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Foreword

Man discovered a long time ago by a succession of trials and errors the way to
produce steel and to increase its hardness by quenching. The empirical recipes
were more or less kept secret within craft guilds. It is not until 1772 that René-
Antoine Ferchault de Réaumur1 shed some light on the difference in carbon
content of cast iron and steel. He thus opened the way, and Alexandre-Théophile
Vandermonde, Gaspard Monge, Claude Louis Berthollet2 after him, to a true
scientific understanding of metallurgy, enabling to master transformations and the
effects of metal treatments. Scientific researches following, among which should
be emphasised the pioneering works of Henry le Chatelier, of Floris Osmond,
of Georges Charpy and of Léon Guillet, allowed understanding the chemistry of
alloys, the links between microstructure and mechanical behaviour and improving
industrial processes. The science of metals thus founded opened the way to the wider
subject of materials science. In the same way the practical problems of construction
led, earlier than metallurgy as shown by the interest of Leonardo da Vinci and
Galileo Galilei for the strength of materials, scientists like Robert Hooke, Joseph
Louis Lagrange, Leonhard Euler, Augustin Louis Cauchy to build solid mechanics
as a branch of applied mathematics. For a long time the constitutive equations
needed in structural mechanics remained crude idealisations of actual behaviour.
The pioneers in this field could correspond equally well with their peers about
metallurgy (or alchemy) as about mechanics (or astrology). Later, scientists have
become more and more specialised, and there is yet not enough overlap between
materials science and solid mechanics.

As technical equipment of ever-greater sophistication has become available, the
risk of catastrophes, of a scale that can affect the environment and kill many people,

1René-Antoine Ferchault de Réaumur (1772) L’art de convertir le fer forgé en acier et l’art
d’adoucir le fer fondu; ou De faire des Ouvrages de fer fondu aussi finis que de fer forgé, Michel
Brunet Paris.
2Vandermonde A T, Monge G and Berthollet C (1790) Avis aux ouvriers en fer sur la fabrication
de l’acier. Comité de salut public.
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vi Foreword

has increased; and safety has become a major concern. As we write this foreword,
hour after hour we learn that the consequences of the earthquake and tsunami in
Japan keep being more and more severe. Economic considerations press for longer
lifetimes and smaller safety factors; these generate strong incentives to use more
realistic constitutive equations and better failure criteria in the calculations, and the
computer now makes this possible. Materials design has become much more of a
practical possibility, and materials can be produced with better and more reliable
properties.

All this shows that establishing relations, as quantitative as possible, between the
microstructure of materials and their macroscopic properties is nowadays essential.
Thanks to fruitful cooperation between materials scientists and solid-mechanics
specialists, recent research has led to promising achievements in this direction;
but the number of training programs covering both fields, which we considered to
remain low when writing the first edition of this book, tends even to decrease. It
was the awareness of the need for advanced courses here that led us, some 26 years
ago, to create in France what was called a Diplôme d’Études Approfondies (DEA) –
Advanced Studies Diploma – with the title “Mécanique et Matériaux” – “Mechanics
and Materials”. The notes provided for the courses were the root of two books
written in French3 concerning mechanical properties of materials. The need was
probably greater in France than in English-speaking countries, where the famous
book of McClintock and Argon, Mechanical Properties of Materials, was already
much in use. This, however, was published in 1966 and so did not deal with recent
developments. This gave us the incentive to embark on writing these books, even
though we felt that it was hard to match McClintock and Argon.4 The D.E.A.
“Mécanique et matériaux” trained some 500 students. It is estimated that about
300 of those then prepared a PhD. They have pursued careers in University and
Industry, contributing to continued technical progresses. Unfortunately, for some
of those highly political reasons, the D.E.A. was discontinued. As a consequence,
textbooks about mechanics and materials are probably more than ever needed.

In the mean time, Kluwer asked us the permission to translate the books in
English. Dr. Jack Howlett was appointed for this thankless work. It gave birth to
two new books: “Mechanical behaviour of materials” in the Solid mechanics and
its applications series.5 Apparently, they met a certain audience, so that Springer,
continuing the series asked us to prepare a new edition. When we agreed to proceed,
we underestimated the amount of revision required. Now at last, we are glad to finish
Volume I.

3François D, Pineau A and Zaoui A (1991, 1992) Comportement mécanique des matériaux.
I Élasticité et plasticité. II Viscoplasticité, endommagement, mécanique de la rupture, mécanique
du contact. Hermes Paris.
4Argon AS and Mc Clintock FA (1966) Mechanical behaviour of materials. Addison Wesley,
Reading.
5François D, Pineau A and Zaoui A (1998) Mechanical behaviour of materials. I Elasticity and
plasticity. II Viscoelasticity, Damage, Fracture Mechanics, Contact Mechanics. Klüwer Academic
Pub., Dordrecht.



Foreword vii

The organisation of this volume follows the main classes of mechanical
behaviour: elasticity, elastoplasticity, elastoviscoplasticity and viscoelasticity.
Throughout we attempt to describe the physical processes that are responsible
for the kinds of behaviour studied, the way in which the constitutive equations
can represent the behaviour and how they relate to the microstructures. Revising
the book, we improved much the existing material, in particular in modifying
the organisation, and we added new up to date content. Understanding the subject
matter requires a good knowledge of solid mechanics and materials science; we give
the main elements of these fields in a set of annexes at the end of the first volumes.
We thought interesting for the readers to give as footnotes some information about
the many scientists whose names are attached to theories and formulae and whose
memories must be celebrated. Wikipedia proved extremely helpful in doing so.

We are now to undertake the revision of the second volume, which will be
devoted to fracture mechanics and damage as well as elements of contact mechanics,
friction and wear. We have realised that exercises to illustrate the various chapters,
and case studies also, would occupy too much space to be included in each book
and thus this will need a third volume. Now, each volume will be self-sustained.

Whilst the present book, as well as the following ones, is addressed primarily to
graduate students, part of it could possibly be used in undergraduate courses; and
we hope that practising engineers and scientists will find the information it conveys
useful. We hope also that English-speaking readers will be interested in the aspects
of French culture, and more particularly of the French school of micromechanics of
materials, which our treatment will undoubtedly display.

The authors are very grateful to all their colleagues, in particular those who
participated in the DEA “Mécanique et Matériaux”, for their contributions and
encouragements. We wish to thank all those people who have provided photographs
to illustrate the book. We also thank Professor Gladwell of the University of
Waterloo, Canada, for including it in the series of which he is responsible. In the
course of the original translation the frequent questions and suggestions of Dr. Jack
Howlett helped to improve many paragraphs significantly. We found cooperation
with him very stimulating and we thank him for his excellent work. Nathalie Jacobs,
of Springer, followed our work and kept helping and encouraging us in answering
our many questions. Thanks to her are extended to all the people who took great
care in editing a book of the best possible quality.

We are particularly indebted to Professor Georges Cailletaud (École nationale
supérieure des mines de Paris) who contributed greatly to Chap. 4 about vis-
coplasticity, and to Professor Jacques Verdu (Arts et Métiers ParisTech) who not
only wrote the part devoted to polymers in Chap. 5 about viscoelasticity but also
contributed to Annex 1. Joëlle Pineau and Odile Adam have been extremely helpful
and they deserve our warmest thanks.
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Chapter 1
Introduction

Abstract General considerations specify the nature of materials, and their
importance, in particular regarding their mechanical properties. The main classes
of materials derive from the atomic bonds types, which determine their overall
mechanical properties. The various mechanical behaviours and modes of failure
are described. This helps in the choice of a material for a particular application. A
description is given of the main instruments for the observation of microstructures
at various scales. A number of typical microstructures are displayed. Mechanical
testing machines are described. The way to perform tensile tests in particular, as well
as other usual tests, is briefly detailed in keeping with international standards. Indi-
cations are given on the measurement of elastic properties. The various mechanical
behaviours determine the main classes of constitutive equations. They must fulfil
several conditions, which are detailed. The stages followed in the treatment of
heterogeneous materials are explained and illustrated by examples. Indications are
given about anisotropy and its consequence on the constitutive equations.

1.1 The Main Classes of Materials from the Point of View
of Mechanical Properties

1.1.1 What Is a Material?

The physical chemist will study the properties of matter, of pure metals, of alloys,
carbides, nitrides, glasses, ceramics or polymers, but nevertheless seldom those of
the corresponding materials. These last are matter that has been worked on in some
way by man in order to fabricate objects. Thus flint (matter) became a material when
our early ancestors worked it into the form of tools. Thus aluminium, a precious
metal a century ago, became a material when used for constructing aeroplane
fuselages. Thus alumina is not the same material in a polishing paste, a synthetic
hip joint or an oven wall.

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
Macroscopic Constitutive Behaviour, Solid Mechanics and Its Applications 180,
DOI 10.1007/978-94-007-2546-1 1, © Springer ScienceCBusiness Media B.V. 2012
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2 1 Introduction

A material represents a combination of fabrication processes, microstructures
and physical properties (Table 1.1). The causal chain is that the fabrication
processes – casting, sintering, rolling, extruding, forging, machining, etc. – give
it a certain microstructure, which in turn determines its chemical, physical and
mechanical properties. But in keeping to this triangle an essential dimension
has been forgotten: the performances of the material, meaning its efficiency, its
manufacturability, its reliability, its durability, its absence of toxicity, its potential
for recycling, its cost, its appearance, etc. – all in the light of the application under
consideration. What we should be considering is not a triangle but a tetrahedron,
whose edges represent the mutual interactions that materials engineers and scientists
must learn to master, as shown in Fig. 1.1. It is good practice always to refer to these
four aspects at the beginning of a paper or a report dealing with materials.

1.1.2 Industrial Importance

Materials are the base on which industries, economies and civilisations are built;
their names distinguish the great periods of the history of mankind – the Stone Age,
the Bronze Age and the Iron Age and in the twentieth century the Silicon Age. Here
are a few examples that illustrate their importance.

1. It was the development of steel for rails that, through the spread of the railway
system (the “Iron Road”), largely determined the growth of the Industrial Age
of the nineteenth century- in America, the conquest of the Far West. Today, the
TGV, transporting 2,000 passengers at 300 km/h, surpasses even the jet airliner,
with 250 passengers at 1,000 km/h, in terms of passenger-kilometres per hour.
But the maximum speed of the TGV – the world record is 520 km/h – is limited
by the speed of propagation of flexural waves on the power catenaries, and
therefore by the tension applied to these: the elastic limit of copper, chosen for
its high electrical conductivity, must not be exceeded. Could we do better? with
a copper-nanotubes composite, perhaps?

2. Construction of the “Grande Arche” at La Défense in Paris was made possible by
the development of fused silica concrete: the very small particle size of the SiO2

gave a much higher density than was possible with traditional Portland cement,
resulting in much better mechanical properties. This kind of concrete allowed
also the foundation of the Millau viaduct piles, the highest in the world, because,
in particular, it generates less heat than ordinary concrete in setting.

3. Carbon-fibre composites made possible the manufacture of structures sufficiently
light and strong to form the casings of the Ariane space rockets. They are widely
used now in aircrafts and helicopters.

4. The increase in the power delivered by gas turbines (jet engines) is a consequence
mainly of the progress in development of nickel-based, which have made it
possible to run these at higher temperatures (Fig. 1.2). In particular, the absence
of grain boundaries has given a higher creep resistance. The production of single-
crystal turbine blades (Fig. 1.2) has contributed largely to the development of jet
engines.
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Table 1.1 Elements entering the definition of a material

Fabrication
processes

Casting, sintering, electrolytic deposition, powder metallurgy,
new processes

Forming by deformation: rolling, extruding, drawing, forging,
stamping

Forming by removal of material: machining, grinding; removal
by torch, laser beam, electron beam, water jet, electrolysis

Heat treatment: annealing, quenching, ageing, tempering
Assembling: welding, adhesion, riveting, bolting, screwing,

friction welding
Surface treatment: shot-peening, grinding, surface quenching,

electrolytic or vapour-deposition, spray coating

Micro-structural
elements

Bond type
Molecules type and size
Crystal structure
Order, short-range
Order, long-range
Polymers: level of cross-linking
Polymers: level of crystallinity
Chemical heterogeneities: GP zones, segregation at boundaries
Spinodal decomposition
Precipitates (coherent/incoherent) – dimensions and shape –

volume fraction
Needles, laths, packets (martensite)
Lamellae (pearlite) – size
Twins, grown or by deformation – type – dimension
Grains – size and shape
Nodules (polymers) – size
Texture
Inclusions – size and shape – volume fraction
Fibres: short, long, whiskers, nanotubes
Layers (composites)
Aggregates: nature – form – size – volume fraction
Porosities
Epitaxy

Properties Mechanical Elastic moduli
Elastic limits: (proportionality, at 0.2%, upper, lower yield

strengths) : : :
Work-hardening, flow stress : : :
Ultimate strength
Ductility: extension, at rupture, reduction of area
Creep rate
Viscosity
Damping capacity
Hardness
Fatigue resistance
Wear resistance

(continued)



4 1 Introduction

Table 1.1 (continued)

Chemical Corrosion resistance
Oxidation resistance
Stability, reactivity
Equilibrium phase diagrams

Physical Specific mass
Electrical conductivity
Thermal conductivity
Specific heat
Temperatures and latent heats of transformations
Coefficient of thermal expansion
Reflectivity
Emissivity
Transparency
Birefringence
Refractive index
Surface energy
Binding energy

Performances Availability
Reproducibility
Efficiency
Machinability, ease of forming
Weldability, ease of assembly
Reliability
Durability
Maintainability
Absence of toxicity
Capacity for recycling
Destructibility
Appearance
Cost
Familiarity, experience gained

Many processes have been developed over the past two decades, such as: Hot Isostatic Pressing
(HIP), Air (or Vacuum) Plasma Spraying (A/V PS); Direct Metal Deposition (DMD) using a laser;
Selective Laser Melting (SLM) and Selective Laser Sintering (SLS). SLM and SLS involve the
use of powders (metal or polymers)

5. The introduction on the market of swimming suits made of a new polyurethane
material increased suddenly the swimming competition records.

6. Few inventions have changed the world as profoundly, and rapidly, as the
microprocessor. The first brain chip was born in 1971. Today the world chip
production includes more than several tens billion microprocessors. Cars
typically have at least ten microprocessors and the new models have between
50 and 100 of them. The “transistor” effect was discovered in germanium by
Bardeen, Brattain and Shockley1 in 1947. The first transistors were made from

1John Bardeen, Walter Houser Brattain and William Bradford Shockley obtained the Nobel price in
physics in 1956 for their researches on semi-conductors and their discovery of the transistor effect.
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Fig. 1.2 The steady increase over time in maximum temperature in superalloys submitted to
an applied stress of 150 MPa for 1,000 h. The major changes in technologies: wrought ! cast
(equiaxed & unidirectional solidification (DS))! single crystal (SX)! thermal barrier coating
(TBC) are indicated. The introduction of cast materials has allowed to increase the volume fraction
of ”0 particles. In the recent single crystalline materials the introduction of elements such as Re,
Ru has led to an increase of the maximum temperature. The names of the alloys are indicated

germanium. Silicon, which has the same crystal structure (diamond cubic) as
germanium and is in the same column of the periodic table (Group IV), has
now replaced the first germanium-based transistors. The use of silicon in semi-
conductor devices demands a much greater purity than metallurgical grade. The
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Table 1.2 Production of various materials (unit 1,000 t)

Material Region 1985 2005 2008

Steel – – – –
– European Union – – 198; 000

World 710; 000 – 1; 279; 980

Aluminium – – – –
Africa 473 1; 753 1; 715

America 5; 944 7; 773 8; 443

Asia 1; 096 3; 139 3; 923

Europe 3; 695 8; 546 9; 276

World 15; 576 23; 453 25; 654

Copper – – – –
America 2; 289 – 5; 800

Asia 1; 320 – 7; 800

Europe 1; 513 – 3; 800

World 9; 728 16; 573 18; 232

Zinc – – – –
World 4; 826 9; 930 11; 655

Lead – – – –
World – 7; 005 8; 673

Plastics World 68; 000 – 190; 000

Rare metals are not listed in this table, in spite of the high strategic importance
of some of them, such as indium widely used in materials for electronic
components (Behrenat et al. 2007)

main purification technique is that of “zone melting” also called “zone refining”
which is used for the fabrication of wafers grown into mono-crystalline, ingots
up to 300 mm in diameter using the Czochralski2 process.

It is important to realise that choosing the most advanced materials does not
always give an economic advantage. A manufacturer who produces 25,000 million
aluminium cans per year is not going to consider changing his material when he can
gain 25 millions of euros a year by finding a way to save one-tenth of a cent per can.
This is why the traditional materials – steels, aluminium alloys, concrete – are far
from obsolescence (Table 1.2 and Fig. 1.3). For one thing, the very fact of having
been in use for so long has given them qualities of availability and reproducibility,
and especially has established standards and construction rules; and for another,
their properties and performances are being continually improved, and even if the
improvements are small they can give large financial gains in view of the quantities
used.

The importance of recycling, when the availability of many materials of high
industrial usage is becoming crucial, should be stressed.

2Jan Czochralski (1885–1953) was a German-Polish scientist. One of his biggest achievements (in
1916) was upgrading the process for acquiring single crystals of metals.
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Fig. 1.3 The main aluminium alloys for Airbus A380

1.1.3 Importance of Mechanical Properties

Consideration of mechanical properties is essential for any material that is to be used
in any structure – machinery, plant, vehicle, civil engineering project, prosthesis, etc.
Structural materials are among those produced in the largest quantities: aluminium
alloys, steels, glasses, polymers and elastomers, timbers, concretes. They are equally
important to the big organisations that control their production and to the very large
number of users; the level of need for a better understanding of their mechanical
properties and of the relation of these to their fabrication and their microstructure
is measured by the daily occurrence of accidents and catastrophes. Consider the
following:

1. In an engineering workshop a steel reduction gear, about 1 m diameter, shattered
during a routine over-speed test. One half went through the roof and wrecked sev-
eral cars parked outside the adjacent factory; the other careered around, seriously
damaging several machines but, by a miracle, did not kill anyone. Subsequent
examination revealed cracks of about 10 cm diameter; this represented a problem
of flakes in the fabrication of the material.

2. On December 12, 2000 a crack opened in a weld in the 3 m in diameter shaft of
the Grande Dixence dam, discharging about 27,000 cubic metres of water down
the mountainside. This dragged down rocks, trees and mud sweeping cottages,
killing three people. The slide temporally formed a dam on the Rhone River. This
was the result of a poor control of welding operation.

3. In Japan, a Boeing crashed into a mountainside after half an hour flight: control
had been destroyed by the failure of an aluminium panel that closed the rear of
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the passenger compartment. It was found to have had fatigue cracks that had been
badly repaired: insufficient mastery of resistance to fatigue.

4. The Alexander Keelan drilling platform sank as a result of a number of errors:
one of the welds in the tubular structure was found to have fatigue cracks several
centimetres long. Even if this was not the main cause of the accident, it showed
a lack of understanding of fatigue in such a structure.

5. On 4 November 2010, an Airbus A380 aircraft operated as Quantas flight 32
departed from Singapore for Sidney, New South Wales in Australia. A total of
469 passengers were on board. One of the four engines exploded during the
climb at 7,000 ft above mean see level. A subsequent examination of the aircraft
indicated that this engine had sustained an uncontained failure of the intermediate
pressure (IP) turbine disc. Although the examinations of components removed
from the failed engine are still ongoing, the investigators have identified the
presence of fatigue cracking within a pipe that fits oil into the high pressure
(HP)/IP bearing structure.

6. Alloy 600 (Ni – 16Cr – 8Fe – 0.10C) was initially selected for the fabrication
of the tubes of heat exchangers in pressurised water reactors (PWR). This
alloy gave rise to the formation in service of stress-corrosion cracks. This very
damaging and expensive phenomenon has necessitated to replace many tubes
in many exchangers all around the world and to use an alloy with higher
chromium.

Such examples could be multiplied, all underlining the inadequacy of our
understanding. On the other hand, there are cases where the accumulation of
knowledge has made it possible, if not to avoid a catastrophe entirely, but at least to
reduce the severity of its consequences.

(a) The use of ultrasonics in non-destructive testing made it possible to detect cracks
of about 7 mm depth in the carbon steel under the stainless steel coating in the
vessel of a nuclear reactor. The knowledge then built up by CEA, EDF and
Framatome enabled them to convince the safety authorities that none of these
cracks will extend under fatigue sufficiently to pierce the inner coating within
40 years. What was at stake here was half of France’s electricity generation.

(b) Similarly, investigation by non-destructive testing of the welds in the Alaska oil
pipeline enabled the National Bureau of Standards to demonstrate that cracks
found in these were not detrimental enough to require the whole structure to be
rebuilt.

These two examples, with their enormous economic consequences, show very
clearly the amount of testing and calculation that must be undertaken in order to
get a full understanding of fatigue failure when one is dealing with a variety of
materials, all with their characteristic properties and microstructural imperfections,
subjected to variable and complex cycles of mechanical and thermal stress at a wide
range of temperatures.
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Table 1.3 Materials classified according to bond type

1- Covalenta Boron (fibres)
Diamond carbon (abrasive powders, fibres)b

Silicon, germanium, semiconductors (electronic components)
Carbides, nitrides (grinding wheels, bearings, refractory fibres)
Thermosetting polymers

2- Ionic compounds Alumina, silica, zirconia (abrasives, refractories)
Glasses (window glass, containers, fibres)
Uranium oxide and carbide (nuclear industry)

3- Metallic Aluminium (light alloys)
Magnesium
Zinc (building materials, castings)
Titanium (aeronautics)
Zirconium (chemical industry)
Copper (brasses, bronzes)
Gold, silver (coinage, plating)
Tin, lead (plumbing, plating)
Tantalum (refractories)
Iron (steels, castings), cobalt, nickel (superalloys)

aThe refractory oxides have bonds which are partially covalent
bGraphite carbon has covalent bonds and free electrons, which give it metallic properties

1.1.4 Bond Types for the Main Classes of Materials

The properties of a material are highly correlated with the type of bond between
its atoms, for it is this that determines its energy of cohesion (the force needed to
separate the atoms either by a small amount or by enough to result in rupture),
the coefficient of thermal expansion, the conductivities of heat and electricity, the
stability of the various phases, the reactivity, etc. There are five types of bond:
covalent, ionic, metallic, van der Waals and hydrogen. Table 1.3 lists the main
materials, grouped according to bond type, which defines also the main classes of
material. These classes are characterised by properties that are familiar to the man
in the street, who has no difficulty in identifying ceramic, glasses, metals, plastics,
rubbers, woods, cements and concretes. Covalent materials have particularly high
bond energies; they are usually refractories, insulators or semiconductors, hard and
brittle. Refractory oxides have characteristics in common with covalent materials;
they are light, become electrically conducting at high temperature; in glass form they
are transparent. Metals are good conductors of heat and electricity, are malleable
and reflect light. Polymers are poorly resistant to heat but offer great possibilities
for moulding. Elastomers can be subjected to large elastic deformations. Woods are
very anisotropic and are sensitive to changes in humidity. Cements and concretes
resist compression well but are brittle. All the materials of this last class are of high
porosity and are poor conductors of heat and electricity.
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To this list should be added composite materials and multi-materials, which are
combinations of various materials.

The main properties of materials are given in standard manuals such as Handbook
of Chemistry and Physics, Metals Handbook, etc.

1.1.5 Main Types of Mechanical Behaviour

Mechanical properties are characterised by measurements made in simple tests,
easily performed in any laboratory: hardness, tension, compression, torsion, impact
tests. These tests have been standardised (cf. ISO standards) and when comparing
results it is important to ensure that the standard conditions have been applied.
However, much more information is obtained in the course of a test than is contained
in the standardised results, and it is important to preserve this, as it could prove very
valuable for research. Further, the constitutive laws that express the behaviour are
tensorial in form, and to determine them fully requires much more than the current
standard tests.

In many cases, a tensile or a compression test shows three stages in the response
of the material (Fig. 1.4). The first is the elastic region, OA in the figure, in which no
permanent deformation remains after the load has been removed. The second, AB,
is the plastic region, characterised by a permanent residual deformation. Pure plastic
behaviour is completely independent of time, in particular of the rate at which the
load is applied. The final stage, BC, ends in rupture; we shall describe this in more
detail later. Before doing so we should note that in most cases pure time-independent
plastic behaviour is not observed and the form of the curve can be affected by the



1.1 The Main Classes of Materials from the Point of View of Mechanical Properties 11

rate at which the load is applied: holding the load constant will result in progressive
deformation by creep, holding the deformation constant will give a relaxation of
the load, and cyclic loading will give phenomena of hysteresis. These last are a
manifestation of the viscosity of the material, the corresponding phenomena being
either visco-elastic or visco-elasto-plastic. Not all materials show both of the two
first stages; the point C of final rupture can occur early or late, in particular it can
precede point B.

The response to compression, and in general to any other type of applied stress,
can be very different from that to tension.

1.1.6 Modes of Failure

The failure modes of a structure depend on applied loadings – mechanical, thermal,
chemical –, on the internal defects it may contain and on the properties of the
material(s) of which it is built.

They include the phenomena of buckling, instabilities resulting from a reduction
in energy under small perturbation of the boundary conditions.

Chemical attack manifests itself in oxidation and corrosion, localised to a greater
or lesser extent. These are very important effects, but we shall not deal with them
except when they are accompanied by mechanical stresses.

The phenomena of fracture derive from damage of the material, that is, the
development of new surfaces. On the atomic scale there are three basic types of
damage (Fig. 1.5): cleavage, slip with formation of surface steps, and appearance
of cavities resulting from diffusion of vacancies. The last can occur only when the
temperature is high enough; it is the dominant effect in creep at high temperatures,
and occurs also when neutron or other particles irradiation creates a large excess
of vacancies over the equilibrium concentration.

Slip is responsible for plastic deformation. This can lead to the structural
instability of necking or plastic collapse when the reduction in cross-section that
plastic deformation produces is no longer compensated by the strain-hardening
of the material. The deformation is then localised and premature for low strain-
hardening material. Plastic deformation can also lead to the formation of small
internal cavities in the material, which can grow, coalesce and finally cause fracture.
Under cyclic loading slip is not perfectly reversible: after a time it can cause the
surface to deteriorate, ending with fatigue failure.

The term cleavage is used only in connection with crystalline materials, but an
analogous mechanism, the breaking of bonds normal to the plane of crack (called
Mode I in fracture mechanics), is responsible for the crazing of polymers, and for the
fracture of concrete and glass. This is also the case for intergranular fractures. These
various fracture phenomena interact with chemical mechanisms, such as migration
of gases into the cavities, blocking of slips by solute atoms or by precipitates,
changes in boundary or surface energies due to migration of impurities, chemical
reactions on the new surfaces created. The various types of damage are summarised
in Table 1.4.
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a b

c

Fig. 1.5 Atomic scale damage: (a) cleavage; (b) slip; (c) appearance of cavities

Table 1.4 Various modes of damage

Fracture type Volume damage Mixed damage Surface damage

Sudden fracture Development of
cavities

(Trans or inter-
granular)

Cleavage
(Trans or inter-

granular)

– Liquid metal
embrittlement
(Hg, Ga : : : )

Delayed Fracture – Impurities
embrittlement

Hydrogen
embrittlement

 ���! Oxidation
Corrosion
Stress-corrosion

– – Corrosion-
fatigue

High temperature
creep

Creep-fatigue Fatigue

Irradiation
embrittlement

– –



1.1 The Main Classes of Materials from the Point of View of Mechanical Properties 13

Fig. 1.6 Maximising
resistance to buckling (for a
column)

1.1.7 Mechanical Properties as Criteria for Choice
of Materials. From Properties to Performances

A good choice of material for a particular application constitutes an illustration of
how a sensible combination of materials properties is able to meet performances
requirements. Because they have the same or similar bond types and structures,
the materials in any one class have similar physical and mechanical properties. We
can regard each class as occupying some region in the space of general properties.
Particular projections of this space can be used to guide the choice of material(s) for
a particular application. This is illustrated by Figs. 1.6, 1.7, 1.8, 1.9, which we took
from (Ashby 1989, 1999).

The parameters to be considered depend on the application. Obviously, when
rigidity is the most important design criterion, the elastic moduli need to be taken
into account; and the endurance limit when it is fatigue resistance. Now, there are
also constraint limitations such as weight or cost. The best choice of a material must
then combine the properties in an appropriate way.

Two simple examples illustrate the procedure. We want a slender bar of length l to
be as strong and as light as possible. It is loaded either in tension or in bending. The
cross section S0 can be chosen at will. In tension the stress F/S0 must be less than
Rm the tensile strength of the material while the mass M is S0l�, � being the specific
mass. The way to maximise the ratio F/M is found by eliminating S0: the ratio
(1/l)(Rm/�) must be as large as possible. Thus the material index to be maximised in
this particular application is Rm/�. In bending, a different index is to be considered
as F< (bh2/6 l)Rm, where b is the width and h the height of the beam; eliminating
S0 for a beam of square cross section shows that the index to be maximised this time
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Fig. 1.7 Maximising specific
resistance to torsion

Fig. 1.8 Maximising stored
elastic energy (in a spring)

is Rm
2/3/�. If it is the height which can be chosen at will, then the index is Rm

1/2/�,
and it is Rm/� when it is the width.

Table 1.5 gives the criteria for optimising various structures with respect to
weight, and Figs. 1.6, 1.7, 1.8, and 1.9 are projections of the space of properties
relevant to the specific applications given in the captions. These diagrams are
logarithmic, so that material indexes of given value lie on straight lines of various
slopes. It is then easy to visualise the materials, which yield the maximum
performance index for a particular application.
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Fig. 1.9 Maximising fracture
toughness (pressure vessel)

Table 1.5 Performance indexes for the choice of materials to maximise
specific stiffness and specific strength

Structural element Constraint Stiffness Strength

Bar in tension Free cross section E/� Rm/�
Beam in bending Fixed length E1/2/� Rm

2/3/�
Free cross section
Fixed length E1/3/� Rm

1/2/�
Free height
Fixed length E/� Rm/�
Free width

Shaft in torsion Free cross section �1/2/� Rm
2/3/�

Column in buckling Free cross section E1/2/� Rm/�
Cylindrical pressure vessel Free wall thickness E/� Rm/�
Spherical pressure vessel Free wall thickness E/(1-�)� Rm/�

1.1.8 As a Conclusion: The Structure of the Books

What we wish to achieve is to provide students, professors, engineers with up to
date tools to have a good command of mechanical properties of materials, so as to
be able to design and maintain industrial components and structures. Furthermore,
we would hope to give basis for sound research programs to be established in this
field. This ambition was inspired by the book of Argon and Mc Clintock (1966),
which gave emphasis on the importance to treat together mechanical properties over
different scales, including microstructures descriptions.
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The logic we will follow is to adhere to the various classes of mechanical
properties. Thus, we will treat in succession elastic, elasto-plastic, elasto-visco-
plastic and visco-elastic behaviours. This will be followed, in the second book,
by chapters devoted to different modes of failure of materials, according to their
preceding description (Sect. 1.1.6). Lastly, we will address contact mechanics
associated with friction and wear. In all cases, microstructural aspects will be linked
with macroscopic approaches.

As the level at which the various treatments will be addressed is that of graduate
studies, it was felt that more elementary summary of materials science and solid
mechanics would be useful and they are included as annexes. They have the other
advantage to put within easy reach fundamental formulae.

A third book will include exercises related to the various chapters of the first two
books for which solutions will be outlined.

Emphasising once more the importance of microscopic observations and data
acquisition of mechanical properties, we will now give some indications about
instruments and test machines useful for such purposes. They will be accompanied
by descriptions of typical microstructures and by the way mechanical tests, in
particular the tensile test, ought to be performed. This will be followed by
general considerations about constitutive equations, essential for the computation
of deformations of structures and of the stresses they must bear to be possible.

1.2 Microstructures of Materials

1.2.1 The Importance of Microstructural Observations

The mechanical behaviour of a material and the damage it can sustain are very
closely dependent on its microstructure, that is, not simply its overall chemical
composition but also the arrangement of the various phases that it contains. This is
so not only for artificial composites (for example, materials into which reinforcing
elements or matrices were incorporated at the time of manufacture) but also to
materials that have been in use for a long time and which are mostly natural
composites. Understanding the in-service behaviour of materials increasingly re-
quires the investigation of the microstructure of the materials. Modern techniques
of observation, of local chemical analysis and of image analysis have contributed
to the development of a “new” mechanics of solids, sometimes referred to as meso-
mechanics to show how it fits between continuum mechanics on the one hand, in
which matter is regarded as a “black box”, and micro-mechanics (or even nano-
mechanics) on the other, in which the accent is on such basic phenomena as the
displacement of a dislocation line or the interaction between a point defect and a
dislocation.
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Table 1.6 Characteristics of four observation techniques

Technique Macroscope
Optical
microscope

Scanning
Electron
Microscope
(SEM)

Transmission
Electron
Microscope
(TEM)

Resolution 0.1 mm 1 �m 5 nm 0.2–2 nm
Magnification �20 �1,000 �50,000 �500,000
Wave length 0.5 �m 0.5 �m 0.01 nm 0.0001 nm
Mode of

observation
Reflection –

transmission
Reflection –

transmission
Reflection Transmission

Size of objects A few cm3 A few cm3 A few cm3 <1 �m3

Thickness of
objects

– – – 0.1–1 �m
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optical microscope

nanometre

Angström

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

104

103

102

10
1

Fig. 1.10 Observation scales and main instruments used

1.2.2 Scales of Observation. Available Means of Observation

Many types of instruments are now available for studying microstructures; each has
its own field of application, according to the magnification required, the method of
observation (reflection or transmission) and the size of the object to be studied.

Table 1.6 summarises the characteristics of four methods currently in use.
Figure 1.10 gives the ranges of size at which observations can be made with the
various instruments. Figs. 1.11 and 1.12 relate to microstructures of materials,
giving respectively grain sizes and reinforcements.

We now describe commonly used instruments: the optical microscope and two
types of electron microscope and more newly developed techniques; and follow this
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Fig. 1.11 Scales of granular microstructures for various materials

Fig. 1.12 Scales of reinforcements for various materials

with examples that illustrate the main fields covered in the book. We are limiting
ourselves to instruments that enable us to “see” a microstructure, so that we shall
not consider, for example, X-ray crystallography.

1.2.2.1 Optical Microscope

Metallic and ceramic materials, being opaque, are viewed by reflection; certain
glasses and polymers can be viewed by transmission. Careful preparation of
the surface is necessary in most cases. Figure 1.13 shows, schematically, the
structure and principle of the optical microscope, set up for viewing by reflection.
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The resolution of the instrument is limited by the wavelength of the light used to
illuminate the specimen, and the magnification possible does not exceed about 1,500
times. The resolution limit is of the order of 1 �m. Various refinements such as
differential contrast and illumination by polarised light are often used.

The specimen must be specially prepared: mechanical polishing, first with
abrasive papers of increasing fineness, from 100 down to 8 �m, followed by finer
abrasive powders (alumina or diamond, 15 �m down to 0.05 �m) as suspensions
in water or oil. The microstructure of the material is made evident by etching the
surface, usually chemically or electrolytically in the case of metals and by thermal
etching in the case of ceramics. The chemical etchants to be used here depend on
the alloys to be studied; they are listed in metallography treatises, and the names of
some recall the great figures who pioneered metallography in the twentieth century
(Jacquet, Bechet-Beaujard, Murakami, etc.).

1.2.2.2 Transmission Electron Microscope (TEM)

Transmission electron microscopy (TEM) is a technique whereby a beam of
electrons is transmitted through an ultra thin specimen (0.1–1 �m). This beam
interacts with the specimen as it passes through. An image is formed from the
interaction of the electrons through the specimen; the image is magnified and
focussed onto an imaging device, such as a fluorescent screen, or is detected by
a sensor such as a CCD camera. The first TEMs were built in the 1930s but the
commercial “friendly” microscopes arrived in the materials science laboratories
only at the end of the 1960s (Egerton 1996, 2005, Reimer and Kohl 2008; Haque
and Saif 2001).
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TEMs are capable of imaging at a significantly higher resolution than light
microscopes, owing to the small de Broglie3 wavelength of electrons (Table 1.6).
TEM image contrast is due to the absorption of electrons in the material. At
high magnification complex wave interactions modulate the intensity of the image,
requiring expert analysis of observed images. Alternate modes of use allow for the
TEM to evidence modulations in local chemical composition, crystal orientation
and electronic structure.

The principle of a modern TEM is schematically shown in Fig. 1.14. From the
top down, the TEM apparatus consists of an emission source (gun), which may
be a tungsten filament or a LaB6 source. By connecting this gun to a high voltage
source (typically �100–300 kV) the source will begin to emit electrons either by
thermionic or field electron emission. The upper lenses of the TEM allow for the
formation of the electron beam to the desired size and location for later interaction
with the specimen.

The specimen holders are adapted to hold a standard size of grid (3 mm diameter)
upon which the sample is placed. The specimen holder device includes mechanisms
for the translation of the sample in the XY plane, for Z height adjustment and usually
for at least one rotation degree of freedom for the sample. Most modern TEMs
provide the ability for two orthogonal rotations.

Contrast formation in the TEM depends greatly on the mode of operation. The
most common mode of operation is the bright field (BF) imaging mode. Samples can
exhibit diffraction contrast, whereby the electron beam undergoes Bragg4 scattering.
The desired Bragg reflections can be selected to obtain dark-field (DF) images. An
example of an image showing dislocations is given in Fig. 1.15.

Many TEM are equipped with the advanced technique of electron energy
loss spectroscopy (EELS). This technique allows for the selection of particular
energy values and can be used to generate an image, which provides information
on elemental composition. EELS spectrometers can often be operated in both
spectroscopic and imaging modes.

The diffraction pattern in a single crystal is dependent upon the orientation of
the specimen. An example of crystalline diffraction pattern from a twinned grain of
FCC austenitic steel is shown in Fig. 1.16.

Sample preparation for TEM observation can be a complex procedure. This
preparation is specific to the material under analysis and the desired information
to obtain from the specimen. Materials that have small enough dimensions to
be electron transparent, such as powders or nanotubes, can be quickly prepared
for direct observation. In material science and metallurgy the specimens must be
prepared as a thin foil by mechanical polishing, electrolytic thinning and ion etching.

3Louis de Broglie (1892–1987) was a French mathematician and physicist who won the Nobel
price in physics in 1929 for his discovery of the wave nature of electrons.
4William Lawrence Bragg (1890–1971) was an Australian physicist who won the Nobel price in
physics in 1915 with his father for their service in the analysis of crystal structure by means of
X-rays.
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Fig. 1.14 Principle of the Transmission Electron Microscope

More recently focussed ion beam (FIB) methods have been used to prepare samples.
Because FIB can be used to micro-machine samples very precisely, it is possible to
mill very thin membranes from a specific area of interest in a sample, such as a
fracture surface (Fig. 1.17). Unlike inert gas ion sputtering, FIB uses significantly
more energetic gallium ions and thus may alter the composition or structure of the
material through gallium implantation. The FIB tomography technique with the help
of EBSD measurement allows for three-dimensional investigation of small objects
(second-phase particles, cavities, microcracks, etc.).
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Fig. 1.15 Austenitic
stainless steel. TEM
observations showing
dislocations, stacking faults
and a particle of • (BCC)
ferrite (by courtesy of Nanga
2008)

Fig. 1.16 Austenitic stainless steel, prestrained by 20% at 23ıC. Dark field TEM observation
showing mechanical twins, © (HCP) martensite and ’0 (BCC) revealed by the diffraction pattern
(by courtesy of Nanga 2008)

1.2.2.3 Scanning Electron Microscope (SEM)

The principle of the scanning electron microscope (SEM) is very different from
that of the TEM. The scanning microscope makes direct use of the various effects
produced when an object is bombarded with a beam of electrons.

As Fig. 1.18a–c show, a number of signals are emitted, each originating at a
characteristic depth in the material, the main ones being the following.

Back-scattered electrons, resulting from elastic scattering of incident electrons by
sub-surface atoms; their energy is close to that of the incident beam, Es, which
is in the range 5–50 keV. The energy shift depends on the atomic number of
the elements in the irradiated zone and, in some cases, on the orientation of the
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Fig. 1.17 SEM observation of fatigue microcrack in a dual phase steel with an FIB tomographic
technique; (a) Top view before FIB processing; (b) Top view after FIP processing; (c) Side view
with a tilt angle of 45ı. This technique allows for the three-dimensional orientation of fatigue
microcracks (Motoyashiki et al. 2007)

surface; it is not less than 50 eV. These back-scattered electrons can be used to
give contrast effects that show local variations in the composition of the material
(Fig. 1.19).

Secondary electrons, resulting from inelastic scattering in a layer closer to the
sample surface than the preceding (Fig. 1.18b); the energy of these is below 50
eV and the intensity of the signal depends mainly on the local orientation of the
surface to the detector used, giving a relief contrast.

Auger electrons, resulting from interaction between the incident electrons and the
electrons in the inner shells of the atoms in a layer in the immediate vicinity
(within about 1 nm) of the surface of the sample. The spectrum depends on
the elements and is used for surface chemical analysis – Auger spectroscopy,
which in recent instruments can give a lateral resolution of less than 1 �m. Auger
electrons are not used in most scanning microscopes.

X-rays: emission of these depends on the atoms within a depth of about 1 �m
below the surface of the sample, the beam voltage and the density of the target
(Fig. 1.18c). They are used for local chemical analysis (Castaing5 microprobe).

Figure 1.20 shows the principle of the SEM. The incident beam, of diameter less
than 100 nm, is focussed by electromagnetic lenses on the surface to be examined.
The emitted (back-scattered or secondary) electrons are captured by one or more
detectors and the resulting signal is used to modulate the beam of a cathode ray
tube (CRT). Scanning coils enable the sample surface to be traversed, line-by-line
or point-by-point, and the CRT beam follows synchronously. Thus to each position
of the microscope beam on the sample surface there corresponds a spot on the CRT
screen, making it possible to reconstruct the surface being scanned.

5Raimond Castaing (1921–1998) was a French physicist.
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Fig. 1.18 Interaction between an electron beam and the sample. (a) Back-scattered electrons e;
secondary electrons eS; Auger electrons eA; X-rays (b) depths of origin of the irradiation products
(c) penetration depth as a function of beam energy and density � of the material

The resolution depends on the dimensions of the zone of origin of the signal
being used: about 1 �m for back-scattered electrons and X-rays, about 5 �m for
secondary electrons. The magnification can be up to 50,000. Equally important is
the depth of field, about 100 times greater than that of the optical microscope: 500
�m at 100� and 30 �m at 2,000�.

No special preparation is needed for the samples, provided they are electrically
conducting; thus metallographic sections and fracture surfaces can be examined
directly. Electrical insulators are given a thin (about 10 nm) conducting coating (C,
Ag, Au, Pt), by vacuum deposition from vapour or by cathodic sputtering.

The sample-holder compartment is much larger than in the case of the trans-
mission instrument, making it possible, with certain stages, to handle samples of
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Fig. 1.19 Scanning Electron Microscope pictures of an eutectic Al-Cu alloy at beam voltages of
10 and 25 kV. Note the better contrast given by back-scattered electrons

Fig. 1.20 Principle of the Scanning Electron Microscope
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10–100 cm3. Some stages have means for applying mechanical loads (tension,
compression, torsion) to the sample, so that the mechanical properties can be
observed in situ. Finally, when coupled to an X-ray spectrometer the SEM enables
chemical analyses to be performed on samples of the order of 1 �m3 and X-ray
images to be produced which show the spatial distribution of individual atoms.

1.2.2.4 Electron Backscatter Diffraction (EBSD)

Electron backscatter diffraction (EBSD), also known as backscatter Kikuchi diffrac-
tion (BKD) is a technique used to examine the crystallographic orientation of
many materials. The knowledge of these orientations is important in the study
of phase transformation and plasticity and fracture in polycrystalline materials.
EBSD can be used to index and identify crystal systems, and as such it is
applied to crystal orientation mapping, defect studies and regional heterogeneity
investigations. Traditionally these types of studies have been made using X-ray
diffraction (XRD), neutron diffraction and/or electron diffraction in a TEM.

Experimentally EBSD is carried out using a SEM equipped with a phosphorus
screen, and low light CCD camera. A flat/polished crystalline specimen is placed
into the normal position in the SEM chamber, but is highly tilted (�70ı from
horizontal) towards the diffraction camera in order to increase the contrast in the
resultant EBSD pattern.

An EBSD pattern is obtained when many different crystallographic planes
diffract to form Kikuchi bands. It is possible to relate these bands to the underlying
crystal phase and orientation of the material within the electron interaction volume.
Each band can be indexed individually by the Miller6 indices of the diffracting
plane. Most commercial systems use tables with crystal data bases to perform
indexing. The principle of EBSD analysis is shown in Fig. 1.21.

Scanning the electron beam results in many maps, which give local orientation
of each grain in a polycrystal (orientation, image quality). An application of this
technique to cast duplex (austenite C ferrite) stainless steels is illustrated in Fig. 1.22
where a detailed analysis shows that austenite colonies across parent ferrite grain
boundaries keep near Kurdjumov-Sachs (KS) orientation relationship (RO) with
both ferrite grains. These observations and many others on variant selection at parent
grain boundaries have largely contributed to a better understanding of intergranular
nucleation of a new phase during a phase transformation.

Another application of EBSD mapping technique is illustrated in Fig. 1.23
where the orientations of each individual grain in a polycrystal are shown. These
observations combined with other information such as measurements of local strains
using either microgrid technique or image correlation are now largely used for the
detailed study of plasticity in polycrystalline materials.

6William Hallowes Miller (1801–1880) was a British mineralogist.
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Fig. 1.21 (a) Electron diffraction according to Bragg’s law (2dhkl sin�D n�); (b) EBSD pattern
from a bainitic steel with a BCC structure (Gourgues-Lorenzon 2007)

1.2.2.5 Scanning Tunnelling and Atomic Force Microscopy

Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very
high-resolution type of scanning probe microscopy, with resolution of the order
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Fig. 1.22 Duplex (austeniteC ferrite) stainless steel observed by SEM and EBSD technique
(Gourgues-Lorenzon 2007)

Fig. 1.23 EBSD map of 304 (18Cr-10Ni) stainless steel. The colours indicate the orientation of
the grains (private communication by courtesy of Le Millier)
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Fig. 1.24 Block diagram
showing the principle of
atomic force microscopy
(AFM)

or fraction of a nanometre. The precursor to the AFM, the scanning tunnelling
microscope (STM), was developed by Gerd Binning and Heinrich Rohrer in the
early 1980s at IBM Research-Zurich, a development that earned them the Nobel
Prize in Physics in 1986. The first commercially available AFM was introduced
in 1989. The AFM is one of the foremost tools for imaging and measuring at the
nanoscale.

A block diagram of an atomic force microscope is shown in Fig. 1.24.
The AFM consists of a cantilever with a sharp tip (probe) at its end that is used to

scan the specimen surface. The cantilever is typically silicon or silicon nitride with a
tip radius of curvature of the order of nanometres. When the tip is brought close to a
sample surface, forces between the tip and the sample generate an elastic deflection
of the cantilever. Depending on the situation, these forces include mechanical
contact, van der Waals forces, capillary forces, chemical bonding, electrostatic and
magnetic forces. The deflection can be measured using a laser spot reflected from
the top surface of the cantilever into an array of photodiodes (Fig. 1.24). Other
methods can also be used such as optical interferometry, capacitive sensing or piezo-
resistivity elements.

In most cases a feedback mechanism is used to adjust the tip-to-sample distance
in order to maintain a constant force between the tip and the specimen, which is
scanned. The resulting map represents the topography of the specimen. An example
of AFM images of fatigue persistent slip bands (PSB) observed in an austenitic
stainless steel is shown in Fig. 1.25. The height of these PSBs, which represent
the early stage of fatigue damage, can be measured as a function of the number of
applied fatigue cycles. AFM is thus an excellent technique to investigate the early
stages of deformation and damage.

It is also extremely useful for nano-indentation measurements (see Sect. 1.3.5.3).
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Fig. 1.25 (a) AFM image of the free surface of 316L austenitic stainless steel fatigued at " D
2� 10�3 for 20,000 cycles; (b) True profile of a persistent slip band and profiles detected by AFM
tip Polak et al. 2005)

1.2.2.6 Electron Microprobe (EMP), Secondary Ion Mass Spectroscopy
(SIMS) and Rutherford Backscattering Spectrometry (RBS)

Electron microprobe (EMP) was invented by R. Castaing as a non-destructive
method for chemical analysis of surfaces of solid samples. A focussed electron beam
is applied to excite characteristic X-rays (see Fig. 1.18) revealing the identity and
concentrations of chemical elements present in the sample. The resolution is of the
order of one micron and all elements heavier than boron can be detected to a level
as low as �10–100 ppm.

The basic components of an electron microprobe are: electron gun, two or
more sets of lenses, sample holder and an X-ray analyser, which can be either
an energy-dispersive spectrometer (EDS) or a wavelength-dispersive spectrometer
(WDS). The wavelength recorded in WDS or photon energy recorded in EDS
are characteristic of each chemical element, while the intensities in the X-ray
spectrum are used for quantitative analysis by reference to standards. Often, electron
microprobe spectrometers (mainly EDS) are coupled with a high quality imaging
microscope such as TEM or SEM to allow for a visually correlated analysis of a
specimen. Such a powerful combination of instruments has applications in a wide
range of areas due to its non-destructive nature.

Secondary ion mass spectrometer (SIMS) is also an instrument for local chemical
analysis. The SIMS microprobe uses an internally generated beam of either positive
(e.g., Cs) or negative (e.g., O) ions which constitutes the primary beam focussed on
a sample surface to generate ions that are then transferred and analysed in a mass
spectrometer across a high electrostatic potential, and are referred to as secondary
ions (Fig. 1.26).

One of the main SIMS advantages is its sensitivity which means that samples
with low concentration levels (down to ppb) can be analysed. As a result, the SIMS
is used to determine trace elements in geochemistry and in the semi-conductor
industry.
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Fig. 1.26 Principle of secondary ion microscope mass spectrometer (SIMS)

Rutherford7 backscattering spectrometry (RBS) is another analytical technique
used to determine the composition of materials by measuring the backscattering
of a beam of high energy ions impinging on a sample. Rutherford backscattering
can be described as an elastic (hard-sphere model) collision between a high kinetic
particle from the incident beam (the projectile) and a stationary particle located in
the sample (the target). In practice a compositional depth profile can be determined
from an RBS measurement. The elements contained in a sample can be determined
from the position of peaks in the energy spectrum. Depth can be determined from
the width and shifted position of these peaks, and relative concentration from the
peak heights. This technique is very useful for studying nano-layers deposited on
metallic surfaces for improving their hardness, their corrosion resistance or even
their bactericidal properties as shown later in Sect. 1.2.3. As compared to SIMS
technique RBS is not destructive.

1.2.2.7 Atomic Probe Tomography

The technique of atomic probe tomography (APT) is able to determine the spatial
coordinates and the identities of the individual atoms in a metallic specimen close
to atomic resolution (�0.3 nm). The surface atoms of a cryogenically-cooled
needle-shaped specimen are individually ionised by the application of a short
duration (10 ns) high voltage pulse superimposed on a standing voltage on the
specimen. These ions are then projected from the specimen in a time-of-flight

7Sir Ernest Rutherford (1871–1937) was a physicist sometimes referred as the father of nuclear
physics. He won the Nobel price in chemistry in 1908 for his investigations in the disintegration of
elements and the chemistry of radioactive substances.
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Fig. 1.27 (a) Dark field TEM observations in alloy 718 showing the co-precipitation of ”0 (L12)
and ”00 (DO22) particles (Cozar and Pineau 1973); (b) Atom maps of 2 ”00 precipitates surrounding
a ”0 particle. The colours indicate the elements (Nb, Al, Ti, Fe) (Miller 2001)

mass spectrometer and detected with a single atom position-sensitive detector. In
these three-dimensional atom probe instruments, the typical magnification of the
specimen surface is �5�106 times. A full description of the technique may be found
in a monograph by Miller (2000).

An example of the use of APT is given for the determination of the precipitates
composition in Alloy 718 (Ni – 20Cr – 20Fe – 5Nb – 3Mo – 25Ti – 2Al). This
material is a widely used niobium-containing nickel base superalloy that obtains
its high temperature strength from a dispersion of lenticular DO22 – ordered ”00
precipitates and roughly spherical secondary ”0 precipitates of L12 structure in
an FCC matrix. The composition of the DO22 – ordered can be described as an
L12 – ordered structure with a [1/2, 1/2, 0] displacement every other (001) plane. In
addition the compositions of the DO22 – ordered and L12 – ordered structures can
both be described as Ni3(Al, Ti, Nb) with different levels of aluminium, titanium and
niobium. In many cases ”0 and ”00 are assembled, as illustrated in Fig. 1.27a which is
dark field TEM image. Analysis of the compositions of the phases reveal that iron,
chromium, molybdenum and cobalt preferentially partition to the ” matrix while
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niobium and titanium partition to the ”0and ”00 precipitates with an enrichment in
niobium in ”00 particles, as shown in Fig. 1.27b. The information derived from these
observations allowed to develop a compact morphology (cube-shaped ”0 particles
covered by ”00 lenticular particles) with an improved thermal stability (Cozar and
Pineau 1973).

1.2.2.8 X-Ray Tomography

Tomography is imaging by successive sections through the use of any kind of pen-
etrating wave (X-ray, gamma ray, electron-positron annihilation, electrons, ions).
The device used in tomography is called a tomograph, while the image produced
is a tomogram. X-ray tomography is largely used for medical applications. Medical
tomography is based on sectional images through a body by moving an X-ray source
and the film in opposite directions during the exposure. The image contrast is due to
the difference in absorption between the various components of the body. Recently
the development of high energy X-rays sources produced by synchrotron has led
to the use of a new technique called X-ray tomographic microscopy (SRXTM).
This technique allows for detailed three-dimensional scanning of metals. The X-ray
source is fixed and the specimen is progressively rotated. The energy of synchrotron
equipment allows for the use of specimens of metallic materials with a section of
the order of a few millimetres, depending on the nature of the materials. The lateral
resolution is continuously increasing and is now of the order of 0.6 �m.

The SRXTM is a very powerful technique for in-situ observations when com-
bined with mechanical tests, such as tensile or even fatigue tests. This technique
is under a considerable development and constitutes one of the dreams of the
researchers in materials science, which is the in-situ observation of solid materials.

1.2.2.9 Digital Image Correlation and Full-Field Measurement
Techniques

Digital image correlation (DIC) is initially an optical method that employs track-
ing and image registration techniques for accurate two- and three-dimensional
measurements of information including deformations and displacements from the
digital images. DIC technique has been developed in the early 1980s and has been
optimised and improved in recent years (see a recent book on this subject edited
by Grédiac and Hild 2011). During the last two decades, the improvements in
image processing with microcomputers and the advances in camera technology
have largely contributed to the development of non contact measurement techniques
such as DIC, but also moiré interferometry, speckle, microgrid method or infrared
thermography. All these techniques are becoming more and more popular in the ex-
perimental solid mechanics community. This is clearly illustrated by the increasing
number of research papers in which these techniques are used to improve the knowl-
edge, at various scales, of the mechanical behaviour of materials and structures.
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Fig. 1.28 (a) Basics of digital image correlation (DIC). (i) Reference configuration with a zone
of interest (ZOI) (box). Random texture created by spraying black and white paint; (iii) Deformed
configuration. The dashed box shows the location of the ZOI when no motion is assumed. In the
present case, the average motion of the considered ZOI is determined by maximising the correlation
product of both ZOIs (ii). Its maximum allows us to estimate the mean translation (black arrow).
The solid box (ii) shows the location of the ZOI in the deformed configuration for which the
measured translation was applied (white arrow); (b) (i) Longitudinal strain measured in a tensile
test on 18MND5 steel. Strain localisation occurs in the central part of the sample where necking
is located. The mean strain over the whole analysed region is equal to 5%, whereas the local strain
exceeds 50%. (ii) Corresponding deformed mesh superimposed on the picture in the deformed
configuration. The initial mesh was made of identical Q4 squares (by courtesy of Hild)

DIC technique is based on the maximisation of a correlation coefficient that is
determined by examining pixel intensity array subsets on two or more corresponding
images and extracting the deformation mapping function that relates the images
(Fig. 1.28). An iterative approach is used to maximise the correlation coefficient by
using nonlinear optimisation techniques.

Several techniques are used to prepare the specimen surface for image contrast
analysis. The embedded microgrid (EMG) technique is worth being mentioned with
this respect. EMG, combined with digital image processing of high definition SEM
images, is now largely used to investigate, at the micrometre scale, the deformation
mechanisms of materials. Microgrids are deposited on the surface with a pitch of
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Fig. 1.29 Microgrids used to determine the local strains in a duplex (austeniteC ferrite (darker
phase)) deformed at 850ıC under plain strain compression (30%, 1 s�1); (a) Initial; (b) Final
microstructures (Hernandez-Castillo et al. 2006)

Fig. 1.30 Microgrids used to study the local deformations in a duplex (austeniteC ferrite)
stainless steel. The colours indicate the level of von Mises equivalent plastic strain superimposed
on the deformed microstructure (Hernandez-Castillo et al. 2006, Pinna et al. 2000)

a few micrometres, as shown in Fig. 1.29 where the EMG technique is applied to
the study of the deformation at high temperature, in plane strain compression, of a
duplex (ferrite C austenite) stainless steel. These pictures clearly show many details
in particular the occurrence of sliding at a number of phase boundaries. Figure 1.30
provides an example of strain map obtained on a larger area with 111 � 122 grid
intersections (i.e. 500 � 550 �m2). Deformation bands are clearly observed as in
other materials. This information is very important for modelling the mechanical
behaviour of materials.

1.2.3 Examples of Microstructures

The mechanical behaviour of a material is closely determined by the microstructure
and this in turn is affected by the method(s) used in its manufacture: for metal alloys,
casting, powder metallurgy, forming in the solid state, assembly by welding, etc.; for
polymers, transformations in the liquid state, possibly followed by crystallisation;
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Fig. 1.31 SEM pictures of two particles of a nickel-based powder, produced by two atomisation
processes: rotating electrode (RE) and argon atomisation (AA)

for ceramics, sintering, changes during their lifetime (ageing). We now give a
few examples to illustrate the influence of these factors and follow these with a
discussion of some microstructural features related to deformation, damage and
fracture. A number of illustrations showing the microstructure of materials using
various observation techniques have already been given in the preceding subsection.

1.2.3.1 Relations Between Microstructures, Fabrication
and Ageing of Materials

Casting is still the most commonly used method for forming objects in metallic
alloys, at least in the early stages. Since solidification necessarily involves the
appearance of major and minor segregations – see Annex 2 – the parameters of
the casting process must be controlled very carefully.

When a liquid is cooled very quickly, for example by atomisation, the size
of these segregations can be limited and then, using the techniques of powder
metallurgy, such as sintering, forging, extrusion or hot pressing, new alloys can
be produced that could not be made by the classical method of casting followed by
solidification.

The powder metallurgy of alloys of aluminium and nickel in particular has
seen considerable developments. Figure 1.31 shows scanning electron microscope
pictures of two particles of a nickel-based alloy (Astroloy: 55 Ni, 15Cr, 5Mo, 17Co,
3.5Ti, 4Al) obtained from different atomisation processes: rotating electrode, in
which one electrode is heated and the liquid formed on it is thrown off by the very
high speed of rotation and forms small droplets which cool very quickly; and argon
atomisation, in which a jet of argon is blown through a bath of the liquid alloy. These
pictures show different surface microstructures, the first cellular and the second
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Fig. 1.32 Variation of the
distance �S between the arms
of the dendrites with the
solidification rate

Fig. 1.33 A spherulite of polypropylene heated to 200ıC viewed in the optical microscope, in
transmission and in polarised light

dendritic. Figure 1.32 gives, for this alloy, the relation between the spacing of the
arms of the dendrites (�s) and the cooling rate ( PT ); it shows that these atomisation
processes give very high cooling rates, 104–105 ıC/s, and consequently very small
distances between the segregation zones, a few microns. A natural conclusion is that
these processes can give a very homogeneous material.

Our second example concerns crystalline or semi-crystalline polymers such as
polypropylene. This material is largely used in particular in the automobile industry
for components such as shock absorbers, side-protection bars, etc. Typically,
polypropylene consists of about 50% of a crystalline phase distributed through the
material, under certain production conditions, as spherulites visible with an optical
microscope when viewed in transmission with polarised light. Figure 1.33 shows an
example.
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Fig. 1.34 Diameter of
polypropylene spherulites as
a function of the temperature
of the melt, for two
crystallisation temperatures,
T2, 130ıC and 140ıC

The crystallisation of polypropylene, which has a melting point close to 160ıC, is
a function of a number of parameters including the molecular mass, the temperature
to which the molten polymer has been raised, especially the temperature at which
the crystallisation takes place. Figure 1.34 shows that the size of the spherulites
increases with the temperature at which the material was melted and decreases with
that of crystallisation.

Heterogeneity is an aspect of materials with which this book is very much
concerned. It is often something that is suffered rather than desired. (However,
nanostructured materials largely used in particular in the electronic industry are
deliberately heterogeneous). The structure of wood is an example, or of cork, shown
in Fig. 1.35. This is a natural cellular material with a small cell size of about
50�m, and lends itself well to the methods for homogenisation of periodic-structure
materials. Other cellular materials, artificial in this case, have a coarser structure, as
for example the honeycomb structures that can be created in aluminium (Fig. 1.36a),
in ceramics (Fig. 1.36c) or in polymers (Fig. 1.36b).

Assembled material by one or other of the processes available such as welding,
brazing, sticking, etc., have properties, which clearly will depend on the microstruc-
tures formed at the component interfaces or with the material used for the assembly.
In order to take advantage of the best features of this or that material, such as the
resistance to wear of ceramics or the toughness of metal alloys, methods of assembly
have been developed over the years for “marrying” materials whose physical and
chemical characteristics are not easily reconcilable, for example a metal and a
ceramic. Figure 1.37 shows how an intermediate thin layer of aluminium can be
used to attach the ceramic zirconia (ZrO2) to a metal, steel or cast iron; this requires
the development of a reaction zone whose extent, about 50 �m, must be precisely
controlled if defects are to be avoided.

Nano-structured materials are intensively investigated since the 2000s. Two
examples illustrating the benefit of high resolution analytical and microstructural
observations are given below.
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Fig. 1.35 Structure of cork: three mutually orthogonal sections

The first example deals with nano-structured semiconductor ceramics TiO2 –
SnO2, which are promising candidates for new thermo-electrics with improved
properties. Superlattices alternating very thin layers of different compositions have
been shown to drastically reduce thermal conductivity by phonon scattering while
enhancing electrical conductivity by charge confinement. It is well known that
in metallic materials these two transport properties are always working hand in
hand. Encouraging results to “marry” these two antinomic physical properties have
been obtained recently in a SnO2 – TiO2 system (de la Pena et al. 2011). These
authors have developed a novel route to produce by aqueous co-precipitation of
Ti0.5Sn0.5O2 nano-powders as precursors for the elaboration of dense ceramics. The
nano-structures developed by spinodal decomposition (see Annex 2) are shown in
Fig. 1.38. In this figure alternate lamellars of SnO2 and TiO2 oxides are observed.
High resolution TEM (HRTEM) observations in [010] zone axis shows that the
interface between the two ceramics is perfectly coherent.

The second example deals with physical vapour deposition (PVD) of TiO2 films
on carbon membranes fixed on a flat sheet of stainless steel. These films have
photo-catalytic properties, which give them anti-bactericidal properties. The surface
“functionalisation” of steel substrates by photo-catalytic TiO2 coatings allows for
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Fig. 1.36 Examples of honeycomb cellular structure: (a) aluminium (b) phenolic resin (c&d)
ceramic, with square and triangular cells (Gibson and Ashby 1988)

the development of new steel products with added value, new properties and new
applications such as air or water purification, deodorising, bactericidal effect and
self-cleaning. TiO2 coatings can be prepared on steel substrates by a plasma vapour
deposition process. Optimum properties are obtained when the thin film is formed
of titanium oxide grains within an amorphous matrix phase. Figure 1.39 shows a
15 nm crystallised grain of anatase phase.

The characteristics of a material are affected by the way its microstructure
changes under heat treatment, or with ageing in use. Often these developments,
such as changes in the hardening phases or growth in precipitate size, can only be
detected by TEM at high magnification.

It is usually very difficult to predict the behaviour of a material that ages in use.
However, much progress has been made only as a result of detailed study of the
mechanisms of phase change and of the causes of deformation and damage. This is
illustrated by the three examples that follow.

The first example concerns the microstructures of nickel alloys used for the
fabrication of turbine blades for jet engines. Figure 1.40 shows the effect of the
chromium content on the carbide-forming elements (Cr, Ti, Mo, W, Te), and of the
elements (Ti, Al, Nb or Ti) which confer hardness by forming the ”0 phase [Ni3 (Ti,
Al)]. This figure gives also some examples of alloys with the largest amounts of this
phase, such as MAR M 246 which can contain up to 50%. This figure illustrates
the complexity of these alloys, which are still the best choice for the blades when
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Fig. 1.37 Assembly of ceramic ( ZrO2) and steel or cast iron through the intermediary of a layer
of aluminium; it shows the reaction zone, and cracks (by courtesy of C. Colin)

Fig. 1.38 TEM image of a SiO2-TiO2 ceramic sintered from co-precipitated powders. Microstruc-
ture obtained from spinodal decomposition. The HRTEM in [010] zone axis reveals coherent
interfaces (de la Pena et al. 2011)
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Fig. 1.39 Focussed High Resolution TEM picture showing an anatase grain. Black arrows point
seeds of crystallisation, white arrows lighter second-phase (Berger 2011)
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Fig. 1.40 Changes in the microstructure and chromium content of nickel-based superalloys
(Brooks 1982)

these have to withstand high temperatures (>1,000ıC) for long periods. Typically,
the large particles of the ”0 phase are of the order of 0.5 �m, as can be seen from
Fig. 1.41. All the phases (”0, carbides) must maintain the highest possible stability
under operational conditions.
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Fig. 1.41 TEM picture showing the microstructure of a monocrystalline turbine blade of the alloy
AM1 (6.5 Co, 7.5 Cr, 2Mo, 5.5 W, 5.3Al, 1;2Ti, 8Ta, Bal Ni). The ”0 precipitates are cubic in shape.
The position of this alloy in the performance diagram of Ni-based Alloys is shown in Fig. 1.2.

Fig. 1.42 Al-Li phase
diagram: full lines correspond
to equilibrium, dotted lines to
the metastable •0 phase
(Al3Li)

Our second example concerns light alloys, based on Al-Li, on which the
aeronautics industry relies, because of the compromise between strength and weight
that they make possible. They can give reductions of 10–15% in the weight of an
airframe compared with more traditional high-strength light alloys. There is now a
strong competition between the new Al-Cu-Li alloys and the composite materials.
The Al-Li alloys contain other elements such as copper, zinc and magnesium.
The phase diagram of Fig. 1.42 (Al3Li, stable for phase •, metastable for •0)
shows that these alloys are hardened during heat treatment by the precipitation of
very fine particles (a few tens of nanometres) of the •0 phase. Other phases can
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Fig. 1.43 Transmission Electron Microscope picture of an Al-Li-Mg alloy (Flower and Gregson
1987)

occur, however: Fig. 1.43 shows the formation of zones inside the grains free from
precipitates of •0, in the neighbourhood of larger particles, of type Al2 Mg Li. The
presence of large numbers of such particles, at separations of 0.5–1�m, reduces the
strength of the alloy.

Light alloys involving lithium are very sensitive to intergranular fracture, which
can make them brittle. One reason for this may lie in the microstructure of the
grain boundaries, which must be carefully controlled. In alloys containing copper,
zinc and magnesium in addition to lithium, particles rich in these elements and
about 0.1 �m in size are found after certain heat treatments (Fig. 1.44). The same
figure illustrates the value of an analysis that gives the enrichment of the particles
in Zn, Mg and Cu (full lines) relative to the matrix (hachured zones). The local
composition of the matrix is affected over a distance which, whilst small (�0.1�m),
is great enough to give a zone free of the •0 phase responsible for hardening in the
interior of the grains. This “soft” zone can then be fractured preferentially, resulting
in intergranular fracture, ductile in nature. Changes to the composition and to the
heat treatment can initiate a cellular reaction of the • phase, which appears at the
grain boundaries as plates (Fig. 1.45). Precipitation of this phase, in this form,
should be avoided, since it leads to a microstructure, which favours intergranular
fracture.

Our last example concerns composites with a metallic matrix, materials now
in the course of development. Composites with an aluminium or aluminium alloy
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Fig. 1.44 Development of the microstructure near a boundary in an Al-Li-Mg-Cu alloy (a)
formation of intergranular precipitates and a zone free of particles of the •’ phase (b) X-ray spectra
of particles (full lines) and of matrix (hachured) (Gregson et al. 1987)

matrix, reinforced with silicon carbide (SiC) particles or whiskers, have been much
studied; these can have up to 25% of the ceramic phase.

