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Preface

I have been associated with uncertainty calculations for quite sometime. Asia
Metrology Program (APMP) took interest in unification of expressing the mea-
surement results along with uncertainty. In those days the uncertainty components
were divided according to source of errors. The errors were named as random
and systematic errors. Hence components of uncertainty were named random
uncertainty and systematic uncertainty. Around 1980, BIPM took initiative by
circulating questioners to the countries who were members of Metre Convention.
Every member showed keen interest in expressing the uncertainty in a harmonious
way. A small but path-breaking document was produced in 1980, which emphasized
that uncertainty is not of different kinds; there are only the ways by which
one arrives at the uncertainty value, namely Type A and Type B evaluations of
uncertainty. Further the document emphasized that square root of variance or a
quantity similar to it is the standard uncertainty.

The book is intended to serve as a guide for expressing the measurement result
along with uncertainty. The book conforms to “The Guide to the expression of
uncertainty in Measurement” jointly produced by International Organization for
Standardization (ISO), International Bureau of Weights and Measures (BIPM),
International Federation of Clinical Chemistry (IFCC), International Union of Pure
and Applied Chemistry (IUPAC), International Union of Pure and Applied Physics
(IUPAP) and International Organization of Legal Metrology (OIML). The book
differs from ISO Guide in explaining the basic theory behind relations provided by
the Guide. Lots of examples are provided to support the theoretical formulations.
All technical and scientific terms used have been explained in the first chapter
itself. Various distributions used in uncertainty calculations have been explained
in Chaps. 2 and 3. The stress has been given on the properties of Gaussian
(Normal) probability distribution. Evaluation of data weather primary or secondary
is one special topic discussed in Chap. 4. For each statistical parameter like mean
or standard deviation lots of practical examples have been cited. The chapter is
highly useful for the nodal laboratories involved in international measurement
programmes. Propagation of uncertainty has been discussed by first explaining
the Taylor expansion and highlighting the need for the function to be linear. The
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process of calibration of the measuring instruments at a few points and expressing
the whole calibration result in the form of the function of the input quantity has
been discussed by citing several examples in Chap. 6. The functions discussed
are linear, exponential, power and polynomials types. Detailed steps for arriving
at the uncertainty, starting from the modelling of the measurand as a function of
input quantities, have been given in Chap. 7. The advantages and limitations of ISO
GUM method have been given. Monte Carlo and Bayesian methods of arriving at
the uncertainty have been mentioned. The detailed procedure for calibrating the
surface plate and theoretical deductions of height at various points along the various
designated lines has been given in Chap. 8. The chapter includes the uncertainty
calculations between the points on the same line and also on different lines. The
uncertainty calculation as per NABL (National Accreditation Board for Testing and
Calibration Laboratories) requirement has also been given in calibration of surface
Chap. 8. The uncertainty calculations in mass measurement have been dealt with
in Chap. 9. While discussing various sources of errors such as that of buoyancy
correction, uncertainty requirements in measurement of various environmental
parameters have also been cited. Uncertainty in volume measurements by various
methods has been detailed. Uncertainty in the calibration of volumetric glassware
by gravimetric method, larger capacity measures by volumetric method and storage
tanks by dimensional measurements have been discussed in detail in Chap. 10.
The uncertainty calculation in the calibration hydrometers by comparison method
has also been given. Chapter 11 deals with the uncertainty calculation in the
measurement of and calibration of measuring instruments for length, pressure, tem-
perature and luminous flux. Chapter 12 deals with electrical parameters; uncertainty
in measurement of and calibration of measuring instruments has been detailed.
Uncertainty calculations of vector measurands which are the function of dependent
input quantities have been discussed. Some important Tables for Normal (Gaussian)
probability distributions, Student’s t distribution, �2 and Fisher’s F values for
different percentage points have been given. The limits for mean and standard
deviations for various degrees of freedom have also been tabulated. A bibliography
of recent papers, books and documents on uncertainty in measurement has been
appended.

I would like to thank Mr. Vivek Bagga for discussing the calibration of surface
plates. My earnest thanks are due to Mrs. Reeta Gupta, Scientist National Physical
Laboratory, for logistic support. I wish to record my profound appreciation for
the keen interest and strenuous efforts put in by Dr. Habil. Claus Ascheron, the
Executive Editor Physics in making it possible to bring the manuscript to the desired
level and to Springer Verlag GmbH, Germany, in bringing this book to light.

New Delhi S.V. Gupta
July 2011
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Chapter 1
Some Important Definitions

1.1 Introduction

The very nature of all physical measurements suggests that it is impossible to carry
out a measurement of any physical quantity with no error. Hence, whenever the
value of a physical quantity is determined through a measurement process, it is
only the best estimate of the value of the physical quantity obtained from the
given experimental data. The estimated value may be slightly less or more than
the true value of the physical quantity. In an experimental work, basically four
major elements are involved, namely (1) instruments, (2) observer, (3) measurement
process, and (4) statistics. The instruments include environment conditions and
influence quantities. Even when appropriate corrections for known or suspected
sources of errors have been applied, there still remains an uncertainty, that is, a
doubt about how well the result of a measurement represents the true value of the
quantity being measured. During a measurement, the errors may creep in due to
inherent error in instruments, effect of environment on an instrument reading, the
error in reading the instrument by the observer and errors incurred due to a particular
process of measurement. So when giving a measured value of any quantity, one will
never be sure enough to give a specific value but would like to say that measured
value of the same quantity may lie in a certain range.

While entering into the further details of statistics, measuring instruments and
other details, we are likely to come across a few terms not well known to everybody
so we would like to define them. Efforts have been made to classify them according
to their association and nature.

In general a measurement of a quantity and estimating the uncertainty involve:

• Quantity
• Measurement process
• Statistics involved
• Instruments and standards used
• Influence quantities
• Special mathematical functions

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5 1,
© Springer-Verlag Berlin Heidelberg 2012
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2 1 Some Important Definitions

It is proposed to discuss various terms likely to appear in the forthcoming chapters
under the aforesaid categories.

1.2 Terms Pertaining to Quantity

1.2.1 Quantity

Quantity is the property of a phenomenon, body, or substance, to which a number
may be assigned with respect to reference.

The reference can be a unit of measurement, a measurement procedure, or a
reference material.

For example, mass of a body is a quantity which is the property of that body and
can be assigned a number with respect to the measurement unit, namely kilogram.
Hardness is the property of a material, which can be assigned a number with
reference to a particular procedure, for example, Rockwell scale. The values of
the hardness of same material (same quantity) will be different on Rockwell and
Vickers scales, and hence are dependent upon the procedure. The value of hardness
may also be stated in terms of material, if stated in mho scale. Reference material,
in this case, is diamond having the value 10 on mho scale.

There are quite a large number of quantities such as length, mass, volume, accel-
eration, momentum, electric charge, current, and potential inductance. However,
most of them are interrelated. Hence, a much smaller number of quantities are
required to represent all other quantities.

1.2.2 System of Base Quantities

It is a set of base quantities such that every other quantity can be expressed in terms
of base quantity or their combination of. For example, all mechanical quantities
can be expressed in terms of mass, length, and time. The International system of
units is based on seven base quantities, namely mass, length, time, electric current,
temperature, intensity of illumination, and mole.

Base quantities with their respective symbols and symbols of their dimensions,
as adopted in International system of units, are given in Table 1.1.

1.2.3 Derived Quantity

A quantity in a system of quantities, which is defined in terms of base quantities, is
known as a derived quantity. For example, velocity is the ratio of length and time,
while kinetic energy is the product of mass of the moving body and square of its
velocity.
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Table 1.1 Base quantities symbols and their units with respective symbols

Quantity Symbol Name of unit Symbol of unit Symbol of dimension

Length L, x, r, etc. Metre m L
Mass m Kilogram kg M
Time T Second s T
Electric current I; i ampere A I
Intensity of illumination Iv candela cd J
Temperature T kelvin K ‚

Mole n Mole mol N

1.2.4 Quantity Equation

Quantity equation is a mathematical relationship between the quantities (base as
well as derived). If a quantity Q1 is a product of two quantities Q2, Q3 and number
n, then quantity equation of Q1 is

Q1 D n � Q2 � Q3: (1.1)

1.2.5 Dimension of a Quantity

If a quantity is expressed as a product of several base quantities with symbols as
given in Table 1.1 as

Q D L˛M ˇT �N ıJ �: (1.2)

Here, ˛, ˇ, � , ı, and � are exponents of the base quantities which may be positive,
negative, or zero. These are called the dimensional exponents.

There are two versions of the definition of dimension, which are equally
prevalent. According to one version dimensions of a quantity are the powers to
which base quantities must be raised to represent that quantity. That is powers
(exponents) of base quantities ˛, ˇ, � , ı, etc. are the dimensions of the quantity
Q. So a quantity having each exponent as zero is called dimensionless quantity.

According to second version as given in [1] dimension of a quantity is the
expression representing the quantity in terms of base quantities raised to the integral
powers. That is dimension of Q given in (1.2) is expressed as

Dim Q D L˛M ˇT �N ıJ �: (1.3)

If each of the exponents ˛, ˇ, � , ı, etc. is zero than the dimension of the quantity
will be as

Dim Q D L0M 0T 0N 0J 0 D 1: (1.4)

Thus, a quantity having each of the exponents of base quantity as zero has the
dimension 1.
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We see here that a quantity having each of the exponents as zero will be called
dimensionless or of dimension 1 respectively if the dimensions of the quantity are
defined as exponents or as an expression consisting of the products of base units
raised to an integral power. In the literature, therefore, we may come across both
words namely “dimensionless” and “of dimension 1” for one and the same quantity.

1.2.6 Measurand

Quite often the quantity under measurement is called measurand [2] (Specific
quantity subject to measurement).

Specific Quantity: Quantity is taken in a general sense, for example length, mass,
temperature, amount of substance. Quantity in general is generic in nature like
energy; it may be mechanical, electrical, or light. Among the mechanical energy
it may be kinetic or potential. However, the quantity is also taken in a specific sense,
in that the quantity is associated with a specific object, for example length of a
given rod, mass of a specific object, or concentration of alcohol in a given mixture.
Quantity in general is independent of system of measuring units. Specific quantity
is the quantitative value of energy of a specific body or system with reference to a
measurement system.

1.2.7 True Value of a Quantity

The value that characterizes the quantity perfectly defined at the instant at which it
was measured is known as a true value. This is something which is not achievable,
except in cases of defining the base units. For example: True value of quantity of
mass of the International Prototype of Kilogram is one kilogram. Please remember,
it is not a measured value but only an internationally agreed value of that specific
platinum iridium cylinder. Similar is the case for the quantity value of speed of light
in vacuum. When we come to experiments next best to true value of the quantity is
the mean value of the quantity, which has been measured a large number of times.
It has been assumed that quantity value being measured remains constant in the
duration of experimentation. This value is often called as conventional true value.

1.2.8 Conventional True Value of a Quantity

[2]: The value of a quantity, which for a given purpose, may be substituted for the
true value of the quantity.

For example: At a given location the value assigned to the specific quantity
realized by a reference standard may be taken as a conventional true value.
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The CODATA (2002) recommended value for Avogadro Constant .6:0221415 ˙
0:0000010/ � 1023 may also be taken as conventional true value.

1.2.9 Measured Value

The value of the quantity obtained after proper measurements and applying all
necessary corrections due to the instruments including the standards and due to
environmental conditions is the measured value. Quite often the whole measurement
process is repeated several times.

1.2.10 Relation in Between Measured Value and True
or Conventional True Value

True or conventional true value tends to the mean of measured values, when the
whole process of measurement is repeated infinitely large number of times.

1.3 Terms Pertaining to Measurement

1.3.1 Measurement

[2]: The set of operations having the object of determining the value of a specific
quantity.

1.3.2 Method of Measurement

The logical sequence of operations, in generic terms, used in the performance of
measurements according to a given principle.

Methods of measurement may be further qualified in various ways for example
as given below.

1.3.3 Substitution Method

A method of measurement by direct comparison in which the value of the quantity
to be measured is replaced by a known value of the quantity chosen in such a way
that the effect on the indicating device of these two values is same.
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1.3.4 Differential Method

A method of measurement by comparison, based on comparing the quantity under
measurement with the quantity of same kind having known value only slightly
different from that of the quantity to be measured, and measuring the difference
between the values of these quantities. A weight under test is compared against a
standard weight of known mass of same denomination, so that effect on balance
indication is small and measurable.

1.3.5 Null Method

A method of measurement by comparison, based on balancing the quantity under
measurement against the quantity of known value such that indication is zero.
However, by changing the known quantity even slightly there should be some
indication. In null method Type A uncertainty due to repeated observations will
be zero, but due to resolution of the instrument under observation, the uncertainty is
to be considered and evaluated by Type B evaluation method.

1.3.6 Measurement Procedure

The set of operations, in specific terms, used in the performance of a particular
measurement according to a given method.

Note: A measurement procedure should usually be recorded in the certificate of
calibration/testing or examination.

1.3.7 Result of Measurement

The value attributed to the measurand by measurement and after applying due
corrections. Example mass of weight obtained against a reference weight after
applying buoyancy corrections.

1.3.8 Error

The error is the measured value of the quantity minus the conventional value
of the same quantity. The errors arise due to inaccuracy, non-repeatability, and
resolution (threshold value) of instruments involved. The errors may also be due
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to the observer, environmental conditions, and the measurement process. (Accuracy
is a qualitative concept and it should not be confused with the term precision.)

1.3.9 Spurious Error

Spurious errors are due to mistakes by the observer, malfunctioning of an instru-
ment and these invalidate the observation. Reversing the digits in recording the
observation, having loose connection in an electrical measurement, and the presence
of air pockets in fluid flow measurements are some examples of spurious errors.
Observations with such errors are not to be incorporated in any statistical analysis.
If there is a reason to believe the existence of such errors with an observation, that
observation should be discarded.

1.3.10 Relative Error

The error of measurement divided by a true value of the measurand. Since a true
value of the measurand cannot be determined; in practice a conventional true value
is used.

1.3.11 Random Error

An error is the quantity, which varies in an unpredictable manner in both magnitude
and sign. When a large number of measurements of the same value of a quantity
are made under essentially the same conditions, random error approaches to zero.
The random error follows the Gaussian (normal) distribution with zero mean. For
small sample (smaller no. of observations), the results used to be corrected by
means of Student’s t factor. However, the assumption remains that results belong
to normal distribution. These errors may be due to uncontrollable environmental
conditions, personal judgement of the observer, and inherent instability of the
measuring instrument or any other cause of random nature.

1.3.12 Systematic Error

An error which in replicate measurements remains constant and cannot be reduced
by taking larger number of observations if the equipment and conditions of mea-
surement remain unchanged. These errors may be due to the inability in detection
of the measuring system, constant bias, error in the value of the standard, a physical
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constant, and property of the medium or conversion factor used. The value and
the sign of this error do not change with the given measuring system. Systematic
errors can be broadly classified as (1) constant and (2) variable. Constant systematic
errors are those which do not change with time but sometimes may vary with the
magnitude of the measured quantity. Zero setting error in an instrument is a constant
systematic error, while inaccuracy in the calibration scale may depend upon the
magnitude of the quantity measured. Variable systematic errors do depend upon the
time, say value of a resistor, which may vary with time because of ageing effect.
The systematic errors may also occur due to insufficient control of environmental
conditions.

1.3.13 Accuracy of Measurement

Closeness of the agreement between the result of a measurement and the true value
of the measurand.

1.3.14 Precision of Measurement Result

The precision of an instrument reflects the number of significant digits in the stated
result. The result reported to larger places to the right of decimal is supposed to be
more precise. A result of acceleration due to gravity given as 9:5671 ms�2 is more
precise than the result 9:80 ms�2, though the latter is more accurate than the former.
An instrument may have a better repeatability but less precision and vice versa. For
example an ammeter graduated in ampere and always showing the same result for
a given constant input is more repeatable and less precise as it reads only in terms
of amperes. An ammeter reading in mA but giving not repeatable values is more
precise but less repeatable. Any unbiased ammeter will give better accurate results.
A good instrument should be more precise, more repeatable, and least away from
the true value of the input quantity.

1.3.15 Repeatability

The repeatability is the closeness between the results of the successive measure-
ments of the same measurand carried out in

• Same measurement procedure
• The same observer
• Same conditions (environmental)
• The same location
• Repetitions are carried out for a short period of time
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1.3.16 Reproducibility (of Measurement Results)

Reproducibility is closeness of agreement between the results of measurements of
the same measurand, where the measurements are carried out under

• Changed conditions
• Different principle or method of measurement
• Different observer
• Different locations
• Different conditions of use
• Different time

A valid statement of reproducibility requires specifications of the condition changed.
The reproducibility may be expressed quantitatively in terms of dispersions between
the results.

1.3.17 Correction

Correction is a small quantity which is to be added algebraically to the observed
value. It may be pertaining to

• An instrument or the standard used (Certificate Correction).
• To bring the measured value to the reference environmental conditions like

temperature, pressure humidity, etc. All length measurements are normally
reduced to 20ıC.

• Different physical properties of standard used and the under-test. For example
buoyancy correction, when a weight having a density different from that of the
standard and is compared in air.

1.4 Terms Pertaining to Statistics

1.4.1 Observation

Observation is a value of the quantity, under measurement, as read out from a mea-
suring instrument. Any observation for the purpose of mathematical manipulation
is often called a variable.

1.4.2 Independent Observations

Two observations are independent if the occurrence of one observation provides
no information about the occurrence of the other observation. A simple example is
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measuring the height of everyone in your sample at a single point of time. These are
unrelated observations. However, if you were to measure one child’s height over a
certain period of time, these observations would be dependent because the height at
each point of time would depend upon the height at the previous occasion. It will be
slightly more than the previous value.

1.4.3 Population

The total set of all observations that one wants to analyse to assign the numerical
value to the quantity under measurement (measurand).

1.4.4 Sample

A subset of the population usually selected randomly. In practice only a few obser-
vations are taken to quantify the given measurand. Such ensemble of observations
is also known as sample.

1.4.5 Measurement

The process of experimentally obtaining one or more values that can reasonably
attributed to the quantity under measurement. Measurement is also defined as the
observation after application of all corrections. Sometimes a numerical value of a
quantity is calculated from the observations taken from a set of instruments and then
necessary corrections are applied to the observation of each instrument. Resistance
of a resistor is calculated by taking observations of electric current passing through
it and potential difference across it. The due corrections are applied to the ammeter
and voltmeter observations if necessary.

Quite often more than one observation or set of observations is taken to quantify
a quantity. Ideally infinite number (a very large) number of observations should be
taken to finally assign a numerical value to a quantity under measurement.

1.4.6 Population of Measurement

An infinite number of independent measurements, carried out for determination of
the value of a certain quantity, constitute a population.
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1.4.7 Sample of Measurements

In practice, only a finite number of measurements are carried out for the determina-
tion of a certain quantity which constitutes a sample.

1.4.8 Frequency/Relative Frequency

In a sample some observations may occur more than once, number of times an
observation repeats itself is known as its frequency. Sometimes observations are
divided into groups; each group has a certain range. This range in called the interval.
Normally intervals or ranges of sub-groups in a sample are equal. Number of
observations lying in a given interval is called as the group frequency. The relative
frequency is the ratio of frequency of a certain observation to the total number
of observations (Sum of all frequencies). If n is the frequency of certain group
of observations and total number of observations is N , then relative frequency
is n=N .

1.4.9 Mean

Sum of all observations divide by the number of observations.

1.4.10 Sample Mean

If x1, x2, x3, . . . , xn be n measurements then Sample Mean NX is defined as

NX D

pDnP

pD1

Xp

n
: (1.5)

1.4.11 Population Mean

The limiting value of sample mean as number of measurements tends to infinity is
the population mean.

� D Limn)1

pDnP

pD1

Xp

n
: (1.6)
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1.4.12 Merits and Demerits of Arithmetic Mean [3]

1.4.12.1 Merits

1. It is well defined
2. Based on all observations
3. All observations are equally important
4. It is amenable to algebraic manipulations for example mean of the set of

observations is derivable from the means and sizes of its subsets as given below:

NX D

qDmP

qD1

nq Nxq

qDmP

qD1

nq

: (1.7)

5. Out of all the averages, arithmetic mean is least affected by fluctuations of
sampling.

1.4.12.2 Demerits

1. It cannot be determined by inspection or cannot be located by graphical means.
2. The arithmetic mean is not applicable for qualitative data, like intelligence or

colour. Data should be in quantitative terms.
3. Even if single observation is missing or not legible, the arithmetic mean cannot

be determined unless the observation is left out of the set.
4. The arithmetic mean is affected most by extreme values of observations.

Mistakes giving extreme observations affect it most.
5. The arithmetic mean sometimes gives a value which is not meaningful in

practical life.

1.4.13 Median

Median of a distribution is the value of the measurement which divides it into two
equal parts. Median, in a set of observations, is the value of observation such that
number of observations below it is the same as the number of observations above.
Thus, median is a positional average.

1.4.14 Quartiles

The quartiles divide the distribution into four equal parts. First quartile divides
the distribution in the ratio of 1:3; second quartile 2:2 obviously is its median.
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Third quartile divides the distribution into 3:1. First and third quartiles are normally
indicated by Q1 and Q3, respectively.

1.4.15 Dispersion

Numerical designations of how closely data cluster about the mean or other measure
of central tendency is the dispersion.

Dispersion may be for the observations, for example biggest observation minus
the smallest observation; semi-quartile deviations, i.e. (Q3–Q1/=2 or semi-inter
quartile range; deviation may also be from any measure of central tendency; for
example the deviation may be from mean, mode, or median.

Deviation is zero from the arithmetic mean. The absolute values of deviations
from the arithmetic mean are minimum.

1.4.16 Standard Deviation

It is the square root of the average of squares of deviations from the arithmetic mean.

1.4.17 Variance

It is the square of the standard deviation, i.e. mean of the square of deviations from
the arithmetic mean.

Like arithmetic mean, mean deviation, standard deviation, and variance use all
observations. Mean deviation has a step of considering every deviation as positive
which appears to be bizarre. However, taking the squares of deviations removes this
step. Moreover like the arithmetic mean, variance is also amenable to arithmetic
calculations. Combined variance of two sets of data of sizes n1, n2 means Nx1; Nx2,
and SD s1 and s2 is given by

S2 D Œn1.s2
1 C d 2

1 / C n2.s2
2 C d 2

2 /�=.n1 C n2/; (1.8)

where

d1 D . Nx1 � Nx/;

d2 D . Nx2 � Nx/;

and

Nx D n1 Nx1 C n2 Nx2

n1 C n2

: (1.9)
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Equation (1.8) is true for any number of samples. If all samples have a common
mean, i.e. d1, d2, etc. are zero, then mean variance is the mean of variances. The
observed value of a given quantity from different samples must be same; that is mean
is same; hence variance of the large number of samples from the same population
is the weighted mean of all the variances. Size of each sample is taken as its weight
factor.

1.4.18 Sample Standard Deviation

Sample standard deviation s is defined as

s D
2

4
pDnX

pD1

.xp � Nx/2=n

3

5

1=2

: (1.10)

Or variance s2 is

s2 D
pDnX

pD1

.xp � Nx/2=n: (1.11)

1.4.19 Population Standard Deviation

The limiting value of sample standard deviation as number of measurements tends
to infinity is the population standard deviation and is normally denoted as � and is
given by

�2 D LimnD1
pDnX

pD1

.xp � Nx/2=n: (1.12)

As n cannot be made infinite, that is one cannot take infinite number of measure-
ments, one can have only an estimate of population standard deviation.

1.4.20 Estimate of Population Standard Deviation

The best estimate of population standard deviation S is given by

S D

2

6
6
6
4

pDnP

pD1

.xp � Nx/

n � 1

3

7
7
7
5

1=2

: (1.13)
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1.4.21 Estimate of Population and Sample Standard
Deviations-Relation

Since population standard deviation cannot be determined by practical measure-
ments an estimate S of the population standard deviation is obtained from sample
standard deviation s as

S D s

r
n

.n � 1/
: (1.14)

1.4.22 Independent Variable

The variable that causes or predicts the dependent variable is an independent
variable. Any observed measurement is an independent variable, for example
observed difference of mass between the two weights obtained by comparison on
the balance. It is also called as input variable or quantity.

1.4.23 Dependent Variable or Response Variable

The variable that is caused or predicted by the independent variable is the dependent
variable. It is a function of n independent variables, where n is a natural number. For
example, resistance is a dependent variable, which is a function of two independent
variables, namely current through it and the potential difference across it.

Two variables may be independent of each other or have some sort of dependence
on each other. For example height of man and financial status are two independent
variables. But height of growing boy and his age are correlated variables.

1.4.24 Correlation

It is the relationship between two or several variables within a distribution.

1.4.25 Correlation Coefficient

Correlation coefficient is the ratio of the covariance of two random variables to
the product of their standard deviations. That is correlation coefficient r.x1; x2/ is
given as

r .x1; x2/ D cov .x1; x2/

s .x1/ � s.x2/
; (1.15)
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where s.x1/ and s.x2/ are variances, and cov(x1; x2/ is a covariance of two variables
x1 and x2.

1.4.26 Covariance

The sum of products of the deviations x1p and x2p from their respective averages
divided by one less than the number of observed pairs.

Cov.x1; x2/ D

pDNP

pD1

.x1p � Nx1/ .x2p � Nx2/

N � 1
: (1.16)

1.4.27 Random Variable

Any real number which is outcome of a random experiment is the random variable.
In other words, a variable which takes any of the values of a specified set of values
and which is associated with a probability distribution (ISO 3534-1,13) is a random
variable.

1.4.28 Discrete Random Variable

A random variable which takes only isolated values is said to be a discrete values,
for example outcome of tossing a coin several times.

1.4.29 Continuous Random Variable

A random variable that takes any value within a given interval (finite or infinite) is
said to be continuous variable.

1.4.30 Probability

A real number in the scale of 0–1 attached to the occurrence of a random event. It is
also equal to the relative frequency of occurrence of a particular value of the random
variable.
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From the definition of frequency, we see that relative frequency is same as the
probability of happening of any of the equal observations. Here n is the frequency
of a certain observation and N is the total number of observations.

1.4.31 Probability Distribution

A function giving the probability that a random variable takes within a given
interval. The interval may be finite or infinite. The probability sum of the entire set of
random variables (finite or infinite) is one. Or the sum of probabilities of occurrence
of each and every random variable in the given interval is 1. For example if P.x/

is the probability of happening of any random variable x within the given interval
(a, b/ then

Z b

a

P.x/ dx D 1: (1.17)

1.4.32 Normal Distribution

A bell-shaped curve or distribution indicating that the variable x at the mean
occurs with highest probability and that the probability of occurrence progressively
decreases as observations deviate from the mean. If x is variable � and � are
respectively the mean and standard deviation of the population then

P.x/ D
n
1=�

p
2	
o

Exp
��.x � �/2=.2�2/

�
: (1.18)

1.4.32.1 Alternative Definition

An ensemble of random continuous variables predicting the value of a given
quantity is a normal distribution. It is a bell-shaped curve as indicated in Fig. 1.1
such that observations at or close to the mean occur with highest probability, and

Fig. 1.1 (a) Probability distribution, (b) Cumulative distribution
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that the probability of occurrence progressively decreases as observations deviate
from the mean.

A normal probability density function P.x/ of variable x with mean � and
standard deviation � , the probability function is given as

P.x/ D
n
1=�

p
2	
o

Exp
��.x � �/2=.2�2/

�
:

1.4.33 Properties of Normal Distribution

The semi-range (from mean to extreme value on either side of mean) is almost 3
times the standard deviation.

The range of ˙3� covers 99.73% of all observations.
The range of ˙2� covers 95.45% of all observations.
The range of ˙� covers 68.27% of all observations.
The range of ˙0:6745� covers 50% of all observations.
0.6745 � is called as probable error.

1.4.34 Probable Error

The amount by which the arithmetic mean of a sample is expected to vary because
of chance alone (50% probability) is the probable error. The value of probable error
is 0.6745 times the standard deviation of a normal population.

1.4.35 Range

A measure of dispersion and is equal to absolute difference between the largest and
the smallest values of the variable in a given distribution.

1.4.36 Confidence Level

Confidence level is a measure of the degree of reliability with which a result is
expressed. If a result is reported with say 95% level of confidence, it means that the
true or conventional true value will lie within the specified range with a probability
of 0.95.

Confidence level is also referred as Probability Coverage.
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1.4.37 Confidence Interval

Confidence interval is the range of the measurand between which the measured
value is likely to lie with the specified level of confidence. If X is the measured
value of the measurand with a semi-range U at the confidence level of 95%, it
implies that the probability for the true value lying in between X � U and X C U is
0.95. In other words, if the same quantity is measured by any other observer with an
unbiased instrument a large number of times, then 95% of values of the measurand
will lie in between X � U and X C U . This is often called coverage probability.

Or
The upper and lower boundaries that the estimator is P % sure that the estimated

value will fall within the stated range of the measurand. This is also called as
coverage interval.

1.4.38 Outlier

An extreme value in a frequency distribution, which has a disproportionate influence
on the mean.

1.4.39 Parameter

A measure used to summarize characteristic of a population based on all items in the
population. Mean is one of the parameter of the population. Another very frequently
met parameter is variance.

1.4.40 Random Selection

It is the method of selecting an item from its population such that chance of selection
of any item is equal. An ensemble of such items is called as a random sample.

1.4.41 Sample Statistic

Measures that summarize a sample are called sample statistics. Mean, mode, or
median each is an example of a statistic. These are also known as measures of central
tendency. Range is also a statistic.
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1.4.42 Error

An error pertains to a measurement and not to an instrument. An error is the
difference between the value obtained on the basis of a set of measurements and
the conventional true value of the quantity measured.

1.4.43 Standard Error, or Standard Deviation of the Mean

Standard error is an estimate of the standard deviation of the sampling distribution
of means, based on the data from one or more random samples.

Numerically, it is equal to the estimated standard deviation divided by the square
root of n, where n is the size of the sample for which standard deviation is taken. If S

is the best estimate of the population derived from the sample size n, then Standard
Error SE is given as

SE D Sp
n

D

pDnP

pD1

.xp � Nx/2

p
n .n � 1/

: (1.19)

Standard error is also the standard uncertainty evaluated by Type A method.

1.4.44 Uncertainty

The uncertainty of a measurement is the range about the measured value within
which the true value or the conventional true value of the measured quantity is
likely to lie at the stated level of confidence. The value of semi-range U , apart
from instruments, observer and process used for measurement, depends upon the
confidence level with which the measured result is stated. For example for the same
experimental result the value of U with 66.6% confidence level is � , while the value
of U with 95.45% confidence level is 2 � . Strictly speaking, uncertainty can be
calculated only when true (population) standard deviation is known or it can be
estimated from the standard deviation calculated from finite number of observations
having Gaussian (Normal) distribution.

1.4.45 Evaluations of Uncertainty

The uncertainty in the result of measurement generally consists of several compo-
nents, which may be grouped into two categories according to the way in which
their numerical values are estimated.
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• Type A evaluation of uncertainty:

Type A evaluation of standard uncertainty applies to the observed data. Arithmetic
mean and variance of the data are calculated by usual statistical methods. The
estimate of the standard deviation of the mean is the standard uncertainty. That
is Type A evaluation deals with the primary measurement data obtained by the
experimenter.

• Type B Evaluation of uncertainty:

Type B evaluation of uncertainty applies to those input quantities for which mean
and variance have not been obtained by repeated observations, but the variance
u2.xp/ is obtained by judgement using all relevant information on the possible
variability. The pool of information may include

• Previous measurement data
• Experience and general knowledge of the behaviour of the material
• Instruments specifications
• Manufactures specifications
• Data provided by the calibration laboratory

1.4.46 Random Uncertainty(er)

The value of S – the estimate of population standard deviation from the mean – is
used to express random component of uncertainty (er/ as

er D t � S=
p

n D t � s=
p

.n � 1/: (1.20)

Here t is Student’s “t” factor and S=
p

n is the standard error of the mean.
The above calculations are based upon the assumption that all measurements

follow the Gaussian (Normal) distribution f .x/ and f .x/ is represented as

f .x/ D .l=�
p

	/ exp Œ� .x � �/2=2�2�: (1.21)

Random uncertainty is that part of uncertainty in assigning the value of a measured
quantity which is due to random errors. The value of the random uncertainty is
obtained on multiplication of the standard deviation of the mean by the student
factor � t 0. The value of factor � t 0 depends upon the sample size from which
the standard deviation has been determined, and the confidence level at which the
results of measurement are to be expressed.

Note: This term was in very much use before the guidance prepared jointly by
BIPM, ISO and OIML was issued.
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1.4.47 Systematic Uncertainty(Us)

Systematic uncertainty is that part of uncertainty which is due to systematic errors
and cannot be experimentally determined unless the equipment and environmental
conditions are changed. It is obtained by suitable combination of all systematic
errors arising due to different components of the measuring system.

Note: This term was in very much use before the guidance prepared jointly by
BIPM, ISO and OIML was issued.

1.4.48 Standard Uncertainty

Standard Uncertainty is numerically equal to the square root of weighted sum of
variances due to all sources. In other words, standard uncertainty is the uncertainty
of the measurement expressed as standard deviation [4].

1.4.49 Expanded Uncertainty

Expanded uncertainty is the product of standard uncertainty and the coverage factor.
The factor is normally greater than 1 so that experimenter has more confidence in
stating that the true or conventional true value of the measurand lies within the stated
range, For example, coverage factor is 1.96 for confidence level of 95.45% and 3 for
confidence level of 99.7%.

1.4.50 Expressing Uncertainty of Measurement

Uncertainty of measurement can be expressed in two ways, namely in terms of
absolute uncertainty or relative uncertainty. For example absolute measurement
uncertainty in the measured value of the resistance of one ohm resistor is ˙1 �
.

For relative uncertainty is the ratio of the absolute uncertainty to the nominal
value of the measurand. In the above example it is 1 � 10�6. However, quite often
the qualifying word “relative” to the word “uncertainty” is not written.

1.4.51 Coverage Interval

The interval containing the set of true quantity values of a measurand with stated
probability, based on the information available.
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A coverage interval does not need to be centered on the measured quantity value.
A coverage interval should not be termed “confidence interval” to avoid confu-

sion with the stoical concept.
A coverage interval can be derived from an expanded measurement uncertainty.

1.4.52 Coverage Probability

The probability that the set of true quantity values of a measurand is contained
within specified coverage interval.

1.4.53 Central Limit Theorem

If the output variable Y is a linear function of n input quantities Xi , such that all Xi

are characterized by normal distributions, and is expressed as

Y D c1X1 C c2X2 C c3X3 C � � � C cN XN D
p�NX

pD1

cpXp; (1.22)

then Central Limit theorem states that convolved distribution of Y is also a normal
distribution. Even if the distributions of the Xp are not normal, the distribution of Y

may be approximated to a normal distribution with

E.Y / D
pDNX

pD1

cpE.Xp/: (1.23)

Here E.Xp/ is the expectation (mean) of Xp. The variance V.Y / or �2.Y / is given
as

�2.Y / D
pDNX

pD1

c2
p�2

p: (1.24)

1.5 Influence Quantity

Quantity that is not included in the specification of the measurand but nonetheless
affects the result of the measurement like

• Temperature in linear measurements
• Temperature, pressure humidity and composition of air in mass measurement
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• Frequency in the measurement of an alternating current
• Air density in interferometric measurements
• Bilirubin concentration in the measurement of haemoglobin concentration in

human blood plasma

1.6 Instruments and Standards

1.6.1 Repeatability of an Instrument

It is the ability of the measuring instrument to give identical indications or responses
for repeated applications of the same value of the input quantity, under stated
conditions of use. Quantitative measurement of repeatability of an instrument is
carried out by finding the standard deviation from the mean of large number of
measured values of the same quantity under essentially the same conditions of use.

1.6.2 Precision of the Instrument

It is the ability of the instrument to indicate the smallest value of the stimulus.
A balance able to read directly in terms of 1 mg at 1 kg load is more precise than the
balance which reads up to 1 g at 1 kg level. It represents essentially how fine the scale
is graduated. The result reported to larger places to the right of decimal is supposed
to be more precise. A result of acceleration due to gravity given as 9:805671 ms�2 is
more precise than the result 9:80 ms�2. An instrument may have a better repeatabil-
ity but less precision and vice versa. For example, an ammeter graduated in ampere
and always showing the same result for a given constant input is more repeatable and
less precise as it reads only in terms of amperes. An ammeter reading in mA, but not
giving repeatable values, is more precise but less repeatable. Any unbiased ammeter
will give better accurate results. A good instrument should be more precise, more
repeatable and least away from the true value of the input quantity.

1.6.3 Accuracy of an Instrument

The accuracy of an instrument is its ability to give correct results. The accuracy and
repeatability are two different properties of an instrument. Accuracy is a measure
of an instrument’s ability to tell the truth, while repeatability is a measure of its
ability to indicate the same value of the measured quantity. Instruments, like some
people, are capable of telling the same lie over and over again. Consequently, good
repeatability is not a guarantee of good accuracy. Although poor repeatability is
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a sure sign of poor accuracy, but good repeatability is no sign of good accuracy.
In mathematical sense, one may say that good repeatability of the instrument is
a necessary but not a sufficient condition of good accuracy. The accuracy of an
instrument may be found out by combining the measures of its repeatability and
systematic errors by using quadrature (root mean square) method, namely

Accuracy D ˚
.repeatability/2 C .inaccuracy/2 C .systematicerror/2

�1=2
:

1.6.4 Accuracy of a Standard

Normally this term means the tolerance within which the true value of quantity of
an artefact lies. The accuracy of a kilogram standard is ˙1 mg, which means that
mass value of that kilogram will be anywhere within 1 kg ˙ 1 mg. Quite often the
term accuracy is clubbed with uncertainty. Apparently these appear to be similar,
but these are opposite in sense; more accuracy means lesser value of uncertainty.

1.6.5 Difference Between Uncertainty and Accuracy

So we have seen that there are two terms namely accuracy and uncertainty; one
cannot be replaced by the other. To achieve better experimental results, one would
like to have more and more accuracy but lesser uncertainty. Accuracy pertains
to an instrument or a standard of measurement. Moreover, accuracy means how
close the instrument indication is to the true or its conventional true value of the
quantity. Or how close is the quantity value of the standard to its nominal value. For
example the mass of a one kilogram standard is 999:99998 g ˙ 04 mg; the standard
is accurate within 0.02 mg. Quite often people state the ability of a measurement
laboratory confusingly in terms of accuracy and uncertainty simultaneously, which
is not correct. The confusion starts from the fact that accuracy is often expressed as
by the statement that standard is accurate within 2 parts per million. The instrument
is accurate within 0.01% of measured value or balance is accurate within 0.0001%
of the range.

1.6.6 Difference Between the Correction, Error and Uncertainty

The calibration certificate of an instrument gives a correspondence between its
indication and the quantity it is most likely to measure. The difference between
them is the correction. This correction is to be invariably applied. However,
there will be an element of doubt in the value of the correction so stated. This
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doubt is quantitatively expressed as an overall uncertainty in assigning the value
to the correction stated and will be one component of the uncertainty of that
instrument. For example, in case of a metre bar, the distance between the zero
and 1,000 mm graduation marks may be given as 1;000:045 ˙ 0:005 mm. Then
�0.045 is correction and 0.005 mm is the uncertainty in the value of the metre bar.
In addition to this component, other components of uncertainty (Type B) may be
there, for example, due to the finite width of the graduation lines of this metre bar.

1.6.7 Correction Factor

The correction factor is a number by which the uncorrected result of a measurement
is multiplied. Sometimes a correction factor is given by the calibrator of the
instrument.

1.6.8 Discrimination Threshold

The smallest change in the stimulus which produces a perceptible change in the
response of a measuring instrument is the discrimination threshold of the instrument.
The discrimination threshold may depend upon electrical noise, mechanical friction,
air damping, inertia, or quantization. Discrimination threshold should be taken into
account while estimating uncertainty by Type B evaluation.

1.7 Some Special Integrals and Functions

1.7.1 Gamma Function

The Gamma function is a definite integral given as

Z 1

0

exp .�x/ � xn�1dx D �n: (1.25)

�n is a Gamma function
�1 D 1; �1=2 D p

 :

Recurrence formula for Gamma Function

�m=2 D .m=2 � 1/ � .m=2 � 1/ :

It is similar to factorial n which is true for all natural numbers
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�m=2 D .m=2 � 1/ .m=2 � 2/ � � � 3 � 2 � 1 if m is even

�m=2 D .m=2 � 1/ .m=2 � 2/ � � � 3=2 � 1=2 � p
 :

1.7.1.1 Gamma Probability Density Function

A probability density function defined as

f .x/ D exp.�x/ � xn�1

�n
(1.26)

is a Gamma probability density function for 0 < x < 1.

1.7.2 Beta Function of First Kind B(m,n)

The function given as

B.m; n/ D
Z 1

0

xm�1.1 � x/n�1dx 0 < x < 1; (1.27)

D �m�n

�.m C n/
: (1.28)

1.7.2.1 Beta Probability Functions of First Kind

A function given as

f .x/ D xm�1.1 � x/n�1

B.m; n/
for all positive m; n and x W 0 < x < 1

D 0 otherwise (1.29)

is a Beta probability function of first kind.

1.7.3 Alternative Form of Beta Function

In (1.27) put x D sin2 
 , giving dx D 2 sin 
 cos 
 d
 , hence (1.27)

Z 	=2

0

sin2m�2.1 � sin2 
/n�12 sin 
 cos 
 d
;
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2

Z 	=2

0

.sin 
/2m�1.cos 
/2n�1d
 D �m�n

�.m C n/
: (1.30)

By writing 2m D M C 1

and 2n D N C 1

we get

Z 	=2

0

sinM 
 cosN 
 d
 D �.M C 1/=2�.N C 1/=2

2:�.M C N C 2/=2
: (1.31)

The above function is another form of Beta Function.

1.7.4 Beta Function of Second Kind B (m,n)

B.m; n/ D
Z 1

0

xm�1

.1 C x/mCn
dx: (1.32)

1.7.4.1 Beta Probability Functions of Second Kind

A function of continuous random variable given as

f .x/ D xm�1

B.m; n/.1 C x/mCn
for m; n and x positive and 0 < x < 1

D 0 otherwise (1.33)

is a Beta function of second kind.

1.7.5 Cauchy Distribution

A probability density function of continuous random variable expressed as

f .x/ D 1

	
� b

.x � m/2 C b2
(1.34)

is the Cauchy’s Function with parameters m and b. It is also a bell-shaped curve
with mean m, but it is more peaked at the centre and has flatter tails than a normal
probability curve. The probability function is shown in Fig. 1.2a. Its cumulative
distribution is shown in Fig. 1.2b and mathematical expression is given as follows:
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Fig. 1.2 (a) Cauchy Function (PDF), (b) Cumulative Cauchy distribution

F.x/ D 1

2
C 1

	
tan�1 f.x � m/=bg : (1.35)

1.7.6 Arc Sine(U-Shaped) Distribution

If a quantity X is known to be cyclic sinusoidal, with unknown phase �, between the
limits �a to a, then according to the principle of maximum entropy, a rectangular
distribution R(0, 2	) would be assigned to �. The distribution assigned to X is the
sine inverse (Arc sign) distribution given as

X D b sin.�/: (1.36)

The PDF for X

gx.�/ D 1

	
p

a2 � �2
; for all � between � a to a

gx.�/ D 0; for all other values of �

: (1.37)

PDF gives a U -shaped curve.
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Chapter 2
Distribution Functions

2.1 Introduction

In the process of calculating uncertainty in measurements, we come across quite
a few statistical terms such as random variable, independent event, distribution
function and probability density function. In this chapter, we deal with random
variable, distribution functions, and probability density functions, discrete and
continuous functions. The normal (Gaussian) probability density function and its
properties are discussed.

The word “density” used in probability density function is seldom used. In
loose terms every cumulative distribution function or probability density function is
called as distribution. It is only in context to other things that a distinction between
cumulative and density function is made.

2.2 Random Variable

Random variable is a real number representing an outcome of any random exper-
iment. For example, tossing of n unbiased coins and counting number of heads
appearing therein, then any one of the possible outcomes of this experiment will
represent a random variable. Any outcome ! will be a natural number like 0, 1, 2,
. . . , n.

If S is the sample space then
! 2 S: (2.1)

That is for each ! there exist X.!/ – the probability of happening belonging to a
set of real numbers R.

For example, ! in the above example may be r number of heads, then X.!/ will
be nCr=2n for n unbiased coins. The value of probability is obtained by using the
binomial distribution.

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5 2,
© Springer-Verlag Berlin Heidelberg 2012
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Similarly any observation indicated by an unbiased instrument is an outcome !

of a random experiment. Here, ! belongs to the set of observations S indicated by
the instrument. Then X.!/ is also a random variable belonging to the set of real
numbers. In case of measurement with unbiased instruments, X.!/ will belong to a
normal distribution.

Formal definition of a random variable may be as follows:
For the sample space S associated with a random experiment, there exists a real-

valued variable X.!/ belonging to a real space (�1, C1).
This is an example of one-dimensional random variable. If the functional values

are ordered pair then it is called as a two-dimensional random variable. In general
for an n-dimensional random variable whose domain is S has X.!/ is the collection
of n-tuples of real numbers (vectors in n-space).

2.3 Discrete and Continuous Variables

Discrete variable is that which takes only finite number of values in a given interval.
Similarly continuous variable is that which takes infinite number of values in a given
interval. The interval may be large or small. That is discrete variable will take only
certain values in small steps.

2.4 Discrete Functions

2.4.1 Probability Distribution of a Random Variable

Probability distribution of a random variable is a function giving probability that a
random variable takes any given value, which belongs to a given set of values.

2.4.2 Discrete Probability Function

In case of statistical data of discrete variables, each variable xi will have a specific
frequency fi . It means that a particular variable xi will occur fi times.

If N is the total frequency then

iDnX

iD1

fi D N: (2.2)

Then fi =N is the probability for the existence of the variable xi .
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2.5 Distribution Function

Distributions function is the sum of all probabilities of a random variable such that
the random variable is less than the given value. In fact, it is the cumulative sum of
all frequencies such that X is less than or equal to the given value.

2.5.1 Continuous Distribution Function

A function F.x/ giving, for every value of a random variable x, the probability
that the random value of X be less than or equal to x is a continuous distribution
function. It is expressed as

F.x/ D Pr.X � x/: (2.3)

The distribution function defined in this way is also called a cumulative distribution
function. The word cumulative is seldom used before the cumulative continuous
distribution function.

2.5.2 Discrete Distribution

In statistical data of discrete variable, the set of relative cumulative frequencies
(cumulative frequency divided by total frequency) is a distribution function.

For example, if there are n independent variables x1, x2, x3, . . . , xn with f1, f2,
f3, . . . , fn with

iDnX

iD1

fi D N;

then fi =N is the relative frequency and
iDrP

iD1

fi =N is the relative cumulative

frequency of xi for all values of i . Such a set of relative cumulative frequencies
is a discrete distribution function of x1, x2, x3, . . . , xn. In this case also, the word
cumulative is seldom used before the cumulative discrete distribution function.

2.6 Probability Density Function

For a continuous random variable X , the probability density function is the
derivative (if it exists) of its distribution function F.X/ i.e.

f .x/ D dF.x/=dx: (2.4)
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f .x/dx is the probability element such that the random variable X lies in between
x and x C dx.

Mathematically
f .x/ D Pr .x < X < x C dx/: (2.5)

The integral or the sum of all the probabilities of a continuous variable taking every
value in between �1 and C1 is a certainty; hence

Z 1

�1
f .x/dx D 1: (2.6)

2.6.1 Discrete Probability Function

If a discrete random variable X can take values x1, x2, x3, . . . , xn, with probabilities
p1, p2, p3, . . . , pn, such that

p1 C p2 C p3 C � � � C pn D 1 (2.7)

and
pi � 0 for all i; (2.8)

then these two sets constitute a discrete probability distribution.
A function Pr for each value of xi of discrete random variable X , giving the

probability pi when the random variable takes the value xi such that

pi D Pr .X D xi / (2.9)

is the probability function.

2.7 Discrete Probability Functions

2.7.1 Binomial Probability Distribution

Binomial distribution is one of the most important probability function used in
practical applications. The applications range from sampling inspection to the
failure of rocket engines.

Suppose that a series of n independent trials have been made, each of which can
be a success with probability p or a failure with probability .1 � p/. The number of
success, which is observed, will be any natural number between 0 and n.

An event with r successes necessarily means an event with r successes and
(n � r) failures. Such an event is denoted as pr.1�p/n�r , but r successes and n�r
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failures may be arranged in nCr ways, so the probability of the event pr.1 � p/n�r

is nCrp
r.1 � p/n�r . If this probability is denoted as pr then p1, p2, p3, . . . , pn are

the respective probabilities of 1, 2, 3, . . . , n successes, giving

nC0.1 � p/n CnC1p.1 � p/n�1 C nC2p
2.1 � p/n�2

C � � �nCn�1p
n�1.1 � p/

C nCnpn (2.10)

Binomial probability distribution is applicable whenever a series of trials is made
satisfying the following conditions:

Each trial has only two outcomes, which are mutually exclusive. One of the two
outcomes is denoted as success then other is failure, for example head and tail in a
coin, go and not go, and defective and non-defective in industrial production

1. Probability p of a success is constant in each trial. This also means that
probability of failure .1 � p/ is also constant.

2. The outcomes of successive trials are independent.

Larger is the sample size the outcomes will fit better to the binomial function.

2.7.1.1 Probability of the Binomial Distribution

It may be noticed that independent variable, in case of binomial distribution, is r

with relative frequency fr , which is same as the probability pr for r success and
n � r failures

Pr Dn Crp
rqn�r D fr for all from 1 to n: (2.11)

Here q, for the sake of brevity, is written for .1 � p/.

2.7.1.2 Moments

In general,
rDnP

rD1

rkfr is called the kth moment of the random variable r . The

arithmetic mean is the first moment. Second moment in conjunction of first moment
will give variance. If arithmetic mean is zero then second moment is the variance.

2.7.1.3 Arithmetic Mean

Hence the mean � of the binomial distribution is given as
rDnX

rD0

r �n Crp
rqn�r ; (2.12)
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but

nCr D nŠ

rŠ.n � r/Š
D n.n � 1/Š

r � .r � 1/Š � f.n � 1/ � .r � 1/gŠ Dn�1 Cr�1.n/=r:

Substituting this value of nCr in (2.12) gives us

� D np
X

n�1Cr�1p
r�1qn�1�.r�1/

D np .p C q/n�1 (2.13)

D np .p C 1 � p/n�1

D np:

2.7.1.4 Standard Deviation

Similarly one can find the standard deviation of the binomial distribution.

Second moment D
X

r2 �nCrp
rqn�r :

Following steps twice as we have done for arithmetic mean above, we get

Second moment D np.n � 1/p C np;

Standard deviation D
h
second moment � .first moment/2

i1=2

;

giving us

�
np.n � 1/p C np � .np/2

�1=2 D Œnpfnp � p C 1 � npg�1=2 :

Standard deviation of a binomial distribution is

fnp.1 � p/g1=2 : (2.14)

2.7.2 Poisson’s Distribution

Another important discrete distribution is the Poisson’s distribution. When a
probability of happening of an event is very small, i.e. p is small and n is quite large
such that np the mean in binomial distribution is finite, then binomial distribution
reduces to Poisson’s distribution with np as the parameter. Examples are found
in industrial production, for example defective blades in a blade-manufacturing
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factory. Overfilling of packages with an automatic filling machine in a packaging
industry is another example.

Poisson’s distribution with r as discrete random variable is given as

Pr D .np/r

rŠ
exp.�np/: (2.15)

2.7.2.1 Mean of the Poisson’s Distribution

Mean D
rD1X

rD0

rf.np/r=rŠg exp .�np/

D np exp.�np/

rD1X

rD1

.np/r�1=.r � 1/Š (2.16)

D np exp.�np/ exp.np/

D np:

Arithmetic mean � of Poisson’s distribution is np.

2.7.2.2 Standard Deviation of the Poisson’s Distribution

Variance of Poisson’s distribution V is written as

V D Second moment � .first moment/2

D fexp.�np/

rD1X

rD0

r2.np/r=rŠg � .np/2

D exp.�np/

rD1X

rD1

fr.r � 1/ C rg.np/r=rŠg � .np/2

D exp.�np/

"

.np/2

rD1X

rD2

.np/r�2=.r � 2/Š

C np

rD1X

rD1

.np/=.r � 1/

#

� .np/2 (2.17)

D .np/2 C .np/ � .np/2

D np:

Hence standard deviation of the Poisson’s Distribution is
p

np and mean is np.
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Fig. 2.1 (a) Normal Probability Function, (b) Normal Cumulative Distribution

2.8 Continuous Probability Distributions

2.8.1 Normal Probability Function

A binomial distribution, in which non of p or .1 � p/ is small and n approaches to
1, reduces to normal or Gaussian distribution. This bell-shaped distribution is most
well known and is most widely used.

Figure 2.1a represents the normal probability function. The curve is symmetrical
about the mean �. Taking � as standard deviation, the Gaussian probability density
function can mathematically be expressed as

P.x/ D 1

¢
p

2 
exp

� �.x � �/2

2¢2

�

: (2.18)

The cumulative distribution curve for the Gaussian probability function is shown in
Fig. 2.1b and is mathematically expressed as

P.X � x1/ D
Z x1

�1
P.x/dx; (2.19)

P.x/ being the probability function of a random variable x; hence by definition,
Z 1

�1
P.x/dx D 1:

The Gaussian function has the following properties:
The curve for the normal (Gaussian) probability distribution is bell shaped and is

symmetrical about the line x D �.

• Mean, mode and median of a normal distribution are the same.
• P.x/ decreases rapidly as the numerical values of x increases.
• P.x/ is maximum at x D � and is equal to 1=�

p
2	 .

• The x-axis is an asymptote to the curve.
• The points of inflexion are at x D � ˙ � and the ordinates of the points are

1

¢
p

2 
exp.�1=2/.
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Fig. 2.2 Normal and similar curves

• As the curve represents a probability, which cannot be negative so no portion of
the curve will lie below the x-axis.

• The semi-range (from mean to extreme value on either side of mean) is almost
three times the standard deviation � .

• The range of � ˙ 3� covers 99.73% of area covered by the curve and x-axis; i.e.
the probability of the random variable lying between � ˙ 3� is 0.9973. Hence
99.73% of all normal variates will lie in this interval.

• The range of � ˙ 2� covers 95.45% of all normal variates; i.e. the area covered
in between � ˙ 2� is 95.45% of the total area.

• The range of � ˙ � covers 68.27% of normal variates.
• The range of � ˙ 0:6749� covers 50% of the normal variates; 0:6749� is called

as probable error.

From the property of the area covered for different values of x helps us in
deciding as to which curve is normal and which is not. In Fig. 2.2, though all
the three curves have same mean and standard deviation, but only one of them
represents the normal distribution. Making use of the aforesaid properties about the
area covered between various ordinates, we can say that only curve 2 represents the
normal curve because it has very small area (about 0.03%) covered beyond x D 3� .

The curve 1 is not a normal curve as the area covered by it beyond x D 3� is
much more than 0.03%. Similarly the curve 3 is also not a normal curve as all the
area is covered between x D �2� and x D 2� .

2.8.2 Cumulative Distribution of the Normal
Probability Function

Distribution or cumulative function F.X � x/ means relative cumulative frequency
or the total area of the normal curve covered by it with the x-axis from x equal to
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�1 to the ordinate at x1. In any experiment with an unbiased instrument this also
represents the percentage of observations likely to fall within the limit when x varies
from �1 to x.

F.X � x1/ D .1=¢
p

2 /

Z x1

�1
exp.�.x � �/2=2¢2 dx: (2.20)

And

F.�1 < x < 1/ D 1

¢
p

2 

Z 1

�1
exp.�.x � �/2=2¢2dx D 1: (2.21)

Putting z D .x � �/=� in (2.21) gives us

F.�1 < z < 1/ D 1p
2 

Z 1

�1
exp.�z2=2/dz: (2.22)

As the integrand is an even function, (2.22) can be written as

F.0 < z < 1/ D 2.1=
p

2 /S

Z 1

0

exp.�z2=2/ dz D 1

or D .1=
p

2 /

Z 1

0

exp.�z2=2/ dz D 1=2

D .1=
p

2 /

Z 0

�1
exp.�z2=2/ dz: (2.23)

Limits in above integrals are z equal to zero to z equal to 1 and z D �1 to z D 0,
but z D .x � �/=� ; hence corresponding limits of x in the second integral will be
x D �1 to x D �. So the last integral in (2.23) can be written as

F.�1 < X < �/ D
Z xD�

�1
exp

�
.x � �/2

2¢2

�

D 1=2: (2.24)

2.8.3 Normal Distribution and Probability Tables

Table A.1 gives the probability of happening for the given value of variable z. The
values of z in steps of 0.01 have been taken from 0 to 3.49.

z D .x � �/=¢; z D 1 corresponds one standard deviation.
Table A.2 gives the cumulative frequency (area covered) from �1 to different

value of z
n

1p
2 

R z
0

exp.�z2=2/dz
o
.

In fact, the table gives the cumulative normal distribution against deviation of the
variate from the mean expressed in terms of standard deviation.
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Table A.3 gives the area covered by the variable from 0 to z. In fact, Table A.3
can be derived from Table A.2 by subtracting 0.5 from each entry.

Table A.4 gives the probability interval for the given value of z. It is the area
covered by the variables from �z to Cz. For given value of z, every entry in
Table A.4 is twice the entry in Table A.3.

Table A.5 gives the values of z for the given probability interval.

2.8.4 Mean and Variance of a Linear Combination
of Normal Variates

Let z be a linear combinations of two normal variates and is given by

z D ax C by: (2.25)

Then the probability distribution of z will also be a normal distribution giving

Mean of z D �z D a�x C b�y (2.26)

and
Variance of z D ¢2

z D a2¢2
x C b2¢2

y: (2.27)

Generalizing the above statements, if z is a linear combination of n normal variates
given as

z D
pDnX

pD1

apxp: (2.28)

Then probability distribution of z will also be a normal distribution with mean and
standard deviation given by

Mean D �z D
pDnX

pD1

ap�p; (2.29)

¢z D
0

@
pDnX

pD1

a2
p¢2

p

1

A

1=2

: (2.30)

2.8.5 Standard Deviation of Mean

Let there be n normal variates x1, x2, x3, . . . , xn, then mean Nx of these variates is
given by

Nx D .1=n/

pDnX

pD1

xp: (2.31)
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Following (2.30) and taking 1=n D ap for all values of p, then standard deviation
from (2.30) is given by

¢ Nx D
0

@
pDnX

pD1

¢2
p=n2

1

A

1=2

: (2.32)

If these n normal variates belong to the same population for example observations
of an unbiased measuring instrument, then each variate will have the same � , giving
us

¢ Nx D .n¢2=n2/1=2 D ¢=
p

n: (2.33)

2.8.6 Deviation from the Mean

From (2.16), the mean deviation is given by

jxr � �j D 1

¢
p

2	

Z 1

�1
j.x � �/j expf�.x � �/2=2¢2g dx:

Putting
y D .x � �/=¢

p
2;

we get dy D dx=¢
p

2 or

¢
p

2 dy D dx;

giving

1

¢
p

2	

Z 1

�1
¢

p
2 jyj exp.�y2/

n
.¢

p
2/dy

o
(2.34)

D 2¢

r
1

2	

Z 1

�1
jyj exp.�y2/ dy

D 2¢

r
1

2	

Z 0

�1
�y exp.�y2/dy C 2¢

r
1

2	

Z 1

0

y exp.�y2/dy: (2.35)

In the first integral, putting

y D �z;

dy D �dz

lower limit of z D �1 and upper limit of z D 0, the first integral becomes

D 2¢

r
1

2 

Z 1

0

z exp.�z2/dz
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D 2¢

r
1

2 

Z 1

0

z exp.�z2/dz:

Hence (2.35) becomes

D 4¢

r
1

2 

Z 1

0

z exp.�z2/dz D 4¢
1p
2 

�
exp.�z2/

�2

�1

0

D �¢

r
2

 
Œ0 � 1� D ¢

r
2

 
: (2.36)

2.8.7 Standard Deviation of Standard Deviation

We will first find out the probability density function for the standard deviation from
the first principle. In deriving the expression, we will apply the fact that any linear
combination of normal random variables has a normal distribution. We will then
compare it with normalized normal probability function and get the corresponding
value of the standard deviation of the standard deviation.

We know � the standard deviation is calculated by the formula

¢2 D
pD1X

pD1

.xp � Nx/2

n
:

This formula is valid if n is very large say more than 200. For smaller values of n

the best estimate of � is s and is given by

s2 D ¢2
v D

pDnX

pD1

.xp � Nx/2

n � 1
:

We know that Nx is sum of n number of normal variable; hence ©p D .xp � Nx/ is
also a normal variable and therefore will follow a normal probability distribution.
If there are n such deviations each will follow the normal distribution; hence, if �1

is the standard deviation, the probability P of occurrence of all the n deviation is
given by

P D
exp

 

�
pDnP

pD1

©2
p=2¢2

1

!

¢n
1 .2 /n=2

: (2.37)

Similarly if standard deviation is �1 C•, where • is a small quantity, then probability
P1 is given by
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P1 D
exp

 

�
pDnP

pD1

©2
p=2.¢1 C •/2

!

.¢1 C •/n.2 /n=2
:

Thus, the ratio of P=P1 D Q is given by

Q D
	

1 C •

¢1


�n

exp

2
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2

pDnX

pD1

©2
p

�
1

¢2
1

� 1

.¢1 C ı/2

�
3

5

D
	

1 C •

¢1


�n

exp

8
<

:

1

2

pDnX

pD1

©2
p

.2•¢1 C •2/

¢2
1 .¢1 C •/2

9
=

;
(2.38)

D exp

8
<

:

1

2

pDnX

pD1

©2
p

.2•¢1 C •2/

¢2
1 .¢1 C •/2

� n log

	

1 C •

¢1



9
=

;

Next if �1 is the value, which makes P to be maximum, then partial derivative of P

with respect �1 must be zero.
Taking log of P in (2.37), we get

log P D �n log ¢1 �
pDnX

pD1

.©2
p=2¢2

1/ � n

2
log .2 /: (2.39)

Differentiating and putting it to zero, we get

1

P

dp

d¢1

D � n

¢1

�

pDnP

pD1

�2©2
p

¢3
1

D 0;

giving us

¢2
1 D

pDnP

pD1

©2
p

n
: (2.40)

Substituting for
pDmP

pD1

©2
p from (2.40) in (2.38), we get

Q D exp

�
1

2
n

.2•¢1 C •2/

.¢1 C •/2
� n log

	

1 C •

¢1


�

: (2.41)

Expanding the exponent in terms of ı=�1 and neglecting terms containing ı3 and
higher powers, we get Q in simplified form as
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Q D exp.�n•2=¢2/:

Thus, the probability that the value of �1 lies between �1 Cı and �1 C• Cd• is given
by

Q1 D K exp.�n•2=¢2
1 / d•: (2.42)

K is to be such that total probability of Q1 is unity when ı varies from �1 to C1
is 1, giving us Z 1

�1
K exp.�n•2=¢1/ d• D 1: (2.43)

Put
•
p

n=¢1 D y;

giving

d• D ¢1p
n

dy:

Hence (2.41) becomes

K
¢1p

n

1Z

�1
exp.�y2/ dy D 1;

but
R1

�1 exp.�y2/ dy D p
  .

