will occur for the solid and simply write down the result. Although we have used all

three methods with success, here we only present the third and write the resulting

expression directly as

T s
∗ :=

DsEs

Dt
−θ s Dsηs

Dt
− ∑

i∈Is

μ is Ds(εsρsω i s)

Dt

− ∑
κ∈Ics

〈
ns·(vκ −vs)σ s:

Cs

js

〉
Ωκ ,Ω

− ∑
κ∈Ics

〈
ns·ts·

(
vs −vs)〉

Ωκ ,Ω
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− 1

2
∑

β∈I−cs

∑
κ∈I−

cβ

〈
ns·(vκ −vs)σ∗

s :
Cs

js

〉
Ωκ ,Ω

− 1

2
∑

β∈I−cs

∑
κ∈I−

cβ

〈
ns·t∗s ·

(
vs −vs)〉

Ωκ ,Ω
+

〈
ηs

Ds(θs −θ s)

Dt

〉
Ωs,Ω

+ ∑
i∈Is

〈
ρsωis

Ds(μis −μ is)

Dt

〉
Ωs,Ω

−∇·
〈(

ts −σ s:
Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

− εsts:ds + εsσ s:
Cs

js I:d
s +

〈(
∇·ts −∇σ s:

Cs

js

)
·
(
vs −vs)〉

Ωs,Ω
= 0 . (7.80)

7.5.4 Solid-phase Potential Energy

The equation for the solid phase entity potential energy can be obtained, based on

Eq. (7.79) or on Eq. (7.58) with α replaced by s, as

T s
G∗ :=

DsΨ s

Dt
− ∑

i∈Is

ψ iα Ds(εsρsω i s)

Dt
− ∑

i∈Is

〈
ρsωis

Dsψ is

Dt

〉
Ωs,Ω

= 0 . (7.81)

7.6 Interface Energy Dynamics

The manipulations needed to derive the desired macroscale dynamic equations for

an interface are analogous to those performed for fluid phases. The primary dif-

ference arises from the fact that microscale interfaces are two-dimensional enti-

ties. Thus, when evaluating temporal and spatial derivatives of microscale interface

properties, it is important to restrict the time derivative so that it remains fixed to

a point on the moving surface; the divergence and gradient operators must be two-

dimensional. When the microscale Gibbs-Duhem equation is employed, this dimen-

sionality must be accounted for. The derivatives of macroscale quantities should be

formulated so that the resulting expressions are similar to those appearing in the con-

servation equations. Here we will derive species-based and entity-based dynamic

relations that are of greatest utility for the analysis of porous medium systems. We

will take advantage of some of the insights gained from the analysis of fluids to

expedite the derivations.

7.5 Solid-phase Energy Dynamics
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7.6.1 Interface Species Energy

The average of the microscale Euler equation for a chemical species in an interface,

Eq. (3.189), is provided in Table 7.1. The material derivative of this expression gives

the dynamic equation for macroscale internal energy,

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt
−η iα Diα θ iα

Dt

− Diα(εα γα Xiα)

Dt
− εα ρα ω iα Diα μ iα

Dt
= 0 for i ∈ Is,α ∈ II . (7.82)

Proceeding as with our analysis of the phase equations, we introduce the averaging

operator for the last three terms to obtain

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt
−
〈

ηiα
Diα θ iα

Dt

〉
Ωα ,Ω

− Diα

Dt
〈γα Xiα〉Ωα ,Ω −

〈
ρα ωiα

Diα μ iα

Dt

〉
Ωα ,Ω

= 0 . (7.83)

At this point we seek to derive some expressions for substitution into Eq. (7.83).

In anticipation of working with the material derivative of the microscale Gibbs-

Duhem equation, we define the material derivative operator that acts on a surface,

D′s

Dt
=

∂ ′

∂ t
+vs·∇′ for x ∈ Ωα ,α ∈ II . (7.84)

This operator is not a macroscale operator in that it distinguishes the surface and

evaluates the time and space derivative on that surface. The macroscale velocity, vs,

is not associated with the surface being examined but merely provides a reference

velocity. Making use of the definition of the time derivative provided by Eq. (7.36),

we can show that

Diα

Dt
=

D′s

Dt
+
(

viα −vs
)
·∇−

(
vα −vs) ·(I− I′α

)
·∇ for x ∈ Ωα ,α ∈ II . (7.85)

This identity can be applied to the material derivatives of θ iα and μ iα in Eq. (7.83)

so that the equation becomes

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt
−
〈

ηiα
D′sθ iα

Dt

〉
Ωα ,Ω

− Diα

Dt
〈γα Xiα〉Ωα ,Ω −

〈
ρα ωiα

D′sμ iα

Dt

〉
Ωα ,Ω
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−
[
η iα ∇θ iα + εα ρα ω iα ∇μ iα

]
·
(

viα −vs
)

+
〈
ηiα

(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇θ iα

+
〈
ρα ωiα

(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇μ iα = 0 . (7.86)

To obtain a relation for further development of this equation, we wish to con-

sider the microscale Gibbs-Duhem equation for a surface, Eq. (3.192). Because the

quantities in this equation are associated with the surface, temporal and spatial dif-

ferentials must be calculated on the surface. The operator defined in Eq. (7.84) may

be employed to obtain

ηiα
D′sθα

Dt
+Xiα

D′sγα

Dt
+ρα ωiα

D′sμiα

Dt
−ρα ωiα

(
D′sμiα

Dt

)∣∣∣∣
γα ,θα

= 0

for x ∈ Ωα ,α ∈ II . (7.87)

Rearrangement of the second term in this equation, using the product rule followed

by application of the averaging operator, 〈·〉Ωα ,Ω , gives〈
ηiα

D′sθα

Dt

〉
Ωα ,Ω

+

〈
D′s(γα Xiα)

Dt

〉
Ωα ,Ω

−
〈

γα
D′sXiα

Dt

〉
Ωα ,Ω

+

〈
ρα ωiα

D′sμiα

Dt

〉
Ωα ,Ω

−
〈

ρα ωiα

(
D′sμiα

Dt

)∣∣∣∣
γα ,θα

〉
Ωα ,Ω

= 0 . (7.88)

Addition of Eq. (7.88) to Eq. (7.86) with collection of similar terms then provides

the identity

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt

+

〈
ηiα

D′s(θα −θ iα)

Dt

〉
Ωα ,Ω

+

〈
ρα ωiα

D′s(μiα −μ iα)

Dt

〉
Ωα ,Ω

− Diα

Dt
〈γα Xiα〉Ωα ,Ω +

〈
D′s(γα Xiα)

Dt

〉
Ωα ,Ω

−
〈

γα
D′sXiα

Dt

〉
Ωα ,Ω

−
〈

ρα ωiα

(
D′sμiα

Dt

)∣∣∣∣
γα ,θα

〉
Ωα ,Ω

−
[
η iα ∇θ iα + εα ρα ω iα ∇μ iα

]
·
(

viα −vs
)

+
〈
ηiα

(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇θ iα

+
〈
ρα ωiα

(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇μ iα = 0 . (7.89)
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We seek to simplify the combination of the two material derivatives involving

γα Xiα . This can be done by making use of the averaging theorems. We expand the

two material derivatives involving γα Xiα that appear in Eq. (7.89) in terms of time

and space derivatives, with γα Xiα replaced by fα for convenience, such that

Diα

Dt
〈 fα〉Ωα ,Ω −

〈
D′s fα

Dt

〉
Ωα ,Ω

=
∂
∂ t

〈 fα〉Ωα ,Ω +viα ·∇〈 fα〉Ωα ,Ω

−
〈

∂ ′ fα

∂ t

〉
Ωα ,Ω

−vs·
〈
∇′ fα

〉
Ωα ,Ω

. (7.90)

We refer to Table 6.1 and apply averaging theorem T[2,(3,0),0] to the third term

on the right side and theorem G[2,(3,0),0] to the last term. After regrouping the

resulting expressions, we obtain

Diα

Dt
〈 fα〉Ωα ,Ω −

〈
D′s fα

Dt

〉
Ωα ,Ω

= ∇·
〈
I′α fα

〉
Ωα ,Ω

·
(

viα −vs
)

−∇·
〈(

I− I′α
)
·
(

vα −viα
)

fα

〉
Ωα ,Ω

−
〈(
I− I′α

)
fα
〉

Ωα ,Ω
:diα

−
〈
∇′·I′α ·

(
vα −vs) fα

〉
Ωα ,Ω

+ ∑
κ∈I−cα

〈
nα ·

(
vκ −vs) fα

〉
Ωκ ,Ω

for i ∈ Is,α ∈ II . (7.91)

If fα in Eq. (7.91) reverts back to γα Xiα , the difference on the left side of the

equation is what appears in Eq. (7.89). Therefore, application of theorem Eq. (7.91)

to the sixth and seventh terms in Eq. (7.89) provides the final expression,

T iα
∗ :=

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt
− ∑

κ∈I−cα

〈
nα ·

(
vκ −vs)γα Xiα

〉
Ωκ ,Ω

+

〈
ηiα

D′s(θα −θ iα)

Dt

〉
Ωα ,Ω

+

〈
ρα ωiα

D′s(μiα −μ iα)

Dt

〉
Ωα ,Ω

−
〈

γα
D′sXiα

Dt

〉
Ωα ,Ω

−
〈

ρα ωiα

(
D′sμiα

Dt

)∣∣∣∣
γα ,θα

〉
Ωα ,Ω

−
[
η iα ∇θ iα +∇·

〈
I′α γα Xiα

〉
Ωα ,Ω

+ εα ρα ω iα ∇μ iα
]
·
(

viα −vs
)

+∇·
〈(

I− I′α
)
·
(

vα −viα
)

γα Xiα

〉
Ωα ,Ω

+
〈(
I− I′α

)
γα Xiα

〉
Ωα ,Ω

:diα

+
〈
∇′·I′α ·

(
vα −vs)γα Xiα

〉
Ωα ,Ω

+
〈
ηiα

(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇θ iα
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+
〈
ρα ωiα

(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇μ iα = 0 for i ∈ Is,α ∈ II . (7.92)

7.6.2 Interface Species Potential Energy

The body force potential for a species in an interface can be differentiated, similarly

to that for a fluid phase, to obtain

DiαΨ iα

Dt
−ψ iα Diα(εα ρα ω iα)

Dt
−
〈

ρα ωiα
Diα ψ iα

Dt

〉
Ωα ,Ω

= 0 for i ∈ Is,α ∈ II ,

(7.93)

where the averaging operator has been introduced. We make use of the identity

provided by Eq. (7.85) so that Eq. (7.93) becomes

DiαΨ iα

Dt
−ψ iα Diα(εα ρα ω iα)

Dt
−
〈

ρα ωiα
D′sψ iα

Dt

〉
Ωα ,Ω

−
〈

ρα ωiα

(
viα −vs

)
·∇ψ iα

〉
Ωα ,Ω

+
〈

ρα ωiα
(
vα −vs) ·(I− I′α

)
·∇ψ iα

〉
Ωα ,Ω

= 0 . (7.94)

After evaluatiing the averaging operator in the next to the last term on the right side

and performing minor rearrangement, motivated by the organization of terms in Eq.

(7.92), we obtain

T iα
G∗ :=

DiαΨ iα

Dt
−ψ iα Diα(εα ρα ω iα)

Dt
−
〈

ρα ωiα
D′sψ iα

Dt

〉
Ωα ,Ω

− εα ρα ω iα ∇ψ iα ·
(

viα −vs
)

+
〈
ρα ωiα

(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇ψ iα = 0 for i ∈ Is,α ∈ II . (7.95)

7.6.3 Interface-entity Energy

As has been observed in deriving the entity-based expressions of energy dynamics

for phases, the needed equation can be obtained formally by manipulating the Euler

equation for an entity or by summing the species-based form over all species in

the entity. These approaches may be applied to the interface as well, and the steps

for producing the desired results parallel those used in deriving the phase-based

equations, which are summarized in Table 7.2. A less formal approach is to note

the differences between the species-based and entity-based equations for a phase,
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particularly for a fluid phase, and assume that parallel modifications will occur in

developing the interface entity form from Eq. (7.92). Regardless of the method used

to obtain it, the entity-based dynamic condition for the energy that results is

T α
∗ :=

Dα Eα

Dt
−θ α Dα ηα

Dt
− ∑

i∈Is

μ iα Dα(εα ρα ω iα)

Dt

− ∑
κ∈I−cα

〈
nα ·

(
vκ −vs)γα

〉
Ωκ ,Ω

+

〈
ηα

D′s(θα −θ α)

Dt

〉
Ωα ,Ω

+ ∑
i∈Is

〈
ρα ωiα

D′s(μiα −μ iα)

Dt

〉
Ωα ,Ω

−
[

ηα ∇θ α +∇·
〈
I′α γα

〉
Ωα ,Ω

+ ∑
i∈Is

εα ρα ω iα ∇μ iα

]
·
(

vα −vs
)

+∇·
〈(

I− I′α
)
·
(

vα −vα
)

γα

〉
Ωα ,Ω

+
〈(
I− I′α

)
γα
〉

Ωα ,Ω
:dα

+
〈
∇′·I′α ·

(
vα −vs)γα

〉
Ωα ,Ω

+
〈
ηα
(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇θ α

+ ∑
i∈Is

〈
ρα ωiα

(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇μ iα = 0 for α ∈ II . (7.96)

This equation is provided without a formal proof. It is easily and directly written

down based on the results presented for a fluid phase, Eqs. (7.44) and (7.54), ex-

tended to predict the notational changes that should be incorporated into Eq. (7.92)

to arrive at Eq. (7.96). Listing the steps of the formal derivation is unnecessary.

7.6.4 Interface-entity Potential Energy

As with the internal energy dynamic equation, the dynamic equation for the entity-

based energy potential follows directly from the species-based form, Eq. (7.95), and

is

T α
G∗ :=

DαΨ α

Dt
− ∑

i∈Is

ψ iα Dα(εα ρα ω iα)

Dt
− ∑

i∈Is

〈
ρα ωiα

D′sψ iα

Dt

〉
Ωα ,Ω

− ∑
i∈Is

εα ρα ω iα ∇ψ iα ·
(

vα −vs
)

+ ∑
i∈Is

〈
ρα ωiα

(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇ψ iα = 0 for α ∈ II . (7.97)
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7.7 Common Curve Energy Dynamics

When a porous medium system is composed of two or more fluid phases plus a solid

phase, common curves will exist where the three phases meet. Thus, a full represen-

tation of the system requires expressions for the common curve energy dynamics.

The derivation of the appropriate equations follows directly along the lines for the

fluid phase and an interface. However, fortunately, there is no need to repeat the

derivations to obtain the final expressions! These can be inferred from the phase and

interface results. An independent derivation will confirm the results of this section,

which are summarized in Table 7.2.

7.7.1 Common Curve Species Energy

The basis for this equation is a comparison of Eq. (7.44) and Eq. (7.92). Based on a

superficial examination of these equations, the latter equation for the interface seems

more complex. However, if we make four simple changes, Eq. (7.92) will reduce to

to the equation for a phase. First, we replace I′α with Iα = I, the unit tensor in space.

Second, we replace γα with −pα , the corresponding term in the Euler equation.

Third, we replace the microscale surface operator ∇′ with the spatial operator ∇.

Fourth, we remove the “′” from the material derivative operator relative to the solid

velocity within the averaging operator. With these changes, some terms are zero; and

the surface equation is transformed to the phase equation. Based on this similarity,

we will presume that a similar notational change can provide the equation for a

common curve. We replace I′α in Eq. (7.92) with I′′α , the unit tensor with non-zero

components only involving the tangent to the curve. Also, we will change the sign

of the interfacial tension consistent with the sign conventions adopted for curvilineal

tension as opposed to surface tension. Additionally, ∇′ will be replaced by ∇′′; and

D′s/Dt will be replaced by D′′s/Dt, where

D′′s

Dt
=

∂ ′′

∂ t
+vs·∇′′ , (7.98)

such that

Diα

Dt
=

D′′s

Dt
+
(

viα −vs
)
·∇−

(
vα −vs) ·(I− I′′α

)
·∇ for i ∈ Is,α ∈ IC . (7.99)

With just these cosmetic changes, the equation that describes the dynamics of the

curvilineal energy is obtained as

T iα
∗ :=

Diα Eiα

Dt
−θ iα Diα η iα

Dt
−μ iα Diα(εα ρα ω iα)

Dt
+ ∑

κ∈I−cα

〈
nα ·

(
vκ −vs)γα Xiα

〉
Ωκ ,Ω
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+

〈
ηiα

D′′s(θα −θ iα)

Dt

〉
Ωα ,Ω

+

〈
ρα ωiα

D′′s(μiα −μ iα)

Dt

〉
Ωα ,Ω

+

〈
γα

D′′sXiα

Dt

〉
Ωα ,Ω

−
〈

ρα ωiα

(
D′′sμiα

Dt

)∣∣∣∣
γα ,θα

〉
Ωα ,Ω

−
[
η iα ∇θ iα −∇·

〈
I′′α γα Xiα

〉
Ωα ,Ω

+ εα ρα ω iα ∇μ iα
]
·
(

viα −vs
)

−∇·
〈(

I− I′′α
)
·
(

vα −viα
)

γα Xiα

〉
Ωα ,Ω

−
〈(
I− I′′α

)
γα Xiα

〉
Ωα ,Ω

:diα

−
〈
∇′′·I′′α ·

(
vα −vs)γα Xiα

〉
Ωα ,Ω

+
〈
ηiα

(
vα −vs) ·(I− I′′α

)〉
Ωα ,Ω

·∇θ iα

+
〈
ρα ωiα

(
vα −vs) ·(I− I′′α

)〉
Ωα ,Ω

·∇μ iα = 0 for i ∈ Is,α ∈ IC . (7.100)

If desired, a rigorous derivation, starting with the macroscale Euler equation for a

curve in Table 7.1, can be undertaken to confirm Eq. (7.100).

7.7.2 Common Curve Species Potential Energy

The equation for the energy potential of a chemical species in a common curve

may be obtained from Eq. (7.95) for a species in an interface by making notational

changes as just described such that

T iα
G∗ :=

DiαΨ iα

Dt
−ψ iα Diα(εα ρα ω iα)

Dt
−
〈

ρα ωiα
D′′sψ iα

Dt

〉
Ωα ,Ω

− εα ρα ω iα ∇ψ iα ·
(

viα −vs
)

+
〈
ρα ωiα

(
vα −vs) ·(I− I′′α

)〉
Ωα ,Ω

·∇ψ iα = 0 for i ∈ Is,α ∈ IC . (7.101)

7.7.3 Common Curve Entity Energy

For the common curve entity as a whole, the dynamic equation for energy may be

obtained by making notational alterations as described in Sect. 7.7.1 to Eq. (7.96).

Alternatively, one can sum the species equation over all species or perform the

derivation starting with the Euler equation. In all instances, the result is

T α
∗ :=

Dα Eα

Dt
−θ α Dα ηα

Dt
− ∑

i∈Is

μ iα Dα(εα ρα ω iα)

Dt
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+ ∑
κ∈I−cα

〈
nα ·

(
vκ −vs)γα

〉
Ωκ ,Ω

+

〈
ηα

D′′s(θα −θ α)

Dt

〉
Ωα ,Ω

+ ∑
i∈Is

〈
ρα ωiα

D′′s(μiα −μ iα)

Dt

〉
Ωα ,Ω

−
[

ηα ∇θ α −∇·
〈
I′′α γα

〉
Ωα ,Ω

+ ∑
i∈Is

εα ρα ω iα ∇μ iα

]
·
(

vα −vs
)

−∇·
〈(

I− I′′α
)
·
(

vα −vα
)

γα

〉
Ωα ,Ω

−
〈(
I− I′′α

)
γα
〉

Ωα ,Ω
:dα

−
〈
∇′′·I′′α ·

(
vα −vs)γα

〉
Ωα ,Ω

+
〈
ηα
(
vα −vs) ·(I− I′′α

)〉
Ωα ,Ω

·∇θ α

+ ∑
i∈Is

〈
ρα ωiα

(
vα −vs) ·(I− I′′α

)〉
Ωα ,Ω

·∇μ iα = 0 for α ∈ IC . (7.102)

7.7.4 Common Curve Entity Potential Energy

The dynamics of the common curve energy potential are described, following the

processes described previously based on the species-based form, Eq. (7.101), as

T α
G∗ :=

DαΨ α

Dt
− ∑

i∈Is

ψ iα Dα(εα ρα ω iα)

Dt
− ∑

i∈Is

〈
ρα ωiα

D′′sψ iα

Dt

〉
Ωα ,Ω

− ∑
i∈Is

εα ρα ω iα ∇ψ iα ·
(

vα −vs
)

+ ∑
i∈Is

〈
ρα ωiα

(
vα −vs) ·(I− I′′α

)〉
Ωα ,Ω

·∇ψ iα = 0 for α ∈ IC . (7.103)

The final equations for the common curves are designated in Table 7.2 for easy

reference. The entity-based equations, in particular, will be used in subsequent chap-

ters; the species-based forms are included for completeness and for use in more

complex analyses.

7.8 Equilibrium Conditions

The final objective of this chapter is to determine a set of macroscale equilibrium

conditions. These conditions are important, because they are used to guide the for-

mulation of closure relations for TCAT models based on the entropy inequality.

Here we will consider the equilibrium conditions that must hold for single-fluid-

phase and two-fluid-phase porous medium systems. The conditions for the single-

7.7 Common Curve Energy Dynamics
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fluid-phase case must hold for the two-fluid-phase case, but additional conditions

must also apply for the latter case. These systems are considered here because they

will be analyzed in more detail in subsequent chapters. For both cases, the equilib-

rium conditions are obtained as averages of the microscale conditions determined

by variational analysis in Chap. 4.

7.8.1 Two-phase Equilibrium Conditions

The macroscale equilibrium conditions for a single-fluid-phase porous medium sys-

tem should be in terms of macroscale averages and variables that appear in the

macroscale conservation, balance, and thermodynamic equations. They should also

be consistent with the microscale conditions derived in Sect. 4.5. Although micro-

scale equilibrium conditions can be averaged in an infinite variety of ways, we will

employ averaging operators that lead to macroscale quantities that are defined to be

equivalent to quantities that appear in the dynamic macroscopic equations.

For the case of single-fluid-phase flow in a porous medium, the index set is

I= {w,s,ws} , (7.104)

where w refers to the fluid phase, s to the solid phase, and ws to the interface between

these phases. The equilibrium condition for microscale temperature, given as Eq.

(4.49), is

θw = θs = θws = λS , (7.105)

where λS is a constant. Since microscale temperature is constant at equilibrium

and equal in all entities, an average temperature defined as 〈θα〉Ωα ,Ωα ,W will equal

the microscale temperature at equilibrium regardless of the weighting function em-

ployed. In our development of the Euler forms of the macroscale thermodynamic

relations, we made use of entropy density as the weighting function. Thus, for con-

sistency, we will use this same weighting function such that we have the species-

based equilibrium condition on temperature,

θ iα = 〈θα〉Ωα ,Ωα ,ηiα
= λS for i ∈ Is,α ∈ I . (7.106)

For the entity-based temperatures, we have the equilibrium condition

θ α = 〈θα〉Ωα ,Ωα ,ηα
= λS for α ∈ I . (7.107)

It is important to recognize that both of these conditions express the fact that the

macroscale temperature is constant at equilibrium and equal to the constant mic-

roscale equilibrium temperature. The importance of the weighting function comes

into play if one is interested in near-equilibrium system conditions. If a tempera-

ture variation exists in a system, the macroscale temperature we have defined will

not necessarily be equal to the intrinsic average temperature, the geometric average
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temperature, or any other average. Consider the case of a closed, isolated system in

which the temperature is not uniform but the heat capacity is constant. For the sake

of discussion, also assume that changes in density and pressure can be ignored. A

temperature averaged over this system, weighted with respect to the heat capacity,

would be time invariant as the system relaxed to equilibrium. However, if entropy,

or any function that depends on temperature, is used as the weighting function for

averaging, the average temperature will exhibit a time dependence. Alternatively,

if the average temperature is calculated as the inverse of the average inverse tem-

perature, it will exhibit time dependence as the system relaxes to equilibrium. We

note that the macroscale condition of equilibrium is somewhat less stringent than

the microscale condition, in that subscale processes are not explicitly accounted for.

However, the weighting with respect to entropy minimizes this problem and also

ensures consistency between microscale and macroscale CIT thermodynamic for-

malisms.

Another macroscale equilibrium condition on temperature involves the average

temperature of an entity at its boundary. For the two-phase case, this can be ex-

pressed as

〈θw〉Ωws,Ωws,ηw
= 〈θs〉Ωws,Ωws,ηs

= 〈θws〉Ωws,Ωws,ηws
= λS (7.108)

or

θ ws
w = θ ws

s = θ ws = λS . (7.109)

This condition obviously holds at equilibrium because the temperature is uniform

and constant. Additionally, this condition will be useful in many cases where the

microscale temperature is continuous at the ws interface in the direction normal

to the interface. When this microscale condition holds, Eq. (7.109) may be only

approximate if the system is not at equilibrium because the weighting functions

employed to calculate the average temperatures are different for each entity.

A similar averaging approach to obtain equilibrium conditions can be applied to

terms involving potentials, where the microscale condition given by Eq. (4.50) is

μiw +ψiw = μis +ψis +
σσσ s:Cs

3ρs js
= μiws +ψiws = λMi for i ∈ Is . (7.110)

Because λMi is a constant, each of the groups of terms in the equality must also

be a constant at equilibrium. Therefore, each item can be averaged with a differ-

ent weighting function without destroying the equality. We will use ρα ωiα for each

species i in entity α so that we obtain mass weighted averages. The resulting mac-

roscale equilibrium condition is

μ iw +ψ iw = μ is +ψ is +

〈
σσσ s:Cs

3ρs js

〉
Ωs,Ωs,ρsωis

= μ iws +ψ iws = λMi for i ∈ Is .

(7.111)
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When the distribution of chemical species i in the solid is uniform such that it does

not impact the evaluation of the solid stress terms in the averaging operator, the

average may be calculated with

μ iw +ψ iw = μ is +ψ is +
σ s:Cs

3ρs js = μ iws +ψ iws = λMi , for i ∈ Is . (7.112)

The three microscale equilibrium conditions related to solid phase stress as given

in Eqs. (4.51)–(4.54) can also be averaged over their appropriate domains. The con-

dition within the solid phase, which was noted to be redundant with the equilibrium

condition from the momentum equation, is written simply as an average with〈
∇·ts −ρs∇

(
ts:I

3ρs

)〉
Ωs,Ωs

= 0 . (7.113)

The equilibrium condition for the normal forces acting on the ws interface is ob-

tained as an average of Eq. (4.52) over the interface so that

〈pw +ns ·ts·ns − (∇·nw)γws +ρwsnw ·gws〉Ωws,Ωws
= 0 . (7.114)

After evaluation of the averaging notation as possible, this result is expressed as

pws
w +(ns·ts·ns)

ws
s −

〈
(∇′·nw)γws

〉
Ωws,Ωws

+ρws (gws·nw)
ws = 0 . (7.115)

The equilibrium condition on the tangential stress at the surface of the solid phase

is obtained from Eq. (4.54). Averaging this equation over the ws interface within the

averaging volume yields 〈
ns ·ts·I′

〉
Ωws,Ωws

= 0 . (7.116)

The second term in this equation is a phase average over the ws interface of a prop-

erty of the solid that relies on the orientation of the interface.

It is somewhat unsatisfying to leave parts of these conditions in terms of the

averaging operator rather than identifying unique averages that can be carried for-

ward. However, there is no guidance available as to how to define the averages so

that the definitions will be consistent across various equations. Therefore, decisions

about definitions of averages of some variables, such as an average of ∇′·nw, and

the use of approximations in making definitions are postponed until the definitions

are needed in facilitating closure of the model.

7.8.2 Three-phase Equilibrium Conditions

The second case to be considered is the macroscale equilibrium conditions that hold

for a two-fluid-phase porous medium system consisting of the seven entities with

the index set
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I= {w,n,s,wn,ws,ns,wns} . (7.117)

We use w and n as indices to denote the fluid phases; s is the index for the solid

phase; wn, ws, and ns are the indices for the interfaces; and wns is the common

curve index. We will make use of index sets that are subsets of I designated as

follows:

fluid phases: If = {w,n} ; (7.118)

all phases: IP = {w,n,s} ; (7.119)

all interfaces: II = {wn,ws,ns} ; (7.120)

common curve: IC = {wns} ; (7.121)

and

all entities except the solid: I/S = {w,n,wn,ws,ns,wns} . (7.122)

As with the single-fluid-phase case, the microscale equilibrium conditions can be

averaged over entity domains to the macroscale in a form that is consistent with the

definitions of the macroscale variables that have already been employed.

The microscale temperatures are equal and constant at equilibrium, based on Eq.

(4.61). Therefore, the macroscale temperatures will also be equal, even if computed

using different weighting functions. Similarly to the two-phase case, the condition

on the temperatures based on averaging with the species-based entropy of the entity

is

θ iα = 〈θα〉Ωα ,Ωα ,ηiα
= λS for i ∈ Is,α ∈ I . (7.123)

If the thermodynamic formulation considers the entity as a whole, the macroscale

temperature is obtained using the entropy density as the weighting function such

that

θ α = 〈θα〉Ωα ,Ωα ,ηα
= λS for α ∈ I . (7.124)

These conditions state that the macroscale temperatures of all species and entities

will be equal at equilibrium.

A set of equilibrium conditions for the microscale potentials is given by Eq.

(4.62). Averaging this condition using the mass density of the chemical species as

the weighting function provides the macroscale thermodynamic equilibrium condi-

tions

μ iα +ψ iα = λMi for i ∈ Is,α ∈ I/S (7.125)

and

μ is +ψ is +

〈
σσσ s:Cs

3ρs js

〉
Ωs,Ωs,ρsωis

= λMi for i ∈ Is . (7.126)

At equilibrium, these sums of macroscale chemical and body force potentials, along

with an additional term for an elastic solid, will be equal to each other and con-

stant. Disequilibrium in these variables produces, primarily, a driving force for flow,

transport, and chemical reactions.
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For the two-fluid-phase case, Eq. (4.63) was obtained as the microscale equilib-

rium condition within the solid. This condition is identical to that for the single fluid

and provides the macroscale equilibrium condition identical to Eq. (7.113) given as〈
∇·ts −ρs∇

(
ts:I

3ρs

)〉
Ωs,Ωs

= 0 . (7.127)

The conditions on the surface for the tangential solid stress are obtained from Eq.

(4.99) as 〈
ns ·ts·I′α

〉
Ωα ,Ωα

= 0 for α ∈ {ws,ns} , (7.128)

and from Eq. (4.101) as 〈
ns ·t∗s ·I′′wns

〉
Ωwns,Ωwns

= 0 . (7.129)

The equilibrium balances of normal forces on the three interfaces are also stated

as averages of microscale conditions at the interfaces. From Eq. (4.91) at the wn
interface we obtain〈

pw − pn +ρwngwn·nw − (∇′·nw)γwn
〉

Ωwn,Ωwn
= 0 , (7.130)

which may also be expressed in terms of macroscale variables as

pwn
w − pwn

n +ρwn (gwn·nw)
wn −

〈
(∇′·nw)γwn

〉
Ωwn,Ωwn

= 0 . (7.131)

In Eq. (7.131), the averaging notation has been employed for the first three terms,

while the last term has been left in terms of the averaging operator because unique

notation will have to be introduced to eliminate the operator later in the analysis of

a macroscale system.

The microscale conditions at the fluid solid interfaces, ws and ns, were derived

as Eqs. (4.94) and (4.95), respectively. Averaging of these relations over their corre-

sponding interfaces and introduction of the averaging notation gives

pws
w +(ns·ts·ns)

ws
s +ρws (gws·nw)

ws −
〈
(∇′·nw)γws

〉
Ωws,Ωws

= 0 (7.132)

and

pns
n +(ns·ts·ns)

ns
s +ρns (gns·nn)

ns −
〈
(∇′·nn)γns

〉
Ωns,Ωns

= 0 . (7.133)

Two additional microscale conditions of equilibrium have been derived for the

common curve and are provided as Eqs. (4.103) and (4.104). The former describes

the balance of forces tangent to the solid surface acting normal to the common curve

while the latter provides the equilibrium balance of forces at the common curve

normal to the solid surface. Each of these conditions is averaged over the common

curve to obtain the macroscale equilibrium conditions

〈γwn cosϕws,wn〉Ωwns,Ωwns
+ γwns

ws − γwns
ns −ρwns (gwns·nws)

wns
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+ 〈γwnsκGwns〉Ωwns,Ωwns
= 0 (7.134)

and

−〈γwn sinϕws,wn〉Ωwns,Ωwns
−ρwns (gwns·ns)

wns + 〈γwnsκNwns〉Ωwns,Ωwns

+(ns·t∗s ·ns)
wns = 0 . (7.135)

Unique averages will have to be defined to eliminate the averaging operator from

these last two equations.

7.9 Summary

In this chapter, we have formulated macroscale thermodynamic equations based on

microscale CIT. The microscale equations were averaged to obtain macroscale Eu-

ler and Gibbs-Duhem expressions for chemical species and for fluid, elastic solid,

interface, and common curve entities. The macroscale Euler equations, along with

the equation numbers of their microscale precursors in Chap. 3, are listed in Table

7.1. Based on these equations, dynamic energy equations were derived for the inter-

nal energy and the body force potential energy. The equations were put into forms

that will prove to be particularly convenient when analyzing porous medium sys-

tems. The results are spread throughout the chapter, so Table 7.2 has been provided

for easy location of the important final relations. These thermodynamic equations

provide the means to relate terms that appear in the entropy balance to terms that

appear in the conservation equations.

Macroscale equilibrium conditions were derived by averaging the microscale

equilibrium conditions to the macroscale. The equilibrium conditions developed

will guide the arrangement of the entropy inequality, constrained by conservation

equations, into a form that facilitates the postulation of closure relations needed to

complete the TCAT models.

Exercises

7.1. Derive Eq. (7.13) by averaging Eq. (3.156).

7.2. Prove Eq. (7.55) is satisfied by summing Eq. (7.44) over Is to obtain Eq. (7.54).

7.3. Derive Eq. (7.80) by starting with the material derivative of the Euler equation

for a solid phase entity, as found in Table 7.1.

7.4. Derive the identity given as Eq. (7.85).

7.8 Equilibrium Conditions
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7.5. Derive Eq. (7.97) starting with the microscale condition

Ψα = ∑
i∈Is

ρα ωiα ψiα for α ∈ II .

7.6. Derive Eq. (7.100) by starting with the macroscale Euler equation for a species

on a common curve as given in Table 7.1.

7.7. Derive the macroscale equilibrium total normal stress on the solid surface,

〈ns·ts·ns〉Γs,Γs
, for a two-fluid-phase system.
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Chapter 8
Evolution Equations

8.1 Overview

The goal of this chapter is to formulate macroscale evolution equations for geo-

metric densities that can be applied to complete the formulation of closed, solvable

TCAT models. These densities are quantities such as the amount of volume per aver-

aging volume occupied by a phase or the amount of area between phases per volume

occupied by an interface between phases. The need for the evolution equations for

geometric properties is rooted in the fact that these quantities do not exist at the mic-

roscale but arise in the averaging process. The evolution of these properties is based

on system kinematics rather than conservation equations; and the evolution equa-

tions are extracted from averaging theorems, as depicted by the TCAT framework

elements in Fig. 8.1.

Recall that in formulating TCAT models we seek an entropy inequality (EI) that

is in the form of products of independent sets of fluxes and forces. These prod-

ucts describe entropy production resulting from dissipative processes. Guidance for

structuring the EI into force-flux form is provided, in part, by equilibrium conditions

as terms are grouped together. The grouping process also encounters quantities that

are the geometric densities. Although the material derivatives of these quantities are

zero at equilibrium, they are not independent conditions as are needed in formula-

tion of force-flux products. For example, a change in volume fraction of a phase is

not independent of the area bounding the phase. The simplest example of this fact is

a spherical bubble that expands in space. While its volume changes, its surface area

must also change with the only independent variable being the radius. Of course for

porous media systems the relations between changing volumes and areas will be far

more complex. The relation among the geometric quantities and their evolution can-

not be deduced from either conservation equations or thermodynamic relations. The

relations among changes in geometric densities are based on differential geometry

considerations. Although some formulations have claimed that evolution of geo-

metric density can be ascertained from conservation equations [e.g., 10–12], these

models are not generally useful. Relations among geometric entities and equations

301W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_8,
� Springer International Publishing Switzerland 2014
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Fig. 8.1 TCAT elements of interest in Chapter 8 for derivation of the kinematic evolution equations
(after [5])

for their evolution are independent of system physics as described by conservation

and thermodynamic equations. This fact has been recognized, for example, in con-

sidering the interface between water and ice [1] and between bubbles and a flowing

fluid in the absence of a solid [6, 8]. Some relatively simple efforts at accounting for

interface evolution for porous media have appeared [2, 7].

In developing evolution equations for geometric densities, one should be aware

of two important features. First, interfaces and common curves may be massless.

When an interface is massless, the interface mass conservation equation reduces to a

jump condition between phases. Similarly, all terms containing density will drop out

of the momentum equation for a massless entity such that the momentum equation

provides information only as jump conditions. When an interface is not massless, it

may have momentum. In that instance, velocities of mass within the interface can be

determined from the momentum equation. However, driving forces for flow within

an interface are different from those that cause movement of the interface itself in a

direction normal to the surface. Similar comments apply to a common curve.

These observations lead to the second important point relating to movements that

cause a change in geometric density. A volume fraction will change only as a result

of the normal velocity of the boundary of the phase of interest. Tangential velocities

of the boundary or of fluid within the boundary do not impact the volume fraction. If

there is mass within the boundary of the phase (i.e., for the case of an interface con-

taining mass), the velocity of the mass normal to the interface is the normal velocity

of the interface. However, the presence of mass within the interface is not required

for an interface to exist and move. Somewhat differently, the geometric density of

an interface can change due to the normal velocity of a curve that forms the bound-

ary of the interface but also due to changes in the shape of the interface, even if
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its boundary is fixed or non-existent (as with a closed surface). Again, movement

tangent to the surface of the interface or tangent to the common curve bounding

the interface does not alter interface density. Common curve densities change due

to movement of the points at the end of the common curve and due to deformation

of the curve. We emphasize that these movements are not velocities of material and

impact the geometric density identically whether or not the entity contains mass. We

will expect, then, that equations for evolution of the geometric densities will contain

only normal velocities to the entities. The macroscale averages of these velocities

are not directly obtainable from macroscale averages of material velocities that also

account for tangential movement.

Based upon the above considerations, a need exists to relate geometric quantities

in multiphase porous medium systems and to approximate interface and common

curve velocities under a general set of conditions. The averaging theorems, which

are mathematical relations independent of conservation principles, will be used as

bases for evolution equations. We will also apply these relations to the special cases

of single-fluid-phase and two-fluid-phase porous medium systems to provide some

approximate evolution equations that will be useful in the EI.

8.2 Derivation of Evolution Equations

Evolution equations are needed for quantities such as the porosity, volume fractions,

fluid saturations, specific interfacial areas, and specific common curve densities. Be-

cause these quantities are inter-related in porous media, some systematic procedure

is needed to develop these equations. Although it is not possible to obtain exact

macroscale equations for all cases based on differential geometry [9], the averaging

theorems provide forms that can serve as a basis for obtaining good approximations.

8.2.1 General Expression

To obtain the general expressions, we begin with the averaging theorems as found in

Table 6.1. In particular, we will use the “T” and “G” theorems without the singular-

ities or concentrated functions. These terms, which appear in the [3,(3,0),0] family

of theorems, account for direct transfer of a property between a phase and a com-

mon curve. Here this will be unimportant as the function being averaged is smooth.

For convenience, rather than developing the expressions for phases, interfaces, and

common curves separately, we will make use of general forms of the theorems.

From Table 6.1, it can be seen that the theorem T(3−n,(3,0),0) can be expressed

as 〈
∂ (n) fα

∂ t

〉
Ωα ,Ω

=
∂
∂ t

〈 fα〉Ωα ,Ω +∇·
〈(

I− I
(n)
α

)
·vα fα

〉
Ωα ,Ω

8.1 Overview
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+
〈

∇(n)·I(n)α ·vα fα

〉
Ωα ,Ω

− ∑
κ∈I−cα

〈nα ·vκ fα〉Ωκ ,Ω for α ∈ I , (8.1)

where 3− n is the dimensionality of the domain and (n) indicates the number of

primes that appear. Similarly, the gradient theorems G(3−n,(3,0),0) for the various

entities are written, based on the expressions in Table 6.1, as〈
∇(n) fα

〉
Ωα ,Ω

= ∇〈 fα〉Ωα ,Ω −∇·
〈(

I− I
(n)
α

)
fα

〉
Ωα ,Ω

−
〈

∇(n)·I(n)α fα

〉
Ωα ,Ω

+ ∑
κ∈I−cα

〈nα fα〉Ωκ ,Ω for α ∈ I . (8.2)

To obtain expressions for geometric entities, we examine the theorems for the

special case when fα = 1. The left sides of Eqs. (8.1) and (8.2) both become zero,

and the first terms on the right can be expressed in terms of average values based

on the definition of specific entity measures given by Eq. (6.9). Equations (8.1) and

(8.2) become, respectively,

∂εα

∂ t
+∇·

〈(
I− I

(n)
α

)
·vα

〉
Ωα ,Ω

+
〈

∇(n)·I(n)α ·vα

〉
Ωα ,Ω

− ∑
κ∈I−cα

〈nα ·vκ〉Ωκ ,Ω = 0 for α ∈ I (8.3)

and

∇εα −∇·
〈
I− I

(n)
α

〉
Ωα ,Ω

−
〈

∇(n)·I(n)α

〉
Ωα ,Ω

+ ∑
κ∈I−cα

〈nα〉Ωκ ,Ω = 0 for α ∈ I . (8.4)

These last two equations may be combined to obtain a material derivative form by

taking the dot product of Eq. (8.4) with any macroscale velocity and adding it to

Eq. (8.3). In our exploitation of the entropy inequality, we make use of velocities

referenced to the solid-phase velocity, vs. Therefore, without any approximation or

loss of generality, we will use vs as the macroscale velocity. We note, also, that a

macroscale velocity may be moved inside the averaging operator. Taking the dot

product of vs with Eq. (8.4) and adding the result to Eq. (8.3) then gives

Dsεα

Dt
+∇·

〈(
I− I

(n)
α

)
·
(
vα −vs)〉

Ωα ,Ω
+
〈
I− I

(n)
α

〉
Ωα ,Ω

:ds

+
〈

∇(n)·I(n)α ·
(
vα −vs)〉

Ωα ,Ω
− ∑

κ∈I−cα

〈
nα ·

(
vκ −vs)〉

Ωκ ,Ω
= 0 for α ∈ I .

(8.5)

Based on this exact (within the scale considerations of the averaging theorems)

expression, we will now consider approximations and simplifications that apply to
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single-fluid-phase and two-fluid-phase flow in a porous medium system. The sim-

plifications allow us to relate changes in volume fractions, interfacial area densities,

and common curve length densities.

8.3 Single-fluid-phase Flow

For single-fluid-phase flow in a porous medium, I = {w,s,ws}. We will apply Eq.

(8.5) to each of the three entities and then examine interactions among the three

evolution equations obtained.

8.3.1 Phases

For the solid phase α = s, ∇(n) = ∇, and I
(n)
α = I. The lower order connected set, I−cs,

is ws. With these identifications, Eq. (8.5) becomes

Dsεs

Dt
−
〈
ns ·

(
vws −vs)〉

Ωws,Ω
= 0 . (8.6)

This equation indicates that the rate of change of εs is due to the normal movement

of the boundary of the solid phase. When the evaluation of the quantity in the aver-

aging operator is positive, the solid-phase volume fraction is increasing. Recall also

that

εs + εw = 1 (8.7)

for a single-fluid-phase porous medium system. Thus, the rates of change of the

volume fractions of the two phases are directly related with

Dsεs

Dt
+

Dsεw

Dt
= 0 . (8.8)

Therefore, Eq. (8.6) may alternatively be written

Dsεw

Dt
−
〈
nw ·

(
vws −vs)〉

Ωws,Ω
= 0 , (8.9)

where use has been made of the fact that ns = −nw on Ωws. Equation (8.9) may

alternatively be obtained directly from Eq. (8.5).

Equation (8.8) is an immediately useful equation because it contains only macro-

scopic dependent variables. On the other hand, either Eq. (8.6) or Eq. (8.9) can be

employed only with difficulty because each contains the microscale variable vws and

the microscale normal to the interface. Exact evaluation of the average indicated is

not generally possible. However, we can examine the evolution equation for the

interface and attempt to arrive at a reasonable approximation.

8.2 Derivation of Evolution Equations
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8.3.2 Interface

For the interface in single-fluid-phase porous media flow, α = ws, ∇(n) = ∇′, and

I
(n)
α = I− nsns = I− nwnw. Because there is no common curve, the lower order

connected set, I−cws, is the empty set. For this case, Eq. (8.5) reduces to

Dsεws

Dt
+∇·

〈
nsns·

(
vws −vs)〉

Ωws,Ω
+ 〈nsns〉Ωws,Ω :ds

−
〈(

∇′·ns
)

ns·
(
vws −vs)〉

Ωws,Ω
= 0 . (8.10)

This equation is more difficult to deal with than the equation for the phase. Never-

theless if we make use of some understanding of the physics of the system, we can

obtain a useful approximate kinematic equation.

8.4 Single-fluid-phase Flow Geometric Relations

A cornerstone of the approximations to be examined here is the fact that solid-

phase kinematics are much slower than fluid-phase kinematics. Within an averaging

volume, the solid phase moves slowly, and variations of microscale solid-phase ve-

locities around vs can be considered small. With these approximations invoked, we

will write an evolution approximation for the solid-phase behavior. For the sake of

generality, this approximation will be written in the context of multiple fluid phases.

Evolution Approximation 8.1 (Solid Behavior)
The solid is considered to behave such that the following approximations hold:

• the deformation, curvature, and orientation of the solid-phase surface in the nor-
mal direction is independent of the fluid phases wetting the surface;

• the mass-averaged velocity of the solid phase is essentially equivalent to the
surface-averaged velocity of the solid phase over all fractions of the surface in-
dependent of the fluid wetting the surface;

• the curvature of the solid surface is uncorrelated with the difference between the
normal component of the velocity of fluid-solid interfaces and the component of
the macroscale velocity of the solid phase in that direction; and

• the orientation of the solid surface is uncorrelated with the velocity of the surface.

To make use of this approximation, let us first consider the microscale surface

orientation tensor for the solid phase in this system, defined as

Gws := I− I′ws = nsns = nwnw for x ∈ Ωws . (8.11)

This tensor is related to the orientation of the normal direction of the ws interface.

With reference to Eq. (8.10), the microscale orientation tensor appears within an
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averaging operator, so we define the macroscale surface orientation tensor, which is

also of interest, as

Gα =
〈
I− I′α

〉
Ωα ,Ωα

for α ∈ II . (8.12)

Therefore, for the ws interface in the single-fluid-phase system,

Gws =
〈
I− I′ws

〉
Ωws,Ωws

= 〈nwnw〉Ωws,Ωws
= 〈nsns〉Ωws,Ωws

. (8.13)

The macroscale tensor Gws is a measure of the average orientation of the surface of

the s phase. Gws is a symmetric tensor with trGws = 1. For a solid whose surface is

isotropic in that it has no dominant normal direction, Gws = I/3. Note that Gws is a

quantity that is computable from knowledge of the microscale phase morphology.

This quantity will change if the mean orientation of the phase distribution changes.

For example, physical intuition suggests that for a typical slightly compressible or

incompressible solid phase in a porous medium system, the solid-phase surface ori-

entation will change slowly.

The microscale tensor Gws appears in the second and third terms of Eq. (8.10)

within the averaging operator. In the second term, it multiplies a velocity difference;

but in the third term it appears by itself. When the terms within an averaging op-

erator are not correlated, the average of the product can be written as the product

of averages. If the terms are only approximately uncorrelated, splitting the product

will be an approximation.

Here we will consider that the second term can be approximated by breaking the

product that appears within the averaging operator. This assumption is based on the

fourth bullet of Evolution Approximation 8.1 that the orientation of the solid surface

is not correlated to its movement. With this assumption

∇·
〈
nsns·

(
vws −vs)〉

Ωws,Ω
≈ ∇·

[
Gws·

(
vws −vs)εws

]
. (8.14)

By the assumption that the average of the surface velocity is approximately equal

to the average velocity of the solid phase, this divergence term can be considered

negligibly small. Thus, Eq. (8.10) reduces, after evaluation of the average in the

third term, to

Dsεws

Dt
+ εwsGws:ds −

〈(
∇′·ns

)
ns·
(
vws −vs)〉

Ωws,Ω
= 0 . (8.15)

Next, consider the microscale surface property denoted by the quantity ∇′·ns.

This is a scalar measure of the change in the normal direction of the ws surface due

to a change in location on the surface. This quantity is the curvature of the surface

and is denoted as Js where

Js = ∇′·ns for x ∈ Γs . (8.16)

The macroscale curvature of a surface, Jws
s , results from averaging over the interface

and is defined as
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Jws
s :=

〈
∇′·ns

〉
Ωws,Ωws

. (8.17)

It is worth noting that we can also define Jws
w as

Jws
w =−Jws

s =
〈
∇′·nw

〉
Ωws,Ωws

. (8.18)

If we invoke the solid-phase evolution approximation that the curvature of the

solid surface is not correlated to the relative velocity of the ws interface, Eq. (8.15)

becomes

Dsεws

Dt
+ εwsGws:ds − Jws

s
〈
ns·
(
vws −vs)〉

Ωws,Ω
= 0 . (8.19)

To obtain an equation that is written completely in terms of macroscale properties,

we can eliminate the averaging operator term by substituting in Eq. (8.6) and rear-

ranging the order of terms, yielding

Dsεws

Dt
− Jws

s
Dsεs

Dt
+ εwsGws:ds = 0 . (8.20)

For a porous medium, Jws
s is positive. Equation (8.20) expresses the change in

interfacial area between the solid and fluid phases (i.e., the surface area of the solid)

due to a change in volume fraction of the solid associated with microscale rearrang-

ment of phase morphology and to compression of the solid within the averaging

volume. We emphasize that this is an approximate equation that can be tested in the

context of a real system. Because the assumptions included in this approximation

have been stated explicitly, we can re-examine them should this equation prove to

be inadequate for a single-phase system of interest. The geometric orientation ten-

sor, Gws, and the curvature of the ws interface, Jws
s , are important physical quanti-

ties in porous medium systems. These quantities account macroscopically for some

elements of interface morphology. The dynamic behavior of these properties may

change from system to system and will influence the system behavior.

In conclusion, we note that the relations that will be useful in modeling the geo-

metric evolution of the w, s, and ws entities in single-fluid-phase flow are the iden-

tity Eq. (8.7) and the approximate relation Eq. (8.20), which are based on averaging

theorems and Evolution Approximation 8.1. Neither of these relations is based on

conservation principles so that they are additional independent mathematical condi-

tions that supplement the fundamental relations based on physical processes.

8.5 Two-fluid-phase Flow

In comparison to single-fluid-phase flow, the equations for evolution of macroscopic

measures of the distribution of material within a system consisting of two fluid

phases plus a solid are more difficult to obtain. For this system, the set of entities

is I= {w,n,s,wn,ws,ns,wns}, an increase from three to seven entities in comparison
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to the single-fluid-phase case. In the single-phase case, all changes in the distribu-

tion of εw and εws can be expressed in terms of the solid-phase distribution, which

changes very slowly, if at all. By comparison, the two-fluid-phase case involves

movement and redistribution of the w and n fluid phases as well as their boundaries.

These redistributions occur at the same time scale as fluid velocities and thus im-

pact the system behavior at much smaller time scales than does solid movement.

Approximations of the type employed for the solid behavior as listed in Evolution

Approximation 8.1 do not apply to the fluid phases. The equations that we will de-

velop are more prone to significant error because the approximations used in their

development are less robust. Although the need for evolution equations is not open

to debate, the postulation of appropriate equations requires careful thought and must

be subjected to experimental validation. Here we postulate reasonable first-order de-

scriptions based on the averaging theorems.

8.5.1 Solid Phase

In light of the first bulleted item in Evolution Approximation 8.1 for the solid phase,

that the solid-phase behavior is independent of the fluid phases wetting the surface,

we expect that an equation similar to Eq. (8.15) will be obtained to describe the

relation between the total solid surface and the solid-phase volume fraction. An

equation obtained should reduce to this form when the two-fluid-phase case reduces

to the single-fluid situation. Thus, our derivation will keep this fact in mind.

For the solid phase, α = s, ∇(n) = ∇ and I
(n)
α = I in the general evolution ex-

pression, Eq. (8.5). The lower order connected set is I−cs = {ws,ns}. Therefore the

solid-phase evolution equation is written

Dsεs

Dt
−
〈
ns ·

(
vws −vs)〉

Ωws,Ω
−
〈
ns ·

(
vns −vs)〉

Ωns,Ω
= 0 . (8.21)

This equation is virtually the same as Eq. (8.6) in that the rate of change of solid-

phase volume fraction is related to integration over the solid surface.

It is helpful to decouple the dependence of the change in εs so that it can be ex-

pressed in terms of the movement of the ws and ns interfaces independently. The ap-

proximations to accomplish this are physically motivated and the reasonableness of

the approximations can be evaluated if detail at the microscale is available. The ap-

proximations will be denoted formally to highlight their importance and to provide

an entry point for re-examination of the solid-phase evolution equation formulation

if the equation produced is found to be insufficiently accurate.

Evolution Approximation 8.1 states that the deformation of the solid phase sur-

face is not correlated to the fluid with which the solid is in contact. With this assump-

tion, the fraction of the change in εs associated with the movement of a particular

fluid phase can be attributed to the fraction of the surface that is in contact with

that phase. Thus, we decompose Eq. (8.21) into parts associated with each fluid and
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write the approximation

χκ
s

Dsεs

Dt
−
〈
ns ·

(
vκ −vs)〉

Ωκ ,Ω
= 0 for κ ∈ I−cs , (8.22)

where, in general,

χκ
α = 〈1〉Ωκ ,Γα

for α ∈ I,κ ∈ I−cα . (8.23)

We see that χκ
s is the fraction of the solid surface that is wet by the fluid phase that

forms the κ interface with the solid. The wetted fraction satisfies the identity

∑
κ∈I−cs

χκ
s = 1 . (8.24)

Introduction and knowledge of the wetted fraction allows the evolution of εs to be

reduced to a dependence of the motion of only a single interface for non-vanishing

values of χκ
s , as given in Eq. (8.22). This is a simplification in comparison to Eq.

(8.21), which recognizes that evolution of εs depends on all the fluid phases in con-

tact with the solid. This simplification seems reasonable for many systems and rests

on the expectation that the value of χκ
s can be estimated based upon the values of

other system variables. We reiterate that the validity of these assumptions is subject

to experimental study.

8.5.2 Fluid Phases

When α ∈ If, Eq. (8.5) simplifies similarly to a solid phase to

Dsεα

Dt
− ∑

κ∈I−cα

〈
nα ·

(
vκ −vs)〉

Ωκ ,Ω
= 0 for α ∈ If . (8.25)

For the case of two fluids, there are two interfaces in I−cα . One is the fluid-fluid

interface, wn, and the other is the fluid-solid interface, which can be denoted as the

αs interface for fluid α . Expansion of the summation in Eq. (8.25) then provides

Dsεα

Dt
−
〈
nα ·

(
vαs −vs)〉

Ωαs,Ω
−
〈
nα ·

(
vwn −vs)〉

Ωwn,Ω
= 0 for α ∈ If . (8.26)

Recognizing that ns =−nα on the αs interface between the fluid and solid, we can

substitute Eq. (8.22) into Eq. (8.26) to yield

Dsεα

Dt
+χαs

s
Dsεs

Dt
−
〈
nα ·

(
vwn −vs)〉

Ωwn,Ω
= 0 for α ∈ If . (8.27)
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The remaining term in the averaging operator in this equation has to do with the

dynamics of the fluid-fluid interface. Transformation of this expression to one in

terms of macroscale variables is postponed until after the discussion of the wn in-

terface and wns common curve evolution equations. Equation (8.27) is based on

no assumptions other than those relating to the solid phase as listed in Evolution

Approximation 8.1.

8.5.3 Fluid-solid Interfaces

Because the dynamics of fluid-solid interfaces are much slower than those of fluid-

fluid interfaces, we will treat these two different types separately. The general form

of Eq. (8.5) can be particularized to describe the fluid-solid interface behavior. For

these interfaces α ∈ I−cs, where for the two-fluid-phase system I−cs = {ws,ns}. The

superscript (n) in the equation is replaced by a single prime, ′, for an interface.

The lower order connected set, I−cα , consists of the common curve, wns. Thus, the

interface evolution equation is

Dsεα

Dt
+∇·

〈(
I− I′α

)
·
(
vα −vs)〉

Ωα ,Ω
+
〈
I− I′α

〉
Ωα ,Ω

:ds +
〈
∇′·I′α ·

(
vα −vs)〉

Ωα ,Ω

−
〈
nα ·

(
vwns −vs)〉

Ωwns,Ω
= 0 for α ∈ I−cs . (8.28)

The identities

I− I′α = nsns for α ∈ I−cs,x ∈ Ωα (8.29)

and

∇′·I′α =−ns∇′·ns for α ∈ I−cs,x ∈ Ωα (8.30)

are invoked to re-express Eq. (8.28) as

Dsεα

Dt
+∇·

〈
nsns·

(
vα −vs)〉

Ωα ,Ω
+ 〈nsns〉Ωα ,Ω :ds −

〈
(∇′·ns)ns·

(
vα −vs)〉

Ωα ,Ω

−
〈
nα ·

(
vwns −vs)〉

Ωwns,Ω
= 0 for α ∈ I−cs . (8.31)

We can employ the definition of the macroscale orientation tensor for a surface given

by Eq. (8.12). The approximation of Eq. (8.14) may be applied to the second term in

Eq. (8.31), followed by the consideration that the resultant term is negligibly small

since the solid and its surface have small and nearly equal average velocities. The

condition that the curvature of the solid surface, ∇′·ns, is not correlated to the nor-

mal velocity difference based on Evolution Approximation 8.1 allows the product

involving this curvature to be split. With these assumptions, we obtain

Dsεα

Dt
+ εαGα :ds − Jα

s
〈
ns·
(
vα −vs)〉

Ωα ,Ω
−
〈
nα ·

(
vwns −vs)〉

Ωwns,Ω
= 0
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for α ∈ I−cs . (8.32)

As a last simplification to be performed in this subsection, we note that Eq. (8.22)

can be used to replace the first term in Eq. (8.32) that explicitly involves the averag-

ing operator. After making this substitution, the result is

Dsεα

Dt
+ εαGα :ds − Jα

s χα
s

Dsεs

Dt
−
〈
nα ·

(
vwns −vs)〉

Ωwns,Ω
= 0 for α ∈ I−cs .

(8.33)

The material derivative of the specific interfacial area between a solid and fluid

is thus shown to depend on a product involving the dilatation of the solid phase, the

curvature of the interface multiplying the rate of change of solid volume fraction,

and the motion of the common curve bounding the interface in the direction tangent

to the surface and normal to the common curve. One consequence of these obser-

vations is that only the normal component of the velocity of the interface, and not

tangential components within the interface, affects the specific interfacial area. The

remaining term involving averaging over the common curve that forms the bound-

ary of the interface will be dealt with subsequently in conjunction with the analysis

of the common curve. In the absence of a common curve, such that the α interface

is the complete solid surface, Eq. (8.33) reduces to Eq. (8.20) obtained for single-

fluid-phase flow.

8.5.4 Fluid-fluid Interface

Equation (8.5) can be employed to describe the dynamics of a fluid-fluid interface.

For the two-fluid-phase problem, α = wn corresponds to the fluid-fluid interface.

The form of the evolution equation obtained is

Dsεwn

Dt
+∇·

〈(
I− I′wn

)
·
(
vwn −vs)〉

Ωwn,Ω
+
〈
I− I′wn

〉
Ωwn,Ω

:ds

+
〈
∇′·I′wn·

(
vwn −vs)〉

Ωwn,Ω
−
〈
nwn ·

(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.34)

To assist in expressing the quantities in this equation in terms of macroscopic vari-

ables, we first note that the orientation tensor, Gwn, is defined as

Gwn := I− I′wn = nwnw = nnnn for x ∈ Ωwn . (8.35)

Secondly, the surface divergence of the surface unit tensor is given as

∇′·I′wn =−nw∇′·nw =−nn∇′·nn for x ∈ Ωwn . (8.36)

Substitution of these definitions into Eq. (8.34) provides
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Dsεwn

Dt
+∇·

〈
Gwn·

(
vwn −vs)〉

Ωwn,Ω
+ 〈Gwn〉Ωwn,Ω :ds

−
〈
(∇′·nw)nw·

(
vwn −vs)〉

Ωwn,Ω
−
〈
nwn ·

(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.37)

The quantity Gwn·vwn is the microscale velocity vector of the wn interface in

the direction normal to the interface. It thus accounts for the important elements of

the spatial movement of the interface in changing its shape and size as well as in

changing the relative volumes of the adjacent fluid phases. This velocity is defined

as wwn with

wwn := Gwn·vwn = nwnw·vwn = nnnn·vwn for x ∈ Ωwn . (8.38)

Substitution of this definition into Eq. (8.37) and evaluation of the first two averag-

ing operator terms yields

Dsεwn

Dt
+∇·

[
εwn (wwn −Gwn·vs)]+ εwnGwn:ds

−
〈
(∇′·nw)nw·

(
vwn −vs)〉

Ωwn,Ω
−
〈
nwn ·

(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.39)

The quantity ∇′·nw that appears in this equation is the microscale interface cur-

vature, Jw. Rather than decoupling it from the other quantities within the averaging

operator at this point, we note that

∇′·nw = Jwn
w +(Jw − Jwn

w ) for x ∈ Ωwn . (8.40)

Additionally, as was previously developed in Eq. (4.83), for a smooth solid surface,

the unit vector nwn at the common curve can be expressed in terms of the tangent

and normal to the solid surface as

nwn = cosϕws,wnnws − sinϕws,wnns for x ∈ Ωwns , (8.41)

where we recall that ϕws,wn is the contact angle between the ws and wn interfaces.

Substitution of these last two identities into Eq. (8.39) provides

Dsεwn

Dt
+∇·

[
εwn (wwn −Gwn·vs)]+ εwnGwn:ds

− Jwn
w
〈
nw·

(
vwn −vs)〉

Ωwn,Ω
−
〈
(Jw − Jwn

w )nw·
(
vwn −vs)〉

Ωwn,Ω

−
〈
cosϕws,wnnws·

(
vwns −vs)〉

Ωwns,Ω

+
〈
sinϕws,wnns·

(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.42)

The averaging operation premultiplied by Jwn
w can be eliminated in favor of macro-

scale variables by making use of Eq. (8.27) with α = w to obtain

Dsεwn

Dt
+∇·

[
εwn (wwn −Gwn·vs)]+ εwnGwn:ds



314 8 Evolution Equations

− Jwn
w

(
Dsεw

Dt
+χws

s
Dsεs

Dt

)
−
〈
(Jw − Jwn

w )nw·
(
vwn −vs)〉

Ωwn,Ω

−
〈
cosϕws,wnnws·

(
vwns −vs)〉

Ωwns,Ω

+
〈
sinϕws,wnns·

(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.43)

The term involving the difference between the microscale and macroscale interfacial

curvatures of the fluid-fluid interface multiplying a velocity difference now must

be considered. For the ws and ns interfaces, we assumed this term was negligible.

Such an assumption will not be applicable for the wn interface because fluid-fluid

interfaces move, deform, and relax to an equilibrium state in response to changes

in fluid pressures. These dynamics will, in general, be fast compared to changes in

the velocity or the curvature of the solid phase, but slow compared to the rate of

propagation of a pressure front. The curvature deviation term from Eq. (8.43) can

be written as the macroscale variable ewn, defined as

ewn :=
〈
(Jw − Jwn

w )nw ·
(
vwn −vs)〉

Ωwn,Ω
. (8.44)

As its curvature changes, so too does the extent of the interface. The measure of this

extent is the specific interfacial area. Thus ewn accounts for the rate of wn interfacial

area generation as this interface relaxes to an equilibrium state. We substitute Eq.

(8.44) into Eq. (8.43), for subsequent additional consideration, to obtain

Dsεwn

Dt
+∇·

[
εwn (wwn −Gwn·vs)]+ εwnGwn:ds

− Jwn
w

(
Dsεw

Dt
+χws

s
Dsεs

Dt

)
− ewn −

〈
cosϕws,wnnws·

(
vwns −vs)〉

Ωwns,Ω

+
〈
sinϕws,wnns·

(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.45)

This equation provides the expression for the change in wn interfacial area due to its

own deformation as well as to interactions of the interface with the adjacent phases

and at the common curve on the solid surface. The last three terms on the left side

of Eq. (8.45) need to be expressed in terms of macroscale variables for the equation

to be useful in macroscale analysis. Taking this step requires that relations involving

the common curve be available that will inform the approximations to be employed.

For the moment, we turn to finding an expression that defines the evolution of the

wns common curve.

8.5.5 Common Curve

Equation (8.5) can be applied to the common curve of the two-fluid-phase system

by letting α = wns, replacing (n) = (2) by ′′, and observing that I−cwns is the null set
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for this system since there are no common points. Thus the evolution equation for

the common curve is

Dsεwns

Dt
+∇·

〈(
I− I′′wns

)
·
(
vwns −vs)〉

Ωwns,Ω
+
〈
I− I′′wns

〉
Ωwns,Ω

:ds

+
〈
∇′′·I′′wns·

(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.46)

For the common curve, we define the orientation tensor Gwns as

Gwns := I− I′′wns = I− lwnslwns = nsns +nwsnws for x ∈ Ωwns , (8.47)

such that it equals the unit tensor minus the dyad of the unit tensors with non-zero

components tangent to the curve. Additionally, we know that

∇′′·I′′wns = lwns·∇′′lwns for x ∈ Ωwns . (8.48)

Equation (4.87) provides the relation between lwns·∇′′lwns and the normal and

geodesic curvatures of the wns common line, κNwns and κGwns, respectively, as

lwns ·∇′′lwns = κNwnsns +κGwnsnws for x ∈ Ωwns . (8.49)

Substitution of Eqs. (8.47) and (8.49) into Eq. (8.46) yields

Dsεwns

Dt
+∇·

〈
Gwns·

(
vwns −vs)〉

Ωwns,Ω
+ 〈Gwns〉Ωwns,Ω :ds

+
〈
κNwnsns·

(
vwns −vs)〉

Ωwns,Ω
+
〈
κGwnsnws·

(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.50)

We define the velocity of the common curve with components normal to the

curve as wwns with

wwns := Gwns·vwns . (8.51)

We also note that

κNwns = κwns
N +(κNwns −κwns

N ) , (8.52)

and

κGwns = κwns
G +(κGwns −κwns

G ) . (8.53)

Substituting these identities into Eq. (8.50) and evaluating the averaging operations

as possible provides

Dsεwns

Dt
+∇·

[
εwns (wwns −Gwns·vs)]+ εwnsGwns:ds

+κwns
N
〈
ns·
(
vwns −vs)〉

Ωwns,Ω
+κwns

G
〈
nws·

(
vwns −vs)〉

Ωwns,Ω

+
〈
(κNwns −κwns

N )ns·
(
vwns −vs)〉

Ωwns,Ω

+
〈
(κGwns −κwns

G )nws
(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.54)
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The deviation terms for the normal and geodesic curvature, ewns
N and ewns

G , may now

be defined as

ewns
N :=

〈
(κNwns −κwns

N )ns·
(
vwns −vs)〉

Ωwns,Ω
(8.55)

and

ewns
G :=

〈
(κGwns −κwns

G )nws
(
vwns −vs)〉

Ωwns,Ω
. (8.56)

These terms account for generation of common curve length as the curve relaxes to

its equilibrium shape, analogous to ewn for the fluid-fluid interface defined in Eq.

(8.44). Substitution into Eq. (8.54) yields

Dsεwns

Dt
+∇·

[
εwns (wwns −Gwns·vs)]+ εwnsGwns:ds +κwns

N
〈
ns·
(
vwns −vs)〉

Ωwns,Ω

+κwns
G
〈
nws·

(
vwns −vs)〉

Ωwns,Ω
+ ewns

N + ewns
G = 0 . (8.57)

We note that for a system in which the orientation of the common curves is random,

Gwns = 2I/3. To evaluate the remaining terms involving the averaging operator in

Eq. (8.57), some assumptions will have to be made about the system behavior.

At this point, to complete the derivation of all the expressions involving evolution

of geometric densities, evolution approximations applicable to the two-fluid-phase

system are needed. We now turn to this task.

8.6 Two-fluid-phase Flow Geometric Relations

In the preceding section, efforts to obtain evolution equations for the fluid-fluid in-

terface and common curve came up against the need to evaluate averaging operators

involving integration over these entities. To complete the derivations, evolution ap-

proximations in addition to Evolution Approximation 8.1 are required. It has been

shown [4] that three independent dynamic relations among entities can be obtained

for the two-fluid-phase system. In this section, approximations are employed that fa-

cilitate derivation of these relations, which are subsequently used in deriving closure

conditions.

8.6.1 Solid Phase and Fluid-solid Interfaces

According to Evolution Approximation 8.1, the behavior of the solid is independent

of the fluids with which it is in contact. In Eq. (8.20), the references to the ws
interface accounts for the total boundary of the solid phase. When two fluid phases

are present, we can replace these by the properties of the ws and ns interfaces that

combine as properties of the entire solid boundary.

Perhaps the easiest way to obtain the required equation is based on Eq. (8.33).

We can write this equation for α = ws and for α = ns. However, for a smooth solid
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surface, nws =−nns at the wns common curve. Addition of the equations for each of

the fluid solid interfaces will thus cause the terms in the average over the common

curve to cancel, leaving

Ds(εws + εns)

Dt
−
(

χws
s Jws

s +χns
s Jns

s

) Dsεs

Dt
+
(

εwsGws + εnsGns
)

:ds = 0 . (8.58)

According to Evolution Approximation 8.1, we also note that Jws
s = Jns

s and Gws =

Gns. Therefore, if we multiply Eq. (8.58) by χα
s where α ∈ I−cs we obtain

Dsεα

Dt
− (εws + εns)

Dsχα
s

Dt
−χα

s Jα
s

Dsεs

Dt
+ εαGα :ds = 0 for α ∈ I−cs , (8.59)

where the product rule has been applied to the first term to obtain the first two time

derivatives. This equation provides the evolution relation for each of the fluid-solid

interfaces.

Comparison of Eq. (8.59) with Eq. (8.33) shows that

(εws + εns)
Dsχα

s

Dt
=
〈
nα ·

(
vwns −vs)〉

Ωwns,Ω
for α ∈ I−cs . (8.60)

This last equation relates the rate of wetting of the solid to the velocity of the com-

mon curve moving across the solid surface. This equation will be used in Sect. 8.6.3

when considering common curve evolution.

8.6.2 Fluid-fluid Interface Evolution

The starting point for this derivation is Eq. (8.45). The challenge is to find suitable

approximations for the last three terms on the left side of the equation in terms

of macroscale properties. Answering the challenge requires that some additional

approximations be stated. An appropriate set of approximations can be proposed

formally as follows.

Evolution Approximation 8.2 (Fluid-fluid Interface)
The fluid-fluid interface in a two-fluid-phase porous medium system is considered to
behave such that the following approximations hold:

• the contact angle of the wn fluid-fluid interface at the solid surface is considered
to be a known function of the rate and direction of wetting of the solid surface at
the microscale and at the macroscale;

• the correlation between contact angle and other quantities can be ignored when
averaging to the macroscale;

• the velocity of the wns common curve normal to the solid surface can be approx-
imated as the average of the solid-phase velocity normal to the solid surface;
and
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• the rate of relaxation of the wn fluid-fluid interface to an equilibrium state is
linearly dependent on the deviation of the specific wn interfacial area from its
equilibrium state.

The last item in this evolution approximation suggests a functional form for ewn

in Eq. (8.45). The stipulation that the relaxation to an equilibrium state be a linear

relation provides the approximation

ewn = k̂wn
(

εwn
eq − εwn

)
, (8.61)

where k̂wn is a parameter that is related to the rate of relaxation. The assumption that

this relaxation to equilibrium is linear is a seemingly reasonable first approximation

that can be tested using small-scale models. With this approximation invoked, Eq.

(8.45) may be written

Dsεwn

Dt
+∇·

[
εwn (wwn −Gwn·vs)]+ εwnGwn:ds

− Jwn
w

(
Dsεw

Dt
+χws

s
Dsεs

Dt

)
− k̂wn

(
εwn

eq − εwn
)

−
〈
cosϕws,wnnws·

(
vwns −vs)〉

Ωwns,Ω

+
〈
sinϕws,wnns·

(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.62)

It is known from pore-scale observations that the contact angle the wn interface

makes with a solid surface depends upon the velocity of the interface in the direc-

tion tangent to the solid surface. This is typically minimally characterized as an

advancing or a receding contact angle, although this quantity is more appropriately

considered as a function of the tangential velocity of the interface. Evolution Ap-

proximation 8.2 states that this functional dependence of the contact angle exists at

the microscale and is known. This approximation also states that the macroscale is

sufficiently resolved that the correlation between the microscale angle and the mic-

roscale rate of wetting can be neglected. While this approximation is convenient, al-

ternative approaches are possible if it is unreasonable. For example, a decomposition

of the sort used for the curvature in Eq. (8.40) could be used for terms involving the

contact angle, and then the term involving the deviation in the contact angle could in

turn be approximated. Improved methods of treating such terms are sure to develop

with continued microscale experimental and simulation research that is underway.

For the purpose of this analysis, we will follow the simpler situation summarized in

Evolution Approximation 8.2.

The evolution approximation allows the sine and cosine functions to be moved

outside the averaging operator and be expressed in terms of macroscopic forms. As

a result, Eq. (8.62) becomes

Dsεwn

Dt
+∇·

[
εwn (wwn −Gwn·vs)]+ εwnGwn:ds
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− Jwn
w

(
Dsεw

Dt
+χws

s
Dsεs

Dt

)
− k̂wn

(
εwn

eq − εwn
)

− cosϕws,wn〈nws·
(
vwns −vs)〉

Ωwns,Ω

+ sinϕws,wn〈ns·
(
vwns −vs)〉

Ωwns,Ω
= 0 . (8.63)

To ensure satisfaction of the identity

cos2 ϕws,wn + sin2 ϕws,wn = 1 , (8.64)

the macroscale cosine and sine of the contact angle are defined, respectively, as

cosϕws,wn =
〈cosϕws,wn〉Ωwns,Ωwns(

〈cosϕws,wn〉2
Ωwns,Ωwns

+ 〈sinϕws,wn〉2
Ωwns,Ωwns

)1/2
(8.65)

and

sinϕws,wn =
〈sinϕws,wn〉Ωwns,Ωwns(

〈cosϕws,wn〉2
Ωwns,Ωwns

+ 〈sinϕws,wn〉2
Ωwns,Ωwns

)1/2
. (8.66)

The third condition given in Evolution Approximation 8.2 and the first bullet in

Evolution Approximation 8.1 suggest the microscale average of the common cure

velocity relative to the solid-phase velocity in the direction normal to the solid phase

can be scaled to the change in the solid-phase volume fraction. The result is

εwns

εws + εns

Dsεs

Dt
=
〈
ns ·

(
vwns −vs)〉

Ωwns,Ω
. (8.67)

From Eq. (8.60) with α = ws we know that

(εws + εns)
Dsχws

s

Dt
=
〈
nws ·

(
vwns −vs)〉

Ωwns,Ω
. (8.68)

Substitution of Eqs. (8.67) and (8.68) into Eq. (8.63) gives the expression for the

evolution of the wn interface,

Dsεwn

Dt
+∇·

[
εwn (wwn −Gwn·vs)]+ εwnGwn:ds − Jwn

w

(
Dsεw

Dt
+χws

s
Dsεs

Dt

)

− k̂wn
(

εwn
eq − εwn

)
− cosϕws,wn(εws + εns)

Dsχws
s

Dt

+ sinϕws,wn εwns

εws + εns

Dsεs

Dt
= 0 , (8.69)

with all averaging operators eliminated.
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Terms involving the rate of change of εs in this equation will be negligible in most

cases because any solid-phase volume fraction change has a much larger time scale

than the other terms in the equation. This equation reveals the dynamics of change of

the fluid-fluid interfacial area. Four processes appear to be most important. First is

the divergence of the normal velocity of the interface, which models the net outward

volumetric flux of the interfacial area per volume. Second is the change in the fluid-

phase volume fractions. When either of these fractions is zero, there will be no fluid-

fluid interface; but at intermediate values, the change in volume fraction is related to

the change in surface area. The third process is the relaxation of the interfacial area

configuration to an equilibrium value. The fourth term is the wetting of the solid

surface, a process that stretches the wn interface in the absence of other dynamics.