For certain uses the interface between the matrix and the particles in a material
of this type must be as strong as possible, and this demands control of all the
parameters of the fabrication. Figure 1.46 is a transmission electron micrograph
of such an interface. The fine particles, in the form of platelets, correspond to the
hardening phases of the binary Al-Cu system (see Annex 2). Following certain heat
treatments, in particular keeping at high temperature for long periods (100 h at
500ıC), the SiC phase, which is impure, may be oxidised locally; this is shown
in Fig. 1.47, where the presence of particles of oxides such as MgO, Al2O3 and
MgAl2O4 is revealed by electron micro-diffraction. The properties of the composite
are greatly modified by such treatments.
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Fig. 1.45 Transmission
electron micrograph of
Al-3Li (% by weight) alloy,
showing precipitates of •
phase located at grain
boundaries (Flower and
Gregson 1987)

1.2.3.2 Relations Between Microstructure and Behaviour, Damage
and Fracture

The knowledge of the elementary micromechanisms of deformation is required
for the development of macroscopic constitutive equations. This broad philosophy,
which is the main concern of the whole books, is discussed and illustrated in the next
few chapters; the methods of observation we have described are the favoured tools
for the study of the elementary mechanisms. In this introductory chapter we shall
limit ourselves to showing, with the help of two examples, with what a variety of
size scales we constantly have to deal when we concern ourselves with the behaviour
of polycrystalline aggregates.

The first level is the grain and the grain boundaries; or more generally, the
interfaces between the different phases in polyphase alloys. Figure 1.48 is an optical
micrograph of the polished surface of a two-phase alloy that has been deformed by
tension. The material is a cast stainless steel (18 Cr – 12 Ni – 2.5 Mo), consisting of
a relatively soft austenitic matrix (”, FCC) and about 20% of much harder ferritic
phase •, BCC). The traces seen in the two phases correspond either to slip lines or to
mechanical twins produced by plastic deformation; and at least two slip planes can
be seen in the two phases. The discontinuities in the traces at the •/” interface is due
to the fact that the two phases have different crystal structures and consequently
different slip systems. It is easy to appreciate that maintaining compatibility of
deformation in the two phases poses a problem: this is particularly evident in the
• phase, where the relaxation of the compatibility conditions has been achieved by
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Fig. 1.46 Transmission
electron micrographs of the
interface between SiC fibres
(upper right part) and the
matrix of an aluminium-based
composite material

Fig. 1.47 Transmission electron micrograph showing, by electron micro-diffraction, oxide parti-
cles at the interface when the composite is aged at high temperature (100 h at 500ıC)

the formation of a micro-crack in the • phase. This micrograph illustrates also the
first level in models of polycrystalline deformation, that of intergranular hardening.

At a lower level we must also concern ourselves with the distribution, more or
less homogeneous, of the slip within the grains and with that of the dislocations.
Figure 1.49 provides an example. This concerns a nickel-based alloy, Waspaloy
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Fig. 1.48 Cast stainless steel, with about 20% ferrite (•) in an austenite (”) matrix , embrittled by
accelerated ageing. Traces of slip planes and twinning in the two phases; formation of cleavage
micro-cracks (shown by arrows) in the ferrite (by courtesy of P. Joly)

(18.7 Cr, 14.2 Co, 3.90 Mo, 3 Ti, 1;44 Al, Bal. Ni), deformed at ambient temperature
by low-cycle fatigue (Clavel and Pineau 1982a, b). This alloy had been heat-treated
in such a way that it contained two populations of the hardening phase ”0[Ni3
(Ti Al)] with mean particle sizes 200 and 10 nm respectively: this can be seen in
Fig. 1.49b, for which the conditions (dark field) were such that only the ”0phase
was visible. Figure 1.49a shows that the deformation is localised in the clearly seen
system of fine bands a few microns apart. At the still lower level of the region
between a pair of bands, Fig. 1.49b shows that in this case the precipitates, initially
spherical, have narrow slices cut through them. This micrograph illustrates another
aspect of cyclic deformation, its more-or-less irreversible character.

Scientists and engineers specialising in Mechanics and Materials Science who
have the task of developing new lines face the challenge of producing materials that
have good resistance both to deformation and to damage and fracture. The study of
the latter – damage and fracture – poses many problems related to scale effects; we
discuss and illustrate the mechanisms associated with the various kinds of damage
later; here we mention only two aspects:

– the strength of the grain boundaries in crystalline materials, especially at high
temperatures, subjected to slowly-varying load (creep);

– the resistance to propagation of transgranular cracks in metal alloys subjected to
cyclic load (fatigue).

The question of strength of grain boundaries arises in connexion with both
metals and ceramics. In the latter some boundaries include a very thin layer (a few
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Fig. 1.49 Dark-field transmission electron micrograph showing the structure produced by cyclic
deformation of Waspaloy (a) heterogeneous deformation distributed in bands along f111g” planes
(b) interior of a band showing slicing of the ”’ precipitates (Clavel and Pineau 1982a)

Fig. 1.50 Structure in the neighbourhood of a grain boundary in Si3N4; high resolution (0.2 nm)
transmission electron micrograph showing rows of atoms

nanometres) of a phase that is not perfectly crystalline. Figure 1.50 illustrates this
with the silicon nitride Si3N4: the “disordered” amorphous phase along the length of
the boundary between the two crystalline phases is easily seen. At high temperature
the existence of this phase would lead not only to viscous behaviour of the ceramic
but also to intergranular fracture.
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Fig. 1.51 Scanning electron micrograph of creep-induced intergranular fracture in alloy 718

The scanning electron microscope is the instrument now most used for studying
fracture. Figure 1.51 shows creep-induced intergranular fracture in the nickel-
based alloy 718 (18 Cr, 18 Fe, 3 Mo, 1 Ti, 5.2 Nb, Bal. Ni) used mainly for
turbines. These fractures are often the result of coalescence formed at the grain
boundaries, themselves initiated by particles lying along these. This is shown in
Fig. 1.52 for a Cr – Mo – V steel used for steam turbines. This micrograph
shows again the very heterogeneous distribution of the damage, and makes evident
the underlying problems of scale. The number of such cavities could be used as
a metallographic measure of the damage, but to find this would clearly need a
great deal of care. However, we must have such measurements if we are to set
up soundly based models to enable us to predict the lifetime of a component in
service.

Examining the features of fatigue-induced fracture can not only be valuable as a
help in identifying the underlying mechanisms but can also serve practical ends. The
scanning electron micrographs of Figs. 1.53 and 1.54 provide examples. In Fig. 1.53
the vertical line probably corresponds to the emergence of a twin boundary at the
fracture surface; on either side of this we see striations that are characteristic of a
fairly high speed of propagation, about 0.1 �m per cycle. Figure 1.54 shows the
completely different features sometimes called pseudo-cleavage, characteristic of
the lowest fatigue crack growth rates, less than 10 nm per cycle. Careful examination
of the central region of Fig. 1.54 will show that this feature consists of a number
of faces, all corresponding to f111g slip planes in the same grain of this FCC
material.

This is shown clearly by Fig. 1.55, an optical micrograph of a polished and
etched section normal to the fracture surface, in which traces of the slip planes can
be seen.
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Fig. 1.52 Creep-induced
intergranular cavity formation
in steel (1 Cr, 1 Mo, 1.25 V).
Some of the cavities are very
small

Fig. 1.53 Fatigue striations
on either side of a twin
boundary in alloy 718
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Fig. 1.54 Scanning electron
micrograph of fatigue fracture
surface in Waspaloy (Clavel
and Pineau 1982a, b)

Fig. 1.55 Optical micrograph showing the section of a fatigue fracture surface in Waspaloy. Notice
the very ragged surface, which in many places is parallel to the traces of the slip planes (Clavel and
Pineau 1982a, b)
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1.3 Characterisation of Mechanical Properties

1.3.1 Aim of Mechanical Tests

The engineer has to know the mechanical properties of the materials he intends
using: in particular, for the prediction of the load that the structure he is designing
will bear before starting to deform irreversibly or to be damaged and to fail. He must
therefore have at his disposal results of mechanical tests that he can use in computing
strengths of structures and designing components. In general, the relevant tests –
tensile tests, for example – are simple in concept and interpretation. The stress states
are simple and well known as in a tensile test. It is essential that laboratory tests are
reproducible; therefore standards have been laid down by national and international
bodies such as ISO (International Standards Organisation, www.iso.org), AFNOR
(Association Française de Normalisation) and ASTM (American Society for Testing
and Materials).

The research worker studying the mechanical behaviour of materials needs fuller
and often more complex test data. Thus to find the yield conditions for a material
under multiaxial loading requires something more complex than a simple tensile
test, for example tension-torsion tests, or tests combining tension and internal
or external pressure and performed on thin-walled tubes. He will need the same
resources if his aim is to find laws that will describe the development of fatigue
damage under a triaxial stress system, in particular the directions in which fatigue
cracks initiate and grow; and similarly for damage and fracture resulting from
creep. Yet are these tests isothermal. A researcher working on thermo-elasto-
viscoplasticity is likely to have to develop his own methods.

It is perhaps rather strange that the resources available for such testing are
still so limited, in view of what is at stake on the one hand and on the other the
widening gap between the computing power now available for design of components
and the amount of test data available to the designers. Thus there are only a
few machines capable of performing in-plane tension-compression tests in two
orthogonal directions; the number of tension-torsion machines is a little higher, but
still small.

Servo-hydraulic and servo-controlled electromechanical machines are available
in most laboratories. We therefore explain the principles on which they work and
then describe the tensile test in more detail, followed by short accounts of other tests.

1.3.2 Servo-Controlled Testing Machines

The complete system is shown diagrammatically in Fig. 1.56. The test piece is held
between pairs of jaws, one attached to the cylinder, which applies the load, the other
to the moveable cross-head in which the load-measuring equipment is held. The
jack can be either mechanical or hydraulic and can apply the load either linearly

www.iso.org
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Fig. 1.56 Operation principle of a servo-controlled testing machine

(tension or compression) or rotationally (torsion); its displacement is picked out by
a sensor (LVDT). The deformation of the test piece is recorded by an extensometer,
usually mechanical but sometimes optical. It can be designed in such a way that the
test piece could be heated in a furnace.

The servo-control can be based on the applied load, the displacement of the
cylinder, the deformation of the test piece or any other measuring device; a signal
generator (analogue or digital) enables, in principle, any desired variation of load
with time, including cyclic, to be realised. Recording and processing of the results
are becoming increasingly computer-based, but many installations still have X-Y
and X-t recorders and oscilloscopes as output devices.

1.3.3 Tensile Test

1.3.3.1 Test Principle

The tensile test is the commonest mechanical test (François 2008; ISO 2009a);
it consists, simply, of applying a tensile load F to a sample of the material and
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Rp, Rr or Rt

A/100 ΔLe/Le

Fig. 1.57 Standard tensile
test data

measuring the resulting increase in length �L. According to the type of testing
machine used, the measurement is performed in load or in elongation rate control.

The specimen (ISO 1997) can be either cylindrical or prismatic; measured
between reference marks it will have initial length and cross-section L0 and S0

respectively. As a general rule L0 D k
p

S0, with k D 5.65 (that is 5(4S0/ )1/2). The
heads can be either threaded or flat, according to the kind of jaws in which they
will be held for the test; they must be smoothly joined to the stem, to reduce
the possibility of stress concentration. The extension is measured between marks
inscribed on the specimen or by an extensometer.

It is most important that the upper and lower jaws are accurately aligned so
as to ensure as nearly as possible pure traction, with no unwanted bending; but
however great the care taken, the alignment will never be perfect. To counter this,
articulated links are often introduced, such as universal and ball-and-socket joints.
This in turn may not suffice for very anisotropic materials, such as single crystals,
composites and strongly textured sheets, or when the direction of the tension does
not coincide with an axis of symmetry of the material. Off-axis testing requires
special equipment.

Testing can be performed at elevated temperature (ISO 2009b) by surrounding
the test piece with a furnace, or at low temperature (ISO 2000a; ISO 2004) by
immersing in a cooling bath.

1.3.3.2 Standard Notations

Figure 1.57 is a schematic record, which could be obtained in a tensile test featuring
the standard notations. We can derive from the curve the values of a number of
quantities, characteristics of the material and of importance for the engineer.
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Records completed during the test give the force measured by the load cell in
relation to the initial cross-sectional area S0 of the parallel length of the test piece,
according to the elongation related to the initial length between marks L0 or to the
gauge length of the extensometer Le. These are engineering values of the stress and
strain. The standard specifies the following standard data (Fig. 1.57):

Upper yield strength: ReH. This is the engineering stress value when a load drop is
observed for the first time.

Lower yield strength: ReL. This is the minimum engineering stress value during
deformation.

Proof strength, non-proportional extension: Rp. This is the stress for a given
conventional value of plastic percentage extension (extension is the increase of
the extensometer gauge length Le at a given moment of the test). In general, 0.2%
is adopted and, in this case, the proof strength is designated by Rp0.2. For another
value of plastic deformation, the index will be modified accordingly.

Tensile strength: Rm. This is the value of the engineering stress at the maximum
force during the test.

The proof strength for a plastic percentage extension x is designated by Rpx. In
limit load computations, an average plastic flow stress value Rf is often used, which
is equal to the average between the proof strength Rp0.2 and the tensile strength Rm.
It is also possible to define the permanent set strength Rr, which is the engineering
stress for a given residual percentage extension after removal of the load, as well
as the proof strength total extension Rt, which is related to a total given extension
(elastic plus plastic).

True tensile strength Ru is equal to the load quotient at the moment of fracture in
relation to the fracture area.

Percentage elongation after fracture A is equal to 100 times the engineering strain
at the moment of fracture.

Percentage elongation non-proportional at maximum force Ag is equal to 100
times the corresponding engineering plastic strain. Since plastic deformation
takes place at constant volume, Ag is also almost equal in absolute value to
the percentage relative variation of the cross-sectional area of the test piece.
It can be measured after fracture along the parallel length outside of the
necking zone.

The percentage reduction of area Z is equal to the maximum relative variation of
the cross-sectional area of the test piece measured after fracture.

Can also be defined the limit of proportionality Re D Fe/S0, where Fe is the
load at which the proportionality of extension to tension (Hooke’s law8) ceases to
hold.

8Robert Hooke (1635–1703) was an English experimental scientist who discovered the law (“ut
tensio sic vis”) which bears his name in 1660.
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1.3.3.3 Analysis of the Tensile Curve

Analysis of a tension – elongation curve is simple in the case of a homogeneous,
isotropic material. We define the true stress 
 and strain " at all points before the
maximum of the curve – that is, before the onset of necking – as follows, taking care
to use the extension after removal of the load so as to keep the plastic deformation
only:


 D F

S
D F

S0
exp .�"/ (1.1)

" D log .L=L0/ D log.1C�L=L0/ (1.2)

Note that this definition of the strain is not exactly the same as the Lagrange9

strain �D�L/L0 C (1/2)(�L/L0)2. The advantage of the definition (1.2) is that the
strains are additive.

Various empirical stress–strain relations are used to represent mathematically the
experimental curve.

The most widely used is the Hollomon10 formula:
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A similar formula is the Ramberg11-Osgood law:
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Here 
0 is the yield strength Rp and "0 the corresponding strain, namely 
0/E.
The Ludwick’s law is also often used:
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0 and 
1 having here a different meaning.
The strain rate sensitivity can be introduced in the representation of the tensile

behaviour, writing then:


 D 
0"
n P"m (1.6)

P" being the strain rate.

9Joseph Louis, count of Lagrange (in Italian Giuseppe Lodovico Lagrangia), was born in Turin in
1736 and died in Paris in1813. He was a mathematician and astronomer. Born in Italy, he spent
30 years in Piémont then 21 years in Berlin and the rest of his life in Paris.
10John Herbert Hollomon Jr. (1919–1985) was an American engineer.
11Walter Ramberg (1904–1985) was an American scientist.
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The deformation remains homogeneous so long as the relation d
 /d">
 holds.
Necking occurs when d
 /d"D 
 , the Considère’s criterion.12 For materials for
which the law of work-hardening can be put in the form 
 D 
0"

n, this occurs when
the homogeneous deformation is equal to:

"g D log
�
1C Ag =100

� D n (1.7)

For a strain-rate sensitive material, whose behaviour can be represented by
Eq. 1.6, the homogeneous deformation depends on the exponent m. The relation
can be determined by studying the stability of a slight local perturbation of the
cross-section of the specimen (Hutchinson and Neale 1977). Intuitively, it can be
surmised that high rate sensitivity increases the homogeneous deformation because
a local decrease of the cross-section increases the strain rate and thus the stress. The
relation is:

"hg D n

1 �m (1.8)

Considère’s criterion: necking of a tensile specimen begins when the
homogeneous deformation is equal to the strain-hardening exponent n (or
to n/(1-m) for a strain-rate sensitive material).

When m D 1 (corresponding to Newtonian flow in viscosity) the homogeneous
deformation becomes infinite. The material is super-plastic.

When necking occurs the specimen is no longer being subjected to a simple
tensile stress state. Several approximate relations have been devised to describe
the stress–strain state then holding in the minimal section of a circular cylindrical
test piece, the one most commonly used being that proposed by Bridgman,13

which assumes that the deformation is uniform over the minimal section (detailed
calculation is given in Volume II).

Let R be the radius of curvature of the neck, and a the radius of the minimal cross-
section. Then at any point distant r from the axis of symmetry, in polar coordinates:


rr D 
�� D 
zz � N
 (1.9)

where N
 is the equivalent stress. And:


zz D N

�
1C log
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2aR
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(1.10)

12Armand Considère (1841–1914) was a French engineer, a pioneer of reinforced concrete. He
published his criterion in 1885.
13Percy Williams Bridgman (1882–1961) was an American physicist winner of the Nobel Prize in
1946 for his work on high pressures.
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Fig. 1.58 Longitudinal section through a tensile tested specimen, test of which was interrupted
before fracture, showing a crack in the central region of the neck

This corresponds to a uniform deformation at the section. It follows that the
mean stress on the minimal section N
zz, measured beyond the maximum load, can
be expressed as

N
zz D N

�
1C 2R

a

�
log

�
1C a

2R

	
(1.11)

This relation enables, in principle, to determine the form of the work-hardening
curve 
 D f("), well beyond instability corresponding to the onset of necking,
provided that we can measure the two radii a and R. This can be useful in the study
of large deformations since for many materials the homogeneous deformation is
small, e.g. n � 0.1 for ferritic steels.

The greatest principal stress 
 zz is maximum at the centre, r D 0 in Eq. 1.10.
Similarly for the stress triaxiality ratio:

.
m = N
 /rD0 D .
zz = N
 /rD0 � 2 =3 D 1 =3 C log .1C a =2R/ (1.12)

This result shows immediately why ductile fracture initiates preferentially at the
centre of the neck, as shown in Fig. 1.58; this is the place where the hydrostatic
stress 
m is maximum.

In anisotropic materials, in particular in thin sheets of rolled aluminium alloys,
or low carbon steels, tensile tests are also carried out to determine the Lankford
coefficient (Lankford et al. 1950), also called Lankford R value. In a thin sheet rolled
along the direction L, with T the transverse direction and S the thickness direction
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(axis 3), a flat tensile specimen is cut along a direction, which makes an angle ˛
with the L direction. The definition of the R value is:

R D d"p .˛ C  =2/

d"p
33

(1.13)

where d"p is the increment of plastic strain. In a purely isotropic material, R D 1.
In usual metals, R ¤ 1 even initially (initial anisotropy) and the R value changes
with plastic strain (induced anisotropy). For sheet metals the R values are usually
determined for three different orientations (0ı, 45ı, 90ı) to the rolling direction and
the mean value of R is taken as:

NR D 1

4
.R0 C 2R45 CR90/ (1.14)

The value of NR is used extensively as an indicator of the formability of thin
sheet metals. The values of R are determined experimentally using either contact
extensometers or digital image correlation (see Sect. 1.2.2.9).

1.3.4 Compression Test

The compression test (ISO 1979) is similar in principle to the tensile test: the
specimen, usually a circular cylinder, is submitted to two axially opposed forces
by putting it between the tables of a press. This seems simple, but in practice there
are at least two difficulties.

The first concerns the risk of buckling, an instability either elastic or plastic; to
avoid this the aspect ratio (length/diameter) of the specimen must be kept below
a critical value. The second concerns the friction between the press plates and the
heads of the specimen. Under compression, the diameter of the cylinder increases as
the length decreases, and this is opposed by the friction; the consequence is that the
cylinder is distorted into a barrel shape. Further, it is difficult to use the test to find
the ultimate strength under compression if the material is ductile. For this reason
the compression test is most often used with brittle materials such as concrete and
ceramics.

1.3.5 Other Tests

Many tests besides tension and compression are performed on materials; we shall
just indicate the principles without going into details.
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1.3.5.1 Bend Tests

The 3-point bend test (or 4-point, to develop a constant bending moment over a
section of the specimen length) has the advantage of needing but simple shaped test
pieces (ISO 2005a). Like the compression test, it does not in general enable fracture
to be attained in ductile materials. These tests are currently used in quality control
and to find the ultimate strengths of brittle materials.

1.3.5.2 Torsion Tests

Torsion tests are widely used to investigate the deformation of alloys at high
temperatures in order to determine their constitutive laws and to study the devel-
opment of their microstructures such as polygonisation and static and dynamic
recrystallisation. For this purpose the tests are performed on cylindrical test pieces,
most often at high strain rates (d"/dt � 1–10 s�1) so as to match the conditions which
exist in forming operations. This deformation mode avoids necking, which makes it
particularly interesting for the study of large deformations ("> 100%).

The main difficulty in this test is that the deformation is not uniform over the
cross-section of the specimen, being maximum at the periphery and zero at the
centre. In the regime of perfect plasticity, if R is the radius of the cylinder, C
the applied torque and ' the angular strain, the maximum shear stress �R at the
periphery is given by:

�R D 1

2 R3

�
3C C dC

d'

�
(1.15)

As we emphasised in Sect. 1.3.1, torsion tests are used in conjunction with tensile
and compression tests to investigate the constitutive behaviour laws for materials,
most often with small cyclic deformations. Here tubular specimens are used, with
walls thin enough for the shear stress to be taken as constant over the section. The
difficulty here concerns the instrumentation. Measurements can be made by strain
gauges stuck to surface of the specimen if the test is to be made at or near room
temperature and if, in a fatigue test, the interest is in the cyclic behaviour rather than
in the damage. Indeed, gluing strain gauges does not allow perfect polishing of the
surface of the test piece. Otherwise special measuring devices have to be used, of
which there are two main types: mechanical, acting by direct contact, and optical,
possibly using lasers. It is worth mentioning that digital image correlation (DIC) is a
technique for strain measurements, which is now becoming more and more popular
(see Sect. 1.2.2.9).
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1.3.5.3 Hardness Tests

The hardness test, used mainly for control, measures the resistance of the material to
penetration by a probe of standard shape and size (Pommier 2008); examples are

– hard steel ball, diameter 10 mm (Brinell test)14 (ISO 2005b) or 1.59 mm
(Rockwell B) (ISO 2005c)

– diamond cone, vertex angle 120ı (Rockwell C) (ISO 2005c)
– diamond pyramid, square base, angle 136ı between opposite faces (Vickers)

(ISO 2005d)

The tests are simple and quick to perform and the results are reproducible. There
are empirical correlations between hardness measures and tensile strengths (ISO
1989): thus

the Vickers hardness is approximately 3 times the tensile strength.

A theoretical derivation of this factor 3 is given at the end of Chap. 3 (cf.
Fig. 3.141), by considering the flat indentation of a semi-infinite body.

Micro-hardness tests provide results concerning local properties, such as the
depth of penetration of a surface treatment or the extent of a heat affected zone
in welding.

Equipments have been developed for nano-hardness measurements, which re-
quire instrumentation of the indenter (ISO 2002a). In this way properties of
individual grains can be investigated (see Sect. 1.2.2.5). In nano-indentation small
loads and tip sizes are used. The resulting indentation area is of the order of
a few micrometres or nanometres. An indenter with a geometry known to high
precision (usually a Berkovich tip which has three-sided pyramid geometry) is
used. During the course of the instrumented nano-indentation test, the depth of
penetration is recorded, and then the area of the indent is determined using the
known geometry of the indentation tip, as shown in Fig. 1.59. These curves can
be used to determine the mechanical properties of the material at the nano-scale, in
particular the “local” Young modulus can be measured from the slope of the curve,
dP/dh, upon unloading.

An example of the use of nano-indentation technique applied to a dual-phase
(ferrite C martensite) steel is given in Fig. 1.60. In this material with an extremely
fine microstructure, the sizes of the nano-indents were measured using SEM. The
results shown in Fig. 1.60b clearly indicate the difference in hardness between the
ferrite phase and the martensite, as expected. Rather surprisingly it is observed that
the ferrite / martensite interface is softer. This result can be explained from a detailed
analysis of the phase transformation taking place in this type of material.

14Johan August Brinell (1849–1925) was a Swedish engineer who proposed the hardness test which
bears his name in1900.
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Fig. 1.60 Dual phase (FerriteCMartensite) steel-Alloy B85. (a) Micro-indentations (maximum
load: 2 mN, pitch: 2 �m) observed by SEM; (b) Nano-hardness in ferrite and martensite phases
and at the interface in B85 steel and in tempered B85 steel (by courtesy of A. Dalloz)
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1.3.5.4 Fracture Mechanics Tests

Based on the theory of linear elastic fracture mechanics (LEFM), fracture mechanics
tests allow the determination of the fracture toughness of materials (ESIS 1992,
ISO 2002b, 2005e). This is the fracture energy for crack propagation and is usually
expressed in term of the critical stress intensity factor KIc in MPa

p
m, which is

related to it by a simple formula.
The test is performed on precracked test pieces. Precracking is usually achieved

by fatigue. The fracture toughness thus measured is supposed to be size independent.
However statistical theory based on weakest link concept has shown that there
is a relation between the fracture toughness and the specimen thickness, B, such
as KIc

4B D constant (see Volume II). This relation holds in the lower shelf
and in the transition range of ferritic steels (see also ASTM 2011). Fracture
toughness measurements are very useful for the determination of crack propagation
in structures. The drawback of LEFM tests is the need, for validity, to avoid
excessive plastic deformation at the crack tip. Thus for low yield strength materials
extremely large test pieces should be used.

Elastoplastic fracture mechanics (EPFM) theory, not quite as well founded
as LEFM, allowed nevertheless the development of similar tests, which differ
essentially from the LEFM ones by the way to analyse the data. All this will be
detailed in Sect. 2 of Volume II.

1.3.5.5 Impact Tests

The embrittling effect of the increase in strain rate led to the development of various
impact tests (Frund 2008; François and Pineau 2002). The Charpy15 test is the most
common. This is an impact bending test (ISO 2009c) performed with a pendulum.
The standard test piece is a square-section bar of length 55 mm and side 10 mm, with
a notch cut at the mid-point of the length. This is a 45ı V of depth 2 mm with a radius
of 0.25 mm at the apex (Charpy V). Still sometimes a U of 5 mm depth with a radius
of 1 mm at the base (Charpy U) is used. In the test the bar is broken by dropping
a striker held at the end of a pendulum and the energy absorbed at the impact is
measured; the result, expressed as joules per cm2 of the remaining section, is called
the KCV (or KCU) resilience. Applied to structural steels, the method has made it
possible to show that in ferritic steels there is a transition from ductile fracture at
high temperature (high energy) to brittle fracture at lower temperature (low energy).

The Charpy resilience is used mostly for control. Instrumentation of the pen-
dulum by sticking strain gauges on the striker provides more information than the
mere fracture energy. In particular it allows the determination of dynamic fracture
toughness by testing precracked Charpy specimens (ISO 2000b).

15Augustin Georges Albert Charpy (1865–1945) was a French engineer, scientist and entrepreneur.
He proposed the pendulum which bears his name in 1901.
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1.3.5.6 Fatigue Tests

There are several tests for characterising fatigue, which fall into two main classes:
endurance tests and low-cycle fatigue tests (Lieurade et al. 2008). The aim of the
first is to find the stress corresponding to the endurance limit (number of cycles,
N> 106); these are performed on smooth test pieces stressed in tension or in either
plane or rotational bending and the test machines are usually mechanical (ISO
1975, 2006). The second aims not only to measure the endurance but also to study
its constitutive law under cyclic loading with a much smaller number of cycles,
from 102 to 105. The machines are strain servo-controlled and the stressing usually
tension-compression (ISO 2003).

Fatigue crack propagation tests are based on LEFM. They require a measuring
device to follow the crack advance as the test proceeds (ISO 2002c).

1.3.5.7 Creep Tests

Resistance to creep is most commonly measured by applying with the help of a lever
a constant tensile load to a smooth specimen (ISO 2009d). The tests are performed
at various temperatures. They must be closely controlled, to within ˙ 1ıC. For each
value of the load the strain rate d"/dt and the time tR to fracture are measured. The
first is used to give the constitutive law of the material, the second its resistance to
creep fracture.

1.3.6 Measurements of Elastic Characteristics

1.3.6.1 Static Methods

Static methods simply use the previously described tests: tensile test, bend test and
torsion test (Gadaud 2008). The deformation of the test piece must be measured with
the best possible precision, for instance with strain gauges or with an extensometer.
In each case there is a relation between this deformation and the applied load, which
provides an elastic modulus: Young modulus in the case of the tensile and bend
tests, shear modulus in the case of the torsion test. The Poisson ratio can also be
determined in a tensile test by measuring the lateral contraction of the test piece.

Such measurements can be performed at temperatures different from ambient,
subject to some adaptations of the deformation measuring devices.

1.3.6.2 Ultrasonic Methods

The propagation of plane sine waves is discussed in Sect. 2.3.5 of Volume I.
Ultrasonic waves are but a particular case.
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An ultrasonic wave propagates in an isotropic material with a longitudinal

velocity VL D
h
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where E is the Young modulus, � the Poisson ratio, � the shear modulus and �
the density. The measurement of these two velocities allows the determination of
the elastic constants, two of which only are independent, provided the density is
known.

A piezoelectric transducer is applied on the face of a plate of thickness e. It
delivers an impulse. Depending on the orientation of the transducer the wave is
longitudinal or transversal. Another transducer can be applied on the opposite face,
acting as a receiver, or, more simply, the first transducer can act as well as a receiver.
In any case the travel time of the wave impulse across the plate is measured, which
provides the wave velocity.

Measurements at temperatures less than about 400ıC are possible by the use of
cements to fix the transducers. At higher temperatures, they must be kept outside
the furnace, the wave being introduced in the specimen by a wave-guide.

For anisotropic materials there are more than two wave velocities. A convenient
method of measurement consists in immerging in water the specimen held by a
rotating support. The ultrasonic wave is then introduced in the specimen without
contact. By refraction, it decomposes into three waves, one longitudinal and
two transversal. The measurement of the travelling time from an emitter to a
receiver provides the wave velocities in the sample, according to its orientation, by
comparison with the travelling time in the absence of the specimen. A mathematical
treatment makes it possible to go back to the different elastic constants.

1.3.6.3 Resonance Methods

There exist relations between the resonance frequencies of a specimen and the
elastic constants. In these expressions always appears the ratio (E/�)1/2 and the
dependence on the Poisson ratio is geometry dependent.

In the resonance method, the specimen is excited by a device, which can be
piezoelectric, electro-magnetic, electrostatic for instance. This last method has the
advantage that it does not require a contact and it can be adapted to measurements
at temperatures different from ambient. The specimen can be a rod or a disk. It can
be a bar excited in bending or in torsion.

1.3.6.4 Instrumented Micro-indentation

The instrumented micro-hardness tests mentioned in Sect. 1.3.5.3 can be used to
measure the elastic characteristics. The measurements must be performed during
unloading to avoid plastic deformation. Numerical calculations are needed to
determine precisely the local deformations and the relation between the penetration
and the load to obtain the elastic moduli. The advantage of this method is that it
allows measurement of local characteristics at a very small scale.
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1.3.7 Tendencies in the Evolution of Methods for Studying
Mechanical Properties of Materials

We have already, in Sect. 1.3.1, mentioned one tendency, that towards multi-
axial stressing; here we mention some others. One, not indeed particularly recent,
is the increasing interest in properties related to viscosity: – visco-elasticity of
polymers, visco-plasticity of metal alloys at low and at high temperatures. For
the first, the quantities of interest are the elastic moduli, real and complex, of
the material and the energy dissipation under cyclic loading. Measurement here
requires special equipment, which is now becoming available commercially. For
the second, the quantities studied are those that characterise thermal activation of
irreversible deformation, such as activation volume and energy; they can be found
by making sudden changes of speed and/or temperature in the course of tests, for
which specially-designed equipment is needed.

The development of instruments for observations at low scales (SEM Sect.
1.2.2.3, TEM Sect. 1.2.2.2) led to the possibility to perform mechanical tests within
these microscopes. Commercialy available devices replaced the DIC. In the SEM
various techniques are used to measure the strains, following the displacements of
a grid inscribed on the test piece is one of the most widely developed. Performing
bend tests on nano-tubes can be envisaged.

Another tendency, more recent, derives from the development of methods for
calculating the response of structures, notably the finite-element method. It is
now possible to design tests to be performed on structural test pieces, such as
notched specimens, for which calculations have been made in advance, to study the
influence of some parameter such as the maximum principal stress or the trace of
the stress tensor in some specific type of damage such as intergranular cavitation
or ductile fracture. The same approach enables important questions such as the
directional aspects of damage to be investigated. Clearly, for this to be possible, the
constitutive laws expressing the behaviour of the material must be known, and these
can be established as a result of tests made on samples whose geometry is simple
enough for the stresses to be deduced without knowing the constitutive equations.
Otherwise, inverse methods must be employed.

1.4 Constitutive Equations: General Considerations

1.4.1 Modelling

So far in this introductory chapter we have discussed the field of Mechanics and
Materials, the main classes into which materials can be grouped and the means
for measuring and analysing their properties on various scales. We now consider
the problem of modelling their mechanical behaviour. Modelling is needed to
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establish the relation between the microstructure of a material and its macroscopic
properties, with the aims of enabling the response to loading of a proposed
construction to be predicted and of suggesting and guiding the development of
new materials or improvements to existing ones. The laws provided by modelling
must be realistic, practical and soundly based; two main types of approach can be
envisaged:

1. phenomenological and inductive, operating in a thermo-dynamical framework
and proceeding by experimenting on a macroscopic scale to identify parameters

2. deductive, seeking to deduce macroscopic properties from a description of the
microstructure, the elementary mechanisms of deformation and damage and
combining them into upscaling treatments

The first approach is generally more useable and more frequently used; we shall
seek to explain it by relating the information obtained on the microstructural scale
to the various types of behaviour considered in the following pages. The second is
of course more complex, less well established and less practical, but it is richer and
more soundly based physically. We shall take this up in several contexts, particularly
in connexion with heterogeneous materials.

1.4.2 Constitutive Equations: Main Classes

The general equations of physics – conservation of mass, momentum, energy, : : : –
are not sufficient to determine the stress or displacement fields in a structure; we
have to add the physical laws that, for the constituent material, relate the dynamic,
geometric and kinematic variables. For example, the equilibrium equations for the
stresses –


 D 
T

div 
 C f � �
 D 0 (1.16)

provide only six equations for nine unknowns, and the equations of strain com-
patibility, Inc" D 0 (see Annex 3), only three independent equations for six
unknowns. It is only the constitutive equations which, by linking stresses and
deformations, enable the two sets of equations to be used together, and so, with
the boundary conditions, provide enough equations to determine both stresses and
displacements.

Deduction of a mechanical behaviour from an experiment poses a problem of
principle, since the experiment can only be performed on a structure – even a test
specimen is a structure, with its specific geometry, under a given loading – and we
cannot deduce the stress field in such a loaded structure from the global forces,
as is necessary for deriving the behaviour, unless we already know the constitutive
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equations. Classically16 we can only resolve this difficulty of principle by using very
specific geometries for the test specimens and special forms of loading that enable
us to deduce the local mechanical variables from global quantities, whatever the
behaviour: for example, uniaxial traction of a long bar, torsion and internal pressure
in a thin-walled tube (see Sect. 1.3). Under such conditions, in a test defined by the
pair of parameters Q (load) and q (deformation), related by energy considerations
expressing the work done in the deformation, we can distinguish by the form of the
relation between Q and q three main classes of behaviour:

Elastic: this is exhibited by a structure recovering, at least partially, its deformation
when the load is removed. If the recovery is complete and there is a bijective
relation f(Q, q) D 0 we speak of perfect elasticity. If this relation is linear and
homogeneous then the elasticity is linear: this is so for a linear spring, for which
Q D Eq or q D JQ. The law, Hooke’s (see note 10) law, can be generalised to
cover the case of several pairs of parameters: Qi D Eijqj, qi D JijQj, where, as in
the following, the Einstein convention on repeated indices is used.

Viscous: here the response to the deformation varies with its rate Pq; this viscous
resistance means that, for given q, Q is an increasing function of Pq. Viscosity
is pure when there is a bijective relation between Q and Pq, g(Q, Pq) D 0; and if
this is linear and homogeneous the viscosity is linear. This is the case for the
linear dashpot, Q D � Pq, which is Newton’s17 law, which can be generalised to
Qi D �ij Pqj for several parameters.

Plastic: this is characterised by a permanent deformation remaining when the load
is removed, provided the load is great enough, that is, exceeds some threshold.
Generally, this threshold rises with plastic flow – the phenomenon of work-
hardening; if it remains constant the plasticity is said to be perfect. If further
the deformation before the plastic threshold is negligible then the behaviour is
described as rigid-perfect-plastic: this is the case of a friction slider with constant
threshold, represented by �k � Q � k, PqQ � 0.

These three basic behaviours can combine in many ways, so that one can have,
for example, visco-elasticity, elasto-plasticity, visco-plasticity, even elasto-visco-
plasticity. The combinations can be analysed qualitatively by assembling, in series
or in parallel, the rheological models for the basic constituents (spring, dashpot and
friction slider).

16New methods based on full field strain measurements (see Sect. 1.2.2.9), numerical computations
and inverse resolutions have been developed recently in order to perform a direct identification of
the material constitutive equations from the experimental response of structures with arbitrary
geometry. Information on these approaches can be found e.g. in the book edited by Grédiac and
Hild 2011.
17Sir Isaac Newton (1643–1727) was an English physicist, mathematician, astronomer, natural
philosopher, alchemist, and theologian. His “Principia”, published in 1687, lays the groundwork
for most of classical mechanics.
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Damage: this is the progressive alteration of mechanical properties that usually
derives from the formation and growth of microcracks and microcavities, which
accompanies large deformation or cyclic loading for instance, and which can
end with fracture. These phenomena are naturally coupled with those which
determine the deformation itself, so that the laws governing damage must in
general be coupled with those given above: the total assemblage determines the
real behaviour of the material.

1.4.3 General Formulation of the Constitutive Equations

Apart from the case of perfect elasticity and pure viscosity, mechanical behaviour
exhibits hereditary properties: this means that the response to a load depends not
only on the load exerted at that moment but also on its entire previous history.
According to the principle of causality, or determinism, this property can be
described either by a functional relation between the dynamical and geometrical
variables or by dependence, holding at that instant, on a set of internal parameters
or hidden variables describing the state of the material, whose laws of evolution
must be known.

Consider the functional representation as a finite transformation T(M,�) at point
M and time � with gradient rT D F D U :S where S is symmetric and U
orthogonal. Let 
.M; t/ and ˘.M; t/ be the Cauchy and Piola-Kirchoff II stress

tensors respectively (see Annex 3), with ˘ D JF �1:
 :.F T/�1: the Jacobian
J D det.F / is equal to �0/�, the ratio of the densities in the reference and current
configurations respectively, according to the law of mass conservation.

The representation necessarily involves certain quantities A, mechanical vari-
ables and characteristics of the system, which satisfy the principle of tensorial
invariance and guarantee independence of the coordinate system. Thus after a
change of base defined by the matrix [˛] or [ˇ] with [ˇ] D [˛]�1 the components
of A are transformed according to the rule:

A
0mn:::p
ij :::k D ˛
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��:::�

��:::& (1.17)

According as whether a Eulerian or a Lagrangian description is chosen, the
functional dependence can be written, omitting temperature and physico-chemical
variables,


.M; t/ D f


M; t; x.N; �/t�1

�

˘.M; t/ D F 
M; t; x.N; �/t�1� (1.18)

where x.N; �/t�1 represents the set of positions of all the points N of the structure
at all instants � in the interval ]-1, t]. This long-range influence of the points N on
M expresses non-local behaviour.



1.4 Constitutive Equations: General Considerations 71

An important simplification results from assuming a principle of local action,
according to which only interactions in the neighbourhood of M need to be taken
into account: that is, the behaviour in the neighbourhood of M is the same, whatever
the mechanical state at a finite distance. Eq. 1.18 then becomes:


.M; t/ D f


M; t;rT .M; �/t�1;r2T .M; �/t�1;r3T .M; �/t�1; :::

�

˘.M; t/ D F 
M; t;rT .M; �/t�1;r2T .M; �/t�1;r3T .M; �/t�1; :::
�

(1.19)

A further simplification is made by considering only the first-order gradient
rT D F ; this is the assumption of material simplicity, which we shall take for
granted from now on. We now have


.M; t/ D f
h
M; t; F .M; �/t�1

i

˘.M; t/ D F
h
M; t; F .M; �/t�1

i
(1.20)

This form can be specified by introducing the principle of objectivity, which
expresses the independence of the constitutive equations of the movement of the
observer and therefore of any change of frame of reference – that is, any rigid-body
movements. It can be shown that the principle implies on the one hand that the time
t cannot appear explicitly in the above relations (1.20) (considering a difference in
clock time between two observers) and on the other that there is a very particular
dependence of the stresses on the deformations S and the rotations U , that is


.M; t/ D U .t/:f
h
M;S.M; �/t�1

i
:U T.t/

˘.M; t/ D F
h
M;S.M; �/t�1

i
(1.21)

The point M can occur as an argument of the functional relations only in the case
of heterogeneous materials, that is, materials where the properties vary from point
to point. For homogeneous (and simple) materials we have, at every point


.t/ D U .t/:f
h
S.�/t�1

i
:U T.t/

˘.t/ D F
h
�.�/t�1

i
(1.22)

with � the Green-Lagrange strain tensor.
For an infinitesimal transformation the two descriptions coincide and both

reduce to


.t/ D f
h
".�/t�1

i
(1.23)
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1.4.4 Anisotropy and Heterogeneity

These are two important features of the properties of real materials, often related;
we now look at them in turn, emphasising their interactions.

1.4.4.1 Heterogeneity and Homogenisation

In real materials there is usually, between the level of atomic/molecular struc-
ture (crystal lattice, point defects, dislocations, molecular chains, branchings,
entanglements, etc.) and that of macroscopic treatments (the elementary volume
in continuum mechanics), an intermediate level of microstructural heterogeneity
(polycrystalline grains; different phases in metals, alloys and polymers; reinforcing
particles; fibres : : : ). The transition to the macroscopic level can be made more
completely, and more quantitatively, from this intermediate level than from the
atomic/molecular level.

What we have to do is to try to replace the real heterogeneous material by its
homogeneous equivalent (HEM), in such a way that in the structures studied, and at
the (macroscopic) scale at which they are studied, the stress, strain and other fields
are the same in both. For this we must be able to take as elementary volume for
the structure a representative volume element (RVE) of the material; this, whilst
large with respect to the inhomogeneities of the microstructure, must be small
enough on the macroscopic scale to be treated as a continuous medium. With d,
` and L the characteristic lengths of the inhomogeneities, the RVE and the structure,
respectively, we must then have: d 	 ` 	 L. In addition, ` must also be small
with respect to �, the length of fluctuation of the macroscopic boundary conditions
(` 	 �) and d must be large enough (say d0 � dwhere d0 depends on the material
and can range from a fraction of nm to a few microns) for the classical concepts,
tools and laws of continuum mechanics to be relevant. In summary we assume the
following conditions, which are necessary but generally not sufficient to guarantee
the existence of a RVE and of the associated HEM

�
d0 � d 	 ` 	 L

` 	 �
(1.24)

In what follows we consider only macro-homogeneous materials for which such
a RVE exists; thus we exclude structures that are heterogeneous on the macroscopic
scale, for which there are characteristic size and scale effects. Even so, the choice
of the representative volume can vary with the theory, the method used and the
behaviour studied.

We shall use lower-case symbols for quantities defined on the microscopic scale
and upper case for the macroscopic.
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Note: In studying finite transformations it may be necessary to describe and take into
account the way the microstructure itself changes with the deformation, for example
in textured materials or stress-induced morphological changes.

Methodology. Three stages can be distinguished in all of the methods for treating
heterogeneous materials:

Representation (or description): definition of the phases and description of their
spatial distribution and mechanical behaviour.

Concentration (or localisation): mechanical modelling, and determining the rela-
tions between the local fields and the macroscopic quantities.

Homogenisation: averaging the properties and determining the equivalent homoge-
neous behaviour.

We now describe these in order.

(a) Representation/description. We must first decide on a level that characterises
the heterogeneity and then determine the nature of the parameters that will enable
us to describe the corresponding phases.

For a particulate composite, we can deal with two phases only, the particles
and the matrix; but the particle phase can be decomposed itself into sub-phases if
different kinds of particles are present or if the shape and orientation of the particles
are taken into account. For a polycrystal, a phase can be defined by all the grains
of the RVE which have the same crystal orientation. In addition, each phase can be
decomposed into sets of grains with the same shape, size and orientation : : :

For a two-phase polycrystalline material we could consider only two phases,
each described globally; or we could note the granular and crystallographic nature
of each macroscopic phase and take as elementary phases the grains of the same
chemical composition and the same crystal orientation. In addition we could use the
shape and size of the grains, or other features.

Having made this choice we have then to characterise the mechanical behaviour
of each phase, considered as a homogeneous continuous medium. Various questions
arise, for example how not to assimilate the average behaviour of polycrystal grains
into that of a single crystal of the same orientation; or how to take account of the
particular behaviour of the interfacial zone in a composite material consisting of
fibres in a polymer matrix?

Finally, we have to describe the geometry of the microstructure, and apart from
certain cases where we can give a deterministic description – periodic media for
example – we have to resort to statistics.

Example 1: crystallographic texture of a polycrystal.
Let g D ( ,� ,') be the Eulerian angles for the crystal orientation with respect to

an external frame; we define the distribution function f(g) for the crystal orientations
(the texture function) by dV/V D f(g) dg, where dV/V is the volume fraction of grains
with orientation g in an interval of dg at g. This definition makes no reference to the
spatial distribution of the grains – no correlation between position and orientation is
given or implied.
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Example 2: statistical description of the spatial distribution of the elastic moduli
c(x) in terms of correlation functions. Let c1 D c(x1) and let P1(c1) be the probability
density, so that P1(c1) dc1 is the probability that c(x1) lies within an interval dc1 at
c1. Similarly P2.c1; c2/dc1dc2 is the probability that c(x1) and c(x2) are both within
the corresponding intervals. Note that P1 D R

P2 dc2.
We now define the ensemble averages for the functions f(c1), g(c1, c2), etc. as

follows

< f >D
Z

f.c1/P1.c1/ dc1; < g >D
Z

g.c1; c2/P2.c1; c2/ dc1dc2; etc:

(1.25)

NB: This infinite sequence of correlation functions of successive orders is
equivalent to that of probability densities Pn(c1, c2, : : : cn) as n ! 1.

We shall see later that whilst a knowledge of a limited number of these correlation
functions does not enable us to predict the values of the elastic moduli with certainty,
it does allow us to set bounds to their values.

The ergodic hypothesis, implied in what follows, relates the ensemble and spatial
averages:

<c1> D .1=V /

Z
V

c.x/dV (1.26)

(b) Concentration/localisation. It consists in relating local fields and macroscopic
variables: in general, heterogeneity means that 
 ¤ ˙; " ¤ E; etc.

Example: internal stresses in elasto-plastic materials.

Level 1: residual stresses 

I

in a plastically deformed component from which the
load has been removed, where there is a field of incompatible plastic deformations
(see Annex 3, Eq. 3.3). If Inc"p ¤ 0, then elastic deformations "e must exist such
that Inc " D Inc "e C Inc "p D 0, with "e and 


I
linked by the laws of elasticity.

Level 2: internal stresses 

II

on the scale of the grains, within a RVE, deriving from
intergranular plastic incompatibilities (i.e., between grains)

Level 3: internal stresses 

III

varying within the grains, deriving from intragranular
plastic incompatibilities (dislocations, cell walls, : : : )

NB: Within a grain < 

III
>D 


II
Within a representative element of volume < 


II
>D 


I
Within the structure < 


I
>D 0 in the absence of load.

The concentration stage, which is the one that concerns mechanical modelling
proper, is specific to each model. It should lead to a law of localisation or
concentration which links 
 and˙ or " and E , or their derivatives. For linear
behaviour we have (

".x/ D A.x;˝; :::/ W E

.x/ D B.x;˝; :::/ W ˙ (1.27)
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where A and B, (fourth-order) concentration tensors for strains and stresses
respectively, depend on the position and on the parameters ˝ that describe the
phases being considered.

(c) Homogenisation. This is the stage in which the effective (that is, homogenised)
behaviour of the material is determined, and possibly the updating of the initial
microstructure; it makes use of the relation between the macroscopic variables
and their averaged local counterparts. Here we restrict ourselves to infinitesimal
transformations.

Averages: Macroscopic additive quantities such as volume mass, internal energy
or specific entropy, dissipation, can be defined as the spatial averages of the
corresponding local quantities. The same can only be derived for stress and strain
tensors, namely

˙ D< 
 >D 1=V

Z
V


 dV E D< 
 >D 1=V

Z
V

" dV (1.28)

for restricted homogeneous boundary conditions. Thus:

(a) if we impose the condition 
.x/:n D ˙:n 8x 2 @V; with ˙ constant, we
get, since div 
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(b) if we impose the displacement u D E:x on @V we have
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Suppose now either a statically admissible (SA) 
�.x/ stress field or a kinemat-
ically admissible (KA) "0.x/ strain field obeys the above homogeneous conditions;
we then have

V < 
� W "0 >D
Z
V


�ij u0i;j dV D
Z
V

�

�ij u0i

	
;j

dV D
Z
@V


�ij u0i nj dS (1.31)
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whence, if 
�.x/:n D ˙:n 8x 2 @V;

< 
� W "0 >D .1=V /˙ij

Z
@V

u0i nj dS D.1=V /˙ij

Z
V

"0ij dV D ˙ W< "0 >
(1.32)

which implies especially (with "0.x/ uniform)< 
� >D ˙ ,and if u0 D E:x on @V

< 
� W "0 >D .1=V /Eik

Z
@V


�ij xknj dS D.1=V /Eik
Z
V

�

�ij xk
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dV D E W< 
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(1.33)

which implies especially (with 
�.x/ uniform)< "0 >D E .
So, in all cases

< 
� W "0 >D< 
� > W< "0 > (1.34)

which is known as Hill’s18lemma (Hill 1963). In (1.34), which is independent of
the constitutive behaviour, 
�.x/ and "0.x/ do not need to be associated with one
another; if they are, (1.34) means that the macroscopic work density ˙ W E equals
the spatial average of the local (or microscopic) work density 
 W ". This property is

usually referred to as “Hill-Mandel’s19 macro-homogeneity condition”.

Effective behaviour. From the solution of the concentration problem, together
with these relations between the means, we can determine the effective (i.e.,
homogenised) behaviour of the equivalent medium; here we consider only linear
behaviour (or linearised, which we would indicate by writing P
; P", etc. in place of

; ", etc.)

From 
 D B W ˙ we deduce

< 
 >D< B W ˙ >D< B >W ˙ D ˙ so that < B >D I (1.35)

and from " D A W E

< " >D< A W E >D< A >W E D E so that < A >D I (1.36)

18Rodney Hill (1921–) is an English applied mathematician and a former Professor of Mechanics
of Solids at the University of Cambridge (UK). He was the founding editor of the Journal of the
Mechanics and Physics of Solids, was elected a Fellow of the Royal Society in 1961 and won the
Royal Medal in 1993 for his contribution to the theoretical mechanics of soil and the plasticity of
solids.
19Jean Mandel (1907–1982) was a French mechanic and a Professor of Mechanics at Ecole
Polytechnique and Ecole des Mines de Paris who made major contributions to the theoretical
mechanics of solids.
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If locally 
 D f ."/ then

˙ D< 
 >D< f ."/ >D< f .A W E/ >D F eff.E/ (1.37)

and from " D g.
/ we get

E D< " >D< g.
/ >D< g.B W ˙/ >D Geff.˙/ (1.38)

Alternatively, the effective behaviour can be defined from energetic considera-
tions, namely

< 
 W " >D E W F eff.E/ D ˙ W Geff.˙/ (1.39)

which leads to
(
E W F eff.E/ D< .E W AT/ W f .A W E/ > ) F eff.E/ D< AT W f .A W E/ >
˙ W Geff.˙/ D< .˙ W BT/ W g.B W ˙/ > ) Geff.E/ D< BT W g.B W E/ >

(1.40)

This definition coincides with (1.37) and (1.38): by Hill’s lemma, we have

< AT W f .A W E/ >D< AT >W< f .A W E/ >D< f .A W E/ >
< BT W g.B W ˙/ >D< BT >W< g.B W ˙/ >D< g.B W ˙/ > (1.41)

since < AT >D< BT >D I from (1.35) and (1.36) and since "0.ij /kl D AT
.ij /kl and


�.ij /kl D BT
.ij /kl can be considered as kinematically and statically admissible trial

fields, respectively, for any fixed value of indices (ij).

1.4.4.2 Anisotropy

Mechanical behaviour is generally anisotropic, meaning that the response to an
applied load usually depends on the direction in which this is applied; this is a
consequence of the anisotropic constitution of the material, which in turn is closely
related to the heterogeneity of its microstructure. However, if the microstructure has
certain symmetries so too will the anisotropy, and the constitutive equations will
reflect this.

It is not possible to determine the physical origin of anisotropic behaviour
in materials without studying the heterogeneity of their microstructure. If this
structure is decomposed into homogeneous elements, the macroscopic anisotropy
results from the combination of two forms: an elemental anisotropy, that of these
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homogeneous elements, and an organisational anisotropy, resulting from their
spatial arrangement.

Elemental anisotropy is determined by the anisotropy of the deformation mech-
anisms, which in turn is related to that of the internal structure of the elements,
but is not fully determined by this: thus the elasticity of tungsten (BCC) and of
magnesium (HCP) crystals is practically isotropic, because of their chemical bonds
and their cohesion energies.

Elasticity. The anisotropy of interatomic bonds, depending on the atomic, molecular,
electronic : : : structures is expressed in that of the elastic moduli and compli-
ances Cijkl, Sijkl; thus the value of Young’s modulus for a crystal depends on the
orientation of the tensile axis with respect to the crystal lattice.

Viscosity. The anisotropy of reversible movements of impurities (e.g. of carbon
atoms in steel), of stacking faults in crystals, of relative slips of polymer chains,
etc. are expressed in that of the viscosities �ijkl.

Plasticity. Anisotropy arises from the fact that crystallographic slip can occur only
on certain planes and/or in certain directions, both determined crystallograph-
ically; anisotropy of work-hardening arises from that of interactions between
families of defects or between slip systems, of twinning or diffusion.

Organisational anisotropy results from heterogeneity in the microstructure, of
which various kinds can be distinguished:

Morphological: the influence of the shapes of crystalline grains, of inclusions, of
cavities, of phase domains, etc.; isotropy corresponds to spherical shape and the
departure from this determines one contribution to the anisotropy.

Orientation (determined by the extent to which the elements themselves show
anisotropic behaviour or have non-spherical shape): non-isotropic distribution
of crystallographic orientations (textures); preferential orientations of inclusions,
pores, micro-cracks, etc.

Distribution: related to the spatial distribution of the microstructural elements
(bands of one phase within another, lamellar structures, oriented composites,
alignment or segregation of inclusions, etc.)

To these should be added specific deformation mechanisms, related to the way in
which the elements are organised with respect to each other: grain boundary sliding,
decohesion at interfaces, delamination of composites, : : :

Notes:

(i) The study of anisotropy must consider not only the initial state but also the
way this changes with the deformation; this induced anisotropy is determined
mainly by the changes to the organisation of the microstructure and the
anisotropy resulting from these: for example, texture resulting from metal
forming.

(ii) The anisotropy observed results from the combination of the two sources just
described. Thus the overall behaviour of an isotropic aggregate of anisotropic
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Ea

Eb
A

Fig. 1.61 Change of frame of reference

crystals will be isotropic, whilst an anisotropic organisation of heterogeneous
components, which individually are isotropic, will behave anisotropically.

(iii) Since the anisotropy is expressing the dependence of properties on orientation,
rotations play an especially important role.

(iv) Restriction to isotropic loads can mask anisotropic behaviour: thus application
of a spherically symmetrical load (hydrostatic pressure) will not reveal the
anisotropy in the elasticity of a cubic crystal, or even of an aggregate of such
crystals.

The homogenisation techniques make it possible to specify how certain aspects
of the anisotropy of micro-heterogeneous materials should be modelled (see later).
Nevertheless, it is possible to lay down in advance the conditions that must be
fulfilled by a set of anisotropic constitutive equations so that they are consistent
with the symmetries of the anisotropy.

For this, consider a body referred to two reference configurations (a), (b) related
by the orthogonal tensor A: symbolically (b) DA(a) (Fig. 1.61). The current state
is described either by F

a
or by F

b
, with F

a
D F

b
:A: The functional relationf of

(1.18) will depend on the particular reference configuration, say f
a

or f
b

with

f
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i
D f
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h
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:A
i

D f
b

h
F

b

i
(1.42)
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If A belongs to the symmetry (or indistinguishability) group of the body, the two
reference configurations (a), (b) are indistinguishable so far as this piece of material
is concerned – for example, rotation through  /2 about the [001] axis for a cubic
crystal. We then have

f
a

h
F

a

i
D f

a

h
F

a
:AT

i
8F

a
(1.43)

and therefore, since AT D A�1 (and also belongs to the same symmetry group)
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(1.44)

The polar decomposition of F
a

gives (see Annex 3)
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Thus, from (1.22) and (1.45), we have
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whence f
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:AT and finally the expected condition
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D A:f
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S
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This relation shows how the constitutive functional relation takes account of the
symmetry of the body. For an isotropic material it must hold for any orthogonal
tensor A – expressing invariance with respect to rotation.
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Chapter 2
Elastic Behaviour

Abstract Chapter 2 begins with the definition of the elastic potential from the strain
energy and discusses the thermodynamic definition. Experimental observations
concerning rubber elasticity are described followed by the explanation of models.
Discussion of the cohesion energy allows classifying the various types of atomic
bonds. Moduli and compliances in linear elasticity are described for anisotropic and
then isotropic materials. Stability of the equilibrium is discussed and field equations
are described and illustrated by the example of the propagation of plane sine waves.
This is followed by the explanation of extremum theorems and an introduction to
the finite elements method.

Chapter 2 continues with a discussion of homogenisation (estimating and
bounding) for heterogeneous materials in linear elasticity, with explanations about
the effective moduli and compliances, initial deformations, thermo-elasticity and
the Voigt’s and Reuss’s bounds. A section is devoted to the problems of inclusions,
ellipsoidal essentially.

Lastly, Chapter 2 is concerned with sharper bounds and improved estimates for
the elastic moduli and compliances: Mori-Tanaka model and Hashin-Shtrikman
bounds, self-consistent scheme. Finally an outline of the theory of elastic random
media is given.

The elastic behaviour of materials is certainly the most traditional, the best known
and the most widely used in structural design. Here we shall emphasise two
aspects of this behaviour, often closely linked, which play an important role in
current developments of composite materials: anisotropy and heterogeneity. After
a descriptive introduction we distinguish two main classes of elastic behaviour, and
then take up the study of linear elasticity in greater depth, introducing methods for
the analysis and modelling of the behaviour of heterogeneous materials.

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
Macroscopic Constitutive Behaviour, Solid Mechanics and Its Applications 180,
DOI 10.1007/978-94-007-2546-1 2, © Springer ScienceCBusiness Media B.V. 2012
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84 2 Elastic Behaviour

2.1 Elastic Potential

2.1.1 Strain Energy

In all that follows we shall assume perfect elasticity and infinitesimal strain. The
strain tensor " is then a state variable, and determines the stress tensor 
 bijectively;
the work done in a deformation path from one equilibrium state to another is
independent of the path and can play the role of an elastic potential.

The work (possibly virtual) associated with the deformation path is defined as
that done by the external and inertial forces, and from the fundamental theorem of
dynamics we know that it is zero for rigid-body displacements; it can be expressed in
two dual forms. In what follows the external and inertial forces are grouped together
and denoted by their volume density f .

Let u0.x/ be a virtual kinematically admissible (KA) displacement field suffered
by a volume V of a body whose behaviour is at this stage unspecified; u0.x/ is
assumed continuous and differentiable. The associated virtual deformation work is:

W 0def D
Z
V

f :u0 dV C
Z
@V

T :u0 dS (2.1)

where T D 
:n and n is the unit outward normal to the surface @V of V.
Transforming the surface integral to a volume integral, taking into account the
equilibrium of the stress field 
.x/, gives:
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 W "0 dV
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D
Z
V


ij "
0
ij dV

�
(2.2)

whence

dW 0def D 
 W "0 dV �D 
ij "
0
ij dV

�
(2.3)

and we have used the notation a W b D Tr .a:b/.
We can consider in the above, instead of the actual quantities (
; T ; f ), a

statically admissible (SA) stress field 
� in equilibrium with f � in the body and
T � D 
�:n at the surface, and calculate the corresponding deformation work. A
similar derivation then gives
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W �def D
Z
V

f �:u0 dV C
Z
@V

T �:u0 dS D
Z
V


� W "0 dV (2.4)

whence

dW �def D 
� W "0 dV
�
D 
�ij "0ij dV

	
(2.5)

and the corresponding strain energy density is 
� W "0. Going back to perfect
elasticity, we can use this result for the definition of an elastic potential.

2.1.2 Elastic Potential and the Complementary Energy

We now consider perfectly elastic behaviour, and the change from one equilibrium
state .
; "/ to a neighbouring one .
Cd
; "Cd"/. We can envisage different volume
densities of elastic potential according to the state variable chosen. From (2.5), with

� D 
 and "0 D d", the volume density �."/ of elastic potential is defined by

d� D 
 Wd" .D 
ij d"ij / with 
 D @�=@" (2.6)

Alternatively we can take "0 D " and 
� D d
 and define the volume density of
complementary potential $.
/ by:

d$ D "Wd
 .D "ij d
ij / with " D @$=@
 (2.7)

Note that d.� C$/ D d.
 W "/, so that if we start from a “natural” initial state
(i.e., free from stress and strain) we have

� C$ D 
 W " or $ D 
 W " � � (2.8)

Since the differential forms (2.6) and (2.7) can be integrated, the Cauchy
conditions yield:

@
ij

@"kl
D @
kl

@"ij

@"ij

@
kl
D @"kl

@
ij
(2.9)
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2.1.3 Thermodynamic Definition

The foregoing definition of the elastic potential is a purely mechanical one and the
function so defined cannot have any relation to the thermodynamic functions except
under particular thermal conditions – essentially, isothermal or adiabatic. However,
a thermodynamically rigorous definition of perfect thermo-elasticity at finite strain
can be given (Salençon 2001), and the above results put in relation to this.

The thermodynamic framework is defined by two fundamental (conservation)
principles, for which we give the local Eulerian expressions. For the configuration
considered, � is the mass density, e the internal energy per unit mass, r the rate at
which heat is input into, or generated in, unit volume and q the outward flux of heat.
The first principle is expressed by:

� Pe D 
 W P"C r � divq (2.10)

where 
 is the Cauchy1 stress tensor and P" the Eulerian strain-rate tensor.2 The net
rate at which the finite volume V is gaining heat is then

Q0 D
Z
@V

q
�

:n
�

dS C
Z
V

rdV (2.11)

which is not in general the time-derivative of a function Q.
For the second principle, let s be the entropy per unit mass and T the absolute

temperature; then

�Ps C div.q=T / � r=T � 0 (2.12)

which, using (2.10), can be written:


 W P"C �.T Ps � Pe/ � .q=T /:gradT � 0 (2.13)

If now f D e � Ts is the free energy per unit mass, (2.13) can be put in the form
of the Clausius3-Duhem4 inequality which expresses the fact that the dissipation ˚
per unit volume is non-negative:

˚ D ˚1 C ˚2 D 
 W P" � �. Pf C s PT / � .q=T /:gradT � 0 (2.14)

where ˚1 D 
 W P" � �. Pf C s PT / is the intrinsic dissipation ˚2 D �.q=T /:gradT is
the thermal dissipation

1Augustin-Louis Cauchy (1789–1857) was a French mathematician.
2The definitions of the stress and strain tensors at finite strain are given in Appendix C and in
Volume III.
3Rudolf Clausius (1822–1888) was a German physicist.
4Pierre Duhem (1861–1916) was a French physicist.
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Thermodynamic reversibility is defined by ˚1 D ˚2 D 0; ˚2 D 0 holds for
isothermal and adiabatic changes, and the vanishing of ˚1 is associated with the
definition of perfect elasticity.

The consequences of these definitions can be derived more easily by using a
Lagrangian representation, in which the mass density in the reference configuration
is �0, the values of e, s, and f remain unchanged since mass is conserved, and
the Piola5-Kirchhoff6 stress tensor ˘ and the Lagrange7-Green8 deformation-rate

tensor P� are used. The Lagrangian gradient rT is written rT D gradT. F and we
have:

.1=�/
 W P" D .1=�/˘ W P� (2.15)

With a suitable definition of q
0

the Clausius-Duhem inequality is now:

˘ W P� � �0. Pf C s PT / � .q
0
=T /:rT � 0 (2.16)

Perfect thermo-elasticity can then be defined by stating that e, s and ˘ are one-
to-one functions of T and�; in this case the inequality (2.16) holds for all values of
rT and we have

˘ W P� � �0. Pf C s PT / � 0 (2.17)

with Pf D @f

@�
W P�C @f

@T
PT , whence

 
˘ � �0 @f

@�

!
W P� � �0

�
@f

@T
C s

�
PT � 0 8 P�;8 PT (2.18)

This gives the constitutive equations (after symmetrisation):

s D � @f
@T
; ˘ D �0

@f

@�
(2.19)

It follows that ˚1 D 0, and the free energy f appears as a thermodynamic
potential. It can be shown that this entails the convexity of f, and hence the one-
to-one mapping between stress and strain and the reversibility of the deformations
in the usual sense.

5Gabrio Piola (1794–1850) was an Italian physicist.
6Gustav Kirchhoff (1824–1887) was a German physicist.
7Joseph-Louis Lagrange (1736–1813) was an Italian born, French mathematician.
8George Green (1793–1841) was a British mathematician.
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In these conditions we can also define the thermodynamic state by T and ˘ and

use the Legendre9-transformed of f, namely:

 D .1 =�0/ ˘ W � � f (2.20)

A similar reasoning, starting from  .T;˘/ instead of f .T;�/ and from the
relation

P D .1 =�0 / P̆ W �C .1 =�0 /˘ W P� � Pf D s PT C .1 =�0 / P̆ W � (2.21)

gives an equivalent expression for perfect thermo-elastic behaviour (after symmetri-
sation):

s D @ 

@T
; � D �0

@ 

@˘
(2.22)

where  also is a convex function of ˘ . The relations (2.19) and (2.22) lead to the
remarkable properties:

@˘ij

@�kl

D @˘kl

@�ij

;
@�ij

@˘kl

D @�kl

@˘ij

(2.23)

2.1.4 Isothermal and Adiabatic Elastic Compliances

We return now to the case of infinitesimal transformations; here the Eulerian and
Lagrangian forms coincide, with � denoting the mass per unit volume. The volume
density � of elastic potential, defined in (2.6), is related to e and s by

� Pe D P� C � T Ps (2.24)

Thus in isothermal conditions

P� D �. Pe � T0 Ps/ D � Pf D 
 W P" (2.25)

whence


 D �
@f

@"

ˇ̌̌
ˇ̌
T

D @�

@"
(2.26)

9Adrien-Marie Legendre (1752–1833) was a French mathematician.
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In adiabatic conditions � is identified with the internal, not the free, energy since

P� D � Pe D 
 W P" (2.27)

with


 D �
@e

@"

ˇ̌
ˇ̌
ˇ
s

D @�

@"
(2.28)

Thus the elastic constants of a material, which are defined by @"=@
 (or @
=@"),
can differ according as the conditions are isothermal or adiabatic. This can be made
explicit by starting with Eq. 2.21 written for small strains:

d D s dT C .1=�/"ijd
ij (2.29)

where the thermodynamic state is defined by 
 and T; since  is a function of the
state, the Cauchy conditions are satisfied, and in particular

�
@s

@
ij

ˇ̌
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(2.30)

If the deformations are purely thermal dilatations we have "th
ij D ˛T •ij , where

•ij is the Kronecker10 delta and ˛ the coefficient of thermal expansion, we get
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ˇ̌̌
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(2.31)

On the other hand,

d"ij D @"ij

@T
dT C @"ij

@
kl
d
kl (2.32)

Under adiabatic conditions, ds D 0 and we can use this to derive a relation
between d
 and dT:

ds D @s

@
ij
d
ij C @s

@T
dT D 0 ) dT D �

�
@s
ı
@
ij

�
d
ij

@s =@T
(2.33)

10Leopold Kronecker (1823–1891) was a German mathematician.
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Using (2.31) and (2.33), we may write (2.32) as
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kl (2.34)

If Cp is the specific heat of the material per unit mass

T ds D CpdT ) @s

@T

ˇ̌̌
ˇ



D Cp

T
(2.35)

and (2.34) becomes
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kl (2.36)

from which it follows that the isothermal (T constant) and adiabatic (s constant)
compliances are related by:
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ˇ
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� ˛2T •ij •kl

�Cp
(2.37)

The second term on the right gives the difference between the two. With the
values with which we are usually concerned in practice this seldom exceeds a few
percent, but although small it has a theoretical importance since it provides a good
illustration of the basic thermodynamics of perfect elasticity.