Hence giving us

K D
p

n

¢1

p
	

:

Substituting the value of K in (2.40), we get

Q1 D
p

n

¢1
p

 

exp.�n•2=¢2
1 / d•

D 1
�
¢1=

p
2n
�p

2 
exp

2

6
4�

8
<̂

:̂

•2

2
�
¢1=

p
2n
�2

9
>=

>;

3

7
5 : (2.44)

Comparing (2.42) with the standard form of normal distribution namely

exp.�x2=2¢2/

¢
p

2 
:

we note that standard deviation of the density function in (2.40) is

¢1=
p

2n:
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Hence standard deviation of standard deviation � is

�1p
2n

: (2.45)

2.8.8 Nomenclature for Normal Distribution

Normal distribution is characterized by its mean � and variance �2; hence quite
often it is denominated as N (�, �2/. A normal distribution designated as N (12, 5)
is mathematically equivalent to

f .x/ D 1p
10 

exp
˚
.x � 12/2=10

�
:

We know that the sum of two normal variates is also a normal variate. Hence
normal distribution of the sum of two normal variates having designations
N.�1; �2

1 / and N.�2; �2
2 / will be N.�1 C�2; �2

1 C�2
2 / and will be mathematically

expressed as

f .x1 C x2/ D 1

.¢1 C ¢2/
p

2 
exp �f.x1 C x2/ � .�1 C �2/g=2.¢2

1 C ¢2
2 /: (2.46)

2.8.9 Probability Function of the Ratio of Two
Normal Variates [1]

Let x and y be two normal variables with means �1 and �2 and standard deviations
�1 and �2, respectively. We wish to derive a probability distribution of z where z is
given as

z D .x � �1/

.y � �2/
: (2.47)

Equation (2.47) may be written as

¢2
2

¢2
1

z2 D .x � �1/
2=¢2

1

.y � �2/2=¢2
2

; (2.48)

but .x � �1/
2=¢2

1 and .y � �2/
2=¢2

2 are the squares of independent standardized
normal variables and ¢2

2 =¢2
1 is an independent �2 variable with 1 degree of freedom.

But ratio of the squares of two independent variables is also a �2 variable of
degree 1. Thus, z2=.¢2

1 =¢2
2 / is the quotient of two independent �2 variables each

with 1 degree of freedom.
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We know that if �2
1 and �2

2 are two independent �2 variables with n1 and n2

degrees of freedom, respectively, then
�2

1=�2
2 is a ˇ2.�=2; �=2/ variate, whose probability density function f .x/ is

given by definition

f .x/dx D 1

B.�; �/

x��1

.1 C x/�C�
dx for positive values of �; � and x

D 0 otherwise: (2.49)

Here B.�; �/ D ����

T .�C�/
, and � stands for Gamma function.

Hence, the probability function of z2.¢2
1 =¢2

2 /, which is the ratio of two �2

variables each having 1 degree of freedom; hence its probability density function
is given by

f

	
z2

¢2
1 =¢2

2




D �.1=2 C 1=2/

�.1=2/�.1=2/
�
�

¢2
2 z2

¢2
1

�1=2�1



1 C ¢2

2 z2=¢2
1

� � ¢2
2 d z2=¢2

1 : (2.50)

Now
�1 D 1 and �.1=2/ D p

 ; substituting these values in (2.50), we get

f .z/ D ¢1¢2

 .¢2
1 C ¢2

2 z2/z
dz2 for 0 � z2 � 1;

giving

f .z/ D 2�1�2

	.�2
1 C �2

2 z2/
dz for 0 � z � 1

or

f .z/ D �1�2

	.�2
1 C �2

2 z2/
dz for � 1 � z � 1: (2.51)

This probability function is important for the experiment in which the output quan-
tity is the ratio of two independent normal variables. For example, measurement
of resistance of a resistor by measuring current A passing through it and potential
difference V across it. V and A are normal variables and resistance R is related to
A and V as

R D V

A
:

Hence

f .R/ dR D ¢1¢2

	.¢2
1 C ¢2

2 R2/
dR: (2.52)

Here �2
1 and �2

2 are the variances of voltage and current measurements, respectively.
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2.8.10 Importance of Normal Distribution

Most of the discrete distributions such as binomial, Poisson, and hypergeometric
approach to the normal distribution.

Many of the sampling distributions such as Student’s t , Snedecor’s F , Chi square
etc. tend to be a normal distribution for larger samples (of size greater than 10).

Quite often even if the variable is not normally distributed, it can be made to
follow normal distribution by simple transformation. For example if the distribution
of a variable X is skewed, the distribution of

p
X might become a normal

distribution.
Distributions of sample mean and sample variance tend to follow normal

distribution.
The entire theory of small sample tests, for example, Student’s t , Snedecor’s

F and Chi square, is based on the assumption that parent population from which
samples are drawn follows normal distribution.

All readings indicated by an unbiased measuring instrument belong to the
normal distribution. Random errors of every unbiased instrument follow the normal
distribution with zero mean. All industrial products manufactured by automatic
devices tend to follow normal distribution. Hence, normal distribution finds largest
applications in statistical quality control in industry.

2.8.11 Collation of Data from Various Laboratories [2]

2.8.11.1 Most Probable Mean of the Data

All measuring unbiased instruments indicate the value of the measurand, which
follows the normal distribution. The problem of collating the data given by different
laboratories is quite common. Each laboratory gives the value of the measurand
along with the uncertainty. The problem is to find the best estimate of the mean
value and the uncertainty associated with it. For example, if there are n independent
normal variates x1, x2, x3, . . . , xn, then �1, �2, �3, . . . , �n respectively are their
standard deviations. Assuming that X is the most probable value of x, then
deviations from the probable value are X �x1, X �x2, X �x3, . . . , X �xn. As each
variate follows normal distribution, the probability of precisely this set of deviations,
therefore, is the product of n normal probability functions for the aforesaid values
of deviations, giving us

exp.�.x1 � X/=2¢2
1

¢1

p
2 

exp �.x2 � X/=2¢2
2

¢2

p
2 

exp �.x3 � X/=2¢2
3

¢3

p
2 

� � � exp �.xn � X/=2¢2
n

¢n

p
2 

:
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This expression may be written as

exp

(

�
pDnP

pD1

.xp � X/2=2¢2
p

)

.2 /n=2
nQ

1

¢p

; (2.53)

where
nQ

1

¢p D ¢1 � ¢2 � ¢3 � � � � � ¢n.

Most probable value of X will be such that the above expression becomes
maximum, which means that the exponent expression becomes a minimum. That
is

pDnX

pD1

.xp � X/2=2¢2
p is a minimum: (2.54)

The expression is a minimum if its first differential with respect to X is zero.
Differentiating it with respect to X and putting it equal to zero, we get

X
�2.xp � X/

2¢2
p

D 0; (2.55)

giving us

X

pDnX

pD1

1

¢2
p

D
rDnX

rD1

xp=¢2
p: (2.56)

Differentiating (2.56) again with respect to X , we get

pDnX

pD1

1

¢2
p

: (2.57)

This is always positive. Hence the expression in (2.54) is a minimum. Hence giving
the most probable value of X from (2.56) as

X D

pDnP

pD1

xp=¢2
p

rDnP

rD1

1
¢2

p

: (2.58)

If xp is replaced by Nxp the mean of the pth sample of np observations, then standard
deviation of single observation should be replaced by standard deviation of the
mean, which is equal to

¢p=
p

np: (2.59)
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Hence most probable mean of results of several laboratories is given by

NX D

pDnP

pD1

n
Nxpnp=¢2

p

o

pDnP

pD1

.np=¢2
p/

: (2.60)

Weighted mean of x1, x2, x3, . . . , xn with respective weights of w1, w2, w3, . . . , wn

is given as

NX D
pDnX

p�1

wpxp

,
pDnX

pD1

wp: (2.61)

Comparing (2.60) and (2.61), we get

The weight factor wp of Nxp D
n
np=¢2

p

o
,

pDnX

pD1

.np=¢2
p/: (2.62)

Hence in the above equation np=�2
p is the weight factor of Nxp . Hence the collating

laboratory must know about the number of observations taken for calculating the
mean value by each laboratory.

We have seen that most probable value of the mean is not simple arithmetic
means of the estimated values but a weight mean. The weight factor given in (2.62)
is proportional to the number of observations and inversely proportional to the
variance of each laboratory. It may be noticed that variance here is to be calculated
by normal statistical means (Type A evaluation of standard uncertainty).

2.8.11.2 Standard Deviation of the Most Probable Mean

Here we have seen that weight factor of the mean is
np=¢2

p
pDnP

pD1
np=¢2

p

; we further know

that if

NX D
pDnX

pD1

ap Nxp; (2.63)

then variance of NX D
pDnP

pD1

a2
p¢2

p=np .

We know that ¢2
p=np is the variance of the mean Nxp and ap D np=¢2

p
pDnP

pD1
n

=
p¢2

p

, giving
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Variance of NX D

pDnP

pD1

�
np=¢2

p

�2

¢2
p=np

 
pDnP

pD1

np=¢2
p

!2
(2.64)

and

Variance of NX D
pDnX

pD1

"f.np=¢2
p/2g

np=¢2
p

#,0

@
pDnX

p�1

np=¢2
p

1

A

2

D

pDnP

pD1

np=¢2
p

"
pDnP

pD1

np=¢2
p

#2
(2.65)

D 1
pDnP

pD1

np=¢2
p

:

Standard deviation of the mean NX D

2

6
6
6
4

1
pDnP

pD1

np=¢2
p

3

7
7
7
5

1=2

: (2.66)

The data sent for such collation not only contain the estimated value of the parameter
and standard deviation but should also contain the number of observations taken by
each laboratory.
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Chapter 3
Other Probability Functions

3.1 Introduction

In addition to normal probability function, quite often other probability functions
such as rectangular, triangular and trapezium functions are quite often used in a
measurement laboratory. Small sample functions play a vital role in the calculation
of uncertainty in a measurement laboratory. In this chapter, we discuss rectangu-
lar, triangular and trapezium functions with special reference to obtain standard
uncertainty from the given semi-range of these functions. Small sample probability
functions such as Student’s t; �2 and Fisher distributions along with their application
are also discussed.

3.2 Important Distributions

3.2.1 Rectangular Distribution

Let us consider a probability function f .X/ defined as follows:

f .x/ D 1

2a
for all values of X � a � x � a

f .x/ D 0 for all other values of x: (3.1)

This means that the probability of finding the variable x in between �a � x � a

is same and is equal to 1=2a. This function is also called as uniform probability
function. If a value of certain parameter of an object lies within the tolerance of ˙a,
then it is obvious that the actual value of the parameter will lie anywhere within
the range �a to C a with equal probability; i.e. the parameter follows rectangular
probability function. In the literature, especially the one obtained from Handbooks,

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5 3,
© Springer-Verlag Berlin Heidelberg 2012
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the value of the parameter is stated together with a specific range. No other infor-
mation about the nature of the stated value, procedure of measurement or obtaining
the semi-range is given. In that case, we can safely assume that the probability of
the stated value lying anywhere within the stated range is equal. We see a little later
how one can calculate the standard uncertainty from the given semi-range.

A measurement laboratory calibrates a parameter of certain object and issues a
certificate stating the value of the parameter and the uncertainty of measurements.
The user laboratory of the object assumes that the stated value may lie between
the limits of uncertainty with equal probability. For example, mass of a kilogram
standard of mass (weight) is stated as 1,000.0025g with uncertainty ˙0:0001 g. In
the absence of any information as to which probability distribution the stated value
follows or the method of obtaining the semi-range, the user laboratory may assume
that the true mass of the mass standard may be anywhere in between 1,000.0024
and 1,000.0026g. The chance of the stated value of mass lying anywhere between
the stated ranges is the same.

Taking mean as origin the rectangular distribution looks like as shown in Fig. 3.1.

3.2.1.1 Mean of the Rectangular Function

Mean Nx is given as

Nx D
Z 1

�1
xf .x/dx D

Z a

�a

.x=2a/dx D 1

2a

�
x2=2

�a
�a

D 0:

3.2.1.2 Variance of Rectangular Function

We know that variance �2 of a probability function in cases of zero mean is given
by Z 1

�1
x2f .x/dx:

In this case, as mean is zero x2 represents the square of the deviations from the
mean. Hence, the variance �2 is given by

¢2 D
Z 1

�1
x2f .x/dx

Fig. 3.1 Rectangular
probability distribution

-a a
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D
Z a

�a

.x2=2a/dx

D 1

2a
Œx3=3�a�a (3.2)

D 1

2a
Œ2a3=3�

D a2=3:

Hence standard uncertainty, which is equal to standard deviation, is a=
p

3.

3.2.2 Triangular Probability Function

In this case, probability of true value at the stated value is a maximum and the
probability uniformly decreases away from the stated value and becomes zero at the
range point. Taking true value as origin and semi-range of ˙a, the probability of
lying the true value increases uniformly from –a to zero, becomes maximum at the
stated value and uniformly decreases to zero at x D a. The probability is zero at
x D ˙a.

Mathematically the triangular probability function f .x/ is defined as follows:

f .x/ D .x C a/=a2 for all xsuch that � a � x � 0

f .x/ D .a � x/=a2 for all xsuch that 0 � x � a (3.3)

f .x/ D 0 for all other values of x:

Such a function is shown in Fig. 3.2.

3.2.2.1 Mean of the Triangular Probability Function Is Given as

Nx D
Z 1

�1
xf .x/dx D

Z 0

�a

x2 C ax

a2
dx C

Z a

0

ax � x2

a2
dx

Fig. 3.2 Triangular function
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D
�

x3=3 C ax2=2

a2

�0

�a

C
�

ax2=2 � x3=3

a2

�a

0

D
�

a3=3 � a3=2

a2

�

C
�

a3=2 � a3=3

a2

�

D 0:

3.2.2.2 Variance � 2 of Triangular Distribution

¢2 D
Z

x2f .x/dx:

Here again, as mean is zero, x2 is the square of the deviation from mean. The integral
is taken over the range for which f .x/ is nonzero. Giving us

¢2 D
Z 0

�a

x2 x C a

a2
dx C

Z a

0

x2.a � x/dx

a2

¢2 D .1=a2/
�
x4=4 C ax3=3

�0
�a

C .1=a2/
�
ax3=3 � x4=4

�a
0

D a2=6: (3.4)

Hence standard uncertainty, which is equal to standard deviation, is a=
p

6.

3.2.3 Trapezoidal Probability Function

Trapezium distribution is some sort of compromise between triangular and rect-
angular distributions. Rectangular distribution assumes that the true value may lie
anywhere in the range –a to Ca with equal probability. The triangular distribution
assumes that the probability of true value lying at the stated value is a maximum
and decreases uniformly on either side of the stated value. However, in many
realistic cases, it is more reasonable to assume that true value can lie anywhere
within a narrower interval around the midpoint with the same probability, while
the probability of true value lying outside this small interval on either side
uniformly decreases to zero at the extremities of the interval (�a; a). For such cases,
probability distribution curve is a symmetrical trapezium with range 2a as one side
and other side parallel to it is taken as 2aˇ. Here ˇ is a fraction lying between 1 and
0. The ˇ equal to zero reduces the distribution to triangular one, while ˇ equal to
one makes it a rectangular distribution.

Referring to Fig. 3.3, the height of the trapezium k will be given by the fact that
area of the trapezium is equal to one.

Area D .a � a“/k=2 C 2a“k C .a � a“/k=2 D a.1 C “/k:



3.2 Important Distributions 57

Fig. 3.3 Trapezoidal
distribution

Equating the area equal to 1, we get

k D 1=a.1 C “/: (3.5)

Equation of probability distribution function represented by a straight line passing
through the points (�a; 0) and (�aˇ; k) is

y D k.a C x/=a.1 � “/; giving

y D .a C x/=a2.1 � “2/; (3.6)

the horizontal line through the points (�aˇ; k) and (aˇ; k) is

y D k D 1=a.1 C “/ (3.7)

and other slant line through the points (a; 0) and (aˇ; k) is given as

y D .a � x/=a2.1 � “2/: (3.8)

Combining (3.6), (3.7) and (3.8), the probability distribution f .x/ having symmet-
rical trapezium as its curve is given by

f .x/ D a C x

a2.1 � “2/
for all values of xsuch that � a � x � �a“

f .x/ D 1

a.1 C “/
for all values of x such that � a“ � x � a“: (3.9)

f .x/ D a � x

a2.1 � “2/
for all values of x such that a“ � x � a

f .x/ D 0 for any other values of x

3.2.3.1 Mean of the Trapezoidal Distribution

In this case, also mean of the function can be shown to be zero. Hence x2 is the
square of the deviation from the mean.
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3.2.3.2 Variance of the Trapezoidal Distribution

The variance �2of this trapezoidal probability function is given by

¢2 D
Z �a“

�a

a C x

a2.1 � “2/
x2dx C

Z a“

�a“

a.1 � “/

a2.1 � “2/
x2dx C

Z a

a“

a � x

a2.1 � “2/
x2dx

¢2 D 1

a2.1 � “2/

h�
ax3=3 C x4=4

��a“

�a
C�a.1 � b/x3=3

�a“

�a“
CŒax3=3 � x4=4�aa“

i

¢2 D 1

a2.1 � “2/

�f.�a4“3=3 C a4“4=4/ � .�a4=3 C a4=4/g

C a.1 � “/fa3“3=3 C a3“3=3g C f.a4=3 � a4=4/ � .a4“3=3 � a4“4=4/g� :

¢2 D 1

a2.1 � “2/

�
a4.1 � “4/=6

�

¢2 D a2.1 C “2/

6
(3.10)

Hence standard uncertainty, which is equal to standard deviation, is a

q
1C“2

6
.

In many cases for type B evaluation of uncertainty, either of three aforesaid
distributions is used. Uncertainty stated by the superior laboratory is taken as range
of the either distribution and square root of variance so calculated gives type B
evaluation of standard uncertainty.

Hence, Type B uncertainty is

a=
p

3 for rectangular distribution

a=
p

6 for triangular distribution

and

a
p

.1 C “2/=
p

6 for trapezoidal distribution. (3.11)

3.3 Small Sample Distributions

In the normal distribution � is the mean of very large number of random variable
and same is the case for variance. In actual practice, we know only the sample mean
and its variance. Size of the sample, in a measurement laboratory is normally 3–5.
Hence theory of small sampling will be applicable to most of the measurements
carried out in a measurement laboratory.
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3.3.1 The Student’s t Distribution

One of the special distributions derived from the normal distribution is the Student’s
t distribution. Student is the pen name of Prof. W. S. Gosset. Let us consider the
definite integral of normal probability distribution, in which deviations have been
expressed in terms of its population standard deviation.

Z k

�k

exp.�y2=2/dy: (3.12)

The integral represents the area covered by the normal distribution between the
limits y D �k to y D k,

if
y D .x � �/=¢: (3.13)

The integral represents the cumulative probability for x lying between the limits

� � k¢ � x � � C k¢:

Here � is the mean and � is the standard deviation of the normal distribution.
Normally � the standard deviation is not known. It is the estimate of the standard
deviation s� from the finite number of observations which is known.

If we replace � by s� in (3.13), we get Student’s t variable i.e.
Student’s t variable t� is defined as

t� D x � �

s�

: (3.14)

The symbol � is the degree of freedom of the tv variable.
Another way of defining the Student’s t variable is as follows:
If X is a (0, 1) normal variate and Y is a ¦2 variable, then the Student’s t� is also

defined as
t� D X

p
Y=�

: (3.15)

The proof of their equality is as follows:
By definition

X D .x � �/

¢
;

Y D ¦2 D
nX

1

.x � �/2=¢2;

giving

¦2=� D

nP

1

.x � �/2=¢2

n � 1
;
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but

s2
� D

nP

1

.x � �/2

n � 1
:

Hence
¦2

�
D s2

�

¢2
: (3.16)

So (3.15) becomes

t� D .x � �/=¢

.s2
�=¢2/1=2

D .x � �/

s�

:

Now, if we wish to find out the probability of

�k � t� � k

or its alternate expression, the probability of

� � ks� � x � � C kt�;

then required cumulative probability is no longer given by (3.12) but by the integral
of Student’s density function f .t�/

Z k

�k

f .t�/dt� D �f.� C 1/=2g
�.�=2/

p
n 

Z k

�k

	

1 C t2
�

�


�.�C1/=2/

dt (3.17)

or the probability density function of Student’s t is

f .t�/ D .1 C t2=�/�.�C1/=2�f.� C 1/=2gp
� f�.�=2g � 1 � t � 1; (3.18)

where

�.n=2/ D .n=2 � 1/.n=2 � 2/ � � � 3:2:1 for all even values of n

and

�n=2 D .n=2 � 1/.n=2 � 2/ � � �3=2:1=2:
p

  for all odd values of n:

Recurrence formula for gamma function �n=2

�n=2 D .n=2 � 1/�.n=2 � 1/:

This distribution is useful for small samples. For sample of size n from the normal
population having � as mean and variance �2, the sample mean Nx and sample
variance s2are calculated in the usual manner and the Student’s t function is used
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to find the probability for the given t or the total probability (covered area) for
the range of Student’s t . In other words, Student’s t distribution is used for small
sample in the same way as normal distribution is used for samples of larger size say
n Š 500.

3.3.1.1 Mean and Variance of Student’s t Function

The mean of the distribution is zero. The standard deviation is �=.� � 2). The � is
greater than 2. The distribution is symmetric about t D 0. Obviously it will tend to
the standard normal distribution as � approaches to a larger number. The Student’s
t distribution is shown in Fig. 3.4. The values of t statistic for different values of
degrees of freedom and probabilities are given in Table A.6.

3.3.1.2 Comparison of Normal and t Distributions

Figure 3.5 gives a plot of f .t/ for n D 5 i.e. � D 5�1 D 4 with a plot of normal dis-
tributions of equal standard deviation. It is noted that the Student’s t distribution has
comparatively more probability concentrated in its tails. Like normal distribution
it is symmetrical, continuous and bell shaped and with increasing n or � it rapidly
converges to a normal distribution.

3.3.1.3 Applications of t-Statistic

The t-distribution has a large number of applications, some of which useful for a
calibration laboratory are enumerated below:

1. To test the sample mean, if it differs significantly from the population mean. In
this case population mean is known, which in some cases may be the resultant
mean from various laboratories or a moving average of the attribute of an artefact
measured at periodical intervals. We assume, in this case, that the attribute of
the artefact does not change with time and environmental conditions or known

Fig. 3.4 t 0 distribution
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Fig. 3.5 Normal distribution and t distribution for n D 5

relations exist between the attribute and time or environmental conditions. For
example, the value of the resistance of Ni-Chrome resistor changes with time and
mass of a platinum iridium cylinder changes with time after cleaning in steam.
Then due corrections are applied to the moving average.

2. To test the difference between the two sample means. This is useful to evaluate
the quality of test results obtained by different observers of the same laboratory
or results obtained from various laboratories in a round robin test.

3. To test the significance of an observed sample correlation coefficient and sample
regression coefficient.

4. To test the significance of the observed partial correlations coefficients.

3.3.1.4 t-Test for a Sample Mean

The statistic used for this purpose is

t D Nx � �

s=
p

n
: (3.19)

It may be noted that denominator of t is the standard deviation of the mean of the
sample. The same is obtained by calculating

s2 D 1

n � 1

pDnX

pD1

.xp � Nx/2 (3.20)

and dividing is by
p

n.
If calculated value of t is less than the tabulated value of t at a given probability

(say 0.05) then the sample mean is not significantly different from the population
mean at 5% level.
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3.3.1.5 Numerical Example

Measured value of a 5 mm slip gauge at 20ıC by a calibrating laboratory is
5.000 mm. The user laboratory measures its length as 5.042 mm at 20ıC by
repeating the measurement ten times and obtaining the standard deviation of
0.040 mm. We wish to know if the result may be taken as statistically genuine result.

Here calculated value of t statistic D .5:042 � 5000/

0:04=
p

9
D 3:15:

Conclusion: Tabulated t value for 9 degrees of freedom is 2.2622 for 0.95
cumulative probability. Here calculated value is larger than the tabulated value;
hence we may say that sample mean may not be taken as statistically genuine result
at 5% level of significance.

For clarity, say another measurement is carried out, which gave mean value of
5.021 mm from 10 repetitions and standard deviation of 0.040.

In this case

t D 5:021 � 5:000

0:04=
p

9
D 1:57:

The calculated value is less than the tabulated value of t at the cumulative probability
of 0.95. Hence sample mean may be taken as statistically genuine result at 5% level
of significance.

Alternatively had there been the standard deviation of 0.066 mm instead of
0.04 mm in the first example, other figures remain unchanged as in first case, t will
then be given as

t D 5:042 � 5:000

0:066
D 1:909:

Here also t value is less than the tabulated value; hence the result may be taken as
statistically genuine result. Hence it may be seen that the outcome of the conclusion
depends both on the measured value and the standard deviation. Smaller value of
standard deviation requires measured value closer to the population mean.

3.3.1.6 t-Test for Difference of Two Means

Let there be two samples of size n1 and n2 and means Nx1 and Nx2, respectively. We
wish to test if these samples come from same population with standard deviation �

and common mean �. The t statistic is

t D . Nx1 � Nx2/

s
q

1
n1

C 1
n2

: (3.21)

Here s is an unbiased estimate of the common population standard deviation and
given by
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s2 D 1

n1 C n2 � 2

8
<

:

pDn1X

pD1

.xp � Nx1/2 C
qDn2X

qD1

.xq � Nx2/2

9
=

;
: (3.22)

3.3.1.7 Numerical Example

Let a weight of 10 g was calibrated against a standard of known mass at two
occasions with the following results.

Sample 1 Sample 2

10.000025 10.000044
10.000032 10.000034
10.000030 10.000022
10.000034 10.000010
10.000024 10.000047
10.000014 10.000031
10.000032 10.000040
10.000024 10.000030
10.000030 10.000032
10.000031 10.000035
10.000035 10.000018
10.000025 10.000021

10.000035
10.000029
10.000022

n1 D 12 n2 D 15

By calculation, we get

Nx1 D 10:000028 g Nx2 D 10:000030 g
pD12P

pD1

.xp � Nx1/2 D 380 � 10�12g2
qD15P

qD1

.xq � Nx2/2 D 1; 410 � 10�12g2

s2 D 1

n1 C n2 � 2

( (
pDn1P

pD1

.xp � Nx1/2 C
qDn2P

qD1

.xq � Nx2/2

))

D .380 C 1410/ � 10�12

.12 C 15 � 2/
D 71:6 � 10�12 g2;

giving

t D .30 � 28/ � 10�6

p
71:6.1=12 C 1=15/10�12

D 0:610:
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Looking at the t tables for 25 degrees of freedom at probability of 0.05, we get the
value of t as 2.06.

Since the calculated value is much smaller than the tabulated value at 0.05, we
may say that two means belong to the same population.

3.3.1.8 Assumption Made for Student’s t Test

1. The parent population from which the samples are drawn is normal.
2. The sample observations are independent.
3. The population standard deviation is not known.

3.3.1.9 Paired t-Test for Difference of Means

Let us consider the case when two samples are not independent. Size of the samples
is same and observations are paired. For example, a weight is calibrated with two
positions of the riders so that one observation is supposed to be higher by the mass
value equivalent of the rider positions. Naturally, it is expected that difference of the
two observations is equivalent to the mass of the two rider positions. In this case,
the observations of two samples are paired as (xi ; yi / for all p taking values from 1
to n; n being the sample size. The statistic t is

t D
Nd

s=
p

n
; (3.23)

where

Nd D

pDnP

pD1

.xp � yp/

n
(3.24)

and

s2 D
P

.dp � Nd/2

n � 1
: (3.25)

3.3.1.10 Numerical Example

During the calibration of a 10 g weight, two observations are taken by shifting the
rider on rider bar by one notch. After taking into account the change in positions of
the rider, the differences of the paired observations are given as

5; 2; 8; �1; 3; 0; �2; 1; 2; 5; 0; 4 and 6 �g:

Ideally each difference should be zero; we wish to test if the differences are real
or due to statistical fluctuations.
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Calculations

Sum of all differences D 31; Nd D 31=12 D 2:58

Sum of the squares of differences D 185;

giving

s2 D 1

n � 1

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

pD12X

pD1

d 2
p�

 
pD12P

pD1

d

!2

n

9
>>>>>=

>>>>>;

D 1

11

˚
185 � .31/2=12

� D 9:5382

t D 2:58=.
p

9:5328=12/ D 2:89:

Tabulated value of t for 11 degrees of freedom at 0.05 is 1.80 (Table A.6). The
calculated value is greater than the tabulated value; hence it is assumed that the
differences are not due to statistical fluctuations. The reason, in this particular case,
may be “not positioning the rider precisely at the same position”.

3.3.2 The �2 Distribution

If X is N (0, 1) distribution, i.e. a Gaussian distribution with zero mean and
deviations being expressed in terms of � , then the random variable

Y D X2 (3.26)

is said to be �2 random variable with one degree of freedom.
In general, if X1; X2; : : : ; Xn are n independent variables of N (0, 1) distribution,

then

Y D
rDnX

rD1

X2
r (3.27)

is said to be a �2 variable with n degrees of freedom.
In fact, X1; X2; : : : ; Xn are the deviations from the mean which is zero in this

case. So Y is sum of squares of deviations from the mean.
Similarly, if X1; X2; X3; : : : ; Xn are the variables of N.�; ¢2/ then

Y D
nX

iD1

.Xi � �/2=¢2: (3.28)

Y is also a ¦2 random variable of n degrees of freedom.
If x1; x2; x3; : : : ; xn is a random sample of size n from N.�; �2/. Here as stated

earlier � is unknown, then the sampling distribution of
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rDnX

rD1

fxr � Nx/2=¢2 D .n � 1/s2=¢2 is also ¦2: (3.29)

The �2 has n � 1 degrees of freedom. One degree is reduced as � has been replaced
by Nx. The probability distribution of y D �2 is given by

f .y/ D y.��2/=2e�y=2

2�=2��=2
for y � 0

D 0 for all other values of y: (3.30)

Mean value of y is �

and (3.31)

Standard deviation of y is 2�:

The curve of �2 distribution is continuous and asymmetrical. The mode or maximum
frequency of the function is at y D � � 2. The distributions for different degrees
of freedom are shown in Fig. 3.6. It is always skewed to right, but tends to become
a normal distribution if � approaches infinity. Like the Student’s distribution it is
dependent of degrees of freedom but independent of � and � .

A typical �2 distribution is shown in Fig. 3.7.
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f (Xv )
2

x2

Fig. 3.6 �2 distribution of various degrees of freedom

Fig. 3.7 A typical �2 curve
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3.3.2.1 Use of �2 Distribution to Find a Range of Standard Deviation
for Given Probability

By definition (3.28)
pDnX

pD1

.xp � Nx/2 D ¦2
�¢

2 (3.32)

also
pDnX

pD1

.xp � Nx/2 D s2
� .n � 1/ D s2

� � �: (3.33)

Thus
¦2

� D � � s2
� =¢2: (3.34)

Here � D n�1 for a single variable and � is number of degrees of freedom giving us

¢ D s�

r
�

¦2
�

; (3.35)

¢ D s�k;

where k D
r

�

¦2
�

: (3.36)

If the value of ¦2
� is chosen for a given probability and known degrees of freedom

�, we get the corresponding value of � .
We can determine the probability of � exceeding the value found from

Z 1

¦1

f .¦2
�/d¦2

�

and less than the value found from

Z ¦2

0

f .¦2
�/d¦2

�:

The values of ¦2
� for six probability levels for the integral

R1
�1

f .¦2
�/d¦2

� are given
in Table A.9.

Consider the expression

�

1 �
Z 1

¦1

f .¦2
�/d¦2

� �
Z ¦2

0

f .¦2
�/d¦2

�

�

: (3.37)

Here choosing �1 and �2 in such a way that the two integrals are equal to each
other for all values of �, and also making the sum of the two integrals equal to 0.10,
0.05, 0.02 and 0.01, respectively. Then the probability of �2 lying between �1 and �2
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becomes respectively 0.90, 0.95, 0.98 and 0.99. The minimum and maximum values
of �2 from a �2 table for proper degrees of freedom are found out. From (3.36) for a
given value of � – the degrees of freedom, we can find out maximum and minimum
values of k corresponding to two values of �. Hence for given degrees of freedom
and probability, we can find out the range of � for given probability. Combining the
two steps, a separate Table A.11 has been constructed giving the values of kmin and
kmax for probabilities of 0.90, 0.95, 0.98 and 0.99. Multiplication of kmin and kmax

with the sample standard deviation gives the range of � for given probability and
degrees of freedom.

kmins� � ¢ � kmaxs�: (3.38)

The values of kmin and kmax for different probabilities and sample size are given in
Table A.11.

3.3.3 The F -Distribution

The distribution, which was discovered by R. A. Fisher, is related to �2 distribution.
If X1 and X2 are independent �2 random variables with �1 and �2 degrees of

freedom respectively then the random variable

F D X1=�1

X2=�2

D ¦2
1=�1

¦2
2=�2

(3.39)

is said to have an F -distribution with �1 and �2 degrees of freedom.
Let s2

1 and s2
2 be the estimates of the variance �2 of a normal distribution.

Thus

s2
1 D ¢2¦2

1=�1

and (3.40)

s2
2 D ¢2¦2

2=�2:

From (3.40), we get

F D s2
1

s2
2

D ¦2
1=�1

¦2
2=�2

: (3.41)

Two random samples of size n1 and n2 are taken from a normal distribution with
mean � and variance �2. The two sample variances s2

1 and s2
2 are calculated in the

usual way. Then the sampling distribution of .n1 � 1/s2
1=�2 is a �2 with (n1 � 1)

degrees of freedom and the sampling distribution of .n2 � 1/s2
2=�2 is again a �2

variable with (n2 � 1) degrees of freedom. Thus, the statistic F for the two sample
is given by
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F D .n1 � 1/s2
1=¢2

.n1 � 1/

�
.n2 � 1/s2

2=¢2

.n2 � 1/
;

giving
F D s2

1=s2
2 : (3.42)

F has Fisher (Snedecor’s) distribution with (n1–1) and (n2–1) degrees of freedom.
So instead of comparing the estimates of variances, we can compare the two �2

variables with �1 and �2 degrees of freedom, respectively.
The variable F is the ratio of positive quantities; hence its range is from 0 to 1.

Fisher showed that F had a probability distribution given as

f .F / D �f.�1 C �2/=2g
�.�1=2/�.�2=2/

�
�1=2
1 �

�2==2

2

F �1=2�1

.�2 C �1F /.�1C�2/=2
: (3.43)

Like �2 distribution, the F distribution is a continuous asymmetrical distribution
with a range from 0 to 1. A few F distribution curves with different degrees
of freedom are shown in Fig. 3.8. Here we see that the curve becomes more
symmetrical as the degrees of freedom increase.

3.3.3.1 Parameters of F Distribution

A typical F distribution curve is shown in Fig. 3.9. The curve is continuous for F

from 0 to 1 and is always skewed to right.
Mean of the distribution is

�2=.�2 � 2/ for �2 > 2: (3.44)
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Fig. 3.9 A typical F curve

Here we see that mean approaches 1 for larger values of �2.
Variance �2of the distribution

2

	
�2

�2 � 2


2 �
�1 C �2 � 2

�1.�2 � 4/

�

: (3.45)

3.3.4 Upper and Lower Percentage Points

We know by definition

F.�1;�2/ D s2
1

s2
2

: (3.46)

Here �1 is the degree of freedom of s2
1 – the sample variance in the numerator and

�2 is the degree of freedom of s2
2 – the sample variance in the denominator.

From (3.46), we get

1

F.�1;�2/

D s2
2

s2
1

D F.�2;�1/;

P Œ.F�1;�2/ � c� ) P

�

1=c � 1

F.�1;�2/

�

: (3.47)

Let
P ŒF.�1;�2/ � c� D ’ (3.48)

then

1 � ’ D 1 � P ŒF.�1;�2/ � c�; (3.49)

D 1 � P

�
1

F.�1;�2/

� 1=c

�

; (3.50)

’ D P

�
1

F.�1;�2/

� 1=c

�

D 1 � P
�
F.�2;�1/ � 1=c

�
:
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Thus, giving
1 � ’ D P ŒF.�2;�1/ � 1=c�: (3.51)

Thus F.�2;�1/ – the significant point at the probability (1 � ’) – is the reciprocal of
F.�1;�2/ at the probability ’.

Hence F value at probability ˛ with �1, �2 degrees of freedom is the reciprocal
of F value at 1 � ˛ with �2, �1 degrees of freedom.

This means
if F (8,4) at probability of 0.05 is 6.04 then 1=6:04 D 0:166 will be the value of

F (4,8) at probability of 0.95.
The following relation relates the upper percentage point of the distribution to

the lower percentage point:

F1�’;�1;�2 D 1

F’;�2;�1

: (3.52)

The values of F for different degrees of freedom at 5% points are given in Table A.7
and the values of F for different degrees of freedom at 1% points are given in
Table A.8.

3.3.4.1 Notation

The notation F1�a;�1;�2 means that 1 � ˛ is the probability of the F D s2
1=s2

2 degrees
of freedom of variances in numerator and denominator being �1 and �2; respectively.

3.3.5 Application of F-Test

3.3.5.1 Testing for Equality of Population Variances

F -distribution is used for testing the homogeneity of two samples. Let there be a
sample of size n1 and variance s2

1 . Similarly let there be another sample of size n2

and variance s2
2 . The ratio of the two variances is the F statistic with n1–1 and n2–1

degrees of freedom; if the samples belong to the same population then s2
1=s2

2 must
be close to unity. The larger sample variance is taken as the numerator for F statistic
so that F > 1.

Fn1�1;n2�1 D s2
1

s2
2

: (3.53)

If calculated value of F is less than the tabulated values for given degrees of freedom
for a given value of probability then two variances are said to belong to the same
population. Normally probability value taken is 0.05; however in some cases, the
probability of 0.01 is also chosen.
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3.3.5.2 Numerical Example

During evaluation of two 1 kg balances, the sum of squares of deviations from the
sample mean of size 8 was found 84:4 .�g/2 for one balance, while it was found
102:6 .�g/2 for the sample size 11 for the second balance. We wish to know if
one balance has a better repeatability than the other (i.e. standard deviations are
significantly different from each other or not).

pD8X

pD1

.xp � Nx/2 D 84:4 giving sample variance s2
p D 84:4=.8 � 1/ D 12:057:

qD10X

qD1

.xq � Nx/2 D 102:6 giving sample variance s2
q D 102:6=9 D 11:4:

F statistic D s2
p

s2
q

D 12:057=11:4 D 1:057: (3.54)

The calculated value is smaller than 3.29 (Table A.8) the tabulated value for 7 and 9
degrees of freedom at probability of 0.05. This suggests that there is no significant
difference in the two variances; hence repeatability of two balances is same within
statistical fluctuations.

3.3.6 For Equality of Several Means

This test is carried out by the technique of analysis of variance. This plays a very
important role in design of experiments. The method has been discussed in Chap. 4.

3.4 Combining of Variances of Variables Following Different
Probability Distribution Functions

In a measurement process there are variety of sources contributing to uncertainty,
each of which is calculated in terms of variance. Assigning one separate variable to
each source gives rise to as many random variables as there are sources. We may not
know as which variable follows which probability distribution. Now we wish to find
out the combined variance of variables following different probability distribution
functions.

Earlier we have proved that the variance of a variable, which is a linear function
of variables, each variable following the normal probability distribution, is the
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weighted sum of the variances. The weight factor of each variance is the square
of the coefficient of its variables in the linear function. Mathematically:

If
Z D a1x1 C a2x2 C a3x3 C � � � C anxn D

X
arxr : (3.55)

All x1; x2; x3; : : : ; xn variables are independent and follow normal distributions.
Then

¢2
z D

rDnX

rD1

a2
r ¢2

r : (3.56)

It can however be proved that the above relation (3.56) is true even if all the
variables do not belong to the normal distribution. Mathematical proof consists of
(1) obtaining the combined probability function (pdf) of any two pdfs defined in a
finite range, (2) deriving a result for variance for the two linearly related variables
with given pdf and (3) finally generalizing the expression of variance of a variable,
which is a linear function of n independent variables. All this is too tedious and
unnecessary for the user metrologists and hence been omitted.
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Chapter 4
Evaluation of Measurement Data

4.1 Introduction

In a metrology laboratory, measurements are carried out assuming that measuring
instruments are unbiased; hence all measured values derived from the observations
of the measuring instrument belong to a normal distribution. In order to calculate
the value of a measurand (output variable), we take observations from the measuring
instruments, and apply known corrections from the calibration certificate and any
corrections due to environmental parameters such as temperature, pressure and
humidity of surrounding air or corrections due to the time elapsed since the calibra-
tion of measuring instrument or standard used. To assess the quality of the measured
values Dixon test is applied (Sect. 4.2). If there is more than one sample, individual
mean of each sample is evaluated for quality (Sect. 4.3). Quality of variances
obtained for different samples is assessed (Sect. 4.4 onward). After doing all this
drill, one should find out all sources of uncertainty, calculate the contribution from
each source in form of variance along with degrees of freedom and combine the vari-
ances from all sources. State the results together with uncertainty of measurement.

4.2 Evaluation of Validity of Extreme Values
of Measurement Results

So the first thing we do is to take observations of a measuring instrument; these
observations make the base for further calculations. We apply certificate and
environmental corrections to get the corrected observations. Before making any
further calculations we need to ascertain the validity of these corrected observations.
Most of the corrected observations form a cluster, but some observations are a
little away from this cluster. We may reject these observations, but this violates the
principle of physical measurement of not leaving any observation. We may reject a
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certain observation if sufficient reason of its rejection is found out. One method of
finding out such outlier observations is the Dixon test.

4.2.1 Outline (Dixon)Test

Basic assumption of this test is that all good observations belong to a normal
distribution. All observations are arranged in ascending order for testing the extreme
large value of the observation. For calculating the validity of extreme low value of
observation, these are arranged in descending order. The test parameter depends
upon the total number of observations (n) and is given in column 2 of Table 4.1
against the number of observations in column 1 of the said table.

It has been assumed that number of repetitions in a set is not more than 25.
If the parameter corresponding to known value of n is more than the value given

in column 3 of Table 4.1, then Xn may be taken as an outlier and hence may be
rejected. The test may be repeated for next extreme values after rejection of the
outlier, but then value of n is to be reduced by 1.

Table 4.1 Critical values for Dixon outlier test
n(observation) Test parameter Critical value

3 0.941
4 0.765
5 (Xn � Xn�1//(Xn � X1/ 0.620
6 0.560
7 0.507
8 0.554
9 (Xn � Xn�1//(Xn � X2/ 0.512

10 0.477
11 0.576
12 (Xn � Xn�2//(Xn � X2/ 0.546
13 0.521
14 0.546
15 0.525
16 0.507
17 0.490
18 0.475
19 (Xn � Xn�2//(Xn � X3/ 0.462
20 0.450
21 0.440
22 0.430
23 0.421
24 0.413
25 0.406
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4.3 Evaluation of the Means Obtained from Two Sets
of Measurement Results

After verifying the validity of individual measurements we make use of these
measurements in calculating the average or arithmetic mean. Having discussed the
evaluation and validity of individual measurement, we switch over to mean of the
measurements. Let a set of measurements be with sample mean Nx and we wish to
know that if it belongs to a population with mean � and standard deviation (¢). Then
test statistic z will belong to a normal distribution N (0, 1). Two cases may arise.

(a) When population standard deviation ¢ is known then

z D Nx � �

�=
p

n
: (4.1a)

(b) When population standard deviation ¢ is not known, standard deviation s of the
sample is taken as population standard deviation, and test statistic is

z D Nx � �

s=
p

n
: (4.1b)

Here n is the number of measurements carried out to calculate sample mean. The
statistic z in (4.1b) will belong to normal distribution for larger sample size; for
smaller size sample z will belong to Student’s t distribution.

Example 4.1. Let there be population having mean of 1,350 and standard deviation
of 150. If there is sample with mean 1,300 from 25 measurements. We wish to know
if this sample mean belongs to the population.

z D .1;350 � 1;300/=150=
p

25

D 50 � 5=150 D 1:666:

This value of z is less than 2, corresponding to the probability of 0.05. Hence we
may conclude that the calculated mean belongs to the same population and should
be accepted for further calculations.

In fact we can determine the range of Nx within which it can be assumed to belong
to the population mean 1,350 and standard deviation 150. Taking z D ˙2,

we get

Nx D 1;350 ˙ 2 � 150=
p

25

D 1;350 ˙ 60:
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In general

Nx � � C 2¢=
p

n;

and Nx � � � 2¢=
p

n

or � � 2¢=
p

n � Nx � � C 2�=
p

n:

Example 4.2. In another set of measurements of resistance of 1
, let the mean
of very large values be 1:0001350 
. If 1:0001250 
 is the mean value of 16
measurements with standard deviation of 0:0000160 
, we wish to know if the
sample mean may be taken as belonging to the same population.

The z in this case is given as

z D .1:0001350 � 1:0001250/=0:0000160=
p

16 D 2:5:

The z value is more than 2; hence mean of measurements may not be taken to belong
to the same population at 5% probability. The value z at probability of 0.01 is 2.56;
hence the measured mean may be taken as belonging to the same population at 1%
probability.

4.3.1 Two Means Coming from the Same Source

Quite often we take a set of measurements on a particular day and calculate the
mean, say Nx1, and repeat the same measurements under same environments with
same or similar instruments and obtain the arithmetic mean, say Nx2. We wish to
know if the two means are significantly different or consistent within statistical
fluctuations. In this case, it may be assumed that the two sets of measurements
belong to the same population. Before proceeding further let us calculate the
population standard deviation from the standard deviations of the two samples.

4.3.1.1 Standard Deviation of the Two Means

Let the two sets of measurements be distinguished by the suffixes 1 and 2.
Let n1 measurement results be taken on the first day and n2 be the number of

measurement results on the repeat performance, then means and variances of two
sets are given as

Nx1 D

pDn1P

pD1

xp

n1

; (4.2)

Nx2 D

pDn2P

pD1

xp

n2

; (4.3)
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S2
1 D

pDn1X

pD1

.xp � Nx1/2 D s2
1�1; (4.4)

S2
2 D

pDn2X

pD1

.xp � Nx2/2 D s2
2�2: (4.5)

Here n1, n2 are number of measurement results, �1, �2 are degrees of freedom and
s1, s2 are standard deviations respectively of the two sets.

As stated above, both sets of measurement results have been made; on the
same/similar instruments under same environmental conditions; hence it should
have a common standard deviation. The best estimate of this standard deviation
using the data of both sets is given by

sv D
s

S2
1 C S2

2

n1 C n2 � 2
; (4.6)

sv D
s

s2
1�1 C s2

2�2

n1 C n2 � 2
(4.7)

that is sv is the square root of the weighted mean of squares of s1 and s2. The
estimates of the standard deviations of the two means respectively will be

svp
n1

and
svp
n2

: (4.8)

Thus, the estimate of the standard deviations of the difference of the two means
will be

s�d D s�

s
1

n1

C 1

n2

: (4.9)

4.3.1.2 Test for Two Means of Samples of Smaller Size

The standard deviation of the difference of two means namely Nx1 � Nx2 is given in
(4.9). Dividing the difference of two means by their combined standard deviation
we get Student’s t statistic for the differences of two means belonging to same
population, i.e. having common standard deviation

tvd D Nx1 � Nx2

svd
D Nx1 � Nx2

sv

r
n1n2

n1 C n2

: (4.10)

tvd is the Student’s t statistic and the degree of freedom is
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n1 C n2 � 2: (4.11)

From (4.10) tvd is calculated and corresponding probability from the table for t

distribution with (n1 C n2 � 2) degrees of freedom can be found out. If tvd exceeds
the value of t for predetermined value of the probability then it is assumed that
the difference between the two means is more than the tolerated. Second method is
that we specify the percentage probability of tolerance and find the corresponding
value of tvd for the degrees of freedom determined from (4.11), and if the calculated
value of tvd from (4.10) is more than the value of t obtained from the table, then
the difference between the two means is taken too large to be considered due to
normal statistical fluctuations. However if tvd is found to be less than the tabulated
value, then the difference between the two means may be taken due to statistical
fluctuations only.

Normally tables for Student’s t are given for the area covered ˇtp; hence Pt for a
given value of tvd is

Pt D .1 � ˇtp/

2
: (4.12)

The chosen value of Pt is normally 0.05. If the value tvd from (4.10) is less than
the value of t corresponding to probability of 0.05, then the difference of the two
means is taken due to normal statistical fluctuations and the two means are said to
be consistent. If it lies between the values of t corresponding to Pt values of 0.05
and 0.01, then the consistency of the two means should be taken with caution. If
the calculated value tvd exceeds the value of t corresponding to Pt of 0.01, then
two means are said to be inconsistent; i.e. difference between the means is large
enough to say that one of the means is not correct. But it is not possible from this
statistics to say which mean is not correct. The only alternative is to take another
set of measurements and compare its mean with the other two means, and retain the
two sets whose means are consistent.

4.3.1.3 SD and Mean Value of Two Means

Once we get the set of consistent means the question comes of the combined mean
of the two sets of measurement results and its standard deviation.

Let us distinguish the two sets of measurement results by 1 and 2, giving us

Nx1 D

pDn1P

pD1

x1p

n1

; (4.13)

Nx2 D

pDn2P

pD1

x2p

n2

: (4.14)
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Now if Nx is the combined mean then it is given by

Nx D

pDn1P

pD1

x1p C
pDn2P

pD1

x2p

n1 C n2

;

Nx D n1 Nx1 C n2 Nx2

n1 C n2

: (4.15)

Combined variance s2
c is given by

s2
c D

pDn1P

pD1

.x1p � Nx/2 C
pDn2P

pD1

.x2p � Nx/2

n1 C n2 � 2
: (4.16)

There were n1 independent variables in the first set of measurement results, but by
fixing the mean as Nx1, the actual number of independent variable is n1–1; similar
is the situation for second set of measurement results; hence the total degree of
freedom remained is n1 C n2 � 2. Hence sum of the squares of deviation from the
combined mean of each variable is divided by n1 C n2–2.

For simplicity of calculations, consider only the numerator of (4.16), which can
be written as

pDn1X

pD1

x2
1p C n1 Nx2 � 2 Nx

pDn1X

pD1

x1p C
pDn2X

pD1

x2
2p C n2 Nx2 � 2 Nx

pDn2X

pD1

x2p

D
pDn1X

pD1

x2
p C

pDn2X

pD1

x‘2
p C .n1 C n2/ Nx2 � 2 Nx

8
<

:

pDn1X

pD1

xp C
pDn2X

pD1

xp

9
=

;

D
pDn1X

pD1

x2
1p C

pDn2X

pD1

x2
2p C .n1 C n2/ Nx2 � 2 Nx f.n1 C n2/ Nxg

D
pDn1X

pD1

x2
1p C

pDn2X

pD1

x2
2p � .n1 C n2/ Nx2: (4.17)

But s2
1 and s2

2 are given as

�1s
2
1 D

pDn1X

pD1

x2
1p � n1 Nx2

1
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and

�2s
2
2 D

pDn2X

pD1

x2
2p � n2 Nx2

2 :

Substituting the values of summations in (4.17),
we get

�1s
2
1 C �2s

2
2 C n1 Nx2

1 C n2 Nx2
2 � .n1 C n2/ Nx2 D �1s

2
1 C �2s

2
2 C n1 Nx2

1 C n2 Nx2
2

�.n1 Nx1 C n2 Nx2/
2=.n1 C n2/

D �1s
2
1 C �2s

2
2 � n1n2. Nx1 � Nx2/2=.n1 C n2/:

Substituting this value for the numerator of (4.16), we get

s2
c D �1s

2
1 C �2s

2
2 � n1n2. Nx1 � Nx2/

2=.n1 C n2/

n1 C n2 � 2
: (4.18)

4.3.1.4 Numerical Example

Let two means for the mass of a kilogram weight obtained by using two different sets
of similar equipment be 1000.000103 and 1000.00011g, and two estimated standard
deviations be 0.00003 and 0.00006 g. The first mean is of 15 measurements and the
second is of 10 measurements.

Now sv from (4.7) is given by

sv D
�

0:032 � 14 C 0:062 � 9

15 C 10 � 2

� 1=2

D f.0:0126 C 0:0324/ =23g1=2 D 0:04423;

giving svd from (4.9)

svd D 0:04423 .1=10 C 1=15/1=2 D 0:018056:

Therefore

tvd D Nx1 � Nx2

svd
D 0:007=0:018056 D 0:388;

�d D 10 C 15 � 2 D 23:

From the Student’s t table, for 23 degrees of freedom (take � D 20 or 25), t for
0.05 probability is 1.7247 for � D 20 and 1.7081 for � D 25 (Table A.6). Here we
see that tvd value is much smaller than either of the two values; hence the two means
are consistent. Hence we can take the weighted mean of the two means to represent
the estimated value of the mass of the kilogram weight under test.
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Mass of the kilogram D .15 � 1000:000103 C 10 � 1000:000110/=.15 C 10/

D 1000:000106 g:

Here we may notice that standard deviations of the two sets are quite different and
are in fact in the ratio of 2:1. It is therefore tempting to apply the Fisher’s test for
homogeneity of two standard deviations.

F statistic D .0:00006/2=.0:00003/2 D 4:

The value of F for degrees of freedom of 9 and 14 is 3.89 for Pt D 0:01

probability and 2.59 for Pt D 0:05; the calculated value of F is larger than that of
for 0.01. Hence the standard deviations do not appear to be homogeneous. This is in
contradiction of our statement that means are consistent. The reason being obvious
as s1 and s2 essentially come in the denominator of the expression for tvd, which
reduces the numerical value of tvd for larger value of standard deviations; hence the
two means are consistent. Therefore, it is suggested that before we declare the two
means to be consistent, it is advisable to apply the F -test for consistency of standard
deviations.

4.3.2 Test for Two Means Coming from Different Sources

Quite often different laboratories determine the value of same parameter of an
object, for example, mass of a travelling standard weight. Each laboratory will give
the mean value and standard deviation of its measurements. Here, it may not be
necessary to have same population standard deviation. In this case, mean Nx will be
given by

Nx D
Nx1

s2
1=n1

C Nx2

s2
2=n2

	
1

s2
1=n1

C 1

s2
2=n2




or

Nx D n1s2
2 Nx1 C n2s2

1 Nx2

n2
1s

2
2 C n2

2s2
1

: (4.19)

It may be noted that Nx is the weighted mean of Nx1 and Nx2 where weight factors are

1

s2
1=n1

and
1

s2
2=n2

; respectively: (4.20)

These are the reciprocals of the variances of each mean.
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Combined standard deviation is given by

svd D
	

s2
1

n1

C s2
2

n2


1=2

: (4.21)

For the purpose of assessing the closeness of two means, Student’s t statistic is
taken as

tvd D Nx1 � Nx2

svd

or

tvd D Nx1 � Nx2

.s2
1=n1 C s2

2=n2/1=2
: (4.22)

Effective degree of freedom in this case is not simply n1 C n2–2 but is to be
calculated from Welch–Satterthwaite [1, 2] formula:

1

�eff
D

pDnX

pD1

s4
p

�p

, 
rDnX

rD1

s2
p

!2

: (4.23)

Taking s2
1=n1 and s2

2=n2 as the variances of each mean, we get the value of effective
degree of freedom as

�eff D .n2s
2
1 C n1s2

2/2

,	
n2

2s4
1

n1

C n2
1s

4
2

n2




: (4.24)

Rest of the test will be the same as before; namely if tvd is less than the value of
Student’s t statistic for probability of 0.05 then we can safely assume that the two
means are close enough to be considered consistent. In that case, there combined
mean will be given by (4.19) and the estimate of the standard deviation of the
weighted mean is given by

1

s2
D n1

s2
1

C n2

s2
2

: (4.25)

4.3.2.1 Numerical Example

A metre bar was measured at two laboratories with different equipment, with
following results:

Means 1000.014 mm 1000.054 mm

Standard Deviations 0.032 mm 0.074 mm
No of measurements 11 16
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tvd from (4.22)

tvd D 1000:014 � 1000:054

0:0322=11 C 0:0742=16
D 0:04

9:309 � 10�5 C 3:422 � 10�4
D 0:04

0:02086

D 1:917:

The degree of freedom �eff is

�eff D .n2s2
1 C n1s

2
2/2

,	
n2

2s4
1

n1

C n2
1s4

2

n2




D .16 � 0:0322 C 11 � 0:0742/2

162 � 0:0324 C 112 � 0:0744

D .16:384 � 10�3 C 60:236 � 10�3/2

256 � 1:049 � 10�6=10 C 121 � 29:986 � 10�6=15

D 5870:624

26:843 C 241:649
D 5870:624

268:493
D 21:86:

Now with 20 degrees of freedom the value of t is 1.7247 for Pt D 0:05 and is
2.5280 for Pt D 0:01.

The calculated value of tvd is between the values of t for Pt D 0:05 and Pt D
0:01; hence the two means may be taken as consistent with a caution.

4.4 Comparison of Variances of Two Sets
of Measurement Results

We started with validity of single observation, and then went to arithmetic means.
Next step naturally should be to deal the variances. For verifying the consistency of
two sets of measurement results, similar to the assessing of closeness of means, we
can assess the ratio of the variances of two sets. The statistic involved is F , which
is the ratio of the variances s2

1 and s2
2 of the two sets. These are given by

s1 D

v
u
u
u
t

rDn1P

rD1

.x1r � Nx1/2

n1 � 1
; (4.26a)

s2 D

v
u
u
u
t

rDn1P

rD1

.x2r � Nx2/2

n2 � 1
: (4.26b)

Statistic is
F D s2

1=s2
2 :
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Probabilities of F are indicated in the Tables Table A.7 and A.8 for F greater than
unity. Hence the larger of two variances is taken as numerator of F statistic. If the
value of F is less than the tabulated value for probability of 0.05 in Table A.7 then
the two variances are supposed to be equal and two sets consistent. In case the value
of F lies between the tabulated value of F for probabilities of 0.05 and 0.01 then
results of the two sets may be taken as consistent with caution. In case F is greater
than the tabulated value (Table A.8) for probability 0.01 then the two sets are said
to inconsistent.

In tables giving F , n is usually replaced by � – the degree of freedom. The two
values of degree of freedom are given as

�1 D n1 � 1;

�2 D n2 � 1:

The values of �1 in the tables always apply to the variance on the numerator and �2

to that of the variance in denominator in the expression of F . The variance taken on
numerator is always greater than that of denominator.

4.4.1 Numerical Example

Two laboratories reported the following voltage measurement at 10 V level.

Lab. 1 Lab. 2

Standard deviation 0.2 mV 0.5 mV
No. of readings 16 11

To check if the two standard deviations are consistent
F statistic is given as

F D 0:52

0:22
D 0:25

0:04
D 6:25:

The value of F for Pt D 0:01 for 10 and 15 degrees of freedom is 3.80. The
calculated value is much greater than the value of F even for Pt D 0:01; hence
the two standard deviations are not consistent.

4.5 Measurements Concerning Travelling Standards

An object [3] is circulated within certain number of laboratories and each laboratory
makes the measurement of the given parameter and sends the results to a nodal
laboratory. The results normally consist of the estimated value of the parameter,
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number of observations taken to arrive at the estimated value and the standard
deviation of each observation. One of the responsibilities of nodal laboratory is to
see the quality and validity of the set of measurement of each laboratory. The nodal
laboratory first calculates the overall mean. For calculating the mean value of the
parameter, there are two methods, namely

(A) The weighted mean of the estimated values of means supplied by each
laboratory is taken. The weight factor is 1

s2=n
.

(B) The weighted mean of all the estimated values of means supplied by each
laboratory is taken with unity as weight factor.

Further the nodal laboratory estimates the standard deviations at various steps and
to inter-compare them.

In a mathematical sense, there will be m sets of observations one each by m

laboratories. Let qth laboratory has taken nq observations and reported the value
of the measurand as Nxq with �q as standard deviation of each observation. Let an
observation is denoted by xpq. The laboratory-wise observations are as follows:

Lab Observations Mean S:D:

1 x11; x12; x13; x14; : : : ; x1n1 Nx1 �1

2 x21; x22; x23; x24; : : : ; x2n2 Nx2 �2

3 x31; x32; x33; x34; : : : ; x3n3 Nx3 �3

:::
:::

:::
:::

qth xq1; xq2; xq3; xq4; : : : ; xqnq Nxq �q

:::
:::

:::
:::

:::
:::

:::
:::

mth xm1; xm2; xm3; xm4; : : : ; xmnm Nxm �m

: (4.27)

The standard deviation of each observation is �pq with ptaking values from 1 to nq .
Let the most likely value of x be Nx; the meaning of it is yet undefined.

Taking rightly that each observation is belonging to a normal distribution, its
probability of happening is

exp �.xpq � Nx/2=2¢2
pq

¢pq.2 /1=2
: (4.28)

Probability of occurrence of the observations xpq [3], where p takes integral values
from 1 to nq and q takes integral values from 1 to m, is given by

Q D exp
��PP

.xpq � Nx/2=2¢2
pq

�

 
qDmQ

qD1

pDnqQ

pD1

spq

!

.2 /N=2

: (4.29)
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Here
qDmP

qD1

nq is N

and
pDnqY

pD1

¢pq D ¢1q � ¢2q�¢3q � � � ¢nqq:

Write
wpq D k2=¢2

pq:

Here wpq is the weight factor of observation xpq. Substituting �2
pq in terms of k and

the weight factor, we get

Q D

qDmQ

qD1

pDnqQ

pD1

.wpq/1=2 exp

(

�
qDmP

qD1

pDnqP

pD1

wpq.xpq � Nx/2=2k2

)

.k/N .2 /1=2
: (4.30)

Taking logarithm of both sides and writing log Q as T , we get

T D 1

2

qDmX

qD1

pDnqX

pD1

log.wpq/ � N log k �
qDmX

qD1

pDnqX

pD1

wpq.xpq � Nx/2=2k2 � N

2
log.2 /:

(4.31)
Most likely values for Nx and k are those for which Q is a maximum. This mean
T becomes a maximum, for which the necessary conditions are that ıT

ık
and ıT

ı Nx are
separately zero.