8.6.3 Common Curve Evolution

The most complete common curve kinematic equation derived to this point is Eq.

(8.57). However, the last four terms in the equation require attention for the equation

to become usable. We can eliminate the two averaging operators by employing Eqs.

(8.67) and (8.68) so that the evolution described in Eq. (8.57) is restated as

Dsεwns

Dt
+∇·

[
εwns (wwns −Gwns·vs)]+ εwnsGwns:ds +κwns

N
εwns

εws + εns

Dsεs

Dt

+κwns
G (εws + εns)

Dsχws
s

Dt
+ ewns

N + ewns
G = 0 . (8.70)

The last two terms on the left, the relaxation terms, require additional attention.

To be able to produce a a fully macroscale description of common curve evolu-

tion by expressing the relaxation/generation terms as functions of macroscale quan-

tities, we propose the following evolution approximation.

Evolution Approximation 8.3 (Curvature Deviation)
The common curve in a two-fluid-phase porous medium system is considered to
behave such that the following approximations hold:

• the change in the specific common curve length due to the deviation of the normal
curvature of the common curve, ewns

N , can be neglected; and
• the rate of relaxation of the geodesic curvature of the wns common curve is driven

by the deviation of εwns from its equilibrium value and is linearly related to this
deviation.

Based upon Evolution Approximation 8.3

ewns
N = 0. (8.71)
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This is reasonable for most slightly compressible porous medium systems, since the

compression or expansion of the solid phase will happen on a time scale that is slow

compared to other dynamic processes involving the common curve.

The situation for the geodesic curvature is different. This curvature is the compo-

nent of the gradient of the common curve along the common curve in the direction

tangent to the solid surface. The deviation term involving the geodesic curvature in

the definition of ewns
G given in Eq. (8.56) multiplies the velocity at which the com-

mon curve moves across the surface due to wetting or drying, relative to the velocity

of the solid. This term will be large relative to the normal curvature deviation term

that multiplies a common curve velocity relative to that of the solid phase in the

direction normal to the surface. At equilibrium, ewns
G = 0 because the velocities will

be zero. Thus, analogously to the generation term for the wn interface defined in Eq.

(8.61), we parameterize the generation term for the common curve as

ewns
G =−k̂wns

(
εwns

eq − εwns
)
, (8.72)

where εwns
eq is the specific common curve length at equilibrium. Should experimental

or numerical experimentation suggest a better approximation for ewns, that approx-

imation can be directly employed. With the current definition, and neglect of ewns
N ,

Eq. (8.70) becomes

Dsεwns

Dt
+∇·

[
εwns (wwns −Gwns·vs)]+ εwnsGwns:ds +κwns

N
εwns

εws + εns

Dsεs

Dt

+κwns
G (εws + εns)

Dsχws
s

Dt
− k̂wns

(
εwns

eq − εwns
)
= 0 . (8.73)

As was the case with specific interfacial area evolution, we have formulated a

closed evolution equation for the wns common curve in terms of macroscale vari-

ables. Also similarly to the interface evolution equations, Eq. (8.73) reveals not only

the mechanisms involved with common curve evolution, but also the dependence

upon other entity measures. However, a macroscale velocity of the common curve,

wwns, obtained as an average of microscale components normal to the common curve

appears in Eq. (8.73). Specification of this velocity requires an approximation. The

velocities of the fluid-fluid interfacial area, wwn, and of the common curve, wwns,

will be considered in the next section.

8.7 Average Normal Velocities

The remaining aspect of producing useful evolution equations involves developing

expressions for the averages of normal velocities that appear in the interfacial area

and common curve equations. To be specific, expressions are needed for wwn, which

8.6 Two-fluid-phase Flow Geometric Relations
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appears in Eq. (8.69), and for wwns, which appears in Eq. (8.73). These velocities

are averages of the entity velocities in directions normal to the entity. Thus, these

quantities differ from material velocities in the entities in two significant ways. First,

even if the interface or common curve is massless, the entity itself can have a veloc-

ity. Secondly, any flow velocity within the entity tangent to the entity has no impact

on the calculated value of wwn or wwns. These macroscale entity velocities are calcu-

lated from velocities normal to any flow within the entity. Because these velocities

describe geometric movement and deformation, they do not appear in conservation

equations. The velocity of any material associated with wn and wns entities and the

velocities of the entities themselves are distinctly different.

8.7.1 Fluid-fluid Interface Velocity Approximation

The average of the normal wn entity velocity needs to be defined based upon con-

stitutive approximations, an idea that has been recognized in the literature [3]. This

macroscale velocity is important during displacement processes. The microscale

normal velocity of the wn interface and the velocity normal to that interface of any

material in an adjacent fluid phase at the interface will be equal, except for cases

where inter-entity mass transfer is occurring. If we consider this difference in veloc-

ities to be a second-order effect with regard to other terms in the evolution equations,

we can posit the macroscale normal interfacial velocity as being dependent upon the

orientation of the interface and the velocity of the fluids. Thus, we propose the fol-

lowing evolution approximation.

Evolution Approximation 8.4 (Interface Velocity)
The normal velocity of the wn interface can be approximated constitutively as a lin-
ear combination of the average density-weighted normal velocities of the bounding
fluids that form the interface in the averaged macroscale normal direction with the
orientation tensor impacting the direction.

Based on the definition of wwn given in Eq. (8.38), we know that

wwn −Gwn·vs =
〈
Gwn·(vwn −vs)

〉
Ωwn,Ωwn

. (8.74)

The average velocity of an adjacent fluid phase over the wn interface is not generally

equal to the average velocity over the phase. However, the fact that only the normal

component of the material velocity at the interface is of importance suggests that

the macroscale interface velocity may be expressed constitutively, in accord with

Evolution Approximation 8.4, as

wwn −Gwn·vs = Gwn·
[
Âw(vw −vs)+ Ân(vn −vs)

]
. (8.75)

The interfacial velocity coefficients Âw and Ân are likely functions of the ratio of

dynamic viscosities of the fluids μ̂w/μ̂n and the wetting fluid phase saturation sw.
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Consideration of Eqs. (8.74)–(8.75) suggests that the Âw + Ân is of order 1. The de-

pendence of these coefficients on the system parameters is fertile ground for future

research.

8.7.2 Common Curve Velocity Approximation

Similar reasoning to that for the wn interface can be used to deduce a constitutive

form for the macroscale velocity of the common curve. The microscale normal ve-

locity of a common curve has two non-zero components. One of these components

is in the direction normal to the solid surface, and the other is tangent to the solid

surface. As discussed in consideration of the normal and geodesic curvatures, it is

reasonable to expect that the component tangent to the solid surface is dominant and

that the velocity of the curve will be related to the velocity of the fluids while con-

sidering this orientation. Thus we propose an evolution approximation as follows.

Evolution Approximation 8.5 (Common Curve Velocity)
The normal velocity of the wns common curve is dominated by the component tan-
gent to the solid surface, which can be approximated as a linear combination of the
macroscale velocities of the w and n fluids and the macroscale orientation tensor of
the dominant direction.

Based upon the definition of wwns given in Eq. (8.51) with an intrinsic average,

wwns, the expression for the macroscale velocity relative to the solid is

wwns −Gwns·vs =
〈
Gwns·

(
vwns −vs)〉

Ωwns,Ωwns
. (8.76)

When the macroscale orientation tensor obtained from nsns is the same regardless

of whether it is integrated over the entire solid surface, the ws portion of the solid

surface, the ns portion of the solid surface, or the wns common curve, evaluation of

the averaging operation suggests, in light of Evolution Approximation 8.5, that

wwns −Gwns·vs = (Gwns −Gws) ·
[
B̂w(vw −vs)+ B̂n(vn −vs)

]
, (8.77)

where B̂w and B̂n are common curve velocity parameters that are expected to depend

upon some combination of fluid viscosities and saturation. The factor Gwns −Gws is

intended to account for the fact that the movement of the common curve tangentially

to the surface is dominant. Common curve movement is a higher order effect than

movement of the wn interface velocity. This implies that crudeness in the approxi-

mations that went into Eq. (8.77) will negatively impact the system model less than

shortcomings in approximations that went into Eq. (8.75).
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8.8 Summary

In this chapter, we have formulated a set of evolution equations for geometric densi-

ties that can be used as a component of a closed TCAT model. These equations are

approximate, and they are not based upon conservation principles, because quan-

tities such as the extent of specific interfacial areas and specific common curve

lengths are not conserved physical quantities. Rather, mechanisms exist that lead

to the formation and destruction of these entity domains as they translate and de-

form. To derive these macroscale evolution equations, we relied upon the averaging

theorems, which are exact expressions. These averaging theorems assisted in estab-

lishing a framework for the evolution equations and in revealing the mathematical

forms of the operative mechanisms that must be accounted for. This formulation also

revealed the coupled nature of the entity measures. To assist in producing closed,

solvable evolution equations, sets of approximations have been formally presented.

An additional component of this analysis is the approximation of the macroscale

velocities of a fluid-fluid interface and of the common curve in a two-fluid-phase

system. These approximations account for the fact that the velocity of these do-

mains is different from the velocity of material within the domains such that only

movement normal to the domain contributes to its macroscopic representation.

For single-fluid-phase porous medium flow, the relation between the change in

the surface area density of the solid phase and the solid-phase volume fraction was

obtained as Eq. (8.20). Because the solid-phase movement and deformation is con-

sidered to be independent of the fluids that contact it, this equation is also applicable

to two-fluid-phase flow, making use of the notational modification employed in Eq.

(8.58). For this case, the evolution equations for the εws and εns portions of the solid

surface area are provided in Eq. (8.59). In that equation these surface area densities

are related to the change in volume fraction of the solid phase and the wetting of the

solid surface.

For the more complex two-fluid case, an interface between the fluids as well

as a common curve on the solid surface must be accounted for. Approximations

employed in conjunction with averaging theorems led to Eq. (8.69) for the rate of

change of εwn. This change is related, primarily, to changes in the distribution of

the fluid volume fractions, the relaxation of the interface to an equilibrium config-

uration, and the rate of wetting of the solid surface. The common curve evolution

equation is given in Eq. (8.73). This equation is based on the averaging theorems

applied to a common curve and relates the change in common curve length density

to the rate of solid wetting and the relaxation of the common curve shape. In both

of these equations, coefficients appear that macroscopically account for the orienta-

tions of the entities, rates of relaxation of the entities to an equilibrium configura-

tion, and the curvatures of the entity domains. Accounting for these parameters can

be challenging, but their importance in accurately characterizing entity deformation

is indisputable.

Perhaps the most difficult quantities to model are the macroscale velocities that

account for displacement of the wn interface and the wns common curve. The fact

that these velocities are not simply equal to the velocities of material within them
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has been emphasized because errors have been made as a result of overlooking this

detail [10–12]. Without additional experimental or computational study, the most

reasonable approximation is to expect that these velocities are related to the fluid

velocities, with the suggested representation for the wn velocity given in Eq. (8.75)

and that for the wns velocity appearing in Eq. (8.77). The directions of flow are

important elements of these approximations. For example, fluid flow tangent to a

wn interface will not contribute to the velocity of that interface. However, fluid flow

normal to the interface will cause it to translate and deform.

Because approximations are needed to develop and close the evolution equations,

it is important to be willing to revisit these approximations. Modern and evolving

experimental and computational methods provide a means to study model systems

at the microscale. In many cases, the validity of the approximations made can be

evaluated in detail using these microscale analysis tools. Such analysis is important

for verification of the approximations enumerated and for improving these approx-

imations where necessary. We note that this feature is different from the derivation

of the general conservation and balance equations and the thermodynamic relations.

These are derived without approximations, although they do require approximate

closure relations for use in modeling.

At this point, we have in place all of the components needed to formulate closed,

macroscale TCAT models. The chapters that follow will make use of these com-

ponents to deduce relatively simple TCAT models for single-fluid-phase flow in

porous media, species transport in single-fluid-phase porous media, and two-fluid-

phase flow in porous media.

Exercises

8.1. Consider a porous medium composed of spherical solid particles that are in-

compressible and do not deform. The medium itself, however, does deform because

of a readjustment of the sphere packing. Make use of the evolution relation given as

Eq. (8.20) to show that εws/εs is a constant.

8.2. Simplify Eq. (8.69) for the case of steady flow in a rigid solid. Discuss the

physical meaning of the surviving terms.

8.3. Simplify Eq. (8.73) for the case where the solid-phase dynamics are much

slower than the common curve dynamics.

8.4. Consider Eq. (8.75) for the fluid-fluid interface velocity for the case where the

solid phase may be consider to be rigid. Describe the physical setting in which

wwn = 0 but neither vw nor vn is zero.
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Chapter 9
Single-fluid-phase Flow

9.1 Overview

The goal of this chapter is to formulate a set of closed, solvable, macroscale, single-

fluid-phase flow models using the TCAT approach. This is the first macroscale

TCAT application to be considered. Fig. 9.1 indicates the elements of the TCAT

framework that form the basis of this chapter. These same elements will be em-

ployed in subsequent chapters for analysis of chemical species transport and two-

fluid-phase flow, although details of the equations and assumptions invoked will be

different for each application instance.

With regard to Fig. 9.1, it can be seen that elements on the left side of the full

figure have been dimmed. These elements are concerned with transformation from

the microscale to the larger scale of the entropy inequality, conservation equations,

equilibrium conditions, and thermodynamic relations. The formulation of these mic-

roscale relations and the utilization of averaging theorems to accomplish the trans-

formation to the macroscale have been the subjects of previous chapters. Addition-

ally, the development of geometric relations was the topic of the last chapter. Thus,

here, and in subsequent chapters, we can consider all basic macroscale relations to

be available. The task to be addressed is the combination of these equations to obtain

closure relations and a hierarchy of closed models.

The larger-scale components can be assembled to derive a wide range of TCAT

models. These models can describe systems with various numbers of fluid and solid

phases, interfaces between phases, common curves where interfaces meet, and com-

mon points where common curves meet. The models can be proposed with different

levels of detail with regard to accounting for chemical species present, properties

of interfaces, common curves, common points, and complexity of the closure rela-

tions. Models that do not explicitly account for compositional changes in the fluids

and solids due to diffusion and dispersive processes are commonly referred to as

flow models. Transport models account for compositional changes as well as for

bulk phase movement. In the present chapter, we will develop a flow model and not

327W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_9,
� Springer International Publishing Switzerland 2014
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Fig. 9.1 TCAT elements of interest in Chap. 9 for closing macroscale single-fluid-phase flow equa-
tions (after [4])

be concerned with variations in composition due to differences in the velocities of

various chemical species or to chemical reactions.

The major steps associated with employing the macroscale equations in the

TCAT approach to construct a specific model are indicated by the arrows in the

right half of Fig. 9.1. The first step involves constraining the entropy inequality with

conservation and thermodynamic conditions. The second step simplifies the con-

strained entropy inequality by applying some assumptions that are consistent with

system behavior so that the entropy generation term is obtained as a set of products

of independent forces and fluxes that are zero at equilibrium. Then the form of the

simplified entropy inequality is employed to infer the forms of closure relations that

can be substituted into the conservation equations to obtain closed models. These

steps are essentially the same as those employed in Chap. 5 to obtain closed mic-

roscale models, as depicted in Fig. 5.1. The primary difference is that the present

chapter makes use of macroscale relations, while the former chapter sought micro-

scale closed equations.

The TCAT approach employs an explicit formal structure to identify the restric-

tions placed on the system, the approximations applied, and the elements of the

model developed. This structure is important because it provides a path for re-

examining assumptions that may be responsible for a model being unable to de-

scribe a system of interest. The kinds of assumptions employed have been classified

so that the TCAT approach is well organized, and leading opportunities for improve-

ment of models can be found relatively easily. These assumption types are denoted

as primary restrictions, secondary restrictions, simplified entropy inequality (SEI)

approximations, and closure approximations.
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Primary restrictions stipulate the thermodynamic theory relied upon and the

properties of the porous medium model (e.g., the dimensionality of the model). Ad-

ditionally, after formulation of a general entropy inequality (EI) augmented by a set

of conservation equations using Lagrange multipliers, primary restrictions are im-

posed on selection of values for the Lagrange multipliers. These restrictions identify

the entities to be modeled explicitly, indicate the degree and rigor with which chem-

ical species properties, as opposed to the properties on an entity as a whole, are to

be modeled, and facilitate the arrangement of the EI into force-flux form to the ex-

tent possible without introducing approximations. The resulting equation is called

the constrained entropy inequality (CEI). Simplified entropy inequality (SEI) ap-

proximations are needed to arrive at a strict force-flux form of the EI. While these

approximations are necessary and are selected with the intention that they be phys-

ically appropriate, they do introduce some error into the formulation. If this error

is found to be non-negligible, the SEI approximations may be revisited and refor-

mulated based on evidence gleaned from experimental or numerical studies as well

as rethinking of the rationale behind the approximations. Subsequently, secondary

restrictions are imposed, if desired, to further constrain the CEI by eliminating some

of the processes that are not of interest for a particular application. This simplifies

the task of closing the model. For example, a system might be limited to being

isothermal by a secondary restriction, thereby making determination of a closure re-

lation for the non-advective heat flux vector unnecessary. Identification of possible

closure approximations from a broad set of permissible relations is informed by the

SEI. The selection of alternative sets of closure relations yields a hierarchy of closed

models of varying sophistication.

The sections that follow in this chapter illustrate the application of TCAT model

formulation using the template described above for single-fluid-phase flow in a

porous medium. While the model to be formulated is relatively simple, it provides

both a useful result as well as a convenient means to demonstrate the TCAT model

formulation process with minimal complexity.

9.2 Single-phase-flow System Definition

In principle, one can apply TCAT to develop a model for a complicated many-fluid-

phase-flow case with species transport and reactions under non-isothermal condi-

tions. Limiting cases of such a model would reduce to common applications of

concern—all the way down to isothermal single-fluid-phase flow. This approach is

elegant but requires the complexity associated with deriving a CEI for a multifaceted

system. Alternatively, very specific TCAT models can be specified and formulated

for each application. This approach is the simplest possible way to develop a TCAT

model for a given application, but it requires a completely new TCAT formulation

for every single extension of complexity of the application. A middle ground be-

tween the most general and most specific approaches is to define a system for which

a class of model is developed that is sufficiently broad to encompass the descrip-

9.1 Overview
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tion of many applications, but sufficiently narrow to allow a formulation without

excessive complexity; we follow this middle ground.

To identify the elements of the system that will be modeled, we make use of pri-

mary restrictions. These establish the entities that will be modeled, the length scale

of the model, the phenomena to be modeled, and the proposed thermodynamic for-

malism that will be employed. Selection of these model elements is a fundamental

decision that is made at the beginning of the model development and serves to bound

the class of TCAT models formulated. For the present chapter, the system is identi-

fied by invoking three primary restrictions.

The first primary restriction identifies the entities to be modeled and the scale of

modeling.

Primary Restriction 9.1 (System and Scale)
The system of concern consists of a single fluid phase w, a relatively immobile solid
phase s, and an interface ws between the two phases. The spatial scale of concern
is the macroscale, �ma, with �r

r 	 �ma 	 �me, where �r
r and �me are the resolution

scale and megascale of the system, respectively.1 The domain of the system is Ω
with boundary Γ.

The stipulation in Primary Restriction 9.1 that the solid phase is relatively immo-

bile indicates that we are studying a porous medium system rather than a problem

such as sediment transport where the solid phase velocity is of the same order of

magnitude as the fluid velocity. The single fluid phase in the specified system com-

pletely fills the pore space. Because the model is restricted to be at the macroscale,

the microscale juxtaposition of phases is not explicitly accounted for. Rather, the

phases and interfaces exist at all points in the domain Ω, and their extent will be

accounted for by volume and area densities. Finally, Primary Restriction 9.1 spec-

ifies that the models are developed for the case where the system length scales are

well separated. Thus the macroscale conservation and thermodynamic equations

are those obtained by averaging over an REV of length scale �ma throughout the do-

main. A fully macroscale model involves three spatial dimensions and time. For this

macroscale formulation, with wide separation of scales, all model parameters have

well-defined averages that are local in nature and not dependent upon the scale or

the boundary conditions of the system being considered. In other words, the models

to be developed will be deterministic and will meet the standard continuum require-

ments previously discussed.

We observe that many natural systems exist that contain heterogeneities such

that they do not satisfy the conditions of Primary Restriction 9.1. In particular, the

deterministic framework may be overly restrictive and of limited applicability. On

the other hand, the intention here is to derive models for well-defined systems, and

systems that satisfy Primary Restriction 9.1 certainly exist. By working with well-

defined, deterministic systems here, TCAT models will be formulated that represent

physical phenomena that are operative in those systems with sufficient fidelity. Be-

cause these fundamental models can be extended, for instance by beginning with a

1 The descriptions of length scales are provided in the discussion of Eq. (1.1).
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relaxed primary restriction set, the fundamental TCAT model formulation approach

is demonstrated and accomplished without a loss of generality.

The second primary restriction is concerned with the transport processes to be

modeled.

Primary Restriction 9.2 (Phenomena Modeled)
The phenomena of concern consist of the transport of mass, momentum, and energy
in each of the entities. Transport phenomena of various chemical species within an
entity will not be modeled explicitly.

Primary Restriction 9.2 specifies that conserved quantities will be modeled for

each entity as a whole without consideration of compositional effects. Thus trans-

port equations for individual chemical species will not be formulated. Rather the

conservation equations will apply to each entity as a whole while also allowing

for exchanges of properties between entities. The resulting single-phase-flow model

will apply to isothermal as well as non-isothermal systems, and the distinctly dif-

ferent behavior of the fluid and solid phases will be accounted for. Although Pri-

mary Restriction 9.1 has limited the system to being a porous medium, no con-

straint has been imposed on the fluid flow regime. Both creeping flow and flow at

higher Reynolds numbers may be considered because no terms are eliminated from

the conservation equations by Primary Restriction 9.2. Explicit inclusion of conser-

vation equations for the interface between phases ensures that the properties of that

interface that impact system behavior will be accounted for as an aid to fundamental

understanding.

The third primary restriction to be employed relates to the thermodynamic de-

scription of the system. This is important as it impacts the material properties of the

system.

Primary Restriction 9.3 (Thermodynamic Theory)
Classical irreversible thermodynamics (CIT) is employed to describe the thermo-
dynamic behavior of the system entities at equilibrium and near-equilibrium states.
The solid phase is modeled as elastic.

TCAT makes use of a thermodynamic theory to connect variables appearing in

the EI with those appearing in the conservation equations. The specification of the

CIT formalism means that the microscale approach described in Chap. 3 along with

the equilibrium conditions of Chap. 4 will be employed in their macroscale versions

as derived in Chap. 7. Although other thermodynamic theories exist, as alluded to

in Sect. 3.12, experience has shown that CIT is an adequate foundation for many

systems investigated to date. We can support the choice of CIT with decades of suc-

cessful comparisons between theory and experiment and more recently with valid-

ity that can be established through comparison to statistical mechanical approaches

and molecular scale computations. By averaging CIT to the macroscale, we have

ensured connection across scales and well-defined variables at the macroscale. Stip-

ulating that the solid behaves elastically at the microscale imposes a constraint on

the thermodynamic behavior of individual grains in the porous medium but does

not constrain the macroscale behavior of the porous medium solid to being elastic.
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Settling may take place due to rearrangement of the grains without the properties of

any of the grains changing.

9.3 Conservation and Thermodynamic Equations

TCAT models are built upon systems of conservation and balance equations for each

entity in the system. The primary restrictions establish the physical processes that

must be accounted for in formulating a particular class of model. The conservation

equations, balance equations for body force potential and entropy, and the thermo-

dynamic relations have been derived in previous chapters. Here, we will select and

combine the equations appropriate for the system described by the primary restric-

tions of the last section. Because the TCAT method is a systematic procedure, it

should not be surprising that the development of macroscale models will follow the

same steps employed in Chap. 5 when developing a microscale model. Thus, the

structure of the current section will be similar to that of Sect. 5.3. The formulation

will be developed in accord with the boxes highlighted in Fig. 9.1. We will first

identify the general set of equations needed, and then simplify the set based on the

primary restrictions noted above. The equations have been derived in previous chap-

ters and thus will be only referred to here in general terms until some mathematical

manipulation is needed.

9.3.1 Entropy Inequality

The large scale EI is the element of the formulation at the top of Fig. 9.1. In general,

a system is composed of multiple species that may appear in the full set of entities.

We select the material derivative form of the entropy inequality as provided in Table

6.2 or Eq. (6.134). Thus the complete set of entropy inequalities may be expressed

as

S iα
∗ = Λ iα for i ∈ Is,α ∈ I . (9.1)

In this equation, Λ iα is the rate of entropy production per volume at a point asso-

ciated with species i in entity α due to irreversible processes. Although the entropy

production for processes associated with a particular species may be negative, and

the sign of the entropy production in an entity associated with inter-entity entropy

transfer is not known, the net production of entropy due to all irreversible processes

at a point will be non-negative. Thus if we sum over all entities and species we

obtain

∑
α∈I

∑
i∈Is

S iα
∗ = ∑

α∈I
∑

i∈Is

Λ iα > 0 . (9.2)

However, we know that the sum of the species-based entropy balance over all

species is equal to the entity-based balance such that
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Sα
∗ = ∑

i∈Is

S iα
∗ (9.3)

and

Λ α = ∑
i∈Is

Λ iα . (9.4)

The expanded expression for the elements that contribute to the entropy production

of an entity, Sα
∗ , may be written directly from the next to the last row of Table 6.3.

In the current chapter, we are interested in modeling the behavior of entities and

will not be concerned with species-based equations. In these instances, the EI may

be written by substituting Eqs. (9.3) and (9.4) into Eq. (9.2) to obtain

∑
α∈I

Sα
∗ = ∑

α∈I
Λ α > 0 . (9.5)

The next task is to provide appropriate constraints for this basic inequality.

9.3.2 Conservation Equations

Fig. 9.1 indicates that the larger-scale conservation equations comprise one set of

constraints to be applied to Eq. (9.5). Macroscale conservation equations for mass,

momentum, and energy of each chemical species have been provided in Table 6.2.

These equations, expressed in material derivative form, are employed in this analy-

sis and are written for species mass, species momentum, and species energy, respec-

tively, as

Miα
∗ = 0 for i ∈ Is,α ∈ I , (9.6)

P iα
∗ = 0 for i ∈ Is,α ∈ I , (9.7)

and

E iα
∗ = 0 for i ∈ Is,α ∈ I . (9.8)

An additional equation in Table 6.2 will be employed that provides the impact of

the gravitational potential on a chemical species. This equation has the form

Giα
∗ = 0 for i ∈ Is,α ∈ I . (9.9)

As has been mentioned previously, this is not strictly a conservation equation but is

a balance expression obtained as a hybrid of the mass conservation equation and the

relation between the gravitational potential and gravity.

In the present chapter, we are ignoring the transport of chemical species within

the entity. Thus, rather than using species based equations, we will simplify the

conservation and balance equations by summing over all species. Summation of
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Eqs. (9.6)–(9.9) over the chemical species provides the corresponding set of entity-

based equations

Mα
∗ = ∑

i∈Is

Miα
∗ = 0 for α ∈ I , (9.10)

Pα
∗ = ∑

i∈Is

P iα
∗ = 0 for α ∈ I , (9.11)

Eα
∗ = ∑

i∈Is

E iα
∗ = 0 for α ∈ I , (9.12)

and

Gα
∗ = ∑

i∈Is

Giα
∗ = 0 for α ∈ I . (9.13)

The entity-based equations may be found in Table 6.3 and are the forms that will be

used for the analysis of single-phase-fluid flow. As has been confirmed in Chap. 6,

these entity-based equations may be obtained by summation over their species-

based counterparts, as indicated in Eqs. (9.10)–(9.13) or obtained directly by ap-

plying the averaging theorems to the microscale equations for each entity.

9.3.3 Thermodynamic Relations

Based on Fig. 9.1, the larger-scale thermodynamics also provide some constraints

on the EI. As was stated in Primary Restriction 9.3, we will employ the macroscale

CIT framework. The macroscale relations have been obtained in Chap. 7. Different

thermodynamic expressions for the rate of change of energy are needed for a fluid,

a solid, and the interface between them. The equations are rather long. Thus, rather

than being collected in a table, these equations are referenced according to where

they have been derived in the text in Table 7.2. For a species in any entity, the

dynamic thermodynamic relation is expressed as

T iα
∗ = 0 for i ∈ Is,α ∈ I . (9.14)

The particular form for a fluid phase is given in Eq. (7.44); for the solid phase, the

thermodynamic expression is Eq. (7.78); and for the interface, T iα
∗ is given by Eq.

(7.92).

Because the species-based formulation is not employed for the conservation

equations, it need not be employed for the thermodynamic relations either. Thus,

these relations are summed over all species to obtain

T α
∗ = ∑

i∈Is

T iα
∗ = 0 for α ∈ I . (9.15)
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The constraints on the EI are provided by T α
∗ for each entity and are stated as Eqs.

(7.54), (7.80), and (7.96) for the fluid phase, solid, and interface, respectively.

In the same way that internal energy appears in both a conservation equation and

a thermodynamic relation, the body force potential is used in two places. The body

force potential equations that have character similar to a thermodynamic expression

are tabulated by equation number in Table 7.2. These equations are written as

T iα
G∗ = 0 for i ∈ Is,α ∈ I . (9.16)

with particular forms for the fluid, solid, and interface entities given by Eqs. (7.47),

(7.79), and (7.95), respectively.

These equations are also summed over all species for the present application

according to

T α
G∗ = ∑

i∈Is

T iα
G∗ = 0 for α ∈ I . (9.17)

The entity-based equations indicated are identified in Table 7.2 as Eqs. (7.58),

(7.81), and (7.97), respectively, for the fluid, solid, and interface entity.

9.4 Constrained Entropy Inequality

According to Fig. 9.1, the equations identified in the last section should be combined

to form the CEI. The conservation and thermodynamic relations supplement the

basic EI by providing additional physical conditions that must be satisfied during

an entropy generation process. We note that each of these conditions is written as

some group of terms that sums to zero. Thus they can be multiplied by an arbitrary

coefficient and added on to the basic EI without changing the entropy generation rate

prediction. Selection of the coefficients in a judicious way can lead to an expression

for the entropy generation as a product of forces and fluxes.

9.4.1 Augmented Entropy Inequality

The general augmented macroscale EI consists of the basic EI of Eq. (9.2) con-

strained by the full set of species-based conservation and thermodynamic equations.

This inequality is expressed as

∑
α∈I

∑
i∈Is

S iα
∗ + ∑

α∈I
∑

i∈Is

λ iα
E E iα

∗ + ∑
α∈I

∑
i∈Is

λλλ iα
P ·P iα

∗ + ∑
α∈I

∑
i∈Is

λ iα
MMiα

∗

+ ∑
α∈I

∑
i∈Is

λ iα
G Giα

∗ + ∑
α∈I

∑
i∈Is

λ iα
T T iα

∗

9.3 Conservation and Thermodynamic Equations
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+ ∑
α∈I

∑
i∈Is

λ iα
T GT iα

G∗ = ∑
α∈I

∑
i∈Is

Λ iα ≥ 0 , (9.18)

where the subscripted and superscripted λ and λλλ coefficients are the Lagrange mul-

tipliers. The stipulation of Primary Restriction 9.2 that the species behavior within

an entity will not be explicitly modeled can be honored by requiring that a Lagrange

multiplier for a particular equation describing a process in an entity be the same for

all chemical species within that entity. Thus, the qualifier i can be removed from all

the Lagrange multipliers, which can then be moved outside the summations over all

species, such that Eq. (9.18) becomes

∑
α∈I

(
∑

i∈Is

S iα
∗

)
+ ∑

α∈I
λ α
E

(
∑

i∈Is

E iα
∗

)
+ ∑

α∈I
λλλ α
P ·
(

∑
i∈Is

P iα
∗

)

+ ∑
α∈I

λ α
M

(
∑

i∈Is

Miα
∗

)
+ ∑

α∈I
λ α
G

(
∑

i∈Is

Giα
∗

)
+ ∑

α∈I
λ α
T

(
∑

i∈Is

T iα
∗

)

+ ∑
α∈I

λ α
T G

(
∑

i∈Is

T iα
G∗

)
= ∑

α∈I

(
∑

i∈Is

Λ iα

)
≥ 0 . (9.19)

Each of the summations over the species that is in parentheses in this equation has

been discussed in Sect. 9.3 and produces an entity-based equation. Thus we can

replace these summations with the entity-based equations to obtain

∑
α∈I

Sα
∗ + ∑

α∈I
λ α
E Eα

∗ + ∑
α∈I

λλλ α
P ·Pα

∗ + ∑
α∈I

λ α
MMα

∗

+ ∑
α∈I

λ α
G Gα

∗ + ∑
α∈I

λ α
T T α

∗ + ∑
α∈I

λ α
T GT α

G∗ = ∑
α∈I

Λ α ≥ 0 . (9.20)

For the single-fluid-phase case under consideration, I = {w,s,ws}. With the equa-

tions corresponding to the notation indicated, Eq. (9.20) is the augmented EI for

single-phase flow.

9.4.2 Selection of Lagrange Multipliers

To complete the formulation of the CEI, values for the Lagrange multipliers in Eq.

(9.20) must be determined. Because λλλ α
P is a vector, we see that there are eight

scalar values for the multipliers associated with each entity so that 24 Lagrange

coefficients can be specified. Regardless of the values selected, the equality will be

correct since the sum of the terms in each of the supplemental equations is equal to

0. The selection of the coefficients does impact how the the entropy generation is

modeled but does not impact its value.

Because we seek to represent the entropy generation as a sum of force-flux pairs,

we will select the Lagrange multipliers such that the material derivatives are elimi-
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nated. Equations for Sα
∗ , Eα

∗ , Pα
∗ , Mα

∗ , and Gα
∗ are taken from Table 6.3. Equation

numbers for T α
∗ and T α

G∗ are pointed to in Table 7.2 for the needed thermodynamic

relations for fluid, solid, and interface entities. Each entity is modeled as composed

of a single chemical species.

Substitution of the expanded equations into Eq. (9.20) produces a very long equa-

tion. Because we are interested in selecting the Lagrange multipliers such that the

material time derivatives are eliminated to the degree possible, only the material

derivatives are indicated in the next equation with the remaining terms, which will

be dealt with subsequently, designated using ellipses. Thus Eq. (9.20) is expanded

to

∑
α∈I

[
Dα ηα

Dt
+ . . .

]
+ ∑

α∈I
λ α
E

{
Dα

Dt

[
Eα + εα ρα

(
vα ·vα

2
+Kα

E

)]
+ . . .

}

+ ∑
α∈I

λλλ α
P ·
[

Dα(εα ρα vα)

Dt
+ . . .

]
+ ∑

α∈I
λ α
M

[
Dα(εα ρα)

Dt
+ . . .

]

+ ∑
α∈I

λ α
G

[
DαΨ α

Dt
+ . . .

]
+ ∑

α∈I
λ α
T

[
Dα Eα

Dt
−θ α Dα ηα

Dt
−μα Dα(εα ρα)

Dt
+ . . .

]

+ ∑
α∈I

λ α
T G

[
DαΨ α

Dt
−ψα Dα(εα ρα)

Dt
+ . . .

]
= ∑

α∈I
Λ α ≥ 0 . (9.21)

The product rule may be employed to expand out the material derivatives in this

equation, for example by writing

Dα

Dt

(
εα ρα vα ·vα

2

)
=

vα ·vα

2

Dα(εα ρα)

Dt
+ εα ρα vα ·D

α vα

Dt
, (9.22)

so that the full set of unique material derivatives may be seen to be

D=

{
Dα ηα

Dt
,

Dα Eα

Dt
,

Dα(εα ρα)

Dt
,

Dα vα

Dt
,

Dα Kα
E

Dt
,

DαΨ α

Dt

}
for α ∈ I . (9.23)

In this set, the fourth term is a derivative of a vector and thus consists of three el-

ements. Therefore, there are eight material derivatives for each of the three entities

in the system for a total of 24 material derivatives. For these derivatives to be elim-

inated from Eq. (9.21), the groupings of the 24 Lagrange multipliers that form the

coefficients of each of these derivatives must be zero.

Rearrangement of Eq. (9.21) by collecting the multipliers of the derivatives pro-

vides

∑
α∈I

(
1−θ α λ α

T
) Dα ηα

Dt
+ ∑

α∈I
(λ α

E +λ α
T )

Dα Eα

Dt



338 9 Single-fluid-phase Flow

+ ∑
α∈I

[
λ α
E

(
vα ·vα

2
+Kα

E

)
+λλλ α

P ·vα +λ α
M−λ α

T μα −λ α
T Gψα

]
Dα(εα ρα)

Dt

+ ∑
α∈I

(
λ α
E εα ρα vα +λλλ α

Pεα ρα
)
·D

α vα

Dt
+ ∑

α∈I
λ α
E εα ρα Dα Kα

E
Dt

+ ∑
α∈I

(
λ α
G +λ α

T G
) DαΨ α

Dt
+ ∑

α∈I
· · ·= ∑

α∈I
Λ α ≥ 0 . (9.24)

Here it is seen that the material derivative of Kα
E cannot be eliminated except by

setting λ α
E = 0, which would eliminate the energy equation as a constraint on the

system and also make it impossible to eliminate the material derivative of the en-

tropy. Therefore, we will allow this term to survive and deal with it elsewhere in the

formulation. By inspection, the multipliers of the remaining time derivatives will be

zero if, for α ∈ I,

λ α
T =

1

θ α
, (9.25)

λ α
E =− 1

θ α
, (9.26)

λλλ α
P =

vα

θ α
, (9.27)

λ α
G =−λ α

T G , (9.28)

and

λ α
M =

1

θ α

(
μα +λ α

T Gθ α ψα − vα ·vα

2
+Kα

E

)
. (9.29)

Thus we are short a condition for specification of λ α
T G . By an argument similar to

that used to obtain Eq. (5.28) concerning the desirability of the additivity of the

internal energy and the gravitational potential, we select

λ α
T G = λ α

T =
1

θ α
for α ∈ I . (9.30)

Substitution of the values of the Lagrange multipliers into Eq. (9.20) yields the

augmented EI

∑
α∈I

Sα
∗ − ∑

α∈I

1

θ α
Eα
∗ + ∑

α∈I

1

θ α
vα ·Pα

∗

+ ∑
α∈I

1

θ α

(
μα +ψα − vα ·vα

2
+Kα

E

)
Mα

∗

− ∑
α∈I

1

θ α
Gα
∗ + ∑

α∈I

1

θ α
T α
∗ + ∑

α∈I

1

θ α
T α
G∗ = ∑

α∈I
Λ α ≥ 0 . (9.31)
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The next steps are to insert the conservation equations into this equation, perform the

manipulations needed to cancel out terms as possible, and rearrange the surviving

terms into a useful force-flux form.

9.4.3 Elimination of Time Derivatives

Equation (9.31) is written in expanded form by substituting the equations from Ta-

bles 6.3 and 7.2. Because there are no common curves in the single-phase-flow

system, all terms that are related to processes at a common curve can be dropped.

After cancellation of the material derivative terms, as is ensured by the selection

of the Lagrange multipliers, the expanded form of equation Eq. (9.31) that remains

without any further rearrangement or cancellation is

∑
α∈I

[
ηα I:dα − εα bα − ∑

κ∈Icα

κ→α
M ηα,κ − ∑

κ∈Icα

κ→α
Φ −∇·

(
εα ϕϕϕα

)]
Sα∗

− ∑
α∈I

1

θ α

{
εα ρα Dα Kα

E
Dt

+

[
Eα + εα ρα

(
vα ·vα

2
+Kα

E

)]
I:dα

}
Eα∗

+ ∑
α∈I

1

θ α

(
εα ρα gα ·vα + εα hα + εα hα

)
Eα∗

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

(
Eα,κ

+
vα,κ ·vα,κ

2
+Kα,κ

E

)
Eα∗

+ ∑
α∈I

1

θ α

[
∑

κ∈Icα

κ→α
T ·vα,κ + ∑

κ∈Icα

κ→α
Q

]
Eα∗

+ ∑
α∈I

1

θ α
∇·
(

εαtα ·vα + εα qα
)

Eα∗

+ ∑
α∈I

1

θ α
vα ·

[
εα ρα vα I:dα − εα ρα gα − ∑

κ∈Icα

κ→α
M vα,κ

]
Pα∗

− ∑
α∈I

∑
κ∈Icα

1

θ α
vα ·

κ→α
T − ∑

α∈I

1

θ α
vα ·

[
∇·
(

εαtα
)]

Pα∗

+ ∑
α∈I

1

θ α

[(
μα +ψα − vα ·vα

2
+Kα

E

)(
εα ρα I:dα − ∑

κ∈Icα

κ→α
M

)]
Mα∗

− ∑
α∈I

1

θ α

[
Ψ α I:dα + εα ρα gα ·vα + εα hα

]
Gα∗

+ ∑
α∈I

∑
κ∈Icα

1

θ α

[
κ→α
M ψα,κ +

κ→α
G +∇·

(
εα qα

g

)]
Gα∗
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+ ∑
α∈I

1

θ α

〈
ρα

[
∂ (n)ψα

∂ t
+vα ·

(
I− I

(n)
α

)
·gα

]〉
Ωα ,Ω

Gα∗

+
1

θ w

〈
nw·

(
vws −vs) pw

〉
Ωws,Ω

T w∗

+
1

θ w

⎡
⎣〈ηw

Ds(θw −θ w)

Dt

〉
Ωw,Ω

+

〈
ρw

Ds
(
μw −μw

)
Dt

〉
Ωw,Ω

⎤
⎦ T w∗

− 1

θ w

[
ηw∇θ w −∇(εw pw)+ εwρw∇μw

]
·
(
vw −vs) T w∗

− 1

θ s

〈
ns·(vws −vs)σσσ s:

Cs

js

〉
Ωws,Ω

T s∗

− 1

θ s

⎡
⎣〈ns·ts·

(
vs −vs)〉

Ωws,Ω
−
〈

ηs
Ds(θs −θ s)

Dt

〉
Ωs,Ω

⎤
⎦ T s∗

+
1

θ s

[〈
ρs

Ds(μs −μs)

Dt

〉
Ωs,Ω

−∇·
〈[

ts −σσσ s:
Cs

js
I

]
·
(
vs −vs)〉

Ωs,Ω

]
T s∗

− 1

θ s

[
εsts:ds − εsσσσ s:

Cs

js I:d
s −

〈(
∇·ts −∇σσσ s:

Cs

js

)
·
(
vs −vs)〉

Ωs,Ω

]
T s∗

+
1

θ ws

⎡
⎣〈ηws

D′s(θws −θ ws)

Dt

〉
Ωws,Ω

+

〈
ρws

D′s(μws −μws)

Dt

〉
Ωws,Ω

⎤
⎦ T ws∗

− 1

θ ws

[
ηws∇θ ws +∇·

〈
I′wsγws

〉
Ωws,Ω

+ εwsρws∇μws
]
·
(
vws −vs) T ws∗

+
1

θ ws

[
∇·
〈(
I− I′ws

)
·
(
vws −vws)γws

〉
Ωws,Ω

+
〈(
I− I′ws

)
γws
〉

Ωws,Ω
:dws

]
T ws∗

+
1

θ ws

〈
∇′·I′ws·

(
vws −vs)γws

〉
Ωws,Ω

T ws∗

+
1

θ ws

〈
ηws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇θ ws T ws∗

+
1

θ ws

〈
ρws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇μws T ws∗

− 1

θ w

[〈
ρw

Dsψw

Dt

〉
Ωw,Ω

+ εwρw (vw −vs) ·∇ψw

]
T w
G∗

− 1

θ s

〈
ρs

Dsψs

Dt

〉
Ωs,Ω

T s
G∗

− 1

θ ws

[〈
ρws

D′sψws

Dt

〉
Ωws,Ω

+ εwsρws∇ψws·
(
vws −vs)] T ws

G∗
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+
1

θ ws

〈
ρws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇ψws T ws
G∗

= ∑
α∈I

Λ α ≥ 0 . Sα∗∗

(9.32)

In this equation, the identification of an equation at the right side indicates the par-

ticular balance, conservation, or thermodynamic relation that provided the terms

appearing in the line.

This equation is obviously very long, and would be much longer if the summa-

tions over the entities were expanded out. Some of these summations can be retained

at this point because the notation introduced in Chap. 6 allows the statement of the

conservation equations to be independent of the entity. Because the thermodynamic

expressions developed in Chap. 7 are of different forms for fluids, solids, and inter-

faces, these expressions are introduced explicitly into the equation. The next step to

be employed is mathematical manipulation of Eq. (9.32) to cancel out and recom-

bine appropriate terms into a form that is useful for obtaining closure relations.

9.4.4 Manipulation Insights

The manipulations required to develop Eq. (9.32) toward force-flux form are some-

what daunting, primarily because of the number of operations needed rather than

their complexity. Admittedly, keeping the entity qualifiers, overbars, and vector

products straight requires meticulous and cautious bookkeeping. The main tech-

nical issue that one encounters is deciding which combinations of terms are in a

useful form and which require further rearrangement. Often this decision can only

be made following false starts that lead nowhere and are reconsidered. The steps we

have followed are outlined briefly here and in more detail in Sect. C.1 of Appendix

C. At this point, we present a few “tricks” that are employed but which may not be

obvious. These are motivated by insights gained in revising Eq. (9.32). Some ad-

ditional comments concerning motivation for combination of various terms will be

postponed to the next subsection. In the present section, some exact manipulations

are presented.

Inter-entity entropy transfer

The summation of the entropy equations for the three entities appears at the be-

ginning of Eq. (9.32) and contains terms involving the transfer of entropy between

entities due to phase change and non-advective processes. The net transfer within

the system must be zero, since entropy generation is accounted for by the Λ α terms

associated with the entities. Therefore, we can state



342 9 Single-fluid-phase Flow

∑
α∈I

(
∑

κ∈Icα

κ→α
M ηα,κ + ∑

κ∈Icα

κ→α
Φ

)
= 0 . (9.33)

Material derivative of Kws
E

The material derivative of Kws
E is expressed using the velocity of the ws interface. It

will be useful to express this in terms of the average of a material derivative on the

surface. This is accomplished by first invoking the identity

εwsρws DwsKws
E

Dt
=

〈
ρws

DwsKws
E

Dt

〉
Ωws,Ω

. (9.34)

The definition of the material derivative on the surface, Eq. (7.84), is then intro-

duced based on identity Eq. (7.85). After macroscale quantities are pulled out of the

averaging operator, the result is

εwsρws DwsKws
E

Dt
=

〈
ρws

D′sKws
E

Dt

〉
Ωws,Ω

+ εwsρws (vws −vs) ·∇Kws
E

−
〈

ρws
(
vws −vs) ·(I− I′ws

)
·∇Kws

E

〉
Ωws,Ω

. (9.35)

Inter-entity mass exchange

Inter-entity mass exchange terms arise in all the conservation equations. The com-

bination of these terms across equation sources is undertaken for the purpose of

obtaining expressions involving the mass exchange flux multiplied by some force

that drives the exchange, such as a difference in chemical potentials.

As an example of manipulations that are needed, consider the terms involving

mass exchange multiplied by velocity squared that arises in Eq. (9.32). Extraction of

the three terms that involve inter-entity mass exchange multiplied by some velocity

squared yields the terms we will designate as Mv where

Mv = ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

(
vα,κ ·vα,κ

2

)
− ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
M

(
vα ·vα,κ

)

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

(
vα ·vα

2

)
. (9.36)

These summations may be combined to obtain

Mv = ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

[
(vα −vα,κ)·(vα −vα,κ)

2

]
. (9.37)
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In the derivation of equations for porous medium flow, it is appropriate to express all

the velocities in an objective form, relative to the velocity of the solid phase. We can

subtract and add vs to each term in parentheses in Eq. (9.37) such that the velocities

are each relative to this velocity. Expansion of the resulting expression then gives

Mv = ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

[
(vα −vs)·(vα −vs)

2

]

− ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

[
(vα −vs)·(vα,κ −vs)

]

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

[
(vα,κ −vs)·(vα,κ −vs)

2

]
. (9.38)

Expansion of the summations over the entities (I = {w,s,ws}) and the connected

entities ( Icw = {ws}, Ics = {ws}, and Icws = {w,s}) subject to the definition of vα,κ

given in Eq. (6.96), followed by rearrangement of the result gives

Mv =

(
1

θ w
− 1

θ ws

)(
vws

w −vs) ·(vws
w −vs

2

)
ws→w

M

+

(
1

θ s
− 1

θ ws

)(
vws

s −vs) ·(vws
s −vs

2

)
ws→s
M

+
1

θ w

(
vw −vs) ·[(vw −vs

2

)
−
(
vws

w −vs)]ws→w
M

− 1

θ ws

(
vws −vs) ·

{[(
vws −vs

2

)
−
(
vws

w −vs)]ws→w
M

+

[(
vws −vs

2

)
−
(
vws

s −vs)]ws→s
M

}
. (9.39)

This combination of terms will appear subsequently in the full algebraic rearrange-

ment of Eq. (9.32). Combination and rearrangement of other inter-entity exchange

terms are also needed, but these will not be detailed here since they are similar to,

though less complex than, the previous derivation.

Solid-phase stress tensor

The solid-phase stress tensor integrated over the boundary of the surface is rear-

ranged so that the normal component can be separated from the rest of the tensor.

First, the unit tensor is introduced to establish the equality〈
ns ·ts·

(
vs −vs)〉

Ωws,Ω
=
〈
ns ·ts·I·

(
vs −vs)〉

Ωws,Ω
. (9.40)

On the solid boundary, the unit tensor may be decomposed with
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I= nsns + I′ws for x ∈ Ωws . (9.41)

Substitution of this relation into Eq. (9.40) then gives〈
ns ·ts·

(
vs −vs)〉

Ωws,Ω
=
〈
(ns ·ts·ns)ns·

(
vs −vs)〉

Ωws,Ω

+
〈
ns ·ts·I′ws·

(
vs −vs)〉

Ωws,Ω
. (9.42)

This equation will prove useful when forming the force-flux form of the EI.

Final comment on algebraic manipulations

The full array of mathematical manipulations is more extensive than those provided

in this subsection. However, the flavor of the manipulations is the same. We use

the product rule in rearranging divergence terms; relate all velocities to the solid-

phase velocity by addition to and subtraction from various terms; cancel out terms

that are identical; and group terms that are similar. The task can be completed after

expansion of the summations and recombination back into sums. The manipulations

are carried out in additional detail in Sect. C.1, and the resulting EI is provided in

the next subsection.

9.4.5 Formulation of the CEI

Because the derivation of the CEI from Eq. (9.32) is a lengthy process that requires

significant manipulations, it can be off-putting. However, the CEI is a key equation.

It is an inequality in which the terms are arranged as a product of forces and fluxes

with the requirement that its derivation be exact. No additional restrictions or ap-

proximations are employed in deriving the CEI from Eq. (9.32). In the end, it is

not possible to obtain a CEI that contains only macroscopic force-flux pairings. The

terms that do not satisfy this form have to be dealt with later in simplifying the CEI

to an SEI, as indicated in Fig. 9.1.

The goal of this subsection is to outline the manipulations that are involved in

deriving the CEI. This is provided as an aid to understanding and with the intention

that it will assist an interested individual in deriving a CEI for a case not covered in

this text. The results in this section follow from the rearrangement of Eq. (9.32) as

outlined in Sect. C.1. We note that terms involving the entropy source, the energy

source, and the remaining material derivative terms are grouped together. Similarly,

terms involving the entropy flux and heat flux are grouped together after application

of the product rule; a work term from the solid-phase thermodynamics is grouped

together with the solid-phase heat flux vector terms because it is of a similar form.

The macroscale equilibrium conditions given in Sect. 7.8.1 are used to guide the

formulation of the CEI because the conditions obtained suggest forces or fluxes that

will be zero at equilibrium.
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Table 9.1 CEI formulation summary for the derivation of Eq. (9.43), where the operation ab-
breviations are A for addition and subtraction, E for Euler equation identity, I for identity tensor
components as shown in Eq. (9.41), O for objective form, and P for the product rule. The general
entity qualifier α implies all entities unless otherwise noted

Line(s) Force Precursor Equation(s) Operations

1–4 — Sα
∗ ,Eα

∗ ,Gα
∗ , T α

∗ ,T α
G∗ O,A

5–6 — Sα
∗ ,Eα

∗ ,Gα
∗ , T s

∗ P

7–8 dα Sα
∗ ,Mα

∗ ,Pα
∗ ,Eα

∗ ,T s
∗ ,T ws

∗ E,P

9–10 ∇
(

1

θ α

)
Eα
∗ ,Gα

∗ , T s
∗ P

11

1

θ w

(
μw +Kw

E +ψw
)

Mw
∗ ,Mws

∗ —

− 1

θ ws

(
μws +Kws

E +ψws
)

12

1

θ s

(
μs +Ks

E +ψs +
σσσ s:Cs

3ρs js

)
Ms

∗,Mws
∗ A

− 1

θ ws

(
μws +Kws

E +ψws
)

13 — T s
∗ A,I

14–16
1

θ w
− 1

θ ws
Mα

∗ ,Eα
∗ ,Gα

∗ ,T w
∗ , α ∈ {w,ws} O

17–19
1

θ s
− 1

θ ws
Mα

∗ ,Eα
∗ ,Gα

∗ ,T s
∗ , α ∈ {s,ws} A,O

20–21 vw −vs Mw
∗ ,Pw

∗ ,Ew
∗ ,Gw

∗ ,T w
∗ ,T w

G∗ A,O

22–26 vws −vs Mws
∗ ,Pws

∗ ,Ews
∗ ,Gws

∗ ,T ws
∗ ,T ws

G∗ A,O

27–28 — Gws
∗ ,T α

∗ A,I

29 — T s
∗ I

30 — T s
∗ —

31 — T ws
∗ A

32 — T ws
∗ —

33 — Ews
∗ ,T ws

∗ ,T ws
G∗ A,O

34 — Sα
∗ —

Providing a comprehensive derivation with incremental results is not practical as

part of the flow of this text. Thus, as a compromise between exhaustive detail and

simply writing the result, we provide comprehensive guidance for the rearrange-

ments needed in deriving the CEI of Eq. (9.43) in Sect. C.1 and summarize that

guidance in Table 9.1. The “Lines” column in the table refers to the line numbers in
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Eq. (9.43). The “Precursor Equation(s)” contribute terms to the CEI lines. Because

the elements of the precursor equations are identified in Eq. (9.32), some guidance

exists as to where the terms associated with a particular line of the CEI arise. The

“Operations” column lists the type of manipulations needed to derive the final form

of the indicated lines from precursor expressions. A significant component of the

CEI derivation involves collecting terms that have a common multiplier or which

cancel. Also, terms are often added in and then subtracted out to produce a de-

sirable form (denoted as an “A” operation), as has been encountered in deriving Eq.

(9.38) from Eq. (9.37) by adding and subtracting vs. The Euler equations for entities

from Table 7.1 are employed at various times (“E” operations); the identity tensor is

divided into components as shown in Eq. (9.41) (“I” operations); expressions are put

in objective form by referencing all velocities to the solid-phase velocity as demon-

strated in Eqs. (9.35) and (9.39) (“O” operations); and the product rule is used (“P”

operations). Terms that end up in a particular line of the CEI originate from the var-

ious precursor conservation and thermodynamic equations that were employed in

forming the augmented EI. The list of precursor equations and operations needed to

derive a particular line or group of lines of Eq. (9.43) is an indicator of the type and

extent of manipulations needed. It is emphasized that the manipulations performed

are guided by the desire to arrange the CEI in a force-flux form to the extent possible

without introducing approximations.

Performing the manipulations summarized in Table 9.1 results in the macroscale

CEI for single-fluid-phase flow in a porous medium as

− ∑
α∈IP

{
εα bα − 1

θ α

[
εα hα +

〈
ηα

Ds
(

θα −θ α
)

Dt

〉
Ωα ,Ω

1

+

〈
ρα

Ds
(

μα +ψα −μα −Kα
E −ψα

)
Dt

〉
Ωα ,Ω

]}
2

−
{

εwsbws − 1

θ ws

[
εwshws +

〈
ηws

D′s
(

θws −θ ws
)

Dt

〉
Ωws,Ω

3

+

〈
ρws

D′s
(

μws +ψws −μws −Kws
E −ψws

)
Dt

〉
Ωws,Ω

]}
4

− ∑
α∈I/S

∇·
[

εα ϕϕϕα − 1

θ α

(
εα qα + εα qα

g

)]
5

−∇·
{

εsϕϕϕs − 1

θ s

[
εsqs + εsqs

g −
〈(

ts −
σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]}
6

+
1

θ w

(
εwtw + εw pwI

)
:dw +

1

θ s

(
εsts − εsts

)
:ds

7
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+
1

θ ws

[
εwstws − εwsγwsI+

〈(
I− I′ws

)
γws
〉

Ωws,Ω

]
:dws

8

− ∑
α∈I/S

(
εα qα + εα qα

g

)
·∇
(

1

θ α

)
9

−
[

εsqs + εsqs
g −

〈(
ts −

σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]
·∇
(

1

θ s

)
10

+
w→ws

M
[

1

θ w

(
μw +Kw

E +ψw
)
− 1

θ ws

(
μws +Kws

E +ψws
)]

11

+
s→ws
M

[
1

θ s

(
μs +Ks

E +ψs +
σσσ s:Cs

3ρs js

)
− 1

θ ws

(
μws +Kws

E +ψws
)]

12

+
1

θ s

〈(
σσσ s:Cs

ρs js
− ns·ts·ns

ρs
− σσσ s:Cs

3ρs js

)
ρs (vs −vws) ·ns

〉
Ωws,Ω

13

−
{

w→ws
Q +

w→ws
G +

(
Ews

w +Kws
Ew +ψws

w

)w→ws
M 14

+

[
w→ws

T +

(
vws

w −vs
)

2

w→ws
M

]
·
(
vws

w −vs)
15

−
〈
nw·

(
vws −vs) pw

〉
Ωws,Ω

}(
1

θ w
− 1

θ ws

)
16

−
{

s→ws
Q +

s→ws
G +

(
Ews

s +Kws
Es +ψws

s

) s→ws
M 17

+

[
s→ws

T +

(
vws

s −vs
)

2

s→ws
M

]
·
(
vws

s −vs)
18

+
〈
ns·ts·nsns·

(
vws −vs)〉

Ωws,Ω

}(
1

θ s
− 1

θ ws

)
19

− 1

θ w

{
ηw∇θ w −∇

(
εw pw

)
+ εwρw∇

(
μw +Kw

E +ψw
)
+ εwρwgw

20

−
[

w→ws
T −

(
vw −vs

)
2

w→ws
M +

(
vws

w −vs)w→ws
M

]}
·
(
vw −vs)

21

− 1

θ ws

{
ηws∇θ ws +∇·

〈
I′wsγws

〉
Ωws,Ω

+ εwsρws∇
(

μws +Kws
E +ψws

)
22

+ εwsρwsgws +
w→ws

T −
(
vws −vs

)
2

w→ws
M +

(
vws

w −vs)w→ws
M 23

+
s→ws

T −
(
vws −vs

)
2

s→ws
M +

(
vws

s −vs) s→ws
M 24
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−
〈
ηws

(
I− I′ws

)〉
Ωws,Ω

·∇θ ws
25

−
〈
ρws

(
I− I′ws

)〉
Ωws,Ω

·∇
(

μws +Kws
E +ψws

)}
·
(
vws −vs)

26

+
1

θ ws

〈[
pwnw −ns·ts·nsns + γws

(
∇′·I′ws

)
27

+ρwsgws·
(
I− I′ws

)]
·
(
vws −vs)〉

Ωws,Ω
28

− 1

θ s

〈
ns·ts·I′ws·

(
vs −vs)〉

Ωws,Ω
29

+
1

θ s

〈(
∇·ts −∇σσσ s:

Cs

js

)
·
(
vs −vs)〉

Ωs,Ω
30

+
1

θ ws

〈
ηws

(
vws −vws) ·(I− I′ws

)〉
Ωws,Ω

·∇θ ws
31

+
1

θ ws
∇·
〈(
I− I′ws

)
·
(
vws −vws)γws

〉
Ωws,Ω

32

+
1

θ ws

〈
ρws

(
vws −vws) ·(I− I′ws

)〉
Ωws,Ω

·∇
(

μws +Kws
E +ψws

)
33

= ∑
α∈I

Λ α ≥ 0 . 34

(9.43)

Many of the lines in this equation are in the form of a macroscopic flux multiply-

ing a macroscopic force where both factors are zero at equilibrium (e.g., lines 7–12).

However other lines still contain the averaging operator applied to microscale quan-

tities (e.g., lines 13, 19, and 30), while others are averages of microscopic force-flux

products (e.g., lines 27–28). To be able to utilize Eq. (9.43) as a guide to closure re-

lations, it is necessary to make some approximations. We continue to emphasize that

the CEI given in Eq. (9.43) does not employ any approximations beyond those in-

herent in constraining the EI with conservation and thermodynamic relations. Thus,

if subsequent utilization of relations developed by imposing approximations shows

them to be inadequate, one can return to this CEI and consider alternative approxi-

mations. In the following section, we will make a series of approximations that are

reasonable for many applications and thereby simplify the CEI to an SEI.

9.5 Simplified Entropy Inequality

The SEI is the second key archival equation in TCAT analysis. The SEI for a macro-

scale analysis is always arranged in strict force-flux form where each force and flux

is a macroscale quantity. Thus, the SEI is an essential component in formulating

closed, solvable TCAT models in that it guides the formulation of closure relations.
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The development of the SEI for macroscale models parallels the development of the

SEI for a microscale system as described in Sect. 5.5.

Because the CEI is a final exact form of the EI but is not in strict macroscale

force-flux form, two general types of additional manipulations are employed to de-

rive an SEI. First, mathematical approximations, referred to as SEI approximations,,

motivated by expected system dynamics are employed so that terms in the CEI con-

tribute to the desired force-flux form. Second, the particular system of interest is

restricted to be some subset of the general single-fluid-phase system defined ac-

cording to the three primary restrictions listed in Sect. 9.2. This is accomplished by

the use of secondary restrictions. Many combinations of secondary restrictions and

SEI approximations exist. Therefore, a single CEI can be mapped to a set of possible

SEI’s corresponding to different systems. This is why both the SEI and the CEI are

of important archival value for TCAT model development. A representative set of

SEI approximations and secondary restrictions will be stated formally to highlight

their utilization in TCAT model development.

9.5.1 The Need for Approximations

We emphasize that the approximations to be proposed here are subject to change as

new insights develop or if the system of interest behaves in a way that is not consis-

tent with the approximations. The mathematical approximations are always subject

to validation based on some mix of mathematical analysis, computer simulation,

laboratory experimentation, and field studies. When a system satisfies the primary

restrictions proposed but the TCAT model does not adequately describe the system,

the logical entry point for reanalysis of the system is the set of SEI approximations.

The need for additional manipulations to derive an SEI from the CEI of Eq. (9.43)

can be deduced from a cursory examination of Table 9.1. The table indicates that a

force-flux form is not obtained in lines 1–6, 13, and 27–33 of the equation. Thus,

work on these lines is needed to develop an SEI that consists exclusively of force-

flux pairs. Examination of the terms in the equation components of these lines will

suggest appropriate SEI approximations and secondary restrictions. These will be of

two types. One involves elimination of groups of terms by approximating them to be

much smaller than other terms in the equation. The other is based on approximations

that allow averages of groups of terms to be approximated in terms of macroscale

variables.

9.5.2 Elimination of Terms

Lines 1–6 in Eq. (9.43) are not in force-flux form. However, these lines have been

arranged in convenient groupings. Elimination of these lines of the CEI will be

enabled by the following SEI approximation:
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SEI Approximation 9.1 (Macroscopically Simple System)
The system of concern is macroscopically simple, such that the entropy source is
balanced by the sum of a heat source and deviation terms with

εα bα − 1

θ α

[
εα hα +

〈
ηα

Ds
(

θα −θ α
)

Dt

〉
Ωα ,Ω

+

〈
ρα

Ds
(

μα +ψα −μα −Kα
E −ψα

)
Dt

〉
Ωα ,Ω

]
= 0 for α ∈ {w,s}

(9.44)

and

εwsbws − 1

θ ws

[
εwshws +

〈
ηws

D′s
(

θws −θ ws
)

Dt

〉
Ωws,Ω

+

〈
ρws

D′s
(

μws +ψws −μws −Kws
E −ψws

)
Dt

〉
Ωws,Ω

]
= 0 ; (9.45)

and the entropy flux is balanced by a non-advective energy flux for all entities, con-
sisting of heat and mechanical contributions, such that

εα ϕϕϕα − 1

θ α

(
εα qα + εα qα

g

)
= 0 for α ∈ {w,ws} (9.46)

and

εsϕϕϕs − 1

θ s

[
εsqs + εsqs

g −
〈(

ts −
σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]
= 0 . (9.47)

This SEI approximation is reasonable because like terms have been paired—entropy

sources with energy sources and entropy fluxes with energy fluxes. The deviation

terms involving material derivatives, the vectors qα
g , and the last term on the left side

of Eq. (9.47) all originate in the averaging of the conservation and thermodynamic

equations to the macroscale. When the variability of functions over the macroscale

is small, these terms are negligible.

Next, consider lines 29–30 in Eq. (9.43). Each of these lines involves the average

of a product of terms wherein each factor vanishes at equilibrium.2 The product

of the microscale solid-phase shear stress and the difference between the microscale

lateral solid surface velocity and the average solid velocity is averaged over the solid

surface in line 29. The average of this product is small relative to other terms in the

2 See the equilibrium conditions given by Eqs. (4.54) and (4.106).
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entropy inequality. Line 30 involves an average over the solid phase of the product

of a quantity that is zero at equilibrium and the difference between the point solid

velocity and its average. In the system being considered, both of these terms are very

small such that the product can be neglected. The following SEI approximation is

introduced to eliminate lines 29 and 30 and a portion of line 10 in Eq. (9.43) from

further consideration:

SEI Approximation 9.2 (Solid-phase Velocity)
Expressions that involve the average of a product of the difference between the mic-
roscale and a macroscale solid-phase velocity with another term known to vanish
at equilibrium are assumed to be negligible.

Lines 31–33 all involve averages of the difference between the microscale nor-

mal component of the velocity in the interface and the macroscale velocity in the

interface multiplied by, essentially, an average normal direction. This difference is

presumably small. Also, the terms in these lines, taken together, have some ele-

ments that are characteristic of a Gibbs-Duhem equation. For these reasons, the sum

of terms in lines 31–33 of Eq. (9.43) are taken to be negligible relative to the remain-

ing terms in the CEI. This is stated formally in the following SEI approximation:

SEI Approximation 9.3 (Interface Velocity Difference)
Expressions involving the average of the difference between the microscale normal
flow velocity in a fluid-solid interface and the average normal flow of the macroscale
velocity in a fluid-solid interface are negligible.

Based on this SEI approximation, lines 31–33 are dropped from the CEI.

Lastly, an approximation can be introduced that eliminates terms involving the

average of the difference between the microscale solid surface stress and its average

multiplied by the mass exchange at the ws interface. This term is negligible when

the correlation between the stress differences and the mass exchange is small, if the

stress at the surface is essentially constant, or if the mass exchange at the surface is

negligible. The following SEI approximation is proposed

SEI Approximation 9.4 (Stress Difference and Mass Exchange)
Terms that involve a product of the microscale mass exchange between the solid
phase and the ws interface and the difference between the microscale and macro-
scale normal solid stress at the interface can be neglected.

SEI Approximation 9.4 allows for elimination of line 13 in Eq. (9.43).

9.5.3 Approximation of Averages

The remaining SEI approximations to be employed involve breaking of the averages

of products of microscale quantities into products of macroscale quantities. The

need for such a protocol exists so that many of the remaining terms in Eq. (9.43)

can be expressed strictly in terms of macroscale quantities. We emphasize that all
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approximations are subject to revisitation if they are found to be unacceptable for a

system of interest. We will make use of what seem to be the most straightforward,

yet theoretically plausible, approximations.

An important quantity that enters the analysis is the macroscale geometric orien-

tation tensor for a ws interface, Gws, previously defined in Eq. (8.13), whose defini-

tion is repeated here with alternative equivalent representations,

Gws = 〈Gws〉Ωws,Ωws
= 〈nsns〉Ωws,Ωws

=
〈
I− I′ws

〉
Ωws,Ωws

. (9.48)

Note that Gws terms exist as products with the scalars ηws,γws, and ρs in lines 8,

25, and 26 of Eq. (9.43). Also, because I′ws = I−Gws, the product Gwsγws is seen to

exist in line 22. An SEI approximation involving the average of the product of the

microscale orientation tensor with a scalar facilitates evaluation of such terms and

is stated:

SEI Approximation 9.5 (Geometric Orientation Products)
The average over the ws interface of a product of the microscale geometric orienta-
tion tensor Gws with a microscale scalar fws can be evaluated as the product of the
macroscale averages of the two components of the original expression such that

〈Gws fws〉Ωws,Ω = εwsGws f ws . (9.49)

SEI Approximation 9.5 introduces no error when the interface orientation is inde-

pendent of the value of the scalar involved in the product. With this approximation,

and making use of the definitions of averages previously employed, the averages in

lines 8, 25, and 26 of Eq. (9.43) can be evaluated with〈
ηws

(
I− I′ws

)〉
Ωws,Ω

= ηwsGws , (9.50)〈(
I− I′ws

)
γws
〉

Ωws,Ω
= εwsGwsγws , (9.51)

and 〈
ρws

(
I− I′ws

)〉
Ωws,Ω

= εwsρwsGws . (9.52)

The product in line 22 is similarly evaluated with〈
I′wsγws

〉
Ωws,Ω

= εws (I−Gws)γws . (9.53)

Kinematic equations that describe the evolution of volume, interface, and com-

mon curve densities were developed in Chap. 8 as an important element of the for-

mulation of closed TCAT models. For a single-fluid-phase system, the evolution of

the solid-phase volume fraction is described by Eq. (8.6) in the form

Dsεs

Dt
=
〈
ns ·

(
vws −vs)〉

Ωws,Ω
. (9.54)
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Although Eq. (9.54) is exact, lines 16, 19, 27 and 28 of Eq. (9.43) contain a product

of the quantity being averaged on the right side of Eq. (9.54) with a microscale scalar

that is the property of the w or s phase or of the ws interface. Therefore, evaluation

of the averages in these lines requires an SEI approximation as follows:

SEI Approximation 9.6 (Evolution Product)
The average over the ws interface of a term involving the product of ns·(vws− vs)
with a microscale scalar can be approximated as the product of the macroscale
averages of the two factors and making use of Eq. (9.54) such that

〈
ns ·

(
vws −vs) fws

〉
Ωws,Ω

=
Dsεs

Dt
f ws (9.55)

and 〈
ns ·

(
vws −vs) fα

〉
Ωws,Ω

=
Dsεs

Dt
f ws
α for α ∈ {w,s} . (9.56)

SEI Approximation 9.6 is a product breaking approximation that is exact for the

case in which the two factors of the product that are split are not correlated with

each other. In applying this approximation to the terms in Eq. (9.43), it is useful to

recall that on the ws interface, ns = −nw. Thus evaluation of the expression in line

16 gives 〈
nw·

(
vws −vs) pw

〉
Ωws,Ω

=−Dsεs

Dt
pws

w . (9.57)

Line 19 is evaluated with ns·ts·ns identified as the scalar within the averaging oper-

ator so that

〈
ns·
(
vws −vs)ns·ts·ns

〉
Ωws,Ω

=
Dsεs

Dt
(ns·ts·ns)

ws
s . (9.58)

Lines 27 and 28 are handled together. We make use of identity Eq. (2.60), which is

expressed for the ws interface as ∇′·I′ws =−(∇′·ns)ns, to obtain〈[
pwnw −ns·ts·nsns + γws

(
∇′·I′ws

)
+ρwsgws·

(
I− I′ws

)]
·
(
vws −vs)〉

Ωws,Ω

=
〈[

− pw −ns·ts·ns − γws
(
∇′·ns

)
+ρwsgws·ns

]
ns·
(
vws −vs)〉

Ωws,Ω
. (9.59)

The quantity in brackets on the right side of this equation is zero at equilibrium

according to Eqs. (4.52) and (4.53). Then, application of SEI approximation 9.6

yields〈[
pwnw −ns·ts·nsns + γws

(
∇′·I′ws

)
+ρwsgws·

(
I− I′ws

)]
·
(
vws −vs)〉

Ωws,Ω

=−
{

pws
w + 〈ns·ts·ns〉Ωws,Ωws

+
〈
γws

(
∇′·ns

)〉
Ωws,Ωws

− (ρwsgws·ns)
ws
} Dsεs

Dt
.

(9.60)
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The right side of this equation is a force-flux form where both factors are zero at

equilibrium.

It is necessary to introduce another SEI approximation to break the product

γws (∇′·ns) so that it can be evaluated. This sort of product will be especially im-

portant in considering the multi-fluid flow case where terms involving the curvature

of the interface between fluids arises. We state this SEI approximation as follows:

SEI Approximation 9.7 (Product of Curvature and Tension)
The average over the ws interface of a term involving the product of the microscale
curvature ∇′·ns with the microscale interfacial tension γws can be approximated as
the product of the macroscale averages of the two factors such that〈

γws
(
∇′·ns

)〉
Ωws,Ωws

= 〈γws〉Ωws,Ωws

〈
∇′·ns

〉
Ωws,Ωws

= γwsJws
s , (9.61)

where Jws
s = 〈∇′·ns〉Ωws,Ωws

is the average curvature of the ws interface.

Equation (9.60), subject to the additional simplification of Eq. (9.61), is used to

modify lines 27 and 28 in Eq. (9.43).

9.5.4 General SEI

When SEI Approximations 9.1 through 9.4 are used to eliminate terms from CEI Eq.

(9.43), and SEI approximations 9.5 through 9.7 are employed to introduce mathe-

matical simplifications into this equation, the resulting general form of the SEI is

1

θ w

(
εwtw + εw pwI

)
:dw +

1

θ s

(
εsts − εsts

)
:ds

+
1

θ ws

[
εwstws − εwsγws (I−Gws)

]
:dws − ∑

α∈I

(
εα qα + εα qα

g

)
·∇
(

1

θ α

)

+
w→ws

M
[

1

θ w

(
μw +Kw

E +ψw
)
− 1

θ ws

(
μws +Kws

E +ψws
)]

+
s→ws
M

[
1

θ s

(
μs +Ks

E +ψs +
σσσ s:C

s

3 js

)
− 1

θ ws

(
μws +Kws

E +ψws
)]

−
{

w→ws
Q +

w→ws
G +

(
Ews

w +Kws
Ew +ψws

w

)w→ws
M

+

[
w→ws

T +

(
vws

w −vs

2

)
w→ws

M
]
·
(
vws

w −vs)
+ pws

w
Dsεs

Dt

}(
1

θ w
− 1

θ ws

)
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−
{

s→ws
Q +

s→ws
G +

(
Ews

s +Kws
Es +ψws

s

) s→ws
M

+

[
s→ws

T +

(
vws

s −vs

2

)
s→ws
M

]
·
(
vws

s −vs)
+ 〈ns·ts·ns〉Ωws,Ωws

Dsεs

Dt

}(
1

θ s
− 1

θ ws

)

− 1

θ w

{
ηw∇θ w −∇

(
εw pw

)
+ εwρw∇

(
μw +Kw

E +ψw
)
+ εwρwgw

−
[

w→ws
T −

(
vw −vs

)
2

w→ws
M +

(
vws

w −vs)w→ws
M

]}
·
(
vw −vs)

− 1

θ ws

{
ηws (I−Gws) ·∇θ ws +∇·

[
(I−Gws)εwsγws

]
+ εwsρws (I−Gws) ·∇

(
μws +Kws

E +ψws
)

+ εwsρwsgws +

[
w→ws

T −
(
vws −vs

)
2

w→ws
M +

(
vws

w −vs)w→ws
M

]

+

[
s→ws

T −
(
vws −vs

)
2

s→ws
M +

(
vws

s −vs) s→ws
M

]}
·
(
vws −vs)

− 1

θ ws

Dsεs

Dt

[
pws

w + 〈ns·ts·ns〉Ωws,Ωws
+ γwsJws

s − (ρwsgws·ns)
ws
s

]
= ∑

α∈I
Λ α ≥ 0 . (9.62)

This general SEI has been derived from the CEI based on the stated set of SEI ap-

proximations. At this point, no secondary restrictions have been applied. This means

that the same scope of systems described with the original CEI are also describable

using the SEI given by Eq. (9.62). Secondary restrictions could be applied to restrict

physical processes considered, such as heat transfer, solid compressibility, or inter-

phase transfer of mass. Any combination of these types of restrictions will further

simplify this SEI, narrow the scope of problems that can be modeled, and lead to

an easier formulation of closure. As an illustration, we will consider closure of one

simplified case.