2.2 Two Major Classes of Elastic Behaviour

2.2.1 General Considerations

If we write (2.25) for isothermal conditions


 W P" D �. Pe � T0 Ps/ D � Pf
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(2.38)

or equivalently
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we see at once that the origin of elasticity is twofold: one source is the variation of
internal energy associated with the deformation, the other is that of the entropy, and
according to the type of material these can be of very different orders of magnitude.

For crystalline materials the energy term is dominant; here small changes in the
inter-atomic distances associated with the deformation bring about large changes
in the internal energy, with very little change of entropy. For other materials, in
particular elastomers in which chains of macromolecules can be greatly distorted,
the entropy term dominates and gives what is called rubber elasticity.

The following section is devoted to this second type of behaviour. The first type
is usually studied in terms of small strains, as linear elasticity. It will be treated
afterwards.

2.2.2 Rubber Elasticity

2.2.2.1 Experimental Observations

Rubber elasticity is observed in a certain class of polymeric materials: elastomeric
materials11 (see Annex 1); it is characterised by a very low modulus of elasticity,
of the order of 1 MPa, and extremely large reversible instantaneous elongations,
which can reach 600–1,000%. Coupling between temperature and deformation
induces shortening under load on heating, and heat production by elongation. The
increase in temperature of natural rubber elongated to five times its original length
can reach 5ıC. The mechanism of rubber elasticity involves flexible molecular
chains. They need to be interconnected so as to prevent gliding, which would
induce plasticity. Such reticulation is obtained, for example, by vulcanisation,
created by strong sulphur bonds.12 The number of main chain atoms between two
such cross-links is typically several hundreds. Rubber elasticity requires also a
temperature high enough to ensure sufficient mobility of the molecular chains. The
free energy of interaction between neighbouring molecular chains is independent of
their configuration. Thus, the stored elastic energy is simply the sum of individual
contributions of the chains.

The entropic nature of this type of elasticity is related to the large number of
possible configurations for each molecular chain, which decreases when the material
is stretched; that it really is entropic can be ascertained by studying how the stress
needed to maintain a given strain varies with temperature.

11The word ‘rubber’ is derived from the ability of natural rubber to remove (rub off) marks from
paper, which was noted by Joseph Priestley, an English scientist (1733–1804), in 1770.
12Vulcanisation was discovered in 1839 by Goodyear and Hyward.
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Fig. 2.1 Variation with
temperature of the stress
needed to maintain an
elongation of 350% for an
elastomer. Tg is the glass
transition temperature
(Adapted from Meyer and
Ferri 1935)

Using the relation (2.19) for infinitesimal transformations, and the Cauchy
conditions, we can write

�� @s
@"

ˇ̌̌
ˇ̌
T

D @


@T

ˇ̌̌
ˇ̌
"

(2.40)

Experiments on elastomers show that above the glass transition temperature Tg

(see Annex 1) the stress needed to maintain a given elongation varies almost linearly
with temperature (Fig. 2.1): this was first observed by Ferry13 in 1935 (Ferry 1980),
for vulcanised natural rubber. For low elongations the slopes of the stress versus
temperature plots are found to decrease with the elongation.

The slope of the line is ��.@s=@"/T , which is thus found to remain almost
constant. Extrapolating the line back to 0 K gives the value of �.@e=@"/T ; this is
found to be very close to zero, showing that the contribution of the internal energy
is indeed negligible.

Rubber elasticity can be modelled by counting the changing number of possible
configurations for the molecular chains as the elastomer is stretched. It is assumed
that the chain segments of the network deform independently and in the microscopic
scale in the same way as the whole (affine deformation). The cross-links are assumed
to be fixed in space at positions exactly defined by the specimen deformation ratio.
This model is referred to as the “affine network model” (Flory and Rehner 1943;
Treloar 1943, 1975; Flory 1953, 1985). On the other hand in the “phantom network
model” the cross-links are allowed a certain fluctuation about their average position
(James and Guth 1947). The affine model yields an upper bound modulus, while the
phantom network model yields a lower one. We develop hereafter the affine network
model only.

13John Douglas Ferry (1912–2002) was professor at the University of Wisconsin.
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2.2.2.2 Affine Network Model

In order to obtain a constitutive stress-strain equation, in this model it is assumed
that the molecular chains between cross-links can be represented by “phantom
chains” having one extremity at the origin of coordinates and whose end to end
distance r follows Gaussian statistics (Fig. 2.2). Thus the probability that the
extremity of a phantom chain lies at a point of coordinates x1, x2, x3 is:

p .xi / Dexp
��x12 ı2d2 �
.2 d2/

1=2

exp
��x22 ı2d2 �
.2 d2/

1=2

exp
��x32 ı2d2 �
.2 d2/

1=2

D 1

.2 d2/
3=2

exp

�
� r2

2d2

�
(2.41)

d being the standard deviation. Note that:

Z C1
�1

p.xi /dx1dx2dx3 D 1 (2.42)

The probability that n phantom chains have their extremity at xi is Œp .xi /�
n.

If the total number of chains is N then n D Np(xi). The probability P of any one
configuration is the product of the probabilities of the chains ending at the various
points xi, that is

P D
Y
i

Œp .xi /�
Np.xi / (2.43)

Finally, if the number of configurations of a molecular chain at xi is C, the total
number of configurations is CP and the entropy is

S D k logCP D k logC C kN
X
i

p.xi / logp.xi / (2.44)

where k is the Boltzmann14 constant. We can now evaluate the change in free
energy F D Q�TS when the material is stretched, that is, when the end-points of
the phantom chains are moved from xi0 to xi:

�F D �kT
X

n log

�
p .xi /

p .xi0/

�
(2.45)

14Ludwig Boltzmann (1844–1906) was an Austrian physicist famous for his founding contributions
in the fields of statistical mechanics and thermodynamics. The so-called “Boltzmann constant”
was actually first introduced by the German physicist Max Planck (1858–1947), the founder of the
quantum theory (Nobel Prize in Physics, 1918).
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Molecular chain before extension

Molecular chain after extension

Phantom chain

0
x1

r0

x2

x3

r

Fig. 2.2 Molecular chains linked by vulcanisation and the phantom chains (affine network model)

Substituting for p(xi) we find:

�F D kTN
•

x21 � x210 C x22 � x220 C x23 � x230
2d2

�
1

2 d2

�3=2

� exp

�
� r20
2d2

�
dx10dx20dx30 (2.46)

where the integrals are over ˙1.
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The elongation is measured by the ratios �I D xi/xi0. In terms of these we get:

�F D kTN

2

�
�21 C �22 C �23 � 3

�
(2.47)

and, for unit volume, N being then the number of chains per unit volume, we can
write this as:

fv D �RT

2Mc

�
�21 C �22 C �23 � 3

�
(2.48)

� being the specific mass, Mc being the molecular weight and R the gas constant.
The isothermal stress-strain equation follows from the derivative of the free

energy. For uniaxial loading �2 D�3 as the material is assumed to be isotropic and
�1�2

2 D 1 since the volume S0 L0 is assumed to remain constant. Hence the total
free energy:

ft D S0L0
�RT

2Mc

�
�21 C 2

�1

�
(2.49)

We deduce the stress 
1:


1 D 1

S0
�1
@ft

@L
D �RT

Mc

�
�21 � 1

�1

�
(2.50)

L being the length of the test piece, while the engineering stress 
e1 is:


e1 D 1

S0

@ft

@L
D �RT

Mc

�
�1 � 1

�21

�
(2.51)

This relation fits well the experimentally observed nonlinear elastic behaviour of
elastomers, at least for not too large deformations (Fig. 2.3). When the stretching
becomes too great the model ceases to hold, since then some chains are fully
extended and only a few behave according to the Gaussian distribution. Also
crystallisation can occur under such conditions.

In the case of pure shear, if we repeat the calculation from (2.49) onwards,
allowing for the increase in free energy, we find that, with x1 D x10 C 
 x20, x2 D x20,
x3 D x30, f is a function of 
2 and therefore the shear stress � D @f /@
 is proportional
to 
 . In pure shear elastomers display a linear behaviour.

The Mooney-Rivlin display of the results is often used to check the agreement
between theory and experiments. It modifies the preceding Eq. 2.51 to read:


e1 D 2

�
� � 1

�2

��
C1 C C2

�

�
(2.52)
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Fig. 2.3 Engineering
stress-extension ratio for
natural rubber and
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(Higgs and Gaylord 1990).
The data are scaled to fit the
relation (2.51) near �D 1

0.2
0.12

0.14

0.16

0.18

0.20

0.22

MPa
Reduced stress

0.5

1 0.8
0

0.02

0.04

0.06

0.08

0.10 C2

0.6 0.4 0.2

0.6

v2 = 0.22

v2 = 1.0

v2 = 0.74

v2 = 0.55

v2 = 0.40

v2 = 0.29

0.7
1/λ

0.8 0.9 1

Fig. 2.4 Mooney diagram (reduced stress as a function of the reciprocal of the extension ratio)
for natural rubber diluted in benzene. �2 is the volume fraction. The parameter C2 of the Mooney
equation decreases when the dilution increases (Grumbrell et al.1953)

Data are then plotted as the reduced stress 
e1
ı
2
�
� � 1ı�2 � versus 1/�. The

slope C2 should be equal to zero if the affine network model is obeyed. The deviation
is thought to be due to entanglements, which reduce the molecular chains mobility.
This is in keeping with the decrease of the parameter C2 when the polymer is diluted,
providing more space between chains (Fig. 2.4).

Lastly the affine network model accounts well for the effect of molecular weight
on the elastic modulus.
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It is furthermore remarkable that, contrary to most materials, this modulus of
rubber increases with temperature.

2.2.2.3 Phantom Network Model

As stated before this model, due to James and Guth (1947), considers that the
position of the ends of the phantom molecular chains can fluctuate. As there is then
a coupling between the movements of the various chains the calculation is involved
and it will not be given here. The model predicts an elastic modulus which is half
that of the affine network model. Experimental results fall in between the two. They
are closer to the phantom network model results for large extensions.

2.2.3 Cohesion Energy, Elastic Constants

Now we consider crystalline materials whose elastic properties depend mainly on
the interatomic binding energy and its sensitivity to small changes in interatomic
distances. We therefore neglect the entropy term and consider only the equilibrium
between the attractive binding forces and the repulsive forces; applying a mechani-
cal load to the material results in small departures of the interatomic distances from
their equilibrium values, with a return to those values when the load is removed.

The binding forces and their variation with distance vary greatly according to the
nature of the chemical bond; briefly, the types are:

– ionic (e.g. NaCl): electrostatic, with a potential U of the form �q2/4 "0r, q being
the charge of the ions, "0 the permittivity in empty space (8.85 10�12 F/mol)
and r the interatomic distance. It is a very strong potential of the order of 600–
1,500 kJ/mol.

– covalent (e.g. C D C), resulting from the sharing of electrons in the same orbital;
also very strong (of the order of 400–800 kJ/mol), and of marked directionality.

– metallic, resulting from the interaction of the metal ions with the free-electron
gas (of the order of 100–800 kJ/mol).

– van der Waals,15 governing intermolecular attraction, as in polymers; varying like
r�6, weak, of the order of 7–15 kJ/mol.

– hydrogen, responsible for the dipole moment of the water molecule (of the order
of 30–50 kJ/mol); significant in polymers, concrete, etc.

(recall that the thermal energy RT is 8.3 T J/mol)

15Johannes-Diderick van der Waals (1837–1923) was a Dutch physicist.
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Fig. 2.5 Interatomic
potential as a function of
distance apart

Fig. 2.6 Interatomic force as
a function of distance apart

The equilibrium between the attractive and repulsive forces leads to a potential
of the form:

U D � A

rn
C B

rm
(2.53)

with m> n; differentiating, equilibrium is at r D a, where a D (Bm/An)1/(m�n). B is
the Born16 constant (Figs. 2.5 and 2.6).

The binding energy is the value U0 of U at r D a. Being the energy needed
to bring atoms from their equilibrium position in solids to far away distances, it
corresponds to the energy of sublimation.

16Max Born (1882–1970) was a German physicist.
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The so-called “elastic constants” are determined by the value k of d2U/dr2 in the
neighbourhood of r D a. Linear elasticity uses only the value of this at r D a; beyond
that anharmonic effects would have to be taken into account. In general, the binding
energy U0 and the moduli k vary in the same way from one material to another.

Modern computation tools allow the determination of the elastic constants by
“ab-initio” calculations of the interatomic potentials. The moduli can vary by several
orders of magnitude, as typical values for Young’s modulus17 show:

– 30–300 GPa for ceramics and metals: concrete 45, aluminium 70, steels 200
– 0.001–0.01 GPa for elastomers

Values for Young modulus and Poisson ratio18 for a range of materials are given
in Table 2.1.

Figure 2.7 shows the variation of Young modulus with temperature. This general
regular decrease when the temperature is raised suffers anomalous behaviours owing
to magnetic effects for some metals such as Fe64Ni36 called Invar, an alloy which
has also no thermal expansion over a certain temperature range (Fig. 2.8).

The thermal expansion coefficient is also related to the binding energy, as far as
a deep and narrow dip in the binding energy curve as a function of the interatomic
distance corresponds to a lower displacement of the equilibrium distance when the
temperature is raised than a shallow dip, such as the one found for van der Waals
interactions.

2.3 Linear Elasticity

2.3.1 Elastic Moduli and Compliances

We now make this loose concept of “elastic constant” more precise for the case of
isothermal elasticity for small deformations and with a natural initial state. Instead
of scalar “constants”, we need to use fourth-order tensors for the elastic moduli C
and compliances S respectively, which are inverses of each other

(

 D C W " �


ij D Cijkl"kl
�

" D S W 
 �
"ij D Sijkl
kl

� (2.54)

17Thomas Young (1773–1829) was an English physician and scientist, who mastered eight
languages.
18Siméon Poisson (1781–1840) was a French mathematician.
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Table 2.1 Bond dependent properties of some materials (the values coming from various sources
are sometimes rather different and depend on the actual state of the material. If precise data is
needed resort to bibliography or to experiments)

Material Young modulus (MPa) Poisson ratio

Coefficient of
thermal expansion
K�1 � 106

Covalent – – –
Carbon (C)

Diamond 827,000 0.25 1.1
Graphite 30,000 7.9
Fibre 640,000
Nanotube 1,100,000

Silicon (Si) 188,000 0.38 2.6
Silicon carbide (SiC) 490,000 0.37 Cubic 3.6

Hexagonal 3.7 and
4.9

Titanium carbide (TiC) 440,000 – –
Tungsten carbide (WC) 650,000 – –
–
Oxides – – –
Alumina (Al2O3)

Single crystal 441,000
Polycrystal 378,000 5.4
Whisker 490,000

Silica (SiO2) 107,000 – –
Magnesia (MgO) 250,000 – –
Zirconia (ZrO2) 205,000 – –
Marble 26,000 – 5.5–14.1
Limestone 20,000–70,000 8
Granite 60,000 7.9
Glass 69,000 0.18–0.3 8.5

Glass E 72,000
Glass S 87,000
Glass R 86,000
(see foot note)

Concrete 20,000–50,000 0.20 13
–
Metals – – –
Beryllium (Be) 290,000 0.03 11.3
Magnesium (Mg) 40,000 0.29 8.2
Aluminum (Al) 69,000 0.34 23.1

2024 75,000
Titanium (Ti) 118,000 0.32 8.6
Zirconium (Zr) 96,000 0.34 5.7
Tantalum (Ta) 189,000 0.35 6.3
Chromium (Cr) 252,000 0.21 4.9
Molybdenum (Mo) 330,000 0.31 4.8
Tungsten (W) 350,000 0.17 4.5

(continued)
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Table 2.1 (continued)

Material Young modulus (MPa) Poisson ratio

Coefficient of
thermal expansion
K�1 � 106

Iron (Fe) 200,000 0.28–0.30 11.8
Cast iron 83,000–170,000 0.21–0.26 10.8

Nickel (Ni) 225,000 0.31 13.4
Copper (Cu) 112,000 0.33 13.0
Silver (Ag) 72,000 0.37 18.9
Gold (Au) 80,000 0.44 14.2
Zinc (Zn) 90,000 0.25 30.2
Cadmium (Cd) 69,000 0.29 30.8
Lead (Pb) 18,000 0.44 28.9
Tin (Sn) 50,000 0.36 22.0
Uranium (U) 168,000 0.25 13.9
–
Polymers – – –
Polyethylene 200–700 – 200
Polyvinylchloride (PVC) 2,400 – 50.4
Epoxy 2,400 – –
Polyester 5,000 – –
Polycarbonate 2,300 – –
Polystyrene 3,000–3,400 – –
Plexiglas (methylmetacrylate) 2,450–3,500 – –
Rubber 700–4,000 0.5 77
–
Wood, organic and biomaterials – – –
Mahogany 12,000 – –
Bamboo 20,000 – –
Oak 12,000 – Parallel to cells 4.9

Perpendicular to
cells 5.4

Spruce 13,000 – –
Maple 10,000 – –
Ash tree 10,000 – –
Cork 0 –
Redwood 9,500 – –
Paper 3,000–4,000 – –
Femur 17,200 – –
Vertebra 230 – –
Hair 10,000 – –
Spider silk 60,000 – –

Fiberglass E (SiO2 53–56%, Al2O3 12–16%, CaO and MgO 21–24%, B2O3 5–9%): general use;
Fiberglass S (SiO2 64–65%, Al2O3 24–25%, CaO and MgO 10–11%): high resistance; Fiberglass
R (SiO2 58–60%, Al2O3 23.5–25.5%, CaO and MgO 14–17%): high resistance (aeronautics)
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Fig. 2.7 Young modulus as a function of temperature for a number of metals
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Fig. 2.8 Anomalous behaviour of the variation of Young modulus with temperature for Invar (By
courtesy of Allain)

In addition to the obvious symmetry relations

Cijkl D Cjikl D Cijlk; Sijkl D Sjikl D Sijlk (2.55)
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they obey the “thermodynamical” relations (diagonal symmetry)

Cijkl D Cklij; Sijkl D Sklij (2.56)

which follow from the Cauchy relations (2.23); it follows that C and S each have at
most 21 independent components.

Two important properties follow from this:

(a) the quadratic form � D .1=2/" W C W " D .1=2/
 W S W 
 D $ is positive
definite (positive 8";8
 and zero only if " D 0 or 
 D 0).

(b) owing to (2.56), there is a reciprocity between two states of load (1) and (2):

Tr
h

.1/:".2/

i
D Tr

h

.2/:".1/

i
(2.57)

Note: Hyper- and hypo-elasticity.

The extension to finite strains can be made in different ways and in particular by
distinguishing between hyper-elasticity (
D@�=@") and hypo-elasticity ( P
DC W P").
Where small deformations are concerned, these definitions are equivalent and they
coincide with (2.54).

2.3.2 Anisotropy

2.3.2.1 Voigt19 Notation

We can use a matrix notation due to Voigt which takes account of the symmetry
relations (2.45) and (2.46); this uses two indices I, J running from 1 to 6 according
to the rule

(i,j): 1,1 2,2 3,3 2,3 3,1 1,2
I: 1 2 3 4 5 6

The notation CIJ takes account of the symmetry of Cijkl with respect to i,j on the
one hand and to k,l on the other. In addition, (2.56) implies that CIJ D CJI , so that
the 6 � 6 matrix CIJ has at most 21 independent components; and similarly for SIJ .
Writing 
12 D 2"12, 
23 D 2"23, 
31 D 2"31 we have the following equations for 
 in
terms of ":

19Woldemar Voigt (1850–1919) was a German physicist.



104 2 Elastic Behaviour

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:


11 D C11"11 C C12"22 C C13"33 C C14
23 C C15
31 C C16
12


22 D C21"11 C C22"22 C C23"33 C C24
23 C C25
31 C C26
12


33 D C31"11 C C32"22 C C33"33 C C34
23 C C35
31 C C36
12


23 D C41"11 C C42"22 C C43"33 C C44
23 C C45
31 C C46
12


31 D C51"11 C C52"22 C C53"33 C C54
23 C C55
31 C C56
12


12 D C61"11 C C62"22 C C63"33 C C64
23 C C65
31 C C66
12

(2.58)

Similarly for " in terms of 
 , but with new relations between SIJ and Sijkl

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

"11 D S11
11 C S12
22 C S13
33 C S14
23 C S15
31 C S16
12

"22 D S21
11 C S22
22 C S23
33 C S24
23 C S25
31 C S26
12

"33 D S31
11 C S32
22 C S33
33 C S34
23 C S35
31 C S36
12


23 D S41
11 C S42
22 C S43
33 C S44
23 C S45
31 C S46
12


31 D S51
11 C S52
22 C S53
33 C S54
23 C S55
31 C S56
12


12 D S61
11 C S62
22 C S63
33 C S64
23 C S65
31 C S66
12

(2.59)

The SIJ are now related to the Sijkl by:

S11 D S1111; S12 D S1122; etc:

S14 D S41 D 2S1123; S15 D S51 D 2S1131; etc:

S44 D 4S2323; S45 D 4S2331; etc. (2.60)

We shall assume these relations in what follows.

NB: One way in which anisotropy manifests itself is that hydrostatic pressure (
 D
�p•) does not in general produce a pure dilatation (i.e., "11 ¤ "22 ¤ "33 and the
distortions 
12, 
23, 
31 are non-zero); and conversely, a pure dilatation gives rise
to shear stresses.

2.3.2.2 Taking Account of Material Symmetries: General Relation

It follows from Eq. 1.47 of Chap. 1 that, if the frame of reference is not changed by
the operation A, the symmetries of the material being taken into account, then the

functional relation f for the constitutive equation 
 D f
h
"
i

satisfies the relation

f
h
A: ":AT

i
D A:f

h
"
i
:AT ; 8" (2.61)
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For linear elasticity this becomes simply:

A:.C W "/:AT D C W .A:":AT/; 8" (2.62)

or in index notation:

AipCpqmn"mnAjq D CijklAkm"mnAln;8"mn (2.63)

From the orthogonality of A, implying AT D A�1 (AkmAlm D •kl), we can write
(2.63) as

Cijkl D AipAjqAkmAlnCpqmn (2.64)

NB: We can also derive (2.62) by expressing the fact that if we “rotate” " (that is,
rotate its principal axes) by A without changing the frame of reference, 
 “rotates”
in the same way, the relation between 
 and " being still described by the same
tensor C:


 ! 
 0 D A:
:AT

" ! "0 D A:":AT


 D C W " 
 0 D C W "0 (2.65)

thus

A:
�

C W "
	
:AT D C W

�
A:":AT

	
(2.62)

Equation 2.64 enables us to study various cases of material symmetry, either for
crystalline materials or heterogeneous materials reinforced in particular directions,
such as composites with fibres or laminates (Fig. 2.9). We shall consider several
examples.

2.3.2.3 Symmetry with Respect to One Co-ordinate Plane (x3 D 0)

ŒA� D
0
@1 0 0

0 1 0

0 0 �1

1
A (2.66)

Equation 2.64 implies that all the components of Cijkl with an odd number of indices
of value three are zero; therefore, in the CIJ notation

C14 D C24 D C34 D C64 D C15 D C25 D C35 D C65 D 0 (2.67)

and there are only 13 independent coefficients.
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wood

bone

fabric

composite

steel sheet

drawn tube

wire

Fig. 2.9 Some anisotropic materials

2.3.2.4 Symmetry with Respect to a Pair of Orthogonal Planes
(x3 D 0, x1 D 0)

The same argument shows that in addition to (2.67)

C16 D C26 D C36 D C45 D 0 (2.68)

leaving only 9 independent coefficients. Note that for the elastic moduli C this shows
that there is symmetry with respect to the third orthogonal plane, x2 D 0, also; this is
the case of orthotropic symmetry, corresponding to orthorhombic crystal structure.

2.3.2.5 Quadratic Symmetry

In addition to orthotropy there is the equivalence of the two axes of symmetry, say
1 and 2; this adds the further relations

C11 D C22; C13 D C23; C44 D C55 (2.69)

reducing the number of independent coefficients to 6 (the tetragonal system).
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2.3.2.6 Cubic Symmetry

In addition to the quadratic symmetry, there is the equivalence of all three axes of
symmetry (3 in addition to 1 and 2):

C11 D C33; C13 D C12; C44 D C66 (2.70)

leaving only three independent coefficients:

C11 D A.D C22 D C33/I C12 D A0.D C13 D C23/I C66 D D.D C44 D C55/

(2.71)

with all others zero.

Note: In this case a hydrostatic pressure produces a pure dilatation.

2.3.2.7 Transverse Isotropy

This refers to invariance with respect to arbitrary rotation about a particular axis, for
example about x3 defined by

ŒA� D
0
@ cos˛ sin ˛ 0

� sin˛ cos˛ 0
0 0 1

1
A 8˛ (2.72)

This implies not only quadratic symmetry, and hence the relations (2.67–
2.69), but also a further relation between different components. Applying (2.64)
to C1212, with [A] the above matrix, and taking account of the vanishing of various
components, we get

C1212 D � sin ˛ cos˛A1pA2qC11pq C �
cos2˛ � sin2˛

�
A1pA2qC12pq

C sin ˛ cos˛A1pA2qC22pq

D � sin ˛ cos˛ .� sin˛ cos˛C1111 C sin ˛ cos˛C1122/

C �
cos2˛ � sin2˛

�
C1212

C sin ˛ cos˛ .� sin ˛ cos˛C2211 C sin ˛ cos˛C2222/ (2.73)

Hence

C66 D sin2˛cos2˛.C11 C C22 � 2C12/C .cos2˛ � sin2˛/2C66 (2.74)

i.e., 4sin2˛ cos2˛ C66 D 2 sin2˛ cos2˛ (C11�C12), 8˛ and

C66 D .1=2/ .C11 � C12/ (2.75)
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Thus there are at most five independent components; this is the case for
hexagonal crystal systems, or honeycomb structures in composites.

Note: For the compliances S the relation corresponding to (2.75), taking (2.60) into
account, is

S66 D 2.S11 � S12/ (2.76)

2.3.2.8 Isotropy

We can now consider isotropy as the effect of a combination of cubic symmetry
with a transverse isotropy with respect to one of the axes of the cube. Both (2.70)
and (2.74) now apply and we have therefore

D D .1=2/ .A �A0/ (2.77)

and there are only two independent elastic moduli. Putting �D A0, �D D, the
Lamé20 coefficients (so that A D�C 2�), we get the tensor relation, valid in any
system of axes,


 D �Tr."/ •C 2�" (2.78)

and hence for the traces and the deviatoric parts

Tr.
/ D .3�C 2�/Tr."/ s D 2�e (2.79)

Stresses and strains have the same principal axes; if we define the bulk modulus
k as the ratio of the mean stress 
m D (1/3) Tr(
) to the volume dilatation � D Tr(")
then

k D �C 2�=3 (2.80)

Introducing Young modulus E and Poisson ratio �, which refer to the analysis of
the tensile test, we can put (2.78) in the form

" D 1C �

E

 � �

E
Tr.
/• (2.81)

20Gabriel Lamé (1795–1870) was a French mathematician.
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Table 2.2 Relation for passing from any pair of elastic constants to any other

– E, � E, � k, � k, � �, �

E E E 3 .1� 2�/ k 9k

1C 3k =�
� .3C 2� =� /
1C �=�

� � �1C E =2� �
1� 2� =3k
2C 2� =3k

1

2 .1C �=�/
�

E

2 .1C �/ �
3 .1� 2�/ k
2 .1C �/ � �

k
E

3 .1� 2�/
E

3 .3� E =�/ k k �C 2� =3

�
E�

.1C �/ .1� 2�/
E .1� 2� =E /
3� E =�

3k�

1C � k � 2� =3 �

E Young modulus
� Poisson ratio
� shear (Coulomb) modulus
k bulk (compressibility) modulus
�, � Lamé constants

with the following relations:

� D �

2.�C �/
E D �.3�C 2�/

�C �
k D E

3.1 � 2�/ (2.82)

Incompressibility corresponds to k ! 1 or �D 1/2.

Note: (2.76) does not hold for the cubic symmetry, for which the departure from
isotropy can be characterised by a single dimensionless parameter a defined by

a D 2.S11 � S12/

S44
(2.83)

Values of this are: tungsten 1.0 (which is thus isotropic, despite its cubic
structure); aluminium 1.4 (almost isotropic); iron 2.4; copper 3.3 (very anisotropic);
“ brass 8.75.

The relations between the elastic constants E, �,�, k, and� are given in Table 2.2.

2.3.3 Stability of the Equilibrium

This is associated with the result that, as we saw in Sect. 2.3.1, the volume density
of elastic energy is a positive definite quadratic form (" W C W " and 
 W S W 
 positive
8";8
 and zero only if " D 0 or 
 D 0). For the isotropic case it is easily shown,
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by decomposing " and 
 into their deviatoric and spherical parts, that we must have

� � 0; �C 2�=3 � 0;E � 0;�1 � � � 1=2 (2.84)

For cubic symmetry we find

C11 � 0; C44 � 0; C11
2 � C12

2 � 0; C11 C 2C12 � 0 (2.85)

2.3.4 Field Equations

Solving a problem in elasticity involves that all the following equations and
conditions are satisfied simultaneously:

(a) equilibrium div
 C f � �
 D 0

(b) compatibility Inc (") D 0
(c) constitutive equations 
 D C W " or " D S W 

(d) the boundary conditions

If the problem is solved in terms of displacements then (b) is satisfied auto-
matically and in rectangular cartesian coordinates (a) and (c) are combined in the
Lamé-Clapeyron21 (or Navier22) equations:

Cijkluk;lj C fi � � @2ui =@t
2 D 0 (2.86)

If on the other hand the solution is in terms of stresses (b) and (c) can be
combined into

2ikl2jmnSkmpq
pq;ln D 0 (2.87)

where 2ikl is the permutation tensor, with value 0 if any pair of suffices are equal
and ˙1 according as (i,k,l) is an even or odd permutation of (1,2,3).

2.3.5 Example: Propagation of Plane Sine Waves

2.3.5.1 General Equation

We are looking for a solution to the Lamé-Clapeyron Eq. 2.86 with fi D 0 of the
form

ui D u0i exp Œi.Kkxk � !t/� (2.88)

21Émile Clapeyron (1799–1864) was a French physicist.
22Henri Navier (1785–1836) was a French physicist.
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We have

uk;jl D �u0i KjKl exp Œi.Kmxm � !t/� (2.89)

�
@2ui
@t2

D ��!2u0i exp Œi.Kmxm � !t/� (2.90)

Hence

.CijklKjKl � �!2•ki / u0k D 0 (2.91)

and for a solution other than uk
0 D 0 we must have

det.CijklKjKl � �!2•ki / D 0 (2.92)

2.3.5.2 Isotropic Materials

We now have

Cijkl D �•ij •kl C �.•ik•jl C •il •jk/ (2.93)

whence

CijklKjKl D �KiKk C �.K2•ik CKiKk/

D .�C �/KiKk C �K2•ik (2.94)

Equation 2.92 now becomes

ˇ̌
ˇ̌̌
ˇ̌
.�C �/K2

1 C �K2 � �!2 .�C �/K1K2 .�C �/K1K3

.�C �/K1K2 .�C �/K2
2 C �K2 � �!2 .�C �/K2K3

.�C �/K1K3 .�C �/K2K3 .�C �/K2
3 C �K2 � �!2

ˇ̌
ˇ̌̌
ˇ̌ D 0

(2.95)

Taking x in the direction of K (K2 D K3 D 0) we get

.�K2 � �!2/2Œ.�C 2�/K2 � �!2� D 0 (2.96)

The wave propagation velocity is c D !=K; thus for transverse propagation (for
which u01 D 0; u02 ¤ 0; u03 ¤ 0/ we get cT D p

�=� and for longitudinal
propagation (for which u01 ¤ 0; u02 D 0; u03 D 0/ cL D p

.�C 2�/=�.
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2.3.5.3 Cubic Symmetry (in the Axes of the Cube)

With the symmetry relations (2.67), (2.68) and (2.71), the determinantal Eq. 2.92
becomes

ˇ̌
ˇ̌̌
ˇ̌
ˇ

C11K
2
1 C C44.K2

2 CK2
3 /� �!2 .C12 C C44/K1K2 .C12 C C44/K1K3

.C12 C C44/K1K2 C11K
2
2 C C44.K2

1 CK2
3 /� �!2 .C12 C C44/K2K3

.C12 C C44/K1K3 .C12 C C44/K2K3 C11K
2
3 C C44.K2

1 CK2
2 /� �!2

ˇ̌
ˇ̌̌
ˇ̌
ˇ
D 0

(2.97)

For propagation in the direction [100], for example, this is

ˇ̌
ˇ̌
ˇ̌
C11K

2 � �!2 0 0

0 C44K
2 � �!2 0

0 0 C44K
2 � �!2

ˇ̌
ˇ̌
ˇ̌ D 0 (2.98)

and the transverse and longitudinal propagations velocities are

cT D p
C44=�; cL D p

C11=� (2.99)

For other directions the velocities can be different (see Exercises in Volume III).

2.4 Variational Methods: Introduction to the Finite
Elements Method

Modern numerical methods for structural calculations are based on variational
principles; the general aim is to find a set of values for the variables of the problem
that minimise or maximise a certain functional relation that relates to the complete
structure. This is done by considering many admissible fields, which partially satisfy
the boundary conditions of the problem, and searching for the one which is the
best approximation to the solution. The basic tools used in constructing variational
methods are (1) a method for the construction of many admissible fields, (2) the
virtual work theorem, applied to this set of admissible fields, and (3) a fundamental
inequality deriving from the behaviour of the material of which the structure is
made, which can be used for the comparison of the trial fields with the (unknown)
solution. For the case of linear elasticity, considered here, this inequality is a
consequence of the positive definite nature of the quadratic form associated with
the tensor of the elastic moduli C or compliances S (see for example the discussion
of elastic stability in Sect. 2.3.3).
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∂V
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Tg

f

Fig. 2.10 Description of the
boundary value problem
being discussed

2.4.1 Extremal Theorems in Linear Elasticity

We use the virtual work theorem in the form (2.4), implying both a SA stress field

� (associated with f � and T � D 
�:n) and a KA strain field "0.u0/ deriving from
the displacement field u0 (associated with "0)

Consider now the problem of an elastic body subjected to body forces f and
surface conditions of the type

prescribed displacements ug over an area Su of @V
prescribed forces T g over the remaining part ST (Su or ST can be null) (Fig. 2.10).

Let us adopt now a more restricted definition of the admissible fields 
� and
u0: they are statically (SA’) and kinematically (KA’) admissible for the problem
under consideration, respectively, which means that 
� must be SA with f , i.e.,
div
� C f D 0, and must satisfy the boundary conditions over ST, i.e., T � D

�:n D T g over ST whereas "0.u0/ is compatible and u0 must satisfy the boundary
conditions over Su , i.e., u0 D ug over Su.

NB: "� deduced from 
� by "� D S W 
� need not be compatible, nor does 
 0
deduced from "0 by 
 0 D C W "0 need to be in equilibrium.

Application of the virtual work theorem (2.4) to 
� and u0 gives at once

Z
V


� W "0dV D
Z
V

f :u0dV C
Z
ST

T g:u0dS C
Z
Su

T �:ugdS (2.100)
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We now use the fact that the quadratic forms " W C W "; 
 W S W 
 are positive
definite, i.e.,

" W C W " � 0 8"; " W C W " D 0; iff " D 0 (2.101a)


 W S W 
 � 0 8
; 
 W S W 
 D 0; iff 
 D 0 (2.101b)

In (2.101b) let us take, for example, (
� � C W "0) as stress field, where 
� and
"0 are SA’ and KA’, respectively. Note that in general 
� and "0 are not related,
that is, 
� ¤ C W "0; only the fields 
 and ", the solutions to the problem, are both
admissible and related.

It follows that the quadratic form '.
�; u0/ D .1=2/.
� � C W "0/ W S W .
� � C W
"0/ is positive definite and is zero only for 
 and u, the solutions to the problem, i.e.,

'.
; u/ D 0 (2.102)

We find, easily:

'.
�; u0/ D .1=2/ 
� W S W 
� � 
� W "0 C .1=2/ "0 W C W "0 (2.103)

The functional ˚.
�; u0/ defined by ˚.
�; u0/ D R
V
'.
�; u0/dV is similarly

positive, and zero only for 
 and u; using (2.100) we can write it in the form

˚.
�; u0/ D 1

2

Z
V


� W S W 
�dV �
Z
V

f :u0 dV �
Z
ST

T g:u0 dS �
Z
Su

T �:ug dS

C 1

2

Z
V

"0 W C W "0 dV (2.104)

which shows that it can be expressed as the sum of two independent functionals:

˚.
�; u0/ D ˚1.

�/C ˚2.u

0/ � 0; 8
�; u0 (2.105)

where
8̂̂
<
ˆ̂:
˚1.


�/ D 1

2

R
V

� W S W 
� dV � R

Su
T �:ug dS

˚2.u0/ D 1

2

R
V
"0 W C W "0 dV � R

V
f :u0 dV � R

ST
T g:u0 dS

(2.106)

Since ˚1 and ˚2 vary independently and their sum is minimal for 
� D 
 and
u0 D u, it follows that ˚1 is minimal for 
� D 
 and ˚2 is minimal for u0 D u; so
we have

˚1(
) � ˚1(
�) minimum complementary energy

˚2(u) � ˚2(u0) minimum potential energy
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T2
0

u1
0

Fig. 2.11 Example of
extended boundary conditions

where the equalities hold only for 
� D 
 and u0 D u, respectively. From (2.102) it
follows

�˚1.
�/ � �˚1.
/ D ˚2.u/ � ˚2.u
0/ (2.107)

This summarises the two extremal theorems we were seeking, each leading to a
particular numerical method: to find, as the best approximation, among the set of
SA’ fields for a given problem, the one that minimises ˚1(
�); or, among the set of
KA’ fields for this problem, the one that minimises ˚2(u0).
Note: The class of problems that can be treated by these methods can be extended
by allowing more general boundary conditions. We can assume only that at every
point of the surface @V there is given, for the direction of each axis of the frame of
reference, a component of either force or displacement. Thus Fig. 2.11 illustrates,
in two dimensions, conditions which can be prescribed at the boundary. The above
relations (2.104) then hold with T g D (0, T2

0) and ug D (u1
0, 0), provided that the

surface integrals are taken over the whole surface @V, since there

T �:u0 D T �1 u01 C T 02 u02 D T �:ug C T g:u0 (2.108)

2.4.2 Principle of the Finite Element Method

Without going into the details of the method we show how the principle on which it
is based follows from the above theorems, once the structure to be studied has been
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discretised into geometrically simple finite elements. We give the method in terms
of displacements, using the form ˚2(u0).

Let f'
i
g be a base set of n vector functions, each attached to a node i of the

finite-element mesh, in terms of which we can express a trial displacement field as

u0 D
nX
iD1

Xi'i
.D Xi'i

/ (2.109)

The coefficients Xi are often the components of the displacements at the nodes
and the '

i
(polynomial, trigonometric functions, etc.) interpolation functions that

enable the value of u0 to be determined at any point from the values at the nodes.
The boundary conditions u0D ug on Su are given by p relations between the Xi; for
the sake of simplicity we consider these as setting the first p values of Xi, from X1

to Xp.
Since (2.109) is linear in the Xi ,

"0.Xi'
i
/ D Xi"

0.'
i
/ (2.110)

We then have

˚2.u
0/ D 1

2

Z
V

"0.Xi'
i
/ W C W "0.Xi'

i
/ dV �

Z
V

f :Xi'
i
dV �

Z
ST

T g:Xi'
i
dS

D 1

2
Xi

�Z
V

"0.'
i
/ W C W "0.'

j
/ dV

�
Xj � Xi

�Z
V

f :'
i
dV C

Z
ST

T g:'
i
dS

�

D 1

2
XiRijXj �XiFi with Rij D Rji (2.111)

where in general it is arranged that each component of the matrix Rij (or of Fi)
involves only one, or at most a small number, of the finite elements. If we put

ŒX� D �
X1 � � � Xp XpC1 � � � Xn

�T D

0
BBBBBBB@

X1
� � �
Xp

XpC1
� � �
Xn

1
CCCCCCCA

D
�
ŒX1�

ŒX2�

�
p

n � p

ŒF � D
�
ŒF1�

ŒF2�

�
p

n � p

ŒR� D
 
ŒR11� ŒR12�

ŒR21� ŒR22�

!
p

n � p
(2.112)
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then with [R12] D [R21]T we have

˚2.u
0/ D ˚2.ŒX1� ; ŒX2�/ D 1

2
ŒX�T: ŒR� : ŒX�� ŒX�T: ŒF �

D 1

2

�
ŒX1�

T: ŒR11� : ŒX1�C ŒX1�
T: ŒR12� : ŒX2�C ŒX2�

T: ŒR21� : ŒX1�
�C :::

:::C 1

2

�
ŒX2�

T: ŒR22� : ŒX2�
� � ŒX1�T: ŒF1� � ŒX2�T: ŒF2� (2.113)

The minimisation of ˚2 must then be done with respect to [X2], with [X1] fixed:

d˚2 D 1

2

�
ŒX1�

T: ŒR12� : ŒdX2�C ŒdX2�
T: ŒR21� : ŒX1�C ŒdX2�

T: ŒR22� : ŒX2�
�
:::

:::C 1

2

�
ŒX2�

T: ŒR22� : ŒdX2�
�� ŒdX2�

T: ŒF2�

D ŒdX2�
T:

�
1

2

�
ŒR12�

T: ŒX1�C ŒR21� : ŒX1�C ŒR22� : ŒX2�CŒR22�T: ŒX2�
�� ŒF2�




D ŒdX2�
T: .ŒR21� : ŒX1�C ŒR22� : ŒX2� � ŒF2�/ (2.114)

Setting d˚2 D 0, we have the linear system for X2 to solve:

ŒR22� : ŒX2� D ŒF2� � ŒR21� : ŒX1� (2.115)

Here [R22] is the stiffness matrix of the structure.
We have passed over a number of questions that arise, in particular

– what shape to choose for the finite elements
– how to specify the nodes of the mesh, and what functions '

i
to choose as base

– how to enumerate the nodes so as to condition the matrix [R] optimally
– how actually to construct the overall stiffness matrix
– how to solve the linear system (2.115).

We leave the reader to consult specialist works on these points.

2.5 Heterogeneous Materials: Estimates and Bounds
in Linear Elasticity

The variational methods presented above have been mainly applied to classical
situations of structural design where the geometry, the loading and the material
properties are defined in a deterministic way. They can also be applied to RVEs
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of random heterogeneous materials where we have only an incomplete knowledge
of the spatial distribution of the different constitutive phases so that we cannot
determine the overall behaviour of the HEM unambiguously. However, with the
help of energy theorems, which lead to a variational approach to the problem, we
may be able to establish bounds for the quantities that define the effective behaviour
and even to find optimal bounds, that is, the closest possible consistent with the
available information: the actual moduli for a material for which we have only this
partial information can then be anywhere inside the domain defined by these optimal
bounds. Remind that in the following we are only concerned with random materials.
So, the specific and powerful methods that have been developed for materials with
periodic microstructure are not discussed here. For an introduction to them, the
interested reader may consult e.g. Suquet (1987). Laminates are not treated despite
their important applications for the design of composite structures. Simple cases
only are discussed as exercises in Volume III.

2.5.1 Effective Moduli and Compliances

Here we shall limit the treatment to the case of linear elasticity, with homogeneous
boundary conditions on forces or displacements. The initial state is first supposed
to be “natural” (i.e., without any initial strains or stresses). Equations 1.37–38 then
lead to the following relations for the effective moduli Ceff and compliances Seff

(
Ceff D< c W A >D< AT W c W A > with < A >D< AT >D I

Seff D< s W B >D< BT W s W B > with < B >D< BT >D I
(2.116)

Remember that A and B represent the strain and stress concentration tensors,
respectively.

For a composite material with n phases, they read

8̂̂
<̂
ˆ̂̂:

Ceff D< c W A >D
nP
rD1

frcr W Ar ; Ar D< A >.r/ with
nP
rD1

frAr D I

Seff D< s W B >D
nP
rD1

frsr W Br ; Br D< B >.r/ with
nP
rD1

fr Br D I

(2.117)

These relations show that Ceff and Seff have all the required symmetries of
elastic moduli and compliances, including the diagonal symmetry (Cijkl D Cklij and
Sijkl D Sklij). They also imply that the quadratic forms associated with Ceff and Seff

are positive definite as soon as this property holds for c and s. For homogeneous
boundary conditions and macrohomogeneity (d 	 `, see Chap. 1, Sect. 1.4.4.1),
the homogenisation procedure yields the same results for homogeneous stress and
strain boundary conditions, so that Ceff and Seff are inverse tensors.
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2.5.2 The Case of Initial Deformations

In some cases the response of a heterogeneous material will involve not only the
elastic behaviour but also deformations of different natures, such as thermal, plastic
or resulting from phase changes. We shall consider the situation in which such
an additional deformation can be regarded as given initially and not developing
under the mechanical loading: the associated strains are then “stress-free strains”
or “eigenstrains”; to this extent, when later on in this section we deal with
“elastoplasticity” we shall exclude true elastoplastic flow, which will need to be
treated by other methods. However, some problems, treated below, can be attacked
by the same methods whether or not there is plastic flow; this is the case for the
concepts of mean values and stored energy, which we shall treat for instance within
the frameworks as well of elastoplasticity as of thermoelasticity, without calling
on any description of plastic flow. In particular they are relevant to the important
study of the dilatometric behaviour of composites whose constituents have different
elastic moduli and different coefficients of thermal expansion.

2.5.2.1 Mean Values

For a heterogeneous material with eigenstrains, whilst the overall macroscopic
stresses and (total) strains, and their rates of change, are still the means of local
values, the same does not hold for the elastic and plastic parts of the strain field
separately, because of their generally incompatible character (Mandel 1972). The
total deformation is a combination of an elastic part "e.x/ and a part having
a physically different origin – thermal, plastic, phase change, or other, say an
eigenstrain.

There is the local partition " D "e C "F (where F stands for “free”) and we
can also write 
 D 
 0 C 
 r where 
 0 is the stress field that would be set up if no
eigenstrain was present in the heterogeneous medium, under the same loading, and

 r is therefore the residual stress field. It follows that < 
 0 >D< 
 > D ˙ ) <


 r >D 0 (self-equilibrated field).
As we know, 
 0 D B W ˙ , where B is the solution of the purely elastic problem

(i.e., without eigenstrains) of stress concentration. These relations follow:

< BT W " >D < BT W "e > C < BT W "F >D< BT W s W 
 > C < BT W "F >

D < 
 W s W B > C < BT W "F > (since s is symmetric)

D < 
 >W< s W B > C < BT W "F > (Hill’s lemma, since s W B is KA)

D < 
 >W SeffC < BT W "F >D EeC < BT W "F >D EeC < "F W B >

D < BT >W< " >D< " W B >D E (Hill’s lemma, since BT is SA)

(2.118)
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Note that the fourth order tensors s : B and BT have been treated here as
second-order tensors by considering two of their indices as fixed: they can be then
assimilated to a kinematically admissible strain field and a statically admissible
stress field, respectively, so that Hill’s lemma (1.34) can be used.

From that we have

E D< " >
Ee D< BT W "e >D< "e W B > .¤< "e > in general)

EF D< BT W "F >D< "F W B > .¤< "F > in general) (2.119)

while < 
 >D ˙ , < 
 0 >D B W ˙ D ˙ , < 
 r >D 0.

Let us briefly mention here without explicit development a “dual” analysis, which
can be performed for initial stresses instead of initial strains. Denoting p.x/(D �c W
"F) and P (D �Ceff W EF) the local and macroscopic eigenstresses, respectively, we
have through similar arguments

˙ D< 
 >
Ceff W E D< AT W .c W "/ >D< ." W c/ W A > .¤< c W " > in general)

P D< AT W p >D< p W A > .¤< p > in general) (2.120)

2.5.2.2 Elastic Stored Energy

The internal energy per unit volume is given by 1
2
< 
 W s W 
 >, the average of

the local internal energy which can be assimilated to the microscopic elastic energy.
From the definition of the residual stresses 
 r, we have

1

2
< 
 W s W 
 > D 1

2
< .
 0 C 
 r/ W s W .
 0 C 
 r/ >

D 1

2
<
 0 W s W 
 0>C< 
 r W s W 
 0 > C1

2
<
 r W s W 
 r> .s D sT/

D 1

2
˙ W< BT W s W B >W ˙C < 
 r W s W 
 0 > C1

2
< 
 r W s W 
 r >

D 1

2
˙ W Seff W ˙ C 1

2
< 
 r W s W 
 r >

(Hill’s lemma, since .s W 
 0) is KA, 
 r is SA. and < 
 r >D 0/

(2.121)
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Thus the internal energy comprises the macroscopic elastic energy and in
addition (< 
 r W s W 
 r > cannot be negative since the quadratic form associated
with s is positive definite) the elastic stored energy corresponding to the residual
stresses.

2.5.2.3 Linear Thermoelasticity

Application to linear thermoelasticity of inhomogeneous materials is straightfor-
ward. Each phase (r) is characterised by its elastic moduli cr and its coefficients of
thermal expansion ˛

r
where ˛

r
is a symmetric second-order tensor (for an isotropic

behaviour, ˛
r

D ˛r•) such that a local temperature variation �T(x) gives rise to

the thermal strain "th
r
.x/ D ˛

r
�T .x/. An equivalent description of the dilatometric

behaviour can be achieved through the thermal coefficients �
r

D cr W ˛
r
, such that



r

D cr W ."
r

� "th
r
/ D cr W "

r
� �

r
�T , where (��

r
�T ) is analogous to an

eigenstress.
From now on, we assume the temperature change �T to be uniform throughout

the RVE. The effective dilatometric macroscopic behaviour is defined by the effec-
tive coefficients of thermal expansion ˛eff (or by the effective thermal coefficients

�eff) such that the macroscopic thermal strain E threads

E th D ˛eff�T

with E th D E � Seff W ˙ or ˙ D Ceff W E � �eff�T (2.122)

From (2.118), we get

E th D< BT W "th >D< BT W ˛ �T >D ˛eff�T

) ˛eff D< BT W ˛ >D< ˛ W B >
(2.123)

Similarly, from (2.120) we would have

�eff D< AT W � >D< � W A > (2.124)

According to (2.118), these relations read also

˛eff D
X
r

frBT
r W ˛

r
D
X
r

fr˛
r

W Br

�eff D
X
r

frAT
r W �

r
D
X
r

fr�
r

W Ar (2.125)
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The main consequence of this analysis is that there is a close connexion between
the homogenisation of the elastic and of the dilatometric behaviour of heterogeneous
materials since the same concentration tensors Ar and Br are used in both cases. This
conclusion is to be reminded in Sect. 2.6 when dealing with estimations.

This connexion is still amplified in the case of two-phase materials. From (2.117)
and (2.125), we have, with f D f2 and f1 D .1 � f /

8̂<
:̂
˛eff D .1 � f / ˛

1
W B1 C f ˛

2
W B2

Seff D .1 � f / s1 W B1 C f s2 W B2
I D .1� f /B1 C f B2

(2.126)

so that B1 and B2 can be eliminated and yield a relation (the so-called Levin’s23

theorem) between ˛effand Seffwhich can be written as

˛eff D< ˛ > C.Seff� < s >/ W .s2 � s1/�1 W .˛
2

� ˛
1
/ (2.127)

So, if we measure or bound or estimate the effective compliance, (2.127) yields
at once the necessary value or bounds or estimate for the effective coefficients of
thermal expansion. Of course, a similar relation holds between �eff and Ceff.

2.5.3 Bounds for the Overall Moduli and Compliances

The relations (2.116) are only theoretical definitions for Ceff and Seff since c(x) or
s(x) are generally not known unambiguously at each point x. In order to bound
Ceff or Seff for all the materials which correspond to a given partial information on
the spatial distribution of the phases (or the moduli), we can use (2.107) in a new
way: the solution (
; u) is no longer unique, but if we can find admissible fields 
�
or u0 such that ˚1.
�/ or ˚2.u0/ can be calculated, despite the limited nature of the
available information, then (2.107) yields lower or upper bounds for˚1.
/ or˚2.u/

and thus for Ceffand Seff. We do this first by using uniform strain and stress fields to
derive the so-called Voigt’s and Reuss’s bounds.

2.5.3.1 Voigt’s Bound (Uniform Strains)

Let "0.u0/ be a kinematically admissible field, with u0i DEij xj on @V ; in the absence
of inertial and body forces and with homogeneous strain boundary conditionsE , the
potential energy theorem states that any solution " minimises the elastic energy:

23Valery M. Levin is a Russian Professor of Mechanics at Petrozavodsk State University (Russia).
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.1=2/

Z
V

" W c W " dV � .1=2/

Z
V

"0 W c W "0 dV (2.128)

In particular, taking "0 D E , which is admissible, we have

< " W c W " > � E W< c >W E (2.129)

Now < " W c W " >D E W Ceff W E whence

E W .< c > �Ceff/ W E � 0; 8E (2.130)

2.5.3.2 Reuss’s Bound (Uniform Stresses)

Let 
� be a statically admissible stress field for the same problem, with homoge-
neous strain boundary conditions again. The complementary energy theorem gives

1

2

Z
V


 W s W 
 dV �
Z
@V

.
:n/:ugdS � 1

2

Z
V


� W s W 
�dV �
Z
@V

.
�:n/:ugdS

(2.131)

Now
Z
V


ij nj ug
i dS D

Z
V

.
ijEikxk/;j dV D
Z
V


ijEij dV D V˙ijEij (2.132)

with ˙ D< 
 >. If we choose 
� D ˙ we have, similarly,

Z
@V


�ij nj ug
i dS D ˙ij

Z
@V

nj ug
i dS D V ˙ijEij (2.133)

from which it follows that
R
V

 W s W 
 dV � R

V
˙ W s W ˙ dV that is, < 
 W s W


 > � ˙ W< s >W ˙ .

Therefore, since < 
 W s W 
 >D ˙ W Seff W ˙ , we have finally

˙ W .< s > �Seff/ W ˙ � 0; 8˙ (2.134)

Symbolically, the two inequalities can be summarised as

< c�1>�1 � .Seff/�1 D Ceff � < c > (2.135)



124 2 Elastic Behaviour

2.5.3.3 Voigt’s and Reuss’s Bounds for Scalar Moduli

The inequalities of Voigt and Reuss concern only the quadratic forms associated
with Seff and Ceff; by choosing the fieldsE and˙ suitably we can deduce from them

inequalities for the components of Seff and Ceff, or for combinations of these. For
example, for an isotropic composite with isotropic constituents, with k D �C2�=3

and eij D "ij � .1=3/"kk•ij , we have

cijkl"ij "kl D 

.k � 2�=3/"kk•ij C 2�"ij

�
"ij

D .k"kk•ij C 2�eij /.eij C .1=3/"l l•ij / D 2�eij eij C k"2kk (2.136)

Hence

2 < � > eij eijC < k > "2kk � 2�eff eij eij C keff "2kk; 8eij ; 8"kk (2.137)

implying < k> � keff and<�> � �eff (Voigt’s bound for the bulk and shear
moduli).

On the other hand, with sij D 
ij � .1=3/
kk•ij (deviator) and

sijkl
kl D "ij D 1C �

E

ij � �

E

kk•ij

D 1

2�

ij � 3k � 2�

18k�

kk•ij (2.138)

we have

sijkl
ij 
kl D 1

2�

�

ij � 3k � 2�

9k

kk•ij

�

ij

D 1

2�

�
sij C 2�

9k

kk•ij

��
sij C 1

3

l l•ij

�

D .1=2�/sij sij C .1=9k/
2kk (2.139)

Hence

< 1=2� > sij sij C .1=9/ < 1=k > 
2kk

� .1=2�eff/sij sij C .1=9keff/
2kk; 8sij ; 8
kk (2.140)

implying <1/�> � 1/�eff, <1/k> � 1/keff (Reuss’s bound for the bulk and shear
moduli).24

24Note that the above calculation could have been strongly shortened by the use of the fourth-
order unit tensors J and K defined by Jijkl D (1/3)•ij•kl and KC J D I. They are such that c D
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0

Reuss
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Voigt
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f1

m1

meff
Fig. 2.12 The Hill domain
for the shear modulus of an
isotropic two-phase
composite, as a function of
the volume fraction of one
component

For a two-phase composite (volume fractions f1, f2 with f1 C f2 D 1), one gets

(
1=.f1=�1 C f2=�2/ � �eff � f1�1 C f2�2

1=.f1=k1 C f2=k2/ � keff � f1k1 C f2k2
(2.141)

We thus have upper and lower bounds for the effective moduli; together they
define the Hill domain (see footnote 20 of Chap. 1), shown in Fig. 2.12 for �eff.

Note that the “laws of mixtures”, which estimate any overall parameter as
the mean value of the corresponding local ones, are only valid here as bounding
properties for the bulk and shear moduli. This is not even true for other elastic
constants such as the Young modulus and the Poisson ratio and it is completely
wrong for anisotropic elasticity.

2.5.3.4 Higher Order Bounds

The calculation of < c> or< s> in (2.135) requires only a knowledge of the
volume fractions of the phases; it follows that if this is the only information
we have we cannot set sharper bounds to the effective moduli than those given
by these inequalities. In other words, if all we know for an elastic composite is

2�KC 3 kJ and s D (1/2�)KC (1/3 k)J. When acting on a symmetric second-order tensor such
as "ij, they yield directly Kijkl"kl D eij (deviator) and Jijkl"kl D (1/3)"kk•ij (see Exercises of Volume
III for more applications).



126 2 Elastic Behaviour

the volume fraction of each constituent phase (and, of course, the elastic moduli
for each phase) then the values of the effective moduli can lie anywhere within
the Voigt/Reuss bounds: only more information about the spatial distribution of
the phases will enable us to set closer bounds. In particular, we show later that the
Hashin-Shtrikman bounds are sharper, but they hold in more restrictive conditions.
This question is discussed later (Sect. 2.8).

2.6 Elasticity of Heterogeneous Materials: Estimates
for the Overall Moduli and Compliances

Instead of looking for bounds for the overall moduli, it can be found easier to derive
estimates by introducing additional information, assumptions or approximations so
as to be able to propose possible solutions to the general problem which, as stressed
before, has an infinite number of solutions. From (2.84), estimates for Ceff and Seff

can be derived straightforwardly from estimates for Ar and Br , say Aest
r and Best

r ,
which yield estimates for the strain and stress averages per phase

"est
r

D< "est>.r/ D Aest
r W E with

nX
rD1

frAest
r D I


est
r

D< 
 est>.r/ D Best
r W ˙ with

nX
rD1

frB est
r D I (2.142)

through the relations

8̂
<̂
ˆ̂:

Cest D
nP
rD1

frcr W Aest
r with

nP
rD1

frAest
r D I

Sest D
nP
rD1

frsr W Best
r with

nP
rD1

fr Best
r D I

(2.143)

As already mentioned in Sect. 2.5.2.3, estimates for the overall elastic moduli
or compliances (through Aest

r or Best
r ) yield at once estimates for the overall thermal

coefficients which, according to (2.90), must read

8<
:
˛est D P

r

frBestT
r W ˛

r
D P

r

fr˛
r

W Best
r

�est D P
r

frAestT
r W �

r
D P

r

fr�
r

W Aest
r

(2.144)

where Aest
r and Best

r have to be the same as in (2.143).
The simplest choice for "est

r or 
est
r is to assume uniform average strain or stress

per phase, namely Aest
r D I;8r or Best

r D I;8r , which leads to the estimates
Cest D< c > or Sest D< s >, i.e., to the “direct” or “inverse” laws of
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mixtures, respectively. Despite the advantage of simplicity, which is connected with
convenient images of “parallel” and “series” assemblages, these empirical laws
exhibit obvious drawbacks: they predict isotropic overall moduli or compliances
for isotropic constituents whatever their spatial distribution, contrary to what is
observed e.g. for long fibre reinforced composites or laminates; they either lead
to an overall rigid behaviour as soon as one constituent is rigid, whatever its
volume fraction, or to vanishing overall moduli for any porous material, whatever
its porosity, etc.

This shows that, as well as for bounds, improved estimates are needed. In both
cases, the Green’s25 techniques have proved to be the key for further progress. They
are briefly described in what follows through the resolution of the inclusion problem.

2.7 The Inclusion Problem

This is a fundamental problem in the mechanics of heterogeneous materials because
it concerns the basic situation of the heterogeneity between a zone in the material
(an inclusion) and its environment (the matrix). Further, it is important in itself
because its study enables us to analyse particular situations such as the presence
of precipitates, voids and pores, and to do so for a range of scales.

We shall follow Eshelby26 (1957) and treat the case of an elastic inclusion in an
infinite elastic matrix, dealing in detail with the situation in which the inclusion is
ellipsoidal and the matrix elasticity is isotropic.

2.7.1 Inclusion with Uniform Stress-Free Strain
in a Load-Free Infinite Matrix

Let the prescribed uniform “stress-free strain” in the inclusion I be "F and the
elastic matrix with uniform moduli C be load-free at infinity; by stress-free strain
(or eigenstrain) we mean a deformation which, if it were present in an isolated
element, would not be accompanied by any stress – it could be due, for example, to
thermal effects or to a phase change. We can write "F.x/ D "F•0.I/ where •0(I) is
the characteristic function for the inclusion I; hence 
ij D CijklŒul;k � "F

kl •0.I/� and
by the equilibrium equations

Cijklul;kj C Cijkl"
F
klnj •.S/ D 0 (2.145)

25George Green (1793–1841) was a British mathematician.
26John Douglas Eshelby (1916–1988) was a British scientist.
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where •(S) is the Dirac function applied to the interface S between the inclusion
and the matrix, at which the unit outward normal is n. These are the equations for
the equilibrium of a homogeneous material acted on at the surface S by a force
distribution

fi D Cijkl"
F
klnj (2.146)

Now let Gij be the Green tensor for the infinite medium with elastic moduli C;
this is solution of the equation

CijklGkm;lj C •im•.r; r
0/ D 0 (2.147)

The Green tensor gives the displacement at a point x due to a force F(x0) applied
at x0 as ui(x0) D Gij (x, x0) Fj(x0). For an infinite homogeneous medium it depends
only on the distance �D jx�x0j, and in the present case we get

ui .x/ D
Z
S

Gij Cjklm"
F
lmnkdS 0 D

Z
I
Gij;k0Cjklm"

F
lmdV 0 .Gij;k0 D @Gij =@x

0
k/

(2.148)

where the notations S0 and V 0 show that the integration variable is x0. Hence

ui;n D Cjklm"
F
lm

Z
I
Gij;k0n dV 0 (2.149)

and by symmetrisation with respect to i and n

"in.x/ D
�Z

I
Gij;k0n.in/ .x � x0/dV 0

�
Cjklm"

F
lm

D �
�Z

I
Gij .x � x0/dV 0

�
;kn.in/.jk/

Cjklm"
F
lm (2.150)

Omitting some mathematical difficulties arising from the singularity of the
second-order derivatives of the Green tensor at xD x0 and from the infinite extent
of the body, we define the so-called “modified strain Green operator” Q� by

�injk D Gij;k0n
.in/.jk/

(2.151)

so that we have

"in.x/ D Pinjk.x/ Cjklm"
F
lm where Pinjk.x/ D

Z
I
�injk.x � x0/ dV 0

(2.152)

Note: This result can be obtained by working through the following sequence of
fictitious operations, shown in Fig. 2.13.
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Fig. 2.13 The Eshelby procedure for solving the inclusion problem. 1 Extract the inclusion out of
the matrix; 2 Let the strain in the inclusion be the eigenstrain; 3 Apply distributed forces on the
surface of the inclusion to bring it back to its initial shape; 4 Insert back the inclusion in the matrix;
5 Apply distributed forces on the surface of the inclusion to cancel the ones applied at step 3

At this stage, the fourth-order tensor P is expected to depend on x. We now accept
the main following result due to Eshelby (see Volume III for the demonstration):

if I is ellipsoidal and x 2 I, then P does not depend on x.

It follows that, in this case, "I is uniform and can be written
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"I D P W C W "F D SEsh W "F (2.153)

where the Eshelby tensor SEsh only depends on the moduli C, the shape (aspect
ratios) and orientation of the ellipsoidal inclusion. Note that, contrary to SEsh, the so-
called Hill tensor P D SEsh W S has the advantage of exhibiting diagonal symmetry.

2.7.2 The Case of Isotropic Elasticity

The Green tensor has no simple analytical expression except for the case of isotropic
elasticity; we shall consider only this. We have

Gij .x; x
0/ D Gij .

ˇ̌
x � x0

ˇ̌
/ D Gij .�/ D 1

4��

�
•ij

�
� �;ij

4.1� �/

�
(2.154)

with �;ij D 1
�
.•ij � eiej / and e D x�x0

�
. Since fj D 2�

�
"F
jk C �

1�2� "
F
l l•jk

	
nk and

Gij;k0 D �Gij;k , we get

ui .x/ D �2�
�
"F
jk C �

1 � 2� "
F
l l •jk

	 �Z
I
Gij dV 0

�
;k

(2.155)

Putting '.x/ D R
I

dV 0

�
;  .x/ D R

I � dV 0 we have � D 2' and �' D 0 in I,
�' D 4  outside I. Thus

ui .x/ D �2�
�
"F
jk C �

1 � 2� "
F
l l•jk

	� •ij

4 �
';k �  ;ijk

16 �.1� �/
�

D � 1

2 
"F
ik';k � �

4 .1� �/
"F
l l';i C 1

8 .1� �/"
F
jk ;ijk (2.156)

In the rest of this discussion we shall assume that the inclusion is ellipsoidal. It
can be shown that ui is then linear inside I and that 
 and " are therefore constant

there; we have, in I, 'D ½[(a2�x2)IaC(b2�y2)IbC(c2�z2)Ic] where a, b, c are the
semi-axes of the ellipsoid and Ia, Ib, Ic are constants (elliptic integrals) depending
on the geometry of the inclusion. The resulting deformation within the inclusion can
then be written "I

ij D SEsh
ijkl "

F
kl where SEsh is the (constant) Eshelby tensor, of which

the only non-zero components are those with indices 1111, 1122, 2211, 1133, 3311,
2222, 2233, 3322, 3333, 1212, 2323, 1313.

We thus have


 I
ij D 2�

h
SEsh

ijkl "
F
kl � "F

ij C �

1 � 2�
�
SEsh
mmkl "

F
kl � "F

mm

�
•ij

i
(2.157)
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Table 2.3 Eshelby’s tensor for some
extreme shapes of ellipsoidal inclusion
(isotropic elasticity)

Elliptic cylinder.c!1/

SEsh
1111 D 1

2.1� �/
�
b2 C 2ab
.aC b/2 C

b.1� 2�/
aC b

�

SEsh
2222 D 1

2.1� �/
�
a2 C 2ab
.aC b/2 C

a.1� 2�/
aC b

�

SEsh
1122 D 1

2.1� �/
�

b2

.aC b/2 �
b.1� 2�/
aC b

�

SEsh
2211 D 1

2.1� �/
�

a2

.aC b/2 �
a.1� 2�/
aC b

�

SEsh
1212 D 1

2.1� �/
�
a2 C b2
2.aC b/2 C

1� 2�
2

�

SEsh
1133 D 1

2.1� �/
2b�

aC b SEsh
2233 D 1

2.1� �/
2a�

aC b
SEsh
2323 D a

2.aC b/ SEsh
3131 D b

2.aC b/
SEsh
3311 D SEsh

3322 D SEsh
3333 D 0

Penny shape.a D b� c/

SEsh
1111 D SEsh

2222 D  c.13� 8�/
32a.1� �/

SEsh
1122 D SEsh

2211 D  c.8� � 1/
32a.1� �/

SEsh
1212 D  c.7� 8�/

32a.1� �/ S
Esh
3333 D 1�  c.1� 2�/

4a.1� �/
SEsh
1133 D SEsh

2233 D  c.2� � 1/
8a.1� �/

SEsh
3311 D SEsh

3322 D �

1� �
�
1�  c.4� C 1/

8�a

�

SEsh
3131 D SEsh

2323 D 1

2

�
1C  c.� � 2/

4a.1� �/
�

when c! 0 W SEsh
3131 D SEsh

2323 D 1

2

SEsh
3311 D SEsh

3322 D �

.1� �/
SEsh
3333 D 1 all other SEsh

ijkl D 0

Other shapes – cylinders, plates, etc. – can be treated as special or limiting cases
of the ellipsoid; here we give the results for a sphere. Please refer to Table 2.3 for
partial results for other shapes (Mura 1987; Nemat-Nasser and Hori 1999).
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Spherical inclusion For a sphere of radius a (Eshelby (1961)):

'.r/ D 4

3
 a2

�
3

2
� r2

2a2

�
; r < aI '.r/ D 4

3

 a3

r
; r > a

 .r/ D 4

3
 a4

�
3

4
C r2

2a2
� r4

20a4

�
; r < aI  .r/ D 4

3
 a4

� a
5r

C r

a

	
; r > a

from which we find

"I
i l D 2.4� 5�/

15.1� �/
"F
i l C 5� � 1

15.1� �/"
F
kk•il (2.158)

Thus for the spherical (hydrostatic) and deviatoric parts of "I and "F

"I
kk D ˛"F

kk; ˛ D 1C �

3.1� �/
I eI

ij D ˇeF
ij ; ˇ D 2.4� 5�/

15.1� �/
(2.159)

Finally

"I
ij D ˛ � ˇ

3
"F
kk•ij C ˇ"F

ij ; 
Iij D �2�
�
.1 � ˇ/"F

ij C ˇ C 2˛ � 1
3

"F
kk•ij

�

(2.160)

Comments: – when � varies from �1 to .5, ˇ decreases from 3/5 to 2/5 and ˛
increases from �1 to 1.