Now ıT
ı Nx D

qDmP

qD1

pDnqP

pD1

wpq.xpq � Nx/=k2:

This gives

D
qDmX

qD1

pDnqX

pD1

wpqxpq � Nx
qDmX

qD1

pDnqX

pD1

wpq: (4.32)

Equating it to zero, we get

Nx D

qDmP

qD1

pDnqP

pD1

wpqxpq

qDmP

qD1

pDnqP

pD1

wpq

: (4.33)

Now
ıT

ık
D 0 D �N

k
C

qDmX

qD1

pDnqX

pD1

wpq.xpq � Nx/2=k3; (4.34)
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giving us

k2 D
qDmX

qD1

pDnqX

pD1

wpq.xpq � Nx/2=N : (4.35)

Now variance �2Nx of the mean Nx is given

1

¢2Nx
D

qDmX

qD1

pDnqX

pD1

1

¢2
pq

D
qDmX

qD1

pDnqX

pD1

wpq

k2
: (4.36)

Substituting the value of k from (4.35), we get

¢2Nx D k2

qDmP

qD1

pDnqP

pD1

wpq

D

qDmP

qD1

pDnqP

pD1

wpq.xpq � Nx/2

N
qDmP

qD1

pDnqP

pD1

wpq

: (4.37)

For finite number of observations best estimate of variance s2Nx is obtained by
multiplying the variance �2Nx for very large number of observations by N=N � 1

giving us

¢2
Nx D

qDmP

qD1

pDnqP

pD1

wpq.xpq � Nx/2

.N � 1/
qDmP

qD1

pDnqP

pD1

wpq

: (4.38)

4.5.1 Mean and Standard Deviation for each Laboratory

Following the similar steps as above for composite mean of all the laboratories, the
mean of the qth laboratory is given by

Nxq D

pDnqP

pD1

wpqxpq

pDnqP

pD1

wpq

: (4.39)

Similarly the variance of the qth mean is given by

¢2Nxq
D

pDnqP

pD1

wpq.xpq � Nxq/2

nq

pDnqP

pD1

wpq

: (4.40)
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Hence estimated variance for qth laboratory for finite number of observations is

s2Nxq
D

pDnqP

pD1

wpq.xpq � Nxq/2

.nq � 1/
pDnqP

pD1

wpq

: (4.41)

Equation (4.41) gives the variance within the laboratory.
We will now show that the value of mean Nx is same whether taken as the weighted

mean of the means of all the laboratories or taken as the mean of all the weighted
observations.

The weight factor of qth mean will be

pDqX

pD1

wpq D wq: (4.42)

So Nx the mean of the means of all laboratories is given by

Nx D

qDmP

qD1

wq Nxq

P
wq

: (4.43)

Substituting the values of wq and Nxq , we get

Nx D

qDmP

qD1

(
pDnqP

pD1

wpqxpq �
pDnqP

pD1

wpq

,
pDnqP

pD1

wpq

)

qDmP

qD1

wq

;

Nx D

qDmP

qD1

pDnqP

pD1

wpqxpq

qDmP

qD1

pDnqP

pD1

wpq

: (4.44)

Thus the weighted mean of the m laboratories is same as the weighted mean of all
the observations taken together. Hence methods 1 and 2 give the same numerical
value of the final mean if weight factors are taken into consideration.
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4.5.2 Inter-Laboratories Standard Deviation

The variance of the overall mean Nx from m means of the m laboratories is given by

2¢
2
Nx D

qDmP

qD1

wq. Nxq � Nx/2

m
qDmP

qD1

wq

: (4.45)

Equation (4.45) has been obtained by replacing xpq by Nxq , as the number of variables
(means) is m; hence N has been replaced by m.

But wq D
pDnqP

pD1

wpq:

Hence (4.45) becomes

2¢2Nx D

qDmP

qD1

pDnqP

pD1

wpq. Nxq � Nx/2

m
qDmP

qD1

pDnqP

pD1

wpq

: (4.46)

Suffix 2 of 2¢
2
Nx denotes the standard deviation by external consistency. In other

words, this is the standard deviation of the means of several laboratories from the
overall mean. Hence it denotes the inter-laboratory standard deviation.

From (4.46) the best estimate of the standard deviation by external consistency
(inter-laboratory) is given as

s2
2. Nx/ D

qDmP

qD1

pDnqP

pD1

wpq. Nxq � Nx/2

.m � 1/
qDmP

qD1

pDnqP

pD1

wpq

: (4.47)

Equation (4.47) gives the best estimate of the inter-laboratories variance, from which
best estimate of inter-laboratories standard deviation is obtained.

4.5.3 Intra-Laboratory Standard Deviation

Equation (4.40) gives the variance of the qth laboratory, so sum of variances of all
laboratories is given by
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¢2 D

qDmP

qD1

pDnqP

pD1

wpq.xpq � Nxq/2

N
qDmP

qD1

pDnqP

pD1

wpq

: (4.48)

Hence estimate of the variance �2 from finite number of observations is obtained by
multiplying �2 by N=.N � m/ giving

s2
1 D

qDmP

qD1

pDnqP

pD1

wpq.xpq � Nxq/2

.N � m/
qDmP

qD1

pDnqP

pD1

wpq

: (4.49)

Here we see m standard deviations have been taken from N observation, so degree
of freedom for the expression is N � m. This explains the reason for (N � m) in the
denominator of the expression in (4.49).

This estimate of the standard deviation of observations from the mean Nx is known
as the standard deviation of the mean by internal consistency. In other words, it is
within the laboratory (Intra laboratory) standard deviation.

4.6 F-test for Internal and External Consistency

4.6.1 F-test for Inter- and Intra-Laboratory Variances

Besides being used to decide the consistency of two sets of data as done in Sect. 4.4,
F -test can be used to decide whether a number of sets observations as provided by
the measurement laboratories are part of a larger normal population. If individual
sets are biased then the complete set of observations will not be homogeneous and
F -test may be used for revealing this inhomogeneity.

Let there be a set of N observations belonging to population having � as mean
and � as the standard deviation. The N observations have been divided in m

groups each having nq observations. The q takes all integral values from 1 to m.
In other words, there are m laboratories each has given the measured value Nxq of the
particular measurand as mean of nq observations.

Let us consider the �2 of degree N of all the observations xpq with population
mean � and standard deviation �

�2 D
qDmX

qD1

pDnqX

pD1

wpq.xpq � �/2

¢2
: (4.50)
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Expressing the term inside the two summations as the sum of squares of deviations
from means, we get

�2 D
qDmX

qD1

pDnqX

pD1

wpq
˚
.xpq � Nxq/ C . Nxq � Nx/ C . Nx � �/

�2

¢2
: (4.51)

Here Nx is the mean of all observations.
Expanding the term inside two summations will result into six terms, three terms

of square of each term inside the curly bracket and three terms of the products of
the three terms. Using the properties of the means, summations of the three products
will be zero giving us

�2 D
qDmX

qD1

pDnqX

pD1

wpq.xpq � Nxq/2

¢2
C

qDmX

qD1

pDnqX

pD1

wpq. Nxq � Nx/2

¢2
C

qDmX

qD1

pDnqX

pD1

wpq. Nx � �/2

¢2
:

(4.52)
Expressing all deviations in terms of � , we may interpret the three terms as follows:

The first term on the right-hand side is sum of the square of deviations from
m individual means. As m means have been obtained from N observations, the
degree of freedom of the first term is N � m. It is due to intra-laboratory (within a
laboratory) variations. It is due to internal consistency. In other words, it is a �2 of
N � m degrees of freedom; let us write it as �2

1.
The second term of right-hand side is the sum of squares of deviations between

m means; hence its degree of freedom is m � 1. Finding the overall mean has used
up one degree of freedom Nx. This term is due to inter-laboratory variations and may
be termed as variations due to external consistency. The second term is also �2 and
is of m � 1 degrees of freedom.

The last term is a �2 of one degree of freedom.
We further see that first term divided by m � n gives s2

1 the variance by internal
consistency or the intra-laboratory variance. The second term when divided by m�1

gives s2
2 .

F -test may be applied to these two variances giving F value as

F D
.m � 1/

qDmP

qD1

pqP

pD1

wpq.xpq � Nxq/2

.N � m/
PP

wpq. Nxq � Nx/2
; (4.53)

as s2
1 from (4.49) is given by

s2
1 D

qDmP

qD1

pDnqP

pD1

wpq.xpq � Nxq/2

.N � m/
qDmP

qD1

pDnqP

pD1

wpq

: (4.54)
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and s2
2 from (4.47) is

s2
2. Nx/ D

qDmP

qD1

pDnqP

pD1

wpq. Nxq � Nx/2

.m � 1/
qDmP

qD1

pDnqP

pD1

wpq

: (4.55)

Hence (4.53) is also equal to

F D s2
1

s2
2

: (4.56)

4.6.2 Weight Factors

In the above formulations the weight factor wpq is quite general. We may choose the
value of it as per requirement of the analysis. We have two choices, namely

All weight factors are taken equal and each is equal to unity
Weight factors are equal to the inverse of square of standard deviation of the

observation

4.6.2.1 Case 1 Weight Factor Is Unity

From (4.33), the overall mean Nx is given by

Nx D

qDmP

qD1

pDnqP

pD1

xpq

N
: (4.57)

But from (4.39)

Nxq D
pDnqX

pD1

xpq=nq: (4.58)

So (4.57) may be written as

Nx D

qDmP

qD1

nq Nxq

N
: (4.59)

From s2
1 from (4.54)

s2
1 D

qDmP

qD1

pDnqP

pD1

.xpq � Nxq/2

N.N � m/
: (4.60)
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From s2
2 (4.55)

s2
2 D

qDmP

qD1

nq. Nxq � Nx/2

N.m � 1/
: (4.61)

Equations (4.60) and (4.61) give the value of F as

F D s2
1

s2
2

D
.m � 1/

pDmP

pD1

qDnqP

qD1

.xpq � Nxq/2

.N � m/
qDmP

qD1

nq. Nxq � Nx/2

: (4.62)

4.6.2.2 Case 2 Weight Factor Other than 1

It is usually not possible to give an independent weight factor to each observation,
but it is possible to give a weight factor to the set of one group with nq observations.
We know the variance of the set with nq observations is s2.xq/; hence the weight
factor for the qth set of nq observations is 1=s2.xq/. Substituting it in (4.39), we get

Nxq D

pDnqP

pD1

xpq=s2.xq/

nq=s2.xq/
;

Nxq D

pDnqP

pD1

xpq

nq

: (4.63)

This means that take simple arithmetic mean of the qth set of observation. For the
overall mean Nx take the weighted mean of the m means obtained from (4.63). The
weight factor is the inverse of the variance of the corresponding mean. So we get

Nx D

qDmP

qD1

Nxq=s2. Nxq/

qDmP

qD1

1=s2. Nxq/

: (4.64)

From (4.54), we get s2
1 as

s2
1 D

qDmP

qD1

pDnqP

pD1

.xpq � Nxq/2=s2.xq/

.N � m/
qDmP

qD1

nq=s2.xq/

;
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but
pDnqX

pD1

.xpq � Nxq/2=s2.xq/ D nq � 1;

giving s2
1 as

s2
1 D

qDmP

qD1

.nq � 1/

.N � m/
qDmP

qD1

nq=s2.xq/

D N � m

.N � m/
qDmP

qD1

nq=s.xq/2

(4.65)

D 1
qDmP

qD1

1=s2. Nxq/

;

where
s2. Nxq/ D s2.xq/=nq: (4.66)

Again from (4.55), we get s2
2 as

s2
2 D

qDmP

qD1

pDnqP

pD1

. Nxq � Nx/2=s2.xq/

.m � 1/
qDmP

qD1

nq=s2.xq/

;

s2
2 D

qDmP

qD1

nq. Nxq � Nx/2=s2.xq/

.m � 1/
qDmP

qD1

nq=s2.xq/

;

s2
2 D

qDmP

qD1

. Nxq � Nx/2=s2. Nxq/

.m � 1/
qDmP

qD1

1=s2. Nxq/

: (4.67)

Hence variable F will be

F D s2
1

s2
2

D .m � 1/
P

. Nxq � Nx/2=s2. Nxq/
: (4.68)

The degree of freedom of s2
1 is N � m and that of s2

2 is m � 1.
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4.6.3 F-test for Variances

Now compare the calculated F value with the tabulated value of F corresponding
to �1 and �2 degrees of freedom for probability 0.05. If the calculated value is lesser
than the tabulated value then the results are consistent, or in other words, the results
reported by the various laboratories are very much the part of the same population
and hence acceptable. If the calculated value lies between the values for probabilities
of 0.05 and 0.01, then results are acceptable with a caution. If the calculated value
is more than the F value for probability of 0.01, then results do not belong to the
same population.

If it is so then the results with maximum variance may be isolated and values of
s2

1 and s2
2 are recalculated from the remaining results and whole procedure stated

above is repeated. In such a case, it is advisable to use the inverse of variance of
each laboratory as the weight factor for calculating the overall mean result.

4.7 Standard Error of the Overall Mean

From (4.38) the standard error of the overall mean is

s2
Nx D

qDmP

qD1

pDnqP

pD1

wpq.xpq � Nx/2

.N � 1/
qDmP

qD1

pDnqP

pD1

wpq

:

Using the properties of the mean, this can be expressed in terms of s2
1 and s2

2 as
follows:

s2. Nx/ D .N � m/

N � 1
s2

1 C .m � 1/

N � 1
s2

2 : (4.69)

4.7.1 Results Inconsistent

After going through all the rigorous evaluation of measurement data from several
laboratories, and finding that the results are inconsistent, it may not be possible to
either reject the whole set of data or reject the data from a certain laboratory. In that
case overall mean and variance are to be reported.

The best method to report the mean is to take the mean of all the means by
different laboratory without attaching any weight factor to a mean. That is

Nx D
qDmX

qD1

Nxq=m: (4.70)
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The square of the standard error of this mean is given by

s2. Nx/ D 1

m.m � 1/

qDmX

qD1

. Nxq � Nx/2: (4.71)

It leads to the same formula if each set of measurements contains equal number of
observations and the weight assigned to each measurement is unity.

4.8 Analysis of Variance

4.8.1 One-Way Analysis of Variance

We have discussed methods that are most frequently used to test the equality of two
means or two variances. Quite often we need to analyse data of several samples
(more than 2). In addition of the method given above (in Sects. 4.4.6 and 4.4.7) we
discuss one-way analysis of variance, which is a little simpler method with unity
weight factor to each observation.

We start with the hypothesis that
Samples means are same namely

H0 W �1 D �2 D �3 D � � � D �m: (4.72)

Alternative Hypothesis H1: At least two means are not equal.
Notations used are the same as in (4.27). For ready reference, these are repeated

below in Table 4.2.

Table 4.2 Observations, means and variances of various laboratories

Observations
Laboratories 1 2 3. . . m

Observations x11 x12 x13 x1m

x21 x22 x23 x2m

x31 x32 x33 x3m

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . xn33 . . .
xn11 . . . . . .

xn22 . . . . . .
xnmm

Sum of the row
Column sum Tq D T

Column mean Nxq Nx
Column variance s2

q

.nq � 1/s2
q

qDmP

qD1

.nq � 1/s2
q D SSW
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We know that
The pth observation of qth laboratoryD xpq

Total of observations of qth laboratory Tq D
pDnqX

pD1

xpq: (4.73)

Mean of observations of qth laboratory Nxq D Tq

nq

D

pDnqP

pD1

xpq

nq

: (4.74)

Variance of observations of qth laboratory s2
q D

pDnqP

pD1

.xpq � Nxq/2

nq � 1
: (4.75)

Sum total of all observations T D
qDmX

qD1

Tq D
qDmX

qD1

pDnqX

pD1

xpq: (4.76)

Total number of observationsN D
qDmX

qD1

nq: (4.77)

Overall mean .mean of all observations/ Nx D T

N
D

qDmP

qD1

pDnqP

pD1

xpq

N
: (4.78)

Variance s2
m of all N observations regarded as single sample

s2
m D

qDmP

qD1

pDnqP

pD1

.xpq � Nx/2

N � 1
: (4.79)

Let �q and �2
q be the mean and standard deviation of the qth laboratory and q takes

values 1, 2, 3, . . . , m.
From (4.79), we have

.N � 1/s2
m D

qDmX

qD1

pDnqX

pD1

.xpq � Nx/2 D
qDmX

qD1

pDnqX

pD1

�
.xpq � Nxq/ C . Nxq � Nx/

�
2

D
qDmX

qD1

pDnqX

pD1

�
.xpq � Nxq/2 C 2.xpq � Nxq/. Nxq � Nx/ C . Nxq � Nx/2

�
(4.80)

D
qDmX

qD1

pDnqX

pD1

.xpq � Nxq/2 C 2

qDmX

qD1

pDnqX

pD1

.xpq � Nxq/. Nxq � Nx/ C
qDmX

qD1

pDnqX

pD1

. Nxq � Nx/2:
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Overall mean Nx is the mean of column means Nxq ; hence the sum of deviations of the
laboratory means Nxq from their overall mean Nx is zero making the second term in
(4.80) zero,

giving us

qDmX

qD1

pDnqX

pD1

.xpq � Nx/2 D
qDmX

qD1

pDnqX

pD1

.xpq � Nxq/2 C
qDmX

qD1

pDnqX

pD1

. Nxq � Nx/2

or (4.81)

SST D SSW C SSA;

where

SST D
qDmX

qD1

pDnqX

pD1

.xpq � Nx/2; (4.82)

SSW D
qDmX

qD1

pDnqX

pD1

.xpq � Nxq/2 D
qDmX

qD1

.nq � 1/s2
q; (4.83)

SSA D
qDmX

qD1

pDnqX

pD1

. Nxq � Nx/2: (4.84)

4.8.1.1 Testing the Null Hypothesis

Let us consider SSW, the sum of squares of deviations from their respective means
(refer to right-hand side of (4.83). Population variance �2 is the average values of
variances s2

q ; hence

qDmX

qD1

.nq � 1/s2
q D .n1 � 1/s2

1 C .n2 � 1/s2
2 C .n3 � 1/s2

3 C � � � C .nm � 1/s2
m

D .n1 � 1/s2 C .n2 � 1/s2 C .n3 � 1/s2 C � � � C .nm � 1/s2:

D .N � m/�2: (4.85)

Hence SSW=.N � m/ is an unbiased estimate of ¢2: (4.86)

Similarly, it can be proved that

SSA D
qDmX

qD1

pDnqX

pD1

. Nxq � Nx/2 D .m � 1/¢2 C
qDmX

qD1

nq.�q � �/2: (4.87)

Here � is the overall mean and it, therefore, is
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� D

qDmP

qD1

nq�q

N
: (4.88)

Thus average value of SSA/(m � 1) is

SSA=.m � 1/ D ¢2 C
2

4
qDmX

qD1

nq.�q � �/2

3

5

,

.� � 1/: (4.89)

Now if �1 D �2 D �3 D : : : D �m D � so that null hypothesis H0 is true, the
second term in (4.89) must be zero.

Therefore, the quantities in (4.85) and (4.89) must be compatible and their ratio
must be nearly 1 within the normal statistical fluctuations; hence Fisher’s F -test

F D SSA=.m � 1/

SSW=.N � r/

is applied to test the hypothesis that all samples belong to the same population
having common mean and variance.

The results are summarized in Table 4.3 as follows:
The expected mean squares (EMS) column deserves further comment. It has been

pointed that the average value of

SSW

N � q
D MSW D ¢2 (4.90)

and the average value of

SSA

q � 1
MSA D ¢2 C

qDmP

qD1

nq.�q � �/2

m � 1
: (4.91)

Table 4.3 Summary of Results

Source of Sums Degree of Mean of sums Expected mean F-test
variance freedom sum (EMS)

Between
laboratories
(Groups)

SSA m� 1 SSA/.q � 1/

D MSA
¢2 C

qDmP

qD1

nq.�q � �/2

m � 1
MSA/MSW

Within
laboratories

SSW N � m SSW/.N � q/

D MSW
�2

Total SST N � 1
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These are expected mean squares and will always be included in a column of the
analysis of variance table. For the special case when

n1 D n2 D n3 D : : : D nm D n: (4.92)

From (4.92), we get

1=.m � 1/

qDmX

qD1

nq.�q � �/2 D .n=m � 1/

qDmX

qD1

.�q � �/2: (4.93)

In more complicated situations, which we are going to discuss later, a glance at the
EMS column will indicate which mean square is to be taken for F ratio test.

4.8.1.2 Numerical Example

A high-pressure gauge was calibrated by four laboratories at 10, 15, 20 and 25 bars
(1 barD 105 Pa). Each laboratory took 5 observations at each of the four points and
reported the results as given in Tables 4.4 and 4.5.

Table 4.4 Means & standard deviations at 4 test points

Points on the scale Mean Laboratories Level
A B C D

10 bar Mean 10:0 10:0 10:1 9:9 10:0

SD 0:071 0:071 0:122 0:071

15 bar Mean 15:0 15:1 15:1 14:8 15:00

SD 0:158 0:187 0:122 0:122

20 bar Mean 19:8 20:02 20:1 19:9 20:0

SD 0:173 0:122 0:187 0:071

25 bar Mean 25:0 24:8 25:4 25:2 25:1

SD 0:187 0:224 0:212 0:200

Overall mean 17:45 17:525 17:675 17:45 17:525

Table 4.5 Detailed observations of the four laboratories at 20 bar level
Laboratory Observations

A B C D

19.7, 20.1, 19.7 20.2, 20.3, 20.3, 20.0, 19.9 19.9, 19.8,
19.7, 19.8 20.2, 20.2, 20.3 20.3, 20.0 19.9, 19.9,

20.0,
Mean 19.8 20.2 20.1 19.9
SD 0.173 0.122 0.187 0.071
Overall mean 20.0
We wish to calculate
Overall mean Nx
Within a laboratory variance ¢2

w
Between the laboratories ¢2

b
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Let there be q laboratories that participated in a measurement programme. Each
laboratory took n1, n2, n3, . . . , nq observations and has reported the means as
Nx1; Nx2; Nx3; : : : ; Nxq , and standard deviations s1, s2, s3, . . . , sq .

Overall mean

Nx D n1 Nx1 C n2 Nx2 C n3 Nx3 C : : : C nq Nxq

n1 C n2 C n3 C : : : C nq

: (4.94)

Estimate of overall variance

s2
m D

pDmP

pD1

qDnqP

qD1

.xpq � Nx/2

qDnqP

qD1

.nq/ � 1

; (4.95)

s2
m D .n1 � 1/s2

1 C .n2 � 1/s2
2 C .n3 � 1/s2

3 C : : : C .nq � 1/s2
q

.n1 � 1/ C .n2 � 1/ C .n3 � 1/ C : : : C .nq � 1/
:

We will calculate sum of squares of deviations from the mean

qD4X

qD1

pD5X

pD1

.xpq � Nxq/2 D SSW; (4.96)

qD4X

qD1

nq. Nxq � Nx/2 D SSA; (4.97)

qD4X

qD1

pD5X

pD1

.xpq � Nx/2 D SST: (4.98)

SST is the sum of first two summations
Calculation sheet at nominal values at level of 20 bar is given in Table 4.6.
Referring to figures in the calculation sheets Table 4.6, we obtain the figures

given in Table 4.7
F D 0:1667=0:02125 D 7:84:

Tabulated value of F with 3 and 16 degrees of freedom at probability value for
0:05 D 3:25.

Tabulated value of F with 3 and 16 degrees of freedom at probability value for
0:01 D 5:32.

This shows that variances between the laboratories and within a laboratory are
not equal and difference is too large to be attributed due to statistical fluctuations.

To further investigate the reason of too much difference in standard deviations,
we look for the bias in the results of four laboratories. The details are given in
Table 4.8.
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Table 4.7 Variances between the laboratories
Sources of error Sum of squares of deviation Degree of freedom Variances

Between Labs. 0.50 3 0:1667 D �2
b

Within a Lab 0.34 16 0;021225 D �2
w

Total sum 0.84 19 –

Table 4.8 Bias estimates (Laboratory mean – overall mean of 4 laboratories) at all levels

Levels A B C D Mean SD

1 0.00 0.00 0.10 �0.1 0.00 0/0816
2 0.00 0.10 0.10 �0.2 0.00 0.1414
3 �0.20 0.20 0.10 �0.10 0.00 0.1826
4 �0.10 �0.3 0.30 0.10 0.00 0.2582

�0.075 0.000 0.150 �0.075 0.00
Note: To deal with smaller numbers 19.7 has been subtracted from each observation
Inferences:
Laboratory C appears to have a positive bias of 0.15
Laboratories A and D appears to have negative bias

Uncertainty of overall mean

˙ t

v
u
u
u
u
u
u
t

8
ˆ̂
<̂

ˆ̂
:̂

¢2
b

q
C ¢2

L

qD4P

qD1

nq

9
>>>=

>>>;

: (4.99)

4.9 Tests for Uniformity of Variances

4.9.1 Bartlett’s Test for Uniformity of Many Variances

Quite often to evaluate measurement data received from various laboratories or data
collected over a period of years in a laboratory, we need to ascertain if the variances
do belong to the same population. In this case our Null Hypothesis and its alternate
are

H0: ¢2
1 D ¢2

2 D ¢2
3 D : : : D ¢2

m

H1: At least two variances are different

In Bartlett test only precondition is that sample size is same; here we assume
that:

(a) m samples (data received from m laboratories) are drawn from m populations
and

(b) Each of the m populations has the normal-Gaussian probability distribution.
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The Bartlett statistic denoted as � is

� D 2:3026

C

h
.N � m/ log s2

p �
X

.nq � 1/ log s2
p

i
: (4.100)

Here C is given as

C D 1 C 1

3.m � 1/

2

4
qDmX

qD1

1

.nq � 1/
� 1

N � m

3

5 : (4.101)

And

s2
p D

qDmX

qD1

.nq � 1/s2
q=.N � m/: (4.102)

We know that
qDmX

qD1

nq D N :

The more the s2
q differs from each other, the larger will be the value of �. If all the s2

q

are more or less the same then the statistic � will be small. The statistic in this case
will be approximately distributed as Chi-square �2 with m � 1 degrees of freedom.

4.9.1.1 Numerical Example

Let three laboratories calibrated 1 kg weight and sent data of standard uncertainty,
i.e. standard deviation along with the mass values assigned to the weight. The
standard uncertainty and sample size data were as follows:

m D 3, n1 D 5, n2 D 8, n3 D 10, respective standard uncertainty is 14:3 �g,
12:5 �g, 20:4 �g

Giving us

s2
p D 4 � 204 C 7 � 156 C 9 � 416

23 � 3
D 282:6:

C D 1 C 1

6

�
1

4
C 1

7
C 1

9
� 1

20

�

D 1:0757:

.n1 � 1/ log s2
1 D 9:23852;

.n2 � 1/ log s2
2 D 15:35187;

.n3 � 1/ log s2
3 D 23:57184:
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Giving us

qD3X

qD1

.nq � 1/ log s2
q D 48:15871

.N � q/ log s2
p D 20 log .282:3/ D 20 � 2:45071 D 49:01422:

Giving
� D 2:3026 .49:01222 � 48:15871/=1:0757 D 1:7662:

From the Chi-square table for the value of Chi square at the probability of 0:05 D
5:99. Calculated value is much smaller than the critical value; hence we can assume
safely that the variances reported by the laboratories are equal within statistical
fluctuations.

4.9.2 Cochran Test for Homogeneity of Variances

If size of the samples (number of measurements taken for arriving at the results) is
same then a much-simplified Cochran test may be applied for the homogeneity of
variances. The statistic is

Rn;r D Ratio of largest variance and sum of all the variances
That is

Rn;q D largest s2
q

qDmP

qD1

s2
q

:

4.9.2.1 Numerical Example

The values of variances reported by three laboratories in measurement of 10 


resistor were 140, 660, and 200 (�
/2. Number of observation taken to arrive at
the result by each laboratory is 10.

R10;3 D 660

140 C 200 C 660
D 0:66:

The value of R10;3 for probability of 0.05 is 0.6167 and for probability of 0.01
is 0.6912. Hence the variances are said to be homogenous at 1% level but
nonhomogeneous at 5% level.

For the purpose of establishing degree of equivalence for national measurement
standards participating in regional comparison, one may refer to [4].
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Chapter 5
Propagation of Uncertainty

5.1 Mathematical Modelling

Quite often the quantity under measurement (measurand) Y is not measured directly,
but is the result of measurement of several independent quantities X1, X2, X3, . . . ,
Xn. The measurand Y is also called the output quantity and X1, X2, X3, . . . , Xn as
input quantities. The quantity Y is related to output quantities through some well-
defined relation. That is Y is expressed in terms of X1, X2, X3, . . . , Xn as

Y D f .X1; X2; X3; : : : ; Xn/: (5.1)

Notations:

• For economy of notation, the same symbol is used for the physical quantity and
for the random variable that represent the possible outcome of an observation
of that quantity. When it is stated that an input quantity Xp has a particular
probability distribution then Xp is a random variable. The physical quantity itself
is invariant and has a unique, fixed value.

• In a series of observations, the qth observed value of Xp is denoted as xp;q .
The estimate of the Xp is denoted by xp , which in fact is the expected value of
Xp . Quantities, in general, are expressed in capital letters, while their numerical
values by the corresponding small case letters. The value of the quantity Xn is
expressed as xn for all integral values of n. Hence y the estimated value of the
quantity Y is expressed as

y D f .x1; x2; x3; : : : ; xn/; (5.2)

where x1, x2, x3, . . . , xn are the measured estimates of the physical quantities X1,
X2, X3, . . . , Xn, respectively.

It is assumed that each input estimate is corrected for all known systematic
effects, which are likely to influence significantly.

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5 5,
© Springer-Verlag Berlin Heidelberg 2012
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5.1.1 Mean of Measurand (Dependent Variable)

For the case of repeated measurements, the estimate of y may be obtained in two
ways [1].

1. Find the average of all the input quantities and substitute their values in the
function. This is expressed as

Ny D f . Nx1; Nx2; Nx3; : : : ; Nxn/: (5.3)

2. For each set of n measurement values of input quantities, find the estimated value
of y and then take the mean of m estimated values of y. m is the number of sets
of n measured input quantities. This is expressed as

Ny D 1

m

qDmX

qD1

yq D 1

m

qDmX

qD1

f .x1;q ; x2;q ; x3;q ; : : : ; xn;q/: (5.4)

First method is applicable if the input quantities are independent of each other
and are not influenced by the environmental conditions or proper corrections are
applied due to change in environmental conditions. Second method is applicable
for input quantities, which are dependent and which are affected by influence
quantities including environmental conditions. Second method is preferable if the
output quantity Y is a non-linear function of input quantities. Two methods are
equivalent when Y is a linear function of input quantities.

5.1.2 Functional Relationship and Input Quantities

The input quantities X1, X2, X3, . . . , Xn are themselves measured quantities
which may further depend upon some other quantities, including corrections and
correction factors for systematic effects, thereby leading to a complicated functional
relationship, which may rather be difficult if not impossible to write down explicitly.
Further, it may not be an algebraically defined function and may be a portion of
it is determined experimentally or it exists only as an algorithm that is calculated
numerically. Sometimes •f =•xp is determined experimentally by measuring the
change in Y by incorporating a change in Xp. In this case, knowledge of f is
or a portion of it is correspondingly reduced to an empirical first order Taylor’s
expansion. So the function f may be taken in a broader sense.

If the mathematical model does not satisfy the degree of accuracy desired, then
additional input quantities may be included in the function f to eliminate the
inadequacy.

For example for ordinary day-to-day weighing in a market place, mass of the
commodity is taken as the nominal mass of the weight. For a better degree of
accuracy, we take into account the actual mass of the weight. For still better
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accuracy, we apply air buoyancy correction for which we may take density of air
as 1:2 kg=m3. For still better accuracy, we calculate values of the density of air, and
those of weight and commodity by measurements. To improve the accuracy further,
we may like to know the actual composition of air or measure the density of air
inside the balance at the time of weighing only. In the first case it is a simple relation,
a correction due to mass of weight is applied in the second case, air buoyancy is
added in the third case, a relationship of air density with environmental conditions
is added further and a few measurements of density of weight and commodity are
to be taken. To improve further experiment for determination of air density in situ is
carried out and added in the relationship.

In another example, power dissipated across a given resistor is given by

P D f .V; R/ D V 2=R: (5.5)

To improve accuracy variation of resistance of R with temperature is to be
considered giving

P D f .V; R; ˛; t/ D V 2=R0.1 C ˛t/: (5.6)

Relationship becomes more and more complex, if dependence of ˛ with temperature
and measurement of temperature are taken into account.

5.1.3 Expansion of a Function

If in (5.1), an input quantity Xp is changed by a small amount �Xp, for all integral
values of p, there will be a corresponding change in the dependent variable, say by
�Y related as

Y C �Y D f .X1 C �X1; X2 C �X2; K; Xn C �Xn/: (5.7)

Using Taylor’s expansion, we get

Y C �Y D f .X1; X2; X3; K; Xn/ C
pDnX

pD1

•f

•Xp

�Xp C R: (5.8)

R is the remainder term of the expansion and R is zero if f is a linear function of
the input quantities.

Subtracting (5.1) from (5.8), we get

�Y D
pDnX

pD1

•f

•Xp

�Xp C R: (5.9)

R is zero if Y is a linear function Xp for all p.



112 5 Propagation of Uncertainty

The condition for Y to be a linear function of input quantities set out for
uncertainty calculation by ISO GUM [1] method is necessary to make the remainder
R equal to zero.

To make the mathematics simpler, generality will not be lost if we consider only
two independent variables, namely X1 and X2. Y is the dependent variable of these
two independent variables. Further if Y is a linear function of X1 and X2, then R is
zero; then retaining only the first term of (5.9), we get

�Y D �X1•Y=•X1 C �X2•Y=•X2: (5.10)

Expressing �Y as yp � Ny in terms of deviations of the two independent variables,
we get

.yp � Ny/ D .x1p � Nx1/•Y=•X1 C .x2p � Nx2/•Y=•X2: (5.11)

All partial derivatives are calculated at the mean values of the independent variables.
Further we know that variance of y is denoted as �2

Y and is given as

¢2
Y D limn)1

2

4 1

n

pDnX

pD1

.yp � Ny/2

3

5 : (5.12)

Hence from (5.11) becomes

�2
Y D limn)1

�
1

n

X
.x1p � Nx1/2.•Y=•X1/

2

�

C limn)1
�

1

n

X
.x2p � Nx2/2.•Y=ıX2/

2

�

C 2 limn)1
�

1

n

X
.x1p � Nx1/.x2p � Nx/.•Y=•X1/.•Y=•X2/

�

: (5.13)

Similar to variance there is another term covariance, which is defined as follows:

Cov.x1; x2/ D limn)1

2

4 1

n

pDnX

pD1

.x1p � Nx1/.x2p � Nx/

3

5 : (5.14)

Expressing 1
n

P
.x1p � Nx1/2 as �2

x1 in (5.13), we get

¢2
Y D ¢2

x1.•Y=•X1/
2C¢2

x2.•Y=•X2/
2C2Cov.X1; X2/.•Y=•X1/.•Y=•X2/: (5.15a)

Generalizing it for many variables, (5.15) becomes

¢2
Y D

pDnX

pD1

qDpX

qDp

¢2
xpq.•Y=•Xp/2 C 2

pDnX

pD1

qDnX

qDpC1

Cov.xp; xq/.•Y=•Xp/.•Y=•Xq/:

(5.16a)
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It may be noted that •Y=•Xp for all values of p are calculated at the observed values
x1, x2, x3, . . . , xn: The value of •Y=•Xp at the input quantities is quite often called as
coefficient and is denoted as cp . If all input quantities X1, X2 etc. are independent of
each other, then their covariance will be zero. Hence (5.15a) and (5.16a) respectively
become

¢2
Y D ¢2

x1.•Y=•X1/
2 C ¢2

x2.•Y=•X2/
2: (5.15b)

�2
Y D

pDnX

pD1

qDpX

qDp

�2
xpq.ıY=ıXp/2: (5.16b)

But ¢2
Y is the square of the standard uncertainty; hence in (5.16b), uncertainty of the

output quantity is related to the uncertainties of the input quantities.

5.1.4 Combination of Arithmetic Means

Let there be N samples of n1, n2, n3, . . . , nN items (observations) and
Nx1; Nx2; Nx3; : : : ; NxN be their respective means, then Nx – combined mean of all
the samples – is given by

Nx D n1 Nx1 C n2 Nx2 C n3 Nx3 C � � � C nN NxN

n1 C n2 C n3 C � � � C nN

: (5.17)

5.1.5 Combination of Variances

The law applicable to arithmetic means is applicable to variances also. If
s2

1; s2
2 ; s2

3 ; : : : ; s2
N be respective variances of n1, n2, n3,. . . ., nN observations,

then their combined variance NS2 is given by

NS2 D n1s
2
1 C n2s2

2 C n3s2
3 C � � � C nN s2

N

n1 C n2 C n3 C � � � C nN

: (5.18)

5.1.6 Variance of the Mean

We have seen in the earlier chapter that best estimate of the variance of mean s2. Nxp/

of a quantity observed n times is

s2. Nxp/ D s2.xp/

n
D

pDnP

pD1

.xp � Nxp/2

n.n � 1/
: (5.19)
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In order to obtain a reliable estimate of the expectation �p of the random variable
Xp it is necessary that quite a large number of observations should be taken. This
will also ensure that the estimate of variance s2.Xp/ is close enough to �2.Xp/

of the probability distribution of the random variable Xp. The difference between
s2.Xp/ and �2.Xp/ should be taken into account when constructing confidence
intervals. If the random variable Xp has a normal distribution and s2.Xp/ is taken
for relatively smaller sample than Student’s t factor should be used to make it close
enough to �2.xp/.

Though s2.Xp/ is more fundamental quantity and easier to manipulate math-
ematically, the use of its positive square root – the standard deviation – is more
frequent as it has the same dimension and unit of measurement that of the variable.

5.2 Uncertainty

The uncertainty of measurement characterizes the dispersion of the values that could
reasonably be attributed to the stated value of the output quantity (measurand). In
other words, the uncertainty U is the interval within which the conventional true
value of the output quantity is likely to lie. For example, if Y is the calculated value
of measurand (output quantity) from the data of measured input quantities and U is
the uncertainty, then the conventionally true value is likely to lie between Y � U

and Y C U .
The uncertainty of the output quantity Y consists of uncertainties in measurement

of the input quantities. There are two methods of their evaluation, namely Type
A evaluation and Type B evaluation. But in either case the quantities calculated
are variances (Type A evaluation) or are in nature similar to the variances (Type B
evaluation).

5.2.1 Combined Standard Uncertainty

The estimated standard deviation of the estimate y is termed as combined standard
uncertainty. It is denoted as uc.y/. The uncertainty uc.y/ is characterized by the
positive square root of sum of the squares of the products of standard deviation
and its corresponding partial derivative; similar terms are added for dependent
input quantities for their covariances. The uc.y/, in this case, is known as standard
uncertainty.

For an independent quantity XP , there may be more than one source of
uncertainty, a quantity similar to standard deviation is determined for each source
and their squares are added. The square root of the sum is termed as standard
uncertainty of XP and is denoted as u.xp/. Numerically the standard uncertainty
is equal to the combined standard deviation of XP .
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5.2.1.1 Measurand (Output Quantity) Is a Function of Single
Input Quantity

When the output quantity (measurand) is a function of single input quantity, then
combined standard uncertainty is the positive square root of the sum of squares of
the uncertainties evaluated by Type A and Type B methods of the single input quan-
tity. The uncertainty of the dependent quantity Y is the product of the value of the
partial derivative at xp and the uncertainty of the input quantity and is expressed as

uc.Y / D .•Y=•X/ � u.xp/:

5.2.1.2 Measurand (Output Quantity) Is a Function of Several Quantities

When the measurand Y is a linear function of a number of input quantities, the
combined standard uncertainty of the result of its measurement is equal to the
positive square root of the sum of the weighted variances and covariances of these
quantities. The weights associated being the partial derivatives of the measurand
function with respect to each input quantity (coefficients). It can be expressed as

uc.y/2 D
pDnX

pD1

qDnX

qDp

u2
xpq.•Y=•Xp/2 C 2

pDnX

pD1

qDnX

qDpC1

Cov.xp; xq/.•Y=•Xp/.•Y=•Xq/:

In the case, when all input quantities are independent of each other (covariances are
zero), i.e. second term in the above equation is zero, the standard uncertainty uc.y/

is given as

uc.y/2 D c2
1u2

x1 C c2
2u2

x2 C c2
3u2

3 C � � � C c2
nu2

n: (5.20)

Here cp D .•Y=•Xp/ for all values of p from 1 to n.
Taking the uncertainty equal to the value of the standard deviation has the

following advantages:

1. No multiplication factor is necessary, which depends upon the confidence level.
2. Different components of standard uncertainty can be simply combined by the

quadrature method.
3. Uncertainties calculated either by Type A or Type B evaluation method may be

treated in the same fashion.

5.2.2 Expanded Uncertainty

The expanded uncertainty of a measurement process is equal to the product of a
coverage factor K and the combined standard uncertainty. The value of the factor K

depends upon the level of confidence at which one wish to state the result and the
effective degrees of freedom. If the level of confidence is 95.45%, then for infinite
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degrees of freedom (more than 50) K is 2; if the chosen level is 99.7%, then K is 3.
Expanded uncertainty U is the range ˙K � uc around the stated value in which the
true value of a measurand is likely to lie with the stated level of confidence. The
magnitude of the factor K , therefore, depends upon the level of confidence at which
one wishes to assign the value to the measurand. So U the semi-range of uncertainty
is given as

U D K � uc:

If Ny is the measured value, then Ny � U and Ny C U is the interval in which the true
value is expected to lie at the stated level of confidence.

In case of expanded uncertainty the factor K should always be clearly stated. Any
detailed report of the uncertainty should consist of a complete list of the uncertainty
components; the method used to obtain the value of each uncertainty component
should also be specified.

5.3 Type A Evaluation of Uncertainty

Type A evaluation of uncertainty is the estimation of variance of the data obtained
by direct measurements. Normal statistical method of finding the mean and square
of its deviations from the observation is used to estimate the variance. If the number
of observed values of the input quantity Xp is np , then the degree of freedom is
np � 1. Each input estimate of xp and its variance is obtained from a distribution of
possible values of the input quantity Xp. This probability distribution is frequency
based, that is based on a series of observation xp;q of Xp. The Type A evaluation is
based on the frequency distribution, which, in most cases, is the normal (Gaussian)
distribution. In case of dependent input quantities, covariances are also estimated.

In most cases, the best available estimate or the expected value of a quantity Xp

that varies randomly is the arithmetic mean of several corrected observations of this
quantity. That is

Nxp D
qDnpX

qD1

xp;q : (5.21)

Here np is the number of corrected observations taken under similar conditions.
Individual observation xp;q may differ in value because of random variations in

the influence quantities or any other random effect. The variance of observations,
which is the best estimate of �2 – the variance of the probability distribution of
quantity Xp, is obtained from

s2.xp/ D 1

np � 1

qDnpX

qD1

.xp;q � Nxp/2: (5.22)

The positive square root of s2.xp/ is the standard uncertainty uA.xp/ determined
by Type A evaluation method of uncertainty. The symbol uA stands for uncertainty
arrived at by Type A evaluation.
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Table 5.1 Observations and sum of squares of deviations

Serial No. Mass value in g .xp � Nxp/ �g .xp � Nxp/2 .�g/2

1 1000:000068 �4 16
2 1000:000083 11 121
3 1000:000079 7 49
4 1000:000064 �8 64
5 1000:000063 �9 81
6 1000:000094 22 484
7 1000:000060 �12 144
8 1000:000068 �4 16
9 1000:000076 4 16
10 1000:000065 �7 49
Sum 10000:000720 0 1,040
Mean 1000:000072

5.3.1 Numerical Example for Calculation of Type A Evaluation
of Standard Uncertainty

Let us consider a case of measurement of mass of a 1 kg mass standard. Observations
after applying buoyancy and other corrections are given in Table 5.1

Different parameters are as follows:

1. Mean mass value of the kg D Nxp D
qD10P

qD1

xp;q=10 D 1000:000072 g

Best estimate of the mass of the kilogram is 1000.000072g

2. Variance s.xp/2 D .xp�Nxp/2

np�1

3. Degrees of freedomD np � 1 D 10 � 1 D 9

4. Standard deviation s.xp/ D p
.xp � Nxp/2=.np � 1/ D p

1040=9 D 10:75 �g
5. Standard deviation of the mean

s. Nxp/ D s.xp/=
p

n D s.xp/=
p

10

s. Nxp/ D 3:4 �g (5.23)

The information about degrees of freedom is required to estimate the extended
uncertainty of the mean with given confidence level for a single input quantity
and also for the estimation of effective degrees of freedom �eff for several input
quantities.

Here we see that to have a reasonable estimate of Type A uncertainty, a good
number of observations need to be taken. In a calibrating laboratory to take such
a large number of observations at one calibration point is not feasible. Normally
fewer observations say 3 or maximum 5 are taken. In such case the uncertainty uA

is full of statistical fluctuations. The author [2] suggested a method to smooth out
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these statistical fluctuations. The method is of pooling a larger number of variances
of the instrument or of the procedure of measurement. The method is described in
the following section.

5.4 Pooled Variance

Pooled variance is the arithmetic mean of a number of variances. Due consideration
is being given to their respective degrees of freedom.

If s2
1; s2

2 ; s2
3 ; : : : ; s2

k are estimates of variances and n1, n2, n3, . . . , nk their
respective degrees of freedom, then pooled variance S2 is given as

S2 D n1s2
1 C n2s2

2 C � � � C nks2
k

n1 C n2 C n3 C � � � C nk

; (5.24)

giving

Standard uncertainty uA D S: (5.25)

5.4.1 Validity

The method of pooled variance in relation to instruments is valid when the value
of the input supplied to the instrument remains constant for each repetition and
variation is mainly due to the instrument in use.

5.4.2 Applicable

The method is applicable to cases of calibration of a very large number of measuring
instruments, e.g. calibration of a

• Weighing instrument against standard weights
• Linear dial gauge with the help of slip gauges
• Proving ring through dead weights
• The method may be made applicable to calibration of electrical and other

instruments, when the constancy of standard input like current or voltage is better
by one order of magnitude

In all these cases, observations mainly vary only due to the instruments under use
and there is negligible variation of the standard input quantity.

5.4.3 Uses

• Type A evaluation of standard uncertainty in calibration of instruments
• Testing the authenticity of a fresh variance or uA
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• Maintenance of measuring instruments
• Fixing maximum permissible error of measuring instruments for regulatory

purposes
• Rejection of an instrument under calibration

5.4.4 Need

5.4.4.1 Calibration of Measuring Instruments

Most of the instruments are calibrated by observing the reading of the instrument
and knowing the value of the standard input supplied to it. Ammeters, voltmeters,
dial pressure gauges, linear dial gauges and weighing machines are but a few
examples.

Such instruments are calibrated at several points. At each point, in addition
to, the correction to be applied, both Type A and Type B methods are used to
evaluate uncertainties. For the purpose of calculating standard deviation with lesser
statistical fluctuations, a larger number of repetitions should be taken at each point
under calibration. However, time and resource constraints do not allow to take fairly
good number of repetitions at each point. So the value of standard uncertainty uA

calculated by using Type A method will be full of statistical fluctuations and thus
may create some confusion.

Firstly, the standard deviation of 3 or 5 observations has little meaning, and
secondly, it is more likely that there are apparently wide variations in its values
from point to point of the same instrument. So the uncertainty uA reported is more
likely to be different not only for two calibrated instruments of the same type for
the same user, but may also be different at various points at which the instrument
has been calibrated. This will naturally confuse the mind of the user and may also
raise an alarm in his mind, especially when he will see several different values of
uncertainty in the certificate of one instrument. The method of pooled variance may
be used to solve this problem. It is, therefore, suggested that the standard deviation
at each point of calibration is replaced by the square root of the pooled variance.

5.4.5 Calculation of Pooled Variance

All instruments for the purpose of calculation of pooled variances may be divided
into two categories.

5.4.5.1 Category I: The Variance Is Independent of the Input Quantity

All instruments having a linear relation between the input quantities and reading on
its scale fall in this category. In this case, variances at different points of the scale
may be pooled together.
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Let an instrument be calibrated at n number of points, and at each point, m

number of observations have been taken. Mean of m observations at the qth point is
Rq . Let the pth observation at the qth point be denoted by rqp. Then

Rq D �
rq1 C rq2 C rq3 C � � � C rqm

�
=m D

pDmP

pD1

rqp

m
: (5.26)

If the variation in the indications of the instrument is independent of the value of the
indication, then to obtain pooled variance S2, the sum of the squares from the mean
value of each indication is added and the sum thus obtained is divided by n.m � 1/.
The same is explained in the following paragraph:

Point of the scale Observations Mean Sum of squares from the mean
L1 r11; r12; r13; : : : ; r1m R1

P
.r1p � R1/

2

L2 r21; r22; r23; : : : ; r2m R2

P
.r2p � R2/2

L3 r31; r32; r33; : : : ; r3m R3

P
.r3p � R3/

2

: : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : :

Ln rn1; rn2; rn3; : : : ; rnm Rn

P
.rqp � Rn/2

(5.27)
The pooled variance is

S2 D

qDnP

qD1

pDmP

pD1

.rqp � Rq/

n.m � 1/
: (5.28)

5.4.5.2 Category II: The Variance Depends Upon Input Quantity

All instruments having non-linear scales will fall into this category. In this case,
variances for the same input quantity only can be pooled together. So the pooling
is to be done on different instruments of same kind for each input quantity, thus
requiring larger effort and number of instruments before uA is obtained.

In this case variances for similar kinds of instruments are pooled together. The
observations are taken for the same magnitude of the input quantity.

If s2
q were the variance of nq number of observations, then pooled variance S2

for N such sets for a particular point of similar instruments is given by

S2 D

qDNP

qD1

.nq � 1/s2
q

qDNP

qD1

.nq � 1/

: (5.29)
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5.4.6 Uses of Pooled Variance

5.4.6.1 Estimation of Type A Uncertainty of an Instrument

In the following paragraphs, an example has been cited for justification and
calculation of pooled variance from variances taken at different points of calibration
of same instrument and also to pool it for several instruments of same kind. The
square root of the pooled variance will then be taken as the standard uncertainty
from Type A evaluation at all points for the instrument under calibration.

Calibration data of five proving rings have been analyzed. Three proving rings
designated as A, B and C are of the same type, each having a dial gauge as an
indicating device, while each of the other two proving rings, designated as D and
E, is fitted with a six-digit electronic indicating counter, thus having a much better
readability in comparison to that of proving rings designated as A, B and C.

Each proving ring was tested at ten points and observations for each point were
repeated three times. The variances of three observations at each of the ten points of
proving rings are given in Table 5.2.

Abbreviations used in Table 5.3 are as follows:

Mean of the variances D smean

Maximum variance D smax

Minimum variance D smin

Mean value of the variance smean, the values of the ratio between the maximum
and minimum variances smax=smin and the ratio of the maximum variance with the
mean variance smax=smean have been respectively tabulated in the 1st, 2nd and 3rd

Table 5.2 Variances of five proving rings

S. No. A B C D E

1 0.0067 0.0267 0.0600 4:6667 20:6667

2 0.0800 0.0200 0.0867 2:0000 44:6667

3 0.0600 0.0000 0.0867 4:6667 98:0000

4 0.2600 0.1400 0.1400 4:6667 186:000

5 0.4867 0.2067 0.0267 4:6667 254:000

6 0.0600 0.0600 0.1800 56:0000 416:666

7 0.4067 0.0600 0.0867 14:0000 542:000

8 0.3467 0.0467 0.0267 98:6667 772:667

9 0.1800 0.0200 0.0067 42:0000 872:000

10 0.2867 0.3267 0.0200 28:6667 1148:000

Table 5.3 Mean variances smean and ratios smax=smin and smax=smean

Proving ring A B C D E

smean 0:2174 0:0906 0:0720 26:000 435:534

smax=smin 72:642 16:335 26:8656 49:3333 55:5807

smax=smean 2:2387 3:6059 2:5000 3:7948 2:6358
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rows of the Table 5.3. Greater variance has always been taken as numerator so that
all ratios become suitable for Fisher’s F test [3].

Fisher’s F test [3] has been applied to test the hypothesis that variances under
test belong to the same population. The degrees of freedom for variances at each of
ten points are only 2, while degrees of freedom for the mean variance are 20.

The values of variances show a wide range though the application of Fisher’s F

test indicates that none of the variances in any of the five proving rings is outside the
limit of 1% level of significance. Limiting value of F at 1% level of significance for
2 degrees of freedom (Table A.8) for each variance is 99.0. Further Limiting value
of F at 5% level of significance for 2 degrees of freedom (Table A.7) is 19.0.

Comparing the ratios of maximum and the mean values of variances in the set
indicates that none of the maximum variance is outside the limits even at 5% level
of significance for rings A, C and E and at 1% level for rings B and D, as the value
of F for 2 and 20 degrees of freedom is 3.49 at 5% and 5.82 at 1%. The ratios of
mean variances for A, B and C proving rings show that all mean variances belong
to the same population at 1% level of significance.

It may be noticed that ratio of mean variances of proving rings E and D is 16.75,
which is much larger than the F value of 2.94 for 2/20 degrees of freedom. Hence
the two mean variances cannot be said to belong to the same population even at 1%
level of significance.

As the data analyzed have only two degrees of freedom and the last digit in the
data is only an eye estimate, a stray case of wide variation may be neglected.

From the above discussions, it may be safely concluded that
To a layman, the variances are apparently different, giving different uncertainties

at different points of the same proving ring, thus confusing the user.
To a statistician all variances, in the set, may be pooled and its square root may

be taken as the Type A standard uncertainty.
It is also reasonable to take the average of the variances for similar proving

rings to form a pooled variance with larger degrees of freedom. When such a data
are accumulated for a year or two, a reliable value of the pooled variance may
be established. Square root of this pooled variance may thus be taken as Type A
standard uncertainty for future use.

Similar process when used for many similar instruments of category II gives a
reliable value of pooled variance.

The pooled variance technique is used for a measuring instrument, like balances.
In addition of sensitivity figure of the balance, a pooled variance and standard
deviation should periodically be calculated and a record should be maintained.
Similar exercise should be carried out of all measuring instruments and records of
the moving average of its variance should be maintained.

5.4.6.2 Testing the Authenticity of Observations

Standard deviation .S/, the square root of pooled variance, may also be used for
testing the authenticity of the observations taken in future on a similar instrument.
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A criterion may be formulated that the difference between any two observations
should not be greater than the standard deviation .S/ or its multiple.

For example, assuming the normal distribution for all observations with S as
its standard deviation, then no difference between any two observations should be
greater than twice the value of 1.96 times the value of S (95% level of confidence).
That is semi-range of variations in observations is ˙1:96 S .

The idea of pooled variance is being used, for routine calibration of weights in
Mass Standards activity of National Physical Laboratory, New Delhi, India, for the
past so many years.

In a precision balance for a given specific range, the variation in the observations
is almost independent of denomination of weights. The standard deviation S from
the pooled variance of balance for weights of specific denominations is found out
and used as permissible limits for the two mass values obtained for weight of
same denomination by two observers under similar environmental conditions. If
the difference between the two values is less than 2 S , the mean of the two values is
taken and reported as the mass value of the weight piece with S as one component
of standard uncertainty evaluated by Type A method. Otherwise the mass value of
the weight is re-determined. This is a stricter criterion than suggested in the above
paragraph (level of confidence is 66%).

5.4.6.3 Maintenance of Laboratory Instruments

For ensuring the good working of a measuring instrument, not only its calibration
but also its repeatability should also remain unaltered or within a specified range.
The standard deviation square root of variance is a good measure of repeatability
of an instrument. Hence continuous monitoring of its variance is to be carried out.
Variances, preferably of same number of observations, for ease of calculations, at
prescribed regular intervals of time, are found out. The progressive mean of the
variances, i.e. the pooled variance, is calculated. For a good working instrument
Fisher’s F test is applied. The ratio of the new variance with its pooled variance
should not exceed the value of F tabulated for appropriate degrees of freedom at
a prescribed level of significance (say 5%). Degree of freedom of new variance
would be one less than the number of observations for which the variance has been
calculated; i.e. for pooled variance degree of freedom is

qDNX

qD1

.nq � 1/:

Further a graph of all previous values of standard deviations should also be drawn
if it shows an upward trend, and if the new value exceeds a certain specified value
then instrument may either be discarded or downgraded for less precise work.
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5.4.6.4 Fixing Maximum Permissible Error of an Instrument

Having known the pooled variance of an instrument, its maximum permissible error
may be fixed. For an instrument, the maximum permissible error should in no
case be lower than its standard deviation. An instrument having closer maximum
permissible error than its repeatability is of no practical value. Say for example,
twice the value of the standard deviation may be a reasonable value of the maximum
permissible error of the instrument and vice versa. That is standard deviation of any
instrument should not be more than half of its maximum permissible error.

If the pooled variance is proportional to the input value then maximum permissi-
ble limits may be in the same proportion. This is the one reason as to why maximum
permissible errors are given in percentage rather than in absolute units.

5.4.6.5 Rejection of an Instrument Received for Calibration

If the pooled variance of certain type of instruments is already known, then the
particular instrument received for calibration may be rejected if its sample variance
is more than the prescribed limits. For the purpose one may think of Fisher’s test
again; say for example the ratio of the sample variance to the pooled variance of
the group of instruments may not exceed the tabulated value for the known degrees
of freedom at 5% level of significance. Attention is drawn to the ratio of the mean
variances of proving rings D and E, which are 5:1. Had there been already some
fixed criterion existed it should have been possible to reject the proving ring on
the basis of its variance. For example, according to criterion proposed above, the
proving ring E could be rejected.

5.4.7 Concluding Remarks

The concept of pooled variance is relatively new to the scientists engaged in
calibration work. So its potential uses have not been fully exploited. It is hoped
that the above paragraphs should serve as a step to realize the importance of
this concept and full exploitation of its applications. Use of pooled variance for
fixing maximum permissible error (MPE) and rejection of an instrument must also
help in preparing quality manuals. National Laboratories, custodians of National
standards of measurements, should play an active role in this area. As, usually,
such laboratories have the capability and resources to generate sufficient data in
terms of pooled variances for common measuring instruments and to discuss and
finalize the criteria for (a) maintenance and (b) fixing maximum permissible errors
of measuring instruments and (c) rejection of measuring instruments received for
calibration.
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5.5 Type B Evaluation of Standard Uncertainty

5.5.1 Type B Evaluation of Uncertainty

The Type B evaluation of uncertainty involves estimating the quantity u2
j , which

may be taken as an approximation to the corresponding variance, the existence of
which is assumed. The quantity u2

j is treated like variance and the quantity uj like
standard deviation, and where appropriate the covariances should be treated in a
similar way.

In case the probability distribution of xp is subjective on a predetermined
distribution, a quantity of the nature of variance is determined from the knowledge
of its distribution. Hence Type B evaluations are based on the predetermined
distributions as well.

It may be emphasized that in both cases the distributions are models that are used
to represent the state of our knowledge. Uncertainties due to any input quantity Xp

should be evaluated by both Type A and Type B evaluation methods.
Prior to BIPM directive, in 1980s, uncertainty consisted of two components: one

used to come from random errors and the other due to systematic errors. The two
components of uncertainty used to be named as random uncertainty and systematic
uncertainty. There is not always a simple correspondence between the classification
into Types “A” and “B” and the previously used classification into “random” and
“systematic” uncertainties. The term “systematic uncertainty” can be misleading
and should be avoided.

In case the measurand – the output quantity – is a function of several input
quantities, all variances and covariance should be combined by quadrature method.
Variances obtained by Type A evaluation method are not distinguished from those
obtained by Type B evaluations. So all variances and covariances should, therefore,
be treated as variances or covariances in strict statistical sense.

As mentioned earlier, for those uncertainties, whose estimates have not been
obtained by independent repeated observations, Type “B” evaluation method is
used. This type of uncertainty is calculated by judgement using all relevant
information on the variability of the uncertainty.

For example:

• Previous measurement data
• Experience and general knowledge of the behaviour and properties of relevant

materials and instruments
• Manufacturer’s specification
• Data provided in the calibration and other certificates
• Uncertainty assigned to reference data taken from handbooks

Uncertainties may creep in a measurement process due to the use of:

• Standards
• Measuring instruments
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• Inherent characteristic of the instrument under calibration
• Various physical constants
• Values of physical properties of the material used in standards and measuring

instruments
• Operating conditions

5.5.2 Common Uncertainties Evaluated by Type B

1. Uncertainty as reported in the calibration certificates of the standard or the
instrument used.

2. Uncertainty due to interpolation between the calibration points of the standard
used in the measurement.

3. Uncertainty due to the change in environmental conditions, such as temperature,
pressure and relative humidity of air.

4. Uncertainty due to ability to reset, repeatability and threshold discrimination of
the instruments used.

5. Uncertainty due to the value taken for some physical constants, or properties of
the materials used in the process of measurement, such as values of density of
water, acceleration due to gravity and expansion coefficients.

6. Uncertainty in applied corrections based on measurements or the data obtained
from standard handbooks.

5.6 Variance and Uncertainty Range

5.6.1 Normal Distribution

Type B uncertainty is also of the nature of standard deviation of the estimated value
of xp . For the estimation of standard deviation from the given range of uncertainty
.U /, the range U is to be divided or multiplied by a certain factor, whose value will
depend upon the confidence level at which the result was stated. For example if the
result is stated at a confidence level of 95%, then the range U is to be divided by
1.96 for infinite number of degree of freedom or by the “Student’s ‘t’ factor” for the
given degrees of freedom.

In older literature, uncertainty figures are given at the confidence level of 50%; in
that case one has to multiply it by a factor of 1.48 to obtain the standard deviation.

5.6.2 Rectangular Distribution

If a result has been indicated with a range of aC and at and it is assumed that it is
equally likely for the estimated value to lie anywhere within the given range, i.e. the
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result has a rectangular probability distribution, then corresponding variance u2.xp/

will be given as

u2.xp/ D .aC � a�/2 =12; (5.30)

giving standard deviation u.xp/ as

u.xp/ D a=
p

3: (5.31)

Here it is assumed that

aC D a and a� D �a;

thus giving

.aC � a�/ D 2a:

5.6.3 Triangular Distribution

In many cases, it is more realistic to expect that the chance of reported value
lying near the bounds is less than that lying near the midpoints of the range. The
probability of occurrence of the result at the extreme boundary points is zero and
increases linearly and becomes a maximum at the midpoint of the range. That is the
reported value under consideration follows a triangular distribution.