9.6 Example Restricted Application

The objective of this section is to reduce the scope of problems that can be addressed

by Eq. (9.62) in anticipation of the development of a closed set of equations. The

9.5 Simplified Entropy Inequality



356 9 Single-fluid-phase Flow

reduction in scope is accomplished by stating a secondary restriction that limits

the processes being studied and allowable properties of the entities. The effect of

this restriction is that it will eliminate both terms in the SEI and also some of the

terms that appear in the conservation equations. Once these restrictions have been

stated, attention will turn to assuring that we have enough conditions and equations

to allow the formulation of a closed model that is consistent with the reduced form

of the SEI.

9.6.1 Statement of Secondary Restriction

It is important to understand that a secondary restriction is a statement that limits the

physical processes one wishes to investigate. The effects of such restrictions are to

cause terms in the SEI and conservation equations to drop out, thereby simplifying

the problem formulation and narrowing the scope of problems that can be modeled.

Here, we will look at a system restricted as follows:

Secondary Restriction 9.1 (Isothermal, No Mass Exchange)
The macroscale single-fluid-phase system of concern is such that:

• temperatures of all entities are equal and constant such that θ α = θ for α ∈ I

and all derivatives of temperature are zero;

• mass exchange between entities does not occur so that
w→ws

M =
s→ws
M = 0;

• the flow is slow so the deviation kinetic energy term Kα
E is of second order small-

ness for α ∈ I and can be neglected; and
• the interface density, ρws, is negligible.

The conditions on the temperature difference and temperature gradient, which are

forces in the EI, along with the condition on the mass exchange flux imply that the

values of their conjugate fluxes and forces do not contribute to entropy generation.

With Secondary Restriction 9.1 applied, Eq. (9.62) reduces dramatically to

1

θ

(
εwtw + εw pwI

)
:dw +

1

θ

(
εsts − εsts

)
:ds

+
1

θ

[
εwstws − εwsγws (I−Gws)

]
:dws

+
1

θ

[
∇
(

εw pw
)
− εwρw∇

(
μw +ψw)− εwρwgw +

w→ws
T

]
·
(
vw −vs)

− 1

θ

{
∇·
[
(I−Gws)εwsγws

]
+

w→ws
T +

s→ws
T

}
·
(
vws −vs)

− 1

θ
Dsεs

Dt

[
pws

w + 〈ns·ts·ns〉Ωws,Ωws
+ γwsJws

s

]
= ∑

α∈I
Λ α ≥ 0 . (9.63)
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Because of the restrictions on temperature and mass exchange, this SEI does

not have the ability to model heat transfer or inter-entity mass exchange. The in-

formation that can be obtained from a restricted SEI is a subset of the information

available from a more general form. An important element of utilizing any SEI is

ensuring that sufficient conditions may be extracted to produce a closed equation

set. This can be determined by counting the number of unknown variables and the

number of equations available to solve the problem.

9.6.2 Count of Variables

For the case of single-fluid-phase flow in a porous medium, there are three entities

that are being modeled with I = {w,s,ws}. The conservation equations are given

in Table 6.3. The full conservation equation set consists of contributions for each

of the three entities, α ∈ {w,s,ws}. Thus, we have three mass conservation equa-

tions (Mα
∗ ), nine components of the three momentum equations (Pα

∗ ), three energy

equations (Eα
∗ ), three body force potential equations (Gα

∗ ), and the SEI given by Eq.

(9.63), for a total of 19 equations. However, as a consequence of Secondary Re-

striction 9.1, no variables appear in Eq. (9.63) that are introduced into the system

description in the energy equation or the body force potential equation (i.e., Eα ,

hα , hα , Kα
E , Eα,κ

, Kα,κ
E ,

κ→α
Q , qα , Ψ α , ψα,κ ,

κ→α
G , qα

g ). Therefore, these latter two

equation types are not used for the full system description, reducing the number of

equations from 19 to 13. Furthermore, since ρws and inter-entity mass exchange are

also set to zero in Secondary Restriction 9.1, all the terms in the interface mass bal-

ance equation are zero. Therefore, Mws
∗ = 0 provides no information; this reduces

the available equation count to 12 (Mκ
∗ for κ ∈ {w,s}, vector equations Pα

∗ for

α ∈ {w,s,ws}, and Eq. (9.63)).

The variables that appear in the equation set for modeling the system are mem-

bers of the set V where

V= {εα ,ρκ ,vα ,gκ ,
ws→κ

T ,tα , pw, pws
w ,ts,γws,Gws,

μw,ψw,〈ns·ts·ns〉Ωws,Ωws
,Jws

s ,Λ α} for κ ∈ IP,α ∈ I . (9.64)

Thus with vectors contributing three variables and tensors nine, V contains 81 mem-

bers. In light of the fact that we have identified 12 equations, a deficit of 69 equations

or conditions remains for the system to be closed. This deficit reduces immediately

to 54 by recognizing that each tensor is symmetric and thus consists of only six

independent members rather than nine. Nevertheless, even for this relatively sim-

ple physical problem, the formulation of needed additional conditions is not trivial.

Fortunately, the SEI provides helpful guidance that can be used to supplement the

equation set. The requirement that these additional conditions must be specified ex-

plicitly is a strength of the TCAT approach as the assumptions made can be revisited

to improve a model.
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9.6.3 Reduction in Number of Variables

If we take into account the symmetry of the stress tensor, Eq. (9.63) has 25 pairs of

forces and fluxes on the left side that can be used to suggest closure relations. This

still leaves a deficit of 29 conditions that are needed to obtain full closure. In this

subsection, we will identify conditions and assumptions employed to eliminate this

deficit of equations needed to produce a solvable system.

Gravity (6)

The microscale gravity is assumed to be a known constant vector. Thus, its average

will be equal to the same constant. Specification of the vectors gw and gs reduces

the number of variables by six leaving 23.

Gravitational Potential of the www phase (1)

At the microscale, we know that ∇ψw +gw = 0. When the distribution of the space

within an REV occupied by the w phase is uniform, the macroscale gravitational

potential satisfies the condition ∇ψw+gw = 0. When the distribution of the w phase

in the system is not uniform, ψw will not be a linear function of macroscale eleva-

tion. We will consider that ∇ψw can be specified in Eq. (9.63) and the number of

unknowns is reduced by one.

Entropy Production (2)

The entropy production rates, Λ w, Λ s, and Λ ws, appear in the formulation only in

Eq. (9.63) and only as a sum rather than individually. Thus rather than considering

the values of the three individual production rates as unknowns, we will concern

ourselves only with their sum. This observation decreases the number of unknowns

by two.

Volume Fraction Condition (1)

The system is comprised of two phases that occupy volume. Thus the fractions of

space occupied by the two phases must sum to 1, with

εw + εs = 1 . (9.65)

By this equation, knowledge of εw determines εs and thus eliminates one unknown

variable.
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Specification of pppws
www (1)

The pressure in the w phase appears averaged over the boundary of the w phase and

over the w phase itself. In many cases, the difference between these averages will

be negligible. However, rather than imposing this constraint at this time, we will

assume that pws
w can be specified as a function of pw and the pressure-like quantity

that is a product of interfacial tension and curvature, γwsJws
s , such that

pws
w = pws

w (pw,γwsJws
s ) . (9.66)

This approximation reduces the number of unknown variables by one. However the

burden of having to determine the form of this function is introduced.

Morphology (7)

The orientation tensor, Gws, is an important quantity that accounts at the macroscale

for any orientation preferences of the solid material. Here, for simplicity, we will

assume that the orientation of the grains is random, so that

Gws = I/3 . (9.67)

This assumption can be changed for materials that exhibit directional dependence.

The average curvature of the grains, Jws
s , is considered to be known. Specification

of Gws and Jws
s reduces the number of unknown variables by seven.

Equations of State (4)

We will assume that equations of state in terms of macroscale variables can be pos-

tulated similarly to state equations for microscale variables. Thus, with temperature

and chemical composition considered constant, we propose

ρw = ρw(pw) , (9.68)

ρs = ρs(〈ns·tsns〉Ωws,Ωws
) , (9.69)

μw = μw(pw) , (9.70)

and

γws = constant . (9.71)

If desired, γws can be postulated to be a function of the pressure at the interface.

However, for our purposes, a constant interfacial tension suffices. This set of state

equations will require parameterization, but reduces the excess number of variables

by four.
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Interface Evolution (1)

An approximate interface evolution equation was derived in Chap. 8 and is given as

Eq. (8.20), repeated here for convenience, with

Dsεws

Dt
− Jws

s
Dsεs

Dt
+ εwsGws:ds = 0 . (9.72)

This relation reduces the equation deficit by one.

Solid-phase Stress Tensor (6)

Appearing in the list of variables is the average of the microscale solid-phase stress,

ts. The general form of the microscale solid stress based on kinematic considerations

is given in Eq. (4.25), and therefore its average can be calculated with

ts =

〈
2

js
(∇X xs)

T ·σσσ s·∇X xs

〉
Ωs,Ωs

. (9.73)

There is a need to approximate the average of the product of terms that appears on

the right side. This will be done later, along with restrictions that limit the behavior

of the solid material. For now, we merely state that we will specify ts and thereby

impose six restrictions.

The preceding identification of 29 variables and equations still leaves a deficit of

25 equations to close the system. The identification of these 25 additional conditions

is guided by the force-flux pairs that appear in the SEI, Eq. (9.63).

9.6.4 Conjugate Force-flux Closure

As was the case with the closure of microscale models in Chap. 5, the closure pro-

cedure that makes use of the EI can be formulated in two alternative ways. First, a

force-flux closure can be posed whereby a flux is considered to be linearly related

only to its conjugate force. A second, more general, approach allows each flux to

be proportional to all the forces. In either event, the formulation of closure relations

is approximate and provides non-unique expressions that are subject to scrutiny in

regard to how well they describe a system of interest. These closure expressions

are built on SEI approximations as well as the approximations of variables. Thus,

by altering any of the employed assumptions, a considerable range in the hierar-

chy of closed models can be obtained. Although the need to impose a large set of

approximations to arrive at a model may at first seem unattractive, the fact that all

assumptions that underpin a model are explicitly known provides a clear path for re-

search to improve a model. This is superior to a less specific route to a closed model

of unknown rigor. The last steps of the closure process will be illustrated here to
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provide an instance of a closed model from within the hierarchy. We will list the

conjugate force-flux closure relations that result from Eq. (9.63) in the order of the

forces that appear in this equation.

Forces: dw, ds, and dws (18)

The multipliers of the rates of strain tensors are considered to have zero-order depen-

dence on the rate of strain. This implies that the macroscale gradients of velocity do

not contribute to the stress tensor. Such an approximation is reasonable for a porous

medium wherein the microscale gradients in the pore space may be significant, but

gradients of average velocity will be small. With this approximation, the fluxes that

multiply the forces dα are zero such that

tw =−pwI , (9.74)

ts = ts , (9.75)

and

tws = γws (I−Gws) . (9.76)

These equations provide 18 closure conditions.

Forces: (vwww −vsss) and (vwwwsss −vsss) (6)

We consider the fluxes to be linearly related to each of the conjugate relative ve-

locity forces.3 We know that both of these forces are zero at equilibrium, and that

away from equilibrium the flow process produces entropy. The resulting linearized

expressions are

∇
(

εw pw
)
− εwρw∇

(
μw +ψw)− εwρwgw +

w→ws
T = R̂

w·
(
vw −vs) (9.77)

and

−∇·
[
(I−Gws)εwsγws

]
−

w→ws
T −

s→ws
T = R̂

ws·
(
vws −vs) . (9.78)

These vector equations provide six closure conditions. However, the tensors R̂
w

and

R̂
ws

that have been introduced will have to be estimated or specified in terms of

problem variables. The signs on these tensor coefficients are chosen for each term

so that the tensors are positive semi-definite.

3 A more general closure scenario would allow each flux to be linearly related to both of the relative
velocity forces. Inherent in conjugate force-flux closure is the approximation that cross-coupling
is not important.
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Force: pppwwwsss
www + 〈nsss·tsss·nsss〉Ωwwwsss,Ωwwwsss

+++ γwwwsssJJJwwwsss
sss (1)

This force does not appear as one of the original forces identified for the CEI in

Table 9.1, although we know it is zero at equilibrium based on Eq. (7.115). It is

introduced into the problem by SEI Approximation 9.6. The requirements that the

conjugate flux and force will both be zero at equilibrium and the stipulation that this

process be entropy-producing suggest the linear relation

Dsεs

Dt
=−ĉ

(
pws

w + 〈ns·ts·ns〉Ωws,Ωws
+ γwsJws

s

)
. (9.79)

Note that the approximation given in Eq. (9.66) may be used to replace pws
w with

some combination of pw and γwsJws
s .

9.6.5 Closed Conservation Equation Set

The equations and approximations in Sect. 9.6.3 and the closure conditions in

Sect. 9.6.4 are sufficient to obtain a closed set of conservation equations. We will

provide the set here with the approximations inserted into the mass and momentum

conservation equations listed in Table 6.3.

Mass Conservation for www and sss Phases

With no mass exchange and ρws = 0, the only mass conservation equations are those

for the w and s phases. These equations are

Dα(εα ρα)

Dt
+ εα ρα I:dα = 0 for α ∈ IP . (9.80)

Momentum Conservation for the www Phase

The momentum conservation equation for the fluid phase makes use of the closure

relations for the stress tensor given in Eq. (9.74) and the closure relation stated in

Eq. (9.77). For the w phase, the momentum equation is

Dw(εwρwvw)

Dt
+ εwρwvwI:dw + εwρw∇

(
μw +ψw)+ R̂

w·
(
vw −vs)= 0 . (9.81)
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Momentum Conservation for the wwwsss Interface

For the massless ws interface, the momentum equation in conjunction with Eq.

(9.78) provides the trivial condition

R̂
ws·
(
vws −vs)= 0 . (9.82)

Momentum Conservation for the sss Phase

The solid-phase momentum equation makes use of the relation for the stress tensor

given by Eq. (9.75), closure relations Eqs. (9.77) and (9.78), and the momentum

equation for the interface, Eq. (9.82). Combination of these equations with the mo-

mentum equation P s
∗ provides

Ds(εsρsvs)

Dt
+ εsρsvsI:ds − εsρsgs − εwρwgw − εwρw∇

(
μw +ψw)

−∇·
[
εsts − εw pwI+(I−Gws)εwsγws

]
= R̂

w·
(
vw −vs) . (9.83)

Entropy Generation Rate for the System

The system entropy generation rate is obtained from Eq. (9.63) by replacing the

fluxes with their linear representations in terms of forces as given by Eqs. (9.77)–

(9.79) and invoking the conditions of Eqs. (9.74)–(9.76). The result is

1

θ

[(
vw −vs) ·R̂w·

(
vw −vs)

+ ĉ
(

pws
w + 〈ns·ts·ns〉Ωws,Ωws

+ γwsJws
s

)2
]
= ∑

α∈I
Λ α ≥ 0 . (9.84)

The requirement that the entropy generation rate be non-negative is guaranteed when

R̂
w

is positive semi-definite and ĉ is non-negative .

9.7 Model of Fluid and Elastic Solid

Here we follow a derivation applied for two-fluid-phase flow [3], which is read-

ily adapted to the single-fluid-phase flow case. The equations developed in the last

subsection provide a complete and closed model of single-phase flow in a porous

medium. It is crucial to understand that this closed set is achieved only with the

stipulations of the variables as described in Sect. 9.6.3. In that subsection, variables

that require functional forms or specification were identified. Here, we will intro-

9.6 Example Restricted Application
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duce some simplifications and explicit relations that lead to appropriate, and further

restricted, models. Determination of the form of the solid stress, ts = ts, provides

an interesting challenge. An example of this determination will be presented next

before proceeding with additional simplification of the model equations.

9.7.1 Compressible Elastic Solid with Small Deformation

Equation (9.73), in conjunction with Eq. (9.75), provides an expression for the solid-

phase stress tensor. We can also write the solid-phase stress tensor as

εsts =−εs psI+ εsτττs . (9.85)

where, as yet, neither ps nor τττs has been specified.

The group of terms in brackets in Eq. (9.83) is identified as the total stress, tT ,

which is a weighted sum of the stress tensors of the s, w, and ws entities, where the

weighting factors are the entity densities, such that

tT = εsts + εwtw + εwstws , (9.86)

or

tT =−pT I+ εsτττs , (9.87)

where

pT = εs ps + εw pw − 2

3
εwsγws . (9.88)

In writing this expression, we have made use of the approximation given in Eq.

(9.67). The trace of tT can be determined as

tT :I

3
=

εsts:I

3
+

εwtw:I

3
+

εwstws:I

3
. (9.89)

Based on Eq. (9.87), this may alternatively be written

tT :I

3
=−pT +

εsτττs:I

3
. (9.90)

We normalize the trace of the total stress with the average of the normal component

of the stress on the solid surface so that Eq. (9.90) becomes

tT :I

3〈ns·ts·ns〉Ωws,Ωws

=− pT

〈ns·ts·ns〉Ωws,Ωws

+
εsτττs:I

3〈ns·ts·ns〉Ωws,Ωws

. (9.91)

The ratio on the left side of this equation is equal to 1 as it is composed of alternative

expressions for the total stress that will act on the solid. The leading term on the right

is the Biot coefficient [2], α̂B, such that
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α̂B =− pT

〈ns·ts·ns〉Ωws,Ωws

. (9.92)

Thus Eq. (9.91) may be rewritten

1 = α̂B +
εsτττs:I

3〈ns·ts·ns〉Ωws,Ωws

. (9.93)

We now follow arguments analogous to those used in the derivation from Eqs.

(5.56)–(5.61) for the microscale viscous stress tensor in an isotropic medium. Here,

for the solid, we assume that the deformations are small so that effective stress,

εsτττs, is a function of es, the macroscale infinitesimal strain tensor. If the solid is

assumed to be linear, elastic, and isotropic, and if all deformations are small, then

the effective stress tensor is

εsτττs =
Ê

1+ ν̂
es +

ν̂Ê
(1−2ν̂)(1+ ν̂)

es:II . (9.94)

where Ê is Young’s modulus, ν̂ is Poisson’s ratio, and es is the infinitesimal strain

tensor.4 The tensor es is the infinitesimal form of Es = (Cs − I)/2 defined by

es =
1

2

[
∇us +

(
∇us)T

]
, (9.95)

where us is the displacement vector. In contrast to fluids, the solid stress tensor is

related to the amount of deformation rather than to the rate of deformation because

a solid at equilibrium can support a shear stress. The rate of displacement is the

velocity.

One third of the trace of the effective stress tensor in Eq. (9.94) is then

εsτττs:I

3
=

Ê
3(1−2ν̂)

es:I= K̂Te
s:I , (9.96)

where K̂T is the bulk modulus of the skeleton, defined to be related to Young’s

modulus and the Poisson ratio by

K̂T =
Ê

3(1−2ν̂)
. (9.97)

Substitution of Eq. (9.96) into Eq. (9.93) yields

4 The use of the word “infinitesimal” refers to the amount of deformation, not the scale of the de-
formation. Additionally, note that Eq. (9.94) consists of two coefficients, as in Eq. (5.61), although
the identification of the coefficients is different. Alternatively, Eq. (9.94) can be written in a form

similar to Eq. (5.59) as εsτττs =2μ̂es+λ̂es:II where the two coefficients μ̂ and λ̂ are called Lamé
constants.
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α̂B = 1− K̂Tes:I

〈ns·ts·ns〉Ωws,Ωws

. (9.98)

The averaged bulk modulus of the solid grains, K̂S, as opposed to that for the skele-

ton, relates the decrease in volume of the solid material to the average normal force

on the solid surface [5], as given by

1

K̂S
=

es:I

〈ns·ts·ns〉Ωws,Ωws

. (9.99)

Thus the last two equations show that the Biot coefficient for a compressible solid

may be expressed as

α̂B = 1− K̂T

K̂S
. (9.100)

When the solid material, as opposed to the bulk solid structure including pore space,

has very little compressibility, 1/K̂S is small enough that the Biot coefficient is ap-

proximately 1.

Use of Eqs. (9.92), (9.94), and (9.100) in Eq. (9.87) gives the total stress as

tT =

(
1− K̂T

K̂S

)
〈ns·ts·ns〉Ωws,Ωws

I+
Ê

1+ ν̂
es +

ν̂Ê
(1−2ν̂)(1+ ν̂)

es:II . (9.101)

When pws
w is approximately equal to pw and the terms involving surface tension are

negligible, this equation simplifies to the form typically found in the literature (e.g.,

as in [1, 2]),

tT =−
(

1− K̂T

K̂S

)
pwI+

Ê
1+ ν̂

es +
ν̂Ê

(1−2ν̂)(1+ ν̂)
es:II . (9.102)

Usually, flows and deformations in porous media are slow such that the inertial

terms in the momentum equations are negligible. In such cases, mass conservation

is described by Eq. (9.80), but the first two terms in Eq. (9.81) are neglected so that

the fluid momentum equation becomes

εwρw∇
(
μw +ψw)+ R̂

w·
(
vw −vs)= 0 . (9.103)

With the inertial terms neglected and Eqs. (9.103) and (9.86) employed, the solid-

phase5 momentum equation, Eq. (9.83), reduces to

εsρsgs + εwρwgw +∇·tT = 0 , (9.104)

5 From another perspective, Eq. (9.83) is the momentum equation for the system as a whole. In any
event, it is an independent expression of momentum conservation that can be used in conjunction
with the w phase momentum equation to describe the system behavior.
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where Eq. (9.101) or Eq. (9.102) can be used to describe the total stress tensor. Mass

conservation for the solid phase as described by Eq. (9.80) completes the simplified

closed set of equations that models both the solid and fluid phases.

9.7.2 Passive Solid Phase

A commonly used model when one is interested primarily in the fluid flow treats

the solid implicitly as a passive element whose state is determined completely by its

response to the fluid phase. In this case, the solid-phase momentum equation, such as

Eq. (9.104), is ignored; and the mass conservation expressions for each phase given

by Eq. (9.80) are combined to provide a single mass conservation equation for the

system. In some cases, the surviving mass and momentum conservation equations

can also be combined to give a single equation that describes the system. This model

will be developed here for the isothermal case.

For the w phase, mass conservation is described by Eq. (9.80) as

Dw(εwρw)

Dt
+ εwρwI:dw = 0 . (9.105)

We can apply the identity Eq. (7.49), with α replaced by w, to change the material

derivative so that it is with respect to the solid velocity and also note that

I:dw = ∇·(vw −vs)+ I:ds . (9.106)

Thus, Eq. (9.105) may be re-expressed as

Ds(εwρw)

Dt
+(vw −vs)·∇(εwρw)+ εwρw∇·(vw −vs)+ εwρwI:ds = 0 , (9.107)

or, after application of the product rule to the second and third terms,

Ds(εwρw)

Dt
+∇·

[
εwρw(vw −vs)

]
+ εwρwI:ds = 0 . (9.108)

The solid-phase mass conservation equation based on Eq. (9.80) may be rear-

ranged to

1

εsρs

Ds(εsρs)

Dt
+ I:ds = 0 . (9.109)

Combination of this equation with Eq. (9.108) to eliminate I:ds yields

Ds(εwρw)

Dt
− εwρw

εsρs

Ds(εsρs)

Dt
+∇·

[
εwρw(vw −vs)

]
= 0 . (9.110)



368 9 Single-fluid-phase Flow

We next make use of Eq. (9.65) to eliminate εs from this equation in favor of εw. Af-

ter application of the product rule to the time derivatives and further rearrangement,

the following expression is obtained,

− ρw

(1− εw)ρs

Ds[(1− εw)ρs]

Dt
+ εw Dsρw

Dt
+

(1− εw)ρw

ρs
Dsρs

Dt

+∇·
[
εwρw(vw −vs)

]
= 0 . (9.111)

Because, at present, we are interested in an isothermal system and the solid is

being treated as passive, it is common to consider that the mass of solid per total

volume, (1− εw)ρs, and the phase densities, ρw and ρs, are functions only of the

macroscale fluid-phase pressure, pw. Thus we propose state equations for these three

terms as

α̂Bs =− 1

(1− εw)ρs

d[(1− εw)ρs]

dpw , (9.112)

β̂w =
1

ρw
dρw

dpw , (9.113)

and

β̂s =
1

ρs
dρs

dpw , (9.114)

where α̂Bs is the bulk compressibility of the solid phase, β̂w is the compressibility

of the fluid phase, and β̂s is the compressibility of the solid phase. Substitution of

these three state equations into Eq. (9.111) provides

ρw
[
α̂Bs + εwβ̂w +(1− εw)β̂s

] Ds pw

Dt
+∇·

[
εwρw(vw −vs)

]
= 0 . (9.115)

Because the velocity of the solid is very slow and pressure will propagate quickly,

it is reasonable to assume that ∣∣∣∣∂ pw

∂ t

∣∣∣∣� ∣∣vs·∇pw∣∣ . (9.116)

Based on this approximation, the material derivative in Eq. (9.115) is replaced by a

partial time derivative so that the resultant mass conservation equation is

ρw
[
α̂Bs + εwβ̂w +(1− εw)β̂s

] ∂ pw

∂ t
+∇·

[
εwρw(vw −vs)

]
= 0 . (9.117)

Equation (9.117) is to be solved in conjunction with Eq. (9.103) when the com-

pressibility coefficients have been determined, the resistance tensor R̂
w

is specified,

μw is specified as a function of pw, and ψw can be specified. The simplest meaning-

ful situation that arises is when the porous matrix is isotropic so that
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R̂
w
= R̂wI . (9.118)

Additionally, if the variability of functions is small so that the gradient of devia-

tions between microscopic and macroscopic variables is negligible in comparison

to the gradients of macroscale variables, the Gibbs-Duhem equation given in Eq.

(7.33) simplifies for an isothermal fluid composed of a single species to the gradient

operator form given by

−εw∇pw + εwρw∇μw = 0 . (9.119)

Lastly, when the gradient in volume fraction is small,

∇ψw +gw = 0 , (9.120)

and gw is the gravitational vector for problems without other external body forces.

Substitution of Eqs. (9.118), (9.119), and (9.120) into Eq. (9.103) provides the mo-

mentum equation for the fluid,

εw (∇pw −ρwgw)+ R̂w (vw −vs)= 0 . (9.121)

We define a new coefficient, K̂w, according to

K̂w =
εw2

ρw

R̂w
(9.122)

so that Eq. (9.121) can be written

K̂w (∇pw −ρwgw)+ εwρw (vw −vs)= 0 . (9.123)

This form of the momentum equation is known as Darcy’s law. It may be employed

to eliminate the velocity term from Eq. (9.117) to obtain what is commonly called

the groundwater flow equation,

ρw
[
α̂Bs + εwβ̂w +(1− εw)β̂s

] ∂ pw

∂ t
−∇·

[
K̂w (∇pw −ρwgw)]= 0 . (9.124)

This equation contains a single unknown variable, pw, and thus by itself describes

single-fluid-phase flow in a porous medium. It can be solved after specification of

the appropriate boundary conditions for pw. The path to this equation based on all

the elements of the TCAT approach is certainly rather tortuous. Although this equa-

tion is typically provided based on simpler derivations, by explicitly identifying all

the assumptions made, we have a clear picture of the approximations that could

undermine efforts to describe a system with this equation. Less restrictive models

were encountered on the way to Eq. (9.124) that might be more suitable for some

complex problems.



370 9 Single-fluid-phase Flow

9.8 Summary

In this chapter, we have illustrated the TCAT approach for deriving a macroscale

model for single-fluid-phase flow in a porous medium. Based on macroscale en-

tropy, conservation and thermodynamic equations, the CEI of Eq. (9.43) has been

derived and is of archival value. SEI approximations were identified in Sects. 9.5.2

and 9.5.3 that facilitated expression of a general SEI in Eq. (9.62) that is a sum of

macroscale force-flux products. The use of secondary restrictions was also demon-

strated in constraining the system to be isothermal with no interphase mass ex-

change. The restrictions imposed led to the simplified SEI of Eq. (9.63). The closure

procedure for this case was demonstrated and led to mass and momentum conser-

vation equations for a fluid phase and an elastic solid phase. Eqs. (9.80), (9.103),

and (9.104). This equation set was further simplified for the situation where the

solid phase is modeled only passively such that the system is described by a single

equation that is a composite of mass conservation equations for both phases and the

momentum conservation equation for the fluid. The result, Eq. (9.124), is one form

of the groundwater flow equation.

The CEI and SEI’s derived in this chapter provide a basis for derivation of a con-

siderable breadth of single-phase-flow models. Potential models that could be built

on these inequalities include nonisothermal systems, interphase transport, moder-

ately compressible flows, plastic deformation, the role of potentials in driving flow,

interfaces that accumulate mass, and non-Darcy flow. In addition, microscale imag-

ing and computer simulation methods provide a means to demonstrate and develop a

correspondence between the microscale and the macroscale that is embodied within

TCAT models.

The approach taken for formulation of a single-phase-flow model in this chapter

is illustrative of the general TCAT model formulation procedure depicted in Fig. 9.1

based on macroscale equations. The same steps will be followed in deriving models

of other macroscale systems, although the detailed equations within each step will

be different. In the next two chapters, species transport and two-fluid-phase flow,

respectively, will be considered.

Exercises

9.1. Prove Eq. (9.33),

∑
α∈I

(
∑

κ∈Icα

κ→α
M ηα,κ + ∑

κ∈Icα

κ→α
Φ

)
= 0 .

9.2. Start with the general SEI given in Eq. (9.62). For the present exercise, make

use of the Secondary Restriction
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Secondary Restriction 9.2 (No Interface Properties)
The macroscale single-fluid-phase system of concern is such that:

• Properties of the ws interface are negligible including ρws, tws, Ews, qws, hws,
hws, ηws, and γws; and

• the flow is slow so the deviation kinetic energy term Kα
E is of second order small-

ness and can be neglected.

a. Show that the conservation equations for the interfaces are jump conditions that

provide relations for transfer between the w and s phases.

b. Simplify Eq. (9.62) to a form that takes into account Secondary Restriction 9.2.

9.3. Simplify the SEI of exercise 9.2b for the isothermal case with no interphase

mass transfer. Discuss reasons for differences between this result and Eq. (9.63).

9.4. Obtain the closed equation set needed for the situation described in exercise

9.3.

9.5. Simplify the general SEI of exercise 9.2b for the non-isothermal case with no

interphase mass transfer (Hint: θ ws should not appear in the result.).

9.6. Obtain the closed equation set for the situation described in exercise 9.4.

9.7. As an alternative to conjugate force-flux closure employed in Sect. 9.6.4, cross-

coupled closure may be employed as described for a microscale closure problem in

Sect. 5.9. Apply cross-coupled closure to the SEI of Eq. (9.63). Discuss when the

additional terms that arise might be important.

9.8. Consideration of interphase mass transport is made complex because the condi-

tion of equilibrium, e.g., Eq. (7.112), requires equality of the potential of chemical

species. In this chapter, we did not monitor the chemical species. However, we can

consider mass transfer between a frozen solid and its melt. For an isothermal case

of flow of water through snow, where mass transfer between the solid and fluid

can occur, determine the closed equation set where the interface properties can be

neglected.
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Chapter 10
Single-fluid-phase Species Transport

10.1 Overview

The goal of this chapter is to extend the macroscale TCAT analysis of Chap. 9 to in-

clude compositional effects in single-fluid-phase porous medium systems. Because

the development is similar to that employed in the previous chapter, emphasis will

be on the extensions to the analysis that are needed.

The formulation will follow the approach of Fig. 9.1. The larger-scale, macro-

scopic entropy balances and conservation equations are available as described in

Chap. 6. In employing these equations, one must make decisions, and declare them

in primary restrictions, concerning the refinement of the model in terms of account-

ing for species dynamics. In general, the option exists to model species mass, mo-

mentum, and energy conservation within each system entity based on the equations

of Table 6.2. However, here we will demonstrate a hybrid approach that models

mass conservation for each species, while considering momentum and energy trans-

port on an entity basis. It is typical in modeling species transport to adopt this hy-

brid approach. However, within the general framework provided using the TCAT

approach, it is possible to model species momentum transport and species energy

transport. Modeling of these processes on a species basis carries the burden of a

need for additional closure relations.

Larger-scale thermodynamic relations have been developed in Chap. 7. Species-

related thermodynamic quantities are needed to account for the states of chemical

species within each of the entities. In particular, partial mass thermodynamic func-

tions, including species chemical potentials, as well as the body forces acting on

each species will have to be included in the thermodynamic relations. The larger-

scale equilibrium conditions in Sect. 7.8 are also employed to provide information

about the states of species within an entity and inter-entity relations among poten-

tials. The equilibrium relations contribute to the closure of the conservation equa-

tions.

The macroscale evolution equations derived in Chap. 8 are kinematic equations

that describe the movement and deformation of entities themselves rather than of

373W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_10,
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material in the entities. Although these movements are sometimes related, the evo-

lution of entity shapes does not depend on chemical species. Thus, there are no

species-based evolution equations in Chap. 8. Nevertheless, the entity kinematics

are important to the overall description of the physical behavior of a system.

The entropy inequality is augmented by the conservation equations and ther-

modynamic equations to form a constrained entropy inequality. In comparison to

augmentation using entity-based equations, species-based conservation equations

formulations increase the number of constraints that are imposed. Additionally, the

number of Lagrange multipliers in the formulation is also increased. The concomi-

tant extra latitude in specifying the Lagrange multipliers provides a more detailed

set of force-flux relations that motivate closure relations. Equilibrium conditions are

employed to guide the formulation of a simplified entropy inequality that is com-

posed entirely of force-flux products. The increase in the number of variables due to

the monitoring of chemical species movement requires some additional state equa-

tions for variables and also additional closure relations. Thus, it is important to count

the variables to ensure that the number of conditions is sufficient to produce a closed

set of equations. The procedure is the same as that of the last chapter, but the number

of variables is significantly larger.

It is worth noting that the results of the present chapter should reduce to those

of the previous chapter in the limit when there is only one species present or with

summation of a conservation equation over all species. This is important both as a

measure of consistency and in assuring that the manipulations required to formulate

the problem are not beset with errors. Because a compositional single-fluid-phase

system is a superset of a single-fluid-phase system, the latter models can be de-

duced from the former models by summing over the set of all species. A corollary

to this statement is that flow models must be consistent with species transport mod-

els. This embedding of information implies that nested, consistent hierarchies of

models exist, where certain classes of models can be deduced from more complex

hierarchies. One could derive a very complicated model, such as three-fluid-phase

flow and species transport in a non-isothermal system with complex solid behavior,

and then look at special limiting cases. Instead, we are following an alternative ap-

proach of extending model complexity by considering a succession of increasingly

more complicated model hierarchies, each with its own intrinsic value and motivat-

ing applications. In the last chapter, we considered single-fluid-phase-flow models.

Here, we consider single-phase-flow with species transport. Summation of the con-

servation equations obtained in this chapter will yield a model that is consistent with

single-phase-flow models when transport is neglected.

The TCAT analysis of this chapter leads to a model that is an example of a hi-

erarchy of potential models. As is generally the case, the key archival results from

the analysis are the CEI and the SEI. These key inequalities provide substantial

opportunities for formulation and evaluation of other models in the hierarchy. The

elements of the derivation of these key inequalities, as depicted in Fig. 9.1, will

be summarized here. Guidance to the steps needed to simplify the complex EI to

less challenging forms are provided. We note that the work involved to derive these

forms is both long and tedious, but the resultant forms are of considerable value.
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10.2 System Definition by Primary Restrictions

The primary restrictions for single-fluid-phase flow that includes species transport

in a porous medium system are similar to those from the last chapter when individ-

ual species were not considered. The significant difference in stating the primary

restrictions is in specifying how compositional effects will be handled. The possi-

bility exists to model mass, momentum, and energy transport of the species on an

entity-wide basis. Thus, no differentiation among the species in an entity or consid-

eration of the relative amounts of the species in an entity would be considered. This

approach was followed in Chap. 9 using the primary restrictions of Sect. 9.2. Use

was made of the conservation equations for entities found in Table 6.3. With the

vector momentum equation counted as three components, this approach for single-

fluid-phase flow makes use of five mass, momentum, and energy equations for each

of the w, s, and ws entities, for a total of 15 conservation equations.

At the other end of the spectrum of possibilities, one could model the transport

of mass, momentum, and energy of each species in each entity. This requires the use

of conservation equations for species, as found in Table 6.2. If there are N chemical

species, each could appear in each of the three entities. Thus, this modeling approach

requires that 15N conservation equations be used to describe the system. Included in

the description would be stress tenors, non-advective heat flux vectors, and so forth

for each species in each entity. Thus, significant closure support is required for this

large equation set.

As a compromise between the simplicity of the former approach and the detail of

the latter approach, one can model some processes on an entity basis and others on a

species basis. A first simplification would treat the energy conservation of each en-

tity but make use of momentum and mass conservation for each chemical species.

Thus, each entity would make use of one energy equation, 3N momentum equa-

tions, and N mass conservation equations. For the single-fluid-phase system with

two phase entities and one interface entity, 12N + 3 conservation equations would

describe the system [3]. Because the velocity of each chemical species is solved for

in a momentum equation, there is no need for closure of intraphase dispersion in the

species mass conservation equation in this formulation.

A second, even simpler, compromise poses both the energy and momentum con-

servation equations on an entity basis but considers mass conservation for each

species in each entity [3]. Thus, each entity is described by N + 4 conservation

equations such that the three-entity system is modeled using 3N + 12 conservation

equations. With this approach, because entity velocities rather than species veloci-

ties are described in the momentum equation, it is necessary to make use of a dis-

persion velocity relative to the entity velocity in the mass conservation equations.

Closure relations are needed for the dispersion velocities.

The choice among the two extreme situations and the two compromises is made

in the statement of the primary restrictions to be employed. It is important that

this selection be made prior to using the conservation equations to augment the

entropy inequality because the forms these equations take depend on the refine-

ment selected. For example, when the species dispersion vectors appear in the mass
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conservation equation, they should appear explicitly in the momentum and energy

equations rather than implicitly in some quantity obtained by summing over the

species momentum equations, as with the variables in Table 6.3.

The primary restrictions employed here for modeling species transport in a

single-fluid-phase porous medium system are analogous to Primary Restrictions

9.1–9.3 as follows:

Primary Restriction 10.1 (System and Scale)
The system of concern consists of a single fluid phase w, a relatively immobile solid
phase s, and an interface ws between the two phases. The phases and interfaces are
composed of N chemical species that may react and transfer between the phases
and the interface. The spatial scale of concern is the macroscale, �ma, with �r

r 	
�ma 	 �me where �r

r and �me are the resolution scale and megascale of the system,
respectively.1 The domain of the system is Ω with boundary Γ.

Primary Restriction 10.2 (Phenomena Modeled)
The phenomena of concern consist of the transport of mass, momentum, and energy
in each of the entities. Transport phenomena of various chemical species within
an entity and between entities will be modeled explicitly using mass conservation
equations for each species. The momentum and energy of the entities will be mod-
eled using entity-based equations.

Primary Restriction 10.3 (Thermodynamic Theory)
Classical irreversible thermodynamics (CIT) is employed to describe the thermo-
dynamic behavior of the system entities at equilibrium and near-equilibrium states.
The solid phase is modeled as elastic.

These restrictions impose the same limitations, and allow for the same flexibility,

in modeling as described in the last chapter with one major exception. The addition

of species transport here will result in a model capable of describing the distribution

of advecting, reacting, and dispersing chemical constituents throughout the system.

Modeling of the chemical constituents will be accomplished making use of mass

conservation equations for each species in each entity. The species momentum and

energy will not be solved for directly using conservation equations but can be es-

timated in hindsight from a model making use of constitutive expressions for the

dispersion velocity, thermodynamic relations, and knowledge of state variables.

With the primary restrictions stated, we turn our attention to selection of the ap-

propriate set of conservation and thermodynamic equations for use in describing

the system. The approach parallels that of the last chapter, but we have to incorpo-

rate species properties and processes consistently. The next section highlights the

considerations which dictate appropriate equation forms that satisfy the system de-

scribed by the primary restrictions.

1 The descriptions of length scales are provided in the discussion of Eq. (1.1).
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10.3 Constrained Entropy Inequality

The procedure for deriving the constrained entropy inequality has been demon-

strated for a microscale analysis of a fluid phase in Sect. 5.4 and for macroscale

single-phase flow in a porous medium in Sect. 9.4. The same approach will be fol-

lowed here. The general idea is to constrain the entropy inequality with conservation

and thermodynamic equations so that the entropy generation can be expressed as a

sum of products of force-flux pairs. The elements of the approach will be outlined

here for the case as defined by the primary restrictions.

10.3.1 Augmented Entropy Inequality

The general form of the augmented entropy inequality (AEI) was given in Eq. (9.18).

This form is a useful starting point for constraining the entropy inequality in any

macroscale TCAT analysis. This equation is repeated here with

∑
α∈I

∑
i∈Is

S iα
∗ + ∑

α∈I
∑

i∈Is

λ iα
E E iα

∗ + ∑
α∈I

∑
i∈Is

λλλ iα
P ·P iα

∗ + ∑
α∈I

∑
i∈Is

λ iα
MMiα

∗

+ ∑
α∈I

∑
i∈Is

λ iα
G Giα

∗ + ∑
α∈I

∑
i∈Is

λ iα
T T iα

∗

+ ∑
α∈I

∑
i∈Is

λ iα
T GT iα

G∗ = ∑
α∈I

∑
i∈Is

Λ iα ≥ 0 , (10.1)

where the quantities with the subscript ∗ are species-based conservation and bal-

ance equations from Table 6.2 and thermodynamic relations from Table 7.2. The λ
coefficients are Lagrange multipliers whose values are determined in part by the pri-

mary restrictions and in part by their function in eliminating time derivatives from

the equation.

Primary restriction 10.2 indicates that species transport will be explicitly consid-

ered in the mass conservation equations but will be accounted for only implicitly

in modeling momentum and energy. This restriction is applied in Eq. (10.1) by al-

lowing the Lagrange multiplier for mass conservation, λ iα
M, to retain its dependence

on the chemical species being considered while requiring all other Lagrange mul-

tipliers to be independent of species. Because the Lagrange multipliers all multiply

quantities that are equal to zero, they can be selected arbitrarily to obtain a desired

form of the entropy inequality. Imposition of the stated conditions on the Lagrange

multipliers allows Eq. (10.1) to be modified to

∑
α∈I

(
∑

i∈Is

S iα
∗

)
+ ∑

α∈I
λ α
E

(
∑

i∈Is

E iα
∗

)
+ ∑

α∈I
λλλ α
P ·
(

∑
i∈Is

P iα
∗

)
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+ ∑
α∈I

∑
i∈Is

λ iα
MMiα

∗ + ∑
α∈I

λ α
G

(
∑

i∈Is

Giα
∗

)
+ ∑

α∈I
λ α
T

(
∑

i∈Is

T iα
∗

)

+ ∑
α∈I

λ α
T G

(
∑

i∈Is

T iα
G∗

)
= ∑

α∈I

(
∑

i∈Is

Λ iα

)
≥ 0 . (10.2)

One might think that the next step is to sum the species-based equations appear-

ing in Table 6.2 that are unencumbered by a Lagrange multiplier over the species

to obtain equations appearing in Table 6.3. For example, we can obtain Pα
∗ as the

sum of P iα
∗ over all species. However, this approach does not explicitly take into

account the dispersive velocities of the chemical species.

The issue at hand can perhaps be illuminated by recalling that Eq. (6.74), the

species mass conservation equation written in terms of the entity velocity vα and

the dispersive velocity, uiα , was obtained because the species velocity, viα , is equal

to vα +uiα . Thus, Miα
∗ was converted to a form identified as Miα

∗∗ where

Miα
∗∗ =

Dα(εα ρα ω iα)

Dt
+ εα ρα ω iα I:dα +∇·

(
εα ρα ω iα uiα

)
− εα riα − ∑

κ∈Icα

iκ→iα
M = 0 for i ∈ Is,α ∈ I . (10.3)

Three features of this equation are particularly noteworthy. First, the dispersive

velocity appears explicitly and must be accounted for. Second, chemical reactions

are included in the equation. Third, the inter-entity exchange is expressed in terms

of chemical species rather than on an entity basis. Although Eq. (10.3) makes use of

the entity-based velocity, the features noted make this equation distinctly different

from the entity-based mass conservation equation as employed in the last chapter.

To ensure that the featured processes are modeled in the TCAT framework, it is im-

portant that they appear explicitly in the other conservation equations rather than be

consolidated into entity properties and processes as was done in obtaining the equa-

tions of Table 6.3. Thus, the summation over species-based equations in parentheses

in Eq. (10.1) is performed as indicated, but the combination of the summed terms is

done to facilitate incorporation of the effects of dispersion into the model.

Table 10.1 provides a key for all relations between an entry in Eq. (10.2) and the

form of the equation that is used for the current case of dispersion modeling. The

replacement groups are exactly equivalent to the precursors. The important feature

is the way the quantities are combined in defining variables. Making use of the

quantities identified in Table 10.1, Eq. (10.2) becomes

∑
α∈I

Sα
∗∗+ ∑

α∈I
λ α
E Eα

∗∗+ ∑
α∈I

λλλ α
P ·Pα

∗∗+ ∑
α∈I

∑
i∈Is

λ iα
MMiα

∗∗

+ ∑
α∈I

λ α
G Gα

∗∗+ ∑
α∈I

λ α
T T α

∗ + ∑
α∈I

λ α
T GT α

G∗ = ∑
α∈I

Λ α ≥ 0 . (10.4)
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Table 10.1 Forms of the entries in Eq. (10.2) that are used to state the augmented entropy inequal-
ity. Replacement notation is provided and the equation number is given that is the source of terms
that appear in the expanded equation

Quantity Entry Replacement Source

Entropy ∑
i∈Is

S iα
∗ Sα

∗∗ Eq. (6.195)

Energy ∑
i∈Is

E iα
∗ Eα

∗∗ Eq. (6.203)

Momentum ∑
i∈Is

P iα
∗ Pα

∗∗ Eq. (6.201)

Mass Miα
∗ Miα

∗∗ Eq. (6.74)

Force Potential ∑
i∈Is

Giα
∗ Gα

∗∗ Eq. (6.197)

Fluid Thermodynamics ∑
i∈Is

T iw
∗ T w

∗ Eq. (7.54)

Solid Thermodynamics ∑
i∈Is

T is
∗ T s

∗ Eq. (7.80)

Interface Thermodynamics ∑
i∈Is

T iws
∗ T ws

∗ Eq. (7.96)

Fluid Potential Energy ∑
i∈Is

T iw
G∗ T w

G∗ Eq. (7.58)

Solid Potential Energy ∑
i∈Is

T is
G∗ T s

G∗ Eq. (7.81)

Interface Potential Energy ∑
i∈Is

T iws
G∗ T ws

G∗ Eq. (7.97)

Entropy Generation ∑
i∈Is

Λ iα Λ α Eq. (6.149)

This equation is the appropriate augmented inequality for modeling transport of

N chemical species in a single-fluid-phase porous medium system such that I =
{w,s,ws} and Is = {1, . . . ,N} using a species-based mass conservation equation

in conjunction with all other conservation, balance, and thermodynamic equations

formulated on an entity basis.
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10.3.2 Determination of Lagrange Multipliers

The goal of the selection of Lagrange multipliers is to eliminate as many material

derivatives as possible, so that the entropy generation will be in terms of force-flux

products. The material derivative forms are thus key elements that appear in Eq.

(10.4). We expand this equation by explicitly inserting the material derivatives while

indicating the presence of additional terms using ellipses. The resulting equation is

∑
α∈I

(
Dα ηα

Dt
+ . . .

)

+ ∑
α∈I

λ α
E

(
Dα

Dt

{
Eα + εα ρα

[
vα ·vα

2
+ ∑

i∈Is

ω iα

(
Kiα

E +
uiα ·uiα

2

)]}
+ . . .

)

+ ∑
α∈I

λλλ α
P ·
[

Dα(εα ρα vα)

Dt
+ . . .

]
+ ∑

α∈I
∑

i∈Is

λ iα
M

[
Dα(εα ρα ω iα)

Dt
+ . . .

]

+ ∑
α∈I

λ α
G

(
DαΨ α

Dt
+ . . .

)

+ ∑
α∈I

λ α
T

[
Dα Eα

Dt
−θ α Dα ηα

Dt
− ∑

i∈Is

μ iα Dα(εα ρα ω iα)

Dt
+ . . .

]

+ ∑
α∈I

λ α
T G

[
DαΨ α

Dt
− ∑

i∈Is

ψ iα Dα(εα ρα ω iα)

Dt
+ . . .

]
= ∑

α∈I
Λ α ≥ 0 . (10.5)

The material derivatives in this expression can be expanded using the product

rule so that terms can be combined. Additionally, we make use of the fact that

Dα(εα ρα)

Dt
= ∑

i∈Is

Dα(εα ρα ω iα)

Dt
. (10.6)

The full set of unique material derivatives is the set D, where

D=

{
Dα ηα

Dt
,

Dα Eα

Dt
,

Dα(εα ρα ω iα)

Dt
,

Dα vα

Dt
,
Dα

Dt

(
Kiα

E +
uiα ·uiα

2

)
,

DαΨ α

Dt

}

for α ∈ I, i ∈ Is . (10.7)

Rearrangement of Eq. (10.5) so that it is expressed as coefficients multiplying the

unique derivatives, with the additional terms accounted for by a single ellipsis,

yields

∑
α∈I

(
1−θ α λ α

T
) Dα ηα

Dt
+ ∑

α∈I
(λ α

E +λ α
T )

Dα Eα

Dt
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+ ∑
α∈I

∑
i∈Is

[
λ α
E

(
vα ·vα

2
+Kiα

E +
uiα ·uiα

2

)
+λλλ α

P ·vα +λ iα
M

−λ α
T μ iα −λ α

T Gψ iα

]
Dα(εα ρα ω iα)

Dt

+ ∑
α∈I

(
λ α
E εα ρα vα +λλλ α

Pεα ρα
)
·D

α vα

Dt

+ ∑
α∈I

∑
i∈Is

λ α
E εα ρα ω iα Dα

Dt

(
Kiα

E +
uiα ·uiα

2

)

+ ∑
α∈I

(
λ α
G +λ α

T G
) DαΨ α

Dt
+ · · ·= ∑

α∈I
Λ α ≥ 0 . (10.8)

With vectors counted as contributing three elements, there are 18 + 6N material

derivatives in this equation and 21+3N Lagrange multiplier coefficients. The time

derivative of Kiα
E + uiα ·uiα/2 cannot be eliminated from this equation except by

selection of the trivial value λ α
E = 0. Thus, if these 3N terms are excluded from

further consideration, the number of derivatives remaining is 18+ 3N leaving an

excess of 3 Lagrange multipliers that can be specified arbitrarily. If we select λ α
T =

λ α
T G for α ∈ I, we can see from Eq. (10.5) that we are essentially combining T α

∗
and T α

G∗ into a single thermodynamic relation that includes gravitational effects.2

Solution for the remaining Lagrange multipliers such that the coefficients of the

time derivatives are zero yields

λ α
T = λ α

T G =
1

θ α
, (10.9)

λ α
E = λ α

G =− 1

θ α
, (10.10)

λλλ α
P =

vα

θ α
, (10.11)

and

λ iα
M =

1

θ α

(
μ iα +ψ iα − vα ·vα

2
+Kiα

E +
uiα ·uiα

2

)
, (10.12)

where α ∈ I and i∈ Is. Comparison of these results with Eqs. (9.25)–(9.30) indicates

that the addition of dispersion to the problem does not impact the expressions for

the Lagrange multipliers for the momentum, energy, and thermodynamic equations.

The particular values of the Lagrange multipliers are substituted back into the

AEI, Eq. (10.4). With the conservation and balance equations identified in Table

2 As a consequence of this selection, it is subsequently seen that λ α
G = λ α

E such that the energy and
potential energy equations are essentially added together as well.
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10.1 inserted and the time derivatives cancelled, the result without any additional

rearrangement of terms is

∑
α∈I

[
ηα I:dα − εα bα − ∑

κ∈Icα
∑

i∈Is

iκ→iα
M ηα,κ
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κ∈Icα

iκ→iα
M

]
Miα∗∗

− ∑
α∈I

1

θ α

{
Ψ α I:dα + ∑

i∈Is

εα ρα ω iα giα ·
(

vα +uiα
)
+ εα hα

0 Gα∗∗
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− ∑
κ∈Icα

∑
i∈Is

iκ→iα
M ψα,κ

i − ∑
κ∈Icα

κ→α
G0 Gα∗∗

−∇·
(

εα qα
g0 − ∑

i∈Is

εα ρα ω iα ψ iα uiα

)
Gα∗∗

− ∑
i∈Is

〈
ρα ωiα

[
∂ (n)ψiα

∂ t
+viα ·

(
I− I

(n)
α

)
·giα

]〉
Ωα ,Ω

Gα∗∗

− ∑
i∈Is

〈riα ψiα〉Ωα ,Ω

}
Gα∗∗

+
1

θ w

〈
nw·

(
vws −vs) pw

〉
Ωws,Ω

T w∗

+
1

θ w

⎡
⎣〈ηw

Ds(θw −θ w)

Dt

〉
Ωw,Ω

+ ∑
i∈Is

〈
ρwωiw

Ds
(

μiw −μ iw
)

Dt

〉
Ωw,Ω

⎤
⎦ T w∗

− 1

θ w

[
ηw∇θ w −∇(εw pw)+ ∑

i∈Is

εwρwω iw∇μ iw

]
·
(
vw −vs) T w∗

− 1

θ s

〈
ns·(vws −vs)σσσ s:

Cs

js

〉
Ωws,Ω

T s∗

− 1

θ s

⎡
⎣〈ns·ts·

(
vs −vs)〉

Ωws,Ω
−
〈

ηs
Ds(θs −θ s)

Dt

〉
Ωs,Ω

⎤
⎦ T s∗

+
1

θ s

[
∑

i∈Is

〈
ρsωis

Ds(μis −μ is)

Dt

〉
Ωs,Ω

T s∗

−∇·
〈[

ts −σσσ s:
Cs

js
I

]
·
(
vs −vs)〉

Ωs,Ω

]
T s∗

− 1

θ s

[
εsts:ds − εsσσσ s:

Cs

js I:d
s −

〈(
∇·ts −∇σσσ s:

Cs

js

)
·
(
vs −vs)〉

Ωs,Ω

]
T s∗

+
1

θ ws

[〈
ηws

D′s(θws −θ ws)

Dt

〉
Ωws,Ω

T ws∗

+ ∑
i∈Is

〈
ρwsωiws

D′s(μiws −μ iws)

Dt

〉
Ωws,Ω

]
T ws∗

− 1

θ ws

[
ηws∇θ ws +∇·

〈
I′wsγws

〉
Ωws,Ω

+ ∑
i∈Is

εwsρwsω iws∇μ iws

]
·
(
vws −vs) T ws∗

+
1

θ ws

[
∇·
〈(
I− I′ws

)
·
(
vws −vws)γws

〉
Ωws,Ω

+
〈(
I− I′ws

)
γws
〉

Ωws,Ω
:dws

]
T ws∗
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+
1

θ ws

〈
∇′·I′ws·

(
vws −vs)γws

〉
Ωws,Ω

T ws∗

+
1

θ ws

〈
ηws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇θ ws T ws∗

+
1

θ ws ∑
i∈Is

〈
ρwsωiws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇μ iws T ws∗

− 1

θ w ∑
i∈Is

⎡
⎣〈ρwωiw

Dsψ iw

Dt

〉
Ωw,Ω

+ εwρwω iw (vw −vs) ·∇ψ iw

⎤
⎦ T w

G∗

− 1

θ s ∑
i∈Is

〈
ρsωis

Dsψ is

Dt

〉
Ωs,Ω

T s
G∗

− 1

θ ws ∑
i∈Is

⎡
⎣〈ρwsωiws

D′sψ iws

Dt

〉
Ωws,Ω

+ εwsρwsω iws∇ψ iws·
(
vws −vs)⎤⎦ T ws

G∗

+
1

θ ws ∑
i∈Is

〈
ρwsωiws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇ψ iws T ws
G∗

= ∑
α∈I

Λ α ≥ 0 . Sα∗∗

(10.13)

The designation of an equation at the far right of each line in Eq. (10.13) indi-

cates the conservation, balance, or thermodynamic equation that is the source for

the terms appearing in the line.

10.3.3 Formulation of the CEI

Some insights into the types of manipulations needed to rearrange terms in Eq.

(10.13) to obtain a CEI were given in Sect. 9.4.4 and Sect. C.1. In Sect. 9.4.5 some

additional thoughts were provided in regard to using the equilibrium relations to

drive the combination of terms toward a force-flux form. The considerations of those

sections apply here as well.

Table 10.2 is a broad roadmap and abbreviated guide for rearranging terms in

Eq. (10.13) to obtain the CEI, Eq. (10.14). From the table it can be seen that the

constraint equations, in combination with the Lagrange multipliers, work in concert

to provide the force-flux forms. The reader interested in more extensive details of

the manipulations performed in deriving Eq. (10.14) is referred to Sect. C.2.

Rearrangement of Eq. (10.13) in light of the guidance from Table 10.2 and as

specified in Sect. C.2 provides the constrained entropy inequality given by
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Table 10.2 CEI formulation summary for the derivation of Eq. (10.14), where the operation ab-
breviations represent A for addition and subtraction, E for Euler equation identity, I for identity
tensor components as shown in Eq. (9.41), O for objective form, and P for the product rule, and
the general entity qualifier α implies all entities unless otherwise noted

Line(s) Force Precursor Equation(s) Operations

1–5 — Sα
∗∗,Pα

∗∗,Eα
∗∗,Gα

∗∗, T α
∗ ,T α

G∗ O,A

6–10 — Sα
∗∗,Miα

∗∗,Eα
∗∗,Gα

∗∗, T s
∗ P

11–12 dα Sα
∗∗,Miα

∗∗,Pα
∗∗,Eα

∗∗,T s
∗ ,T ws

∗ E,P

13–16 ∇
(

1

θ α

)
Miα

∗∗,Eα
∗∗,Gα

∗∗, T s
∗ P

17–18
∇

[(
μ iα +Kiα

E +
uiα ·uiα

2
+ψ iα

)
Miα

∗∗ P

−
(

μNα +KNα
E +

uNα ·uNα

2
+ψNα

)]

19–20 — Miα
∗∗,Gα

∗∗ —

21–22

1

θ w

(
μ iw +Kiw

E +
uiw·uiw

2
+ψ iw

)
Miw

∗∗,Miws
∗∗ —

− 1

θ ws

(
μ iws +Kiws

E +
uiws·uiws

2
+ψ iws

)

23–24

1

θ s

(
μ is +Kis

E +
uis·uis

2
+ψ is +

σσσ s:Cs

3ρs js

)
Mis

∗∗,Miws
∗∗ ,T s

∗ A

− 1

θ ws

(
μ iws +Kiws

E +
uiws·uiws

2
+ψ iws

)

25 — T s
∗ A,I

26–28
1

θ w
− 1

θ ws
Miα

∗∗,Eα
∗∗,Gα

∗∗,T w
∗ α ∈ {w,ws} A,O

29–31
1

θ s
− 1

θ ws
Miα

∗∗,Eα
∗∗,Gα

∗∗,T s
∗ α ∈ {s,ws} A,O

32–35 vw −vs Miw
∗∗,Pw

∗∗,Ew
∗∗,Gw

∗∗,T w
∗ ,T w

G∗ A,O

36–42 vws −vs Miws
∗∗ ,Pws

∗∗ ,Ews
∗∗ ,Gws

∗∗ ,T ws
∗ ,T ws

G∗ A,O

43–44 — Gws
∗∗ ,T α

∗ A,I

45 — T s
∗ I

46 — T s
∗ —

47 — T ws
∗ A

48 — T ws
∗ —

49–50 — Ews
∗∗ ,T ws

∗ ,T ws
G∗ A,O

51 — Sα
∗ —
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− ∑
α∈IP

{
εα bα − 1

θ α

[
εα hα +

〈
ηα

Ds
(

θα −θ α
)

Dt

〉
Ωα ,Ω

1

+ ∑
i∈Is

〈
ρα ωiα

Ds

Dt

(
μiα +ψiα −μ iα −Kiα

E − uiα ·uiα

2
−ψ iα

)〉
Ωα ,Ω

]}
2

−
{

εwsbws − 1

θ ws

[
εwshws +

〈
ηws

D′s
(

θws −θ ws
)

Dt

〉
Ωws,Ω

3

+ ∑
i∈Is

〈
ρwsωiws

D′s

Dt

(
μiws +ψiws −μ iws

4

−Kiws
E − uiws·uiws

2
−ψ iws

)〉
Ωws,Ω

]}
5

− ∑
α∈I/S

∇·
{

εα ϕϕϕα − 1

θ α

[
εα qα + εα qα

g0 6

+ ∑
i∈Is

εα ρα ω iα

(
μ iα +Kiα

E +
uiα ·uiα

2

)
uiα

]}
7

−∇·
{

εsϕϕϕs − 1

θ s

[
εsqs + εsqs

g0 8

+ ∑
i∈Is

εsρsωsα

(
μ is +Kis

E +
uis·uis

2

)
uis

9

−
〈(

ts −
σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]}
10

+
1

θ w

(
εwtw + εw pwI

)
:dw +

1

θ s

(
εsts − εsts

)
:ds

11

+
1

θ ws

[
εwstws − εwsγwsI+

〈(
I− I′ws

)
γws
〉

Ωws,Ω

]
:dws

12

− ∑
α∈I/S

[
εα qα + εα qα

g0 13

+ ∑
i∈Is

εα ρα ω iα

(
μ iα +Kiα

E +
uiα ·uiα

2

)
uiα

]
·∇
(

1

θ α

)
14

−
[

εsqs + εsqs
g0 + ∑

i∈Is

εsρsω i s

(
μ is +Kis

E +
uis·uis

2

)
uis

15
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−
〈(

ts −
σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]
·∇
(

1

θ s

)
16

− ∑
α∈I

∑
i∈Is/N

1

θ α
εα ρα ω iα uiα ·∇

[
μ iα +Kiα

E +
uiα ·uiα

2
+ψ iα

17

−
(

μNα +KNα
E +

uNα ·uNα

2
+ψNα

)]
18

− ∑
α∈I

∑
i∈Is

1

θ α

(
μ iα +Kiα

E +
uiα ·uiα

2
+ψ iα

)
ε iα riα

19

+ ∑
α∈I

∑
i∈Is

1

θ α
〈riα ψiα〉Ωα ,Ω 20

+ ∑
i∈Is

iw→iws
M

[
1

θ w

(
μ iw +Kiw

E +
uiw·uiw

2
+ψ iw

)
21

− 1

θ ws

(
μ iws +Kiws

E +
uiws·uiws

2
+ψ iws

)]
22

+ ∑
i∈Is

is→iws
M

[
1

θ s

(
μ is +Kis

E +
uis·uis

2
+ψ is +

σσσ s:Cs

3ρs js

)
23

− 1

θ ws

(
μ iws +Kiws

E +
uiws·uiws

2
+ψ iws

)]
24

+
1

θ s

〈(
σσσ s:Cs

ρs js
− ns·ts·ns

ρs
− σσσ s:Cs

3ρs js

)
ρs (vs −vws) ·ns

〉
Ωws,Ω

25

−
{

w→ws
Q1 +

w→ws
G0 + ∑

i∈Is

(
Ews

iw +Kws
Eiw +

uws
iw ·uws

iw
2

+ψws
iw

)
iw→iws

M 26

+

[
w→ws
T0 + ∑

i∈Is

(
vws

w −vs

2
+uws

iw

)
iw→iws

M

]
·
(
vws

w −vs)
27

−
〈
nw·(vws −vs)pw

〉
Ωws,Ω

}(
1

θ w
− 1

θ ws

)
28

−
{

s→ws
Q1 +

s→ws
G0 + ∑

i∈Is

(
Ews

is +Kws
Eis +

uws
is ·uws

is
2

+ψws
is

)
is→iws

M 29

+

[
s→ws
T0 + ∑

i∈Is

(
vws

s −vs

2
+uws

is

)
is→iws

M

]
·
(
vws

s −vs)
30

+
〈
ns·ts·nsns·(vws −vs)

〉
Ωws,Ω

}(
1

θ s
− 1

θ ws

)
31
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− 1

θ w

{
ηw∇θ w −∇

(
εw pw

)
32

+ ∑
i∈Is

εwρwω iw

[
∇

(
μ iw +Kiw

E +
uiw·uiw

2
+ψ iw

)
+giw

]
33

−
[

w→ws
T0 − ∑

i∈Is

(
vw −vs

)
2

iw→iws
M 34

+ ∑
i∈Is

(
vws

w +uws
iw −vs

) iw→iws
M

]}
·
(
vw −vs)

35

− 1

θ ws

{
ηws∇θ ws +∇·

〈
I′wsγws

〉
Ωws,Ω

36

+ ∑
i∈Is

εwsρwsω iws

[
∇

(
μ iws +Kiws

E +
uiwsuiws

2
+ψ iws

)
+giws

]
37

+
w→ws
T0 − ∑

i∈Is

(
vws −vs

)
2

iw→iws
M + ∑

i∈Is

(
vws

w +uws
iw −vs

) iw→iws
M 38

+
s→ws
T0 − ∑

i∈Is

(
vws −vs

)
2

is→iws
M + ∑

i∈Is

(
vws

s +uws
is −vs

) is→iws
M 39

−
〈
ηws

(
I− I′ws

)〉
Ωws,Ω

·∇θ ws
40

− ∑
i∈Is

〈
ρwsωiws

(
I− I′ws

)〉
Ωws,Ω

·∇
(

μ iws +Kiws
E 41

+
uiws·uiws

2
+ψ iws

)}
·
(
vws −vs)

42

+
1

θ ws

〈[
pwnw −ns·ts·nsns + γws

(
∇′·I′ws

)
43

+ ∑
i∈Is

ρwsωiwsgiws·
(
I− I′ws

)]
·
(
vws −vs)〉

Ωws,Ω

44

− 1

θ s

〈
ns·ts·I′ws·

(
vs −vs)〉

Ωws,Ω
45

+
1

θ s

〈(
∇·ts −∇σσσ s:

Cs

js

)
·
(
vs −vs)〉

Ωs,Ω
46

+
1

θ ws

〈
ηws

(
vws −vws) ·(I− I′ws

)〉
Ωws,Ω

·∇θ ws
47

+
1

θ ws
∇·
〈(
I− I′ws

)
·
(
vws −vws)γws

〉
Ωws,Ω

48
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+
1

θ ws ∑
i∈Is

〈
ρwsωiws

(
vws −vws) ·(I− I′ws

)〉
Ωws,Ω

·∇
(

μ iws+ 49

Kiws
E +

uiws·uiws

2
+ψ iws

)
50

= ∑
α∈I

Λ α ≥ 0 . 51

(10.14)

Note that in line 18 of this equation, the superscript “N” refers to one of the chemical

species in the system chosen to be the reference species.

The CEI given by Eq. (10.14) is an archival equation that can serve as a basis

for the derivation of a hierarchy of closed models of varying sophistication. Ac-

complishing this objective requires reducing the CEI to the strict force-flux form

provided by the simplified entropy inequality, SEI. An example SEI is derived in

the following section. Although the CEI is built only on the primary restrictions,

approximations must be integrated into this equation to develop SEI forms. These

assumptions must be reconsidered if it is learned that a resultant model is not con-

sistent with a physical system that is intended to be modeled.

10.4 Simplified Entropy Inequality

This section is concerned with the reduction of Eq. (10.14) to an SEI that is of assis-

tance in guiding the formulation of closure relations for the conservation equations.

This reduction requires SEI approximations and may include secondary restrictions.

The distinction between these two classes of stipulations is that SEI approximations

involve mathematical restatements of groupings of terms, and secondary restrictions

limit the generality of the formulation by reducing the entities or phenomena being

modeled. Since alternative approximations may be made to reduce the CEI to an

SEI, the SEI is not a unique inequality. The manipulations needed to derive an SEI

from a CEI are less than those needed in deriving the CEI. For this reason, use of Eq.

(10.14) as a starting point for examination of various approximations is convenient.

A hierarchy of TCAT models can also be derived based on a particular form of an

SEI. Thus, the SEI is also a convenient starting point. The approach to obtaining the

SEI from the CEI for this problem parallels that employed in Sect. 9.5. Emphasis

here is on the additional considerations required due to the incorporation of explicit

modeling of chemical species.

10.3 Constrained Entropy Inequality
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10.4.1 Elimination of Small Terms

One of the assets of Table 10.2 is that it can be used to identify quickly terms in Eq.

(10.14) that require additional study to obtain an SEI. These terms are the ones in

the lines that do not have a macroscale force listed. Rather than being in macroscale

force-flux product form, they are collections of terms that either need to be elimi-

nated or otherwise approximated macroscopically and integrated into the force-flux

formalism. Reasonable assumptions must be found that facilitate these changes. In

this section, we will formally state the rationale in SEI approximations for eliminat-

ing some groups of terms that are typically small.

Lines 1–10 in Eq. (10.14) are not in force-flux form. However, lines 1–5 provide

groupings that are the difference between the entropy source and the energy source

divided by the temperature for each entity. Lines 6–10 involve the differences be-

tween non-advective energy fluxes and entropy fluxes. We propose that these pairs

of differences are negligible such that the following SEI approximation is reason-

able:

SEI Approximation 10.1 (Macroscopically Simple System)
The system of concern is macroscopically simple, such that the entropy source is
balanced by the sum of a heat source and deviation terms such that

εα bα − 1

θ α

[
εα hα +

〈
ηα

Ds
(

θα −θ α
)

Dt

〉
Ωα ,Ω

+ ∑
i∈Is

〈
ρα ωiα

Ds

Dt

(
μiα +ψiα −μ iα −Kiα

E − uiα ·uiα

2
−ψ iα

)〉
Ωα ,Ω

]
= 0

for α ∈ IP

(10.15)

and

εwsbws − 1

θ ws

[
εwshws +

〈
ηws

D′s
(

θws −θ ws
)

Dt

〉
Ωws,Ω

+ ∑
i∈Is

〈
ρwsωiws

D′s

Dt

(
μiws +ψiws −μ iws

−Kiws
E − uiws·uiws

2
−ψ iws

)〉
Ωws,Ω

]
= 0 ; (10.16)

and the entropy flux is balanced by a non-advective energy flux for all entities, con-
sisting of heat and mechanical contributions, such that
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εα ϕϕϕα − 1

θ α

[
εα qα + εα qα

g0 + ∑
i∈Is

εα ρα ω iα

(
μ iα +Kiα

E +
uiα ·uiα

2

)
uiα

]
= 0

for α ∈ {w,ws} (10.17)

and

εsϕϕϕs − 1

θ s

[
εsqs + εsqs

g0 + ∑
i∈Is

εsρsωsα

(
μ is +Kis

E +
uis·uis

2

)
uis

−
〈(

ts −
σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]
= 0 . (10.18)

Based on SEI Approximation 10.1, the first 10 lines in Eq. (10.14) may be

dropped. This approximation is reasonable because like terms have been paired—

entropy and heat sources and entropy and heat fluxes. Terms involving dispersion

and deviations between macroscale and microscale quantities are subscale processes

in the formulation and contribute as apparent energy sources and fluxes. The aver-

ages of material derivative terms of differences between microscale and macroscale

quantities in Eqs. (10.15) and (10.16) are subscale energy sources that arise due to

the averaging of the thermodynamics.

Lines 45–46 in Eq. (10.14) each involve the average of a quantity that is zero at

equilibrium (see Eqs. (4.54) and (4.106)) and a difference between the microscale

and macroscale solid-phase velocity. For the system being considered, where the

solid-phase velocity is small enough that this velocity difference can be considered

negligible, these two lines of the CEI can be neglected. This is stated in an SEI

approximation:

SEI Approximation 10.2 (Solid-phase Velocity)
Expressions that involve the average of a product of the difference between the mic-
roscale and macroscale solid-phase velocities and another term known to vanish at
equilibrium are assumed to be negligible.

This SEI approximation was employed in the last chapter in the absence of species

transport modeling. It is a reasonable approximation for many, if not most, porous

medium problems, with solid phase velocities much smaller than fluid phase veloc-

ities. Note that because of this assumption, the averaging operator term in Line 16

of Eq. (10.14), which involves a product of the solid-phase velocity difference and

the temperature gradient, is also considered to be negligible.

Lines 47–50 involve the average of the difference between the normal compo-

nent of the microscale ws velocity and the average normal component. Because the

interface moves slowly, this difference in velocities is small. For this reason, the sum

of terms in lines 47–50 is neglected relative to other terms in the CEI. This is stated

formally in the following SEI approximation:

SEI Approximation 10.3 (Interface Velocity Difference)
Expressions involving the average of the difference between the microscale normal
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flow velocity in a fluid-solid interface and the average normal flow of the macroscale
velocity in a fluid-solid interface are negligible.

An additional SEI approximation is introduced to allow the elimination of a term

involving mass exchange between the solid and the interface, specifically the group-

ing in line 25 of Eq. (10.14). This term is negligible when the correlation between

the stress differences and the mass exchange is small or if the mass exchange at the

surface is negligible. In any event, this term is small compared to the mass exchange

term of lines 23 and 24. Thus we make the approximation as follows:

SEI Approximation 10.4 (Stress Difference and Mass Exchange)
Terms that involve a product of the microscale mass exchange between the solid
phase and the ws interface and the difference between the microscale and macro-
scale normal solid stress at the interface can be neglected.

10.4.2 Breaking of Averages

As was done in the last chapter, we will break averages of some products of mic-

roscale quantities. The essential feature of the approximations is that the average of

a product of terms is set to be essentially equal to the product of the averages of

the quantities considered. In general, such an approximation is strictly correct only

if the microscale factors are uncorrelated. Here we will assume that the correlation

is negligible or that the quantities themselves are so small that the error introduced

by neglecting the correlation is negligible. Assumptions of this type may be applied

only with caution and only for particular physical variables. Thus, it is important that

the use of these approximations be clearly identified as they provide fertile ground

for investigation of alternative approximations. For the most part, the SEI approxi-

mations to be applied here are the same as those introduced previously in Sect. 9.5.3.

Thus, the rationale behind each of the approximations will be abbreviated.

The orientation of the interface between the phases will be considered to be un-

correlated to any physical properties. This allows the breaking of the products as

follows:

SEI Approximation 10.5 (Geometric Orientation Products)
The average over the ws interface of a product of the microscale geometric orienta-
tion tensor Gws = I−I′ws with a microscale scalar fα can be evaluated as the product
of the macroscale averages of the two components of the original expression such
that

〈Gws fα〉Ωws,Ω = εwsGws f ws
α for α ∈ IP (10.19)

and

〈Gws fws〉Ωws,Ω = εwsGws f ws . (10.20)
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This approximation is used to evaluate terms appearing in lines 12, 36, 40, and 41

of Eq. (10.14).

The equation relating the evolution of the solid-phase volume fraction to the

movement of the ws interface was derived as Eq. (8.6) with

Dsεs

Dt
=
〈
ns ·

(
vws −vs)〉

Ωws,Ω
. (10.21)

The quantity within the averaging operator on the right side appears in CEI Eq.

(10.14) multiplied by a microscale quantity in lines 283, 31, and 43–44. This product

is broken making use of the following approximation:

SEI Approximation 10.6 (Evolution Product)
The average over the ws interface of a term involving the product of ns ·(vws− vs)
with a microscale scalar can be approximated as the product of the macroscale
averages of the two factors. In conjunction with Eq. (10.21), this approximation
yields

〈
ns ·

(
vws −vs) fα

〉
Ωws,Ω

=
Dsεs

Dt
f ws
α for α ∈ {w,s} (10.22)

and 〈
ns ·

(
vws −vs) fws

〉
Ωws,Ω

=
Dsεs

Dt
f ws . (10.23)

An additional SEI approximation is introduced to facilitate breaking of the prod-

uct involving ∇′·I′ws = −ns∇′·ns in line 43 of Eq. (10.14). Application of SEI Ap-

proximation 10.6 still leaves the product of microscale interfacial tension and cur-

vature to be evaluated. This is accomplished as follows:

SEI Approximation 10.7 (Product of Curvature and Tension)
The average over the ws interface of a term involving the product of the microscale
curvature ∇′·ns with the microscale interfacial tension γws can be approximated as
the product of the macroscale averages of the two factors such that〈

γws
(
∇′·ns

)〉
Ωws,Ωws

= 〈γws〉Ωws,Ωws

〈
∇′·ns

〉
Ωws,Ωws

= γwsJws
s , (10.24)

where Jws
s = 〈∇′·ns〉Ωws,Ωws

is the average curvature of the ws interface.