– the solution for stresses and strains is independent of the radius of the sphere. Far
from the inclusion, '� 1/r,  � r, giving juij � 1/r2, j
 ijj � j"ijj � 1/r3.

– the solution just obtained is valid only for perfect contact between the matrix and
the inclusion, without any sliding or debonding.

– if "F is an isochoric (e.g. plastic) strain, then 
 I � ��"F since ˇ� 1/2.

2.7.3 Other Problems Concerning Ellipsoidal Inclusions

Many other problems can be treated as applications of the solution just obtained,
in particular by using the method of the “fictitious equivalent inclusion” with the
fictitious eigenstrain "F* (Eshelby 1957). We now run quickly over a selection.
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C =

=

==

= ==

=

=

C : (SEsh − I) : eF

SEsh : eF

C
eF

s 1

e I

 (eF) in the matrixs 0
M

Fig. 2.14 Ellipsoidal
inclusion with uniform
stress-free strain in an infinite
unloaded matrix

C

S /E
= =

C
eF

s 1 = S + C:(SEsh − I) : eF

e 1 = E +SEsh : eF

sM = S  + s0
M (eF)

== = =

===

= = =

=

=

Fig. 2.15 Ellipsoidal
inclusion with uniform
stress-free strain in an infinite
matrix uniformly loaded at
infinity

2.7.3.1 The Reference Problem

See Fig. 2.14.

2.7.3.2 Infinite Matrix Uniformly Loaded at Infinity

See Fig. 2.15.

2.7.3.3 Cavity in a Uniformly Loaded Infinite Matrix

See Fig. 2.16.

2.7.3.4 Elastic Heterogeneity

In Fig. 2.17, " and 
 must be the same in the two ellipsoids with, at the same time,


H D 
 I D ˙ C C W .SEsh � I/ W "F*; "H D "I D E C SEsh W "F* (2.161)
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C

void C

C

= =

= = =
such that s 1 =  + C : (SEsh − I) : eF* = 0

sM = + s 0
M (eF* )

eF*

=
eF*

= −(SEsh − I)-1 : C−1 : S

=

=

= =

= =
S/E

= =
S/E

eF*

 S
=

S
=

Fig. 2.16 Cavity in a uniformly loaded infinite matrix

C

cH C

CC

=

S/E S/E

eF*e

Fig. 2.17 Elastic heterogeneity

as in Sect. 2.7.3.2 and


H D cH W "H; i:e:; ˙ C C W .SEsh � I/ W "F* D cH W .E C SEsh W "F*/: (2.162)

Thus, since ˙ D C W E , we must have

"H D E C SEsh W Œ.cH � C/ W SEsh C C��1 W .C � cH/ W E (2.163)
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giving finally after some algebra and with the definition (2.153)

"H D .I C P W •cH/�1 W E with P D SEsh W C�1; •cH D cH � C (2.164)

For a sphere, the strain deviator eH
Sph

and the trace �H
Sph are given by

eH
Sph

D
�
1C ˇ •�H

�

��1
E �H

Sph D
�
1C ˛ •kH

k

��1
�

with E D E C .�=3/ •

(2.165)

When �D �H D ½, we have

"H
ij D 5�

3�C 2�H
Eij ; 
H

ij D 5�

3�C 2�H
˙ij (2.166)

2.7.3.5 Elastic Heterogeneity with Stress-Free Strain (“Heterogeneous
Inclusion”)

Using the same method we write (see Fig. 2.18)


HI D ˙ C C W .SEsh � I/ W "F�

"HI D E C SEsh W "F�


HI D cHI W ."HI � "F/ (2.167)

from which

˙ C C W .SEsh � I/ W "F� D cHI W .E C SEsh W "F� � "F/

) "F� D ŒC � •cHI W SEsh��1 W ŒcHI W "F � •cHI W E� (2.168)

and then, from "HI D E C SEsh W "F� and after some algebra

"HI D .I C P W •cHI/�1 W . E C P W cHI W "F/ (2.169)

If the matrix is subjected to the uniform stress-free strain EF, (2.169) becomes
simply

"HI D .I C P W •cHI/�1 W
h
E C P W .cHI W "F � C W EF/

i
(2.170)
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C

cHI C

CC

=

S/E S/E

eF*eF

Fig. 2.18 Elastic heterogeneity with stress-free strain

Comment.

In all these problems we have

8̂<
:̂

 I D ˙ C C� W .E � "I/

C� D C W
h
.SEsh/

�1 � I
i (2.171)

C* is Hill’s constraint tensor; the relation in which it appears has the status of a law
of interaction. C* depends on the elastic moduli C of the matrix and on the shape
(aspect ratios) and orientation of the inclusion.

2.7.4 Notes

2.7.4.1 Stored Energy

The stored energy Wst corresponding to an ellipsoidal inclusion with the uniform
eigenstrain "F in an infinite load-free matrix is easily obtained from the basic
analysis. We have

Wst D
Z

ij "

e
ij dV D

Z

ij "ij dV �

Z
I

ij "

F
ij dV

D
Z
S


ij ui nj dS � VI 

I
ij "

F
ij (2.172)
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and the integral over S at infinity vanishes since there is no applied load. Thus

Wst D �VI

I
ij "

F
ij D �VI"

F W C W .SEsh � I/ W "F (2.173)

For the sphere and the case of isotropy we find

Wst D V
n
Œ�.1 � ˛/C .2�=3/.ˇ � ˛/�

�
"F
kk

�2 C 2�.1� ˇ/"F
ij "

F
ij

o
(2.174)

The effect of a macroscopic load (˙;E) at infinity can be found by using the
general result obtained in Sect. 2.5.2.2 and the definition of the residual stresses 
 r.

The problem of elastic heterogeneities can be attacked by using, as before, the
method of fictitious equivalent inclusions.

2.7.4.2 Inclusions and Dislocations

The inclusion problem could have been solved by using a different representation,
that of a continuous distribution of dislocations. Giving a field "F of stress-free
strains is in fact equivalent to giving such a distribution. Although piece-wise
continuous, "F is not compatible: it corresponds to surface incompatibility, localised
at the interface between the inclusion and the matrix; and this incompatibility
is itself equivalent to a surface distribution of dislocations, defined completely
by "F and the geometry of the interface, localised at the boundary between the
inclusion and the matrix. Thus the stress fields in the inclusion and the matrix can
be calculated as the resultant of a given distribution of dislocations, localised at the
interface. Using other terms, we could speak of such dislocations as “geometrically
necessary dislocations”; the problem would remain the same, with the same
underlying physics. – see Chap. 3 on Elastoplasticity.

2.8 Improved Bounds and Estimates for Elastic
Inhomogeneous Materials

The solution of the basic problem of inclusions and the underlying Green techniques
can be used in several ways to help solving the problem of concentration (see
Sect. 1.4.4.1b) within the general methodology of homogenisation. This can be done
to obtain improved bounds and estimates.

2.8.1 Methodology for Getting Sharper Bounds (Outline)

Sharper bounds than Voigt-Reuss ones can only result from taking into account
additional information with respect to the sole volume fractions of the phases.
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Whereas the latter can be considered as first-order data, i.e., resulting from the
knowledge of one-point correlation functions for the elastic moduli, improved
bounds are expected to need the knowledge of higher order correlation functions. In
Sect. 2.9, we give a brief outline of a systematic way to associate sharper and sharper
bounds with the use of correlation functions of increasing order. Here, we only
suggest a method for getting “second-order” bounds using the knowledge of second-
order information on the spatial distribution of the phases. The basic idea consists in
using as trial fields the solutions to the general problem of an infinite homogeneous
elastic matrix subjected to an arbitrary distribution of fictitious eigenstrains (or
“polarisation stresses”), thanks to the Green techniques. These fields are then
introduced in the general extremum theorems and restricted to specific expressions
which allow us to calculate the elastic energy when specific properties of the phase
spatial distribution are assumed. Improved bounds then result from an optimisation
process with respect to the remaining parameters which specify the distribution of
the considered eigenstrains. This can be made as follows.

(i) Consider first the basic extremum theorems for an RVE with homogeneous
boundary conditions derived from their general expression (2.128) and (2.131)
and used in Sect. 2.5.3 for getting Voigt-Reuss bounds, namely for a given
macroscopic strain E

< 
� >W E � 1

2
< 
� W s W 
� > � 1

2
E W Ceff W E � 1

2
< "0 W c W "0 >

(2.175)

(ii) The trial fields 
�.x/ and "0.x/ are now obtained as the solution of the problem

of an infinite elastic body with arbitrary uniform moduli C0, which is subjected
to an arbitrary distribution of fictitious eigenstrains "F.x/: it is easy to check that
they are SA and KA for the heterogeneous RVE, respectively. Alternatively, a
distribution of eigenstresses p.x/ can be considered; the solution is the same as

before if p.x/ D �C0 W "F.x/. A third (equivalent) way to proceed is to apply

a fictitious distribution of body forces f .x/ deriving from the potential �.x/
(i.e., such that f .x/ D div�.x/), where �.x/ is a field of symmetric second-
order tensors, homogeneous to stresses: it is named “polarisation stress field”;
the solution "0.x/ to this third problem is KA too, but 
 0.x/ D C0 W "0.x/ is
not SA for the original problem; suffice then to consider instead of 
 0.x/ the
stress field 
�.x/ D 
 0.x/ C �.x/ which is SA. The solution is the same as

before when �.x/ D p.x/ D �C0 W "F.x/. This solution can be obtained, at

least formally (see Sect. 2.9), by generalisation of the resolution of the inclusion
problem using Green techniques.
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(iii) We now apply (2.175) to the foregoing trial fields. From Hill’s lemma, we get

< 
� W "0 > D< "0 W 
� >D< "0 >W< 
� >
D E W< C0 W "0 C p >D E W C0 W E C E W< p >
D< "0 W C0 W "0 > C < "0 W p > (2.176)

so that the last term in (2.173) can be put in the more convenient form in view
of extracting second-order correlation functions and getting rid of higher order
ones, with •c0(x) D c(x)�C0:

1

2
< "0 W c W "0 >D 1

2
< "0 W C0 W "0 > C1

2
< "0 W •c0 W "0 >

D 1

2
E W C0 W E C 1

2
E W< p > �1

2
< "0 W p > C1

2
< "0 W •c0 W "0 >

(2.177)

Additional elementary algebra helps transforming this expression into

1

2
< "0 W c W "0 >D H0.p/C •u0

H0.p/ D 1

2
E W C0 W E C 1

2
E W< p > C1

2
< "0 W p > �1

2
< p W m0 W p >

•u0 D 1

2
< ."0 � p W m0/ W •c0 W ."0 � m0 W p/ > with m0 D .•c0/�1

(2.178)

The main advantage of this transformation lies in the fact that most of the
contributions to the upper bound .1=2/ < "0 W c W "0 > which involve high order

correlation functions are now included in •u0, whereas the remaining contribu-
tion, the so-called Hashin-Shtrikman27 functional H0.p/, only depends on the

polarisation stress field and is likely to be calculable with help of second-order
information only.

27Zvi Hashin (1929–) is an Israeli physicist and engineer, Emeritus Professor at the Tel Aviv
University. He derived the Hashin-Shtrikman bounds in 1963 in collaboration with his colleague
Shmuel Shtrikman (1930–2003), a Belarusian-born physicist of the Weizmann Institute of Science,
Rehovot, Israel, and of the Franklin Institute Laboratories, Philadelphia, USA, when he was a
faculty member at the University of Pennsylvania, Philadelphia (USA).
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If the same treatment is now applied to the term < 
� W s W 
� > instead of
< "0 W c W "0 >, it leads to

< 
� >W E � 1

2
< 
� W s W 
� >D H0.p/� •v0

•v0 D 1

2
< .
� � p W S0 W l0/ W •s0 W .
� � l0 W S0 W p/ > with l0 D �.•s0/�1

(2.179)

so that the bounding Eq. 2.175 reads simply

H0.p/ � •v0 � 1

2
E W Ceff W E � H0.p/C •u0 (2.180)

From that we can state that, since the terms •u0 and •v0 can be hardly
evaluated with only two-point information ("0 and 
� already imply two-
point correlation functions), they can be removed from the bounding Eq. 2.180
provided that they are negative for any p. This is easily obtained by choosing

C0 and S0 large enough for •c0 and •s0 to be negative everywhere in the RVE,
respectively. For such a choice of C0 or S0, say Csup and Sinf, the functional
H0.p/, which is then equal to H sup.p/or H inf.p/, yields an upper or a lower

bound for the effective moduli, respectively.
(iv) In the functional H0.p/, the contribution of the term < "0 W p > is the most

difficult to be computed since the strain tensor at point x, "0.x/, depends on
the value of the polarisation stress field at any point p.x0/. This will need

first specific enough polarisation fields and then some adequate properties of
the spatial distribution of the phases to be known. The classical Hashin and
Shtrikman bounds can be obtained by choosing p.x/ piecewise constant per

phase – say p.x/ D P
r

p
r
'r .x/ where 'r.x/ is the characteristic function of

phase (r), by assuming the distribution of the phases to be isotropic and by
optimising the values of p

r
as well as Csup and Sinf. The isotropy of the phase

distribution can be defined by the property of the two-point correlation function
'rs.u/ given by

'rs.u/ D 1

Vr

Z
V

'r.x/'s.x C u/ dV (2.181)

not to depend on the direction of u, i.e., 'rs.u/D'rs.juj/; 8r; s, with
'rs.0/D •rs .
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(v) The resulting optimal polarisation stress fields popt

r
are found to be

popt

r
D •c0r W a0r W< a0>�1 W E with a0r D .I C P0Sph W •c0r /�1 (2.182)

where Hill’s tensor defined by (2.153) refers to an infinite body with moduli C0

and to a spherical inclusion. According to (2.178), the corresponding value of
the bounding functionalH0

opt is

H0
opt D 1

2
E W< c W a0 >W< a0>�1 W E (2.183)

This value has still to be optimised with respect to C0 by choosing Csup (resp.
Sinf) as “low” (in the sense of the associated quadratic form) as possible while still
making •csup (resp. •sinf) negative everywhere in the RVE. This discussion is easier
when all the phase moduli are isotropic. For this case, the overall moduli Ceff are
isotropic too and defined, for instance, by the shear and bulk moduli �eff and keff.
Their Hashin-Shtrikman upper (�HSC

and kHSC

) and lower bounds (�HS�

and kHS�

)
are easily found (see Volume III for an explicit derivation) to be, with obvious
notation

8̂
ˆ̂̂<
ˆ̂̂̂:

�HS˙ D< �
�
1C ˇ˙•�˙

�˙

��1
><

�
1C ˇ˙•�˙

�˙

��1
>�1

kHS˙ D< k.1C ˛˙•k˙

k˙
/

�1
><

�
1C ˛˙•k˙

k˙

��1
>�1

(2.184)

with ˛ and ˇ the Eshelby coefficients (2.159) and under the assumption of isotropic
phase distribution and isotropic phase moduli.

In these equations, �CD supr f�rg ; kCD supr fkr g and ��D infr f�rg ; k� D
infr fkrg.

Note that �C (resp. ��) and kC (resp. k�) do not necessarily refer to the same
phase: one phase can be the “stiffest” one for � and not for k and conversely. For
a two-phase isotropic composite, it is easy to check the general result that Hashin-
Shtrikman bounds always improve on Voigt and Reuss ones: they define a “Hashin-
Shtrikman domain” which lies inside Hill’s one (see Fig. 2.11).

Three additional comments can be given:

– formulae (2.182) and (2.183) suggest, through the occurrence of the term a0r D
.I C P0Sph W •c0r /�1, that some connexion may exist between Hashin-Shtrikman
bounds and the solution of Eshelby’s problem of a spherical heterogeneity in an
infinite matrix – see (2.159) and (2.160). This point is clarified in the next section.
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– Hashin and Shtrikman bounds can also be derived for other phase distributions
than an isotropic one. This is particularly the case for “ellipsoidal distributions”
which give rise to an orthotropic anisotropy of the elastic moduli.

– Sharper bounds than Hashin-Shtrikman ones can be derived, at least formally,
from taking into account richer information than the symmetry of the anisotropy
of the phase distribution. A systematic way to do so is presented briefly in
Sect. 2.9.

We leave the reader to consult specialist works (e.g. Hashin and Shtrikman 1963;
Kröner 1977; Willis 1977; Zaoui 2000) for proofs and detailed developments on this
subject.

2.8.2 Improved Estimates

We can easily construct a whole set of estimates of the overall moduli Cest by
assuming that the average mechanical state (


r
; "
r
) in any phase (r) of a multiphase

material is the same as that of some ellipsoidal heterogeneity Ir with the same
moduli cr, embedded in an infinite homogeneous matrix with moduli C0 and the
uniform strain at infinity E0. The shape and orientation of Ir can be chosen from
microscopic observation of the (r) phase domains (fibres, particles, grains, etc.). The
auxiliary variable E0 is to be derived from the condition that the average of "

r
for

all r values is the prescribed macroscopic strain E (see below), so that the only free

variable is C0. These moduli can be chosen so as to express some morphological
properties of the material under consideration; each choice leads to a specific
estimate for Ceff that is, to a specific inclusion-based model of inhomogeneous
material.

From (2.164) we know the relation between "
r

and E0 for an ellipsoidal
inhomogeneity in an infinite matrix

"
r

D .I C P0 W •c0r /�1 W E0 with P0 D S0Esh W .C0/�1; •c0r D cr � C0 (2.185)

the index 0 emphasising the fact that these tensors depend on the choice of C0. The
auxiliary variable E0 is determined from the condition on the average, <">D E;
thus:

< .I C P0 W •c0/�1 >W E0 D E ) E0 D< .I C P0 W •c0/�1 >�1 W E
(2.186)

Then from the relation< c W "est >D Cest W E defining the estimate of the overall
moduli Cest, we get

Cest D< c W .I C P0 W •c0/�1 >W< .I C P0 W •c0/�1 >�1 (2.187)
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or after some elementary algebra, with •cest
r D cr � Cest

< •cest W .I C P0 W •c0/�1 >D 0 (2.188)

A detailed analysis would have shown that when C0 tends to infinity Cest tends
to < c>, which is Voigt’s upper bound: this can be understood intuitively by
recognising that we overestimate the effective moduli by embedding each phase in
a rigid body. When C0 tends to 0, Cest tends to < c�1>�1, which is Reuss’s lower
bound; the corresponding explanation is that we underestimate Ceff by embedding
each phase in an infinitely soft matrix, which allows the stress at infinity to be
transmitted without change to the inclusion, as in Reuss’s assumption of uniform
stress.

In addition to these extreme choices of C0, two special cases are often considered,
corresponding roughly to composite materials and polycrystals respectively.

NB: When the volume fraction f2 D f of the particles with moduli c2 is very low,
E0 can be assimilated to E and the “reference medium” with moduli C0 to the

matrix itself (i.e.,C0 D cmat). So, this “dilute approximation” consists in estimating
"est
2

as

"est
2

� 

I C Pmat W .c2 � cmat/

��1 W E (2.189)

and then "est
1

, from .1 � f /"est
1

C f "est
2

D E , as

.1 � f /"est
1

D
h
I � f



I C Pmat W .c2 � cmat/

��1i W E (2.190)

By Cest W E D< c W "est >, we find

CEE D cmat C f .c2 � cmat/


I C Pmat

2 W .c2 � cmat/
��1

(2.191)

recalling that P2
mat D Smat Esh:(cmat)�1, and where the index EE refers to Eshelby

and Einstein, since this model derives straightforwardly from Eshelby’s solution of
the inclusion problem and the dilute approximation had been already proposed by
Einstein28 for dilute viscous suspensions with rigid particles. Note that this dilute
approximation must be restricted to very low particle volume fractions and could
even violate Voigt-Reuss bounds for not low enough concentrations.

28Albert Einstein (1879–1955) who is quoted here is the same German-born theoretical physicist
as the universally known father of modern physics.
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2.8.2.1 Composite Materials: Mori-Tanaka Estimate
and Hashin-Shtrikman Bounds

For a particle- or fibre-reinforced composite material we can choose as the
surrounding material C0 the matrix of the composite, C0 D cmat, implying that the
matrix is continuous, with the particles or fibres dispersed in it. From (2.187) the
corresponding estimate is

CMT D< c W .I C Pmat W •cmat/�1 >W< .I C Pmat W •cmat/�1 >�1 (2.192)

where the index MT refers to Mori and Tanaka (1973), who have proposed such a
model for composite materials, although in an unnecessarily complicated manner.

For two phases – the matrix c1 D cmat and the inclusions c2, – with volume
fractions f1 D 1�f and f2 D f respectively – we find easily

CMT D c2 � .1 � f /
�
c2 � cmat� W f.1 � f / I C f ŒI C Pmat

2 W �c2 � cmat���1g�1
(2.193)

If the matrix and the particles, assumed spherical, are elastically isotropic, this
equation leads to isotropic overall moduli, defined by �MT and kMT, given by

8̂
ˆ̂<
ˆ̂̂:

�MT D �1
.1 � f /�mat C f �2 C .1 � f /ˇmat.�2 � �mat/

�mat C .1 � f /ˇmat.�2 � �mat/

kMT D k1
.1 � f /kmat C f k2 C .1 � f /˛mat.k2 � kmat/

kmat C .1 � f /˛mat.k2 � kmat/

(2.194)

where ˛mat and ˇmat are the Eshelby coefficients (2.159) for the matrix. It can be
checked that these estimates for �eff and keff coincide with their Hashin-Shtrikman
lower bounds given by (2.184) when �� D �mat; k� D kmat.

This result fits with the intuitive physical interpretation of these bounds: with
the inclusions being spherical because of the isotropic distribution, we over- or
under-estimate the effective moduli depending on whether we embed each phase in
a homogeneous infinite body with the highest or lowest, respectively, of the moduli
of the constituent phases.

Note that the Mori-Tanaka model is not restricted to spherical particles and two-
phase materials: it has been intensively applied to fibre-reinforced composites as
well as to several kinds of particles or fibres. Nevertheless, for these cases, the
connexion with the exact results of Hashin-Shtrikman bounds is looser and it may
even happen that the estimates CMT do not exhibit the required diagonal symmetry
anymore, which means that these empirical estimates must be used with special care.
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2.8.2.2 Disordered Polycrystals: The Self-consistent Scheme

For multiphase materials for which no phase plays any prominent morphological
role, contrary to composites with a continuous matrix, the Mori-Tanaka model
is irrelevant. This is especially the case for well-disordered polycrystals: every
phase then consists of grains all with the same lattice orientation and each grain
family is surrounded, on average, by almost all the other families, so that the
surrounding medium C0 could be chosen as the effective medium itself. Let CSC

be the corresponding estimate, according to the so-called self-consistent scheme
(C0 D Cest D CSC). From (2.187) and (2.188) we have

CSC D< c W .I C PSC W •cSC/�1 >W< .I C PSC W •cSC/�1 >�1 (2.195)

or

< •cSC W .I C PSC W •cSC/�1 >D 0 (2.196)

NB

1. In general, this will be an implicit equation for CSC, since PSC and •cSC both
depend on CSC.

2. Instead of PSC we can use Hill’s “constraint tensor” C*, defined by (2.171); the
relation between the two tensors is simply P D (C0 C C*)�1.

3. Here again, note that problems (lack of diagonal symmetry for CSC) may arise
when several shapes or orientations of ellipsoidal inclusions are considered.
When all the phases are associated with parallel ellipsoids, PSC

r in (2.195) or
(2.196) does not depend on r so that, after multiplication by the constant tensor
PSC
r D PSC, we find < .I C PSC W •cSC/�1 >D I, which means from (2.186)

E0 D< .I C P0 W •c0/�1 >�1 W E D E (2.197)

and then simply

CSC D< c W .I C PSC W •cSC/�1 >; when PSC
r D PSC 8r (2.198)

2.8.2.3 Hashin-Shtrikman Estimates

In addition to the Mori-Tanaka and self-consistent models, this approach yields
as many models as choices for C0. Besides Voigt and Reuss bounds which, as
shown above, are recovered for extreme values for C0, we get a continuous variety
of models, the so-called “Hashin-Shtrikman estimates”, by letting C0 take any
value lying between (in the sense of the associated quadratic forms) those which
correspond to the Hashin-Shtrikman bounds.
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This is easier to understand by restricting the discussion to an isotropic two-
phase material, with isotropic incompressible phases and shear moduli �1 <�2. It
is easily found that the Hashin-Shtrikman estimates for �eff vary with the parameter
�0 (with k0 infinite, �1 � �0 � �2 and ˇ0 D 2/5) according to the equation:

�est D 2�1�2 C 3�0 < � >

2�1�2 < 1=� > C3�0 (2.199)

As particular cases, we find

�0 D 0 ! �R D 1= < 1=� > .Reuss bound)

�0 D �1 ! �MT D �HS� D 2�2 C 3�V

2�2 C 3�R
�R .MT estimate and HS lower bound)

�0 D �est D �SC ! �SCW> 0 root of

3X2 C
�
2�1�2

�R
� 3�V

�
X � 2�1�2 D 0 (SC estimate)

�0 D �2 ! �HSC D 2�1 C 3�V

2�1 C 3�R
�R .HS upper bound)

�0 ! 1 ! �V D< � > .Voigt bound)

2.9 Systematic Theory of the Elasticity of Random Media
(Outline)

The above treatment of the Voigt/Reuss and Hashin-Shtrikman bounds and of
the self-consistent model could be set, in linear elasticity, in the framework of a
general theory of randomly heterogeneous media. Such a theory has been developed,
especially by Kröner29, over the past 40 years and for a full account we refer
the reader to the specialist literature (Kröner 1977, 1978). Here we give only the
underlying principles and the main results achieved.

2.9.1 General Equation for Heterogeneous Elastic Media

The problem of heterogeneous inclusions arises as a special case of a general
problem of heterogeneous media, which can be solved, at least formally, by the

29Ekkehart Kröner (1919–2000) was a German physicist and a Professor at the University of
Stuttgart (FRG).
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Green’s method already introduced (Sect. 2.7.1). We consider such a medium V
with variable local elastic moduli c(x) and boundary conditions at the surface @V,
for example displacements ug. We introduce a fictitious reference medium with the
same geometry and the same boundary conditions, but with uniform moduli C0.

Putting c D C0 C •c0 we have


 D c W " D .C0 C •c0/ W " D .C0 C •c0/ W gradu (2.200)

In the absence of body forces the equilibrium equation in rectangular cartesian
co-ordinates can be written


ij;j D Œ.C 0
ijkl C •c0ijkl/ul;k�;j D C0

ijklul;kj C .•c0ijklul;k/;j D 0 (2.201)

We can regard the equilibrium equations as relating to the homogeneous refer-
ence medium to which are applied not only the displacements ug at the boundary @V
but also the (fictitious) volume force density fi defined by

fi D �
•c0ijklul;k

�
;j

(2.202)

Given the Green’s tensorG0 for the reference medium, we can find the displace-
ment corresponding to unit point force under the conditions of zero displacement at
the surface; this is the tensor solution of (2.147) with G0 and C0 instead of G and

C and with G0 zero on @V; the solution to (2.201) for the displacements ui can be
written

ui .x/ D u0i .x/C
Z
V

G0
ij

�
•c0jklmum;l

	
;k0

dV 0 (2.203)

where u0i .x/ is the response of the reference medium to the boundary conditions and
we use once again the notation A,k0 D @A/@x0k to distinguish derivatives with respect
to x or x0.

Integrating by parts and using the condition that G0 vanishes on the boundary

ui D u0i C
Z
V

��
G0
ij •c

0
jklmum;l 0

	
;k0

�G0
ij;k0•c

0
jklmum;l 0

�
dV 0

D u0i C
Z
@V

G0
ij •c

0
jklmum;l 0n

0
kdS 0 �

Z
V

G0
ij;k0•c

0
jklmum;l 0 dV 0

D u0i �
Z
V

G0
ij;k0•c

0
jklmum;l 0 dV 0 (2.204)

Differentiating ui(x) with respect to xn gives (omitting some mathematical
details)

ui;n D u0i;n �
Z
V

G0
ij;k0n•c

0
jklmum;l 0 dV 0 (2.205)
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and symmetrisation with respect to (i,n) gives

"in D "0in �
Z
V

� 0
injk•c

0
jklmum;l 0 dV 0 (2.206)

where, taking into account the symmetry of •c0jklm with respect to j and k,

� 0
injk D G0

ij;k0n.in/.jk/
(2.207)

Using a condensed notation with the symbol ˝: meaning a convolution product
combined with the product of a fourth-order tensor and a second-order tensor we
have the integral equation

".x/C
h Q�0

.x; x0/ W •c0.x0/
i

˝ W ".x0/ D "0.x/ (2.208)

or in a more abbreviated form which still shows the integral-equation type of relation
between the operators

"C
� Q�0 W •c0

	
˝ W " D "0 (2.209)

This is the general equation we wanted; it involves the previously-defined

fundamental Green’s operator Q�0
, the so-called modified Green’s operator, here

for deformations. There is a corresponding equation for the stresses, involving a

corresponding operator Q�0
, for stresses: the following relations are easily deduced

from (2.201):

8̂
<̂
ˆ̂:

 C Q�0 W •s0˝ W 
 D 
0

S0 W 
0 D "0

Q�0 D QC0 � C0 W Q�0 W C0

(2.210)

where QC0 D C0•.x; x0/.

2.9.2 Properties of the Modified Green’s Operator

It can be shown that the operator Q� 0
can be separated into two parts, a singular part

QE0 called local, and a regular part, QF0 called, long-range, such that

Q�0 D QE0 C QF0; QE0.x/ D E0.x/•.x; x0/ (2.211)
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where QF0.x; x0/ decreases like 1/jx�x0j and E0 is a simple fourth-order tensor. In

an infinite medium the integral of QF0 over the whole volume is zero and that of Q�0

reduces to E0. Further, the integral of QF0 over the volume of an ellipsoid is uniform
(and zero for a sphere) if x is in the interior. These are remarkable properties; they
account for the simplicity of the solution of Eshelby’s problem of an ellipsoidal
inclusion in an infinite medium, and in particular for the uniformity of the solution
within the inclusion.

Unfortunately, it is not possible to give an explicit analytic expression for Q�0
for

an arbitrary anisotropic medium. However, it can be expressed simply in the case
of an infinite isotropic medium; and in what follows we shall, for the most part,
limit ourselves to this case – which could be extended to that of transverse isotropy.
According to (2.154), we can also write

G0
ij .x; x

0/ D G0
ij .
ˇ̌
x � x0 ˇ̌/ D G0

ij .�/ D .3k0 C 7�0/•ij C .3k0 C �0/ei ej

8 �0.3k0 C 4�0/�
(2.212)

with e D x�x0

�
. From that, we find

� 0
ijkl D E0

ijkl•.�/C F 0
ijkl.x; x

0/

E0
ijkl D �.3k0 C �0/•ij •kl C 9.k0 C 2�0/Iijkl

15�0.3k0 C 4�0/

F 0
ijkl D �1

8��0.3k0 C 4�0/�3

�
�
.3k0 C �0/.•ij •kl � 3eiej •kl � 3ekel•ij / � 6�0Iijkl C 15..3k0 C �0/

ei ej ekel � 3=2.3k0 C 2�0/.ej el•ik C eiel•jk C ej ek•il C eiek•jl /

�

F 0
iijj D F 0

ij ij D 0 (2.213)

From these expressions, together with the properties just described, it is easy
to find the solution within a spherical heterogeneity I of moduli c embedded in
an infinite homogeneous matrix of moduli C and uniform deformation "0at infinity
(which, in the absence of the heterogeneity, would become established throughout
the matrix medium). If we put C0 D C then •c D 0 everywhere except in the
inclusion and the integral equation (2.208) has a uniform solution "I given by

.I C E W •c/ W "I D "0 (2.214)
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It is left as an exercise for the reader to show that if c and C are isotropic this
reproduces Eshelby’s classic result. In the case of an ellipsoidal heterogeneity H the
result involves also the long-range part QF:

�
I C

Z
H

�.x; x0/dV 0 W •c
�

W "H D "0 (2.215)

With Eshelby’s tensor defined as by (2.152) and (2.153), i.e.,

SEsh D
�Z

H
�.x; x0/dV 0

�
W C (2.216)

we thus have again the result already found in Sect. 2.7.3.4, taking account of the
fact that the integral is independent of x when this is inside H.

2.9.3 Equation for the Effective Moduli

The effective moduli of the heterogeneous medium can be found from the solution
of the general Eq. 2.209. Formally

" D
�QI C Q� 0 W •c0

	�1˝ W "0; where QI D I•.x; x0/ (2.217)

Eliminating "0 from this equation by averaging gives the strain concentration
law:

< " >D<
�QI C Q�0 W •c0

	�1
> ˝ W "0

) " D .QI C Q�0 W •c0/�1˝ W
�
< .QI C Q� 0 W •c0/�1 >

��1
W< " > (2.218)

Multiplying by c and taking the average we have the effective moduli Ceff:

Ceff D< c W .QI C Q�0 W •c0/�1 > ˝ W
�
< .QI C Q� 0 W •c0/�1 >

��1
(2.219)

Similarly, from (2.210) we would find

Seff D< s W .QI C Q�0 W •s0/�1 > ˝ W
�
< .QI C Q�0 W •s0/�1 >

��1
(2.220)

This can be simplified by making a particular choice for the reference medium;
thus with C0 D Ceff (2.219) becomes after some algebra
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< •ceff W .QI C Q� eff W •ceff/�1 >D 0 (2.221)

and similarly from (2.220)

< •seff W .QI C Q�eff W •seff/�1 >D 0 (2.222)

The apparent simplicity of Eqs. 2.221 and 2.222 conceals considerable complex-
ity: mathematical complexity, because they are in fact integral equations, whose
solution requires the difficult convolution inversion of the operators Q� and Q�, the
analytic form for which, as we have said, is seldom known; and physical complexity,
because their solution requires full information concerning the distribution c(x), and
this is seldom available. As we know, there are two ways in which we can try to
overcome these difficulties:

– by looking for bounds for Ceff and Seff that will take account of our incomplete
knowledge of the distributions c(x) and s(x)

– by making simplifying assumptions that will enable us to propose estimates by
finding solutions for particular spatial distributions of the elastic heterogeneities.

We end this discussion by giving, without proof, a few of the more significant
results that have been obtained by these approaches.

2.9.4 Bounds and Estimates for the Effective Moduli

Formally, the inverse that appears in (2.219) can be developed as a series:

.QI C Q�0 W •c0/�1 D QI � Q�0 W •c0 C . Q�0 W •c0/˝ W . Q�0 W •c0/� � � � (2.223)

With the assumption that this converges – which may not be true in the case of
very heterogeneous (such as porous) materials – this gives

Ceff D C0C < •c0 > � < c0 W Q�0 W c0 > C < c0 W Q�0 W •c0 W Q�0 W c0 > � � �
� � � � < .c0 W Q�0 W •c0/0 W Q�0 W .•c0 W Q�0 W c0/0 > � � �

C < .c0 W Q�0 W •c0/0 W Q�0 W •c0 W Q�0 W .•c0 W Q�0 W c0/0 > � � � � (2.224)

where c0D c�< c>, and generally A0D A�<A> .
Equation 2.224 involves the successive correlation functions of increasing order

of the moduli: <c>, <c:c>, <c:c:c> and so on. If we truncate it at order n and use
only correlations of order less than or equal to n, it can be shown that this gives
an upper bound for Ceff that decreases with increasing n. Similarly, from (2.220)
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for Seff we get a sequence of increasing lower bounds for Ceff. Note that for n D 1
we reproduce the Voigt/Reuss bounds, which use only first-order correlations – and
therefore only the volume fractions of the different constituents.

With the additional assumption of macroscopic isotropy it is found (Kröner 1978)
that if the medium satisfies the condition of graded disorder defined by

< c0 W . QF0 W c0/p >D 0; p D 1; 2; : : : ; n � 1 (2.225)

then (2.224) gives as n order upper bounds the moduli C(n) defined by

C.n/ D< c W .I C E.n�2/ W •c.n�2//�1 >W< .I C E.n�2/ W •c.n�2//�1>�1 (2.226)

and as corresponding n order lower bounds the moduli C(�n), obtained similarly by
replacing (n � 2) by (�n � 2). Here E(n�2) denotes the local part of the modified
Green’s operator Q� (n�2) for a medium of moduli C(n�2).

Study of the expression for C(n) shows that this involves terms that come from
the solution of a problem of a spherical heterogeneity with moduli c in a matrix of
moduli C(n�2). Thus for n D 2, C(2) is the Hashin-Shtrikman upper bound, which
can be calculated from the solution to problems of spherical inclusions in an infinite
matrix of moduli C(C0) (the “stiffest” phase). C(�2) is the corresponding lower
bound, obtained with matrix of moduli C(�0), the “softest” phase. If we started from
the moduli of Voigt (C(1) ) or of Reuss (C(�1)) bounds we should obtain bounds
of rank 3, sharper than those of Hashin and Shtrikman and valid for a medium of
disorder of rank 3, and so on. As n ! 1 the sequence of estimates converges to
C˙1 given by

C˙1 D< c W .I C E˙1 W •c˙1/�1 >W< .I C E˙1 W •c˙1/�1>�1

or < •c˙1 W .I C E˙1 W •c˙1/�1 >D 0 (2.227)

which is Eq. 2.219 with Q� eff
replaced by its local part. Taking this together with

(2.214) and (2.195), since PSph D E, it will be seen that this is strictly the self-
consistent model with isotropic distribution of the phases, which thus takes on the
significance of a model of a perfectly disordered heterogeneous material.

Thus the different bounds and models we have studied can be brought together
within a general framework which enables them to be compared with one another,
and their fields of applicability better defined. Note nevertheless that this approach,
based on the use of point-correlation functions, is not quite appropriate to the study
of composite materials for which one phase at least, the matrix, is continuous: such
a morphological characteristic is hardly described by low-order point-correlation
functions. For these cases, improvements on the classical Mori-Tanaka or Hashin-
Shtrikman models can be achieved with treatments dealing with shell-chore-type
basic morphological units instead of points, such as the Hashin “composite sphere
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(or cylinder) assemblage” (Hashin 1962; Hashin and Rosen 1964), the “three-phase
model” (Christensen and Lo 1979), the “representative morphological patterns”
(Bornert et al.1996) or “unit cell” and periodic homogenisation approaches (Suquet
1987). The reader is invited to consult this literature for more information.
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Chapter 3
Elastoplasticity

Abstract Phenomenological descriptions are given of the elastoplastic behaviour
in uniaxial loading. Monotonic and cyclic loadings are then considered. It is shown
how this can be generalised in three dimensions. Plastic deformation requires the
displacement of dislocations, which are described first in a continuous medium and
then in crystallographic structures. The forces on dislocations and their stress and
strain fields and energy are introduced. Mutual interactions between dislocations
and interaction with interfaces are studied. Twinning is described. Then hardening
due to interactions with the crystallographic lattice, dislocation network, grain
boundaries, foreign atoms either isolated or in the form of precipitates or inclusions
is described. Hardening due to twinning, martensitic transformation and transfor-
mation plasticity are described. The case of some steels is given as examples. Fibres
reinforcement is introduced. The macroscopic formulation of plastic behaviour is
based on single crystal plasticity and this leads to plasticity criteria considering
isotropic and kinematic hardening. The limit analysis of structures is studied. The
plasticity of heterogeneous materials is introduced.

3.1 Introduction

This chapter is devoted to the analysis of a type of behaviour, nonlinear by definition,
shown by a great variety of materials in response to a great variety of types of
loading. The main restrictions here will be the assumptions that viscosity can be
neglected and that the loading does not damage the material – no cracks or voids,
for example, are produced. The absence of viscosity does not necessarily mean that
the temperatures are low, for if the temperature is low enough for the diffusion mech-
anisms to be regarded as inhibited then there will in general be a low-temperature
viscoplastic regime with other phenomena to be taken into account (see Chap. 4).
It is best to take the view that the validity of the elastoplasticity approximation,
as treated below, considered as a limiting case of elastoviscoplasticity, holds over

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
Macroscopic Constitutive Behaviour, Solid Mechanics and Its Applications 180,
DOI 10.1007/978-94-007-2546-1 3, © Springer ScienceCBusiness Media B.V. 2012
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a domain which, under suitable temperature conditions, adjoins both that of loads
varying infinitely slowly, giving an asymptotically stable response, and that of very
rapidly varying loads in which viscosity “has no time to act”. Consequently, we
shall treat plasticity as independent of time and strain rate – i.e., rate-independent
plasticity. If a parameter t, called “time” for convenience, appears in a constitutive
equation this will not be physical time but a purely kinematic time, enabling us
to locate a sequence of events on an increasing scale; these events will usually be
related to changes to the loading and will represent the load path, without regard to
the rate at which any changes are made. So far as the assumption of no damage is
concerned, this is an essential restriction but nevertheless a provisional one which in
the end we shall lift when considering the coupling between plasticity and damage
(see Volume II). Finally, to avoid unnecessary complications, we shall consider
the elastic behaviour as linear; this will enable us to attribute all nonlinear aspects
unambiguously to plasticity.

A final restriction, and not the least, is that we shall limit our treatment to
small transformations. Finite transformations in elastoplasticity, especially when
the elastic deformations themselves cease to remain small, give rise to complex
problems that are important but difficult both to formulate and to analyse; these lie
at the heart of much current research, and we leave the reader to consult specialist
works on the subject.

The plan of the chapter is this:

1. A short introduction, summarising the most significant phenomenological
aspects of elastoplasticity and the main questions raised by its description and its
study.

2. A treatment of the most important physical aspects of elastoplastic behaviour,
especially for crystalline materials, which up to the present have provided the
material for the deepest studies of the microscopic mechanisms of plasticity.

3. A transition section on the problems raised by upscaling treatments from
microscopic to macroscopic plasticity

4. A final section formulating elastoplastic behaviour within the framework of
macroscopic rheology, with an indication of methods for carrying out calcula-
tions for elastoplastic structures and of the “heterogeneous materials” approach
in plasticity.

3.2 General: Phenomenological Aspects

The study of the response of a sample, which, starting from an initial state
that can be taken as reference, is subjected to a variety of tension/compression
loadings and for which viscosity and damage can be neglected, will reveal the main
phenomenological aspects of elastoplasticity. On the basis of such observations we
can formulate the main problems that a local three-dimensional representation will
have to solve.
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Fig. 3.1 Stress-strain curves

3.2.1 One-Dimensional Response

3.2.1.1 Yield Strength

The overall response of a sample to a monotonic load can be represented by a (
 ,")
diagram as in Fig. 3.1 for tension, recording the true values of stress and strain.
This will show the yield strength; whether the curve has a discontinuity, as does A
in the diagram, or remains smooth, as does B, we have to define in a conventional
manner the stress 
0, or Re, at which plasticity begins to appear. Since the departure
from linear response is difficult to establish in a reproducible manner it is usual to
record the axial stress Rp corresponding to an irreversible (i.e., permanent) axial
deformation of some stated amount, which is currently taken as 0.2%. The load has
to be removed to show the permanent deformation "p, and the total deformation "
can then be expressed as the sum of a reversible elastic part "e and an irreversible or
plastic part "p, namely "D "e C "p.

Starting from the same initial state, compression would give a corresponding
compressive yield stress 
 00, so defining an interval of elasticity [
 00, 
0].

3.2.1.2 Work-Hardening

If the tensile test is continued up to a moderate axial plastic deformation "p
1 with

corresponding stress 
1, and the stress then reduced to zero, this unloading will take
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place elastically with a Young’s modulus which can be regarded as remaining the
same as the original modulus; the effect is to return to the point O1 (0, "p

1) of Fig. 3.2.
The state represented by O1 is stable, and a second experimenter setting out to find
the tensile yield stress in this state will record not 
0 but 
1. If he had worked with
compression he would have found a value 
 01 and thus an elastic interval [
 01, 
1];
and similarly [
 02, 
2] if he had started from state O2, etc.

This is expressed by the term work-hardening, meaning, for uniaxial stressing,
the effect of plastic flow on the elastic interval, changing both its width and the
positions of its boundaries. The perfect plasticity scheme neglects this change; this
is what one can do for example, in the region of the plateau in curve A of Fig. 3.1.
In general, it is helpful to be able to specify this evolution in the case of a work-
hardenable material, that is, to give the limits of the elastic interval for each state of
the sample.

How are we to define this state and to determine the elastic intervals for each one
of the states that arises? Figure 3.2 suggests representing the state O1 by the plastic
strain "p

1. In general, hardening increases in the direction of the flow (
1>
0) and
decreases in the opposite direction (j
 01j < j
 00j); this is the Bauschinger effect, often
observed in metallic materials. However, this parametrisation of work-hardening by
plastic deformation is not very satisfactory, for

– we may not know the value of the parameter when we perform the test on a
sample whose previous history we do not know;

– more seriously, we may find that different widths of the interval correspond to
the same value of the plastic strain.
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Thus in Fig. 3.3, the path OAO1BCO1 returns us to the “state O1” defined by "p
1,

with different (tensile) elastic limits for the first passage (
A) and the second (
C).
So, there is no simple answer to our question, and in fact it represents one of

the major difficulties of plasticity. Here we might consider parametrisation by a
cumulative plastic deformation p, the sum of the absolute values of the variations
of the plastic strain: pA D "

p
1, pC D "

p
1 C 2("p

1 � "
p
2); but this can be vitiated by more

complex histories of loadings, such as cyclic loadings which cause a great variety
of responses.

3.2.1.3 Cyclic Work-Hardening

Among the different materials, and also, for a given material, according to its range
of loading, there is a great variety of responses to cyclic loadings, whether these
are applied as stresses between limits 
min and 
max (with �
 D 
max � 
min) or
strains between limits "min and "max (with �"D "max� "min). The response to an
imposed stress may become stable, settling down to a steady limit cycle – the case
of shakedown, or, if the cycle is reduced to a line segment, adaptation; if not, the
deformation increases at each cycle and produces what is called the ratchet effect.
For imposed strains the first would lead to the average stress becoming constant at
the value 
 D (
maxC
min)/2, the second to this decreasing steadily.

If the cycle is alternating (i.e., symmetric: 
min D � 
max or "min D � "max),
and a stabilised response is reached, we may see, by reference to the response to a
monotonic loading, either a softening or a hardening cyclic effect. In the first case
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(softening), if the cycle is of imposed stresses, the strain amplitude�" will increase
and if it is of imposed strains the stress amplitude �
 will decrease, both until the
stable limit cycle is reached; with the opposite effects in the second case (hardening)
(see also Volume II). If the stable response cycle is symmetric about the origin we
can link the semi-amplitudes of stress and of plastic strain and obtain, for a range
of levels of loading, a graph of stable work-hardening cycles; and comparison with
the corresponding curve for monotonic loading will give a direct indication of the
presence of cyclic softening or cyclic hardening.

These are just a few indications of the variety of responses that can be found
within a single class of behaviour; a variety that any model aiming at generality,
even if simply phenomenological, must be able to represent without needing to be
completely reformulated for each new case.

3.2.1.4 Laws of Plastic Flow and Work-Hardening

Describing plastic flow is, in principle, a completely different question from that of
work-hardening since plastic strain, or any quantity directly related to this, has not
a priori to be taken as a work-hardening variable. Thus we have to develop the two
sets of laws in parallel: those for the work-hardening parameters, from which the
way in which the plastic thresholds (in fact, the limits of the elastic interval) change
in the course of the loading, and those for the plastic flow, from which the amount
of plastic strain can be found at each step.

The two questions are closely related:

– on the one hand, it is usual to take the plastic strain "p or the cumulative strain
p derived from this as one of the parameters of work-hardening, with the result
that the law of plastic flow is often assimilated into one of the laws concerning
the evolution of the work-hardening parameters;

– on the other, and even if the first does not apply, the separate laws of flow and
work-hardening, taken globally, have features in common which distinguish both
from those of elastic or viscoelastic behaviour.

We can state two of these common features now:

– In both cases the laws are incremental, meaning that they do not give a direct
relation between the current values of the parameters concerned (those of work-
hardening or plastic deformation) at a given step and the stresses at that step, but
only their increments from the state at that step. It is clear (from Fig. 3.3, for
example) that the same value of one of these parameters can correspond to an
unlimited number of levels of the stresses; thus one cannot expect, as one can for
the case of elasticity, closed-form equations relating stresses to strains.

– Further, both sets of laws are multi-branched, requiring different expressions
according to the increment considered. At the least one has to consider separately
the cases of plastic loading, in which both sets of parameters vary, and of elastic
unloading if the conditions up to then were those of plastic flow, or elastic
response if one is already in the elastic regime, when neither varies.
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We have been discussing certain features of elastoplastic behaviour in the context
of one-dimensional response; we now take up the study in more detail, in both local
and three-dimensional contexts, with the aim of developing a complete formulation
of the laws of elastoplastic behaviour.

3.2.2 Three-Dimensional Behaviour

Instead of studying the overall response of a sample to a tension/compression cycle
we now set out to describe the elastoplastic behaviour of a material volume element
subjected to a stress state 
 . We no longer have to deal with only a pair of global
parameters (
 ,"); the load is now represented by six parameters, the components
of the symmetric stress tensor 
 , so we have to generalise and re-formulate the
questions studied above.

3.2.2.1 Plastic Criterion, Load Function

The volume element will have some initial state that we can regard as given. The
concept of yield strength (for tension or compression) must be replaced by that of
a criterion for plasticity: what stress states, corresponding to all possible modes
of loading, can induce the plastic regime? The question is answered by finding a

scalar-valued function f
�


	

of the stress tensor which, by convention, is negative

when and only when the response to the load is purely elastic, and vanishes when
the plastic regime is entered. This, called the load function or yield function, is used
to construct a criterion for plasticity, based on the sign of its value; we shall see later
that positive values have no physical significance.

The concept of elastic interval [
 00, 
0] is replaced by that of elastic domain,
which can conveniently be represented geometrically in the stress space. This is a
6-dimensional space in which, with some suitable reference system, a point
represents a particular stress tensor. The elastic domain is the interior of the surface
f.
/ D 0, called the load (or flow) surface. Starting from any interior point, any of
an unlimited number of paths in the space will lead to the plastic regime when, but
only when, it reaches the surface.

3.2.2.2 Work-Hardening

We have seen how the yield strength for a work-hardenable material can be altered
by plastic flow, whether tensile or compressive; we must now investigate how the
load surface, and therefore the load (yield) function, can change during plastic flow,
the point representing the load remaining on the surface. For this we have to make
this function depend on other variables in addition to the stress components – in
fact, on the work-hardening parameters, which can be scalars, vectors or tensors
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according to the case, and which we denote by Ym, 1 � m � M. These act as internal
parameters or internal variables in a formulation in terms of hidden variables,
which could be developed in the framework of the thermodynamics of irreversible
processes.

Let f(
 , Ym) be the load function, taking account of work-hardening; it can be
used to define the plastic criterion: as long as f(
 , Ym)< 0, with the values of the Ym

corresponding to the current state of work-hardening, there is no plastic response.
The latter can appear only when f D 0, and when this occurs the Ym change as the
plastic flow develops in such a way that f remains zero. It is thus not possible for f
to become positive, for, starting from negative, a positive value would have had to
be preceded by zero and this would have been maintained while the variables 
 and
Ym changed in the course of the flow.

The changes to the load surface with plastic flow can be complex. In general there
will not be just a simple shift of the surface as a whole, following the load point,
but a complete transformation in which any change of shape is possible. Further,
the plastic threshold does not change only in a direction that is either the same as
or opposite to that of the load, as in simple tension/compression, but can change in
the direction of any or all of the load components. The shape changes of the load
surface are determined by the way in which f depends on the parameters Ym, and
thus by the laws governing the variation of these parameters as the flow proceeds.

Starting from a given shape of the load surface f(
) D 0, various simple
evolutionary schemes for reference models of work-hardening can be devised; the
following are those most commonly used at present.

(a) Isotropic. This assumes a simple dilatation of the load surface with respect to
the origin; only one parameter Y is needed (M D 1) and we have

f.
; Y / D f.
/� h.Y / (3.1)

where, for positive work-hardening, Y is positive and h is an increasing function.
(b) Linear kinematic. The change is a simple translation, without rotation or

deformation. A tensorial parameter X , say, of the same order as 
 , is needed
and the load function is

f.
;X/ D f.
 � X/ (3.2)

After plastic flow the pointX will be in the same position with respect to the load
surface as the origin was with respect to the initial surface. If the loading is uniaxial,
as in simple tension/compression, this implies a strong Bauschinger1 effect (equal
amplitudes of hardening in one direction and softening in the opposite), which is
not in accord with isotropic work-hardening (equal hardening in both directions).
But since the compressive plastic response would be obtained by translation of the

1Johann Bauschinger (1834–1893) was a German mathematician. He taught mechanics at the
Technical University of München.
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tensile response, we should find forms of the cycle that bear little resemblance to
what is found in practice if we did not assume the work-hardening to be linear
(cf. Fig. 3.4); this is why this simple model of kinematic work-hardening is used
with the linear assumption (Fig. 3.5).
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Starting with these two extremes, we can imagine various extensions, such as

– nonlinear kinematic
– a combination of isotropic and kinematic (simultaneous dilatation and translation

of the load surface)

Comparing what it predicts for the response to a cyclic loading with what
is observed in practice can test the validity of any model. We return to this in
Sect. 3.5.2.4.

3.2.2.3 Laws of Plastic Flow and Work-Hardening

Having chosen the work-hardening parameters and the incorporation of these into
the load function, we have now to determine the laws that describe their evolution,
as well as those for plastic flow. We continue to treat the total deformation of the
material as the sum of an elastic and a plastic term (or at least treat the increments
so, writing d" D d"e C d"p); taking account of what we have said concerning the
1-dimensional case, in the plastic regime we have equations of this form:

d"p D A.
; Ym/ Wd
 or d"pij D Aijkl.
pq; Ym/d
kl

dYm D K.
; Ym/ Wd
 or dYm D Kmkl.
pq; Yn/d
kl (3.3)

and in the elastic regime d"p D 0 and dYm D 0.
We have already seen that a necessary condition for plastic flow is f(
 , Ym) D 0;

but this is not sufficient, for if at a point on the load surface an increment d

is imposed which returns the point to the interior, no plastic flow develops. If the
surface is regular and has an outward-pointing normal that is uniquely defined,
parallel to and in the same direction as @f/@
 , this can occur if @f/@
 :d
 < 0. Thus an
increment d
 at a point 
 on the load surface will lead to plastic flow if and only if

f.
; Ym/ D 0 and @f=@
 W d
 > 0 (3.4)

There are two distinct situations in which plastic flow does not occur:

f(
 , Ym)< 0 8 d
 (elastic regime)

f(
 , Ym) D 0 and @f/@
 : d
 < 0 (elastic unloading)

The case @f/@
 : d
D 0 corresponds to a neutral loading, with no new plastic
flow for a work-hardenable material.

The differential dY f D @f=@
 W d
 that appears in these expressions is simply a
partial differential of f with the parameters Ym held constant. During plastic flow
the total differential is zero since f keeps its zero value, and therefore in these
circumstances

df D @f=@
 W d
 C @f=@Ym W dYm D 0 (3.5)
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which provides a “consistency condition” for the laws that describe the variations
of the work-hardening parameters during plastic flow; this condition can be written
as follows:

�
@f

@
kl
C @f

@Ym
Kmkl

�
d
kl D 0; 8d
kl ;

@f

@
kl
d
kl � 0; f D 0 (3.6)

For perfect plasticity (no hardening) the law of plastic flow is simply

@f

@

W d
 D 0 (3.7)

Several other conclusions can be drawn from these equations; we shall return to
them in Sect. 3.5.2, considering particular forms of the laws. For the moment we
just state that for a complete description of plasticity three categories of information
must be available together:

– the load function f(
 , Ym)
– the flow functions A(
 , Ym)
– the work-hardening functions K(
 , Ym).

These are not completely independent, but none of them can be assimilated into
any of the others. One of the major concerns in the coming study of the physical
mechanisms of plastic flow is to minimise the number of independent items of
information needed for a complete specification of elastoplastic behaviour, giving
additional relations between these three functions.

3.3 Physical Mechanisms of Plasticity

3.3.1 The Problem

In this chapter we shall see that plastic deformation in a crystalline material results
from the movement of defects in the lattice – that is, of dislocations and also of
twins. From a study of the various obstacles, which they have to surmount, it is
possible to estimate the stress that has to be applied in order to generate a plastic
deformation. Such a study will lead to explanations of the differences in hardness
between covalent materials and metals, of the nature of work-hardening and of the
influence of grain size and that of foreign atoms in solid solutions or in the form
of precipitates or inclusions. We shall also study mechanical twinning, a common
deformation mechanism, and transformation plasticity, which is very important in
connexion with residual stresses and the particular phenomena of shape memory.
All these are matters of great practical importance; they are fundamental for the
development of materials with high yield strength, for specifying the behaviour of
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Fig. 3.6 Deformation of a hexagonal close packed single crystal by slip along the basal plane

materials undergoing forming by plastic deformation and for understanding how
some properties evolve with time.

First of all, we need to relate what can be observed when deforming single
crystals and compare their behaviour with theoretical predictions. This will show
why it is necessary to consider the intervention of defects.

3.3.2 Deformation of a Single Crystal. Discrepancy Between
Experiment and Theory

3.3.2.1 Schmid Law

We first begin with not too complicated a behaviour. Observation shows that the
plastic deformation of a single crystal of the hexagonal metal zinc is due to slip
along the basal (0001) planes (refer to Sect. 3.3.5.2). Figure 3.6 shows a tensile test
piece in which these planes are inclined with respect to the tensile axis. It deforms
like a pack of playing cards.

More generally, crystalline solids deform plastically at low temperatures by slip
along the densest crystallographic planes. Zinc is a particularly simple case because
a single slip plane dominates. The situation is more complicated for face-centred
cubic materials (Fig. 3.7) (refer to Sect. 3.3.4) because here there are 12 equivalent
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Fig. 3.7 Slip lines in a single crystal of copper oriented for double glide

slip systems – that is, systems characterised by one plane and one direction – and
more complicated still for body-centred cubic materials, for which the slip in a
direction is associated with a number of planes, all including a <111> direction
(refer to Sect. 3.3.5.1), gives rise to what is called pencil glide: the deformation
resembles that of a stack of hexagonal shaped pencils. Table 3.1 identifies these
planes for a number of materials, and gives the directions in which the slip occurs.

We are interested in the critical conditions necessary for slip to occur. It is clear
that to produce slip along a particular plane there must be a shear force acting on
that plane of at least some critical value; this is the Schmid-Boas law2 (Schmid and
Boas 1935):

Slip begins when the resolved part of the shear stress over a crystallographic
slip plane in the slip direction reaches a critical value

To return to the case of zinc, it follows that the tensile yield strength 
p for a
single crystal for which the tensile axis makes an angle � with the normal to the slip
plane and an angle � to the direction of slip (cf. Fig. 3.6) satisfies


p cos� cos� D �c (3.8)

2Erich Schmid (1896–1983) was an Austrian physicist. Walter Boas (1904–1982) was a German-
Australian physicist.
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Table 3.1 Slip systems and yield strengths for various single crystals

Element Structure
Slip system at ambient
temperature

Critical shear
stress � c MPa

Theoretical shear
stress � 0 MPa

– Plane Direction –

Cu FCC f111g <110> 1.0 51,500
Ag 0.6 32,000
Au 0.92 11,300
Al
Ni 5.8 16,600
Pb

Fe BCC f110g, <111> – 80,800
V f112g,
Nb f123g,
Ta

Planes in zone
with <111>

: : :

Mg Hex. f0001g <11N20> 0.83 3,000
Zn 0.94 6,200
Cd 0.58 4,600
Ti, Zr f1120g
NaCl Cubic f110g <1N10> 0.75 2,840
LiF
MgO

Owing to the number of slip systems in BCC, the determination of the critical shear stress is
difficult. The published results are scattered

Figure 3.8 gives some experimental results that support this relation. The quantity

mS D cos� cos�

is called the Schmid factor.
For an FCC single crystal of copper, according to its orientation, either only one

slip plane can be active (single slip) or two, or even more, for example if the tensile
axis coincides with a <100> direction (Fig. 3.9).

Simple geometrical considerations show that the orientation of a single crystal is
changed by slip along the crystallographic planes. The normal to the slip plane tends
to become perpendicular to the tensile axis. In simple slip this rotation reduces the
shear component and thus produces a consolidation of a purely geometrical nature.

The yield strength for various single crystals is listed in Table 3.1.

3.3.2.2 Theoretical Critical Shear Stress

Consider now the calculation of the theoretical critical shear stress �0 necessary to
result in plastic slip. It is clear from the periodic structure of a single crystal that
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the energy of the crystal is a periodic function of the slip distance (Fig. 3.10). In the
absence of stresses the atoms position themselves so as to minimise this energy; and
if the applied shear is small they will return to this position when it is removed: this
is elastic behaviour. But if the shear exceeds a certain value an energy barrier will be
crossed and the plane will slip one inter-atomic distance in returning to a minimum-
energy position; if the shear is then removed a residual slip will remain and the
behaviour will be plastic. To calculate the yield strength note that the shear is the
derivative of the energy with respect to slip; this too is periodic, with period equal to
the inter-atomic distance b, and the first term in its Fourier series development can
be written:

� D �0 sin.2 x=b/ (3.9)
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Fig. 3.10 Theoretical shear stress model for slip

where �0 is the amplitude, equal to the theoretical yield strength, and x is the
displacement of one part of the crystal with respect to the other.

This can be written in terms of shear 
 D x/a, where a is the distance between
the slip planes. If the slip distance is small the behaviour is elastic, and as 
 D � /�,
where � is the shear modulus, it follows that:

�0 D �b=2 a (3.10)

which means that �0 is of the order of �/10.
The yield strengths for single crystals given by this method are several orders of

magnitude greater than those measured: Fig. 3.10 and Table 3.1 give the values for
a number of materials, including some (amorphous materials and certain polymers)
to which the method of calculation clearly would not apply (Fig. 3.11).

3.3.2.3 Introduction of Dislocations

This complete disagreement between theory and experiment led Taylor3 in the 1930s
to suggest that slip was the result of movement of defects in the lattice, that is,
of dislocations, as described mathematically by Volterra4 in 1905. These defects,
introduced on purely theoretical grounds, were observed when electron microscopy
was developed (Fig. 3.12 as an example). It has since been shown that for a single
crystal with no dislocations, such as a trichite or whisker, the yield stress is indeed

3Geoffrey Ingram Taylor (1886–1975) was an English physicist. Egon Orowan (1902–1989)
and Michael Polanyi (1891–1976), Hungarian-British physicists, proved the necessity of the
intervention of dislocations to explain plastic deformation at about the same time.
4Vito Volterra (1860–1940) was an Italian mathematician.
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Fig. 3.11 Ratio of yield strength to Young modulus for various materials

of the order of �/10 (see Table 3.2). Whiskers are filamentary single crystals a few
microns in diameter, first obtained by growth at a surface under particular conditions
of oxidation (Fig. 3.13).

Let us imagine, with Taylor, that there is a defect in the lattice at the level of the
slip plane, as in Fig. 3.14. The movement of this, called a dislocation, will finally
produce a step of height b on the surface, and thus the traverse of the whole single
crystal by such a defect will generate a slip of amplitude b. The energy demand is
only that needed to break the inter-atomic links in a single row of the lattice, whereas
the previous calculation assumed that all the links in the whole slip plane had to be
broken at the same time. Thus the energy, and consequently the stress, are much less
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Fig. 3.12 Electron
microscopy view of
dislocations in an austenitic
stainless steel. (The bar is one
micron long)

Table 3.2 Mechanical properties of whiskers

– Graphite Al2O3 Fe SiC Si AlN Cu

Rm (GPa) 19:6 15:4 12:6 20–40 7 7 2

E (GPa) 686 532 196 700 182 150 192

than the calculated values. Mott5 gave a striking picture of the effect by remarking
that a rug laid over a carpet is easily moved by pushing a wrinkle along (Fig. 3.15).

A way to visualise dislocations is to look at a bubbles raft such as the one shown
in Fig. 3.16 in which there are often such a defect. It can be seen by looking at
the oblique bubbles alignments from the lower right of the picture. Natural objects,
such as corncobs, zebra stripes, sunflowers display edge dislocations. Caterpillars
and worms use dislocations to crawl.

The general situation is that plastic deformation is intimately related to the
movement of dislocations; we now study in detail the geometrical properties of
dislocations and the consequences of their displacements.

5Sir Nevill Mott (1905–1996) was a British physicist who won the Nobel Prize.
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Fig. 3.13 Whiskers of silicon carbide sticking out of the fracture surface of an aluminium matrix
composite

3.3.3 Dislocations: Definition, Geometrical Properties

3.3.3.1 The Volterra Dislocation

The mathematician Volterra studied the residual stresses in a solid resulting from a
dislocation. The diagram of Fig. 3.17 represents the way he defined it.

Imagine, in a continuous solid, a cut area A defined by a closed boundary curve
l, and the two surfaces of which are moved relative to each other by a vector b, the
same all over the area, called the Burgers vector: this will require the application
of some force system.6 Suppose now that the discontinuity is removed either by
filling the resulting empty volume with the same material or, if material had had
to be removed in making the displacement, by sticking the surfaces of the cut
together; this will allow the applied forces to be removed, leaving an internal force
system. It can be shown that this internal force system is independent of the area
A and depends only on the curve l and the vector b. The curve l is a dislocation
characterised by its Burgers vector b.

It follows from this definition that a dislocation is either a closed path or a path
that ends either at the surface of the solid or at another dislocation (that is, at a node)
(Fig. 3.18); and in the latter case there is the relation b1Cb2Cb3 D 0, just as for the
currents in the branches of an electrical network. This last relation implies a precise

6Johannes (Jan) Martinus Burgers (1895–1981) was a Dutch physicist.
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b b

t

Fig. 3.14 Slip resulting from the movement of a dislocation

definition of the orientation of the dislocation and of its Burgers vector. When the
direction in which the path l is followed has been chosen, the Burgers vector is the
vector joining the starting to the finishing points of what was a direct closed circuit
AB, surrounding the line l, that has been made open by the cut (Fig. 3.19).

Dislocations are joined together by nodes and they form a three-dimensional net,
the Frank’s network (Fig. 3.20).7

7Frederick Charles Frank (1911–1998) was a British physicist.
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Fig. 3.15 Mott’s rug
analogue

Fig. 3.16 Dislocation in a lattice of bubbles

3.3.3.2 Screw and Edge Dislocations

A screw dislocation is one for which the Burgers vector is parallel to the line l;
it is so called because a circuit round the dislocation is transformed into a helix
(Fig. 3.21).

An edge dislocation is such that the Burgers vector is normal to the line; it is
so called because it can be created by inserting an “edge” of the material into the
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Fig. 3.17 Mathematical
definition of a dislocation

b1 b2

b3

Fig. 3.18 Node of
dislocations

A

1

B
Fig. 3.19 Definition of the
Burgers vector b D AB

solid (Fig. 3.22). But as we indicated above, the same dislocation can be produced,
according to the orientation of the cut, by taking out an edge or by glide of the sides.
On figures, an edge dislocation is represented by an upside down T, whose stem is
in the direction of the inserted edge.
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Fig. 3.20 Frank’s network of dislocations in NaCl. The three pictures concern three different
dislocation densities

Any dislocation can be decomposed into a screw part and an edge part, since the
creation processes are purely elastic. In general, a dislocation will consist of purely
“edge” parts and purely “screw” parts separated by parts of mixed nature (Fig. 3.23).
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view from the top

The helix

1

b

b

Fig. 3.21 Screw dislocation

3.3.3.3 Displacement of Dislocations

In general, any displacement of the dislocation line l requires addition or removal of
material. This movement is called a climb, with no implied relation to any reference
system, and is non-conservative. But a displacement in the plane defined by part of
the line l and the Burgers vector b is a slip and is conservative (Fig. 3.24). A screw
dislocation has an infinite number of slip planes.

A dislocation loop in general has screw and edge parts. The screw portions
can slip (or glide) in any case, whereas edge portions can do so only when
the Burgers vector is in the plane of the loop. However, a loop whose Burgers
vector is perpendicular to its plane can glide along a cylinder, the axis of which
is perpendicular to the plane of the loop (Fig. 3.25). Indentation of the surface
of a solid creates such loops. They can also result from the condensation of
excess vacancies or interstitials (refer to Sect. 3.3.4.2). Such dislocations are called
prismatic and the corresponding glide a prismatic glide.