Then u.xp/ is given as

u.xp/ D a=
p

6: (5.32)

5.6.4 Trapezoidal Distribution

It is more reasonable to assume that the result under consideration has a maximum
probability within a range of ˙aˇ about the midpoint of the range and decreases
linearly to zero at its ends. That is the input quantity has a symmetric trapezoidal
probability distribution having equal sloping sides with a base of width of 2a and
top of width 2aˇ. Here ˇ is a proper fraction and may take any value between 0
and 1. When ˇ is 0, the probability distribution becomes triangular distribution and
it becomes rectangular distribution for ˇ D 1. The standard deviation u.xp/, in this
case, is given as

u.xp/ D a
p

f.1 C ˇ2/=6g: (5.33)

Rectangular distribution should be used only when no data are available. Otherwise,
logically it will be better to use triangular distribution. Firstly this is similar
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to normal distribution and secondly more logical. While stating the range of
uncertainty, the measurements are carried out, which follow normal distribution.
When extended uncertainty is stated, a multiplying factor to standard deviation is
given. So when using the uncertainty range to calculate back the standard deviation,
one should assume that the reported result is following normal distribution unless
contrary is stated or otherwise evident. Type B evaluation of uncertainty should be
carried out keeping in view of the hierarchy of standards and laboratories. In prac-
tice, for example mass measurement, National prototype kilograms are calibrated by
International Bureau of Weights and measure. The calibration certificate contains,
besides other data, the mass value with semi-range of uncertainty normally equal
to 2 times the standard deviation. So for a national metrology laboratory (NPL in
the case of India), the standard deviation should be semi-range divided by 2. It is
not justified to assume that reported result is following the rectangular distribution
and obtaining standard deviation by dividing semi-range by the square root of 3.
All other laboratories should follow a similar method for Type B evaluation of
uncertainty. It is emphasized that this method should be used only for applying the
mass value of standard and uncertainty associated with the mass value.

In some cases, standards and measuring instruments are calibrated, but no
specific value of the standard input versus scale observations with the corresponding
uncertainty or correction to the specific points of the scale of the instrument is
given. The calibration only ensures that the instrument will perform within certain
specified limits. In that case, rectangular distributions or its modified versions may
be used for Type B evaluation of uncertainty.

The proper use of available information for Type B evaluation of standard
uncertainty of measurement needs greater insight based on experience and general
knowledge. It is the skill that can be learned with practical experience and deep
study of the mathematical statistics. A well-based Type B evaluation of standard
uncertainty can be as reliable as Type A evaluation of standard uncertainty. Type
B evaluation of uncertainty assumes greater importance in those cases where direct
observed measurement data are small for Type A evaluation of uncertainty. There
are many valid reasons for not able to take larger number of observations.

When only single value is known of the quantity Xp , for example a single
measured value, a resultant value of the previous measurement, a reference value
from the literature or a correction value, this value will be used as xp . The standard
uncertainty u.xp/ associated with xp is adopted where it is given. Otherwise it
has to be calculated from unequivocal uncertainty data. If data of this kind are not
available, the uncertainty has to be evaluated on the basis of the experience taken
as it may have been stated (often in terms of an interval corresponding to expanded
uncertainty).

When probability distribution can be assumed for the quantity Xp, based on
theory or experience, then the appropriate expectation or expected value (mean
value) and the standard deviation of this distribution have to be taken as the estimate
of xp and the associated standard uncertainty u.xp/, respectively.
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Chapter 6
Uncertainty and Calibration of Instruments

6.1 Introduction

Quite often measuring instruments are received for calibration. Scale of the
measuring instrument is calibrated at few points only. The correction or the value
of standard input is assigned at those selected points of its scale and uncertainty
of measurement is also stated at those points only. In most cases, the values of
the standard input versus scale readings are given at the selected points. When an
instrument is used in the field, the scale readings are recorded, which in general, may
not be the same points at which the instrument was calibrated. The correct value
is obtained from the corrections at the two nearest calibrated points just by linear
manipulation. In this method only small interval containing the observed reading is
considered which may not be always justified. However, it is advisable to consider
all the points at which calibration is carried out. It is, therefore, necessary that a
mathematical relation between the scale reading and standard input is given. So that
the user can substitute the value of observed scale reading in the relation and get
the value of the input to the instrument. For example an ammeter with range of
100 A and with 100 divisions on the scale is calibrated normally at four points, say
at 25 A, 50 A, 75 A, and 100 A graduation marks, but in practice the instrument may
read 60 A; then naturally the user would like to know as to what will be the real
value of the current passing through it, when the instrument is reading 60 A. This
chapter is mainly based on my research paper [1] published in MAPAN – Journal of
Metrology Society of India, in 1999.

Another set of instruments are transducer type, which have an arbitrary scale,
which is driven by one quantity but depicts a totally different quantity, for example
electronic weighing instruments, in which indication will depend upon the electric
current through the circuit, but the scale will depict the weight of the body. Proving
rings are used to measure force. Force induces linear changes in the diameter of
the proving ring, which is measured, but the instrument associated with it indicates
force. Same is the case of voltmeter and other electrical measuring instruments etc.

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5 6,
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In calibration of hydrometers, the author has observed that, sometimes, the
correction at the top of the scale was very large and reduced to almost zero at the
bottom of the scale. Such results indicate that the length of the scale is too small or
too large. In this case there will be a linear relation between correction and indication
of the hydrometer. If the gradient of the linear relation is very small, it suggests that
corrections are independent of the scale reading. Similarly the correction assigned
to a mercury-in glass thermometer will be a quadratic function of the indication on
the thermometer, if diameter of the capillary is uniformly changing.

Normally the number of points at which the instrument is calibrated is very much
less than the total number of graduations on it. For finding out the value of input at
other points we may like to have some sort of algebraic relation, so that by choosing
any numerical value of the independent variable (indication on the scale) the value
of the input is obtained. This will enable us to calculate the value of input (dependent
variable) for any chosen value of the independent variable – graduation on the scale.

Firstly, we may like to find out if there exists a relation between the corrected
input quantities and scale readings. Then we try to establish a graph or an equation
of a graph, or an empirical relation between the known inputs and readings taken on
the scale of the instrument is required to be given.

Such relations may be a polynomial including a linear relation, a power function,
or an exponential function in one variable. A mathematical function becomes
specific relation if the values of the constants involved in defining the function are
given.

To specify the mathematical relation we use the least square method which gives
the best estimates of the constants involved in defining the function. We will find
the standard deviation by taking the square root of the average of the squares of the
residual errors. This standard deviation is used in calculating the uncertainty of the
estimated input for the given scale reading.

Usually a mathematical relation including the values of constants is given after
the calibration of an instrument. But in this chapter, we wish to go one step further.
In addition of the values of constants involved in the function, we find out the
uncertainty in assigning the value of the dependent variable (input quantity), by
choosing from the function, any value of the independent variable (indication on the
scale of the instrument).

First simple case is that in which scale reading indicated by x bears a linear
relationship with the standard input quantity.

6.2 Linear Relation

Simplest function is a linear relation. Let there be n pairs of values of
.x1; y1/; .x2; y2/; .x3; y3/ : : : .xn; yn/, which are to be fitted in a following linear
relation expressed as

y D c1 C c2x: (6.1)
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Here c1 and c2 are the constants. These are determined from n linear relations
obtained by the method of least squares. Considering that (6.1) represents a straight
line then c1 is the intercept on y axis and c2 is slope of the line.

A very small value of c2 will indicate independence of y on x. For example
corrections at various points of the scale of an unbiased instrument are independent
of the magnitude of x.

The values of c1 and c2; and their uncertainties are determined by the method of
least squares. The method consists of forming linear relation by substituting n pairs
of values of .x; y/ and finding the best estimates of c1 and c2 by minimizing the
sum of squares of residual errors E .

E2 D
pDnX

pD1

fyp � .c1 C c2xp/g2: (6.2)

The variables to be adjusted are c1 and c2. E is to be minimized, so •E=•c1 and
•E=•c2 each must be zero.

That is the conditions are as follows:

2E•E=•c1 D 0

gives us

pDnX

pD1

2
˚
yp � .c1 C c2x/

� D 0 )
pDnX

pD1

yp D nc1 C c2

pDnX

pD1

xp (6.3)

and 2E•E=•c2 D 0 gives

pDnX

pD1

2
˚
yp � .c1 C c2xp/

�
xp D 0 )

pDnX

pD1

xpyp D c1

pDnX

pD1

xp C c2

pDnX

pD1

x2
p: (6.4)

Equations (6.3) and (6.4) are two normal equations. These equations when solved
for c1 and c2 give best estimates of c1 and c2. There are two methods of solving
them: the classical method and the matrix method.

6.2.1 The Classical Method

In the classical method first c2 is obtained by eliminating c1 from (6.3) and (6.4).
Solution of (6.3) and (6.4) gives best estimates of c1 and c2. As their values depend
upon the set of n pairs of observed values, these must have some variance and
covariance.
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Solving (6.3), we get

c1 D Œ†x2†y � †x†xy�=Œn†x2 � .†x/2�; (6.5)

c2 D Œn†xy � †x†y�
ı

Œn†x2 � .†x/2
�

: (6.6)

6.2.1.1 Variances of c1 and c2

In all above derivations x is taken as independent variable that means these are
arbitrarily taken values and hence have no uncertainty. The uncertainty is only in the
dependent variable y. Hence while calculating variance of c1 consider component
uncertainty due to pth value of the variable y and use in the following relations:

V.c1/ D ¢2
y

pDnX

pD1

�
•c1

•yp

� 2

;

V .c2/ D ¢2
y

pD2X

pD1

�
•c2

•yp

� 2

:

Here �2
y is the minimum value of sum of squares of residual errors divided by the

number of degrees of freedom. This is obtained by substituting the calculated values
of c1; c2, and values of n pairs of .xp; yp/ and corresponding values of yp in (6.1)
and is given as

¢2
y D †

h
yp � ˚

c1 C c2xp

�2
i
=.n � 2/:

Writing

D D n†x2 � .†x/2;

we get

c1 D Œ†x2†y � †x†xy�=D:

Giving •c1=•yp the contribution of uncertainty due to pth value of y as

•c1=•yp D
P

x2 � xp

P
x

D
;

variance of c1 is the sum of the squares of these deviations multiplied by ¢2
y ,

giving us

V.c1/ D ¢2
y

pDnP

pD1

n
P
x2
�2 � 2xp

P
x
P

x2 C
�
x2

p

�
.
P

x/
2
o

D2
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D ¢2
y

n

P

x2
�2 � 2

pDnP

pD1

xp

P
x
P

x2 C
pDnP

pD1

x2
p .
P

x/
2

D2

D ¢2
y

P
x2
�
n
P

x2 � .
P

x/
2
�

D2
D ¢2

y


P
x2
�

D

D2

and

V.c1/ D ¢2
y

P
x2

n
P

x2 � .
P

x/
2
: (6.7)

Similarly differentiating partially (6.6) with respect to yp , we get •c2

•yp
as

•c2

•yp

D nxp �P
x

D
;

V.c2/ D ¢2
y

pDnP

pD1

�
nxp �P

x
�2

D2
D ¢2

y

pDnP

pD1

h
n2x2

p � 2nxp

P
x C .

P
x/

2
i

D2

D ¢2
y

n2
P

x2
p � 2n

pDnP

pD1

xp

P
x C n


P
x2
�2

n
n
P

x2 � .
P

x/
2
o2

D ¢2
y

n
�
n
P

x2
p �P

x2
�

n
n
P

x2 � .
P

x/
2
o2

:

Hence variance of c2–V.c2/ is given as

V.c2/ D n
¢2

y

n
P

x2 � .
P

x/
2
: (6.8)

6.2.2 Matrix Method

The second approach is to use matrix method, which simultaneously gives the
solution as well as the variance and covariance of c1 and c2.

For brevity † stands for
pDnP

pD1

. The solution of (6.3) and (6.4) in matrix form can

be written as
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ˇ
ˇ
ˇ
ˇ
c1

c2

ˇ
ˇ
ˇ
ˇ D 1

D

ˇ
ˇ
ˇ
ˇ
†x2 �†x

�†x n

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

†y

†xy

ˇ
ˇ
ˇ
ˇ : (6.9)

The matrix
1

D

ˇ
ˇ
ˇ
ˇ
†x2 �†x

�†x n

ˇ
ˇ
ˇ
ˇ (6.10)

is known as variance covariance matrix of c1 and c2:D is the determinant of the
matrix and is given as

D D n†x2 � .†x/2: (6.11)

From (6.9), the values of c1 and c2 are obtained from (6.9) and expressed as

c1 D Œ†x2†y � †x†xy�=Œn†x2 � .†x/2�; (6.12)

c2 D Œn†xy � †x†y�=Œn†x2 � .†x/2�: (6.13)

Comparing (6.5) and (6.6) with (6.12) and (6.13), we see that values of c1 and c2

obtained by either method are the same.
Further from variance covariance matrix from (6.10), we get

pDnX

pD1

x2
p=Dis the variance factor of c1:

n=D is the variance factor of c2 and

�
pDnX

pD1

xp=D is the covariance of c1 and c2:

variance of c1 i:e: V .c1/ is given as

V.c1/ D
h
¢2

y †x2
i
=
�
n†x2 � .†x/2

�
: (6.14)

These are same as obtained from first principle in Sect. 6.2.1.
Variance of c2V .c2/ is given as

V.c2/ D
h
n¢2

y=Œn†x2 � .†x/2�
i

; (6.15)

and covariance of c1; c2 Cov .c1; c2/ is given as

Cov .c1; c2/ D �¢2
y †x=Œn†x2 � .†x/2�: (6.16)

Correlation coefficient between c1 and c2 is given as
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r.c1; c2/ D Cov .c1; c2/=
n
ŒV .c1/ � V.c2/�

1=2
o

D �†x=fŒn†x2�g: (6.17)

Hence from the above discussions, it is evident that the two methods are identical.
So the calibration laboratory should not only give the values of the best estimate

of c1 and c2 but their variances and covariances.
In the following paragraph, we discuss the method of calculating the value of

uncertainty in the dependent variable “y”.

6.3 Uncertainty

The uncertainty U.y/ in the estimation of y due to uncertainties associated with c1

and c2 for a given value of x from the linear equation

y D c1 C c2x (6.1)

is given by

U 2.y/ D Œ•y=•c1 � U.c1/�
2CŒ•y=•c2 � U.c2/�

2 C 2Œ•y=•c1 � •y=•c2 � U.c1/

� U.c2/ � r.c1; c2/�: (6.18)

From (6.1)
•y=•c1 D 1 and •y=•c2 D x:

Taking uncertainty equal to standard deviation (square root of its variance) and
substituting the values of •y=•c1 and •y=•c2 in (6.18), it can be written as

U 2.y/ D V.c1/ C V.c2/ � x2 C 2x fV.c1/ � V.c2/g1=2 � r.c1; c2/: (6.19)

We can see that it is a quadratic expression in x; therefore U 2.y/ will be a minimum
or a maximum for the values of x for which its first differential coefficient with
respect to x is zero,

giving us

dU2.y/

dx
D 2xV.c2/ C fV.c1/V .c2/g1=2 r.c1; c2/ D 0: (6.20)

Differentiating again, we get

d2U2.y/

dx2
D V.c2/: (6.21)

We see that (6.21), being square of deviations, is always positive .V .c2//.
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Hence there will be a minimum of U.y/ at x given by

x D �r.c1; c2/

p
V.c1/

p
V.c2/

: (6.22)

Further x, being the observation on an instrument, is always positive; hence
r.c1; c2/ should be negative for even a minimum to exist.

6.4 Numerical Example

6.4.1 Calibration of a Proving Ring

Several sets of data about the force applied and indication, obtained from Force
Standards Section of National Physical Laboratory of India, have been fitted into
linear equations in two ways:

(a) Force applied is expressed in terms of indications; i.e. indication is dependent
variable (y) and force is independent variable (x).

(b) Indications in terms of applied force. In this case Force is dependent variable
and indication is independent variable.

Though second equation is more useful from the user’s point of view, but during
calibration, indicator is observed when a known force is applied; hence we read
indications in terms of force applied.

Hence we will give both the equations.
Equation for the uncertainty of dependent variable has been given in each case. It

has been observed that uncertainty is a minimum for the same set of values of force
and indication irrespective of the fact whether force or indication has been taken as
dependent variable. Data used for illustrations are given in Table 6.1.

Table 6.1 Observed and Calculated Values of Indications
Force in kN x Observed indications y Calculated y0

2 75:8 75:4

4 151:7 151:7667

6 229:2 229:1333

8 304:1 304:5

10 380:3 380:8667

12 456:0 457:2333

14 533:6 533:6

16 609: 609:9667

18 686:5 686:3334

20 763:6 762:7
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Table 6.2 Calculation Sheet of Data in Table 6.1
S. No x x2 y xy y2

1 2 4 75.8 151.6 5,745.64
2 4 16 151.7 606.8 23,012.89
3 6 36 229.2 1,385.2 52,532.64
4 8 64 304.1 2,432.8 92,476.81
5 10 100 380.3 3,803.0 144,628.09
6 12 144 456.0 5,472.0 207,936
7 14 196 533.0 7,462 284,089
8 16 256 609.7 9,755.2 371,734.09
9 18 324 686.5 12,357.0 471,282.25
10 20 400 763.6 15,272.0 583,084.96
Sum †xp D 110 †x2

p D 1; 540 †yp D 4; 190 †xpyp D 58; 696 †y2
p D 2; 237; 162

In order to calculate the values of c1 and c2, we need the following:

pDnX

pD1

xp;

pDnX

pD1

x2
p;

pDnX

pD1

yp and
pDnX

pD1

xpyp:

These can be computed with computer in no time, but in the absence of computers,
these can be calculated as given in the tabular form in Table 6.2.

But

c1 D

pDnP

pD1

x2
p

pDnP

pD1

yp �
pDnP

pD1

xp

pDnP

pD1

xpyp

n
pDnP

pD1

x2
p �

 
pDnP

pD1

x

!2

and

c2 D
n

pDnP

pD1

xpyp �
pDnP

pD1

x
pDnP

pD1

y

n
pDnP

pD1

x2
p �

 
pDnP

pD1

x

!2
:

Substituting the values, we get

c1 D �0:966666;

c2 D 38:1833:

Giving equation of best fit with indications as y and force as x

y D �0:9666666 C 38:18333x (6.23)
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and ¢2
y is calculated from the data of columns 2 and 3 of Table 6.1

�2
y D 3:612 � 10�4:

V .c1/ and V.c2/ are again from the values obtained from Table 6.2

V.c1/ D 1:680 � 10�4;

V .c2/ D 7:508 � 10�10;

and r.c1; c2/ D �0:886; (6.24)

giving the uncertainty equation as

U 2.y/ D 1:680 � 10�4 � 6:29 � 10�7x C 7:508 � 10�10x2: (6.25)

Equation (6.25) gives indication in terms of force.
If we are required to express force in terms of indications, values of x and y are

reversed as given in Table 6.3.
Equation of best fit with force (y) in terms of indications (x)

y D 2:5410 � 10�2 C 2:6189 � 10�2x

y D 0:0254 C 0:0262x (6.26)

and

�2
y D 3:612 � 10�4kN2;

V .c1/ D 1:680 � 10�4kN2;

V .c2/ D 7:508 � 10�10kN2;

r.c1; c2/ D �0:886: (6.27)

Table 6.3 Applied and Calculated Values of Force

Indications x Force applied y Force applied y0 calculated

75.8 2 2.010553
151.7 4 3.998314
229.2 6 6.027978
304.1 8 7.989550
380.3 10 9.985168
456.0 12 11.967690
533.6 14 13.999970
609.7 16 15.992970
686.5 18 18.004300
763.6 20 20.023490
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Uncertainty equation

U 2.y/ D 1:680 � 10�4 � 6:29 � 10�7x C 7:508 � 10�10x2: (6.28)

Uncertainty is minimum at x D 419:5 and

y D 11:0 kN and is equal to 0:0546%: (6.29)

6.4.2 Calibration of a Glass Scale

Let us consider another example of calibration of a glass scale. The observations
are taken aligning as much as possible on the line of the scale. Standard values are
taken on the microscope graticule. So here indication X is an independent variable
and observed corrected value Y is the dependent variable Y . The data for calibration
of a glass scale are given in Table 6.4.

Equation for the known values of Y , in mm, against observed indications as X

in mm.

Y D �1:5151 � 10�4 C 1:000 � 001X; (6.30)

Table 6.4 Calculation Sheet of Data in Table 6.3
Indication on the scale in mm Value of the standard in mm Corrections in �m

X Y 1st Equa. Y correction (2nd Equa)
10 10.0000 0.0
20 49.9998 �0.2
50.1 50.1000 0.0
50.2 50.2000 0.0
50.3 50.3000 0.0
50.4 50.4000 0.0
50.5 50.4996 �0.4
51.0 51.0000 0.0
51.5 51.4998 �0.2
52.0 52.9998 �0.2
52.5 52.5000 0.0
53.0 53.0002 C0.2
54.0 53.9998 �0.2
54.5 54.4996 �0.4
55.0 55.0002 0.2

100.0 100.0002 0.2
150.0 150.0000 0.0
200.0 200.0000 0.0
250.0 250.0004 0.4
300.0 300.0000 0.0



142 6 Uncertainty and Calibration of Instruments

Variance
�
�2

y

�
D 3:3559 � 10�8 mm2;

V .c1/ D 3:7480 � 10�9 mm2; (6.31)

V.c2/ D 2:9640 � 10�13 mm2;

r.c1; c2/ D �0:7573715:

Uncertainty equation is given as

U 2.Y / D 3:7480 � 10�9 C 2:9640 � 10�13X2 � 5:0486 � 10�11X: (6.32)

Similarly corrections (Y / in �m against observed readings on the scale (X ) are
represented by

Y D �5:4236 � 10�2 C 7:4865 � 10�4X: (6.33)

Please note a very small value of c2, gradient of the line in (6.32), indicates the
independence of corrections on the indications of the scale.

Variance.¢2
y/ D 3:656 � 10�2;

V .c1/ D 4:0830 � 10�3; (6.34)

V.c2/ D 3:2289 � 10�7;

r.c1; c2/ D �0:7574:

Uncertainty equation is given as

U 2.Y / D 4:083 � 10�3 C 3:229 � 10�7X2 � 7:247 � 10�5X: (6.35)

Minimum value of the uncertainty in each case is observed at reading 85.1667 mm
and is equal to 0:04 � m.

6.5 Other Functions

In many situations the set of ordered pairs .x1; y1/; .x2; y2/; .x3; y3/; : : :; .xn; yn/

may not best fit into a linear relation, especially when y’s are not corrections but
values of the parameter against indications of the instrument attached with the main
measuring device. The exponential and power functions are quite common. Similar
to linear function, each of these two functions is fully defined by two constants.
Taking logarithms of both sides of any of these functions transforms into a linear
relation.
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6.5.1 Exponential Function

Let the ordered pairs .x1; y1/; .x2; y2/; .x3; y3/; : : :; .xn; yn/ be fitted into the
function

y D c1 � Exp.c2x/: (6.36)

Taking log of both sides, we get

log .y/ D log .c1/ C c2x: (6.37)

This is a linear relation between log(y) and x.
Writing Y D log .y/ and log .c1/ D B1, (6.37) becomes

Y D B1 C c2x:

With the help of (6.5) and (6.6), we get

B1 D �
†x2 � † log.y/ � †x � †x log.y/

�
=
�
n†x2 � .†x/2

�
; (6.38)

c2 D Œn† fx log.y/g � †x � † log.y/�=
�
n†x2 � .†x/2

�
: (6.39)

Here Y D log y (base of the logarithm is e and not 10)

Variance of B1 D V.B1/ D �
s2†x2

�
=
�
n†x2 � .†x/2

�
; (6.40)

variance of c2 D V.c2/ D Œns2�=Œn†x2 � .†x/2�; (6.41)

covariance of B1; c2 D Cov.B1; c2/ D �¢2
y †x=Œn†x2 � .†x/2�; (6.42)

where
¢2

y D † Œlog.y/ � fB1 C c2xg�2=.n � 2/: (6.43)

Correlation coefficient between B1; c2

r.B1; c2/ D Cov.B1; c2/=fŒV .B1/ � V.c2/� D �†x=fŒn†x2�: (6.44)

6.5.1.1 Uncertainty

Considering the equation of the exponential function

y D Exp.B1 C c2x/; (6.45)

•y=•B1 D Exp.B1 C c2x/ D y; (6.46)

•y=•c2 D ŒExp.B1 C c2 � x/� x D y � x: (6.47)

so U 2.y/ D Œ•y=•B1U.B1/�
2=Œ•y=•c2U.c2/�

2;
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2Œ•y=•B1 � •y=•c2 � U.B1/ � U.c2/ � r.B1; c2/�: (6.48)

D ŒyU.B1/�
2 C ŒxyU.c2/�2 C 2ŒyU.B1/ � xy � U.c2/ � r.B1; c2�: (6.49)

Taking uncertainty equal to the standard deviation, we get

ŒU.y/=y�2 D V.B1/ C V.c2/x2 C 2x � r.B1; c2/ŒV .B1/ � V.c2/�1=2: (6.50)

But from linear relation log.y/ D B1 C c2 � x.

U 2 flog.y/g D V.B1/Cx2 �V.c2/C2x �r.B1; c2/ŒV .B1/�V.c2/� D ŒU.y/=y�2 :

(6.51)

Hence the value of uncertainty in y will be y times the value of uncertainty
calculated from the linear relation taking log(y) as a single dependent variable.

6.5.1.2 Numerical Example

Data have been used to illustrate the determination of two constants, variances,
and their uncertainty components. The value of variance obtained from the residual
errors has been calculated by substituting the values of c1; c2; x’s and corresponding
values of log .y/ in (6.37) and the relative variance is obtained from

Œy1 � c1 � Exp.c2x/�=y1: (6.52)

The two came out, as expected equal, showing thereby that uncertainty taking log(y/

as dependent variable is same as the relative uncertainty of y.
Equation of the exponential function best to the data in Table 6.5 is

y D 59:26989 � Exp.0:0236853x/: (6.53)

Table 6.5 Data for Exponential function

Value of x Value of y Calculated value of y

5 67 66.7215
10 75 75.11002
15 85 84.5319
20 95 95.1836
25 107 107.1505
30 120 120.6219
35 135 135.7871
40 152 152.8588
45 173 172.077
50 195 193.7112
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The uncertainty equation is

U 2.y/ D 1:2707 � 10�5 C 1:3205 � 10�8x2 � 7:2614 � 10�6x: (6.54)

Minimum uncertainty is at x D 31:02; y=123.57 and is equal to 0.00165%.
Variance of log(y) obtained from the square of residual errors is 2.723027� 10�5

while from

X��
yp � f59:26989 � Exp.0:0236853 � xp/g�=yp

�2
=.n � 2/ D 2:724717�10�5:

This shows that fractional variance is same as the variance of log(y/.

6.6 Power Function

Any power function may be defined as

y D c1 xc2: (6.55)

Taking logarithms of both sides, we get

log .y/ D log .c1/ C c2 � log .x/: (6.56)

Writing log.y/ D Y , log.x/ D X , and log.c1/ D B1 we get

Y D B1 C c2X: (6.57)

Equation (6.57) represents a linear relation. Using (6.5) and (6.6), we get

B1 D
P flog.x/g2

P
log.y/ �P

log.x/
P flog.x/ � log.y/g

n
P flog.x/g2 � fP log.x/g2

; (6.58)

c2 D n
P

log.x/ � log.y/ �P
log.x/ �P log.y/

n
P flog.x/g2 � fP log.x/g2

; (6.59)

Variance of B1 D V.B1/ D s2
P flog.x/g2

n
P flog.x/g2 � fP log.x/g2

; (6.60)

Variance of c2 D V.c2/ D Œns2�=Œn† flog.x/g2 � f† log.x/g2�; (6.61)

Covariance of B1; c2 D Cov.B1; c2/; (6.62)

D �s2† log.x/=Œn† flog.x/g2 � f† log.x/g2�: (6.63)
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Here

s2 D
X

Œlog.y/ � fB1 C c2 log.x/g�2=.n � 2/:

Correlation coefficient between B1; c2

r.B1; c2/ D Cov.B1; c2/=fŒV .B1/ � V.c2/�g1=2 (6.64)

D �† log.x/
.nh

n† flog.x/g2
i

:

6.6.1 Uncertainty

Taking

y D Exp.B1/ � xc2; (6.65)

•y=•B1 D Exp.B1/ � xc2 D y; (6.66)

•y=•c2 D Exp.B1/ � xc2 � log.x/ D y � log; (6.67)

so U 2.y/ D Œ•y=•B1U.B1/�2=Œ•y=•c2U.c2/�
2:

2Œ•y=•B1 � •y=•c2 � U.B1/ � U.c2/ � r.B1; c2� (6.68)

D Œy � U.B1/�
2 C Œy � log.x/U.c2/�2 C 2Œy � U.B1/ � y � log.x/ � U.c2/

�r.B1; c2�: (6.69)

Taking uncertainty equal to standard deviation, we get

ŒU.y/=y�2 D V.B1/Cflog.x/g2�V.c2/C2 log.x/�r.B1; c2/ fV.B1/ � V.c2/g1=2 :

(6.70)
Considering the linear relation

Y D B1 C c2X:

The uncertainty in Y shall be

U 2.Y / D V.B1/ C X2 � V.c2/ C 2X � r.B1; c2/fV.B1/ � V.c2/g1=2:

Or

U 2 flog.y/g D V.B1/ C flog.x/g2 � V.c2/ C 2 log.x/r.B1; c2/

� fV.B1/ � V.c2/g1=2

D ŒU.y/=y�2 : (6.71)



6.6 Power Function 147

Hence in this case also the value of uncertainty in y calculated from the given data
will be y times the value of uncertainty calculated from the linear relation taking
log(y/ and log(x/ as variables.

6.6.2 Numerical Example

Fictitious data given in the first two columns of Table 6.6 have been fitted to a power
function.

Equation of the best fit is

y D 22:85071 � x0:3763576: (6.72)

Expression for uncertainty is

U 2.log.y// D 6:3502 � 10�4 C6:2151 � 10�5 flog.x/g2 � 3:8781 � 10�4 flog.x/g :

(6.73)

The uncertainty is minimum at x D 24:445; y D 73:93393 and is equal to 0.00548.

6.6.3 Same Data Fitted to Two Functions

Let us consider the data given in Table 6.7.
When the data of a proving ring, given in first two columns of Table 6.7, are fitted

to the power function, then equation of best fit is

Y D 15:74364 � X0:9996233; (6.74)

which approximates to
Y D 0:0 C 15:74 � X: (6.75)

Table 6.6 Data for Power function
Values of x Values of y Calculated value of y

5 42.5 41.87572
10 54.4 54.35722
15 62.8 63.31849
20 69.7 70.55896
25 75.3 76.74056
30 80.0 82.19122
35 89.0 87.10065
40 93.0 91.58980
45 96.5 95.74117
50 100.0 99.61389
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Table 6.7 Data of Proving ring B

Force in Indication y0 Calculated value y00 Calculated value .y0 � y/2 .y00 � y/2

kN x y of y from the of y from
power relation linear relation

5 79.1 78.67 77.73
10 156.9 157.30 156.58
15 235.0 235.91 235.44
20 313.7 314.52 314.29
25 392.4 393.11 393.14
30 471.1 471.70 472.00
35 550.1 550.29 550.85
40 630.0 628.87 629.70
45 709.2 707.45 708.56
50 788.2 786.02 787.41
Sum 5.56

If the above data are fitted to a linear relation, then the equation of the best fit is
given by

Y D �1:1268 C 15:77 � X: (6.76)

Uncertainty equation for the two methods, when analyzed, showed that the mini-
mum percentage uncertainty is 0.1% for power function, while the same is 0.0609%
for linear relation. We see that the uncertainty for linear relation is less; i.e. the data
fit better to the linear relation. In case the same data are fitted to the two relations,
the relation with lower uncertainty should be retained.

The calculated values of indications are also shown in the 3rd and 4th columns
of Table 6.7.

In many cases, the relation between input and output quantities is none of the
aforesaid functions. For example in a resistance thermometer change in resistance
is not linearly related to temperature but is a quadratic function of temperature. Heat
produced in a resistor is also a quadratic function of current flowing through it. So
now we will consider a general case when output quantity, i.e. the quantity indicated
by the instrument, is a polynomial function of the input quantity.

6.7 Method of Least Squares

Let the indication y be related to the input quantity x through a polynomial of degree
m and be represented as

y D c0 C c1x C c2x
2C � � � C cmxm D

pDmC1X

pD1

cp�1xp�1: (6.77)
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There are n points y1; y2; y3; : : :; yn, at which the instrument has been checked, and
corresponding standard values of input quantities are x1; x2; : : :; xn. So there are n

paired values of .x1; y1/; .x2; y2/; .x3; y3/; : : :; .xn; yn/, which are to be substituted
in (6.77) to determine the values of mC1 coefficients .c0; c1; c2; : : :; cm/. There will
be n equations in m variables.

y1 D c0 C c1x1 C c2x2
1 C � � � C cmxm

1

y2 D c0 C c1x2 C c2x2
2 C � � � C cmxm

2

y3 D c0 C c1x3 C c2x2
3 C � � � C cmxm

3

: : :

: : :

: : :

yn D c0 C c1xn C c2x2
n C � � � C cmxm

n

: (6.78)

These equations can be represented in a compact form as

qDnX

qD1

yq D
qDnX

qD1

pDmC1X

pD1

cp�1xp�1
q : (6.79)

Once the values of all cp�1 are determined from n equations of (6.79), (6.77) will
be uniquely defined. But corresponding to one value of x of (6.77) there will be,
in general, two values of y. One value of y0 is the value of left-hand side of (6.77)
obtained after substituting values of coefficients and x. The other value of y is the
observed value corresponding to x and obtained from the ordered pair .x; y/. The
difference in y and y0 is called residual error. Let the sum of squares of all residual
errors be �2. The method of least squares consists of minimizing �2. Only variables
are the coefficients cp�1; hence differential coefficient of �2 with respect to each of
the coefficients cp�1 will give m C 1 equations, which are called normal equations.
Solution of these equations will give the values of best estimates of the coefficients.

Solution of (6.77) is possible only if mC1 is equal to or less than n. If there is no
measurement error in yn and xn and m C 1 is equal to n then there will be a unique
solution. As y is a measured quantity, there are bound to be errors; hence to estimate
the coefficients with certain degree of certainty, m C 1 should be less than n.

Writing mathematically

�2 D
qDnX

qD1

.yq � y0
q/

D
qDnX

qD1

˚
yq � .c0 C c1x C c2x2 C c3x

2 C � � � C cmxm/
�2

: (6.80)

The minimum value of �2 divided by n � .m C 1/ gives �2
y .
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The conditions for �2 to be a minimum are that each of partial derivatives of �2

with respect to cp�1, for all values of p, is zero, giving the following conditions:

qDnP

qD1

yq D nc0 C c1

qDnP

qD1

xq C c2

qDnP

qD1

x2
q C c3

qDnP

qD1

x3
q C c4

qDnP

qD1

x4
q � � � cm

qDnP

qD1

xm
q

qDnP

qD1

yqxq D c0

qDnP

qD1

x1
q C c1

qDnP

qD1

x2
q C c2

qDnP

qD1

x3
q C c3

qDnP

qD1

x4
q � � � cm

qDnP

qD1

xmC1
q

qDnP

qD1

yqx2
q D c0

qDnP

qD1

x2
q C c1

qDnP

qD1

x3
q C c2

qDnP

qD1

x4
q C c3

qDnP

qD1

x5
q � � � cm

qDnP

qD1

xmC2
q

: : :

: : :

: : :
qDnP

qD1

yqxm
q D c0

qDnP

qD1

xm
q C c1

qDnP

qD1

xmC1
q C c2

qDnP

qD1

xmC2
q C c3

qDnP

qD1

xmC3
q � � � cm

qDnP

qD1

x2m
q

:

(6.81)
There are m C 1 equations in (6.81) and are called normal equations from these
normal equations m C 1 coefficients of the polynomial equation of (6.78) are found
out. The solution may be obtained either by algebraic method or using matrix
inversion method.

Using matrix notations, equations in (6.78) are written as

ŒXq;p�1�ŒCp�1� D ŒYq�: (6.82)

Here
ŒXq;p�1� is a n by m C 1 matrix, given as

ŒXq;p�1� D

1 x1 x2
1 : : : : : : : : : xm

1

1 x2 x2
2 : : : : : : : : : xm

2

1 x3 x2
3 : : : : : : : : : xm

3

1 : : : : : : : : : : : : : : : : : :

1 : : : : : : : : : : : : : : : : : :

1 : : : : : : : : : : : : : : : : : :

1 xn x2
n : : : : : : : : : xm

n

(6.83)

ŒCp�1� is a column matrix of m C 1 elements, namely c0; c1; c2; : : :; cm, and ŒYq� is
also a column matrix but of n elements, namely y1; y2; y3, . . . , yn.

Pre-multiplying both sides by the transpose of the matrix ŒXq;p�1�, which is
written as ŒXq:p�1�T , we get

ŒXq;p�1�T ŒXq;p�1�ŒCp�1� D ŒXq;p�1�T ŒYq�: (6.84)

Equation (6.84) is equivalent to set of normal equations given in (6.81).
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Pre-multiplying both sides by inverse of ŒXq;p�1�T ŒXq;p�1� written as
ŒŒXq;p�1�T � ŒXq;p�1��1 we get the solution equation for all c’s which is given as

ŒCp�1� D ŒŒXq;p�1�T � ŒXq;p�1���1 ŒXq;p�1�TŒYq�: (6.85)

The matrix ŒŒXq;p�1�T � ŒXq;p�1��1 is known as variance covariance matrix. The
diagonal elements of this matrix will give respective variances of cp�1 and other
elements will give the covariances.

Computer programmes are easily available to solve (6.85). Substitution of values
of c’s in (6.80) gives the sum of residual errors and �2

y is obtained by dividing the
sum by n � .m C 1/. To best fit the data in a polynomial of unknown degree, start
with m equal to one (linear relation), increase it in steps of one, and find the value
of m for which �2

y is minimum. Once m is known, the calculated values of c’s are
substituted in (6.77) to give the complete expression of the polynomial. Minimum
value of uncertainty due to use of the polynomial and the corresponding value of x

is also calculated.
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Chapter 7
Calculation of Uncertainty

7.1 Importance of Correct Measurement

We may explain the meaning and importance of uncertainty in measurement in
several ways. It is widely recognized that the value of a measured quantity is
determined within a certain range. The range depends upon instruments, quality
of measurements taken and the confidence level at which the final result is to
be stated. Leaving aside the formal definition, half of this range may be called
uncertainty of measurement. The uncertainty in a measurement result will depend
upon all the three aforesaid elements. Therefore, quantifying a measurable quantity
through any measurement process is meaningful only if the value of the quantity
measured is given with a proper unit of measurement and is accompanied by an
overall uncertainty in measurement.

The quality of a measurement may also be characterized by the semi-range in
which the measured value is expected to lie. Incidentally, the word measurement
should be understood to mean both a process and the output of that process. The
measurements are carried out at different levels. The measurements in industry have
assumed greater significance in view of the fact that measurements provide the very
basis of all control actions.

Importance of accurate measurement in science may also be illustrated by the
following examples.

7.1.1 Discovery of Inert Gases

The density of nitrogen gas was measured, taking samples of nitrogen from air and
the chemical reaction in which pure nitrogen was produced. The density of nitrogen
sample taken from atmosphere after removing oxygen and CO2 was found to be
more than that of nitrogen through a chemical reaction. The persistence and signifi-
cant difference of the two values of density of nitrogen made us reach the conclusion
on the existence of inert gases such as Helium, and Argon present in atmosphere.

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5 7,
© Springer-Verlag Berlin Heidelberg 2012
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7.1.2 Correction in Composition of Air

More recently, the composition of air has been revised as a result of precise
measurements of air density. The density of air used to be calculated by using
the CIPM formula [1, 2] expressing density of moist air in terms of pressure,
temperature, humidity and involving the composition of air and its molar mass. The
density of moist air is calculated by CIPM formula by measurements of pressure,
temperature and humidity with reasonable small uncertainty. The density of air has
also been measured by gravimetric (artefacts) method [3]. The values obtained by
the two methods, though agreed very well within any one of the methods, did not
agree with each other. The relative discrepancy was 6:4�10�5 [4]. Density obtained
by gravimetric method was found to be more than that obtained by CIPM formula.
Independent analysis of air samples through spectroscopic means [5] suggested the
change in molar fraction of Argon. The CIPM in 2008 [6] subsequently changed the
molar fraction of Argon from 0.0917 to 0.09332. This is an example of the benefits
of high precision measurements.

7.1.3 Meaning of Quantity Being Exact

The value of velocity of light in vacuum is taken as exact by the international agree-
ment. However, it does not mean that there was no uncertainty in its measurement
but by assigning a specific value to the velocity of light in vacuum, we have assigned
a new value to the metre. Similar is the case of the value of permeability of free
space or magnetic constant, which is taken as 4  � 10�7 N=A2. This value comes
from the definition of the unit of electric current – the ampere, through a specific
theoretical formula. The force F acting per unit length on the two current-carrying
parallel wires is given as

F D �

4	

I1 � I2

r
:

7.1.4 International Agreement with Uncertainty

Having understood, in 1970s, the benefits of precise measurements along with
uncertainty, all metrology laboratories recognized the fact that each measurement
result is to be associated with an uncertainty declaration. As a result of which
each laboratory started giving the result along with an uncertainty. But there was
no uniformity in either achieving or expressing the uncertainty.

With the initiation of globalization, more and more national metrology laborato-
ries started sharing their results of measurements. For better and easy understanding,
the results and in assigning some mean value to the results of various laboratories,
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it was necessary that all laboratories express the measurement results in a uni-
form way.

7.1.5 Initiation by BIPM

In 1978, the International Committee on Weights and Measures (CIPM) – world’s
highest authority in metrology, requested the International Bureau of Weights and
Measures (BIPM), in conjunction with a few national metrology laboratories and
other international bodies interested in metrology to look into this problem.

The BIPM prepared a detailed questionnaire covering the issues involved and
distributed that to 32 national metrology laboratories and to five international
organizations known to have interest in the subject. Almost all agreed that it
was necessary to arrive at an internationally accepted procedure for expressing
measurement uncertainty and also a uniform method of combining uncertainty
components into a single total uncertainty; however, a consensus was not apparent
on the method of combining several components. Eleven national laboratories send
their experts to the meeting convened by the BIPM. This working group developed
a recommendation on statement of uncertainty in 1980 [7, 8], which CIPM adopted
in 1981 [9] and reaffirmed in 1986 [10]. Before coming to the final conclusion of
the efforts of the BIPM along with several other international organizations, we may
discuss the procedure followed prior to it.

7.2 Classical Procedure for Uncertainty Calculations

Before 1978, there were various ways of defining the uncertainty. Uncertainty in
fact was some function of different sources of errors. The errors were classified into
random errors and systematic errors. Those used to be defined as follows.

7.2.1 Random Error

An error varies in an unpredictable manner both in magnitude and in sign, when
a large number of measurements of the same quantity are made under essentially
the same conditions. These errors follow the Gaussian (normal) distribution with
zero mean. However, for small sample (smaller number of observations), statistical
results which are based on normal distribution are corrected by means of Student’s
� t 0 factor. These errors may be due to uncontrollable environmental conditions,
personal judgement of the observer and inherent instability of the measuring
instrument or any other cause of random nature.
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7.2.2 Systematic Error

An error is due to the system (including the standards used for the measurement)
and cannot be reduced by taking larger number of observations if the equipment
and conditions of measurement remain unchanged. These errors may be due to the
inability in detection of the measuring system, constant bias, error in the value
of the standard, a physical constant and property of the medium or conversion
factor used. The value and the sign of this error do not change with the given
measuring system. Systematic errors can be broadly classified into (1) constant and
(2) variable. Constant systematic errors are those which do not change with respect
to time but sometimes, may vary with the magnitude of the measured quantity. Zero
setting error in an instrument is a constant systematic error while inaccuracy in the
calibration scale may depend upon the magnitude of the quantity measured. Variable
systematic errors do depend upon the time; say value of a resistor, which may vary
with time because of ageing effect. These may also occur due to insufficient control
of environmental conditions.

7.2.3 Calculation of Random Uncertainty .ur/

The best estimate of the expected value of a random variable of n independent
observations x1; x2; x3; : : :; xn obtained under same conditions of measurement is
the arithmetic mean of n observations.

The mean is given as

Nx D
pDnX

pD1

xp=n: (7.1)

The measure of dispersion is variance. The best estimate of the population variance
from the sample of size n is given

s2 D

pDnP

pD1

.xp � Nx/2

n � 1
: (7.2)

Standard deviation – the positive square root of variance is given by

s D

8
ˆ̂
<̂

ˆ̂
:̂

pDnP

pD1

.xp � Nx/2

n � 1

9
>>>=

>>>;

Standard deviation of the mean Nx is s. Nx/ and is given by
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s. Nx/ D

8
ˆ̂
<̂

ˆ̂
:̂

pDnP

pD1

.xp � Nx/2

n.n � 1/

9
>>>=

>>>;

1=2

: (7.3)

From the standard deviation of the mean s. Nx/ of the sample of size n, population
standard deviation was calculated by multiplying it by the student t factor. The value
of student t for chosen level of confidence is taken from the student t Table A.5 by
taking n � 1 as the degree of freedom. The random standard uncertainty ur due to
single input quantity is given as

ur D t

8
ˆ̂
<̂

ˆ̂
:̂

pDnP

pD1

.xp � Nx/2

n.n � 1/

9
>>>=

>>>;

1=2

: (7.4)

The above calculations are based upon the assumption that measured value of the
input variable follows the Gaussian (Normal) distribution and f .x/ is represented as

f .x/ D .l=�
p

	/ expŒ�.x � �/2=2�2�: (7.5)

7.2.4 Combination of Random Uncertainties .ur/

Let
Y D f .X1; X2; : : : ; Xn/: (7.6)

This is a well-defined function of n variables.
The variables are measured to arrive at the measured value of a physical

quantity Y . Means and standard deviations of all measured variables are calculated.
Standard deviation of the each mean is then multiplied by the student t factor. The
student t factor depends upon the chosen level of confidence and upon the degrees
of freedom, which is one less than the observations taken.

In order to calculate the contribution to random uncertainty due to variable Xp ,
its random uncertainty is multiplied by its coefficient. The coefficient Ci is •Y=•Xp,
which is the partial differential coefficient of Y with respect to quantity Xp and at
the values of independent variable x1; x2; : : :; xn.

Details of calculations are as follows:
Standard deviation sp is estimated from the sample of size m of the pth variable.

The corresponding random uncertainty ur is determined by multiplying sp by a
student t factor. Student t factor depends upon (a) degrees of freedom D m � 1

and (b) the stated level of confidence.
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Then the contribution due to random uncertainty of all variables will be for
independent variables X1; X2; : : :; Xn, uncertainty Ur is given by

Ur D
v
u
u
t

pDnX

pD1

ur

	
ıY

ıXp


2

D
v
u
u
t

pDnX

pD1

tpsp

	
ıY

ıXp


2

: (7.7a)

If all the measured quantities are not independent of each other, then standard
uncertainty will have additional component due to the interdependence of variables
in the form of covariance spq.

Then total random component of standard uncertainty Ur is given as:

Ur D
v
u
u
t

pDnX

pD1

.tpspıY=ıXp/2 C 2

qDnX

qD1

pDnX

pDqC1

tp;qspq.ıY=ıXp/.ıY=ıXq/; (7.7b)

where

spq D

rDnP

rD1

�˚
.xp/r � Nxp/

� ˚
.xq/r � Nxq

��

n
D cov.p; q/: (7.8)

7.3 Sources of Systematic Uncertainty .Us/

In determining the magnitude of systematic uncertainty, the contributions due to
(a) measuring instrument (b) operating conditions and (c) inherent characteristic
of the instrument under test are taken into consideration. Some common types of
systematic uncertainties encountered in mechanical measurements may be listed as
follows:

• Uncertainty as reported in the calibration certificate of the standard and the
instrument used.

• Uncertainty due to the interpolation between the calibration points of the
standards used in the measurement.

• Uncertainty due to the change in environmental conditions.
• Uncertainty due to lack of ability to reset, detect and repeat of the instrument

under test.
• Uncertainty due to the values taken of some physical constants or properties

of the materials used in the measurement process. For example, uncertainty in
the values of density of water, acceleration due to gravity, coefficients of linear
expansion, temperature, pressure and relative humidity, etc.

It is assumed that the variable of systematic uncertainty follows rectangular
distribution, giving the variance as one third of the square of its semi-range and
infinite degrees of freedom.

�2 D a2=3: (7.9)



7.5 Dominant Term 159

7.4 Combination of Systematic Uncertainty

Here, standard deviations due to various sources of errors are obtained from the
accumulated knowledge about the distribution, the variable follows. Normally, the
uncertainties due to such variables are expressed in the form of semi-ranges such
as ˛1; ˛2; ˛3; : : : ; ˛n. If each variable causing systematic uncertainty is assumed
to follow rectangular distribution, then systematic uncertainty due to variable �p is
given by

�2
p D ˛2

p=3: (7.10)

This gives the variance due to total systematic uncertainty as:

�2
s D

pDnX

pD1

.˛2
p=3/.ıY=ıXp/2: (7.11)

Giving systematic uncertainty as

Us D K�s: (7.12)

K is the value of student t , for n D 1 at a selected level of confidence.
In case, the variances s2

p for all values of p are known we may write combined
variance as

�2
s D

pDnX

pD1

s2
p.ıY=ıXp/2: (7.13)

Hence, combined uncertainty Us is given by

Us D K�s D K

2

4
pDnX

pD1

s2
p.ıY=ıXp/2

3

5

1=2

: (7.14)

7.5 Dominant Term

Sometimes a source of systematic uncertainty is very prominent such that its
component is outstanding at a glance. In that case, sum of absolute components
of systematic uncertainties will be less than us as calculated above, i.e.

Xˇ
ˇ
ˇ
ˇ

˛pp
3

.ıY=ıXp/

ˇ
ˇ
ˇ
ˇ < Us: (7.15)

Then the dominant term – largest of
�
˛p=

p
3
�

.•Y=•Xp/ say equal to ad is taken

out, and systematic uncertainty due to all other sources is calculated by quadrature
method as described above. Let it be as U 0

s . Then total systematic uncertainty Us is
given as

Us D ad C U 0
s : (7.16)
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7.6 Total Overall Uncertainty U

There was no universal agreement in combining the systematic and random
uncertainties. One view was to add the two, another was to use quadrature method,
while the third was to report them separately.

Arguments in favour of reporting the two uncertainties separately were as
follows:

• The concept of confidence level is not applicable to systematic uncertainty, unless
the probability distribution of population is known.

• The relative values of two uncertainties may help in deciding the future course
of measurement. If random uncertainty is more, then it can, perhaps, be reduced
by further experiments, while to reduce systematic uncertainty, equipment and
method of measurement are required to be changed.

However, countries participating in The Asia Pacific Program were using the
quadrature method. Overall, uncertainty U following quadrature method was

U D .U 2
r C U 2

s /1=2; if no dominant term is present in Us

or
U D ad C .U 2

r C U 2
s /1=2 if dominant term is present in Us:

To illustrate the above method of calculating the uncertainty, an example is
given below.

7.7 Objections to the Above Method

1. Names systematic and random assigned to uncertainties are confusing. The
nature of uncertainty due to different sources would not change. Uncertainty
due to different sources may be obtained by different methods. So method of
evaluation may be different and not the names of uncertainties.

2. In systematic uncertainty, all variance of each of the components is taken as one
third of the square of the semi-range, which is not justifiable.

3. Existence of dominant term and methodology of overcoming is arbitrary in
nature.

4. There was no universal method of combining the two uncertainties.
5. Coverage factor in terms of student t has been applied separately. Student t takes

care of the degree of freedom and the level of confidence. This implies that one
should be careful while choosing the value of student t factor.

To avoid these problems and to harmonize the procedure for expressing uncertainty,
the CIPM issued recommendations on the two uncertainties. The recommendations
are reproduced below.
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7.8 The BIPM Recommendations 1980 Basis of ISO
Guide (GUM)

The basis of ISO GUM is the Recommendation INC-1, 1980 [7,8]. The uncertainty
in the result of a measurement generally consists of several components, which may
be grouped into two categories according to the way in which their numerical values
are estimated.

(A) Those which are evaluated by statistical method (In this case, the standard
deviation is calculated by taking square root of the mean of sum of squares
of deviations from the mean). This is the case of repeated observations.

(B) Those which are evaluated by other means.

There is not always a simple correspondence between the classification into
categories A or B and the previously used classification into “random” and
“systematic” uncertainties. The term “systematic uncertainty” can be misleading
and should be avoided.

Any detailed report of the uncertainty should consist of a complete list of the
components, specifying for each, the method used to obtain its numerical value.

The components in category A are characterized by the estimated variances s2
p

(or the estimated standard deviations sp) and the number of degrees of freedom.
When appropriate, the estimated covariance should be given.

The components in Type B should be characterized by quantities u2
j , which may

be considered as approximations to the corresponding variances, the existence of
which is assumed. The quantities u2

j may be treated like variances and the quantities
uj like standard deviations. Where appropriate, the co-variances should be treated
in a similar way.

The combined uncertainty should be characterized by the numerical value
obtained by applying the usual method for the combinations of variances. The
combined uncertainty and its components should be expressed in the form of
“standard deviations”.

If, for particular applications, it is necessary to multiply the combined uncertainty
by a factor to obtain an overall uncertainty, then the multiplying factor used must
always be stated.

As a follow-up action, the international Organization for Standardization (ISO),
the International Electro-technical Commission (ICE), the International Federation
of Clinical Chemistry and Laboratory Medicine, the International Union of Applied
and Pure Chemistry (IUPAC), the International Union of Pure and Applied Physics
(IUPAP), the International Organization of Legal Metrology (OIML) and the
International Bureau of Weights and Measures (BIPM) joined hands to form a
Joint Committee for Guides in Metrology (JCGM) to produce a document. The
document “Guide to the Expression of Uncertainty in Measurement (GUM)” was
first published in 1993 and reprinted in 1995 with minor corrections [11].
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7.9 ISO GUM-Step-by-Step Procedure for Calculation
of Uncertainty

1. Particulars of instrument under test (IUT), standards used and the quantity under
test Y and its functional relationships with input quantities is established.

2. Express the quantity Y in terms of input quantities X1; X2; X3; : : :; Xn.
3. Find expressions for partial derivative of Y with respect to each input quantities.

For Y D f .X1; X2; X3; : : :; Xn/. The partial derivative •Y=•Xp is determined.
It is called as sensitivity coefficient Cp and is calculated at mean measured values
of input quantities x1; x2; x3; : : :; xn.

4. Every uncertainty component is the standard uncertainty, hence replace every s2
p

by u2
p .

5. Uncertainty components of each input quantity Xp measured with an instrument
are determined by using both Type A and Type B evaluation methods and are
combined by using quadrature method and is denoted by up for all integral values
of p from 1 to n.

6. Express combined standard uncertainty uc of Y in terms of the uncertainties of
each input quantity.

7. If all the input quantities are linearly related to Y and are uncorrelated, then the
combined uncertainty uc

u2
c D

	
ıf

ıX1


2

� u2
1 C

	
ıf

ıX2


2

� u2
2 C

	
ıf

ıX3


2

� u2
3 C � � � C

	
ıf

ıXn


2

� u2
n

D
pDnX

pD1

	
ıf

ıXp


2

u2
p D

X
C 2

pu2
p: (7.17)

The above relation is arrived at by the mean value theorem, i.e. following the law of

variances
�
s2

p

�
of linearly related quantities and replacing s2

p by u2
p. This relation is

true if all input quantities are independent of each other (un-correlated).
In case of excessive non-linearity of function f, the second-order term in the

Taylor’s expansion may also be included. Giving

u2
c D

X
C 2

pu2
p C

pDnX

pD1

qDnX

qD1

"
1

2

�
ı2f

ıXpıXp

� 2

C ıf

ıXp

� ı3f

ıXpıX2
q

#

u2
pu2

q: (7.18)

8. In case, the input quantities are correlated, the expression for combined uncer-
tainty uc is given by

uc D
v
u
u
t

pDnX

pD1

.spıY=ıXp/2 C 2

qDnX

qD1

pDnX

pDqC1

spq.ıY=ıXp/.ıY=ıXq/: (7.19)
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Here, spq is the co-variance Cov.xp; xq/ given as

Cov.xp; xq/ D

rDnP

rD1

�˚
.xp/r � Nxp/

� ˚
.xq/r � Nxq

��

n
:

If r.xp; xq/ is the correlation coefficient, then it is related to covariance as follows:

r.xp; xq/ D Cov.xp; xq/

sp � sq

D Cov.xp; xq/

up � uq

:

Hence, (7.19) may be expressed as

uc D
v
u
u
t

pDnX

pD1

.upıY=ıXp/2 C 2

qDnX

qD1

pDnX

pDqC1

r.xp;xq/ � up � uq � .ıY=ıXp/.ıY=ıXq/:

(7.20)
For a very special case where all the input estimates are correlated with correlation
coefficients r.xp; xq/ D C1, then (7.20) becomes

uc D
v
u
u
t

pDnX

pD1

.upCp/2 C 2

qDnX

qD1

pDnX

pDqC1

Cpup � Cquq D
pDnX

pD1

Cpup: (7.21)

9. Find the effective degree of freedom �eff from Welch–Satterthwaite formula,
which given as

�eff D u4
c.y/

pDnP

pD1

u4
p.y/

�p

: (7.22)

10. Alternative to the finding of degrees of freedom is to use the Baye’s method.
For every component of uncertainty through Type A evaluation uA.xp/, we use
the following relation:

uAbayes D
s

np � 1

np � 3
uA.xp/: (7.23)

All such n components are combined by quadrature method to give

uAbayes D
v
u
u
t

pDnX

pD1

C 2
p

np � 1

np � 3
u2

A.xp/:
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Then combined uncertainty

uc D
v
u
u
tu2

Abayes
C

pDnX

pD1

C 2
pu2

B.xp/: (7.24)

For further details, one may consult [12–14].

11. It may be noted that

�eff �
pDnX

pD1

�p: (7.25)

12. Once �eff is known and level of confidence is decided, then the value k of the
coverage factor can be determined from t distribution table.

13. If the output Y is a function of input quantities expressed as their products
or quotients, then it is easier to determine the relative uncertainty. Take the
logarithm of the function. The partial derivatives •f =•X will be in the form
1=Xi . The square of the combined relative uncertainty will then be the sum of
squares of relative uncertainties of all input quantities.

14. When an instrument is used to measure, then there will be uncertainty in
observed values to be calculated by Type A method. The uncertainties to be
calculated by Type B method are due to (a) its calibration (b) its resolution and
other properties.

7.10 Calculation of Uncertainty

7.10.1 Procedure for Calculation

1. Identify all sources of uncertainty including uncertainty in the applied correc-
tions, if necessary.

2. Type A evaluation of uncertainty: If the output quantity Y is a function of more
than one input quantities, the variance of each set of observations for each input
quantity is taken. This is carried out by normal statistical method of finding out
standard deviation. This standard deviation is equal to the standard uncertainty of
that particular quantity by Type A evaluation method. Calculate uncertainty com-
ponents for each input quantity. Sometimes in addition of making observations
for the determination of Y , observations are also taken of influence quantities
such as environmental parameters of pressure, temperature. Uncertainty for each
observed influence quantity is calculated by Type A evaluation.

3. Find out variances from the uncertainty values given in the calibration certifi-
cates, by Type B evaluation method, for each instrument used. Also, estimate
the variances of all physical constants used in the mathematical modelling,
their value being taken from the literature. Here, experience and other relevant
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information come into play. Variance is calculated depending upon the distribu-
tion which the value of quantity likely to follow. May be normal, rectangular
or any other probability distribution. Uncertainty for each observed influence
quantity is also calculated by Type B evaluation.

4. Find the combined standard uncertainty of Y , using (7.17), (7.18), (7.20) or
(7.24) which ever is applicable.

5. For extended uncertainty, effective degrees of freedom are calculated, level of
confidence is chosen and the coverage factor k is determined from the Students
t factors table. Alternatively, Bayes equation (7.24) may be used using k values
from the normal distribution table for given confidence level (probability).

7.10.2 Relation Between Range and Standard Uncertainty

If the probability distribution of the quantity whose semi-range is given, then
standard deviation will be calculated from the probability distribution, which
the quantity under question follows. For example, let the semi-range in mass
measurement of the kilogram is ˛ at 95% confidence level. The measured value
will follow normal distribution hence ˛ is 1.96 time the standard deviation. The
relevant standard deviation � is ˛=1:96.

In the absence of knowledge of probability distribution of a quantity, there are
four possibilities that the quantity may follow either

1. Rectangular distribution, this means that from our experience we know that the
true value may lie anywhere within the specific range with equal probability, and
standard deviation ¢ will be ˛=

p
3

or
2. Triangular distribution, this means the quantity has maximum frequency in

centre of the range and then tapers off to zero at the extreme ends of the range
standard deviation � will be ˛=

p
6

3. Trapezium distribution, this means the quantity may maximum uniform proba-
bility with a range of ˙ˇ˛ and tapers off uniformly to zero at the extreme end
of the range. Although this distribution appears to be most reasonable, we need
one more parameter, which is difficult to decide. The standard deviation � in this
case will be ˛=

pf.1 C ˇ2/=6g
4. In case we are taking values of some physical constant from an older literature

(say before 1950), then most likely the semi-range ˛ is given for the probable
error (50% confidence interval) in that case ˛ is to be multiplied by 1.48 to get
the standard deviation.

We discussed two methods for calculations of uncertainty in this chapter arbitrarily
named as the Classical and ISO GUM. The GUM is the most internationally
accepted document. In either of the methods, we estimate the expectation of Y

i.e. mean value and variance of Y . None of the methods estimates the probability
distribution function (pdf) of Y .
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7.10.3 Applicability of ISO GUM

7.10.3.1 For Linear Models

1. No condition is necessary for the valid application of the law of propagation of
uncertainty to linear models (models that are linear in Xi ).

2. A coverage interval can be determined, in terms of the information provided in
the GUM, under the following conditions:

(a) The Welch–Satterthwaite formula is adequate for calculating the effective
degrees of freedom associated with u.y/, when one or more of the u.xi /

has an associated degrees of freedom that is finite; this condition is required
in order that Y can be characterized by an appropriate scaled and shifted
t-distribution.