SEI Approximations 10.6 and 10.7 are employed together in lines 43 and 44 to

obtain 〈
γws

(
∇′·I′ws

)
·
(
vws −vs)〉

Ωws,Ω
=−γwsJws

s
Dsεs

Dt
. (10.25)

3 In line 28, the unit vector is nw rather than ns, but since nw =−ns on the interface, the presence
of nw simply introduces a minus sign on the right side of the equation.
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10.4.3 General SEI

Use of SEI Approximations 10.1 through 10.7 in the CEI of Eq. (10.14) followed

by minor collection of terms yields the general SEI,

1

θ w

(
εwtw + εw pwI

)
:dw +

1

θ s

(
εsts − εsts

)
:ds

1

+
1

θ ws

[
εwstws − εws(I−Gws)γws

]
:dws

2

− ∑
α∈I

[
εα qα + εα qα

g0 3

+ ∑
i∈Is

εα ρα ω iα

(
μ iα +Kiα

E +
uiα ·uiα

2

)
uiα

]
·∇
(

1

θ α

)
4

− ∑
α∈I

∑
i∈Is/N

1

θ α
εα ρα ω iα uiα ·∇

[
μ iα +Kiα

E +
uiα ·uiα

2
+ψ iα

5

−
(

μNα +KNα
E +

uNα ·uNα

2
+ψNα

)]
6

− ∑
α∈I

∑
i∈Is

1

θ α

(
μ iα +Kiα

E +
uiα ·uiα

2
+ψ iα

)
ε iα riα

7

+ ∑
α∈I

∑
i∈Is

1

θ α
〈riα ψiα〉Ωα ,Ω 8

+ ∑
i∈Is

iw→iws
M

[
1

θ w

(
μ iw +Kiw

E +
uiw·uiw

2
+ψ iw

)
9

− 1

θ ws

(
μ iws +Kiws

E +
uiws·uiws

2
+ψ iws

)]
10

+ ∑
i∈Is

is→iws
M

[
1

θ s

(
μ is +Kis

E +
uis·uis

2
+

σσσ s:Cs

3ρs js +ψ is

)
11

− 1

θ ws

(
μ iws +Kiws

E +
uiws·uiws

2
+ψ iws

)]
12

−
{

w→ws
Q1 +

w→ws
G0 + ∑

i∈Is

(
Ews

iw +Kws
Eiw +

uws
iw ·uws

iw
2

+ψws
iw

)
iw→iws

M 13

+

[
w→ws
T0 + ∑

i∈Is

(
vws

w −vs

2
+uws

iw

)
iw→iws

M

]
·
(
vws

w −vs)
14
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+ pws
w

Dsεs

Dt

}(
1

θ w
− 1

θ ws

)
15

−
{

s→ws
Q1 +

s→ws
G0 + ∑

i∈Is

(
Ews

is +Kws
Eis +

uws
is ·uws

is
2

+ψws
is

)
is→iws

M 16

+

[
s→ws
T0 + ∑

i∈Is

(
vws

s −vs

2
+uws

is

)
is→iws

M

]
·
(
vws

s −vs)
17

+ 〈ns·ts·ns〉Ωws,Ωws

Dsεs

Dt

}(
1

θ s
− 1

θ ws

)
18

− 1

θ w

{
ηw∇θ w −∇

(
εw pw

)
19

+ ∑
i∈Is

εwρwω iw

[
∇

(
μ iw +Kiw

E +
uiw·uiw

2
+ψ iw

)
+giw

]
20

−
[

w→ws
T0 − ∑

i∈Is

(
vw −vs

)
2

iw→iws
M 21

+ ∑
i∈Is

(
vws

w +uws
iw −vs

) iw→iws
M

]}
·
(
vw −vs)

22

− 1

θ ws

{
ηws (I−Gws) ·∇θ ws +∇·

[
εws (I−Gws)γws

]
23

+ ∑
i∈Is

εwsρwsω iws(I−Gws)·∇
(

μ iws +Kiws
E +

uiwsuiws

2
+ψ iws

)
24

+ ∑
i∈Is

εwsρwsω iwsgiws
25

+
w→ws
T0 − ∑

i∈Is

(
vws −vs

)
2

iw→iws
M + ∑

i∈Is

(
vws

w +uws
iw −vs

) iw→iws
M 26

+
s→ws
T0 − ∑

i∈Is

(
vws −vs

)
2

is→iws
M 27

+ ∑
i∈Is

(
vws

s +uws
is −vs

) is→iws
M

}
·
(
vws −vs)

28

− 1

θ ws

Dsεs

Dt

(
pws

w + 〈ns·ts·ns〉Ωws,Ωws
+ γwsJws

s 29

− ∑
i∈Is

〈ρwsωiwsgiws·ns〉Ωws,Ωws

)
30
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= ∑
α∈I

Λ α ≥ 0 . 31

(10.26)

With fewer approximations applied to the CEI, this SEI would be more general.

However, the SEI approximations imposed here are minimal in most cases and thus,

for our purposes, Eq. (10.26) will be referred to as the “general” SEI. All the terms

in this equation are in force-flux form except the chemical reaction expressions in

lines 7 and 8. This shortcoming is dealt with, depending on the system, as will be

demonstrated subsequently. For now, we will comment that the usual approach is to

neglect the species dependence of ψiα , which eliminates line 8, and to handle the

reaction term using a macroscale affinity, similarly to Eq. (5.38) in the development

of a microscale model. In addition to the forces listed in Table 10.2, the quantity in

parentheses in lines 29 and 30 emerges as another force. This force was shown to

be zero at equilibrium in the derivation of Eq. (7.115).

Under the umbrella provided by the general SEI, we can apply some restrictions

consistent with a system of interest. The primary goal here is to demonstrate how

species modeling extends the analysis of the last chapter in which only entities were

considered. We will analyze a system that represents an extension of the last chapter

by including species transport for a non-isothermal system.

10.5 SEI for Application to Non-isothermal Species Transport

As was demonstrated in Sect. 9.6, application of the SEI to determine closure rela-

tions involves:

1. using secondary restrictions that simplify the problem by eliminating processes

from further study that are not of interest;

2. counting the number of variables in contrast to the number of equations so that

the deficiency in variables that must be addressed is determined;

3. reducing the deficiency in equations by use of state equations and approximate

relations between variables; and

4. eliminating the remaining deficiency in the number of equations using closure

relations.

These steps will be followed here, in brief, with emphasis on the last item.

10.5.1 Imposition of Secondary Restrictions

Based on the belief that working with a simpler form of the general SEI of Eq.

(10.26) to obtain closure relations will be more illuminating, we will apply sec-
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ondary restrictions that provide for simplification but do not exclude a wide range

of interesting systems. The first simplification relates to the body force and its po-

tential:

Secondary Restriction 10.1 (Body Force Potential)
The macroscale species body force vector for a species in an entity, giα , and the av-
erage of body force potential, ψ iα , will be considered to be independent of chemical
species such that

giα = gα for i ∈ Is,α ∈ I (10.27)

and
ψ iα = ψα for i ∈ Is,α ∈ I . (10.28)

When gα is taken to be a constant gravitational acceleration, it is independent of

the entity. In this instance, the microscale potential function is also independent of

entity, but its average is not necessarily independent of either the species or the

entity. When the concentration or density is variable and/or the phase distribution

is not uniform in an averaging volume, dependence of ψ iα on the chemical species

and entity can arise. Typically, this effect is small. When the body force includes

other effects, such as an electrical effect, Secondary Restriction 10.1 will not apply.

However, as stated, this restriction causes line 8 of Eq. (10.26) and the product

ψ iα riα in line 7 to drop out because the sum of the production rates of species over

all species within a phase must be zero.

Another restriction that is imposed here is that the flows are slow enough that the

deviation kinetic energy and the inner product of the dispersion velocity with itself

are negligibly small. This condition may be stated as:

Secondary Restriction 10.2 (Deviation Velocities Squared)
The deviation velocities that enter into the analysis, viα −vα , vα −vα , and uiα for
α ∈ I, are restricted to be small enough that their magnitude squared may be ne-
glected in the analysis. In the macroscale equations, Kiα

E , uiα ·uiα , and the products
of mass exchange terms with the magnitude of these velocity differences may be
eliminated.

We will consider systems where the mass per area of the interface is zero. Thus

the interface is massless, and any mass transferred from one phase to the interface is

immediately transferred into the adjacent phase. The restriction on interfacial mass

density be stated as a secondary restriction:

Secondary Restriction 10.3 (Massless Interface)
No mass exists or accumulates in the ws interface such that ρws = 0.

When this restriction applies, physical reasoning suggests, and mass conservation

described by Eq. (10.3) confirms, that the mass transferred from the w phase must

equal the amount that enters the s phase. Thus, Secondary Restriction 10.3 requires

iw→iws
M =−

is→iws
M =

iw→is
M =−

is→iw
M for i ∈ Is . (10.29)
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Additionally, because qws
g0 as obtained from Eqs. (6.154) and (6.199) depends on the

interface density, this restriction requires that qws
g0 = 0.

A last secondary restriction involves formulation of the chemical reaction in

terms of chemical affinity. An analogous rearrangement was implemented in Sect. 5.4.3

when deriving the microscale CEI. Here, it falls with the simplification of the SEI

because it depends on Secondary Restrictions 10.1 and 10.2 for implementation. We

identify the formation of species i in entity α as

riα = ∑
k∈Irxnα

νikα MWiRkα , (10.30)

where Irxnα is the set of Nrxn reactions that occur in entity α , νikα is the stoichiomet-

ric coefficient for component i in reaction k in entity α , MWi is the molecular weight

of species i and Rkα is the molecular rate of reaction k in entity α . The affinity of

reaction k in entity α , denoted Akα , is a measure of disequilibrium of the reaction

with

Akα = ∑
i∈Is

μ iα νikα MWi for k ∈ Irxnα ,α ∈ I . (10.31)

The affinity is typically invoked at the microscale [1] and is related to the change

of Gibbs free energy with respect to the extent of completion of the reaction. We

consider a similar relation to exist at the macroscale and observe that the affinity is

zero at equilibrium. With these definitions we can pose the following:

Secondary Restriction 10.4 (Affinity of a Chemical Reaction)
The macroscale affinity of a chemical reaction is defined analogously to the micro-
scopic affinity such that

∑
i∈Is

μ iα riα = ∑
i∈Is

∑
k∈Irxnα

μ iα νikα MWiRkα = ∑
k∈Irxnα

Akα Rkα for α ∈ I .

(10.32)

Implementation of Secondary Restrictions 10.1–10.4 in the general SEI of Eq.

(10.26) provides the somewhat simpler SEI,

1

θ w

(
εwtw + εw pwI

)
:dw +

1

θ s

(
εsts − εsts

)
:ds

1

+
1

θ ws

[
εwstws − εws(I−Gws)γws

]
:dws

2

− ∑
α∈IP

(
εα qα + εα qα

g0 + ∑
i∈Is

εα ρα ω iα μ iα uiα

)
·∇
(

1

θ α

)
3

− εwsqws·∇
(

1

θ ws

)
4

− ∑
α∈IP

∑
i∈Is/N

1

θ α
εα ρα ω iα uiα ·∇

(
μ iα −μNα

)
5
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− ∑
α∈IP

∑
k∈Irxnα

1

θ α
Rkα Akα

6

+ ∑
i∈Is

iw→is
M

[
1

θ w

(
μ iw +ψw

)
− 1

θ s

(
μ is +

σσσ s:Cs

3ρs js +ψs

)]
7

−
{

w→ws
Q1 +

w→ws
G0 + ∑

i∈Is

(
Ews

iw +ψws
w

) iw→is
M 8

+
w→ws
T0 ·

(
vws

w −vs)+ pws
w

Dsεs

Dt

}(
1

θ w
− 1

θ ws

)
9

−
{

s→ws
Q1 +

s→ws
G0 − ∑

i∈Is

(
Ews

is +ψws
s

) iw→is
M 10

+
s→ws
T0 ·

(
vws

s −vs)+ 〈ns·ts·ns〉Ωws,Ωws

Dsεs

Dt

}(
1

θ s
− 1

θ ws

)
11

− 1

θ w

{
ηw∇θ w −∇

(
εw pw

)
+ ∑

i∈Is

εwρwω iw
[
∇
(

μ iw +ψw
)
+gw

]
12

−
w→ws
T0

}
·
(
vw −vs)

13

− 1

θ ws

{
ηws (I−Gws) ·∇θ ws +∇·

[
εws (I−Gws)γws

]
14

+
w→ws
T0 +

s→ws
T0

}
·
(
vws −vs)

15

− 1

θ ws

Dsεs

Dt

(
pws

w + 〈ns·ts·ns〉Ωws,Ωws
+ γwsJws

s

)
16

= ∑
α∈I

Λ α ≥ 0 . 17

(10.33)

This equation is arranged so that all terms are products of independent macroscale

forces and fluxes. The groupings of forces and fluxes are not unique. In each force-

flux pair, the force is listed as the second factor in the product. The forces have all

been shown to be zero at equilibrium. The fact that the fluxes must also be zero at

equilibrium provides a constraint on their forms and will be used to develop approx-

imate closure relations.

We will now demonstrate how this SEI for non-isothermal species transport can

be employed to model four cases: isothermal transport of species with no inter-

phase exchange of mass; isothermal transport with interphase exchange of mass;

single-temperature, non-isothermal transport; and two-temperature, non-isothermal

transport with interphase exchange of mass. The last of these four cases is the most
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general and reduces to the other cases with appropriate restrictions. However, it is

worthwhile, for illustrative purposes at least, to set up the first three examples as

special cases so that the conditions and approximations needed just for those cases

are more easily identified.

10.6 Isothermal Transport with No Interphase Mass Exchange

This case considers transport and reaction of a chemical species within the phases.

In the limit where there is only one species present, the resulting model should be

identical to that of Chap. 9. We will consider the elements of this case here.

10.6.1 Simplification of SEI

For this isothermal case with no inter-entity mass exchange, an additional secondary

restriction may be stated:

Secondary Restriction 10.5 (Isothermal, No Mass Exchange)
The system is constrained to be isothermal with no temperature gradients such that

θ α = θ for α ∈ I (10.34)

and
∇θ α = 0 for α ∈ I ; (10.35)

additionally, no mass exchange occurs between the phases so that

iw→is
M = 0 for i ∈ Is . (10.36)

Application of these additional constraints to the SEI of Eq. (10.33) eliminates lines

3, 4, and 7–11 as well as the terms involving a temperature gradient in lines 12 and

14. After multiplication by the constant temperature, θ , the resulting equation is(
εwtw + εw pwI

)
:dw +

(
εsts − εsts

)
:ds +

[
εwstws − εws(I−Gws)γws

]
:dws

− ∑
α∈IP

∑
i∈Is/N

εα ρα ω iα uiα ·∇
(

μ iα −μNα
)
− ∑

α∈IP

∑
k∈Irxnα

Rkα Akα

+

{
∇
(

εw pw
)
− ∑

i∈Is

εwρwω iw
[
∇
(

μ iw +ψw
)
+gw

]
+

w→ws
T0

}
·
(
vw −vs)
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−
{

∇·
[
εws (I−Gws)γws

]
+

w→ws
T0 +

s→ws
T0

}
·
(
vws −vs)

− Dsεs

Dt

(
pws

w + 〈ns·ts·ns〉Ωws,Ωws
+ γwsJws

s

)
= θ ∑

α∈I
Λ α ≥ 0 . (10.37)

10.6.2 Count of Equations and Variables

To be able to close the equation set that has been developed, the same number of

equations and unknowns must exist. Therefore, it is important to count both of these

quantities so that a strategy can be developed to eliminate the deficiency in equa-

tions.

With N being the number of species, we have 2N mass conservation equations,

one for each species in the w and s phases. We have already made use of the mass

conservation equation for the interface through Secondary Restriction 10.3 and the

imposition of its consequences in Eq. (10.29). Because we are modeling momentum

on an entity basis, we have three vector components of the momentum equations for

the three entities, making a total of nine momentum equations. Because the system

is isothermal, the energy equations for the entities are not needed. The body force

potential equation does not need to be closed either since it pairs with the energy

equation. If we include the SEI in the count, the total number of conservation and

balance equations is 10+2N.

The variables in these equations, denoted as members of the set V0, are as fol-

lows:

V0 = {εα ,ρκ ,ω iκ ,vα ,uiκ ,riκ ,gκ ,
κ→ws
T0 ,tα , pw, pws

w ,ts,γws,

Gws,μ iκ ,Rmκ ,Amκ ,ψw,〈ns·ts·ns〉Ωws,Ωws
,Jws

s ,Λ α}
for α ∈ I,κ ∈ IP, i ∈ Is,m ∈ Irxnκ . (10.38)

A count of the scalar elements indicates that there are 80+ 12N + 4Nrxn members

of V0. This count may be reduced by 15 by taking into account the fact that each of

the five tensors is symmetric. A further reduction of 10 may be made because of the

10 scalar conditions,

∑
i∈Is

ω iκ = 1 for κ ∈ IP , (10.39)

∑
i∈Is

ω iκ uiκ = 0 for κ ∈ IP , (10.40)

and

∑
i∈Is

riκ = 0 for κ ∈ IP . (10.41)
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Thus, the number of variables that must be accounted for decreases to 55+ 12N +
4Nrxn.

As noted, we have 10+2N conservation and balance equations available, so we

are in need of 45+10N +4Nrxn additional conditions. If we do not make use of the

linearization opportunity provided by the product of reactions and affinity, the SEI

still provides 25+6(N −1) closure relations from linearization of force-flux pairs.

This reduces the number of excess variables further to 26+4N +4Nrxn.

In Sect. 9.6.3, we found 29 conditions that could be applied to the single-phase-

flow case. These conditions can be applied here with the exception of the equation

of state for the chemical potential of the w phase, Eq. (9.70), because chemical

potentials are posed on a species basis. Additionally, the equations of state might be

modified in some cases to reflect dependence on composition. Nevertheless, we have

identified 28 conditions so that the shortage in variables reduces to 4N −2+4Nrxn.

This deficiency in variables can be overcome by posing equations of state for

μ iκ for i ∈ Is,κ ∈ IP. These equations of state might be analogous to those posed

in Chap. 3 but expressed in terms of macroscale variables. This provides 2N condi-

tions. Typically, the 2Nrxn forms of Rmκ are determined through laboratory exper-

imentation. Combination of the stoichiometric coefficients with the chemical po-

tentials then gives 2Nrxn expressions for Amκ . The remaining 2N −2 conditions are

the relations between the mass rate of production, riκ , and the chemical reactions

expressions as given by Eq. (10.30). Note that only N −1 of these relations can be

formed for each phase as the condition that the sum of the production rates must be

zero has already been imposed in Eq. (10.41).

With the number of equations and unknowns equalized, it is possible to close the

mass and momentum equations for isothermal transport without interphase transfer

of mass. We will leave a demonstration of closure to a subsequent case.

10.7 Isothermal Transport with Interphase Mass Exchange

This case is more complex than the last because it allows for interphase mass ex-

change as modeled by the term
iw→is

M . The temperature is considered constant, so the

energy transport equation does not have to be solved as part of the model.

10.7.1 Simplification of the SEI

For this case, the secondary restriction imposed is less restrictive than that of Sec-

ondary Restriction 10.5. It may be stated as:

Secondary Restriction 10.6 (Isothermal)
The system is constrained to be isothermal with no temperature gradients such that
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θ α = θ for α ∈ I (10.42)

and
∇θ α = 0 for α ∈ I . (10.43)

The only difference between the SEI for this problem and Eq. (10.37) is that line 7

of SEI Eq. (10.33) must be retained. Thus, the SEI for this case is(
εwtw + εw pwI

)
:dw +
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εsts − εsts
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:ds +
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− ∑
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+ ∑
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εwρwω iw
[
∇
(

μ iw +ψw
)
+gw

]
+

w→ws
T0

}
·
(
vw −vs)

−
{

∇·
[
εws (I−Gws)γws

]
+

w→ws
T0 +

s→ws
T0

}
·
(
vws −vs)

− Dsεs

Dt

(
pws

w + 〈ns·ts·ns〉Ωws,Ωws
+ γwsJws

s

)
= θ ∑

α∈I
Λ α ≥ 0 . (10.44)

10.7.2 Additional Variables and Constraints

The SEI of Eq. (10.44) contains variables that are properties of the solid phase as

well as the mass exchange term that did not appear in the previous case. Further-

more, because the mass exchange term is retained, momentum conservation de-

scribed by Eq. (6.201) also contains phase velocities and dispersion vectors inte-

grated over the interface that previously did not have to be considered. The addi-

tional variables that must be accounted for comprise the set VM , where

VM = {
iw→is

M ,ψs,σσσ s:Cs/ js,vws
κ ,uws

iκ } for κ ∈ IP, i ∈ Is . (10.45)

This set has 8+ 7N members. The line in Eq. (10.44) that contains
iw→is

M suggests

a path to linear closure of these exchange terms and thus provides N conditions.

The body force potential for the solid, ψs, can be treated in the same way as ψw,

as discussed in Sect. 9.6.3. The grouping σσσ s:Cs/ js is dealt with through its relation

to the solid-phase stress tensor and the elastic properties of the solid. The flow and

diffusion terms at the ws interface are the remaining 6+6N unknown variables. Both
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variables appear in momentum equation Pα
∗∗ for α ∈ I, Eq. (6.201), multiplying the

mass exchange term. They only appear as a sum, so they need not be specified

individually. Rather, only vws
κ +uws

iκ needs to be accounted for. This species velocity

appears in a term that is of order velocity squared, which is typically negligible for

modeling the momentum of flows in porous media. Thus, as a first approximation,

vws
κ +uws

iκ can be eliminated from the formulation.

The additional unknowns associated with interphase exchange thus do not add a

significant burden to the formulation. The mass exchange term will be related to the

difference in the potentials in the fluid and solid phases. Subsequently, this will be

written explicitly when showing the closure relations for interphase transport in the

non-isothermal case.

10.8 Unitemperature, Nonisothermal Transport

This case considers heat and mass transport in a porous medium. The transport of

energy is modeled most simply using a macroscale local equilibrium assumption

for temperature. By this assumption, temperature gradients may exist within the

system, but the average temperature within an averaging volume is independent of

the entity. With such a model, energy transport equations must be included, but only

one temperature field must be determined.

10.8.1 Simplification of the SEI for a Single Temperature

For this model, the secondary restriction that is imposed on Eq. (10.33) may be

stated:

Secondary Restriction 10.7 (Isothermal)
The system is restricted to the case where the temperature of each entity is the same
at each point, but the gradient in temperature may be non-zero such that

θ α = θ for α ∈ I . (10.46)

For this model, lines 8–11 of Eq. (10.33) are eliminated because the forces consist-

ing of temperature differences are zero.

For the single temperature model, in anticipation of linear closure, the SEI sim-

plifies to

1

θ

(
εwtw + εw pwI

)
:dw +

1

θ

(
εsts − εsts

)
:ds +

1

θ

[
εwstws − εws(I−Gws)γws

]
:dws
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− ∑
α∈IP

(
εα qα + εα qα

g0 + ∑
i∈Is

εα ρα ω iα μ iα uiα

)
·∇
(

1

θ

)
− εwsqws·∇

(
1

θ

)

− ∑
α∈IP

∑
i∈Is/N

1

θ
εα ρα ω iα uiα ·∇

(
μ iα −μNα

)
− ∑

α∈IP

∑
k∈Irxnα

1

θ
Rkα Akα

+ ∑
i∈Is

1

θ
iw→is

M

[
μ iw +ψw −

(
μ is +

σσσ s:Cs

3ρs js +ψs

)]

− 1

θ

{
ηw∇θ −∇

(
εw pw

)
+ ∑

i∈Is

εwρwω iw
[
∇
(

μ iw +ψw
)
+gw

]

−
w→ws
T0

}
·
(
vw −vs)

− 1

θ

{
ηws(I−Gws)·∇θ +∇·

[
εws (I−Gws)γws

]
+

w→ws
T0 +

s→ws
T0

}
·
(
vws −vs)

− 1

θ
Dsεs

Dt

(
pws

w + 〈ns·ts·ns〉Ωws,Ωws
+ γwsJws

s

)
= ∑

α∈I
Λ α ≥ 0 . (10.47)

10.8.2 Accounting for Additional Variables

The variables in addition to those listed previously include those in Eq. (10.47) that

multiply the temperature gradient. These are associated with non-advective energy

fluxes and entropy. Additionally, the variables in the equation for conservation of

energy, Eq. (6.203), that have not already been accounted for must be considered.

This case of non-constant temperature requires that the energy equation be part of

the system model. This expansion to the set of variables is denoted as VE where

VE = {θ ,ηw,ηwsqα ,qκ
g0,E

α ,hα
0 ,h

α ,Ews
iκ } for α ∈ I,κ ∈ IP, i ∈ Is . (10.48)

This set has 27+2N members. We will assume there are no body sources of energy

so that

hα = 0 for α ∈ I . (10.49)

As defined by Eqs. (6.104) and (6.190), when the gravity vector is independent of

species,

hα
0 = 0 for α ∈ I . (10.50)

Here, we will consider qκ
g0 defined in Eqs. (6.154) and (6.199) to be negligible such

that

qκ
g0 = 0 for κ ∈ IP . (10.51)
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We also assume that equations of state can be developed for the macroscale energy

functions, Eα and Êws
iκ , and the macroscale entropies, ηw and ηws. This leaves the

nine components of qα and the temperature as the remaining unknowns. We need

10 more conditions.

Before we determine the source of these 10 conditions, we will rearrange some

terms, not because this is necessary but because it is informative in terms of showing

an approximation that underpins a classical result. We assume that the microscale

expression derived in Eq. (5.34) can be written in terms of macroscale variables as

an approximate equation,

∇μ iα = ∇μ iα
∣∣∣
θ α

+θ α
(

Hiα −μ iα
)

∇
(

1

θ α

)
. (10.52)

This relation may be used in conjunction with the dispersion term in Eq. (10.47). We

make use of this relation, Eq. (10.51), and the fact that temperatures of all entities

are equal so that terms on the left side of the following equality, taken from Eq.

(10.47), can be re-expressed on the right side according to

− ∑
α∈IP

(
εα qα + ∑

i∈Is

εα ρα ω iα μ iα uiα

)
·∇
(

1

θ

)
− εwsqws·∇

(
1

θ

)

− ∑
α∈IP

∑
i∈Is/N

1

θ
εα ρα ω iα uiα ·∇

(
μ iα −μNα

)
=

−
[

∑
α∈IP

(
εα qα + ∑

i∈Is

εα ρα ω iα Hiα
)
+ εwsqws

]
·∇
(

1

θ

)

− ∑
α∈IP

∑
i∈Is/N

1

θ
εα ρα ω iα uiα ·∇

(
μ iα

∣∣∣
θ
− μNα

∣∣∣
θ

)
. (10.53)

Substitution of this equality into the SEI Eq. (10.47) provides a force-flux pairing

that can be employed in closing the non-advective energy transport and the species

dispersion.

Because the temperatures in all entities are equal, the quantity in brackets on the

right side of Eq. (10.53) is treated as a single vector flux that can be obtained based

on a linearization of the SEI (i.e., we will be able to get closure approximations

for three aggregate vector components). We are unable to obtain the non-advective

heat flux vectors for each entity separately. This suggests that, rather than using Eq.

(6.203) for the energy of each entity, we sum this equation over all entities to obtain

a single energy equation that contains the same sum of the non-advective energy

fluxes that appears in the SEI. Additionally, all inter-entity energy exchanges cancel

out when the energy equation is summed over all entities. This summing reduces the

number of unknowns from the nine elements of qα for α ∈ I to the three members

of the combined heat flux expression. Expressions for closure of these elements are

suggested by the SEI. The combined energy equation provides the final condition

needed to have a closed set of equations.
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The consequence of the single temperature model is that one is able to use a

single energy equation to model energy transport in the system. The model requires

constitutive relations for partial mass energy, enthalpy, and chemical potential of

each species. At the microscale, this thermodynamic information is often available.

For a macroscale model, one must be careful and realize that the equations of state

must be scaled up to account for variability of thermodynamic quantities within the

averaging volume. This creates challenges in being able to close a model reliably.

10.9 Multi-temperature Species Transport

This is the most complex model to be considered in this chapter. It allows for flow

and chemical species transport within and between phases. Additionally, the system

is considered to be non-isothermal with temperature gradients within the phases as

well as a temperature difference between phases that drives interphase energy trans-

port. The models considered in the previous three sections are special cases of this

more general model. However, even this model incorporates some simplifications to

the SEI of Eq. (10.33). We will indicate the simplifications and develop the closed

model.

10.9.1 SEI for the Multi-temperature Case

The SEI to be employed here is based on Eq. (10.33) with limited simplification.

Terms involving vws
w −vs or vws

s −vs are dropped as being of second-order smallness.

Additionally, Eq. (10.52) will be used in lines 3–5 of Eq. (10.33) to separate out the

elements of dispersion that are due to thermal effects.4 The reduced form of the SEI

with these assumptions applied is

1

θ w

(
εwtw + εw pwI

)
:dw +

1

θ s

(
εsts − εsts

)
:ds

1

+
1

θ ws

[
εwstws − εws(I−Gws)γws

]
:dws

2

− ∑
α∈IP

(
εα qα + ∑

i∈Is

εα ρα ω iα Hiα uiα

)
·∇
(

1

θ α

)
− εwsqws·∇

(
1

θ ws

)
3

− ∑
α∈IP

∑
i∈Is/N

1

θ α
εα ρα ω iα uiα ·∇

(
μ iα

∣∣∣
θ α

− μNα
∣∣∣
θ α

)
4

4 It is also possible to use Eq. (10.52) to replace all the gradients of chemical potential that appear
in Eq. (10.33). This provides an interesting rearrangement of the multiplier of vw −vs by allowing

ηw∇θ w to be eliminated. Of course neither of these rearrangements is required for closing the
model!

10.8 Unitemperature, Nonisothermal Transport
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− ∑
α∈IP

∑
k∈Irxnα

1

θ α
Rkα Akα

5

+ ∑
i∈Is

iw→is
M

[
1

θ w

(
μ iw +ψw

)
− 1

θ s

(
μ is +

σσσ s:Cs

3ρs js +ψs

)]
6

−
{

w→ws
Q1 +

w→ws
G0 + ∑

i∈Is

(
Ews

iw +ψws
w

) iw→is
M + pws

w
Dsεs

Dt

}(
1

θ w
− 1

θ ws

)
7

−
{

s→ws
Q1 +

s→ws
G0 − ∑

i∈Is

(
Ews

is +ψws
s

) iw→is
M 8

+ 〈ns·ts·ns〉Ωws,Ωws

Dsεs

Dt

}(
1

θ s
− 1

θ ws

)
9

− 1

θ w

{
ηw∇θ w −∇

(
εw pw

)
+ ∑

i∈Is

εwρwω iw
[
∇
(

μ iw +ψw
)
+gw

]
10

−
w→ws
T0

}
·
(
vw −vs)

11

− 1

θ ws

{
ηws (I−Gws) ·∇θ ws +∇·

[
εws (I−Gws)γws

]
12

+
w→ws
T0 +

s→ws
T0

}
·
(
vws −vs)

13

− 1

θ ws

Dsεs

Dt

(
pws

w + 〈ns·ts·ns〉Ωws,Ωws
+ γwsJws

s

)
= ∑

α∈I
Λ α ≥ 0 . 14

(10.54)

10.9.2 Treatment of Additional Variables

The variables that enter the analysis, in addition to those discussed in the previous

sections, are two temperatures, indicated as those of the s and ws entities, and the

fluxes of energy at the boundary between entities. This set is denoted as VQ, where

VQ = {θ s,θ ws,
κ→ws
Q1 ,

κ→ws
G0 } for κ ∈ IP . (10.55)

This set contains six variables; thus, we need six additional conditions to be able

to close the system. Because we are allowing the entities to have different tempera-

tures, energy conservation as described by Eq. (6.203) is formulated separately for

each entity. In the single temperature model, we made use of one energy equation,

the sum of the three entity equations. By not combining them, we are able to re-
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duce the equation deficit by two. The quantity
κ→ws
G0 is defined in Eq. (6.198) as the

sum over all species of
iκ→iws

G0 , defined in Eqs. (6.156) and (6.156). In essence,
κ→ws
G0

involves a product of a difference in gravitational potentials, one averaged over a

phase and the other averaged over the boundary of the phase, multiplied by a mass

exchange term, a force in the force-flux relation of the SEI given by Eq. (10.54).

Since it also multiplies a temperature difference force, it may be dropped as being

of higher order smallness. Thus, we approximate

κ→ws
G0 = 0 for κ ∈ IP . (10.56)

This leaves two variables,
w→ws
Q1 and

s→ws
Q1 , which can be approximated using lin-

earized closure relations motivated by the SEI.

10.10 Example of Conjugate Force-flux Closure

A general approach to closing the conservation equations based on Eq. (10.54) can

include a number of processes, such as coupling between non-advective heat and

mass transport and interactions among dispersing chemical species. These topics

make use of cross-coupling, as demonstrated at the microscale in Sect. 5.9. Our

objective here is not to provide an exhaustive illustration of TCAT examples, but

to provide the important elements of the framework as displayed in Fig. 1.3. This

goal can be accomplished by examining an admittedly simplified, but nevertheless

compelling, example of closure at the macroscale. The intricacies of cross-coupling

provide a fertile ground for study, especially for larger-scale system descriptions,

with microscale illustrations available in the literature [e.g., 1, 2, 4–7].

Here, we will consider a system with the following characteristics and restrictions

that guide the closure of the system described based on the SEI of Eq. (10.54) and

the antecedent primary and secondary restrictions.

Closure Approximation 10.1 (Species and Interactions)
The single-fluid-phase porous medium system that is transporting heat and mass is
restricted as follows

• the w phase is composed of two chemical species denoted as A and B;
• the s phase is composed of two chemical species denoted as A and C;
• only species A is exchanged between the w and s phases;
• all species may react reversibly within their phases such that A reacts to form B

in the w phase and A reacts to form C in the solid phase, and vice-versa;
• the temperatures of the phases and of the massless interface are not necessarily

equal;
• the concentration of solute A and the temperature gradients are small enough

that coupling between heat and mass transfer may be neglected;
• no coupling between phases exists for intraphase processes; and

10.9 Multi-temperature Species Transport
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• coupling of dispersion to the flow velocities may be neglected.

A consequence of the stated approximation is that cross-coupling of forces may be

ignored in formulating closure relations.

10.10.1 Closure Relations

The closure relations here proceed from Eq. (10.54) subject to Closure Approxi-

mation 10.1. We assume that the fluxes that multiply rate of strain tensors are zero

order in those tensors. All other fluxes are treated as being linearly proportional to

their conjugate forces. The assumption that the stresses are zero order in the rates

of strain is consistent with the expectation that viscous type forces evidence them-

selves at the microscale but not at the macroscale. The assumptions made are the

simplest that can be proposed that match the physics of some systems.

Forces: dwww, dsss, dwwwsss

Making use of the assumption of zero order dependence of fluxes on these forces,

we obtain the equations for the stress tensors from lines 1 and 2 of Eq. (10.54) as

tw =−pwI , (10.57)

ts = ts , (10.58)

and

tws = γws (I−Gws) . (10.59)

These equations are the same as those for the single-fluid-flow system in Eqs.

(9.74)–(9.76).

Forces: ∇∇∇
(

1

θθθ www

)
, ∇∇∇

(
1

θθθ sss

)
, ∇∇∇

(
1

θθθ wwwsss

)

These forces appear in line 3 of Eq. (10.54). For the phases we obtain the closure

relations for the non-advective heat fluxes from line 3 as

qw +ρwωAw(HAw −HBw
)uAw =−k̂

w
θ ·∇

(
1

θ w

)
(10.60)

and

qs +ρsωAs(HAs −HCs
)uAs =−k̂

s
θ ·∇

(
1

θ s

)
. (10.61)
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In writing these equations, we have made use of the facts that

ωAwuAw =−ωBwuBw (10.62)

and

ωAsuAs =−ωC suCs . (10.63)

For the interface, linearization of the non-advective heat flux in line 3 of Eq. (10.54)

gives

qws =−k̂
ws
θ ·∇

(
1

θ ws

)
. (10.64)

The coefficient tensors k̂
α
θ are positive and semi-definite. When the corresponding

entities are isotropic, these tensors are scalars.

Forces: ∇∇∇
(

μμμAAAwww
∣∣∣
θθθ www

− μμμBBBwww
∣∣∣
θθθ www

)
, ∇∇∇

(
μμμAAAsss

∣∣∣
θθθ sss

− μμμCCCsss
∣∣∣
θθθ sss

)
For an entity consisting of N chemical species, there are N −1 independent disper-

sion vectors. Thus, for the present case where each phase has two species, line 4

of entropy inequality Eq. (10.54) suggests one linearized dispersion vector for each

phase with

ωAwuAw =−D̂
w
AB·∇

(
μAw

∣∣∣
θ w

− μBw
∣∣∣
θ w

)
(10.65)

and

ωAsuAs =−D̂
s
AC·∇

(
μAs

∣∣∣
θ s
− μCs

∣∣∣
θ s

)
, (10.66)

where the binary dispersion coefficients, D̂
w
AB and D̂

s
AC, reduce to scalars if the dis-

persion process is isotropic. In obtaining these relations, we selected species B as

the reference species in the w phase and species C as the reference species in the s
phase.

Equations (10.62) and (10.63) can be employed to obtain the dispersion vectors

for species B and C, respectively, from Eqs. (10.65) and (10.66) as

ωBwuBw =−D̂
w
AB·∇

(
μBw

∣∣∣
θ w

− μAw
∣∣∣
θ w

)
(10.67)

and

ωC suCs =−D̂
s
AC·∇

(
μCs

∣∣∣
θ s
− μAs

∣∣∣
θ s

)
. (10.68)
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Forces: AAAkkkααα

The strategy that follows from a linearization of line 5 of Eq. (10.54) is an approxi-

mation of the chemical reaction as

Rkα =−K̂kα Akα for α ∈ IP,k ∈ Irxnα . (10.69)

Then from this expression the production rate of each species can be developed

from Eq. (10.30). However, instead of this approach, it is much more common to

postulate chemical reaction rate expressions based on laboratory analyses. When

systems have many components, the business of obtaining reasonable expressions

for reaction rates can be very difficult.

For the case of a monomolecular, first-order reaction, specifying an appropriate

form for Rkα can be straightforward. For polymolecular reactions, complications

arise and some subtle issues exist. Consider an example reaction whereby E and F

react to form D according to

E+F → D. (10.70)

Suppose the study of this reaction in a well-mixed laboratory system indicates that

the rate is proportional to the concentrations of E and F. The issue that arises in spec-

ifying the reaction in a macroscale porous medium system is that the observed rate

of reaction is not apt to be well-represented by the average concentrations because

the reaction rate depends on the product of reactant concentrations. To demonstrate

this consider an REV in which half of the domain has solute E but no solute F, and

the other half of the domain has solute F but no solute E. Because the reactants are

not in contact with each other, the rate of production of D would be zero. How-

ever using averaged concentrations over the REV in the developed rate expression,

a non-zero rate of reaction would be calculated. Thus, the issue of scale emerges for

this example and for all cases where a reaction is not zero or first order.

Accurate representation of biogeochemical reactions is an open issue and is prob-

lem dependent. Various approaches are possible for constructing models that repre-

sent the underlying system with adequate resolution. The first approach is to rely

upon averaged values for computing reaction rates, but to resolve the discrete model

adequately in regions where concentration gradients of the reactive species exist.

Because diffusion and dispersion are operative phenomena in a porous medium sys-

tem, some mixing will occur and grid resolution in appropriate locations will im-

prove the accuracy of a computationally-predicted reaction rate. A second approach

is to examine the limit where the rate of mixing determines the reaction rate and

approximate the mixing rate based upon the dispersion tensor and local concentra-

tion gradients. More complicated multiscale modeling approaches are also possible

where pore-scale modeling is coupled to a macroscale model.

The essential point is that use of a linearization procedure based on line 5 of

the SEI is often inadequate as a model of a chemical reaction. Similarly, reaction

rates riα determined in a laboratory based on well-mixed systems may not scale

correctly for use in macroscale equations by averaging to obtain riα . It should not be
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surprising that processes that are found to be non-linear may be represented poorly

using a linear approximation.

Force:
111

θθθ www

(
μμμAAAwww +ψψψwww

)
− 111

θθθ sss

(
μμμAAAsss +

σσσ s:Cs

333ρρρsss jjjsss +ψψψsss

)

The system is defined so that only chemical species A is transferred between the w
and s entities. Therefore, from line 6 of Eq. (10.54) we obtain the linearized relation

Aw→As
M = K̂A

M

[
1

θ w

(
μAw +ψw

)
− 1

θ s

(
μAs +

σσσ s:Cs

3ρs js +ψs

)]
, (10.71)

where KA
M is a non-negative coefficient. Also, Closure Approximation 10.1 requires

that

Bw→Bs
M = 0 (10.72)

and

Cw→Cs
M = 0 . (10.73)

Forces:
(

111

θθθ www
− 111

θθθ wwwsss

)
,
(

111

θθθ sss
− 111

θθθ wwwsss

)

The temperature difference forces apply to lines 7 and 8–9 of Eq. (10.54). When

the approximation of Eq. (10.56) is employed, the linearized relations for energy

transfer between the phases and the interface are

w→ws
Q1 =

(
Ews

Aw +ψws
w

)Aw→As
M − pws

w
Dsεs

Dt
− K̂w

E

(
1

θ w
− 1

θ ws

)
(10.74)

and

s→ws
Q1 =−

(
Ews

As +ψws
s

)Aw→As
M −〈ns·ts·ns〉Ωws,Ωws

Dsεs

Dt

− K̂s
E

(
1

θ s
− 1

θ ws

)
. (10.75)

Note that
Aw→As

M in these equations may be replaced by Eq. (10.71).
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Forces: (vwww −vsss), (vwwwsss −vsss)

The relative velocities are the driving forces in lines 10–13. Linearization of the

fluxes around these forces gives the closure relations

ηw∇θ w −∇(εw pw)+ ∑
i∈{A,B}

εwρwω iw
[
∇
(
μ iw +ψw)+gw

]
−

w→ws
T0

=−R̂
w·(vw −vs) (10.76)

and

ηws (I−Gws) ·∇θ ws +∇·
[
εws (I−Gws)γws

]
+

w→ws
T0 +

s→ws
T0

=−R̂
ws·(vws −vs) . (10.77)

The tensors R̂
w

and R̂
ws

are positive, semi-definite and simplify to non-negative

scalar coefficients when the medium is isotropic.

Force: pppwwwsss
www + 〈nsss·tsss·nsss〉Ωwwwsss,Ωwwwsss

+ γγγwwwsssJJJwwwsss
sss

This driving force in line 14 of Eq. (10.54) is a disequilibrium of the forces at the

surface of the solid phase. This can cause the matrix to deform so that the solid

volume fraction will change. The linearization of the conjugate force gives

Dsεs

Dt
=−ĉ

(
pws

w + 〈ns·ts·ns〉Ωws,Ωws
+ γwsJws

s

)
, (10.78)

where ĉ is a non-negative coefficient.

10.10.2 Closed Set of Conservation Equations

The closure relations of the last subsection can be used in conjunction with conser-

vation equations for chemical species in each phase, momentum equations for each

entity, and the energy equation for each entity, as indicated in Table 10.1. When

employing the closure relations in the equations, it is important to apply the various

assumptions and conditions that have been invoked in forming the SEI and the clo-

sure relations so that the assumptions are applied uniformly to the equation set. The

results will be collected here.
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Species Conservation in www and sss Phases

Because ρws has been set to zero and the condition that only the A species is ex-

changed between phases, four mass conservation equations are needed. These are

obtained from Eq. (6.74), subject to closure conditions Eqs. (10.65)–(10.68) and

Eqs. (10.71)–(10.73), as

Dw(εwρwωAw)

Dt
+ εwρwωAwI:dw −∇·

[
εwρwD̂

w
AB·∇

(
μAw

∣∣∣
θ w

− μBw
∣∣∣
θ w

)]
− εwrAw + K̂A

M

[
1

θ w

(
μAw +ψw

)
− 1

θ s

(
μAs +

σσσ s:Cs

3ρs js +ψs

)]
= 0 ,

(10.79)

Dw(εwρwωBw)

Dt
+ εwρwωBwI:dw −∇·

[
εwρwD̂

w
AB·∇

(
μBw

∣∣∣
θ w

− μAw
∣∣∣
θ w

)]
− εwrBw = 0 , (10.80)

Ds(εsρsωAs)

Dt
+ εsρsωAsI:ds −∇·

[
εsρsD̂

s
AC·∇

(
μAs

∣∣∣
θ s
− μCs

∣∣∣
θ s

)]
− εsrAs − K̂A

M

[
1

θ w

(
μAw +ψw

)
− 1

θ s

(
μAs +

σσσ s:Cs

3ρs js +ψs

)]
= 0 ,

(10.81)

and

Ds(εsρsωC s)

Dt
+ εsρsωC sI:ds −∇·

[
εsρsD̂

s
AC·∇

(
μCs

∣∣∣
θ s
− μAs

∣∣∣
θ s

)]
− εsrCs = 0 .

(10.82)

The rates of production in these equations will be approximated by chemical re-

action expressions as discussed previously. For the system as constrained here,

rAw =−rBw and rAs =−rCs.

Momentum Conservation for www, wwwsss, and sss Entities

The momentum equations for the entities of this system are particular forms of Eq.

(6.201). We use closure relations Eqs. (10.57)–(10.59) for the stress tensors and Eqs.

(10.76) and (10.77) for the momentum exchange terms. The momentum equations

for the w, ws, and s entities are, respectively,

Dw

Dt

(
εwρwvw

)
+ εwρwvwI:dw

+ K̂A
M

[
1

θ w

(
μAw +ψw

)
− 1

θ s

(
μAs +

σσσ s:Cs

3ρs js +ψs

)](
vws

w +uws
Aw
)
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+ηw∇θ w + ∑
i∈{A,B}

εwρwω iw∇
(
μ iw +ψw)+ R̂

w·(vw −vs) = 0 , (10.83)

ηws (I−Gws) ·∇θ ws + R̂
ws·(vws −vs) = 0 , (10.84)

and

Ds

Dt

(
εsρsvs

)
+ εsρsvsI:ds − εsρsgs − εwρwgw

−ηw∇θ w − ∑
i∈{A,B}

εwρwω iw∇
(
μ iw +ψw)

− K̂A
M

[
1

θ w

(
μAw +ψw

)
− 1

θ s

(
μAs +

σσσ s:Cs

3ρs js +ψs

)](
vws

s +uws
As
)

−∇·
[
εsts − εw pwI+ εws (I−Gws)γws

]
− R̂

w·(vw −vs) = 0 . (10.85)

In the absence of mass exchange and when temperature is constant, these equa-

tions are identical to Eqs. (9.81)–(9.83) derived for the case of no mass exchange

and no dispersion under isothermal conditions. For the case of slow flow where the

inertial and mass exchange terms are small, the momentum equations can be sim-

plified as in Sect. 9.7. The temperature variability in the current derivation enters

the momentum equations because it impacts the elements of the chemical potential.

It also influences the expressions for density and chemical potential through state

equations.

Internal Energy Conservation for www, wwwsss, and sss Entities

Because entities may have different temperatures, energy equations may be written

for each entity. Here, for exposition purposes, we will use the internal energy equa-

tion derived as Eq. (6.210). We will consider the case where terms in that equation

that contain a velocity difference squared are considered to contribute negligibly

to internal energy transport. Because
κ→α
T0 is on the order of velocity from the clo-

sure relations of Eqs. (10.76) and (10.77) and it appears in Eq. (6.210) multiplying

a velocity, that term is of order velocity squared and can be neglected. With these

simplifications, Eq. (6.210) reduces to

Dα Eα

Dt
+Eα I:dα − ∑

κ∈Icα
∑

i∈Is

iκ→iα
M Eα,κ

i − ∑
κ∈Icα

κ→α
Q1

− εαtα :dα −∇·
(

εα qα
)
= 0 for α ∈ I . (10.86)

Closure relations, in addition to those used for mass and momentum conserva-

tion, are Eqs. (10.74) and (10.75) for inter-entity energy exchanges and Eqs. (10.60),
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(10.61), and (10.64) for intra-entity non-advective heat transfer. For the w, s, and ws
entities, the internal energy equations simplify, respectively, to

DwEw

Dt
+EwI:dw + K̂A

M

[
1

θ w

(
μAw +ψw

)
− 1

θ s

(
μAs +

σσσ s:Cs

3ρs js +ψs

)]
Ews

Aw

− pws
w

Dsεs

Dt
− K̂w

E

(
1

θ w
− 1

θ ws

)
+ εw pwI:dw

+∇·
[
εwρwωAw(HAw −HBw

)uAw
]
+∇·

[
εwk̂

w
θ ·∇

(
1

θ w

)]
= 0 , (10.87)

DsEs

Dt
+EsI:ds − K̂A

M

[
1

θ w

(
μAw +ψw

)
− 1

θ s

(
μAs +

σσσ s:Cs

3ρs js +ψs

)]
Ews

As

−〈ns·ts·ns〉Ωws,Ωws

Dsεs

Dt
− K̂s

E

(
1

θ s
− 1

θ ws

)
− εsts:ds

+∇·
[
εsρsωAs(HAs −HCs

)uAs
]
+∇·

[
εsk̂

s
θ ·∇

(
1

θ s

)]
= 0 , (10.88)

and

DwsEws

Dt
+EwsI:dws

− K̂A
M

[
1

θ w

(
μAw +ψw

)
− 1

θ s

(
μAs +

σσσ s:Cs

3ρs js +ψs

)](
Ews

Aw −Ews
As
)

+ pws
w

Dsεs

Dt
+ K̂w

E

(
1

θ w
− 1

θ ws

)
+ 〈ns·ts·ns〉Ωws,Ωws

Dsεs

Dt

+ K̂s
E

(
1

θ s
− 1

θ ws

)
− εwsγws (I−Gws) :dws

+∇·
[

εwsk̂
ws
θ ·∇

(
1

θ ws

)]
= 0 . (10.89)

Equations (10.79)–(10.89) are a set of closed conservation equations. We point

out that this set has been obtained making use of a number of restrictions and ap-

proximations. The interface is massless. Only two chemical species are present in

each phase; only one is exchanged between phases. Perhaps the most severe con-

straint is the omission of cross-coupling in the development of the expressions for

non-advective heat and mass transport. Equations of state are needed. Coefficients

that arise in the equations must be determined. The primary and secondary restric-

tions, the SEI approximations, and approximations made in linearizing the closure

relations are all places where opportunities to make the model more general can be

found. Despite the constraints applied, additional simplifications can still be em-
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ployed and are often invoked (e.g., the inertial and mass exchange terms in the mo-

mentum equation are taken to be small, dispersion in the solid phase is considered

negligible, the gradient in chemical potentials is expressed in terms of pressure and

mass fraction gradients, and/or all properties of the ws interface are neglected). The

utility of the TCAT approach is evident in the fact that all assumptions and approxi-

mations are explicit. Indeed, many assumptions that are intrinsic to porous medium

heat and mass transport models become explicit.

10.11 Summary

In this chapter, we have illustrated the TCAT approach for deriving macroscale mod-

els for energy and species transport in a single-fluid-phase system. The CEI derived

as Eq. (10.14) is of archival value. A general SEI has been obtained as Eq. (10.26)

by applying SEI approximations. Secondary restrictions were then applied to obtain

Eq. (10.33), a somewhat simplified but still rather general SEI that can be applied

to obtain closure relations for the single-fluid-phase system. Special cases of this

SEI are also obtained for restricted cases of energy and mass transfer culminating

in a closed model. The need to have the same number of equations as unknowns

was emphasized, and the challenges of meeting this requirement are alluded to. The

advantages of TCAT in requiring that all approximations be explicit in model for-

mulation can seem to be somewhat discouraging. However, one should understand

that encountering the need for approximation in a complete theory is superior to ig-

norance of the fact that some hidden assumptions are implicitly included in a simple

set of equations.

Systems that can be modeled based upon the compositional analysis done span

a broad spectrum. As an example, the important case of a dilute system was con-

sidered. The SEI was used to posit closure relations for deviation velocities and

inter-entity mass transfer. Reactions were considered and complicating factors dis-

cussed. For both reactions and mass transfer, multiscale modeling may be necessary

in some instances.

The CEI and SEI’s derived in this chapter provide bases for considerable work

building models. These models go well beyond the simple examples that were

considered. For example, non-dilute systems, systems with different numbers of

species, and systems in which fluxes depend upon not only their conjugate forces but

also on other forces through Onsager-like cross coupling can be formulated based on

the tools provided in this chapter. Significant extensions to the work presented here

can be built on the bases of different approximations and different closure relations.
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Exercises

10.1. Develop the closed conservation equations corresponding to the system de-

scribed in Sect. 10.6.

10.2. Start with the SEI of Eq. (10.33).

a. Simplify this SEI for the case of non-isothermal, constant-composition flow with

no interphase mass exchange.

b. Identify the number of unknowns that must be accounted for, the number of

available equations, and the sources of additional equations needed to be able to

close the system.

c. Determine the closed conservation equations needed to model the system.

10.3. Suppose the problem of interest is as described in Sect. 10.9. Assume that

exchange of species A between the w and s phases is fast compared to other pro-

cesses so that rather than being a kinetic process, it is an equilibrium process with

ωAs = F(ωAw) where F is some function that describes the relation between the

mass fractions of A in the two phases. Find the alteration to species mass conserva-

tion described by Eqs. (10.79)–(10.82) that models this system.

10.4. Show that instead of deleting the term involving ∇θ w from line 15 in Eq.

(10.33) to obtain line 10 of Eq. (10.54), this term can be incorporated into the gra-

dient of chemical potential taken holding temperature constant.

10.5. Start with the general SEI of Eq. (10.26). Assume the system is isothermal

but that Secondary Restriction 10.3 does not apply. Assume that the w phase is

composed of species A and B, the s phase is composed of species A and C, and the

interface is composed only of species A. Allow for inter-entity mass transport of

species A.

a. Make appropriate assumptions to obtain an SEI in force-flux form that is suitable

for this system.

b. Ensure that the number of equations and unknowns match so that the equation

system can be closed.

c. Obtain the closed conservation equations that can be used to model this system.

10.6. In Sect. 10.10.2, closure was obtained using the internal energy equation. As

an alternative, the total energy equation can be used. Obtain the closed total energy

equation and identify any assumptions that might be needed to ensure that they are

interchangeable for modeling.

10.7. For the unithermal case, a single energy equation is needed to model the sys-

tem. Provide this equation for the system described in Sect. 10.8.
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Chapter 11
Two-phase Flow

11.1 Overview

This chapter is the third that presents an example application of TCAT to a porous

medium flow and transport problem. Single-phase flow was modeled in Chap. 9 .

The analysis considered three entities: a fluid phase, w, a solid phase, s, and the

interface between the phases, ws. In Chap. 10, the additional feature of chemical

species transport was added to the analysis. In both chapters, the derivations began

with general macroscale conservation, thermodynamic, and evolution equations and

then proceeded to produce a closed set of conservation equations following the steps

highlighted in Fig. 9.1. In fact, the derivations of the preceding chapters incorporate

all the elements of macroscale TCAT analysis needed to formulate a closed larger-

scale model. The purpose of the present chapter is to provide a TCAT analysis for

two-fluid-phase flow in a porous medium. It follows the same procedures as the

preceding two chapters, but it requires additional manipulations and an additional

set of assumptions because the system is physically more complex.

The additional complexities stem from the more intricate morphology of the two-

fluid porous medium system in comparison to the single-fluid case. The solid phase

is denoted as the s phase, and w and n are used to identify the wetting and non-

wetting fluid phases.1 Although the combined volume fraction occupied by the fluid

phases in the porous medium changes only very slowly, the volume fraction oc-

cupied by each fluid can change much more quickly. The volume fractions and

their rates of change are important elements describing the fluid-phase behavior.

The presence of three phases also means that three interface types are possible, de-

noted wn, ws, and ns. Thus, in contrast to the single-fluid system, a particular fluid

may wet only a portion of the solid surface while the other fluid will be in contact

1 Although we use w and n as convenient symbols to designate which of the fluid phases prefer-
entially wets the solid, cases exist where the solid does not have uniform properties and is prefer-
entially wet by one fluid in one region and by the other fluid in a different region. This situation
is called “mixed wettability.” Although we will not be explicitly considering this case here, one
should realize that the use of w or n to designate the fluid phases need not indicate that a phase is
always preferentially wetting.

421W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_11,
� Springer International Publishing Switzerland 2014
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with the remaining fraction of the solid surface. Changes in the wetted fraction im-

pact system behavior. Additionally, the wn interface between the two fluids is more

dynamic than the solid surface. The wn interface deforms, grows, contracts, and

transports through the system in ways and at rates that the solid-fluid interfaces do

not. The processes of wn interface deformation and transport, as well as the jump in

fluid pressure that can occur at this surface, play a very significant role in the behav-

ior of the system. Lastly, the presence of three phases allows for the formation of a

curve on the solid surface, designated as a wns common curve, where the three inter-

face types meet. The displacement of this curve on the solid surface coincides with

wetting or drying of the surface. The properties and dynamics of the common curve

are of limited importance in comparison to the movement of the fluid phases and

the fluid-fluid interface, but it provides an element of system dynamics that must, at

least, be recognized.

Despite the additional elements of the two-fluid-phase system, the implementa-

tion of the TCAT approach in developing the equations shares the general approach

of the last two chapters, particularly with Chap. 9 where species transport is not

considered. We will take advantage of these similarities by borrowing elements of

the previous derivations to reduce the work here. Nevertheless, in the end, the ma-

nipulations required to complete the particular derivation are more extensive than

those shown previously. Most of the effort in this chapter is devoted to the elements

of the derivation that are an extension to the single-fluid case.

The TCAT approach to obtaining two-fluid-phase flow equations illustrates ex-

plicitly the contributions that the wn interface and wns common curve make to the

physics of the flow. True-to-mechanism models should include variables known to

be important. These include interfacial and curvilinear tensions and curvatures, the

contact angle between the fluid and solid phases, and specific interfacial areas and

common curve lengths. None of these quantities appear explicitly in common multi-

phase flow models used in the petroleum industry or for environmental applications.

Conversely, all of these quantities arise in a careful analysis of conditions that must

hold at equilibrium in a two-fluid-phase porous medium system. Thus, it can be

reasoned that the underlying physics of importance is being represented in com-

mon two-fluid-phase flow models implicitly through parameterization of hysteretic

and non-linear closure relations that are used to produce closed models. The TCAT

models formulated in this chapter include known mechanisms explicitly because

they emerge naturally in the formulation. A comparison of these results with stan-

dard formulations provides insights into why multiphase models are so difficult to

validate.

The sections that follow borrow from the derivations of the preceding two chap-

ters. The derivation leads to a CEI that can serve as an entry point for derivation of

a hierarchy of models based on approximate SEI’s. An example of a closed model

is provided, and the derivation will indicate how a more general model could be

developed.
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11.2 Primary Restrictions

The first set of primary restrictions to be applied is almost the same as Primary Re-

strictions 9.1–9.3 stated in Sect. 9.2. In fact, only the first of these three restrictions

needs to be altered to take into account the additional entities. The three primary

restrictions are stated here for convenience:

Primary Restriction 11.1 (System and Scale)
The system of concern consists of two fluid phases, w and n, a relatively immobile
solid phase s, interfaces between each pair of phases denoted respectively as wn,
ws, and ns, and a wns common curve where the three interfaces meet. The spatial
scale of concern is the macroscale, �ma, with �r

r 	 �ma 	 �me where �r
r and �me are

the resolution scale and megascale of the system, respectively.2 The domain of the
system is Ω with boundary Γ.

Primary Restriction 11.2 (Phenomena Modeled)
The phenomena of concern consist of the transport of mass, momentum, and energy
in each of the entities. Transport phenomena of various chemical species within an
entity will not be modeled explicitly.

Primary Restriction 11.3 (Thermodynamic Theory)
Classical irreversible thermodynamics (CIT) is employed to describe the thermo-
dynamic behavior of the system entities at equilibrium and near-equilibrium states.
The solid phase is modeled as elastic.

We propose one additional primary restriction that is appropriate for modeling a

solid phase that deforms negligibly at a small scale when subjected to the forces ex-

erted on it, particularly by the common curve. This restriction states that the surface

of the solid material at the microscale has a unique normal vector at every point.

Primary Restriction 11.4 (Smooth Solid Surface)
From a microscale perspective, the outward unit normal vector at each point on the
solid surface, ns, is unique.

No similar restriction applies to the fluid phases that contact the solid because the

fluid-fluid interface may meet the solid surface at a non-zero contact angle.

We emphasize that we are employing TCAT at the macroscale such that all equa-

tions have been averaged from the microscale to this larger scale. At this larger scale,

the behavior of the entities and their properties are modeled three-dimensionally per

unit of averaging volume regardless of whether they apply to one-, two-, or three-

dimensional microscale domains. The presumed separation of length scales means

that macroscale variables and parameters will be well-defined. We have chosen to

exclude species transport from the model in the interest of simplicity. Chap. 10

shows how species transport can be included in a single-fluid-phase model if de-

sired. An analogous approach can be employed for the two-fluid-phase model. The

2 The descriptions of length scales are provided in the discussion of Eq. (1.1).
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addition of the third phase means that we will include conservation and thermo-

dynamic equations for the common curve, which did not arise in the earlier deriva-

tions. Additionally, the ability of a solid phase to sustain a singularity, a concentrated

force, at a common curve will be included.

11.3 Constrained Entropy Inequality Statement

The development of the CEI for the two-fluid-phase system follows the same steps

as in Sect. 9.4. Because of the similarity of the early steps of the derivation of the

CEI in that previous case and the present case, these steps will be merely outlined

here with further detail available in Chap. 9. Some algebraic manipulations involv-

ing rearrangements leading to the CEI, similar to those in Chap. 9, are relegated

to Sect. C.3 to avoid distraction from the goal of obtaining closed equations. The

derivation follows the general TCAT steps highlighted in Fig. 9.1.

11.3.1 Entropy Inequality

The entropy inequality may be written directly from the next to the last row of Table

6.3 according to Eq. (9.5) as

∑
α∈I

Sα
∗ = ∑

α∈I
Λ α > 0 , (11.1)

where, for the present problem, I is the index set for the three phases, three inter-

faces, and the common curve,

I= {w,n,s,wn,ws,ns,wns} . (11.2)

11.3.2 Augmented Entropy Inequality

The augmented entropy inequality is obtained as Eq. (9.20), which states

∑
α∈I

Sα
∗ + ∑

α∈I
λ α
E Eα

∗ + ∑
α∈I

λλλ α
P ·Pα

∗ + ∑
α∈I

λ α
MMα

∗ + ∑
α∈I

λ α
G Gα

∗

+ ∑
α∈I

λ α
T T α

∗ + ∑
α∈I

λ α
T GT α

G∗ = ∑
α∈I

Λ α ≥ 0 , (11.3)
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where the conservation and balance equations Sα
∗ , Eα

∗ , Pα
∗ , Mα

∗ , and Gα
∗ are avail-

able in Table 6.3 and the equation numbers for the thermodynamic relations T α
∗ and

T α
G∗ are given in Table 7.2.

11.3.3 Selection of Lagrange Multipliers

The Lagrange multipliers, the λ and λλλ coefficients in Eq. (11.3), are solved for as in

Sect. 9.4.2. They are selected with the goal of eliminating time derivatives from the

formulation as possible. The resulting values are identical to Eqs. (9.25)–(9.30). As

a consequence, the augmented entropy inequality has the same form as Eq. (9.31)

but makes use of the expanded index set of entities as listed in Eq. (11.2). This AEI

∑
α∈I

Sα
∗ − ∑

α∈I

1

θ α
Eα
∗ + ∑

α∈I

1

θ α
vα ·Pα

∗

+ ∑
α∈I

1

θ α

(
μα +ψα − vα ·vα

2
+Kα

E

)
Mα

∗

− ∑
α∈I

1

θ α
Gα
∗ + ∑

α∈I

1

θ α
T α
∗ + ∑

α∈I

1

θ α
T α
G∗ = ∑

α∈I
Λ α ≥ 0 . (11.4)

11.3.4 Expanded CEI

Inserting the forms of each of the conservation and thermodynamic equations into

Eq. (11.4) and eliminating the time derivatives that cancel yields an equation similar

to Eq. (9.32). However, this expanded equation is much longer because it describes

entropy generation for a seven-entity system rather than a three-entity system. This

equation is an important starting point for rearrangement of the AEI to obtain the

CEI. It is provided as Eq. (C.82) of Appendix C, expanded out with the time deriva-

tives eliminated. The terms in the equation are kept in the same order as in their

precursor conservation and thermodynamic equations, except concentrated source

terms are combined for convenience. Thus, difficulty in constructing this expanded

equation is minimized. However, lengthy mathematical manipulations are required

to arrange this equation into the CEI form consisting of products of macroscale

forces and fluxes, as possible. No approximations are made, but the regrouping of

terms is extensive. Guidance to successful completion of the formulation is provided

in Sect. C.3. Here, in the main body of the text, we provide the result of substituting

the designated equations into Eq. (11.4) to obtain Eq. (C.82). After collecting terms,

we obtain the following CEI:
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− ∑
α∈IP

{
εα bα − 1

θ α

[
εα hα +

〈
ηα

Ds
(

θα −θ α
)

Dt

〉
Ωα ,Ω

1

+

〈
ρα

Ds
(

μα +ψα −μα −Kα
E −ψα

)
Dt

〉
Ωα ,Ω

]}
2

− ∑
α∈II
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εα bα − 1

θ α

[
εα hα +

〈
ηα

D′s
(

θα −θ α
)

Dt

〉
Ωα ,Ω

3

+

〈
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D′s
(

μα +ψα −μα −Kα
E −ψα

)
Dt

〉
Ωα ,Ω

]}
4

−
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εwnshwns +

〈
ηwns

D′′s
(

θwns −θ wns
)

Dt

〉
Ωwns,Ω

5

+

〈
ρwns

D′′s
(

μwns +ψwns −μwns −Kwns
E −ψwns

)
Dt

〉
Ωwns,Ω

]}
6

− ∑
α∈I/S

∇·
[

εα ϕϕϕα − 1

θ α

(
εα qα + εα qα

g

)]
7

−∇·
{

εsϕϕϕs − 1

θ s

[
εsqs + εsqs

g −
〈(

ts −
σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]}
8

+ ∑
α∈If

1

θ α

(
εαtα + εα pα I

)
:dα +

1

θ s

(
εsts − εsts

)
:ds

9

+ ∑
α∈II

1

θ α

[
εαtα −

〈
I′α γα

〉
Ωα ,Ω

]
:dα

10

+
1

θ wns

[
εwnstwns +

〈
I′′wnsγwns

〉
Ωwns,Ω

]
:dwns

11

− ∑
α∈I/S

(
εα qα + εα qα

g

)
·∇
(

1

θ α

)
12

−
[

εsqs + εsqs
g −

〈(
ts −

σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]
·∇
(

1

θ s

)
13

+ ∑
α∈If

∑
κ∈Icα

α→κ
M

[
1

θ α

(
μα +Kα

E +ψα
)
− 1

θ κ

(
μκ +Kκ

E +ψκ
)]

14

+ ∑
κ∈Ics

s→κ
M

[
1

θ s

(
μs +Ks

E +ψs +
σσσ s:Cs

3ρs js

)
− 1

θ κ

(
μκ +Kκ

E +ψκ
)]

15



11.3 Constrained Entropy Inequality Statement 427

+ ∑
κ∈Ics

1

θ s

〈(
σσσ s:Cs

ρs js
− ns·ts·ns

ρs
− σσσ s:Cs

3ρs js

)
ρs (vs −vκ) ·ns

〉
Ωκ ,Ω

16

+ ∑
α∈II

α→wns
M

[
1

θ α

(
μα +Kα

E +ψα
)
− 1

θ wns

(
μwns +Kwns

E +ψwns
)]

17

− ∑
α∈If

∑
κ∈Icα

{
α→κ

Q +
α→κ

G +
(

Eκ
α +Kκ

Eα +ψκ
α

)α→κ
M 18

+

[
α→κ

T +

(
vκ

α −vs
)

2

α→κ
M

]
·
(

vκ
α −vs

)
19

−
〈
nα ·

(
vκ −vs) pα

〉
Ωκ ,Ω

}(
1

θ α
− 1

θ κ

)
20

− ∑
κ∈Ics

{
s→κ
Q +

s→κ
G +

(
Eκ

s +Kκ
Es +ψκ

s

) s→κ
M 21

+

[
s→κ
T +

(
vκ

s −vs
)

2

s→κ
M

]
·
(

vκ
s −vs

)
22

+
〈
ns·
(
vκ −vs)ns·ts·ns

〉
Ωκ ,Ω

}(
1

θ s
− 1

θ κ

)
23

− ∑
α∈II

{
α→wns

Q +
α→wns

G +
(

Ewns
α +Kwns

Eα +ψwns
α

)α→wns
M 24

+

[
α→wns

T +

(
vwns

α −vs
)

2

α→wns
M

]
·
(
vwns

α −vs)
25

+
〈
nα ·

(
vwns −vs)γα

〉
Ωwns,Ω

}(
1

θ α
− 1

θ wns

)
26

+
[wns→s

Q∗ +
〈
ns ·t∗s ·

(
vwns

s −vs
)〉

Ωwns,Ω
27

+ 〈ns ·t∗s ·(vs −vwns)〉Ωwns,Ω

]( 1

θ s
− 1

θ wns

)
28

− ∑
α∈If

1

θ α

{
ηα ∇θ α −∇

(
εα pα

)
+ εα ρα ∇

(
μα +Kα

E +ψα
)
+ εα ρα gα

29

− ∑
κ∈I−cα

[
α→κ

T −
(
vα −vs

)
2

α→κ
M +

(
vκ

α −vs
)α→κ

M

]}
·
(

vα −vs
)

30

− ∑
α∈II

1

θ α

{
ηα ∇θ α +∇·

〈
I′α γα

〉
Ωα ,Ω

+ εα ρα ∇
(

μα +Kα
E +ψα

)
31
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+ εα ρα gα + ∑
κ∈I+cα

[
κ→α

T −
(
vα −vs

)
2

κ→α
M +

(
vα

κ −vs
)κ→α

M

]
32

−
[

α→wns
T −

(
vα −vs

)
2

α→wns
M +

(
vwns

α −vs)α→wns
M

]
33

−
〈
ηα
(
I− I′α

)〉
Ωα ,Ω

·∇θ α
34

−
〈
ρα
(
I− I′α

)〉
Ωα ,Ω

·∇
(

μα +Kα
E +ψα

)}
·
(

vα −vs
)

35

− 1

θ wns

{
ηwns∇θ wns −∇·

〈
I′′wnsγwns

〉
Ωwns,Ω

36

+ εwnsρwns∇
(

μwns +Kwns
E +ψwns

)
+ εwnsρwnsgwns

37

+ ∑
κ∈I+cwns

[
κ→wns

T −
(
vwns −vs

)
2

κ→wns
M +

(
vwns

κ −vs)κ→wns
M

]
38

−
〈
ηwns

(
I− I′′wns

)〉
Ωwns,Ω

·∇θ wns
39

−
〈
ρwns

(
I− I′′wns

)〉
Ωwns,Ω

·∇
(

μwns +Kwns
E +ψwns

)
40

−〈t∗s ·ns〉Ωwns,Ω

}
·
(
vwns −vs)

41

+
1

θ wn

〈[
pwnw + pnnn + γwn

(
∇′·I′wn

)
42

+ρwngwn·
(
I− I′wn

)]
·
(
vwn −vs)〉

Ωwn,Ω
43

+
1

θ ws

〈[
pwnw −ns·ts·nsns + γws

(
∇′·I′ws

)
44

+ρwsgws·
(
I− I′ws

)]
·
(
vws −vs)〉

Ωws,Ω
45

+
1

θ ns

〈[
pnnn −ns·ts·nsns + γns

(
∇′·I′ns

)
46

+ρnsgns·
(
I− I′ns

)]
·
(
vns −vs)〉

Ωns,Ω
47

− 1

θ wns

〈[
γwnnwn + γwsnws + γnsnns + γwns

(
∇′′·I′′wns

)
48

−ρwnsgwns·
(
I− I′′wns

)
+ns ·t∗s

]
·
(
vwns −vs)〉

Ωwns,Ω
49
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+
1

θ s

〈
ns·(vs −vwns)

σσσ∗
s :Cs

js

〉
Ωwns,Ω

− 1

θ s

〈
ns ·t∗s ·(vs −vwns)

〉
Ωwns,Ω

50

− 1

θ s

〈
ns·ts·I′ws·

(
vs −vs)〉

Ωws,Ω
− 1

θ s

〈
ns·ts·I′ns·

(
vs −vs)〉

Ωns,Ω
51

+
1

θ s

〈(
∇·ts −∇σσσ s:

Cs

js

)
·
(
vs −vs)〉

Ωs,Ω
52

+ ∑
α∈II

1

θ α

〈
ηα

(
vα −vα

)
·
(
I− I′α

)〉
Ωα ,Ω

·∇θ α
53

+ ∑
α∈II

1

θ α
∇·
〈(

I− I′α
)
·
(

vα −vα
)

γα

〉
Ωα ,Ω

54

+ ∑
α∈II

1

θ α

〈
ρα

(
vα −vα

)
·
(
I− I′α

)〉
Ωα ,Ω

·∇
(

μα +Kα
E +ψα

)
55

+
1

θ wns

〈
ηwns

(
vwns −vwns) ·(I− I′′wns

)〉
Ωwns,Ω

·∇θ wns
56

− 1

θ wns
∇·
〈(
I− I′′wns

)
·
(
vwns −vwns)γwns

〉
Ωwns,Ω

57

+
1

θ wns

〈
ρwns

(
vwns −vwns) ·(I− I′′wns

)〉
Ωwns,Ω

·∇
(

μwns +Kwns
E +ψwns

)
58

= ∑
α∈I

Λ α ≥ 0 . 59

(11.5)

This archival CEI can be used to derive a hierarchy of closed models of varying

sophistication. Accomplishing this objective requires reducing the CEI to a strict

macroscale force-flux form, the SEI. In the next section, an example of an SEI is

presented.

11.4 Simplified Entropy Inequality

Reduction of Equation (11.5) to a strict macroscale force-flux form is necessary for

it to guide the formulation of closure relations for two-fluid-phase-flow models. This

reduction follows along the lines of the derivations in the preceding two chapters.

It is important to recognize that, although the CEI given by Eq. (11.5) is unique for

the two-fluid-phase system, the SEI approximations employed are not unique. The

SEI approximations specify the manner in which groupings of terms are evaluated

approximately. A range of alternative approximations exists for reducing the CEI to

various macroscale force-flux forms. With the approximations listed explicitly, one

can assess the appropriateness of the SEI for a problem of interest. Should some

assumptions be deemed inappropriate in hindsight, one needs only to return to the

11.3 Constrained Entropy Inequality Statement
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CEI as a starting point for developing a different SEI. Thus the CEI and the SEI are

useful entry points in the analysis of two-phase flow.

The approach employed in deriving an SEI from Eq. (11.5) is similar to that used

for single-phase flow in deriving Eq. (9.62) from Eq. (9.43). However, the SEI ap-

proximations needed are more extensive to account for the presence of the additional

phase, interfaces, and common curve. A selection of reasonable SEI approximations

will be detailed.

11.4.1 Required SEI Approximations

Table C.1 indicates that the set of forces identified to this point for the force-flux

analysis is the set VF , where

VF =

{
dα ,∇

(
1

θ α

)
,

1

θ β

(
μβ +Kβ

E +ψβ
)
− 1

θ γ

(
μγ +Kγ

E +ψβ
)
,

1

θ s

(
μs +Ks

E +ψs +
σ s:Cs

3ρs js

)
− 1

θ ε

(
με +Kε

E +ψε
)
,

1

θ α
− 1

θ κ
,

1

θ s
− 1

θ wns
,vα −vs

}

for α ∈ I,κ ∈ I−cα ,β ∈ I/S,γ ∈ I−
cβ ,ε ∈ I−cs .