3.3.3.4 Dislocation Density

We define the dislocation density �D as the total length of the dislocations per unit
volume:
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inserted half-plane

edge dislocation perpendicular to the figure plane

1

1

b

b

Fig. 3.22 Edge dislocation

�D D NL=V (3.11)

if there are N dislocations of length L (Table 3.3).
This also equals 1/LF

2, the number of dislocations that cross a unit area,
LF being the mean distance between dislocations or the size of the Frank’s
network.

The dislocation density is the total length of dislocations per unit volume
or the number of dislocations, which cross a unit area. It is expressed
in m�2.

When a fraction only of the dislocations can move, we can also define the mobile
dislocation density �M.

3.3.3.5 Geometrically Necessary Dislocations

Forming a solid into a particular shape by plastic deformation will introduce a
certain distribution of dislocations, called geometrically necessary dislocations. An
example is a single-crystal bar, bent to have a curvature 1/R (Fig. 3.26). To find
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A

b
D

B

dislocation line 1

Fig. 3.23 Dislocation with edge part AB, screw part CD and mixed part BC. The grey atoms are
those of the lower cut surface, which was displaced a distance b

Added material

Climb Slip

Displacement of the dislocation

b b

Fig. 3.24 Climb and slip of a dislocation. The dislocation line is perpendicular to the plane of the
figure
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Indentation

Dislocation loopsb

Fig. 3.25 Dislocation loops created by indentation of the surface of the solid

Table 3.3 Approximate dislocation densities

State Dislocation density �D (m�2)

Single crystal solidified with precautions 105–106

Annealed single crystal 109–1010

Annealed polycrystal 1010–1011

Work-hardened polycrystal 1013–1016

the density �G of these dislocations, let ABCD be a Burgers circuit in the crystal
before deformation, becoming ABCD’ after bending. The closure fault DD’ is
equal to the total Burgers vector, which is nb if n is the number of geometrically
necessary dislocations. The density is this number n divided by the area of the
circuit:

�G D n

AB:BC
D AD0 � AD

b:AB:BC
D .RC AB/ � �R�

b:AB:R�
D 1

Rb
(3.12)

Here are a few other examples. The first one (Fig. 3.25) is provided by the
driving of an indenter of diameter � a distance u into a material. The geometrically
necessary dislocations can be grouped into loops of edge dislocations of diameter
�; their number n is such that nb D u and the density is

�G D  �u=bV (3.13)

where V is the volume of the crystal.
To find the density of such dislocations due to rigid inclusions of diameter D

in a plastic matrix we consider a cube of side L, the average distance between the
inclusions, subjected to a shear strain 
 D u/L. Figure 3.27 shows that this requires
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Fig. 3.26 Geometrically
necessary dislocations for
accommodation of plastic
bending deformation

b

f Du / 2

u / 2

Fig. 3.27 Geometrically necessary dislocations around a rigid inclusion

a number n of loops of dislocations such that nb D 4(u/2), giving a density

�G D 2u

b
 D

�
L3 D 2 


D

bL2
(3.14)
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Fig. 3.28 Geometrically
necessary dislocations
generated by shearing two
rigid plates

Since the volume fraction of inclusions is fV D  
6
D3

L3
, this can be written:

�G D .288 /1
=3 


bD
fv
2=3 ' 10




bD
fv
2=3 (3.15)

Finally for this question we consider the deformation resulting from a shear
strain 
 in a material clamped between two rigid plates distant of � displaced by u
(Fig. 3.28). It will acquire a curvature 1/R such that:

R D �2 C u2

4u
D 1C 
2

4

� ' �

4

(3.16)

(since 
 is small) and substituting this in (3.12) we have:

�G D 1

Rb
D 4


�b
(3.17)

3.3.4 Dislocations in Face Centred Cubic (FCC) Crystals

Dislocations were introduced essentially to explain plastic deformation of crys-
talline materials. After the preceding description of elementary properties of
dislocations in a plain medium, we need to understand their particularities when
they are within a crystal. An important one is that the Burgers vectors are as small as
possible so as to reduce the elastic strain energy of the dislocations, as we shall see in
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Fig. 3.29 Diagram of a
close-packed FCC (111)
plane

Sect. 3.3.7. We treat first the case of the FCC structure, which is easier to understand
and concerns several alloys of practical importance; aluminium alloys, austenitic
stainless steel and superalloys of nickel, copper alloys, lead, precious metals (gold
and silver).

3.3.4.1 Perfect and Imperfect Dislocations, Stacking Faults

Because of the periodic structure of a crystal, the Burgers vector cannot be
arbitrary: it must be such that the periodicity of the lattice is re-established after
the displacement, and therefore must be a sum of multiples of the lattice vectors.

Dislocations having such vectors are called perfect. However, there exist imper-
fect dislocations, and these introduce stacking faults. The study of these latter is
simplest for the FCC case, a compact packing of atoms, which we can represent by
spheres; a f111g plane of the structure (Fig. 3.29) consists of a compact packing of
these located at the vertices of equilateral triangles.

In the diagram of Fig. 3.29 the points P are the locations of these atoms; Q those
of the atoms in the next f111g upper plane and R those in the plane next adjacent;
the Q atoms are at the vertical of centroids of the first P triangles; the R atoms at
the vertical of centroids of the Q triangles. The FCC structures can be represented



3.3 Physical Mechanisms of Plasticity 185

C

B

a

b

A

A

D

(111) plane

[101]

B

A
D

A

C

[110]

[011]

[001] [110]

[101]

[011][011]

[110]

β
γ

δ

α

β γ

Fig. 3.30 Thompson tetrahedron: (a) three-dimensional view; (b) plane view after cutting and
opening the faces. Faces a, b, c, d are the .111/,

�N111�, �11N1� and
�
1N11� planes respectively. The

segments such as ’B, which join the vertices to the centres of the faces are <112> directions

by a PQRPQRPQR stacking, symbolically ������. Dislocations with Burgers
vector PP, that is, ½ <110>, are perfect. Their vectors form the edges of a regular
tetrahedron, called the Thompson tetrahedron (Fig. 3.30) (Thompson 1953). (It can
be a good exercise to fabricate a Thompson’s tetrahedron with cardboard).

The faces of the Thompson tetrahedron ABCD, whose centres are labelled ’,
“, ”, •, are the f111g slip planes a, b, c, d. A dislocation with Burgers vector A”,
for example, is imperfect: it moves the atoms at Q to the positions R and changes
the stacking to PQRPRPQR, or ���r���, thus introducing a stacking fault.
A perfect dislocation can be broken into a pair of imperfect dislocations, for example
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P Q R
Q

P Q R Q

partial dislocation stacking fault partial dislocation

a

b

Fig. 3.31 (a) Perfect dislocation in a FCC structure. (b) Stacking fault bordered by two Shockley
imperfect dislocations. (Heavy arrows are the Burgers vectors)

AB into A•C•B – equivalently 1 =2 Œ101� D 1 =6 Œ211�C 1
ı
6


1N12� ; there will be

a stacking fault between the two imperfect dislocations. These are called Shockley
dislocations8 (Fig. 3.31).

3.3.4.2 Cross-Slip, Glissile and Sessile Dislocations

Every perfect dislocation belongs to two of the f111g slip planes: thus BC can slip
in either ABC or DBC. A slip that starts in one plane and moves into another is

8William B. Shockley (1910–1989) was an American physicist who won the Nobel Prize in 1956
for the invention of the transistor.
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called a cross-slip. An imperfect dislocation, on the other hand, can slip in only one
plane, for example B’ in BCD, and cannot cross-slip.

Two Shockley dislocations can combine to form a dislocation with a vector such
as ’“, for example. Such a dislocation cannot slip because its Burgers vector is not
contained in any of the slip planes: it is called a sessile dislocation, in contrast to the
Shockley dislocations, which are glissile. Thus an interaction of this kind, called the
Lomer-Cottrell lock, can block the slip. Being at the intersection of two slip planes,
carpet-like, such a dislocation is called a stair-rod. Later we shall see the importance
of this for work-hardening (Exercise in Volume III).

A crystal will always contain vacancies. If as a result of quenching or irradiation
these are supersaturated with respect to the thermodynamic equilibrium, they will
tend to become eliminated. An effective method of elimination is for them to
combine into pairs, triplets, etc. and finally into cavities appearing as discs over
a dense plane. If these exceed a certain critical size the crystal energy will decrease
as a result of a breakdown of the structure, eliminating part of a P plane for
instance; this will create a stacking fault of the type PQRQRPQR, or���r���,
surrounded by a sessile Frank dislocation loop (Frank and Read 1950) with Burgers
vector of type A’, or (1/3) <111> (Fig. 3.32). Such a stacking fault is called an
intrinsic stacking fault.

In the same way, interstitial atoms displaced by irradiation can condense to form
disks, which are bordered also by a Frank dislocation loop. Those disks constitute
an extrinsic stacking fault PQRPQPRPQR or ����rr��� (Fig. 3.33).

3.3.5 Dislocations in Other Crystalline Structures

3.3.5.1 Body Centred Cubic Structure (BCC)

Dislocations in the BCC structure concern the important case of ferritic steels, and
also of transition metals (V, Nb, Ta, Cr, Mo, W) and of the high temperature phase
of titanium and zirconium, which are found stabilised in some alloys.

In this structure there has been some uncertainty about the slip systems because
the Burgers vector being ½<111>, many possible slip planes contain this direction,
particularly the f110g, f123g and f112g planes (Fig. 3.34). Another dislocation
can be a <100> dislocation, the result of the reaction of the type: 1 =2 Œ111� C
1
ı
2


1N1N1� D Œ100�.

Figure 3.35 shows the (112) plane of the BCC structure. Black circles Nı1
represent the atoms in this plane. The circles numbered 2, 3, 4, 5 and 6 are the
projections of the atoms in the successive (112) planes. The stacking is 123456
and can be represented by ������. A twin corresponds to the stacking in
the reverse order: 165432 or rrrrrr. The sequence ���r��� represents
a stacking fault shifting atoms in position 4 to position 3 by a translation 1

6
a


11N1�.

The stacking fault will be suppressed by a further shift of 1
3
a


11N1� corresponding

to a stacking fault ���rr���.
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Fig. 3.32 (a) Frank dislocation loop created by condensation of vacancies; (b) Frank dislocation
loop created by condensation of interstitial atoms

The (1/2)a[111] screw dislocation plays an important role in the plastic defor-
mation of BCC metals. This screw dislocation (1/2)a[111] could split into three
imperfect dislocations (1/6)a[111] in the planes

�N211�, �1N21� and
�
11N2�, bordered by

ribbons of stacking faults (Fig. 3.36). These dislocations, having the same Burgers
vector, would be pushed by the same force. According to the direction of this force,
one of them would move away from the axis [111], while the two others would meet
along this axis, recombine and join the first; or the contrary would happen, in which
case the dislocations would be locked (grey arrows in Fig. 3.36). However, this
dissociation does not take place. But, this mechanism was modified in considering
that the core of the dislocation would be slightly extended in the three f112g planes
as in Fig. 3.36. Calculations showed that this could be a likely possibility. For some
time, it has been the basis of dislocation behaviour in BCC metals. However, more
recent calculations have shown that the screw dislocation core is not de-generated
by extension in the f112g planes (Fredericksen and Jacobsen 2003; Ventelon and
Willaime 2007; Domain and Monnet 2005; Mendelev et al .2003; Li et al .2004).
Furthermore, it has been demonstrated, by careful observations in the electron
microscope, that screw dislocations do not glide on f112g planes, as the model of
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Fig. 3.33 Frank dislocation
loops in irradiated austenitic
stainless steel. Note that a
number of the stacking faults
in the centre of the loops were
eliminated by introduction of
smaller loops (The stacking
faults appear darker)

a b

a

bb1
b2

Fig. 3.34 (a) Burgers vectors in a BCC structure: b1 D [111]; b 2 D [001]. (b) Slip planes:
aD �

11N2�; bD �
1N10�
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Fig. 3.36 Possible splitting
of a (1/2)a[111] dislocation,
perpendicular to the plane of
the figure, into three
(1/6)a[111] dislocations in
three f112g planes, creating
ribbons of stacking fault.
Pushed by the same force the
three dislocations would
recombine (black arrows) and
glide would be possible,
while, if they were in the
planes corresponding to the
grey arrows they would be
locked
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Fig. 3.37 Slip planes in a hexagonal close packed structure (Pyramidal plane 1D (1N101);
pyramidal plane 2D (11N22))

the extended dislocation core would imply, but instead on f110g planes (Caillard
2010a, b). This will bear consequences on strain-hardening of BCC metals.

3.3.5.2 Hexagonal Close Packed Structure (HCP)

The alloys of industrial importance concerned are those of zinc, magnesium,
cadmium, zirconium and titanium. Beryllium is also of interest. A hexagonal
close packed structure differs from the FCC one by the position of the second
neighbouring atoms only. It is also a pile of close packed planes, the basal (0001)
plane, but the successive layers follow the sequence PQPQPQPQ or �r�r�r�.
Unlike FCC piling, the distance between successive layers is not constant in HCP
(Fig. 3.37): the c/a ratio differs according to the various elements (see Table 3.4) (in
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Table 3.4 Main slip planes and Burgers vectors in the HCP structure

Basal plane ABC Prismatic plane A
S

.0001/
˚
1N100�

AB A
 AB TS 
S
1 =3 < 11N20 > 1 =3 < 1100 > 1 =3 < 11N20 > Œ0001� 1 =2 Œ0001�

a a/
p

3 a c c/2
–

Pyramidal plane ABS Pyramidal plane˚
10N11� f11N22g

AB AS cC a AS
1 =3 < 11N20 > 1 =6 < N2203 > 1/3<11N23> 1 =6 < N2203 >
a

p
c2 =4 C a2 =3 p

c2 C a2 p
c2 =4 C a2 =3

crystallographic nomenclatures a designates the distance between closest atoms in
the basal plane, whereas so far we designated by a the distance between slip planes).
It follows that dislocations with a Burgers vector joining two atoms in the basal
plane are perfect and can be decomposed in two Shockley imperfect dislocations.
This is the case in Zn, Be, Mg, Cd for which the basal plane is the preferred slip
plane. However, the situation is different for Ti and Zr for which the preferred slip
planes are the prismatic ones (Fig. 3.37). Notice that an intrinsic stacking fault in
a FCC structure is like a layer of hexagonal material, and that in the same way,
a stacking fault along the basal plane in a HCP structure is like a layer of FCC
material.

The main slip planes in the HCP structure are represented in Fig. 3.37. Table 3.4
enumerates the slip planes and the Burgers vectors, which they include.

It is important to note that slip in directions out of the basal plane requires the
displacement of dislocations with rather long Burgers vectors, c or c C a, which have
a large self-energy. When we discuss later the Taylor model, we shall see that five
independent slip systems are needed to accommodate any prescribed deformation.
Now, if no slip is possible out of the basal plane, the number of independent slip
system is only three. This accounts for the brittleness of beryllium and zinc. We
shall see that twinning compensates this lack of slip possibilities.

3.3.6 Force on Dislocations and Deformation Produced
by Their Displacement

3.3.6.1 Glide Force on a Dislocation

We now consider the effect on a dislocation of external forces, starting with a very
simple example. Suppose a cube of side L is acted on by a shear force � per unit
area, applied over a face parallel to the slip plane of a dislocation whose Burgers
vector is b (Fig. 3.14). If the slip traverses the whole of the cube the upper part is
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displaced a distance b with respect to the lower part and the work done W is:

W D �L2b (3.18)

If instead the dislocation is shifted only a distance •x we can assume that the
corresponding displacement of the cube is •x/L and the work done is

•W D �L2b.•x=L/ (3.19)

This is as if a configuration force f per unit length was applied on the dislocation
line. Its work would be:

•W D f L•x (3.20)

So, equating these two expressions, we have:

f D �b (3.21)

The glide force on a unit length of dislocation is equal to the product of the
shear stress on the glide plane by the Burgers vector.

3.3.6.2 Deformation Produced by Dislocation Glide

The shear strain •
 is such that:

•
 D .•x=L/ .b=L/ D Lb •x=L3 D b •A=V (3.22)

where •A is the area swept by the dislocation and V the volume of the cube.

The shear strain produced by a dislocation glide is equal to the product per
unit volume of the Burgers vector by the area swept by the dislocation.

If the density �D of dislocations of Burgers vector of norm b is moved an average
distance lD we have:


 D N b A=V D �D b lD (3.23)

In reality only some fraction will be mobile; if the density of these is �M and their
average velocity is v, the slip rate is:

P
 D �Mbv (3.24)
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The shear strain rate is equal to the product of the mobile dislocations density
by their average velocity and by the norm of the Burgers vector. This law is
sometimes called the Orowan law.

For geometrically necessary dislocations, by analogy with (3.23), we define a
characteristic length lG, the mean free path, by lG D 
 =�Gb . Thus, this mean free

path is equal to �
.
9:67f

2=3
V for rigid inclusions and to D/4 for rigid plates, as

can be calculated from Eqs. 3.15 and 3.17. These quantities are presently largely
discussed in the theories of plasticity of polycrystalline materials with internal
lengths.

3.3.6.3 Force on a Dislocation; General Case

We now treat these questions in a more general manner.
The internal stress field of the dislocation introduces an elastic deformation

energy ED into the solid; the externally-applied forces T generate their own
deformation energy ET independently of ED, so the total stored elastic energy
is E D ED C ET.

If the forces T vary then the internal dislocation stresses, zero on the surface
@˝ , do no work, so any change in the elastic energy is equal to the work done by
the external forces and does not depend on the presence of the dislocation. This,
therefore, cannot be detected by measuring any elastic constants: the dislocation
must be made to move for that to be possible.

Consider now the work done in creating a dislocation. Before the cut of area
A was made (Fig. 3.17) the deformation energy was ET. Forces TD are applied to
move this area the vector distance b. The work done is that done by these forces,
equal to the dislocation energy ED, plus the work done by the external forces in
being displaced by uD, plus that done by the stresses 
 acting over the plane of
A (deriving from the externally-applied actions and possibly from other sources of
internal stresses.)

To calculate this energy, let n be the outward (i.e., towards the exterior of
the solid) normal at the boundary of the cut where the Burgers circuit origi-
nates (Fig. 3.38). With the convention concerning the direction of this vector
(Sect. 3.3.3.1), the work done by the stresses is � R

A
bi
ij nj dA.

The stored energy is:

E D ET C ED C
Z
@˝

T :uDdS �
Z
A

bi
ij nj dA (3.25)

and since E D ED C ET

Z
@˝

T :uDdS D
Z
A

bi
ij nj dA (3.26)
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Fig. 3.38 Force exerted on a
dislocation

If now the dislocation is moved a distance •x(s), where s is the curvilinear
coordinate along the length of the dislocation line l, the work done by the external
actions is:

•W D
Z
@˝

T :•uDdS D •

Z
A

b:
:ndA D
Z
l

b:
 :dl ^ •x (3.27)

with l the unit vector along the dislocation line.
We can consider this as the work done by a configuration force f per unit length

along the dislocation line; then:

ıW D
Z
l

f :•xdl (3.28)

and equating the two expressions we have:

f D
�
b:


	
^ l (3.29)

This is called the Peach – Koehler formula (Koehler 1941; Peach and Koehler
1950) .9

The scalar product f : l vanishes identically, showing that the force f is normal to
the dislocation line. In the case of slip its component in the slip plane is � b, where,
as we showed above, � is the resolved part of the shear in the slip plane parallel to
the Burgers vector.

9J.S. Koehler was professor at the University of Illinois and M.Peach was his PhD student.
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3.3.6.4 Deformation Produced by the Displacement of a Dislocation;
General Case

We now find the deformation produced in the solid by the movement of a dislocation
whose Burgers vector is b in sweeping an area •A in a plane whose normal is n
(Fig. 3.38) (Exercise in Volume III and Sect. 3.5.1.2).

Suppose the solid subjected to a homogeneous stress such that the ¢ IJ component,
with I and J fixed, is different from zero. The above expression (3.27) for the work
done can then be written:

Z
@˝

.nI
IJ•uJ C nJ
IJ•uI/dS D .bI
IJnJ C bJ
IJnI/ •A (3.30)

Simplifying by 
 IJ, using the result for any value i,j of I,J and applying Green’s
theorem, we obtain:

Z
@˝

�
ni•ui C nj •uj

�
dS D

Z
˝

�
•ui;j C •uj;i

�
dV (3.31)

This provides an expression for the average strain

•"ij D 1

2V

Z
˝

�
•ui;j C •uj;i

�
dV D �

binj C bj ni
� •A
2V

(3.32a)

which can also be written:

•N" D .b ˝ n/S
•A

V
(3.32b)

where ˝ denotes a tensorial product and S the symmetrical part of the expression
between braces. In particular, this formula gives the expression (3.22) for the shear
strain produced by dislocation glide. Dislocation climb results in extension.

3.3.7 Stress, Strain Fields and Deformation Energy Associated
with a Dislocation

The Volterra process (Sect. 3.3.3.1) shows that creating a dislocation in a solid needs
energy and introduces residual stresses; we now show how these stresses and also
the stored elastic energy can be calculated. We shall find that in order to minimise
this energy the dislocations tend to keep to straight lines and behave like stretched
elastic bands. The calculation will show also that a dislocation does not change the
volume of the crystal, and thus supports the assumption usually made that volume
remains constant in plastic deformation. We first discuss screw dislocations, which
are easier to treat than edge dislocations.
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Fig. 3.39 Displacement field for a screw dislocation

3.3.7.1 Strains and Stresses Around a Screw Dislocation

Suppose the dislocation lies in the direction of Ox3 (Oz in cylindrical polars); the
resulting displacement will be in the same direction (Fig. 3.39):

uz D b�=2  (3.33)

The strain field is easily found by differentiation:

"™z D b

4 r
(3.34)

all other components being equal to zero.
The corresponding stresses, obtained from the Hooke’s relations, are:


™z D �b

2 r
(3.35a)

or


13 D ��b
2 

x2

x21 C x22


23 D �b

2 

x1

x21 C x22
(3.35b)

and all other components are zero.
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Fig. 3.40 Displacement field for an edge dislocation

The stress system is thus pure shear, with no dilatation. The stress decreases with
distance from the dislocation like 1/r; it cannot of course go to infinity when r goes
to zero, and there is what is called a core zone, of radius r0 D’b, in which the laws
of linear elasticity cease to hold because the strains are too great. Calculations have
shown the value of ’ to be about 3 for ionic crystals and between 0.5 and 2 for
metals.

The stresses 
™z act on the two ends of the cylinder and form a torque C:

C D
Z r1

r0

2 r .r
™z/dr D �b

2

�
r21 � r20

�
(3.36)

This can be balanced by superposing a stress field corresponding to a displace-
ment of torsion u™ D rz

R
, R being a constant found by equating the torque exerted

by this stress field to the one given by the preceding Eq. 3.36. Hence:


™z D � �b

 
�
r21 C r20

� (3.37)

This stress field is negligible in relation to the main field given by Eq. 3.35
above.

3.3.7.2 Strains and Stresses Around an Edge Dislocation

Calculation of the strain and stress field around an edge dislocation is not so
straightforward (Nabarro 1967) (Fig. 3.40).

The situation is that of plane strain. A usual method to solve the problem is then
to introduce an Airy stress function ¦. The stresses are found by differentiation:
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11 D @2¦

@x22


22 D @2¦

@x21


12 D � @2¦

@x1@x2
(3.38a)

or in polars


rr D 1

r

@¦

@r
C 1

r2
@2¦

@�2


™™ D @2¦
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r™ D � @

@r

�
1

r

@¦

@�

�
(3.38b)

For choosing the right function ¦, equations of compatibility require that
r4¦ D 0 and it can be written:

¦ D 2x2P C R00 (3.39)

P and R00 being harmonic functions. It is found that

¦ D 2Ax2 log r (3.40)

provides the solution for an edge dislocation with b D (b, 0, 0) and A D ��b
4 .1��/ ,

� being the Poisson ratio. It follows that:

u1 D b

4  .1 � �/
x1x2

x21 C x22
� b

2 
arctan

x1

x2

u2 D b

4  .1 � �/
x22

x21 C x22
� .1 � 2�/ b

8  .1 � �/
log

x21 C x22
b2

(3.41)

"11 D � b

4  .1 � �/

x2
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�
�
x21 C x22

�2 � b
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x2

x21 C x22

"22 D b

4  .1 � �/
x2
�
3x21 C x22

�
�
x21 C x22

�2 � b
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x2

x21 C x22

"12 D b

4  .1 � �/
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�
x21 � x22

�
�
x21 C x22

�2 (3.42a)
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"rr D "™™ D � b .1 � 2�/
4  .1 � �/

sin �

r

"r™ D b

4  .1 � �/
cos �

r
(3.42b)
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22 D �b

2  .1 � �/
x2
�
x21 � x22

�
�
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12 D �b

2  .1 � �/
x1
�
x21 � x22

�
�
x21 C x22

� (3.43a)


rr D 
™™ D � �b

2  .1 � �/

sin �

r


r™ D �b

2  .1 � �/
cos �

r
(3.43b)

These solutions inspire several remarks. The displacement u2 diverges for large
distances from the dislocation. This is an unresolved difficulty.

As with the screw dislocation, the stresses fall off like 1/r and this solution is no
longer valid for distances less than a value r0. The material is in compression for
0<� <  and in tension for  <� < 2 ; and the shear stress is maximum on the
plane � D k , k integer.

The stress 
 rr is exerted over the external surface of the cylinder, of radius r1; this
can be balanced by applying stresses which vary like r/r1

2 and which, as before, are
negligible compared with those just calculated.

As an illustration, the displacement field around an edge dislocation, visualised
by geometric phase method in high resolution transmission electron microscopy in
diamond and in boron nitride, is shown in Fig. 3.41.

3.3.7.3 Change of Density of a Solid Due to the Presence of Dislocations

We have seen that a screw dislocation generates a system of deformations in which
there is no dilatation. It is not the same for an edge dislocation, but it is easily shown
that the reduction in volume over 0<� <  is exactly balanced by the increase over
 <� < 2 . That the overall change must be zero is obvious from the fact that the
mean value of an internal stress field is zero (Exercise in Volume III)

However, in the dislocation core the deformation is too great for the laws of linear
elasticity to hold there, and it has been shown that this produces a local dilatation
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Fig. 3.41 Displacement fields around an edge dislocation in diamond and in cBN obtained by the
“geometric phase method” in HREM (Willems et al. 2005)

approximately equivalent to a tube of vacancies. There are consequential variations
in density, but these are very small, even for high concentrations of dislocations:
typical values of �V/V D �Db2 are 6.25 � 10�8 for �D D 1012 m�2, 6.25 � 10�3 for
�D D 1017 m�2.

The presence of dislocations hardly modify the density of a solid.

An important consequence is that plastic deformation, which derives from the
movement and, as we shall see, the multiplication of dislocations, is accompanied
by only a negligible change of volume. There is therefore a sound foundation
for the assumption usually made in the mechanics of coherent solids, that plastic
deformation takes place at constant volume.

Nevertheless, the core dilatation can interact with the hydrostatic stress, in such a
way that the force on the dislocation is not completely independent of it, especially
for screw dislocations in BCC materials.

3.3.7.4 Contrast and Visibility of Dislocations in Electron Microscopy

A dislocation alters both the distances between the crystallographic planes and
their orientation. If a crystal is mounted in such a way that the Bragg equation
2d sin � D n� holds for a particular plane, a dislocation will destroy the reflection
conditions locally and the effect will be seen as a dark line in the field of view (see
for instance Fig. 3.12). But in certain orientations this will not occur, in particular
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for a screw dislocation in the reflecting plane and for an edge dislocation normal to
this, since in these cases the displacements produced by the dislocation are in the
reflecting plane and affect neither d nor � .

The situation can be summarised by saying that the condition for visibility is

g � b ¤ 0 (3.44)

where g is the vector of the diffracting plane in the reciprocal lattice. This has been
obtained by a very approximate argument, but is confirmed by a deeper theoretical
treatment (see e.g. Hirsch et al.1965).

3.3.7.5 Energy of a Dislocation; Line Tension

The elastic energy ED of a dislocation is equal to the work needed to separate the
boundaries of the area A (Fig. 3.17) by the vector b; that is:

ED D 1

2

Z
A

bi
ij nj dA (3.45)

n being the normal to A.
Replacing 
 ij by 
™z(� D 0) we have, per unit of length,

ED D 1

2

Z r1

r0

M
b2

r
dr D M

2
b2 log

r1

r0
(3.46)

where M D�/2  for a screw dislocation and �/2 (1 � �) for an edge dislocation
(refer also to Sect. 3.3.7.7).

Thus the dislocation energy is considerable for a large volume of solid. However,
it is very difficult to produce crystals with a low density of dislocations: typical
values of �D for annealed metals are of the order of 1012 m�2, with a corresponding
mean distance between dislocations 1/

p
�D of the order of 10�6 m. Their stresses

will cancel each other at distances of this order, since on average there will be as
many dislocations of one sign as of the other, so we can take this as the value for r1,
and with r0 of the order of 10�9 m the values of the logarithm (base e) in (3.46) is
close to 7.

It is generally agreed to take the dislocation energy as 0.5�b2 per unit length.

For copper, for example, with approximate values �D 4�1010 Nm�2,
b D 2.5�10�10 m this is 1.25�109 Jm�1, or about 2 eV per atom along the dislocation.

It follows that increasing the length of a dislocation – by bending it, say –
will increase the total energy; there is therefore a configuring force along the
line, corresponding to dED/dl, that is, t D 0.5�b2: this is the line tension of the
dislocation. Dislocations tend to be as straight as possible. However, in Fig. 3.12,
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most dislocations appear more or less curved. This is because they meet the
inhomogeneous stress field of neighbouring dislocations.

The energy of dislocation loops was calculated. For a circular loop of radius Rc

with its Burgers vector in the plane of the loop the energy is (Nabarro 1967):

Eloop D �b2Rc

2

�
1

2

�
1C 1

1 � �

��
log

8Rc

e2r0
(3.47)

For a prismatic loop with Burgers vector normal to its plane the mean energy is:

Eloop D �b2Rc

2 .1� �/
log

8Rc

e2r0
(3.48)

If �D 1/3 the line tension of an edge dislocation is 3/2 times that of a
screw dislocation. Along a dislocation loop the edge components will tend to be
shorter than the screw components with the result that the shape becomes roughly
elliptical.

The elastic energy of dislocations is greater than their entropy of configuration.
If �D dislocations cross the unit area, considering that there are 1/b2 possible sites,
the entropy per unit volume is kT �D


�
1 � �Db

2
�

log
�
1 � �Db

2
� � log

�
�Db

2
��

. It
can be checked that this is smaller than (1/2)�D�b2 even for very large dislocation
densities. It follows that dislocations increase the free energy and are not stable
defects in a crystal. However, it is very difficult to eliminate dislocations, since they
form self-stabilising networks.

3.3.7.6 Multiplication of Dislocations

The density of dislocations initially present in a crystal is too small to allow a
plastic deformation of any great magnitude. Consider for example a cubical grain of
side 100 �m containing 1012 dislocations/m2 with Burgers vectors 2.5�10�12 m; on
the assumption that they sweep the entire cross-section of the grain, the maximum
plastic deformation will be, by (3.21), 
 D �DblD D 108 � 2.5 � 10�8 � 10�2 D 2.5%.

Suppose that, for one reason or another, a dislocation is anchored at points A,
B at distance l apart. The effect of the shear stress acting over the slip plane will
be to cause this segment to curve, and it will take up a curvature such that an
element ds will be in equilibrium under the shear force f D �b and the line tension t,
assumed constant independent of the type of the dislocation (Fig. 3.42). The radius
of curvature R is such that

2t
ds

2R
D f ds (3.49)

i.e.,
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Fig. 3.42 Equilibrium of an
element ds of dislocation
under the action of a force per
unit length f D �b

R D t=f D 0:5 �b2=�b D 0:5 �b=� D t=�b (3.50)

If � increases R will decrease until it has fallen to l/2 when the arc becomes
unstable and wraps around the points A and B. The parts of opposite sign then
recombine (as shown in Fig. 3.43) forming a loop, which spreads into the slip plane,
leaving behind a new segment AB to repeat the process. Putting R D l/2 in (3.50) we
see that the activation stress for this process is (Exercise in Volume III)

�FR D �b

l
(3.51)

This mechanism of dislocation multiplication is called a Frank-Read source. It is
considered as the main one and it plays an important role in plastic deformation.

Figure 3.44 shows a process similar to the Frank-Read source and illustrates the
way it works. It is the photography of steps produced on the surface of aluminium
by the uniform growth sideways of the initial step, which existed at the emergence
of two screw dislocations.

Another source of dislocations could be grain boundaries.

3.3.7.7 Peierls’s Model of the Core of a Dislocation

The core energy along a dislocation is minimum when the dislocation follows a
dense row of atoms. To move from one such row to the next the energy has to be
increased sufficiently to break some inter-atomic bonds. We say that the dislocation
is in a Peierls trough10 (Fig. 3.45).

The depth of these troughs is a function of the bond energy, and is especially
great for covalent materials. In these the dislocations tend to run in very straight

10Sir Rudolf Ernst Peierls (1907–1995) was a German born British scientist.
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Fig. 3.43 Frank-Read source of dislocations. Successive positions of a dislocation anchored at
points A and B and subjected to an increasing force per unit length f D �b

lines and to follow particular crystallographic orientations. The large increase in
energy needed to move a dislocation to the next trough accounts for the very high
elastic limits of covalent materials. It is almost impossible to make dislocations slip
in these at ambient temperatures, which is why such materials – diamond, carbides,
oxides, nitrides, etc. – are used as abrasives or for making cutting tools.

The troughs are much less deep in metals, especially in FCC structures; their
presence in BCC metals explains why in these the dislocations tend always to be
of screw type, especially when these materials are deformed at low temperature
(Caillard 2010a, b).

Peierls (1940) (Nabarro 1967) gave an estimate of the core energy of a
dislocation. His method was to regard the two parts separated by the slip plane as
semi-infinite elastic media (Fig. 3.45) and to calculate their deformations under the
effect of the local continuous inter-atomic forces approximated by a sine function
of the inter-atomic distance on either sides of the planes A and B, analogous to the



206 3 Elastoplasticity

Fig. 3.44 Growth fronts on the surface of electrolytically polished aluminium. There are steps
resulting from the emergence of two screw dislocations (Marchini and Wyon 1962)

one used in the calculation of the theoretical shear stress (refer to Sect. 3.3.2.2). The
displacements of the atoms of the plane A are (u1, u2) and the ones of the atoms
of plane B (�u1, u2). The relative displacement is thus equal to 2u1. The elastic
deformation of the upper half is that of an elastic semi-infinite continuum, to the
surface of which is applied a shear stress 
12, and is given by:


12 D �

  .1 � �/

Z C1
�1

du1 .�/

d�

d�

� � x1
(3.52)

This stress is equated to the stress exerted by the B atoms, which is assumed
to be a sinusoidal function of period b of the relative displacement and equal to
�(2u1/a) when the shear strain u1/a is small, a being the distance between planes
A and B:
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Fig. 3.45 The Peierls’s model of a dislocation core
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2 a
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�
2 
2u1
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�
(3.53)

Hence must be found the solution of the integral equation:

Z C1
�1

d� .�/

d�

d�

x1 � � D 1� �

a
sin 2 � (3.54)

with �D 2u1/a
The solution is:

u1 D � b

2 
arctan

x1

�
(3.55)

where � D a
2.1��/ . 2� is considered as the half-width of the dislocation.

For screw dislocations the result is the same, suppressing the Poisson ratio � in
the formulae.

The calculation of the dislocation energy with this model yields the same expres-
sion as (3.46) with r0 D 2�. And if we take into account the energy corresponding
to the stress field, which annihilates the stresses on the free surfaces (refer to
Sect. 3.3.7.1) the best estimate for the dislocation energy per unit length is:
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ED D M log
e1=2 r1
2�

(3.56)

where M D�/2  for a screw dislocation and �/2 (1 � �) for an edge dislocation.
The Peierls’s model is not well suited in the case of ionic and covalent crystals.

For the first, the slip results in ions of the same sign confronting one another, using
a large amount of Coulomb energy; for the second, the bonds are strongly oriented
and are quasi-rigid.

Moreover, the assumption of the model is that the forces of interaction between
the two parts of the slip plane A and B are spread over a large distance, whereas
it yields a narrow core width. This contradiction can be overcome by assuming a
flatter inter-atomic potential than the sinusoidal one.

3.3.7.8 Moving Dislocations

So far we considered stationary or slow moving dislocations, so that we could
calculate the strain and strain fields around them neglecting completely inertia
effects. Observations of dislocations in the electron microscope often show that they
move very fast. In order to achieve high strain rates in plasticity, Eq. 3.24 shows that
the velocity of dislocations must be quite large. Even for a moderate high strain rate
of 104 s�1, with a dislocation density of 1012 m�2, the dislocation velocity must
reach 40 m/s. We then need to reconsider the strain and stress fields of a moving
dislocation (Nabarro 1967).

We first consider the case of a screw dislocation. The elastic equation of
motion is:

ru3 D 1

c22
Ru3 (3.57)

where u3 is the displacement vector in the direction of the Burgers vector and c2 is
the shear wave velocity (�/�)1/2.

Assuming that u3(x1, x2) is a solution of the static case ru3D 0, then
u3[(x1 � vt)/ˇ2, x2] is a solution of Eq. 3.57, with ˇ2 D (1 � v2/c2

2)1/2. It represents
a disturbance travelling in the x1 direction at a uniform velocity v. Hence, Eq. 3.33,
the solution in the static case, becomes:

u3 D b

2 
arctan

ˇ2x2

x1 � vt
(3.58)

Now, shifting to polar coordinates, the density of elastic energy .1 =2/ �h
.@u3 =@x1 /

2 C .@u3 =@x2 /
2
i

can be calculated:
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Ed D �b2

8 

1C ˇ22
ˇ2

log
R

r0
(3.59)

per unit length of dislocation.

Similarly, the kinetic energy .1 =2/ � Pu23 is:

Wk D �b2

8 

1 � ˇ22
ˇ2

log
R

r0
(3.60)

per unit length.
Hence, the total energy per unit length of the dislocation line, moving at uniform

velocity, is:

E D Ed CWk D �b2

4 

1

ˇ2
log

R

r0
(3.61)

Considering that to this energy corresponds a force F1 D @E =@x1 , we can
calculate an associated crystal momentum px:

px D
Z
F1dt D

Z
@E

@x1
dt D

Z
1

v

@E

@v
dv D Ev

c22
(3.62)

We find equations similar to the ones giving the Lorentz contraction in relativistic
dynamics, the shear wave velocity replacing the speed of light. The energy tends to
infinity when the velocity of dislocations approaches the shear wave velocity, which
is then a limiting velocity.

For an edge dislocation the solution is more complicated. The speed of longitudi-
nal waves c1 D Œ.�C 2�/ =� �1

=2 (� being the Lamé constant) must be introduced.
The displacement u in the upper half plane (x2> 0) is given by:

 

b

v2

c22
Nu1 D arctan

ˇ1x2

x1 � vt
� ˛2 arctan

ˇ2x2

x1 � vt
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2
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� ˛2
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i
(3.63)

with ˇ1 D �
1� v2

ı
c21
�1=2

and ˛ D �
1 � v2

ı
2c22

�1=2
.

The displacement u of the lower half plane has a similar solution. We find a
superposition of two relativistic disturbances with limiting speeds c1 and c2. Their
relative proportion depends on the velocity v. As this velocity approaches c2 the
energy is found to go to infinity, not as 1/ˇ2 in the relativistic manner, but as 1/ˇ2

3.
This involves a continuous radiation of energy (Stroh 1962).

We try then to describe, in a semi-qualitative manner, the motion of a dislocation.
We expect a screw dislocation to behave like a rod of mass E/c2

2 (refer to Eq. 3.62).



210 3 Elastoplasticity

When it accelerates it dissipates energy by radiating shear waves. The energy is
proportional to logR, R being a cut-off radius. For an oscillatory motion of the
dislocation it is expected R to be roughly the wavelength of the shear wave. For
free motion in the absence of applied stress we expect R to be roughly equal to c2t,
and thus a mass of the dislocation proportional to logt. The dislocation ought to slow
down as the region of disturbance, which travels with it, expands.

3.3.8 Interaction of Dislocations with Other Dislocations
and Interfaces

The stress field of dislocations exerts a force on neighbouring dislocations according
to the Peach and Koehler formula (3.29). These interactions, attractive or repulsive,
can create special arrangements of dislocations, which are important for strain-
hardening. So are the interactions of dislocations with boundaries, which introduce
discontinuities in the stress and displacement fields.

3.3.8.1 Interactions Between Dislocations

We consider two dislocations of Burgers vectors b1 and b2, and we determine the
force f12, which the first one exerts on the second according to the Peach and
Koehler formula (3.29). As the stress field of the first dislocation decreases when the
distance increases (Eqs. 3.35 and 3.43), in general a torque will be applied on the
second one. It is not the case when the two dislocations are parallel. We begin then
by studying this configuration, simplifying even more by considering that they lie
on the same glide plane (this is always the case for two parallel screw dislocations)
a distance d apart. The Peach and Koehler formula reduces to f12 D �1b2 or:

f12 D M
b1b2

d
(3.64)

where M D�/2  for a screw dislocation and �/2 (1 � �) for an edge dislocation.
Thus the force is repulsive (positive) if the dislocations have the same sign,

attractive if the signs are opposite.
Two repulsive parallel dislocations on the same slip plane can remain in

equilibrium at a finite distance d, when they create either a stacking fault (such
as a Shockley dislocation) or an anti-phase boundary in an ordered crystal.
The equilibrium distance d is such that the stacking fault energy, or the anti-
phase boundary energy, compensates the repulsive energy of the two dislocations.
Measuring this distance d is a way to estimate the stacking fault or the anti-phase,
energy. (We will elaborate later when we discuss the Suzuki effect.)

From the expression (3.43b) for the stress field of a dislocation we can easily
calculate the interaction force between two parallel edge dislocations with slip
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Fig. 3.46 Reduced force, 2 .1��/

�b2
f12, as a function of x1/h for two parallel edge dislocations of

the same sign on two parallel slip planes a distant h apart

planes a distance h apart (Fig. 3.46 and Exercise in Volume III):

f12 D �b1 � b2
8  .1 � �/

sin 4�

h
(3.65)

If the dislocations have the same signs they repel one another when jx1j> jx2j;
otherwise they will attract and will arrange themselves so that one is above the other
(x1 D 0). If the signs are opposite they attract if jx1j> jx2j and arrange themselves
so that x1 D x2, forming what is called a dipole.

From the Peach-Koehler formula (3.29) the climb force is easily found to be
�
11b2.
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In general when two dislocations of Burgers vectors b1 and b2 meet they can
interact to create a new dislocation of Burgers vector – (b1 C b2) (Fig. 3.18). The
energy of the two dislocations before they combine is proportional to b1

2 C b2
2 per

unit length, whereas the energy of the recombination is proportional to

.b1 C b2/
2 D b21 C b22 C 2b1:b2

When the scalar product b1:b2 is negative the recombination gains energy and
is favourable: the junction is attractive. On the contrary, when b1:b2 is positive the
junction is repulsive. Consider two dislocations on two different glide planes in a
FCC crystal. When they meet, if the junction is attractive, they combine along the
intersection of the glide planes to form a stair rod dislocation (refer to Sect. 3.3.4.2).
In the Lomer-Cottrell lock, the two dislocations which meet are dissociated for
instance in the glide planes (111) and

�
11N1� as a

2



01N1� D a

6


N12N1� C a
6



11N2� and

a
2
Œ101� D a

6



2N11�C a

6
Œ112�. The two Shockley partials a

6


N12N1� and a
6



2N11� attract

each other and combine to form the sessile dislocation a
6
Œ110�.

If, on the contrary, the junction is repulsive, the two dislocations after crossing
glide away; each one has acquired a small segment, equal to b2 for the first
dislocation and to b1 for the second. The segment b2 on the first dislocation can
be decomposed in three components: one along the dislocation line of the first
dislocation, one in its slip plane producing a kink and the third perpendicular to this
slip plane called a jog (Fig. 3.47). In a FCC structure, referring to the Thompson
tetrahedron (Fig. 3.30), we can consider a dislocation of Burgers vector AB in the
d glide plane. Crossing with repulsive dislocations of Burgers vectors DA, DB, DC,
or CD, will produce a jog D•. This jog cannot glide, so that the gliding dislocation
will stretch a trailing dipole with branches so close that they will annihilate by
the emission of vacancies or interstitials. If however several dislocations cross in
succession, the jog will be large enough for the dipole to be stable. Dipoles are
often observed in electron microscopy.

Plastic deformation, which involves the displacement of a large number of
dislocations and thus many crossing of repulsive dislocations, results in the emission
of a great number of vacancies and interstitials. This super-saturation of point
defects can be reduced by recombination of vacancy-interstitial pairs. But it also
contributes to dislocation climb. The return to equilibrium requires the thermal
activated diffusion of these point defects, faster for interstitials than for vacancies.

3.3.8.2 Dislocations Pile-Ups

We consider n parallel dislocations in the same slip plane under a shear stress � .
Each one is pushed by a force �b and we assume that they are held by some obstacle
at point x D 0. This configuration is a pile-up. They were observed particularly in
austenitic stainless steels as shown in Fig. 3.48. We want to find at which distance
from each other lie the dislocations and the size L of the pile-up (Fig. 3.49).
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Fig. 3.47 Formation of jogs and kinks at the crossing of two repulsive dislocations

If the j’th dislocation with abscissa xj is moved a distance �•x the following
(n � j) also move through this distance, requiring an amount of work •W D (n –
j C 1) �b •x to be done. Hence the j’th dislocation experiences a force (n – j C 1)� b
exerted by the (n � j) following dislocations. In particular, the obstacle against which
the dislocations are piled up experiences a force n�b.

The distance x2 � x1 is determined by the equilibrium between the force that the
first dislocation exerts on the second and that exerted on it by the n � 2 others:

Mb2

x2 � x1 D .n � 1/ �b (3.66)

where M D�/2 (1 � �) for an edge dislocation, �/2  for a screw dislocation.
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Fig. 3.48 Pile-ups of
dislocations in an austenitic
stainless steel. Their slip
planes are inclined with
respect to the thin foil. The
bar represents 1 �m

x1 x2

t

xxj

Fig. 3.49 Pile up of dislocations against an obstacle at xD 0

As this distance x2 � x1 is small, we can calculate (x3 � x2) on the assumption that
the first and second dislocations act together like a single dislocation with Burgers
vector 2b:

x3 � x2 D 2Mb

.n � 2/ �
(3.67)
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and continuing, we have in general:

xjC1 � xj D jMb

.n � j / �
(3.68)

The distance between successive dislocations in the pile-up thus increases with
the distance from the head. Taking the distance (xn � xn�1) to be or the order of L/2,
this gives:

n ' �L

2Mb
(3.69)

The same result is obtained by an exact calculation of the positions of the
dislocations by solving the n equations:

nX
jD1;j¤i

Mb2

xi � xj
D �b (3.70)

It can easily be shown that the first dislocation located at the head of the pile-up
is submitted to a stress equal to n� . This explains the stress concentration produced
by dislocations pile-up.

3.3.8.3 Low Angle Boundaries

We have found that two edge dislocations of the same sign on two parallel slip planes
can find a stable configuration by aligning one above the other at a distance h. A third
edge dislocation of the same sign can on its turn rest on the same alignment. By
adding in this way many edge dislocations of the same sign a distance h apart from
one another we build a dislocation wall forming a low angle boundary. It separates
two subgrains, which present a tilt disorientation of angle � D b/h (Fig. 3.50).

In the same way, a regular arrangement of screw dislocations creates a low
angle twist boundary. A regular combination of mixed dislocations can achieve any
misorientation of the subgrains (Fig. 3.51).

The calculation of the energy of these configurations gives the value of the energy
of the sub-boundary as a function of the misorientation of the subgrains. Here we
consider a simple tilt boundary formed by regularly spaced edge dislocations a
distance h apart; and calculate the energy of a dislocation belonging to this wall.
The other dislocations in the wall will screen the one we are considering from the
surrounding stress field to a distance of the order of h/2; the energy associated with
it is therefore from Eq. 3.46, approximately,

ED D �b2

4  .1 � �/ log

�
h

2r0

�
(3.71)

where r0 is the core radius.
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q b

h

Fig. 3.50 Tilt low angle boundary

As there are 1/h dislocations per unit length of the wall, the sub-boundary energy
per unit area is:


i D �b

4  .1 � �/� log

�
b

2r0�

�
(3.72)

Taking h D 20b, i.e. � D 2.86ı, one finds 
 i D 120 mJ/m2 which is a reasonable
value.

The calculation can be extended to the case of the twist boundary formed by
screw dislocations, when the sub-boundary will be in torsion; and even to more
complex assemblies of dislocations.

The result shows that the energy of the wall increases with increasing disorienta-
tion up to a maximum, 
 im equal to b/2r0e, e being the base of the natural logarithms,
after which it falls.

Figure 3.52 shows that the predicted form of the variation agrees with what is
found experimentally.

3.3.8.4 Interaction of a Dislocation with a Surface or an Interface

Suppose there is a dislocation close to a free surface. On the latter the stress vector
must vanish and therefore the expressions (3.35) and (3.43) for the stress field of
the dislocation must be modified. A simple way to do this is to place a fictitious
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Fig. 3.51 Wall of
dislocations starting to form
in an austenitic stainless steel
annealed for 24 h at 900ıC
after work-hardening

Fig. 3.52 Comparison of the reduced boundary energy 
 i /
 im as a function of the disorientation
angle � /(b/2r0e) with the formula (3.65). (b/2r0e) is treated as an adjustable parameter (After
Nabarro 1967)
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dislocation in such a way as to cancel the stress vector of the real dislocation on the
free surface. If the latter is a screw dislocation parallel to the surface, the fictitious
dislocation can be another screw dislocation with Burgers vector of opposite sign,
located symmetrically with respect to the surface. The real stress field is the resultant
of the superposition of the fields of the two dislocations; the second (fictitious)
dislocation is the image of the first, which experiences an attractive image force
and is therefore attracted by the surface.

The same process applied to an edge dislocation cancels the stress component
normal to the surface, but not the shear. It can however be shown that the further
stress field that has to be applied in order to cancel this exerts no force on the
dislocation, and therefore an edge dislocation also is attracted to the surface by the
image force (Head 1953).

The problem becomes more complicated if we consider not a free surface but the
interface between two media with shear moduli �1 and �2. For a screw dislocation
parallel to the interface in the medium of modulus �1 the solution is given by an
image dislocation with Burgers vector ˇb, symmetrically placed in the medium of
modulus �1, together with an image with vector 
b in the medium of modulus �2,
super-imposed on the real dislocation. ˇ and 
 are given by:

ˇ D .�2 � �1/ =.�2 C �1/


 D 2�1 =.�2 C �1/ (3.73)

Thus a screw dislocation is attracted to the interface if �1 >�2 and repelled
otherwise. The method that has led to this conclusion is not strictly applicable to
an edge dislocation, but it provides a reasonably good approximation.

It follows from these results concerning interactions with surfaces that when a
thin sheet of material is examined by the electron microscope a significant number
of the dislocations must have disappeared. Further, a surface layer of oxide with
modulus greater than that of the metal will generate a force that opposes the slipping
out of the dislocations and which will therefore have a hardening effect. This is a
partial explanation of the Rehbinder effect, that exposure to an active medium makes
a material more easily deformable11 (Rehbinder 1947; Nabarro 1967).

3.3.9 Twinning

Twinning plays a key role in the plastic deformation of alloys, which have few slip
systems, such as the HCP materials (Zn, Mg, Ti, Zr, Be). When we described slip
systems in HCP (refer to Sect. 3.3.5.2), we drew attention on the difficulty to activate
slip in directions out of the basal plane and thus the importance of deformation
possibilities offered by twinning. In FCC materials that have low stacking fault
energy twinning is facilitated. Furthermore, twinning is part of the mechanism

11Petr Alexandrovitch Rehbinder (1898–1972) was a Russian scientist.
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Fig. 3.53 Characteristic elements of twinning

of the martensitic transformation. Many twins are found in stainless steels, in
manganese (Hadfield) steels, in modern TWIP (Twinning induced plasticity) steels
(see Sect. 3.4.5), in Cu-Al alloys and in nickel-based alloys. In BCC materials, the
difficulty to move screw dislocations can be compensated by twinning, which plays
an important role in ferritic alloys.

3.3.9.1 Twin Elements

A twin within a crystal is a piece of the same material whose unit cell is related
to the unit cell of the parent crystal by symmetry elements. In this section we
are interested in twinning as far as it results in plastic deformation. We will limit
ourselves to the most common cases of industrial interest, which are found in FCC,
BCC and HCP alloys. The symmetry elements reduce then to mirror symmetry: the
twin is the image in a mirror of the parent crystal. The twin boundary, also called the
composition surface, is the mirror plane. We will first give a brief general description
of twinning and we will calculate the strain produced by a twin.

A twin is characterised by the crystallographic planes K1 and K2, which remains
unchanged, and by the twinning direction ˜1 of K1. The twin results from the shear
of the parent crystal in this twinning direction (Fig. 3.53). The shear plane is normal
to K1 and contains the direction ˜1, intersecting K2 along a line whose direction
is ˜2.

The crystallographic plane K2 is then flipped to K02. The shear is such that

 D s/h.
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Twins of the first kind are such that K1 and ˜2 have rational Miller indexes, while
twins of the second kind are such that K2 and ˜1 have rational Miller indexes. In the
structures of interest to us all indexes are rational (f111g in FCC and f112g in BCC
crystals).

A crystallographic structure can contain K1 planes of the same kind, of different
orientations, such as f111g planes for instance. These are called variants.

3.3.9.2 Twinning Deformation

The formation of a twin produces large displacements requiring calculation of
strains in term of the Green-Lagrange tensor. Note that the displacement of
individual atoms remains small, but their cooperative movement induces a large
deformation.

The coordinates axes are Ox1 along the ˜1 direction, Ox2 perpendicular to the
shear plane and Ox3 perpendicular to the K1 plane (Fig. 3.53). Let the initial
coordinates of a particular point be ai of the plane K2 and the corresponding ones
after twinning xi in plane K02.

ai D (a1 D � a3s/2 h, a2 D 0, a3) and xi D (x1 D � a1, x2 D 0, x3). Thus the dis-
placement is uD (u1 D a3s/h, u2 D 0, u3 D 0).

The Green-Lagrange tensor 2�ij D @ui
@aj

C @uj
@ai

C @uk
@ai

@uk
@aj

has only two elements
different from zero:

�13 D s=2h D tan � and �33 D .1=2/ .s=h/2 (3.74)

The linear dilatation in a direction da is given by:

jdxj2 � jdaj2 D 2�ijdaidaj D 2
s

h
da1da3 C

� s
h

	2
da3

2 (3.75)

so that:

�
dx

da

�2
D 1C 2

s

h
sin˛ cos˛ C

� s
h

	2
sin2˛ (3.76)

with ˛ the angle between the Ox1 axis and the vector da.
The largest dilatation is thus found in a direction such that:

tan 2˛ D � 1

tan �
(3.77)

with tan� D s/2 h. Hence there are two possible directions at  /2 from each other:
˛D /4 � � /2 and ˛D 3 /4 � � /2 (note that in the absence of �33 the deformation
of the twin would be pure shear and those directions would be ˙ /4). It is the
second direction, which corresponds to the maximum dilatation; it is given by:
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jdxj
jdaj D 1C �max D tan � C �

1C tan2�
�1=2

(3.78)

3.3.9.3 Twins in Various Crystallographic Structures

In FCC structures we have seen in Sect. 3.3.4.1 that a stacking fault occurs
when dense planes f111g are shifted to wrong positions, the stacking becoming
����r���� or����rr����. A twin is created by the repetition of this,
yielding a stacking ������rrrrrr or PQRPQRQPRQPR. The twin is the
image of the parent structure in the mirror plane (111). Thus the twinning elements
are K1 D (111), ˜1 D 


11N2�, K2 D �
11N2�, ˜2 D [111]. Figure 3.54 shows the way

twinning occurs in the shear plane
�
1N10�. The shear ratio s/h is equal to 0.707 and

the angle � to 35ı. The maximum elongation is equal to 0.414.
In BCC the twinning mechanism (Fig. 3.55), in a similar way, can be considered

as a succession of stacking faults on f112g planes described in Sect. 3.3.5.2 and
Fig. 3.35. In that case s/h D 1/

p
2 D 0.707 and � D 35ı.

In HCP are observed various twin systems. Tension twins are f10N12g <10N11>
and f11N21g <11N26>; compression twins are f11N22g <11N23>. The nature of these
mechanical twins in HCP crystals depends on the value of c/a ratio. The twinning
shear depends on the ratio c/a. It can easily be shown that in the case where the
twinning plane is

�
10N12�, the shear is given by:

�13 D 3 � c2=a2

c=a
p
3

(3.79)

Thus for c=a D p
3, the shear strain is equal to zero. When c/a is larger (smaller)

than
p
3, the shear strain occurs in opposite directions, but it is always small. The

largest amounts of shear strain occur for materials with extreme values of the c/a
ratio, i.e. Be (c/a D 1.57) and Cd (c/a D 1.89). Twinning shear is then of 0.197 in Be
and 0.170 in Cd, while the maximum elongation is of the order of 10% in Be and
6.5% in Cd (Jaoul 2008).

3.4 Hardening Mechanisms

3.4.1 Introduction

In Sect. 3.3 we first described tests on single crystals, which show that plastic
deformation takes place when a critical shear stress, much smaller than the
theoretical one, is reached. This led us to introduce displacement of dislocations and
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Fig. 3.54 Twinning in FCC crystallographic structure. The plane K1 is a f111g plane and the ˜1

direction is a <112> direction

twinning as needed for the explanation of plastic deformation. We then described
in detail these crystallographic defects, providing the tools to understand their
behaviour in relation with plastic deformation. However, so far we have not studied
the critical stress itself. We now need to know what are its conditioning mechanisms.
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Fig. 3.55 Twinning in BCC crystallographic structure. The plane K1 is a f112g plane and the ˜1
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It will allow us to understand how the yield strength and more generally the
proof strength vary, how they can be increased. When, in Chap. 4, we will study
time-dependent phenomena, it will be the activation energies concerning these
mechanisms which will come into play. Later, in the second volume, this will
also help in the mastering of damage and fracture. Thus, these mechanisms are
essential ingredients in materials design, the art of conceiving materials for a given
purpose.

Understanding of the nature and effects of the various obstacles is also needed
for a sound formulation of constitutive equations, which enter in the calculation of
stress and strain distributions in components and structures.

The movement of dislocations, the creation and development of twins (or more
generally of transformed phases) meet obstacles of various natures. They constitute
the root of hardening mechanisms that we must now study. We can picture a
dislocation as an extended rope, which moves in a mountainous landscape: it meets
hills and peaks and on top of those rocks of various heights. The applied force
on the dislocation makes it climb these various obstacles. Temperature forces the
rope to jump up and down, so it can help to overcome the smaller obstacles. At
0 K all obstacles must be overcome by the applied force only. At high enough
temperature, remain only the big obstacles denoted athermal. The various obstacles
can be classified in several categories as shown in Table 3.5.

At this stage, even though strictly speaking, plastic deformation is time indepen-
dent, we will find convenient, when dealing with a particular mechanism, to give
the elements entering the thermally activated strain rate equation. The formalism of
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Table 3.5 Classification of hardening mechanisms

Types of obstacles Type of mechanism Representative examples

1. Localised Thermally activated Repulsive dislocation trees
Solute atoms
GP zones

Thermally activated or athermal Attractive junctions
Coherent precipitates
Radiation damage

Athermal Incoherent precipitates
Long range stress fields

2. Linear Thermally activated Peierls force
Cross-slip
Cottrell-Lomer dissociation

Thermally activated or athermal Suzuki unlocking
Athermal Short range order

Long range order
3. Volumetric Athermal Thermoelastic

Phonon scattering
Phonon viscosity
Electron viscosity

thermal activation of plastic deformation will be treated in detail in Chap. 4 of this
book. Let here simply state that the strain rate can in general be written:

P" D P"0 exp

�
�Q0 � 
bA�

kT

�
(3.80)

where k is the Boltzmann12 constant, T the absolute temperature, 
 the applied
stress, Q0 the activation energy in the absence of stress to overcome a particular
obstacle and A* the activation area associated with it. It is the area that a dislocation
sweeps to overcome the obstacle in question.

The obstacles of types 1 and 2 can be further classified as: first, obstacles
that come from the crystallographic nature itself, second, obstacles constituted by
foreign atoms. Volumetric obstacles of type 3 cause viscous behaviour that will be
briefly treated in Chap. 4.

We will proceed by increasing size of obstacles. So in the first category we will
treat in succession the obstacles provided by atomic binding, by other dislocations
and by grain boundaries. In the second category, atoms dispersed in solid solution,
precipitates and inclusions. Afterwards, we will study twinning and transformation
plasticity. These mechanisms will be illustrated by characteristic examples of
industrial materials. Finally, we will see how, based on hardening mechanisms, the
constitutive equations can be formulated.

12Ludwig Boltzmann (1844–1906) was an Austrian physicist.
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3.4.2 Obstacles of Crystallographic Nature

3.4.2.1 The Peierls-Nabarro Force13

In Sect. 3.3.7.7, we gave the definition and properties of a Peierls trough (Fig. 3.45).
We also explained how Peierls calculated the half width � of a dislocation (Eq. 3.55).
He then calculated the variation of the energy as the dislocation is displaced out of
the trough (Peierls 1940; Nabarro 1947):

EPN D �b2

4  .1 � �/

�
1C 2 .cos 4 ˛/ exp

�
�4 �
b

��
(3.81)

where ˛ is the portion of the Burgers vector b that the centre of the dislocation is
moved, and �D a/2(1 � �). For a screw dislocation � is taken equal to zero.

The corresponding force acting on the dislocation has an amplitude:

�PN D �1
b

dEPN

d˛

ˇ̌̌
ˇ
max

D 2�

1 � �
exp

�
�4 �
b

�
(3.82)

The amplitude is the smaller, the larger a/b, that is the denser the slip plane. This
model yields a very low critical shear stress of the order of 10�5 � for a close-packed
lattice. It is even smaller for partial dislocations.

A dislocation, which is not perfectly aligned with a dense row of atoms, is
composed of segments lying on a Peierls trough joined by kinks (Fig. 3.56). It is

13In 1967 Rudolph Peierls claimed that this force should have been called the Orowan-Nabarro
force (Rosenfield et al. 1968).
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then much easier to displace the dislocation by the sideway propagation of kinks,
than by rigid jump as a whole, yielding a still lower critical shear stress.

Read (1953) calculated the energy of a kink to be:

Ek ' 2:8�b3

 
exp

�
� �

b

�
(3.83)

The activation energy, when a strong Peierls force places down dislocations in
the troughs, corresponds to the creation of two kinks of opposite signs and thus is
2Ek, while the activation area would be of the order of a few b2.

The yield strength of pure BCC metals is characterised by a large increase when
the temperature is lowered and by a dissymmetry between tension and compression
(Fig. 3.57). Screw dislocations are found to be difficult to move whereas this is
needed for plastic deformation to take place. It is usually linked to control by the
Peierls stress. In Sect. 3.3.7.7, we saw that it has been considered that a particular
dissociation of the core could explain the particular behaviour of BCC metals, but
that recent observations and calculations cast much doubt on this model. Screw
dislocations in pure iron propagate on f110g planes, and at low temperature by
jerky motion (Caillard 2010). Figure 3.56 shows the critical resolved shear stress on
f110g plane of pure Fe as a function of the temperature. A definite break is observed
at 250 K. The interpretation is based on two mechanisms in parallel: above 250 K
for a screw dislocation to move a double kink (Fig. 3.56) must be nucleated, which
requires an energy in the absence of stress of 11 meV per distance of line b; this
corresponds to a classical model. (The kink energy Ek as given by Eq. 3.83 is equal
to 17 meV). But below 250 K the critical event would be the creation of a bulge of
metastable glissile dislocation; the energy needed to extract the sessile dislocation
from the Peierls trough so as to give it this glissile yet unknown configuration is
26 meV per b, of the order of the Peierls energy.
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Fig. 3.58 Critical resolved shear stress for Ni3Al (Pope and Ezz 1984)

This effect of anisotropy on the dissociation of dislocations is encountered in
other crystal structures, such as Ll2 (see Annex 1), a pseudo-FCC, phase ”0, of
approximate composition Ni3Al; this is responsible for the hardening of nickel-
based superalloys (Fig. 3.58). For further discussion see Gil Sevillano (1993).

3.4.2.2 Interaction with Other Dislocations; Strain-Hardening
or Work-Hardening

The dislocations in a crystal that has not been work-hardened form a 3-dimensional
network called the Frank network (Fig. 3.20). The mean distance between disloca-
tions is l D �D

�1/2.
The mutual interactions of the dislocations result in their arranging themselves

so that they occupy a position of minimum energy on the potential surface.
The interaction between dislocations was studied in Sect. 3.3.8.1. Moving a dis-
location in its slip plane involves making it cross the hills created by its interactions
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Fig. 3.59 Crossing of the forest of dislocations by a dislocation of Burgers vector b1 forming
attractive and repulsive junctions

with the other dislocations, among which we distinguish those which are in slip
planes parallel to the slip plane of the first from those which cross this plane: we
call these latter trees, and they form the forest. It is clear that the critical slip stress
will be greater, the greater the density of dislocations; and that the work-hardening
will result from the multiplication of dislocations during plastic deformation.

(a) Interaction with dislocations parallel to the slip plane

It is easy for screw dislocations to change their slip planes and thus to choose a
path between the dislocations of the Frank network. From Eq. 3.64 the shear stress
opposing this is of order (�b/2 )

p
�D. For edge dislocations Eq. 3.65 gives the

minimum as (�b/8 )
p
�D/(1 � �).

Edge dislocations become blocked by forming dipoles; it is the screw disloca-
tions that move.

(b) Interaction with the forest.

Let b1 be the Burgers vector of the dislocation that slips and b2 that of one of the
trees. The junction of the two is said to be attractive if the scalar product b1.b2

is negative, repulsive if it is positive (Fig. 3.59). At an attractive junction the two
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dislocations can combine to form a dislocation with Burgers vector b1 C b2 and
energy (�/2)(b1 C b2)2. This reduces the total energy, and the combination is stable.
We can imagine the attractive junctions as forming the anchor points required for
the Frank-Read multiplication process (Sect. 3.3.7.6). Their average distance apart
will be 2l, since on average one in every two trees will be attractive, and from
Eq. 3.50, for the activation stress for the source, the crossing force will be 0.5
�b

p
�D. Actually, attractive junctions are broken by a weaker force, which for FCC

structures has been estimated as (�b/4)
p
�D.

The crossing of a repulsive junction, in contrast, requires only the creation of a
“jog”, which represents a much weaker force (refer to Sect. 3.3.8.1 and to Fig. 3.47).
Taking the distance over which the dislocation interacts with such a repulsive tree
as 3b, the area swept out, in other word the activation area, is of the order of 3lb
and the work done by the applied stress is � b.3lb. This must equal the energy of the
jog, the activation energy, which is 0.1�b3, so � D (�b/30)

p
�D.

We can summarise the results by saying that the stress required to move a
dislocation in the middle of the forest is:

�c D ’�b
p
�D (3.84)

with ’ between 1/3 and 1/4. This critical stress increases as the density of
dislocations increases in the course of plastic deformation: it is this that explains
the associated work-hardening (Figs. 3.60 and 3.61).

(c) Microdeformation; depressed modulus of elasticity

So long as the stress does not exceed the Peierls-Nabarro force the dislocations do
not move and the material remains perfectly elastic; but as soon as they start to move
they form arcs between anchor points and sweep out an area A, generating a further
deformation. However, if the stress remains below the instability threshold �b/l for
these arcs then the dislocations will return to their original positions when the load
is removed: the crystal is still elastic. The result is an apparent decrease in elastic
modulus. Small hysteresis loops appear on the stress/strain curve. This dissipative
phenomenon is marked by an increase in the internal friction when the amplitude
of the deformation is increased. The onset of instability of the arcs coincides with
the micro yield strength; this is difficult to measure because it corresponds to very
small deformations (see Sect. 5.2.2.6).

(d) The tensile stress-strain curve for FCC single crystals

The tensile stress-strain curve of FCC single crystals exhibits three main stages
(Fig. 3.62) when their orientation is right. However, this is a simplifying picture as
more stages than three can be distinguished.
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Fig. 3.60 Multiplication of dislocations in the course of deformation resulting in work-hardening.
(a) Annealed Hastelloy (the bar corresponds to 1 �m), (b) the same alloy work-hardened, (c) after
15% deformation the dislocations begin to cluster

Stage I, often called the easy-slip stage, is characterised by a low work-hardening
modulus, the slope of the stress-strain curve; it corresponds to the activation of only
a single slip system. This stage occurs only with particular orientations of a FCC
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Fig. 3.61 Work-hardening in
FCC metals as a function of
dislocation density

stage III

stage II

stage I

0 g

t /m

1/200

Fig. 3.62 Typical
stress-strain curve of a FCC
single crystal exhibiting three
deformation stages

crystal but predominates in the case of hexagonal single crystals. The slip lines are
long and straight.
Stage II, corresponding to the activation of secondary systems, is characterised by
a constant work-hardening modulus of the order of �/200, much greater than that
in Stage I. The secondary dislocations interact with the primaries to form Lomer-
Cottrell locks (refer to Sect. 3.3.4.2) and the hardening increases greatly. The slip
lines are straight but are shorter than in Stage I.
Stage III, corresponding to increasingly frequent cross slips, is characterised by a
falling work-hardening modulus. Sometimes at still higher strains a fourth stage is
distinguished at least (see e.g. Ryen and Laukli 2006; Rollett and Kocks 1993).