(b) The Xi are independent when the degrees of freedom associated with the
u.xi / are finite; the condition is required because the GUM does not treat Xi

that are not independent in conjunction with finite degrees of freedom.
(c) The PDF for Y can adequately be approximated by a Gaussian distribution

or a scaled and shifted t-distribution; the condition is satisfied when each
Xi is assigned a Gaussian distribution. It is also satisfied when the central
limit theorem is applicable to mathematical modeling. However, the GUM
uncertainty method may not be validly applicable when there is an Xi whose
assigned distribution is non-Gaussian and the corresponding contribution to
u.y/ is dominant.

3. When the conditions in (2) hold, the results from the application of the GUM
uncertainty framework can be expected to be valid for linear models. These
conditions apply in many circumstances.

7.10.3.2 For Non-Linear Models

1. The law of propagation of uncertainty can validly be applied for non-linear
models under the following conditions:

(a) f is continuously differentiable with respect to the elements Xi of X in the
neighbourhood of the best estimates xi of the Xi ; The condition is necessary
for the expansion of the function f .X/ by Taylor series upto first-order
approximation when the non-linearity of f is insignificant.

(b) Condition (a) applies for all derivatives up to the appropriate order; the
condition is necessary for the application of the law of propagation of
uncertainty based on a higher-order Taylor series approximation to f .X/. An
expression for the most important terms of next highest order to be included
is given in (7.19) above.

(c) The Xi involved in significant higher-order terms of a Taylor series approx-
imation to f .X/ is independent; The condition relates to significant model
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non-linearity in the case of independent Xi . The ISO GUM does not consider
Xi that is not independent in this context.

(d) The PDFs assigned to Xi involved in higher-order terms of a Taylor series
approximation to f .X/ are Gaussian.

(e) Higher-order terms that are not included in the Taylor series approximation
to f .X/ are negligible. The condition constitutes a correction that the version
of the law of propagation of uncertainty using higher-order terms is based on
the symmetry of the PDFs for the Xi .

If the analytical determination of the higher derivatives, required when the
non-linearity of the model is significant, is difficult or error-prone, suitable
software for automatic differentiation can be used.

2. A coverage interval can be determined, in terms of the information provided in
the GUM, when conditions (a), (b) and (c) in (2) of Sect. 7.10.3.1 apply, with
the exception that the content of (c) in that sub-clause is replaced by “Condition
(c) is required in order that coverage intervals can be determined from these
distributions”.

3. When the conditions in Sects. 7.10.3.1 and 7.10.3.2 hold, the results from the
application of the GUM uncertainty approach can be expected to be valid for
non-linear models. These conditions apply in many circumstances.

7.11 Propagation of Probability Density Function

It may be noticed that using the ISO Gum method in general propagates the mean
and the variance of the input quantities with conditions discussed in Sect. 7.10.3. In
the case, the output quantity is linearly related to its input quantities, the probability
density function (PDF) of the output quantity in general is a t-distribution with the
effective degrees of freedom calculated by Welch–Satterthwaite formula. However
in other cases, the PDF of output quantity is derived by using Monte–Carlo method
(MCM) [15].

MCM provides a general approach to obtain an approximate representation of
Cumulative distribution GY .˜/ for Y . The basic of MCM is repeated sampling from
the PDFs for the input quantities Xi and evaluation of the model each time. Larger
is the number M of samples more accurate results are expected from GY .˜/. Step-
by-step procedure for MCM is given below.

7.11.1 Step-by-Step Procedure for Monte–Carlo Method

1. Select the number M – the number of Monte Carlo trials. To get coverage of
95%, M should be 106.
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2. Generate M vectors, by sampling from the assigned PDFs as realizations of the
set of N input quantities Xi .

3. Each vector yields a model value of Y say yr ; r takes values from 1; 2;

3; : : :; M .
4. Arrange these values in strictly increasing order, these sorted of values give G.
5. Use G to estimate y– the expectation of Y and standard uncertainty u.y/ the

standard deviation of G. Arithmetic mean of all yr is an approximation of expec-
tation E.Y /. Variance of Y is inversely proportional to M ,; hence, closeness of
agreement between the averages and E.Y / is inversely proportional to M 1=2.

6. Use G to form appropriate coverage interval for Y , for a stipulated coverage
probability.

7.11.2 Two-Stage Bootstrap Procedure

The procedure enumerated above is valid when PDFs of all input quantities are
known. The case of unknown PDFs of input quantities has been discussed by S. V.
Crowder and R.D. Moyer [16]. They suggested two-stage bootstrap procedure. The
step-by-step procedure is as follows:

1. Estimate the parameters of each input distribution using the observed data.
Sample size of 10 is sufficient.

2. Generate a large number, B , of bootstrap samples by simulating data from the
distributions estimated in step 1. Each bootstrap sample must be of same size as
the original for each input quantity. The authors recommended B to be 10,000.

3. For each bootstrap sample, re-estimate the parameters of the input distributions
used in step 1. The variation of these estimated parameters from bootstrap sample
to bootstrap sample now represents the uncertainty due to finite size of samples.

4. For each bootstrap sample, generate a large number, M , of Monte Carlo samples
from the estimated distributions in step 3 and evaluate measurement equation
for each sample. The author found M D 10; 000 to be sufficient. Evaluate y D
f .x1; x2; x3; : : :; xN / for each of the Monte Carlo samples. The average is
the estimate of E.y/ associated with that particular bootstrap sample. Similar
estimates of each bootstrap sample provide a distribution of estimates of E.y/.
The percentiles of this estimated distribution are used to construct a coverage
interval.

5. Construct a histogram of the estimate of E.y/ from step 4. The interval formed
by 2.5% and 97.5% percentiles of this distribution is a 95% .k D 2/ uncertainty
interval for E.y/.

Note: For further reading, one may like to go through papers [16–18].
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7.12 Bayesian Statistics

Suppose the information about the input quantity X consists of a series of indica-
tions regarded as realization of independent, identically distributed random variables
characterized by a specific PDF, but with unknown expectation and variance [19].
Bayes Theorem is used to calculate a PDF for X , where X is taken to be equal to
the unknown average of these random variables. It is carried out in two steps. First,
non-informative joint prior (pre-data) PDF is assigned to the unknown expectation
and variance. Using Bayes Theorem, this joint prior PDF is then updated, based on
the information supplied by the series of indications, to yield a joint posterior PDF
for two unknown parameters. The desired posterior PDF for the unknown average
is then calculated as a marginal PDF by integrating over the possible values of the
unknown variance.

With the use of Bayes Theorem, the updating is carried out by forming the
product of a likelihood function and the prior PDF [20,21]. The likelihood function
in the case of indications obtained independently is the product of the functions,
one function for each indication and indication to form e.g. to Gaussian PDF. The
posterior PDF is then determined by integrating the product of prior PDF and
likelihood over all possible values of the variance. Final expression is obtained after
the normalizing resulting expression.

If the indications are characterized by a PDF with only one parameter, a non-
informative prior PDF is assigned to the unknown expectation of the random
variables and the posterior distribution for X is given directly by Bayes Theorem,
without the need for marginalization.

For further details, one may like to consult [22–24].

7.13 Example for Calculations of Uncertainty

In order to elucidate the difference in the Classical and ISO Gum methods, an
example of determination of specific resistance of material in the form of wire by
measuring its resistance and dimensions is given.

We know, resistance R of a wire of length L and diameter 2r is related to specific
resistance S by the following relation:

S D 	r2R=L: (7.26)

Partial derivatives of S with respect of independent variable R, r and L are
given below:

ıS=ır D 2	rR=L D 2S=r; (7.27)

ıS=ıRr D 	r2=L D S=R; (7.28)

ıS=ıL D �	r2R=L2 D �S=L: (7.29)

This step is same in the two methods.
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7.13.1 Calculation of Random Uncertainty

The uncertainty of measured inputs is called random uncertainty in classical method
and is evaluated by Type A method in the ISO Gum. The uncertainty of the mea-
suring instrument is considered as systematic uncertainty and calculated separately
in classical method. But in ISO Gum method, uncertainty due to observations and
in the instruments are considered together, only the methods of evaluation may be
different.

7.13.1.1 Measurement of Length

Observations for length of the wire with a scale graduated in mm

L D 100:01; 99:98; 99:99; 100:02; 100:00cm:

The second decimal place of cm in length measurement is obtained by eye
estimation

NxL D 100:00 cm: (7.30)

The standard deviation of sample in length measurements SL is given as:

sL D .1 C 4 C 1 C 4 C 0/=4/1=210�2cm D p
2:5 � 10�2 cm: (7.31)

Standard deviation of the mean

D s. NxL/ D sL=
p

n D p
2:5 � 10�2=

p
5 D 0:707 � 10�2 cm: (7.32a)

Student t factor for 4 degree of freedom at 95% Confidence Level is taken from the
table is 2.78.

Hence, random uncertainty in length measurements eL

eL D t � SL=
p

n; (7.32b)

eL D 2:78 � p
2:5 � 10�2=

p
5 cm D 1:96 � 10�2 cm:

In the ISO Gum, student t factor is not determined for each standard deviation of
the mean.

7.13.1.2 Measurement of Resistance

Resistance was measured and measurements results of 10 repetitions are given

R D 100:04; 100:06; 100:05; 100:05; 100:03; 100:02; 100:07; 100:05; 100:05;

100:08 ohms
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Giving the mean value as
NxR D 100:05 ohms:

estimate of standard deviation of population

sR D
p

f.1 C 1 C 0 C 0 C 4 C 9 C 4 C 0 C 0 C 9/=9g � 10�2 Dp
28=9 � 10�2 ohm:

Standard deviation of the mean

s. NxR/ D
p

.28=9 � 10/ 10�2 D 0:558 � 10�2 ohm: (7.33a)

Student t factor for 9 degree of freedom at 95% Confidence Level is taken from the
table of Student t factor is 2.26.

Uncertainty in resistance measurement

t
sRp

n
D 2:26 �p.28=90/ � 10�2 D 1:26 � 10�2 ohm: (7.33b)

In the ISO Gum, student t factor is not determined for each standard deviation of
the mean.

7.13.1.3 Measurement of Diameter of the Wire

Diameter of the wire was measured with a micrometer giving 10 value of radius of
the wire as follows:

r D 1:998; 2:001; 2:000; 2:001; 1:999; 2:002; 2:000; 1:999; 1:998; 2:001 mm:

Giving mean radius Nxd as

Nxd D 2:000 mm:

sd D
p

f.4 C 1 C 0 C 4 C 1 C 4 C 0 C 1 C 4 C 1/9g D p
20=9 � 10�3mm:

Standard deviation of the mean

s. Nxd/ D sd=
p

n D p
.20=9 � 10/ � 10�3 mm D 0:47 � 10�3 mm: (7.34a)

Student t factor for 9 degree of freedom at 95% Confidence Level is taken from the
table of Student t factor is 2.26.

Random uncertainty in diameter measurement

eL D 2:26 � .
p

2=3/ � 10�3mm D 1:065 � 10�3mm: (7.34b)
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In the new method, student t factor is not determined for each standard deviation of
the mean.

From the mean values of length, resistance and diameter of the wire, the
sensitivity components are

ıS=ıL D S=L D S=100

ıS=ıR D S=R D S=100

ıS=ır D S=r D S=1

: (7.35)

Hence, component of random uncertainties as per Classical method is:

In measurement of specific resistance due to length measure D S � 1:96 �
10�4 cm
In measurement of specific resistance due to resistance measurement S � 1:26 �
10�4

In measurement of specific resistance due to radius measurement S�1:065�10�3

7.13.1.4 Combined Random Component of Uncertainty

Ur D
q

†fu2
p=.ıX=ıxp/2g:

As all measurements are independent of each other, so random uncertainty is

Ur D S
p

f.1:96 � 10�4/2 C .1:26 � 10�4/2 C .1:065 � 10�3/2g=100

D S
p

118:85 � 10�4 D S � 10:90 � 10�4:

In the ISO Gum method, the standard uncertainty, which is equivalent to the
standard deviation, is the square root of the sum of the squares of the product of
sensitivity coefficients Ci and estimated standard deviation of the mean Nsp .

7.13.1.5 Relative Random Uncertainty

Ur=S D 1:09 � 10�4:

7.13.2 Systematic Uncertainty

Let the semi-range of uncertainty of scale used in measurement of length ˛L D
0:01 cm and in accuracy of dial micrometer ˛r D 0:001 mm. Uncertainty given
in the calibration certificate of 100 ohm resistance was 0.0001 ohm at 99% confi-
dence level.
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Us D K
q

†f˛2
p=3.ıX=ıxp/2g

D 1:96 � S
p

Œf.0:0001/2 C .0:001/2 C .0:0001=100/2g=3�=100

D 11:32 � 10�4 S:

Combined uncertainty U D
q˚

Us
2 C Ur

2
�DS

pf.1:13 � 10�3/2C .1:09 � 10�3/2g
D S 1:57 � 10�3.

Or relative uncertainty at 95% level of confidence is 0.157%.
There is nothing like systematic and random uncertainties in the ISO Gum

method. The uncertainties are evaluated by two methods namely Type A and
Type B. Uncertainty component evaluated by Type B method is combined with the
uncertainty evaluated by Type A method by quadrature method for each variable.
Foe extended uncertainty the effective degrees of freedom are calculated by (7.20).
Student’s t factor is looked up at the chosen level of confidence and multiplied to
standard uncertainty so calculated.

To summarize the ISO Gum method, which has a wider International acceptance,
we again take the above example.

1. Due to measurement of wire length

Standard deviationsL from D p
2:5 � 10�2 cm

Giving
Standard deviation of the mean from (7.32a)Dp

.2:5=10/ � 10�2 cm
Corresponding sensitivity coefficient cL D S=100

So uncertainty through Type A evaluation D S �p.2:5=10/ � 10�4

From the data given above semi-range of uncertainty in vernier caliper D
0:01 cm
Uncertainty through Type B evaluation D S � 10�4=

p
3

Giving uncertainty component due to measurement wire length

uL D S � 10�4
p

0:25 C 1=3 D 0:764 � S � 10�4:

2. Due to measurement of wire diameter

Standard deviation of the mean diameter .7:34a/ D 0:471 � 10�3 mm
Corresponding sensitivity coefficient cd D S=1

uncertainty through Type A evaluation D S � 0:471 � 10�3

semi-range of dial micrometer D 0:001 mm
Uncertainty through type B evaluation D S � 10�3=

p
3 mm

Giving uncertainty component due to diameter measurement

Ud D S �
p

.0:471/2 C 1=3 D 0:745 � S � 10�3:
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Due to measurement of resistance
Standard deviation of the mean (7.33a)D p

0:25 � 10�2 ohm
Corresponding sensitivity coefficient cR D S=100

Uncertainty through Type A evaluation D S � p
0:25 � 10�4

Uncertainty in calibration of the resistance at 99% confidence level D
0:0001 ohm
Uncertainty through Type B evaluation D S � 10�2 � 0:0001=2:58 (2.58 is t

factor at 99% CL).
Giving uncertainty component due to resistance

uR D S � 10�2
p

0:25 � 10�4 C 10�8=2:582

D 0:5 � S � 10�4:

Combined standard uncertainty D
q

u2
R C u2

d C u2
L

D S � 10�4
p

0:52 C 7:452 C 0:7642

D S � 7:506 � 10�4:

It may be noted that it is only standard uncertainty (combined standard devia-
tion). For extended uncertainty, we have to find effective degrees of freedom; (7.20)
is used for this purpose giving

.S � 7:506 � 10�4/4 � 9

.S � 10�4/4 f0:5g4 C .4:71/4 C .0:5/4
� 58:

Hence, Student t factor for 95% confidence level is 1.96, giving extend uncertainty
1:96 � 7:506 � S � 10�4 D 0:147 � S � 10�2 or 0.147%.

Here, we see that relative uncertainty is almost same as obtained by older method.

7.14 Merits and Limitations of ISO Gum Method

7.14.1 Merits of ISO GUM

The primary expression of uncertainty in ISO Gum method is the standard uncer-
tainty. A standard uncertainty is both internally consistent and transferable. In this
sense, standard uncertainty is a fundamental expression in measurement.

When the mathematical modeling (measurement equation) is linear, the esti-
mate y and standard uncertainty u.y/ are determined by ISO GUM are correct
values for all state of knowledge probability distributions for the input variables
X1; X2; X3; : : :; Xn that have the specified expected value xp , standard deviations,
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u.xp/ and correlation coefficients r.xp; xq/. In this sense, y and u.y/ are robust
estimate and standard uncertainty for Y .

The estimate y and standard uncertainty u.y/ determined by the ISO-Gum
method may be reasonable when all non-linear input quantities have small
uncertainties.

7.14.2 Limitations of ISO GUM

When the mathematical model is non-linear function and one or more input quanti-
ties have large uncertainties, the standard uncertainty u.y/ is a poor approximation
for the standard deviation of S.Y / for Y .

An uncertainty interval is a secondary expression in ISO Gum-method. Since
the ISO-Gum propagates the estimates and standard uncertainties rather than
probability distributions for the input quantities, it does not yield an uncertainty
interval with specific coverage probability.
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Chapter 8
Uncertainty in Calibration of a Surface Plate
(Fitting a Plane)

8.1 Introduction

A metrology laboratory, quite often, receives surface plates for calibration. It is
required to determine a plane that will best fit the empirically measured points.
When such a plane is determined it is possible to calculate the departures from
flatness of individual points on the surface of the plate and to determine the
overall error. The method of testing given in the following paragraphs is based on
Dietrich book [1]

We will first derive the formula for the determination of the heights of set of
points which contribute to the main plane. The surface to be measured is usually
surveyed by measuring along certain lines. A plan of points to be measured is shown
in Fig. 8.1. The dots represent points at which height of the test point is measured.
The number of points chosen will depend upon the size of the plates. Size of a
surface plate may vary from 300 mm by 120 mm to 2,000 mm by 1,200 mm. Number
of points chosen along any line would depend upon the size of the plate and may be
between 6 and 20.

The observations are the heights of the individual points taken along the
predetermined lines. One of the methods in use is of an auto-collimator and a
plane mirror mounted on a three-point suspension table. The suspension table is
schematically shown in Fig. 8.2. The height is the product of the angular deflection
of the reflected light from the plane mirror and the distance d , which is equal to
the distance of the third foot from the other two feet of the plane mirror mount
(Fig. 8.3). At each move, the mirror mount is moved by a fixed distance, which is
equal to the length of the chosen line by the number of observations. The number
of observations along any line is always an even number. Normally the lines chosen
are boundary lines of the rectangular grid, its two diagonals, and at least two lines
bisecting the boundary lines, one along the length and another along the width of
the rectangular grid.

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5 8,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 8.1 Measurement Plan

Fig. 8.2 Mirror on its stand

d

Fig. 8.3 Base of mirror stand

8.2 Procedure

Step-by-step procedure of measurement of heights of various points along the
designated line is as follows:

1. Observations are taken along one diagonal say AC, starting with point A.
2. Height at each point is deduced and added to the sum of the heights previously

taken. The progressive sum of heights is plotted with distance of the point as
abscissa.

3. Join extremity of one ordinate to that of next, till the point C, giving the curve
AC (Fig. 8.4).

4. The straight line through AC is drawn Fig. 8.5.
5. The height of the middle point of the line AC is obtained.
6. Ordinate of this point meets the curve at Q Fig. 8.6.
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Fig. 8.4 Cumulative heights
of various points”

B

P

O
Z1

Z2

α1

α2
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A

Fig. 8.5 Join of AC

R

Q

SP

c

Z’n/2-Zn/2

Z’p1
-Zp

A

Z’n/2

Xn/2 Xn

Zn
Z”p

0’

Zn/2

Fig. 8.6 Height of point Q

7. A line RS is drawn though Q and parallel to line AC Fig. 8.6.
8. The heights of the observed points on the curve are deduced with reference to the

line RQS. This gives the heights of observed points on the diagonal AC.

For the diagonal BD:

9. Steps from 1 to 3 are repeated and the line BD is drawn.
10. The height of the midpoint of BD is calculated.
11. The ordinate of this point also intersects at Q.
12. A line R0S0 is drawn through Q and parallel to BD.
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13. The heights of the observed points on the curve BD with reference to line R0QS0
are deduced. Thus giving the heights of observed points on the diagonal BD.

14. This way, the heights of all the points on the two diagonals are deduced with
reference to the plane passing through the two lines RQS and R0QS0.

15. Let this plane be called as xy plane.
16. The heights of the points A and C with reference to the plane xy will be equal;

let it be b. Similarly the heights of the points B and D on the diagonal BD will
be equal; say it is equal to a.

For parallel sides AD or BC and AB or DC

17. Steps 1–8 are repeated for observing the heights on the points along the side
AB. We know the heights of the points A and B from the xy plane; hence height
of the points with reference to xy plane is determined by adding the proportional
height from the xy plane.

18. The heights of any other point on line, DC, AD, BC and the two bisecting lines
GH and EF are similarly obtained with reference to the same plane xy.

The procedure is mathematically given in the following sections.

8.3 Derivation of Formulae for Height

8.3.1 Height of a Point on the Diagonal AC

Let ˛p be the auto-collimator reading of the pth point and the spacing between the
third foot and the other two feet of the mirror mount is d , and then the height of the
pth point, referring to Fig. 8.4 about the arbitrary line AO, is given by

zpD
rDpX

rD0

d˛r : (8.1)

It should be noted that ˛0 is zero by definition. The abscissa xp along the line AO is
pd. Let the last point be C.x2n; z2n/ for p D 2n, giving the ordinate of C as

z2nD
rD2nX

rD0

d˛r : (8.2)

Join AC and then height of the pth point P on the straight line AC

z0
pD .p=2n/

rD2nX

rD0

d˛r :

The difference in ordinates of the pth points on the curve AC and the straight line
AC is the difference between z0

p and zp and, therefore, is given by
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z0
p � zp D .p=2n/

rD2nX

rD0

d˛r �
rDpX

rD0

d˛r : (8.3)

Fig. 8.5 may please be referred to for the derivation of (8.3).
Let the middle point on the curve be Q.xn; zn/ (Fig. 8.6) and we draw the line

RS parallel to the line AC (Fig. 8.5). The spacing between the lines AC and RS will
be z0

n � zn and thus the ordinate z00
p of the pth point with respect to RS as axis will

be given by

z00
p D z0

n � zn � .z0
p � zp/;

z00
p D 1

2

rD2nX

rD0

d˛r �
rDnX

rD0

d˛r � p

2n

r�2nX

rD0

d˛r C
rDpX

rD0

d˛r

or

z00pD d

" rDpX

rD0

˛r � p

2n

rD2nX

rD0

˛rC1

2

rD2nX

rD0

˛r �
rDnX

rD0

˛r

#

: (8.4)

From (8.4), putting p D 0, we get the height of the end point A

z00
A D d

"
1

2

rD2nX

rD0

˛r �
rDnX

rD0

˛r

#

D b: (8.5)

Similarly
putting p D 2n, we get the height of the end point C

z00
c D d

"
1

2

rD2nX

rD0

˛r �
rDnX

rD0

˛r

#

D b: (8.5a)

Further z00
n for the point Q D 0

The heights of the points along the second diagonal BD of Fig. 8.1 are similarly
calculated with reference to the line R0QS0. The two lines RQS and R0QS0 define the
xy plane and heights of the point z00 with reference to these two lines are the heights
of the points on the two diagonals with reference to the plane xy.

8.3.2 Height of a Point on the Diagonal BD

Following the steps as enumerated above, the height of any point on the diagonal
BD is given by

z00
p D d

"
rDpX

rD0

˛0
r � p

2n

rD2nX

rD0

˛0
rC

1

2

rD2nX

rD0

˛0
r �

rDnX

rD0

˛0
r

#

; (8.6)

Where ˛0
r is the deflection from the mirror.
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The value p at the starting point B is zero; therefore a – the height of point B is

a D d

"
1

2

2nX

rD0

˛0
r �

rDnX

rD0

˛0
r

#

D d

"
1

2

rDnX

rD0

˛0
r C 1

2

rD2nX

rDnC1

˛0
r �

rDnX

rD0

˛0
r

#

D d

"
1

2

rD2nX

rDnC1

˛0
r � 1

2

rDnX

rD0

˛0
r

#

:

At the end point D, p D 2n; hence the height of the point D is

z00
D D a D d

"
1

2

rD2nX

rDnC1

˛0
r � 1

2

rDnX

rD0

˛0
r

#

: (8.6a)

8.3.3 Height of a Point on the Sides AB

The heights of the points on the two parallel sides AB and CD are calculated with
reference to another plane x0y0. If zp is the observed height of a point on line BA,
and z0

p be the corresponding height on the line joining the point B to the tip of the
height at the point A Fig. 8.6, we get

z0
p � zpD .p=2n2/

rD2n2X

rD0

d2˛0
r �

rDpX

rD0

d2˛r :

Here d2 is the value of d – perpendicular distance of the front foot from the line
joining the other two feet. 2n2 are the number of steps taken along the two sides AB
or DC.

The height of the curve RQS (Fig. 8.7), given by the measured points above the
x0y0 plane, is given by the difference between the heights of the line RS above the

reference plane x0y0 and
�

z0
p � zp

�
.

The height of the point D is a and that of A is b from the reference plane; hence
the height of the pth point as counted from D is given by

z000 D aC.b � a/.p=2n2/ � .z0
p � zp/

D d2

"
rDpX

rD0

˛r � .p=2n2/

rD2n2X

rD0

˛r

#

C .p=2n2/.b � a/ C a: (8.7a)

If P is counted from the point A, then height of pth point will be given by

z000 D d2

"
rDpX

rD0

˛r � .p=2n2/

rD2n2X

rD0

˛r

#

C .p=2n2/.a � b/ C b (8.7b)
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b
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Q

(z’P–zp)
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xpx1 x2 xn0

a

R

0’

Fig. 8.7 Heights of the points on the line AB

8.3.4 Height of a Point on the Side DC

Following the same steps as for AB and representing ˛r by ˛0
r , the height of pth

point on DC, if p is counted from D, is given by

z000 D d2

"
rDpX

rD0

˛0
r � .p=2n2/

rD2n2X

rD0

˛0
r

#

C .p=2n2/.b � a/ C a: (8.8a)

If p is counted from the point C, then the height of pth point is given by

z000 Dd2

"
rDpX

rD0

˛0
r � .p=2n2/

rD2n2X

rD0

˛r

#

C .p=2n2/.a � b/ C b: (8.8b)

8.3.5 Height of a Point on the Sides AD

Let another mirror with d3 as the perpendicular distance between the front foot to
the line joining the rear two feet and 2n3 the number of steps taken along AD. The
height of the point D is a and that of A is b from the reference plane; hence the
height of the pth point as counted from D from xy plane is given by

z000 D d3

"
rDpX

rD0

˛r � .p=2n3/

rD2n3X

rD0

˛r

#

C .p=2n3/.b � a/ C a: (8.9a)

If p is counted from the point A, then height of pth point is given by
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z000 D d3

"
rDpX

rD0

˛r � .p=2n3/

rD2n3X

rD0

˛r

#

C .p=2n3/.a � b/ C b: (8.9b)

As height of the point A is b from reference plane xy and that of D is a; hence
proportional height to be added is

.p=2n3/.a � b/ C b:

8.3.6 Height of a Point on the Side BC

Similarly the height of the pth point as counted from B is given by

z000 D d3

"
rDpX

rD0

˛0
r
� .p=2n3/

rD2n3X

rD0

˛r

#

C .p=2n3/.b � a/ C a: (8.10a)

If the pth point is taken from the point C, then its height is given by

z000 D d3

"
rDpX

rD0

˛r � .p=2n3/

rD2n3X

rD0

˛r

#

C .p=2n3/.a � b/ C b: (8.10b)

8.3.7 Height of a Point on the Middle Side GH

z000 D d3

"
rDpX

rD0

˛r � .p=2n3/

rD2n3X

rD0

˛r

#

C .p=2n3/.f � c/ C c: (8.11)

Here c the height of point G is the sum of heights h1 and h2. The h1 is the mean of
the heights of points A and B, G being the midpoint of AB, and h2 is the measured
height of G along the line AB. Here h1 and h2 are given as

h1 D a C b

2
;

h2 D 1

2
d2

8
<

:

rDn2X

rD0

˛r �
rD2n2X

n2C1

˛r

9
=

;
;

giving c as

c D 1

2
d2

8
<

:

rDn2X

rD0

˛r �
rD2n2X

n2C1

˛r

9
=

;
C a C b

2
: (8.12)
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Similarly f is given as

f D 1

2
d2

8
<

:

rDn2X

rD0

˛0
r �

rD2n2X

n2C1

˛0
r

9
=

;
C a C b

2
: (8.13)

8.3.8 Height of a Point on the Middle Side EF

z000 D d2

"
rDpX

rD0

˛r � .p=2n2/

rD2n2X

rD0

˛r

#

C .p=2n2/.f 0 � c0/ C c0: (8.14)

Here c0 the height of point E is the sum of heights h0
1 and h0. The h0

1 is the mean of
the heights of points A and D, E being the midpoint of AD, and h0

2 is the measured
height E along the line AD. Hence h0

1 and h0
2 are given as

h0
1 D a C b

2

and

h0
2 D 1

2
d3

8
<

:

rDn3X

rD0

˛r �
rD2n3X

n3C1

˛r

9
=

;
:

Here c0 is given as

c0 D 1

2
d3

8
<

:

rDn3X

rD0

˛r �
rD2n3X

n3C1

ar

9
=

;
C a C b

2
(8.15)

and f 0 is given as

f 0 D 1

2
d3

8
<

:

rDn3X

rD0

˛0
r �

rD2n3X

n3C1

˛0
r

9
=

;
C a C b

2
: (8.16)

Equations (8.12), (8.13), (8.15) and (8.16) are used to calculate the heights of the
end points of GH and EF respectively with reference to the plane xy.

Some of the points may be below the reference plane xy. If desired, the maximum
height below the plane xy is added to the heights of all the points. By doing so all
the heights are positive and the points are above the reference plane. It is then a very
simple matter to judge the flatness of the surface plate under calibration.
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8.3.9 Heights of Some Important Points

Referring to Fig. 8.1 and using the symbols used in the section above, heights with
respect to plane xy of certain important points are as follows:

Point Height

Q the intersection of the diagonals 0
A and C the ends of the diagonal AC b

B and D the ends of the diagonal BD a

G midpoint of AB; c D 1

2
d2

8
<

:

rDn2X

rD0

˛r �
rD2n2X

n2C1

˛r

9
=

;
C a C b

2
; (8.17)

H the midpoint of DC f D 1

2
d2

8
<

:

rDn2X

rD0

˛0
r �

rD2n2X

n2C1

˛0
r

9
=

;
C a C b

2
; (8.18)

E midpoint of AD, c0 D 1

2
d3

8
<

:

rDn3X

rD0

˛r �
rD2n3X

n3C1

˛r

9
=

;
C a C b

2
; (8.19)

F the midpoint of BC f 0 D 1

2
d3

8
<

:

rDn3X

rD0

˛0
r �

rD2n3X

n3C1

˛0
r

9
=

;
C a C b

2
: (8.20)

Midpoints of EF and GH may not be the same and may not coincide with the
point Q. So it may be easily seen that the lines GH and EF do not intersect each
other; also none of them may intersect either of the two diagonals.

If the intersection point of the two diagonals at the centre Q above the chosen
reference plane is z1, and if the heights of the lines GH and FE at the centre
are z2 and z3 respectively, then the mean intersection point can be taken as
.2z1 C z2 C z3/=4 D Nz. Then correction amount ..Nz � z1/.1 � 2s1=w/ should be
added to the points on the diagonals AQC and BQD. Here s1 is the distance from
the centre Q along the diagonal to the corresponding corner and w is the length
of the diagonal. The corresponding correction for the paths QGA, QGB, QHD and
QHC is ..Nz � z2/f1 � 2s2=.u C v/g, where s2 is the distance of the point from the
point Q along either of the paths, and u and v are the lengths of the parallel sides
AB or DC and AD or BC, respectively. Similarly the corrections for the paths QFA,
QFD, QEB and QEC are ..Nz � z3/f1 � 2s3=.u C v/g, where s3 is the distance of Q
along the aforesaid paths.
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8.4 Numerical Example

8.4.1 For Diagonals BD or AC

Formulae used for diagonals

z00
p D d1

"
rDpX

rD0

˛r � p

2n1

rD2n1X

rD0

˛rC1

2

rD2n1X

rD0

˛r �
rDn1X

rD0

˛r

#

;

b D d1

"
1

2

rD2n1X

rD0

˛r�
rDn1X

rD0

˛r

#

a D d1

"
1

2

rD2n1X

rD0

˛0
r�

rDn1X

rD0

˛0
r

#

Data

d1 D 55mm; n1 D 12

.1=2/
2n1P

0
d1˛r D 11:275=2 D 5:637; 1=2

2n1P

0
d1˛r D �9:9

n1P

0
d1˛r D 4:675

n1P

0
d1˛r D �11:55

Giving b D 0:96 �m Giving a D 1:65 �m

8.4.1.1 Description of Table 8.1

I column is ˛ the observations
II column is ˛d

III column is d
rDpP

rD0

˛r progressive sum of column II

Last item is d
rD2n1P

rD0

˛r and middle item is d
rDn1P

rD0

˛r ; these give the values of b

and a

IV column is .p=n1/d1

rD2n1P

rD0

˛r

V column is III � IV C b gives height z of points taken along the diagonal AC

The same five columns are repeated for BD as shown in Table 8.1.
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Table 8.1 Observations and calculation of heights of points on the lines BD and AC
BD AC

S. No I II III IV V I II III IV V

’10�4 rad d1˛ d1 D 55 d1†˛ p=n
2n1P

0
d1˛r III–IV C0:96 ˛0 d1˛0 †d1˛0 p=n1

2n1P

0
d1˛0

r III–IV C1:65

0 0.0 0:0 0:0 0:0 0.96 0.0 0.0 0.0 0.0 1:65

1 0.0 0:0 0:0 0:940 �0.02 0.0 0.0 0.0 �1.65 3:3

2 0.0 0:0 0:0 1:879 �0.92 �3.0 �1.65 �1.65 �3.3 3:3

3 1.5 0:825 0:825 2:819 �1.03 �5.0 �2.75 �4.4 �4.95 2:2

4 3.0 1:65 2:475 3:758 �0.32 �5.0 �2.75 �7.15 �6.6 1:1

5 2.0 1:1 3:575 4:698 �0.16 �4.0 �2.2 �9.35 �8.25 0:55

6 2.0 1:1 4:675 5:638 0.00 �4.0 �2.2 �11.55 �9.9 0:0

7 2.0 1:1 5:775 6:577 0.16 �2.0 �1.1 �12.65 �11.55 0:55

8 0.5 0:275 6:05 7:517 �0.51 �3.0 �1.65 �14.3 �13.2 0:55

9 1.5 0:825 6:875 8:456 �0.62 �2.0 �1.1 �15.4 �14.85 1:10

10 3.0 1:65 8:525 9:396 0.09 �2.0 �1.1 �16.5 �16.5 1:65

11 2.0 1:1 9:625 10:335 0.25 �1.0 �0.55 �17.05 �18.15 2:75

12 3.0 1:65 11:275 11:275 0.96 �5.0 �2.75 �19.8 �19.8 1:65

8.4.2 For Longer Parallel Sides BA or CD

Formula used for longer parallel sides

zp D d2

"
rDpX

rD0

˛r � .p=2n2/

rD2n2X

rD0

˛r

#

Cp=2n2/.b � a/Ca for BA

zp D d2

"
rDpX

rD0

˛r � .p=2n2/

rD2n2X

rD0

˛r

#

Cp=2n2/.a � b/Cb for CD

Data

d2 D d D 55 mm n2 D 10

2n2X

0

d2˛r D 2:75
n2X

0

d2˛r D 19:25

B D �
2n2X

0

d2˛r C b � a B D �
2n2X

0

d2˛r C a � b

D �2:75 � 0:69 D �3:44 D �19:25 C 0:69 D �18:56
n2X

0

d2˛rD 0:0
n2X

0

d2˛rD 9:35

n2X

0

d2˛r � 1=2
2n2X

0

d2˛rC1=2.bCa/

n2X

0

d2˛r � 1=2
2n2X

0

d2˛rC1=2.bCa/ Df

D c

1:375 � 0:0 C 1:305 D 0:07 D c �9:625 C 9:35 C 1:305 D 1:03 D f
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8.4.2.1 Description of Table 8.2

I column is observations
II column is height ˛d

III column progressive sum of ˛d

Last item is d2

rD2n2P

rD0

˛r and middle item is d2

rDn2P

rD0

˛r ; the knowledge of a and b

gives B to be used in column IV and also for the values of c and f .

IV column .p=2n2/B
V Column is III � IV C V C a

Similar 5 steps are taken for CD. From column III, B and f are calculated as before.

8.4.3 For Sides BC or AD

Formula used for heights of shorter parallel sides

d3

"
rDpX

rD0

˛r � .p=2n3/

rD2n3X

rD0

˛r

#

C .p=2n3/.b � a/ C a For the side BC,

d3

"
rDpX

rD0

˛0
r � .p=2n3/

rD2n3X

rD0

˛0
r

#

C.p=2n3/.a � b/Cb For the side AD.

Data

d3 D 50 mm n3 D 6

2n3X

0

d3˛rD 7:0; b � aD 1:65 � 0:96 D 0:69
2n3X

0

d3˛r D 0:5; a � b D �0:69

Table 8.2 Observations and calculation of heights of points on the lines BA and CD
BA CD

S No I˛ II˛d III†˛d IVB.p/n V
IV C V C a

I˛ II˛d III†˛d IVB.p/n V
IV C V C b

0 0.0 0.0 0.0 0.0 1.65 0.0 0.0 0:0 0.0 0.96
1 0.0 0.0 0.0 �0.344 1.31 0.0 0.0 0:0 �1.856 �0.90
2 �2.0 �1.1 �1.1 �0.688 �0.14 3.0 1.65 1:65 �3.712 �1.10
3 �1.0 �0.55 �1.65 �1.032 �1.03 0.0 0.0 1:65 �5.568 �2.96
4 1.0 0.55 �1.1 �1.376 �0.83 6.0 3.3 4:95 �7.424 �1.51
5 2.0 1.1 0.0 �1.720 �0.07 8.0 4.4 9:35 �9.28 1.03
6 0.0 0.0 0.0 �2.064 �0.41 7.0 3.85 13:20 �11.136 3.02
7 0.0 0.0 0.0 �2.408 �0.76 4.0 2.20 15:40 �12.992 3.37
8 1.0 0.55 0.55 �2.752 �0.55 2.0 1.10 16:50 �14.848 2.61
9 2.0 1.1 1.65 �3.096 �0.26 3.0 1.65 18:15 �16.704 2.41

10 2.0 1.1 2.75 �3.44 0.96 2.0 1.1 19:25 �18.56 1.65
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Giving B D �
2n3X

0

d3˛r C b � a D �6:31 Giving B D �
2n3X

0

d3˛r C a � b

D �1:19
n3X

0

d˛r D 2:0

n3X

0

d˛r D �1:5

�1=2
2n3X

0

d3˛r C
n3X

0

d˛r C 1=2.b C a/ D c0 � 1=2
2n3X

0

d3˛r C
n3X

0

d˛r

C1=2 .bC C / Df 0

c0 D �3:5 C 2:0 C 1:305 D �0:195 f 0 D �0:25 C .�1:5/ C 1:305

D �0:445

Similar two sets of 5 steps each are followed for BC and AD. Column III in each
case will give the corresponding values of B; c0 and f 0 (Table 8.3).

8.4.4 For Middle Parallel Sides EF and GH

zp D d3

"
rDpX

rD0

˛r � .p=2n3/

rD2n3X

rD0

˛r

#

C.p=2n3/.f � c/C for GH

zp D d2

"
rDpX

rD0

˛r � .p=2n2/

rD2n2X

rD0

˛r

#

C.p=2n2/.f 0 � c0/Cc0 for EF

Data

D D 55 mm; n2 D 10for EF and d3 D 55 mm and n3 D 6 for GH

Table 8.3 Observations and calculation of heights of points on the lines BC and AD

AD BC
SN ˛ ˛d †˛d B.p/n IV C V C b ˛ ˛d †˛d B.p/n IV C V C a

0 0.0 0.0 0.0 0.0 0.96 0.0 0.0 0.0 0.0 1.65
1 0.0 0.0 0.0 �1.05 �0.09 0.0 0.0 0.0 �0.198 1.45
2 1.0 0.5 0.5 �2.10 �0.64 �5.0 �2.5 �2.5 �0.397 �1.25
3 3.0 1.5 2.0 �3.15 �0.19 2.0 1.0 �1.5 �0.595 �0.44
4 5.0 2.5 4.5 �4.21 �1.25 �2.0 �1.0 �2.5 �0.793 �1.64
5 4.0 2.0 6.5 �5.26 2.20 1.0 0.5 �2.0 �0.992 �1.34
6 1.0 0.5 7.0 �6.31 1.65 5.0 2.5 0.5 �1.19 0.96
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Table 8.4 Observations and calculation of heights of points on the lines EF and GH

EF GH
S.N ˛ ˛d †˛d B.p/n IV C V C c ˛ ˛d †˛d B.p/n IV C V C a

0 0.0 0.0 0.0 0.0 �0.44 0.0 0.0 0.0 0.0 0.07
1 0.0 0.0 0.0 0.734 �0.30 0.0 0.0 0.0 �0.733 �0.8
2 �1.0 �0.55 �0.55 1.48 C0.49 2.0 1.0 1.0 �1.467 �0.54
3 �3.0 �1.65 �2.2 2.22 �0.42 1.0 0.5 1.5 �2.20 �0.77
4 �1.0 �0.55 �2.75 2.96 �0.23 3.0 1.5 3.0 �2.933 0.00
5 �2.0 �1.1 �3.85 3.70 �0.59 3.0 1.5 4.5 �3.667 0.76
6 �0.0 0.0 �3.85 4.44 C0.15 2.0 1.0 5.5 �4.4 1.03
7 �1.0 �0.55 �4.40 5.18 C0.34
8 �2.0 �1.1 �5.5 5.92 �0.02
9 �2.0 �1.1 �6.60 6.66 �0.38

10 �1.0 �.55 �7.1 7.4 �0.19

B D�
2nP

0
d˛r Cc �f D C7:1 C .�0:19 C 0:445/ D 7:35 B D�

2nP

0
d˛r Cf �c D

�5:5 C 1:03 C 0:07 D �4:4. Similar two sets of 5 steps each as given for parallel
sides are followed for EF and GH (Table 8.4).

8.5 Fitting a Plane to the Given Data

The most general equation of a plane is given by

ax C by C cz D d: (8.21)

In the particular case of calibration of a surface plate, it is z which is measured;
hence (8.21) can also be expressed as

z D ax C by C d; (8.22)

where new a, b and d are old a, b, d divided by c. As z is the only measured quantity
and all other coordinates are calculated from the geometry of the mean plane xy, the
deviation of any point from the mean plane is due to the difference in its z ordinate.
If z0

p is the z ordinate of such a point and zp is the ordinate of the point on the plane
then z0

p � zp is given as

z0
p�zp D z0

p�axp�byp�d:

Now if each of these deviations from the mean plane is a random deviation, and if
all these random points belong to the same random population, then the probability
of all deviations found occurring together is the product of individual probability
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of happening for any point, which is given by the Gaussian probability distribution.
The combined probability P is given by

P D 1

�n.2	/n=2

pDnY

pD1

exp. � z0
p � zp/2=2�2;

P D 1

�n.2	/n=2
exp

8
<

:
�

pDnX

pD1

.z0
p � zp/2

2�2

9
=

;
: (8.23)

The expression in (8.23) will be a maximum if the negative power of the exponent
is a minimum. The condition, therefore, for the maximum probability is that E , as
given in (8.24), is a minimum. E is given by

E D
pDnX

pD1

.z0
p � zp/2: (8.24)

To make E a minimum its partial derivatives with respect to variable a, b and d

must be zero.
Hence conditions for minimum value E are

ıE

ıa
D 0

ıE

ıb
D 0

ıE

ıd
D 0:

(8.25)

It is seen that in applying the condition that P should be a maximum, known as the
“Principle of maximum likelihood”, this in turn has led to the requirement that sum
of the squares of the deviations should be a minimum. This condition is known as
“Principle of least squares” and is often applied directly without using the principle
of maximum likelihood.

From (8.25), therefore, we get

ıE

ıa
D �

pDnX

pD1

xp.z0
p � axp � byp � Ed/ D 0;

ıE

ıb
D �

pDnX

pD1

yp.z0
p � axp � byp � d/ D 0;

ıE

ıd
D

pDnX

pD1

.z0
p � axp � byp � d/ D 0:

(8.26)
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Rewriting (8.26), we get

pDnX

pD1

xpz0
p D a

pDnX

pD1

x2
p C b

pDnX

pD1

xpyp C d

pDnX

pD1

xp; (8.27)

pDnX

pD1

ypz0
p D a

pDnX

pD1

ypxp C b

pDnX

pD1

y2
p C d

pDnX

pD1

yp; (8.28)

pDnX

pD1

z0
p Da

pDnX

pD1

xp C b

pDnX

pD1

yp C nd: (8.29)

These are called normal equations. There are three equations and three unknown,
namely a, b and d, and each unknown can be calculated from these equation by
simple calculations.

To eliminate d from (8.27) and (8.29) multiply (8.27) by n and (8.29) by
pDnP

pD1

xp

and subtracting we get

a

8
<̂

:̂
n

pDnX

pD1

x2
p �

0

@
pDnX

pD1

xp

1

A

2
9
>=

>;
C b

8
<

:
n

pDnX

pD1

xpyp �
pDnX

pD1

xp

pDnX

pD1

yp

9
=

;

D n

pDnX

pD1

xpz0
p �

pDnX

pD1

xp

pDnX

pD1

z0
p: (8.30)

Similarly, eliminating d from (8.28) and (8.29) by multiplying the (8.28) by n and

(8.29) by
pDnP

pD1

yp and subtracting we get

a

8
<

:
n

pDnX

pD1

xpyp �
pDnX

pD1

xp

pDnX

pD1

yp

9
=

;
C b

8
<̂

:̂

pDnX

pD1

y2
p �

0

@
pDnX

pD1

yp

1

A

2
9
>=

>;

D n

pDnX

pD1

ypz0
p �

pDnX

pD1

yp

pDnX

pD1

z0
p: (8.31)

Dividing each side of equation (8.30) by n2, we see that coefficient of a in (8.30)
becomes

pDnP

pD1
x2

p

n
�

 
pDnP

pD1
xp

!

n2
:2 (8.32)
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This is nothing but variance of x, so we denote it by Vxx.
Similarly coefficient of b in (8.30) becomes

pDnP

pD1
xpyp

n
�

pDnP

pD1
xp

pDnP

pD1
yp

n2
(8.33)

This is nothing but the covariance between x and y, so we denote it as Vxy
Following the same principle for (8.31), we write the two equations (8.30) and

(8.31) respectively as

Vxxa C Vxy b D Vxz; (8.34)

Vxya C Vyyb D Vyz: (8.35)

Solving (8.35) and (8.36) for a and b, we get

a D Vxz0Vyy � Vyz0Vxy

VxxVyy � V 2
xy

; (8.36)

b D VxxVyz0 � Vxz0Vxy

VxxVyy � V 2
xy

: (8.37)

Substituting the values of a and b in (8.31), we get the value of d giving us

d D

pDnP

pD1

z0
p

n
� Vxz0Vyy � VyzVxy

VxxVyy � V 2
xy

�

pDnP

pD1

xp

n
� Vyz0Vxx � VxyVxz0

VxxVyy � V 2
xy

�

pDnP

pD1

yp

n
: (8.38)

The equation of the mean plane is thus

z D Vxz0Vyy � Vyz0Vxy

VxxVyy � V 2
xy

� x C Vxz0Vyy � Vyz0Vxy

VxxVyy � V 2
xy

� y C

pDnP

pD1

z0
p

n

�Vxz0Vyy � VyzVxy

VxxVyy � V 2
xy

�

pDnP

pD1

xp

n
� Vyz0Vxx � VxyVxz0

VxxVyy � V 2
xy

�

pDnP

pD1

yp

n
: (8.39)

Now the coordinates of the centroid of all points are

pDnP

pD1

xp

n
;

pDnP

pD1

yp

n
;

pDnP

pD1

z0
p

n
: (8.40)



8.6 Uncertainty in Measurements 195

If the coordinates of the centroid are substituted for x, y and z in (8.39), it is clearly
seen that the equation becomes identically equal to zero; hence it is seen that the
plane in (8.39) passes through the centroid.

By shifting the origin to the centroid, we can get the equation of the same plane,
which is simpler because of the absence of the constant term; the other coefficients
of x and y remain the same.

Usually the overall departure from the mean plane is not much different than
those calculated by using the equations derived in Sect. 8.3.1. The mean plane
method is, however, useful if the standard deviation of the departure of the surface
plate from the mean plane is required.

8.5.1 Standard Deviation from the Mean Plane

The equation of the mean plane, with centroid as origin, may be written as

AX C BY � Z D 0; (8.41)

Let Xp D xp �

pDnP

pD1

xp

n
; Yp D yp �

pDnP

pD1

yp

n
Zp D zp �

pDnP

pD1

z0
p

n
: (8.42)

The distance of any point .Xp; Yp; Zp/ from the plane is given by

AXpCBYp � Zp

.A2CB2C1/1=2
: (8.43)

Thus the standard deviation is given by

s D
8
<

:

pDnX

pD0

.AXpCBYp � Zp/2

.n � 2/.A2CB2C1/

9
=

;

1=2

: (8.44)

n � 2 appears in the denominator, as two parameters A and B have been determined
from n points, giving n-2 as effective degrees of freedom.

8.6 Uncertainty in Measurements

8.6.1 Uncertainty in Measured Height of a Point

The instrument used for measurement of angular deviation ˛ is same. Hence Type
A standard uncertainty for each ˛ will be the same. Let it be ¢˛.
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8.6.1.1 Uncertainty in Height of a Point on the Diagonals AC or BD

Notations used: d1 step distance on AC or BD

d2 step distance on AB, CD or EF
d3 step distance on AB, GH or AD
2n1 number of observations taken on AC or BD
2n2 number of observations taken on AB or EF or CDD and
2n3 number of observations taken on AD, GH, BC

The height of pth point on the diagonals AC or BD above the reference plane defined
by the lines RQS and R0QS0 from (8.4)

zCA or BD D d1

"
rDpX

rD0

˛r � p

2n1

rD2n1X

rD0

˛rC1

2

rD2n1X

rD0

˛r �
rDn1X

rD0

˛r

#

: (8.45)

Expressing
rD2n1P

rD0

’r in 2nd term as the sum of
rDpP

rD0

’r and
rD2n1P

rDpC1

’r , and in 3rd term

as the sum
rDn1P

rD0

’r and
2n1P

rDn1C1

˛r , (8.45) becomes

zCA or BD D d1

2

4
rDpX

rD0

˛r � p

2n1

rDpX

rD0

˛r � p

2n1

rD2n1X

rDP C1

˛r C 1

2

rD2n1X

rDn1C1

˛r � 1

2

rDn1X

rD0

˛r

3

5 ;

zCA or BD D d1

2

4
	

1 � p

2n1


 rDpX

rD0

˛r � p

2n1

rD2n1X

rDpC1

˛r C 1

2

rD2n1X

rDn1C1

˛r � 1

2

rDn1X

rD0

˛r

3

5 :

(8.46)

We know that if z is a linear combination of several Gaussian variables for example

z D a1x1 C a2x2 C a3x3 C � � � C anxn; (8.47)

then the variance �2
z of the variable z is given by

Vz D a2
1�2

x1 C a2
2�2

x2 C a2
3�2

x3 C � � � C a2
n �2

xn: (8.48)

Measurement of all ˛r is subject to uncertainty and thus can be considered as
random variables. Further each ˛r is obtained by using the same instrument; hence
the standard deviation of each ˛r will be the same. Let it be �˛ .

Following the law enunciated in (8.48), the (8.46) becomes

s2
CA or BD D

�

p � p2

n1
C p3

4n2
1

C p2

4n2
1

.2n1 � p/C1

4
n1C1

4
n1

�

d 2
1 �2

˛
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or

s2
CA or BD D

�

p � p2

2n1
Cn1

2

�

d 2
1 ˛2

˛: (8.49)

8.6.1.2 Uncertainty in Height of a Point on Lines AB or DC

The height of the pth point on BA, if p is counted from B, is given as

zAB or DC D d2

"
rDpX

rD0

˛r � .p=2n2/

rD2n2X

rD0

˛r

#

Cp=2n2/.b � a/Ca:

Then by expressing
rD2n1P

rD0

˛r as sum of two summations one from 1 to p and the

other from p C 1 to 2n1 and simplifying other terms, the height zABorDC of the pth
point on the line AB or DC is expressed as

zAB or DC D
2

4
	

1 � p

2n2


 rDpX

rD0

˛r � p

2n2

rD2n2X

rDpC1

˛r

3

5d2 C a

	

1 � p

2n2




C p

2n2
b:

(8.50)
Now a and b from (8.5a) and (8.6a) are

a D d1

2

41

2

rD2n1X

rDn1C1

˛r � 1

2

rDn1X

rD0

˛r

3

5 and

b D d1

2

41

2

rD2n1X

rDn1C1

˛0
r � 1

2

rDn1X

rD0

˛0
r

3

5

Following (8.48) the variances of a and b

�2
a D d 2

1

�	
1

4
.n1C1

4
n1


�

�2
˛ D d 2

1 �2
˛n1=2; (8.51)

�2
b D d 2

1

�	
1

4
.n1C1

4
n1


�

�2
a D d 2

1 �2
˛n1=2: (8.52)

Applying the law in (8.48) and substituting the values of variances of a and b in
(8.50), we get the variance ¢2

BA; DC as

�2
z D

"(	

1 � p

2n2


2

p C p2

4n2
2

.2n2 � p/

)

d 2
2 C

	

1 � p

2n2


2

d 2
1 n1=2C p2

4n2
2

�
d 2

1 n1=2
�
#

�2
˛;
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�2
BA; DC D

" 

p � p2

n2
C p3

4n2
2

C p2

2n2
� p3

4n2
2

!

d 2
2 C

 

1 � p

n2
C p2

4n2
2

C p2

4n2
2

!

d 2
1 n1=2C

#

�2
˛;

�2
BA; DC D

"

p

	

1 � p

2n2




d 2
2 C

 

1 � p

n2
C p2

2n2
2

!

d 2
1 n1=2

#

�2
˛: (8.53)

The expression in (8.53) is also valid for uncertainty in height of the pth point on
DC; p is counted from the end D.

8.6.1.3 Uncertainty in Height of a Point on Lines AD and CB

Uncertainty of the pth point on AD or CB, if p is counted from the end A for points
on AD or from the point C for points on CB, is obtained by replacing d2 and n2 by
d3 and n3 respectively in (8.53). The expression for uncertainty of the pth point on
AD or CB is given by

�2
AD; CB D

�

p

	

1 � p

2n3




d 2
3 C

	

1 � p

n3
C p2

2n2
3




d 2
1 n1=2

�

�2
˛ : (8.54)

8.6.1.4 Uncertainty in Height of a Point on Line GH

The expression for the height of pth point on GH from (8.11) is

zGH D d3

"
rDpX

rD0

˛r � .p=2n3/

rD2n3X

rD0

˛r

#

C.p=2n3/.f � c/ C c:

The above expression is modified, as in Sect. 8.6.1.1 and may be written as

zGH D d3

2

4
	

1 � p

2n3


 rDpX

rD0

˛rC p

2n3

rD2n3X

pC1

˛r

3

5Cc

	

1 � p

2n3




C p

2n3
f: (8.55)

Now c from (8.12) is given

c D 1

2
d2

8
<

:

rDn2X

rD0

˛r �
rD2n2X

n2C1

˛r

9
=

;
CaCb

2

and f from (8.13) is given as
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f D 1

2
d2

(
rDn2X

rD0

˛0
r �

rD2n2X

0

˛0
r

)

C a C b

2
:

Giving variance of c as

�2
c D 1

4
d 2

2 .n2 C n2/�2
˛ C 1

4
.�2

a C �2
b /:

Substituting the value of �2
a and �2

b from (8.51) and (8.52), we get

�2
c D

	
1

2
d 2

2 n2 C 1

4
n1d 2

1




�2
˛ : (8.56)

Similarly the variance of f will be given as

�2
f D 1

2

	

d 2
2 n2C1

2
d 2

1 n1




�2
˛ : (8.57)

Applying again the law of variances enunciated in (8.48), we get

�2
GH D p

	

1 � p

2n3




d 2
3 �2

˛C1

4

	

1 � p

n3
C p2

2n2
3





2n2d 2

2 Cn1d 2
1

�
�2

˛ (8.58)

8.6.1.5 Uncertainty in Height of a Point on Line EF

The uncertainty in height of a point on the line EF is similarly obtained by
interchanging n2 with n3 and d2 with d3. The expression of variance of the height
of the pth point on EF is given by

�2
EF D p

	

1 � p

2n2




d 2
2 �2

˛C1

4

	

1 � p

n2
C p2

2n2
2





2n3d 2

3 Cn1d 2
1

�
�2

˛ : (8.59)

8.6.2 Uncertainty in Difference in Heights of Two Points
on the Diagonal

In regard to position of two points, two possibilities exist: one is that that both points
are on the same line and the second is that two points lie on different lines.
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8.6.3 Points Are on the Same Straight Line

8.6.3.1 The Points Are on the Diagonal AC or BD

Number of points taken on either diagonal is 2n1. The height of the pth point on the
diagonal AC above the reference plane is given by

zACp D d1

"
rDpX

rD0

˛r � p

2n 1

rD2n1X

rD0

˛rC1

2

rD2n1X

rD0

˛r �
rDn1X

rD0

˛r

#

: (8.60)

Similarly height of any other qth point will be given by

zACp D d1

"
rDqX

rD0

˛r � q

2n1

rD2n1X

rD0

˛r C1

2

rD2n1X

rD0

˛r �
rDn1X

rD0

˛r

#

: (8.61)

If q � p then the summation from r D 0 to r D 2n1 may be divided into three
parts, namely (1) from r D 0 to r D q, (2) r D q C 1 to r D p and (3) r D p C 1

to r D 2n1. Thus, (8.60) and (8.61) can be written as

zACp D d1

2

4
rDqX

rD0

˛rC
rDpX

rDqC1

˛r �
	

1

2
� p

2n1



8
<

:

rDqX

rD0

˛rC
rDpX

rDqC1

˛rC
rD2n1X

rDpC1

˛r

9
=

;

�
rDn1X

rD0

˛r

#

; (8.62)

zACq D d1

2

4
rDqX

rD0

˛r C
rDpX

rDqC1

˛r �
	

1

2
� q

2n1



8
<

:

rDqX

rD0

˛r C
rDpX

rDqC1

˛r C
rD2n1X

rDpC1

˛r

9
=

;

�
rDn1X

rD0

˛r

#

: (8.63)

Subtracting (8.63) from (8.62), we get the difference �AC as

�AC D d1

2

4
	

q

2n1
� p

2n1



8
<

:

rDqX

rD0

˛rC
rD2n1X

rDpC1

˛r

9
=

;
C
	

1Cq � p

2n1


 rDpX

rDqC1

˛r

3

5 :

(8.64)
Here also every ˛r is subject to uncertainty and thus can be considered as random
variables. Further each ˛r is obtained by using the same instrument; hence the
standard deviation of each ˛r will be the same, taking it to be as ¢’.

Now �AC is a linear function of ˛r ; hence the variance ¢2
AC of �AC as given by

(8.48) is given as
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�2
AC D

(
.q � p/2

4n2
1

.qC2n1 � p/C
	

1C .q � p/

2n1


2

.p � q/

)

d 2
1 �2

˛; (8.65)

�2
AC D

�

1Cq � p

2n1

�

.p � q/�2
˛d 2

1 : (8.66)

Here we see that variance and therefore the standard uncertainty is not constant, nor
is linearly connected with the difference p � q. The uncertainty is zero for p D q

and for p D 2n1 and q is zero. Further uncertainty is maximum for p � q equal to
n1 and is given as

Maximum standard uncertainty D
�p

n1=2
�

�˛d1: (8.67)

Same expression is equally true for the other diagonal BD

8.6.3.2 Points Are on the Parallel Side BA

The number of steps taken on the side BA is 2n2. The height of the pth point on BA
above the datum plane from (8.7a) is given by

zBAp D d2

"
rDpX

rD0

˛r � .p=2n2/

rD2n2X

rD0

˛r

#

C.p=2n2/.b � a/Ca:

Expressing
2n2P

rD0

˛r D
rDpP

rD0

˛r C
2n2P

rDpC1

˛r we get

zBAp D
2

4
	

1 � p

2n2


 rDpX

rD0

˛r � p

2n2

rD2n2X

rDpC1

˛r

3

5 d2Ca

	

1 � p

2n2




Cb
p

2n2
:

(8.68a)
Similarly the height of qth point on BA above the datum is given by

zBAq D
2

4
	

1 � q

2n2


 rDpX

rD0

˛r � q

2n2

rD2n2X

rDpC1

˛r

3

5d2Ca

	

1 � q

2n2




Cb
q

2n2
:

(8.68b)
Taking p � q and q as positive integer, the height difference between the two points
is derived by subtracting (8.68b) from (8.68a), and is given by

�BA D
2

4 q

2n2

rD2n2X

rDqC1

˛r � p

2n2

rD2n2X

rDpC1

˛rC
	

1 � p

2n2


 rDpX

rD0

˛r
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�
	

1 � q

2n2


 rDqX

rD0

˛r

#

d2Cp � q

2n2

.b � a/; (8.69)

where a and b are

a D d1
1

2

2

4
rD2n1X

rDn1C1

˛r �
rDn1X

rD0

˛r

3

5 ; (8.70)

b D d1
1

2

2

4
rD2n1X

rDn1C1

˛0
r �

rDn1X

rD0

˛0
r

3

5 : (8.71)

Substituting the values of a and b in (8.69) and collecting terms of same summa-
tions, we get

�BA D
2

4
	

q � p

2n2


 rDqX

rD0

˛r C
	

1 � p � q

2n2


 rDpX

rDqC1

˛r C
	

q � p

2n2


 rD2n2X

rDpC1

˛r

3

5 d2

C
	

p � q

2n2



d1

2

2

4
rD2n1X

rDn1C1

˛0
r �

rD2n1X

rDn1C1

˛r C
rDn1X

rD01

˛r �
rDn1X

rD0

˛0
r

3

5 : (8.72)

Here also �BA is a linear function of ˛r so the variance .¢BA/2 by (8.48) is given by

�2
BA D

"
.p � q/2

4n2
2

.2n2 � pCq/C
	

1 � p � q

2n2


2

.p � q/

#

�2
˛d 2

2

C .p � q/2

4n2
l

d 2
1

4
.4n1/�2

˛ : (8.73)

Equation (8.73) on simplification becomes

�2
BA D

"

.p � q/

	

1 � p � q

2n2




d 2
2 C .p � q/2n1d

2
1

4n2
2

#

: (8.74)

It may be noted that the first term has the same form as that for a diagonal, and the
second term represents the contribution to the uncertainty from the heights of the
two ends of diagonals BD and AC, which arises from the uncertainties of a and b.