(11.6)

Examination of Eq. (11.5) in light of this list of forces suggests that lines 1–

8, 16, and 42–59 require attention to obtain a force-flux form. Essentially, these

lines must be eliminated or approximated. The SEI approximations proposed can

be divided into two classes for ease of presentation. The first set consists of basic

SEI approximations that apply to lines 1–8 and 50–58. These are basic because

they do not rely on any complex approximations to develop their form, and these

approximations result in the elimination of lines 1–8 and 51–58 from the CEI. As

a collateral effect, they also result in simplification of some of the other lines in

the SEI. The second set is referred to as complex SEI approximations. These are

needed to rearrange lines 42–50, terms that describe interactions among entities

at entity boundaries. Complex SEI approximations allow breaking the products that

appear in these lines in light of evolution considerations from Chap. 8. This breaking

of products provides macroscale force-flux pairs, sometimes in conjunction with

other lines of the SEI. These two types of SEI approximations will be treated in the

following subsections.
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11.4.2 Basic SEI Approximations

The approximations in this section eliminate some lines and terms in the CEI as a

step to formation of the SEI. As a consequence of the SEI approximations, some

terms are set to zero. More precisely, these terms are considered to be negligible

relative to other terms in the SEI and are eliminated from consideration on that

basis.

Lines 1–8

The first SEI approximation to be applied here is similar to that invoked for the

single-phase-flow case in SEI Approximation 9.1. It addresses the terms in lines

1–8 of Eq. (11.5) and is stated:

SEI Approximation 11.1 (Macroscopically Simple System)
The system of concern is macroscopically simple, with the entropy source balanced
by the sum of a heat source and deviation terms such that

εα bα − 1

θ α

[
εα hα +

〈
ηα

Ds
(

θα −θ α
)

Dt

〉
Ωα ,Ω

+

〈
ρα

Ds
(

μα +ψα −μα −Kα
E −ψα

)
Dt

〉
Ωα ,Ω

]
= 0 for α ∈ IP , (11.7)

εα bα − 1

θ α

[
εα hα +

〈
ηα

D′s
(

θα −θ α
)

Dt

〉
Ωα ,Ω

+

〈
ρα

D′s
(

μα +ψα −μα −Kα
E −ψα

)
Dt

〉
Ωα ,Ω

]
= 0 for α ∈ II , (11.8)

and

εwnsbwns − 1

θ wns

[
εwnshwns +

〈
ηwns

D′′s
(

θwns −θ wns
)

Dt

〉
Ωwns,Ω

+

〈
ρwns

D′′s
(

μwns +ψwns −μwns −Kwns
E −ψwns

)
Dt

〉
Ωwns,Ω

]
= 0 ; (11.9)

and the entropy flux is balanced by a non-advective energy flux for all entities, con-
sisting of heat and mechanical contributions, such that
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εα ϕϕϕα − 1

θ α

(
εα qα + εα qα

g

)
= 0 for α ∈ I/S (11.10)

and

εsϕϕϕs − 1

θ s

[
εsqs + εsqs

g −
〈(

ts −
σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]
= 0 . (11.11)

By pairing the entropy and heat sources, and also dissipative entropy and heat fluxes,

SEI Approximation 11.1 eliminates the first eight lines in Eq. (11.5).

Lines 13 and 52–58

The next SEI approximation addresses lines 13 and 52–58 of the CEI. Each of these

lines involves the average of a product of terms wherein one factor is of the form

vα − vα , and the averaging is over Ωα . Thus breaking of products will lead to one

of the factors being the average of a velocity difference that is zero. For example, if

we make the approximation

〈
fα(vα −vα)

〉
Ωα ,Ω

=

〈
fα

ρα

〉
Ωα ,Ωα

〈
ρα(vα −vα)

〉
Ωα ,Ω

, (11.12)

the second factor on the right side is zero based on the definition of density-weighted

average velocity. For this reason, we expect terms of a similar form to the left side

of Eq. (11.12), individually and collectively, to be small. We thus invoke an SEI

approximation:

SEI Approximation 11.2 (Entity Velocity Deviations)
Expressions that involve the average over Ωα , the domain of entity α , of a product
of a microscale quantity with vα −vα are assumed to be negligible.

This approximation eliminates part of line 13 and all of lines 52–58 of Eq. (11.5)

from further consideration.

Lines 27, 28, 41, 49, and 50

We have allowed a concentrated non-advective solid stress (i.e., t∗s ) to act at the

common curve on a smooth solid surface. The only part of the concentrated stress

tensor that appears is the vector ns·t∗s . We note from condition Eq. (4.101) that the

shear components at equilibrium satisfy the condition ns·t∗s ·I′ss = 0. We will assume

that this component is negligible away from equilibrium and thus propose:

SEI Approximation 11.3 (Concentrated Stress Constraint)
The concentrated stress expressing interaction between the solid phase and the com-
mon curve satisfies the condition



11.4 Simplified Entropy Inequality 433

ns·t∗s ·I′ss = 0′ for x ∈ Ωwns , (11.13)

even when the system is not at equilibrium. Therefore, the concentrated stress is
given by

ns·t∗s = ns·t∗s ·nsns for x ∈ Ωwns . (11.14)

Equation (11.14) that arises from this SEI approximation may be substituted into

lines 27, 28, 41, 49 and 50 of Eq. (11.5).

After this substitution into line 50, we see that both averages in this line involve

a velocity difference, ns·(vs −vwns). This quantity will be non-zero only if there is

direct mass exchange between the solid surface and the common curve. Such an ex-

change requires mass flow from the solid to a common curve, essentially across an

area of zero width. This would require a concentrated flow, a phenomenon that we

have excluded in the formulation of the equations. Thus no direct mass exchange

between the solid surface and the common curve is allowed. In addition, we will as-

sume that the difference between the microscale solid-phase velocity averaged over

the common curve and the solid-phase velocity averaged over the solid domain mul-

tiplied by the concentrated stress is of higher order smallness. These two conditions

suggest the following SEI approximation:

SEI Approximation 11.4 (Solid-Common Curve Velocities)
No direct mass exchange between the solid phase and the common curve is modeled
by the condition

ns·(vs −vwns) = 0 for x ∈ Ωwns ; (11.15)

and the concentrated stress multiplied by the unit normal ns dotted with the differ-
ence between the solid velocity averaged over the common curve and the microscale
solid velocity averaged over the common curve is negligible such that〈

ns·t∗s ·nsns·
(
vwns

s −vs
)〉

Ωwns,Ω
= 0 . (11.16)

As a consequence of SEI Approximations 11.3 and 11.4, the velocity terms in lines

27 and 28 as well as all of line 50 of the CEI of Eq. (11.5) can be deleted.

Line 51

Equation (4.54) indicates that the microscopic shear stress, ns·ts·I′ss, is zero at ev-

ery point on the solid surface at equilibrium. If we consider both this stress and the

difference between vs and vs on the solid surface to be small away from equilib-

rium, the product of these quantities is of higher order smallness. This is a typical

situation. Thus, we propose:

SEI Approximation 11.5 (Solid-phase Surface Stress)
The stress at the surface of the solid phase given by ns·ts·I′ws for x ∈ Ωws and
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ns·ts·I′ns for x ∈ Ωns is small, as is the difference between the solid-surface velocity
and the average solid-phase velocity, such that the average of their product can be
considered negligible with〈

ns·ts·I′ws·
(
vs −vs)〉

Ωws,Ω
= 0 (11.17)

and 〈
ns·ts·I′ns·

(
vs −vs)〉

Ωns,Ω
= 0 . (11.18)

As a consequence of SEI Approximation 11.5 both terms in line 51 of Eq. (11.5) are

eliminated.

Line 16

Another approximation that we propose here relates to line 16 of the CEI that deals

with the exchange of mass between the s phase and the ws and ns interfaces. Recall

the microscale equilibrium condition Eq. (4.96), which states

ns·ts·ns −
2σσσ s:Cs

3 js
= 0 for x ∈ Ωws,Ωns . (11.19)

Thus, line 16 contains a term that is approximately the average over the solid surface

of the deviation of σσσ s:Cs/(3ρs js) from its intrinsic average multiplied by the rate of

mass exchange between the solid and the bounding surface. We consider this term

to be negligible such that the following approximation holds:

SEI Approximation 11.6 (Solid Stress and Mass Exchange)
The average of the deviation of the solid surface stress from its average in the solid
phase multiplied by the mass exchange rate is negligible such that〈(

σσσ s:Cs

ρs js
− ns·ts·ns

ρs
− σσσ s:Cs

3ρs js

)
ρs (vs −vκ) ·ns

〉
Ωκ ,Ω

= 0 for κ ∈ Ics . (11.20)

This approximation is exact when there is no mass exchange occurring at the solid

surface. We use this approximation to eliminate line 16.

The six SEI approximations proposed in this section have allowed us to eliminate

lines 1–8 and 50–58 from the CEI. Also, the averages in lines 16, 27 and 28 are

eliminated. Terms in lines 41 and 49 are modified based on SEI Approximation 11.3.

Remaining terms in Eq. (11.5) that are not a macroscale force-flux pair are those that

appear in lines 42–49. An approach for dealing with these terms is developed in the

next subsection.
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11.4.3 Complex SEI Approximations

The approach to rearranging lines 42–49 is carried out in three stages. First we

will consider lines 42–43, which deal with the balance of forces at the fluid-fluid

interface. The derivation follows that in [1]. Second, lines 44–47, which provide a

balance of forces at the fluid-solid interface, will be rearranged. Finally, the balance

of forces at the common curve as described in lines 48–49 will be approximated

into a force-flux form. Several SEI approximations will be stated, and the results of

Chap. 8 that describe evolution of the geometric variables will be incorporated into

the analysis.

wwwnnn Interface: Lines 42–43

Lines 42–43 are in the form of an averaging operation over the wn interface. This

average is denoted T wn such that

T wn =
〈[

pwnw + pnnn + γwn
(
∇′·I′wn

)
+ρwngwn·

(
I− I′wn

)]
·
(
vwn −vs)〉

Ωwn,Ω
. (11.21)

The tensor I′wn was first discussed in the statement of Theorem 2.3 and is defined

such that

I′wn = I−nwnw for x ∈ Ωwn . (11.22)

Therefore, simple rearrangement gives

I− I′wn =nwnw for x ∈ Ωwn ; (11.23)

and the surface divergence is provided as

∇′·I′wn =− (∇′·nw)nw for x ∈ Ωwn . (11.24)

Substitution of these relations into Eq. (11.21) yields

T wn =
〈(

pw − pn − γwn∇′·nw +ρwngwn·nw
)
nw·

(
vwn −vs)〉

Ωwn,Ω
. (11.25)

The derivation culminating in Eq. (4.91) shows that the group of terms in the first

parentheses in Eq. (11.25) is zero at equilibrium. Additionally, the velocity differ-

ence dotted with the unit normal vector is zero at equilibrium. Thus, the quantity

within the averaging operator is a microscopic force-flux pair. For use here, it must

be transformed to a macroscopic force-flux pair. This transformation involves break-

ing of the average of the product of microscale quantities so that it is written as a

product of macroscale quantities.

To facilitate obtaining an approximate form for T wn, let us first define

Pwn = pw − pn +ρwngwn·nw (11.26)
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and

Jw = ∇′·nw , (11.27)

so that Eq. (11.25) can be written in an abbreviated form as

T wn =
〈
(Pwn − γwnJw)nw·

(
vwn −vs)〉

Ωwn,Ω
. (11.28)

We denote macroscale averages of Pwn and Jw as Pwn and Jwn
w , respectively, where

Pwn = 〈Pwn〉Ωwn,Ωwn
= pwn

w − pwn
n +ρwn (gwn·nw)

wn (11.29)

and

Jwn
w = 〈Jw〉Ωwn,Ωwn

. (11.30)

These two expressions may be added in and subtracted out in Eq. (11.28) to facilitate

rearrangement, without approximation, to

T wn = (Pwn − γwnJwn
w )

〈
nw ·

(
vwn −vs)〉

Ωwn,Ω

−
〈
γwn (Jw − Jwn

w )nw ·
(
vwn −vs)〉

Ωwn,Ω

+
〈
(Pwn −Pwn)nw ·

(
vwn −vs)〉

Ωwn,Ω

−
〈
(γwn − γwn)Jwnw ·

(
vwn −vs)〉

Ωwn,Ω
. (11.31)

The decomposition of Eq. (11.25) into the expression given in Eq. (11.31) is

not unique. This latter equation is formulated to have the property that if each of

the last three averages of products are expressed as products of averages, they will

be zero. Such an approach is appropriate if the difference terms, Jw − Jwn
w , Pwn −

Pwn, and (γwn−γwn)Jw, are not correlated to the interface movement, nw·(vwn−vs).
In general, however, there is some correlation, so a more thoughtful and careful

decomposition of the averages is required. To facilitate the investigation of these

last terms, let us write Eq. (11.31) in a more condensed form as

T wn =(Pwn − γwnJwn
w )

〈
nw ·

(
vwn −vs)〉

Ωwn,Ω
− ewn

J + ewn
P − ewn

γ , (11.32)

where

ewn
J =

〈
γwn (Jw − Jwn

w )nw ·
(
vwn −vs)〉

Ωwn,Ω
, (11.33)

ewn
P =

〈
(Pwn −Pwn)nw ·

(
vwn −vs)〉

Ωwn,Ω
, (11.34)

and

ewn
γ =

〈
Jw (γwn − γwn)nw ·

(
vwn −vs)〉

Ωwn,Ω
. (11.35)

The right side of Eq. (11.32) is thus seen to consist of a leading term plus three ad-

ditional terms that involve deviations between microscale and macroscale variables.

The deviations, in order, can be physically interpreted as relating to the relaxation
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to equilibrium of the curvature, the pressure difference between the phases at the in-

terface, and the interfacial tension. An important attribute of these terms is the time

scale over which each of the deviations relaxes. The longest time scale is expected

to be for ewn
J , the relaxation of the shape of the interface in response to the forces

exerted on it. The pressure difference and the interfacial tension are expected to re-

lax more rapidly, especially when compositional changes are unimportant. The task

at hand is to provide approximations for the terms on the right side of Eq. (11.32)

that lead to a reasonable macroscale force-flux form for T wn.

To obtain the needed form that is based in physical behavior, we make use of

approximations detailed as follows:

SEI Approximation 11.7 (wwwnnn Interface Conditions)
The four terms that comprise the right side of Eq. (11.32) can be re-expressed mak-
ing use of the following conditions:

• The average of the velocity difference satisfies Eq. (8.27) for α = w so that

〈
nw ·

(
vwn −vs)〉

Ωwn,Ω
=

Dsεw

Dt
−χws

s
Dsε
Dt

, (11.36)

where use has been made of the fact that εs = 1− ε , where ε = εw + εn is the
porosity.

• The slowest relaxation rate term for the fluid-fluid interface is ewn
J , which ac-

counts for changes in the curvature of the interface. This relaxation rate can be
approximated as first-order in the deviation from an equilibrium state such that

ewn
J =−k̂wnγwn

(
εwn − εwn

eq

)
, (11.37)

where k̂m is a positive coefficient, and εwn
eq is the wn interfacial area at equilib-

rium.
• The relaxation of the pressure and the interfacial tension to their equilibrium

values, are accounted for by ewn
P and ewn

γ , respectively. Because both relax on a
much smaller time scale than the relaxation of the curvature, these rates can be
approximated as

ewn
P = 0 (11.38)

and

ewn
γ = 0 . (11.39)

Making use of Eqs. (11.36)–(11.39) in Eq. (11.32) provides an equation in terms

of macroscale quantities,

T wn =(Pwn − γwnJwn
w )

[
Dsεw

Dt
−χws

s
Dsε
Dt

]
+ k̂wnγwn

(
εwn − εwn

eq

)
. (11.40)
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The coefficient k̂wn is a function of system variables. We would like Eq. (11.40) to be

in force-flux form. We know that Pwn − γwnJwn
w is zero at equilibrium, as previously

noted in Eq. (7.131). Therefore, if we define an alternative coefficient, k̂wn
1 , that is a

function of system variables according to

k̂wn =

(
Jwn

w γwn

Pwn −1

)
k̂wn

1 , (11.41)

Equation (11.40) becomes

T wn =(Pwn − γwnJwn
w )

[
Dsεw

Dt
−χws

s
Dsε
Dt

− γwn

Pwn k̂wn
1

(
εwn − εwn

eq

)]
. (11.42)

This approximation, with Pwn replaced by its definition in Eq. (11.29), will be used

in lines 42–43 of Eq. (11.5) in obtaining the SEI.

wwwsss and nnnsss Interfaces: Lines 44–45 and 46–47

Lines 44–45 deal with the ws interface force balance, and lines 46–47 are concerned

with the ns interface force balance. Because both of these interfaces are fluid-solid

interfaces, the analyses of the two different interfaces follow the same pattern. The

average quantity of interest is denoted T αs with

T αs =
〈[

pα nα −ns·ts·nsns + γαs
(
∇′·I′αs

)
+ραsgαs·

(
I− I′αs

)]
·
(
vαs −vs)〉

Ωαs,Ω

for α ∈ If . (11.43)

The unit tensor associated with the interfaces may be expressed in terms of the

normal to the solid surface with

I− I′αs =nsns for α ∈ If (11.44)

and

∇′·I′αs =− (∇′·ns)ns for α ∈ If . (11.45)

Substitution of these two expressions into Eq. (11.43) to eliminate I′αs yields

T αs =
〈[

− pα −ns·ts·ns − γαs∇′·ns +ραsgαs·ns
]
ns·
(
vαs −vs)〉

Ωαs,Ω

for α ∈ If . (11.46)

Rearrangement of this equation into a mix of microscale and macroscale compo-

nents now follows identically to Eqs. (11.26) and (11.35) so that we obtain

T αs =− (Pαs + γαsJαs
s )

〈
ns ·

(
vαs −vs)〉

Ωαs,Ω
− eαs

J − eαs
P − eαs

γ

for α ∈ If , (11.47)
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where

Pαs = pα +ns·ts·ns −ραsgαs·ns , (11.48)

Pαs = 〈Pαs〉Ωαs,Ωαs
= pαs

α +(ns·ts·ns)
αs
s +ραs (gαs·ns)

αs
s , (11.49)

Js = ∇′·ns , (11.50)

Jαs
s = 〈Js〉Ωαs,Ωαs

, (11.51)

eαs
J =

〈
γαs (Js − Jαs

s )ns ·
(
vαs −vs)〉

Ωαs,Ω
, (11.52)

eαs
P =

〈
(Pαs −Pαs)ns ·

(
vαs −vs)〉

Ωαs,Ω
, (11.53)

and

eαs
γ =

〈
Js (γαs − γαs)ns ·

(
vαs −vs)〉

Ωαs,Ω
. (11.54)

Although the preceding equations are very similar to those for a fluid-fluid inter-

face, the fact that the fluid-solid interfaces are less deformable suggests that we

should use different approximations in obtaining the force-flux form. The solid

phase in the system is typically only slightly and slowly deformable. Because the

solid-surface curvature is determined by the morphology of the solid surface, this

curvature also changes slowly with time.3 In many situations, the curvature of the

solid surface will be independent of the fluid phase that contacts it, and this is as-

sumed to be the case here, as in Chap. 8. Finally, we will consider the dynamics

of the interface to be slow enough that the average of products in Eqs. (11.52)–

(11.54) can be broken into a product of averages. In these cases, the averages of the

deviation terms are zero.

Based on the preceding considerations, we state the following SEI approxima-

tion:

SEI Approximation 11.8 (wwwsss and nnnsss Interface Conditions)
The four terms that comprise the right side of Eq. (11.47) can be re-expressed using
the following conditions:

• Neither the deformation of the solid surface nor the curvature of the solid surface
is correlated to the fraction of the surface in contact with each fluid phase.

• The average of the velocity difference satisfies Eq. (8.22), which can be expressed

〈
ns ·

(
vαs −vs)〉

Ωαs,Ω
=−χαs

s
Dsε
Dt

for α ∈ If , (11.55)

where χαs
s is the fraction of the solid surface in contact with fluid phase α .

• The deviation terms involving curvature, pressure, and interfacial tension are of
higher order smallness in comparison to equilibration of forces on the fluid-solid
interfaces so that these terms can be approximated as

3 If the solid is being fractured, this approximation will not apply and modeling of the quantity of
solid surface and its curvature is much more complicated.
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eαs
J = 0 for α ∈ If , (11.56)

eαs
P = 0 for α ∈ If , (11.57)

and

eαs
γ = 0 for α ∈ If . (11.58)

Making use of these SEI approximations in Eq. (11.47), we obtain

T αs = (Pαs + γαsJαs
s )χαs

s
Dsε
Dt

for α ∈ If . (11.59)

This equation, with Pαs replaced by its definition from Eq. (11.49), is used with

α = w in lines 44–45 of Eq. (11.5) and with α = n in lines 46–47 in obtaining an

SEI from the CEI.

wwwnnnsss Common Curve: Lines 48–49

In light of SEI Approximation 11.3, we can identify the term being averaged in lines

48–49 of Eq. (11.5) that requires attention as T wns, where

T wns =

〈[
γwnnwn + γwsnws + γnsnns + γwns

(
∇′′·I′′wns

)
−ρwnsgns·

(
I− I′′wns

)
+ns ·t∗s ·nsns

]
·
(
vwns −vs)〉

Ωwns,Ω
. (11.60)

The re-expression of T wns as a macroscale force-flux product requires a bit of fi-

nesse because of the different normal vectors that appear. Primary Restriction 11.4

stipulates that the solid surface is smooth such that the normal to the surface, ns,

is unique at every point on Γs. For this situation, the needed relations among the

normals have been derived in Chap. 4 in Eqs. (4.82)–(4.89). The important results

are listed here for convenience.

The unit vector nwn can be replaced because of its relation to the normal and

tangent to the surface with

nwn = cosϕws,wnnws − sinϕws,wnns for x ∈ Ωwns , (11.61)

where ϕws,wn is the contact angle between the ws and wn interfaces. The unit vector

nns can be replaced because

nns =−nws for x ∈ Ωwns . (11.62)

Along the common curve,

∇′′·I′′wns = κNwnsns +κGwnsnws for x ∈ Ωwns , (11.63)
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where κNwns and κGwns are the normal and geodesic curvatures, respectively. The

term I− I′′wns is expressed in terms of the vectors normal to the common curve as

I− I′′wns = nsns +nwsnws for x ∈ Ωwns . (11.64)

Substitution of Eqs. (11.61)–(11.64) into Eq. (11.60) followed by minor rearrange-

ment yields

T wns =

〈(
γwn cosϕws,wn + γws − γns + γwnsκGwns

−ρwnsgwns·nws
)
nws ·

(
vwns −vs)〉

Ωwns,Ω

−
〈(

γwn sinϕws,wn − γwnsκNwns −ns ·t∗s ·ns

+ρwnsgwns·ns
)
ns ·

(
vwns −vs)〉

Ωwns,Ω
. (11.65)

To convert this expression to macroscale force-flux form, we propose the following

SEI approximation:

SEI Approximation 11.9 (wwwnnnsss Common Curve Conditions)
The two averages that comprise the right side of Eq. (11.65) can be re-expressed
making use of the following conditions:

• The product of the factors in the averages over the common curve can be rewrit-
ten with negligible error as the average of the product of the two factors.

• The average of the velocity difference dotted with nws in the first average can be
approximated by Eq. (8.60) expressed as

〈
nws·

(
vwns −vs)〉

Ωwns,Ω
=
(

εws + εns
) Dsχws

s

Dt
, (11.66)

where χws
s is the fraction of the solid surface in contact with the w phase.

• The average of the velocity difference dotted with ns in the second average can
be approximated by Eq. (8.67) expressed as

〈
ns·
(
vwns −vs)〉

Ωwns,Ω
=− εwns

εws + εns

Dsε
Dt

. (11.67)

• The correlations of γwn with cosϕws,wn and sinϕws,wn are negligible so that the
average of the products of these factors is equal to the product of the averages.

• The correlations of γwns with κGwns and κNwns are negligible; so the average of
the products of these factors is equal to the product of the averages.

This approximation relates to the dynamics of the common curve, which is itself an

entity of lesser importance in most two-fluid-phase porous medium systems. There-

fore, errors associated with the approximations made in modeling this entity should
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have less impact in developing a good model than errors associated with approxi-

mations of the interface and, especially, the phase dynamics.

Based on SEI Approximation 11.9, evaluation of the right side of Eq. (11.65)

gives

T wns =

[
γwns

wn cosϕws,wn + γwns
ws − γwns

ns + γwnsκwns
G

−ρwns (gwns·nws)
wns
](

εws + εns
) Dsχws

s

Dt

+

[
γwns

wn sinϕws,wn − γwnsκwns
N −〈ns ·t∗s ·ns〉Ωwns,Ωwns

+ρwns (gwns·ns)
wns
]

εwns

εws + εns

Dsε
Dt

. (11.68)

The group of terms in the first pair of brackets in this equation accounts for a force

imbalance that causes a fluid phase to spread over the solid surface. The group of

terms in the second brackets accounts for the forces that act at the common curve

normal to the solid surface. Both of these groupings of terms were shown to be zero

at equilibrium in the derivations that led to Eqs. (7.134) and (7.135), respectively.

Equation (11.68) is used in lines 48–49 of Eq. (11.5) to convert these lines to a

macroscale force-flux form in the resulting SEI.

11.4.4 Product Breaking SEI Approximations

The preceding two subsections have provided the SEI approximations needed to

obtain an SEI that consists solely of macroscopic force-flux products. However,

the averaging operator remains in some of the terms in the resultant SEI. In some

instances, it is useful to eliminate this operator, typically acting on a product of

microscale quantities, in favor of explicit macroscale products. To accomplish this,

some additional SEI approximations will be employed. The line numbers referred

to are those in the CEI of Eq. (11.5).

Lines 10, 11, 34, 35, 39, and 40

As a prelude to simplifying these lines, we propose the following:

SEI Approximation 11.10 (Geometric Orientation Products)
Averages of products involving the microscale geometric orientation tensors,

Gα = I− I′α for α ∈ II,x ∈ Ωα (11.69)

and
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Gwns = I− I′′wns for x ∈ Ωwns , (11.70)

and a microscale property, fα , of the α entity can be approximated as the product
of averages of the orientation tensor and fα such that

〈Gα fα〉Ωα ,Ω = εαGα f α for α ∈ II (11.71)

and

〈Gwns fwns〉Ωwns,Ω = εwnsGwns f wns . (11.72)

The need for this approximation arises for f corresponding to ρ, γ, and η . For this

latter case, we also make use of the definition εα ηα = ηα .

Lines 20, 23, and 26

Products of microscale pressure or surface tension with a velocity difference in the

normal direction of an entity may be broken and evaluated as a product of mac-

roscale variables. After breaking the product, use is made of Eq. (11.36) in SEI

Approximation 11.7, Eq. (11.55) in SEI Approximation 11.8, and Eqs. (11.66) and

(11.67) in SEI Approximation 11.9. We state the approximation as follows:

SEI Approximation 11.11 (Pressure/Tension Products)
The product of a microscale pressure or surface tension of entity α with nα ·

(
vκ −vs

)
where κ ∈ I−cα that is averaged over entity κ may be written as a product of the av-
erages of these factors. The previously developed approximations for the average of
the velocity factor may also be invoked. Therefore,

〈
nα ·

(
vwn −vs) pα

〉
Ωwn,Ω

=

(
Dsεα

Dt
−χαs

s
Dsε
Dt

)
pwn

α for α ∈ If , (11.73)

〈
nα ·

(
vαs −vs) pα

〉
Ωαs,Ω

= χαs
s

Dsε
Dt

pαs
α for α ∈ If , (11.74)

〈
ns·
(
vαs −vs)ns·ts·ns

〉
Ωαs,Ω

=−χαs
s

Dsε
Dt

(ns·ts·ns)
αs
s for α ∈ If , (11.75)

〈
nwn·

(
vwns −vs)γwn

〉
Ωwns,Ω

=

[(
εws + εns

) Dsχws
s

Dt
cosϕws,wn

+
εwns

εws + εns

Dsε
Dt

sinϕws,wn
]

γwns
wn , (11.76)

and
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Table 11.1 Lines in CEI Eq. (11.5) that are modified or eliminated by SEIapproximations in de-
riving the general SEI given by Eq. (11.78). Line numbers not listed are not revised in forming the
SEI

Line(s) SEI Approximation Impact

1–8 11.1 eliminated

10 11.10 revised

11 11.10 revised

13 11.2 partially eliminated

16 11.6 eliminated

20 11.11 revised

23 11.11 revised

26 11.11 revised

27 11.3, 11.4 partially eliminated

28 11.3, 11.4 eliminated

34–35 11.10 revised

39–40 11.10 revised

41 11.3 revised

42–43 11.7 revised

44–47 11.8 revised

48–49 11.3, 11.9 revised

50 11.3, 11.4 eliminated

51 11.5 eliminated

52–58 11.2 eliminated

〈
nαs·

(
vwns −vs)γαs

〉
Ωwns,Ω

=
(

εws + εns
) Dsχαs

s

Dt
γwns

αs for α ∈ If . (11.77)

These approximations allow for evaluation of averages that appear in lines 20, 23,

and 26 of the CEI in Eq. (11.5).
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11.4.5 General SEI

The general SEI is an approximation to the CEI wherein all terms are composed of

products of macroscale forces and fluxes. The CEI given as Eq. (11.5) is converted to

the SEI by application of the SEI approximations delineated. To assist in following

the application of these approximations, Table 11.1 provides the lines of the CEI

that are impacted by the SEI approximations. The overall order of lines in the CEI

is retained in developing the SEI, but lines are eliminated or revised as indicated in

the table. As a consequence, the SEI is written as follows:

+ ∑
α∈If

1

θ α

(
εαtα + εα pα I

)
:dα +

1

θ s

(
εsts − εsts

)
:ds

1

+ ∑
α∈II

1

θ α

[
εαtα − εα γα (I−Gα)

]
:dα

2

+
1

θ wns

[
εwnstwns + εwnsγwns (I−Gwns)

]
:dwns

3

− ∑
α∈I

(
εα qα + εα qα

g

)
·∇
(

1

θ α

)
4

+ ∑
α∈If

∑
κ∈Icα

α→κ
M

[
1

θ α

(
μα +Kα

E +ψα
)
− 1

θ κ

(
μκ +Kκ

E +ψκ
)]

5

+ ∑
κ∈Ics

s→κ
M

[
1

θ s

(
μs +Ks

E +ψs +
σσσ s:C

s

3 js

)
− 1

θ κ

(
μκ +Kκ

E +ψκ
)]

6

+ ∑
α∈II

α→wns
M

[
1

θ α

(
μα +Kα

E +ψα
)
− 1

θ wns

(
μwns +Kwns

E +ψwns
)]

7

− ∑
α∈If

{
α→wn

Q +
α→wn

G +
(

Ewn
α +Kwn

Eα +ψwn
α

)α→wn
M 8

+

[
α→wn

T +

(
vwn

α −vs
)

2

α→wn
M

]
·
(
vwn

α −vs)
9

+

(
Dsεα

Dt
−χαs

s
Dsε
Dt

)
pwn

α

}(
1

θ α
− 1

θ wn

)
10

− ∑
α∈If

{
α→αs

Q +
α→αs

G +
(

Eαs
α +Kαs

Eα +ψαs
α

)α→αs
M 11

+

[
α→αs

T +

(
vαs

α −vs
)

2

α→αs
M

]
·
(

vαs
α −vs

)
12

+χαs
s

Dsε
Dt

pαs
α

}(
1

θ α
− 1

θ αs

)
13
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− ∑
κ∈Ics

{
s→κ
Q +

s→κ
G +

(
Eκ

s +Kκ
Es +ψκ

s

) s→κ
M 14

+

[
s→κ
T +

(
vκ

s −vs
)

2

s→κ
M

]
·
(

vκ
s −vs

)
15

−χκ
s

Dsε
Dt

(ns·ts·ns)
κ

}(
1

θ s
− 1

θ κ

)
16

−
{

wn→wns
Q +

wn→wns
G +

(
Ewns

wn +Kwns
Ewn +ψwns

wn

)wn→wns
M 17

+

[
wn→wns

T +

(
vwns

wn −vs
)

2

wn→wns
M

]
·
(
vwns

wn −vs)
18

+

[(
εws + εns

) Dsχws
s

Dt
cosϕws,wn

19

+
εwns

εws + εns

Dsε
Dt

sinϕws,wn
]

γwns
wn

}(
1

θ wn
− 1

θ wns

)
20

− ∑
α∈If

{
αs→wns

Q +
αs→wns

G +
(

Ewns
αs +Kwns

Eαs +ψwns
αs

)αs→wns
M 21

+

[
αs→wns

T +

(
vwns

αs −vs
)

2

αs→wns
M

]
·
(
vwns

α −vs)
22

+
(

εws + εns
) Dsχαs

s

Dt
γwns

αs

}(
1

θ αs
− 1

θ wns

)
23

−
s→wns

Q∗
(

1

θ s
− 1

θ wns

)
24

− ∑
α∈If

1

θ α

{
ηα ∇θ α −∇

(
εα pα

)
+ εα ρα ∇

(
μα +Kα

E +ψα
)
+ εα ρα gα

25

− ∑
κ∈I−cα

[
α→κ

T −
(
vα −vs

)
2

α→κ
M +

(
vκ

α −vs
)α→κ

M

]}
·
(

vα −vs
)

26

− ∑
α∈II

1

θ α

{
ηα (I−Gα) ·∇θ α +∇·

[
(I−Gα)εα γα

]
27

+ εα ρα (I−Gα) ·∇
(

μα +Kα
E +ψα

)
+ εα ρα gα

28

+ ∑
κ∈I+cα

[
κ→α

T −
(
vα −vs

)
2

κ→α
M +

(
vα

κ −vs
)κ→α

M

]
29
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−
[

α→wns
T −

(
vα −vs

)
2

α→wns
M +

(
vwns

α −vs)α→wns
M

]}
·
(

vα −vs
)

30

− 1

θ wns

{
ηwns (I−Gwns) ·∇θ wns −∇·

[
(I−Gwns)εwnsγwns

]
31

+ εwnsρwns (I−Gwns) ·∇
(

μwns +Kwns
E +ψwns

)
+ εwnsρwnsgwns

32

+ ∑
κ∈I+cwns

[
κ→wns

T −
(
vwns −vs

)
2

κ→wns
M +

(
vwns

κ −vs)κ→wns
M

]
33

−〈ns·t∗s ·nsns〉Ωwns,Ω

}
·
(
vwns −vs)

34

+
1

θ wn

[
Dsεw

Dt
−χws

s
Dsε
Dt

−
γwnk̂wn

1

(
εwn − εwn

eq

)
pwn

w − pwn
n +ρwn(gwn·nw)wn

]
35

×
(

pwn
w − pwn

n +ρwn (gwn·nw)
wn − γwnJwn

w

)
36

+
1

θ ws
χws

s
Dsε
Dt

[
pws

w +(ns·ts·ns)
ws
s −ρws (gws·ns)

ws + γwsJws
s

]
37

+
1

θ ns
χns

s
Dsε
Dt

[
pns

n +(ns·ts·ns)
ns
s −ρns (gns·ns)

ns + γnsJns
s

]
38

− 1

θ wns

(
εws + εns

) Dsχss
ws

Dt

[
γwns

wn cosϕws,wn + γwns
ws − γwns

ns 39

+ γwnsκwns
G −ρwns (gwns·nws)

wns
]

40

− 1

θ wns

(
εwns

εws + εns

)
Dsε
Dt

[
γwns

wn sinϕws,wn − γwnsκwns
N 41

−〈ns ·t∗s ·ns〉Ωwns,Ωwns
+ρwns (gwns·ns)

wns
]
= ∑

α∈I
Λ α ≥ 0 . 42

(11.78)

Equation (11.78) is a general SEI that descends from the CEI but is dependent

on the SEI approximations employed. Equation (11.78) is useful for developing clo-

sure relations for two-fluid-phase flow in a porous medium when thermal gradients

may exist in the entities and different entities may have different temperatures at

a macroscopic point. Although mass exchange between entities has not been pre-

cluded, successful modeling of this process can be better achieved if one formulates

a multi-species model. This is a more general case than considered here and is ac-

companied by more complex equations. Nevertheless, based on the multispecies

analysis of Chap. 10 and the multiphase approach of the current chapter, the formu-
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lation of a multispecies, multi-fluid-phase model can be undertaken following the

TCAT formalism.

11.5 Example Application

Equation (11.78) is a rich equation that can be exploited to obtain and investigate

closure relations for a wide range of problems. Our objective here is not to illustrate

the most complex problem possible. Rather, we will apply some secondary restric-

tions that simplify the SEI for a class of problems of interest. We will then proceed

to close the equation set as an illustration for use in modeling two-fluid-phase flow.

If one is interested in a more complex case of a two-fluid-phase system than that

considered subsequently, it is possible to return to the general SEI of Eq. (11.78)

and consider a less restrictive set of secondary restrictions. If the SEI approxima-

tions already employed are deemed inappropriate, one can work from the CEI given

as Eq. (11.5) and apply an alternative set of SEI approximations. For a more general

problem, for example if species transport is of interest or if a different thermody-

namic theory is desired, it will be necessary to construct a CEI using the general

TCAT formalism as as been described.

11.5.1 Selection of Secondary Restrictions

The secondary restrictions specify the processes that are of interest in the analysis to

be performed. Although they simplify the SEI, they are not approximate relations.

They simply eliminate processes that are not going to be modeled.

We will consider the case where the system is isothermal, the entities do not

exchange mass, and the mass densities of the interfaces and common curve are zero.

These conditions are stated formally in the following secondary restrictions:

Secondary Restriction 11.1 (Isothermal)
The system is isothermal such that θ α = θ κ

α = θ for α ∈ I, κ ∈ I−cα ; and all deriva-
tives of θ are zero.

Secondary Restriction 11.2 (No Mass Exchange)
The entities of the system are strictly immiscible and do not exchange mass, so
α→κ
M = 0 for all α ∈ I and κ ∈ I−cα .

Secondary Restriction 11.3 (Massless Interfaces and Common Curve)
The mass densities of the interfaces and common curves are zero such that ρα = 0

for α ∈ II and ρwns = 0.
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We emphasize that these conditions are not necessary for proceeding to a closed

system of equations, they are merely conditions that pertain to the physical system

we wish to illustrate.

With these three secondary restrictions applied to the general SEI given as Eq.

(11.78), we obtain the simplified SEI,

+ ∑
α∈If

1

θ

(
εαtα + εα pα I

)
:dα +

1

θ

(
εsts − εsts

)
:ds

1

+ ∑
α∈II

1

θ

[
εαtα − εα γα (I−Gα)

]
:dα

2

+
1

θ

[
εwnstwns + εwnsγwns (I−Gwns)

]
:dwns

3

+ ∑
α∈If

1

θ

{
∇
(

εα pα
)
− εα ρα ∇

(
μα +Kα

E +ψα
)
− εα ρα gα

4

+ ∑
κ∈I−cα

α→κ
T

}
·
(

vα −vs
)

5

− ∑
α∈II

1

θ

{
∇·
[
(I−Gα)εα γα

]
+ ∑

κ∈I+cα

κ→α
T −

α→wns
T

}
·
(

vα −vs
)

6

+
1

θ

{
∇·
[
(I−Gwns)εwnsγwns

]
− ∑

κ∈I+cwns

κ→wns
T 7

+ 〈ns·t∗s ·nsns〉Ωwns,Ω

}
·
(
vwns −vs)

8

+
1

θ

[
Dsεw

Dt
−χws

s
Dsε
Dt

−
γwnk̂wn

1

(
εwn − εwn

eq

)
(pwn

w − pwn
n )

]
(pwn

w − pwn
n − γwnJwn

w ) 9

+
1

θ
Dsε
Dt

[
χws

s pws
w +χns

s pns
n +χws

s (ns·ts·ns)
ws
s +χns

s (ns·ts·ns)
ns
s 10

+χws
s γwsJws

s +χns
s γnsJns

s 11

−
(

εwns

εws + εns

)(
γwns

wn sinϕws,wn − γwnsκwns
N − (ns ·t∗s ·ns)

wns
)]

12

− 1

θ

(
εws + εns

) Dsχss
ws

Dt

[
γwns

wn cosϕws,wn + γwns
ws − γwns

ns + γwnsκwns
G

]
13

= ∑
α∈I

Λ α ≥ 0 . 14

(11.79)
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11.5.2 Identification of Variables

The variables that appear in the equations are similar to those listed for the single-

fluid-phase flow case of Eq. (9.64). Here, the set is expanded because of the presence

of additional phases, interfaces, and the common curve. For convenience, we list the

variables as three sets, VP, VI, and VC, accounting, respectively, for properties of

phases, interfaces, and the common curve. These sets are

VP =
{

εα ,ρα ,vα ,gα ,
α→κ

T ,tα ,ts, pβ , pwn
β , pβ s

β ,(ns·ts·ns)
β s
s ,(ns·t∗s ·ns)

wns
s ,

〈ns·t∗s ·nsns〉Ωwns,Ω ,Kβ
E ,μ

β ,ψβ ,Λ α} for α ∈ IP,κ ∈ I−cα ,β ∈ If ,

(11.80)

VI =
{

εα ,vα ,
α→wns

T ,γα ,γwns
α ,Gα ,Jwn

w ,Jws
s ,Jns

s ,

χws
s ,χns

s ,ϕws,wns} for α ∈ II , (11.81)

and

VC =
{

εwns,vwns,γwns,Gwns,κwns
N ,κwns

G
}
. (11.82)

Solution for these variables is accomplished by a combination of imposed con-

ditions, conservation equations (from Table 6.3), evolution equations (Eqns (8.58),

(8.59), (8.69), and (8.73) subject to the normal velocity approximations of Sect. 8.7),

and closure relations (to be determined subsequently). The imposed conditions in-

clude sophisticated proposals, such as equations of state, and more direct approxi-

mate specifications (e.g., Kβ
E = 0 or pwn

β = pβ ). Enough conditions must be imposed

to make up for the deficit in equations that exists between the number of variables

and the number of conservation, evolution, and closure equations4. The actual count

of variables and imposition of conditions is left as an exercise. The process involved

is analogous to that detailed in Sect. 9.6.3.

11.5.3 Specification of Closure Conditions

The SEI of Eq. (11.79) consists of a sum of pairs of fluxes multiplied by forces,

where the flux is always listed first in each pairing. All the fluxes and forces are

zero at equilibrium. Additionally, the forces and fluxes are independent such that it

is possible for only one of the products to be non-zero. Because the entropy gener-

ation rate must be non-negative for any condition, this means that each force-flux

pair must itself be non-negative. Thus, as a first approach to obtaining closure re-

4 In determining this deficit, it is important to recognize that no mass conservation equations for
the interface and common curve exist; all terms in these equations are zero because of Secondary
Restrictions 11.2 and 11.3. Additionally, because the system is isothermal as per Secondary Re-
striction 11.1, the energy equations are not closed or employed in the resulting model.
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lations, we can consider fluxes to be linear functions of the forces. This approach

provides closure conditions whose utility can be analyzed in a problem of interest by

comparing observed and predicted behaviors. If the comparison is not satisfactory,

a more general closure relation can be developed based on insights from subscale

simulation, computer modeling of the macroscale equations, experimental data, and

physical insights. Indeed, to account for the physics of complex process, integration

of all sources of information is essential to obtaining a satisfactory model.

Here, we will develop closure relations by specifying that the fluxes be either

zero order or first order in the forces. In general, each flux could be proposed to

be linear in the full set of forces. However, we will make use of insights regarding

some of the important processes to propose a more restricted formulation with each

flux being proposed to be linear in a subset of the forces. We will consider the fluxes

in the order in which they appear in Eq. (11.79).

Lines 1–3: Stress Tensor

Lines 1–3 of Eq. (11.79) involve relations between the stress tensors and the rates

of strain. Although microscale gradients in velocity contribute to the microscale

stress tensor, at the macroscale this impact on the flow is accounted for by inter-

actions among the phases. Thus, macroscale velocity gradients do not contribute

significantly to the macroscale stress tensor. This is accounted for by considering

that the equilibrium form of the stress tensor also applies away from equilibrium.

Thus the fluxes, the quantities that are multiplied with the rate of strain tensors, are

approximated as

tα =−pα for α ∈ If , (11.83)

ts = ts , (11.84)

tα = (I−Gα)γα for α ∈ II , (11.85)

and

twns =−(I−Gwns)γwns . (11.86)

The presence of the geometric variable Gα for the interface and common curve

stress tensors is consistent with the change in dimensionality of the tensors that oc-

curs in conjunction with the averaging procedure. For the case where the associated

microscale interfaces and common curve have no preferred orientation, Gα = I/3

for α ∈ II, and Gwns = 2I/3.

Lines 4–8: Fluxes with vααα −vsss as Conjugate Forces

In lines 4–8 of Eq. (11.79), the velocities relative to the solid-phase velocity are the

forces. A significant element of the flux is the term of the form
α→κ

T , which accounts
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for momentum exchange between entities. Because the interfaces are massless, and

thus have no momentum, it seems that any momentum transferred from a fluid phase

to the interface must immediately be transferred to the adjacent phase. From a phys-

ical point of view, this means that one phase is able to drag another phase along with

its flow. For this reason, we will consider the fluxes associated with the phases to be

proportional to both of the fluid phase relative velocities. An interface can move not

only because of internal forces, but also because adjacent phases may apply exter-

nal forces when they move. Therefore, the interface velocities are considered to be

dependent on the adjacent phase velocities. Similarly, we will consider the fluxes as-

sociated with the common curve to be proportional to its conjugate force, vwns −vs,

and the forces of the relative phase velocities. The interphase velocities themselves

could be included as contributing to common curve motion for generality, but this

effect is ignored here in the interest of simplicity. Also, in the linearization process,

the terms Kα
E drop out because they are higher order in velocity. Thus we obtain

∇
(

εα pα
)
− εα ρα ∇

(
μα +ψα

)
− εα ρα gα + ∑

κ∈I−cα

α→κ
T

= ∑
κ∈If

R̂
α
κ ·
(

vκ −vs
)

for α ∈ If , (11.87)

∇·
[
(I−Gα)εα γα

]
+ ∑

κ∈I+cα

κ→α
T −

α→wns
T

=−R̂
α
α ·
(

vα −vs
)
− ∑

κ∈I+cα

R̂
α
κ ·
(

vκ −vs
)

for α ∈ II ,

(11.88)

and

∇·
[
(I−Gwns)εwnsγwns

]
− ∑

κ∈I+cwns

κ→wns
T −

s→wns
T∗

= R̂
wns
wns·

(
vwns −vs)+ ∑

κ∈If

R̂
wns
κ ·

(
vκ −vs

)
. (11.89)

In these expressions, the resistance coefficients, R̂, are symmetric second-order ten-

sors with R̂
α
α positive, semi-definite. Additionally, use has been made of Eqs. (6.98)

and (11.14) to replace 〈ns·t∗s ·nsns〉Ωwns,Ω with −
s→wns

T∗ in Eq. (11.89).

Line 9: Capillary Pressure

Line 9 of Eq. (11.79) involves a force that is a relaxation of the capillary pressure

(the product of the interfacial tension and curvature of the wn interface) to its equi-

librium value, the difference in the pressures of the two fluid phases at that interface.

The linearized closure relation is
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Dsεw

Dt
−χws

s
Dsε
Dt

−
γwnk̂wn

1

(
εwn − εwn

eq

)
(pwn

w − pwn
n )

= ĉwn (pwn
w − pwn

n − γwnJwn
w ) . (11.90)

This equation indicates that when any volume fraction changes occur at a longer

time scale, the relaxation of the capillary pressure so that it balances the fluid pres-

sures is accompanied primarily by a change in the amount of wn interfacial area per

volume.

Lines 10–12: Force Balance on Solid Surface

Linearization of the force-flux product of lines 10–12 of Eq. (11.79) gives

Dsε
Dt

= ĉss
[

χws
s pws

w +χns
s pns

n +(ns·ts·ns)
ss +

(
χws

s γws +χns
s γns

)
Jss

s

−
(

εwns

εws + εns

)(
γwns

wn sinϕws,wn − γwnsκwns
N − (ns ·t∗s ·ns)

wns
)]

, (11.91)

where use has been made of SEI Approximation 11.8, which requires that

χws
s (ns·ts·ns)

ws
s +χns

s (ns·ts·ns)
ns
s = (ns·ts·ns)

ss
s (11.92)

and

Jws
s = Jns

s = Jss
s . (11.93)

Equation (11.91) states that a change in porosity can occur due to a disequilibrium

of the normal forces on the solid surface. The first group of terms accounts for a

disequilibrium between the fluid and the normal stress on the solid surface with

a small correction due to solid surface tension effects. The second group of terms

accounts for any disequilibrium in the normal forces at the common curve.

Line 13: Spreading Force

A linear dependence of the flux in line 13 of Eq. (11.79) on its conjugate force

provides the linear relation

Dsχss
ws

Dt
=−ĉwns

[
γwns

wn cosϕws,wn + γwns
ws − γwns

ns + γwnsκwns
G

]
. (11.94)

This equation accounts for an imbalance in the surface tension forces acting tangen-

tially to the solid surface at the common curve. When the forces are not in balance,

they cause the common curve to move, thereby changing the fraction of the solid

surface that is in contact with each of the fluid phases.
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11.5.4 Closed Set of Conservation Equations

With the conditions imposed by the SEI approximations, by secondary restrictions,

and in linearizing the force-flux relations in the SEI, the closure relations com-

plete the specification of the conservation equations to be solved. We note that Eqs.

(11.90), (11.91), and (11.94) are most easily incorporated into the problem descrip-

tion notationally as additional equations rather than by using them to eliminate rates

of change of the associated geometric properties. We will apply the secondary re-

strictions and the other closure relations to the mass and momentum equations given

in Table 6.3.

Mass Conservation Equations

Secondary restriction 11.2 specifies that no mass exchange occurs between entities.

Secondary restriction 11.3 requires that the interfaces and common curve be mass-

less. By these two restrictions, all terms in the interface and common curve mass

conservation equations are zero such that the equations are trivial. Mass conserva-

tion equations survive for the three phases of the system and take the form

Dα(εα ρα)

Dt
+ εα ρα I:dα = 0 for α ∈ IP . (11.95)

Momentum Conservation for the Fluid Phases

The momentum conservation equations for the w and n phases make use of the clo-

sure relations for the stress tensor given in Eq. (11.83) and the closure relation of

Eq. (11.87). Substitution of these two equations into the general momentum equa-

tion from Table 6.3 under conditions of no mass exchange yields

Dα(εα ρα vα)

Dt
+ εα ρα vα I:dα + εα ρα ∇

(
μα +ψα

)
+ R̂

α
w ·
(
vw −vs)+ R̂

α
n ·
(
vn −vs)= 0 for α ∈ If . (11.96)

For the case of slow flow, the first two terms in this equation are zero. The remaining

terms provide a Darcy-like expression for flow being proportional to a potential

gradient with the added feature of coupling between the two fluid phases.

Momentum Conservation for the Interfaces

For massless interfaces, the momentum equation in conjunction with the stress ten-

sor given by Eq. (11.85) and the closure relation of Eq. (11.88) provides the condi-
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tion

R̂
α
α ·
(

vα −vs
)
+ ∑

κ∈I+cα

R̂
α
κ ·
(

vκ −vs
)
= 0 for α ∈ II . (11.97)

It is not surprising that one obtains this condition, since the momentum of a massless

entity is zero. Eq. (11.97) essentially confirms the discussion in Sect. 8.7.1 where the

average normal velocity of the interface was obtained as a function of the velocities

of the adjacent phases.

Momentum Conservation for the Common Curve

The momentum equation for a massless common curve in conjunction with the

stress tensor given by Eq. (11.86) and the closure relation of Eq. (11.89) is

R̂
wns
wns·

(
vwns −vs)+ ∑

κ∈If

R̂
wns
κ ·

(
vκ −vs

)
= 0 . (11.98)

This condition is similar in character to that for the interfaces. Expressions for the

common curve velocity were discussed in Sect. 8.7.2. In many instances it is ex-

pected that accurate knowledge of the common curve velocity will not be important

to the modeling of phase behavior. Thus, the difficulties in obtaining a good model

of this velocity may not impact overall model accuracy significantly. We are not

aware of any current model of two-fluid-phase flow that includes common-curve

velocity. Here, we have shown explicitly how assumptions impact the entry of this

velocity into the total formulation.

Momentum Conservation for the Solid Phase

The momentum for the solid phase is usually accounted for alternatively by using

a momentum equation for the entire system. This equation is a summation over the

fluid phase and interface momentum equations plus the solid phase. The advantage

of this form is that the momentum exchange rates between entities cancel. Summing

the momentum equations Pα
∗ from Table 6.3 over all entities and eliminating terms

because the interfaces and common curve are massless according to Secondary Re-

striction 11.3 gives

∑
α∈IP

[
Dα(εα ρα vα)

Dt
+ εα ρα vα I:dα − εα ρα gα

]
− ∑

α∈I
∇·
(

εαtα
)
= 0 . (11.99)

Substitution of closure relations Eqs. (11.83)–(11.86) for the stress tensors then pro-

vides:

∑
α∈IP

[
Dα(εα ρα vα)

Dt
+ εα ρα vα I:dα − εα ρα gα

]
−∇·

(
εsts

)
+ ∑

α∈If

∇
(

εα pα
)
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− ∑
α∈II

∇·
[
εα (I−Gα)γα

]
+∇·

[
εwns (I−Gwns)γwns

]
= 0 . (11.100)

The form of the solid stress tensor, ts, is then posed based on the material charac-

teristics of the solid. An analysis for an elastic solid with small deformation in the

presence of a single fluid was presented in Sect. 9.7.1. The analysis for the solid

stress in the presence of two fluids differs only slightly.

The conservation equations obtained here in conjunction with state equations,

closure relations, and approximations of variables is a closed equation set that can

be solved to simulate a system. Despite this assertion, the actual implementation of a

model is not straightforward. A number of coefficients appear whose values must be

determined or whose functional dependences must be ascertained. This complexity

should not suggest that our efforts have yielded nothing useful. Far from it! In fact,

the terms and equations not traditionally encountered hint at what has been ignored

in models currently in use. We will therefore proceed to show how the model set

developed here can reduce to a traditional model while making explicit additional

assumptions that are inherent in the model.

11.6 Simplified Momentum Equations for Example Model

In many cases of two-fluid-phase flow in a porous medium, the velocity of the flow

is slow enough (i.e., Reynolds number less than 1) that the inertial terms in the mo-

mentum equations can be neglected. The assumption of slow flow does not change

the forms of the phase mass conservation equations as given in Eq. (11.95). How-

ever, the momentum equations for the fluid and the solid phases do simplify. Also,

the momentum equations for the interfaces and common curve are neglected so that

the velocities of these entities are eliminated as a part of the model.

For conditions of slow flow with the inertial terms neglected, the fluid phase

momentum equations are obtained from Eq. (11.96) as

εα ρα ∇
(

μα +ψα
)
+ R̂

α
w ·
(
vw −vs)+ R̂

α
n ·
(
vn −vs)= 0 for α ∈ If . (11.101)

The Gibbs-Duhem equation for a multi-species fluid phase is given in Eq. (7.33).

If we change the differential operator to a gradient and note that we are interested in

single-species fluids at constant temperature, this equation becomes

− εα ∇pα + εα ρα ∇μα −〈∇(pα − pα)〉Ωα ,Ω +
〈

ρα ∇
(

μα −μα
)〉

Ωα ,Ω
= 0

for α ∈ If . (11.102)

When the microscale body force acceleration is related to its potential according to

gα +∇ψα = 0 , (11.103)
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it is straightforward to show that multiplication of this expression by ρα and aver-

aging over phase α yields

εα ρα gα + εα ρα ∇ψα +
〈

ρα ∇
(

ψα −ψα
)〉

Ωα ,Ω
= 0 . (11.104)

Addition of Eqs. (11.102) and (11.104) and minor rearrangement of the terms shows

that

εα ρα ∇
(

μα +ψα
)
= εα

(
∇pα −ρα gα

)
+ 〈∇(pα − pα)〉Ωα ,Ω

−
〈

ρα ∇
(

μα +ψα −μα −ψα
)〉

Ωα ,Ω
for α ∈ If . (11.105)

When the gradients in volume fractions are negligible within the averaging region

and the gradients of pressure and potential deviations are also small, the last two

terms of this equation may be eliminated to give

εα ρα ∇
(

μα +ψα
)
= εα

(
∇pα −ρα gα

)
for α ∈ If . (11.106)

We emphasize that this is an approximation that may not hold, particularly when the

gradients in saturation are significant. The more general form of the fluid momentum

equation is Eq. (11.101), but we can make use of the approximate relation of Eq.

(11.106) to revise this equation to

εα
(

∇pα −ρα gα
)
+ R̂

α
w ·
(
vw −vs)+ R̂

α
n ·
(
vn −vs)= 0 for α ∈ If . (11.107)

The inertial terms in Eq. (11.100), which describes conservation of the system

momentum, can be eliminated to yield

∑
α∈IP

εα ρα gα +∇·tT = 0 , (11.108)

where

tT = εsts − ∑
α∈If

εα pα + ∑
α∈II

εα (I−Gα)γα − εwns (I−Gwns)γwns . (11.109)

Equation (11.108) is useful for modeling the solid-phase deformation.

The phase mass conservation equations given as Eq. (11.95) and the momentum

conservation described by Eqs. (11.107) and (11.108) consist of 12 equations in the

unknown variables

V={εα ,ρκ ,vκ , pw, pn,gκ ,ts,Gwn,Gws,Gns,Gwns,

γwn,γws,γns,γwns} for α ∈ I,κ ∈ IP . (11.110)

This set consists of 79 scalar components so that use of mass and momentum con-

servation leaves a deficit of 67 equations. This deficit count can be reduced by 15
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because the five tensors listed are symmetric. The phase volume fractions sum to 1,

providing a useful condition. Also, if the body force acceleration is specified to be

gravity, the deficit count can be reduced further by nine to 42. Formulating these ad-

ditional 42 conditions presents a fine challenge. The conditions that will be imposed

here consist of a set of approximations that are subject to revision if they prove to

be unsatisfactory.

We itemize a proposed set of approximations as follows, with the number of

conditions imposed at the beginning of each item:

• (7) All quantities relating to the common curve are negligible, eliminating Gwns

and γwns;

• (18) The interfaces have no preferred orientation such that Gα = I/3 for α ∈ II;

• (3) Interfacial tensions are specified constants;

• (6) The solid-phase stress tensor is treated as in Eq. (9.102) (with pw in that

equation replaced by a weighted sum of pw and pn) or the solid phase is treated

as being a passive phase, as in subsection 9.7.2;

• (3) Equations of state are available that express the mass densities of the phases

as functions of pressure (or normal stress for the solid);

• (2) Equations for evolution of the solid-fluid interfaces as in Eq. (8.59)5 will be

employed;

• (1) An equation for evolution of the wn interface, such as Eq. (8.69) with the

terms relating to the common curve deleted, is appropriate;

• (1) A statement about the pressure balance at the wn interface is employed as

in Eq. (11.90) (which would also require that relations be stated between fluid

pressures averaged over the interface and over the phase as well as state equations

for Jwn
w and εwn

eq );

• (1) A statement about the force balance at the solid surface is used, such as Eq.

(11.91) with the common curve terms deleted and conditions specified for the

remaining terms in the equation.

Admittedly, some of these conditions are difficult to specify, for example the last

one if a change in porosity takes place due to an imbalance of forces. In Eq. (11.91),

the fact that some phase properties are integrated over surfaces, whereas typically

those properties appear in equations as phase averages, must be addressed. On the

other hand, the conditions identified do model the system behavior. If they are not

considered, some aspect of the system physics is being ignored. By stating these

conditions explicitly, we have identified elements of the problem that could require

attention.

5 These equations introduce the solid surface fraction in contact with each fluid phase. This pa-
rameter is important, but is difficult to specify, sometimes being specified as the fluid saturations
[2].
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11.7 Immobile Solid

A problem that is commonly considered is two-fluid-phase flow when the solid is

non-deformable and immobile. This case eliminates the need to model any of the

solid properties. For the case of slow flow, when the inertial terms in the momentum

equation are negligible, we can make use of the fluid conservation of mass equa-

tions, Eq. (11.95), and the simplified fluid momentum equations of Eq. (11.107).

The list of unknowns that accompanies these eight equations is

V= {εw,εn,ρw,ρn,vw,vn, pw, pn,gw,gn} . (11.111)

This is a set of 18 scalar variables. Thus, the deficit in conditions necessary for a

fully closed set of equations, relative to the conservation equations, is only 10. Re-

call that when including the solid phase, the corresponding count was 67. If the solid

can be treated as fixed for a problem of interest, the mathematics is greatly simpli-

fied. If the body force acceleration is exclusively gravitational, the specification of

gw and gn reduces the equation deficit from 10 to four. With εs fixed, the relation

between the fluid phase volume fractions, εw = 1− εs − εn, provides an additional

condition that reduces the deficit to three.

The three additional conditions needed are as follows:

• (2) equations of state expressing the mass densities of the fluid phases as func-

tions of the phase pressures;

• (1) a statement about the pressure balance at the wn interface as in Eq. (11.90)

(which would also require that relations be stated between fluid pressures aver-

aged over the interface and over the phase as well as a state equation for Jwn
w and

εwn
eq ).

Because Eq. (11.90) can be a cause of difficulty, we will discuss it further. For

the case of an immobile, incompressible solid, the porosity is constant so that this

equation becomes

∂εw

∂ t
−

γwnk̂wn
1

(
εwn − εwn

eq

)
(pwn

w − pwn
n )

= ĉwn (pwn
w − pwn

n − γwnJwn
w ) . (11.112)

We will consider several approaches to dealing with this equation. In every ap-

proach, we will need information about the variables that do not appear in the pre-

ceding set of equations. These are the additional set: εwn, εwn
eq , γwnJwn

w , pwn
w , and pwn

n .

For our discussion, we will assume that pwn
w and pwn

n can be replaced by pw and pn

without loss of accuracy. Equation (11.112) then becomes

ε
∂ sw

∂ t
−

γwnk̂wn
1

(
εwn − εwn

eq

)
(pw − pn)

= ĉwn (pw − pn + pc) , (11.113)
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where sw is the saturation such that εw = swε , and εwn
eq and pc = −γwnJwn

w are ap-

proximated by state functions with

pc = pc
(

sw,εwn
)

(11.114)

and

εwn
eq = εwn

eq (pw, pn,sw,εwn) . (11.115)

The inclusion of εwn also requires an additional equation, which can be based on

Eq. (8.69) with no common curve properties included so that

∂εwn

∂ t
+∇·

(
εwnwwn

)
− Jwn

w ε
∂ sw

∂ t
− k̂wn

(
εwn

eq − εwn
)
= 0 , (11.116)

where the difficulties involved in specifying wwn have been discussed in Sect. 8.7.1

and the relation between k̂wn and k̂wn
1 is given in Eq. (11.40). The mass and mo-

mentum conservation equations plus Eqs. (11.113)–(11.116) comprise a complete

set of equations for modeling the fixed-solid system. These are the equations that

should generally be investigated to determine the quality of a model. However, the

interfacial area density, εwn, is a difficult quantity to determine accurately. Thus,

simplifications to this model have been employed in practice that implicitly serve to

bypass this complication whether or not that is physically appropriate.

The easiest model based on this equation set allows the interface and volume

fraction kinematics to be very fast in comparison to the system physics. This is

consistent with ĉwn in Eq. (11.113) being very large. For this case, the pressure at

the interface is treated as being balanced at all times, so that Eq. (11.113) becomes

pw − pn + pc = 0 , (11.117)

and the equation of state, Eq. (11.115), is not needed because neither εwn nor εwn
eq ap-

pears in the problem. In fact, this is the most commonly used model when restricted

further with R̂
w
n = R̂

n
w = 0 in Eq. (11.107), so that cross-coupling of the velocity is

not considered to be important and pc does not depend on εwn.

A more general case that has been given some attention occurs when k̂wn
1 is con-

sidered to be large. Physically, this implies that the interface relaxes to its equilib-

rium value of area faster than the volume fractions of the fluids reach their equilib-

rium values. Thus, the second term in Eq. (11.113) is neglected and the dynamic

equation is

ε
∂ sw

∂ t
= ĉwn (pw − pn + pc) . (11.118)

This model is computationally attractive because εwn is not needed for a complete

model. However, this formulation is physically deficient because the relaxation of

the saturation to an equilibrium value is typically faster than the relaxation of the

interfacial area density.
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We see that even for the highly restricted case of two-fluid-phase flow with an

immobile and incompressible solid, the equations needed to model the system pro-

vide challenges. To date, most of the challenges have unwittingly been overlooked

in models that are closed but not consistent with system time and length scales or

which do not include variables of importance. For a large array of situations, such

as when the solid deforms, the system is non-isothermal, the flow velocities are not

small, and/or the interface orientations are anisotropic, equations need to be care-

fully formulated and studied. The opportunities for extending the work here and for

extending formulations employed in current codes to better capture the physics of

various porous medium systems are plentiful. Successful accomplishment of model

improvements will involve iteration on proposed theoretical formulations in concert

with experimental and computational studies.

11.8 Summary

In this chapter, we have illustrated the TCAT approach for deriving macroscale mod-

els for two-fluid-phase flow. The CEI has been derived and is of archival value. The

general manipulations needed to derive this CEI have been summarized, and some

details of the derivation appear in Sect. C.3 of Appendix C. Those calculations are

intended to assist an interested reader in full reproduction of the CEI derivation.

A general SEI has been developed by applying SEI approximations. An SEI for a

simpler system (i.e., for the isothermal case with no mass exchange between enti-

ties and with massless interfaces and common curve) is then obtained by applying

secondary restrictions.

Models that can be derived based upon the general SEI apply to a wide range of

systems. Approximations were employed to determine closed equations for a typi-

cal isothermal system. It was shown that when the solid phase is rigid, the need for

approximations is greatly reduced, but the determination of all relations needed to

close the equation system is still challenging. The models derived include important

physical quantities at the macroscale, such as curvatures, contact angles, phase prop-

erties averaged over interfaces, and interfacial tensions, that do not appear explicitly

in traditional models of two-fluid-phase flow. This is a pleasing result suggesting

that TCAT analysis is able to link the microscale to the macroscale with increased

fidelity compared to traditional approaches.

Both the CEI and the general SEI provide convenient entry points for extension

of this work. Comparison of closed models with detailed experimental work and

microscale simulations will be necessary to validate and extend the TCAT models

that can be derived.

11.7 Immobile Solid
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Exercises

11.1. Formulate the entropy inequality analogous to Eq. (11.4) for the case of two-

fluid-phase flow including chemical species transport. You may consider all species

in an entity to be at the same temperature, although entity temperatures may differ.

11.2. Show that if εn = 0 such that the problem of interest is single-phase fluid flow

in a porous medium, the general SEI obtained as Eq. (11.78) reduces to Eq. (9.62).

If any differences are encountered, account for them in terms of different underlying

assumptions.

11.3. Suppose a solid phase is approximated as being composed of small, thin, flat

diskettes whose thicknesses are all much less than their extents in the other two

directions.

a. Estimate Gss if the orientation of the diskettes is random in the porous medium

system.

b. Estimate Gss if the diskettes are mostly parallel to each other in the porous

medium system.

11.4. For the variables listed in Eqs. (11.80)–(11.82),

a. provide the count of the number of scalar elements;

b. provide the count of the number of conservation equations that are available;

c. provide the count of the number of closure equations that are available from Eq.

(11.79);

d. provide the count of the number of evolution approximations that are available

to describe the system; and

e. provide approximations for the variables or equations of state that can be used so

that the number of equations and unknowns is the same.

11.5. The linearized closure relation Eq. (11.87) was obtained from the SEI given

by Eq. (11.79) where the conditions of uniform temperature and no inter-entity mass

exchange are applied. Determine the corresponding linearized closure relation that

is obtained from the general SEI of Eq. (11.78) that is not restricted with regard to

mass exchange and temperature.

11.6. For the case where the dynamics of saturation equilibration are much faster

than equilibration of the wn interface shape such that∣∣∣∣Jwn
w ε

∂ sw

∂ t

∣∣∣∣<<

∣∣∣∣∣∂εwn

∂ t

∣∣∣∣∣ , (11.119)

combine Eqs. (11.113) and (11.116) to obtain an equation that describes the relax-

ation of εwn to its steady state value.
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Chapter 12
Modeling Approach and Extensions

12.1 Overview

Previous chapters have detailed the general TCAT approach, the steps needed to

build TCAT models, and the development of three specific classes of models. While

considerable ground has been covered, much more remains to be accomplished in

extending the models presented and in going on to other cases and problem types.

The purpose of this concluding chapter is to point out a few of the many oppor-

tunities that exist for evaluation and extension of TCAT models. The set of topics

discussed is not an exhaustive accounting of what remains to be accomplished, but

rather is illustrative of some technical challenges and application areas where TCAT

models can be developed to advantage.

Chaps. 9–11 detail examples of closed models for single-fluid-phase flow and

transport and for two-fluid-phase flow in porous media. Many important applica-

tions fall within these general classes of problems. While the specific models devel-

oped were restricted, the CEI’s and SEI’s derived support the application of a rich

hierarchy of models. Thus, opportunities for additional model development exist as

particular cases described by the broad CEI’s and using restricted SEI’s. Some of

these extensions have been discussed in the previous three chapters and are relatively

straightforward; other extensions are more challenging not only in the manipulations

that they involve but also in requiring a substantial amount of new analysis.

This chapter will focus on elements of TCAT analysis where additional support-

ing work will be useful in extending all TCAT models. These elements include the

modeling process, subscale modeling, and model verification and validation. These

aspects of TCAT modeling can be viewed as comprising the elements of TCAT

highlighted in Fig. 12.1. In addition, we discuss several example TCAT extensions.

465W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3_12,
� Springer International Publishing Switzerland 2014
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Fig. 12.1 TCAT elements of interest in Chap. 12 for model verification and validation (after [25])

12.2 Modeling Process

The TCAT approach was described in Chap. 1 and depicted graphically in Fig. 1.3.

Subsequent chapters have highlighted elements of this figure in presenting the equa-

tions needed to advance useful models. Following their derivation, the components

of the method have been combined to produce TCAT models for a range of systems.

It has been shown that for a particular set of primary restrictions, a hierarchy of

models can be developed based upon choices made for secondary restrictions, SEI

approximations, and closure approximations. The general guidance given is that the

sophistication of the model should be matched to the sophistication of the applica-

tion that one wishes to describe. Sometimes this match will be accomplished in a

direct manner. At other times an iterative procedure of model building and refine-

ment will be required before an appropriate formulation is deduced for a problem

of interest.

Because of the structure of the TCAT approach, the assumptions and approxi-

mations made in constructing a model are all explicitly stated. These include the

primary restrictions used to derive a CEI, the secondary restrictions and SEI ap-

proximations used to derive an SEI, the closure approximations needed to derive

the closure relations, and the approximations needed to derive the evolution equa-

tions that approximate kinematic changes in entity measures. When a TCAT model

does not describe a physical system that it is intended to describe, the model for-

mulation must be modified. Such modifications have three primary points of entry:

the CEI, the SEI, and the closure relations. The effort required to revise a model is

typically greatest when reformulating a CEI because a new CEI leads to a new SEI

and revised closure relations. If one needs to modify only the SEI and the closure

relations, the effort will be less. A modification of only the closure relations requires
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the least amount of mathematical work. This assessment can be seen by examining

Fig. 1.3 and the flow of the work in model development.

12.2.1 On Primary Restrictions

Typically only a few primary restrictions are needed to formulate a CEI. The TCAT

model builder should place special emphasis on ensuring that the primary restric-

tions are adequate for the class of model needed. The violation of a primary restric-

tion will necessitate a re-derivation of the CEI, a substantial amount of work that

can be avoided under most circumstances. We can elucidate why this is so.

Important aspects of the primary restrictions include the system and the scale at

which the system is being modeled. Specification of these features requires that one

identify and describe the entities of concern as well as the spatial dimensionality at

which they will be modeled. Knowing which phases, interfaces, common curves,

and common points exist in a system of interest should be straightforward if one has

some familiarity with that system.

The spatial dimensionality for modeling a system requires some thought. In the

applications considered in the last three chapters, systems were modeled as being

macroscopic in three spatial dimensions. However, it is sometimes mathematically

advantageous and physically appropriate to represent a system in terms of a mixture

of macroscale and megascale dimensions. In other words, in some cases spatial vari-

ability in one or more dimensions may be considered unimportant such that a model

can be simplified by averaging over this dimension. The decision to make use of

a partially megascale description of system physics is important because it impacts

the forms of the conservation, balance, thermodynamic and evolution equations. For

example, possible formulations could treat a system at the megascale in one or more

spatial dimensions while the remaining dimensions are modeled at the macroscale.

One of the primary restrictions used in the applications considered in this book

required that the models derived be deterministic in nature and apply to an REV

scale. On the surface, this primary restriction might appear to be tenuous for many

systems of concern, since many natural systems are highly heterogeneous and are

most likely stochastic as well. Such a situation might seem to preclude the use of

TCAT models developed thus far and require a re-derivation of a CEI that accounts

for these vagaries. On the other hand, systems do exist whose scale and homogene-

ity meet the REV condition. These systems can be modeled at the REV scale despite

any subscale heterogeneities and stochasticity. As it happens, we can show that the

REV scale for these systems is often relatively small—on the order of 10’s of grain

diameters—in comparison to the scale of most heterogeneous applications. Thus,

the variability can be treated as occurring at a scale above the scale for which the

model is developed. A deterministic TCAT model can be used as a starting point

on which a stochastic analysis can be built as needed. Stochastic analysis requires

some form of macroscale model to be used as a foundation for the study of system

behavior. A TCAT-based model helps assure that this underlying model is soundly
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developed and does not bury system physics in stochastic parameters. Thus, the

primary restriction that macroscale models be formed at an REV scale is not a sig-

nificant limitation.

Another common primary restriction deals with the phenomena being modeled.

Specifically, issues such as whether the composition of an entity changes signifi-

cantly and how this change is to be modeled arise. This was encountered in Chap. 10

where the decision was made in Primary Restriction 10.2 to use species-based mass

conservation equations but entity-based momentum and energy equations. Various

other approaches could be employed. For example, if the solid is inert or a species

of concern is non-volatile, the composition of a multi-species gas phase could be

time invariant. Alternatively, the velocity of a species could be modeled explicitly

using a momentum equation rather than constitutively relative to the phase velocity.

Careful thought should be given to the system being modeled so that the approach

taken in formulating its CEI is sufficiently broad to encompass adequate modeling

of all phenomena of interest. It may be better to have a more general model for-

mulation than is needed when deriving the CEI. A general CEI can be simplified,

but a restricted CEI can only be generalized by a new derivation. The complexity

of the CEI dictates that one strive to develop a CEI that is general enough to model

a problem of interest but not too general as to unnecessarily complicate the model-

buliding process. This approach minimizes the mathematical manipulations needed

to form a CEI, which are substantial in any case.

A final important type of primary restriction that is typically specified is the ther-

modynamic theory that will be used to connect the conservation equations with the

entropy balance equation under near-equilibrium conditions. CIT has been used in

this work because it has been found to produce models of utility for many common

cases. There may be cases for which an alternative, more complex, thermodynamic

theory is needed.

12.2.2 On SEI Approximations

The value of a CEI lies in its having sufficient breadth to support closure of a hier-

archy of models of a given class with a range of sophistication and fidelity. Never-

theless, to complete the closure process, an SEI is needed. The SEI must be in strict

force-flux form such that it is posed as a sum of products of independent fluxes and

forces at the scale of interest. While the CEI is an exact expression, formulation of

the SEI typically requires approximations in macroscale analysis. The SEI is for-

mulated by restricting the more general CEI to a less complicated physical system

by considering some processes to contribute negligibly to entropy production. Be-

cause an SEI follows from a CEI subject to a particular set of SEI approximations,

the impact of various approximations can be investigated in the model validation

process without re-deriving a CEI. It is more important to specify appropriate pri-

mary restrictions at the outset, before deriving a CEI, than to specify correct SEI

approximations. The systematic TCAT approach allows one to move forward from
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an established result, such as a CEI, to subsequent results without having to per-

form a complete reformulation each time an approximation is to be examined. As

with the CEI, a properly formed SEI can support the closure of a set of models of

varying sophistication. One potentially interesting approach to model development

is to formulate a sequence of SEI’s starting from a general CEI and applying a se-

ries of secondary restrictions in turn. This set of SEI’s serves as a set of entry points

for model formulation depending upon the particular cases being modeled. Such an

approach would not eliminate the need for model reformulation if an inappropriate

SEI were used for a given application, but it would make the reformulation process

more efficient.