However, these explanations of the form of the curve are based on a view of the
movement of the dislocations that has proved to be too simple: observations have
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shown that the structures are much more complex. The dislocations quickly form
first tangles and then cells, the latter of much smaller dimensions than the slip lines.
The mean distance d between slip lines and their mean length L can be measured on
the surface of a crystal that has been subjected to plastic deformation. The mean size
� of the cells can be found by examining thin sections with the transmission electron
microscope. The average length L of slip lines is of the order of the dimension of
the grain size: 10–100 �m; that of their mean distance � is of the order of 1 �m;
that of the dislocation cells is of the order of 0.1 �m.

As strain-hardening increases the level of stress, cross-slipping becomes easier
and we need to study this phenomenon, which involves the stacking faults.

The tangles and cells are easily destabilised by a change in the stress tensor; as a
result the cells are destroyed, but they are re-formed elsewhere. The small distance
between dislocations within the cell walls makes the annihilation of dislocations
easy; this phenomenon is responsible for dynamic recovery, which counteracts the
work-hardening.

(e) Model of work-hardening in relation with slip lines

We now show how the rate of work-hardening h D d� /d
 ('�/200) can be
determined and the available data on the slip lines can be related.

The flow stress � c is related to the dislocation density �D by the equation

�c D ’�b
p
�D (3.85)

and therefore

d�c=d�D D .1=2/ ’�b=
p
�D (3.86)

The increase d
 of the plastic deformation derives from the movement of the
dislocations; so we have to calculate d�D/d
 .

Suppose a source of dislocations has generated n loops that have accumulated at
the end of a slip line. These will have given rise to a plastic deformation


 D nL�b=V (3.87)

where � is the length of the dislocations and V is the volume occupied by a slip
line, that is L�d. The rate of increase in plastic deformation is then

d
 D .b=d/ dn (3.88)

Since the dislocation density is �D D n/Ld we have:

d
 D Lbd�D (3.89)

Substituting these relations 3.86 and 3.89 into h D d� /d
 , we get
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h

�
D ’

2

r
d

nL
(3.90)

On the other hand, the spacing d between the slip lines is related to the possibility
of dislocations to move on parallel slip planes; so from Eq. 3.64

d D �b

4 �
(3.91)

From this relation and using �D D n/Ld in Eq. 3.85, we get:

n D 1

.4 ˛/2
L

d
(3.92)

Hence Eq. 3.90 can be written:

h

�
D 4 ˛2

d

L
' 1

200
(3.93)

This shows that it is expected that the length L of the slip lines would be about
600 times their spacing d and that the number of dislocations n would be about 15,
so that the height of the slip lines nb would be of the order of 40 nm. These are the
right orders of magnitude (refer to Fig. 3.7).

(f) Initiation of dislocations cells

If the distance between adjacent attractive trees were constant and equal to l D 2
/
p
�D the flow strength would be given by Eq. 3.85. But in fact this distance is

distributed statistically. In the forest of dislocations there are hard zones that are
thicker. The flow stress is the stress that has to be applied to the dislocation to
make it cross the more sparsely planted areas. The dislocation, which is slipping
leaves a loop around each hard zone. The passage of a succession of dislocations
across the forest builds up an accumulation of loops at the hard points, which form
the first stages of the dislocation cells, stabilised by the arrival of further trees
from secondary slip planes, creating Lomer-Cottrell locks. Figure 3.63 shows a thin
slice of deformed material in a numerically simulated distribution of dislocations.
Bundles of dislocations can be observed.

The slip of the dislocations continues until the passages between the hard zones
become choked with accumulated loops. This occurs when the number n of loops is
of the order of �/l, and therefore about 15 as estimated in the previous paragraph.

(g) Cross-slip

We have seen (Sect. 3.3.4.1) that the dissociation of dislocations in FCC materials
introduces a small ribbon of stacking faults, along which the structure is close-
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Fig. 3.63 Thin slice of deformed material in a numerically simulated distribution of dislocations
in FCC metal (Verdier et al. 1998)

Table 3.6 Stacking-fault energy and
separation of Shockley partials at room
temperature


 f a0 b � d

Metal mJ/m2 nm nm GPa nm

Aluminium 166 0.410 0.286 26.1 1.0
Copper 45 0.367 0.255 48.3 5.5
Gold 32 0.408 0.288 27.0 5.6
Nickel 125 0.352 0.249 76.0 3.0
Silver 16 0.409 0.289 30.3 12.4

packed hexagonal (CPH). The energy 
 f of the stacking faults is related to the
difference in Gibbs free energy between the FCC and CPH phases. If a dislocation
(1/2)[110] is broken down so as to give .1 =6/ Œ211�C.1 =6/ 
12N1� (cf. Sect. 3.4.2.4)
the two imperfect dislocations will repel one another since b1.b2 is positive, with a
force

f12 D �b1b2

2�w

�
cos �1 cos �2 C sin �1 sin �2

1 � �
�

(3.94)

where w is their distance apart and �1, �2 the angles made by their Burgers vectors
with the original dislocation.

This repulsion f12 is counterbalanced by an attractive force, since the energy of
the stacking fault is proportional to w: at equilibrium f12 D 
 f, the fault energy per
unit area (Table 3.6).
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Fig. 3.64 A triple node of dissociated dislocations in the (111) plane, for an austenitic stainless
steel showing how the stacking fault energy can be determined. Similar dissociations can be seen
in Fig. 3.48 (Lecroisey 1971; Lecroisey and Thomas 1970)

The dislocations are more highly dissociated, the lower the stacking fault
energy.

Fault energies are measured by observing particular configurations of disloca-
tions, such as the one just described. The method most commonly used is the
direct observation of triple nodes satisfying 2�10�4<
 f/�b< 5�10�3. Figure 3.64
is an electron micrograph of such a node; this corresponds to the reaction of
three perfect dislocations (bT): (a/2)



1N10�, (a/2)



0N11�, (a/2)



10N1�, in the same

plane (111), each dissociated into two partials with Burgers vectors bp. Theoretical
treatment developed by Brown and Tholen (1964) enables 
 f to be deduced from
measurements of the inner and outer radii y and R.

It has been shown that in a number of FCC materials (e.g. austenitic stainless
steels, Fe-Mn austenitic alloys, Co-Ni alloys) the stacking fault energy is strongly
dependent on temperature (see e.g. Lecroisey and Thomas 1970). This effect largely
contributes to the temperature dependence of the work-hardening rate observed in
these materials, when they are deformed at various temperatures close to room
temperature (Brown and Tholen 1964; Brown 1964).

Measuring the size of tetrahedra of stacking faults is another way to determine
the stacking fault energy.

The dissociated dislocations can slip in only one plane, that defined by the
Burgers vectors b1 and b2 (Fig. 3.65). When meeting an obstacle, they can avoid
it by recombining for a certain distance, which requires energy, and then, when it
is a screw, by cross-slipping and dissociating again in the secondary slip plane. The
energy required is the larger, the greater the dissociation. Dislocations in metals with
a low stacking fault energy do not cross-slip easily. Thus metals with low stacking
fault energy have very straight slip lines. This process can take place on two different
(111) planes in FCC metals, from the basal plane to a prism plane in HCP and on
two different (110) plans in BCC.
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Fig. 3.65 Cross-slip of a
dissociated dislocation (a)
Dissociated dislocation
gliding on (111) plane, (b)
recombination along the
intersection



10N1� with

�
1N11�

plane, (c) cross-slip in
�
1N11�

plane

The calculation of the activation energy is complicated because it results from
a minimisation of the constriction energy, the increase of the line energy when
it bows in the secondary slip plane and the work of the shear stress (Friedel
1964).

(h) Dynamic recovery

The multiplication of dislocations represented by the relation 3.89: d�D D (1/bL)d

is in fact compensated for by the dynamic recovery process. This can be
viewed as the annihilation of pairs of dislocations of opposite signs when they
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approach one another on parallel slip planes closely enough, within a distance
y say. For a dislocation which moves a distance L there will then be an area
a D 2yL D (2y/b)(d
 /d�D) within which annihilation is possible, and within which it
will meet (1/2)a�D D (y/b)�D(d
 /d�D) dislocations of opposite sign. The reduction
in density, expressing the dynamic recovery, is therefore obtained by setting this
number equal to 1:

d�D D �y
b
�Dd
 (3.95)

It follows that Eqs. 3.89 and 3.85 for the work-hardening must be modified to

d�D D
�
1

bL
� �Dy

b

�
d
 (3.96)

h

�
D ˛

�
˛�b

L�c
� y�c

˛�b

�
(3.97)

These results indicate that the work-hardening will be linear if both the mean free
path of the dislocations and the annihilation distance y vary like 1/� c, which seems
reasonable.

(i) Composite model of a material containing cells of dislocations.

Plastic deformation leads to a very heterogeneous distribution of dislocations, with
cells in the walls of which the density is very high. These cells become very well
defined after cyclic deformation, when the crystal can be considered as consisting
of two phases, one hard and the other soft, working in parallel under the effect of
the stress. The slip planes are in fact continuous between the phases, and the shear
strain 
 varies only slightly. The mean stress can be written

� D fwl�wl C fcl�cl (3.98)

where the subscripts wl and cl denote the cell wall and interior, respectively, and
the f ’s are the respective volume fractions (fwl C fcl D 1). The diagram of Fig. 3.66
shows the macroscopic behaviour of this “composite” as a function of the separate
behaviours of the walls and the cells.

Let the dislocation densities in the walls and in the cells be respectively �D(wl),
�D(cl); the mean dislocation density is

N�D D fwl�D.wl/ C fcl�D.cl/ (3.99)

If the dislocations were distributed homogeneously the flow stress would be

N�c D ˛�b
p N�D (3.100)
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Fig. 3.66 Mugrabi’s
composite model for a
material containing cells of
dislocations. The upper
diagram refers to the cell
walls and interiors separately,
the lower to the combination
(Mughrabi 1988; Gil
Sevillano 1993)

but in fact:

�D.wl/ D ˛�b
p
�D.wl/

�D.cl/ D ˛�b
p
�D.cl/ (3.101)

so that we have approximately:

�c D ˛�b
�
fwl

p
�D.wl/ C fcl

p
�D.cl/

�
(3.102)

and

N�2c � �c
2 D .˛�b/2fwlfcl

�p
�D.wl/ � p

�D.cl/
�2

(3.103)

showing that the heterogeneity lowers the flow stress.
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Figure 3.66 shows several stages in the loading-unloading curve. Up to point 1
the behaviour of both cell walls and cell interiors remain elastic. At point 1 and
point 2 respectively the cell interior and the cell walls begin to deform plastically.
At point 3 elastic unloading begins, the cell interiors go to compression, and at point
4 reach the yield strength in compression, of equal magnitude to the one in tension,
and deform plastically: plastic yielding of the “composite” begins even before
complete unloading. This is the Bauschinger effect.14 The cell walls are still under
tension at this point. Residual stresses will remain after the load has been removed
(point 5). This can be expressed otherwise by saying that the work-hardening is
kinematic. Thus, this is linked to the heterogeneity, whilst isotropic work-hardening,
proportional to

p
�D, is produced by a homogeneous multiplication of the number

of dislocations (Exercise in Volume III).

(j) Recovery and recrystallisation

In spite of dynamic recovery, dislocations keep accumulating in the course of
deformation. Work-hardening is a treatment that can often be used with advantage,
for example for hardening copper tubes, drawn wires for tires, pre-stressed steel
bars. However, too strong a work-hardening can in particular impede operations of
shaping by plastic deformation; dislocations must then be partly removed with the
help of temperature by annealing.

The first effect is to accelerate the removal of pairs with opposite signs that are
close to each other, such as those that form dipoles. This gives a small reduction in
the dislocation density which is responsible for the recovery and so, combined with
the removal of the point defects formed during the work-hardening, in particular by
the dragging of the jogs, brings about the first stage in reducing the hardness.

In the next stage the dislocations arrange themselves so as to minimise their
interaction energy. The dislocation climb, made possible by the migration of
vacancies to the core, causes them to become equidistant from one another, so
forming walls of dislocations, as shown in Figs. 3.50 and 3.51 (refer to Sect. 3.3.8.3).
These walls introduce a misorientation and separate the grains into subgrains: this
is polygonisation. In Sect. 3.3.8.3 we determined the energy of such dislocations
walls or sub-boundaries (Fig. 3.52). The calculation becomes invalid when the
dislocations are too close from one another and the misorientation increases. With
such strong misorientations we should not be speaking of sub-boundaries, but of
boundaries proper. Their structure can be described by saying that where two
crystals of different orientations join there are very many atomic sites in quasi-
coincidence; for certain orientations, twins in particular, all are. These correspond
to minima on the curve of boundary energy against misorientation angle.

Finally, in the last stage of the annealing one of the subgrains that happens to be
more perfect may grow at the expense of the others, and form a new, recrystallised
grain; and after recrystallisation there will be an entirely new structure of grains in
which the dislocation density has returned to a low value (Fig. 3.67). The size of the
recrystallised grains is an increasing function of the annealing temperature and a

14Johann Bauschinger (1834–1893) was a German engineer.
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Fig. 3.67 Macrographs of
annealed aluminium test
pieces. (a) The trapezoidal
shaped tensile elongated test
piece contained a strain
gradient. (b) Annealing under
a temperature gradient

decreasing function of the original strain (Figs. 3.67, 3.68 and 3.69); the latter must
be above a threshold at which recrystallisation can occur. Annealing in the critical
conditions can be profitable for the fabrication of single crystals. As Fig. 3.69 shows,
recrystallisation reduces the hardness considerably.

It can be noted that there is a correlation between the recrystallisation tempera-
ture and the melting point (Fig. 3.70).

Recrystallisation can take place while an alloy is being deformed at high temper-
ature. This is called dynamic recrystallisation. Two types are observed: continuous
and discontinuous recrystallisation. The first one results from the migration of grain
boundaries in contrast to the second one, which occurs by the nucleation and growth
of new grains. This difference is reflected in the evolution of the stress in a torsion
test. In continuous recrystallisation, the stress first rises to a peak and then keeps
decreasing. In discontinuous recrystallisation, the stress oscillates.
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Fig. 3.68 Recrystallisation temperature of aluminium and size of the recrystallised grains

Fig. 3.69 Change of
mechanical properties of
brass and recrystallised grain
size as a function of the
recrystallisation temperature
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3.4.2.3 Interaction of Dislocations with Grain Boundaries

(a) The Hall-Petch law

Materials usually consist of grains with different crystallographic orientations,
separated by grain boundaries. When a polycrystal is stressed the displacement of
the dislocations starts in those crystals that are most favourably oriented with respect
to the shear stress. Sources of dislocation are activated when this reaches a critical
value – given by Eq. 3.51 – and then emit loops, which pile up against the grain
boundaries. This continues until the reaction exerted on the source stops it from
working. The accumulation of dislocations on the grain boundary induces stress
concentration on the adjoining grain and, when it reaches a critical condition, this
can activate sources there (Fig. 3.71). From there on plastic deformation extends in
all the grains. The yield strength of the polycrystal is then the critical stress needed
for this mechanism to operate. Of course, the number of dislocations, which can
accumulate in the first grain to deform, and consequently the stress concentrations
in the adjoining grains, are the smaller the smaller the grain size. We then expect
that the yield strength will be a decreasing function of the grain size d. Indeed, it
was found experimentally by Hall and Petch15 (Hall 1951; Petch 1953) that the yield
strength Rp followed the law:

Rp D 
i C kyd
�1=2 (3.104)

15Eric Ogivie Hall (1925–2009) was a New-Zelander born Australian metallurgist. Norman James
Petch (1917–1992) was a British metallurgist. The Hall-Petch equation is named after their
independent contributions in the early 1950s to the study of the influence of grain size on the
yield strength of polycrystals.
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Fig. 3.71 (a) Slip bands in the copper grain on the right, causing stress concentrations in the grain
on the left. These are relieved by secondary slips in the latter. (b) Slip lines in a copper polycrystal
work-hardened to 20%

where 
 i is the internal stress needed to move the dislocations in the first place, and
ky is the Petch factor. This is known as the Hall-Petch law (Fig. 3.72) (Table. 3.7).

The internal stress 
 i is strongly dependent on temperature, but ky is not.
Finally, note that the sub-boundaries and the boundaries between twins can

constitute obstacles analogous to the grain boundaries and can lead to relations of
the Hall-Petch type in which grain size is replaced by the mean distance between
these obstacles. For further study see Gil Sevillano (1993).
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Fig. 3.72 Hall-Petch relation

Table 3.7 Values of the Petch factor ky Alloy 
š (MPa) ky (MPa
p

m)

BCC
Mild steel Re 71 0.74

Rp 294 0.39
Molybdenum Re 108 1.77

Rp 392 0.53
Niobium Re 69 0.04

FCC
Copper Rp0.5 26 0.11
Aluminium Rp0.5 16 0.07
Aluminium 3.5% Mg Re 49 0.26
Silver Re 37 0.07
Brass 70/30 Re 45 0.31

Rp20 337 0.34

HCP
Zinc Rp0.5 32 0.22

Rp17.5 72 0.36
Magnesium Rp0.2 6:9 0.03
Titanium Re 78 0.40
Zirconium Rp0.2 29 0.25

Recent studies on nanocrystalline materials (grain size of the order of
10–100 nm) have shown that the Hall-Petch law (3.104) does not work for these
grain sizes. The yield strength decreases with the grain size, which is the opposite
of the effect predicted from Hall-Petch equation (see e.g. Sanders et al. 1997).
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Fig. 3.73 Yield strength of copper as a function of the grain size (From Meyers et al. 2006)

Figure 3.73 shows that the hardness in nanocrystalline Cu no longer increases with
decreasing grain size below about 15 nm. While this may indeed be the case, it is
possible that changes in synthesis conditions used to prepare the smaller grain sizes
are counteracting the strengthening from further grain refinement. It is therefore
difficult to separate inherent mechanical properties from processing. The behaviour
of nanocrystalline materials is discussed later.

We must now try to calculate the critical stress to see if the Hall-Petch law can
be justified and several models have been used.

(b) Pile-ups model

The first model, which we study is that of simple pile-ups of dislocations, as
described in Sect. 3.3.8.2, is at the origin of the stress concentration in the adjoining
grain (Fig. 3.49). Such pile-ups can be observed in materials of low stacking
fault energy, so that the slips are very planar, such as in austenitic stainless steels
(Fig. 3.48). We demonstrated that at the head of a pile-up the stress reaches
n�b, and that the number n of dislocations, which can be accumulated before the
source ceases to be activated, is given by formula (3.69). We slightly modify these
expressions by replacing the shear stress � by the effective stress � eff. It is equal to �
� � i, � i being the “friction” stress, the stress needed to move dislocations in the first
place. Now equating n� effb to the stress needed to activate a source in the adjoining
grain � s, replacing n by the value given by Eq. 3.69 with the size of the pile-up L
taken as half the grain size d, we obtain:

d

4Mb
.�Y � �i/

2 D �s (3.105)

where �Y is the yield strength of a grain in the polycrystal. This can justify the
Hall-Petch law.
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(c) Model of the mean free path of dislocations (Johnson model)

Despite the above analysis, several observations seem to indicate that very high
stresses are not necessary for the activation of sources in the grain boundaries. Now,
slip bands consisting of several slip lines can produce stronger stress concentrations
on the grain boundary. But, we can also confirm the Hall-Petch law from the relation
(3.85)

�y � �i D ˛�b
p
�D (3.106)

by assuming the mean distance travelled by the dislocations to be proportional to
the grain size, say lD Dˇd; then with 
 D �DblD D �Dˇbd we have

�Y � �i D ˛�

s
b


ˇ
d�1=2 (3.107)

This model, due to Johnson, gives a Petch factor that varies like the square
root of the deformation. It has been improved by Ashby (1970), who took into
account the density �G of geometrically necessary dislocations: with �G D 4
 /bd
(from Eq. 3.17) we have

�Y � �i D ˛�

�
b


�
1

4
C 1

ˇ

��1=2
d�1=2 (3.108)

(d) From grain to overall behaviour

Strain incompatibilities between different grains can become very important in plas-
tic deformation. Von Mises has shown that these can be eliminated by introducing
five independent slip systems. We shall take up this question again in Sect. 3.5.3.6,
with Taylor’s model. Crystals that do not have five such systems, such as beryllium,
which does not slip easily except in the basal and prismatic planes, compensate for
this lack by twinning, but they have only poor ductility.

In FCC metals, on the other hand, there are many ways in which slip systems can
be combined to produce a given slip; Taylor made a detailed study of this. The work

 d" done in a plastic deformation d" must equal the sum of that done in all the slip
systems, that is:


d" D �Y

X
i
d
i (3.109)

where �Y is the shear stress, assumed to be the same in the various systems, and the

 i are the shear strains.

We get 
 /�Y D mT, the mean value of the Taylor factor; in the absence of texture
this is 3.067 for FCC, when all the slip systems combine to minimise the work. mT
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is different from mS, the mean of the inverse of the Schmid factor for single crystals,
which for FCC structures is 2.24.

To derive from the curve � D f(
 ) for a single crystal the tensile curve 
 D f(")
for a polycrystal, we can put 
 D mT� and 
 D mT". In these conditions the relations
derived above for a grain lead to the Hall-Petch relation (3.104) between the proof
strength Rp and the grain size.

(e) Nano-structured materials

The Hall-Petch law displaying increase of the yield strength when the grain size
is decreased incites to fabricate materials with as small a grain size as possible
(Meyers et al. 2006; Saada and Durras 2009). The extrapolation down to nano-
grains would predict yield strengths of the order of 4,000 MPa. Various techniques
have been developed to obtain nano-structured materials (Tham et al. 2007). We
will not quote them all. One of them is to use severe plastic deformation. Very large
drawing ratios allow to obtain eutectoid carbon steel wires used in tires with yield
strength that can reach 3,000 MPa. Equal channel angular pressing (ECAP) (Valiev
1996) consists in using in several passes an extruder the channel of which is bent
to an angle which can be as large as 90ı (Fig. 3.74). This can produce 100 nm
grain size metals. Electrolytic deposition can produce nano-structured materials of
smaller grain size (Erb 1995; El-Sherik and Erb 1995). We omit the techniques,
which require sintering of powders, which makes difficult the complete elimination
of porosities.

Ram

Die

Fig. 3.74 Sketch of the
equi-channel angular pressing
(ECAP) process for grain
refinement
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Various considerations prevent extrapolating the Hall-Petch law to nano-grains.
In such materials, considering that the thickness of grain boundaries ı is of the order
of a few inter-atomic distances, the volume fraction of grain boundaries 3ı/d can
reach 60% for a grain size of 5 nm. Such grains are too small to store dislocations.
Pile-ups are not possible. Furthermore work-hardening from interaction between
dislocations is absent. However, it must be noticed that a dislocation crossing a
grain of nanometric size produces a very large strain ": as n dislocations produce a
strain "D nb/d, if the grain size is of the order of 20b, one dislocation produces a
strain of 5%. Thus, the initial slope of strain-hardening is very large (Saada 2005).

Indeed the yet too scarce experimental results demonstrate that below a grain
size of the order of 25 nm the Hall-Petch law is no longer valid. The scatter of
data, which might be due to the presence of porosities in some of the experimented
alloys, does not allow discriminating between a plateau and a negative slope in the
Hall-Petch curves (Fig. 3.73 as an example).

Various models have been proposed for the deformation of nano-grains. Grain
boundaries can emit dislocations, and numerical simulations show that this is the
essential mechanism for small grain sizes. From Eq. 3.51 the stress to activate
a source of a 20b grain size in steel would be 5,800 MPa, too high in view of
experimental results even considering local stress concentrations. However it is less
for partial Shockley dislocations. In crossing the grains they would leave stacking
faults and even twins and this was observed in aluminium (Chen et al .2003; Liao
et al .2003); it was also found by numerical simulations. Another model (Carlton and
Ferreira 2007) treats the absorption of dislocations by grain boundaries, showing
that, whereas these are impervious for large grains, making pile-ups possible, the
probability of absorption increases as the grain size decreases; this is due to the
fewer number of dislocation core atoms, which for absorption must jump in the
grain boundary, when the dislocation length is decreased.

Lastly, the predominance of grain boundaries in nano-structured materials eases
deformation by grain boundary sliding and by Coble16creep, which will be studied
in Chap. 4 of this Volume.

It remains that decreasing the grain size to very low values is beneficial for
increasing the yield strength (Fig. 3.72). As examples, a yield strength of 900 MPa
was reached for a 10 nm grain size of electro-deposited nickel (Robertson et al.
1999). Using 16 passes of ECAP (Equal-Channel Angular Pressing), the yield
strength of a 6061 aged aluminium alloys was raised from 90 MPa up to 306 MPa
(Tham et al. 2007). We mention also at this point that decreasing the grain size is
also beneficial when considering other properties, such as fatigue and brittle fracture
resistance. This will be studied in Volume II, devoted to damage mechanisms.

At the end of this section devoted to grain size effect it should be admitted that, if
it is well accepted that grain size refinement is the best method to improve the yield
strength and decrease the ductile-to-brittle transition temperature in ferritic steels
(see Volume II), the physical basis of the scale effect represented by the Hall-Petch
equation is not yet firmly established. This is likely due to the poor knowledge of

16Robert L. Coble (1928–1992) was an American materials scientist.
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the mechanisms describing the crossing of grain boundaries by dislocations. This
fundamental problem can only be addressed with special grain boundaries, such as
twin boundaries, as shown later, in Sect. 3.4.4.

3.4.3 Interaction of Dislocations with Foreign Atoms

We have been looking at three mechanisms for hardening materials: the Peierls force
(which depends essentially on the binding force of the crystal), work-hardening and
the effect of grain size. These provide some scope for affecting the hardness of a
pure material, and we now show how suitable alloying can give us much greater
flexibility in modifying the mechanical properties, particularly by heat treatment.
The foreign atoms in a crystal can enter either in solid solution or as precipitates or
particles introduced on manufacture.

3.4.3.1 Solid Solution Strengthening

Atoms in solid solution can interact with dislocations in three ways, determined by
the effects of size, modulus and chemistry, respectively. This last effect has to do
with the stacking fault energy. We will discuss this after studying the solid solution
hardening due to size effects.

(a) Effect of size

In general, a solute atom will have a different radius a0S D (a0 C�a0) from that (a0)
of the solvent atoms and will therefore be surrounded by a dilatation field, which
has an energy of interaction with the stress field of a dislocation. For this reason an
atom that dilates the network will tend to place itself in the dilatation zone close
to the edge dislocations. More precisely, the change in volume �V due to an atom
with size factor �D�a0/a0 is �V D 4 a0

3� and the interaction energy is 
m�V,
where 
m is the hydrostatic stress, equal to the mean stress. From Eq. 3.43, giving
the stresses around the dislocations, we have


m D �1C �

1 � �
�b

3 r
sin � (3.110)

so the interaction energy is:

U D �
m�V D 4

3

1C �

1� �

�b

r
.sin �/ a03� D 1

6

1C �

1 � �
�b4

r
� (3.111)

for � D /2 and a0 D b/2.
For copper, with crystallographic parameter a0 D 3.615 � 10�10 m, �D 48.3 �

109 Nm�2; taking r D 2a0 and � D /2, this gives U D 1.7� eV.
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Pure BCC iron

C

Solid solution of carbon in
iron under tension

Fig. 3.75 Solid solution of carbon in BCC iron under tension; the lattice is changed to body
centred tetragonal (A5)

An atom, which only dilates the lattice does not interact with a screw dislocation.
However, certain atoms in solution also distort the lattice, a case of great practical
importance being that of carbon and nitrogen in solid solution in ˛-iron (Fig. 3.75).
Being very small – the radius of the carbon atom is 0.77 � 10�10 m, whilst that of
BCC iron is 1.241 � 10�10 m – they can be inserted between the iron atoms, forming
a solid solution. The carbon atoms can occupy the positions (½,0,0), (0,½,0),
(0,0,½); under tensile stress in the direction [001] the (0,0,½) positions become the
most favourable and the carbons migrate there. Under compression, on the contrary,
they leave this position. If the crystal is cycled through tension and compression
at a frequency corresponding to the jumps of these atoms from one position to the
others, there is a strong absorption of energy, which can be measured by means of a
torsion pendulum. Following the decrement of the oscillations, at 1 Hz is measured
the corresponding peak of the internal friction, called Snoek’s peak (Snoek 1941),
in the neighbourhood of the ambient temperature (refer to Sect. 5.2.2.3).

Here the distortion brought about by the carbon atoms generates an interaction
energy not only with edge dislocations but also with screw dislocations; the level is
a few electron volts (see Exercise in Volume III).

(b) Effect of modulus

The effect here is due to the difference in elastic modulus between the matrix and
the solute. In the absence of any effect of size the deformation energy is proportional
to the elastic modulus; it can be shown that it is of second-order relative to the size
effect and therefore can often be neglected.
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Fig. 3.76 Dislocation interacting with solute atoms close to its slip plane. The top sketch shows
the equilibrium position of the dislocation and how it jumps from one atom to the next when the
force is high enough. The bottom sketch shows the model of Friedel for the displacement of the
dislocation

(c) Solid solution strengthening

Here we calculate the stress needed to move the dislocations in the solid solution.
As a result of the interaction with the solute atoms the equilibrium position of

a dislocation zigzags between those in its slip plane (Fig. 3.76). The first step is to
determine this position. It results from the compromise between the gain in energy
by solute atom pinning and the increase of line energy. As shown by Eq. 3.102,
the interaction energy decreases as the inverse of the distance of the atom to the
dislocation, and we will take into account only those atoms, which are at a distance
of the order of the Burgers vector.

If the concentration of solute atoms is c, there are c/b2 of them, which, being
at least at a small enough distance, can interact with the dislocation. Averaging the
distance x and y displayed in Fig. 3.72, there are 1/xy solute atoms per unit area of
slip plane, which interact with the dislocation: 1

xy
D c

b2
. The gain in energy per unit

length of the dislocation due to the pinning effect of the atoms is E1 D U
y

D Uc
b2
x.

On the assumption that x/y is small, the energy of the line increases by

E2 D �b2

2

h�
x2 C y2

�1=2 � y
i
= y ' �b2

4

�
x

y

�2
D �c2x4

4b2
(3.112)
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Minimising E2�E1, replacing U by the expression 3.111 with r D b, we find the
equilibrium zigzag width xe:

xe
3 D U

�c
D 1

6

1C �

1 � �
�

c
b3 (3.113)

and

ye
3 D 6

1 � �
1C �

1

�c2
b3 (3.114)

and we can check that xe/ye is indeed small.
Under the effect of an applied stress the dislocation jumps from atom to atom. It

moves from ABC to AB’C, corresponding to energy minima, passing through AC
corresponding to a maximum. The work done by the stress must equal this change
in energy, which is 2ye(½E1�E2). Friedel (1964) suggested that the area swept in
making this jump is on average equal to the area per atom in the slip plane b2/c.
Thus the work is:

�cb
b2

c
D E1 � 2E2

ye
(3.115)

and therefore:

�c D Uc

2b3
(3.116)

which, with the value of U from (3.111), gives:

�c D ��c

4
(3.117)

In this calculation we have assumed, for simplicity, that the segments of
the dislocation between successive solute atoms are straight lines: this is only
approximately true, since if t is the line tension the stress induces a curvature 1/R D
�b/t, as we showed in Sect. 3.3.7 (Eq. 3.51).

Let K be the maximum force an atom can exert on the dislocation. From
Fig. 3.77, the equilibrium conditions give:

2t cos� D K (3.118)

and we have also

�bL D K (3.119)
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Fig. 3.77 When the atomic concentration is high the angle ˛D xe/ye becomes greater than the
complement of the angle �. The dislocation moves by being unpinned from all atoms at the
same time

With radius of curvature R, and assuming that � is close to  /2, which is so if t is
much greater than K, the area in question is L3/2R, and Friedel’s assumption gives

L3=2R D b2=c (3.120)

Also L D 2R cos�. Eliminating �, R and L from the relations and remembering
that t D ½ �b2, we find:

�c D .K3=2=b3
p
�/

p
c (3.121)

To find the value of the force K we consider an edge dislocation, which slips in
a plane distant b from the solute atom. From (3.111), with a0 D b/2 and �D 1/3, the
energy is:

U D �b4

3

b

�2 C b2
� (3.122)

where � is the projection on the slip plane of the distance between the dislocation
and the solute atom. The force exerted on the atom by the dislocation is K D @U/@�
and its maximum value, at � D b/

p
3, is:

K D
p
3

8
�b2� (3.123)

This is much less that the line tension.
If we replace K in (3.121) by the value we have now found we get, for the critical

stress � c,

�c D 0:1��3=2
p
c (3.124)
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Fig. 3.78 Effect of the
concentration of solute atoms
on the critical shear stress of
copper

However, when the atomic concentration is high, or the pinning of dislocations
by solute atoms weak, the average angle of deviation ˛D xe/ye can be greater than
the complement K/2 t of the angle �, in which case the dislocation cannot jump
from one atom to the next, as we just considered, without getting unpinned from the
others (Fig. 3.77). The dislocation now must overcome all the obstacles as a whole.
The force needed is equal to the sum of the resistance of the 1/ye atoms per unit
length to which it is pinned.

The critical concentration is such that xe/ye D K/2 t, that is 0.09�.
When the concentration is larger than this critical value, the critical shear

stress is:

�c D 1

ye

K

b
D 0:15��4=3 c2=3 (3.125)

These relations, giving a square root dependency of the critical shear stress
with respect to the atomic concentration of solute atoms below a critical value
and a power 2/3 dependency above, are supported by experimental observations
(see Fig. 3.78 for instance); so are the dependencies in power 3/2 and 4/3
respectively with respect to the size factor (Fig. 3.79). But this holds only at very
low temperatures; as we shall see later, thermal agitation can destroy hardening
completely. For further study see Reppich (1993).

(d) Hardening by “atmospheres”

When the interaction energy is high and the solute atoms can diffuse easily, as is
the case for carbon and nitrogen in iron, they group themselves around dislocations
so as to form what are called atmospheres (see Exercises in Volume III). This
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Fig. 3.79 Effect of the size factor on the yield strength of copper

anchors the dislocations very firmly and it is found that a large stress is needed
to detach them: it is easier to create new dislocations in stress-concentration zones,
for example in the regions where the heads of a test piece join the stem. These
dislocations can then slip, to form pile-ups and activate anchored dislocation sources
by the Hall-Petch mechanism described in Sect. 3.4.2.3. The process starts an
avalanche that runs from grain to grain through the entire polycrystal, forming what
is called the Lüders or Piobert-Lüders band17 (Fig. 3.80), which can be propagated
by a much smaller stress than that needed to start its formation. This is shown by
a yield drop in the tensile stress-strain curve (Fig. 3.81), followed by a plateau
corresponding to the invasion of the test piece by Piobert-Lüders bands. During
this time the deformation is concentrated on the periphery of these bands; they can
form patterns on the surface of mild steel that has been annealed at around 300ıC,
giving it an unattractive “orange peel” appearance, something that clearly is to be
avoided.

We now study the kinetics of this hardening mechanism. If D is the diffusion
coefficient for carbon and nitrogen atoms, their rate of migration v satisfies

v D �DgradU

kT
(3.126)

17Guillaume Piobert (1793–1871) was a French mechanical engineer and scientist who observed
and described these bands in 1842 when studying shocks on plates. W. Lüders published his
observations in 1860.
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Fig. 3.80 Piobert-Lüders
bands on a mild steel test
piece

Fig. 3.81 Yield drop (a) iron single crystal and (b) mild steel: A unloading followed immediately
by reloading; B unloading followed by 100ıC annealing for 10 min; C unloading followed by
100ıC annealing for 1 min

From (3.111) giving the interaction energy U between a solute atom and a
dislocation, and ignoring the angular variation, we get

v D D

kT

A

r2
(3.127)

where A D 2.3�a0
3�a0 D 2.3�a0

4�.
After a time t the atoms, that have migrated to the core of the dislocation, were

less than a distance rt. If their migration rate is v(r) this is expressed by:

Z 0

tr

�dr

v.r/
D 1 (3.128)
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Fig. 3.82 Portevin-Le
Chatelier effect in mild steel,
strained at 10�4 s�1 at
various temperatures

whence:

rt D
�
3DAt

kT

�1=3
(3.129)

From this we find that, if the concentration of solute atoms in the solid solution
is c0, that on the dislocation line is:

c D  rt
2bc0

b3
D  c0

b2

�
3ADt

kT

�2=3
(3.130)

Thus the hardening kinetics, which is the same as that of the formation of
the atmospheres, follows a t2/3 law.

This agrees with the results of observations, and the activation energy is found to
agree well with that of the diffusion of carbon and nitrogen atoms.

(e) Portevin-Le Chatelier effect

If the temperature is high enough and the rate of plastic deformation not too great,
the solute atoms, as they diffuse, can recapture the slipping dislocations. More
precisely, the dislocations continue to slip until they meet an obstacle, when they
are stopped and anchored by the diffusing atoms; to make them move again requires
an increase in the stress. The process is repeated, giving a series of kinks on the
tensile curve. This is the Portevin-Le Chatelier18 effect, which can be seen in
experimentally-observed curves such as Fig. 3.82 (Le Chatelier and Portevin A
1923).

18Albert Portevin (1880–1962) was a French metallurgist. Henry Le Chatelier (1850–1936) was a
French chemist.
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Fig. 3.83 Sketch showing
the strain rate dependence on
the force to move a
dislocation. (a) Dragging
force in the presence of
Cottrell atmospheres; (b)
Lattice friction force

Mild steels with a BCC structure extended at normal strain rates (�10�4 s�1)
and at intermediate temperatures (�300ıC) present a succession of yield points or
serrations which makes them brittle (Fig. 3.82). If during the plateau which follows
the initial yield point (due to Piobert-Lüders bands associated with static ageing
(Sect. 3.4.3)) the zones from which the Lüders bands have started have had the time
to age, the deformation after the end of the initial plateau will not be homogeneous:
it will reinitiate in the non-aged zones, then propagate into the aged zones forming
new Lüders bands and new serrations on the stress-strain curve. This type of ageing
is named dynamic ageing to differentiate it from static ageing which produces only
one yield point at the onset of plastic deformation. Blue brittleness (�300ıC) should
appear when the ageing time (Eq. 3.130) becomes shorter than the time to propagate
a Lüders band (Friedel 1964).

Portevin-Le Chatelier effect has also been observed close to room temperature in
aluminium alloys with a FCC structure, and in many austenitic iron- or nickel-based
alloys, such as Inconel 718 (Ni-20Cr-20Fe-5Nb-3Mo-2.5Ti-2Al). The substitutional
solutes in these alloys diffuse much too slowly for repeated yield points to be
produced from the beginning of the stress-strain curves. The vacancies created
by deformation are then probably present in enough concentration to accelerate
sufficiently the diffusion of the solute atoms (Friedel 1964).

One way of representing the source of the Portevin-Le Chatelier effect is shown
in Fig. 3.83 where two regimes for propagating a dislocation at a given strain rate
are considered. At low strain rate the dislocation moves with its atmosphere of
impurities (carbon and nitrogen atoms in BCC crystals; substitutional solutes and
eventually carbon atoms in FCC crystals). This regime corresponds to a dragging
force. At high strain rates, the solute atoms have not enough time to diffuse during
the displacement of the dislocations and to form atmospheres around them. In this
regime the force to move the dislocations is only due to the lattice friction force.
In between these two extreme regimes there is a domain of strain rate where the
force to move a dislocation decreases with strain rate as indicated schematically in
Fig. 3.83. This regime is thus accompanied by a negative strain rate effect, which
produces a chaotic phenomenon.

In FCC alloys deformed at a given strain rate, the strain at the onset of serrations
on the stress-strain curves is an increasing function of temperature, as shown in
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Fig. 3.84 Portevin-Le Chatelier effect in Alloy 718. (a) Evolution of the onset of serrations
(critical plastic strain) as a function of temperature; (b) Fracture modes (transgranular vs.
intergranular) and plastic flow modes (existence of Portevin-Le Chatelier (PLC) effect)

Fig. 3.84a. This critical strain appears at higher temperatures when the strain rate is
increased (Fig. 3.84b). The influence of the PLC effect on the mechanical behaviour
of materials is still largely discussed. The negative strain rate dependence of the flow
stress may be the source of strain localisation which leads to a reduction in ductility.
Recently the “beneficial” influence of the Portevin-Le Chatelier effect has been
underlined in Alloy 718 tested in air environment (Garat et al. 2008). At low strain
rate and in air this material gives rise to intergranular fracture due to environmental
effect when tested around 500–600ıC. As shown in Fig. 3.84 this mode of failure
disappears when the strain rate is sufficiently low such as the Portevin-Le Chatelier
effect is suppressed. In the presence of serrations, the strain rate can be locally
sufficiently large to annihilate the deleterious effect of the interactions between
deformation and intergranular oxidation.

(f) Chemical (Suzuki) effect

We have seen in Sect. 3.4.2.2(g) that cross-slip of dislocations is related to the
stacking fault energy. If we dissolve in the metal a solute that stabilises the HCP
phase relative to the FCC this will lower the stacking fault energy. When the solute
atoms migrate to the dislocation, they stabilise the dissociation. A strong interaction
energy results (for example, a reduction in 
 f from 45 to 6 mJ m�2 when 30% of Zn
is dissolved in Cu) and an increase in the yield strength, related to the segregation of
foreign elements on the fault. This is called the Suzuki effect19 (Suzuki 1952). These
alloying effects, which reduce the stacking-fault energy, can increase the hardness
considerably in FCC metals by inhibiting Stage 3 of the work-hardening process.

19Hideji Suzuki was a Japanese scientist.
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Fig. 3.85 Variation with
temperature of the stacking
fault energy of two austenitic
stainless steels (Lecroisey and
Thomas 1970)

It provides a method of reinforcement that is used with many FCC industrial alloys
for which the stacking-fault energy at ambient temperatures is low: for example,
stainless steels of type 18Cr-12Ni, or Hadfield (20Mn-5Cr) steel, for which 
 f � 20
mJ m�2.

However, the method is effective only at low temperatures. In the materials
we have been discussing the stacking fault energy is strongly dependent on
temperature, as is shown by the results for stainless steels given in Fig. 3.85 and
as indicated previously (see Sect. 3.4.2.2(g)). This dependence is related to the
entropy change �Sfcc!hcp associated with the FCC!HCP transition, since a fault
corresponds locally to the structure of the HCP phase, and it can be shown, from
basic considerations, that d
 f/dT D � (8/

p
3)a2N�Sfcc!hcp where N is Avogadro’s

number.

3.4.3.2 Hardening by Precipitates

(a) Various types of precipitates and of interactions with dislocations

Spreading out precipitates or particles of a second-phase in a matrix is one of the
most efficient ways to harden it. Precipitation can be achieved in alloys systems
in which the limit of solubility of foreign atoms increases when the temperature
is raised. Aluminium alloys provide a typical example. The Al-Cu phase diagram
shows that the solubility of Cu falls from 5% by weight at 550ıC to almost zero
at ambient (Fig. 3.86). The precipitation stages start with a solid solution at high
temperature, and include very quick cooling by quenching, so as to obtain a solid
solution that is supersaturated at ambient temperature, and then ageing at ambient
temperature or annealing at a higher temperature causing precipitates to form (see
Annex 2).
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Fig. 3.86 Al-Cu equilibrium
phase diagram

A 4% Cu alloy quenched from 550ıC evolves as follows (see Figs. 3.87 and
3.88):

– At first the Cu concentration fluctuates, the atoms clustering in certain regions to
form Guinier-Preston (GP) zones (Preston 1938) of very small size. Guinier and
Preston,20 independently, observed these zones by X-ray diffraction. In AlCu
alloys they are one-atom thick disks (Fig. 3.89) (Jouffrey and Dorignac 1992).
These clusters give then rise to precipitates ™0, which, whilst coherent, have a
well-defined interface with the matrix; their lattice is continuous with that of the
aluminium.

– As the precipitates grow in size the coherence tends to be lost as a result of
dislocations being created on the surfaces: Fig. 3.90 gives an example of this
semi-coherent intermediate state.

– The final stage is the formation of precipitates of CuAl2, which are not coherent.

The shape of the GP zones as well as that of the precipitates depends on the
alloying element. In Al Ag for instance they are spherical.

In some alloys, such as Ni-based alloys, the precipitates of the phase ”0 (Ni3TiAl)
are ordered.

Irradiation can produce foreign atoms by transmutation, for instance atoms of
He. It also creates point defects, in particular vacancies. These He atoms and
these vacancies are supersaturated and they go back to equilibrium by clustering.
Thus, He bubbles and cavities are formed in a similar way as precipitates (refer to
Sect. 3.4.3.2(h)).

20André Guinier (1911–2000) was a French physicist; George Dawson Preston (1896–1972) was
a British physicist.
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Fig. 3.87 GPI and GPII zones

Various techniques are available to incorporate particles in a metal matrix:
powder metallurgy, mechanical alloying. A great number of combinations of
inclusions and matrix are possible, for instance aluminium reinforced by SiC
or Al2O3 particles. This has the advantage that the particles can have a better
temperature stability than precipitates, but the disadvantage that it can be difficult to
disperse them evenly (see Chap. 1 and Annex 2).

Thus there are two kinds of precipitation hardening: coherent precipitates and
incoherent ones or particles. The dislocations can penetrate in the first but not in
the second, which they must by-pass by the Orowan mechanism. It consists in the
bending of the dislocation until the radius of curvature reaches the critical value,
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Fig. 3.88 Coherent and incoherent precipitates

followed by the expansion of the loop leaving circular rings around the obstacles
(Figs. 3.91 and 3.92) (see also Bacon et al. 2009 and Chap. 4).

Cross-slip is another way to overcome these obstacles, as will be discussed later.
Coherent precipitates can be sheared by the crossing of dislocations (Fig. 3.93).

(b) Shearing of coherent precipitates

The penetration of a dislocation in a coherent precipitate is hampered by several
factors. Each one of them can be represented by a resisting force K acting at the
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Fig. 3.89 High resolution electron microscopy of an AlCu alloy exhibiting a GP zone, which was
split by the crossing of a dislocation (Adapted from Karlik and Jouffrey 1996)

point where the dislocation leaves the precipitate. A detailed treatment is given in
Kocks et al. (1975). These resisting mechanisms are the following:

– The Peierls friction stress �PN.
– If the precipitate is ordered, the passage of a dislocation creates an antiphase

boundary which has an energy 
A per unit of surface area: this is especially
so for the very important case of nickel-based superalloys containing ordered
precipitates of the phase ”0 Ni3Al (Fig. 3.93), and some Al-Li alloy containing
ordered •0Al3Li precipitates.

– Since the precipitate and the matrix will have different specific volumes, there
will be a size effect characterised by the parameter �D�a0/a0.

– The core energy of the dislocation can be different in the interior of the
precipitate, in which case the line tension will be changed

– The precipitate and the matrix can have different elastic moduli; this includes the
case of cavities, for which the modulus is clearly zero.

– The passage of a dislocation shears the precipitates and produces a step of height
b at the interface, with an interface energy 
 i.

We need to be able to calculate the value of K, the resistance of the precipitate,
in each of the preceding cases. These values are listed in Table 3.8.

In this table W is the width of the particle, that is its diameter in the case of
a spherical particle, and � the angle at which the dislocation enters the spherical
precipitate (Fig. 3.94).
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Fig. 3.90 Precipitates of
NiAl in a ferritic FeCrNiAl
alloy, after tempering at
715ıC for 16 ½ days,
showing dislocations in the
semi-coherent interfaces

t

dislocation

1 2 3 4

dislocation loop

Fig. 3.91 Sketch of the Orowan mechanism

As an example we take the creation of a step on the interface by the passage of a
screw dislocation. In Fig. 3.94 Kx and Ky are the forces exerted at the point where
the dislocation enters the precipitate; in the case we are considering the increase in
energy due to the step is by
 i and therefore
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Fig. 3.92 Orowan mechanism (a) ”0 particles in a nickel-based alloy (waspaloy) strain-cycled
(�"p/2D 0.2%) at 650ıC, (b) particles in ferritic stainless steel (FeCrNiAl) aged at 650ıC for 6 h
and hardened by precipitation of the NiAl phase, followed by work-hardening

Ky D d.by
i /

dy
D b
i

Kx D 0 (3.131)

We now seek the stress needed to shear a precipitate, which we assume to be
spherical of radius r. From Fig. 3.94, if Ky(�) is the resistance offered by this
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Fig. 3.93 (a) Shearing of precipitates of ”0 in a nickel-based superalloy (waspaloy (18.7Cr,
14Co, 1.45Al, 8.9Mo, Bal Ni)) aged at 600ıC for 10 min and tensile strained by 0.8%, (b) The
dislocations are grouped by pairs so as to reduce the area of the antiphase boundaries created by
shearing the precipitates

Table 3.8 Individual particle resistances (Kocks et al. 1975)

Mechanism Resistance to edge Resistance to screw Activation
Order of magnitude dislocation dislocation energy

Friction stress Ky D �PNb .W =2 / cos � Ky D �PNb .W =2 / cos �
 

4
�PNbW

2

�/100

Disordering Ky D 
A .W =2 / cos � Ky D 
A .W =2 / cos �
 

4

AW

2


A��b/100
Misfit stresses Ky max � j�j�bW Small � �bW 2 j�j
�� 1/100

Core energy difference Kx D �tedge Kx D �tscrew j�t jW
�t� t/100

Modulus difference Kx � �

�
�

1� v

�
b2

5
Kx � ��

b2

5
j��j b2W

j��j � �=2

Interface step kx D b
isign .�y/ Ky D b
i Ky D 2bW 
i


i � �b=100
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Fig. 3.94 Shearing of a coherent precipitate by a dislocation pushed by a force �b in the direction y

obstacle and t the line tension, the equilibrium equation at the point where the
dislocation enters the obstacle is:

Ky � �br cos � D t cos� (3.132)

If a dislocation is anchored between two points distant of �

2t cos� D �b� (3.133)

Hence the elimination of 2tcos�., since �D L � 2rcos� , yields � D 2Ky/Lb.
Now the angle �, which the dislocation makes with the y direction where it enters

the precipitate, must remain larger than �� . Otherwise the dislocation wraps around
the precipitate. From the preceding Eqs. 3.132 and 3.133, it means that:

cos � �
�
t

Ky
C 2r

L

��1
(3.134)

If the term between braces in this equation is smaller than 1, this condition cannot
be fulfilled. The precipitate cannot be sheared.

When shearing occurs, the critical shear stress is given by:

�c D 2Ky.�/max

Lb
(3.135)

When the second member of the condition (3.135) is larger than 1, the dislocation
penetrates in the precipitates until �D �� , and then it wraps around it and we deal
with a non-shearable precipitate, a case we are to study in the next paragraph.

However, as in the case of isolated atoms, we need to modify the relation we have
just derived to take account of the statistical distribution of the precipitates. Friedel’s
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statistics equates the area �3/2R swept by a dislocation each time it escapes from a
precipitate to the mean area per precipitate, L2; this gives:

�c D 2t.cos�/3=2

Lb
(3.136)

cos� being given by Eq. 3.132.
Dislocation movement through random arrays of obstacles has been simulated

numerically by Foreman and Makin (1966). The shear stress required to move
the dislocation through the array has been determined for the complete range of
breaking angles � from 0 to  /2 and the results have been expressed in an empirical
form. The dislocation is observed to move often by an “unzipping” mechanism
involving consecutive breakaway from obstacles on the dislocation (Figs. 3.95a, b).
For weak obstacles (� !  /2) the critical shear stress is appreciably less than for a
regular square array of the same density and corresponds with the Friedel relation
for the spacing of obstacles along a dislocation, which remains straight (Fig. 3.95a).
For strong obstacles (� ! 0) the dislocation motion is characterised by encircling
movements and the formation of many closed loops, as observed in Fig. 3.95b. The
critical shear stress rises to a value of 0.81 �b/L, where L is the average spacing.
This expression is similar to the equation given later for the Orowan mechanism.
The results of these numerical simulations are reproduced in Fig. 3.95b where the
critical shear stress 
 is plotted as a function of breaking angle � for a random array
of 10,000 obstacles.

In the presence of particle shearing, when Ky is proportional to the particle size
(see Table 3.8), the breaking angle �, given by Eq. 3.134, decreases when the
particle size increases for a given volume fraction. The results shown in Fig. 3.95b
indicate that the critical shear stress increases with particle size, following roughly
a parabolic law. The maximum shear stress occurs when � D 0 in Fig. 3.94, i.e.
when Ky D 
Ar, where r is the particle radius, for disordering is the obstacle. The
corresponding shear stress is given by:

�c D 2
Ar =bL (3.137)

(c) By-passing of precipitates and particles

A dislocation that slips in a crystal containing precipitates, which cannot be
sheared, can by-pass them by what is called the Orowan mechanism (Orowan 1948)
(Figs. 3.91 and 3.92), analogous to the Frank-Read source, leaving a loop around
the precipitate. The stress needed for this is given by Eq. 3.51, with l replaced by
L � 2r, where r is the radius of the precipitate:

�OR D �b

L � 2r D �b

2r
fv
k (3.138)
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Fig. 3.95 (a) Numerical simulation of dislocation movement through an array of random obsta-
cles; (a left) breaking angle �D 65.5ı showing initial (I) and final (F) positions and the position
at the final stress increase (FSI). Broken lines show some intermediate positions and illustrate
unzipping (see arrow) from the FSI position; (a right) breaking angle �D 5ı. Solid line indicates
the position reached under a stress of 0.7 �b/L. The removal of obstacles A or B would allow the
dislocation to penetrate further in the array (Foreman and Makin 1966). (b) Variation of critical
shear stress 
 for a random array of 10,000 obstacles and 1% stress increment (solid circles), and
for an array of 1,000 obstacles with 2% increment (open circles). The square lattice 
 s, the Friedel
stress, 
 f and the numerical results, 
 e are shown (Foreman and Makin 1966)
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Fig. 3.96 (a) Dislocation by-passing a precipitate by the Orowan mechanism. (b) and (c) Dislo-
cation by-passing a precipitate by cross-slip leaving intrinsic and extrinsic prismatic dislocations
loops whose Burgers vector is that of the dislocation which slips. (d) As case (a) but followed by
cross-slip of the loop

which will occur for �D 0 (cos�D 1), corresponding to Ky D t (see also Chap. 4).
fv is the volume fraction of precipitates or particles and the power k depends on the
relation between 2r/L and the volume fraction.

Cross-slip is another mechanism, which allows by-passing of dislocations around
precipitates or inclusions (Fig. 3.96). This leaves intrinsic and extrinsic prismatic
dislocation loops such as the ones described in Sect. 3.3.4.2.

The numerical simulation by Foreman and Makin (1966) have shown that
this expression overestimates the critical shear stress by about 20% when the
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particles are randomly dispersed. The above expression compared with the equation
developed earlier for particle shearing allows to predict that the transition between
both mechanisms will occur for a critical particle size, rt given by:

rt ' t =
A (3.139)

where t is the line tension of the dislocation.
For a given volume fraction of particles, this theory predicts that for small sheared

particles (r< rt) the critical shear stress increases with the particle size according
to a parabolic law up to a maximum value of the order of .t =2rb /

p
fv and

then decreases according to the Orowan law which predicts that, for small volume
fraction, �OR ' .�b =2r /

p
fv.

The expression derived for rt predicts that, for instance in nickel-based superal-
loys strengthened by ”0 precipitates, the transition radius is of the order of 100 nm,
using 
A D 40 mJ/m2. This value for rt is of the order of experimental values
observed in these materials. Further details are given in Chap. 4 in this volume.

(d) Evolution of the yield strength of aluminium alloys by ageing

In the course of ageing of aluminium alloys the volume fraction fv of the precipitates
varies; the mean distance between the precipitates is � D L(1�fv), since the linear
fraction is the same as the volume fraction.

Initially, fv increases and L remains constant; the precipitates are coherent and are
sheared, and the yield strength increases. When all the atoms have been precipitated
L starts to increase, with fv remaining constant. This is over-ageing: according to the
Orowan mechanism the yield strength decreases (Fig. 3.97). Noting from Table 3.8
that Ky ��br/100, evaluating the transition radius rt for the shift from particles
shearing to particles by-passing from Eq. 3.134 and the yielding shear stress by
Eq. 3.135, it can be shown that rt � 100 t/�bL, so that rt/b � 50, and that the yield
stress at the transition reaches (b/L)� (Fig. 3.97).

(e) Work-hardening

Work-hardening varies greatly according as the precipitates are or are not sheared.
With shearing, the passage of one dislocation eases that of the next, for example as
a result of the order being destroyed by shearing (Fig. 3.93); this gives a low level of
work-hardening. On the other hand it is very large when at each passage the Orowan
mechanism leaves a dislocation loop around the particles (Fig. 3.98).

The dislocation loops around the particles are of the geometrically necessary
class (cf. Sect. 3.3.3.5). Using the results previously obtained for the density of
geometrically necessary dislocations around spherical inclusions of diameter D
(3.15) and for work-hardening (3.85) we find:
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Fig. 3.97 Variation of the
hardness of AlCu alloys with
annealing time at 130ıC
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v

�
b

D



�1=2
(3.140)

for a shear strain 
 .
When a carbon steel is cooled, the carbon content of the austenite increases until

the eutectoid composition (0.8% C) is reached. Platelets of alternating cementite
(Fe3C) and ferrite (’Fe) then form, giving a structure called pearlite. This is
an example of reinforcement by platelets, which, because of the covalent bonds
of the cementite, are quasi-rigid. Deformation of pearlite is accompanied by the
introduction of geometrically necessary dislocations. From formulae (3.17) and
again (3.85), we find:

� D �i C 2˛�

�
b

�



�1=2
(3.141)

� being the distance between the platelets of cementite.
However, relation 3.140 was derived on the assumption that the dislocations

accumulated randomly in a crystal in response to the effects of anchoring and
multiplication, described at the time. Geometrically necessary dislocations are not
in fact stacked randomly, so the case for using Eq. 3.85, which has led to Eq. 3.140,
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Fig. 3.98 Work-hardening of
single crystals of copper or
CuBe alloy hardened by
particles of BeO or by
precipitates

predicting the parabolic variation of work-hardening, could be questioned. This
emphasises the difficulty of relating the macroscopic and microscopic aspects of
plasticity.

Even so, the value of the density �G of the geometrically necessary dislocations
obtained in this way can be a valuable help in fixing orders of magnitude, especially
in regions in the crystal in which the presence of particles is expected to have a
strong effect. With a shear strain 
 , �G � 10(
 /bD)fv2/3 for spherical particles of
diameter D, and �G D 4
 /b� for platelets a distance � apart. The quantities D/fv2/3

and � both have the dimension of length; we denote them by �G and compare
them with the distance d between the slip lines in a crystal in which there are no
particles and in which dislocations accumulate only randomly. The conclusion is
that the presence of particles will have a strong effect on work-hardening only when
�G<< d, that is �G>>�S, where ¡S is the density of randomly-stacked dislocations
(cf. Fig. 3.99).

Equations 3.140 and 3.141 considered predict parabolic work-hardening for the
two kinds of reinforcements. But Fig. 3.98, for the alloy Cu-Be containing particles
around which the dislocations wrap, shows that in fact it is more like linear. In
what follows, therefore, we shall look again at the nature of work-hardening in
alloys hardened by precipitates. In so doing we shall take the opportunity to sketch
the relation between behaviour on the macroscopic scale and plasticity on the
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Fig. 3.99 Densities of
geometrically necessary
dislocations �G and of
randomly distributed
dislocations �S in a FCC
crystal as a function of
deformation. Note that for
small deformations �G can be
much greater than �S whilst
the reverse can be true at
large deformations

microscopic scale, and to indicate what contribution to the solution of the problem
might be made by the mechanics of inclusions developed in the previous chapter
(Sect. 2.7).

(f) Kinematic hardening of heterogeneous materials

As we have shown, the effect of precipitates surrounded by dislocations is
to increase greatly the work-hardening rate in a material subjected to monotonic
increasing loading (Fig. 3.98). Most often, and at least for small deformations, say
less than a few percent, the hardening is effectively linear. Under cyclic loading the
alloys concerned show a strong Bauschinger effect, as in Fig. 3.100. Thus we can say
that work-hardening in these heterogeneous materials is essentially kinematic and
linear, representing a particular case of what is called the Prager model of plasticity
(Sect. 3.5.2.4). At greater deformations it is seen to become parabolic and of a more
isotropic nature.

The kinematic nature of the work-hardening of these materials can be explained
quite simply in physical terms, qualitatively at least; the explanation emphasises the
reversible aspect of microscopic-scale plasticity in such conditions.

Consider the hysteresis loop (b) of Fig. 3.100. The first effect of the shear stress
� is the by-passing of the particles in state A and the formation of Orowan loops
(Fig. 3.101). Using a rheological model of parallel spring-and-friction-element, the
friction element is released at the Orowan stress �OR and from A to B, on the first
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Fig. 3.100 Hysteresis
stress-strain loop in an alloy
with precipitates (a) sheared;
(b) by-passed by dislocations

Fig. 3.101 Interaction of dislocations and precipitates with loops which vanish when the disloca-
tions return (steps c and d). Associated hysteresis loop

half of the hysteresis loop, dislocation loops build up around the particles, which are
subjected not only to the applied stress but also to that exerted by these loops. Thus
internal stresses develop, corresponding in the model to the tension in the spring.
To a first approximation the Orowan stress, corresponding to isotropic hardening,
does not change, since the effective size of the particles is affected very little by the
surrounding loops, which remain very close to the particles. When the direction of
the stress is reversed, as in Fig. 3.101c, d, this internal stress is steadily reduced and
the density of the loops falls as the unpinned dislocation returns to make contact
with the particle. The geometry is such that there is an attraction between the loops
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and the dislocation returning towards the particle, since the two parts have opposite
signs. At point D of the hysteresis loop, the dislocation loops corresponding to the
outward journey (AB) have vanished and the initial state is re-established. New
dislocation loops are then formed, corresponding to DE, and the process is repeated.

If such reversibility or such memory is to be significant the dislocation loops
must remain in one plane, the more so the less the deformation and the stacking
fault energy. Otherwise the internal stresses which accompany directly the applied
macroscopic deformation will be relaxed by the mechanisms of cross-slipping, as
indicated schematically in Fig. 3.96. In this way the “perfect memory” effect is lost.

(g) Elastic inclusion model of work-hardening

Means for a more quantitative modelling of the problem are provided by the
mechanics of inclusions. Several models have been suggested, all based on the
concepts developed in the treatment of inclusions in Chap. 2 (Sect. 2.7). In
explaining them here we shall confine our treatment to the case of pure plastic
shear, 
p.

The strain incompatibility between the inclusion and the matrix, that is the
eigenstrain eF, reduces to eF

13 D �
p=2. Thus, although there are shear loops around
the particles (Fig. 3.101a), the behaviour can be analysed in essentially elastic terms.
In this sense we can speak of dealing with a solid having perfect memory, the loops
around the precipitates providing the quantitative expression of incompatibility in
deformation between these and the matrix.

We have shown (Sect. 2.7.2, Eq. 2.159) that in a spherical inclusion subjected to
an eigenstrain a homogeneous internal stress 
13(int) develops. This is balanced by
an external stress field 
13(ext), whose mean value we denote by N
13. Thus we have:


13 .int/ D 1

15

7 � 5�
1 � �

�
p; N
13.ext/ D � 1

15

7 � 5�
1 � �

�
fv

1 � fv

p (3.142)

where fv is the volume fraction of the particles.
The distribution of 
13 is drawn schematically in Fig. 3.102. This shows that

the stresses are very strongly polarised, an effect that is at the very origin of
kinematic work-hardening (refer to Sect. 3.5.2.4(b) for similar effects). Extending
this formalism to the case of tension/compression deformation, and with the same
notation as used in Sect. 3.2.2 for macroscopic plasticity, we get the diagram of
Fig. 3.103, with R D 
OR (the Orowan stress) and X ��fv"p.

3.4.3.3 Irradiation Hardening

Bombardment of a crystal with neutrons creates zones in which the atoms
have suffered large displacements. Some will be in interstitial positions, leaving
compensating vacancies, and such point defects can migrate if the temperature
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Fig. 3.102 Stress generated by the dislocation loops in the particles (int) and in the matrix (ext)

0
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s
Fig. 3.103 Linear kinematic
hardening in an alloy
containing precipitates
surrounded by dislocation
loops

is high enough. As well as some recombinations of interstitials and vacancies,
clusterings occur, resulting in di-, tri-, etc. vacancies and finally either micro-
voids or loops of dislocations when vacancy discs collapse (Fig. 3.33). Tetrahedra
of stacking faults can also be produced. The size of these irradiation products
increases when the irradiation temperature is raised.

Dislocation loops appear at irradiation temperatures less than 600ıC. The
dislocation density increases as dislocation loops are created and also as vacancies
super-saturation produces climb of parts of the dislocations; the dislocation
density reaches a saturation value of about 1014 m�2 (6�1014 for 316 austenitic
stainless steel).
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Table 3.9 Effect of neutron irradiation on the mechanical properties of various
alloys

Rm Rp0.2

Alloy Flux, neutrons/m2 Irradiation temp, K MPa MPa

Austenitic 0 576 235 65

Steel 12�1025 373 720 632 43

Z6CN18.9
Mild steel 0 517 276 25

0.2% C 2�1023 352 676 634 6

1�1024 352 800 752 4

2�1023 566 703 524 9

2�1023 677 579 386 14

Aluminium 0 124 65 28:8

1�1024 339 257 177 22:4

Aluminium 0 310 265 17:5

6061 T6 1�1024 339 349 306 16:2

Zircaloy 2 0 276 155 13

1�1024 411 310 279 4

At temperatures higher than 400ıC and for doses higher than 20 dpa (displace-
ment per atom), microvoids form, resulting in a swelling of the material. This is
also linked to transmutations, which result in the formation of helium; these atoms
migrate to form micro-bubbles.

Another effect of the super-saturation of vacancies is the acceleration of pre-
cipitation of foreign atoms in solid solution. In ferritic steels dissolved copper
precipitation forms ordered Cu3Fe precipitates. They contribute to irradiation hard-
ening. In austenitic stainless steels the precipitation of M23C6 and M6C decreases
the concentrations of Ni and C, which destabilises the gamma phase; some ferrite
can be formed. Near grain boundaries there is a decrease of Fe and Cr concentrations
and an increase of Si, Ni and P concentrations. This is not without influence on
embrittlement and on corrosion resistance.

These various irradiation products contribute to irradiation hardening (Table 3.9).
Figure 3.104 shows stress-strain recordings at various temperatures and for various
doses for a ferritic 9Cr1Mo steel (Deo et al. 2008). The hardening is accompanied
by a decrease of the strain hardening rate, which results from contributions of
vacancies to the by-passing of obstacles by climb. In general, the yield strength
and the hardness are proportional to the square root of the integrated dose, at least
for irradiation times that are not too long (Fig. 3.105).
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Fig. 3.104 Stress-strain recordings for unirradiated and irradiated ferritic 9Cr1Mo steel (From
Deo et al. 2008)

Fig. 3.105 Variations of the
yield strength and of the
brittle/ductile transition
temperature with irradiation
dose for carbon steel
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3.4.4 Volumetric Shear Deformation: Twinning, Martensitic
Transformation, Transformation Plasticity

3.4.4.1 Introduction

So far we have been studying the deformations produced by dislocations glide; we
now investigate other mechanisms, twinning of crystals and plasticity generated by
phase transformations. They are characterised by the sudden deformation as a whole
of part of a crystal. They are not entirely unrelated to dislocation slipping, since, as
we shall see, they can be regarded as resulting from the activation of particular
dislocation sources.

These volumetric transformations generate shear strains and possible volume
changes. Stresses, whether externally applied or resulting from the transforma-
tions themselves, alter the free energy of the system and in turn react on the
transformation.

We consider first the simple shearing of the crystal lattice resulting from
twinning. In Sect. 3.3.9 we described twins and the deformation which they produce,
and the important role they play in a number of industrial alloys. We must now
understand how they are generated and the critical stress needed. We will then
study martensitic transformations; they are closely associated with twinning but
in addition to the shearing they involve a volume change and, especially, a free
energy of chemical origin. More generally, any transformation is linked with plastic
deformation.

3.4.4.2 Development of Twinning

In a single crystal we can imagine that mechanical twinning is generated by a shear
strain traversing the cross-section of the sample and then progressively invading the
whole body; the resulting deformation was calculated in Sect. 3.3.9 and it is given
by (3.74).

Once a twin is nucleated, its growth is easy and quick; it stops when a grain
boundary is met, or other obstacles, including other twins. Provided that the
distortion remains purely elastic a change in sign of the stress will cause the twin to
vanish; and the twinning is then said to be reversible. But the strain energy can be
great enough to cause plastic deformation, which stabilises the twin and inhibits the
reversal.

Another way in which the distortion can be accommodated is by forming other
twins. These can belong to the same system, but with different orientations – they
belong to other variants.