In this case also by putting p � q equal to h and differentiating (8.74) with
respect to h and equating the differential coefficient equal to zero we see that that
the uncertainty is a maximum at h and is given by



8.6 Uncertainty in Measurements 203

h D 2n2

.2 � n1d
2
1 =n2d 2

2 /
(8.75)

and maximum value of standard uncertainty ¢BA is given by

�BA D
p

.2n2/d�a
q˚

2.2 � n1d 2
1 =n2d 2

2 /
� : (8.76)

8.6.3.3 The Points Are on the Parallel Side CD

Equations (8.74), (8.75) and (8.76) hold good for any points on CD, where p and q

are numbered from the end C

8.6.3.4 The Points Are on the Parallel Sides BC or AD

Equations similar to (8.74), (8.75) and (8.76) will hold good for any two points on
sides BC or AD, except that 2n2 is replaced by 2n3. Here 2n3 is the number of
observations taken on sides BC or AD.

8.6.3.5 The Points Are on the Central Side GH

The height of the pth point on the GH line above the datum plane is given by

zGHp D
2

4
	

1 � p

2n3


 rDpX

rD0

˛r � p

2n3

2n3X

rDpC1

˛r

3

5d3Cc

	

1 � p

2n3




C fp

2n3
: (8.77)

Similarly the height of qth point on the line GH above the datum plane is given by

zGHq D
2

4
	

1 � q

2n3


 rDqX

rD0

˛r � q

2n3

2n3X

rDqC1

˛r

3

5 d3Cc

	

1 � q

2n3




C qf

2n3
: (8.78)

Here 2n3 � p � q � 0.
The difference of height �GH between these two points is obtained by subtracting

(8.78) from (8.77), giving us
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�GH D
2

4

 
q � p

2n3

rDqX

rD0

˛r

!

C
	

1 � p � q

2n3


 rDpX

rDqC1

˛r �
	

p � q

2n3


 rD2n3X

rDpC1

˛r

3

5d3

C
	

p � q

2n3




.f � c/: (8.79)

Here c is the height of the middle point of BA above the datum plane and is given
by

c D
2

41

2

n2X

rD0

˛r � 1

2

2n2X

n1C1

˛r

3

5 d2Ca C b

2
: (8.80)

By putting p D n2 in (8.68) and substituting the values of a and b from (8.70) and
(8.71), c is given as

c D
2

41

2

rDn2X

rD0

˛r � 1

2

2n2X

n2C1

˛r

3

5 d2C1

4

2

4
rD2n1X

n1C1

˛r �
n1X

rD0

˛r

3

5 d1

C1

4

2

4
rD2n1X

n1C1

˛0
r �

n1X

rD0

˛0
r

3

5d1; (8.81)

and f is the height of the midpoint of CD from the datum plane and is given as

f D
2

41

2

n2X

rD0

˛0
r � 1

2

2n2X

n1C1

˛0
r

3

5d2CaCb

2
: (8.82)

From (8.81) and (8.82), we get

f � c D
2

41

2

rDn2X

rD0

˛0
r � 1

2

2n2X

n1C1

˛0
r � 1

2

rDn2X

rD0

˛r C1

2

2n2X

n1C1

˛r

3

5d2: (8.83)

Substituting the values of f � c from (8.83) in (8.79), we get

�GH D
2

4

 
q � p

2n3

rDqX

rD0

˛r

!

C
	

1 � p � q

2n3


 rDpX

rDqC1

˛r �
	

p � q

2n3


 rD2n3X

rDpC1

˛r

3

5d3

C .p � q/

2n3

2

41

2

rDn2X

rD0

˛0
r � 1

2

2n2X

n1C1

˛0
r � 1

2

rDn2X

rD0

˛rC1

2

2n2X

n1C1

˛r

3

5 d2:
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Applying (8.48) as before, we get the variance .¢GH/2 as

�2
GH D

"

.p � q/

�

1 � p � q

2n3

�

d 2
3 C

(
.p � q/2C2

4n2
3

d 2
2

)#

�2
a : (8.84)

Variance is a maximum at

hD .p � q/ D 2n3

2 � n2d 2
2 =n3d 2

3

; (8.85)

giving maximum standard uncertainty ¢GH as

.�GH/max D d3
p

n3�a
q

.2 � d 2
2 n2=n3d

2
3 /

: (8.86)

8.6.3.6 The Points are on the Central Side EF

Following similar steps as above, the variance in difference in heights of the points
along the EF is given by

�2
EF D

"

.p � q/

�

1 � p � q

2n2

�

d 2
2 C

(
.p � q/2

4n2
2

n3d
2
3

)#

�2
˛ : (8.87)

Equation (8.87) is obtained by interchanging n3 with n2 and d3 with d2 in (8.84).
The variance is maximum when p � q D h is given by

hD .p � q/ D 2n2

2 � n3d 2
3 =n2d

2
2

(8.88)

and maximum standard uncertainty is

.�EF/max D d2
p

n2�a
q

.2 � n3d 2
3 =n2d

2
2 /

: (8.89)

8.6.4 Points on Two Different Lines

8.6.4.1 One Point on the Diagonal BD and the Other on Longer Sides
BA or CD

If the two points are on two different lines, say, one on BD and another on BA, then
variance �2

BA;BD in difference in heights is found out by taking following steps:
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Find the height of the pth point on BD; p is being numbered from the end B
Find the height of the qth point on BA; q is also numbered from the end B
Find the difference in height of the two points; the two cases arrive (1) p

¯
� n1

and (2) p � n1

Find the variance; by applying the law for the variances enunciated in (8.48)
we get

For p
¯

� n1

�2
BA;BD D

�

q.1 � q=n2/ d 2
2 Cq2n1

8n2
2

d 2
1

�

�2
˛ C

�	

1 � p

2n1


	

p � qn1

n2




Cq2n1

8n2
2

�

d 2
1 �2

˛ :

(8.90)
For p � n1

�2
BA;BD D

�

q.1 � q=2n2/d 2
2 Cq2n1

8n2
2

d 2
1

�

�2
˛ C

�

p

	

1 � q

2n2
� p

2n1




Cn1q2

8n2
2

�

d 2
1 �2

˛ :

(8.91)
Equations (8.90) and (8.91) are also applicable for the points lying on CD and CA;
p; q are numbered from C.

Variances for the points on BD and BC or AC and AD are obtained by replacing
n2 by n3 and d2 by d3 in (8.90) and (8.91). In the case of points on BD and BC,
p and q are numbered from B. In the case AC and AD, p and q are numbered
from A.

8.6.4.2 Points on the Diagonal and Any Other Non-diagonal Lines
GH or EF

1. One point lies on BD and another on GH.
Following the three steps enunciated in Sect. 8.6.4.1, the variance ¢2

GH;BD of the
difference in heights of the two points is given by
For p � n1

�2
GH;BD D

"

q

	

1 � q
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Equations (8.92) and (8.93) will also hold good for two points: one on diagonal
AC and the other on GH.

2. One point is on any diagonal and another on line EF
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By interchanging n3 with n2, and d2 with d3, we get the variance of difference in
heights of two points, out of which one lies on any diagonal and the other on EF,
giving us
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8.6.4.3 Points Are on the Central Lines EF and GH

Height of pth point on GH from (8.11) is
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and the height of qth point on EF
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So the difference in the height of two points is
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Equation (8.96) may be written as
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The variance of left-hand side will be the sum of individual variances of five terms
on the right-hand side of the equation (8.97). By applying the law of variances given
in (8.48), we get variances of each term

So Variance V1 of first term is
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Similarly the variance V2 of second term will be
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Now third term may be written as
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giving variance V3 of this term as
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Interchanging n2 with n3 and d2 with d3, we get the variance V4 of the fourth term as

V4 D q2n3d 2
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Now the fifth term can be written in the summation form as

c � c0 D 1

2

2

4
rDn2X

rD0

˛r �
2n2X

rDn2C1

˛r �
3

5d2 � 1

2

2

4
rDn3X

rD0

˛r �
2n3X

rDn3C1

˛r�
3

5 d3; (8.102)



8.8 Type B Evaluation of Standard Uncertainty 209

giving the variance V5 of c � c0 as
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Combining (8.98), (8.99), (8.100), (8.101) and (8.103), we get the variance �2
GH;EF

of difference in heights of two points, one on GH and another EF as
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8.7 Type A Evaluation of Uncertainty

The standard uncertainty of measurement of angular changes, symbolized as �˛ ,
is calculated by repeated observations. We may have repeated readings either at
one point a larger number of times or may be a few repetitions but at different
points on the surface. For a laboratory it may be easier to take three repetitions at
all points of the surface plate, calculate the variance �2

˛ and record it. Repeating
this exercise on several surface plates will give the pooled variance, square root of
which can be used as standard uncertainty in angular measurements. Uncertainty in
height measurement will then be d times the uncertainty in angular measurement.
For example d1 in our case is 55 mm and d2 is 50 mm.

If the standard deviation in angular measurement �’ is 10�5 radians, then
uncertainty through Type A evaluation is D 10�5 � 50 mm D 0:5 �m.

8.8 Type B Evaluation of Standard Uncertainty

8.8.1 Uncertainty Due to the Finite Digital Readout
of the Measuring Instrument

Normally the measuring instruments have least count of 10 �rad.10 � m=m/. It
means the real observation may lie anywhere within the semi-range of 5 �rad.
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Observations follow rectangular distribution with semi-range of 5 �rad. So standard
uncertainty Ud due to digital readout is given as

Ud D 5 � 10�6 � 50 mm=
p

3 D 0:14 �m:

8.8.2 Uncertainty Due to Certified Accuracy of the Measuring
Instrument

Uncertainty given in the certificate is 10 �rad at 95% confidence level coverage
factor 1.96 standard uncertainty in height due to this source Uc as

Uc D 10 � 10�6 � 50 mm=1:96 D 0:26 �m:

8.8.3 Uncertainty Due to Unstability of the Instrument

Certified error due to unstability of the measuring instrument is given as 10 �rad,
hence uncertainty component due to this cause Us as

Us D 10 � 10�6 � 50mm=
p

3 D 0:29 �m:

8.8.4 The Error in Non-Uniformity of Temperature

If the surface plate is not maintained at uniform temperature, especially in the
vertical direction, the thermal expansion of the material of the plates the upper
surface will rise or fall depending upon the difference in temperature. W is the
thickness, t is temperature difference and ˛ is the thermal coefficient then change
in height is given by

W � t � ˛

For example if W D 15 cm; t be 0:2 ıC and ˛ D 11:5 � 0�6=ıC.
Uncertainty component Ut due to this is given

0:2 � 0:15 � 11:5 � 10�6 D 0:345 �m:

Assuming rise or fall of a point on the surface follows the rectangular distribution
with semi-range of 0.345 standard uncertainty in height Ut due to this cause is
given by

Ut D 0:345=
p

3 D 0:199 �m D 0:20 �m:
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Hence combined standard uncertainty is

uc D
p

0:52 C 0:142 C 0:262 C 0:292 C 0:202 D 0:68 �m:

8.8.5 Effective Degrees of Freedom

Effective degrees of freedom �eff are given as

�eff D 0:684

0:52=9 C 0:144=1 C 0:264=1 C 0:294=1 C 0:194=1 D 30:8:

8.8.6 Extended Uncertainty

At the confidence level of 95%, Student’s t factor for 31 degrees of freedom is 2.01;
hence extended uncertainty ue is given as

ue D 2:01 � 0:68 �m D 1:36 �m:
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Chapter 9
Uncertainty in Mass Measurement

9.1 Balances

There are essentially two types of balances. One type of balances is pure
comparators, whose measurable properties are its sensitivity or the mass value of the
smallest scale interval and repeatability. These mass comparators give only the dif-
ference of mass values between the two weights. Equal-arm two-pan freely oscillat-
ing balances also fall into this category. For such mass comparators, one has to cal-
culate the sensitivity or the mass value of the smallest graduation and repeatability.

The other type of balances is direct weighing instruments that indicate the mass
of a body placed on its pan. Besides the value of its smallest scale interval and
repeatability, it has many other measurable properties such as display scale, built-
in weights and linearity. Most of the modern day balances are damped type; their
ability to return to zero of the display scale on removal of the load is also an
important measurable property.

9.2 Choice of Standard Weights

The OIML [1] has recommended that the maximum permissible error (mpe)
tolerable in the standard weight should not be larger than the one third of
the mpe allowed for the under-test weighing instrument. According to OIML
Recommendation R-76 [2], all non-automatic weighing instruments have been
categorized into four classes. Class I weighing instruments are of the highest class
and have best resolution, and cover weighing instruments have verification interval
of 1 mg or more. Weighing instruments having verification interval of less than 1 mg
are not covered by R-76. Extending the rule of [1] for balances having smallest scale
interval of less than 1 mg, the weights used for calibration of such balances should,
therefore, have the mpe of not more than one third of the mass value of the smallest
scale interval of the weighing instrument under test. In case of very high precision
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weighing instruments and if this condition is difficult to obtain then it is ensured
that the uncertainty in mass value of the weight is less than the mass value of the
smallest scale interval of the weighing instrument under test. In this case measured
mass value of the weight is used.

9.3 Calibration of Balance

The following tests, depending upon the type of the balance, are to be conducted:

1. Repeatability
2. Sensitivity or calibration of smallest scale interval
3. Return of the indicator to zero of the balance scale
4. Calibration of smallest built-in weight
5. Calibration of built-in weights or weight check at full, 3=4, 1=2 and 1=4 scale

capacity
6. Linearity check
7. Check for off-centre placement of weight (Corner test)
8. Discrimination test

9.3.1 Repeatability

Repeatability consists of 10 (ten) weighings with the same mass without any
intermediary zero adjustments. For direct reading balance, calculate the differences
between the direct readings of the scale with and without the test weight placed on
the balance pan. In case of freely oscillating balances, the rest points with weight on
the pan are determined. Calculate the standard deviation of these rest points. The test
is carried out at half and full capacity of the balance. Customary the magnitude of the
calculated standard deviation should be less than one third of the mass value of the
smallest scale interval. However in case of high precision balances, manufacturer’s
specifications are followed.

9.3.1.1 Repeatability for Direct Reading Balances

Observation sheets for repeatability at half load for a 1 kg balance at half load are
given in Table 9.1

Note: The balance is initially so adjusted that the reading at the zero load is at a
few divisions so that negative shift due to variation of zero is taken care of. It may
be noted that for repeatability test, mass value of the load used need not be known.
Only requirement is that its mass value does not change during the test.

To get mass indicated by the balance of the load, mean of the two consecutive
indications at no load is subtracted from the indication with load.
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Table 9.1 Observations and calculation sheet
S. No Indication

with no load
y mg

Indication
with load g

Difference g x � Nx D d

10�2 mg
d2 10�4 mg y2

1 0.5 500.0011 500.00055 �12 144 0.25
2 0.6 500.0012 500.00065 �2 4 0.36
3 0.5 500.0012 500.00070 5 25 0.25
4 0.5 500.0013 500.00085 22 484 0.25
5 0.4 500.0011 500.00065 �2 4 0.16
6 0.5 500.0012 500.00065 �2 4 0.25
7 0.6 500.0012 500.00070 5 25 0.36
8 0.4 500.0011 500.00065 �2 4 0.16
9 0.5 500.0012 500.00065 �2 4 0.25
10 0.6 500.0012 500.00065 �2 4 0.36

0.5 0.25
Sum 5.6 0 702 2.90

From Table 9.1, we get

Mean value of the load 500:00067 g

and

Standard deviation (702/9)1=2 � 10�2 D 0:088 mg:

Last column of Table 9.1 gives the squares of scale readings y at no load. Using this
sum we can calculate the standard deviation at zero load as follows:

Standard deviation of zero shift D �˚
2:90 � .5:6/2=11

�
=10

�1=2

D Œf2:90 � 2:849g =10�1=2 D 0:07 mg:

The uncertainty from type A evaluation for repeatability is 0.088 mg and for return
of indication to zero is 0.07 mg.

Type B uncertainty in repeatability or return of zero will be due to the uncertainty
in the mass value of the smallest scale interval. That is standard uncertainty of the
mass standard by which the smallest scale interval has been calibrated and this will
be uncertainty by type B evaluation in repeatability test.

Type B uncertainty has arisen because we have observed the scale readings in
terms of its graduations and assumed that one smallest scale interval is 0.1 mg.

9.3.2 Calibration of Smallest Scale Interval

A calibrated standard weight of at least 10–100 times the value of the smallest
interval is chosen. Five sets of observations are taken by placing the weight and
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Table 9.2 Smallest scale interval
S. No Indications in terms of

smallest scale intervals
Difference Value of smallest

scale interval mg
No load Load 10 mg

1 5 105 100 0.1
2 4 104 100 0.1
3 5 106 101 0.099
4 5 105 100 0.1
5 5 105 100 0.1

Mean value 0.1 mg

removing it and noting the scale indication. Set of observations taken are shown in
Table 9.2.

The uncertainty in mass standard of 10 mg has been given as ˙0:010 mg. Con-
tribution per scale interval, therefore, is 0.0001 mg. Standard uncertainty through
type B evaluation method in assigning the mass value to the smallest scale interval
is 0.0001 mg.

For mass comparators showing only the difference in mass of two weights, type
A uncertainty is 0.088 mg and type B uncertainty is 0.0001 mg.

For balances having built-in weights, these weights are calibrated against
standard weights and components of uncertainty are calculated by type A as well
as type B evaluation methods.

For mass comparators we calculate the shift in rest points (scale reading) for
loading and unloading of a small load and report the mass value of the smallest
scale interval.

9.3.3 Calibration of Built-in Weight

9.3.3.1 Measurement Model

The mathematical model for calibration of weights on conventional mass basis:

C D S � .R � Z/;

where C is the calculated correction, S is the value of the standard mass from
its certificate, R is the mean of two readings for the same verified point and Z

is themean of the two zero readings.

9.3.3.2 Measurement Data

In order to minimize errors introduced by standard weights, it would be preferable,
if possible, to use a single weight rather than a summation.
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For our example we have

Mass nominal value (g) Mass value (g) Source

500 500:00013 Weight calibration certificate

Observations

Reading at no load 0:0000

First reading at the load 500:0001

Second reading at the load 500:0002

Reading at no load 0:0002

Calculations:

Mean of observation of standard mass
R D 500:00015 g
Mean of zero readings
Z D 0:0001 g

Correction:

C D S � .R �Z/ D 500:00013� .500:00015�0:0001/g D 0:00008 g D 0:08 mg;

rounded to one tenth of the smallest graduation, i.e. 0.01 mg.

9.3.4 Uncertainty in Balance Calibration

The major sources of uncertainty in calibration of built-in weight are as follows:

a. Uncertainty of the standard mass, uS

Uncertainty of the standard mass found from the calibration certificate is 0.05 mg.
If the coverage factor is taken as 2, then standard uncertainty of the standard is

uS D 0:05

2
D 0:025 mg: (9.1)

Note: In this situation we have assumed a normal distribution with coverage
factor 2. In case of using more than one standard weight, the standard uncertainty
of the combination is the sum of absolute value of the standard uncertainty of each
weight of the combination.

b. Drift of the standard mass since last calibration, uD

Customary the variation of mass in standard weights, over the calibration interval,
does not exceed 10% of the maximum permissible error. For our 500 g standard
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weight (maximum permissible error 2.5 mg), the drift value is 0.25 mg. Drift value
follows a rectangular distribution, giving uD as

uD D 0:25p
3

D 0:144 mg: (9.2)

c. Uncertainty due to the value of the smallest scale interval of the balance Udiv

The value of smallest graduation in the above example is 0.1 mg. A rounding error
of 0:1=2 D 0:05 mg is assumed. The true value follows rectangular distribution;
therefore, standard uncertainty due to this cause is

udiv D 0:05p
3

D 0:0289 mg: (9.3)

d. Uncertainty due to repeatability, urepeat

The balance repeatability has been verified and the calculated standard deviation is
0.088 mg. The repeatability follows a normal distribution:

urepeat D 0:088 mg: (9.4)

Uncertainty budget for 500 g built-in weight is given in Table 9.3.

9.3.5 Linearity Check

It is carried out by continuously loading the balance and taking observation at each
step till the maximum capacity of the balance. The observations are repeated while
unloading in the reverse order. Sometimes we may see that observations at identical
loads while the loading and unloading are not the same. This may be due to lack of
repeatability or hysteresis. A graph between the load (x-axis) and indication by the

Table 9.3 Uncertainty budget for 500 g built-in weight

Uncertainty
component

Meas.
unit

Distr. U n Divisor u.x/ c c � u.x/ c � u.x/2 10�4

uS mg Norm. 0:05 30 2 0:025 1 0:025 6:25

uD mg Rect. 0:25 8 1:7321 0:144 1 0:144 20:73

udiv mg Rect. 0:05 1000 1:7321 0:029 1 0:029 8:41

urepeat mg Rect. 0:088 9 1 0:088 1 0:088 77:44

Sum 112:83

Combined standard uncertainty (RSS) 0:106 mg
Coverage factor for 95% confidence level 2

Expanded uncertainty (mg) 0:212

n is the degree of freedom, c is the coefficient factor and u.x/ is the uncertainty component
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balance (y-axis) is drawn. A straight line from zero load to the maximum load is
drawn. The maximum difference between the ordinates on the straight line and the
indication at any load is the linearity error. The correction due to this error is applied
while using the balance. Standard uncertainty of each load (standard weights) is
one component of type B uncertainty, which should be taken into account while
calculating the uncertainty of mass determined by the balance. This uncertainty may
differ from one load to another.

9.3.6 Check for Off-Centre Placement of Weight/Corner Test

For balances of high sensitivity and small capacity (mass comparators), make
concentric circles on a paper and three radii subtending 120ı with each other, cut
the paper of the size of the pan of the balance under test and place it on the pan.
Uncertainty in mass value of the standard weight should be less than one third of
the value of the smallest scale division. Take observations at the centre and extreme
of one radius, and repeat the process along all the three radii. Maximum difference
between central and extreme position is the error due to eccentricity. Weight should
be of half the capacity of the balance, rounded off to the nearest single weight
available in the set. Avoid using more than one weight for corner test. In normal
use the weight should be placed in the centre of the pan.

9.3.7 Discrimination Test

The test is to ensure the correct change in digital indication. The test is carried
out at three loads, namely minimum, half and full capacity loads. The balance is
loaded and 10 extra weights each of one tenth of the mass value of the verification
interval are placed. Let the indication be I . The additional weights are removed one
by one till the indication is unambiguously reduced by one scale interval (digit);
i.e. indication now is I–d. Place gently a mass of 1.4 times the scale interval; the
indication should unambiguously increase by one scale interval.

This test is an acceptance test. If a balance fails in this test, it is to be rejected.
Here we may note that basic properties of the balance are its repeatability and

sensitivity so uncertainty of the balance is the combination of these uncertainties;
other sources of uncertainty depend upon load and the standards used and other
applicable properties. Hence it is important that standard weights used in calibration
of balance should be of appropriate accuracy and stability. For analogue balances,
uncertainty due to the smallest graduation need not be considered separately.

However, other sources of error are variation of environmental conditions, which
cause variable buoyancy correction, arm length of the balance and formation of air
convectional currents.
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9.4 Uncertainty in Calibration of Weights

When the mass Mu of a weight under calibration is in equilibrium with that of the
standard weight of known mass Ms, then equilibrium equation is

Mu D Ms C .Vu � Vs/¢ C .Iu � Is/: (9.5)

Here Vu and Vs are respectively the volume of the under calibration and standard
weights, and Iu and Is are the indication of the balance in terms of same mass units
as Ms.

The second term of the right-hand side of (9.5) is known as buoyancy correction.
Applying the law of variances to (9.5) and taking square of uncertainty equal to

the variance, we get

u2
u D u2

s C .Vu � Vs/
2u2

¢ C .u2
Vu

C u2
Vs

/2¢2 C u2
R: (9.6)

R is taken as difference of two indications.
In the calibration of a stainless steel weight against the national prototype of

platinum iridium, the following data are given:
uR D 2:5 �g by type A evaluation with 9 degrees of freedom; Uncertainty in stan-

dard is 10:5 �g at 95% confidence level; Vs D 46:39355 cm3I Vu D 124:5364 cm3I
uV u D 0:0011I uV s D 0:00004 cm3I � D 1:1983 mg=cm3 and u� D 0:0001 mg=cm3

As uncertainty is 10:5 �g at 95% confidence level, so standard uncertainty us D
10:5=1:96 D 5:4 �g

Substituting the data in (9.6), we get

u2
u D .5:4/ � 10�12 C .124:5364 � 46:38355/2 � .0:0001 � 10�3/2

C ˚
.0:0011/2 C .0:00004/2

� � .1:1983 � 10�3/2 C .2:5/2 � 10�12

D .29:16 C 61:06 C 0:17 C 6:25/ � 10�12 D 96:64 � 10�12 g2;

giving
uu D 9:83 � 10�6g:

However, most of the weights are calibrated and verified to lie in certain class of
mpe (maximum permissible errors) and with the required uncertainty. Hence in
the calibration of weights, environmental parameters and other measurements are
carried out to meet the requirements of the mpe class. By thumb rule uncertainty
should not be more than one third of the mpe. Hence the corrections applicable
and the uncertainty requirement are also fixed keeping in view the mpe class of the
weight under test.
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9.5 Measurement Requirements for Various Corrections

9.5.1 Buoyancy Correction

Equation (9.5) may also be expressed in terms of the density of two weights as

Mu.1 � ¢=¡u/ D Ms.1 � ¢=¡s/ C .Iu � Is/:

Mu DMs.1 � ¢=¡s/=.1 � ¢=¡u/ C .Iu � Is/ D Ms C Ms.¢=¡u � ¢=¡s/ C .Iu � Is/:

The buoyancy correction per unit mass therefore is

¢ .1=¡u � 1=¡s/: (9.7)

Normally the weights, in daily use and of denomination greater than a gram, are
made of materials of density from 8,000 to 8; 400 kg=m3.

Buoyancy correction per unit mass is

c D
	

1

8000
� 1

8400




� 1:2 Š 7:14 parts per million; (9.8)

say one part per hundred thousand.
So for weights, having mpe equal to or more than 1 part per 10,000, buoyancy

correction is not necessary. This means the buoyancy correction is not necessary for
weights of OIML Classes M1 and lower.

Fractional weights up to 100 mg are made of similar materials whose density
does not vary much. Still smaller weights are normally made of aluminium. Hence
the buoyancy correction is not applied in fractional weights. However, if the
fractional weights are made of platinum, then buoyancy correction is to be applied.

Quite often weights, from 1 g and up, are calibrated by a calibration laboratory
with an uncertainty of one part per million. For applying buoyancy corrections,
density of air should be calculated by using 2007 CIPM equation [3] from the mea-
sured environmental conditions. As the differences in volumes are small, uncertainty
requirement of measuring pressure, temperature and relative humidity is not very
stringent. For example, measurement requirement is within a mm of Hg (100 Pa)
for pressure, within 0:1 ıC for temperature and within 10% for relative humidity.

9.5.2 MPE and Correction

If the correction applicable is less than or equal to one tenth of the maximum
permissible error (mpe), then it may not be necessary to apply it. This rule may
be applied for calibration of weights.
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9.5.3 Calibration of Weights Against Pt–Ir Standard

In a special case, when national prototype (in Pt–Ir) is used for calibrating transfer
standards of mass which are of density ranging from 8,400 to 8; 000 kg=m3 not
only buoyancy correction is to be applied but air composition and environmental
parameters need to be known accurately.

Let buoyancy correction is denoted by B then

B D .Vs � Vu/¢;

�B

B
D �.Vs � Vu/

Vs � Vu
C �¢

¢
: (9.9)

In case a weight of density 8; 000 kg=m3 is calibrated against a platinum iridium
standard of mass of density 21; 557 kg=m3, the value of B is given roughly

B D .125 � 46/1:2 mg D 94:8 mg: (9.10)

Hence from (9.10) for 1 �g accuracy in buoyancy correction

�B

B
D 1

95; 000
� 10�5: (9.11)

To attain such a relative uncertainty, we must know the volume of the two weights
and also the air density with an uncertainty of 1 in 10�5.

Roughly air density � is given as

¢ D PMa

ZRT

�

1 � xv

	

1 � Mv

Ma


�

; (9.12)

where Ma and Mv are the molar mass of dry air and water vapours, respectively, xv

is the mole fraction of water vapours and Z is the compressibility factor, giving

�¢

¢
D �P

P
C �Ma

Ma
C �c

c
� �Z

Z
� �R

R
� �T

T
: (9.13)

Here c is factor
h
1 � xv

�
1 � Mv

Ma

�i
, a correction due to humidity

9.5.4 Components of Relative Uncertainty for Air Density

9.5.4.1 Due to Pressure Alone

For weighing purpose the pressure value of interest is around 100,000 Pa (atmo-
spheric pressure).
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Hence
•¢

¢
D �P

100;000
D 10�5•p Pa�1: (9.14)

Here •p is measured in pascal (Pa).

9.5.4.2 Due to Temperature Alone

Temperature in a laboratory for weighing is around 27 ıC D 300 K.
Hence

•¢

¢
D •T

T
D •T

300
D 3:3 � 10�3 •T K�1; (9.15)

where •T is the temperature interval in degree Celsius .ıC/ or in K.

9.5.4.3 Due to Humidity Alone

Now the c, in terms of molar masses of water and air and the molar fraction xv, may
be expressed as

c D
�

1 � xv

	

1 � Mv

Ma


�

D
�

1 � xv

	

1 � 18:0

28:97


�

D Œ1 � 0:378 xv� : (9.16)

But xv the molar volume of water vapours in terms of relative humidity h is related to

h D xv

xsv
: (9.17)

But xv in terms of the saturation vapour pressure at the temperature and pressure of
air is given as [4]

xv D h � f .p; t/ � psv=p: (9.18)

1. If t D 27ıC or 300 K

then
psv.t/ D 3;566 Pa at p D 100;000 Pa, f .p; t/ D 1:0042 [4].
Differentiating (9.18), we get

•xv D •h � 1:0042 � 35;666=100; 000;

giving
•xv D 0:0358 � •h: (9.19)

From (9.16)
c D 1 � 0:3780 � 0:0358 h (9.20)
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and

•c D �0:378 � 0:0358 •h D �0:0135 � •h;

•c

c
D �13:5 � 10�3•h: (9.21)

2. If t D 20ıC

then

psv.t/ D 2;338 Pa at p D 100;000; f .p; t/ D 1:0040; (9.22)

giving xv D 0:02347:

Hence

•c D �0:378 � 0:02356 •h D 0:0089 •h;

•c

c
D �9 � 10�3•h: (9.23)

9.5.4.4 Due to Change in CO2 Alone

The value of molar mass of dry air [3] is 28:96546 � 10�3 kg per mole if the mol
fraction of CO2 present is 0.0004. In general for other mole fractions of CO2 the
expression for molar mass of air is

Ma D 28:96546 C 12:011 .xCO2 � 0:0004/: (9.24)

•¢

¢
D •Ma

Ma
D 12:011

28:96546
•xCO2 D 0:41•xCO2 : (9.25)

9.5.4.5 Due to Change in Molar Mass of Air

Molar mass of air is 28.96546 g [3] with relative uncertainty of a few parts per
million. Change in molar mass of dry air due to changed Argon composition is
6:6 � 10�5 [5], which has been accounted for in 2007 CIPM equation for moist air
density [3].

9.5.4.6 Due to Change in Compressibility Factor and R

Compressibility factor Z [6] can be calculated with an uncertainty of better than
one in a million. From latest CODATA [7], the value of R.8:314472/ is known with
a relative uncertainty of 1:7 � 10�6.
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9.6 Measurement Requirements for p; T , and h

9.6.1 For 10 �g Uncertainty in 1 kg

For calibration of 1 kg stainless steel weight or a weight of near about same density
against the platinum–iridium standard with an uncertainty of 10 �g, the density or
volume of the weights and density of air inside the balance chamber must be known
within an uncertainty of 1 in 104; i.e.

�¢

¢
D 10�4:

Using (9.14), (9.15, 9.21 or 9.25), uncertainty requirements are

•p D 10 Pa;

•T D 1=33 D 0:03 K;

•h D 0:1 i:e: with in few percent of relative humidity.

9.6.2 For 1 �g Uncertainty in 1 kg

For calibration of a stainless steel weight or a weight of near about similar density
against the platinum–iridium standard with an uncertainty of 1 �g, the density or
volume of the weights and density of air inside the balance chamber must be known
within an uncertainty of 1 in 105.

�¢

¢
D 10�5:

Uncertainty requirements of parameters of air density are

•p D 1 Pa;

•T D 1=330 D 0:003 K;

•h D 0:01 i:e: with in 1% of relative humidity:

9.6.3 Measurement Requirement for CO2

We know from (9.25) that

•xco2 D 2:44
•¢

¢
:
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9.6.3.1 For 10 �g Uncertainty in 1 kg

For 10 �g uncertainty, i.e. •¢
¢

D 10�4 tolerable uncertainty in molar fraction of CO2,
is 2:44 � 10�4 D 0:00024. Molar fraction in normal air is not expected to vary by
more than 0.00024; hence molar fraction of carbon dioxide needs to be monitored,
but correction may not be necessary.

From air density table [8], we know that
Air density at 20ıC at 760 mm of Hg and relative humidity 0.5 with CO2 molar

fraction 0.0005 is given as 1:199 266 mg=cm3

and
Air density at 20ıC at 760 mm of Hg and relative humidity 0.5 with CO2 molar

fraction 0.0003 is 1:199 167 mg=cm3.
So calibrating a stainless steel 1 kg standard against the national prototype of Pt–

Ir will have difference in buoyancy corrections of 10 �g, which is about the same as
of uncertainty. However normally, the change in mole fraction of CO2 present in air
is not expected by more than 0.0001.

9.6.3.2 For 1 �g Uncertainty in 1 kg

For 1 �g uncertainty, required relative uncertainty in air density is •¢
¢

D 10�5.
Hence tolerable uncertainty in molar fraction of CO2 is only 0.000024; hence molar
fraction needs to be measured and necessary correction needs to be applied if molar
fraction of CO2 is different from 0.0004 by an amount of 0.000024 or more.

9.7 Uncertainty in Calibration of Weights Under Legal
Metrology

Weights covered under legal Metrology follow OIML Recommendation 111 [9].
Reference, Secondary and Working Standards of Legal Metrology are respectively
of class E2, F1, and F2, respectively. Commercial weights are of class M1 for bullion
trade and M3 for coarser work.

9.7.1 Reference Standard Weights (Class E2)

The reference standard weights are in class E2 maximum permissible errors and
calibrated by the National Physical Laboratory India against the standards of known
mass and uncertainty us, which is about one third of 1 mg. Uncertainty due to
repetitions by type A evaluation is estimated. Uncertainty component due to given
uncertainty in NPL standard weights is applied.
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The buoyancy correction is applied and uncertainty in the knowledge of buoy-
ancy correction is another component of uncertainty. This includes uncertainty in
base density (Molar composition) of air, measurement of various environmental
parameters to calculate air density, volume of weights or density of NPL standard
and reference standard weights.

9.7.2 Secondary Standard Weights (Class F1)

The secondary standard weights are calibrated against reference standard weights.
The material of reference and secondary standard weights is same at present, so no
buoyancy correction needs to be applied. Only uncertainty to be applied is due to (1)
reference standard weight as given by the NPL in its certificate and (2) repetitions.
Normally mass value of each weight is not given. It is assured that mass values of
each weight lies within he maximum permissible of class F1, namely EF1.

9.7.3 Working Standard Weights (Class F2)

Working standards are verified against Secondary standards. Standard Uncertainty
in secondary standards is taken as ˙EF1=

p
3. Repetition uncertainty is 2 times the

standard deviation (SD) of at least ten repeated values. Total standard uncertainty
usec is given by

usec D
q

E2
F1=3 C .2SD/2:

In case of digital balances an additional uncertainty due to balance which is taken
as d=

p
6 is also considered.

9.7.4 Commercial Weights (Class M1)

9.7.4.1 Class M1 and M2 Weights

Class M1 and M2 weights are verified against working standard weights; no
buoyancy correction is applied. Only uncertainty components due to weights and
balance used are to be calculated. Uncertainty due to working standard weight is
taken as EF2=

p
3 and due to digital balance is taken as d=

p
6. Then the standard

uncertainty uw is given as

uw D
q

E2
F2=3 C d 2=6:
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9.7.4.2 Class M3 Weights

For class M3 weights such as cast iron weights, only uncertainty is due to balance
used; if it is two-pan balance then uncertainty may be taken as zero; for digital
balance it is d=

p
6.

Note: Here d is the mass value of the last digit of the balance used. Hence
uncertainty I M3 weights is given

uw D
q

E2
M1=3 C d 2=6:
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Chapter 10
Uncertainty in Volumetric Measurement

10.1 Introduction

There are three methods of calibrating volumetric measures [1]:

1. Gravimetric method used for volumetric glassware; range is 1 mm3 to 50 dm3.
2. Volumetric comparison for larger vessels 100 dm3 to 10 m3.
3. Strapping (dimensional measurement) method for any volumetric measure more

than 10 m3.

In gravimetric method, the mass of pure medium (water or mercury) contained or
delivered under specified conditions is measured. Corrections are applied due to
density of the medium at different temperatures, buoyancy correction and decrease
in the volume/capacity of the measure to a given standard temperature [1]. The
medium used is mercury for volumetric measures smaller than 1 cm3; for measures
of higher capacity the double distilled water is used as transfer medium.

In volumetric comparison, water is transferred from the standard measure of
known volume to the measure under test. In case of larger measures, multiple
transfer method is used. In either case, the standard measure should be calibrated
for volume delivered. For multiple filling, the standard measure should be an integral
sub-multiple of the measure under test and there should be another smaller measure
of graduated type, which is used to estimate the volume required to completely fill
the measure under test. In case of larger measures of delivery type, the standard
measure should be of content type. The water is transferred from larger measure
to the standard measure either one time or several times as the case may be.
For delivery measures calibrated by multiple delivery method, a small graduated
measure content type is used if the delivery measure under test has a capacity larger
than the integral multiples of standard content measure and delivery type is used for
the measure under test having capacity less than the integral multiple of standard
content measure.

For larger vessels, such as storage tanks, ships and barges, dimensions are
measured and geometry is applied to calculate the capacity. Due allowance is taken

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5 10,
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of various fixtures inside the tank and deadwood volume. Quite often, volume of
liquid contained per unit height is measured and the calibration table containing
volume versus height in the tank is prepared.

10.2 Uncertainty Using Gravimetric Method

10.2.1 Type A Evaluation of Standard Uncertainty

Standard uncertainty through Type A: The standard deviation of the repeated results
taken under the similar conditions gives the standard uncertainty. At least three
values of computed results of the volume should be taken. The variance is estimated
and is pooled with the previous variance to obtain the pooled variance, if available.
After some time with pool of say 100 variances, the pooled variance so obtained
may also be used to assess the quality of the results. If the deviations of the two
results are less than the pooled variance then the mean of two calculated results will
be the volume of the measure and standard uncertainty will be equal to the square
root of pooled variance.

This method is also applied for all measured parameters such as that of
temperature, pressure and relative humidity or any other factor which affects the
volume/capacity measurement.

10.2.2 Type B Evaluation of Standard Uncertainty

The mass m of the medium required to fill up to the certain mark or delivered from
the specified mark, as the case may be, is given as

m.1 � ¢=D/ D 1;000 � Vs Œ1 C ’.t � ts/� .¡t � ¢/: (10.1)

Here

� is the density of air at the time of measurement, kg/m3; for the time being it is
considered to be constant
�t is the density of the medium at temperature of measurement, kg/m3

D is density of the standard weights used in weighing the water, kg/m3

˛ is thermal coefficient of the material of the measure under test per ıC
t is the temperature of water ıC
ts is the standard temperature ıC
Vs is the volume of the measure under test m3

Validity: The above relationship is also valid for

(a) When mass is measured in g, and density in g/dm3 then capacity is in dm3

(b) When mass is measured in mg, and density in mg/cm3 then capacity is in cm3
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Sources of errors are:

1. Measurement of mass of the medium (water or mercury)
2. Temperature of the medium (water or mercury)
3. Temperature gradient within the medium (water or mercury)
4. Uncertainty in measurement of mass due to balance alone
5. Uncertainty in the mass value of the standard weights used
6. Density of air, which is affected by ambient temperature, pressure and relative

humidity
7. Density of water
8. Density of weights
9. Coefficient of thermal expansion of the material of the measure

10. Evaporation of water vapours
11. Spillage of water during transfer

Uncertainty components in the measurement of temperature of water are calculated
by using both Type A and Type B evaluation methods.

For density of air, pressure, temperature and relative humidity are measured, but
uncertainty only through Type B evaluation method is calculated.

Density of water is taken from water tables or density versus temperature relation
[2], so only Type B uncertainty is calculated. The overall standard uncertainty in the
knowledge of density of water is less than one part per million [2].

Density of standard weights is taken from the certificate; hence only Type B
evaluation method is used.

Coefficient of thermal expansion of the material of the measure is also taken from
the literature, so only Type B evaluation is used.

10.2.3 Mathematical Model for Volume (Gravimetric Method)

From (10.1) above, by doing some mathematical operations, V is expressed in terms
of other parameters as

V D m.1 � ¢=D/f1 � ’.t � ts/g.¡ C ¢/ (10.2)

or

log V D log m C log .1 � ¢=D/ C logf1 � ’.t � ts/g C log .¡ C ¢/:

Differentiating partially V with respect to each parameter, we get

1

V

•V

•m
D 1

m
) •V

V
D •m

m
: (10.3)

1

V

•V

•¢
D
� �1=D

1 � ¢=D
C 1

¡ C ¢

�

) •V

V
D
�

1

¡ C ¢
� 1

D � ¢

�

•¢: (10.4)
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Neglecting � from the denominator as � is very small in comparison to D as well
as to �, we get

•V

V
D
�

1

¡
� 1

D

�

•¢; (10.5)

1

V

•V

•D
D �¢=D2

1 � ¢=D
) •V

V
D �¢

D.D � ¢/
•D � �¢

D2
•D; (10.6)

1

V

•V

•’
D �.t � ts/

1 � ’.t � ts/
) •V

V
D �.t � ts/

1 � ’.t � ts/
•’ � �.t � ts/•’; (10.7)

1

V

•V

•t
D �’

1 � ’.t � ts/
) •V

V
D �’•t

1 � ’.t � ts/
� �’•t; (10.8)

1

V

•V

•¡
D 1

¡ � ¢
) •V

V
D •¡

¡ � ¢
� •¡

¡
: (10.9)

10.2.3.1 Relative Uncertainty Due to Change in Temperature Alone

One may notice that if there is a temperature change then there is a change in density
is water as well as in air.

The change in density of water [2] at 25ıC for •t D 0:5ıC is 0.1295 kg/m3 and
that of air change is only 0.002143 kg/m3.

•V

V
D �’•t

1
C •¢

�
1

¡
� 1

D

�

C •¡

¡ � ¢

D �3 � 10�5 � 0:5 C 0:002143 .1:003 � 0:125/ 10�3 C 0:1300 � 10�3

D �0:15 � 10�4 C 0:19 � 10�5 C 1:3 � 10�4 D 1:17 � 10�4: (10.10)

The uncertainty due to temperature alone is quite significant; hence corrections to
be applied are given in steps of 0:1ıC.

Second term in (10.10) is due to the change in air density when temperature
changes by 0:5ıC. The correction due to variation in air density is to be considered
for larger capacity measures.

10.2.3.2 Relative Uncertainty Due to Change in Density of Weights Alone

The density of weights varies from 8,400 to 8,000 kg/m3

•D D 400 kg=m3
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then from (10.6)

•V

V
D 1:2

D2
•D D 1:2 � 400=.8;200/2 D 7:14 � 10�6: (10.11)

10.2.3.3 Relative Uncertainty Due to Change in Coefficient
of Expansion Alone

•V

V
D .t � ts/•’ D 10 � 3 � 10�6 D 3 � 10�5: (10.12)

In literature normally coefficient of linear expansion 30 � 10�6=ıC is given with an
uncertainty of 10% and difference in temperature is around 10ıC.

10.2.3.4 Uncertainty Due to Setting the Level at the Graduation Mark
(Meniscus Setting)

If the setting error is •h, and the diameter of the volumetric measure is d , then error
in volume

•V D d 2 � •h=4: (10.13)

10.3 Examples of a Few Measures

Volumetric measures are graduated with a single mark or have a graduated scale.
The glassware such as pipettes and flasks are one-mark volumetric measure. For
simplicity, let us start with a one-mark bulb delivery pipette of capacity 10 cm3.
Most important attributes of such a pipette are capacity and delivery time.

10.3.1 Uncertainty in Calibration of Capacity
of a One-Mark Pipette

The pipette under test is filled up to the graduation mark with water, which with
the proper precaution is delivered in a clean pre-weighed beaker and weighed again.
Apparent mass of water is determined and the proper correction is added to it to
give the volume of water delivered at the standard temperature 27ıC. This whole
process is repeated three times and standard deviation of volume of water delivered
is obtained. The results are shown in Table 10.1:
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Table 10.1 Observations and Calculation Sheet

Mass of
water

Temperature ıC Correction g Volume
cm3

Deviation
cm3

Deviation2 10�10

cm6

9.966 04 22:3 0:034 35 10:000 39 0:000 12 144

9.966 26 22:3 0:034 35 10:000 61 0:000 10 100

9.965 98 22:4 0:034 56 10:000 54 0:000 13 9

Mean 10:000 51 Sum 253

Standard deviation 0.000 11 cm3

Type A Standard Uncertainty D 0:000 11 cm3 D 0:11 mm3: (10.14)

Degree of freedom of measurement is only 2.

10.3.1.1 Type B Evaluation of Uncertainty

Due to Balance

Balance used in measurement of mass was of 20 g capacity with a digital readout of
0.01 mg. It has a repeatability of 0.05 mg assumed to be calculated with fairly large
number of degree of freedom.

A digital indicator implies that true value may lie anywhere with equal probabil-
ity within the value of the digital indication. Hence true value follows a rectangular
distribution of semi-range equal to half the value of the least digital interval.

In this case value of least digital interval is 0.01 mg; hence its semi-range is
0.05 mg. The standard deviation; i.e. the standard uncertainty of a rectangular
distribution with semi range 0.005 mg, is given as

0:005=
p

3 mg:

So combined standard uncertainty of the balance uB alone is given as

uB D 0:05.1 C 1=10
p

3/ D 0:05 mg:

This corresponds to the volume of 0:050 mm3:
(10.15)

As repeatability is taken for sufficiently large number of weighing and uncertainty
due to digital readout has been calculated from rectangular distribution, its degree
of freedom is infinity.

Due to Weights

Standard uncertainty in weights of the balance as reported in the certificate is
0.01 mg. Hence standard uncertainty uw in terms of volume is given as

uw D 0:01 mm3: (10.16)

Here also degree of freedom is infinity.
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Due to Thermometer

Temperature has been measured with a calibrated thermometer in 0:1ıC with an
uncertainty of 0:01ıC, the uncertainty due to the thermometer reading 0:05=

p
3ıC,

standard uncertainty in temperature f.0:01/2 C .0:05/2=3g1=2 D 0:030ıC and contri-
bution to volume 0.351 mm3.

Uncertainty ut due to thermometer with 0:1ıC graduations is given as

ut D 0:0060 mm3: (10.17)

Here also degree of freedom is infinity.

Due to Thermal Coefficient

Relative uncertainty as given above ) •V
V

D �.t�ts/

1�’.t�ts/
•’.

Here ˛ is taken as 25 � 10�6. Normally, in literature, we find values of
linear coefficient within 10% uncertainty; i.e. the semi-range of the ’ the volume
expansion coefficient is ˙3 � 10�6. There are several possibilities

1. The stated value of the ˛ follows normal distribution and range has been given
with a coverage factor of 1, 2 or 3. In that case to find the standard deviation of
˛, one may divide by 1, 2, or 3 respectively as the case may be.

2. The stated value of ˛ is supposed to follow rectangular distribution. In this case
we will divide the semi-range by

p
3 to obtain the standard deviation.

3. Similarly we may suppose that the stated value of the ˛ follows triangular or
trapezium distributions. In those cases the semi-range is to be divided by

p
6 or

by some other factor
p

ˇ=6) to obtain the corresponding standard deviation.

There is no specific consensus, at the International level, as how to treat the
data from the literature. However many metrologists tend to assume rectangular
distribution in such cases.

In this particular case we are assuming that if range is in terms of standard
deviation then relative uncertainty

•V

V
D 4:6 � 3 � 10�6 D 13:8 � 10�6:

Giving uncertainty u˛ due to uncertainty in ˛ as

ua D 1:38 � 10�5 cm3 D 0:0138 mm3: (10.18)

Here also degree of freedom is infinity.
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Due to Density of Water

Density of water is known with a relative standard uncertainty of 0:4 � 10�6 [2], so
uncertainty u� in the 10 cm3 pipette is given as

u¡ D 0:004 mm3: (10.19)

Here also degree of freedom is infinity.

Total Uncertainty

Hence total standard uncertainty for 10 cm3 pipette

D
q

u2
r C u2

b C u2
w C u2

t C u2
’ C u2

¡

D
p

.0:11/2 C .0:05/2 C .0:01/2 C .0:0138/2 C .0:06/2 C .0:004/3

D p
0:0121 C 0:0025 C 0:0001 C 0:00019 C 0:0036 C 0:0000

D 0:136 mm3:

(10.20)

Relative standard uncertainty D 0:139 � 10�4: (10.21)

If we wish to give an expanded uncertainty to certain level of confidence, the
uncertainty is to be multiplied by Student’s t factor, which depends upon the
effective degree of freedom and the confidence level of the total measurement.

Effective degree of freedom D �eff D u4.V /

iDnP

iD1

u4
i .y/

�i

D 3:8 � 10�4

.1:4641�10�4=2/C1:16 � 10�5=1 C 10�8=1 C 4 � 10�8=1/ � 1:310�5=1
D 5:2 Š 5: (A)

For 95% confidence level, the Student’s t factor for 5 degrees of freedom is
2.5706.

Expanded uncertainty at 95% Confidence level D 2:57�0:136 mm3 D 0:350 mm3.
Statement of capacity of the pipette will be as follows:
Volume of water delivered at 27ıC D 10:00051 cm3 ˙ 0:350 mm3 at k D 2:57.

Any subsequent user will take the stated value and the value will follow
the normal distribution having a standard deviation of 0.136 mm3; i.e. standard
uncertainty is 0.136 mm3.
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10.3.2 Calibration of a Burette

A burette, besides other test, is also calibrated for its (delivery) capacity at least at
four points of its scale. For example four points for a 50 cm3 burette may be from
0 to 50, 0 to 40, 0 to 30 and 0 to 20 cm3. In this case, to make even three repetitions
is too time consuming. Hence only two observations are taken and the method of
pooled variance is used to find standard uncertainty by Type A evaluation method.
The method is elaborated in Table 10.2.

Degree of freedom here is 4, as one degree of freedom has been consumed in
calculating the mean of each of four sets of observations.

Standard deviation, therefore, is 10�3
p

581=4 D 0:012 cm3, giving uncertainty
ur in repeatability as

ur D 0:012 cm3: (10.22)

Components of other uncertainty through Type B evaluation will remain similar as
discussed above. Hence other components of uncertainty are evaluated from (10.4)
to (10.10). Total standard uncertainty in the burette is then the root of the sum of the
squares of all component uncertainties.

10.3.2.1 Evaporation Loss

Evaporation losses are not easily assessable, because of a wide variety of reasons of
evaporation. However, in a recent paper uncertainty due to evaporation in a 100 cm3

measure was estimated as 0.14 mm3. So in the case of 10 cm3 pipette it may be
roughly estimated as 0.014 mm3.

Table 10.2 Observations and Calculation Sheet
S No From to Mass of

water g
Temp.
ıC

Correction
g

Volume
cm3

Mean cm3 Deviations
cm3

Square
10�6 cm6

1 0 to 50 49:8146 25:6 0:2083 50:023 �0:11 121

2 0 to 50 49:8338 25:6 0:2083 50:046 0:12 144

50:034

3 0 to 40 39:8687 25:6 0:1666 40:035 �0:10 100

4 0 to 40 39:8884 25:6 0:1666 40:055 0:10 100

40:045

5 0 to 30 29:9142 25:6 0:1250 30:039 �0:003 9

6 0 to 30 29:9203 25:6 0:1250 30:045 0:003 9

30:042

7 0 to 20 19:9235 25:6 0:0833 20:007 �0:007 49

8 0 to 20 19:9379 25:6 0:0833 20:021 0:007 49

20:014 sum 581
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10.4 Uncertainty Using Volumetric Comparison

When large number of vessels/measures of very high capacity is required to be cali-
brated, and uncertainty requirements are not too stringent, the volumetric method is
used. In this method, the capacity of the under-test measure is compared with that
of the standard of known capacity.

The volumetric method is applicable when two measures are different types;
namely one is content type and another is delivery type.

While calibrating each capacity measure is kept in such a way that graduation
marks are in the horizontal plane. In case of non-graduated measures, the axis of
the delivery measure is kept vertical if it is overflow type. As the marks on either
measure are normal to their respective axis, so care should be taken that the content
measure is kept on a horizontal ground and the delivery measure is kept in vertical
position.

10.4.1 Multiple and One-to-One Transfer Methods

If the capacity of the measure under test and that of the standard is equal then one-
to-one transfer or direct comparison method is used.

If content measure is of larger capacity than standard measure, then as stated
above, a standard of delivery type, whose capacity is a sub-multiple of the capacity
of the measure under test, is used and multiple filling is carried out.

10.4.2 Corrections Applicable in Volumetric Method

Corrections are applied due to (1) coefficients of thermal expansion of materials of
the two measures, (2) different reference temperatures for which the measures have
been calibrated and (3) different temperatures of the two measures.

10.4.3 Reference Temperatures

There are two cases (1) reference temperature is same for the two measures and (2)
the reference temperature for each measure is different.

10.4.3.1 Reference Temperatures Are Equal

Let V; ˛; � and tr respectively stand for volume, coefficient of expansion, density
of water and reference temperature and subscripts s and u are used respectively for
standard and under-test measures.
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The capacity of the measure under test is nominally equal to n times the capacity
of the standard measure. If Vs and Vu are capacities of the standard and under-test
measure, then

Vu D nVs C v: (10.23)

Here v is the difference in capacity between the nominal and measured value at
the time of calibration. This includes the correction due to the actual value of the
capacity of the standard measure.

Assuming that there is no loss of liquid during transfer, the mass of the liquid in
the under-test measure will be equal to the mass of the liquid transferred from the
standard measure. If �st; �ut is the density of the transfer liquid and ts and tu are the
temperatures of liquid in standard and under-test measure, respectively, then

.nVst C v/¡st D Vut � ¡ut: (10.24)

If Vsr and Vur are their respective capacities at reference temperature, then

.nVsr C v/Œ1 C ’s.ts � tr/�¡st D VurŒ1 C ’u.tu � tr/�¡ut;

giving

Vur D .n � Vsr C v/Œ1 C ’s.ts � tr/�¡st=Œ1 C ’u.tu � tr/�¡ut: (10.25)

Taking logarithm of both sides, we get

log Vur D log.n � Vsr C v/ C log Œ1 C ’s.ts � tr/� C log ¡st � log Œ1 C ’u.tu � tr/�

� log ¡ut: (10.26)

Differentiating partially, step by step, with respect to each variable, we get

1

Vur

•Vur

•Vsr
D 1

Vsr
) •Vur D Vur

•Vsr

Vsr
: (10.27)

For the purpose of estimating uncertainty v is neglected in the denominator of
(10.27), as v is very small in comparison of Vs.

1

Vur

•Vur

•’s
D .ts � tr/

Œ1 C ’s.ts � tr�
) •Vur D Vur

•’s.ts � tr/

Œ1 C ’s.ts � tr�
; (10.28)

1

Vur

•Vur

•ts
D ’s

Œ1 C ’s.ts � tr�
) •Vur D Vur

’s•ts

Œ1 C ’s.ts � tr�
; (10.29)

1

Vur

•Vur

•¡st
D 1

¡st
) •Vur D Vur

•¡st

¡st
; (10.30)
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1

Vur

•Vur

•’u
D � .tu � tr/

Œ1 C ’u.tu � tr�
) •Vur D �Vur

•’u.tu � tr/

Œ1 C ’u.tu � tr�
; (10.31)

1

Vur

•Vur

•tu
D � ’u

Œ1 C ’u.tu � tr�
) •Vur D �Vur

•’u.tu � tr/

Œ1 C ’u.tu � tr/�
; (10.32)

1

Vur

•Vur

•¡ut
D � 1

¡ut
) •Vur D �Vur

•¡ut

¡ut
: (10.33)

Normally measures of such sizes are calibrated to see if the capacity of the measure
under test is within the prescribed tolerance. Once the capacity of the measure
is within the tolerance limits no further measurements are taken. So uncertainty
of capacity measurement also is derived by Type B evaluation method. As the
tolerance is ˙a, the probability of the capacity of the measure under test lying
anywhere within the V � a and V C a is equal. Hence the capacity value of
the measure follows a rectangular distribution with semi-range a. Hence standard
uncertainty due to tolerance alone is a=

p
3. In some cases, only positive tolerance

is allowed; i.e. the capacity of the measure under test shall not be less than the
nominal capacity. If positive tolerance allowed is b, then the standard uncertainty of
capacity measurement will be b=

p
3.

Normally such measures are periodically verified and that too by the same
laboratory. Though the laboratory does not report the actual value of the capacity
of the measure, it keeps the data of the measured capacity. Another method,
therefore, is to compare the present measured capacity of the measure with the
earlier measured values. A sustained record of the capacity values of the measures
may serve to indicate the quality of the present measurement and the maintenance
of the measure.

10.4.3.2 Numerical Example

Let us consider the calibration of a 100 dm3 measure with the help of 25 dm3

automatic pipette. Relative standard uncertainty of the automatic pipette is 5�10�5.
Other data are as follows:

’s D 54 � 10�6; •’s D 5 � 10�5; •¡s D 1 � 10�6 (from the use of tables), the
measure under test is of stainless steel with ’u D 33�10�3 and standard uncertainty
•˛u D 3 � 10�5 (taken from the literature).

Temperatures are ts D 30ıC; tu D 32ıC; tr D 20ıC, giving

ts � tr D 10ıC

and

tu � tr D 12ıC:

Thermometers used are graduated in 0:1ıC and having digital readout and have been
calibrated with a repeatability of 0:01ıC (from the certificate).
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Uncertainty due to digital readout is 0:05=
p

3
ı
C. Giving total standard uncer-

tainty •ut as

ut D
p

0:012 C 0:032 D 0:030:

Relative uncertainty components are:

Source Value Refer to

Due to standard measure 5 � 10�5 (10.27)
Due to coefficient of expansion

of standard
5 � 10�6 � 10 D 5 � 10�5 (10.28)

Due to thermometer with
standard

54 � 10�6 � 0:030 D 1:62 � 10�6 (10.29)

Due to density of water taken
from tables

1 � 10�6 (10.30)

Density of water depends upon temperature so if there is an uncertainty in
thermometer it will reflect back in density also; moreover density of water comes
two times in the expression, so its contribution to uncertainty will be twice, giving

D 2 � 0:03 � 2:11 � 10�4 D 1:27 � 10�5:

Due to coefficient of expansion of under-test 3 � 10�6 � 12 D 3:6 � 10�5:

(10.34)

Due to thermometer with under-test measure 33 � 10�6 � 0:031 D 1:023 � 10�6:

(10.35)

Due to density of water in under-test 1 � 10�6: (10.36)

Total relative standard uncertainty

D 10�5
p

25 C 25 C 0:026 C 0:01 C 1:61 C 12:96 C 0:01 C 0:01 D 8:03 � 10�5

Š 8 � 10�5: (10.37)

For extended uncertainty, first effective degrees of freedom are calculated by using
equation (A) and then determining the Student’s t factor from the Student’s tables
for the desired confidence level. The product of relative standard uncertainty with
Student’s t factor will give the extended uncertainty.

10.5 Uncertainty in Calibration of Storage Tanks

We have discussed uncertainty in calibration of volumetric measures using gravi-
metric method. Gravimetric method, because of the use of distilled water, is
pretty costly; hence it is used for capacity measure with maximum capacity of
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50 dm3. For larger capacity measures, volumetric comparison method is used. We
have described the uncertainty calculations in the calibration of capacity measures
calibrated by volumetric comparison method. The volumetric comparison method is
employed for measures having a capacity of few thousand dm3. Still larger capacity
measures, going to few thousand cubic metres, are calibrated by dimensional
method. The measures of such a high capacity are storage tanks of different shapes
and orientations. Measures of still higher capacity are barges and ships.

10.5.1 Storage Tanks

The storage tanks are

• Vertical cylindrical storage tanks with fixed roof
• Vertical cylindrical storage tanks with floating roof
• Horizontal cylindrical storage tanks
• Spheres and spheroids

The bottom of such storage tank may be flat, conical, truncated, hemispherical,
elliptical or domed shape.

Before we proceed further, it will be prudent to discuss some important terms.

10.5.2 Some Important Terms

1. Tank strapping: This is a term used for the overall procedures of measurement
to determine dimensions of the storage tank. It includes the following measure-
ments:

• Depth: Shell height, oil height, ring height, equalizer line height and gauging
height

• Thickness of tank walls
• Circumferences at specified heights

2. Deadwood: Deadwood is any object within the tank, including a floating roof,
which displaces liquid and thus reduces the capacity of the tank, including any
permanent appurtenances on the outside of the tank, such as cleanouts boxes or
manholes, which increase the capacity of the tank

3. Gauge table (calibration table): Table consisting of volume versus gauge height
from the datum plate (datum point)

10.5.3 Maximum Permissible Error in Storage Tanks

The maximum permissible errors, recommended for storage tanks by OIML
(the International Organization of Legal Metrology) through OIML-R71 [3], are
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as follows:
˙ 0:2% for vertical tanks

˙ 0:3% for horizontal tanks and

˙ 0:5% for spherical or spheroid tanks

10.5.4 Maximum Permissible Errors in Tape Measures

Before proceeding further let us consider the maximum permissible errors in the
tape measures and the circumference measurement

According to Legal Metrology (General) Rule 2011 [4], the measuring tapes are
classified as Class I, Class II and Class III. The class-wise maximum permissible
errors are as follows:

Class I ˙ .0:1 C 0:1 L/ mm

Class II ˙ .0:3 C 0:2 L/ mm

Class III ˙ .0:6 C 0:4 L/ mm

(10.38)

where L is the length in metres rounded off to the next higher whole number. For
example if the mean length of Ci is 110.345 m then value of L is 111.