A more subtle problem with formulation of the SEI is reliance upon approxi-

mations to produce the needed force-flux form. These approximations involve the

breaking of averages of products to products of averages. Sometimes this is done

directly; at other times, such as with capillary pressure in two-fluid-phase flow,

products are split into leading order and fluctuation terms, which are in turn ap-

proximated. Important points to remember are that product-breaking strategies are

needed, they are non-unique, and the validity of the approach taken can often be

evaluated in conjunction with a reliable, sufficiently resolved microscale model.

The mathematical process that must be avoided is the introduction of approxima-

tions that are a dominant source of error in the model. Optimally, approximation

errors should be insignificant and verified as such. When the SEI approximation

errors must be reduced, significant effort may be involved in identifying improved

approximations that lead to a more satisfactory formulation.

12.2.3 On Secondary Restrictions and Closure

The aspect of the model building process that is most prone to introduction of er-

rors, or unwarranted simplification of the model description, is the formulation of

secondary restrictions and closure approximations. By the secondary restrictions,

some processes are excluded from consideration that could be important. In that re-

gard, secondary restrictions act somewhat similarly to primary restrictions in that

they define the entities and processes that will be modeled. The closure approxima-

tions specify how the SEI will be used to produce a set of closure relations needed

to formulate closed, solvable models. The closure relations must be consistent with

the SEI in that they do not decrease entropy; but this requirement merely constrains

potential forms of the constitutive, or closure, relations rather than specifying their

precise optimal forms. Creative, and often iterative, approaches are needed to pro-

duce an appropriate set of constitutive relations for various processes.

Physical intuition, mathematical insight, and analytical skill are all needed to

arrive at suitable constitutive forms. General guidance for a universal approach to

obtaining closure relations that applies to all cases is difficult to give. Because TCAT

equations at the macroscale are more complex than their microscale precursors, for-

mulation of appropriate closure relations requires additional thought and effort. Is-
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sues that must be considered are the order of the closure approximations; whether

cross-coupling is important and, if so, to which processes; the forms of the needed

equations of state at the macroscale; and the values and functional dependences of

model coefficients, and how these are estimated. Generalized guidance for each of

these aspects of model building is incomplete now and for the foreseeable future.

Typically, low-order approaches are a reasonable starting point. Coupling may be

ignored in many cases, but when this is not possible it is usually not necessary to

include the full set of forces for all fluxes.

Closure of TCAT models is completed at the scale of interest as constrained

by the SEI and in the manner specified by the set of closure approximations. This

approach assures thermodynamic consistency1 and yields a closed system of equa-

tions. However, several issues arise that warrant further consideration. TCAT formu-

lations can include general functional relations among equilibrium variables. The

specific forms of these relations are needed to produce a solvable model, but these

forms may be unknown. Closure approximations are posited to describe the depen-

dence of a flux on some set of forces. Both the order of the dependence and the set

of important forces for a particular flux are approximations, which optimally can be

validated for accuracy. A TCAT model will include model parameters that will typ-

ically depend upon some set of properties of the system in some unknown manner.

One could assume that model parameters must be measured for each application,

but it is often possible to have reasonable parameter estimates and a good under-

standing of factors that affect the value of these parameters. The SEI that constrains

the closure relations requires approximations, which once again are validated in op-

timal circumstances. Lastly, the TCAT approach provides a connection between the

microscale and the macroscale physics and thermodynamics. The overall validity of

a TCAT model and the fidelity of the model results across scales can be determined

if a detailed microscale representation of a sufficiently large system exists.

Microscale experimentation and modeling are the primary routes used to formu-

late specific equations of state as explored in more detail in the following section.

12.3 Subscale Modeling

The task of properly posing and validating a TCAT model may seem onerous. It is

reasonable at first blush to conclude that traditional models have distinct advantages

compared to TCAT models in terms of the information needed for their construction.

This is not really the case. Traditional models require closure relations, which have

been developed over a period of decades based upon experimental observations and

posited equation forms. If the physical dependence included explicitly in a TCAT

model is not included in a traditional model, the hidden assumption is that the de-

pendence is either not important or is accounted for implicitly within the model.

1 Thermodynamic consistency is asserted in some other modeling approaches but is not actually
achieved. TCAT assures this consistency both between the microscale and the macroscale through
averaging and at the macroscale alone through the enforcement of the SEI.
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Validation is desirable for all models, but since conventional multiphase models do

not include a rigorous consistency across scales, detailed comparison across scales

is not generally possible. Thus a serious weakness in traditional models is that an

important validation of the model form is precluded. The ability to perform an in-

terscale validation within a TCAT framework is not a weakness but assuredly is an

important strength.

As experimental and computational methods have improved over the last two

decades, so too has our ability to study porous medium systems at the pore scale.

These fundamental studies are used to forge a basic understanding of operative pro-

cesses and phenomena. Pore-scale methods can also provide the information needed

to construct and validate TCAT models as well as insights regarding parameteriza-

tion of those models. Microscale modeling is an especially important tool in this

regard, because it provides a means to evaluate a well-specified system in fine scale

detail and to quantify a variety of variables that may be difficult to observe exper-

imentally. In principle, microscale modeling provides a means to collect data that

can be averaged to provide the missing information noted above that is needed to

complete a TCAT model.

12.3.1 Capillarity Effects

We can explore briefly some of the ways in which pore-scale modeling could be

used to advance and verify TCAT models. Consider the model of two-fluid-phase

flow that was formulated in Chap. 11. Assume that complete microscale information

of the distribution of an inert solid phase is known in a region of the porous medium.

Such information might be known, for example, from high-resolution experimental

observation of a study system [6, 31, 36, 40, 41, 45, 46] or from construction of

an ideal system using algorithmic means [16]. Knowledge of the microscale do-

main occupied by the solid phase also determines the pore space morphology and

topology. For a particular morphology, a microscale numerical model can be con-

structed that will accurately simulate two-fluid-phase flow. We will not delve into

the methods needed to construct such a model as these details are not important for

the current discussion. We simply state that the microscale domain can be identified

and a microscale simulation code for that domain can be implemented. With these

tools in hand, we are able to examine a macroscale TCAT model.

First, let us consider general functional forms of state equations involving the

interfaces needed to close the two-fluid-phase flow problem described in Chap. 11.

Proposed functional dependences for the equilibrium wn and ws interface densities

can be stated, respectively, as

εwn
eq = εwn

eq (pw, pn,εw,εs,εws) (12.1)

and

εws
eq = εws

eq (ε
w,εs,εwn) , (12.2)
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where the dependences are all on equilibrium quantities. The evolution equations for

εwn and εws were proposed, respectively, as Eqs. (8.69) and (8.59). The curvature is

proposed to be

Jwn
w = Jwn

w (εw,εs,εwn,εws) , (12.3)

and this expression can be considered for non-equilibrium instances since the cur-

vature in a time-varying system might be expected to be a function of existing geo-

metric variables that changes as those change. For example, in the very simple case

of a collection of equisized spheres occupying a fraction of space, the curvature can

be expressed as a function of the volume and surface area of spheres regardless of

any shrinking or expansion of sphere sizes that may be occurring.

The microscale capillary pressure is a property of an interface and is defined

as pc
wn = −γwn∇′·nw = −γwnJw. It is important to have a macroscale measure of

this property when considering two-fluid phase flow, and Eq. (12.3) provides the

macroscopic curvature that can be multiplied by an average interfacial tension to

give the capillary pressure. When εs, ε , Jss
s , and εss are constant (i.e. for a solid

with negligible deformation), the functional dependences indicated above may be

simplified, and χws
s may be used interchangeably with εws as an unknown variable.

For instance, under these conditions, we might propose that the functional forms be

stated as

εwn
eq = εwn

eq (pw, pn,sw,χws
s ) , (12.4)

χws
seq = χws

seq(s
w,εwn) , (12.5)

and

Jwn
w = Jwn

w (sw,εwn,χws
s ) . (12.6)

The basic approach for determination of useful functional forms involves the

simulation of a sufficient number and distribution of equilibrium states to provide a

basis for proposing specific functional relations. Because the microscale details of

phase morphology and topology, along with fluid pressures, exist for each point, all

entity measures and curvatures can be computed for each point. These results are

used to motivate a relational form. The desired result consists of computable forms,

consistent with the SEI, that describe systems with some set of parameters that de-

pend upon properties of the media and fluids. This approach provides an extension

to traditional models for which the capillary pressure is proposed to be equal to a

difference in reservoir pressures at the ends of an experimental cell and dependent

on the fluid saturations and the history of capillarity within the cell. TCAT models

suggest that interfacial areas between phases play a prominent role in effectively

describing capillary pressure. Evidence exists to support the notion that inclusion of

this expanded dependence will greatly reduce, or even eliminate, hysteresis in the

equilibrium relations [e.g., 9, 38]. The final word is not yet written on this active

area of research.
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12.3.2 Testing of Approximations

Microscale modeling can also be used for other aspects of the analysis of TCAT

models because TCAT retains cross-scale linkages among variables. Some specific

examples are offered that support this assertion.

One of the SEI approximations employed previously involved simplifications

based upon approximating averages of products as products of averages involv-

ing geometric orientation tensors. With full microscale detail available, these ap-

proximations can be carefully evaluated. As a second example, the approximations

involved in deriving the kinematic equation for capillary pressure evolution given

by Eq. (11.90), or one of its simplified forms, can be evaluated by examining the

dynamics of the relaxation of an interface to an equilibrium configuration. Needed

information is accessible from microscale modeling. In a third instance, closure ap-

proximations involve specification of the order and dependence of the set of macro-

scale fluxes on a set of macroscale forces. A proposed formulation can be examined

through microscale modeling to see if conjugate force-flux closure is adequate for

describing a system. In addition, the first-order momentum closure approximation

of Eq. (11.96) for the two-fluid-phase flow case can be evaluated. As a last example,

the overall quality of a two-fluid-phase flow model can be assessed by comparing

TCAT and microscale models for identical physical cases. This is done by comput-

ing the microscale solution and using this solution to compute the corresponding

macroscale quantities and variables. Microscale models provide many insights into

material behaviors and subscale processes that have to be accounted for, on average,

in testing TCAT models or any other proposed model formulation.

12.4 Macroscale Modeling

Two important aspects of any model development process are verification and vali-

dation. Validation entails determining that a set of equations provides a reasonable

description of the processes of interest for a prescribed set of conditions. For exam-

ple, a model might be valid for simulating small Reynolds number flow, but invalid

for describing high Reynolds number flow. Some models that are valid for isother-

mal processes should not be used to try to describe non-isothermal processes. Veri-

fication, on the other hand, determines if the equations underlying a computational

model are being solved correctly. Bugs in a code, use of time or space discretiza-

tions that introduce unacceptable error, or misuse of data within a code are obstacles

to verification.

The equations that are developed via the TCAT procedure to obtain macroscale

models are of no value if they cannot be validated for description of a problem or are

not solved appropriately. Thus, although validation and verification are not elements

of the main focus of this book, we would be remiss if we did not give them at least

passing attention.

12.3 Subscale Modeling
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12.4.1 Model Validation

Model validation is an essential component in mechanistic model development in

general, and this assertion undeniably applies to modeling based on TCAT equa-

tions as well. Because TCAT models make use of sets of restrictions and assump-

tions while being based on exact sets of conservation equations, approximate models

necessarily result from the procedure. Because all mechanistic models require clo-

sure relations to produce solvable systems of equations, they will always be limited

by some level of approximation. Closure relations account for subscale material be-

havior rooted in molecular effects that must be modeled in terms of variables and

coefficients proffered at the scale of the model. The TCAT approach provides guid-

ance for the selection of candidate closure relations that do not violate basic thermo-

dynamic constraints; but these relations satisfy only a necessary, and not a sufficient,

condition for establishing an applicable model. Formal validation is required.

A common approach to validation of models is to posit a model form and perform

parameter estimation to bring the model and data into some level of agreement. Sat-

isfactory agreement suggests validation is possible. However, by itself, this situation

does not provide validation because agreement between a model and data does not

guarantee that the underlying physics are being described mechanistically or that

the model can be used when the driving forces for system dynamics change. The

philosopher of science, Karl Popper, concluded that models cannot be validated,

only proven invalid for a specific use [39]. This perspective has been the subject of

controversy in the geosciences [e.g., 7, 32] and in other areas of scientific inquiry

as well. Newton’s laws of motion were viewed as universally valid until the general

theory of relativity was proposed. Subsequent experimental observations confirmed

Einstein’s theory. The point here is that a model may describe many observations,

but if that model has not been compared to all situations it is used to represent,

the model is not truly validated. In practice, universal validation is rarely possible.

Newton’s laws are sufficiently accurate for many situations and are validly used in

describing a wide range of problems. This points to the importance of matching the

sophistication of a model to its intended use in answering a question of interest.

A good case in support of a model’s validity can be made when the model is used

successfully in predictive mode. Any model can match any data set if the model con-

tains enough free parameters. This does not guarantee anything about the suitability

of the model for studying phenomena of interest. However, if a model is used to

predict behavior, and the predicted behavior is found to occur, a better case can be

made that the model has a broad scope of applicability. For example, a set of TCAT

equations has parameters that must be specified. If one specifies these parameters in-

dependently of the system one is endeavoring to describe and the model predictions

and experimental observations for the system agree, evidence of validation exists.

The more times this kind of comparison is undertaken successfully for different

sorts of systems or different conditions in the same system, the more confidence

one has that the model is valid for the range of operating conditions examined. In

essentially all cases, some model error will occur. The practical issue is determining



12.4 Macroscale Modeling 475

when a model is sufficiently accurate to answer the scientific questions being posed

concerning a study system.

If one compares a model prediction to the behavior of a physical system, there

can be multiple reasons that the physical data might not match the model output.

Among these reasons are errors in the observed data, errors that exist in boundary

or initial conditions, inaccurate values of model parameters, and inconsistent time

and length scales between the system observations and the model output. Model-

data comparisons must be completed carefully to identify causes of inconsistencies.

Difficulties in TCAT model-data comparisons are compounded because of the

evolution of geometric variables and entity densities. These quantities are non-

traditional and include orientation tensors, average curvatures, average contact an-

gles, specific interfacial areas, and specific common curve lengths. A proper valida-

tion of a TCAT model includes comparisons of observations and model predictions

for these quantities in addition to more traditional quantities, such as averaged vol-

ume fractions, fluid pressures, and fluid velocities. Modern advancements in high-

resolution experimental methods make these observations and comparisons possible

for certain special cases. Synchrotron-based photon attenuation methods are a class

of techniques that have yielded significant results [1, 3, 12, 42, 45]. Magnetic res-

onance imaging is another useful method that can be employed for TCAT model

validation [8].

Because variables in TCAT models have explicit connections across length

scales, an additional approach for model validation can be implemented. A micro-

model simulation can be performed for an ideal system in which the solid phase

geometry is completely specified. Since all details of flow and transport are com-

puted in a microscale simulation, the information generated can be used to support

a TCAT model through averaging of microscale quantities. Microscale simulations

can be computationally intensive due to the fine discretization necessary and the

need to simulate a system of sufficient size to be macroscopically representative and

suitable for validation purposes. For this approach to be of most use, the micro-

scale simulation must be accurate, sufficiently resolved, and carried out in a domain

large enough to provide a meaningful basis for comparison to a TCAT model. Pore

network modeling [e.g., 4, 5, 11, 17, 18] and lattice Boltzmann methods [e.g.,

16, 26, 37, 44] are two useful microscale approaches.

If a TCAT model is found to be lacking in accuracy for a given application, then

the SEI restrictions and approximations must be examined and modified to obtain

a more robust model. The various entry points for such reformulations were dis-

cussed in Sect. 12.2. If the original TCAT model were formulated appropriately, a

complete model reformulation would generally not be needed. The model reformu-

lation process is facilitated by the archival CEI and SEI that accompany a TCAT

analysis.

The explicit list of restrictions and approximations that lead to a TCAT model,

along with the possible need to validate and iteratively reformulate a model, are

strengths rather than weaknesses. A clear set of opportunities exists for improving a

model and resolving technical issues that hinder its utility. Validation of a traditional

model may also fail. Because traditional models were not originally formulated sys-
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tematically, less guidance exists for model reformulation. Also, because consistency

across scales is not enforced either traditionally or in other averaged models, mic-

roscale modeling or observations are not as useful in diagnosing and minimizing

potential sources of error as with TCAT models.

12.4.2 Model Verification

Model verification is a key step in the development of mechanistic models that do

not in general admit analytical solutions. Model verification is also a necessary co-

requisite with model validation in ensuring that a TCAT model is a useful tool. Since

an approximate numerical solution to TCAT model equations is typically needed, it

is important that the adequacy and correctness of any numerical approximations and

computer codes be established. Verification is the process whereby one endeavors

to demonstrate that the formulated equations have been approximated to a useful

level of accuracy. Verification does not imply that the model describes the physical

system that it was originally intended to describe. While numerical approaches to

approximate TCAT models fall outside the scope of this book, verification is impor-

tant regardless of the approximation method used.

There are three main components to verification: code verification, input verifi-

cation, and solution verification [19]. Code verification encompasses standard soft-

ware quality engineering practices to eliminate coding errors. This element of verifi-

cation is primarily the responsibility of code developers who may have very limited

understanding of the physical problem being addressed. However, it is an impor-

tant factor in establishing the predictive credibility of simulations. Input verification

is intended to evaluate whether or not a model was constructed as intended. For

example, questions related to correct mesh generation and appropriate boundary

conditions are answered in the input verification process. Solution verification may

include a grid convergence study, which provides some basis for numerical accu-

racy assessment, and/or studies of a model’s sensitivity to inherent code parameters

that affect discretization or convergence. All three types of verification are impor-

tant parts of any model development process and are independent of specific data

that might characterize a particular system.

A range of strategies exist for model verification. In many instances, a general

model formulation may be simplified to a case for which an analytical solution either

exists or may be derived by setting some parameters to zero or linearizing closure

relations. A general computed solution is then compared to an analytical solution

for the simplified case. This does not provide a comprehensive verification, but it

is a line of evidence that an accurate solution to the more general problem may be

plausibly obtained.

Since TCAT models are based upon conservation principles, an accurate numer-

ical solution should conserve the corresponding quantities. Conservation of mass,

momentum, and energy can be checked locally, for example over a small discretized

region within the domain, or globally over the entire domain. The ability to conserve
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physical properties is a necessary, but insufficient, condition that suggests model

verification. Calculation of the conservation properties of a model is straightforward

and can be performed for any simulation.

An important solution verification step that can be taken with any computer code

is the analysis of error as a function of discretization of the system domain. If a

“true” or analytic solution does not exist, then a very high resolution approximation

may be computed and used as the “exact” solution. The accuracy of a numerical

approximation when the grid is coarser can then be examined to determine the rate

of convergence of the calculated solution to the “exact” solution as the grid is re-

fined. Alternative discretization approaches can be compared, and the consistency,

stability, and expected analytical convergence rate can be analyzed and compared to

computed results.

Together the approaches mentioned are elements of verification of a computed

approximate solution to a set of TCAT model equations. The verification process

must always be ongoing when a model is applied to different scenarios and situa-

tions. For example, coding errors that may not impact one case may be crucial in

another case. Thus whenever engaging in modeling, one must continually question

whether errors that arise are due to an invalid model or to incomplete verification.

12.5 Extensions of TCAT Models

The particular TCAT models presented in Chaps. 9–11 are a good starting point

for modeling many porous medium systems of interest. Specific formulations in

conjunction with approximation, verification, and validation of models still leave

considerable work to be done so that these models can be effectively employed in

applied simulation. The work to develop models to this point is time consuming

and requires multidisciplinary collaboration among theoreticians, numerical ana-

lysts, and experimental experts. In addition to extensions of the cases provided here,

many other potential TCAT extensions can be undertaken if one possesses a spirit of

adventure. These extensions involve alternative approaches to the boxes in Fig. 1.3,

not just the highlighted boxes in Fig 12.1. Some of the extended models involve ad-

ditional operative physical processes. Others address different scales for averaging

or use of different thermodynamics. In the subsections that follow, we will allude to

a few of the important features that can be included in extended models.

12.5.1 Model Class Extensions: Equations

Three classes of macroscale applications were discussed in this work: single-fluid-

phase flow, single-fluid-phase flow with species transport, and two-fluid-phase flow.

While these classes of models allow for the simulation of many important systems,

extensions are desirable for treatment of other classes of problems. In many cases,

12.4 Macroscale Modeling
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the extensions require that additional conservation equations be added to the model

formulation.

For example, many two-fluid-phase problems also involve changes in composi-

tion over space and time due to reactions, exchanges between the phases, and intra-

phase processes. Pesticide transport, non-aqueous phase liquid transport and reme-

diation, carbon sequestration, and nitrogen cycling in the terrestrial environment are

specific instances when modeling of two-fluid-phase flow and species transport are

needed. The formulation of such a model requires the identification of the set of

important entities, including phases, interfaces, and a common curve. The composi-

tional aspects require that species conservation of mass equations be written for each

entity involved in compositional changes. In addition, decisions must be made con-

cerning the overall conservation and balance equations to be employed in modeling

each entity. Species momentum equations, for example, can be specified on an en-

tity basis, necessitating that closure relations for dispersive processes be developed,

or on a species basis within each entity, necessitating that species-based stress ten-

sors be developed for each phase. This issue has been discussed, and equations have

been developed, for a single-fluid-phase TCAT species transport model formulation

[22]. At a very basic level, the choice between these two alternative formulations is

accomplished by selection of the Lagrange multipliers in constraining the entropy

inequality with conservation equations. The model is then completed through the

CEI, SEI, and closure relations. Conceptually, this extension is not particularly dif-

ficult, but the mathematical manipulations and assumptions involved in obtaining a

closed model are taxing. The physics accounted for have broad applicability.

A second class of TCAT model that could be developed is three-fluid-phase flow

through a porous medium. Three immiscible fluids exist, for example, when non-

aqueous phase liquids are transported through the unsaturated zone, in petroleum

reservoirs in which a gas phase is present, and in certain cases of carbon sequestra-

tion. Three-fluid-phase flow systems are more complex than two-fluid-phase flow

systems because the larger set of possible entities (15 rather than 7) requires a larger

set of conservation and balance equations, increased sizes of connected entity sets,

and accounting for more complex system dynamics. Physical issues such as wetta-

bility are more complex than for the two-fluid-phase flow case. Three-fluid-phase

systems are also more difficult to observe experimentally and thus have been stud-

ied in less detail than two-fluid-phase systems. The TCAT procedure applied for

this class of model would require significant and imaginative work on macroscale

interface and common curve evolution as well as development of appropriate SEI

approximations for breaking products that arise in averaging operations. The ap-

proaches taken for the two-fluid-phase flow case would be a starting point, but ad-

ditional challenges to deriving a useful form must be overcome.

Another interesting class of TCAT models that could be formulated involves

three-fluid-phase flow and species transport. Compositional models are more com-

plex than flow models, and this class of transport model would confirm this general

statement. A similar set of issues exist in regard to choosing the conservation equa-

tions for which compositional changes would be formulated and evolved as was

discussed for the simpler compositional two-fluid-phase transport class of models.
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Other physics-based extensions are possible, including cases of multiple solid

phases, but the examples identified in this chapter include the primary classes of

TCAT model extensions of greatest relevance and importance when the fluid phase

behavior is of primary interest.

12.5.2 Mixed-scale Dimensionality: Averaging

All of the larger-scale TCAT applications considered in this text are three-dimen-

sional macroscale models. In some cases, a particular application can be modeled

with a reduced dimensionality. This is accomplished by megascale modeling in di-

rections where accounting for variability in function values is unimportant. For ex-

ample, single-fluid-phase subsurface porous medium systems are often modeled af-

ter integrating the conservation equations through the vertical direction. In TCAT

vernacular, such a case is considered at the macroscale in two horizontal spatial

dimensions and at the megascale in the vertical dimension.

As another example, consider the sort of experiment performed by Henry Darcy

to measure permeability [14, 15]. In Darcy’s experiments, saturated flow through a

column was induced by imposing a head difference across the column. Darcy found

that the volumetric flow per cross-sectional area was proportional to the head dif-

ference divided by the column length. Similar experiments are still conducted to

determine the coefficient of proportionality, the hydraulic conductivity, of soils and

sands. Because no variation in variables through the column is considered, an appro-

priate model for such a system is fully megascopic. Although this problem has been

studied experimentally for more than 150 years, a TCAT analysis provides some

insights to the approximations that are implicit in the various equations commonly

referred to as Darcy’s law [23].

Since consistency across scales exists with TCAT models, the goal of moving up

in scale to the macroscale or megascale is to bypass modeling massive amounts of

detail. A loss of information occurs with an increase in scale, but if a question being

addressed does not require the finer scale details, a simpler model at the larger scale

is useful. This situation is the case when one upscales from the microscale to the

macroscale; it is also the case when one moves from the macroscale to the megascale

or directly to the megascale from the microscale. Consider the case of single-fluid-

phase flow through a porous medium. At the microscale, complete distributions of

the fluid pressure, density, and velocity within the pore space are considered. At

the macroscale, the average values of these quantities associated with a representa-

tive averaging region are considered; the fine scale detail is lost. At the megascale,

conditions at the external boundaries, such as a flow rate or pressure distribution,

are specified, but no distribution of fluid pressures, densities, or velocity within the

system is resolved; macroscale detail is lost. The loss of detailed information in-

herent in analyses at larger scales is accompanied by a reduction in model equation

complexity and, correspondingly, by a simpler computational problem. The modeler

needs to decide on the appropriate balance among the precision in the information
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computed, the data available to support the computation, and the complexity of the

computational model employed.

Larger scale TCAT models can be posed as models of mixed dimensionality,

where microscale quantities are averaged up to some combination of macroscale

and megascale dimensions that total three. Mixed-dimensionality models that in-

volve one or more megascale dimensions have not been considered in this work.

These models can be formulated in a manner similar to that used for the macroscale

TCAT models. However, appropriate theorems are available [24] to upscale from

the microscale to a mixed-scale system, thereby changing the conservation, balance,

thermodynamic, and evolution equations. So while the concept of mixed-scale di-

mensionality is straightforward, significant theoretical work is needed to formulate

TCAT models for the set of mixed scales of potential importance and utility.

12.5.3 Multiphysics: Linking of Larger-scale Systems

“Multiphysics” is a term used to describe processes in systems composed of a set

of non-overlapping subdomains whose physical behavior is described by a different

form of equation set in each domain. This difference arises from the modeling in

each domain being at different time and/or space scales. For example, consider the

problem of land-atmosphere interaction, which is of profound importance for many

specific applications such as irrigation, water resources conservation, and climate

change. The atmosphere can be considered as a single-fluid phase when one is not

concerned with precipitation events or the dynamics of particulates. The shallow

subsurface is typically a two-fluid-phase porous medium system where liquid water

interacts with an air phase. The time scale of changes in the atmosphere is much

shorter than that for the subsurface. The length scale of subsurface processes must

take into account the impact of pore sizes, while the atmospheric flow region is

homogeneous over a much larger length scale. Thus, the conservation equations for

the two domains are typically posed at different scales, the closure relations in the

two domains are different, and the resulting descriptions of physics are different for

the two domains.

An issue for multiphysics applications is how to model the transition between

regions modeled at different scales and using different equations. TCAT models can

be constructed that include transition zones that act as an interface between disparate

regions. To accomplish the linkage between regions, the entities in the transition

zone are taken to be a union of the entities in both subdomains. Megascale averaging

is performed in the dimension across the transition zone. Mass, momentum, and

energy must be conserved within the transition region and for the overall system.

Thus, care is needed in formulating the linkage conditions of the transition region.

An example of a TCAT transition zone approach to modeling multiphysics problems

is available in the context of land-atmosphere interaction [28].

The work involved with formulating a transition zone model involves the deriva-

tion of a CEI and SEI for a system with mixed dimensionality as described in
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Sect. 12.5.2 and based upon the union of the entities in both regions. This transition

region model will thus resemble a mixed-scale model where entity types existing in

the adjacent domains are accounted for in the transition zone. An important distin-

guishing aspect of a model that includes a transition zone is the set of boundary con-

ditions that link the transition region to each adjacent subdomain. Many transition

region models for multiphysics applications are of interest but have yet to be com-

pletely derived and specified (e.g., a clay layer separating two aquifers, hyporheic

zone hydrology). Validation of such models and comparison to traditional sharp-

interface models are also promising areas for future research. We can comment that

although significant attention is being devoted to computational challenges involved

in multiphysics problems [30], it is ironic that far less attention is being devoted to

ensuring that the equations being solved effectively describe the system.

12.5.4 Alternative Thermodynamic Theories

TCAT approaches for building larger scale models rely upon a microscale thermo-

dynamic theory that is selected and specified in a primary restriction. The thermo-

dynamic theory is stated in a primary restriction because of the central role that this

choice has in the formulation of the CEI. TCAT relies upon careful averaging of

microscale thermodynamics to the macroscale and derivation of a set of dynamic

near-equilibrium equations for each entity. The purpose of these thermodynamic

equations is to provide the means to connect the system entropy inequality to the

conservation equations.

For the TCAT models derived in this work, classical irreversible thermodynam-

ics (CIT) was used. This formulation is the simplest thermodynamic theory that can

be employed. It makes use of the microscale local equilibrium assumption, which

asserts that the equilibrium thermodynamic relations that can be formulated take on

the same functional form locally even when the thermodynamic functions depend

on space and time. After averaging, a macroscale local equilibrium assumption is

not required, but accounting effectively for the absence of this constraint presents

some theoretical challenges. Additionally, we assumed that the solid-phase defor-

mations were small and elastic. Extension of TCAT modeling to include plastic and

viscoplastic materials has not been investigated to date.

In some instances, for example when a system is far from equilibrium, CIT may

not provide an adequate thermodynamic basis. Some other, more general, thermo-

dynamic formalisms were mentioned in Sect. 3.12 and are discussed in more detail

elsewhere [21, 29, 33]. Although some elements of these thermodynamic extensions

have been employed in deriving larger scale models of porous medium systems,

they have not been averaged from the microscale. When these thermodynamic the-

ories are posed directly at the macroscale [e.g., rational thermodynamics 2, 20, 27]

the subscale variations in thermodynamic variables are implicitly ignored, and the

variables that result can be undefined and lack a relation to classically defined mic-

roscale variables [25].
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While CIT has proven useful for TCAT models considered to date, it is important

to be aware that alternative approaches to thermodynamics exist. If validation of a

TCAT model is found to be impossible within the CIT framework, the system is far

removed from equilibrium, and other approximations are found to be reasonable,

a model reformulation that could be more flexible and of higher fidelity may be

possible making use of one of the extended thermodynamic formalisms.

12.5.5 Nonlinearities: Closure Relations

When a system makes use of nonlinear state equations for microscale modeling, this

can pose challenges to TCAT modeling and closure at larger scales. For example,

consider a typical microscale equation of state for a fluid in which density depends

exponentially on a deviation in fluid pressure from a reference pressure. Because

TCAT models are averaged about some representative averaging region, the rela-

tion between macroscale average pressure and the macroscale average density may

not satisfy the same functional form. Thus, a modified equation of state in terms

of larger scale variables may be needed. The error involved in using larger scale

variables in a microscale equation of state functional form is related to the size of

the difference between a microscale variable and its larger scale counterpart. Thus,

when the gradient in pressure is large, the use of a microscale equation of state

form at the macroscale may not be satisfactory. The length scale of an averaging

region can vary from tens of grain diameters in macroscale averaging to a charac-

teristic length of the system for megascale averaging. As the size of the averaging

region becomes large, the impact of deviations between microscale variables and

their larger scale values becomes more important. This problem can be addressed

by seeking alternative forms of an equation of state that reduces to the microscale

form when the averaging region is small or gradients within the averaging region

are negligible. Larger scale measures of the deviation of the equation from the mic-

roscale form can be used to suggest alterations to the equation.

Another situation in which nonlinearities pose a challenge is when modeling

chemical reactions that depend nonlinearly on some combination of chemical po-

tentials or mass fractions, as discussed briefly in Sect. 10.10.1. The reason for the

difficulty is similar to that discussed above for the nonlinear equation of state. As-

sume the chemical mechanism and rate coefficients are known for a well-mixed

system. Using this information directly as a closure relation over a representative

averaging region assumes that the reactants are uniformly distributed within the av-

eraging region. When this is not the case, error will result. An extreme example is

the case of a binary reaction for which the two reactants are segregated within the

averaging region. Although both reactants have non-zero averaged concentrations,

no reaction will occur because microscopically the chemicals do not interact. Thus

use of the known microscale reaction formula making use of average concentrations

will overestimate the effective reaction rate. In considering this situation, one can

see that if the differences between point and average values of reactants are small,
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the error in predicting reaction rates will be small. However, when the deviations

are of the same order as the reactant concentrations, large errors result. The im-

pact of upscaling on precipitation-dissolution reactions is particularly susceptible to

modeling errors due to subscale concentration fluctuations. In these cases, increased

accuracy will result as the numerical grid becomes more highly resolvedl; but av-

eraging alone will impact the ability to use a microscale reaction rate expression

to advantage. Subgrid-scale information or alternative closure relations are required

to produce useful simulations in many cases. Successful formulations for chemical

reactions are elusive in all modeling efforts that make use of larger scale variables,

including TCAT.

12.5.6 Applications: Dynamically Coupled Multiscale Systems

In some situations, averaging-based approaches alone may not yield a model with

sufficient fidelity. For example, consider the cases mentioned in Sect. 12.5.5. If ef-

forts to estimate the fluctuation terms yield forms lacking in the necessary accu-

racy, alternative approaches might be needed. The most extreme of these approaches

would be a dynamically-coupled multiscale approach in which a larger scale model

is coupled to a model that resolves features at a scale beneath the larger scale. At

first blush, this formulation would seem to be a bad idea since it appears to require

more work than just solving the microscale model with no additional information.

This would be so if the microscale model were solved over the entire domain. How-

ever, if troublesome regions occupy only a limited portion of the problem domain,

limiting dynamic coupling to those regions may be a useful way to improve overall

model accuracy with only a modest increase in computational time and effort.

As an example, consider the binary reaction case mentioned above. If two species

react to produce a third species, and that reaction is fast relative to other processes,

sharp gradients of the chemical constituents will develop around the reaction zone.

Reaction will occur only at such an interfacial region, and a microscale model will

be needed to resolve it. Portions of the domain where only one of the reactants is

present would not need to be resolved at the microscale. Thus, selective and local-

ized dynamic coupling could be done in this case. Other instances where processes

are restricted to occur in a small subregion of an entire domain can be envisioned.

These problems might benefit from a dynamically coupled multiscale approach, a

procedure that has not yet been undertaken using TCAT methods but which offers

fertile ground for future study.

12.5.7 Subscale Modeling and Applications: Stochastic Systems

Even macroscale properties of natural porous medium systems are often highly het-

erogeneous. This variability is manifested in parameters, such as hydraulic conduc-
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tivity and dispersivity, that vary in space over relatively short length scales. Small-

length-scale variability has profound effects on system behavior [e.g., 10, 13, 34, 35,

43]. Because of the well-documented dominant effects of medium heterogeneity on

transport phenomena in porous medium systems, some suggest that all natural sys-

tems are actually stochastic and that deterministic models are of limited utility. Such

a perspective has led to comments that TCAT models are of limited use because they

are basically deterministic.

It is important to realize that stochastic models represent uncertainty in a system

in a probabilistic manner. This uncertainty can be due to model parameters, initial

conditions, or boundary conditions. In the limit of complete certainty, a stochastic

model reduces to a deterministic model. If a stochastic model is to serve as an accu-

rate representation of an uncertain system, then the underlying mechanistic model

on which the stochastic model is built should adequately represent the mechanisms

that are important. In other words, the mechanistic model serves as the foundation

for a solution while stochastic considerations build on this foundation by accounting

for uncertainty in the model elements. TCAT models serve as a strong foundation,

and sources of uncertainty can be built on TCAT models just as they have been built

on traditional deterministic models that have a much weaker physical basis. Sub-

stantial opportunities exist for addressing important questions by building stochastic

models on high-fidelity TCAT modeling frameworks in a symbiotic fashion.

12.6 Summary

In this chapter we have reviewed the TCAT modeling approach with an eye to-

ward potential extensions to the work presented in this book. The modeling process

was discussed and the restrictions and approximations necessary to produce closed,

solvable models were highlighted. Guidance was given to minimize the effort re-

quired to reformulate a TCAT model if model validation proves unsuccessful. The

important role of subscale processes in TCAT model development was discussed,

and the example of closure relations for two-fluid-phase flow was used to illuminate

the problem. Elements of model validation were identified and guidance was given

as to how TCAT models can be validated.

TCAT models may be extended based on the fundamental elements presented in

this book to account for a variety of situations. Several examples of general classes

of problems were given in this chapter. These extensions include:

• new classes of models not yet developed, including three-fluid-phase flow and

transport;

• mixtures of macroscale and megascale dimensions, or mixed-scale dimensional-

ity;

• multiphysics applications that involve joining of subdomains that are modeled

using different equation forms;

• generalized thermodynamic formulations that improve fidelity in modeling sys-

tems far removed from equilibrium;
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• highly nonlinear systems and systems that require dynamic multiscale coupling;

and

• the use of stochastic modeling built on sound, physically-based deterministic

models.

In conclusion, although the elements of the TCAT procedure for systematically

developing larger scale models are well-established, this framework can find its full

potential by working in concert with other computational and theoretical analysis

methods to address problems of increasing complexity and importance to society.

Thus, the contents of this book should be viewed best merely as an introduction to

TCAT modeling.

Exercises

Based on the content of this chapter, suggested “exercises” follow directly. However,

these “exercises” are more appropriate as research projects of significant complex-

ity and long duration. To list them as “exercises” would make light of the depth of

work required if one is to make progress in accomplishing any of the suggested ex-

tensions. Thus, we recommend that those interested in pursuing the scientific issues

associated with any of the extensions become well-acquainted with current litera-

ture related to the problem of interest with an eye toward selecting opportunities for

using TCAT to advantage.
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Appendix A
Considerations on Calculus of Variations

A.1 Fundamentals of Variational Approaches

The purpose of this section is to introduce the fundamentals of variational analy-

sis needed to evaluate the expressions of the general form introduced in Sect. 4.4.

Courant and Hilbert [2] define the task of analysis by variational methods by stating:

In a given domain of admissible argument functions, find an argument function (or func-
tions) of a given functional for which the latter is an extremum with respect to all argument
functions of the domain lying in a sufficiently small neighborhood of the extremal argument
function.

If the functional involves parameters in addition to the functions, these must be

determined as well. A functional is a function that depends upon a function. In

variational methods, the quantity of concern for which a maximum or minimum is

sought is the integral of the functional over some domain.

For the applications at hand, we wish to determine conditions that minimize the

equilibrium energy of a system as obtained from integration of the components of

the total energy over the domain. The integral of concern can be written abstractly

as

F =
∫
Ω

f (u) dr , (A.1)

where f is a functional, u is a vector of unknown functions, Ω is the domain, and

F is the quantity that is to be minimized. The functions comprising u are implicitly

assumed to depend upon the independent spatial variables, and the functional can

depend upon parameters as well. In general, variational problems can depend upon

the explicit derivatives of the functions u with respect to the independent variables

in the system; many classical problems include such dependences [3].We have not

written this more general form because the problems formulated in Sect. 4.4 do not

include such dependences. The problems of interest do include multiple functions,

unknown parameters, constraints, and multiple domains of various dimensions that

489W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
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are subject to change. All these elements must be considered in the variational anal-

ysis.

A.2 Classical Approach to Volume Integrals

In this section, we will consider the variation, or differential [3], of the integral

functional given in Eq. (A.1) when Ω is a volume such that the integral is over

three-dimensional space. The approach to be employed is based on that most often

found in the literature [2–4, 7, 8]. For the general class of problems of concern,

the functions comprising u and the independent variables x are considered to vary

depending upon a parameter ε , which, when small, ensures that the variations are

small and thus in the neighborhood of the true values. These variations are expressed

in terms of transformation functions. Solving a minimization problem thus results

in the determination of an extremum of an integral of the functional expressed in

terms of transformations. The transformations can be written as [2]

x∗ = X(x;ε) (A.2)

and

u∗ = U(x∗;ε) , (A.3)

where the superscript ∗ denotes a transformed quantity and X and U represent gen-

eral sets of transformation functions, which depend upon ε . The transformations

behave such that

x = X(x;0) (A.4)

and

u = U(x;0) . (A.5)

A Taylor series expansion of Eq. (A.2) around ε = 0 may be used to obtain x∗ as

x∗ = X(x;0)+ ε
∂X
∂ε

∣∣∣∣
ε=0

+
ε2

2

∂ 2X
∂ε2

∣∣∣∣
ε=0

+ . . . . (A.6)

Substituting Eq. (A.4) into this expression and defining

Δx = x∗ −x , (A.7)

we obtain

Δx = ε
∂X
∂ε

∣∣∣∣
ε=0

+
ε2

2

∂ 2X
∂ε2

∣∣∣∣
ε=0

+ . . . . (A.8)

Truncation of Δx after the leading term provides the first-order variation of x, de-

noted δx, such that
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δx = ε
∂X
∂ε

∣∣∣∣
ε=0

. (A.9)

In other words, with reference to Eq. (A.7),

Δx = x∗ −x ∼ δx , (A.10)

where ∼ denotes equality through order ε .

A Taylor series expansion of Eq. (A.3) around x and ε = 0 to obtain u∗ then

provides

u∗ = U(x;0)+ ε
∂U
∂ε

∣∣∣∣
x,ε=0

+(x∗ −x) · ∇U|x,ε=0 + . . . . (A.11)

Substitute Eq. (A.5) into this expression and define Δu as

Δu = u∗ −u (A.12)

to obtain

Δu = ε
∂U
∂ε

∣∣∣∣
x,ε=0

+(x∗ −x) · ∇U|x,ε=0 + . . . . (A.13)

If δ denotes the first variation, we can make the approximations that are accurate to

order ε that

δu ∼ Δu , (A.14)

δu ∼ ε
∂U
∂ε

∣∣∣∣
x,ε=0

, (A.15)

and

δx·∇u = (x∗ −x) · ∇U|x,ε=0 , (A.16)

where δ indicates a fixed-point variation, i.e., a variation at a fixed coordinate loca-

tion due to the perturbation ε . Substitution of these relations into Eq. (A.13) provides

the first-order accurate expression for the variation of u as

δu = δu+δx·∇u . (A.17)

The increment of F is defined as

ΔF = F(u∗)−F(u) , (A.18)

where the arguments of F indicate that the evaluation is done for the transformed

and the original states. The increment given by Eq. (A.18) can be expressed in terms

of the integral definition given in Eq. (A.1) as

ΔF =
∫

Ω∗

f (u∗)dr−
∫
Ω

f (u)dr , (A.19)
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where Ω∗ is the perturbed domain of integration. This integration can be expressed

in terms of the original domain by use of the jacobian, j, for coordinate change,

defined as

j = |∇x∗| , (A.20)

such that

ΔF =
∫
Ω

[ f (u∗) j− f (u)] dr. (A.21)

The quantity x∗ can be restated, making use of Eq. (A.10), to obtain the first order

approximation for the jacobian as

j ∼ |∇(x+δx)| . (A.22)

Expansion of the determinant while neglecting higher order terms in δx yields

j ∼ 1+∇·δx . (A.23)

Substitution of Eq. (A.23) into Eq. (A.21) to eliminate j then provides

ΔF =
∫
Ω

[ f (u∗)− f (u)+ f (u∗)∇·δx] dr . (A.24)

A Taylor expansion of f (u∗) around u gives

f (u∗) = f (u)+(u∗ −u) · ∂ f
∂u

∣∣∣∣
u
+ . . . . (A.25)

This expression may be substituted into Eq. (A.24). Subsequently, from Eqs. (A.12)

and (A.14), with higher order terms neglected, we obtain

δF =
∫
Ω

[
∂ f (u)

∂u
·δu+ f (u)∇·(δx)

]
dr . (A.26)

Next, we substitute Eq. (A.17) into Eq. (A.26) to eliminate δu such that

δF =
∫
Ω

[
∂ f (u)

∂u
·
(

δu+δx·∇u
)
+ f (u)∇·(δx)

]
dr . (A.27)

However, because

∇· [ f (u)δx] = f (u)∇·(δx)+
∂ f (u)

∂u
·(δx·∇u) , (A.28)

Equation (A.27) may be re-expressed as
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δF =
∫
Ω

{
∂ f (u)

∂u
·δu+∇· [ f (u)δx]

}
dr . (A.29)

Finally, apply the divergence theorem, Eq. (2.10), to the second term in the integrand

of Eq. (A.29) to obtain the variational equation

δF =
∫
Ω

∂ f (u)
∂u

·δudr+
∫
Γ

f (u)n·δxdr , (A.30)

where Γ is the surface that bounds the volume Ω, and n is the outward normal vector

from the boundary. This expression agrees with a simpler scalar version derived

elsewhere [1]. Because

δ f (u) =
∂ f (u)

∂u
·δu , (A.31)

Equation (A.30) may be written in the equivalent form

δF =
∫
Ω

δ f (u)dr+
∫
Γ

f (u)n·δxdr . (A.32)

We note that the approximations in Eqs. (A.30) and (A.32) involving neglect of

higher order terms are consistent with the use of these relations to examine small

perturbations around an equilibrium energy state.

A.3 Indicator Functions

The classical approach to development of variational expressions when integra-

tion is over a volume becomes more complex when the integration region is an

interface or a curve. The derivation can be simplified by the use of indicator func-

tions that identify volumes, interfaces, and curves that exist within an infinite three-

dimensional space. A feature of this approach is that the indicator functions allow

transformation from integrals over deforming finite volumes, interfaces, and curves

to integrals over invariant infinite space [6]. When such a transformation is accom-

plished, the variation operator may be moved inside the integral operator directly,

thus facilitating the derivation of useful variational relations [5].

Here we will briefly summarize the properties of indicator functions and their

variations as well as their properties when appearing in integrands. We emphasize

that the indicator functions are introduced into mathematical expressions to simplify

the mathematical analysis. However, any equation resulting from such an analysis

should not rely on the indicator function.
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A.3.1 Universal Properties

The specific properties of indicator functions depend on whether the function is

used to identify a volume, an interface, or a curve. Nevertheless, the definition of

the indicator function and of its variation are common to all of these geometric

regions.

We define the indicator function as

ϒκ(x, t) =
{

1 for x ∈ Ωκ
0 for x /∈ Ωκ ,

for κ ∈ I , (A.33)

where I refers to the set of entities of interest. Thus, for a system consisting of a

solid phase, s, a wetting phase, w, and a non-wetting phase, n,

I= {w,n,s,wn,ws,ns,wns} , (A.34)

where an index pair refers to an interface between the designated phases, and the

triple index, wns, refers to the common curve where three interfaces meet. As an

example of the use of an indicator function, the w phase is identified as the spatial

domain whereϒw is 1, the interface between the w and n phases is the surface domain

where ϒwn = 1, and the common curve is the one-dimensional domain where ϒwns =
1. Note that the domain of an entity need not be continuous to make use of the

indicator function denoting where it exists in space.

The indicator function is convenient because multiplying a functional by an in-

dicator function eliminates the need to worry about changes on the boundary of the

integration region. The integration region can be all of space. The movement of the

boundary of Ωκ , which we wish to allow, is tracked through changes in ϒκ . The

indicator function ϒκ is different from the other functions that appear within the

functional. The value of the function is fixed at either 0 or 1 and is not subject to

variations. Thus the total variation of ϒκ is zero, which can be expressed

δϒκ = 0 for κ ∈ I . (A.35)

However, when the κ entity deforms, its associated indicator function ϒκ can change

its value from 0 to 1, or vice-versa, at some locations to account for the change in

the domain that is spanned. Another way to conceptualize the use of ϒκ is to see it as

as a means to represent a mapping of the coordinate system from x to x∗, somewhat

similar to a jacobian. This re-mapping accounts for movement of the boundary of the

domain. However, the variation of ϒκ is zero. Based on Eq. (A.35), we can expand

δϒκ according to Eq. (A.17) to obtain

δϒκ =−δx·∇ϒκ for κ ∈ I . (A.36)

Knowledge of the common properties of the indicator functions given as Eqs.

(A.33) and (A.36), regardless of the entity type of interest, now lets us examine the
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transformation of integrals over the various entity types to integrals over all space,

denoted as Ω∞.

A.3.2 Integral over a Phase

Consider an integral of a function over a phase, α , such that

Fα =
∫

Ωα

fα dr for α ∈ IP , (A.37)

where Ωα is the region occupied by the phase. The integral can be directly changed

to an integral over all space by use of the indicator function ϒα to obtain

∫
Ωα

fα dr=
∫

Ω∞

fαϒα dr for α ∈ IP . (A.38)

It should be clear that since ϒα = 0 outside the domain occupied by the α phase, the

equality of Eq. (A.38) will hold.

A.3.3 Integral over an Interface

The integral over an interface of a function associated with that interface, fαβ , where

αβ is the pair of indices identifying the adjacent phases, is expressed as

Fαβ =
∫

Ωαβ

fαβ dr for αβ ∈ II . (A.39)

Because this is an integral over a surface, it cannot be directly converted to an in-

tegral over a volume. First, if this surface is a closed surface, we designate the en-

closed phase as the α phase. If it is not a closed surface, we can envision the surface

as being a segment of a closed surface that bounds a phase α . In light of these

considerations, we may re-express Eq. (A.39) as

Fαβ =
∫

Ω ′
αβ

fαβϒαβ dr , (A.40)

where Ω ′
αβ is the closed surface bounding the α phase. The interior of each closed

surface is designated as an α phase. This is a space where ϒα = 1, while ϒα = 0

outside this space. The gradient of ϒα is zero everywhere except on the surface
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Ω ′
αβ , where it behaves as a directional delta function. This delta function converts

an integral over a volume to an integral over a surface. Thus we can write [6]

Fαβ =−
∫

Ω∞

fαβ nα ·∇ϒαϒαβ dr . (A.41)

Elimination of Fαβ between Eqs. (A.39) and (A.41) yields

∫
Ωαβ

fαβ dr=−
∫

Ω∞

fαβ nα ·∇ϒαϒαβ dr for αβ ∈ II . (A.42)

The conceptualizations employed here have allowed the integral over a surface

to be converted to an integral over all of three-dimensional space as given in Eq.

(A.42). The conceptualizations will allow for some simpler analysis of variational

expressions; and, in the end, the indicator functions will disappear from the result.

A.3.4 Integral over a Common Curve

A function associated with a common curve, denoted fαβγ where the elements of

αβγ denote the three phases that meet at the curve, can be integrated over that curve

to give

Fαβγ =
∫

Ωαβγ

fαβγ dr for αβγ ∈ IC . (A.43)

The task at hand is to convert this integral over the one-dimensional curve to an

expression that is an integral over Ω∞ by use of the indicator functions.

The curve of integration may be considered to be a segment of a curve completely

bounding the αβ interface. Thus, an indicator function for the curve may be used to

identify the portion of interest and obtain

Fαβγ =
∫

Ω ′′
αβγ

fαβγϒαβγ dr , (A.44)

where Ω ′′
αβγ is the closed curve bounding the αβ interface. This interface of interest

is a portion of the surface bounding the α phase. Therefore, we can make use of the

indicator function ϒαβ to identify this portion of the surface. Specifically, the surface

gradient of ϒαβ will be non-zero only on the domain Ω ′′
αβγ and is a directional delta

function. This information can be used to convert the integral over the closed curve

Ω ′′
αβγ to an integral over the closed surface Ω ′

αβ such that [6]
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Fαβγ =−
∫

Ω ′
αβ

fαβγ nαβ ·∇ϒαβϒαβγ dr . (A.45)

Following the same logic and procedures in going from Eq. (A.40) to Eq. (A.42),

we can convert this surface integral to an integral over all space with

Fαβγ =
∫

Ω∞

fαβγ nα ·∇ϒα nαβ ·∇ϒαβϒαβγ dr . (A.46)

Elimination of Fαβγ between Eqs. (A.43) and (A.46) gives the useful relation for an

integral over a curve transformed to an integral over all space

∫
Ωαβγ

fαβγ dr=
∫

Ω∞

fαβγ nα ·∇ϒα nαβ ·∇ϒαβϒαβγ dr for αβγ ∈ IC . (A.47)

The key results of this section are Eq. (A.36), which provides the identity that

the variation of the indicator function is zero, and the three relations that convert

integrals over a volume, surface, or curve to integrals over all space given, respec-

tively, as Eqs. (A.38), (A.42), and (A.47). These equations will be employed in the

next sections to reproduce the variational expression for an integral over a phase ob-

tained using the classical approach, Eq. (A.32), as well as the variations of integrals

over a surface and over a curve.

A.4 Variation of a Volume Integral

Consider the functional

Fα =
∫

Ωα

fα(u)dr for α ∈ IP . (A.48)

For notational convenience, we will make dependence of fα on u implicit. Convert-

ing the integral over a finite volume to an integral over all space by Eq. (A.38) and

taking the variation of the resultant equality, we obtain

δFα = δ
∫

Ω∞

fαϒα dr . (A.49)

Because the integral is over all space, there will be no variation due to coordinate

transformation, so the variation on the right may be changed to a fixed-point varia-

tion and moved inside the integral so that
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δFα =
∫

Ω∞

δ ( fαϒα) dr . (A.50)

Application of the product rule then yields

δFα =
∫

Ω∞

δ fαϒα dr+
∫

Ω∞

fα δϒα dr . (A.51)

However, we can make use of Eq. (A.36) to replace δϒα so that Eq. (A.51) becomes

δFα =
∫

Ω∞

δ fαϒα dr−
∫

Ω∞

fα δx·∇ϒα dr . (A.52)

In this expression, the indicator function may be dropped from the first integral if

the domain of integration reverts to Ωα . The gradient of the indicator function in the

second term is the directional delta function that converts this integral over a volume

to an integral over the boundary of Ωα . Thus, Eq. (A.52) becomes

δFα =
∫

Ωα

δ fα dr+
∫
Γα

fα nα ·δxdr for α ∈ IP . (A.53)

This equation agrees with Eq. (A.32) that was developed by classical methods. The

fixed-point variation of fα can be expanded out according to Eq. (A.31) to obtain

Eq. (A.30).

A.5 Variation of a Surface Integral

The variation of a quantity on a surface is more complicated than the variation of a

quantity in a volume. The extent of a volume will change only by movement of its

boundary in the normal direction. The extent of a surface can change not only be-

cause of movement of the curve bounding the surface but also by deformation of the

surface itself. The curvature of an interface plays an important role in establishing

equilibrium conditions of multiphase systems.

Consider the functional Fαβ associated with an integral over the interface be-

tween the α and β phases of a multiphase system. The functional of interest is

Fαβ =
∫

Ωαβ

fαβ (u)dr for αβ ∈ II , (A.54)

where Ωαβ is the interface formed where the α and β phases meet, and fαβ (u) is a

functional defined over the interface that depends upon the set of functions, u. This
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explicit designation of the functional dependence should be understood and will be

dropped from here for conciseness.

Make use of Eq. (A.42) to convert the integral over Ωαβ to an integral over Ω∞.

The variation of the resulting expression is

δFαβ =−δ
∫

Ω∞

fαβ nα ·∇ϒαϒαβ dr . (A.55)

Since the integration is over all of space, the variation operator can be moved inside

the integral sign and the product rule applied, giving

δFαβ =−
∫

Ω∞

δ fαβ (nα ·∇ϒα)ϒαβ dr−
∫

Ω∞

fαβϒαβ nα ·∇
(

δϒα

)
dr

−
∫

Ω∞

fαβ (nα ·∇ϒα)δϒαβ dr , (A.56)

where the variations inside the integrals are fixed-point variations since integration

is over infinite space. Additionally, the fact that δnα is orthogonal to ∇ϒα has been

employed. From Eq. (A.42), the first integral on the right may be returned to an

integral over Ωαβ . Application of the product rule to the second integral then refor-

mulates Eq. (A.56) as

δFαβ =
∫

Ωαβ

δ fαβ dr−
∫

Ω∞

[
∇·
(

nα fαβϒαβ δϒα

)
−∇·

(
nα fαβϒαβ

)
δϒα

]
dr

−
∫

Ω∞

fαβ (nα ·∇ϒα)δϒαβ dr . (A.57)

The divergence theorem may be employed to change the first term in the second

integral to an integral over the boundary of the infinite volume. However, the quan-

tities of interest are zero at that location, so the term may be dropped. We then

employ Eq. (A.36) to replace δϒα and δϒαβ . The resulting equation is

δFαβ =
∫

Ωαβ

δ fαβ dr−
∫

Ω∞

∇·
(
nα fαβϒαβ

)
δx·∇ϒα dr

+
∫

Ω∞

fαβ (nα ·∇ϒα)δx·∇ϒαβ dr . (A.58)

The next task is to expand the integrand of the second integral using the product

rule. This gives
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δFαβ =
∫

Ωαβ

δ fαβ dr−
∫

Ω∞

∇·nα fαβϒαβ δx·∇ϒα dr

−
∫

Ω∞

nα ·∇ fαβϒαβ δx·∇ϒα dr+
∫

Ω∞

fαβ (nα ·∇ϒα)δx·∇ϒαβ dr , (A.59)

where use has been made of the fact that nα and ∇ϒαβ are orthogonal. Now make

use of Eq. (A.42) to convert the second and third integrals to integrals over Ωαβ
and of Eq. (A.47) (with ϒαβγ = 1) to convert the last integral to an integral over the

boundary of Ωαβ denoted as Γαβ . The result, after combining the third integral with

the first, is

δFαβ =
∫

Ωαβ

(
δ fαβ +δx·nα nα ·∇ fαβ

)
dr

+
∫

Ωαβ

∇′·nα fαβ nα ·δxdr+
∫

Γαβ

fαβ nαβ ·δxdr , (A.60)

where use has been made of the fact that ∇·nα = ∇′·nα . The fixed-point variation

of fαβ on a surface, δ
′
fαβ , defined such that the surface coordinates are fixed, is

related to the spatial fixed-point variation by

δ
′
fαβ = δ fαβ +δx·nα nα ·∇ fαβ . (A.61)

With this definition, Eq. (A.60) becomes

δFαβ =
∫

Ωαβ

δ
′
fαβ dr+

∫
Ωαβ

∇′·nα fαβ nα ·δxdr+
∫

Γαβ

fαβ nαβ ·δxdr for αβ ∈ II .

(A.62)

For a two-phase system, the last integral in this equation will be zero because there is

no boundary of the interface, Γαβ . The presence of nα in this expression is somewhat

clumsy in that the expression for the interface should be expressible in terms of

properties of that interface. Therefore, we define the unit tensor in the surface, I′αβ ,

such that

I′αβ = I−nα nα for x ∈ Ωαβ . (A.63)

Equation (A.62) may then be written

δFαβ =
∫

Ωαβ

δ
′
fαβ dr−

∫
Ωαβ

fαβ ∇′·I′αβ ·δxdr+
∫

Γαβ

fαβ nαβ ·δxdr for αβ ∈ II .

(A.64)

Here we have made use of the fact that
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∇′·I′αβ =−∇′·(I− I′αβ ) =−nα ∇′·nα . (A.65)

The surface fixed-point variation of fαβ can be expanded in terms of the vector of

functions u in a form analogous to Eq. (A.31) with

δ
′
fαβ (u) =

∂ fαβ (u)
∂u

·δ ′
u . (A.66)

Use of Eq. (A.64) for variational analysis of the energy of an interface between

phases is an essential analysis tool for multiphase systems. For porous media where

the amount of interfacial area between phases is large, the energy associated with

these interfaces can be significant.

A.6 Variation of an Integral over a Curve

The derivation of the expression for the variation of an integral over a curve is anal-

ogous to the previous derivations for volumes and surfaces, but it is complicated by

the need to also make use of the indicator function for a common curve. The varia-

tional relation must take into account the changing of the curvature as it contributes

to the state of the system.

The functional to be studied here is denoted Fαβγ and is considered to be asso-

ciated with an integral over the curve where the α , β , and γ phases come together.

Equivalently, it could be considered to be the location where the αβ , αγ , and βγ
interfaces come together. The functional is expressed as

Fαβγ =
∫

Ωαβγ

fαβγ(u)dr for αβγ ∈ IC , (A.67)

where Ωαβγ is the one-dimensional domain of the common curve and fαβγ(u) is a

functional defined on the common curve that is dependent on the set of functions,

u. As with the previous derivations, the explicit listing of u as an argument of fαβγ
will be suppressed for notational conciseness.

Equation (A.47) can be used to transform the integral in Eq. (A.67) over the

common curve to an integral over the entire spatial domain, Ω∞. The variation of

the resulting equation is then

δFαβγ = δ
∫

Ω∞

fαβγ nα ·∇ϒα nαβ ·∇ϒαβϒαβγ dr , (A.68)

where αβ designates a surface that is bounded by the extended common curve and

α is a phase bounded by the extended surface αβ . The variation can be moved

inside the integral, where it becomes a fixed-point variation, and the product rule

applied, resulting in
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δFαβγ =
∫

Ω∞

δ fαβγ (nα ·∇ϒα)
(
nαβ ·∇ϒαβ

)
ϒαβγ dr

+
∫

Ω∞

fαβγ

[
nα ·∇

(
δϒα

)](
nαβ ·∇ϒαβ

)
ϒαβγ dr

+
∫

Ω∞

fαβγ (nα ·∇ϒα)
[
nαβ ·∇

(
δϒαβ

)]
ϒαβγ dr

+

∫
Ω∞

fαβγ (nα ·∇ϒα)
(
nαβ ·∇ϒαβ

)
δϒαβγ dr , (A.69)

where use has been made of the fact that δnαβ is orthogonal to ∇ϒαβ , and δnα
is orthogonal to ∇ϒα such that the dot products of these respective pairs are zero.

Equation (A.47) can be used to return the first integral to an integration over the

common curve. Use of the product rule to rearrange the second and third integrals

then gives

δFαβγ =
∫

Ωαβγ

δ fαβγ dr+
∫

Ω∞

∇·
[
nα fαβγ δϒα

(
nαβ ·∇ϒαβ

)
ϒαβγ

]
dr

−
∫

Ω∞

∇·
[
nα fαβγ

(
nαβ ·∇ϒαβ

)
ϒαβγ

]
δϒα dr

+

∫
Ω∞

∇·
[
nαβ fαβγ (nα ·∇ϒα)δϒαβϒαβγ

]
dr

−
∫

Ω∞

∇·
[
nαβ fαβγ (nα ·∇ϒα)ϒαβγ

]
δϒαβ dr

+
∫

Ω∞

fαβγ (nα ·∇ϒα)
(
nαβ ·∇ϒαβ

)
δϒαβγ dr . (A.70)

Application of the divergence theorem to the second and fourth integrals of this

equation changes the integration domain from Ω∞ to Γ∞. The integrands are zero at

this location, so these integrals must be zero. Subsequent elimination of the fixed-

point variations of the indicator functions using Eq. (A.36) leaves

δFαβγ =
∫

Ωαβγ

δ fαβγ dr+
∫

Ω∞

∇·
[
nα fαβγ

(
nαβ ·∇ϒαβ

)
ϒαβγ

]
δx·∇ϒα dr

+
∫

Ω∞

∇·
[
nαβ fαβγ (nα ·∇ϒα)ϒαβγ

]
δx·∇ϒαβ dr
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−
∫

Ω∞

fαβγ (nα ·∇ϒα)
(
nαβ ·∇ϒαβ

)
δx·∇ϒαβγ dr . (A.71)

It is left as an exercise in the spirit of Sects. A.3.2 through A.3.4 to show that the

last integral in Eq. (A.71) can be converted from an integral over all space to a sum

of evaluations at the common points at the ends of the common curve with

∑
m∈IΓαβγ

(
fαβγ nαβγ ·δx

)∣∣
Γαβγ m

=−
∫

Ω∞

fαβγ (nα ·∇ϒα)
(
nαβ ·∇ϒαβ

)
δx·∇ϒαβγ dr , (A.72)

where IΓαβγ is the set of end points of the αβγ common curve, nαβγ is the unit nor-

mal outward from the end of the common curve, and m is a common point qualifier

such that the summation is over all the points at the ends of the common curve seg-

ments being considered. The product rule may now be used to expand out the second

and third integrals in Eq. (A.71). Some terms will be zero because the gradient of the

indicator function is orthogonal to the vector it is dotted with. Other integrals will

be analogous to the right side of Eq. (A.47) and thus may be transformed back to

integrals over the common curve of interest. The equation simplified in this manner

is

δFαβγ =
∫

Ωαβγ

δ fαβγ dr+
∫

Ωαβγ

(∇·nα) fαβγ nα ·δxdr+
∫

Ωαβγ

(
nα ·∇ fαβγ

)
nα ·δxdr

+
∫

Ω∞

fαβγ
(
nαβ nα :∇∇ϒαβ

)
ϒαβγ δx·∇ϒα dr

+

∫
Ωαβγ

(
∇·nαβ

)
fαβγ nαβ ·δxdr+

∫
Ωαβγ

(
nαβ ·∇ fαβγ

)
nαβ ·δxdr

+
∫

Ω∞

fαβγ
(
nα nαβ :∇∇ϒα

)
ϒαβγ δx·∇ϒαβ dr

+ ∑
m∈IΓαβγ

(
fαβγ nαβγ ·δx

)∣∣
Γαβγ m

. (A.73)

The product rule dictates that

nαβ nα :∇∇ϒαβ = nαβ ·∇(nα ·∇ϒαβ )−nαβ ·∇nα ·∇ϒαβ , (A.74)

but the first term on the right is zero because nα is orthogonal to ∇ϒαβ . Likewise, it

follows that

nα nαβ :∇∇ϒα =−nα ·∇nαβ ·∇ϒα . (A.75)
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Substitution of these last two relations into Eq. (A.73) restates the two integrals over

Ω∞ in forms that can make use of Eq. (A.47) to convert them back to integrals over

Ωαβγ . The result of these manipulations is

δFαβγ =
∫

Ωαβγ

δ fαβγ dr+
∫

Ωαβγ

(∇·nα) fαβγ nα ·δxdr+
∫

Ωαβγ

(
nα ·∇ fαβγ

)
nα ·δxdr

−
∫

Ωαβγ

fαβγ
(
nαβ ·∇nα ·nαβ

)
nα ·δxdr

+
∫

Ωαβγ

(
∇·nαβ

)
fαβγ nαβ ·δxdr+

∫
Ωαβγ

(
nαβ ·∇ fαβγ

)
nαβ ·δxdr

−
∫

Ωαβγ

fαβγ
(
nα ·∇nαβ ·nα

)
nαβ ·δxdr+ ∑

m∈IΓαβγ

(
fαβγ nαβγ ·δx

)∣∣
Γαβγ m

.

(A.76)

Collection of similar terms then provides

δFαβγ =
∫

Ωαβγ

(
δ fαβγ +δx·nα nα ·∇ fαβγ +δx·nαβ nαβ ·∇ fαβγ

)
dr

+
∫

Ωαβγ

(
∇·nα −nαβ ·∇nα ·nαβ

)
fαβγ nα ·δxdr

+
∫

Ωαβγ

(
∇·nαβ −nα ·∇nαβ ·nα

)
fαβγ nαβ ·δxdr

+ ∑
m∈IΓαβγ

(
fαβγ nαβγ ·δx

)∣∣
Γαβγ m

. (A.77)

Equation (A.77) can be simplified further. The quantity in parentheses in the first

integral is a variation of fαβγ at a point fixed to the curve. We denote this fixed-point

variation as δ
′′

fαβγ with

δ
′′

fαβγ = δ fαβγ +δx·nα nα ·∇ fαβγ +δx·nαβ nαβ ·∇ fαβγ . (A.78)

Also consider that

∇·nα −nαβ ·∇nα ·nαβ = lαβγ ·∇nα ·lαβγ =−lαβγ ·∇lαβγ ·nα (A.79)

and

∇·nαβ −nα ·∇nαβ ·nα = lαβγ ·∇nαβ ·lαβγ =−lαβγ ·∇lαβγ ·nαβ . (A.80)
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Substituting these last three identities into Eq. (A.77) and collecting the expressions

in the second and third integrals yields

δFαβγ =
∫

Ωαβγ

δ
′′

fαβγ dr−
∫

Ωαβγ

fαβγ lαβγ ·∇lαβγ ·
(
nα nα +nαβ nαβ

)
·δxdr

+ ∑
m∈IΓαβγ

(
fαβγ nαβγ ·δx

)∣∣
Γαβγ m

. (A.81)

Finally, we define the tensor consisting of the non-zero elements of the unit tensor

that is tangent to the common curve as

I′′αβγ = I−nα nα −nαβ nαβ , (A.82)

so that

lαβγ ·∇lαβγ ·
(
nα nα +nαβ nαβ

)
= lαβγ ·∇′′lαβγ ·

(
I− I′′αβγ

)
= ∇′′·I′′αβγ , (A.83)

where ∇′′ = lαβγ lαβγ ·∇ is the gradient operator along the curve. Therefore, the ex-

pression for the variation of a functional that is the integral over a curve is

δFαβγ =
∫

Ωαβγ

δ
′′

fαβγ dr−
∫

Ωαβγ

fαβγ ∇′′·I′′αβγ ·δxdr

+ ∑
m∈IΓαβγ

(
fαβγ nαβγ ·δx

)∣∣
Γαβγ m

for αβγ ∈ IC . (A.84)

As with the fixed-point variation for a volume property given by Eq. (A.31) and

the fixed-point variation for a surface property in Eq. (A.66), an expansion for the

fixed-point variation of a property of a curve may be employed with

δ
′′

fαβγ(u) =
∂ fαβγ(u)

∂u
·δ ′′

u . (A.85)

Equation (A.84) will be employed in the study of three-phase systems for the

variation of the energy of an interface. Note, however, that for systems composed

of three phases or less, there are no common points. Thus, in these systems the

summation term will not be needed.

A.7 Summary

In this appendix, it has been convenient to use single, double, and triple index nota-

tion to designate quantities related to volumes, surfaces, and curves, respectively. In

the end, after all the indicator functions have been eliminated from the final expres-
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sions, we can conveniently denote the three primary results, Eqs. (A.53), (A.62),

and (A.84), respectively, using single index notation as

δFα =
∫

Ωα

δ
(n)

fα dr−
∫

Ωα

fα ∇(n)·I(n)α ·δxdr+
∫
Γα

fα nα ·δxdr for α ∈ I . (A.86)

where (n) = (3−dim α) is the number of primes when dim α is the dimensionality

of α , and it is understood that when α ∈ IC, the last integral over the boundary

of the domain reverts to a sum over the points at the ends of the common curve.

Additionally, I
(n)
α consists of the unit tensor minus any elements that are orthogonal

to the domain of interest such that with α ∈ IP, Iα = I; the other unit tensors have

been previously defined.

Exercises

A.1. Confirm Eq. (A.72),

∑
i∈IPtαβγ

(
fαβγ nαβγ ·δx

)∣∣
i =−

∫
Ω∞

fαβγ (nα ·∇ϒα)
(
nαβ ·∇ϒαβ

)
δx·∇ϒαβγ dr .

A.2. Prove Eq. (A.75),

nα nαβ :∇∇ϒα =−nα ·∇nαβ ·∇ϒα .

A.3. Confirm Eq. (A.79),

∇·nα −nαβ ·∇nα ·nαβ =−lαβγ ·∇lαβγ ·nα for x ∈ Ωαβγ .

A.4. If α ∈ IPt, provide the particular form of the variational equation based on Eq.

(A.86) (Hint: Some of the integrals will be summations.).
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Appendix B
Derivations of Averaging Theorems

B.1 Overview

When an averaging operator is applied to a microscale conservation or balance equa-

tion for the purpose of transforming it to a larger scale, expressions involving aver-

ages of temporal and spatial derivatives arise. The averages of derivatives of micro-

scale quantities are unknowns from a larger scale perspective and are not generally

accessible. Simplification results if the averages of derivatives can be transformed

into derivatives of averaged quantities. The purpose of this appendix is to derive

a set of theorems that can be used to accomplish such transformations within the

scope of this book. In the interest of completeness, these theorems are derived here,

rather than just stated. The derivation approach makes use of indicator functions,

as described in Sect. A.3, and of the ability of these functions to convert integrals

over curves, surfaces, and volumes to integrals over all space [2]. Knowledge of the

derivations of the theorems is not necessary for implementation of TCAT models,

but the theorems themselves are an important tool in both changing conservation and

balance equations from the microscale to the macroscale and in deriving additional

conditions that are necessary for closure of macroscale models. The theorems to be

employed here are a subset of the full range that can be developed and are those that

are appropriate for integration over a macroscopic averaging volume that is invariant

with time and with spatial position in a domain of interest. Sets of theorems beyond

those to be considered here are needed to study domains that are megascopic in one

or more spatial variables such that variability of a function in that spatial coordinate

is not considered [1–3].

The process of averaging over a volume provides a change in perspective in view-

ing a model. For example, a property being differentiated may be associated with

an entity that does not fill all of space. The averaging process results in measures

of a property per volume. Thus, for example, an average of a fluid phase density

gives the amount of fluid per volume, taking into account that the fluid phase may

not be the only phase present. Similarly, the average of the mass per area of an in-

terface is also normalized with respect to the averaging region such that the mass of

509W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3,
� Springer International Publishing Switzerland 2014
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material associated with a particular surface type per volume is obtained. The result

of the averaging process is to obtain expressions for the derivatives of the average

value of a function from the perspective of the larger scale. Thus, in averaging to

the macroscale, we convert equations that express conservation within some subre-

gion of the volume to a conservation equation for that property within the averaging

region as a whole. The averaging process filters out variability of functions at a

scale smaller than the macroscale, and this loss of explicit information provides one

of the challenges to obtaining closure relations that implicitly account for smaller

scale processes.

B.1.1 Naming Convention

We will follow a naming terminology for theorems consisting of a letter and a series

of four numbers. The leading letter is D for a divergence theorem, G for a gradient

theorem, and T for a transport theorem. The numbers are arranged in three groupings

related to the dimensionality of the microscale, the macroscale, and the megascale.

Two entries exist for the macroscale enclosed in parentheses, the first entry giving

the number of macroscale dimensions for the domain and the second entry giving

the number of macroscale dimensions evaluated at the boundary of the domain. Nine

theorems will be needed for the TCAT models considered in this work—divergence,

gradient, and transport theorem [3,(3,0),0], [2,(3,0),0], and [1,(3,0),0] families. The

first of these families of theorems transforms an integral of a derivative of a micro-

scale quantity in a three-dimensional volume domain into a derivative of an average

over a three-dimensional macroscopic volume. The microscale integrals are associ-

ated with some subspace of the macroscale volume and thus need not occupy the full

volume. The second family of theorems is needed to transform averages of surface

derivatives of microscale quantities to derivatives of surface average values over

three macroscale dimensions. The third family of theorems is needed to transform

a derivative of a microscale quantity along a curve to a spatial derivative of the av-

erage value of that microscale quantity within an averaging volume containing the

curve.

B.2 Coordinate Systems

In changing from a microscale to a macroscale perspective, we are also changing

the coordinate system. Figure B.1 demonstrates that averaging volumes are located

in space, and that integration is done over each averaging volume. Thus, the inte-

gration limits for the domain of integration are the same for each averaging volume

if functions are provided in terms of coordinates relative to the centroid of the av-

eraging volume and if the averaging volumes are independent of the locations of

their centroids. For example, we can specify a vector function f(r, t), where r is
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Fig. B.1 Global coordinate system, x, used to locate averaging volumes in space provides centroid
locations for averaging volumes and the local coordinate system, ξξξ (after [2])

the microscale coordinate system, as depending on the spatial coordinates x+ξξξ as

well as time so that we obtain f(x+ξξξ , t). Since the function depends on the sum of

the two coordinates, and not on each coordinate independently, a spatial derivative

with respect to ξξξ coordinates while holding the x coordinates constant is equal to

the spatial derivative with respect to x coordinates while holding the ξξξ coordinates

constant, or

∇·f =
(
∇ξξξ ·f

)∣∣
x = (∇x·f)|ξξξ . (B.1)

This observation has important implications when considering the integral of a

divergence. Suppose we are going to perform averaging over a subregion, Ω, of a

homogeneous region in space, as in Fig. B.1. Let us denote the closed boundary of Ω
as Γ. Note that in this case, the geometry of the integration region is independent of

the location of its centroid, and the coordinates of integration are the microscale co-

ordinates. As a first example, suppose we are integrating
(
∇ξξξ ·f

)∣∣
x over the domain

of the subregion, Ω . It is not possible to simply exchange the order of integration

and differentiation because the variables of integration and differentiation are the

same. However, we can apply the divergence theorem given by Eq. (2.10) to obtain

∫
Ω

(
∇ξξξ ·f

)∣∣
x dr=

∫
Γ

n·fdr . (B.2)

We can now make use of the second equality in Eq. (B.1) to replace the integrand

on the left side of Eq. (B.2). In this case, the coordinate of differentiation is differ-
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ent from the coordinate of integration. The divergence theorem may not be applied.