In this section the stress necessary to initiate a mechanical twin is determined
first. Then the interactions between twins of different variants are examined in
order to explain the anomalously large value of the work-hardening observed in
the presence of mechanical twinning. Only FCC crystals are considered.
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(a) Twinning stress

As explained in Sect. 3.3.9, an elementary small twin can be assimilated to a
stacking fault: for example, in FCC structures the twin <112> f111g corresponds
to a Shockley partial dislocation crossing a succession of planes, creating a stacking
fault in each one (Müllner et al. 1994). Several mechanisms have been suggested
to explain the formation of twins; for example the Venables (1964) model for FCC.
This considers a tree with Burgers vector (1/2)[110], which crosses the primary slip
plane (111). After the passage of many dislocations of this system, the tree acquires
a large-size jog which, under the action of the applied stress, can be dissociated thus:

.1 =2/ Œ110� ! .1 =3/ Œ111�C .1 =6/


11N2�

that is, into a Frank and a Shockley dislocation. The latter can then form a source,
which generates the twin. For this to be possible the stress must be great enough to
overcome the stacking fault energy 
 f, that is:

�wbŒ11N2� D 
f (3.143)

where �w includes both the applied shear stress � and the stress resulting from the
dislocation pile-up. A calculation by Venables yielded the following relation:

�
1 � 2ms

3“
C .1 � �/Lms

2

1:84�b

w

�

w D 
f

b
(3.144)

where ms is the Schmid factor, “ a constant with value close to 1 and L the length of
the dislocation pile-up.

This result shows that the critical twinning stress varies like
p

 f, so that twinning

becomes easier the lower the stacking fault energy. Figure 3.106 compares the
theoretical prediction with experimental results, and shows that the relation is rather
well supported by observations on various alloys.

(b) Crossing of mechanical twins by perfect and partial dislocations

The crossing of a primary twin by perfect or partial dislocations, which constitute
embryos of secondary twins, is examined. Very few authors have addressed this
question (see however the recent observations by Efstathiou and Sehitoglu (2010)
on single crystals of Hadfield21 steel). In situ TEM observations by Coujou (1987)
and by Coujou et al. (1992) have shown that pre-existing micro-twins or stacking

21Hadfield steel contains about 1%C with 11–15% Mn. This austenitic steel is unique in that it
combines high toughness and ductility with high work-hardening capacity and good resistance to
wear. Sir Robert Hadfield invented this steel in 1882.
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Fig. 3.106 Variation of twinning stress with stacking fault energy: dotted curve is Venables
relation (3.144); full curve results found for CuZn and CuAl alloys and Ag, Au and Cu single
crystals

faults can be sheared and can disappear when they are intersected by a secondary
twin (Fig. 3.107). This suggests that pre-existing twins, which are special grain
boundaries, are shearable obstacles. A number of researchers have examined in
more detail the interaction between an annealing twin and perfect or partial
dislocations (see e.g. Rémy 1978, 1981). Several situations can be distinguished
from these observations.

Perfect dislocations
Let us consider two FCC crystals in twinning orientation relationship (Fig. 3.108).
The Thompson tetrahedron (Sect. 3.3.4.1) of each crystal is shown in this figure. The
situation where the perfect dislocation in the parent crystal is AB is trivial since this
dislocation can easily cross-slip in the twin crystal. The situations where the leading
dislocation does not belong to the twinning plane are more complex, as shown in
Figs. 3.109a, b. The dislocation reactions at the interface can be written as:

DC“ ! CD0“0 C 2•C

or
1

2
Œ110� ! 1

2
Œ110�T C 2 � 1

6



11N2�

and DC“ ! AD
0

“0 C B•

or
1

2
Œ110� ! 1

2
Œ101�T C 1

6


N2N1N1�
(3.145)

Both reactions are energetically unfavourable and lead to a change in the
thickness of the primary twin by the propagation of partial dislocations along the
twin boundary interface.
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Fig. 3.107 Cu-6.5 at.% Si. Three in situ pictures illustrating the interactions between pre-existing
stacking faults and micro-twins with another micro-twin nucleated on another variant in the lower
part of the picture (a). This secondary micro-twin propagates from the lower to the upper part and
shears the stacking faults A, B, C, D, E and a secondary twin in F. Notice that the pre-existing
faults and micro-twins can disappear at the intersection with the secondary micro-twin (Coujou
1987)

Fig. 3.108 Two FCC crystals in twinning orientation relationship. The Thompson tetrahedron of
each crystal is shown. The twin boundary (TB) is indicated

Partial dislocations
Two typical reactions of partial dislocations impinging a twin boundary are shown
in Figs. 3.110a, b. They can be written as:
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Fig. 3.109 Reaction with a perfect dislocation at the intersection with a twin boundary. (a) DC“
! CD“ C2•C; (b) DC“! AD“CB•
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(3.146)

Both reactions are also energetically unfavourable and lead also to a change of
the thickness of the primary twin. The applied stress must be sufficient to overcome
the obstacle formed by a twin boundary. The crossing of primary twins by secondary
twins can produce an extra-hardening effect similar to the Hall-Petch effect
(see Sect. 3.4.2.3(a)). Rémy (1978, 1981) has suggested that the flow stress, Rp,
can be written as:

Rp D RpM C k
1

.2t/r

�
f

1 � f

�r
(3.147)

where RpM is the matrix flow stress, k is a constant similar to Hall-Petch constant,
t is the thickness of the primary twins and f is the volume fraction of twins,
r D C1 or C½ (the value of C½ is similar to the value proposed by Petch,
see Sect. 3.4.2.3(a)). More recently, Bouaziz (2001; Bouaziz and Guelton 2001)
has proposed a similar expression relating the flow stress to the volume fraction
of mechanical twins. This expression uses an evolution law for the dislocation
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Fig. 3.110 Reaction with a partial dislocation at the intersection with a twin boundary. (a) 3D““
! AD“CCD“ C2B•; (b) 3D““! CD“CDC“CB•

density �D resulting from the competition between accumulation and annihilation
of dislocations due to dynamic recovery (see Sect. 3.4.2.2(h)):

d�

d"
D M

�
1

bL
C k

b

p
�D � f r

�

and Rp D ’M�b
p
�D (3.148)

with M, the average Taylor factor, L � t (mean distance between twins), and ’
a numerical constant of the order of 0.40. The stress-strain curve is obtained by
integrating the first equation using a law for the variation of the volume fraction
f with strain. It should be noticed that both expressions show the importance of
mechanical twinning since the flow stress increases when t decreases, i.e., when the
volume fraction of mechanical twins increases.

The technical importance of mechanical twinning for the development of new
steels (TWIP (twinning induced plasticity) steel) is highlighted later in Sect. 3.4.5.4.

Further considerations on deformation twinning, including BCC and HCP
crystals, can be found in a detailed review by Christian and Mahajan (1995).
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Fig. 3.111 Bain’s transformation from FCC austenitic unit cell to body centred tetragonal unit
cell of martensite

3.4.4.3 Martensitic Transformation

(a) Deformation associated with martensitic transformation
The geometry of the martensitic transformation is almost the same as that for
twinning, with the addition of a volume change due to an elongation normal to
the habit plane.

An important example is that of the martensitic transformation in austenitic
steels. The deformation can be visualised by the Bain’s22 transformation
(Fig. 3.111) (Bain 1924). The FCC unit cell contains the BCC unit cell and to
obtain the body centred tetragonal unit cell of the martensite a further compression
is needed. This is achieved by the development of twins (Fig. 3.112) (Bogers and
Burgers 1964).

22Edgard C. Bain (1891–1971) was an American metallurgist.
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Fig. 3.112 Bogers-Burgers sketch of martensitic transformation: consider a tetrahedron SPQV.
(a) STQ f110g plane of FCC lattice; (b) 1/3 of complete twin shear in QT <112> direction; the
atomic rows SP and SV of the former f111g plane are now oriented at 70ı from each other; (c)
complete twin shear; (d) SPV plane in case b showing the 70ı orientation of SP and SV; (e) final
shear to achieve the transformation into BCC lattice

(b) Chemical stress

The essential change with respect to pure twinning is the need to take account of
the free energy of chemical origin, which usually drives the transformation. At
equilibrium, in the absence of applied stress the Gibbs free energy G is given by:

�G0 D �H0 � T0�S0 D 0 (3.149)

where �H0, �S0 are the enthalpy and entropy respectively of the transformation
and T0 the equilibrium temperature. At a temperature T < T0 the free energy of the
austenite ! martensite transformation is:

�GA!M D �H0 � T�S0 D �S0 .T0 � T / (3.150)

Numerical data for ferrous alloys are given in Annex 2.
A critical value �Gm must be reached for the transformation to start at Ms, the

martensite temperature. On heating the reverse happens.�GA!M D �Gm is given
by:

�Gm D �S0 .T0 �MS/ (3.151)

The applied stress changes the Gibbs energy and we can write, formally:

�Gm D �S0 .T0 � T /C 
�" (3.152)
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shear stress

shear strain

tchem

Fig. 3.113 Pseudo-elasticity

In a martensitic transformation the deformation energy comes mainly from shear:


�" D �
s

h
(3.153)

where s is the shear displacement and h is the thickness of a martensitic plate.
Thus a shear stress favours the martensitic transformation and raises the point

Ms; a deformation can destabilise the austenite and give strain-induced martensite.
It is convenient to associate the chemical free enthalpy with a chemical stress � chem

such that:

�chem
s

h
D �S0 .T0 � T / (3.154)

(c) Pseudo-elasticity
The formation of martensite can bring about a large deformation at constant

stress; referred to as transformation plasticity. This is illustrated in Fig. 3.113. If
the martensite is completely reversible the inverse transform occurs on unloading at
a stress � < � chem such that:

�chem � � D �Gm

s =h
(3.155)

The phenomenon is called pseudo-elasticity, and is seen, for example, in Cu-Al-
Ni and NiTi alloys. Two martensitic transformations have even been observed, in
CuZn, CuZnAl, CuAlNi and AuAgCd alloys. An analogous phenomenon, without
the martensitic transformation, occurs in AuCd and InTh alloys, called rubbery
elasticity; this is attributed to the reversible movement of the twin boundaries in
the martensite.
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(d) Shape memory alloys
In cuprous alloys especially a thermo-elastic, that is reversible, martensite

forms at a temperature below Ms, consisting of self-accommodating variants with
different orientations. The deformation of this is brought about by movements of
the boundaries between the variants, so that one grows at the expense of others,
possibly ending with a single crystal. If this crystal is now raised to a temperature
above Af the martensite vanishes and the sample returns to its original shape, so the
alloy has been given a shape memory. Applications have been found for this, for
example in the NiTi alloy Nitinol, for which Ms and Mf are on opposite sides of
ambient temperature.

For certain alloys, for example CuZnAl, the unstressed martensitic transfor-
mation is accompanied by a change of shape resulting from the formation of a
single variant which vanishes on reheating: these are said to have reversible shape
memory. They can be “educated” by cycling the deformation, either in super-
elasticity or in conditions of non-reversible memory; the effect of this is to favour
one variant of the transformation and gradually replace the imposed deformation by
the transformation deformation.

3.4.4.4 Transformation Plasticity

In general, a transformation that is accompanied by a change in volume brings
about a plastic deformation of the softest phase. Zirconium, for example, is
transformed on heating to a “ phase of lower resistance that occupies a smaller
volume. Therefore, as the transformation front moves through the material, the
high-temperature phase must contract: the outer radius R20 of a zirconium tube
decreases (Fig. 3.114). With the inverse transformation the dilatation of the ’ phase
that appears on cooling produces a decrease of the inner radius R10. Back to room
temperature, both radii become smaller. Thus if the tube is taken repeatedly through
the transition temperature its diameter will be steadily shortened. This effect is
called Transformation induced plasticity (TRIP).

Usually there will be several fronts moving in different directions, so that the
deformations will not simply add, and a residual stress field will be generated. But
if, while this is taking place, the sample is subjected to an external stress, even if
small, the deformation in the direction of that stress will be favoured.

There is no really satisfactory model for transformation plasticity. Greenwood
and Johnson (1965) have suggested one that gives a deformation proportional to the
applied stress and to the volume change, but the basis for this is doubtful. More
recently their relation has been generalised by Leblond et al. (1989), to give

d"TP
ij D 5

2

�V

V

sij

Rp
.1 �m/ dm (3.156)
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Fig. 3.114 Transformation induced plasticity: The high temperature “ phase only is deformed
plastically to accommodate a change in volume

where d"ij
PT is the transformation deformation, �V/V is the relative change of

volume, Rp is the yield strength of the mother phase (austenite), m the fraction
transformed and sij is the deviatoric stress tensor.

This relation holds well when the origin of the transform plasticity is the volume
change associated with the change of phase, and also, but not only, for structural
transformations controlled by diffusion. Thus we may say that source of measured
macroscopic transformation plasticity is the orientation of the plasticity that starts
locally in the mother phase in the neighbourhood of the transformed zones.

For phase transformations that take place without diffusion � martensitic trans-
formations � the essential origin of the plasticity is the orientation of transformed
zones in response to the applied stress; this is the origin of the shape memory effect
which is sometimes referred to as the “Magee effect” (Magee 1966). Although
relations of the type (3.156) are used in such case, it is doubtful if this use is justified:
this is so because there are only very few experimental verifications of relations of
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this type for multiaxial loading. However recent studies on TRIP effect in a Cr-Ni-
Mo steel have been made under multiaxial (tension C torsion) loading with radial
and non-radial paths (Videau et al. 1996). A new model based on the formulation
of internal variables (see Sect. 3.5) has been proposed in which it was assumed that
the “Greenwood –Johnson” effect is proportional to (sij – ˛ij) instead of simply sij,
where ˛ij is a backstress tensor associated with kinematic hardening (Fisher et al.
2000).

3.4.5 An Application of Hardening: Strengthening of Steels

So far we have been considering different mechanisms of hardening, and in
Table 3.10 we give some details for various alloys. In the next paragraph we indicate
how the principles can be applied in the case of steels.

3.4.5.1 Micro-Alloyed Steels

The development of micro-alloyed steels, to replace mild steels, was made possible
largely by a better understanding of the phenomenon of hardening. In these alloys
the reduced grain size (refer to Sect. 3.4.2.3) is combined with the presence of
precipitates (refer to Sect. 3.4.3.2) of carbides, produced by adding small amounts
(0.1%) of vanadium and niobium. The grain size is lowered by starting with
austenite of small grain size and lowering the ” ! ’ transformation temperature
as much as possible. Controlled rolling, which means particular precise conditions
of temperature and deformation, reduces the grain size in the austenite by inhibiting
recrystallisation through precipitation of carbides and carbo-nitrides of Nb and V.
Moreover, these precipitates themselves contribute to the hardening. By this means
yield strengths of the order of 600 MPa can be achieved (Fig. 3.115).

3.4.5.2 Quenched and Tempered Steels

Steels are greatly hardened by the martensite transformation (refer to Annex 2) that
results from quenching; a number of factors combine to produce this effect:

– First, the martensite platelets are very small, the more so the smaller the grain
size of the original austenite; the range is from a few microns to a few tens.
Further, they display a large amount of twinning and the twin boundaries play
the same role in the movement of dislocations as do grain boundaries (refer to
Sect. 3.4.2.3).

– Second, the heavy super-saturation with carbon results in a large solid solution
hardening (refer to Sect. 3.4.3.1(c))
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Table 3.10 Hardening mechanisms for various alloys

Alloy Mechanism Yield strength (MPa)

Aluminium
AlCuMg heat-treated,

work-hardened 2024 T3
Work-hardening, precipitation 345

AlZnMg annealed 7075 O Solid solution hardening 100
Heat-treated 7075 T6 Precipitation 500

Copper
Electrolytic Cu annealed (0.04%O) 70
OFHC Cu, work hardened Work-hardening 275
CuZn ’ brass, annealed Solid solution hardening 240
CuBe heat treated Precipitation 965

Nickel
NiCrFe (Inconel) work hardened Work-hardening, solid solution

hardening
1,035

NiMoFe (Hastelloy) heat treated Solid solution hardening 275
NiCoCrMoTiAl (Udimet 700) heat

treated
Precipitation 875 at 650ıC

Steels
Mild steel (0.01%C) annealed Solid solution hardening 170
Steel (0.2%C) annealed Solid solution hardening 500
FeNiMoMnCrC heat treated Solid solution hardening 1,500
Maraging Precipitation, grain refinement 2,000
Dual phase (DP) steel Martensite hardening 600–1,000
TRIP steel Martensite hardening 600–1,000
TWIP steel Twin hardening 1,800 (UTS)

Fig. 3.115 Variation of the yield strength of micro-alloyed steels with the grain size
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Fig. 3.116 Evolution of hardness of a maraging steel (18% Ni) as a function of the tempering time
at various temperatures

– Third, during tempering the carbon atoms rearrange themselves and finally
precipitate in the form of carbides, the precipitation contributing to the hardness
(see Sect. 3.4.3.2).

– Fourth and last, the number of dislocations increases greatly during the trans-
formation, this again contributing greatly to the hardness (refer to Sect. 3.4.2.2).
Altogether, yield strengths of the order of 1,600 MPa can be achieved.

3.4.5.3 Maraging Steels

These steels contain very little carbon, and enough nickel, about 18%, to stabilise
the austenite. Cooling below MS gives a martensite with fairly low hardness that can
be deformed plastically to multiply the dislocations; precipitating the intermetallic
compounds Fe2Mo and Ni3Ti at around 490ıC then pins the dislocations in the
martensitic fine structure. The combination of small grain size (refer to Sect. 3.4.2.3)
and abundant and very fine precipitates (refer to Sect. 3.4.3.2) results in a hardness
that can take the yield strength up to 2,400 or even 3,000 MPa (Fig. 3.116).

Very recently stainless maraging steels have been developed in particular for
aeronautical industry and the fabrication of a number of components for land-
ing gears. Traditionally these components were protected against corrosion by
electrolytic deposition of cadmium. As the new European community regulations
on chemicals (REACH: Registration, Evaluation, Authorisation and Restriction of
Chemical Substances) have prohibited the use of cadmium, the steelmakers have
developed new maraging steels containing at least 12% chromium. These high
strength martensitic stainless steels can reach a yield strength larger than 1,500 MPa.
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Fig. 3.117 Tensile strength (UTS) as a function of elongation in modern high strength steel sheets
for automotive applications. The years correspond to the approximate beginning of industrial
development by steelmakers (Bouaziz et al. 2011)

3.4.5.4 High Strength Steels for Automotive Applications

In this paragraph a brief illustration of the “material tetrahedron” shown in Fig.
1.1 of Chap. 1 is given for steels used in cars. In the automotive industry many
studies have been devoted to the development of new steels for reducing the fuel
consumption and improving the crashworthiness of vehicles. The situation over
the last past two decades is summarised in Fig. 3.117, where the years indicate
those corresponding to the real development of these new steels by steelmakers.
This figure illustrates the compromise between the strength and the ductility,
which must be found in the design of a car body in white. The high strength
low alloy (HSLA) steels correspond to the family of microalloyed steels obtained
by thermomechanical controlled processing (TMCP), as indicated previously in
Sect. 3.4.5.1. The TMCP principle is shown in Fig. 3.118 where the phenomena of
static and dynamic recrystallisation (see Sect. 3.4.2.2(j)) are indicated. The position
of the last rolling pass, before phase transformation takes place during accelerated
cooling, is of critical importance.

In Fig. 3.117 dual phase (DP) steels are new materials containing a mixture
of martensite islands in a ferrite C bainite matrix. The materials can be produced
in several ways. One of them includes a further heat treatment after rolling.
The material is heated between AC1 (’ ! ” start) and AC3 (’ ! ” finish)
(see Annex 2). The preferential partitioning of carbon atoms in the austenite phase in
the dual phase domain allows for the formation of martensite (C eventually residual
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Fig. 3.118 Thermo-mechanical controlled processing (TMCP) of high strength steels

austenite) during controlled cooling. A micrograph illustrating the microstructure
of a DP steel was shown in Chap. 1 (Fig. 1.60). These DP steels exhibit much
better properties than those of mild steels. However their performance in terms
of weldability and sensibility to shear cutting during sheet preparation must be
controlled. Moreover the composition and the microstructure of these steels must
be such that bath (also called Hot Dip) (or electrolytic) galvanisation can be easily
made. During painting preparation, the car body in white is heated up to about
180ıC. This temperature is sufficient to harden the parts of the components, which
have been plastically deformed. The mechanism responsible for bake hardening23

(BH) is the formation of Cottrell atmospheres (Sect. 3.4.3.1(d)).
Figure 3.117 shows two other families of high strength steels, which are the

transformation induced plasticity (TRIP) steels and the twinning induced plasticity
(TWIP High Mn Austenitic steels) steels. A brief description of the strengthening
mechanisms of these new steels is given below.

The mechanical properties of TRIP steel is largely explained by the TRIP effect
which was briefly introduced in Sect. 3.4.4.4. These materials contain a certain
amount of Mn C Si or Mn C Al (with a sum close to 3–4%). They have been given
a special thermo-mechanical treatment to develop a mixture of austenite particles in
a ferrite C bainite matrix. The austenite particles must have a composition such that
they transform to martensite during deformation. This phase transformation strongly
enhances the work-hardening rate of these steels, which produces an increase of the

23Body in white (BIW) refers to the stage, in automobile manufacturing, in which the car body
sheet metal components have been welded together, but before moving parts (doors, hoods and
deck lids as well as fenders) the motor and chassis assemblies have been added before painting.
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Fig. 3.119 Tensile stress-strain curves of TWIP steels with a wide range of carbon and manganese
contents (Bouaziz et al. 2011)

tensile elongation (see Considère relation, Chap. 1, Eq. 1.8). These TRIP steels must
also be welded by resistance spot welding, and must be easily galvanised to protect
them against corrosion. Bath (or Hot Dip) galvanisation may be a problem in high
Si steel. This is why for these steels electrolytic galvanisation should be preferred,
but this also depends on the price of electricity!

TWIP steels have been introduced more recently although the principle of
hardening mechanism by mechanical twinning in high manganese steels was known
since a long time (see e.g. the studies devoted to Hadfield steels and Fe-18Mn-
5Cr steels). These materials contain a high Mn content (15–25%) and a relatively
high carbon content (0.3–0.6%). Figure 3.117 indicates that these new steels can
satisfy a better compromise between strength and elongation. These steels exhibit
an extremely large value of the work-hardening rate as illustrated in Fig. 3.119.
These steels have an initial FCC structure. The value of the work-hardening rate
observed in Fig. 3.119 is of the order of �/25 and is thus much larger than
the value of �/200 measured in more conventional crystals which deform by
dislocation glide (see Sect. 3.4). The explanation for this anomalous (but beneficial!)
work-hardening behaviour lies in the propensity of these FCC alloys to be deformed
by the propagation of mechanical microtwins, as observed in Fig. 3.120. In some
circumstances a strain-induced phase transformation ” FCC ! © HCP can occur.
Several models have been proposed to account for the impressive work-hardening
rate of TWIP steels. In a number of these models it is assumed that a pre-existing
twin acts as an impenetrable grain boundary, which is not reflecting the true situation
as underlined previously in Sect. 3.4.4.2. Moreover there is very little quantitative
information on the volume fraction occupied by the mechanical microtwins, which
complicates the situation. Therefore the detailed explanation of the work-hardening
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Fig. 3.120 (a) Bright field image of Fe-30Mn alloy deformed in tension (20%) showing well
developed dislocation cell structure; (b) Dark field image of Fe-26Mn-0.6 C steel deformed in
tension (50%) showing extensive mechanical twinning (Bouaziz et al. 2011)

of these materials is left to the experts. It should be added that the welding capability
of these materials can also be a problem. Moreover the development of these high
Mn steels depends largely on the price of manganese.

3.4.6 Fibres Reinforcement

3.4.6.1 Introduction

The number of composite materials incorporating fibres keeps increasing. The
number of combinations of fibres and matrices is unlimited. They afford the
possibility to design materials for specific needs. What strikes one first is the
mechanical strength of certain fibres, and especially the ratio of this to their
density: glass fibres, fibres of organic compounds (Kevlar), carbon fibres including
nanotubes and also whiskers (Al2O3, SiC) have many attractions when there is a
need to combine high strength with light weight. The problem is how to transfer
the load to the fibres, and the only way to do this is through the intermediary of a
matrix.
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Table 3.11 A classification of some
fibres reinforced composites

Fibre Brittle Ductile

Matrix
Brittle C-C, C-SiC, SiC-SiCw Al2O3-Ni

SiC-Al2O3, SiC-BN
Glass-epoxy
Carbon-epoxy Reinforced concrete

(steel, cast iron)
Cement-nanotubes

Ductile Al-C –
Al-SiC

Some materials, polymers for example, combine the desirable properties of low
density, good resistance to environmental conditions, ease of fabrication and modest
cost with poor mechanical strength, and it is tempting to seek to reinforce these with
fibres. As matrices they can be classified as ductile, for which the need is to increase
the strength, or brittle, for which the need is to improve the fracture elongation,
typically fibre-reinforced concrete. Table 3.11 gives some examples.

Clearly, incorporating fibres makes a material anisotropic. Even with short
fibres it is difficult to ensure that the manufacturing process does not introduce a
preferential orientation of the reinforcement. Users of composites aim to take as
great advantage as possible of the anisotropies by orienting the fibres in the direction
of the maximum principal stresses, as nature does in such materials as bone and
wood. For the many applications in which the loading can be very varied the solution
is to combine a number of unidirectional composites so as to give a product in which
the properties are more or less homogeneous.

In the following, we give some elementary conditions in designing fibres
reinforced composites (FRC) limited to ductile matrix composites.

3.4.6.2 Critical Volume Fraction

Fibres with a high elastic modulus can improve the elastic properties of a composite.
A matrix with a low yield strength can be reinforced with high-strength fibres, such
as carbon, boron or Kevlar. If the material is loaded in the direction of the fibres the
overall stress can be expressed as the mean of the separate stresses on the fibres 
 f,
and on the matrix 
m:


 D f 
f C .1 � f / 
m (3.157)

where f is the volume fraction of fibres.
In general, the fibres are brittle with a fracture strength Rm

f and the matrix
is ductile and breaks by plastic instability at the tensile strength Rm

m; thus
the maximum stress that the composite can support is the maximum of either
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Fig. 3.121 Reinforcement as a function of the volume fraction f of fibres. On the left is shown the
stress-strain curves of the fibres and of the matrix, and, from relation (3.142), that of the composite

fRm
f C (1 � f )Rp

m(Af), Rp
m(Af) being the proof strength of the matrix when the

fibres break for an elongation Af, or of (1 � f ) Rm
m. This shows that there is a

minimum volume fraction of fibres below which there is no improvement with
respect to the tensile strength of the matrix without any reinforcement (Fig. 3.121);
it is given by:

f

1 � f � Rm
m � Rp

m
�
Af
�

Rm
f (3.158)

Thus the critical volumetric fraction increases with the ratio Rm
m/Rm

f and with
the work-hardening coefficient of the matrix.

3.4.6.3 Load Transfer

The main purpose of a ductile matrix is to transfer the load to the fibres. Using the
shear lag model we study the problem first for the case of elastic behaviour, and
for simplicity assume that the fibre and the matrix have the same Poisson ratio, that
the adhesion between the two is perfect and the load is parallel to the fibres. The
geometry is as in Fig. 3.122, with origin at the end of the fibre; uf is the displacement
at a point of abscissa x, u0 is what the displacement would have been in the absence
of the fibre.
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Fig. 3.122 Deformation of a matrix around a fibre of length l (The tensile axis is horizontal)

Consider a slice of length dx. The variation dP/dx of the load in the fibre must be
balanced by the shear stress exerted by the matrix along the length dx, which, since
the behaviour is elastic, is proportional to uf � u0. We can write:

dP

dx
D H .uf � u0/ (3.159)

where the constant H, whose value we have to determine, is a function of the
geometry and of the elastic moduli of the fibre and the matrix.

Differentiating:

d2P

dx2
D H

�
duf

dx
� du0

dx

�
D H

�
P

SfEf
� "

�
(3.160)

where Sf, Ef are the cross-section and the Young’s modulus respectively for the fibre.
Integrating this with the conditions P D 0 at x D 0 and x D l, where l is the length

of the fibre, we have for the stress 
 f D P/Sf in the fibre:


f D Ef"

�
1 � chˇ .1 =2 � x/

chˇ .l =2/

�
(3.161)

where ˇ D (H/SfEf)1/2
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The shear stress � at the interface is found by writing the equilibrium equation
for the slice dx:

dP

dx
D �2 rf� (3.162)

where rf is the radius of the fibre; together with Eq. 3.161 this gives:

� D �Ef"rfˇ
shˇ .1 =2 � x/

2chˇ .l =2/
(3.163)

Thus the shear stress � at the surface of the fibre is maximum at the ends of the
fibre and zero in the centre, whilst the reverse is true for tensile stress in the fibre 
 f

(Fig. 3.123). This shows why the model is called the shear lag model: the matrix is
like a lag pulling the fibre by shear on the interface.

We can now determine H. From (3.159) we get

H D � 2 rf�

uf � u0
(3.164)

If r is the radial distance from the axis of the fibre the equilibrium of the slice
dx is:

2 r�.r/ D const: D 2 rf � (3.165)
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Fig. 3.124 Tensile stress in the fibre and shear stress at the interface in case of plasticisation

from which we find for the displacement u in the matrix:

du

dr
D 
 D �.r/

�m
D �

�m

rf

r
(3.166)

Integration of this gives (uf � u0), and finally

H D 2 �m

log .R =rf /
(3.167)

where the distance between the fibres is 2R. From this and (3.161) it follows that
the parameter ˇ, which determines the increase in load in the fibre, is proportional
to (�m/Ef)1/2.

If the deformation " increases the stress � at the interface increases up to
either the elastic shear strength km of the matrix or the resistance of the interface.
We now consider how the load transfer occurs with the matrix becoming plastic
(Fig. 3.124).
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The elastic shear strength of the matrix is reached first at the extremities of the
fibre, and the plasticisation then extends towards the middle; when it is complete we
have:


f r
2
f D 2 rfkm .l =2/ (3.168)

In the fibre the stress increases linearly up to the maximum given by the above
formula; this is proportional to the length l of the fibre and the longest fibres break.
The critical length lc is:

lc D rfR
f
m

km
D df

Rf
m

Rm
p

(3.169)

where df is the diameter of the fibres, Rm
f their tensile strength and Rp

m the yield
strength of the matrix. If the fibres are shorter than this the composite cannot load
them to their full capacity.

3.5 Macroscopic Formulation of Plastic Behaviour

3.5.1 From Microscopic to Macroscopic Plasticity

3.5.1.1 Outline

The results we have obtained so far have concerned plastic behaviour at the
microscopic scale; the question now arises of how to derive from these a description
of the behaviour on the macroscopic scale which will take into account the basic
physics of the structural mechanisms of plastic flow in such a way as to enable
us to use the tools of continuum mechanics to calculate the properties of large-
scale components and structures. Such a transition from the microscopic to the
macroscopic in plasticity has been the object of worldwide research for more than
50 years, and it has to be admitted that the problem is still far from having been
solved. We shall not, therefore, attempt to treat the subject in depth; the more limited
aim of this section is first to describe the main problems that arise and to indicate
the nature of the efforts being made to solve them, and then to give the basic physics
underlying various aspects of macroscopic plasticity. At the end we give just a
sketch of the aim of current research to develop a more deductive treatment of the
transition from micro- to macro-plasticity.24

24This section does not consider plastic deformation related to twinning or to phase transforma-
tions, which was studied in Sect. 3.4.4.
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As we have seen in Sect. 3.2, the requirements of a macroscopic description of
plastic behaviour can be summarised in the form of three types of problem and
question

1. The need to define, for a material volume element, a plastic yield criterion f. For
what states of stress, specified by the tensor 
 , will the response be purely elastic?
For what states will there be a possibility of plastic flow? This is the problem of
finding a scalar function f(
), the yield function, such that, by convention, the
response remains elastic (or even rigid) as long as f(
)< 0 and the possibility of
plastic flow arises only when f(
) D 0.

2. The need for a description of work-hardening and its evolution. For any particular
volume element the plasticity criterion does not remain unchanged during plastic
flow and the yield function does not depend solely on the state of stress. It is
necessary to specify the dependence of the yield function on the internal state of
the material. Which work-hardening parameters Ym should be included? How do
these parameters themselves change during plastic flow? What is the form of this
extended yield function f(
 ,Ym)? What are the laws that express the evolution of
the parameters Ym, that is, the form of g where d Ym /dt D gm(
 ,Yn)?

3. The need for a formulation of the laws of plastic flow, enabling the deformation
in response to any stress history or loading path to be determined.

The answers must apply to a volume element whose characteristic dimensions,
if it is to be considered as representative of a continuous medium, must be large
compared to those of any internal discontinuities. This means that for a crystalline
material we must be thinking in terms of a polycrystalline aggregate containing a
large number of grains. If so, can we still predict the behaviour of the aggregate as
a whole from what we know of the crystal defects? Can we argue in terms of sets of
dislocations? Shall we need to describe all the grain boundaries? All the grains?

3.5.1.2 Single Crystals

To break the difficulties into parts of manageable size we start by considering a
single crystal and attempt, with the help of the elementary mechanisms of plasticity,
to throw some light on the way in which these questions of criteria, work-hardening
and flow laws arise.

(a) The criterion. We already know that plastic flow is brought about by the
multiplication of dislocations and the collective irreversible movement of a suffi-
cient number of these. Whatever mechanism is assumed (multiplication, crossing of
obstacles, : : : ), for this to occur there must be a great enough force exerted on the
dislocations.

Consider a dislocation with Burgers vector b that remains in its slip plane P, the
unit normal to which is n. Let l be the unit tangent vector to the dislocation at the
point M (Fig. 3.38). The local stress field 
 produces a force f per unit length acting
on the dislocation, given by the Peach-Köhler relation (3.29): fD (b.
)^l.
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The effect of this force on the dislocation is determined by its component fr in
the plane P; if � is the unit normal to l in P, so l ^ �D n ; then since f is normal to l

fr D f
�

:v
�

D ..b: 
/ ^ l/: �
�

D .b
�
: 
/:.l

�
^ �

�
/ (3.170)

Thus

fr D .b
�
:
/:.l

�
^ �/ D b:
:n (3.171)

If m is the unit vector in the direction of b (so bD bm), that is, the unit vector in the
direction of slip, we have

fr D b�r; �r D m
�
:
 :n

�
(3.172)

where � r is the resolved shear stress in the direction of slip m. Thus with b given for
a family of dislocations we can assume the form of a plasticity criterion expressed
as a criterion for a critical resolved shear stress (CRSS):

f.
/ D
ˇ̌
ˇm

�
: 
 :n

�

ˇ̌
ˇ � �c (3.173)

This is valid for the family of dislocations considered. For the same family
we should also consider the possibility of collective slip in the opposite direction,
�m, for which we should need to introduce another and possibly different critical
resolved shear stress � c

0. In what follows, it is more convenient to consider the
systems (n, m) and (n, �m) as two different systems. More generally, in considering
the set of possibilities for plastic slip in a given volume element of a single crystal,
we must take account of the complete set of families of dislocations that could slip
in their own plane. It is known (see Sect. 3.3) that in general this set is discrete and
that very often the number of slip systems is small, that is, the number of planes
of normal ng and directions of slip mg in these planes: these easy-glide systems are
determined by crystallographic and chemical bonding considerations and can be
activated at low temperature.

With each easy glide system (g) we have to associate its own criterion fg(
)

and its own critical shear �gc . The crystal cannot experience any plastic activity
unless the stress state 
 is such as to annul one of the yield functions (or several
simultaneously), the rest remaining negative: the condition is

sup
g2G

�ˇ̌ˇmg:
 :ng
ˇ̌
ˇ � �gc

	
D 0 (3.174)

where G is the set of easy-glide systems. Thus in the stress space the corresponding
yield surface will be a (hyper-) polyhedron.
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In this we have generalised the Schmid law (Sect. 3.3.2.1) to provide a 3-
dimensional criterion for single crystals; the Schmid factors of the original law
are relevant only for simple tension and compression. We must emphasise again,
however, that the law does not apply universally and that even in the case of
low-temperature plasticity it can be quite inappropriate for certain materials, in
particular those in which the dissociation of the dislocations gives a complex core
configuration such that the normal stresses can play an important role, as in BCC
crystals (Sect. 3.3.5.1).

In the above expressions the critical shears �gc act as work-hardening parameters;
so we must consider how they change during plastic flow. In attempting to answer
this question we are led to define other parameters, with a more explicit physical
content, on which they depend.

(b) Work-hardening. The vital influence on work-hardening of pure metals
of the interactions between dislocations makes it natural to attempt to express
the critical shears �gc as a function of the dislocation density. The study of the
interactions between dislocations (Sect. 3.4.2.2 and Eq. 3.84), gives the relation
�c D ˛�b

p
�D for isotropic work-hardening, where �D is the dislocation density

and b the modulus of the Burgers vector. A more detailed analysis, taking account
of short-range interactions and the different forms these can take, according to the
pair of dislocations considered, gives anisotropic expressions such as

�gc D �0 C �b.˙la
gl�l /1=2 (3.175)

where the matrix agl gives the action of the family (l) of dislocations, of density
�l, on the work-hardening of the system (g). Other expressions could be derived,
representing more complex effects that account for a kinematic part of the work-
hardening. However, in attempting to derive sufficiently general relations we come
up against many difficulties, including that of finding an expression for the evolution
of the densities �l (see below).

(c) Continuous distributions of dislocations. In the last 1950s, it was hoped to
bridge the gap between the microscopic and macroscopic levels by developing a
theory of continuous distributions of dislocations that enabled reliable calculations
of the associated stress fields (Kondo 1952; Kröner 1958; Bilby 1960).

Consider a surface element �S, with outward normal n, crossed by a number of
dislocations with the resultant Burgers vector�b. Defining a second-order tensor ˛
for the dislocation density by

�b
�

D ˛:n
�
�S (3.176)
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and taking the limit as�S ! 0, we arrive at the concept of a continuous distribution
˛.x/. In a given system of axes the diagonal terms (˛11, ˛22, ˛33) are the densities of
screw dislocations (Burgers vector parallel to an axis normal to the surface element);
the off-diagonal terms are the densities of edge dislocations (e.g. ˛12 relates to those
that are parallel to x2 and have Burgers vectors parallel to x1).

The resultant Burgers vector for the dislocations crossing the surface S is

bi D
Z
S

˛ij nj dS (3.177)

This vector will vanish if S is a closed surface; in this case therefore

0 D
Z
S

˛ij nj dS D
Z
S

˛ij;j dS ) div˛ D 0 (3.178)

The condition div˛D 0 is a generalisation to this continuum theory of the law of
nodes given in Sect. 3.3.3.1 for discrete dislocations. We can use this to calculate
the internal stress field associated with a given distribution ˛ (x); one way to do this,
drawing on the methods of continuum mechanics, is to associate with a dislocation
density ˛(x) an equivalent distribution of plastic strains "p.x/ and plastic rotations
!p.x/, with the plastic distortions ˇp.x/ given by ˇp D "p C !p.

This can be done by a similar procedure to that of the Burgers circuit
(Sect. 3.3.3.1, Fig. 3.19). Let C be the edge of a surface S, which is crossed by
dislocations of continuous density ˛. As in the circuit procedure, we integrate

along C the differential form dui
p D ˇ

p
ij dxj, which corresponds to the movements

associated with the dislocations passing through S that have crossed the line C; this
gives the opposite of the resultant Burgers vector. Thus

bi D
Z
S

˛ij nj dS D �
Z
C

ˇ
p
ij dxj D �2jkl

Z
S

ˇ
p
i l;knj dS (3.179)

using Gauss’s theorem; 2jkl D 0 if any two suffixes are equal, otherwise D ˙ 1
according as (j,k,l) are an even or an odd permutation of (1,2,3). Since the result
holds for any surface S we must have

˛ij D �2jklˇp
i l;k (3.180)

or in intrinsic notation ˛D curlrˇ
p (where the index r stands for “right”).

Thus the dislocations ˛(x) have the same stress field as the incompatible plastic
distribution ˇp.x/ (if ˇp.x/ were compatible its curl, and therefore ˛(x), would

vanish). Note that using the same process a distribution of quasi-dislocations can
be associated with any field of stress-free strains (or eigenstrains, e.g. of thermal
or transformational origin), to have the same static effects: this is a concept that is
identified with, and generalises, that of geometrically necessary dislocations, which
we developed in Sect. 3.3.3.5.
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Given an incompatible distribution ˇp.x/ which, if applied to a continuous

medium would destroy its cohesion and continuity everywhere, we can envisage
restoring the continuous geometry by distributing through the medium a continuous
field of dislocations with density

˛0 D � ˛ D curlrˇ
p (3.181)

To determine the internal stress field associated with ˛ we have to calculate
the elastic field ˇe that will restore the compatibility of the total transformation

with gradient ˇ D ˇe C ˇp, such that curlrˇD 0. Several computational methods

for solving this elastic problem enable the associated stress field to be found; they
can be applied to discrete dislocations too (reproducing results already known) by
representing the densities ˛ as sets of Dirac functions along the dislocation lines.

We might consider starting our attempt to formulate the laws of work-hardening
by expressing the fact that in order to move a particular dislocation the stresses due
to all the others must be overcome; but we should meet again the same difficulty
as before, that of finding the laws governing the evolution of the work-hardening
parameters. This is one of the reasons why the present development of the theory of
continuously-distributed dislocations applies mainly to static conditions; attempts to
describe the way in which the densities of dislocations evolve, and their effects on
work-hardening, have so far not made significant progress – not to mention the fact
that the density ˛ gives a very poor representation for dislocation dipoles or small
dislocation loops, which can play an important role.
(d) Plastic flow
(d1) Kinematics. It is clear that comparable difficulties will be met in attempting
to formulate the laws of plastic flow: that is, to find the relation between the
plastic strain rate P"p and the stress rate P
 . One could start with Orowan’s analysis
(Sect. 3.3.6.2) and formula (3.24) P
 D �Mbv, giving the plastic slip rate as a function
of the scalar density �M of the mobile dislocations and their average velocity v. This
scalar relation has to be replaced by a 3D relation involving the velocities relative to
two crystallographic planes of the same family; if these are a distance D apart, have
normal n and are slipping in a direction m, then with the origin O in one plane and
the point M(xi) in the other (Fig. 3.125) we have

V .M/ D �MDvb (3.182)

where bD bm and D D OM.nD xknk.
From this

Vi D P
xknkmi (3.183)

and if 
 can be assumed uniform in the volume being considered

P"pij D 1
2
.Vi;j C Vj;i / D 1

2
P
.minj Cmjni / (3.184)
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Fig. 3.125 Kinematics of
plastic glide

or in intrinsic notation

P"p D P
.m˝ n/S (3.185)

where T S denotes the symmetric part of T (see the microscopic equivalent in
Eq. 3.32b). If several slip systems are active simultaneously then

P"p D
X
g

P
g.mg ˝ ng/S (3.186)

and if T A is the anti-symmetric part of T , the plastic spin P!p is

P!p D
X
g

P
g.mg ˝ ng/A (3.187)

This is a purely kinematic description. We need to go further and find what part
�M of the total dislocation density � can be moved by the existing load, and how this
depends on 
 ; and also find how the average velocity v of the dislocations varies.
The questions that arise here have been answered in many special cases, but answers
general enough to help us to go from the scale of defects in crystals to that of overall
behaviour of a single crystal, over a large field of applications, have still to be found.

Nevertheless, let us mention here a promising approach (Mecking and Kocks
1981; Teodosiu et al .1993) which associates with the description of work-hardening
given by (3.175) a plastic flow equation through the prescription of the evolution of
the dislocation densities on every slip system, such as



3.5 Macroscopic Formulation of Plastic Behaviour 311

P�.l/ D 1

b

�
1

L.l/
�Gc�

.l/

� ˇ̌ P
.l/ˇ̌ (3.188)

where Gc is a parameter proportional to the characteristic length associated with the
annihilation process of dislocation dipoles and L(l) the mean free path of system (l)
(see Eq. 3.96). The latter can be expressed as

L.l/ D K

0
@X
g¤l

�.g/

1
A
�1=2

(3.189)

where K is a material parameter. This approach is expected to be combined
with Discrete Dislocations Dynamics (DDD) simulations in order to evaluate the
concerned material parameters and then with upscaling models from single crystal
to polycrystal (see Sect. 3.5.4) so as to develop a full multiscale analysis of
polycrystal plasticity.

(d2) Work-hardening matrix. It is because of the difficulty to derive general
enough predictive treatments based on the scale of dislocation densities that recourse
is often made to a semi-phenomenological description which avoids the difficulties
by choosing the slips P
g themselves as work-hardening parameters. With this choice
the laws of work-hardening and of flow coincide since we can write, using the work-
hardening matrix hgl, P�g D P�gc on an active system. Then

P�gc D
X
l

hgl P
l (3.190)

P"p D
X
g

P
g.mg ˝ ng/S D
X
g

P
gRg (3.191)

P�g D mg: P
:ng D .mg ˝ ng/S W P
 D Rg W P
 (3.192)

Combining these, writing [k] D [h]�1 and ignoring any changes that may occur
in mg and ng in the course of the flow, we get the plastic flow equation

P"p D
X
g;l

kgl
�
Rl W P


	
Rg D

X
g;l

�
kglRg ˝Rl

	
W P
 (3.193)

Some comments are needed here:

1. The work-hardening matrix hgl. This expresses the hardening produced in the
system (g) by the plastic activity on the system (l); it therefore expresses
anisotropy in the interactions of slip systems, in particular the distinction between
self-hardening (the diagonal terms) and latent hardening (the off-diagonal
terms).
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This matrix will change as the flow proceeds; this change can be investigated
experimentally in single crystals (Franciosi et al .1980): a primary specimen
is pre-deformed by simple slip (g), and from this are cut several secondary
samples at different orientations. Each of these latter is then deformed again
according to some system (l), for which the new critical resolved shear stress
will depend on the short-range interactions between (g) and (l). In general, the
off-diagonal terms are found to be greater than the diagonal, with the strongest
interactions corresponding, in the case of FCC crystals, to pairs of systems
for which the dislocations can form Lomer-Cottrell locks (Sect. 3.3.8.1) or, to
a lesser degree, glissile junctions. DDD simulations have shown recently that
collinear interactions are very strong too (Madec et al. 2003). The dissociation,
favoured by a low stacking fault energy, increases these interactions.

The weak point of the model is the choice of the work-hardening parameters:
with this it is difficult to express the fact that micro-slips produced by loads
that are too small, according to the Schmid criterion, to initiate plastic activity
can have a significant effect on the hardening (positive or negative). Further, the
inversion of the work-hardening law and of the work-hardening matrix can raise
problems, particularly in the case of non-uniqueness of the combination of active
systems; we then have to investigate whether the matrix is positive definite or
not, which is difficult to check experimentally.

2. The vectors mg, ng. In general, it is only for very small deformations that these
vectors can be regarded as remaining fixed; they are defined crystallographically
and are susceptible to a rotation of the crystal lattice. Such a lattice rotation
(Sect. 3.3.2), which must not be confused with that associated with plastic slip,
does nevertheless accompany this slip and the resultant total rotation enters the
compatibility equations, curl ˇ D 0. Thus in a tensile test on a single crystal

in which the machine’s jaws are constrained to remain aligned the conditions
imposed on the total rotation determine the lattice rotation by difference from
the plastic rotation.

If the total spin is zero the lattice and plastic spins must be equal and of opposite
signs ( P!L D � P!p). The vectors mg, ng therefore vary with time and the rate of
change of the resolved shear stress P�g depends on them as well as on 
 . This effect,
called geometrical work-hardening, is especially important in crystal plasticity at
finite strains as it is responsible for the formation of crystallographic textures.

3.5.1.3 Polycrystals

Polycrystal plasticity presents new levels of complexity in addition to the difficulties
just described:

• The single crystal grains are separated by boundaries (Sect. 3.3.8.3), which
constitute complex systems, rarely reducible to simple plane arrangements of
dislocations. Their influence on the plastic behaviour of the polycrystal is exerted
at several levels:
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– at the microscopic level it is determined by the nature of the interactions
between dislocations of the lattice and defects constituting the boundary. In
addition to the image-force effects are those of the obstacle to the propagation
of the lattice dislocations; these last are responsible in particular for the pile-
up of dislocations and the consequential stress concentrations which in turn
can activate sources of dislocations in neighbouring grains, resulting in the
transmission of plastic flow from grain to grain (see Sect. 3.4.2.3, Eq. 3.104:
interpretation of the Hall-Petch law concerning the influence of average grain
size on the flow stress of a polycrystal). Depending on its structure the
boundary can also act in a more complex manner, equally as a source or
as a sink of dislocations, all the more so because it is generally a favoured
site for the segregation of impurities, deposition of precipitates, formation of
cavities, etc.

– at an intermediate level the boundary is responsible for the formation of a zone
in its neighbourhood, rich in defects and on average more work-hardened than
the interior of the grains. This results in a heterogeneity in which the grain is
divided into a number of sub-domains of greater or lesser hardness, giving the
grain itself a complex structure and an average behaviour which, because of
the non-linearity of plasticity, is very different from that of an isolated single
crystal.

– finally, at the macroscopic level the grain boundary forms a frontier between
two different crystal orientations: even if the plastic deformation of each
grain is uniform (and therefore compatible) the overall plastic strain field is
no longer compatible. The consequence is an internal stress field – possibly
computable from the theory of continuous distributions of dislocations, in this
case for a surface distribution localised on the boundary – which causes the
local stresses to vary significantly from grain to grain, reproducing only in the
mean the stresses applied to the polycrystalline element.

• In addition to the effects of the individual grain boundaries, the overall behaviour
of the polycrystal is determined by the overall distribution of the grain boundaries
(location, orientation, dimensions) which controls the shapes and sizes of the
grains, and also by the crystal orientations of each grain and the way these
change as the flow proceeds. It is not enough, for a quantitative analysis of
these parameters and their influence, to know only their probabilities; their spatial
distributions also must be known, whether deterministic or probabilistic. Thus for
example the response of a given grain depends not only on its shape, dimensions
and crystal orientation but also on the details of its neighbourhood, that is, the
shape, dimensions and orientation of its near neighbours and even of more distant
grains if they interact with it.

Faced with these difficulties, we have a choice of three methods:

1. Analyse all the stages in shifting from a single crystal to a polycrystal in as
formally a deductive manner as possible. This approach, making the greatest
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demands of the three on an understanding of the mechanisms and phenomena
involved, is the objective of much current research.

2. Ignore the most detailed phenomena and retain only the parameters that are the
most important for the description of the polycrystalline aggregate, treating the
polycrystal as a composite material for which only an incomplete, statistical
description is known. The problems encountered in this approach, and the
methods that have been developed to solve them, are related to what we have
given in Sect. 2.9 on the elastic properties of heterogeneous materials. We give a
short illustration at the end of this chapter.

3. Take a more phenomenological point of view, using only some of the more
general microstructural features of plasticity of crystalline materials as a basis
for defining special classes of elastoplastic behaviours, possibly applying to
other materials as well. This is the method we shall use here, developing
a rheological formulation of elastoplastic behaviour under three headings,
criteria, work-hardening and flow. After this we give some introductory indi-
cations to the problems of computing the mechanical response of macroscopic
structures.

3.5.2 Criteria, Work-Hardening and Plastic Flow

3.5.2.1 Plasticity Criteria

The problem here is to derive explicit criteria for the plastic yielding of the material,
relevant to some aspect of its properties and corresponding to a given state, that is,
to given values of the work-hardening parameters. We deal first with the isotropic
case and then with the anisotropic.

(a) Isotropic criteria

We assume an isotropic plastic behaviour such that the conditions for the starting or
continuing the flow are independent of the orientation of the load with respect to the
material. Before treating the general problem we consider the form the Schmid law,
so far restricted to single crystals which are obviously anisotropic, might take when
generalised to the isotropic case.

(a1) Generalisation of Schmid law; Tresca criterion and offshoots.

The Schmid law is anisotropic both in that it presupposes only a limited number of
easy glide systems, so that the critical shear stress for all others could be considered
to be infinite, and in that it admits the possibility of different systems having
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different critical shear stresses. “Isotropising” the law means requiring all the critical
shear stresses to have the same value � c and allowing any slip system, defined by
the couple (m, n), to count as “easy glide” system, that is, to become plastically
active when the resolved shear stress reaches this critical value. The first change,
equalising the shear stresses, makes the law a criterion for the maximum critical
resolved shear stress with the maximum to be found within the limited set of easy-
glide systems; the second removes this last restriction and allows the search for
the maximum to be made over all possible slip systems. For any given stress 

the greatest resolved shear stress over a plane is that defined by the projection of
the stress vector T D 
 . n on that plane, and not on a particular direction m. If we
are to take all possible planes into consideration we have to find the greatest shear
stress. We thus arrive at a criterion for the critical maximum shear stress, called the
Tresca25 criterion.

The maximum shear stress being equal to half the difference between the extreme
principal values (cf. Mohr’s construction, which gives this in the form of the radius
of the largest Mohr circle), the Tresca criterion can be written as

Supi 
i � Infj 
j � 2�c (3.194)

where 
 i, 
 j are the principal stresses of the tensor 
 .
Before studying the implications of such a criterion it is as well to look into its

physical meaning. The occurrence of the critical value � c in the Tresca criterion,
when it occurs also in the Schmid law, might suggest that this is a strict statement
of the necessary condition for plastic flow in an isotropic polycrystal (that is, one
without crystallographic texture) consisting of crystalline grains, each of which
satisfies the Schmid law when all their (easy glide) slip systems have the same
critical shear stress � c. We might argue that a polycrystalline volume element
having sufficiently small grains will have a quasi-continuous distribution of easy-
glide systems in which all possible orientations have the same probability. For any
given stress state the first systems to be activated would be those subjected to the
maximum resolved shear stress, in practice to the maximum shear stress, and when
this latter reaches the critical value � c the polycrystalline element as a whole would
become active plastically.

This argument however is far from sound. On the one hand, before even the first
grain shows plastic activity on the most loaded of its slip systems the stress state
will not in general be the same from one grain to another. It only needs their elastic
behaviour to be anisotropic for internal stresses to appear, with the result that the
maximum shear for the overall stress state will have no local significance. On the
other hand, even if it could be assumed that the stress states were identical for all

25Henri Tresca (1814–1885) was a French mechanical engineer.
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the grains, plastic activity of a small fraction of the grains would be constrained by
the elastic response of all the others and could not have any significant macroscopic
effect: a large fraction of the grains would have to be already exhibiting plastic
flow before the aggregate as a whole could be considered as being in the plastic
regime. If plastic flow has started in different grains the stress state certainly
cannot be uniform, for the reasons already given in Sect. 3.5.1.3; and it is not
sufficient to know that the polycrystal is without texture to be able to analyse the
evolution of the local stresses, which depends on all the features of the spatial
distribution of the grains, their shape, dimensions, orientation, relative location, etc.
Thus the question is very complex, and cannot be answered as readily as might be
supposed; we shall return to it in Sect. 3.5.3.6 below, in connexion with the Taylor
model.

It is advisable here not to give too precise a physical sense to the Tresca criterion,
and to treat it as a phenomenological criterion, taking account of the isotropic nature
of the material. To emphasise this we replace the quantity � c by k, where k has
no significance except that of a yield strength in simple shear (since in this case

1 D �
2 and 
3 D 0), to be found experimentally. Given this, if the Tresca criterion
is satisfied then the yield strength can be predicted for any other stress state – clearly,
for simple tension for example, Rp D 2k.

It should be noted in particular that Tresca’s criterion does not depend on the
principal intermediate stress nor, more generally, on the mean stress 
m D (1/3)Tr
;
thus according to this criterion two stress states that differ only by an isotropic state
(�•, 8�) are equivalent. This is the same as saying that the criterion is unaffected
by a hydrostatic pressure (positive or negative) and depends only on the deviatoric
stress s D 
 � 
m•. This is not surprising, since it was derived as an extension of
the Schmid law, which already has this property: a resolved shear obeys

�r D m:
:n D m:.s C 
m•/:n D m:s:n since m:n D 0 (3.195)

and then depends only on the deviatoric stress.
In the (
 ,�) plane of the Mohr26 diagram the elastic – or, if rigid-plastic behaviour

is to be considered, non-plastic – domain is a strip bounded by the lines � D ˙k
parallel to the 
-axis; plastic response is possible only when the Mohr circle touches
these (Fig. 3.126).

This last statement has suggested, especially for rock and concrete mechanics,
that the Tresca criterion might be extended to apply to materials that do not satisfy it
as it stands, by considering, in the Mohr plane, an elastic domain bounded by the so-
called “intrinsic curve” j� j D g .
/, the envelope of the Mohr circles corresponding,
for all possible stress states, to the plastic limit. In spite of the name such criteria are
not in general “intrinsic”, but they are often used for such materials as soils, rocks,
concrete, etc. because they have the advantage of being able to express the property
of sensitivity of the plastic regime to normal stresses, frequently observed in these

26Christian Otto Mohr (1835–1918) was a German civil engineer.
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Fig. 3.126 The Tresca
criterion

Fig. 3.127 Intrinsic curve and Coulomb’s criterion

cracked or weakly-coherent materials. It is equally possible to express in this way
the strong differences between the elastic limits (and the fracture stresses) in tension
and compression, and, more generally, the great lack of symmetry between the
effects of hydrostatic pressure and of symmetrical tri-axial expansion (
 D �•,
�> 0). It follows that the intrinsic curves are concave towards negative normal
stresses (Fig. 3.127).
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A much-used member of this family of criteria is the Coulomb27criterion
(Fig. 3.127), represented in the (
 ,�) plane by a region of non-plasticity (or even
of non-fracture), bounded by two straight-line segments intersecting on the 
-axis
and making angles ˙' with this. For certain materials the “cohesion” yield strength
C, determined by the critical shear at zero normal stress, can be taken as negligible.

(a2) General expression for isotropic criteria: von Mises criterion.

It is easy to give a general expression for criteria for isotropic plasticity; the Tresca
criterion is just one particular case. For a given state of work-hardening the yield
function f(
) depends only on the stress tensor 
 . Instead of representing this
symmetric tensor by its six components relative to one particular set of axes we
can describe it by its three eigen-values 
1, 
2, 
3 and the orientation of its eigen-
vectors. The latter being orthogonal it can be defined by three angles, for example
its Eulerian angles in some reference system, say  , � , '. The yield function is thus
a function of the six variables, 
1, 
2,
3,  , � , '.

However, the criterion is isotropic, which means that the value of the yield
function does not change if this set of eigen-vectors is rotated in any way with
respect to the material. The yield function must therefore depend only on 
1, 
2,
3;
so in this case the stress space can be reduced to one of three dimensions only.
Further, the isotropy implies that f is a symmetrical function of the 
 i, none of the
principal stresses having any privilege over the others. These are the roots of the
characteristic equation

ˇ̌

ij � �•ij

ˇ̌ D 0 (3.196)

a cubic in � which we can write

�œ3 C I1œ
2 � I2œC I3 D 0 (3.197)

where

I1 D Tr.
/ D 
kk D 
1 C 
2 C 
3

I2 D 1 =2

��
Tr.
/

	2 � Tr(
2/

�
D 1 =2

�

2kk � 
ij 
ij

�

D 1 =2
h
.
1 C 
2 C 
3/

2
i

� .
21 C 
22 C 
23 /

I3 D det.
/ D 
1
2
3 (3.198)

I1, I2, I3 are invariants of 
 : their values remain unchanged when the axes of
reference are changed; they are symmetric functions of 
1, 
2, 
3 of degrees 1,

27Charles-Augustin de Coulomb (1736–1806) was a French physicist.
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2 and 3 respectively. Any invariant of 
 can be derived from them, or from the
following equivalent forms:

I’1 D Tr.
/ D 
kk

I’2 D 1 =2Tr.
2/ D 1 =2
ij 
ij

I’3 D 1 =3Tr.
3/ D 1 =3
ij 
jk
ki (3.199)

and any isotropic criterion is necessarily of the form f(I1, I2, I3) D 0 or f(I1
0, I2
0, I3
0)

D 0: this is the general form for such a criterion.
If now we restrict ourselves to criteria independent of hydrostatic pressure, and

therefore dependent only on the deviatoric stress s D 
�
m•, we can work through
the argument again in the same way; we find that these depend only on the basic
symmetrical invariants of the deviatoric stress, for example

J1 D Tr.s/ D skk D 0

J2 D 1 =2Tr.s2/ D 1 =2sij sij

J3 D 1 =3Tr.s3/ D 1 =3sij sjkski (3.200)

Thus these criteria depend only on two variables, J2 and J3. Further, the isotropy
implies symmetry, i.e., f(�s) D f(s), and as J2 is an even function of s whilst J3 is
odd, f can be written as

f
�
J2; J3

2
� D 0 (3.201)

Note: Since the Tresca criterion also is isotropic and independent of hydrostatic
pressure, it also can be put in the form (3.201).

It is interesting to study, as an example of this family of criteria, those that are
independent of the third invariant J3. They can be put in the form f(J2) D 0, or, what
comes to the same thing,

J2 D k2.since J2 D 1=2sij sij � 0/ (3.202)

This is the von Mises28criterion, very much used because of its simplicity and
regularity. It can be used in any of the following equivalent forms:

28Richard Edler von Mises (1883–1953) was an Austro-Hungarian scientist and engineer.
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J2 D .1 =2/ sij sij D .1 =2/
�
s21 C s22 C s23

� D � .s1s2 C s2s3 C s3s1/

D .1 =2/



ij 
ij � .1 =3/
2kk

� D .1 =6/
h
.
1 � 
2/

2 C .
2 � 
3/2 C .
3 � 
1/
2
i

D .1 =6/
h
.
11 � 
22/2 C .
22 � 
33/

2 C .
33 � 
11/
2

C6.
223 C 
231 C 
212/
i

D k2 (3.203)

Here, like for the Tresca criterion, k has the meaning of the yield strength in sim-
ple shear (
1 D � 
2, 
3 D 0); the yield strength in simple tension is then Rp D k

p
3.

Although introduced in a purely phenomenological manner the von Mises criterion
can be given a physical interpretation when applied to an isotropically elastic
material. It is then easy to prove that J2 is proportional to the elastic distortion
energy, that is, the total elastic energy less the part arising from a pure volumetric
dilatation � ; so one can say that in this case the criterion expresses the fact that
plastic yield occurs when the elastic distortion associated with elastic shear strains
reaches a critical value.

Less suggestively, the von Mises criterion can also be regarded as a criterion
for “critical octahedral stress”, the octahedral stress being the stress exerted on a
plane normal to the tri-sector of the principal directions of the stresses. A more
reasonable view is to consider the von Mises criterion as a typical representative
of isotropic criteria that are independent of hydrostatic pressure, which has a
particularly convenient and smooth analytic expression – in contrast to the Tresca
criterion, for which the expression varies according to the nature of the intermediate
principal stress.

It is reassuring to find that the Tresca and von Mises criteria give quite close
predictions concerning plasticity. This can be seen geometrically by comparing their
yield surfaces in the principal stress space (Fig. 3.128). As with all isotropic criteria
that are independent of hydrostatic pressure these are cylinders with generators
parallel to the tri-sector �, since a translation in this direction corresponds to the
addition of such a pressure, which has no effect on the plastic yield conditions. The
cylinder is circular for von Mises and a regular hexagonal prism for Tresca, and
both have � as axis. To compare the two predictions we must adjust the cylinders
so that both contain given experimental data, corresponding to a certain stress state.
According to the data chosen, the von Mises surface can vary with respect to the
Tresca from a cylinder inscribed in the hexagonal prism to one exscribed about
it; the difference between the two never exceeds about 15%, which is acceptable
in comparison with the experimental uncertainties. Though some micromechanical
simulations have shown that the plastic yield of an isotropic FCC polycrystal evolves
from Tresca’s to von Mises’s prediction when the plastic offset increases from zero,
there is no strong physical reason to regard either of these criteria as “better” than the
other; the important thing is that both are isotropic and independent of hydrostatic
pressure, and therefore well suited to the study of isotropic crystalline materials that
are deformed plastically by dislocation glide, and therefore without volume change.
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Fig. 3.128 Representations of the von Mises criterion (circular cylinder) and of the Tresca
criterion (regular hexagonal prism) in the stress space

As an example, we can compare the two criteria for a tension-torsion test, with
either a simple traction or a simple shear chosen for the adjustment. If the outcome
tends to favour von Mises this is primarily because of its greater analytic regularity,
which, as we shall see, has great advantages in describing plastic flow.

(b) Anisotropic criteria.

These are more complex and it is hardly possible to give a general form. Taking
the typical form of an isotropic criterion as guide, we can, however, specify a whole
family of anisotropic criteria that have two of the simplifying properties of the Mises
criterion: independence of hydrostatic pressure (and therefore dependence only on
the deviatoric stresses) and a quadratic function of these stresses. The isotropic
expression of the form s W s can then be “anisotropised” to s W B W s, where B is a
fourth-order tensor holding all the available information concerning the symmetries
of the anisotropy that is being taken into account. For the most general anisotropy
and a given state of work-hardening B provides 15 independent coefficients for
fitting to experimental data: the initial 34 D 81 components are reduced to 21 by the
obvious symmetries Bijkl D Bijlk D Bjikl D Bklij and then to 15 by Bjjkl D 0, expressing
independence of hydrostatic pressure.

Particular symmetries of the anisotropy will reduce this number further, just as
we saw in the case of the elastic moduli or compliances tensor in linear elasticity
(see Sect. 2.3.2).

A particularly interesting case is that of orthotropic symmetry (see Sect. 2.3.2.4),
illustrated by a study by Hill of plastic anisotropy in thin rolled sheets having
orthotropic symmetries with respect to the rolling (RD), transverse (TD) and normal
(ND) directions. With these as axes the expression s W B W s as a function of 
 has
the simple form
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s WB Ws D F .
22 � 
33/
2 CG.
33 � 
11/

2 CH.
11 � 
22/
2

C 2L
223 C 2M
231 C 2N
212 (3.204)

so that the criterion depends on only six coefficients. They can be determined
experimentally by submitting thin or thick sheets to tests which are, in principle,
similar to the “latent hardening tests” described in Sect. 3.5.1.2(d2) for single
crystals (see Exercises in Volume III). The transverse isotropy with respect to ND
(here the x3 axis) would give F D G, L D M, N D F C 2H, reducing the number to
3. Finally, if there is complete isotropy then F D H, L D N, N D 3F and we are left,
apart from the factor 6F, with the invariant J2 of s (which, as expected, corresponds
to von Mises criterion for isotropy).

A limitation of this form of criterion is in its symmetry: s W B W s has the same
value for s and �s, implying, for example, that the yield strength for simple
tension in any direction is equal and opposite to that for simple compression in
the same direction, which can conflict with observation, particularly with composite
materials. The restriction can be removed by using Tsai’s criterion, which adds a
linear form to the quadratic; thus for orthotropic symmetry (see Sect. 2.3.2.4), for
example, the form is

F .
22 � 
33/2 CG.
33 � 
11/2 CH.
11 � 
22/
2 C 2L
23

2 C 2M
31
2

C 2N
12
2 C P.
11 � 
33/CQ.
22 � 
33/ D k2 (3.205)

Many other criteria have been devised, too many to review here. We must now
consider how work-hardening and plastic flow are to be represented.

3.5.2.2 Laws of Work-Hardening and Plastic Flow

Since we have particular explicit expressions for yield functions f(
) for some
reference state we can derive for each one some forms for work-hardening, such as
isotropic, kinematic or a combination of these. However, we still have to formulate
the laws of work-hardening and of plastic flow. Significant progress can be made
here if certain restrictions are imposed, guided by information obtained in the study
of micro-plasticity in crystalline materials, and we shall develop comprehensive
models of elastoplastic behaviour within such a restricted framework. Before
embarking on this we can fill out some of the details in the introductory sketch
we gave of these laws in Sect. 3.2.2.3.
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We had arrived at the following expressions for a regular yield function:
8<
:

d"p
ij D Aijkl .
pq ; Ym/d
kl

dYm D Kmkl.
pq; Yn/d
kl

if f.
; Y / D 0 and
@f

@
kl
d
kl � 0

8<
:

d"p
ij D 0

dYm D 0

if f.
; Y / < 0 or f.
; Y / D 0 and
@f

@
kl
d
kl < 0

(3.206)

together with the consistency condition (df D 0):

�
@f

@
kl
C @f

@Ym
Kmkl

�
d
kl D 0 if f .
; Y / D 0 and

@f

@
kl
d
kl � 0 (3.207)

It is interesting to consider the special case of a neutral loading, for which we
must have

8̂̂
<
ˆ̂:
Aijkl .
pq; Ym/d
kl D 0

if f.
; Y / D 0 and
@f

@
kl
d
kl D 0;8d
kl

Kmkl .
pq; Yn/d
kl D 0

(3.208)

The simultaneous vanishing of Aijkld
kl ,Kmkld
kl and .@f=@
kl /d
kl for all
d
kl implies that @f=@
kl is a factor (from the point of view of tensor products)
in both Aijkl and Kmkl; therefore these two tensors can be written as

Aijkl D hij @f=@
kl Kmkl D km@f=@
kl (3.209)

We thus have the following relations, valid only during the plastic flow:

8̂
<
:̂

d"p
ij D hij .
pq; Ym/.@f=@
kl /d
kl

if f.
; Y / D 0 and .@f=@
kl /d
kl � 0

dYm D km.
pq; Yn/.@f=@
kl /d
kl

(3.210)

The consistency condition becomes

.1C km@f=@Ym/.@f=@
kl /d
kl D 0;8d
kl ; .@f=@
kl / d
kl � 0 and f D 0 (3.211)

or more simply

1C km@f=@Ym D 0 (3.212)



324 3 Elastoplasticity

Fig. 3.129 Sketch showing
that the direction of d"p

ij is
determined by 
ij and not by
d
ij

Thus in order to specify the work-hardening and flow functions, all that needs
to be known, in addition to the yield function f and its gradient @f, is a second-
order symmetric tensor function hij(
 , Y) and a work-hardening function km(
 , Y),
which, for the sake of simplicity, we have taken as a vector function. Though this is
still a very general form for the laws, we can derive from it an important statement
concerning plastic behaviour and its dependence on the stresses.