10.5.5 Maximum Permissible Errors in Circumference
Measurement

When observations are repeated, mean should lie within specified maximum
permissible errors (MPE). In India, by Legal Metrology Act 2010 [4], the MPE
for circumference measurements are as follows:

Measuredlength MPE
Upto 30 m ˙2 mm

Over 30and up to 50 m ˙4 mm
Over 50and up to 70 m ˙6 mm
Over 70but up to 90 m ˙8 mm

Over 90 m ˙10 mm

: (10.39)

10.6 Principle of Preparing Gauge Table (Calibration Table)

1. The intervals of dip at which the tables are made should not be too great;
otherwise there will be inaccuracies in interpolating the value of volume at
a particular dip not listed in the table. Normally 5 cm interval is sufficient,
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along with a proportional table. The table is calculated on the basis of average
difference for the chosen interval. Interval of the proportional table should be
in mm. Such tables are able to give volumes in dm3 (litres) for any given or
measured depth. However for tanks with lap joints, the proportional table is
based on the average difference for each course separately. Levels affected by
bottom irregularities and deadwood are not included in calculating the average
difference in volume per unit depth used in for preparing the proportional table.
This table is not applicable for interpolations of these levels.

2. The tables may be set out more fully if greater speed in calculation is desired.
But it should be remembered that the table set out in one page is quicker in use
than the one occupying several pages.

3. It should be kept in mind that no liquid measurement requires better relative accu-
racy of one part in ten thousand. Commercial table never requires a fraction of
litre; any table, which is able to calculate within one litre, is more than sufficient.

Keeping these points in view, 5 cm interval with difference table has been found to
be adequate.

Broadly speaking, there are two methods of calibration of tanks, namely

1. Dimensional measurements
2. Volumetric

However, more often than not, the combination of both the methods is used for
calibrating a storage tank.

Dimensional measurements are carried out either by external strapping or
internal strapping.

10.6.1 External Strapping

1. Dimensions by internal strapping
2. Optical reference line
3. Optical triangulation
4. Electro-optical method.

We may measure external diameter at prescribed positions of a course by encircling
the tank with a linear tape measure, and repeat the same procedure for each course
of the tank. The method is known as measuring dimensions by external strapping.
To overcome the objects that are permanent part of the tank, step-over is used
and necessary corrections are applied to give the outer circumference. The internal
circumference is obtained by measuring the thickness of the shell of the tank and
applying necessary correction.

If Co is the outer circumference, obtained after applying corrections

• For different coefficients of linear expansion of the tank and the tape measure
used
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• For different reference temperatures of the tape measure and at which tank is to
calibrated and

• For step-over correction if any

then Ci the internal circumference of the tank is given by

Ci D Co � 2  � t: (10.40)

Cross section of the tank is then given by

A D C 2
i =4  � s:

This gives
Capacity of the cylindrical tank per metre D C 2

i =4  in m3,
Or

D 1;000 � C 2
i =4  dm3:

Similarly capacity of cylindrical tank per centimetre D 10 C 2
i =4  dm3.

Here height is taken as 1 cm. Substituting the value of 	 above, we get

Capacity per cm D 0:795778 C 2
i dm3=cm: (10.41)

Here it should be remembered that C is still in metres.
From above we see that source of measurement uncertainty is the inner circum-

ference. The uncertainty in t , the thickness of the shell, is ignored because of its
small value in relation to circumference. Normally the value of thickness is 0.01%
of circumference. Steel tape measures are used to measure the circumference.

In the following paragraphs, we calculate the uncertainty of the square of the
measured circumference, i.e. of area of cross section A.

10.6.1.1 Type A Evaluation of Uncertainty

Repeating the measurement of the circumference of the tank at the same position
is normally not feasible. However circumference, for each course, is measured
at three places. These three measurements are used to calculate dispersions from
their respective means. Though the mean circumference of different courses may be
different, but dispersions from their respective means due to non-repeatability of the
measurements may be pooled together for estimating the standard deviation. This
gives the uncertainty evaluated by Type A method.

Let the tank under calibration have eight courses and internal circumferences be
calculated at three positions of each course. The dispersions and their squares are
calculated for each mean and pooled together to calculate the standard uncertainty
for non-repeatability of measurements. The mean is the value of the internal
circumferences at that place. A numerical example to elucidate the method is given
in Table 10.3.
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Table 10.3 Calculation sheet for dispersion in circumference measurement

Course No Ci in m Mean Ci in m Deviation in mm Square of deviations

8 Top 110:0238 �0:3 0:09

8 Middle 110:0188 110:0241 �5:3 28:09

8 Bottom 110:0298 5:7 32:49

7 Top 110:0688 �1:6 2:56

7 Middle 110:0688 110:0704 �1:6 2:56

7 Bottom 110:0738 3:4 11:56

6 Top 110:0690 2:3 5:29

6 Middle 110:0650 110:0667 �1:7 2:89

6 Bottom 110:0660 �0:7 0:49

5 Top 110:0491 10:7 114:49

5 Middle 110:0641 110:0598 �4:3 18:49

5 Bottom 110:0661 �6:3 39:69

4 Top 109:9831 �4:0 16:0

4 Middle 109:9861 109:9871 �1:0 1:0

4 Bottom 109:9921 5:0 25:0

3 Top 110:0503 �2:0 4:0

3 Middle 110:0553 110:0523 3:0 9:0

3 Bottom 110:0513 �1 1:0

2 Top 109:9407 �0:7 0:49

2 Middle 109:9487 109:9414 7:3 53:29

2 Bottom 109:9347 �6:7 44:49

1 Top 110:0371 4:3 18:49

1 Middle 110:0371 110:0328 4:3 18:75

1 Bottom 110:0241 �8:7 75:69

Sum of squares of dispersions 525:89

Degrees of freedom D 8(3–2) D 16

Standard deviation of internal circumference measurements
p

525:26=16 D
5:73 mm.
Standard uncertainty from Type A evaluation of circumference measurements
Uci D 5:73 mm
But area of cross section A is given by

A D C 2
i

4 
:

Type A relative standard uncertainty of A is

UA D 2Uci=Ci D 2 � 5:73=110 � 103 D 0:1 � 10�3: (10.42)
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10.6.1.2 Type B Evaluation of Uncertainty

Expressing area of cross section A in terms of outer circumference and shell

thickness t , we get A D C 2
i

4 
.

Having known the permissible errors in circumference measurements, we should
find out the appropriate tape measure, which should be used in calibration of
such tanks.

Let us assume that circumference Co is measured with standard tape measure of
Class II [4] having permissible error as

MPE D ˙.0:3 C 0:2L/ mm:

Where L is length in metres rounded off to the next higher whole number. For
example if the mean length of Co is 110.345 m then L is 111. Total permissible
error in Co is

0:3 C 22:2 D ˙22:5 mm:

The error of ˙22:5 mm in 110 m circumference is more than the permissible error
prescribed for circumference measurements – Sect. 10.5.5. Hence we should use
only Class I tape measure. Maximum permissible error in Class I tape measure used
for aforesaid circumference measurement will be

.0:1 C 11:1/ mm D 11:2 mm:

This implies that the true value of the Co may lie anywhere, with equal probability,
in the range of 110:345 m C 11:2 mm and 110:345 m � 11:2 mm. That is true value
will follow a rectangular distribution with semi-range equal to 11.2 mm. Standard
deviation S.D. of such a distribution is given

S:D: D semi-range=
p

3 D 11:2=1:7321 D 6:5 mm:

Standard uncertainty UC o, therefore, will be 6.5 mm, which will be same for Ci –
the internal circumference.

Now let us calculate uncertainty in cross-sectional area A by Type B evaluation
method. The area A is given by

A D C 2
i =4 

log A D 2 log Ci � log 4 :

Differentiating, we get
•A

A
D 2•Ci

Ci
;
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giving relative standard uncertainty in A from Type B evaluation as

UB D 2 � 6:5 � 10�3=110 D 0:11 � 10�3: (10.43)

Using (10.42) and (10.43), the combined relative standard uncertainty U is given by

D
q

U 2
A C U 2

B D 10�3 �
p

0:12 C 0:112 D 0:148 � 10�3: (10.44)

10.6.2 Internal Strapping

If internal strapping is used for measuring the diameter of the tank, then the tape
measure, due to its own weight, even after applying a mandatory tension of 50˙5 N,
will not remain horizontal. Hence a correction due to sag is applied.

10.6.2.1 Correction Due to Sag

Assuming that the tape will take a shape of a catenary
The correction Z [5] due to the sag is given as

Z D W 2S3=24T 2 in m; (10.45)

where

S is span of the tape in m
T is tension applied in kg force
W is the mass of the tape in kg/m
Putting together tape-related variable as K; K is given as

K D W 2=24T 2: (10.46)

For a tape of 10 mm wide and 0.25 mm thick, made of steel having a density of
7; 850 kg=m3, the values of K for different values of tension applied to it are

T K

4:4 kg 8:29 � 10�5perm2

4:5 kg 7:92 � 10�5perm2

4:6 kg 7:58 � 10�5perm2

:

For a length of 40 m the sag at 4.5 kg tension will be 5.0688 mm. This is the
correction in diameter measurement. This correction is to be subtracted from the
observed reading.
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However, no correction in the measurement of outer circumference due to
sagging is required as the tape, in this case, is in contact of the tank surface and
its horizontality is monitored.

The evaluation of uncertainty in calibration will be calculated as enunciated
above. One may easily notice that uncertainty in area of cross section A will be
twice as that in diameter measurement.

10.7 Tank Deformation

When vertical tank is full then hydrostatic pressure on the lower courses will
be more than on the upper one. The hydrostatic pressure will increase the tank
diameter, thereby reducing the height. The reduction in height of the courses will
cause lowering of the upper part of the shell. Referring to Fig. 10.1, the relative

Fig. 10.1 Deformation in Vertical Storage Tank



250 10 Uncertainty in Volumetric Measurement

reduction of tank height is calculated by the formula given below with the following
notations [5, 6].

� – density of the liquid expressed in kg=m3;

D – diameter of the tank in m,
E – modulus of elasticity in N=m2;

� is the Poisson’s ratio,
hn is height and tn is the height of the nth course (ring) counted from bottom.
H is height of the tank in m

Then �H=H relative reduction in height is expressed as

�H=H D .D¡g=4�E/ŒH=t1 C f.H � h1/
2=H g.1=t2 � 1=t1/

C f.H � h1 � h2/
2=H g.1=t3 � 1=t2/

C � � � fH � .h1 C h2 C � � � C hn�1/g2=H g.1=tn � 1=tn�1/�: (10.47)

The corrections due to sagging of the tape measure and deformation of the tank are
quite small; hence uncertainty components due to these causes will be negligible.

10.8 Uncertainty in Calibration of a Hydrometer
by Comparison Method

In comparison method, two hydrometers of same range and surface tension are
taken. Scale of one of the hydrometer is already calibrated by hydrostatic method. In
general, observations are not repeated in routine calibrations; hence all uncertainty
components are calculated by Type B evaluation.

Let e be value of smallest graduation of hydrometer under test (HUT)
Sources of uncertainty

1. Error in setting the HUT at the desired graduated line, semi-range of which
may be taken as 1=4 e. This means the actual setting of the hydrometer may
be anywhere in this range with equal probability. The standard uncertainty Ut

(standard deviation) e=4
p

3

2. Observation error in standard hydrometer, semi-range of which may be taken
as half the value of the smallest graduation of the Std. hydrometer. Normally
smallest graduation of Std is 1=2 of HUT. Therefore, the actual setting of the
standard hydrometer may be anywhere in the semi-range ˙1=4 of e with equal
probability. The standard uncertainty Us (standard deviation) e=4

p
3

3. Certificate correction 1=4 of the smallest graduation of Std. Hydrometer. This
means the actual setting of the hydrometer may be anywhere in this range ˙1=8

of e with equal probability. The standard uncertainty Us1(standard deviation)
e=8

p
3
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4. Combined standard uncertainty U is given as

Uc D
q

U 2
t C U 2

s C U 2
s1 D

r
.0:25e/2

3
C .0:25e/3

3
C .0:125e/2

3
D 0:216e

(10.48)
As all the standard deviations are calculated from a continuous rectangular dis-
tribution, degrees of freedom are infinite in each case. Hence effective degrees of
freedom are infinity. So extended uncertainty at 95.4% confidence level is

2 � 0:216e D 0:432e: (10.49)

Uncertainty given by NPL is 0.5e.
Uncertainty due to corrections

1: Temperature correction D ”¡.ts � tu/: (10.50)

Maximum value of ts � tu is 5ıC; � is 2.5 and � is 30 � 10�6=ıC. Uncertainty is
due to variation in the actual value of � , which normally is not greater than 10%,
i.e. 3 � 10�6, giving the uncertainty in correction as

3 � 10�6 � 2:5 � 5 D 37:5 � 10�6 D 0:000037g=cm3: (10.51)

Smallest graduation in hydrometer is 0:02=50 D 0:0004 g=cm3

So uncertainty due to this cause is negligible.

2. Surface tension correction D .¡ D.t � ts/

Mg
for cgs unit. (10.52)

For SI units the surface tension correction D 103.�	D.t � ts/

Mg
: (10.53)

The correction is small; hence uncertainty may be taken as negligible for rou-
tine work.

1. Meniscus correction:

If the hydrometer under test (HUT) is for opaque liquids, for example lactometers,
the observations are taken where top of the meniscus meets the stem of the
hydrometer. If such a hydrometer is tested in the transparent liquid then a correction
known as meniscus correction (MC) is given as follows:

MC D T � R

 ¡Lg

�
.1 C 2gD2¡/1=2 � 1

�
in cgs units. (10.54)

MC D 103 T � R

 ¡Lg

�
.1 C 2gD2¡/1=2 � 1

�
in SI units. (10.55)
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Meniscus correction for a surface tension T D 75 mN=m varies from one to two
times the value of the smallest scale interval. Uncertainty in this correction is not
expected by more than 5%, and hence may be taken as negligible.

In equations from (10.53) to (10.55) notations are as follows:

� D the coefficient of linear expansion
� D the nominal value of the density of the hydrometer at the middle of its scale
ts; tu are the reference temperatures for the standard and under-test hydrometers
R is the range of the scale
T is the surface tension
L is the length of scale
D is the diameter of the stem and
g is the acceleration of gravity
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Chapter 11
Uncertainty in Calibration of Some More
Physical Instruments

11.1 Uncertainty in Calibration of Slip Gauges

Slip gauges are available in various grades namely grade 00, grade 0, grade 1
and grade 2. There are national and international standard specifications, which,
besides many other things, specify parallelism between end faces and their flatness.
These specifications also specify that the grade 00 and grade 0 slip gauges are
to be calibrated by interferometer. If there is more than one slip gauge, then the
cleaned gauges are wrung on the base platen of the interferometer and are allowed
to attain temperature inside the interferometer. A temperature of 20 ˙ 0:5ıC is
maintained inside the interferometer. Interferometer fringes are formed between the
light reflected from the platen and upper end of the slip gauge. Fringe fractions
for the different monochromatic light sources of known wavelength are determined.
The difference between the observed and the known fractions for the given nominal
length is matched for coincidence on the slide rule to give the estimated length of
the gauge at the ambient temperature.

Corrections are applied due to:

1. Difference in temperature of the gauge from the reference temperature of 20ıC.
2. Difference between the conditions of ambient air and standard air.

For first correction, (i) the value of the coefficient of expansion of the material of
slip gauge and (ii) its possible variation are required. To apply the correction, (2)
exact ambient temperature is required. Hence, uncertainty will arise due to assumed
coefficient of expansion and the resolution and calibration uncertainty of the
thermometer. The second correction involves refractive index of air, which depends
upon the composition, temperature, pressure, humidity of air. Thus, uncertainty will
arise from each measurement. The other sources of uncertainty are:

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5 11,
© Springer-Verlag Berlin Heidelberg 2012
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11.1.1 Fringe Fraction

Fringe patterns are observed for three different wavelengths. For one wavelength,
fringe fraction is observed then wave length is changed and fringe fraction is
read, wavelength is again changed and fringe fraction is read. This process is
repeated three times so that three fringe fractions are available for each wavelength.
Dispersions are calculated for each of three means. This way we will get nine
dispersions with 6 degrees of freedom 3.3�1/ D 6; one freedom is lost in obtaining
the mean fraction for each wavelength. Standard deviation is equal to the square
root of the squares of dispersions divided by 6. For the purpose of example only
let the three laser radiations chosen have wavelength are �1 D 0:4669 �m; �2 D
0:5435 �m; �3 D 0:6120 �m. The arbitrary data and calculations are shown as an
example in the Table 11.1.

Standard deviation D 10�2
p

.0 C 25 C 25 C 25 C 0 C 25 C 0 C 25 C 25/=6 D
5=100

Standard deviation of mean for �1 D 5=100
p

3 D 0:0289 ) 0:0289�0:4669 D
0:0135 �m
Standard deviation of mean for �2 D 5=100

p
3 D 0:0289 ) 0:0289�0:5435 D

0:0157 �m
Standard deviation of mean for �3 D 5=100

p
3 D 0:0289 ) 0:0289�0:6120 D

0:0177 �m
Uncertainty due to the observing fraction of the fringe (Type A evaluation)

p
.0:0135/2 C .0:0157/2 C .0:0177/2=3 D 0:0157 �m

Table 11.1 Observations of fringe fraction and dispersions

S No Fringe fraction for Dispersion (Dispersion)2

�1

1 30/100 0 0
2 35/100 5/100 25=104

3 25/100 5/100 25=104

Mean 30/100

�2

1 55/100 5/100 25=104

2 60/100 0 0
3 65/100 5/100 25=104

Mean 60/100

�3

1 75/100 0 0
2 80/100 5/100 25=104

3 70/100 5/100 25=104

Mean 75/100
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Let it be called uA giving
uA D ˙0:0157 �m: (11.1)

11.1.2 Actual and Ambient Temperatures of the Slip Gauge

The measured temperature of air is taken as the temperature of the gauge. The
difference between measured temperature and actual temperature of the gauge may
be ˙0:02ıC. This affects in transferring gauge length to the reference temperature
of 20ıC. Taking coefficient of expansion as 11:5 � 10�6=ıC, the uncertainty due to
this cause alone uT1 is given as

uT1 D ˙11:5 � 10�6 � 0:02 L D ˙0:23 L �m: Here L is metres: (11.2)

The uncertainty in temperature measurement will be due to two causes, namely (1)
the uncertainty in calibration of thermometer and (2) due to its finite resolution. The
standard uncertainty in calibration may be taken as 0:01ıC. The contribution due to
uncertainty in calibration of the thermometer therefore will be

uT2 D ˙11:5 � 10�6 � 0:01 L D ˙0:115 L �m: (11.3)

The uncertainty uT3 due to resolution of thermometer with 0:01ıC graduation is
obtained by assuming that actual value of the temperature follows a rectangular
distribution with 0:01ıC as its semi-range, hence uT3 is given

uT3 D ˙0:115 L=
p

3 �m D ˙0:066L �m: (11.4)

11.1.3 Coefficient of Linear Expansion

Further Coefficient of expansion may vary by 10% of the assumed value viz. ˙1 �
10�6=ıC. Hence, semi-range RT1 of error due to this cause only is given as

RT1 D ˙1 � 10�6 �
 � L. Normally, �
 is not more than 0:5ıC, hence the
semi-range RT1 is given by

RT1 D ˙0:5 L �m:

Here, the actual value coefficient of expansion may lie with equal probability,
therefore follows a rectangular distribution, hence uncertainty uT5 is given by

uT5 D ˙0:5 L=
p

3 D ˙0:289 L �m: (11.5)
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11.1.4 Refractivity of Air

Sources of errors and uncertainty are

(1) Pressure: calibration and reading
(2) Temperature: calibration and reading
(3) Vapour pressure of H2O
(4) Variation in composition of CO2

It has been given [1–3] that semi-ranges of error due to change in refractivity of air:

For pressure measurement within ˙0:1 mm of Hg is 0:03 L �m
For temperature measurement within ˙0:01ıC is 0:009 L �m
For humidity measurement, through wet and dry bulb thermometers with 0:1ıC
graduations, is 0:006 L �m.

The uncertainty contribution due to each will again be due to calibration uncertainty
and resolution of each of the instruments [3].

11.1.4.1 Pressure of Air

Due to Calibration: Taking standard uncertainty as 0.1 mm of Hg, the uncertainty
uP1 is

uP1 D ˙0:03 L �m: (11.6)

Due to resolution: Taking the semi-range of rectangular distribution as 0.1 mm of
Hg the uncertainty uP2 is given as

up2 D ˙0:03 L=
p

3 �m D ˙0:0173 L �m: (11.7)

11.1.4.2 Temperature of Air

Due to calibration: Taking standard uncertainty as 0:01ıC, the uncertainty uT6 is
given as

uT6 D 0:009 L �m:

Due to resolution: Taking the semi-range of rectangular distribution as 0:01ıC; uT7 is

uT7 D ˙0:009 L=
p

3 D ˙0:052 L �m: (11.8)

11.1.4.3 Humidity of Air

Due to calibration: Taking standard uncertainty as 0:1ıC in wet bulb thermometer,
uH1 is given as

uH1 D ˙0:006 L �m: (11.9)
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Due to resolution: Taking resolution of the wet bulb thermometer as 0:1ıC; uH2 is
given as

uH2 D ˙0:006 L=
p

3 D ˙0:0035 L �m: (11.10)

11.1.5 Phase Change Due to Reflections from the Platen
and End Face of the Gauge

There is reflection from the platen and from the exposed end of the gauge. If the
two surfaces are of same finish and material, the error due phase change will be
zero. If not then phase change correction affects the optical paths hence the value of
length of the gauge block. If the platen is of steel and gauge is of tungsten carbide
or otherwise then error in length may lie any where in between ˙0:0008 �m [1],
hence uncertainty uph is given as

uph D ˙0:008=
p

3 D ˙0:0046 �m: (11.11)

11.1.6 Wringing of the Gauge with the Platen

Normally length of a gauge includes the finite thickness of wringing film. This film
is usually 0:012 �m. No correction is applied for the thickness of this film. However,
the error in wringing [1] is within ˙0:005 �m. Hence, uncertainty component uw is
given as

uw D ˙0:005=
p

3 D ˙0:0029 �m: (11.12)

11.1.7 Interferometer Parameter

Some errors creep in due to geometry of the interferometer such as:

1. Obliquity correction: For example NPL Hilger gauge interferometer is based on
Fizeau principle. In this the viewing aperture is off axis of the incident beam and
is rectangular in shape of length L and height h. Distance between the centres of
the illuminating and viewing apertures is S . The viewing aperture is situated in
the focal plane of the collimating lens of focal length f . The obliquity correction
is given by

Co D
�

S2

8L2
C L2 C h2

24f 2

�

�m:

In a typical case obliquity correction is

Co D 0:000025 L �m: (11.13)
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2. Finite source size: The typical error due to finite source size is

Cs D ˙0:0000125 �m: (11.14)

3. Optics of interferometer used: The wave-front correction in a typical NPL Hilger
interferometer is

Cf D ˙0:0025 �m: (11.15)

Normally these corrections are not exactly known for each and every interferometer,
so these may be taken as some short of tolerances within which the error may lie.
Assuming that actual error due to any of these causes lie any where within the semi-
ranges stated in (11.13)–(11.15) with equal probability i.e. the error due to each
follows a rectangular distribution with semi-range indicated in (11.13)–(11.15), the
uncertainty due to these causes are:

uCo D ˙0:000025 L=
p

3 D ˙0:000014 L �m: (11.16)

uCs D ˙0:0000125L=
p

3 D ˙0:000007 L �m: (11.17)

uCf D ˙0:0025 L=
p

3 D ˙0:00144 L �m: (11.18)

11.1.8 Parallelism of End Faces and Their Flatness

By definition the length of the gauge is the distance between the centres of its end
faces. However fringe fraction may not be estimated exactly at the centre of the
fringe pattern, so an uncertainty may crop in due to non flatness and parallelism of
the end faces of the gauge. For grade 00 slip gauges, tolerance on flatness as well as
non-parallelism of the end faces is 0:05 �m. If the fringe fraction is not estimated
at the centre but say it is off centre by tenth of the height of the fringe pattern. The
semi-range of uncertainty due each of these causes may be ˙0:005 �m. The actual
non-flatness or non-parallelism will follow rectangular distribution i.e. uncertainty
up due to non parallelism is given as

up D ˙0:005=
p

3 D ˙0:0029 �m: (11.19)

Uncertainty due to non-flatness uf is given as

uf D ˙0:005=
p

3 D ˙0:0029 �m: (11.20)

After replacing L in every equation wherever it appears by the nominal value of the
gauge, combined uncertainty for the gauge block is the square root of the sum of
squares of the uncertainty components enumerated in equations (1 to 12 and 16 to
20) and listed in Table 11.2.
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u2
c D .0:0157/2 C .0:0058/2 C .0:0029/2 C .0:0016/2 C .0:0072/2 C .0:0008/2

C .0:0004/2 C .0:0013/2 C .0:0002/2 C .0:0001/2 C .0:0001/2 C .0:0029/2

C 0:0 C 0:0 C 0:0 C .0:0029/2 C .0:0029/2 D 37072 � 10�8.�m/2:

uc D 0:0192 �m: (11.21)

The uncertainty derived in (11.1) has been evaluated by Type A method and has six
degrees of freedom. All other uncertainty components have been evaluated by Type
B evaluation and have infinite degree of freedom. Effective degree of freedom �eff

is given as

�eff D .0:0192/4

.0:0157/4=6
D 2:2 � 6 � 13: (11.22)

Coverage factor at 95.45% confidence level is D 2:21, hence Expanded uncertainty
at 95.45% confidence level ue becomes

ue D 2:21 � 0:0192 D 0:0424 �m: (11.23)

11.2 Uncertainty in Calibration of a Micrometer Against
a Standard Slip Gauge

A micrometer is calibrated at several points of its scale with grade “0” slip gauge.
For the purpose of illustrating as to how the uncertainty in its calibration is calcu-
lated, 25 mm point of its scale is taken as an example. In the following paragraphs,
quite a few examples have been taken from the NABL document No 141 [8].

11.2.1 Particulars of Standard Gauge and Micrometer
Under-Test

Length of the slip gauge at 20ıC D 20:00010 ˙ 0:00008 mm as given in the
certificate

Ambient temperature is 23ıC
Smallest graduation of mercury in glass thermometer is 1ıC
Smallest scale interval of micrometer under test is 0.0001 mm

11.2.2 Mathematical Model

LUT Œ1 C ’UT.t1 � ts/� C O C C D LST Œ1 C ’ST.t2 � ts/� : (11.24)
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Here, LUT and LST are lengths of under test and standard at reference temperature
of ts. The t1 and t2 are respectively the temperature of the micrometer and slip
gauge. ˛UT and ˛ST are the coefficients of linear expansion of the slip gauge and
micrometer respectively. O is mean value of the difference in observations from its
nominal value of the opening of the jaw of the micrometer and its scale and C is the
correction at scale point under test.

C D LST Œ1 C ’ST.t2 � ts/� � LUT Œ1 C ’UT.t1 � ts/� � O: (11.25)

11.2.3 Sources of Uncertainty and Values of Uncertainty
Components

11.2.3.1 Coefficients of Expansion

˛ST and ˛UT, these are assumed to be equal, which may not be true. The value of
each ˛ST and ˛uT is taken as 11:5 � 10�6 K�1, which may differ by 10%; ˛ST may
differ from ˛UT by say 20%.

For LST D LUT D 25 mm and t �ts D 3ıC, semi-range of uncertainty components
are:

˙25 � 11:5 � 10�6 � 3 � 10=100 D ˙86:25 � 10�6 mm

D ˙0:086 �m for variation in ’UT:

˙25 � 11:5 � 10�6 � 3 � 20=100 D ˙172:5 � 10�6 mm

D ˙0:172 �m for difference in ’UT and ’ST:

Assuming that actual value of ˛ST or ˛UT or the difference between them follow
rectangular distribution with infinite degree of freedom, standard uncertainty due to
each source respectively is:

U1 D ˙0:086=
p

3 D ˙0:050 �m; (11.26)

U2 D ˙0:172=
p

3 D ˙0:099 �m: (11.27)

11.2.3.2 Temperature Measurement

Temperatures t1 and t2 may differ by 1ıC also the error in temperature measurement
may be say 1ıC. Hence, uncertainty components are

˙25 � 11:5 � 10�6 � 1 D ˙287 � 10�6 mm

D ˙0:287 �m for difference in temperatures;
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˙25 � 11:5 � 10�6 � 1 D ˙287 � 10�6 mm

D ˙0:287 �m for temperature measurement:

Assuming that actual values of t1 or t2 follow rectangular distribution with infinite
degrees of freedom, standard uncertainty due to each source is

U3 D ˙0:287=
p

3 D ˙0:165 �m; (11.28)

U4 D ˙0:287=
p

3 D ˙0:165 �m: (11.29)

11.2.3.3 Micrometer Under-Test

Faces of micrometer may not be flat. Tolerance in lack of flatness is normally of
0:5 �m, the actual lack of flatness will follow rectangular distribution with infinite
degrees of freedom, giving standard uncertainty as

U5 D ˙0:5=
p

3 D ˙0:288 �m: (11.30)

Faces of micrometer may not be parallel. Tolerance for lack of parallelism is say
0:5 �m, the actual lack of parallelism will follow rectangular distribution with
infinite degrees of freedom, giving standard uncertainty as

U6 D ˙0:5=
p

3 D ˙0:288 �m: (11.31)

11.2.3.4 Slip Gauge

Uncertainty in the value of standard slip gauge is 0:08 �m. Slip gauge was calibrated
by measurement against another standard. Hence, its measured value will follow
a normal distribution with infinite degrees of freedom. Let us assume stated
uncertainty is at confidence level of 95.45% with coverage factor of two. The
standard uncertainty, therefore, is given as

U7 D ˙0:08=
p

2 D ˙0:040 �m: (11.32)

11.2.3.5 Measured Value of O

Uncertainty in measured value of O from the set of observations is the standard
deviation of the mean of observations. The details of observation and calculations
are given in Table 11.3.

Standard deviation of the mean D 0:547=
p

5 D 0:245 �m.
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Table 11.3 Observations and calculation sheet
S. No. Observations xi �m Nx � xi �m . Nx � xi /

2 �m2

1 1 0.4 0.16
2 0.0 0.6 0.36
3 1 0.4 0.16
4 0.0 0.6 0.36
5 1 0.4 0.16
Mean D 3=5 D 0:6 �m Standard deviation D .1:20=4/1=2 D 0:547 �m

Hence, standard uncertainty uA from Type A method is the standard deviation of
the mean and is given as

uA D ˙0:245 �m: (11.33)

11.2.4 Combined Standard Uncertainty

uc Dp
.0:050/2 C .0:099/2 C .0:165/2 C .0:165/2 C .0:288/2 C.0:288/2 C.0:040/2 C.0:245/2

D p
0:294264 D 0:542 �m: (11.34)

11.2.5 Effective Degree of Freedom

�eff D .uc/
4

P
u4

i =4
D .0:543/4

.0:245/4=4 C 0
D 24:1 � 4 D 96 � 1: (11.35)

11.2.6 Expanded Uncertainty

Coverage factor at 95.45% confidence level is 2, hence expanded uncertainty at
95.45% confidence level is given by

ue D 0:543 � 2 D 1:083 �m: (11.36)

11.3 Uncertainty in Pressure Measuring Instruments

11.3.1 Primary Standard of Pressure

Definition: When the force F is applied on the area A, then the pressure P

generated is
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Fig. 11.1 Primary piston
gauge

Pressure

Cylinder

Force

Masses

Piston

Jacket 
Pressure

P D F

A
: (11.37)

Primary Standard: The Controlled clearance piston gauge is normally used as
primary pressure standard. A sketch of the primary standard piston gauge is shown
in Fig. 11.1. The area of the piston gauge is A and the central load applied on the
piston is F .

However, there are numerous factors and environmental quantities that affect the
equality of the equation (11.37). Some of them affect the force acting on the piston
gauge, and some on its effective area A, while there are others, which contribute
directly to the pressure. Taking into the consideration of all the effects, simple
equation (11.37) transforms to:

P D

	
iDnP

iD1

mi




glocal.1 � ¢=�/ C T � C C Tw

A0.1 C bP /
˚
1 C .’p C ’c/.t � ts

� ˚
1 C d.Pz � Pj

� : (11.38)

Here
	

iDnP

iD1

mi




glocal is the sum of forces applied by the weights m1 to mn

� is density of air
� is density of weights
T is surface tension of the fluid
C is the circumference of the piston where it emerges out of the fluid
Tw is the tare weight of the piston weight carrier (PWC)
Ao is area of the piston
t and ts are the actual and reference temperatures, respectively
˛p and ˛c are the coefficients of linear expansion of piston and cylinder,
respectively
d is the pressure distortion coefficient of the jacketed cylinder
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Pj changes the clearance between cylinder and piston, therefore d � Pj is the
amount of change in clearance

If Pj increases, the clearance decreases, and thus there will be a pressure Pz at
which the clearance becomes zero or in other words d � Pz is the total clearance at
the measured pressure PM. In practice, both Pz and Pj are obtained by the fall rate
of the piston [4]. A simple method to obtain these terms is to determine the V 1=3 as
a function of Pj. Here, V is the rate of fall of piston.

Taking logarithms of both sides of (11.38), we get

log P D log

"
iDnX

iD1

Mi glocal

	

1 � ¢

�




C T � C C �w

#

� log .1 C bP / � log Ao

� log
�
1 C .’p C ’c/.t � ts/

� � log
�
1 C d.Pz � Pj/

�
: (11.39)

Partial differentiation of (11.39) gives
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The terms T � C and Tw are small in comparison with applied loads, so these have
been neglected in deriving the different uncertainty components given in (11.40)–
(11.43)
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Here, Uci is the combined standard uncertainty due to all the weights used.
From (11.38), we see that pressure P is not a linear function of various affecting

parameters. So the Law of propagation of uncertainties used in (11.52) is not
quite exact.

For the purposes of Type A uncertainty, fall rate of the piston is measured as a
function of Pj to determine the optimum operating jacket pressure, which gives a
close clearance between the piston and the cylinder and stall the jacket pressure.
To determine the operating jacket pressure, the cube root of the fall rate is plotted
against the jacket pressure Pj at different loads PM. Repeating the measurement with
different gaseous media [5], the value of Pz is determined by least square fitting of
Pz versus PM. The standard deviation of such an exercise is taken as the standard
uncertainty calculated by Type A evaluation method. The Type A uncertainty as



11.3 Uncertainty in Pressure Measuring Instruments 267

Table 11.4 Type B uncertainty components

S No Uncertainty
due to

Nominal
value

Uncertainty
component

Distribution Uncertainty
ppm

1 M 52.0429 kg U.M / Normal 1:1

2 glocal 9:7912413 ms�2 U.glocal/ Rectangular 1:2

3 Ao 1:000642 � 10�4 m2 U.Ao/ Normal 2:5

4 ˛c 1:2 � 10�5=K U.˛c/ Rectangular 1:3

5 ˛p 4:42 � 10�5=K U.˛p/ Rectangular 1:3

6 t � ts 296 K U.t � ts/ Normal 0:5

7 b �5:963 � 10�13=Pa U.b/ Rectangular 0:2

8 P 5:09 � 106 Pa U.P / Normal 0:2

9 Pz 2:53 � 107 Pa U.Pz/ Normal 0:1

10 d 9:81 � 10�12=Pa U.d/ Normal 10:5

11 Pj 5:75 � 106 Pa U.Pj/ Normal 0:5

reported by Dr A. K. Bandyopadhyay [6] for the piston gauge used as primary
standard at NPL India, is 3 ppm, which in absolute terms is equal to 16 Pa.

The uncertainty components are evaluated by Type B evaluation using (11.39) to
(11.51). The combined uncertainty is determined by taking the square root of sum
of the squares of the uncertainties as enumerated in (11.39)–(11.51).

Different uncertainty components by Type B evaluation, for the piston gauge
used as primary standard at NPL India, are given in Table 11.4.

The square root of the sum of squares of the component uncertainties given in
last column gives the combined relative uncertainty. In this case, it comes out as
11 � 10�6. In absolute terms, the uncertainty is 5:09 � 106 � 11 � 10�6 Pa D 56 Pa.

Combined standard uncertainty

Uc D
p

562 C 162 D 58 Pa: (11.53)

If the chosen level of confidence is 95%, then the value k – the coverage factor is 2
giving an extended combined uncertainty as 116 Pa at 5:09 � 106 Pa.

11.3.2 Transfer Standards

In addition to the primary standard of pressure, several piston gauges are used
for calibrating the gauges of other calibrating laboratories. Nomenclature of such
gauges may be Secondary standards [6]. However, there is a problem of adopting
this name because in the field of Legal Metrology, the words Secondary standards
are used for standards maintained at the state level. The author feels that name
transfer standard or simply NPL standards may be used for the standards maintained
at NPL and used for calibrating the instruments of other laboratories.

Pressure .PTransfer/ generated by the transfer gauge is given as:
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Transfer standards of pressure gauges are calibrated against the primary standard
piston gauge by cross-float method. The basic principle is to connect the primary
and Transfer gauge either directly or through a differential pressure cell. Initially,
both the gauges are loaded simultaneously to a constant pressure and allowed
to attain the equilibrium pressure. The gauges are isolated from the rest of the
system. Equilibrium condition is said to be reached if there is no fluid flow
through the common pressure line. The equilibrium is attained by adjusting the
fractional masses on the primary gauge so that its original fall rate is obtained. In
that case,

PTransfer D Ppri:

With the same load on the Transfer gauge, several equilibrium conditions are
obtained by adjustment of mass on the primary standard gauge. The standard
deviation of the load on the primary gauge gives uncertainty for Transfer gauge by
type A evaluation method. The relative uncertainty by Type A method obtained at
NPL is 4 � 10�6.

Alternately, we may express effective area of the piston of the transfer gauge as

Ao.1 C œ/ D glocal .
P

Mi.1 � ¢=¡/ C T � C C �w/

Ppri
�
1 C .’p C ’c/.T � ts/

� : (11.55)

Different loads are applied to the transfer gauge and equilibrium is obtained by
adjusting the loads on the primary gauge satisfying the condition (11.55). Thus,
replacing PTransfer by Ppri in (11.55), the best estimate of Ao and Ao� is obtained
by least square method. The average of the squares of residual errors gives the
variance evaluated by Type A method. Its square root is another component of Type
A uncertainty, say it value is 26 ppm.

Type B uncertainty is obtained exactly in the same way as has been obtained
for primary gauge. In addition, the uncertainty in the Ppri is also taken into
consideration.

The uncertainty components are given below in Table 11.5

Table 11.5 Type B uncertainty components for transfer standard gauge

S No Uncertainty
source

Nominal
value

Distribution
of value

Uncertainty
component

Uncertainty
ppm

1 M 40 kg Normal U.M / 1:02

2 glocal 9:7912413 ms�2 Rectangular U.glocal/ 1:02

3 ˛c 1:2 � 10�5=K Rectangular U.˛c/ 0:3

4 ˛p 4:42 � 10�5=K Rectangular U.˛p/ 0:1

5 t � ts 296 K Normal U.t � ts/ 0:16

6 Ppri 4 � 106 Pa Normal U.P / 11

7 � 3 � 10�12 Pa Rectangular U.�/ 1:5
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The square root of the sum of squares of the component uncertainties given in
the last column of the Table 11.5 gives UTypeB D 11:2 � 10�6. Combining with type
A uncertainty, we get

Uc D 10�6
p

11:22 C 42 C 262 D 29 � 10�6: (11.56)

11.3.3 Dead Weight Pressure Gauge Tester

Dead Weight Pressure Gauge tester (DWT) is essentially a piston gauge, output of
which is fed to a dial pressure gauge under test. Calibration of a DWT means to
determine the effective area of the piston and mass of each dead weight supplied
with it. Mass of each weight is determined with an uncertainty of 10 ppm and
reported with its uncertainty. To determine the effective area of the piston, the Cross
method is used. The pressure is supplied to the DWT through a Transfer standard
piston gauge and is balanced by the weights of the DWT. However, final adjustment
is carried out by adjusting the mass on Transfer piston gauge. Gravitational force
applied to the DWT divided by the pressure supplied by the Transfer piston
gauge gives effective piston area. The effective area of DWT includes the pressure
distortion coefficient.

The DWT is loaded with weights in steps such that loading increases or decreases
monotonically. Six sets of observations are taken. Each set consists of monotonically
increasing and decreasing loads. From the values of the effective area, geometrical
area of the DWT piston and pressure distortion coefficient is determined by least
square method.

11.3.3.1 Numerical Example

Let the DWT is loaded with weights shown in column 3 with mass values in
column 4 of Table 11.6. Identity of each weight is given in column 1 and its mass
value in column 2. The pressure indicated by the Transfer piston gauge is shown in
column 5. Effective area is the pressure indicated by the Transfer gauge to the mass
value of the corresponding weights and is shown in column 6 of the Table 11.6.
Effective area consists of the geometrical area of the piston and pressure distortion
coefficient.

Effective area Aeff of the DWT piston is

Aeff D Ao C AolP:

Six sets of observations at each combination of weights, both increasing and
decreasing loads, are taken. Means of observations in the increasing and decreasing
loads for each set are taken; hence, there are 60 data points. Leaving the data point
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Table 11.6 Observation sheet for calibration of a DWT (Dead Weight Tester)

Weight
No.

Mass of
weight in kg

Weights on
DWT Carrier

Cumulative
mass (kg)

Pressure of
transfer gauge
.kg=cm2/

Effective
piston area
.cm2/

PWC 0:8067954 PWC 0:8067954 1:0073 0:80091

1 4:033977 PWC C 1 4:8407724 6:01278 0:80508

2 4:034531 PWC C 1–2 8:8753034 11:0172 0:80558

3 4:034841 PWC C 1–3 12:9101444 16:02232 0:80576

4 1:613334 PWC C 1–4 14:5234784 18:02614 0:80569

5 1:613134 PWC C 1–5 16:1366124 20:02483 0:80583

6 1:613303 PWC C 1–6 17:7499164 21:71759 0:80576

7 0:8067011 PWC C 1–7 18:5566175 23:02767 0:80584

8 0:8066785 PWC C 1–8 19:3632964 24:02781 0:80587

9 0:8123599 PWC C 1–9 20:1756563 25:03121 0:80602

9 0:8066785 PWC C 1–9 20:1756563 25:03121 0:80602

8 0:8067011 PWC C 1–8 19:3632964 24:02781 0:80587

7 0:8067011 PWC C 1–7 18:5566175 23:02767 0:80584

6 1:613303 PWC C 1–6 17:7499164 22:02851 0:80577

5 1:613134 PWC C 1–5 16:1366124 20:02483 0:80583

4 1:613334 PWC C 1–4 14:5234784 18:02591 0:80570

3 4:034841 PWC C 1–3 12:9101444 16:02232 0:80576

2 4:034531 PWC C 1–2 8:8753034 11:0172 0:80558

1 4:033977 PWC C 1 4:8407724 6:01278 0:80508

PWC 0:8067954 PWC 0:8067954 1:0073 0:80091

for no weight on the PWC, 54 data points are considered for the least square method.
Best estimates of Ao and œ obtained are:

Ao D 0:804992 cm2

and œ D 0:000039 cm2=kg.
Standard deviation by least squares method is 0:00081 cm2.
Uncertainty components calculated by type B method will be calculated in the

same way as for Transfer gauge using the formula

Ao.1 C œ/ D
glocal

P

iD1

Mi.1 � ¢=¡/ C T � C C �w

PTransfer
�
.1 C ’p C ’c/.t � ts/

� : (11.57)

11.4 Uncertainty in Temperature Measurement
and Instruments

Definition: Unit of thermodynamic temperature is kelvin. One kelvin is the fraction
1/276.16 of the thermodynamic temperature of the triple point of water (TPW).
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This definition refers to water having isotopic composition defined exactly by the
following amount of substance ratios:

0.00015576 mole of 2H per mole of 1H
0.0003799 mole of 17O per mole of 16O
0.0020052 mole of 18O per mole of 16O

Such chemically pure water is known as Vienna Standard Mean Ocean Water
(SMOW).

Temperature scale: The temperature scale consists of phase transition tempera-
tures of some well-characterized pure materials.

Realization of TPW: Triple point is realized through a standard triple point water
cell, hence may entail the measurement uncertainty.

Sources of uncertainty: The sources of uncertainty may be divided into two
groups:

I. Environmental and purity of material such as

1. Chemical impurities including isotopic composition
2. Hydrostatic head (surrounding pressure)
3. Gas pressure

II. Measurement is carried out through standard platinum resistance thermometer
and resistance measuring bridge so uncertainty sources are:

1. Standard resistor
2. Bridge measurement
3. Self-heating of standard platinum resistance thermometer (SPRT)
4. Heat-flux immersion

11.4.1 Uncertainty in Triple Point and Other Fixed Points

Taking into consideration the aforesaid sources of uncertainty, the uncertainty in
Triple point of water and phase transition temperatures of Gallium (Ga), Indium
(In), Tin (Zn), Aluminium (Al) and Silver as reported by Steffen Rudtsch et al. of
PTB Germany [7] is given in Table 11.7.

11.4.2 Temperature Scale and Primary Standards

Having established the triple point of water and other fixed points, intermediate
temperatures, in accordance with ITS 90, are realized through the standard platinum
resistance thermometers (SPRTs). These SPRTs are calibrated at specific sets of
fixed points and specific reference deviation functions are given for interpolation of
intervening temperatures. For the measurement of resistance ratio, ac and dc bridges



272 11 Uncertainty in Calibration of Some More Physical Instruments

Table 11.7 Component uncertainties in transition temperatures

Fixed points H2O Ga In Sn Zn Al Ag
Uncertainty contribution type B in mK

Chemical impurities, isotopes 0.031 0.06 0.25 0.31 0.54 0.40 0.65
Hydrostatic head correction 0.004 0.01 0.02 0.02 0.02 0.02 0.08
Error in gas pressure 0.005 0.01 0.1 0.08 0.12 0.3 0.3
Standard resistor 0.05 0/01 0.01 0.01 0.01 0.01 0.01
Bridge measurement 0.015 0.02 0.11 0.12 0.16 0.20 0.25
Uncertainty propagation of TPW – 0.08 0.09 0.11 0.15 0.20 0.28
Self-heating 0.04 0.05 0.15 0.20 0.20 0.20 0.20
Heat-flux error 0.01 0.01 0.20 0.10 0.10 0.10 0.10
Choice of fixed point 0.01 0.03 0.06 0.06 0.06 0.20 0.20
Combined Type B uncertainty 0.074 0.12 0.40 0.43 0.64 0.65 0.87
Type A component in mK 0.03 0.05 0.20 0.15 0.15 0.30 0.30
Standard combined uncertainty 0.08 0.13 0.45 0.45 0.66 0.71 0.92
Expanded uncertainty k D 2 mK 0.16 0.26 0.89 0.91 1.31 1.43 1.83

are used. Thus, a national metrology laboratory will have the fixed point cells and
SPRTs as primary standards along with a resistance measuring bridge.

11.4.3 Dissemination of Temperature Scale

The dissemination of the temperature scale is carried out by the inter-comparison
of fixed point cells and SPRTs of other laboratories against primary standards.
The standard uncertainty of the primary standard and uncertainty due to sources
mentioned in Table 11.7, where applicable, are calculated, and type A uncertainty
due to repeated observations is calculated and are suitably combined to get standard
uncertainty. A coverage factor to be multiplied to the standard uncertainty to give
the expanded uncertainty at particular level of confidence may also be determined
from Students t Tables.

11.4.4 Thermocouples as Temperature Measuring Instruments

Thermocouples (TCs) are inevitably used in industry and many other applications.
Thermo-couples, in general, have a lesser accuracy than SPRTs. Thermo-couples are
calibrated against the fixed point cells by measuring the voltage between the junc-
tions of the TC. The ice point with an accuracy of better than 5 mK is used to enclose
the reference junction. Nano-voltmeter is used for measuring the voltage, which
is calibrated against a dc-voltage standard before every use. Typical calibration
uncertainty of noble metal type S or Type B thermocouples is given in Table 11.8.

In additions to the fixed points of ITS-90, the melting point of palladium is used
for thermo-couples to be used for high temperature.
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Table 11.8 Uncertainty of noble metal type S or Type B thermocouples

S No Fixed
points

Temperature
in ıC

Uncertainty
in K

1 Ice point 0:00 0:13

2 Indium (In) 156:60 0:13

3 Tin (Sn) 231:93 0:15

4 Zinc (Zn) 419:53 0:11

5 Aluminium (Al) 660:32 0:15

6 Silver (Ag) 961:78 0:18

7 Gold (Au) 1064:18 0:20

8 Copper (Cu) 1084:62 0:22

9 Palladium (Pd) (air) 1553:40 1:30

11.4.5 Calibration of a Digital Thermometer

Particulars of Instrument under-test and the standard used: The digital thermometer
(DT) under-test has a resolution of 0:1ıC and accuracy of ˙0:6ıC. The standard
used is a thermocouple (TC), which has a correction of 0:5ıC and uncertainty of
2:0ıC at a confidence level of 99%. This means that the coverage factor .k/ is 2.58.
Standard furnace is maintained at a constant temperature of 500ıC.

Ten measurements of DT have been taken at the constant temperature of 500ıC.
Mathematical model: Input–output relationship is

T D D C C: (11.58)

T is the measured temperature through the standard thermocouple (TC), D is the
indication of the DT and C is the correction to be applied to the DT under test at
500ıC.

Uncertainty components are
Non-repeatability of DT
Type B uncertainty of DT due to digital readout
Type B uncertainty of TC

Ten observations are taken at 500ıC, mean and standard deviations are calculated,
which give the correction and standard uncertainty by Type A evaluation method.
The observation sheet is shown in Table 11.9.

From table 11.7, the correction C is given as

C D 500:5 � 501:42 D �0:92ıC: (11.59)

11.4.5.1 Uncertainty

Standard deviation of the mean D 0:103=
p

10 D 0:03ıC: (11.60)
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Table 11.9 Observations and deviations
S No Observations .Ti/

ıC Ti � NT .Ti � T /2

1 501:5 0:08 0:0064

2 501:4 �0:02 0:0004

3 501:5 0:08 0:0064

4 501:3 �0:12 0:0144

5 501:3 �0:12 0:0144

6 501:4 �0:02 0:0004

7 501:5 0:08 0:0064

8 501:6 0:18 0:0324

9 501:3 �0:12 0:0144

10 501:4 0:02 :0004

Sum 5014:2ıC 0:0960 .ıC/2

Mean D 501:42ıC
Standard deviation D .0:096=9/1=2ıC D 0:103ıC

Standard uncertainty uA D ˙0:03ıC. Degrees of freedom for uA is 10 � 1 D 9.
Type B uncertainty of DT due to digital readout of 0:1ıC: This means that actual

value of the observation may lie anywhere in between the range of �0:05ıC to
C0:05ıC with equal probability that is the actual value will follow rectangular
distribution. Hence, uncertainty due to its digital read out

U2 D 0:05=
p

3 D ˙0:029ıC: (11.61)

Uncertainty due to standard TC is

U3 D ˙2:0=2:58 D ˙0:78ıC: (11.62)

Hence, combined standard uncertainty uc is given as

uc D
p

.0:03/2 C .0:029/2 C .0:78/2 D 0:78ıC: (11.63)

To find out the coverage factor, first we should find out effective degree of freedom
�eff it is given as

�eff D .0:78/4

.0:03/4=9
D 4112784 � 1:

Hence, coverage factor at 95.45% Confidence level from the t distribution is 2.
Giving extended uncertainty as

Expanded uncertainty D 2 � 0:78 D 1:7ıC: (11.64)
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11.5 Uncertainty in Luminous Flux Measurement

11.5.1 Principle

Luminous flux of a lamp under test (T) is compared with that of the standard lamp
(S) of known luminous flux. Each lamp is placed in the centre of the integrating
sphere. The substitution method is used, in which the test lamp substitute the
standard lamp. The luminous flux of a source is evaluated by comparing the indirect
illuminance in the two cases.

11.5.2 Procedure for Calibration

Steps to be followed are:

1. Switch on the measuring equipment and let the auxiliary lamp warm up for
15 min.

2. Mount the standard lamp at the centre of the integrating sphere.
3. After burning in period, the indirect illuminance ES is measured.
4. Turn off the supply of the standard lamp.
5. The switched on auxiliary lamp moved into the sphere. The indirect illuminance

EAS is measured.
6. The standard lamp is taken out of the sphere and the test lamp is mounted into

the centre of the sphere with auxiliary lamp still burning. Indirect illuminance
EAT is measured.

7. Turn the test lamp on. After burning in period, the indirect illuminance ET is
again measured.

The luminous flux ˆT of the lamp under test is given as

ˆT D ˆS
ET

ES

EAS

EAT
: (11.65)

The factor EAS
EAT

takes care of the effect of different sizes and types of test and standard
lamps. If the lamp under test and the standard are identical in size, shape, electrical
parameters and colour temperature, then EAS

EAT
and ES

ET
is 1 giving ˆT equal to ˆS.

Here, we see that measurand ˆT is not a linear function of input quantities
ET; ES; EAS and EAT; however, the log of the measurement is a linear function
of the logarithms of input quantities, hence Taylor’s expansion up to second term
is exact.

11.5.3 Expression for Uncertainty

From (11.65), the square of the relative uncertainty of under test lamp u2
c .ˆT/

ˆ2
T

is

expressed as:
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u2
c.ˆT/

ˆ2
T

D u2.ˆS/

ˆ2
S

C u2.ES/

E2
S

C u2.ET/

E2
T

C u2.EAS/

E2
AS

C u2.EAT/

E2
AT

: (11.66)

From the certificate of the standard lamp, one can get ˆS and u.ˆS/: ES; ET; EAS

and EAT are all measured quantities, so the mean values of ES; ET; EAS and EAT

and their respective uncertainties are calculated by Type A evaluation method.

11.5.4 Example

An example with due corrections is taken from [8]. The mean value of EAS and its
standard deviations are calculated as shown in the Table 11.10.

Standard deviation of the mean D 14:12 � 10�3=
p

10 D 4:46 � 10�3

Hence, standard uncertainty uA D ˙4:46 � 10�3

Degrees of freedom for uA is 10 � 1 D 9

Giving us
u.EAS/

EAS
D 4:46 � 10�3

9:276
D ˙4:8 � 10�4: (11.67)

Similarly, mean and standard deviation of the mean of EAT; ES and ET are
calculated from each set of 10 observations. Let the calculated values are:

u.EAT/

EAT
D ˙6 � 10�4 and EAT D 9:20 lux; (11.68)

u.ES/

ES
D ˙1:2 � 10�2 ES D 81:14 lux; (11.69)

u.ET/

ET
D ˙1:6 � 10�2 ET D 83:76 lux: (11.70)

Table 11.10 Observations EAS and deviations

S No. EAS lux EAS � EAS .EAS � EAS/2

1 9:296 C0:020 400 � 10�6

2 9:279 C0:003 9 � 10�6

3 9:254 �0:022 484 � 10�6

4 9:290 C0:014 196 � 10�6

5 9:271 �0:005 25 � 10�6

6 9:272 �0:004 16 � 10�6

7 9:286 C0:010 100 � 10�6

8 9:285 C0:009 81 � 10�6

9 9:254 �0:022 484 � 10�6

10 9:277 C0:001 1 � 10�6

Mean D EAS D 9:276 lux Standard deviation D .
p

1796=9/10�3 D 14:12 � 10�3
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The degree of freedom in each case is 9.
The certificate of the standard lamp states

ˆS D 1045 ˙ 9:12 lm:

Substituting the value of EAT; EAS; ES; EA and ˆS into (11.65), we get

ˆT D 1045
9:276

9:20

83:76

81:14
D 1087:7: (11.71)

The uncertainty in the assigned value of the standard lamp is given as 9.12 lm. The
measured value of flux of the lamp will naturally follow normal distribution; hence,
the stated uncertainty will either be equal to the standard deviation or some multiple
of it. For example, the coverage factor is 2 if level of confidence at which the flux
value is assigned is 95.45%. Let the coverage factor be 2 in assigning the uncertainty
value, giving us

Type B uncertainty D 9:12=2 D 4:6 lm:

Relative standard uncertainty of the standard lamp u.ˆS/

ˆs
D 4:6

1045
D ˙4:4 � 10�3.

11.5.5 Combined Relative Uncertainty

Hence, combined relative uncertainty in the calibration of the lamp under test is
given by

uc.ˆT/

ˆT
D 10�3

p
.0:48/2 C .0:6/2 C .12/2 C .16/2 C .4:4/2

D 10�3
p

0:1849 C 0:36 C 144 C 256 C 19:36 D 10�3
p

419:909

D 20:49 � 10�3 D 2:05 � 10�2:

(11.72)

Absolute uncertainty ˙2:05 � 10�2 � 1086 lm D ˙22:3 lm.
Effective degree of freedom �eff is given as

�eff D .2:05 � 10�2/4

�
.4:4/4

1 C .0:48/4

9
C .0:60/4

9
C .12/4

9
C .16/4

9

�

10�12

� 18:

The coverage factor k from Students t distribution for 95.45% confidence level for
19 degrees of freedom is 2.10 (Table A.6).

Hence, combined relative uncertainty for 95.42% level of confidence is 2:10 �
2:05 � 10�2 D 4:3 � 10�2 or 46.5 lm.
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11.5.6 Expression of Results with Uncertainty

The result of calibration of the lamp under test may be reported as follows:

ˆT D 1086:8 ˙ 22:3 lm or (11.73)

ˆT D 1086:8 ˙ 46:5 lm.level of confidence level 95%/: (11.74)
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Chapter 12
Uncertainty in Calibration of Electrical
Instruments

12.1 Uncertainty in Calibration of RF Power Sensor

The examples have been taken from the document NABL-141 by National Accred-
itation Board for testing and calibration of Laboratories [1].

12.1.1 Principle of Calibration

Basically an RF power sensor is calibrated by substituting with a standard power
sensor fed by a well-monitored source of known coefficient of reflection. The
calibration is carried out in terms of a factor K , which is the ratio of the incident
power at a frequency f to the incident power at a reference frequency. Normally
reference frequency is 50 MHz and frequency of calibration in this case is 18 GHz.

12.1.2 Mathematical Modelling

The calibration factor Kx is expressed as

Kx D .Ks C Ds/ � RDC � Rm � Rref: (12.1)

Here

Ks is the calibration factor of the standard sensor with Ds as drift,
RDC is the ratio of DC voltage outputs D Vx=Vs,
Rm is the mismatch losses and
Rref is the ratio of power outputs of the reference source.

Here measurand Kx is not a linear function of input quantities so the expansion
of Kx by Taylor’s theorem to first two terms will only be approximate. However,

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5 12,
© Springer-Verlag Berlin Heidelberg 2012

279



280 12 Uncertainty in Calibration of Electrical Instruments

logarithm of the measurand Kx is a linear function of logarithms of input quantities,
which are independent.

It may be noted that RDC; Rm and Rref are all equal to unity except the uncer-
tainty part.

Partial differential coefficients with respect to above variables are as follows:

•Kx

Kx

D •Ks

Ks C Ds
;

•Kx

Kx

D •Ds

Ks C Ds
;

•Kx

Kx

D •RDC

RDC
;

•Kx

Kx

D •Rm

Rm
;

•Kx

Kx

D •Rref

Rref
:

(12.2)

Applying the law of variances and substituting the square of the corresponding
standard uncertainty for variances, we get

u2
Kx

K2
x

D u2
Ks

.Ks C Ds/2
C u2

Ds

.Ks C Ds/2
C u2

RDCc
C u2

Rm
C u2

Rref
: (12.3)

12.1.3 Type A Evaluation of Uncertainty

For uncertainty through Type A evaluation, the calibration factor Kx is measured
6 times by connecting and disconnecting the under-test sensor and standard sensors
turn by turn. The quantity measured is the voltage ratio in each case. Observation
data with deviations are given in Table 12.1

Table 12.1 Observations and deviations
S. no. Kx Kxi � Kx .Kxi � Kx/2 � 106

1 0:957 C0:007 49

2 0:954 C0:004 16

3 0:951 C0:001 1

4 0:946 �0:004 16

5 0:949 �0:001 1

6 0:943 �0:007 49

Mean NKx D 0:950
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Standard deviation (standard uncertainty) of the mean D 0:0051=
p

6 D 0:0021

with 5 degrees of freedom.

UKx.Type A/ D 0:0021: (12.4)

12.1.4 Type B Evaluation of Uncertainty

Type B evaluation of uncertainty components is calculated with the help of the
following data:

12.1.4.1 Uncertainty in the Calibration Factor of Standard Sensor

In the certificate of the standard sensor, it is stated that uncertainty in calibration
factor of the standard sensor at 95% confidence level is ˙0:010; the stated value
of sensor follows normal distribution with infinite degrees of freedom. Hence
uncertainty u.Ks/

u.Ks/ D 0:010=1:96 D 0:0051: (12.5)

12.1.4.2 Uncertainty Due to Drift in Calibration Factor of Standard Sensor

Drift in calibration factor is ˙0:003 per year and the sensor was calibrated 6
months ago. Hence the correction of 0:003=2 D 0:0015 is to be added to the stated
calibration factor.