However, because the integration domain is independent of the coordinates of dif-

ferentiation, the order of integration and differentiation may be interchanged such

that ∫
Ω

(∇x·f)|ξξξ dr= ∇x·
∫
Ω

fdr . (B.3)

Equation (B.2) is useful for converting an integral over the boundary of a domain

to an integral of the divergence over the domain. This theorem has been employed in

Chap. 2. Equation (B.3), on the other hand, provides a simple exchange of the order

of differentiation and integration. Essentially this equation calculates the integral

of the divergence on the left side and equates it to the divergence of the function

integrated over a portion of space. Thus rather than associating microscale values

with a point in space, an average, macroscale value over the region around each

point is calculated and associated with that point. The divergence of this macroscale

function at any point in space is then equal to the average over the region of the

divergence of the microscale function. Similar reasoning can be employed to relate

integrals of the divergence and the time derivative of a function.

If we were interested only in changing the scale of modeling a problem over a

homogeneous region, our work in developing averaging theorems would be con-

cluded. However, the fact that we will be changing the scale of problems described

in porous media adds complications. Within any subregion sphere that we might

identify, the portion of the space occupied by a particular phase and the distribu-

tion of interfaces and common curves within the sphere will be different. Therefore,

we will make use of indicator functions to convert integration regions associated

with an entity to a common averaging volume. Indicator functions have been used

for this purpose in Appendix A.1, and their properties are described in Sect. A.3.

In those sections, however, the macroscale and microscale coordinate designation

was not needed; and discussion was in terms of a single spatial coordinate system.

Nevertheless, the discussion translates well for the current objectives.

In the following derivations, the explicit distinction between the x and ξξξ coordi-

nate systems will not be indicated. The context should provide a clear indication of

the coordinate being employed for differentiation. The theorems here will be devel-

oped in a general context for volumes, surfaces, and curves. They will be listed as

applied specifically to porous medium systems in Chap. 6.

B.3 Averaging Theorems for Volumes

The theorems in this family are applied to volumes and are useful, for example, for

multiphase systems when one phase occupies part of space and other phases fill the

rest of the space. Suppose we are interested in a portion of space with a domain

denoted as ΩV ⊂ IR3. We can thus make use of an indicator function ϒV to denote

locations within the global domain Ω∞ ⊂ IR3 according to
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ϒV (x+ξξξ , t) =
{

1 for x+ξξξ ∈ ΩV

0 for x+ξξξ /∈ ΩV
. (B.4)

Because the indicator function undergoes an abrupt change in value at the boundary

of ΩV , it can be used to identify that location. The gradient of the indicator function

is a directional delta function that converts the integral over space to the integral

over the locations where the delta function acts such that∫
Ω∞

f ∇ϒV dr=−
∫
ΓV

f n dr , (B.5)

where f is a scalar function, n is the unit vector outward normal from ΩV , and ΓV
is the boundary of ΩV .

Another identity of interest is for the total derivative of ϒV , which can be ex-

pressed as
dϒV

dt
=

∂ϒV

∂ t
+

d(x+ξξξ )
dt

·∇ϒV . (B.6)

If the reference velocity, d(x+ξξξ )/dt, is equivalent to the velocity of the boundary

of ΩV , denoted as w, then the total derivative will be zero and we obtain

∂ϒV

∂ t
=−w·∇ϒV . (B.7)

In the theorems to be derived here, we will be considering a global domain Ω∞.

The portion of the global domain that is of interest is denoted ΩV ⊂ Ω∞. For ex-

ample, ΩV might be the portion of Ω∞ occupied by a particular phase of interest.

The averaging volume domain is denoted Ω , with boundary denoted Γ, and has a

length scale much less than that of Ω∞ but large enough that it contains a character-

istic sample of the regions of interest in Ω∞. The geometry and extent of Ω is not

dependent on the location of its centroid within space. Within averaging volume Ω
is a portion of subdomain ΩV , denoted Ωv = Ω ∩ΩV . The boundary of Ωv is Γv,

and it consists of two parts such that Γv = Γvi ∪Γve. The portion of Γv that is within

Ω is termed the internal boundary and is denoted Γvi ⊂ ΓV . The portion of Γv that

coincides with the boundary of Ω is termed the external boundary and is defined as

Γve = Γv ∩Γ �⊂ ΓV . Therefore, if we consider an equation similar to Eq. (B.5) but use

Ω as the spatial domain, we obtain

∫
Ω

f ∇ϒV dr=−
∫
Γvi

f n dr . (B.8)

The boundary Γve does not enter into this equality because ∇ϒV is zero on Γve. The

boundary Γvi is not a closed surface.
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B.3.1 D[3,(3,0),0]

The integral of the divergence of a vector f over Ωv can be converted to an integral

over Ω by making use of the indicator function ϒV with

∫
Ωv

∇·fdr=
∫
Ω

ϒV ∇·fdr . (B.9)

The generalized function has been introduced to change the region of integration to

one that is independent of space. Application of the product rule to Eq. (B.9) yields

∫
Ωv

∇·fdr=
∫
Ω

∇·(ϒV f) dr−
∫
Ω

(∇ϒV ) ·fdr . (B.10)

The divergence operator can be taken outside the first integral on the right side of

Eq. (B.10) when the divergence operator is applied with respect to x coordinates;

the second integral can be transformed using Eq. (B.8). Thus, Eq. (B.10) becomes

∫
Ωv

∇·fdr= ∇·
∫
Ω

ϒV fdr+
∫
Γvi

n·fdr . (B.11)

Because the indicator function ϒV here has the value of 1 in Ωv and is zero elsewhere

in Ω, it can be eliminated from the first integral on the right side when accompanied

by a change in the domain of integration to Ωv so that we obtain the desired theorem:

Theorem B.1 (D[3,(3,0),0])
∫

Ωv

∇·fdr= ∇·
∫

Ωv

fdr+
∫
Γvi

n·fdr . (B.12)

B.3.2 G[3,(3,0),0]

Similar manipulations as those used to derive the divergence theorem lead to the

desired gradient theorem. A much simpler approach, however, is to select f = f b
where b is an arbitrary constant vector. Insertion of this specification of f into Eq.

(B.12) directly provides the gradient averaging theorem:

Theorem B.2 (G[3,(3,0),0])
∫

Ωv

∇ f dr= ∇
∫

Ωv

f dr+
∫
Γvi

n f dr . (B.13)
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B.3.3 T[3,(3,0),0]

The integral over Ωv of the partial derivative of a function f with respect to time

can be converted to an integral over the entire averaging volume using the indicator

function to obtain ∫
Ωv

∂ f
∂ t

dr=
∫
Ω

ϒV
∂ f
∂ t

dr . (B.14)

Application of the product rule to the right side of this equality yields

∫
Ωv

∂ f
∂ t

dr=
∫
Ω

∂ (ϒV f )
∂ t

dr−
∫
Ω

∂ϒV

∂ t
f dr . (B.15)

The partial time derivative can be taken outside the first integral on the right side

of Eq. (B.15) because Ω is independent of time, and the second integral can be

transformed using Eq. (B.7). These changes give

∫
Ωv

∂ f
∂ t

dr=
∂
∂ t

∫
Ω

ϒV f dr+
∫
Ω

w·∇ϒV f dr . (B.16)

The properties of ϒV can be used to change the first integral on the right to an integral

over Ωv. The identity of Eq. (B.8) changes the last integral to an integral over the

boundary such that we obtain the transport averaging theorem:

Theorem B.3 (T[3,(3,0),0])
∫

Ωv

∂ f
∂ t

dr=
∂
∂ t

∫
Ωv

f dr−
∫
Γvi

n·w f dr . (B.17)

B.4 Averaging Theorems for Surfaces

A set of averaging theorems is also needed to transform integrals of derivatives on

a surface to derivatives of integral quantities. The domain of a surface of interest

within Ω∞ is denoted as ΩS ⊂ IR2. The theorems of interest apply to the case when

portions and pieces of a surface occupying Ωs ⊂ ΩS ⊂ IR2 are contained within the

spatial averaging domain, Ω ⊂ IR3. It is desired to obtain expressions for spatial

and temporal rates of change of the surface property throughout the system domain.

We will consider the case when edges of the surface may exist within Ω∞. For our

purposes, a surface type of interest will be considered to be a boundary between

two particular phases. Thus, when a physical surface of interest is identified that has

an edge boundary within Ω∞, it can be mathematically extended smoothly to the

boundary of Ω∞. This extended surface domain, including closed surfaces within

Ω∞, is denoted as ΩS∞. A surface indicator function, ϒS, may be employed on ΩS∞
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to identify ΩS according to

ϒS(x+ξξξ , t) =
{

1 for x+ξξξ ∈ ΩS

0 for x+ξξξ /∈ ΩS
. (B.18)

The indicator function ϒS undergoes an abrupt change in value at the edge of ΩS.

Thus, it may be used to identify that location. The surface gradient of this function

is a directional delta function that is tangent to the surface and normal to the edge

of the surface. Therefore ∫
ΩS∞

f ∇′ϒS dr=−
∫
ΓS

f n′ dr , (B.19)

where ΓS is the curve that bounds ΩS within Ω∞, n′ is a unit vector oriented outward

from ΩS and tangent to the surface, and the surface gradient is

∇′ = (I−nn) ·∇ , (B.20)

with n being the unit vector normal to the surface. Note that, for example, if the

boundary separates a bubble phase from a continuous phase, ΩS = ΩS∞, and both

sides of Eq. (B.19) will be zero.

The time derivative of ϒS can be expressed as

dϒS

dt
=

∂ ′ϒS

∂ t
+

d(x+ξξξ )
dt

·∇′ϒS , (B.21)

where ∂ ′/∂ t is the partial time derivative at a fixed surface coordinate with

∂ ′

∂ t
=

∂
∂ t

+w·nn·∇ . (B.22)

When the reference velocity, d(x+ξξξ )/dt in Eq. (B.21), is equal to the velocity of

the curve at the edge of ΩS and is denoted as w, the total time derivative will be zero

and
∂ ′ϒS

∂ t
=−w·∇′ϒS . (B.23)

We can also substitute Eqs. (B.20) and (B.22) into Eq. (B.23) to obtain

∂ϒS

∂ t
=−w·∇ϒS . (B.24)

These considerations, along with the discussion of indicator functions for vol-

umes, serve as a basis for deriving the averaging theorems for surfaces.
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B.4.1 D[2,(3,0),0]

For this theorem, we seek to express the integral of a surface divergence of a func-

tion in terms of the spatial divergence of the function integrated over the surface.

The region of integration is Ωs, the portion of ΩS within averaging volume Ω. The

indicator function ϒS can be used to change the domain of integration from Ωs to

ΩSΩ according to ∫
Ωs

∇′·fdr=
∫

ΩSΩ

ϒS∇′·fdr , (B.25)

where ΩSΩ is the portion of the ΩS∞ that is within the averaging volume, Ω. Equa-

tion (B.20) can be employed to change the surface divergence on the right side of

this equation to a spatial divergence such that

∫
Ωs

∇′·fdr=
∫

ΩSΩ

ϒS∇·fdr−
∫

ΩSΩ

ϒSn·∇f·n dr . (B.26)

The domain of integration of the two integrals on the right side of Eq. (B.26) can

be transformed into integration over Ω using the volume indicator function property

given by Eq. (B.8), since ΩSΩ is the boundary of a volume within the averaging

volume. The result is∫
Ωs

∇′·fdr=−
∫
Ω

n·∇ϒVϒS∇·fdr+
∫
Ω

ϒSn·∇f·∇ϒV dr , (B.27)

where use has been made of the fact that

nn·∇ϒV = ∇ϒV . (B.28)

We now apply the product rule to the two integrals on the right side of Eq. (B.27) to

obtain∫
Ωs

∇′·fdr=−
∫
Ω

∇·(fn·∇ϒVϒS) dr+
∫
Ω

fn:∇∇ϒVϒS dr+
∫
Ω

n·∇ϒV f·∇ϒS dr

+
∫
Ω

∇·(nϒSf·∇ϒV ) dr−
∫
Ω

∇·nϒSf·∇ϒV dr−
∫
Ω

fn:∇∇ϒVϒS dr . (B.29)

The first three integrals on the right arise from the first term on the right of Eq.

(B.27), and the last three integrals are from the second term on the right of Eq.

(B.27). In obtaining this equation, use has been made of the fact that ∇n·∇ϒV and

n·∇ϒS are both zero. Because Ω is independent of space, the order of integration

and differentiation can be exchanged in the first and fourth terms on the right. Ad-

ditionally, the second and the sixth terms cancel so the net result is
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∫
Ωs

∇′·fdr=−∇·
∫
Ω

fn·∇ϒVϒS dr+
∫
Ω

n·∇ϒV f·∇ϒS dr

+∇·
∫
Ω

nϒSf·∇ϒV dr−
∫
Ω

∇·nϒSf·∇ϒV dr . (B.30)

We can eliminate ∇ϒV in favor of −n if we return the domains of integration of the

integrals on the right to ΩSΩ . This gives us

∫
Ωs

∇′·fdr= ∇·
∫

ΩSΩ

fϒS dr−
∫

ΩSΩ

f·∇ϒS dr

−∇·
∫

ΩSΩ

nϒSf·n dr+
∫

ΩSΩ

∇·nϒSf·n dr . (B.31)

The domains of integration of the first, third and fourth integrals on the right side

can be changed to Ωs because ϒS = 1 only on this portion of ΩSΩ . Additionally,

the second integral becomes an integral over Γsi, the boundary of Ωs that occurs

within Ω, because of the property of ϒS indicated in Eq. (B.19). Similar to the case

encountered for a volume, the boundary of the surface Ωs, denoted Γs = Γsi ∪Γse,

can occur internal to Ω or external where the surface intersects the boundary of Ω.

Thus, we obtain

∫
Ωs

∇′·fdr= ∇·
∫

Ωs

(f−nn·f) dr+
∫
Γsi

f·n′ dr+
∫

Ωs

(∇·n) f·n dr . (B.32)

Recall that the part of the unit tensor with entries such that it is in the surface is

denoted I′ where

I′ = I−nn (B.33)

so that

I′·f = f−nn·f . (B.34)

Also, we can make use of the fact that ∇·n = ∇′·n in conjunction with the surface

divergence of Eq. (B.33) to show that

∇′·I′ =−
(
∇′·n

)
n . (B.35)

Insertion of Eqs. (B.34) and (B.35) into Eq. (B.32) provides the sought after theorem

in the form:

Theorem B.4 (D[2,(3,0),0])
∫

Ωs

∇′·fdr= ∇·
∫

Ωs

I′·fdr−
∫

Ωs

∇′·I′·fdr+
∫
Γsi

n′·fdr . (B.36)

Appendix B



519

B.4.2 G[2,(3,0),0]

Similar manipulations as those used to derive the divergence theorem lead to the

desired gradient theorem. Alternatively, one may follow a simpler approach by se-

lecting f = f b in Eq. (B.36), where b is an arbitrary constant vector, to obtain:

Theorem B.5 (G[2,(3,0),0])
∫

Ωs

∇′ f dr= ∇·
∫

Ωs

I′ f dr−
∫

Ωs

∇′·I′ f dr+
∫
Γsi

n′ f dr . (B.37)

B.4.3 T[2,(3,0),0]

The integral over Ωs within Ω of the partial time derivative restricted to that surface

can be transformed using identity Eq. (B.22) so that

∫
Ωs

∂ ′ f
∂ t

dr=
∫

Ωs

∂ f
∂ t

dr+
∫

Ωs

w·nn·∇ f dr . (B.38)

Then the domains of integration on the right side can be transformed to Ω, analo-

gously to the statement of Eq. (B.27) based on Eq. (B.26), so that

∫
Ωs

∂ ′ f
∂ t

dr=−
∫
Ω

ϒSn·∇ϒV
∂ f
∂ t

dr−
∫
Ω

ϒSw·n∇ϒV ·∇ f dr . (B.39)

Apply the product rule to each of the integrals on the right side with respect to the

differential operators acting on f to obtain

∫
Ωs

∂ ′ f
∂ t

dr=−
∫
Ω

∂
∂ t

(ϒSn·∇ϒV f ) dr+
∫
Ω

f
∂
∂ t

(ϒSn·∇ϒV ) dr

−
∫
Ω

∇·(∇ϒVϒSw·n f ) dr+
∫
Ω

f ∇·(∇ϒVϒSw·n) dr . (B.40)

The differential operators may be moved outside of the first and third integrals on

the right side, and the properties of the indicator functions can then be employed to

change the domains from Ω to Ωs. We observe that because ∇ϒV is a vector collinear

with n,

n∇ϒV = ∇ϒV n . (B.41)

This identity may be inserted into the last integral in Eq. (B.40). With these changes

we obtain
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∫
Ωs

∂ ′ f
∂ t

dr=
∂
∂ t

∫
Ωs

f dr+
∫
Ω

f
∂
∂ t

(ϒSn·∇ϒV ) dr

+∇·
∫

Ωs

nn·w f dr+
∫
Ω

f ∇·(nϒSw·∇ϒV ) dr . (B.42)

At this point, we will concentrate on rearrangement of the second integrand on

the right side of Eq. (B.42). Expand out the derivative in this term, dropping the part

that is zero because ∂n/∂ t is orthogonal to ∇ϒV , such that

∫
Ωs

∂ ′ f
∂ t

dr=
∂
∂ t

∫
Ωs

f dr+
∫
Ω

f
∂ϒS

∂ t
n·∇ϒV dr+

∫
Ω

fϒSn·∇∂ϒV

∂ t
dr

+∇·
∫

Ωs

nn·w f dr+
∫
Ω

f ∇·(nϒSw·∇ϒV ) dr . (B.43)

Eliminate the partial time derivatives of the indicator functions by substituting Eqs.

(B.24) and (B.7) into the second and third integrands on the right side, respectively,

which gives

∫
Ωs

∂ ′ f
∂ t

dr=
∂
∂ t

∫
Ωs

f dr−
∫
Ω

f w·∇ϒSn·∇ϒV dr−
∫
Ω

fϒSn·∇(w·∇ϒV ) dr

+∇·
∫

Ωs

nn·w f dr+
∫
Ω

f ∇·(nϒSw·∇ϒV ) dr . (B.44)

The second integral on the right side becomes an integral over the internal boundary

of the surface. The third integral combines readily with the last one via the product

rule so that the equation becomes

∫
Ωs

∂ ′ f
∂ t

dr=
∂
∂ t

∫
Ωs

f dr−
∫
Γsi

n′·w f dr+∇·
∫

Ωs

nn·w f dr+
∫
Ω

f w·∇ϒV ∇·nϒS dr .

(B.45)

Finally, the last integral in this expression reverts to an integral over Ωs when the

properties of the indicator functions are invoked. Thus, with rearrangement of the

order of the integrals and use of Eqs. (B.33) and (B.35) the result obtained is:

Theorem B.6 (T[2,(3,0),0])
∫

Ωs

∂ ′ f
∂ t

dr=
∂
∂ t

∫
Ωs

f dr+∇·
∫

Ωs

(
I− I′

)
·w f dr+

∫
Ωs

∇′·I′·w f dr−
∫
Γsi

n′·w f dr . (B.46)
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B.5 Averaging Theorems for Curves

The approach to deriving the divergence and gradient theorems for a curve is similar

to the approach used to derive the corresponding theorems for a surface. The com-

plicating difference is that an additional step is needed to transform the integration

over a curve to an integration over the averaging volume. We denote the domain of

the curves of interest within the spatial domain Ω∞ as ΩC. The theorems of interest

apply to the parts of this curve domain, Ωc ⊂ ΩC, within the averaging volume Ω.

Note that the curves and pieces of the curve may have endpoints within Ω∞ and

also within Ω. When curves terminate within the domain, we will either close them

conceptually by connecting them to the end of another curve or extend them to the

boundary of Ω∞. Either approach yields a closed curve. The full domain consisting

of the curves of interest and their extensions is denoted ΩC∞ . An indicator function,

ϒC, is used to identify ΩC ⊂ ΩC∞ according to

ϒC(x+ξξξ , t) =
{

1 for x+ξξξ ∈ ΩC

0 for x+ξξξ /∈ ΩC
. (B.47)

Because ϒC undergoes an abrupt change in value at the boundary point of ΩC, it

can be used to convert an integral over a curve to a summation of values at those

points with ∫
ΩC∞

f ∇′′ϒC dr=− ∑
m∈IΓC

f n′′ |ΓCm
, (B.48)

where ΓC is the set of points that are the bounds of the curves in ΩC, ΓCm is a single

bounding point from the set of all end points, n′′ is a unit vector oriented outward

from and tangent to the curve at its end points, and

∇′′ = ll·∇ , (B.49)

where l is the unit vector tangent to the curve.

The time derivative of the indicator function satisfies conditions similar to those

for the the surficial and volumetric indicator functions with

∂ ′′ϒC

∂ t
=−w·∇′′ϒC (B.50)

and
∂ϒC

∂ t
=−w·∇ϒC , (B.51)

where
∂ ′′

∂ t
=

∂
∂ t

+w·(I− ll) ·∇ . (B.52)
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B.5.1 D[1,(3,0),0]

The integral of the divergence of a vector function f over the curve contained in the

averaging domain can be rewritten according to

∫
Ωc

∇′′·fdr=
∫

Ωc

∇·fdr−
∫

Ωc

n·∇f·n dr−
∫

Ωc

n′·∇f·n′ dr . (B.53)

The integrals over the curve within the averaging volume can be converted to inte-

grals over the averaging volume by introducing the indicator functions so that

∫
Ωc

∇′′·fdr=
∫
Ω

ϒCn′·∇ϒSn·∇ϒV ∇·fdr−
∫
Ω

ϒCn′·∇ϒSn·∇f·∇ϒV dr

−
∫
Ω

ϒCn·∇ϒV n′·∇f·∇ϒS dr . (B.54)

In anticipation of being able to move the divergence operator outside of the integral,

we apply the product rule to each of the three integrands on the right side, which

gives

∫
Ωc

∇′′·fdr=
∫
Ω

∇·
(
fϒCn′·∇ϒSn·∇ϒV

)
dr−

∫
Ω

f·∇
(
ϒCn′·∇ϒSn·∇ϒV

)
dr

−
∫
Ω

∇·
(
nϒCn′·∇ϒSf·∇ϒV

)
dr+

∫
Ω

∇·
(
nϒCn′·∇ϒS∇ϒV

)
·fdr

−
∫
Ω

∇·
(
n′ϒCn·∇ϒV f·∇ϒS

)
dr+

∫
Ω

∇·
(
n′ϒCn·∇ϒV ∇ϒS

)
·fdr . (B.55)

The order of differentiation and integration may be exchanged in the first, third, and

fifth terms on the right. After this is done, the indicator functions in those integrands

may be eliminated in returning the domain of integration to the curve within domain

Ω. Then these terms can be combined. The result of these steps is

∫
Ωc

∇′′·fdr= ∇·
∫

Ωc

ll·fdr−
∫
Ω

f·∇
(
ϒCn′·∇ϒSn·∇ϒV

)
dr

+
∫
Ω

∇·
(
nϒCn′·∇ϒS∇ϒV

)
·fdr+

∫
Ω

∇·
(
n′ϒCn·∇ϒV ∇ϒS

)
·fdr , (B.56)

where

f′′ =
(
I−nn −n′n′) ·f = ll·f . (B.57)
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The next step is to expand out the remaining integrals using the product rule. The

expansions lead to three terms that survive for each integral (i.e., quantities such as

∇n·∇ϒV do not survive since this inner product is zero). The expanded form is

∫
Ωc

∇′′·fdr= ∇·
∫

Ωc

ll·fdr−
∫
Ω

f·∇ϒCn′·∇ϒSn·∇ϒV dr

−
∫
Ω

ϒCn′f:∇∇ϒSn·∇ϒV dr−
∫
Ω

ϒCn′·∇ϒSnf:∇∇ϒV dr

+
∫
Ω

∇·nϒCn′·∇ϒS∇ϒV ·fdr+
∫
Ω

ϒCnn′:∇∇ϒS∇ϒV ·fdr

+
∫
Ω

ϒCn′·∇ϒSnf:∇∇ϒV dr+
∫
Ω

∇·n′ϒCn·∇ϒV ∇ϒS·fdr

+

∫
Ω

ϒCnn′:∇∇ϒV ∇ϒS·fdr+
∫
Ω

ϒCn′f:∇∇ϒSn·∇ϒV dr . (B.58)

In this equation, the second integral on the right side can be converted to a summa-

tion of quantities at the ends of the common curve within Ω (i.e., the set of points

at the ends of the curves comprising Ωc that are located within Ω, which will be

denoted as Γci). The third and the tenth integrals on the right side cancel, as do the

fourth and the seventh. The fifth and the eighth integrals of the right side revert back

to integrals over Ωc. With these changes, we have

∫
Ωc

∇′′·fdr= ∇·
∫

Ωc

ll·fdr+ ∑
m∈IΓci

n′′·f |Γcim

+
∫

Ωc

(∇·n)n·fdr+
∫
Ω

ϒCnn′:∇∇ϒS∇ϒV ·fdr

+
∫

Ωc

(
∇·n′)n′·fdr+

∫
Ω

ϒCnn′:∇∇ϒV ∇ϒS·fdr . (B.59)

To manage the two integrals that still contain indicator functions, we make use of

the identities that arise directly from the product rule,

nn′:∇∇ϒS =−n′·∇n·∇ϒS (B.60)

and

nn′:∇∇ϒV =−n·∇n′·∇ϒV . (B.61)

Substitution of these identities into Eq. (B.59) and simplification of the integrals by

eliminating the indicator functions while changing the limits of integration yields
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∫
Ωc

∇′′·fdr= ∇·
∫

Ωc

ll·fdr+ ∑
m∈IΓci

n′′·f |Γcim
+
∫

Ωc

(∇·n)n·fdr

−
∫

Ωc

n′·∇n·n′n·fdr+
∫

Ωc

(
∇·n′)n′·fdr−

∫
Ωc

n·∇n′·nn′·fdr . (B.62)

We can make use of the additional identities,

∇·n −n′·∇n·n′ = l·∇n·l =−l·∇l·n (B.63)

and

∇·n′ −n·∇n′·n = l·∇n′·l =−l·∇l·n′ , (B.64)

which can be inserted into Eq. (B.62) to obtain

∫
Ωc

∇′′·fdr= ∇·
∫

Ωc

ll·fdr+ ∑
m∈IΓci

n′′·f |Γcim
−
∫

Ωc

l·∇l·
(
nn +n′n′) ·fdr . (B.65)

Because l·∇l is orthogonal to l, this equation simplifies to the desired theorem:

Theorem B.7 (D[1,(3,0),0])
∫

Ωc

∇′′·fdr= ∇·
∫

Ωc

ll·fdr−
∫

Ωc

l·∇′′l·fdr+ ∑
m∈IΓci

n′′·f |Γcim
. (B.66)

B.5.2 G[1,(3,0),0]

A calculation analogous to that employed to yield Eq. (B.66) will lead to the gradient

form of this theorem. A recommended simpler alternative approach is to select f =
f b where b is an arbitrary constant vector. This selection, in concert with Eq. (B.66),

yields the gradient theorem for a curve:

Theorem B.8 (G[1,(3,0),0])
∫

Ωc

∇′′ f dr= ∇·
∫

Ωc

ll f dr−
∫

Ωc

l·∇′′l f dr+ ∑
m∈IΓci

n′′ f |Γcim
. (B.67)

B.5.3 T[1,(3,0),0]

The derivation of the averaging theorem for a time derivative on a curve using gen-

eralized functions is a rather lengthy exercise that follows along the lines of the

proof of Eq. (B.66). There is no direct procedure for obtaining this equation from an
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earlier equation as there is in obtaining the gradient theorems from the divergence

theorems. However, a far less arduous path to obtaining the T[1,(3,0),0] theorem

is to use induction built on knowledge of the theorems derived already in this ap-

pendix.

Based on Eqs. (B.17) and (B.46), we expect T[1,(3,0),0] to begin as follows

∫
Ωc

∂ ′′ f
∂ t

dr=
∂
∂ t

∫
Ωc

f dr+ . . . , (B.68)

where . . . indicates that additional terms are needed. Comparison of the boundary

terms in Eqs. (B.12) and (B.17), and also for Eqs. (B.36) and (B.46), suggests that

we examine the boundary term of Eq. (B.66) for the form of this term in the time

theorem. This procedure suggests the time derivative theorem will be

∫
Ωc

∂ ′′ f
∂ t

dr=
∂
∂ t

∫
Ωc

f dr+ . . .− ∑
m∈IΓci

n′′·w f |Γcim
. (B.69)

The second term on the right side of T[2,(3,0),0], Eq. (B.46), is the divergence

of an integral of the vector component of w that is normal to the surface,
(
I− I′

)
·w,

multiplied by f . If this perspective is extended to the time integral over a curve, we

expect that velocity within this term for the interface will be (I− ll) ·w because this

velocity is normal to the curve. Insertion of this term into Eq. (B.69) yields

∫
Ωc

∂ ′′ f
∂ t

dr=
∂
∂ t

∫
Ωc

f dr+∇·
∫

Ωc

(I− ll) ·w f dr+ . . .− ∑
m∈IΓci

n′′·w f |Γcim
. (B.70)

Finally, the next to the last term on the right side of D[2,(3,0),0] and T[2,(3,0),0],

Eqs. (B.36) and (B.46), are very similar with f in the former replaced by −w f in the

latter. Making a similar adjustment to the corresponding term in D[1,(3,0),0], Eq.

(B.66), and inserting it into Eq. (B.70) we obtain:

Theorem B.9 (T[1,(3,0),0])
∫

Ωc

∂ ′′ f
∂ t

dr=
∂
∂ t

∫
Ωc

f dr+∇·
∫

Ωc

(I− ll) ·w f dr+
∫

Ωc

l·∇′′l·w f dr− ∑
m∈IΓci

n′′·w f |Γcim
.

(B.71)

The correctness of this theorem can be confirmed by complete derivation that makes

use of the indicator functions.
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B.6 Averaging Theorems for Points

An averaging theorem for a collection of points within a volume will involve a

summation over the points rather than an integral over any continuous domain. A

divergence operator restricted to act on a point would have all three coordinates

fixed and is denoted

∇′′′ =
(
I−nn −n′n′ −n′′n′′) ·∇ . (B.72)

This operator is zero because (I−nn −n′n′ −n′′n′′) = 0. The fact that the micro-

scale spatial derivative operator for a point is zero is consistent with the notion that

spatial derivatives of a function associated with a discrete point that is isolated from

all other points in the domain cannot be calculated. For this reason, theorems that

involve microscale spatial derivatives, which would be designated D[0,(3, 0),0] and

G[0,(3,0),0], do not exist. On the other hand, the time derivative of the value of a

function fixed to the point can be calculated. Thus, the theorem T[0,(3,0),0] does

exist.

Let the domain consisting of a set of points that are each located within Ω∞ be

denoted as ΩPT ⊂ IR0. Then the domain of points within the integration region, Ω,

is denoted as Ωpt where Ωpt ⊂ ΩPT . A point does not have a boundary; and the

velocity of the point, w, will be equal to the velocity of any mass associated with

the point, v.

B.6.1 T[0,(3,0),0]

This theorem may be written down directly based on the forms of the other T theo-

rems. With summations replacing the integrals, we obtain

Theorem B.10 (T[0,(3,0),0])

∑
m∈IΩpt

∂ ′′′ f
∂ t

∣∣∣∣
m
=

∂
∂ t

⎛
⎝ ∑

m∈IΩpt

f |m

⎞
⎠+∇·

⎛
⎝ ∑

m∈IΩpt

(v f )|m

⎞
⎠ . (B.73)

It is worth noting that although the divergence does not exist at the microscale, the

divergence of the summation of values over a region associated with a macroscale

point is a meaningful quantity, as in the last term of Eq. (B.73).

Exercises

B.1. Prove the identity mentioned after Eq. (B.29),
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∇n·∇ϒV = 0 .

B.2. Prove Eq. (B.35),

∇′·I′ =−
(
∇′·n

)
n .

B.3. Prove Eqs. (B.60) and (B.61), restated respectively as

a. nn′:∇∇ϒS =−n′·∇n·∇ϒS .

b. nn′:∇∇ϒV =−n·∇n′·∇ϒV .

B.4. Prove Eqs. (B.63) and (B.64), restated respectively as

a. ∇·n −n′·∇n·n′ = l·∇n·l =−l·∇l·n .

b. ∇·n′ −n·∇n′·n = l·∇n′·l =−l·∇l·n′ .

B.5. Derive theorem G[2,(3,0),0], Eq. (B.67), using indicator functions.

B.6. Derive theorem T[1,(3,0),0], Eq. (B.71), using indicator functions.

B.7. Show that the averaging theorems D[3-n,(3,0),0] for n ∈ {0,1,2} can be stated

in a single expression as

∫
Ω

∇(n)·fdr= ∇·
∫
Ω

I(n)·fdr−
∫
Ω

∇(n)·I(n)·fdr+
∫
Γ

n(n)·fdr , (B.74)

where (n) is the number of primes that appear in the superscript, and the integration

domain is of dimensionality 3−n.

B.8. Show that the averaging theorems T[3-n,(3,0),0] for n ∈ {0,1,2,3} can be

stated in a single expression as

∫
Ω

∂ (n) f
∂ t

dr=
∂
∂ t

∫
Ω

f dr+∇·
∫
Ω

(
I− I(n)

)
·w f dr

+
∫
Ω

∇(n)·I(n)·w f dr−
∫
Γ

n(n)·w f dr , (B.75)

where (n) is the number of primes that appear in the superscript, and the integration

domain is of dimensionality 3−n.
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Appendix C
Constrained Entropy Inequality Derivations

C.1 CEI for Single-fluid-phase Flow, Eq. (9.43)

Some of the mathematical manipulations required to produce the CEI given as Eq.

(9.43) from Eq. (9.32) are discussed in Sect. 9.4.4. Furthermore, a tabulation of the

antecedent terms that lead to the lines in Eq. (9.43) is provided in Table 9.1. Our ex-

perience has shown that although the manipulations are relatively straightforward,

the form desired to be obtained is not obvious; obtaining a CEI therefore presents

challenges. Because this is an introductory text, we provide in this section a detailed

construction of the CEI for single-fluid-phase flow from the augmented entropy in-

equality of Eq. (9.32). The exposition is intended to fill in the gaps that are inherent

in the presentation of Table 9.1. We follow the table organization with groupings of

lines in Eq. (9.43) considered in turn and relevant manipulations presented to aid

understanding of the steps needed to derive the final form of the CEI as a combi-

nation of conservation and thermodynamic equations. The particular equations are

indicated in the right margin of Eq. (9.32) so that the terms contributed by those

equations are easily identified. Some terms that originate in a particular conserva-

tion equation are distributed into various lines of the CEI.

Lines 1–4

Lines 1–4 of Eq. (9.43) collect some terms from the equations listed in Table 9.1

directly as they appear in Eq. (9.32). The quantities hα and bα for α ∈ I are moved

unchanged from Eα
∗ and Sα

∗ , respectively, to lines 1 and 3. Terms involving the

material derivatives of θα −θ α and material derivatives of μα −μα for α ∈ I from

T α
∗ are found in lines 1–4. Material derivatives of ψα with α ∈ I are obtained from

T α
G∗. These material derivatives are found in lines 2 and 4. The remaining terms in

lines 1–4, involving material derivatives of Kα
E and ψα , are obtained by doing some

manipulations of terms originating in the conservation and balance equations, which

are detailed below.

529W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3,
� Springer International Publishing Switzerland 2014
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The material derivative terms involving Kα
E that appear in Eα

∗ are treated differ-

ently for each entity. For the w phase, we apply identity Eq. (7.49) to obtain

εwρw DwKw
E

Dt
=

〈
ρw

DsKw
E

Dt

〉
Ωw,Ω︸ ︷︷ ︸

2

+εwρw∇Kw
E︸ ︷︷ ︸

20

·(vw −vs)︸ ︷︷ ︸
21

, (C.1)

where an under-braced number indicates the line in Eq. (9.43) in which the denoted

term appears.

For the solid phase, there is no need to change the velocity for the material deriva-

tive of Ks
E that arises in E s

∗, so we have

εsρs DsKs
E

Dt
=

〈
ρs

DsKs
E

Dt

〉
Ωs,Ω︸ ︷︷ ︸

2

. (C.2)

For the material derivative of Kws
E that arises from equation Ews

∗ we first introduce

the averaging operator to obtain

εwsρws DwsKws
E

Dt
=

〈
ρws

DwsKws
E

Dt

〉
Ωws,Ω

. (C.3)

Making use of Eq. (7.85), with both iα and α replaced by ws, we modify the mate-

rial derivative on the right side of this equation and obtain

εwsρw DwsKws
E

Dt
=

〈
ρws

D′sKws
E

Dt

〉
Ωws,Ω

+
〈

ρws(vws −vs)·∇Kws
E

〉
Ωws,Ω

−
〈

ρws(vws −vs)·(I− I′ws)·∇Kws
E

〉
Ωws,Ω

. (C.4)

The last term in this expression can be rewritten as two terms by replacing vws −vs

with (vws−vws)+(vws−vs). We then make use of the fact that macroscale quantities

can be moved outside the averaging operator to obtain

εwsρw DwsKws
E

Dt
=

〈
ρws

D′sKws
E

Dt

〉
Ωws,Ω︸ ︷︷ ︸

4

+εwsρws∇Kws
E︸ ︷︷ ︸

22

·(vws −vs)︸ ︷︷ ︸
26

−
〈
ρws(vws −vws)·(I− I′ws)

〉
Ωws,Ω

·∇Kws
E︸ ︷︷ ︸

33

−
〈
ρws(I− I′ws)

〉
Ωws,Ω

·∇Kws
E ·(vws −vs)︸ ︷︷ ︸

26

. (C.5)
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The remaining entries in lines 1–4 involve the material derivative of ψα . The

antecedent terms are the partial time derivative and the gravitational term from Gα
∗ .

This pairing is considered individually for each entity. For the w phase, we can add

the terms and add and subtract vs in the gravity portion of the sum to obtain〈
ρw

∂ψw

∂ t

〉
Ωw,Ω

− εwρwgw·vw

=

〈
ρw

∂ψw

∂ t

〉
Ωw,Ω

− εwρwgw·vs − εwρwgw·(vw −vs) . (C.6)

Introduction of the averaging operator in the second term on the right then provides〈
ρw

∂ψw

∂ t

〉
Ωw,Ω

− εwρwgw·vw =

〈
ρw

∂ψw

∂ t

〉
Ωw,Ω

−
〈
ρwgw·vs〉

Ωw,Ω
− εwρwgw·(vw −vs) . (C.7)

Because gα +∇ψα = 0, the material derivative may be introduced by summing the

first two terms on the right of the equal sign so that we obtain〈
ρw

∂ψw

∂ t

〉
Ωw,Ω

− εwρwgw·vw =

〈
ρw

Dsψw

Dt

〉
Ωw,Ω︸ ︷︷ ︸

2

−εwρwgw︸ ︷︷ ︸
20

·(vw −vs)︸ ︷︷ ︸
21

. (C.8)

For the s phase, the manipulations are similar, but there is no need to generate a

relative velocity term. We obtain〈
ρs

∂ψs

∂ t

〉
Ωs,Ω

− εsρsgs·vs =

〈
ρs

∂ψs

∂ t

〉
Ωs,Ω

−
〈
ρsgs·vs〉

Ωs,Ω
=

〈
ρs

Dsψs

Dt

〉
Ωs,Ω︸ ︷︷ ︸

2

.

(C.9)

For the ws interface, the manipulations are more involved. The necessary terms

can be extracted from Gα
∗ for α = ws, and introduction of vs gives〈

ρws

[
∂ ′ψws

∂ t
+vws·

(
I− I′ws

)
·gws

]〉
Ωws,Ω

− εwsρwsgws·vws

=

〈
ρws

[
∂ ′ψws

∂ t
+vws·

(
I− I′ws

)
·gws

]〉
Ωws,Ω

− εwsρwsgws·vs

− εwsρwsgws·(vws −vs) . (C.10)

We express the second term on the right side in terms of the averaging operator over

the interface to obtain
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532 〈
ρws

[
∂ ′ψws

∂ t
+vws·

(
I− I′ws

)
·gws

]〉
Ωws,Ω

− εwsρwsgws·vws

=

〈
ρws

[
∂ ′ψws

∂ t
+vws·

(
I− I′ws

)
·gws −gws·vs

]〉
Ωws,Ω

− εwsρwsgws·(vws −vs) . (C.11)

We will make use of the identity

gws =−∇′ψws +
(
I− I′ws

)
·gws (C.12)

so that Eq. (C.11) becomes〈
ρws

[
∂ ′ψws

∂ t
+vws·

(
I− I′ws

)
·gws

]〉
Ωws,Ω

− εwsρwsgws·vws

=

〈
ρws

[
∂ ′ψws

∂ t
+vs·∇′ψws +(vws −vs)·

(
I− I′ws

)
·gws

]〉
Ωws,Ω

− εwsρwsgws·(vws −vs) . (C.13)

A material derivative on the surface as defined in Eq. (7.84) is

D′s

Dt
=

∂ ′

∂ t
+vs·∇′ . (C.14)

Insertion of this definition into Eq. (C.13) gives〈
ρws

[
∂ ′ψws

∂ t
+vws·

(
I− I′ws

)
·gws

]〉
Ωws,Ω

− εwsρwsgws·vws

=

〈
ρws

D′sψws

Dt

〉
Ωws,Ω︸ ︷︷ ︸

4

+
〈
ρws(vws −vs)·

(
I− I′ws

)
·gws

〉
Ωws,Ω︸ ︷︷ ︸

28

− εwsρwsgws︸ ︷︷ ︸
23

·(vws −vs)︸ ︷︷ ︸
26

. (C.15)

Lines 5 and 6

Elements from Sα
∗ , Eα

∗ , Gα
∗ , and T s

∗ can be manipulated using the product rule to

yield the entries given in Lines 5 and 6 of the CEI. These terms involve entropy and

heat fluxes along with a solid-phase stress-deformation term. The required manipu-

lations are application of the product rule and algebraic rearrangement.

The term ∇·(εα ϕα) for α ∈ I is moved directly from Sα
∗ to lines 5 and 6. The

terms involving qα from Eα
∗ and qg from Gα

∗ can be combined and rearranged to-

gether according to
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1

θ α
∇·
(

εα qα + εα qg

)
= ∇·

[
1

θ α
εα
(

qα +qg

)]
︸ ︷︷ ︸

5,6

−εα(qα +qg)·∇
(

1

θ α

)
︸ ︷︷ ︸

9,10

.

(C.16)

Completion of line 6 makes use of a term originating in equation T s
∗ associated

with the solid phase. It is obtained by application of the product rule to the term on

the left of the following equation,

− 1

θ s
∇·
〈(

ts −σσσ s:
Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

=−∇·
[

1

θ s

〈(
ts −σσσ s:

Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]
︸ ︷︷ ︸

6

+

〈(
ts −σσσ s:

Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω
·∇
(

1

θ s

)
︸ ︷︷ ︸

10

. (C.17)

Lines 7 and 8

Lines 7 and 8 of Eq. (9.43) are products of fluxes and deformation rate tensor forces.

As noted in Table 9.1, these terms arise from equations Sα
∗ , Mα

∗ , Pα
∗ , Eα

∗ , T s
∗ , and

T ws
∗ . For the most part, the terms are formed as a collection of terms in the various

equations that have the factor dα .

There is one instance when the product rule must be employed in forming lines

7 and 8. The energy equation, Eα
∗ , has a term involving the stress tensor that can be

expanded to obtain,

1

θ α
∇·
(

εαtα ·vα
)
=

1

θ α
∇·
(

εαtα
)
·vα +

1

θ α
εαtα :

(
∇vα

)T
. (C.18)

Because tα is symmetric, this can be written as

1

θ α
∇·
(

εαtα ·vα
)
=

1

θ α
∇·
(

εαtα
)
·vα

︸ ︷︷ ︸
Pα∗

+
1

θ α
εαtα :dα

︸ ︷︷ ︸
7,8

for α ∈ I , (C.19)

where the first term on the right cancels with a like term originating from the mo-

mentum equation while the second term appears as part of lines 7 and 8 of the CEI.

The next task is to look through Eq. (9.32) and collect all the remaining terms that

multiply dα on an entity-by-entity basis. Some of the terms cancel each other; but

for the w phase, the terms that survive form the left side of the following equation,
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− 1

θ w

(
Ew −ηwθ w − εwρwμw

)
I:dw =

1

θ w
εw pwI:dw︸ ︷︷ ︸

7

, (C.20)

where use has been made of the Euler equation for the w phase comprised of a single

species, Eq. (7.13) with α = w,

Ew = ηwθ w − εw pw + εwρwμw . (C.21)

For the solid phase, the multipliers of ds in Eq. (9.32) are collected to obtain the

expression on the left side of the following equation,

− 1

θ s

[(
Es −ηsθ s − εsσσσ s:

Cs

js − εsρsμs
)
I+ εsts

]
:ds =− 1

θ s
εsts:ds

︸ ︷︷ ︸
7

. (C.22)

According to the Euler equation for the solid, given as as the fourth equation in Table

7.1, the quantity on the left side in parenthesis is zero, resulting in the simplification

on the right side.

For the ws entity, the terms that multiply dws in Eq. (9.32) are collected on the

left side of the following equation,

− 1

θ ws

[(
Ews −ηwsθ ws − εwsρwsμws

)
I−

〈
(I− I′ws)γws

〉
Ωws,Ω

]
:dws

=− 1

θ ws

[
εwsγwsI−

〈
(I− I′ws)γws

〉
Ωws,Ω

]
:dws

︸ ︷︷ ︸
8

. (C.23)

The simplification obtained as the right side of the equation makes use of the macro-

scale Euler equation for an interface, the sixth equation in Table 7.1 with α replaced

by ws and with only one chemical species.

Lines 9 and 10

These lines have already been completed as collateral terms from the preceding

derivations. In particular the terms in these equations were obtained from the pre-

ceding equations as follows,

Line 9: Eq. (C.16); and

Line 10: Eqs. (C.16) and (C.17).
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Line 11

These terms arise from Mw
∗ and Mws

∗ . The terms extracted are on the left of the

following equation, and they are rearranged on the right side such that

− 1

θ w

(
μw +ψw +Kw

E

)ws→w
M − 1

θ ws

(
μws +ψws +Kws

E

)w→ws
M

=
w→ws

M

[
1

θ w

(
μw +Kw

E +ψw
)
− 1

θ ws

(
μws +Kws

E +ψws
)]

︸ ︷︷ ︸
11

, (C.24)

where use has been made of the fact that
w→ws

M =−
ws→w

M .

Line 12

This line is similar to line 11 with the exception being that the s phase is considered

rather than the w phase. The terms in these lines arise from Ms
∗ and Mws

∗ . The terms

collected are on the left of the following equation, and they are rearranged on the

right side such that

− 1

θ s

(
μs +ψs +Ks

E

)ws→s
M − 1

θ ws

(
μws +ψws +Kws

E

) s→ws
M

=
s→ws
M

[
1

θ s

(
μs +Ks

E +ψs
)
− 1

θ ws

(
μws +Kws

E +ψws
)]

︸ ︷︷ ︸
12

. (C.25)

Additionally, the following identity is used to add and subtract terms in Eq. (9.43),

s→ws
M

1

θ s

σσσ s:Cs

3ρs js︸ ︷︷ ︸
12

− 1

θ s

〈
σσσ s:Cs

3ρs js ρs(vs −vws)·ns

〉
Ωws,Ω︸ ︷︷ ︸

13

= 0 . (C.26)

Line 13

One term has already been provided to this line from Eq. (C.26). A second term

comes from T s
∗ with

− 1

θ s

〈
ns·(vws −vs)σσσ s:

Cs

js

〉
Ωws,Ω

=
1

θ s

〈
σσσ s:

Cs

ρs js
ρs (vs −vws) ·ns

〉
Ωws,Ω︸ ︷︷ ︸

13

.

(C.27)
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The other term in line 13 also originates in T s
∗ but is rearranged by noting that

− 1

θ s

〈
ns·ts·(vs −vs)

〉
Ωws,Ω

=− 1

θ s

〈
ns·ts·nsns·(vs −vs)

〉
Ωws,Ω

− 1

θ s

〈
ns·ts·I′ws·(vs −vs)

〉
Ωws,Ω

. (C.28)

In this expression, use has been made of the identity

I= I′ws +nsns , (C.29)

where I′ws was first defined in the statement of Theorem 2.3. The first term on the

right side in Eq. (C.28) can be modified further by adding and subtracting vws and

then multiplying and dividing by ρs to obtain

− 1

θ s

〈
ns·ts·(vs −vs)

〉
Ωws,Ω

=− 1

θ s

〈
ns·ts·ns

ρs
ρs(vs −vws)·ns

〉
Ωws,Ω

− 1

θ s

〈
ns·ts·nsns·(vws −vs)

〉
Ωws,Ω

− 1

θ s

〈
ns·ts·I′ws·(vs −vs)

〉
Ωws,Ω

. (C.30)

The second term on the right is modified further by addition and subtraction of

1/θ ws with 1/θ s so that we obtain

− 1

θ s

〈
ns·ts·(vs −vs)

〉
Ωws,Ω

=− 1

θ s

〈
ns·ts·ns

ρs
ρs(vs −vws)·ns

〉
Ωws,Ω︸ ︷︷ ︸

13

− 1

θ ws

〈
ns·ts·nsns︸ ︷︷ ︸

27

·(vws −vs)︸ ︷︷ ︸
28

〉
Ωws,Ω

− 1

θ s

〈
ns·ts·I′ws·(vs −vs)

〉
Ωws,Ω︸ ︷︷ ︸

29

−
(

1

θ s
− 1

θ ws

)〈
ns·ts·nsns·(vws −vs)

〉
Ωws,Ω︸ ︷︷ ︸

19

. (C.31)

Lines 14–16, 17–19

The terms in this pair of three-line segments of the equation are descriptive of energy

exchanges between the w and ws entities and between the s and ws entities, respec-

tively. Thus far, only a term from Eq. (C.31) has gone into these lines; it appears

in line 19. An additional term involving pw is obtained from T w
∗ with the following

manipulation,
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1

θ w

〈
nw·(vws −vs)pw

〉
Ωws,Ω

=

(
1

θ w
− 1

θ ws

)〈
nw·(vws −vs)pw

〉
Ωws,Ω︸ ︷︷ ︸

16

+
1

θ ws

〈
nw·(vws −vs)pw

〉
Ωws,Ω︸ ︷︷ ︸

27,28

. (C.32)

The antecedent terms for the rest of the lines are all the terms in Eq. (9.32) that

have not already been worked with in obtaining lines 11 and 12 that contain inter-

entity exchanges. For convenience, we will denote this collection of exchange terms

as X . These terms originate in Eα
∗ , Pα

∗ , Mα
∗ , and Gα

∗ for α ∈ I. The terms of interest

are

X = ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

[
Eα,κ

+
vα,κ ·vα,κ

2
+Kα,κ

E

]

+ ∑
α∈I

1

θ α

[
∑

κ∈Icα

κ→α
T ·vα,κ + ∑

κ∈Icα

κ→α
Q

]

− ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M vα,κ ·vα − ∑

α∈I
∑

κ∈Icα

1

θ α
vα ·

κ→α
T

+ ∑
α∈I

∑
κ∈Icα

1

θ α

(
vα ·vα

2

)
κ→α
M

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M ψα,κ + ∑

α∈I
∑

κ∈Icα

κ→α
G . (C.33)

Terms are listed in the preceding equation in the order in which they arise in Eq.

(9.32). The bulk of the manipulations to be done involves rearranging the equation

so that all velocities are relative to vs. We proceed by first reordering the terms so

that the ones involving products of velocity with mass exchange are the last terms

in the listing,

X = ∑
α∈I

∑
κ∈Icα

1

θ α

(
κ→α

Q +
κ→α

G
)
+ ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
M

(
Eα,κ

+Kα,κ
E +ψα,κ

)

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
T ·vα,κ − ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
T ·vα

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

vα,κ ·vα,κ

2
− ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
M vα,κ ·vα

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

vα ·vα

2
. (C.34)

The last three group of summations are readily combined so that we have
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X = ∑
α∈I

∑
κ∈Icα

1

θ α

(
κ→α

Q +
κ→α

G
)
+ ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
M

(
Eα,κ

+Kα,κ
E +ψα,κ

)

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
T ·vα,κ − ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
T ·vα

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

⎡
⎣
(

vα,κ −vα
)
·
(

vα,κ −vα
)

2

⎤
⎦ . (C.35)

With the equation in this form, we can subtract vs from each velocity, since this

reference velocity will cancel out of the equation. We thus have

X = ∑
α∈I

∑
κ∈Icα

1

θ α

(
κ→α

Q +
κ→α

G
)
+ ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
M

(
Eα,κ

+Kα,κ
E +ψα,κ

)

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
T ·

(
vα,κ −vs

)
− ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
T ·

(
vα −vs

)

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

1

2

{[(
vα,κ −vs

)
−
(

vα −vs
)]

·
[(

vα,κ −vs
)
−
(

vα −vs
)]}

. (C.36)

The group of terms in the last summation now can be expanded, making sure to

retain velocities relative to vs. After this expansion, the terms are grouped to obtain

X = ∑
α∈I

∑
κ∈Icα

1

θ α

(
κ→α

Q +
κ→α

G
)
+ ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
M

(
Eα,κ

+Kα,κ
E +ψα,κ

)

+ ∑
α∈I

∑
κ∈Icα

1

θ α

[
κ→α

T +
κ→α
M

(
vα,κ −vs

2

)]
·
(

vα,κ −vs
)

− ∑
α∈I

∑
κ∈Icα

1

θ α

{
κ→α

T −
κ→α
M

[
vα −vs

2
−
(

vα,κ −vs
)]}

·
(

vα −vs
)
.

(C.37)

The derivation is completed by expanding out the summations over α and κ .

Also, all the exchange terms are written so that the transfer is from a phase to the

interface (i.e., the negative of a transfer from the interface to a phase). Expansion of

the summations then yields

X =−
{

w→ws
Q +

w→ws
G +

(
Ews

w +Kws
Ew +ψws

w

)w→ws
M︸ ︷︷ ︸

14
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+

[
w→ws

T +

(
vws

w −vs

2

)
w→ws

M
]
·
(
vws

w −vs)
︸ ︷︷ ︸

15

}(
1

θ w
− 1

θ ws

)
︸ ︷︷ ︸

16

−
{

s→ws
Q +

s→ws
G +

(
Ews

s +Kws
Es +ψws

s

) s→ws
M︸ ︷︷ ︸

17

+

[
s→ws

T +

(
vws

s −vs

2

)
s→ws
M

]
·
(
vws

s −vs)
︸ ︷︷ ︸

18

}(
1

θ s
− 1

θ ws

)
︸ ︷︷ ︸

19

+
1

θ w

{
w→ws

T −
w→ws

M
[

vw −vs

2
−
(
vws

w −vs)]} ·
(
vw −vs)

︸ ︷︷ ︸
21

− 1

θ ws

{
w→ws

T −
w→ws

M
[

vws −vs

2
−
(
vws

w −vs)]
︸ ︷︷ ︸

23

+
s→ws

T −
s→ws
M

[
vws −vs

2
−
(
vws

s −vs)]
︸ ︷︷ ︸

24

}
·
(
vws −vs)︸ ︷︷ ︸

26

. (C.38)

As suggested in Table 9.1, the exchange terms that arise from the momentum equa-

tion, Pα
∗ , do not contribute to lines 14–19. They become parts of the terms that

multiply velocity differences, vw −vs and vws −vs.

Lines 20 and 21

Some of these terms have already been obtained from Eqs. (C.1), (C.8), and (C.38).

The remaining terms transfer directly from T w
∗ and T w

G∗. They are the parts of these

equations that multiply vw −vs.

Lines 22–26

Many of the terms needed to form lines 22–26 have already been obtained from Eqs.

(C.1), (C.15), and (C.38). A few terms transfer directly from the parts of T ws
∗ and

T ws
G∗ that multiply vws −vs. Additional terms that appear in these lines are obtained

from rearrangement of contributions from T ws
∗ and T ws

G∗ . The terms extracted appear

on the left side of the following equation, and are rearranged on the right side with

1

θ ws

〈
ηws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇θ ws
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+
1

θ ws

〈
ρws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇μws

+
1

θ ws

〈
ρws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇ψ iws

=
1

θ ws︸︷︷︸
22

[〈
ηws

(
I− I′ws

)〉
Ωws,Ω

·∇θ ws
]

︸ ︷︷ ︸
25

·
(
vws −vs)︸ ︷︷ ︸

26

+
1

θ ws

〈
ηws

(
vws −vws) ·(I− I′ws

)〉
Ωws,Ω

·∇θ ws

︸ ︷︷ ︸
31

+
1

θ ws︸︷︷︸
22

[〈
ρws

(
I− I′ws

)〉
Ωws,Ω

·∇
(
μws +ψws)] ·(vws −vs)︸ ︷︷ ︸

26

+
1

θ ws

〈
ρws

(
vws −vws) ·(I− I′ws

)〉
Ωws,Ω

·∇
(
μws +ψws)

︸ ︷︷ ︸
33

. (C.39)

Line 27 and 28

Contributions to these lines have been made as byproducts of other manipulations

according to Eqs. (C.15), (C.31), and (C.32). Additionally, the term involving γws is

acquired directly from T ws
∗ .

Lines 29–34

These lines have been produced, for the most part, from the manipulations to obtain

terms for the preceding lines. Other terms are directly transferred without rearrange-

ment from an antecedent equation. The origins of these six lines are,

Line 29: Eq. (C.31);

Line 30: This is obtained directly from T s
∗ ;

Line 31: Eq. (C.39);

Line 32: This is obtained directly from T ws
∗ ;

Line 33: Eqs. (C.5) and (C.39);

Line 34: This is obtained directly from Sα
∗ for α ∈ I .
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C.2 CEI for Single-fluid-phase Transport, Eq. (10.14)

The manipulations required to produce the CEI in Eq. (10.14) from Eq. (10.13), as

summarized in Table 10.2, are detailed in this section. The manipulations parallel

those employed in Sect. C.1 for single-fluid-phase flow without species transport.

The inclusion of species transport adds some more terms to the CEI. For complete-

ness, we provide the details needed to assemble the CEI. The exposition follows

the organization of Table 10.2, with groupings of lines in Eq. (10.14) considered in

turn and relevant manipulations presented. Some terms that originate in a particular

conservation, balance, or thermodynamic equation are distributed into various lines

of the CEI. Origination equations for terms in Eq. (10.13) are indicated at the far

right of that equation so they can be easily located.

Lines 1–5

Lines 1–5 of Eq. (10.14) are a collection of terms from the equations listed in Table

10.2 as they appear in Eq. (10.13). The quantities hα and bα for α ∈ I are moved

directly from Ew
∗∗ and Sw

∗∗, respectively, to lines 1 and 3. Terms involving the material

derivatives of θα −θ α and of μiα − μ iα , for α ∈ I from T α
∗ , can be found in lines

1–4. Material derivatives of ψ iα , with α ∈ I, are obtained from T α
G∗. These material

derivatives are found in lines 2 and 5. The remaining terms in lines 1–5 are obtained

by manipulating some additional terms that originate in the energy and gravitational

potential equations.

The material derivative terms involving Kiα
E + uiα ·uiα/2 that appear in Eα

∗∗ are

treated differently for each entity. For the w phase, apply identity Eq. (7.49) to obtain

∑
i∈Is

εwρwω iw Dw

Dt

(
Kiw

E +
uiw·uiw

2

)
=

〈
∑

i∈Is

ρwωiw
Ds

Dt

(
Kiw

E +
uiw·uiw

2

)〉
Ωw,Ω︸ ︷︷ ︸

2

+ ∑
i∈Is

εwρwω iw∇

(
Kiw

E +
uiw·uiw

2

)
︸ ︷︷ ︸

33

·(vw −vs)︸ ︷︷ ︸
35

, (C.40)

where an under-braced number indicates the line in Eq. (10.14) in which the denoted

term appears.

For the solid phase, there is no need to change the reference velocity of the ma-

terial derivative, so we have
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∑
i∈Is

εsρsω i s Ds

Dt

(
Kis

E +
uis·uis

2

)
=

〈
∑

i∈Is

ρsωis
Ds

Dt

(
Kis

E +
uis·uis

2

)〉
Ωs,Ω︸ ︷︷ ︸

2

.

(C.41)

For the corresponding interface term from equation Ews
∗∗ , we first introduce the

averaging operator to obtain

∑
i∈Is

εwsρwsω iws Dws

Dt

(
Kiws

E +
uiws·uiws

2

)

= ∑
i∈Is

〈
ρwsωiws

Dws

Dt

(
Kiws

E +
uiws·uiws

2

)〉
Ωws,Ω

. (C.42)

We make use of Eq. (7.85), with iα and α replaced by ws, to modify the material

derivative on the right side of Eq. (C.42) and obtain

∑
i∈Is

εwsρwsω iws Dws

Dt

(
Kiws

E +
uiws·uiws

2

)

= ∑
i∈Is

〈
ρwsωiws

D′s

Dt

(
Kiws

E +
uiws·uiws

2

)〉
Ωws,Ω

+ ∑
i∈Is

〈
ρwsωiws(vws −vs)·∇

(
Kiws

E +
uiws·uiws

2

)〉
Ωws,Ω

− ∑
i∈Is

〈
ρwsωiws(vws −vs)·(I− I′ws)·∇

(
Kiws

E +
uiws·uiws

2

)〉
Ωws,Ω

. (C.43)

The last summation in this expression can be split into two summations by replacing

vws−vw with (vws−vws)+(vws−vs). We then make use of the fact that macroscale

quantities can be moved outside the averaging operator to obtain

∑
i∈Is

εwsρwsω iws Dws

Dt

(
Kiws

E +
uiws·uiws

2

)

= ∑
i∈Is

〈
ρwsωiws

D′s

Dt

(
Kiws

E +
uiws·uiws

2

)〉
Ωws,Ω︸ ︷︷ ︸

4,5

+ ∑
i∈Is

εwsρwsω iws∇

(
Kiws

E +
uiws·uiws

2

)
︸ ︷︷ ︸

37

·(vws −vs)︸ ︷︷ ︸
42
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− ∑
i∈Is

〈
ρwsωiws(vws −vws)·(I− I′ws)

〉
Ωws,Ω

·∇
(

Kiws
E +

uiws·uiws

2

)
︸ ︷︷ ︸

49,50

− ∑
i∈Is

〈
ρwsωiws(I− I′ws)

〉
Ωws,Ω

·∇
(

Kiws
E +

uiws·uiws

2

)
·(vws −vs)

︸ ︷︷ ︸
41,42

. (C.44)

The remaining entries in lines 1–5 involve the material derivative of ψiα . The

antecedent terms are the partial time derivative from Gα
∗∗ and the gravitational term

from Pα
∗∗. This pairing is considered separately for each entity. For the w phase, we

can add the terms and add and subtract vs in the gravity portion of the sum, which

provides 〈
ρwωiw

∂ψiw

∂ t

〉
Ωw,Ω

− εwρwω iwgiw·vw =

〈
ρwωiw

∂ψiw

∂ t

〉
Ωw,Ω

− εwρwω iwgiw·vs − εwρwω iwgiw·(vw −vs) . (C.45)

Introduction of the averaging operator in the second term on the right side then gives〈
ρwωiw

∂ψiw

∂ t

〉
Ωw,Ω

− εwρwω iwgiw·vw =

〈
ρwωiw

∂ψiw

∂ t

〉
Ωw,Ω

−
〈
ρwωiwgiw·vs〉

Ωw,Ω
− εwρwω iwgiw·(vw −vs) . (C.46)

Because giα +∇ψiα = 0, the material derivative may be introduced so that we obtain〈
ρwωiw

∂ψiw

∂ t

〉
Ωw,Ω

− εwρwω iwgiw·vw

=

〈
ρwωiw

Dsψiw

Dt

〉
Ωw,Ω︸ ︷︷ ︸

2

−εwρwω iwgiw︸ ︷︷ ︸
33

·(vw −vs)︸ ︷︷ ︸
35

. (C.47)

For the s phase, the manipulations are similar; but because the velocity is already

vs, no relative velocity term arises. We obtain〈
ρsωis

∂ψis

∂ t

〉
Ωs,Ω

− εsρsω i sgis·vs

=

〈
ρsωis

∂ψis

∂ t

〉
Ωs,Ω

−
〈
ρsωisgis·vs〉

Ωs,Ω
=

〈
ρsωis

Dsψis

Dt

〉
Ωs,Ω︸ ︷︷ ︸

2

. (C.48)
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For the ws interface, the manipulations are more involved. One term from Gα
∗∗

and one from Pα
∗∗ for α = ws are combined. Introduction of vs gives〈

ρwsωiws

[
∂ ′ψiws

∂ t
+viws·

(
I− I′

)
·giws

]〉
Ωws,Ω

− εwsρwsω iwsgiws·vws

=

〈
ρwsωiws

[
∂ ′ψiws

∂ t
+viws·

(
I− I′

)
·giws

]〉
Ωws,Ω

− εwsρwsω iwsgiws·vs

− εwsρwsω iwsgiws·(vws −vs) . (C.49)

We express the second term on the right side in terms of the averaging operator over

the interface, which yields〈
ρwsωiws

[
∂ ′ψiws

∂ t
+viws·

(
I− I′

)
·giws

]〉
Ωws,Ω

− εwsρwsω iwsgiws·vws

=

〈
ρwsωiws

[
∂ ′ψiws

∂ t
+viws·

(
I− I′

)
·giws −giws·vs

]〉
Ωws,Ω

− εwsρwsω iwsgiws·(vws −vs) . (C.50)

We will make use of the identity

giws =−∇′ψiws +
(
I− I′

)
·giws, (C.51)

so that Eq. (C.50) becomes〈
ρwsωiws

[
∂ ′ψiws

∂ t
+viws·

(
I− I′

)
·giws

]〉
Ωws,Ω

− εwsρwsω iwsgiws·vws

=

〈
ρwsωiws

[
∂ ′ψiws

∂ t
+vs·∇′ψiws +(viws −vs)·

(
I− I′

)
·giws

]〉
Ωws,Ω

− εwsρwsω iwsgiws·(vws −vs) . (C.52)

The material derivative on the surface as defined in Eq. (7.84) is

D′s

Dt
=

∂ ′

∂ t
+vs·∇′ . (C.53)

Insertion of this identity into Eq. (C.52) and noting that viws·
(
I− I′

)
= vws·

(
I− I′

)
(because the interfacial species velocity normal to the interface is equal to the inter-

face velocity) gives〈
ρwsωiws

[
∂ ′ψiws

∂ t
+viws·

(
I− I′

)
·giws

]〉
Ωws,Ω

− εwsρwsω iwsgiws·vws
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=

〈
ρwsωiws

D′sψiws

Dt

〉
Ωws,Ω︸ ︷︷ ︸

4

+
〈
ρwsωiws(vws −vs)·

(
I− I′

)
·giws

〉
Ωws,Ω︸ ︷︷ ︸

44

− εwsρwsω iwsgiws︸ ︷︷ ︸
37

·(vws −vs)︸ ︷︷ ︸
42

. (C.54)

Lines 6–10

Elements from Sα
∗∗, Miα

∗∗, Eα
∗∗, Gα

∗∗, and T s
∗ can be manipulated using the product

rule to yield the entries given in Lines 6–10 of Eq. (10.14). These terms involve en-

tropy and heat fluxes—along with entries related to the divergence of deviation ve-

locities and a solid-phase stress-deformation term. The required mathematical ma-

nipulations are application of the product rule and algebraic rearrangement.

The term ∇·
(

εα ϕα
)

for α ∈ I is moved directly from Sα
∗∗ to lines 6 and 8. The

terms involving qα from Eα
∗∗ and qg0 from Gα

∗∗ can be combined and rearranged

together according to

1

θ α
∇·
(

εα qα + εα qg0

)
= ∇·

[
1

θ α
εα(qα +qg0

]
︸ ︷︷ ︸

6,8

−εα(qα +qg0)︸ ︷︷ ︸
13,15

·∇
(

1

θ α

)
︸ ︷︷ ︸

14,16

.

(C.55)

Next, consider the terms involving uiα associated with Miα
∗∗. We begin with the

fact that, because the sum of ω iα uiα over all species equals zero, the vα ·vα term

may be dropped to yield

∑
i∈Is

1

θ α

(
μ iα +ψ iα − vα ·vα

2
+Kiα

E +
uiα ·uiα

2

)
∇·
(

εα ρα ω iα uiα
)

= ∑
i∈Is

1

θ α

(
μ iα +ψ iα +Kiα

E +
uiα ·uiα

2

)
∇·
(

εα ρα ω iα uiα
)
. (C.56)

Selective application of the product rule to the quantities on the right side yields

∑
i∈Is

1

θ α

(
μ iα +ψ iα − vα ·vα

2
+Kiα

E +
uiα ·uiα

2

)
∇·
(

εα ρα ω iα uiα
)

= ∇·︸︷︷︸
6,8

∑
i∈Is

[
1

θ α
εα ρα ω iα

(
μ iα +Kiα

E +
uiα ·uiα

2

)
uiα

]
︸ ︷︷ ︸

7,9
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− ∑
i∈Is

[
εα ρα ω iα

(
μ iα +Kiα

E +
uiα ·uiα

2

)
uiα

]
·∇
(

1

θ α

)
︸ ︷︷ ︸

14,15,16

+ ∑
i∈Is

1

θ α
∇·
(

εα ρα ω iα ψ iα uiα
)

︸ ︷︷ ︸
Gα∗∗

− ∑
i∈Is

1

θ α
εα ρα ω iα uiα ·∇

(
μ iα +Kiα

E +
uiα ·uiα

2
+ψ iα

)
. (C.57)

The term with an equation type beneath the underbrace cancels with the same term

that is provided by the equation denoted. Therefore, this term does not appear in the

CEI. The term on the right without an underbrace is modified additionally making

use of the fact that

∑
i∈Is/N

ω iαβ uiα =−ωr α uNα , (C.58)

where N is one of the species selected as a reference species. Substitution of this

relation into the last term in Eq. (C.57) yields

− ∑
i∈Is

1

θ α
εα ρα ω iα uiα ·∇

(
μ iα +Kiα

E +
uiα ·uiα

2
+ψ iα

)

=− ∑
i∈Is/N

1

θ α
εα ρα ω iα uiα ·∇

[
μ iα +Kiα

E +
uiα ·uiα

2
+ψ iα

︸ ︷︷ ︸
17

−
(

μNα +KNα
E +

uNα ·uNα

2
+ψNα

)
︸ ︷︷ ︸

18

]
. (C.59)

The remaining term needed for Lines 6–10 is associated with the solid phase and

is derived by application of the product rule to a term originating in equation T s
∗

such that

− 1

θ s
∇·
〈(

ts −σσσ s:
Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

=−∇·
[

1

θ s︸ ︷︷ ︸
8

〈(
ts −σσσ s:

Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]
︸ ︷︷ ︸

10
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+

〈(
ts −σσσ s:

Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω
·∇
(

1

θ s

)
︸ ︷︷ ︸

16

. (C.60)

Lines 11 and 12

Lines 11 and 12 of Eq. (10.14) are products of fluxes and deformation rate tensor

forces. As noted in Table 10.2, these terms originate in equations Sα
∗∗, Miα

∗∗, Pα
∗∗,

Eα
∗∗, T s

∗ , and T ws
∗ . For the most part, the terms in the CEI are obtained simply by

collecting terms that multiply dα from all the equations combined into Eq. (9.32)

and summing them.

There is one instance when the product rule must be employed in forming lines

11 and 12. The energy equation, Eα
∗∗, provides a term involving the stress tensor that

can be expanded to obtain

∇·
(

εαtα ·vα
)
= ∇·

(
εαtα

)
·vα + εαtα :

(
∇vα

)T
. (C.61)

Because tα is symmetric, this equation can be written as

∇·
(

εαtα ·vα
)
= ∇·

(
εαtα

)
·vα︸ ︷︷ ︸

Pα∗∗

+εαtα :dα︸ ︷︷ ︸
11,12

, (C.62)

where the first term on the right cancels with a like term originating from the mo-

mentum equation, while the second term survives and appears as indicated.

The next task is to look through Eq. (10.13) and collect all the other terms that

multiply dw. Some of the multipliers cancel each other, but the terms that survive

form the left side of the following equation:

−
(

Ew −ηwθ w − ∑
i∈Is

εwρwω iwμ iw

)
I:dw = εw pwI:dw︸ ︷︷ ︸

11

, (C.63)

where the equality is obtained from the Euler equation for the w phase, Eq. (7.13)

with α = w,

Ew = ηwθ w − εw pw + ∑
i∈Is

εwρwω iwμ iw . (C.64)

For the solid phase, the multipliers of ds in Eq. (10.13) are collected to obtain the

expression on the left side of the following equation:

−
[(

Es −ηsθ s − εsσσσ s:
Cs

js − ∑
i∈Is

εsρsω i sμ is

)
I+ ts

]
:ds =−ts:ds︸︷︷︸

11

. (C.65)
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The quantity on the left in parentheses is equal to 0 according to the Euler equation

for the solid, given as the fourth equation in Table 7.1, which gives the simplification

obtained on the right.

For the ws entity, the terms that multiply dws in Eq. (10.13) are collected on the

left side of the equation

−
[(

Ews −ηsθ ws − ∑
i∈Is

εwsρwsω iwsμ iws

)
I−

〈
(I− I′α)γws

〉
Ωws,Ω

]
:dws

=−
[
εwsγwsI−

〈
(I− I′α)γws

〉
Ωws,Ω

]
:dws︸ ︷︷ ︸

12

. (C.66)

The simplification on the right side of the equation makes use of the macroscale

Euler equation for an interface, the sixth equation in Table 7.1, with α replaced by

ws.

Lines 13–16

These lines have already been completed as collateral terms from the preceding de-

velopment of lines 1–12. In particular, the terms in these lines were obtained as

follows:

Line 13: Eq. (C.55);

Line 14: Eqs. (C.55) and (C.57);

Line 15: Eqs. (C.55) and (C.57); and

Line 16: Eqs. (C.55), (C.57), and (C.60).

Lines 17 and 18

These lines were also completed in the preceding derivation with the terms coming

from Eq. (C.59).

Lines 19 and 20

These lines are a combination of terms that contain the reaction rate riα . Part comes

from Miα
∗∗ and the other part comes from Gα

∗∗. Use is also made of the fact that since

the sum of riα over all species is zero, the term involving the sum over all species

of riα vα ·vα/2 is also zero.
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Lines 21 and 22

These terms arise from Miw
∗∗ and Miws

∗∗ . The terms extracted are on the left of the

following equation, and they are rearranged on the right side such that

− ∑
i∈Is

1

θ w

(
μ iw +ψ iw +Kiw

E +
uiw·uiw

2

)
iws→iw

M

− ∑
i∈Is

1

θ ws

(
μ iws +ψ iws +Kiws

E +
uiws·uiws

2

)
iw→iws

M

= ∑
i∈Is

iw→iws
M

[
1

θ w

(
μ iw +Kiw

E +
uiw·uiw

2
+ψ iw

)
︸ ︷︷ ︸

21

− 1

θ ws

(
μ iws +Kiws

E +
uiws·uiws

2
+ψ iws

)]
︸ ︷︷ ︸

22

. (C.67)

Lines 23 and 24

This pair of lines is similar to lines 21 and 22 with the exception being that the

s phase is considered rather than the w phase. These terms arise from Mis
∗∗ and

Miws
∗∗ . The terms employed are on the left of the following equation, and they are

rearranged on the right side such that

− ∑
i∈Is

1

θ s

(
μ is +ψ is +Kis

E +
uis·uis

2

)
iws→is

M

− ∑
i∈Is

1

θ ws

(
μ iws +ψ iws +Kiws

E +
uiws·uiws

2

)
is→iws

M

= ∑
i∈Is

is→iws
M

[
1

θ s

(
μ is +Kis

E +
uis·uis

2
+ψ is

)
︸ ︷︷ ︸

23

− 1

θ ws

(
μ iws +Kiws

E +
uiws·uiws

2
+ψ iws

)]
︸ ︷︷ ︸

24

. (C.68)

Additionally, the following identity is used to add and subtract terms to Eq. (10.14)

in the lines indicated:
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∑
i∈Is

is→iws
M

σσσ s:Cs

3ρs js︸ ︷︷ ︸
23

−
〈

σσσ s:Cs

3ρs js ρs(vs −vws)·ns

〉
Ωws,Ω︸ ︷︷ ︸

25

= 0 . (C.69)

Line 25

One term has already been provided here from Eq. (C.69). A second term comes

from T s
∗ with

− 1

θ s

〈
ns·(vws −vs)σσσ s:

Cs

js

〉
Ωws,Ω

=
1

θ s

〈
σσσ s:

Cs

ρs js
ρs (vs −vws) ·ns

〉
Ωws,Ω︸ ︷︷ ︸

25

.

(C.70)

The other term in line 25 also originates in T s
∗ but is obtained only after some

rearrangement. The derivation begins by stating

− 1

θ s

〈
ns·ts·(vs −vs)

〉
Ωws,Ω

=− 1

θ s

〈
ns·ts·nsns·(vs −vs)

〉
Ωws,Ω

− 1

θ s

〈
ns·ts·I′ws·(vs −vs)

〉
Ωws,Ω

. (C.71)

The first term on the right side can be modified further by adding and subtracting

vws to vs −vs and then multiplying and dividing by ρs to obtain

− 1

θ s

〈
ns·ts·(vs −vs)

〉
Ωws,Ω

=− 1

θ s

〈
ns·ts·ns

ρs
ρs(vs −vws)·ns

〉
Ωws,Ω

− 1

θ s

〈
ns·ts·nsns·(vws −vs)

〉
Ωws,Ω

− 1

θ s

〈
ns·ts·I′ws·(vs −vs)

〉
Ωws,Ω

. (C.72)

The second term on the right side is modified by adding and subtracting 1/θ ws to

and from 1/θ s so that we have

− 1

θ s

〈
ns·ts·(vs −vs)

〉
Ωws,Ω

=− 1

θ s

〈
ns·ts·ns

ρs
ρs(vs −vws)·ns

〉
Ωws,Ω︸ ︷︷ ︸

25

− 1

θ ws︸ ︷︷ ︸
43

〈
ns·ts·nsns︸ ︷︷ ︸

43

·(vws −vs)︸ ︷︷ ︸
44

〉
Ωws,Ω

− 1

θ s

〈
ns·ts·I′ws·(vs −vs)

〉
Ωws,Ω︸ ︷︷ ︸

45

−
(

1

θ s
− 1

θ ws

)〈
ns·ts·nsns·(vws −vs)

〉
Ωws,Ω︸ ︷︷ ︸

31

. (C.73)
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Lines 26–28, 29–31

The terms in lines 26–28 and 29–31 of Eq. (10.14) are descriptive of energy ex-

changes between the w and ws entities and between the s and ws entities, respec-

tively. One term that appears in line 31 has been obtained in Eq. (C.73). A second

term that involves pw is obtained from T w
∗ with the following manipulation:

1

θ w

〈
nw·(vws −vs)pw

〉
Ωws,Ω

=

(
1

θ w
− 1

θ ws

)〈
nw·(vws −vs)pw

〉
Ωws,Ω︸ ︷︷ ︸

28

+
1

θ ws

〈
nw·(vws −vs)pw

〉
Ωws,Ω︸ ︷︷ ︸

43,44

. (C.74)

The antecedent terms for the remaining elements of these lines and several others

are all the terms in Eq. (10.13) involving inter-entity exchanges except those that

have already been deployed into lines 21–24. For convenience, we will denote this

collection of terms as X . These terms originate in Eα
∗∗, Pα

∗∗, Miα
∗∗, and Gα

∗∗ for α ∈ I.

The terms of interest are

X = ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

⎡
⎣Eα,κ

i +

(
vα,κ +uα,κ

i

)
·
(

vα,κ +uα,κ
i

)
2

+Kα,κ
Ei

⎤
⎦

+ ∑
α∈I

1

θ α

[
∑

κ∈Icα

κ→α
T0 ·vα,κ + ∑

κ∈Icα

κ→α
Q1

]

− ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

(
vα,κ +uα,κ

i

)
·vα − ∑

α∈I
∑

κ∈Icα

1

θ α
vα ·

κ→α
T0

+ ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

(
vα ·vα

2

)
iκ→iα

M

+ ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M ψα,κ

i + ∑
α∈I

∑
κ∈Icα

κ→α
G0 . (C.75)

In Eq. (C.75), the terms are listed in the order in which they appear in Eq. (10.13).

The bulk of the work to be done to obtain the specific terms that appear in lines

26–31 involves rearranging Eq. (C.75) so that all velocities are relative to vs. We

therefore first rearrange the terms so that those involving products of velocity with

mass exchange are the last terms in the listing:

X = ∑
α∈I

∑
κ∈Icα

1

θ α

(
κ→α
Q1 +

κ→α
G0

)

+ ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

[
Eα,κ

i +Kα,κ
Ei +ψα,κ

i

]
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+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
T0 ·vα,κ − ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
T0 ·vα

+ ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

⎡
⎣
(

vα,κ +uα,κ
i

)
·
(

vα,κ +uα,κ
i

)
2

⎤
⎦

− ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

(
vα,κ +uα,κ

i

)
·vα

+ ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

(
vα ·vα

2

)
. (C.76)

The last three groups of summations are readily condensed so that we have

X = ∑
α∈I

∑
κ∈Icα

1

θ α

(
κ→α
Q1 +

κ→α
G0

)

+ ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

[
Eα,κ

i +Kα,κ
Ei +ψα,κ

i

]

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
T0 ·vα,κ − ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
T0 ·vα

+ ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

⎡
⎣
(

vα,κ +uα,κ
i −vα

)
·
(

vα,κ +uα,κ
i −vα

)
2

⎤
⎦ .

(C.77)

With the equation in this form, we can subtract vs from each velocity, since this

reference velocity will cancel out of the equation, to obtain

X = ∑
α∈I

∑
κ∈Icα

1

θ α

(
κ→α
Q1 +

κ→α
G0

)

+ ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

[
Eα,κ

i +Kα,κ
Ei +ψα,κ

i

]

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
T0 ·

(
vα,κ −vs

)
− ∑

α∈I
∑

κ∈Icα

1

θ α

κ→α
T0 ·

(
vα −vs

)

+ ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

1

2

{[(
vα,κ +uα,κ

i −vs
)
−
(

vα −vs
)]

·
[(

vα,κ +uα,κ
i −vs

)
−
(

vα −vs
)]}

. (C.78)

The group of terms in the last summation now can be expanded, making sure to

keep the velocities relative to the solid phase velocity rather than canceling out vs.
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After this expansion, the terms are grouped to obtain

X = ∑
α∈I

∑
κ∈Icα

1

θ α

(
κ→α
Q1 +

κ→α
G0

)

+ ∑
α∈I

∑
κ∈Icα

∑
i∈Is

1

θ α

iκ→iα
M

[
Eα,κ

i +Kα,κ
Ei +

uα,κ
i ·uα,κ

i
2

+ψα,κ
i

]

+ ∑
α∈I

∑
κ∈Icα

1

θ α

[
κ→α
T0 + ∑

i∈Is

iκ→iα
M

(
vα,κ −vs

2
+uα,κ

i

)]
·
(

vα,κ −vs
)

− ∑
α∈I

∑
κ∈Icα

1

θ α

{
κ→α
T0 − ∑

i∈Is

iκ→iα
M

[
vα −vs

2
−
(

vα,κ −vs +uα,κ
i

)]}

·
(

vα −vs
)
. (C.79)

The derivation is completed by expanding out the summations over α and κ . Also,

all the exchange terms are written so that the transfer is from the w and s phases to

the interface (i.e., the negative of a transfer from the interface to a phase). Expansion

of the summations then yields

X =−
{

w→ws
Q1 +

w→ws
G0 + ∑

i∈Is

(
Ews

iw +Kws
Eiw +

uws
iw ·uws

iw
2

+ψws
iw

)
iw→iws

M

︸ ︷︷ ︸
26

+

[
w→ws
T0 + ∑

i∈Is

(
vws

w −vs

2
+uws

iw

)
iw→iws

M

]
·
(
vws

w −vs)
︸ ︷︷ ︸

27

}(
1

θ w
− 1

θ ws

)
︸ ︷︷ ︸

28

−
{

s→ws
Q1 +

s→ws
G0 + ∑

i∈Is

(
Ews

is +Kws
Eis +

uws
is ·uws

is
2

+ψws
is

)
is→iws

M

︸ ︷︷ ︸
29

+

[
s→ws
T0 + ∑

i∈Is

(
vws

s −vs

2
+uws

is

)
is→iws

M

]
·
(
vws

s −vs)
︸ ︷︷ ︸

30

}(
1

θ s
− 1

θ ws

)
︸ ︷︷ ︸

31

+
1

θ w

{
w→ws
T0 − ∑

i∈Is

iw→iws
M

[
vw −vs

2
−
(

vws
w −vs +uws

iw

)]}
·
(
vw −vs)

︸ ︷︷ ︸
34,35

− 1

θ ws

{
w→ws
T0 − ∑

i∈Is

iw→iws
M

[
vws −vs

2
−
(

vws
w −vs +uws

iw

)]
︸ ︷︷ ︸

38
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+
s→ws
T0 − ∑

i∈Is

is→iws
M

[
vws −vs

2
−
(

vws
s −vs +uws

is

)]
︸ ︷︷ ︸

39

}
·
(
vws −vs)︸ ︷︷ ︸

42

. (C.80)

Lines 32–35

Some of these terms have already been obtained from Eqs. (C.40), (C.47), and

(C.80). The remaining terms transfer directly from T w
∗ and T w

G∗. They are the parts

of these equations that multiply vw −vs.

Lines 36–42

Many of these terms have already been obtained from Eqs. (C.44), (C.54), and

(C.80). A few terms transfer directly from the parts of T ws
∗ and T ws

G∗ that multiply

vws − vs. Additional terms that appear in these lines are obtained from rearrange-

ment of contributions from T ws
∗ and T ws

G∗ . The terms extracted from these forms are

the left side of the following equation, and the rearrangements on the right result

from replacing vws −vs with (vws −vws)+(vws −vs) in each term. The result is

1

θ ws

〈
ηws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇θ ws

+
1

θ ws ∑
i∈Is

〈
ρwsωiws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇μ iws

+
1

θ ws ∑
i∈Is

〈
ρwsωiws

(
vws −vs) ·(I− I′ws

)〉
Ωws,Ω

·∇ψ iws

=
1

θ ws

〈
ηws

(
vws −vws) ·(I− I′ws

)〉
Ωws,Ω

·∇θ ws

︸ ︷︷ ︸
47

+
1

θ ws︸︷︷︸
36

[〈
ηws

(
I− I′ws

)〉
Ωws,Ω

·∇θ ws
]

︸ ︷︷ ︸
40

·
(
vws −vs)︸ ︷︷ ︸

42

+
1

θ ws ∑
i∈Is

〈
ρwsωiws

(
vws −vws) ·(I− I′ws

)〉
Ωws,Ω

·∇
(

μ iws +ψ iws
)

︸ ︷︷ ︸
49,50

+
1

θ ws︸︷︷︸
36

[
∑

i∈Is

〈
ρwsωiws

(
I− I′ws

)〉
Ωws,Ω

·∇
(

μ iws +ψ iws
)]

·
(
vws −vs)

︸ ︷︷ ︸
41,42

. (C.81)
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Line 43 and 44

Three contributions to these lines have been made as byproducts of other manipula-

tions according to Eqs. (C.54), (C.73), and (C.74). Additionally, the term involving

γws is acquired directly from T ws
∗ .

Lines 45–50

These lines have been produced, for the most part, from the manipulations to obtain

terms for the preceding lines. The origins of these lines are as follows:

Line 45: Eq. (C.73);

Line 46: This is obtained directly from T s
∗ ;

Line 47: Eq. (C.81);

Line 48: This is obtained directly from T ws
∗ ;

Lines 49 and 50: Eqs. (C.44) and (C.81).

C.3 CEI for Two-fluid-phase Flow, Eq. (11.5)

In this section, the manipulations that lead to the CEI for two-fluid-phase flow in

porous media are presented. The starting point is Eq. (11.4). This equation is the en-

tropy inequality augmented by conservation and thermodynamic equations for the

fluid phases, the solid phase, the interfaces, and the common curve with values for

the Lagrange multipliers selected. The particular forms of the conservation equa-

tions used to augment the entropy inequality are the entity-based, material deriva-

tive forms available in Table 6.3. The thermodynamic equations are the entity based

forms referenced in Table 7.2. We will consider the case where only the solid phase

can sustain a concentrated force at the common curve so that the singularities for

the fluid phases are zero. If the designated equations are substituted into Eq. (11.4)

and the material time derivatives are cancelled, the resulting equation is

∑
α∈I

[
ηα I:dα − εα bα − ∑

κ∈Icα

κ→α
M ηα,κ − ∑

κ∈Icα

κ→α
Φ Sα∗

−∇·
(

εα ϕϕϕα
)]

Sα∗

−
wns→s
Φ∗ +

wns→s
Φ∗ Ss∗,Swns∗

− ∑
α∈I

1

θ α

{
εα ρα Dα Kα

E
Dt

+

[
Eα + εα ρα

(
vα ·vα

2
+Kα

E

)]
I:dα

}
Eα∗
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+ ∑
α∈I

1

θ α

(
εα ρα gα ·vα + εα hα + εα hα

)
Eα∗

+ ∑
α∈I

∑
κ∈Icα

1

θ α

κ→α
M

(
Eα,κ

+
vα,κ ·vα,κ

2
+Kα,κ

E

)
Eα∗

+ ∑
α∈I

1

θ α

[
∑

κ∈Icα

κ→α
T ·vα,κ + ∑

κ∈Icα

κ→α
Q

]
Eα∗

+ ∑
α∈I

1

θ α
∇·
(

εαtα ·vα + εα qα
)

Eα∗

+

(
wns→s

T∗ ·vwns
s +

wns→s
Q∗

)(
1

θ s
− 1

θ wns

)
Es∗,Ewns∗

+ ∑
α∈I

1

θ α
vα ·

[
εα ρα vα I:dα − εα ρα gα − ∑

κ∈Icα

κ→α
M vα,κ

]
Pα∗

− ∑
α∈I

∑
κ∈Icα

1

θ α
vα ·

κ→α
T − ∑

α∈I

1

θ α
vα ·

[
∇·
(

εαtα
)]

Pα∗

−
wns→s

T∗ ·
(

vs

θ s
− vwns

θ wns

)
Ps∗,Pwns∗

+ ∑
α∈I

1

θ α

(
μα +ψα − vα ·vα

2
+Kα

E

)
Mα∗

×
(

εα ρα I:dα − ∑
κ∈Icα

κ→α
M

)
Mα∗

− ∑
α∈I

1

θ α

[
Ψ α I:dα + εα ρα gα ·vα + εα hα

]
Gα∗

+ ∑
α∈I

∑
κ∈Icα

1

θ α

[
κ→α
M ψα,κ +

κ→α
G +∇·

(
εα qα

g

)]
Gα∗

+ ∑
α∈I

1

θ α

〈
ρα

[
∂ (n)ψα

∂ t
+vα ·

(
I− I

(n)
α

)
·gα

]〉
Ωα ,Ω

Gα∗

+ ∑
α∈If

∑
κ∈Icα

1

θ α

〈
nα ·

(
vκ −vs) pα

〉
Ωκ ,Ω

T w∗ ,T n∗

+ ∑
α∈If

1

θ α

[〈
ηα

Ds(θα −θ α)

Dt

〉
Ωα ,Ω

T w∗ ,T n∗

+

〈
ρα

Ds
(
μα −μα)

Dt

〉
Ωα ,Ω

]
T w∗ ,T n∗

− ∑
α∈If

1

θ α

[
ηα ∇θ α −∇(εα pα)+ εα ρα ∇μα

]
·
(

vα −vs
)

T w∗ ,T n∗
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− ∑
κ∈Ics

1

θ s

〈
ns·(vκ −vs)σσσ s:

Cs

js

〉
Ωκ ,Ω

T s∗

− ∑
κ∈Ics

1

θ s

〈
ns·ts·

(
vs −vs)〉

Ωκ ,Ω
+

1

θ s

〈
ηs

Ds(θs −θ s)

Dt

〉
Ωs,Ω

T s∗

+
1

θ s

〈
ρs

Ds(μs −μs)

Dt

〉
Ωs,Ω

T s∗

− 1

θ s
∇·
〈[

ts −σσσ s:
Cs

js
I

]
·
(
vs −vs)〉

Ωs,Ω
T s∗

− 1

θ s

[
εsts:ds − εsσσσ s:

Cs

js I:d
s T s∗

−
〈(

∇·ts −∇σσσ s:
Cs

js

)
·
(
vs −vs)〉

Ωs,Ω

]
T s∗

− 1

θ s

[〈
ns·
(
vwns −vs)σσσ∗

s :
Cs

js

〉
Ωwns,Ω

+
〈
ns·t∗s ·

(
vs −vs)〉

Ωwns,Ω

]
T s∗

− ∑
α∈II

1

θ α

〈
nα ·

(
vwns −vs)γα

〉
Ωwns,Ω

T wn∗ ,T ws∗ ,T ns∗

+ ∑
α∈II

1

θ α

[〈
ηα

D′s(θα −θ α)

Dt

〉
Ωα ,Ω

T wn∗ ,T ws∗ ,T ns∗

+

〈
ρα

D′s(μα −μα)

Dt

〉
Ωα ,Ω

]
T wn∗ ,T ws∗ ,T ns∗

− ∑
α∈II

1

θ α

[
ηα ∇θ α +∇·

〈
I′α γα

〉
Ωα ,Ω

+ εα ρα ∇μα
]
·
(

vα −vs
)

T wn∗ ,T ws∗ ,T ns∗

+ ∑
α∈II

1

θ α

[
∇·
〈(

I− I′α
)
·
(

vα −vα
)

γα

〉
Ωα ,Ω

T wn∗ ,T ws∗ ,T ns∗

+
〈(
I− I′α

)
γα
〉

Ωα ,Ω
:dα

]
T wn∗ ,T ws∗ ,T ns∗

+ ∑
α∈II

1

θ α

〈
∇′·I′α ·

(
vα −vs)γα

〉
Ωα ,Ω

T wn∗ ,T ws∗ ,T ns∗

+ ∑
α∈II

1

θ α

〈
ηα
(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇θ α T wn∗ ,T ws∗ ,T ns∗

+ ∑
α∈II

1

θ α

〈
ρα
(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇μα T wn∗ ,T ws∗ ,T ns∗

+
1

θ wns

〈
ηwns

D′′s(θwns −θ wns)

Dt

〉
Ωwns,Ω

T wns∗
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+
1

θ wns

〈
ρwns

D′′s(μwns −μwns)

Dt

〉
Ωwns,Ω

T wns∗

− 1

θ wns

[
ηwns∇θ wns −∇·

〈
I′′α γwns

〉
Ωwns,Ω

T wns∗

+ εwnsρwns∇μwns
]
·
(
vwns −vs) T wns∗

+
1

θ wns

[
∇·
〈(
I− I′′wns

)
·
(
vwns −vwns)γwns

〉
Ωwns,Ω

]
T wns∗

− 1

θ wns

[〈(
I− I′′wns

)
γwns

〉
Ωwns,Ω

:dwns
]

T wns∗

− 1

θ wns

〈
∇′′·I′′wns·

(
vwns −vs)γwns

〉
Ωwns,Ω

T wns∗

+
1

θ wns

〈
ηwns

(
vwns −vs) ·(I− I′′wns

)〉
Ωwns,Ω

·∇θ wns T wns∗

+
1

θ wns

〈
ρwns

(
vwns −vs) ·(I− I′′wns

)〉
Ωwns,Ω

·∇μwns T wns∗

− ∑
α∈IP

1

θ α

[〈
ρα

Dsψα

Dt

〉
Ωα ,Ω

+ εα ρα
(

vα −vs
)
·∇ψα

]
T w
G∗,T n

G∗,T s
G∗

− ∑
α∈II

1

θ α

[〈
ρα

D′sψα

Dt

〉
Ωα ,Ω

+ εα ρα ∇ψα ·
(

vα −vs
)]

T wn
G∗ ,T ws

G∗ ,T ns
G∗

+ ∑
α∈II

1

θ α

〈
ρα
(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇ψα T wn
G∗ ,T ws

G∗ ,T ns
G∗

− 1

θ wns

[〈
ρwns

D′′sψwns

Dt

〉
Ωwns,Ω

+ εwnsρwns∇ψwns·
(
vwns −vs)] T wns

G∗

+
1

θ wns

〈
ρwns

(
vwns −vs) ·(I− I′′wns

)〉
Ωwns,Ω

·∇ψwns T wns
G∗

= ∑
α∈I

Λ α ≥ 0 . Sα∗∗

(C.82)

No rearrangement of terms has been carried out, and the equations that are the

sources of the various lines in this equation are indicated in the right margin.

Simplification of the EI given by Eq. (C.82) to the final form CEI, Eq. (11.5), re-

quires manipulations of the sort encountered for the single-fluid-phase application

as provided in Sect. C.1. For the present application, the addition of one fluid phase,

two interfaces, and a common curve increases the complexity of the manipulations

needed to derive the desired CEI. On the other hand, the manipulations needed are

similar in type. Therefore, without compromising completeness or clarity, and in the

interest of conciseness, we will provide the steps of the assembly from the lines in

Eq. (C.82) to Eq. (11.5) while referring to similar formulation steps already consid-

ered. When the need for manipulations not already considered arises, for example
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in the treatment of the common curve, the steps are provided. Table C.1 provides a

listing of the lines in Eq. (11.5) and the equations that contribute elements to these

lines.

The exchange of entropy among entities for the two-fluid-phase system consists

of the exchange terms from Sα
∗ . The two terms relating to concentrated sources are

equal and opposite in sign. The remaining terms accounting for exchanges due to

phase change and non-advective transport must also cancel such that

∑
α∈I

∑
κ∈Icα

(
κ→α
M ηα,κ +

κ→α
Φ
)
= 0 . (C.83)

Thus, these terms do not appear in the CEI. This simplification occurs because the

terms detailed in Eq. (C.83) only transfer entropy from one entity to another and

do not affect the total entropy generation rate in the system. Although the exchange

terms for mass, momentum, energy, and body force potential also cancel if the cor-

responding conservation equations are summed over all entities, they remain in the

CEI because they are summed only after multiplication by a Lagrange multiplier

that is different for each entity. Thus, closure relations can be obtained for these

other exchange terms from the CEI.

Lines 1–6

These lines are similar to lines 1–4 of the single-fluid-phase CEI given in Eq. (9.43).

The quantities hα and bα for α ∈ I are moved to lines 1, 3, and 5 for the phases,

interfaces, and common curve, respectively, from Eα
∗ and Sα

∗ . Terms involving the

material derivatives of θα −θ α and μα −μα are moved directly from the thermody-

namic equations T α
∗ into lines 1–6. Likewise, material derivatives of ψα are moved

into lines 2, 4, and 6 from the T α
G∗ equation. Obtaining the remaining terms in lines

1–6 requires some rearrangement of terms that appear in Eq. (C.82).

For the fluid phases, the material derivatives of Kα
E appear in Eα

∗ and are rear-

ranged as in Eq. (C.1) to obtain

εα ρα Dα Kα
E

Dt
=

〈
ρα

DsKα
E

Dt

〉
Ωα ,Ω︸ ︷︷ ︸

2

+εα ρα ∇Kα
E︸ ︷︷ ︸

29

·(vα −vs)︸ ︷︷ ︸
30

for α ∈ If , (C.84)

where an under-braced number corresponds to the line number in Eq. (11.5) in

which the denoted term appears. For the solid phase, the result is as in Eq. (C.2)

with

εsρs DsKs
E

Dt
=

〈
ρs

DsKs
E

Dt

〉
Ωs,Ω︸ ︷︷ ︸

2

. (C.85)
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Table C.1 CEI formulation summary for the derivation of Eq. (11.5), where the operation abbre-
viations represent A for addition and subtraction, E for Euler equation identity, I for identity tensor
components, O for objective form, and P for the product rule; and the general entity qualifier α
implies all entities unless otherwise noted

Line(s) Force Precursor Equation(s) Operations

1–6 — Sα
∗ ,Eα

∗ ,Gα
∗ , T α

∗ ,T α
G∗ O,A

7–8 — Sα
∗ ,Eα

∗ ,Gα
∗ , T s

∗ P

9–11 dα Sα
∗ ,Mα

∗ ,Pα
∗ ,Eα

∗ ,T α
∗ E,P

12–13 ∇
(

1

θ α

)
Eα
∗ ,Gα

∗ , T s
∗ P

14

1

θ α

(
μα +Kα

E +ψα
)

Mα
∗ ,Mκ

∗ for α ∈ If,κ ∈ I−cα —

− 1

θ κ

(
μκ +Kκ

E +ψκ
)

15

1

θ s

(
μs +Ks

E +ψs +
σ s:Cs

3ρs js

)
Ms

∗,Mκ
∗ for κ ∈ I−cs

A

− 1

θ κ

(
μκ +Kκ

E +ψκ
)

16 — T s
∗ for α ∈ I,κ ∈ I−cα A,I

17

1

θ α

(
μα +Kα

E +ψα
)

Mα
∗ ,Mwns

∗ for α ∈ II —

− 1

θ wns

(
μwns +Kwns

E +ψwns
)

18–26
1

θ α
− 1

θ κ
Mα

∗ ,Eα
∗ ,Gα

∗ ,T α
∗ ,κ ∈ I−cα A,O

27–28
1

θ s
− 1

θ wns
E s
∗, Ewns

∗ , Ps
∗, Pwns

∗ ,T s
∗ A,O

29–41 vα −vs Mα
∗ ,Pα

∗ ,Eα
∗ ,Gα

∗ ,T α
∗ ,T α

G∗ A,O

42–49 — T α
∗ ,Gκ

∗ for κ ∈ I−cα A,O

50–51 — E s
∗,Ewns

∗ ,T s
∗ A,I

52 — T s
∗ —

53–58 — T α
∗ , for α ∈ II ∪ IC A,O

59 — Sα
∗ —

The material derivative of the interface property Kα
E from the energy equation Eα

∗
for α ∈ II is rearranged analogously to Eqs. (C.3)–(C.5) such that we obtain
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εα ρα Dα Kα
E

Dt
=

〈
ρα

D′sKα
E

Dt

〉
Ωα ,Ω︸ ︷︷ ︸

4

+εα ρα ∇Kα
E︸ ︷︷ ︸

31

·(vα −vs)︸ ︷︷ ︸
35

−
〈

ρα(vα −vα)·(I− I′α)
〉

Ωα ,Ω
·∇Kα

E︸ ︷︷ ︸
55

−
〈
ρα(I− I′α)

〉
Ωα ,Ω

·∇Kα
E ·(vα −vs)︸ ︷︷ ︸

35

for α ∈ II . (C.86)

For the material derivative of the common curve property Kwns
E that appears in

Ewns
∗ , the rearrangement is analogous to that employed for an interface property.

First, we introduce the averaging operator to obtain

εwnsρwns DwnsKwns
E

Dt
=

〈
ρwns

DwnsKwns
E

Dt

〉
Ωwns,Ω

. (C.87)

We then introduce the identity provided by Eq. (7.99), with α and iα replaced by

wns, to the right side to obtain the expanded form

εwnsρwns DwnsKwns
E

Dt
=

〈
ρwns

D′′sKwns
E

Dt

〉
Ωwns,Ω︸ ︷︷ ︸

6

+εwnsρwns∇Kwns
E︸ ︷︷ ︸

37

·(vwns −vs)︸ ︷︷ ︸
41

−
〈
ρwns(vwns −vwns)·(I− I′′wns)

〉
Ωwns,Ω

·∇Kwns
E︸ ︷︷ ︸

58

−
〈
ρwns(I− I′′wns)

〉
Ωwns,Ω

·∇Kwns
E︸ ︷︷ ︸

40

·(vwns −vs)︸ ︷︷ ︸
41

. (C.88)

The remaining entries in lines 1–6 are the averages of terms involving material

derivatives of ψα . These are most easily obtained by examining a combination of the

partial time derivative and the gravitational terms originating in Gα
∗ . These manipu-

lations were previously performed for a fluid phase, a solid phase, and an interface.

The results apply here as well. For the fluid phases, based on Eq. (C.8), we have〈
ρα

∂ψα

∂ t

〉
Ωα ,Ω

− εα ρα gα ·vα =

〈
ρα

Dsψα

Dt

〉
Ωα ,Ω︸ ︷︷ ︸

2

−εα ρα gα︸ ︷︷ ︸
29

·(vα −vs)︸ ︷︷ ︸
30

for α ∈ If . (C.89)

For the solid phase, from Eq. (C.9), we have
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562 〈
ρs

∂ψs

∂ t

〉
Ωs,Ω

− εsρsgs·vs =

〈
ρs

Dsψs

Dt

〉
Ωs,Ω︸ ︷︷ ︸

2

. (C.90)

The derivation of the interface expressions corresponds to Eqs. (C.10)–(C.15)

such that, for interface α rather than just for interface ws,〈
ρα

[
∂ ′ψα

∂ t
+vα ·

(
I− I′α

)
·gα

]〉
Ωα ,Ω

− εα ρα gα ·vα

=

〈
ρα

D′sψα

Dt

〉
Ωα ,Ω︸ ︷︷ ︸

4

+
〈
ρα(vα −vs)·

(
I− I′α

)
·gα

〉
Ωα ,Ω︸ ︷︷ ︸

43,45,47

− εα ρα gα︸ ︷︷ ︸
32

·(vα −vs)︸ ︷︷ ︸
35

for α ∈ II . (C.91)

For the common curve, the derivation is similar to that used for the interfaces. In

fact, the derivations are identical if one replaces the single prime denoting a surface

with the double prime indicating that one is concerned with the direction of a curve.

Given the experience with this reality from the previous sections of the text, we

simply write down the result based on inspection of Eq. (C.91) as〈
ρwns

[
∂ ′′ψwns

∂ t
+vwns·

(
I− I′′wns

)
·gwns

]〉
Ωwns,Ω

− εwnsρwnsgwns·vwns

=

〈
ρwns

D′′sψwns

Dt

〉
Ωwns,Ω︸ ︷︷ ︸

6

+
〈
ρwns(vwns −vs)·

(
I− I′′wns

)
·gwns

〉
Ωwns,Ω︸ ︷︷ ︸

49

− εwnsρwnsgwns︸ ︷︷ ︸
37

·(vwns −vs)︸ ︷︷ ︸
41

. (C.92)

Lines 7 and 8

Contributions from Sα
∗ , Eα

∗ , Gα
∗ , and T s

∗ are employed to provide the elements of

lines 7 and 8 of the CEI. Construction of the terms requires application of the prod-

uct rule.

The non-advective entropy flux, ∇·(εα ϕα) for α ∈ I, is taken from Sα
∗ and

inserted into line 7 for all entities except the solid and into line 8 for the solid.

The divergences of the non-advective heat flux ∇·(εα qα) and the mechanical flux

∇·(εα qα
g ) are found in Eα

∗ and Gα
∗ , respectively. They can be combined and rear-

ranged using the product rule to obtain
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1

θ α
∇·
(

εα qα + εα qg

)
= ∇·

[
1

θ α
εα(qα +qg

]
︸ ︷︷ ︸

7,8

−εα(qα +qg)·∇
(

1

θ α

)
︸ ︷︷ ︸

12,13

. (C.93)

The remaining term needed for line 8 makes use of the product rule applied to a

term taken from T s
∗ such that

− 1

θ s
∇·
〈(

ts −
σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

=−∇·
[

1

θ s

〈(
ts −

σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω

]
︸ ︷︷ ︸

8

+

〈(
ts −

σσσ s:Cs

js
I

)
·
(
vs −vs)〉

Ωs,Ω
·∇
(

1

θ s

)
︸ ︷︷ ︸

13

. (C.94)

Lines 9–11

Lines 9–11 of Eq. (11.5) arise from equations Sα
∗ , Mα

∗ , Pα
∗ , Eα

∗ , and T α
∗ for α ∈ I,

as noted in Table C.1. In fact, there are no contributing terms in T w
∗ or T n

∗ .

As was determined in Eq. (C.19), the terms arising from Eα
∗ are rearranged using

the product rule such that

1

θ α
∇·
(

εαtα ·vα
)
=

1

θ α
∇·
(

εαtα
)
·vα

︸ ︷︷ ︸
Pα∗

+
1

θ α
εαtα :dα

︸ ︷︷ ︸
9,10,11

for α ∈ I . (C.95)

The term with the underbrace designated Pα
∗ cancels with an identical term from

the momentum equation and thus is not transferred to the CEI.

The remaining terms in Eq. (C.82) that multiply dα for α ∈ I are now collected

for lines 9–11 of Eq. (11.5). The contributions for the phases and interfaces are

the same as were obtained for the single-fluid-phase CEI, so we merely list those

results here. For the fluid phases, see Eq. (C.20), which—for the two fluid phases

here—may be written as

− 1

θ α

(
Eα −ηα θ α − εα ρα μα

)
I:dα =

1

θ α
εα pα I:dα

︸ ︷︷ ︸
6

for α ∈ If . (C.96)

The result for the solid phase is identical to Eq. (C.22),
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− 1

θ s

[(
Es −ηsθ s − εsσσσ s:

Cs

js − εsρsμs
)
I+ εsts

]
:ds =− 1

θ s
εsts:ds

︸ ︷︷ ︸
9

. (C.97)

For the interfaces, the result obtained in Eq. (C.23) applies and is

− 1

θ α

[(
Eα −ηα θ α − εα ρα μα

)
I−

〈
(I− I′α)γα

〉
Ωα ,Ω

]
:dα

=− 1

θ α

[
εα γα I−

〈
(I− I′α)γα

〉
Ωα ,Ω

]
:dα

︸ ︷︷ ︸
10

for α ∈ II . (C.98)

The terms for the wns common curve that multiply dwns are collected from Eq.

(C.82) to form the left side of the following equation:

− 1

θ wns

[(
Ewns −ηwnsθ wns − εwnsρwnsμwns

)
I+

〈
(I− I′′wns)γwns

〉
Ωwns,Ω

]
:dwns

=
1

θ wns

[
εwnsγwnsI−

〈
(I− I′′wns)γwns

〉
Ωwns,Ω

]
:dwns

︸ ︷︷ ︸
11

. (C.99)

To obtain the right side of Eq. (C.99), use was made of the Euler equation for com-

mon curve thermodynamics, the last equation in Table 7.1.

Lines 12 and 13

The terms in these lines have been obtained as a byproduct of the production of lines

7 and 8. The terms are indicated in Eqs. (C.93) and (C.94).

Line 14

These terms arise from Mα
∗ and Mκ

∗ for α ∈ I and κ ∈ Icα . The terms are obtained

via a simple rearrangement as in Eq. (C.24) such that

− 1

θ α

(
μα +ψα +Kα

E

)κ→α
M − 1

θ κ

(
μκ +ψκ +Kκ

E

)α→κ
M

=
α→κ
M

[
1

θ α

(
μα +Kα

E +ψα
)
− 1

θ κ

(
μκ +Kκ

E +ψκ
)]

︸ ︷︷ ︸
14

for α ∈ If,κ ∈ Icα , (C.100)

where use has been made of the fact that
α→κ
M =−

κ→α
M .
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Line 15

This line is similar to line 14 with the solid phase mass exchange with its connected

entities being of interest. The equation is obtained from Ms
∗ and Mκ

∗ for κ ∈ Ics.

The equation is a generalization of Eq. (C.25) to the case where there is more than

one member of the connected set of the s phase with

− 1

θ s

(
μs +ψs +Ks

E

)κ→s
M − 1

θ κ

(
μκ +ψκ +Kκ

E

) s→κ
M

=
s→κ
M

[
1

θ s

(
μs +Ks

E +ψs
)
− 1

θ κ

(
μκ +Kκ

E +ψκ
)]

︸ ︷︷ ︸
15

for κ ∈ Ics . (C.101)

The following identity is employed to add and subtract terms in Eq. (11.5),

1

θ s

σσσ s:Cs

3ρs js

s→κ
M︸ ︷︷ ︸

15

− 1

θ s

〈
σσσ s:Cs

3ρs js ρs(vs −vκ)·ns

〉
Ωκ ,Ω︸ ︷︷ ︸

16

= 0 for κ ∈ Ics . (C.102)

Line 16

A term in addition to that provided from Eq. (C.102) comes from T s
∗ with

− 1

θ s

〈
ns·(vκ −vs)σσσ s:

Cs

js

〉
Ωκ ,Ω

=
1

θ s

〈
σσσ s:

Cs

ρs js
ρs (vs −vκ) ·ns

〉
Ωκ ,Ω︸ ︷︷ ︸

16

for κ ∈ Ics . (C.103)

The other term in line 16 originates in T s
∗ . The rearrangement follows that presented

for the single-fluid-phase case in Eqs. (C.28)–(C.31). The result for both the ws and

ns interfaces is the same as that in Eq. (C.31) with

− 1

θ s

〈
ns·ts·(vs −vs)

〉
Ωκ ,Ω

=− 1

θ s

〈
ns·ts·ns

ρs
ρs(vs −vκ)·ns

〉
Ωκ ,Ω︸ ︷︷ ︸

16

− 1

θ κ︸︷︷︸
44,46

〈
ns·ts·nsns︸ ︷︷ ︸

44,46

·(vκ −vs)︸ ︷︷ ︸
45,47

〉
Ωκ ,Ω

− 1

θ s

〈
ns·ts·I′κ ·(vs −vs)

〉
Ωκ ,Ω︸ ︷︷ ︸

51
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−
(

1

θ s
− 1

θ κ

)〈
ns·ts·nsns·(vκ −vs)

〉
Ωκ ,Ω︸ ︷︷ ︸

23

for κ ∈ Ics . (C.104)

Line 17

These terms are mass exchanges between the interfaces and the common curve that

originate in Mα
∗ and Mwns

∗ for α ∈ I+cwns. The terms are obtained via a simple

rearrangement of the terms collected from Eq. (C.82) such that

− 1

θ α

(
μα +ψα +Kα

E

)wns→α
M − 1

θ wns

(
μwns +ψwns +Kwns

E

)α→wns
M

=
α→wns

M

[
1

θ α

(
μα +Kα

E +ψα
)
− 1

θ wns

(
μwns +Kwns

E +ψwns
)]

︸ ︷︷ ︸
17

for α ∈ II . (C.105)

Lines 18–20, 21–23, and 24–26

These three sets of lines account for energy exchanges between the fluid phases

and their boundaries, the solid phase and its boundaries, and the interfaces with the

common curve, respectively. The derivation of the forms of these terms is virtually

identical to that employed for the single-fluid-phase system in Eqs. (C.32)–(C.38),

with the only difference being the need to account for the presence of the common

curve. Thus, the derivation here will be abbreviated with deference to the earlier

derivation for additional details.

From the derivation relating to line 16, one term was developed in Eq. (C.104)

that has gone into line 23. An additional term involving pα for α ∈ If is obtained

from T α
∗ similarly to Eq. (C.32),

1

θ α

〈
nα ·(vκ −vs)pα

〉
Ωκ ,Ω

=

(
1

θ α
− 1

θ κ

)〈
nα ·(vκ −vs)pα

〉
Ωκ ,Ω︸ ︷︷ ︸

20

+
1

θ κ

〈
nα ·(vκ −vs)pα

〉
Ωκ ,Ω︸ ︷︷ ︸

42,44,46

for α ∈ If,κ ∈ Icf . (C.106)

A similar term for the interfacial tension is obtained from T α
∗ for α ∈ II where

averaging is performed over the common curve. This expression is
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1

θ α

〈
nα ·(vwns −vs)γα

〉
Ωwns,Ω

=

(
1

θ α
− 1

θ wns

)〈
nα ·(vwns −vs)γα

〉
Ωwns,Ω︸ ︷︷ ︸

26

+
1

θ wns

〈
nα ·(vwns −vs)γα

〉
Ωwns,Ω︸ ︷︷ ︸

48,49

for α ∈ II . (C.107)

The remaining terms in lines 18–26 arise from the terms in Eq. (C.82) that ac-

count for inter-entity exchanges and which have not already been employed in lines

14, 15, and 17. The terms originate in Eα
∗ , Pα

∗ , Mα
∗ , and Gα

∗ for α ∈ I. When the

terms are collected and denoted in the aggregate as X , the result is identical in ap-

pearance to Eq. (C.33). The only difference is that here the entity set, I, consists of

seven members (w, n, s, wn, ws, ns, and wns) with their associated connected sets.

The mathematical rearrangement of the equation is identical to the procession from

Eq. (C.33) to Eq. (C.38). At this point, one could expand out the summations and

then recombine them to obtain the entries in Eq. (11.5), as was done in obtaining Eq.

(C.38). However, because there are seven entities, this expansion is quite lengthy.

We will therefore use a more elegant approach.

First, we combine the first three pairs of summations in Eq. (C.37) into a single

pair so that we have

X = ∑
α∈I

∑
κ∈Icα

{
κ→α

Q +
κ→α

G +
κ→α
M

(
Eα,κ

+Kα,κ
E +ψα,κ

)

+

[
κ→α

T +
κ→α
M

(
vα,κ −vs

2

)]
·
(

vα,κ −vs
)} 1

θ α

− ∑
α∈I

∑
κ∈Icα

1

θ α

{
κ→α

T −
κ→α
M

[
vα −vs

2
−
(

vα,κ −vs
)]}

·
(

vα −vs
)
.

(C.108)

We now break up this equation up by explicitly writing the sums over the connected

sets, Icα , as sums over I−cα and I+cα . This yields

X = ∑
α∈I

∑
κ∈I−cα

{
κ→α

Q +
κ→α

G +
κ→α
M

(
Eα,κ

+Kα,κ
E +ψα,κ

)

+

[
κ→α

T +
κ→α
M

(
vα,κ −vs

2

)]
·
(

vα,κ −vs
)} 1

θ α

+ ∑
α∈I

∑
κ∈I+cα

{
κ→α

Q +
κ→α

G +
κ→α
M

(
Eα,κ

+Kα,κ
E +ψα,κ

)

+

[
κ→α

T +
κ→α
M

(
vα,κ −vs

2

)]
·
(

vα,κ −vs
)} 1

θ α
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− ∑
α∈I

∑
κ∈I−cα

1

θ α

{
κ→α

T −
κ→α
M

[
vα −vs

2
−
(

vα,κ −vs
)]}

·
(

vα −vs
)

− ∑
α∈I

∑
κ∈I+cα

1

θ α

{
κ→α

T −
κ→α
M

[
vα −vs

2
−
(

vα,κ −vs
)]}

·
(

vα −vs
)
.

(C.109)

In the first double summation, we will make use of the fact that an exchange from

κ to α is the negative of the exchange from α to κ and write all the exchange terms

going from the higher dimensional entity to the lower, i.e., from α to κ . We will

also make use of the fact that the double bar averages are of a higher dimensional

property over the boundary. In the second double summation, we will exchange α
with κ in all indices. Then we note that we can make use of the identity that applies

here,

∑
κ∈I

∑
α∈I+cκ

...= ∑
α∈I

∑
κ∈I−cα

... (C.110)

In the third double summation, we change the leading sign from minus to plus and

make all exchange term from α to κ . The last double summation is left unchanged

except that the form of the double overbar average is made explicit. With these

changes, we obtain

X =− ∑
α∈I

∑
κ∈I−cα

{
α→κ

Q +
α→κ

G +
α→κ
M

(
Eκ

α +Kκ
Eα +ψκ

α

)

+

[
α→κ

T +
α→κ
M

(
vκ

α −vs

2

)]
·
(

vκ
α −vs

)} 1

θ α

+ ∑
α∈I

∑
κ∈I−cα

{
α→κ

Q +
α→κ

G +
α→κ
M

(
Eκ

α +Kκ
Eα +ψκ

α

)

+

[
α→κ

T +
α→κ
M

(
vκ

α −vs

2

)]
·
(

vκ
α −vs

)} 1

θ κ

+ ∑
α∈I

∑
κ∈I−cα

1

θ α

{
α→κ

T −
α→κ
M

[
vα −vs

2
−
(

vκ
α −vs

)]}
·
(

vα −vs
)

− ∑
α∈I

∑
κ∈I+cα

1

θ α

{
κ→α

T −
κ→α
M

[
vα −vs

2
−
(

vα
κ −vs

)]}
·
(

vα −vs
)
.

(C.111)

The first double summation is the same as the second except for the inverse tem-

perature factor. Thus, these summations are easily combined, leading to the needed

expression
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X =− ∑
α∈I

∑
κ∈I−cα

{
α→κ

Q +
α→κ

G +
α→κ
M

(
Eκ

α +Kκ
Eα +ψκ

α

)
︸ ︷︷ ︸

18,21,24

+

[
α→κ

T +
α→κ
M

(
vκ

α −vs

2

)]
·
(

vκ
α −vs

)
︸ ︷︷ ︸

19,22,25

}(
1

θ α
− 1

θ κ

)
︸ ︷︷ ︸

20,23,26

+ ∑
α∈I

1

θ α︸︷︷︸
29,31

∑
κ∈I−cα

{
α→κ

T −
α→κ
M

[
vα −vs

2
−
(

vκ
α −vs

)]}
︸ ︷︷ ︸

30,33

·
(

vα −vs
)

︸ ︷︷ ︸
30,35

− ∑
α∈I

1

θ α︸︷︷︸
31,36

∑
κ∈I+cα

{
κ→α

T −
κ→α
M

[
vα −vs

2
−
(

vα
κ −vs

)]}
︸ ︷︷ ︸

32,38

·
(

vα −vs
)

︸ ︷︷ ︸
35,41

.

(C.112)

Lines 27 and 28

These lines account for the concentrated stress and heat conduction between the

solid phase and the common curve. The elements of these lines are found in E s
∗,

Ewns
∗ , Ps

∗, Pwns
∗ , and T s

∗ . The part of the concentrated stress that comes from T s
∗ is

written within an averaging operator that cannot be evaluated exactly. Therefore, to

ensure that all terms will be combined in the most useful fashion, we will make use

of the identity of Eq. (6.98) which provides

wns→s
T∗ = 〈t∗s ·ns〉Ωwns,Ω . (C.113)

The terms are collected in the order in which they appear in Eq. (C.82) in the fol-

lowing, and the substitution of Eq. (C.113) is employed to obtain(
wns→s

T∗ ·vwns
s +

wns→s
Q∗

)(
1

θ s
− 1

θ wns

)

−
wns→s

T∗ ·
(

vs

θ s
− vwns

θ wns

)
− 1

θ s

〈
ns·t∗s ·(vs −vs)

〉
Ωwns,Ω

=

(
〈t∗s ·ns〉Ωwns,Ω ·vwns

s +
wns→s

Q∗
)(

1

θ s
− 1

θ wns

)

−〈t∗s ·ns〉Ωwns,Ω ·
(

vs

θ s
− vwns

θ wns

)
− 1

θ s

〈
ns·t∗s ·(vs −vs)

〉
Ωwns,Ω

. (C.114)

The terms on the right side are then rearranged to the expressions that are needed

for Eq. (11.5) according to
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wns→s

T∗ ·vwns
s +

wns→s
Q∗

)(
1

θ s
− 1

θ wns

)

−
wns→s

T∗ ·
(

vs

θ s
− vwns

θ wns

)
− 1

θ s

〈
ns·t∗s ·(vs −vs)

〉
Ωwns,Ω

=
[wns→s

Q∗ +
〈
ns ·t∗s ·

(
vwns

s −vs
)〉

Ωwns,Ω︸ ︷︷ ︸
27

+ 〈ns·t∗s ·(vs −vwns)〉Ωwns,Ω

]( 1

θ s
− 1

θ wns

)
︸ ︷︷ ︸

28

+
1

θ wns︸ ︷︷ ︸
36

〈t∗s ·ns〉Ωwns,Ω ·
(
vwns −vs)︸ ︷︷ ︸

41

− 1

θ wns︸ ︷︷ ︸
48

〈
ns·t∗s ·(vwns −vs)

〉
Ωwns,Ω︸ ︷︷ ︸

49

− 1

θ s
〈ns·t∗s ·(vs −vwns)〉Ωwns,Ω︸ ︷︷ ︸

50

. (C.115)

Lines 29–41

Lines 29 and 30 accumulate terms that multiply vα − vs for α ∈ If. Many of these

terms have already been provided from Eqs. (C.84), (C.89), and (C.112). The re-

maining terms are provided directly, without further rearrangement from T α
∗ and

T α
G∗ with α ∈ {w,n}, in Eq. (C.82).

Terms that multiply the difference between the interface and solid velocities,

vα − vs for α ∈ II, appear in lines 31–35. Parts of these lines have already been

assembled from Eqs. (C.86), (C.91), and (C.112). Additional terms come from T α
∗

and T α
G∗ with α ∈ {wn,ws,ns} in Eq. (C.82). These terms have to be rearranged.

The collected terms are on the left of the following equation, and their rearranged

forms that appear in Eq. (11.5) are given on the right side,

1

θ α

〈
ηα
(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇θ α

+
1

θ α

〈
ρα
(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇μα

+
1

θ α

〈
ρα
(
vα −vs) ·(I− I′α

)〉
Ωα ,Ω

·∇ψ iα

=
1

θ α︸︷︷︸
31

[〈
ηα
(
I− I′α

)〉
Ωα ,Ω

·∇θ α
]

︸ ︷︷ ︸
34

·
(

vα −vs
)

︸ ︷︷ ︸
35

Appendix C



571

+
1

θ α

〈
ηα

(
vα −vα

)
·
(
I− I′α

)〉
Ωα ,Ω

·∇θ α

︸ ︷︷ ︸
53

+
1

θ α︸︷︷︸
31

[〈
ρα
(
I− I′α

)〉
Ωα ,Ω

·∇
(

μα +ψα
)]

·
(

vα −vs
)

︸ ︷︷ ︸
35

+
1

θ α

〈
ρα

(
vα −vα

)
·
(
I− I′α

)〉
Ωα ,Ω

·∇
(

μα +ψα
)

︸ ︷︷ ︸
55

for α ∈ II . (C.116)

Lines 36–41 consist of terms that multiply the difference between the common

curve and solid velocities, vwns − vs. Contributions to these lines have been made

in earlier manipulations as given in Eqs. (C.88), (C.92), (C.112), and (C.115). Ad-

ditional terms come from T wns
∗ and T wns

G∗ with rearrangements required. The con-

tributed terms on the left are rearranged to the expressions on the right in the fol-

lowing equation, and these are placed in Eq. (11.5):

1

θ wns

〈
ηwns

(
vwns −vs) ·(I− I′′wns

)〉
Ωwns,Ω

·∇θ wns

+
1

θ wns

〈
ρwns

(
vwns −vs) ·(I− I′′wns

)〉
Ωwns,Ω

·∇μwns

+
1

θ wns

〈
ρwns

(
vwns −vs) ·(I− I′′wns

)〉
Ωwns,Ω

·∇ψ iwns

=
1

θ wns︸ ︷︷ ︸
36

[〈
ηwns

(
I− I′′wns

)〉
Ωwns,Ω

·∇θ wns
]

︸ ︷︷ ︸
39

·
(
vwns −vs)︸ ︷︷ ︸

41

+
1

θ wns

〈
ηwns

(
vwns −vwns) ·(I− I′′wns

)〉
Ωwns,Ω

·∇θ wns

︸ ︷︷ ︸
56

+
1

θ wns︸ ︷︷ ︸
36

[〈
ρwns

(
I− I′′wns

)〉
Ωwns,Ω

·∇
(
μwns +ψwns)]︸ ︷︷ ︸

40

·
(
vwns −vs)︸ ︷︷ ︸

41

+
1

θ wns

〈
ρwns

(
vwns −vwns) ·(I− I′′wns

)〉
Ωwns,Ω

·∇
(
μwns +ψwns)

︸ ︷︷ ︸
58

. (C.117)

Lines 42–49

These lines are averages of the product of a microscale force with a microscale flux

where both factors are zero at equilibrium. Some of the terms in these equations

have already been developed while others are provided directly from elements of

Eq. (C.82) without additional rearrangement. The origins of these lines are:
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Lines 42 and 43: Eqs. (C.91), (C.106), and a term from T wn
∗ ;

Lines 44 and 45: Eqs. (C.91), (C.104), (C.106), and a term from T ws
∗ ;

Lines 46 and 47: Eqs. (C.91), (C.104), (C.106), and a term from T ns
∗ ; and

Lines 48 and 49: Eqs. (C.92), (C.107), (C.115), and a term from T wns
∗ .

Lines 50–59

All these terms have either been developed as a byproduct of consideration of previ-

ous lines or are pulled in directly from Eq. (C.82). In brief, the sources of the terms

are as follows:

Lines 50 and 51: Eqs. (C.115) and (C.104);

Line 52: This is obtained directly from T s
∗ ;

Lines 53–58: Eqs. (C.86), (C.88), (C.116), and (C.117); and

Line 59: This is obtained directly from Ss
∗ .
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advection, 11

advective flux, 33

advective transport, 35

average

derivatives, 487

intrinsic general, 191

intrinsic special, 191

mass-special, 191

mass general, 191

products, 194

species mass general, 192

species mass specific, 192

species quantity mass, 192

unique, 192

averaging, 189

averaging operator, 190, 487

interface, 190

phase, 204

averaging theorems, 18, 203, 311

common curves, 203

common points, 203

curves, 499

evolution equations, 285, 287

interfaces, 203

phases, 203

points, 504

surfaces, 493, 494

volumes, 490

balance equations, 3, 33, 48, 184

body force potential, 41, 160

body force potential common curve, 72

body force potential interface, 62

body force potential phase, 49

common points, 188

entropy, 13, 15, 22, 32, 41

entropy common curve, 71

entropy interface, 60

entropy phase, 48

macroscale, 188, 203

macroscale body force potential phase, 225

macroscale body force poten-
tial species phase, 224

macroscale common curve, 232

macroscale entity, 203, 318

macroscale entropy mixed form, 239

macroscale entropy phase, 223

macroscale entropy species phase, 221

macroscale interface, 228

macroscale mixed forms, 236

macroscale phase, 204

macroscale potential, 319

macroscale potential species, 317

macroscale species, 203, 361

species, 36

species body force potential common curve,
72

species body force potential interface, 61

species body force potential phase, 49

species entropy common curve, 71

species entropy interface, 60

species entropy phase, 48

Biot coefficient, 348, 350

body force

barycentric sum, 45

Coriolis, 45

electromagnetic, 45

gravitational, 45

body force potential

per unit area, 61

per unit mass, 49

per volume, 49

rate interface, 61

body source, 33, 35

573W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI: 10.1007/978-3-319-04010-3,
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574 Index

apparent, 218

boundary

closed phase, 197

external, 491

external phase, 197

internal, 491

internal phase, 197

surface external, 496

surface internal, 496

boundary and initial conditions, 26

bulk compressibility, 352

bulk modulus

skeleton, 349

solid grains, 350

capillarity effects, 453

capillary pressure, 150, 151

macroscale, 436

microscale, 454

Cauchy-Green

left deformation tensor, 104

right deformation tensor, 104, 127

chemical equilibrium, 130

chemical potential, 15, 94, 104

macroscale, 250

chemical reactions, 362, 464

chemical species, 37

closed models, 26, 312

macroscale single-fluid-phase flow, 346

macroscale single-fluid-phase transport, 398

closed surface, 475

closure approximations, 157, 312, 448, 451

species and interactions, 394

closure relations, 14, 25, 26, 45, 125, 162, 311,
451, 488

chemical reactions, 181

conjugate force-flux, 175, 345

cross-coupled, 176, 181, 345, 393, 402

diffusion velocity, 179

dispersion, 395

energy transfer, 397

experimental observations, 156

heat flux, 394

macroscale, 245

macroscale stress tensors, 345

mass transfer, 397

microscale, 155, 184

microscale isotropic systems, 183

microscale stress tensor, 176

momentum transfer, 398

non-advective heat flux, 180

non-uniqueness, 176

nonlinear, 464

reactions, 396

single-fluid system, 172

solid deformation, 398

stress tensor, 394

subscale simulations, 156

theoretical, 156

common curve, 406

body force, 66

boundary, 63

concentrated body sources, 69

curvature, 126, 481

densities, 64

divergence, 64, 65

domain, 64

dynamics, 425

energy, 485

extent, 233

force, 146

general point equation, 67

geodesic curvature, 109

geodesic torsion, 109

gradient, 64

integration, 476

length, 9, 63, 187, 233

length generation, 300

macroscale equations, 232

massless, 124

motion, 296

normal curvature, 109

orientation, 235

outward unit vector, 63

singularity, 66

time derivative, 64

unit tensor, 64

unit vector tangent, 63

velocity, 63

composition, 2

compositional models, 36, 450, 460

compositional system, 14, 358

concentrated flux, 74

concentrated force, 191, 198, 201, 205, 213,
233, 234, 264, 408, 416

conservation equations, 3, 13, 26, 33, 48, 184,
312

angular momentum, 32

common curves, 62

common points, 188

energy, 2, 32, 41

energy common curve, 71

energy interface, 59

energy phase, 45, 47

general microscale common curve, 63, 64,
66

general microscale common point, 73

general microscale interface, 51
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general microscale phase, 38

general microscale species entity, 75

interfaces, 55

macroscale, 188, 203, 316

macroscale common curve, 232

macroscale energy phase, 219

macroscale energy species, 317

macroscale energy species phase, 216

macroscale entity, 203, 318

macroscale interface, 228

macroscale internal energy, 242, 244, 400

macroscale mass phase, 208, 438

macroscale mass species, 317, 362, 399

macroscale mass species interface, 228

macroscale mass species phase, 204

macroscale mixed forms, 236

macroscale momentum, 400

macroscale momentum common curve, 233,
439

macroscale momentum interface, 438

macroscale momentum phase, 215, 438

macroscale momentum solid, 439

macroscale momentum species, 317

macroscale momentum species phase, 211

macroscale phase, 204

macroscale species, 203, 361

mass, 2, 32, 41

mass common curve, 69

mass interface, 58

mass phase, 43

material derivative mass, 43

microscale, 13, 155, 160

microscale momentum phase, 178

momentum, 2, 32, 41

momentum common curve, 69

momentum common point, 75

momentum interface, 58

momentum phase, 44

phases, 41

species, 36

species energy common curve, 71

species energy interface, 59

species energy phase, 45

species in interfaces, 55

species mass common curve, 69

species mass common point, 74

species mass interface, 56

species mass phase, 42

species momentum common curve, 69

species momentum interface, 58

species momentum phase, 44, 45

conservation principles, 19

interface, 50

macroscale, 187

microscale, 31

constitutive equations, 14, 236, 238

contact angle, 149, 297, 303, 424, 457

conventional multiphase models, 51, 453, 454

coordinate system

global, 488

local, 488

coupled symmetries, 182

Curie symmetry principle, 182

curvature, 457

first, 107

Gaussian, 107

geodesic, 149, 299, 425

geodesic deviation, 299, 305

interface, 107

interfacial deviation, 298

interfacial deviation approximation, 302

invariants, 107

macroscale surface, 291, 338

microscale surface, 291, 297

normal, 149, 299, 425

normal deviation, 299

second, 107

sphere, 107

Darcy’s law, 353, 461

delta function, 476

densities, 187

density

common curve length, 457

interfacial area, 457

differential geometry, 285, 287

diffusion, 11

diffusive kinetic energy, 170

Dirac delta function, 146

discontinuities, 32

dispersion, 11, 390

dissipative processes, 161

conduction, 175

diffusion, 174, 179

diffusive enthalpy transport, 180

heat conduction, 180

viscous, 175

domain, 33

common curve, 63

entity, 192

global, 490

interface, 51

phase, 38

Dufour effect, 182, 184, 185

electrical charge, 31

electrodynamic effects, 84

energy
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advective transport, 47

body source, 47

heat flux, 47, 390

inter-species-transport, 47

non-advective surface source, 47

non-advective transport, 390

energy conservation, 8

microscale, 157

energy density, 91

energy per mass, 92

enthalpy, 95, 123

entities, 9, 18, 37, 130, 187, 188, 235, 405

common curves, 8, 14, 18, 31, 62, 64

common points, 18, 31, 72

index sets, 133

interfaces, 8, 14, 18, 31

phases, 8, 14, 18, 31

types, 32

entity measure, 193

specific common curve length, 193

specific interfacial area, 193

volume fraction, 193

entropy, 80, 84, 94

advective transport, 48

density, 48, 91, 110

dissipative processes, 48

flux vector, 48

generation, 48, 125, 157, 180, 285, 312, 320

generation rate, 184, 316, 347

inequality, 162

maximum, 84

microscale balance, 159

microscale production, 159

microscale species balance, 159

microscale species generation, 159

production, 161, 342

production postulate, 161

source, 48

zero production rate, 161

entropy inequality

augmented, 23, 184, 361, 408

augmented macroscale single-fluid flow, 319

constrained, 22, 23, 157, 313, 361, 449, 457,
463

constrained macroscale, 507

constrained macroscale single-fluid flow,
319, 328, 507

constrained macroscale single-fluid trans-
port, 373, 519

constrained macroscale two-fluid flow, 533

constrained macroscale two-phase flow, 408

constrained microscale single fluid, 166, 184

force-flux form, 171, 285, 373, 413, 414

macroscale simplified single-phase trans-
port, 380

macroscale single-phase flow, 332

macroscale single fluid, 317

microscale single fluid, 159, 161

simplified, 24, 157, 169, 312, 449, 457, 463

simplified macroscale single-fluid transport,
373

simplified macroscale two-fluid flow, 413

simplified microscale isothermal, 175

simplified microscale single fluid, 174, 184

simplified microscale single species, 175

simplified two-phase flow, 429

equations of state, 15, 26, 343, 352, 390, 444,
464

equilibrium, 11, 16, 125

equilibrium conditions, 157, 171, 184

common curve, 152

elastic solid, 154

interface, 142

macroscale, 278

macroscale common curve, 282

macroscale interfaces, 282

macroscale potentials, 279, 281

macroscale solid, 280, 282

macroscale temperature, 279, 281

macroscale two phase, 278

single-fluid-phase system, 141

single fluid, 154

solid, 142, 144, 151, 154

species potentials, 141, 144

temperature, 141, 144

three-phase system, 280

three fluid phases, 154

two-fluid-phase flow, 144

two-fluid-phase system, 142, 150

Eulerian strain tensor, 104

Euler equation, 83, 98, 110, 111, 123, 167,
512, 526

common curve, 109

common curve macroscale, 253

common curve species, 116

enthalpy, 95

fluid, 88

fluid macroscale, 251

fluid species, 113

fluid species macroscale, 250

interface, 108

interface macroscale, 253

interface species, 115

macroscale, 248

solid, 105

solid macroscale, 252

solid species, 114
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solid species macroscale, 251

evolution approximation, 300

common curve velocity, 307

curvature deviation, 304

fluid-fluid interface, 301

interface velocity, 306

solid behavior, 290

evolution equations, 21, 26, 285, 419

common curve, 299, 301, 304, 305

common curve length, 287

fluid-fluid interface, 296

fluid-solid interface, 301

interface, 290

interfacial area, 287

interfacial area processes, 304

phase, 289

single-fluid-phase flow, 289

solid phase wetting, 301

volume fraction, 286

exchange, 362

body force potential entity, 225

body force potential species, 224

concentrated, 227

concentrated entropy, 223

energy concentrated, 218

energy entity, 221

energy species, 218

entropy, 223, 325

entropy species, 222

integration, 206

mass, 386

mass entity, 208, 326, 355

mass species, 205, 229

momentum, 436

momentum entity, 215, 234

momentum species, 213

properties, 206

set mixed form, 240, 242

set species, 236

flow model, 358

fluid compressibility, 352

fluid saturation, 193

force-flux independence, 161

force-flux products, 157, 184, 319, 344, 383,
437

force balance solid, 437

force spreading, 437

formal averaging, 20

Fourier’s law, 181, 182, 185

friction, 45

generation, 33

body force potential, 232

geometric densities, 285

Gibbs-Duhem equation, 83, 89, 106, 110, 111,
123, 335, 440

common curve, 109

common curve species, 116

fluid species, 113

interface, 108, 271

interface species, 116

macroscale, 254

solid species, 115

Gibbs free energy, 97, 123, 168

grand canonical potential, 123

gravitational potential, 342

gravity, 342

Green’s deformation tensor, 104, 127, 265

groundwater flow equation, 353

heat capacity, 97, 100, 101, 123

heat flux, 46, 359

Helmholtz free energy, 93, 123

Helmholtz potential, 93

hierarchy of models, 313, 358, 448

incompressible fluid, 179

index set, 37, 56, 193, 474

common curves, 111

common points, 483

connected entities, 198, 201, 228

fluid phases, 110

interfaces, 111, 200

phases, 197

single-phase flow entities, 341

three-phase system, 280, 408

two-phase system, 278

indicator function, 193, 473, 487, 490

common curve, 474

curve, 499

gradient, 478, 491

interface, 474

surface, 493

surface integral spatial derivative, 494

surface time derivative, 494

volume, 474, 490

volume integral spatial derivative, 491

volume integration, 475

volume time derivative, 491

interface, 2, 50, 228

body source, 55

boundary curve, 51

curvature, 126, 150, 296, 478

definition, 55

deformation, 51

densities, 52

divergence operator, 53
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energy, 481

force balance, 422

gradient operator, 53

integration, 475

macroscale quantities, 230

massless, 123, 286

mass density, 230

normal vectors, 51

orientation, 228

temporal derivative, 53

translation, 51

types, 405

unit tensor, 53

interfacial area, 9, 50, 187, 228

generation, 298

specific, 298

interfacial tension, 109, 123, 150, 228, 343

internal energy, 46, 80, 84

internal energy density, 110

isothermal compressibility, 102

jacobian, 265

solid, 106

jump condition, 51, 74, 286

energy, 60

mass, 58

momentum, 59

kinematics, 285, 290

kinematic equations, 455

kinetic energy, 46, 326

kinetic theory, 82, 156

Kronecker delta, 59

Lagrange multipliers, 162, 184, 320, 361, 364,
409

Lagrangian strain tensor, 104

Lamé constants, 349

land-atmosphere interactions, 462

lattice Boltzmann method, 27, 457

length scale, 1, 2, 4–6, 407

consistency, 315

Darcy, 9

larger scale, 19

macroscale, 6, 9, 18, 82, 187, 311, 449, 461

megascale, 6, 10, 18, 83, 449, 461

microscale, 6, 7, 37, 82, 157, 187

mixed, 461, 462

molecular, 6, 157

pore, 453

resolution, 6, 8, 157

separated, 6

separation, 9

lineal tension, 109

magnetic fields, 182

mass

density common curve, 72

density common point, 74

density interface, 57, 61

density macroscale, 193

density macroscale common curve, 193

density macroscale interface, 193

density macroscale phase, 193

density phase, 61

generation, 57

inter-entity exchange, 57

macroscale bulk density, 194

reactions, 42, 57

mass conservation, 8

mass exchange, 11

material derivative, 256

common curve, 275

elimination, 163

interface, 270

macroscale species velocity, 206

phase velocity, 208

material properties, 45

Maxwell relations, 101

mechanistic, 1, 2

mechanistic models

microscale, 155

micromodel, 2

microscale modeling, 451, 453, 455, 457

mixed wettability, 405

model closure, 188

microscale, 155

model extensions, 447

molecular dynamics, 82, 156

momentum

advective transport, 45

body forces, 45

inter-species transfer, 45

surface forces, 45

momentum conservation, 8

microscale, 157

morphology, 2, 5, 130, 343, 405

multiphysics, 462

multiscale systems, 465

Navier-Stokes equation, 179, 182, 185

Newtonian fluids, 178

non-advective boundary source, 33, 35

non-Newtonian fluids, 178

normal vectors, 149

Onsager reciprocal relations, 182

order differentiation and integration, 490

orientation tensor, 455, 457
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common curve, 299, 435

interface, 290, 296, 336, 343, 435

partial mass energy, 217

phase, 2

multiphase, 2

single, 2

solid, 2

two phase, 2

Piola-Kirchhoff second stress tensor, 104

Poisson’s ratio, 349

pore network models, 27

porosity, 9, 193

porous medium, 2

potentials

body force, 17

chemical, 17

gravitational, 17

pressure, 15, 45, 343

macroscale, 250

mechanical, 186

thermodynamic, 186

primary restriction, 157, 312, 448, 449

phenomena modeled, 315, 360, 407

smooth solid surface, 407

system and scale, 314, 360, 407

thermodynamic theory, 315, 360, 407

product breaking, 336, 376, 419, 426

radiation, 46

rate of accumulation, 33, 35

rate of strain tensor, 15

macroscale phase, 208

macroscale species phase, 206

reactions, 2, 11, 167

affinity, 168, 382

complex, 168

elementary, 168

first order, 168

fractional order, 168

heterogeneous, 167

homogeneous, 167

molar rate, 168

molecular rate, 382

monomolecular, 396

polymolecular, 396

scale dependent, 396

second order, 168

third order, 168

representative elementary volume, 10

REV, 19, 187, 449

scale invariance, 6

secondary restriction, 157, 312, 333, 448, 451

affinity of a chemical reaction, 382

body force potential, 381

deviation velocities squared, 381

isothermal, 387, 388, 432

isothermal, no mass exchange, 340, 384

massless interface, 381

massless interfaces and common curve, 432

no interface properties, 355

no mass exchange, 432

SEI approximation, 157, 312, 333, 448, 450,
451

wn interface conditions, 421

ws and ns interface conditions, 423

basic, 415

common curve conditions, 425

complex, 419

concentrated stress constraint, 417

entity velocity deviations, 416

evolution product, 337, 377

geometric orientation products, 336, 377,
426

interface velocity difference, 335, 376

macroscopically simple system, 333, 375,
415

pressure/tension products, 427

product of curvature and tension, 338, 377

solid-phase surface stress, 418

solid-phase velocity, 335, 375

solid stress and mass exchange, 418

stress difference and mass exchange, 335,
376

single-fluid-phase

flow, 311

microscale model, 157

single-fluid-phase system

index sets, 138

singularity, 201, 205, 408

solid

compressibility, 352

concentrated stress, 146

dilation, 296

displacement vector, 349

elastic, 347, 407

infinitesimal strain tensor, 349

passive, 351

Soret effect, 182, 184, 185

species mass conservation

microscale, 157

species transport, 2, 240

state equations

curvature, 454

fluid-fluid interfacial area density, 453

fluid-solid interfacial area density, 453

statistical mechanics, 82, 156, 315
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steady state, 11

stochastic systems, 449, 465

stress tensor, 15, 45, 104

deviatoric, 135

entity-based, 45, 59

macroscale entity, 195, 435

macroscale solid phase, 327

macroscale species phase, 212

microscale, 176

microscale species solid, 266

species-based, 45, 59, 359

viscous, 176

subscale modeling, 27, 452

surfactants, 50

tangent vectors, 149

TCAT, 3, 13

analysis, 358

elements, 3, 13, 358, 393, 408

temperature, 15, 104

macroscale, 250

tensor

isotropic fourth order, 177

theorems, 187

averaging, 196, 487

curves, 196, 488

D[0,(3,0),0], 203, 504

D[1,(0,0),1], 65

D[1,(3,0),0], 202, 233, 234, 502

D[2,(0,0),2], 53

D[2,(3,0),0], 200, 201, 228, 229, 272, 496

D[3,(0,0),3], 39

D[3,(3,0),0], 197, 200, 205, 208, 211, 216,
222, 224, 492

divergence, 489

G[0,(3,0),0], 203, 504

G[1,(3,0),0], 202, 502

G[2,(3,0),0], 201, 497

G[3,(3,0),0], 200, 492

G[3-n,(3,0),0], 288

notation, 39, 196, 488

phases, 197

points, 196

surfaces, 196, 488

T[0,(3,0),0], 203, 504

T[1,(0,0),1], 64

T[1,(3,0),0], 202, 233, 234, 503

T[2,(0,0),2], 52

T[2,(3,0),0], 201, 228, 229, 272, 498

T[3,(0,0),3], 39

T[3,(3,0),0], 200, 205, 208, 211, 216, 222,
224, 493

T[3-n,(3,0),0], 287

volumes, 196, 488

thermal expansion coefficient, 102

thermodynamically consistent modeling, 17

thermodynamics, 3

averaging, 249

classical, 80

classical irreversible, 16, 80, 116, 158, 247,
315, 360, 407, 463

common curves, 81, 106, 109

common points, 81

consistency, 452

continuum-scale equilibrium, 82

continuum scale, 82

curvature, 107

differential relations, 83

dynamic equations, 316

equations of state, 83, 87, 92, 94, 96,
98–100, 105

equilibrium, 80, 82, 126

equilibrium conditions, 162

equilibrium state, 80

extended irreversible, 80, 121

extensive heat capacity, 89

extensive quantities, 31

extensive variables, 48, 84

extremum properties, 85

fluids, 81, 83

forces and fluxes, 25, 161, 312

Gibbsian approach, 80

gravitational effects, 84

intensive quantities, 31

intensive variables, 84

interfaces, 81, 106, 111

internal energy per area, 108

internal variables, 121

irreversible processes, 48

larger scale, 20, 79

local equilibrium, 16, 81, 117, 463

macroscale, 82, 247

macroscale dynamic equations, 259

macroscale dynamic equation fluid, 261

macroscale dynamic relations, 318

macroscale energy dynamics common curve,
276

macroscale energy dynamics fluid, 256

macroscale energy dynamics interface, 269,
274

macroscale energy dynamics solid, 262, 268

macroscale entropy density, 249

macroscale local equilibrium, 254

macroscale partial mass volume, 250, 252

macroscale potential dynamics com-
mon curve, 276, 277

macroscale potential dynamics fluid, 259,
261
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macroscale potential dynamics interface,
273, 274

macroscale potential dynamics solid, 268,
269

macroscale solid elastic, 315

maximum entropy, 129, 161

microscale, 15, 79, 82

microscale equilibrium conditions, 16, 125

minimum energy, 129, 161

molecular equilibrium, 82

multiphase microscale, 110

non-equilibrium systems, 80

normalized, 90

partial molar quantities, 112

partial mass enthalpy, 173

partial mass fluid, 112

partial mass interface, 115

partial mass potentials, 114

partial mass quantities, 112

partial mass solid, 114

physically based, 83

postulates, 80, 83, 85

potentials, 92

rational, 80, 120

rational extended, 80

role, 79

second law, 21, 23, 184

simple system, 84

solids, 81, 102

solid internal energy, 105

species mass, 84

surface tension, 108

theories, 463

theory, 450

theory of internal variables, 80

volume, 84

thermodynamic equations, 3

thermodynamic quantities

extensive, 15

intensive, 15

thermodynamic relations, 26

microscale, 160

thermomechanically simple system, 170

thermostatics, 80

three-fluid-phase flow, 460

time scale, 1, 4, 11

general, 12

thermodynamic, 11

topology, 2, 5, 130

transition region, 50, 463

two-fluid-phase system

index sets, 143

two-phase flow, 405

unit tensor

surface, 200, 496

unit tensors, 149

upscaling, 18

validation, 27, 188, 450, 452, 456

variable set

single-phase flow, 341

single-phase transport, 385, 387, 389, 392

two-fluid-phase flow, 434

variation

body force potential, 134

common curve integral, 481

common point properties, 134

energy densities, 133

extremum, 470

first-order, 470

fixed-point, 477

fixed-point indicator function, 474

functional, 469, 478, 481

functional curve, 485

functional interface, 480

functional volume, 478

general equilibrium condition, 137

gravitational potential, 134

Green’s deformation tensor, 127

increment, 471

indicator function, 474

jacobian, 127, 153, 472

single-fluid-phase system, 138

surface curvature, 153

surface gravitational potential, 153

surface integral, 478

transformation function, 470

transformed state, 471

two-fluid-phase system, 142

unit normal vector, 153

volume integral, 477

variational

analysis, 125, 127, 145, 469

calculus, 125

equalities, 127

equilibrium conditions, 140

independence, 127

integration, 132

methods, 16, 469

multiphase analysis, 133

problems, 469

theorem, 125

velocity

barycentric, 44, 58

boundary, 491

boundary normal, 200

boundary tangential, 200
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common curve normal, 299
curve, 439, 494
diffusion, 44, 231, 240
dyadic product fluctuations, 196
interface normal, 297, 439
interface normal direction, 231
macroscale diffusion, 210
macroscale dispersive, 362
macroscale entity, 193, 194
macroscale entity boundary, 194
macroscale normal, 306
macroscale species entity, 194
normal, 287
normal interface approximation, 306

solid, 295

tangent common curve approximation, 307

verification, 458

viscosity

bulk, 177, 186

dynamic, 177

volume fraction, 187, 342, 405

wetted fraction solid, 294, 406

Young’s modulus, 349

Young-Laplace equation, 142, 150

Young equation, 152
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