12.1.4.3 Uncertainty in the Standard Source

1. From the certificate of the standard source the instability in the ratio output power
at 50 MHz is ˙0:004 and Rref follows a rectangular distribution with infinite
degrees of freedom; it is because the actual Rref is 1 with equal probability. Hence
u.Rref/ is given as

u.Rref/ D 0:004=
p

3 D 0:0023: (12.6)

12.1.4.4 Uncertainty Due to Mismatch

2. As the source is not perfectly matched and the phase relation of the reflection
coefficients of the source, the under-test and standard sensors are not known,



282 12 Uncertainty in Calibration of Electrical Instruments

there is an uncertainty due to mismatch for each sensor at the calibration
frequency (18 GHz) and as well as reference frequency (50 MHz). From the
well-known formula the uncertainty between source and the sensor is given as
2Rg�Rs. Here Rg; Rs and Rx are respectively the reflections coefficients of the
source, standard sensor and under-test sensor. Their numerical values are given
as follows:

Rg at 50 MHz is 0:02 and at 18 GHz is 0:05:

Rs at 50 MHz is 0:02 and at 18 GHz is 0:08:

Rx at 50 MHz is 0:02 and at 18 GHz is 0:09:

Hence uncertainty due to mismatch in

Standard sensor at 50 MHz D ˙2 � 0:02 � 0:02 D ˙0:0008;

Standard sensor at 18 GHz D ˙2 � 0:05 � 0:08 D ˙0:0080;

Under-test sensor at 50 MHz D ˙2 � 0:02 � 0:02 D ˙0:0008;

Under-test sensor at 18 GHz D ˙2 � 0:05 � 0:09 D ˙0:0090:

(12.7)

Hence standard uncertainties (standard deviations) of U shape distribution are

u.Ms/ D 0:0008=
p

2 D 0:00056 at 50 MHz;

u.Ms/ D 0:008=
p

2 D 0:0056 at 18 GHz;

u.Mx/ D 0:0008=
p

2 D 0:00056 at 50 MHz;

u.Mx/ D 0:009=
p

2 D 0:0064 at 18 GHz:

(12.8)

Degrees of freedom in each case are infinite.
Uncertainty due to mismatch is given as

u2
Rm

D .0:00056/2 C .0:0056/2 C .0:00056/2 C .0:0064/2

D 0:000072972
(12.9)

or
uRm D 0:00854:

12.1.4.5 Uncertainty Due to Instrument Non-linearity

3. The uncertainty in nonlinearity of the instrument at 95% confidence level is
˙0:001 with infinite degrees of freedom. Hence standard uncertainty due to
nonlinearity is

u.Rc/ D 0:001=1:96 D 0:0005: (12.10)
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12.1.5 Combined Standard and Expanded Uncertainty

12.1.5.1 Standard Uncertainty

.Combined standard uncertainty/2 D .0:0021/2 C .0:0051/2 C .0:0023/2

C .0:0005/2 C .0:00854/2

D 0:0001089072;

Combined standard uncertainty D 0:0104: (12.11)

12.1.5.2 Expanded Uncertainty

For expanded uncertainty effective degrees of freedom �eff are to be calculated first
given as

Effective degrees of freedom �eff D .0:0104/4

.0:0021/4=5C0
� 305 ) 1.

The value of Student’s t for infinite degrees of freedom at 95.45% level of
confidence is 2, giving

Expanded uncertainty at 95:45% D 2 � 0:0104 D 0:0208.

12.1.6 Statement of Result with Uncertainty

Result of the calibration factor of under-test sensor at 18 GHz is 0:950 ˙ 0:021 at
95.5% level of confidence. It may be noted that correction due to drift (0.0015) is
negligible.

12.2 Uncertainty in Calibration of a Digital Multi-meter

12.2.1 Equipment and Principle of Calibration used

12.2.1.1 Equipment used is

1. Thermal Voltage Converter (TVC) used as transfer standard
2. DC voltage calibrator as standard
3. Highly stable AC voltage supply
4. Nano-voltmeter used as indicator
5. Under-test 6 1

2
digit Digital Multi-Meter (DMM). Example is the calibration of

DMM at 0.5 V and at 1 kHz.
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12.2.1.2 Outline of Method for Calibration

DMM and TVC are connected in parallel via a coaxial switch and a Tee adapter and
the AC voltage from a highly stable AC calibrator is applied to both DMM and TVC,
such that DMM indicates exactly 0.500000 V. Let the nano-voltmeter indicate emf
across it as Vx . DMM is disconnected. A DC voltage of positive polarity is applied
to TVC and supply is adjusted such that indication in nano-voltmeter is again Vx .
The output of DC calibrator is noted as V1. The polarity of DC voltage is reversed
and the supply is adjusted such that Nano-voltmeter again reads Vx . Let the DC
voltage be V2 then

VDC D V1 C V2

2
D Vi :

The measurement process is repeated at the least 5 times.

12.2.2 Mathematical Model

If VAC is the AC voltage estimated for an indicated value of 0.500000 V on
DMM, then

VAC D .VDC C EVDC C EVth/.1 C •/: (12.12)

Here

EVDC is the error in the DC voltage calibrator due to it lack of stability.
EVth is the error due to reversal of polarity in thermal emf.
And • is the AC/DC transfer correction factor of TVC at the frequency of
calibration.
EVth is normally very small say about 1 �V.

Important precautions are that inter-connecting leads are coaxial, are shielded and
are small. The reference plane of measurement is brought close to input plane of
DMM. The precautions reduce the loading and transmission errors.

12.2.3 Type A Evaluation of Uncertainty

The input observations are the mean values of V1 and V2 indicated by the DC
calibrator and are given in Table 12.2 along with calculations of standard deviation.

Standard deviation of the mean D standard uncertainty .Type A/ D p
.103=20/

D 2:27 �V: (12.13)
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Table 12.2 Observations and deviations
S. no. Observations Vi Vi � V .Vi � V /2 � 1012

1 0:4999986 �0:0000034 11:56

2 0:4999982 �0:0000074 54:76

3 0:4999991 0:0000016 2:56

4 0:4999994 0:0000046 21:16

5 0:4999993 0:0000036 12:96

Mean V D 0:4999 989 4 V Standard deviation D 10�6
p

103=4 D 5 �V

12.2.4 Type B Evaluation of Uncertainty

12.2.4.1 DC Calibrator

The certificate of the DC calibrator states that relative uncertainty at 95% level of
confidence is ˙5:8 � 10�6 and distribution is normal.

Relative uncertainty is ˙5:8 � 10�6 at 95% confidence level; hence coverage
factor is 1.96, giving relative standard uncertainty as

Relative standard uncertainty D ˙ 5:8 � 10�6=1:96 D ˙2:96 � 10�6V;

giving

Standard uncertainty.absolute/ D 2:96 � 0:5 �V D 1:48 �: (12.14)

Degrees of freedom are infinity.

Due to Lack of Stability

Lack of stability for a period of 3 months is 5:0�10�6 of the output. This means that
actual value will follow rectangular distribution, giving uncertainty due to this count

5 � 10�6 � 0:5=
p

3 D 1:44 �V: (12.15)

Degrees of freedom are infinity.

12.2.4.2 TVC

Measurement of Uncertainty

From the certificate of TVC, the AC/DC transfer correction factor ı for TVC is
80�10�6 with a relative uncertainty ˙1:0�10�4 at 95% confidence level. It means
the coverage factor 1.96,
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giving

Standard uncertainty at 0:5 V D 100 � 0:5=1:96 �V D 25:5 �V: (12.16)

Degrees of freedom are infinite.

12.2.5 Combined Standard Uncertainty Uc and Expanded
Uncertainty

Combined standard uncertainty Uc is given as

uc D
p

.2:27/2 C .1:48/2 C .1:44/2 C .25:5/2 D 25:72 �V;

uc D 25:72 �V:
(12.17)

12.2.5.1 Expanded Uncertainty

For expanded uncertainty, effective degree of freedom �eff is to be calculated
Effective degrees of freedom �eff

�eff D .25:68/4

.1:48/4=1 C 1:44/4=1 C .25:5/4=1 C .2:27/4=4
D 4.25:68/4

.2:27/4

D 65514 � 1:

Coverage factor for expanded uncertainty for 95.45% confidence level with
infinitely large degree of freedom is 2

Hence expanded uncertainty ue at 0.5 V is given as

ue D 51 �V: (12.18)

12.2.6 Statement of Results

Substituting the values of VDC; EVDC; EVth and ı in (12.12), the value of VAC is
given as

VAC D Œ0:499989 V C 2:06 mV C 1:0 mV�.1 C 0:000008/ D 0:499996 V:

Observation of the DMM D 0:500000 V, giving the correction C to DMM at
0.5 V as

C D �4 �V: (12.19)
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The correction is much less than the uncertainty; hence correction to DMM may be
taken as negligible at 0.5 V (the point of calibration) with an uncertainty of ˙51 �V.

12.3 Uncertainty in Calibration of a Digital Instrument

The procedure of calibration and ascertaining uncertainty of measurement

12.3.1 Principle of Calibration

Let us consider a 4 1
2

digital voltmeter of 100 V range with last digit representing
10 mV. To calibrate a digital multi-meter (MUC) say at 10 V, a continuous voltage
is applied through a voltage calibrator till it reads 10 V. Continue to increase the
voltage in steps equal to one tenth of the resolution of MUC till MUC indicates
10.01(one least count more of MUC). Note the indication of the standard. Let it be
10.003 V. Then the error of MUC at 10 V is given by

Error .E/ D 10:00 C 0:5 � 0:01 � 10:003 D 0:002 V:

12.3.2 Type A Evaluation of Uncertainty

Following the above principle of calibration, the measurements are repeated several
times (say 5 times) at 10 V. The observations and calculations are shown in
Table 12.3.

Standard deviation of the mean D standard uncertainty (Type A) ua is given as

ua D 5:47 � 10�4=
p

5 D 2:45 � 10�4 V; (12.20)

Error in MUC at 10 V D 10:00 C 0:5 � 0:01 � 10:0034 D C0:0016 V: (12.21)

Table 12.3 Observations and deviations
S. no. Indication of standard for last digit

jump of MUC Vi
Indication of standard
Vi � V

.Vi � V /

2; 108 V

1 10:003 �0:0004 16

2 10:004 C0:0006 36

3 10:003 �0:0004 16

4 10:003 �0:0004 16

5 10:004 C0:0006 36

Sum D 50:017 Variance Var 1 D 30 � 10�8 V2

Mean 10.0034 Standard deviation 5:47 � 10�4 V D SD1
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Similarly calibration is carried out at other points of the scale of MUC. Minimum
five points such as 10, 30, 50, 70 and 90 V are chosen. Mean of all the variances at
the points of calibration divided by 5 will give square of uncertainty calculated by
Type A evaluation.

uncertainty.Type A/ D
p

.SD1/2 C SD2/2 C .SD3/2 C .SD4/2 C .SD5/2

p
5 � 5

:

(12.22)

Let after calculations of all the five standard deviations, the uncertainty by Type A
evaluation ua be given as

ua D 0:251:

The degrees of freedom will be 20.

12.3.3 Type B Evaluation of Uncertainty

12.3.3.1 Standard Meter

Let the uncertainty of voltage calibrator in its certificate of calibration be expressed
as .100 C 4:5 V/ �V at 99% confidence level, V is the output voltage in volts. So
uncertainty at 10 V is given as follows:

.100 C 45/ �V D 145 �V with 2.58 as coverage factor, giving standard
uncertainty at 10 V as

us D .145=2:58/ �V D 56:2 �V: (12.23)

Degrees of freedom are infinite.
The uncertainty components at different points of scale are similarly calculated.

12.3.3.2 Due to Resolution of Metre Under Calibration (MUC)

Last digit of MUC is 10 mV. Hence actual value of the voltage may lie anywhere
within a semi-range of ˙5 mV with equal probability and hence follows a rectan-
gular distribution, giving us the following:

Uncertainty due resolution [2] in the MUC 5=
p

3 mV D 2:887 mV. However,
this component of uncertainty is to be used when this MUC is used for measuring
voltage. In its calibration we have taken its observations at its change points.
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12.3.4 Combined Uncertainty

Combined uncertainty Uc at 10 V D
p

.0:0562/2 C .0:251/2 D 0:257 mV:

(12.24)

12.3.5 Expanded Uncertainty

For calculation of extended uncertainty, effective degrees of freedom .�eff/ are
given as

�eff D .0:257/4

0:251=20 C 0:056=1 D 21:98 � 22: (12.25)

Coverage factor for 95.45% of confidence level for 22 degrees of freedom is 2.13.
Hence extended uncertainty

ue D 2:13 � 0:257 mV D 0:547 mV: (12.26)

12.3.6 Statement of Results

The statement of error and uncertainty at 10 V is as follows:

The error at 10 V is.1:6 ˙ 0:547/ mV: (12.27)

12.4 Uncertainty Calculation for Correlated Input Quantities

Until now all input variables were independent of each other; now we wish to
consider a case of dependent variables. Let us consider the calibration of a 10 k


resistor Rref against the ten resistors of 1;000 
 each [3]. Each of these resistors was
calibrated with negligible uncertainty against a standard resistor Rs with standard
uncertainty u.Rs/ D 100 m
 as given in the certificate.

For the purpose of calibration, ten resistors are connected in series with wires of
negligible resistance to make 10 k
.

Mathematical model is as follows:

Rref D
pD10X

pD1

Rp C O: (12.28)
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Here O is the observed difference between the resistor Rref and summation of
resistors Rp , and p is from 1 to 10. Here each Rp is expected to be correlated
as each has been calibrated against the same standard resistor Rs; hence uncertainty
equation is

u2 D
pD10X

pD1

u2
p•Rref=•Rp C 2

qD10X

qD1

pD10X

pDqC1

.•Rref=•Rp/•Rref=Rqu.Rp/u.Rq/r.Rp; Rq/:

(12.29)

12.4.1 Type A Evaluation of Uncertainty

Uncertainty in O is obtained by Type A evaluation in the usual fashion. Let it be uA.

12.4.2 Type B Evaluation of Uncertainty

Here we see that

•Rref=•Rp D 1 and u.Rp/ D 100 m
; for all values of p: (12.30)

Each resistor Rp has been compared with negligible uncertainty with the stan-
dard Rs. So each resistor is fully correlated with each other; hence coefficient of
correlation r.Rp; Rq/ D 1, for all values of p and q from 1 to 10. Equation (12.28)
becomes

u2 D
pD10X

pD1

u.Rp/2 C 2

qD10X

qD1

pD10X

pDqC1

u.Rp/u.Rq/D

8
<

:

pD10X

pD1

u.Rp/

9
=

;

2

; (12.31)

giving u D uB D 10: 100 m
 D 1 
.
Hence combined standard uncertainty uc is given as

u2
c D

q
u2

A C u2
B: (12.32)

12.5 Vector Measurands

This example [4] deals with the treatment of multiple measurands or output quanti-
ties determined simultaneously in the same measurement (same input quantities).
The example is about simultaneous measurements of pure resistance R and the
reactance of a circuit fed by AC. Input quantities are the current I , amplitude of the
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voltage V and change in phase angle � of the alternating current. The measurands
are impedance Z, resistance R and the reactance X .

However the impedance Z D p
R2 C X2; therefore, there are only two indepen-

dent output quantities, namely R and X .

12.5.1 Mathematical Model

R D V cos ®

I

X D V sin ®

I
and

Z D V

I
:

(12.33)

It may be noticed that here all input quantities are correlated and output quantities
are not linearly related to the input quantities.

Last equation of (12.33) may be written as

Log.Z/ D Log V � Log I; (12.34)

giving us

1

Z

•Z

•V
D 1

V
; (12.35)

1

Z

•Z

•I
D � 1

I
; (12.36)

�Z D Z

V
� Z

I
: (12.37)

12.5.2 Combined Uncertainty

Applying the law of variances for correlated input variables and replacing each by
the square of it uncertainty, we get

u2
c.Z/ D Z2

(
u.V /

V

) 2

C Z2

(
u.I /

I

) 2

� 2Z2

(
u.V /

V

) (
u.I /

I

)

� r.V ; I /:

(12.38)

Dividing by both sides of (12.38) by Z2, we get the combined relative uncertainty
of Z in terms of relative uncertainties of V and I
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Table 12.4 Observations for V , I and �

S. no. V (V) I (mA) � (rad)

1 5:006 20:563 1:0456

2 4:994 20:539 1:0436

3 5:005 20:540 1:0468

4 4:991 20:585 1:0428

5 4:999 20:578 1:0432

Mean 4:999 20:561 1:0444

u2
rc.Z/ D u2

r .V / C u2
r .I / � 2ur.V /ur.I /r.V ; I /: (12.39)

Let simultaneous measurements of all the input quantities be taken 5 times.
Observed values are shown in Table 12.4 and the subsequent calculations and
correlation of their estimates are shown in Table 12.5.

s NV D uV D
p

.174=20/ D 2:95 � 10�3 V;

s NI D uI D p
.1; 794=20/ D 9:47 � 10�4 mA;

s N® D u¥2:7

p
.1; 184=20/ D 7:69 � 10�4 rad:

(12.40)

Also

¢V D
p

.174=5/ D 5:9 � 10�3 V;

¢I D
p

.1; 794=5/ D 18:9 � 10�4 mA; (12.41)

¢f D p
.1; 184=5/ D 15:38 � 10�3 rad:

12.5.3 Correlation Coefficients

We know that

r.x; y/ D

pDnP

pD1

.xp � Nx/.yp � Ny/=n

¢x¢y

:

Using the results from Table 12.5 and (12.41), we get
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Table 12.5 Calculation sheet
V � V

D A

I � I

D B

¥ � ®

D C

A210�6 B210�6 C210�8 AB10�6 AC10�7 BC10�7

7 2 12 49 4 144 14 84 24
�5 �22 �8 25 484 64 110 40 176

6 �21 24 36 441 576 �126 144 �504
�8 24 �16 64 576 256 �192 128 �384

0 17 �12 0 289 144 0 0 �204

174 174 �
10�6

1;794�
10�6

1;184�
10�8

�194 �
10�6

396 �
10�7

�892 �
10�7

r.V ; I / D �194=5

2:95:9 � 918:9
D �0:35; (12.42)

r.V ; I / D 396=5

5:9 � 15:38
D 0:87;

r.I ; ®/ D �892=5

18:9 � 15:38
D �0:62:

From the mean values of V and I , we get

Z D 4:999=0:020561 D 249:25 ohm; (12.43)

R D V

I
cos ® D 4:999

0:020561
cos.1:0444 � 180=3:1416/

D 249:25 � 0:5403 D 134:69 ohm;

X D 4:999

0:020561
sin.57:29ı/ D 249:25 � 0:8414 D 209:7 ohm:

Substituting values from (12.40) and (12.42) in (12.38), combined uncertainty in
measurement of Z is given by

u2
c D .249:25/2 ˚.2:95 � 10�3=4:999/2 C .9:47 � 10�7=20:561 � 10�3/2

�2 � .2:95 � 10�3=4:999/ � .9:47 � 10�7=20:561 � 10�3/.�0:35/
�

D .249:25/2f76:8191 C 0:2121 C 1:902g � 10�8

uc D 249:25 � 8:8844 � 10�4 D 0:221 ohm

or relative combined relative uncertainty urc D 8:88 � 10�4.
It may be noted that measurands Z; X and R depend upon the same input

quantities V; I and �; therefore Z, X and R are also correlated.
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Appendix A

Tables

Gaussian Distribution

Table A.1 gives the probability of happening for the given value of the variable z.
The probability values for z from 0 to 3.49 (in steps of 0.01) have been tabulated

z D x � �

�
; z D 1 corresponds one standard deviation:

Table A.2 gives the cumulative frequency (area covered) from �1 to the given value
of z. In fact the table gives the cumulative normal distribution against deviation from
the mean expressed in terms of standard deviation.

Table A.3 gives the area covered by the variable from 0 to z. In fact Table A.3 can
be derived from Table A.2 by subtracting 0.5 from each entry.

Table A.4 give the probability interval for the given value of z. It is the area
covered by the variables from �z to Cz. For given value of z, every entry in
Table A.4 is twice the entry in Table A.3.

Table A.5 gives the values of z for the given probability interval.

Student t Distribution

Table A.6 is the student t distribution. It gives the values of t for given degrees of
freedom and assigned probability interval or the percentage points.

S.V. Gupta, Measurement Uncertainties, DOI 10.1007/978-3-642-20989-5,
© Springer-Verlag Berlin Heidelberg 2012
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Table A.1 Probability values of the normal (Gaussian) distribution

Y D 1p
2	

exp.�z2=2/

z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.3989 0.3989 0.3989 0.3988 0.3986 0.3984 0.3982 0.3980 0.3977 0.3973
0.1 0.3970 0.3965 0.3961 0.3956 0.3951 0.3945 0.3939 0.3932 0.3925 0.3918
0.2 0.3910 0.3902 0.3894 0.3885 0.3876 0.3867 0.3857 0.3847 0.3836 0.3825
0.3 0.3814 0.3802 0.3790 0.3778 0.3765 0.3752 0.3739 0.3725 0.3712 0.3697
0.4 0.3683 0.3668 0.3653 0.3637 0.3621 0.3605 0.3589 0.3572 0.3555 0.3538
0.5 0.3521 0.3503 0.3485 0.3467 0.3448 0.3429 0.3410 0.3391 0.3372 0.3352
0.6 0.3332 0.3312 0.3292 0.3271 0.3251 0.3230 0.3209 0.3187 0.3166 0.3144
0.7 0.3123 0.3101 0.3079 0.3056 0.3034 0.3011 0.2989 0.2966 0.2943 0.2920
0.8 0.2897 0.2874 0.2850 0.2827 0.2803 0.2780 0.2756 0.2732 0.2709 0.2685
0.9 0.2661 0.2637 0.2613 0.2589 0.2565 0.2541 0.2516 0.2492 0.2468 0.2444
1.0 0.2420 0.2396 0.2371 0.2347 0.2323 0.2299 0.2275 0.2251 0.2227 0.2203
1.1 0.2179 0.2155 0.2131 0.2107 0.2083 0.2059 0.2036 0.2012 0.1989 0.1965
1.2 0.1942 0.1919 0.1895 0.1872 0.1849 0.1826 0.1804 0.1781 0.1758 0.1736
1.3 0.1714 0.1691 0.1669 0.1647 0.1626 0.1604 0.1582 0.1561 0.1539 0.1518
1.4 0.1497 0.1476 0.1456 0.1435 0.1415 0.1394 0.1374 0.1354 0.1334 0.1315
1.5 0.1295 0.1276 0.1257 0.1238 0.1219 0.1200 0.1182 0.1163 0.1145 0.1127
1.6 0.1109 0.1092 0.1074 0.1057 0.1040 0.1023 0.1006 0.0989 0.0973 0.0957
1.7 0.0940 0.0925 0.0909 0.0893 0.0878 0.0863 0.0848 0.0833 0.0818 0.0804
1.8 0.0790 0.0775 0.0761 0.0748 0.0734 0.0721 0.0707 0.0694 0.0681 0.0669
1.9 0.0656 0.0644 0.0632 0.0620 0.0608 0.0596 0.0584 0.0573 0.0562 0.0551
2.0 0.0540 0.0529 0.0519 0.0508 0.0498 0.0488 0.0478 0.0468 0.0459 0.0449
2.1 0.0440 0.0431 0.0422 0.0413 0.0404 0.0396 0.0387 0.0379 0.0371 0.0363
2.2 0.0355 0.0347 0.0339 0.0332 0.0325 0.0317 0.0310 0.0303 0.0297 0.0290
2.3 0.0283 0.0277 0.0270 0.0264 0.0258 0.0252 0.0246 0.0241 0.0235 0.0229
2.4 0.0224 0.0219 0.0213 0.0208 0.0203 0.0198 0.0194 0.0189 0.0184 0.0180
2.5 0.0175 0.0171 0.0167 0.0163 0.0158 0.0154 0.0151 0.0147 0.0143 0.0139
2.6 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110 0.0107
2.7 0.0104 0.0101 0.0099 0.0096 0.0093 0.0091 0.0088 0.0086 0.0084 0.0081
2.8 0.0079 0.0077 0.0075 0.0073 0.0071 0.0069 0.0067 0.0065 0.0063 0.0061
2.9 0.0060 0.0058 0.0056 0.0055 0.0053 0.0051 0.0050 0.0048 0.0047 0.0046
3.0 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0037 0.0036 0.0035 0.0034
3.1 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0025 0.0025
3.2 0.0024 0.0023 0.0022 0.0022 0.0021 0.0020 0.0020 0.0019 0.0018 0.0018
3.3 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.0013 0.0013
3.4 0.0012 0.0012 0.0012 0.0011 0.0011 0.0010 0.0010 0.0010 0.0009 0.0009
3.5 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 0.0007 0.0007 0.0006
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Fisher F

Tables A.7 and A.8 respectively gives the value of F (ratio of variances) for given
values of degrees of freedom at 5% and 1% points.

�2 Table

Table A.9 gives the value of �2 for given degrees of freedom for different
probability.

Range of Population Mean

Table A.10 gives the confidence limits of the mean. If � is the population mean and
s is the standard deviation then, limits of mean are given as

Nx � ks � � � Nx C ks:

The values of k for given number of observations n is given for confidence
probability of 0.95 (5% points) and 0.99 (1% point).

Range of Standard Deviation

Table A.11 gives the value of kmin and kmax for given number of observations and
given confidence probability (covered area) such that

kmins � � � kmaxs:
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Table A.2 Area under normal curve

Area D 1p
2	

Z z

�1

exp.�z2=2/dz

z 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.50000 0.50399 0.50798 0.51196 0.51595 0.51994 0.52392 0.52790 0.53188 0.53585
0.1 0.53982 0.54379 0.54776 0.55171 0.55567 0.55961 0.56356 0.56749 0.57142 0.57534
0.2 0.57926 0.58316 0.58706 0.59095 0.59483 0.59870 0.60256 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62551 0.62930 0.63307 0.63683 0.64057 0.64430 0.64802 0.65173
0.4 0.65542 0.65909 0.66275 0.66640 0.67003 0.67364 0.67724 0.68082 0.68438 0.68793
0.5 0.69146 0.69497 0.69846 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72574 0.72906 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75174 0.75490
0.7 0.75803 0.76114 0.76423 0.76730 0.77034 0.77337 0.77637 0.77934 0.78230 0.78523
0.8 0.78814 0.79102 0.79388 0.79672 0.79954 0.80233 0.80510 0.80784 0.81056 0.81326
0.9 0.81593 0.81858 0.82120 0.82380 0.82638 0.82893 0.83146 0.83397 0.83645 0.83890
1.0 0.84133 0.84374 0.84612 0.84848 0.85082 0.85313 0.85541 0.85768 0.85991 0.86213
1.1 0.86432 0.86649 0.86863 0.87075 0.87284 0.87491 0.87696 0.87898 0.88098 0.88296
1.2 0.88491 0.88684 0.88875 0.89063 0.89249 0.89433 0.89615 0.89794 0.89971 0.90145
1.3 0.90318 0.90488 0.90656 0.90822 0.90985 0.91147 0.91306 0.91463 0.91618 0.91771
1.4 0.91922 0.92070 0.92217 0.92362 0.92504 0.92644 0.92783 0.92919 0.93054 0.93186
1.5 0.93316 0.93445 0.93572 0.93696 0.93819 0.93940 0.94059 0.94176 0.94291 0.94405
1.6 0.94517 0.94627 0.94735 0.94842 0.94946 0.95049 0.95151 0.95251 0.95349 0.95445
1.7 0.95540 0.95633 0.95725 0.95815 0.95903 0.95990 0.96076 0.96160 0.96242 0.96323
1.8 0.96403 0.96481 0.96558 0.96633 0.96707 0.96780 0.96852 0.96922 0.96990 0.97058
1.9 0.97124 0.97189 0.97253 0.97315 0.97377 0.97437 0.97496 0.97554 0.97610 0.97666
2.0 0.97720 0.97774 0.97826 0.97878 0.97928 0.97977 0.98025 0.98073 0.98119 0.98164
2.1 0.98209 0.98252 0.98295 0.98337 0.98377 0.98417 0.98456 0.98495 0.98532 0.98569
2.2 0.98605 0.98640 0.98674 0.98708 0.98741 0.98773 0.98804 0.98835 0.98865 0.98894
2.3 0.98923 0.98951 0.98978 0.99005 0.99031 0.99056 0.99081 0.99106 0.99130 0.99153
2.4 0.99175 0.99198 0.99219 0.99240 0.99261 0.99281 0.99301 0.99320 0.99338 0.99356
2.5 0.99374 0.99392 0.99408 0.99425 0.99441 0.99457 0.99472 0.99487 0.99501 0.99516
2.6 0.99529 0.99543 0.99556 0.99568 0.99581 0.99593 0.99605 0.99616 0.99627 0.99638
2.7 0.99649 0.99659 0.99669 0.99679 0.99688 0.99698 0.99707 0.99715 0.99724 0.99732
2.8 0.99740 0.99748 0.99756 0.99763 0.99770 0.99777 0.99784 0.99790 0.99797 0.99803
2.9 0.99809 0.99815 0.99821 0.99826 0.99832 0.99837 0.99842 0.99847 0.99852 0.99856
3.0 0.99861 0.99865 0.99869 0.99874 0.99878 0.99882 0.99885 0.99889 0.99892 0.99896
3.1 0.99899 0.99902 0.99905 0.99908 0.99911 0.99914 0.99917 0.99920 0.99922 0.99925
3.2 0.99927 0.99929 0.99932 0.99934 0.99937 0.99939 0.99940 0.99942 0.99944 0.99946
3.3 0.99948 0.99949 0.99951 0.99953 0.99955 0.99956 0.99957 0.99959 0.99960 0.99961
3.4 0.99962 0.99963 0.99964 0.99966 0.99967 0.99968 0.99969 0.99970 0.99972 0.99973
3.5 0.99974 0.99974 0.99975 0.99975 0.99976 0.99977 0.99977 0.99978 0.99978 0.99979
3.6 0.99980 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983 0.99984 0.99984 0.99985
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Table A.3 Area under the normal Gaussian distribution

Area D 1p
2	

Z z

0

exp.�z2=2/dz

z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2258 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549
0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2882 0.2910 0.2939 0.2967 0.2996 0.3023 0.3051 0.3079 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3290 0.3315 0.3340 0.3365 0.3389
1.0 0.3414 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4648 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4874 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4895 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4924 0.4926 0.4929 0.4930 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4983 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 0.4998
3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
3.6 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.5000 0.5000 0.5000
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Table A.4 The area covered of Gaussian curve between the ordinates˙z

Area D P D 1p
2	

Z z1

�z1

exp.�z2=2/dz

z1 P Pr�Pr�1 z1 P Pr�Pr�1 z1 P Pr�Pr�1

0.00 0.00000 0.35 0.27366 0.00752 0.7 0.51607 0.00626
0.01 0.00798 0.00798 0.36 0.28115 0.00749 0.8 0.57619 0.06012
0.02 0.01596 0.00798 0.37 0.28861 0.00747 0.9 0.63 I 88 0.05559
0.03 0.01393 0.00797 0.38 0.29605 0.00743 1.0 0.68269 0.05081
0.04 0.03191 0.00798 0.39 0.30346 0.00741 1.1 0.71867 OM598
0.05 003988 0.00797 0.40 0.31084 0.00738 t.2 0.76986 0.041
0.06 0.04784 0.00796 0.41 0.31819 0.00735 t.3 0.80640 0.064
0.07 0.05581 0.00797 0.42 0.32551 0.00732 1.4 0.83849 0.03209
0.08 0.06376 0.00795 0.43 0.33280 0.00729 1.5 0.86639 0.02790
0.09 0.07171 0.00795 0.44 0.34006 0.00716 1.6 0.89040 0.024 a I
0.10 0.07966 0.00795 0.45 0.34729 0.00723 1.7 0.91087 0.02047
0.11 0.08759 0.00793 0.46 0.35448 0.00719 1.8 0.928 ! 4 0.01727
0.12 0.09552 0.00793 0.47 0.36 I 64 0.00716 1.9 0.94257 0.01443
0. 13 0.10343 0.00791 0.48 0.36877 0.007 I 3 2.0 0.95450 0.01193
0.14 0.1134 0.00791 0.49 0.37587 0.007 I a 2.1 0.96427 0.00977
0.15 0.11924 0.00790 0.50 0.38292 0.00705 2.2 0.97219 0.00792
0.16 0.12712 0.00788 0.51 0.38995 0.00703 2.3 0.97855 0.00636
0.17 0.13499 0.00787 0.52 0.39694 0.00699 2.4 0.98360 0.00505
0.18 0.14285 0.00786 0.53 0A0389 0.00695 2.5 0.98758 0.00398
0.19 0.15069 0.00784 0.54 0.41080 0.00691 2.6 0.99068 0.00310
0.20 0.15852 0.00783 0.55 0.41768 0.00688 2.7 0.99307 0.00239
0.21 0.16633 0.00781 0.56 0.42452 0.00684 2.8 0.99489 0.00182
0.22 0.17413 0.00780 0.57 0.43132 0.00680 2.9 0.99627 0.00138
0.23 0.18191 0.00778 0.58 0.43809 0.00677 3.0 0.99730 0.00103
0.24 0.18967 0.00776 0.59 0.44481 0.00672 3.1 0.99806 0.00076
0.25 0.19741 0.00774 0.60 0.45149 0.00668 3.2 0.99863 0.00057
0.26 0.20514 0.00773 0.61 0.45814 0.00665 3.3 0.99903 0.00040
0.27 0.21284 0.00770 0.62 0.46474 0.00660 3.4 0.99933 0.00030
0.28 0.22052 0.00768 0.63 0.47131 0.00657 3.5 0.99953 0.00020
0.29 0.22818 0.00766 0.64 0.47783 0.00652 3.6 0.99968 0.00015
0.30 0.23582 0.00764 0.65 0.48431 0.00648 3.7 0.99978 0.00010
0.31 0.24344 0.00762 0.66 0.49075 0.00644 3.8 0.99986 0.00008
0.32 0.25103 0.00759 0.67 0.49714 0.00639 3.891 0.99990
0.33 0.25860 0.00757 0.68 0.50350 0.00636
0.34 0.26614 0.00754 0.69 0.50981 0.00631
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Table A.5 Values of z for the given the probability (area covered)

P D 1p
2	

Z z

�z
exp.�z2=2/dz

P z Diff P z Diff P z Diff

0.00 0.0000 0.35 0.4538 0.0139 0.70 1.036 0.021
0.01 0.0125 0.0125 0.36 0.4677 0.0140 0.71 1.058 0.022
0.02 0.025 0.0126 0.37 0.4817 0.0141 0.72 1.080 0.022
0.03 0.0376 0.0125 0.38 0.4959 0.0142 0.73 1.103 0.023
0.04 0.0502 0.0126 0.39 0.5101 0.0142 0.74 1.126 0.023
0.05 0.0627 0.0125 0.40 0.5244 0.0143 0.75 1.150 0.024
0.06 0.0753 0.0126 0.41 0.5388 0.0144 0.76 1.1 0.025
0.07 0.0878 0.0125 0.42 0.5534 0.0146 0.77 1.200 0.025
0.08 0.1004 0.0126 0.43 0.5681 0.0147 0.78 1.227 0.027
0.09 0.1130 0.0126 0.44 0.5828 0.0147 0.79 1.254 0.027
0.10 0.1257 0.0127 0.45 0.5978 0.0150 0.80 1.282 0.028
0.11 0.1383 0.0126 0.46 0.6128 0.0150 0.81 1.311 0.029
0.12 0.1510 0.0127 0.47 0.6280 0.0152 0.82 1.341 0.030
0.13 0.1637 0.0127 0.48 0.6433 0.0153 0.83 1.372 0.031
0.14 0.1764 0.0127 0.49 0.6588 0.0155 0.84 1.405 0.033
0.15 0.1891 0.0127 0.50 0.6745 0.0157 0.85 1.440 0.D35
0.16 0.2019 0.0128 0.51 0.6903 0.0158 0.86 1.476 0.036
0.17 0.2147 0.0128 0.52 0.7063 0.0160 0.87 1.514 0.038
0.18 0.2275 0.0128 0.53 0.7225 0.0162 0.88 1.555 0.041
0.19 0.2404 0.0129 0.54 0.7388 0.0163 0.89 1.598 0.043
0.20 0.2533 0.0129 0.55 0.7554 0.0166 0.90 1.645 0.047
0.21 0.2663 0.0130 0.56 0.7722 0.0168 0.91 1.695 0.050
0.22 0.2793 0.0130 0.57 0.7892 0.0170 0.92 1.751 0.056
0.23 0.2924 0.0131 0.58 0.8064 0.0172 0.93 1.812 0.061
0.24 0.3055 0.0131 0.59 0.8239 0.0175 0.94 1.881 0.069
0.25 0.3186 0.0133 0.60 0.8416 0.0177 0.95 1.960 0.079
0.26 0.3319 0.0134 0.61 0.8596 0.0180 0.96 2.054 0.094
0.27 0.3451 0.0134 0.62 0.8779 0.0183 0.97 2.170 0.116
0.28 0.3585 0.0134 0.63 0.8965 0.0186 0.98 2.326 0.156
0.29 0.3719 0.0134 0.64 0.9154 0.0189 0.99 2.576 0.250
0.30 0.3853 0.0136 0.65 0.9346 0.0192 0.995 2.807 0.231
0.31 0.3989 0.0136 0.66 0.9542 0.0196 0.999 3.291 0.484
0.32 0.4125 0.0136 0.67 0.9741 0.0199
0.33 0.4261 0.0138 0.68 0.9945 0.0204
0.34 0.4399 00139 0.69 1.015 0.0205
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Table A.6 Student t distribution � and s known

Ptp D
Z t�

�t�

f .tv/

Degree of freedom Area covered
� D n�1 0.90 0:95 0:98 0:99 0.995 0.999

Percentage points
0.05 0:025 0:01 0:005 0.0025 0.0005
t� t� t� t� t� t�

1 6.3138 12:706 31:821 63:657 127.32 636.619
2 2.9200 4:3027 6:965 9:9248 14.089 31.598
3 2.3534 3:1825 4:541 5:8409 7.4533 12.924
4 2.1318 2:7764 3:747 4:6041 5.5976 8.610
5 2.0150 2:5706 3:365 4:0321 4.7733 6.869
6 1.9432 2:4469 3:143 3:7074 4.3168 5.959
7 1.8946 2:3646 2:998 3:4995 4.0293 5.408
8 1.8595 2:3060 2:896 3:3554 3.8325 5.041
9 1.8331 2:2622 2:821 3:2498 3.6897 4.781
10 1.8125 2:2281 2:764 3:1693 3.5814 4.587
11 1.7959 2:2010 2:718 1:1058 3.4966 4.437
12 1.7823 2:1788 2:681 3:0545 3.4284 4.318
13 1.7709 2:1604 2:650 3:0123 13725 4.221
14 1.7613 2:1448 2:624 2:9768 3.3257 4.140
15 1.7530 2:1315 2:602 2:9467 3.2860 4.073
16 1.7459 2:1199 2:583 2:9208 3.2520 4.015
17 1.7396 2:1098 2:567 2:8982 3.2225 3.965
18 1.7341 2:1009 2:552 2:8784 3.1966 3.922
19 1.7291 2:0930 2:539 2:8609 3.1737 3.883
20 1.7247 2:0860 2:528 2:8453 3.1534 3.850
25 1.7081 2:0595 2:485 2:7874 10782 1725
30 1.6973 2:0423 2:457 2:7500 3.0298 3.646
35 1.6996 2:0301 2:438 2:7239 2.9962 3.5915
40 1.6839 2:0211 2:423 2:7045 2.9713 3.5511
45 1.6794 2:0141 2:412 2:6896 2.9522 3.5207
50 1.6759 2:0086 2:403 2:6778 2.9370 3.4965
60 1.6707 2:0003 2:390 2:6603 2.9146 3.4606
70 1.6669 1:9945 2:381 2:6480 2.8988 3.4355
80 1.6641 1:9901 2:374 2:6388 2.8871 3.4[69
90 1.6620 1:9867 2:368 2:6316 2.8779 3.4022
100 1.6602 1:9840 2:364 2:6260 2.8707 13909
150 1.6551 1:9759 2:351 2:6090 2.8492 3.3567
200 1.6525 1:9719 2:345 2:6006 2.8386 3.3400
The values of t� for given area covered or the area beyond it
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Table A.7 F test: Upper limits for F for Probability0.05

v I 2 3 4 5 6 7 8 9 10 15 20 24 30 40 50 60 80 100

1 161:44 200 216 225 230 234 237 239 241 242 246 248 249 250 251 252 252 252 253

2 18:51 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5

3 10:13 9.55 9.28 9.12 901 8.94 8.89 8.85 ’1.81 8.79 8.70 8.66 8.64 8.62 8.59 8.58 8.57 8.56 8.55

4 7:71 694 6.59 6.39 6.26 6.16 6.09 604 6.00 596 5.86 5.80 5.77 5.75 5.72 5.70 5.69 5.67 5.66

5 6:61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.56 4.53 4.50 4.46 4.44 4.43 4.41 4.41

6 5:99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.84 3.81 3.77 3.75 3.74 3.72 3.71

7 5:59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.41 3.38 3.34 3.32 3.30 3.29 3.27

8 5:32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.12 3.08 3.04 3.02 3.01 2.99 2.97

9 5:12 4.26 3.86 3.63 348 3.37 3.29 3.23 3.18 3.14 3.01 294 2.90 2.86 2.83 2.80 2.79 2.77 2.76

10 4:96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 298 2.85 2.77 2.74 2.70 2.66 2.64 2.62 2.60 2.59

15 4:54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.42 2.33 2.31 2.25 2.20 2.18 2.16 2.14 2.12

20 4:35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.08 2.04 1.99 1.97 1.95 1.92 1.91

25 4:24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.11 2.02 1.96 1.92 1.87- 1.84 1.82 1.80 1.78

30 4:17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.93 1.89 1.85 1.79 1.76 1.74 1.71 1.70

40 4:08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.92 1.84 1.81 1.74 1.69 1.66 1.64 1.62 1.59

50 4:03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.78 1.74 1.69 1.63 1.60 1.58 1.54 1.52

60 4:00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.84 1.75 1.70 1.65 1.59 1.56 1.53 1.50 1.48

80 3:96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.79 1.70 1.65 1.60 1.54 1.51 1.48 1.45 1.43

100 3:94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.77 1.68 1.63 1.57 1.52 1.48 1.45 1.41 1.39
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Table A.8 F test: Upper limits for F for Probability0.01

� 1 2 3 4 5 6 7 8 9 10 15 20 24 30 40 50 60 80 100

2 98:50 99:0 99.2 99.2 99.3 99.4 99.4 99.4 99:4 99.4 99:4 99:4 99:5 99:5 99:5 99:5 99:5 99:5 99:5

3 34:12 30:8 29.5 28.7 28:2 27.9 27.7 27.5 27:3 27.2 26:9 26:7 26:6 26:5 26:4 26:4 26:3 26:3 26:2

4 21:20 18:0 16.7 16.0 15.5 152 15.0 14.8 14:7 14.5 14:2 14:0 13:9 13:9 13:7 13:7 13:7 13:6 13:6

5 16:26 13:3 12.1 11.4 11.0 10.7 10.5 10.3 10:2 10.1 9:72 9:55 9:47 9:38 9:29 9:24 9:20 9:16 9:13

6 13:75 10:9 9.78 915 875 8.47 8.26 8.10 7:98 7.87 7:56 7:40 7:31 7:23 7:14 7:09 7:06 7:01 6:99

7 12:25 9:55 8.45 7.85 7.46 7.19 6.99 684 6:72 6.62 6:31 6:16 6:07 5:99 5:91 5:86 5:82 5:78 5:75

8 11:26 8:65 7.59 7.01 6.63 6.37 6.18 6.03 5:91 581 5:52 5:36 5:28 5:20 5:12 5:07 5:03 4:99 4:96

9 10:56 8:02 6.99 6.42 6.06 5.80 5.61 5.47 5:35 5.26 4:96 4:81 4:73 4:65 4:57 4:52 4:48 4:44 4:42

10 10:04 7:56 6.55 5.99 5.64 5.39 5.20 5.06 4:94 4.85 4:56 4:41 4:33 4:25 4:17 4:12 4:08 4:04 4:01

15 8:68 6:36 5.42 4.89 4.56 4.32 4.14 4.00 3:89 3.80 3:52 3:37 3:29 3:21 3:13 3:08 3:05 3:00 2:98

20 8:10 5:85 4.94 4.43 4.10 3.87 3.70 3.56 3:46 3.37 3:09 2:94 2:86 2:78 2:69 2:64 2:61 2:56 2:54

25 7:77 5:57 4.68 4.18 3.86 3.63 3.46 3.32 3:22 3.13 2:85 2:70 2:62 2:54 2:45 2:40 2:36 2:32 2:29

30 7:56 5:39 .4.51 4.02 3.70 3.47 3.30 3.17 3:07 2.98 2:70 2:55 2:47 2:39 2:30 2:25 2:21 2:16 2:13

40 7:31 5:18 4.31 3.83 3.51 3.29 312 2.99 2:89 2.80 2:52 2:37 2:29 2:20 2:11 2:06 2:02 1:97 1:94

50 7:17 5:06 4.20 3.72 3.41 3.19 3.02 2.89 2:79 2.70 2:42 2:27 2:18 2:10 2:01 1:95 1:91 1:86 1:82

60 7:08 4:98 4.13 3.65 3.34 3.12 2.95 282 2:72 2.63 2:35 2:20 2:12 i03 1:94 1:88 1:84 1:78 1:75

80 6:96 4:88 4.04 3.56 3.26 3.04 2.87 2.74 2:64 2.55 2:27 2:12 2:03 1:94 1:85 1:79 1:75 1:69 1:66

100 6:90 4:82 3.9B 3.51 3.21 2.99 282 269 2:59 2.50 2:22 2:07 1:9B 1:89 1:80 1:73 1:69 1:63 1:60
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Table A.9 Significant values �2(˛) of Chi-square distribution (Right tail areas for given
probability ˛)

P D Pr .�2 > '�2.˛/ D ˛

Degree of freedom Probability (Level of significance) Right tail probability areas
� 0:99 0:95 0:50 0:10 0:05 0:02 0:01

1 �000157 0:00393 0:455 2:706 3:841 5:214 6:635

2 0:0201 0:103 1:386 4:605 5:991 7:824 9:210

3 0:115 0:352 2:366 6:251 7:815 9:837 11:341

4 0:297 0:711 3:357 7:779 9:488 11:668 13:277

5 0:554 1:145 4:351 9:236 11:070 13:388 15:086

6 0:872 1:635 5:348 10:645 12:592 15:033 16:812

7 1:239 2:167 6:346 12:017 14:067 16:622 18:475

8 1:646 2:733 7:344 13:362 15:507 18:1680 20:09:0

9 2:088 3:325 8:343 14:684 16:919 c19.679 21:666

10 2:558 3:940 9:340 15:987 18:307 21:161 23:209

11 3:053 4:575 10:341 17:275 19:675 22.618c 24:725

12 3:571 5:226 11:340 18:549 21:026 24:054 26:217

13 4:107 5:892 12:340 19:812 22:362 25:172 27:688

14 4:66:0 6:571 13:339 21:064 23:685 26:873 29:141

15 4:229 7:261 14:339 22:307 24:996 28:259 30:578

16 5:812 7:962 15:338 23:542 26:296 29–633 32:000

17 6:408 8:672 16:338 24:769 27:587 30:995 33:409

18 7:015 9:390 17:338 25:989 28:869 32346 34:805

19 7:633 10:117 18:338 27:204 30:144 33:687 36:191

20 8:260 10:851 19:337 28:412 31:410 35:020 37:566

21 8:897 11:591 20:337 29:615 32:671 36:348 38:932

22 9:542 12:338 21:337 3.0.813 33:924 37:659 40:289

23 10:196 13:091 22:337 32:007 35:172 38:968 41:638

24 10:856 13:848 23:337 32:196 36:415 40:270 42:980

25 11:524 14.6 f 1 24:33:1 34:382 37:652 41:566 44:314

26 12:198 15:379 25:336 35363 38:885 41:856 45:642

27 12:879 16:151 26:336: 36:741 40:113 44:140 46:963

28 13:565 16:928 27:336 37:916 41:337 45:419 48:278

29 14:256 17:708 28:336 39:087 42:557 46:693 49:588

30 14:953 18:493 29:336 40:256 43:773 47:962 50:892
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Table A.10 Confidence limits for the Mean �

Confidence level 95% Confidence level 99%
n k n k n k n k n k n k

1 - 30 0.3734 95 0.2037 1 30 0.5033 95 0.2698
2 8.9845 31 0.3668 100 0.1964 2 4.5012 31 0.4939 100 0.2627
3 2.4842 32 0.3605 110 0.1890 3 5.7301 32 0.4851 110 0.2500
4 1.5913 33 0.3546 120 0.1808 4 2.9205 33 0.4767 120 0.2390
5 1.2461 34 0.3489 130 0.1735 5 2.0590 34 0.4688 130 0.2293
6 1.0494 35 0.3435 140 0.1671 6 1.6461 35 0.4612 140 0.2207
7 0.9248 36 0.3384 150 0.1674 7 1.4013 36 0.4540 n11S0 0.2131
8 0.8360 37 0.3334 160 0.1561 8 1.2373 37 0.4471 160 0.2061
9 0.7687 38 0.3287 170 0.1514 9 1.1185 38 0.4405 170 0.1998
10 0.7154 39 0.3242 180 0.1471 10 1.0277 39 0.4342 180 0.1941
11 0.6718 40 0.3198 190 0.1431 11 0.9556 40 0.4282 190 0.1888
12 0.6354 41 0.3156 200 0.1394 12 0.8966 41 0.4224 200 0.1839
13 0.6043 42 0.3116 250 0.1240 13 0.8472 42 0.4168 250 0.1629
14 0.5774 43 0.3078 300 0.1132 14 0.8051 43 0.4115 300 0.1487
15 0.5538 44 0.3040 350 0.1048 15 0.7686 44 0.4063 350 0.1377
16 0.5329 45 0.3004 400 0.0980 16 0.7367 45 0.4013 400 0.1288.
17 0.5142 46 0.2970 450 0.0924 17 0.7084 46 0.3966 450 0.1214
18 0.4973 47 0.2936 500 0.0877 18 0.6831 47 0.3919 500 0.1152
19 0.4820 48 0.2904 550 0.0836 19 0.6604 48 0.3875 550 0.1098
20 0.4680 49 0.2872 600 0.0800 20 0.6397 49 0.3832 600 0.1052
21 0.4552 50 0.2842 650 0.0769 21 0.6209 50 0.3790 650 0.1010
22 0.4434 55 0.2703 700 0.0741 22 0.6037 55 0.3600 700 0.0974
23 0.4324 60 0.2583 750 0.0716 23 0.5878 60 0.3436 750 0.0941
24 0.4223 65 0.2478 800 0.0693 24 0.5730 65 0.3293 800 0.0911
25 0.4128 70 0.2385 850 0.0672 25 0.5594 70 0.3166 850 0.0884
26 0.4039 75 0.2301 900 0.0653 26 0.5467 75 0.3053 900 0.0859
27 0.3956 80 0.2225 950 0.0636 27 0.5348 80 0.2951 950 0.0836
28 0.3878 85 0.2157 – – 28 0.5236 85 0.2859 – –
29 0.3804 90 0.2095 1,000 0.620 29 0.5131 90 0.2775 1,000 0.0815
The tabulated values give values of the confidence factor k defining the confidence limits
Nx ˙ ks for the mean �. Values of k are given for two confidence levels namely 95% and 99%
The value of k D t�=

p
n; n being the size of the sample
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Table A.11 Limits of standards deviation of population in terms of Standard deviation of the
sample for given probability

kmins � � � kmaxs

P 0.90 0.95 0.98 0.99
n kmin kmax kmin kmax kmin kmax kmin kmax

2 0.5102 15:947 0.4463 31:910 0.3882 79:789 0.3562 159:58

3 0.5777 4:416 0.5207 6:285 0.4660 9:974 0.4344 14:124

4 0.6196 2:920 0.5665 3:729 0.5142 5:111 0.4834 6:468

5 0.6493 2:372 0.5991 2:874 0.5489 3:669 0.5188 4:396

6 0.6720 2:089 0.6242 2:453 0.5757 3:003 0.5464 3:485

7 0.6903 1:915 0.6444 2:202 0.5974 2:623 0.5688 2:980

8 0.7054 1:797 0.6612 2:035 0.6155 2:377 0.5875 2:660

9 0.7183 1:711 0.6755 1:916 0.6310 2:204 0.6036 2:439

10 0.7293 1:645 0.6878 0:286 0.6445 2:076 0.6177 2:278

11 0.7391 1:593 0.6987 1:755 0.6564 1:977 0.6301 2:154

12 0.7477 1:551 0.7084 I:698 0.6670 1:898 0.6412 2:056

13 0.7555 1:515 0.7171 1:651 0.6765 1:833 0.6512 1:976

14 0.7625 1:485 0.7250 1:611 0.6852 1:799 0.6603 1:910

15 0.7688 1:460 0.7321 1:577 0.6931 1:733 0.6686 1:854

16 0.7747 1:437 0.7387 1:548 0.7004 1:694 0.6762 1:806

17 0.7800 1:418 0.7448 1:522 0.7071 1:659 0.6833 1:764

18 0.7850 1:400 0.7504 1:499 0.7133 1:629 0.6899 1:727

1.9 0.7896 1:384 0.7556 1:479 0.7191 1:602 0.6960 1:695

20 0.7939 1:370 0.7604 1:461 0.7246 1:578 0.7018 1:666

25 0.8118 1:316 0.7808 1:391 0.7473 1:487 0.7258 1:558

30 0.8255 1:280 0.7964 1:344 0.7647 1:426 0.7444 1:487

35 0.8364 1:253 0.8089 1:310 0.7788 1:382 0.7594 1:435

40 0.8454 1:232 0.8192 1:284 0.7904 1:349 0.7718 1:397

45 0.8529 1:215 0.8279 1:263 0.8002 1:323 0.7823 1:366

50 0.8594 1:202 0.8353 1:246 0.8087 1:301 0.7914 1:341

55 0.8651 1:190 0.8419 1:232 0.8161 1:283 0.7994 1:320

60 0.8701 1:180 0.8476 1:220 0.8227 1:268 0.8065 1:303

65 0.8746 1:172 0.8528 1:209 0.8286 1:255 0.8128 1:287

70 0.8786 1:165 0.8574 1:200 0.8339 1:243 0.8185 1:274

75 0.8822 1:158 0.8616 1:192 0.8387 1:233 0.8237 1:263

80 0.8855 1:152 0.8655 1:184 0.8431 1:224 0.8284 1:252

85 0.8885 1:147 0.8690 1:178 0.8471 1:216 0.8328 1:243

90 0.8913 1:142 0.8722 1:172 0.8508 1:209 0.8368 1:235

95 0.8939 1:138 0.8752 1:167 0.8543 1:202 0.405 1:227

100 0.8963 1:134 0.8780 1:162 0.8575 1:196 0.8440 1:220

1 1.0000 1000 1000 1000



Bibliography

Research papers

1. I. Lira, D. Grientschnig, Bayesian assessment of uncertainty in metrology: a tutorial.
Metrologia 47(3), R1–R14 (2010)

2. C. Elster, B. Toman, Analysis of key comparisons: estimating laboratories’ biases by a fixed
effects model using Bayesian model averaging. Metrologia 47(3), 113–119 (2010)

3. R.N. Kacker, J.F. Lawrence, Rectangular distribution whose end points are not exactly known:
curvilinear trapezoidal distribution. Metrologia 47(3), 120–126 (2010)

4. F. Pennecchi, L. Oberto, Uncertainty evaluation for the estimate of a complex-valued quantity
modulus. Metrologia 47(3), 157–166 (2010)

5. L. Lira, The probability distribution of a quantity with given mean and variance. Metrologia
46(6), L27–L28 (2009)

6. J. Lovell-Smith, The propagation of uncertainty for humidity calculations. Metrologia 46(6),
607–615 (2009)

7. D. Calonico, F. Levi, L. Lorini, G. Mana, Bayesian estimate of the zero-density frequency of
a Cs fountain. Metrologia 46(6), 629–636 (2009)

8. R.B. Frenkel, Fiducial inference applied to uncertainty estimation when identical readings are
obtained under low instrument resolution. Metrologia 46(6), 661–667 (2009)
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of weights, 220
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Degrees of freedom, 211, 288
Density of
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water, 231
weights, 231

Dependent variable, 15, 110
Derived quantity, 2
Deviation from the mean, 42
Diagonal, 206
Differential method, 6
Digital instrument, 287
Digital multi-meter, 283
Digital readout, 209
Digital thermometer, 273
Dimension of a quantity, 3
Direct reading balances, 214
Discrete and continuous variables, 32
Discrete distribution, 33
Discrete functions, 32
Discrete probability, 32
Discrete probability functions, 34
Discrete random variable, 16
Discrimination test, 219
Discrimination threshold, 26
Dispersion, 13
Dissemination, 272
Distribution function, 33
Dixon, 76
Dominant term, 159

Effective degree of freedom, 263
Electrical instruments, 279
Electro-optical method, 244
End faces, 258
Environmental quantities, 264
Equality of
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several means, 73
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Estimate of population standard deviation, 14
Estimation of type A, 121
Evaporation loss, 237
Example, 276
Expanded uncertainty, 22, 115, 263, 283, 286,

289
Expansion of a function, 111
Exponential function, 143
Extended uncertainty, 211
External consistency, 92
External strapping, 244

F -distribution, 69
Finite source size, 258
Fisher’s F test, 122
Fitting a plane, 191
Flatness, 258
Frequency/relative frequency, 11
Fringe fraction, 254
Functional relationship, 110

Gamma function, 26
Gamma probability density function, 27
Gas pressure, 271
Gauge table, 242, 243
Gaussian function, 38
Gaussian probability function, 38
Gravimetric method, 229, 231
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Height of
a point, 181–185
some important points, 186

Horizontal cylindrical storage, 242
Humidity, 223
Humidity of air, 256
Hydrometer, 250
Hydrostatic head, 271

In CO2, 224
Inconsistent, 97
Independent observations, 9
Independent variable, 15
Inert gases, 153
Influence quantity, 23
Input estimate, 109
Input quantities, 109, 110
Inter-laboratories standard deviation, 91
Internal strapping, 244, 248
Intra-laboratory, 91
ISO guide, 161
ISO Gum, 174
Isotopic composition, 271

Kelvin, 270

Laboratory instruments, 123
Lack of stability, 285
Least squares, 148
Limitations of ISO GUM, 175
Linear combination, 41
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Linear expansion, 255
Linear function, 111
Linear relation, 132
Linearity check, 214, 218
Luminous flux, 275

M1 and M2 weights, 227
Mathematical modelling, 109
Matrix method, 135
Mean, 11, 54, 55, 57, 89
Mean and variance, 61
Mean of the poisson’s distribution, 37
Mean value of two means, 80
Measurand, 4, 109
Measured value, 5
Measurement, 10

data, 216
model, 216
procedure, 6

Median, 12
Mercury, 229
Merits, 174
Merits of ISO GUM, 174
Mho scale, 2
Micrometer, 260
Micrometer under-test, 262
Mismatch, 281
Molar mass, 224
Moments, 35
Monte–Carlo method, 167
Most probable mean, 50
Most probable mean of the data, 48
MPE and correction, 221
M3 weights, 228

Nomenclature, 46
Non-diagonal, 206
Non-linearity, 282
Normal distribution, 17, 126
Normal probability function, 38
Notation, 72
Null hypothesis, 100
Null method, 6
Numerical example, 82, 84, 86, 102, 106, 107,

117, 138, 144, 147, 187, 240, 269

Objections, 160
Obliquity correction, 257
Observation, 9
Observation sheet, 270
Observations and deviations, 285, 287

On lines AD and CB, 198
On the central side EF, 205
On the central side GH, 203
On the diagonal AC or BD, 200
On the parallel side BA, 201
On the parallel side CD, 203
On the parallel sides BC or AD, 203
One-mark pipette, 233
One-way analysis, 98
Optical reference line, 244
Optical triangulation, 244
Optics of interferometer, 258
Other fixed points, 271
Outlier, 19
Output quantity, 109
Overall uncertainty, 160

Paired t -test, 65
Parameter, 19
Parameters of F distribution, 70
Phase change, 257
Physical measurements, 1
Physical quantity, 1
Pipette, 233
Piston gauge, 264
Point on the diagonals AC or BD,

196
Points on two different lines, 205
Poisson’s distribution, 36
Pooled variance, 118
Population, 10

mean, 11
of measurement, 10
standard deviation, 14

Power function, 145
Precision of

the instrument, 24
measurement, 8

Pressure, 222
Pressure of air, 256
Primary standards, 264, 271
Probability, 16

coverage, 18
density, 167
density function, 33
distribution, 17, 32
tables, 40

Probable error, 18
Procedure, 178, 275
Procedure for calculation, 164
Propagation, 167
Properties of normal distribution,

18
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Quantity, 2
Quantity equation, 3
Quartiles, 12

R, 224
Random error, 7, 155
Random selection, 19
Random uncertainty, 21, 156, 170
Random variable, 16, 31
Range, 18, 165
Realization of TPW, 271
Rectangular distribution, 53, 126, 261
Reference standard, 226
Reference temperatures, 238
Refractivity of air, 256
Relative error, 7
Relative uncertainty, 277
Remainder, 112
Repeatability, 8, 214
Repeatability of an instrument, 24
Reproducibility, 9
Resolution, 288
Response variable, 15
Result of measurement, 6
RF power sensor, 279

Sample, 10
mean, 11
of measurements, 11
standard deviation, 14
statistic, 19

SD, 80
Secondary standard, 227
Self-heating, 271
Semi-range, 153
Sensitivity, 214
Sides BC or AD, 189
Sides EF and GH, 190
Slip gauges, 253, 255, 262
Smallest built-in weight, 214
Smallest scale interval, 215
Sources of errors, 231
Spheres and spheroids, 242
Spillage of water, 231
Standard deviation, 13, 36, 37, 50, 89

of mean, 41
of standard deviation, 43

Standard error, 20, 97
Standard meter, 288
Standard resistor, 271
Standard sensor, 281
Standard source, 281

Standard uncertainty, 22, 165
Standard weights, 213
Statement of results, 289
Storage tanks, 241, 242
Student’s t distribution, 59
Substitution method, 5
Surface plate, 177
Suspension table, 177
Systematic error, 7, 156
Systematic uncertainty, 22, 158, 172

Tank deformation, 249
Tank strapping, 242
Tape measures, 243
Temperature, 223

alone, 232
gradient, 231
measurement, 270
of the medium, 231
scale, 271

Test, 76
Thermal voltage converter, 283
Thermocouples, 272
Thermodynamic temperature, 270
Transfer standards, 267
Trapezoidal, 56
Trapezoidal distribution, 127
Travelling standards, 86
Triangular distribution, 127
Triangular probability function, 55
Triple point, 271
True value, 4
t -test

for a sample mean, 62
for difference of two means, 63

TVC, 283, 285
Type A evaluation, 114, 116, 209, 230, 245
Type A evaluation of uncertainty, 21
Type B evaluation, 114, 125, 209, 230, 247
Type B evaluation of uncertainty, 21,

125, 234
Type B uncertainty, 274

Uncertainty, 20, 114, 137, 143, 164,
241, 273

components, 267, 268
in measured height, 195
in transition temperatures, 272

Uniformity of variances, 105
Upper and lower percentage points,

71
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Variance, 13, 54, 56, 58, 97
Variance of the mean, 113
Vector measurands, 290
Vertical cylindrical storage, 242
Volumetric comparison,

229, 238

Volumetric measurement, 229
Volumetric method, 238

Weight factors, 94, 95
Working standard, 227
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