Consider a limit loading such that f(
 , Y) D 0. In this state plastic flow can
be started, or continued if already started, by any stress increment d
 such that
(@f/@
kl)d
kl> 0. The above equations show that the increment in plastic strain d"ij

p

will have the same direction whatever increment d
 is chosen, since it is always
proportional to hij(
 , Y), the value of which is fixed by the stress state and the level
of work-hardening reached before the incrementation. Thus the principal directions
and the ratios of the principal values taken in pairs, or equally of the components
in some reference system, of the plastic strain increment will be the same for all
d
 , and only the norm of "ij

p will depend on the particular choice (see Fig. 3.129).
This can be expressed by saying that plastic flow depends much more on the stress
state that made it possible than on the stress increment that initiated it. The same is
clearly true for the changes in the work-hardening parameters.

This property is made clear by a simple test. Suppose a thin tube subjected to
a simple tensile test that takes it well into the plastic regime, where at each step
the plastic deformation – and therefore the tensor hij – is in conformity with the
load, that is, consists of axial elongation together with lateral contraction. While
this is going on let an additional stress increment, obeying Eq. 3.210, be made that
would correspond to a twisting of the tube: the immediate response will be, not the
expected distortion by twisting, but an additional plastic elongation (accompanied
by a lateral plastic contraction). Plastic distortion develops only if a strong enough
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Fig. 3.130 A tube is first
elongated by an axial stress
increment; applying then a
twist increment does not
modify the direction of the
strain increment, the
deformation remaining an
elongation

twist couple continues to be applied. Of course, the immediate elastic response to
a suddenly-applied couple is a distortion: this shows the fundamental difference
between elastic and plastic behaviour (Fig. 3.130).

This strong dependence of incremental plastic flow on the prevailing stress state
rather than on the change in this is seen still more clearly in a particular case that
we study next – that of the standard material.

3.5.2.3 Principle of Maximum Plastic Work: Standard Material

Consider the plastic deformation on a single slip system (m, n) of a crystal that
obeys the Schmid law. We have already seen (Eq. 3.185) that with an appropriate
orientation of the unit vectors m, n

d"p D d
.m˝ n/S d
 > 0 (3.213)

Moreover, in the plastic flow regime, the resolved shear stress � r D m.
 .n is equal
to the current critical resolved shear stress � c, and therefore


 W d"p D d
 
 W .m˝ n/S D �rd
 D �cd
 (3.214)

Suppose now that a virtual stress 
� is applied while the plastic flow is
proceeding; the virtual plastic work corresponding to the increment d"p is given by


� W d"p D d

� W .m˝ n/S D ��r d
 (3.215)

If we take for 
� any stress state that does not violate the Schmid law for this slip
system we have ��r � � c, whence with d
 > 0, ��r d
 � �cd
 . It then follows that


� W d"p � 
 W d"p or .
 � 
�/ W d"p � 0 (3.216)

8
� that does not violate the considered plasticity criterion.



326 3 Elastoplasticity

If the crystal slips on two or more systems simultaneously and the Schmid law
continues to hold, possibly with different critical resolved shear stresses in the
different systems, the same reasoning applies and leads to the same result.

Finally, consider a polycrystalline volume element in which the Schmid law
holds for each grain and in which the only plastic deformation mechanisms at work
are intragranular slips such as those we have been considering so far – in particular,
there is no intergranular sliding, which clearly would violate the Schmid law. Here
again the same reasoning will hold and the same result be obtained.

Thus we have proved that for any (poly)crystalline material in which every grain
obeys the Schmid law – expressed symbolically as f(
) � 0 – and which deforms
only by intragranular glide the following relation holds:

.
 � 
�/ W d"p � 0; 8
�; f.
�/ � 0 and f.
/ D 0 (3.217)

Note: The condition f.
/ D 0 can be removed since for f.
/ < 0, d"p D 0 and the
inequality still holds in the broad sense.

The property just established can be expressed thus. For any crystalline material
for which the Schmid law holds the stress state that initiates a given plastic flow is
the one that develops the greatest amount of plastic work compared with all other
virtual states that do not violate the plastic criterion.

The property can be given the status of a principle, the principle of maximum
plastic work, or Hill’s principle (Hill 1950). The class of materials to which it
applies are called standard materials – that it does apply in any particular case
should always be checked experimentally. There are two associated properties, the
normality of the flow and the convexity of the criterion.

(a) Normality rule.

If we choose 
� to be indefinitely close to 
 and, like the latter, at the flow limit,
the vector in stress space .
 � 
�/ will be tangent to the yield surface for 
 , that is,
normal to the gradient @f/@ 
 of the yield function. Therefore

.@f=@
/ W .
 � 
�/ D 0 (3.218)

In the maximum-work relation (3.217) the roles of 
 and 
� can be interchanged,
so we have both .
 � 
�/ W d"p � 0 and .
� � 
/ W d"p � 0; and therefore

.
 � 
�/ W d"p D 0; 8
�; .@f=@
/ W .
 � 
�/ D 0 (3.219)

It follows that d"p and @f/@
 are collinear and therefore, if both are represented
in the same space, d"p also is normal to the yield surface; so we can write
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Fig. 3.131 Normality rule.
The strain increments are
normal to the yield surface

d"p D .@f =@
/ d�; d� > 0 (3.220)

where the increment d� is a scalar, and moreover is positive (if we choose 
� inside
the elastic domain and such that (
�
�) and (@f/@
 ) are collinear and in the same
sense, we have .
 � 
�/ W d"p � 0: thus d"p is in the same sense as (@f/@
 ), that of
the outward normal to the yield surface, since f is negative in the elastic domain and
zero on the surface; so d� is positive).

The normality of the flow (its direction normal to the yield surface) follows
from that of d"p. The yield function plays the part of a plastic potential and
determines, to within a positive scalar factor, the incremental plastic flow. This is
a particular form of the general conclusion drawn in the last paragraph: that the
direction of the plastic flow is determined by the stress and work-hardening states
at that instant, and is now, in addition, constrained to be normal to the yield surface
(Fig. 3.131).

(b) Convexity rule.

With 
� inside the elastic domain it follows from the maximum-work inequality
together with the normality rule (with d� positive) that

.
 � 
�/ W .@f=@
/ � 0; 8
�; f.
�/ � 0 (3.221)

This means that a situation such as that shown in Fig. 3.132 cannot arise: the
yield surface must lie entirely to one side of any tangent plane, which in turn
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Fig. 3.132 A situation
(®< /2) forbidden by the
principle of maximum plastic
work

means that it must be convex, as must be the yield function. This is the convexity
rule.

It is easy to prove that the normality and convexity rules together imply the
maximum work principle.

(c) Consequences of the above.

The two relations

8̂̂
<
ˆ̂:

d"p D h.
; Y /.@f=@
/ W d


if f.
; Y / D 0 and .@f=@
/ W d
 � 0

d"p D .@f=@
/d�; d� > 0

(3.222)

together imply, provided that Hill’s principle is satisfied, that the flow tensor h is
proportional to @f=@
 , and the proportionality factor g.
; Y / is positive. Therefore
for a standard material

8̂̂
<̂
ˆ̂̂:

d"p D g.
; Y /
@f

@


 
@f

@

W d


!
if f.
; Y / D 0 and

@f

@

W d
 � 0

d"p D 0 if f.
; Y / < 0 or f.
; Y / D 0 and
@f

@

W d
 � 0

(3.223)

For perfect plasticity (standard material with no hardening) we have simply

d"p D .@f=@
/ d�; for arbitrary d� > 0 and f D 0; df D 0 (3.224)

As would be expected, restricting the materials we consider to those that satisfy
Hill’s principle – a very wide class, however, which includes all those for which the
Schmid law holds at the level of constituents crystals – has enabled us to reduce
drastically the amount of information needed to give a complete characterisation
of the plastic behaviour, the yield function then determining the flow almost
completely.

It is tempting then to look for a corresponding result for work-hardening, giving
the evolution of the parameters also determined by the yield function. This has
been done within the framework of generalised normality for generalised standard
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materials, in which the formalism of the thermodynamics of irreversible processes is
used (Germain et al. 1983). Taking as work-hardening parameters the flux variables
Vk and their duals Ak in the expression for a pseudo-dissipation potential, which is
assumed to be convex with respect to the flux variables, we have simultaneously

d"p D .@f=@
/ d� and � dVk D .@f=@Ak/d� (3.225)

We give some examples in the following paragraphs.

3.5.2.4 Particular Models

Having laid down a general framework for the description of elastoplastic behaviour
we can now consider constructing some particular models, aiming to set up simple
reference systems defined by the smallest possible number of parameters. It helps
to assume standard (possibly generalised) materials, since the definition of these,
whilst restrictive, enables the amount of experimental data needed to be greatly
reduced. So as the better to illustrate the methodology, we shall most often use only
the von Mises criterion since this is particularly simple; extension to other criteria
does not in general present any difficulty except for the case of non-regular yield
surfaces: this requires special treatment, which we shall not go into here.

The von Mises criterion (3.202 and 3.203) is stated in terms of J2, the second
symmetric invariant of the stress deviator; it is convenient to use instead a derived
quantity which has the dimensions of stress and becomes the axial stress in the case
of simple tension: this is the von Mises equivalent stress, defined by


eq D N
 D
p
3 J2 D

q
.3=2/s W s (3.226)

The initial (that is, before any strain-hardening) von Mises yield function is then
written simply

f0.
/ D N
 � 
0 (3.227)

where 
0 is the initial elastic limit in simple tension. Starting with this we consider
in turn isotropic, linear kinematic, non-linear kinematic and isotropic-kinematic
work-hardening, noting in particular the different responses to cyclic loads. We
have

8̂
ˆ̂<
ˆ̂̂:

@f0

@

D @ N

@


D @ N

@s

D 3s

2 N

dY f0 D @f0

@

W d
 D 3s W d


2 N
 D d N

(3.228)
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(a) Isotropic work-hardening: Prandtl-Reuss model.

Let R be the scalar work-hardening parameter; we find the simple yield function

f.
/ D f0.
/ �R D N
 �R � 
0 (3.229)

For a standard material the plastic flow rule is

d"p D d�
@f

@

D 3s

2 N
 d� (3.230)

and d�> 0 for plastic flow, that is, for N
 D R C 
0 and d N
 � 0. This is the Lévy29-
Mises law, which, as in the general case (Eq. 3.223), can be written explicitly as

d"p D g.
;R/
@f

@


 
@f

@

W d


!
D g.
;R/

3s

2 N
 d N
 (3.231)

Consistently with the yield function, the positive-valued flow function g.
;R/
depends only on J2 and R, or, what is the same thing, on N
 and R; and since in plastic
flow R differs from N
 only by the constant 
0 this means that it depends only on N
 .
We can therefore write

d"p D 3g. N
/
2 N
 sd N
 for N
 D RC 
0 and d N
 > 0 (3.232)

Also in plastic flow

df D d N
 � dR D 0, so dR D d N
.> 0/ (3.233)

It is important to know which flux variable p is associated with the work-
hardening variable R in the case of a generalised standard material. This is such
that

dp D �@f
@R

d� D d� D g. N
/d N
 (3.234)

Moreover we have

d"p W d"p D 9

4

s W s
N
2 .d�/

2 .d� > 0/ (3.235)

29Maurice Lévy (1838–1910) was a French mathematician and engineer.
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and so

d� D dp D
r
2

3
d"p W d"p (3.236)

This is precisely the expression that generalises the concept of cumulative plastic
strain to three dimensions, using an equivalence in the von Mises sense, as was done
previously for the stresses. The factor 2/3 enables the incremental axial plastic strain
to be found in the case of simple tension. We have

p D
Z t

0

r
2

3
P"p.�/ W P"p.�/ d� (3.237)

If we add the elastic strain we have the Prandtl30-Reuss31law (for isotropic
elasticity):

8<
:

d" D 1C�
E

d
 � �
E

d.Tr
/•C 3g. N
/
2 N
 s d N
 if N
 D RC 
0; d N
 � 0

d" D 1C�
E

d
 � �
E

d.Tr
/• if N
 < RC 
0 or N
 D RC 
0; d N
 < 0
(3.238)

Given the values of the elastic constants the law is defined completely if g( N
) is
known; and this of course can only be found experimentally. This is easily done if a
tensile test curve "p D®(
) is available; we then have

d"p D dp D g. N
/d N
 D g.
/d
 D ®0.
/d
 (3.239)

and so g.
/ D ®0.
/ or g. N
/ D ®0. N
/. Hence in plastic flow

d" D 1C �

E
d
 � �

E
d.Tr
/•C 3®0. N
/

2 N
 s d N
 if N
 D RC 
0; d N
 � 0 (3.240)

Note: In general, the isotropic model is insufficient in dealing with cyclic loading. If
what is imposed is a stress, then as soon as during the first cycle there is shakedown
(elastic adaptation) without cyclic plastic deformation. If the strain is prescribed
in a one-dimensional tensile test then for large enough amplitudes stabilisation can
occur only progressively; the stable cycle is either elastic or without work-hardening
in the plastic flow regimes if hardening is saturated in monotonic loading.

30Ludwig Prandtl (1875–1953) was a German physicist and engineer.
31Endre Reuss (1900–1968) was a Hungarian mathematician.
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(b) Linear kinematic work-hardening: Prager’s model (Prager and Hodge 1951)
We now introduce a tensorial work-hardening variable X , of order 2, writing the
yield function as

f.
/ D f0.
 �X/ D .
 �X/� 
0 (3.241)

where

.
 �X/ D
r
3

2
.s � x/ W .s � x/ (3.242)

and x is the deviatoric part of X . We then have

@f

@

D @f0
@.
 � X/

D 3

2

s � x
.
 �X/ (3.243)

For reasons given in Sect. 3.2.2.2(b) we have to assume that the kinematic
hardening is linear, which is equivalent to assuming a fixed proportionality between
the increments dX and d"p, say

dX D kd"p D k.@f=@
/d� (3.244)

From the generic form of the work-hardening law in plastic flow (Eq. 3.210) we
have

dXij D Kij

@f

@

W d
 (3.245)

which is equivalent to taking K proportional to @f=@
 . Since we have @f=@X D
�@f=@
 , the consistency condition can be written

1� .@f/@
/ W K D 0 (3.246)

whence

8̂̂
<̂
ˆ̂̂:

K D @f=@


.@f=@
/ W .@f=@
/

dX D @f=@


.@f=@
/ W .@f=@
/
.@f=@
/ W d
 D k.@f=@
/d�

(3.247)

Thus with (3.242) and (3.243), which entails .@f=@
/ W .@f=@
/ D 3=2, we get

kd� D s � x


 � X
W d
 (3.248)
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and

d"p D 3

2k
20
.s � x/

h
.s � x/ W d


i
if 
 �X D 
0 and .s � x/ W d
 � 0

(3.249)

For identification from a tensile test we have

.s/ D 


3
ŒM � I .x/ D .X/ D X

3
ŒM � I .d"p/ D d"p

2
ŒM � I ŒM � D

0
@ 2 0 0

0 �1 0

0 0 �1

1
A

(3.250)

and

.
 �X/ D j
 � X j with j
 �X j D 
0 during flow (3.251)

which gives from (3.249)

d"p D 3

2k
20

�
2.
 �X/

3

�2
d
 D 2

3

d


k
(3.252)

We thus get a constant work-hardening modulus C D 3 k/2; so finally Prager’s32

law can be written as follows:

8̂̂
ˆ̂̂̂
ˆ̂̂<
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8̂̂
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d"p D 9

4C
20
.s � x/

h
.s � x/ W d


i

if .
 � X/ D 
0 and .s � x/ W d
 � 0

dX D 3

2
20
.s � x/

h
.s � x/ W d


i

d"p D dX D 0 if .
 � X/ < 
0 or .
 � X/ D 
0 and .s � x/ W d
 � 0

(3.253)

This model, constructed so as to take account of the Bauschinger effect, cannot
give any representation of the ratchet effect or the relaxation of the mean stress
during cyclic loading: there is always some shakedown and the stable cycle
is reached either immediately (e.g. when the cycle is tension/compression) or
progressively (e.g. when it is tension-shear).

32William Prager (1903–1980) was a German-born US applied mathematician.
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Fig. 3.133 Representation of
the relation dfD 0 for
f
�

 �X

	

Note: For a generalised standard material the flux variable ˛ associated with the
work-hardening variable X is such that

8̂
ˆ̂̂̂
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d"p D dX D 0 if .
 �X/ < 
0 or .
 � X/ D 
0 and .s � x/ W d
 � 0

(3.254)

Now � @f /@X D @f /@
 , and since the material is standard d"p D (@f/@
)d�. The
variable˛ can thus be identified with the plastic strain "p and there is a linear relation
between X and ˛ (the pseudo-dissipation potential is quadratic in ˛).

For all kinematic hardening criteria which have a yield function of the form
f .
 � X/ we have, in plastic flow,

df D .@f =@
/ W d
 C .@f =@X/ W dX D .@f =@
/ W .d
 � dX/ D 0 (3.255)

whence

.@f =@
/ W d
 D .@f =@
/ W dX (3.256)

which is represented geometrically in Fig. 3.133. Prager’s model makes dX
collinear with @f /@
 ; to overcome the restrictions of this linear kinematic model,
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others have been proposed – e.g. by Ziegler and by Mroz, see Lemaitre and
Chaboche (1985) – which make different assumptions concerning the direction of
dX in load space. We now consider an example.

(c) Nonlinear kinematic hardening.

One way to incorporate the ratchet effect into a kinematic model is to modify
the relation between dX and d"p so as to represent nonlinear work-hardening,
in particular by introducing a supplementary dependence of X on the cumulative
plastic deformation p which is growing in the course of cycling, e.g.

dX D .2=3/ C d"p � 
Xdp; 
 > 0 (3.257)

The back stress term (�
X dp) expresses a transient memory of the loading path
and makes it possible to cause the hardening modulus to decrease in the course
of the flow. If the same dissipative potential is used as in the Prager model with
XD (2C/3) ˛, the material will no longer be generalised standard since then the
relation d˛ D d"p would always hold. The generalised framework can be preserved
by dissociating the yield function f from the flow and introducing a flow potential F
distinct from the yield function: this is a case of “non-associated plasticity”. Putting

F D .
 �X/ � 
0 C 3


4C
X W X (3.258)

we get
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(3.259)

since dp D d�; finally, as expected,

dX D 2C

3
d˛ D 2C

3
d"p � 
Xdp (3.260)

We can derive the following properties from this model:

1. The yield surface is moved in stress space during the flow, but remains always
within a limit surface whose equation is

N
 D 
0 C C



(3.261)



336 3 Elastoplasticity

2. Using (1) we can describe the ratchet effect associated with an unsymmetrical
applied tension-compression load when stress is imposed and the relaxation of
the mean stress when strain is controlled, when the mean strain is not zero.

3. There is neither cyclic hardening nor cyclic softening.

(d) Combined isotropic and kinematic hardening.

We take the yield function to be of the form

f .
;R;X/ D .
 � X/� R � 
0 (3.262)

involving kinematic (governed by the variation in X ) and isotropic (governed by
that of R, usually a function of the cumulative plastic strain p) work-hardening
simultaneously. Without going into details, we can say that the form of dependence
of X on "p and p, used for nonlinear kinematic work-hardening, can be kept and
generalised by replacing the constants C and 
 by functions C(p) and 
 (p). This
brings in, in addition to the previously discussed properties of nonlinear kinematic
work-hardening, the possibility of representing cyclic hardening and softening when
there is shakedown.

A final refinement can be derived from observations of the dependence of the
stable cycle on the previous history of the loading: for example, the fact that
different cycles are reached according as this is one of increasing or decreasing
levels of cyclic loading. An extra variable can be introduced to carry the memory of
previous loadings: for example, of maximum plastic strains reached. By such means
a fairly complete model of work-hardening and flow can be constructed, which can
moreover be generalised by application of the same approach to other criteria than
the von Mises one, in particular to non-isotropic criteria such as that of Hill.

In conclusion we must emphasise that all the models we have been discussing
at least make use of the principle of maximum plastic work, i.e., are restricted
to standard materials. The physical basis for this is sound enough in the case of
crystalline materials, but the situation is not at all the same for other materials,
particularly soils, for which different models have to be developed.

3.5.3 Introduction to the Plastic Design of Structures

3.5.3.1 Outline

Calculation of the elastoplastic response of structures presents many difficulties
resulting from the incremental and multi-branched nature of the constitutive equa-
tions, even for the simple schemes for work-hardening and flow that have been
developed in the previous paragraphs. The incremental nature of the laws requires a
step-by-step treatment, following the loading path; the variational methods needed
for the development of efficient numerical procedures are based on rate formulations
for which the relevant extremal theorems derive from the normality and convexity
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properties of standard (simple or generalised) materials. Their multibranched nature
requires the zones in elastic and in plastic regime, and the evolution of the
boundaries of these zones, to be determined at each step.

We do not aim at developing here fully general methods which can be found
in specialist books (e.g. Prager and Hodge 1951; Koiter 1960; Save et al. 1997;
Hill 1998); to illustrate some of the problems that arise and to give some simple
computational tools that are useful for studying the mechanics of heterogeneous
materials, we limit our treatment to two types of situation in which important
simplifications can be achieved:

– proportional loadings of structures
– limit yield analysis of rigid-perfectly plastic solids

Finally, we give introductory elements for dealing with nonlinear homogenisa-
tion and the plasticity of heterogeneous materials.

3.5.3.2 Proportional Loadings of Structures

We are concerned here with structures subjected to external monotonic forces,
proportional to a single parameter. In some conditions we can assume that at all
points of the structure the stress tensor also, either strictly or to a good enough
approximation, is proportional to this parameter, the proportionality factor being
a monotonic scalar function of (kinematic!) time t. With these restrictions the
incremental equations can be integrated to give finite relations between the variables

 and "p, as in the case of elastic behaviour.

For simplicity, consider a Prandtl-Reuss model for local behaviour. The incre-
mental equation for the plastic strain is

d"p D 3' 0. N
/
2 N
 s d N
 if N
 D RC 
0; d N
 � 0 (3.263)

where "pD ®(
) is the equation of the tensile monotonic stress-strain curve, for

 � 
0. The assumption of radial loading entails the constancy of the tensor s=
 ; if
we write


.t/ D ˛.t/˙ (3.264)

where˙ is constant, then (3.264) still holds for the deviators, namely

s.t/ D ˛.t/S (3.265)

and s W s D ˛2.t/S W S ; so

N
 D j˛.t/j
r
3

2
S W S (3.266)
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s

N
 D ˛.t/S

j˛.t/j
q

3
2
S W S

D ˙Sq
3
2
S W S

(constant tensor) (3.267)

Integration of (3.263) now gives the Hencky33-Mises law (“J2 deformation
theory”):

"p D
Z 
0CR


0

3®0. N
/
2 N
 s d N
 D 3s

2 N

Z 
0CR


0

®0. N
/d N
 D
�
3s

2 N
 ®. N
/
�
0CR

0

D 3s

2 N
 ®. N
/
(3.268)

Thus, as expected, we have derived a relation between the values of "p and s at
any instant, which involves the strain-dependent secant plastic modulus 2 N
=3®. N
/.
If we define an equivalent von Mises plastic strain N"p by

N"p D
q
.2=3/"p W "p (3.269)

we can even obtain a “universal ” equation, valid for all monotonic radial loadings,
that is, for “simple” or “proportional” loadings:

.N"p/2 D 2

3
"p W "p D 2

3

9

4

s W s
N
2 ®

2. N
/ (3.270)

so

N"p D ®. N
/ (3.271)

which is the same expression for the tensile curve as we started with, now in terms
of equivalent quantities. This enables us to give a wider justification to the use of a
“work-hardening exponent” which, starting from a tensile curve expression


 D 
0 CK."p/n (3.272)

where n is the work-hardening exponent, keeps the same meaning for equivalent
quantities in monotonic radial loading:

N
 D 
0 CK.N"p/n (3.273)

33Heinrich Hencky (1885–1951) was a German engineer.
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Note: The definition of equivalence for any criterion must take account of the
particular criterion; thus for Tresca’s, the best choice is

N
 D 
1 � 
3 N"p D "
p
1 � "

p
3 if 
1 > 
2 > 
3 (3.274)

and for Hill’s (s W B W s D 
20 ), it is

N
 D .s W B W s/1=2 (3.275)

This situation of local proportional loading does not apply at all points of
the structure unless the initial state was stress-free and the elastic strains can be
neglected: these are necessary conditions for the structure problem to be solvable
directly.

3.5.3.3 Introduction to Limit Analysis

Considering only standard, rigid-perfectly plastic media, we now attempt to set
bounds to the conditions of incipient plastic flow. The limit analysis is based on
two extremal theorems, with the problem stated in terms of velocities vg prescribed
on a part Sv of the external surface S of the medium V, body forces F in V and
surface forces T g prescribed on ST, the complement of Sv on this surface.

Static approach. 
� is said to be licit if it is statically admissible for the problem
under consideration (div
�C FD 0, 
�D
�T, 
�.nDT g on ST) and plastically
admissible (f(
�) � 0 in V). Then, according to the principle of maximal work, with

 , " and v referring to a solution to the problem

.
 � 
�/ W P" � 0 )
Z
V

.
 � 
�/ W P" dV � 0 (3.276)

with
Z
V

.
 � 
�/ W P" dV D
Z
S

v:.
 � 
�/:n dS D
Z
Sv

vg:.
 � 
�/:n dS (3.277)

whence

H.
�/ D
Z
Sv

vg:
�:n dS ) H.
�/ � H.
/ (3.278)

This, called the lower bound theorem, is the first of our extremal theorems; it
states that among all licit stress fields a solution to the problem maximises the
functional H(
�).
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Kinematic approach.v0 is licit for the problem if it is kinematically admissible (i.e.,
is continuous, and v0 D vg on Sv) and plastically admissible (we can associate with
it 
 0, f.
 0/ D 0, with P"0 D P�.@f=@
/; P� > 0). Then, even if 
 0 is not unique, 
 0 W P"0
is well defined; in fact, for 
 0

1
¤ 
 0

2
, we have .
 0

1
� 
 0

2
/ W P"0 � 0 and .
 0

2
� 
 0

1
/ W

P"0 � 0. So .
 0
1

� 
 0
2
/ W P"0 D 0 and 
 0

1
W P"0 D 
 0

2
W P"0.

Further,


 W P" � 
 0 W P"0 D 
 W P" � 
 W P"0 C .
 � 
 0/ W P"0 with .
 � 
 0/ W P"0 � 0 (3.279)

whence


 W P" � 
 0 W P"0 � 
 W P" � 
 W P"0 and
Z
V

.
 W P" � 
 0 W P"0/dV �
Z
V


 W .P" � P"0/dV
(3.280)

with
Z
V


 W .P" � P"0/dV D
Z
V

F :.v � v0/dV C
Z
S

.v � v0/:
:ndS

D
Z
V

F :.v � v0/dV C
Z
ST

.v � v0/:T gdS
(3.281)

whence, from (3.280) and (3.281)

Z
V

.
 W P" � 
 0 W P"0/dV �
Z
V

F :.v � v0/dV C
Z
ST

.v � v0/:T gdS (3.282)

and finally

L.v0/ D
Z
V


 0 W P"0dV �
Z
V

F :v0dV �
Z
ST

v0:T gdS ) L.v/ � L.v0/

(3.283)

This is our second extremal theorem, called the upper bound theorem; it states
that among all licit velocity fields a solution to the problem minimises the functional
L.v0/.

As the solution is both statically and kinematically admissible, it turns out that
H.
/ D L.v/; so the two theorems put the solution between upper and lower
bounds:

H.
�/ � H.
/ D L.v/ � L.v0/ (3.284)
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Fig. 3.134 Piecewise uniform stress field with three blocks and associated Mohr circles

Note: These theorems form the basis for the derivation of limit loads applied to
structures described globally by load parameters Qi and their associated kinematical
parameters qi (see hereafter the example of punching). They can also be used
to derive bounds for the effective behaviour of plastic heterogeneous media (see
Sect. 3.5.3.6).

3.5.3.4 An Example (Static Approach): Flat Punch on a Semi-Infinite
Body (Plane Strain, Isotropic Criterion)

First we choose a stress field of three blocks (Fig. 3.134), piecewise uniform,
everywhere at the flow limit (Mohr circle of radius k, the flow limit in simple shear).
We have, per unit of thickness

8<
:
R
Sv

vg:
�:n dx D � R
AA0 
yyV0 dx D 4kaV0

R
Sv

vg:
 :n dx D FV0

(3.285)

and then F � 4ka.
With a piecewise uniform stress field of five blocks (Fig. 3.135) we find


�yy
�
AA0

� D �2k.1C p
2/; whence F � 2.1C p

2/ka (3.286)

but it is necessary, as is possible, to complete the field in the lower zones.
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Fig. 3.135 Piecewise uniform stress field with five blocks and associated Mohr circles

Generalising the result to (2n C 1) blocks (Fig. 3.136), provided that we have
completed the field throughout the whole of the half-space, which becomes more
and more difficult, we have


yy
�
AA0

� D �2kŒ1C n sin. =2n/� and F � 2kaŒ1C n sin. =2n/� (3.287)

As n ! 1 the inequality for F tends to F � 2(1 C /2)ka, with “Prandtl fans” in
A and A0. We have not proved that the field can be extended throughout the body,
but this can be established by a different method.

In order to derive an upper bound, a kinematic treatment is needed. A convenient
and simple method for that has been developed for easy application to various
problems of metal forming: the method of rigid blocks. It is presented as an exercise
in Volume III and applied to the same problem of the flat punch. The more general
and powerful method of slip lines is briefly developed now.

3.5.3.5 Outline of the Method of Slip Lines (Characteristics)

(a) This method leads to the geometrical construction of a network of curves from
which the velocities and stresses in the deformed (or possibly deformed) zones
can be calculated; the calculation will use the extremal theorems we proved in
the previous section, most often the upper bound. The method is based on the
fact that, for free incipient plastic flow in plane strain conditions of a standard
rigid-perfectly plastic medium of von Mises or Tresca type (for which the
criteria are equivalent under these conditions), the stress fields in the deformed
zones can be determined independently of the velocity fields.
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Fig. 3.136 Field with 2nC 1 blocks

It is easy to show that for these criteria – as indeed for all isotropic criteria
that are independent of hydrostatic pressure – the principal stress normal to the
(x,y) plane is intermediate. Let 
1 be the maximum principal stress (
1 >
2);
during flow

8̂̂
<̂
ˆ̂̂:


1 � 
2 D 2k D
q
.
11 � 
22/2 C 4
212

P"1 D �P"2 D P� with P� > 0 arbitrary


13 D 
23 D 0 (isotropy)

(3.288)

so that the equilibrium equations in the deformed zones can be written


11;1 C 
12;2 D 0; 
12;1 C 
22;2 D 0; .
33;3 D 0/ (3.289)

This gives three equations for the three unknowns 
11, 
12, 
22; it is helpful
to change the variables as follows (Fig. 3.137):

�p D .
1 C 
2/=2 D .
11 C 
22/=2; � D .Ox; 
1/

R D
q
.
11 � 
22/

2 C 4
212 (3.290)
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Fig. 3.137 Slip lines (notations)

�p is the abscissa of the centre of the Mohr circle; from this circle we have


11 D �p CR cos 2�; 
12 D R sin 2�; 
22 D �p �R cos 2� (3.291)

and the equations for the stresses in the (assumed) deformed zones are

8̂
<̂
ˆ̂:

R D k

�p;1 � 2k�;1 sin 2� C 2k�;2 cos 2� D 0

�p;2 C 2k�;1 cos 2� C 2k�;2 sin 2� D 0

(3.292)

Now consider the cross-sections M’, M“ inclined respectively at � /4 and
C /4 to 
1 (considered as a vector): these support the maximum shear stress
k at M. With these we can define, for the entire deformed zone, an orthogonal
curvilinear lattice which we can then use as a co-ordinate system: in this the
equilibrium equations become simply

�p;˛ � 2k�;˛ D 0; �p;ˇ C 2k�;ˇ D 0 (3.293)

as can be checked by putting � D /4 in the original equations, so that the lines
M’, M“ coincide with the axes Mx1, Mx2. Integration is immediate, giving the
Hencky relations:

p C 2k� D const: on an’ - line; p � 2k� D const: on a “ - line (3.294)
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Fig. 3.138 Determination of
the ’ and “ lines in a
deformed zone from known p
and � values on AB

Note: The ’ and “ lines are the characteristic lines of a quasi-linear system of
hyperbolic partial differential equations – it is for this reason that they are real.
Using these, the values of p and � , and thence of 
11, 
12, 
22, at all points
in a deformed zone can be calculated from a knowledge of their values on the
boundary.

(b) Examples

(i) In Fig. 3.138 p and � are known on the arc AB.

– the directions of the ’, “ lines can be drawn at every point on AB
– this having been done for two neighbouring points on AB, the values of

p and � at an internal point can be deduced, using the Hencky equations
(finite differences)

– the process is repeated step by step in all the region ABC bounded by
AB, the ’ line through B and the “ line though A.

(ii) Two slip lines through a point are known and also the value of p at that
point (Fig. 3.139)

– the value of � and thus of p is deduced on PA and PB
– starting from two points close to P on P’ and P“, p and � (and thus

the stresses) are determined at the intersection of the two slip lines
emanating from these points

– the procedure is repeated step by step throughout the region PABC,
bounded by two ’ lines and two “ lines.

(iii) Homogeneous field: p and � are constant in a given region: the lattice of ’
and “ lines thus consists of two families of orthogonal straight lines.

(iv) Semi-homogeneous field: one of the families of slip lines consists of
straight lines, on each of which therefore p is constant. If these are the
’ (or “) lines then the quantity p � 2k� (or pC2k�) is constant throughout
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Fig. 3.139 Extrapolation of
the slip lines field: p, ˛, ˇ are
known at P

Fig. 3.140 Hencky’s
theorem ��1D��2

the region. This is the case, for example, for the Prandtl fan, with one
family of concurrent straight lines and another of concentric circles.

(v) Hencky’s theorem: for the situation of Fig. 3.140:

�p1 D �2k��1 on˛1;�p2 D �2k��2 on˛2

�p1 D pB � pA; �p2 D pD � pC

�p1��p2DpB � pD C pC � pA D 2k.�B � �D C �C � �A/ D 2k.��1���2/
D 2k.��2 ���1/ ) ��1 D ��2 (3.295)

Thus if the part of one of the ’ lines lying between two “ lines is straight, the
same is true for all the others (semi-homogeneous field). Since two stress fields
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can be continuously linked only along a characteristic, it follows in particular
that a homogeneous field can only be linked to a semi-homogeneous field.

(c) Determination of velocities. The assumption of isotropy implies that P" and 

have collinear eigen-vectors; therefore in the curvilinear co-ordinate system
(’,“)

P"˛˛ D P"ˇˇ D 0 P"˛ˇ D P� > 0 .i:e:; no extension along the “slip” lines)
(3.296)

In terms of the velocities v˛; vˇ this gives the Geringer34 equations

�
dv˛ � vˇ d� D 0 on line ’
dvˇ C v˛ d� D 0 on line “

P� D .1=2/.v˛;ˇ � vˇ�;ˇ C v˛�;˛/ � 0 (plastic power � 0/

(3.297)

We can use the hodograph method: for a plane problem we associate with
the physical plane a velocity plane (the hodograph plane), in which the point
m(u,v) is the image of a physical point M(x,y) at which the velocity components
are (u,v) and if O is the (fixed) origin of the hodograph plane Om D v(M). So,
the (’, “) lattice has an orthogonal image (a, b) such that ’ in M and a in m are
orthogonal, and similarly for “ and b.

Since the discontinuities in velocity can be proved to be necessarily tangen-
tial to the discontinuity lines, the latter are necessarily the characteristics ’ and
“, and hence the name slip lines. Further, a velocity discontinuity is constant
along the line and must have the same orientation as its corresponding shear
stress.

(d) For the flat punch referring to Fig. 3.141, a solution is

– in ACD: homogeneous field with � D /2, p D k
– in ABC: semi-homogeneous field, Prandtl fan with opening  /2
– in A0BA: homogeneous field with � D 0, p D pAA0.

Applying the Hencky equation to an ’ line originating on AA0 we have

pAA0 C 0 D k C  k D k.1C  / (3.298)

But 
2(AA0) D �p � k D �k(2C ), and therefore

F � ka.2C  / (3.299)

34Hilda Geiringer (1893–1973), also known as Hilda von Mises, was an Austrian mathematics
professor.
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Fig. 3.141 Flat punch on a semi-infinite body: slip lines

This is an upper bound, as would be justified by the velocity analysis. The
static analysis of Sect. 3.5.3.4(a) gave the same value as a lower bound, and
therefore this is the exact value.

Note: This elementary solution can be used to assess the hardness H of a material,
which is measured by the normal force per unit area insuring free incipient plastic
flow. We have H D F/a D k(2 C ) D 
0.2 C �/=

p
3 (by von Mises), so H Š 3
0.

Thus the yield stress in simple tension can be estimated by an indentation test (see
Sect. 1.3.5.3 and in Volume II: Mechanics of Contacts).

3.5.3.6 Taylor’s Model

The extremal theorems we have established for a standard rigid-perfectly material
can be used to clarify the question raised in Sects. 3.5.1.3 and 3.5.2.1 concerning
the plasticity criteria for a polycrystal whose grains (g) obey the Schmid law. We
can treat such a polycrystal as a heterogeneous material and use the theorems to
set upper and lower bounds for the flow limit, as we have already done for elastic
behaviour of such materials. Since, as we have shown, polycrystals are a standard
material, we can use the above analysis for a rigid-perfectly plastic behaviour.

A static model, equivalent to the Reuss model, can be constructed on the basis
of a uniform stress field 
� D< 
� >D ˙ . For simplicity, we shall consider only
the case of simple tension and a Schmid law with the same critical resolved shear �c

for all systems. Choosing 
� uniaxial such that mg:
�:ng � �c 8g, and therefore a
uniaxial stress equal to 2�c, we get as lower bound˙0 � 2�c.
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The equivalent of the Voigt model, when elasticity can be neglected, is the Taylor
model (see Sect. 3.4.2.3(c)), in which the field P"0 .D P"0p/ is assumed to be uniform.

If the problem is formulated in terms of a strain rate PE.D PEp
/ prescribed on the

boundary we have PE D P"0, which, together with the restriction of incompressibility,
gives five conditions to be imposed on each grain. Thus a grain requires five
independent slip systems to be activated before it can be deformed in this manner
and in each grain (g) we have


 0 W "0 D 
 0 W E D �c

5X
iD1

P
gi (3.300)

The upper bound theorem then gives

1

V

Z
V


 0 W P"0 dV � ˙0
PE (3.301)

where PE is the macroscopic axial plastic strain rate; thus

�c

Z �X
i

P
gi
	

f.g/ dg � ˙0
PE (3.302)

where f.g/ is the distribution function for the crystal orientation g (defined e.g. by
3 Euler angles); thus

˙0 �< M.g/ > �c with M.g/ D
P

i P
gi
PE (3.303)

where M(g) is the Taylor factor for the orientation (g).
For the FCC case there will be a large number of combinations of five active

slip systems out of the 12 possibilities – though less than the total of C5
12 D 792

possibilities, not all of which are independent. For the least upper bound for ˙0

we have to choose, for each orientation (g), the combination of five systems f111g
<110> that gives the smallest possible value for

P
i P
gi , that is, the one that gives

the lowest plastic power; in a FCC polycrystal without texture this gives

˙0 � 3:067�c (3.304)

and finally

2 � ˙0=�c � 3:067 (3.305)
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If the polycrystal is isotropic we know in advance the form of PE that corresponds
to flow in simple tension: it is

� PE
	

D PE
0
@ 1 0 0

0 �1=2 0

0 0 �1=2

1
A (3.306)

from which the Taylor factors can be determined directly. This is not so if the
polycrystal has a crystallographic texture and we have to express it in terms of
several parameters, for example

� PE
	

D PE
0
@ 1 0 0

0 �q 0

0 0 �1C q

1
A (3.307)

We must then develop a double minimisation procedure to find the optimum
value of q, or of the Lankford coefficient R D q/(1 � q), and for this value the
combination of slip systems that gives the lowest plastic power.

Note: the extremal nature of the Taylor model as yielding an upper bound for the
flow stress has been proved by Hill with help of the above derived extremal theorems
(3.284) long after it was proposed as an estimate by Taylor on a physical basis
(1938). On the contrary, no such extremal nature could be proved for the Sachs35

model (Sachs 1928) which was derived from the approximate assumption of an
equal maximum shear stress, the CRSS, reached simultaneously by every grain
orientation; nevertheless the computed Sachs estimate of the tensile yield stress
for isotropic FCC polycrystals (namely 2.24� c) lies between Reuss and Taylor
bounds.

3.5.4 Introduction to the Plasticity of Heterogeneous Materials

The Taylor model can be considered as the first significant contribution to nonlinear
continuum micromechanics. Nevertheless, almost one century later and despite
important advances in this field, especially during the last decade, this topic can
still be considered as an open one and is the matter of intensive research. We only
aim here at presenting the main trends of the modern plasticity of heterogeneous
materials and at referring to specialist literature for more details.

The solution by Eshelby of the inclusion problem (Sect. 2.7) served as a key
for trespassing the known limits of the Taylor model, according to the idea that the

35George (Georg Oskar) Sachs (1896–1960) was a Russian-born German and American metallur-
gist.
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plastic strain could be considered as a “stress-free strain”, in the sense of Eshelby, so
that elastoplasticity could be treated as elasticity with eigenstrains. Unfortunately,
this idea is not fully relevant when the considered material is plastically flowing. As
long as the overall plastic flow can be considered as frozen, it leads to interesting
new results, which have already been partly reported in Sect. 2.5.2 (heterogeneous
elasticity with initial strains). In what follows, these results are first adapted to
plasticity and somewhat extended in Sect. 3.5.4.1. The limits of validity of the
assimilation of plastic strain to an eigenstrain and some ways of improvement are
then discussed in Sect. 3.5.4.2. A brief outline of more recent variational approaches
opening the way to fully renewed treatments is finally given in Sect. 3.5.4.3.

3.5.4.1 Elastoplasticity Treated as Elasticity with Eigenstrains

(a) Mean values.
The results derived in Sect. 2.5.2 for linear elasticity with initial strains cannot
be applied without care to the plastic flow of heterogeneous plastic materials,
because the plastic flow and then the plastic strain are stress-dependent whereas,
by definition, a “stress-free strain” is not: outside the elastic domain, the mechanical
behaviour is obviously nonlinear elastoplastic. Nevertheless, a number of previously
obtained properties, which do not explicitly refer to an overall plastic flow, can be
saved: the residual stress 
 r can be defined in the same way by referring to an elastic
unloading and the relation between the local and the overall plastic strain rates can
be derived through the same arguments which have been used for the derivation of
(2.118), which now reads

PEp D< P"p W B >D< BT W P"p > (3.308)

where B is still associated to a purely elastic process (Mandel 1972).

(b) Plastic dissipation.
Similarly to the derivation of (2.120) for the elastic stored energy, which is still valid
for elastoplasticity, we can also compare the local plastic dissipation d D 
 W P"p and
the macroscopic one D. We have

D D< d >D< 
 W P"p >D<
�
˙ W BT C 
 r

	
W P"p >

D ˙ W< BT W P"p > C < 
 r W P"p >D ˙ W PEpC < 
 r W P"p > (3.309)

Here again, the compatibility of the residual strain rate field P"r D P"p C s W P
 r and
the equilibrium of the residual stress field 
 r lead, through Hill’s lemma, to
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< 
 r W P"p >D < 
 r W P"r > � < 
 r W s W P
 r >

D < 
 r >W< P"r > � < 
 r W s W P
 r >

D� < 
 r W s W P
 r >

(3.310)

and then to

D D< 
 W P"p >D ˙ W PEp� < 
 r W s W P
 r > (3.311)

This result expresses the fact that, whereas the local plastic power 
 W P"p is fully

dissipated, the macroscopic one ˙ W PEp
contains one part, namely < 
 r W s W P
 r >,

which remains stored and not dissipated: it corresponds to the variation of the elastic
energy of the residual stresses.

Note that, using the same arguments, we can also obtain the relation

Ṗ W PEp D< P
 W P"p > C < P
 r W s W P
 r > (3.312)

If the constituents of an RVE of the considered heterogeneous material have a
perfectly plastic (i.e., no hardening) standard behaviour with a regular yield surface,
the term < P
 W P"p > in (3.312) vanishes since P
 W P"p D 0 everywhere (either

P"p D 0 or P
 is normal to P"p, due to the normality rule). So, Ṗ W PEp � 0, since s
is positive definite, which means, because the overall behaviour is standard too, as
proved below, that there is a macroscopic hardening originating in the interactions
between the constituents. An experimental proof of this conclusion is given by the
fact that the initial part of the tensile curve of a polycrystal in the plastic regime is
generally concave even though each plastically active grain at this stage experiences
a quasi non-hardening flow such as the stage I of FCC single crystals (see Fig. 3.63).
The same phenomenon is responsible for the major part of the kinematic hardening
of polycrystals.

(c) Macroscopic elastic domain and the principle of maximum plastic work.
Let us consider an RVE of a heterogeneous material with standard constituents. In
addition, for the sake of simplicity, these constituents are elastic-perfectly plastic,
so that the local yield surface C(x) at any point x is fixed. For a given macroscopic
stress tensor ˙ associated with the local fields 
.x/ and 
 r.x/, the macroscopic
elastic domain is defined as the set of macroscopic stress tensors ˙� which can be
reached from ˙ along purely elastic paths. On such paths, where the local stresses
are denoted 
�.x/, the residual stresses 
 r.x/ remain constant. Since the process is
elastic, we have

8̂
<̂
ˆ̂:


�.x/ D B.x/ W ˙� C 
 r.x/


.x/ D B.x/ W ˙ C 
 r.x/


.x/� 
�.x/ D B.x/ W .˙ �˙�/

(3.313)
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The macroscopic elastic domain Ceff(
n

 r
o
) can be defined as the intersection of

all the domains C(x) after translation by the residual stresses 
 r.x/ and transforma-

tion by B�1(x).
During a macroscopic plastic flow PEp

, associated with the local flow P"p.x/, we
have locally, from the principle of maximum plastic work at the local level

�

.x/ � 
�.x/

	
W P"p.x/ � 0 f.
�/ � 0 (3.314)

where f.
/ is the local yield function; this reads also, according to (3.313)

�
˙ �˙�

	
W BT W P"p.x/ � 0 f.
�/ � 0 (3.315)

Averaging over the RVE, and using (3.308) and the overall yield function F.˙/,
we get

�
˙ �˙�

	
W PEp � 0 F.˙�/ � 0 (3.316)

This proves that the principle of maximum plastic work is then also valid at the
macroscopic level. In particular, this result shows that a polycrystal whose grains
obey the Schmid law, which implies this principle at the local level, is a standard
material at the macroscopic scale (unless specific non standard deformation modes
occur at the grain boundaries).

3.5.4.2 Estimates for the Effective Elastoplastic Behaviour of Polycrystals

The Taylor model has been used intensively for the analysis of various processes
of metal forming (rolling, deep drawing : : : ), especially for the prediction of the
formation of crystallographic textures and of the associated plastic anisotropy at
finite strain. Despite a number of satisfying results, it proved, as expected from its
extremal nature (“upper bound”), to be generally too stiff. The extension proposed
by Lin (1957) to consider an elastoplastic behaviour instead of a rigid-plastic one
and to assume a uniform total strain did not lead to change this conclusion; actually,
for isotropic elasticity and isochoric plasticity, we have

"e C "p D Ee C Ep Tr."e/ D Tr.Ee/

) 
 D ˙ C 2�.Ep � "p/ (3.317)

With
ˇ̌
ˇ
 �˙

ˇ̌
ˇ =� of the order of 10�3 to 10�2, this proves that, from a practical

point of view, Lin’s and Taylor’s models almost coincide: actually, they were found
to yield almost identical predictions.
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As indicated above, new approaches followed the resolution by Eshelby (1957)
of the inclusion problem: Budiansky, Hashin and Sanders (1960) proposed to model
the very commencement of the plastic regime by considering the first plastically
active grains as isolated (spherical) inclusions I in an elastic matrix, according to
Eshelby’s “dilute approximation” approach (remind Sect. 2.8.2 which reported on
an application of this approach to heterogeneous elasticity). For isotropic elasticity
and isochoric plasticity, this treatment leads to the relations

8<
:
"

I
D E C SEsh

I W "p
I

D ˇ"p
I



I

D ˙ � 2�.1� ˇ/"p
I

(3.318)

One year later, Kröner (1961) crossed the path towards the fully developed plastic
flow by extending this treatment to the plastic regime: the matrix was supposed
to undergo the uniform plastic strain Ep and the self-consistent scheme was used
instead of the dilute approximation since the volume fraction of the plastically active
grains is no more negligible. Under the same assumptions of isotropic elasticity and
isochoric plasticity and using spherical inclusions as representative of every phase
(r), defined by the same crystal orientation, this corresponds to a particular case of
the problem solved by Eq. 2.112 of Chap. 2, namely

"HI D .I C P W •cHI/�1 W
h
E C P W .cHI W "F � C W EF/

i
(2.112bis)

This problem referred to an ellipsoidal elastic inhomogeneity with a uniform
eigenstrain "F embedded in an infinite elastic matrix with the uniform eigenstrain

EF, uniformly deformed by E at infinity. Changing HI into (r), "F into "p, EF into

Ep and P:C into SEsh and putting cHI D C, we find

"
r

D E C SEsh
r W ."p

r
�Ep/ (3.319)

For spherical inclusions, isotropic elasticity and isochoric plasticity, this equation
reads simply

"
r

D E C ˇ ."p
r

� Ep/ (3.320)

or equivalently



r

D ˙ C 2�.1 � ˇ/ W .Ep � "p
r
/ (3.321)

which is the so-called “Kröner interaction law”.
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It is consistent with a full assimilation of the plastic strain to an eigenstrain:
whereas this treatment was a reasonable assumption for the incipient plastic regime,
when most of the grains (and then the “matrix”) are still elastic, it becomes debatable
at larger strain when elastoplastic interactions between grains cannot reduce any
longer to the elastic ones which are concerned with Eshelby’s inclusion problem. As
a matter of fact, predictions derived from Kröner’s model proved to be, except near
the initial yield stress, very close to those derived from an assumption of uniform
(either plastic or total) strain: this could be guessed from a comparison between

(3.317) and (3.321): with ˇ ' 1=2,
ˇ̌
ˇ
 �˙

ˇ̌
ˇ =� is only divided by two when going

from Lin’s to Kröner’s model, which does not change its order of magnitude and
the associated practical conclusion of the prediction of quasi-uniform plastic strain
and too stiff estimates.

Four years later, Hill (1965) proposed a completely different use of Eshelby’s
solution: within the same self-consistent approach as Kröner, which is adequate
to the granular morphology of polycrystals, he proposed first to linearise the
elastoplastic behaviour at the local and the overall scales by use of the tangent
(multibranch) instantaneous moduli, denoted lr and LSC, respectively:

( P

r

D lr W P"
r

Ṗ D LSC W PE
(3.322)

and then to estimate the strain-rate concentration tensors of this linearised version
from the solution of Eshelby’s inhomogeneity (instead of inclusion) problem. This
can be done as explained in the case of linear elasticity in Sect. 2.8.2.2 whose
resulting Eq. 2.194, namely

CSC D< c W .I C PSC W •cSC/�1 >W< .I C PSC W •cSC/�1>�1 (2.194bis)

now reads

LSC D< l W 
I C PSC W .l � LSC/
��1

>W< 
I C PSC W .l � LSC/
��1
>�1

(3.323)

For similar and aligned ellipsoids, the concentration equation reduces to

P

r

D Ṗ � L� W .P"
r

� PE/ (3.324)

where Hill’s constraint tensor L* is linked with LSC and SEshSC in the same way as
C* was linked with C and SEsh in (2.113) for linear elasticity. This result clearly
illustrates the elastoplastic nature of the intergranular interactions according to
Hill’s model, whereas they were purely elastic according to Kröner’s one.
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Consequently, Hill’s predictions for the effective behaviour are expected to be
softer than those resulting from Taylor’s, Lin’s or Kröner’s approaches. As a matter
of fact, a number of applications of Hill’s model to metal forming, initiated by
Hutchinson (1970) and extended at finite strain (Iwakuma and Nemat-Nasser 1984;
Lipinski et al. 1990), have shown this model to constitute a significant improvement
compared with the former ones. Another way to understand the reason for that is
given by the simplified isotropic version of Hill’s model proposed by Berveiller and
Zaoui (1979) where the deformation theory of plasticity (see Sect. 3.5.3.2) is used
instead of the flow theory. Under the assumption of local and global proportional
loading, isotropic elasticity and phase distribution and isochoric plastic strain, this
so-called “secant approach” (since the constitutive equations now relate finite, and
not infinitesimal, strains and stresses) leads to the following concentration equation:



r

D ˙ C 2�.1 � ˇ/f. NEp/ W .Ep � "p
r
/ (3.325)

In this equation, the function f depending on the equivalent macroscopic plastic
strain NEp, defined by (3.269), is found to be equal to one as long as NEp D 0 and then
to be rapidly decreasing by one or two orders of magnitude in the plastic regime.
This means that Kröner’s interaction law (3.321) is recovered only in the elastic
domain and that, in the plastic regime, the plastic strain deviation can increase
significantly with respect to Kröner’s model prediction, yielding, as wished, a far
softer estimate of the effective response.

That is the reason why Hill’s approach rapidly gained acceptance so as to have
been considered for a long time the standard for deriving nonlinear estimates. This
is no longer true because of the development of new variational treatments for
nonlinear elasticity. Nevertheless, by introducing the method of linearisation of
the constitutive equations, Hill’s approach basically opened the way to these new
treatments themselves. We give in conclusion a brief outline of these treatments
(Zaoui 2002).

3.5.4.3 New Methods for Bounding and Estimating the Effective
Behaviour in Nonlinear Elasticity; Consequences
for Elastoplasticity

A connexion between nonlinear elasticity and elastoplasticity (“deformation the-
ory”) can be established when proportional loading paths are considered (see
Sect. 3.5.3.2). In addition, Hill’s incremental linearisation method can be applied
to nonlinear elasticity and combined with any linear homogenisation scheme; the
same statement holds for the secant linearisation method quoted above. That is why
some advances achieved in the field of homogenisation for nonlinear elasticity can
be used for elastoplasticity.

This happened when new variational methods for nonlinear elasticity were
proposed, following the pioneer work of Talbot and Willis (1985), by several
authors (Ponte Castañeda1991; Suquet 1993; Willis 1994), and provided rigorous
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Hashin-Shtrikman -type upper bounds for the effective elastic potential. These new
bounds could then be compared with several estimates for the overall responses
predicted by several of the previous models, including Hill’s one, when applied
to nonlinear elasticity, as they can be: this showed in particular that Hill’s model
may violate these bounds, at least for some values of the material parameters.
This conclusion suffices to conclude that Hill’s incremental linearisation method
is still too stiff and has to be replaced by softer ones. That is the reason why a
number of alternative linearisation methods were proposed (the “tangent”, “affine”,
“second-order” : : : formulations) and their predictions compared with the bounds,
with varying success.

A detailed description of these approaches and of their results would lie out
of the scope of this book. Interested readers can usefully refer to the concerned
research literature, e.g. the general review by Ponte Castañeda and Suquet (1998).
Nevertheless, one important conclusion can be stressed. As suggested above, the
homogenisation theory for nonlinear elastic heterogeneous materials has strongly
benefited in the last decade from the development of these new variational ap-
proaches. These advances can be directly transferred to the field of viscoplasticity
without elasticity (see Chap. 4) because the constitutive equations relate the stress
and the strain-rate tensors in a way which is strictly similar to the relation between
the stress and the strain tensors for nonlinear elasticity; in both cases, the local and
global behaviour can be defined by one potential only. This is no more true for
elastoplasticity or elasto-visco-plasticity for which two potentials are needed for the
description of the constitutive hereditary behaviour. In these cases, the variational
approaches for nonlinear elasticity do not work any longer; so, bounds for the overall
response cannot be derived.

Though reference to nonlinear elasticity can be somewhat useful for suggesting
new routes for deriving improved estimates for the effective behaviour, there is no
guarantee that they would not lead to a bound violation if new bounds happen to be
discovered in the future. From a physical point of view, the main difficulty lies in
the so-called “long-range memory effect”. Information on this effect and on the way
to deal with it in simple cases is given in Chap. 5 on Viscoelasticity.
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Ponte Castañeda P (1991) The effective mechanical properties of nonlinear isotropic composites.

J Mech Phys Solids 39:45–71
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Chapter 4
Elastoviscoplasticity

Abstract This chapter is devoted to the elastoviscoplastic (or creep) behaviour of
materials, in particular metals and metallic alloys. Ceramic materials and polymers
are only briefly mentioned. Typical experiments used to investigate the viscoplastic
behaviour of these materials are firstly described showing the diversity in the
response, depending on test conditions. These experiments are mainly based on
uniaxial test conditions, although multiaxial loading is also considered. Then the
physical mechanisms responsible for viscoplasticity are analysed. A distinction
between low temperature (T < 0.3 Tm) and high temperature (T > 0.3 Tm) vis-
coplasticity is made. The formalism used to describe thermal activation for low
temperature viscoplasticity is described in some detail, in particular for precipitation
hardening. Several high temperature creep mechanisms are described: dislocation
creep and diffusion creep. Deformation mechanism maps including all these
mechanisms are introduced and described for several materials including metals
and ceramics. The last part is devoted to the introduction of the macroscopic models
for viscoplasticity. The chapter ends with a brief presentation of the metallurgical
factors, which can be used to improve the creep strength of structural metallic alloys.

4.1 Introduction

The type of behaviour to be discussed in this chapter has in common with
elastoplasticity the fact that a permanent deformation remains after the load has been
removed. On the other hand, viscosity now prevents the occurrence of instantaneous
plastic deformations: time controls the inelastic deformation and we have what is
called rate-dependent plasticity. Apart from this, viscoplastic behaviour is very
similar to ordinary plasticity, already treated in Chap. 3 of this volume; but it is
distinguished from this by the separation of the deformation into an elastic part and
an inelastic viscoplastic part, say " D "e C "v, with, in general, the absence of
reversibility of deformation, even delayed, for the inelastic part.

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
Macroscopic Constitutive Behaviour, Solid Mechanics and Its Applications 180,
DOI 10.1007/978-94-007-2546-1 4, © Springer ScienceCBusiness Media B.V. 2012
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Viscoplastic behaviour occurs especially in metals and alloys when tested at high
temperatures, not less than one-third of the melting point Tm. It is then accompanied
by diffusion phenomena with different characteristic distances: those related to
dislocations climb (intragranular creep) are seen in the creep which results from
the competition between work-hardening and recovery, or at greater distances those
related to grain boundaries in diffusional creep. Low-temperature viscoplasticity
also is possible, related to thermal activation of the plastic deformation. We define
these various terms at the appropriate points later in the chapter. As well as to metals,
viscoplasticity theory applies to polymers when these are loaded beyond the point
at which their behaviour can continue to be viscoelastic, and also, in studies of the
evolution of mechanical behaviour over very long periods, to soils, rocks and ice.

As in the study of plasticity, we make the simplifying assumptions of linear
elasticity, small deformations and absence of damage. The present chapter gives:

• A description of the tests that enable the basic features of viscoplastic behaviour
and the associated phenomena to be seen.

• An account of the physical models of viscoplasticity (thermal activation, creep).
Particular attention is paid to the field of validity of each equation derived, so that
the limits of the models can be predicted – for example, when results are to be
extrapolated to longer times or higher temperatures.

• An account of phenomenological mechanical models of viscoplasticity, bringing
out the physical significance of each term introduced; here we discuss the
theories of plasticity and viscoplasticity in combination, and also, for reasons
of computational convenience, the use of viscoplasticity rather than time-
independent plasticity.

• A discussion of methods for reinforcing against creep, showing how, once the
deformation mechanisms have been understood, means for preventing against
excessive deformation and rupture can be found.

Only viscoplasticity is considered here, creep damage being left to Chap. 8 in
Volume II.

4.2 Typical Experimental Results

The basic features of viscoplasticity appear under steady loading, with either the
force or the deformation held constant after the load is applied – corresponding to
creep and stress relaxation experiments, respectively. The importance of such tests
is their simplicity, but in general they do not show the complete behaviour since
either the stress or the plastic deformation remains practically constant each time.
We must therefore consider more elaborate tests, with changes made incrementally
and showing changes in the strain rate, or with the load increasing in steps. One of
the most important requirements for a good characterisation of the mechanisms is
the separation of the effects of deformation from those of time on the state of the
material.
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4.2.1 One-Dimensional Response

4.2.1.1 Creep

Creep tests are carried out on cylindrical or flat test pieces under constant load;
the time for a test can be anything from a few hours to several years, according
to the application. The results are given as a time-deformation curve (Fig. 4.1).
To the extent that the load is usually applied as a dead weight the stress is not
constant throughout the test, but this is usually ignored and the test characterised by
the initial value of the axial stress, 
0 D F/S0, where F is the applied force and S0

the initial cross-section of the test piece. There are three main stages in the response
to the load, more or less clearly distinguished according to the material and the
temperature:

Primary stage, during which the strain rate falls; this corresponds to an increase
in the resistance of the material
Secondary stage, in which the strain rate remains constant and equal to P"sv.
Tertiary stage, when the rate increases; significant mechanical damage appears
in this stage, related to cavitation for example, or to a softening of the material,
induced by localisation of the strain on the scale of the microstructure. In many
cases, tertiary creep is associated with the formation of a neck in the tensile creep
specimen similar to that formed in a tensile specimen (see Sect. 1.3.3.3). As the
load is maintained constant this produces an acceleration of overall creep strain
rate. Under these conditions of structural tertiary creep, the time to failure, tR
and the applied stress, 
 are simply related by P"svtR D 1 =M where M is the
Norton exponent (see Eq. 4.1c) (Hoff 1953).
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Fig. 4.2 Curves of constant
deformation in creep

At low temperatures it is usually the primary and secondary creep that dominates;
as the temperature rises the secondary stage becomes established sooner, and tertiary
creep becomes more important.

The results of a set of tests can be presented by plotting all the curves together
on the same sheet; but it can be useful to plot lines of constant deformation in
the time-stress plane, showing, for each initial stress, the time required to reach
a certain deformation: Fig. 4.2, for example, shows these lines for creep strains of
0.2%, 1% and 10%. This has the advantage of making it easy to compare different
materials, or to assess the effect of temperature: thus material A will have a “50ıC
creep difference” from material B if their curves are separated by this amount.

At temperatures below 0.3 Tm (Tm being the melting point) only primary creep
occurs, with the reduction in strain rate with time given by either a power or a
logarithmic law, e.g.:

P" D At1=3 .Andrade’s law/ (4.1a)

P" D A log .1C t =t0 / .logarithmic creep/ (4.1b)

where A and t0 depend on the material.
These expressions should not be confused with the constitutive equations, since

they cannot give a correct description of the way the deformation changes in
response to a real variation of loading, such as partial or total unloading. We
shall discuss later how work-hardening can be expressed, in terms of viscoplastic
deformation for example.

Another way to present the results, restricted to secondary creep, is to show on a
log-log plot of strain rate vs. stress the minimum rate measured in each test. In any
small interval of stress the points will lie on a straight line, enabling the tests to be
interpreted according to Norton’s law (Fig. 4.3):

P"SV D .
 =K /M (4.1c)
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Table 4.1 Values of Norton’s
exponent M, creep activation energy
Q and self-diffusion energy for pure
metals (Mukherjee et al. 1969)

Metal M Q, kcal/mol
Self-diffusion
energy, kcal/mol

Al 4.4 34 34

Cu 4.8 48.4 47:1

Au 5.5 48˙ 5 41:7

Ni 4.6 66.5 66:8

Pb 4.2 24.2˙ 2.5 24:2

Ta 4.2 114˙ 4 110

Cd 4.3 19˙ 2 19:1

Zn 6.1 21.6 24:3

Whilst there is only one relation that is valid for describing the steady state, and
which, in particular, takes no account of work-hardening, (4.1c) is often used in
calculations as though it were an established constitutive equation. The coefficient
M, the numerical value of which decreases with increasing temperature, is “Norton’s
exponent”; Table 4.1 gives the values for a number of pure metals. Physical models,
as we shall show in our later discussion (Sect. 4.3 below), predict values of 1 for
diffusional creep and 4�5, according to the mechanism involved, for dislocation
creep. However, these models are valid only over a limited range, and for low
temperatures an internal stress has to be introduced; applying the rule as it is leads
to exponents that can reach 40�50, particularly in the case of complex alloys that
are not simple solid solutions.

It can be useful to keep to the same type of law, modified to include both stress
and temperature; such a law, involving an activation energy and the temperature
(in K) is

P"SV D
� 

K

	M
exp

�
� Q

kT

�
(4.2)

As Table 4.1 shows, the activation energy is the same as the energy of self-
diffusion (see this volume, Annex 2) in the case of pure metals. For more complex



368 4 Elastoviscoplasticity

Fig. 4.4 Larson-Miller plot
for austenitic stainless steel
Z03CND 17–12, containing
2.5% molybdenum

materials the term cannot be given a precise physical meaning: Q can depend,
for example, on the stress applied. Nevertheless, it continues to be used, in
particular to establish time-temperature equivalences; these have a bearing on
lifetime calculations and can be helpful in using the results of short-time tests at
high temperatures to estimate times to failure at lower temperatures for which, when
the relevant times are so long. If we accept the Monkman-Grant law (see Volume II)
that states that the lifetime tR is a power function of the rate of steady-state creep,
that is P"SVtR

˛ D const:, we find tR D C exp .Q =kT /. A parametric representation
is then possible provided that C and Q do not both depend on the stress: this is the
case, for example, for diffusional creep, where only C varies with stress and the
parameter P 0 D log tR � const =T can be used to represent the creep data. If only Q
varies with stress the Larson-Miller parameterP D T .log tR C const/ can be used,
as shown in Fig. 4.4 (see Larson and Miller 1952 and McClintock and Argon 1966).

4.2.1.2 Tensile Curves

In contrast to the case in which the plasticity does not depend on time, no single
stress–strain curve represents tensile loading at different rates. The “rate effect” is
usually to increase the stress for a given deformation, as shown in Fig. 4.5. There
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is a tendency to saturation at very high and at very low rates, suggesting limiting
cases of instantaneous plasticity at very high rates and at zero rate. If we define
a critical stress 
c("v, ˛), the stress corresponding to the zero-rate case, where ˛
is the conventional representation of the work-hardening variables, and a viscous
stress 
v, which depends on the viscoplastic strain rate and is zero at zero rate, we
can write the stress-strain relation for different strain rates as:


 D 
c ."
v; ˛/C 
v .P"v; ˛/ (4.3)

The existence of this viscous stress can be evidenced by changing temporarily
the loading rate in the course of a test. As Fig. 4.6 shows, there is a tendency to
return to the undisturbed curve after resuming the original rate.

These observations do not always apply. Some materials show an “inverse strain
rate effect” in certain regions of temperature and loading rate, in which the resistance
to deformation increases with decreasing strain rate. These effects are usually
associated with instabilities in the modes of deformation. These are shown at the
macroscopic level by the Portevin-Le Chatelier effect, characterised by drops in the
work-hardening curve (Fig. 4.7) when a powerful enough servomechanism is able
to hold the strain rate constant (see Sect. 3.4.3.1e in this volume).

If it is the loading rate that is imposed, the curve has broad plateaux so long
as nothing keeps the strain rate constant when instabilities occur, as is the case in
Fig. 4.8.
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Fig. 4.6 Effect of changing
the strain rate in a tensile test

Fig. 4.7 Portevin-Le
Chatelier effect in a tensile
test under strain control

Fig. 4.8 Portevin-Le
Chatelier effect in a tensile
test under stress control
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Fig. 4.9 Stress relaxation
test. The total strain is
maintained constant from
A or A0 and then stress
relaxation takes place

4.2.1.3 Stress Relaxation

In a stress relaxation test a load is applied, generally at a controlled strain rate,
followed by holding the deformation constant. During the period of constant
total deformation the stress falls while the viscoplastic deformation continues to
increase (Fig. 4.9): this confirms that there is a fundamental difference from time-
independent plasticity, since the points on the curve are outside the elastic domain,
if indeed there is one. During the relaxation the rates of change of stress and
viscoplastic deformation are related by:

P
 D �E P"v (4.4)

where E is the Young modulus in the tensile direction.
In the case where, in the absence of servocontrol of some local value, it is not the

deformation but a displacement of the test piece that is held constant, the stiffness
of the cross-head must be taken into account, and an equivalent, smaller modulus
E* used.

It is often more difficult here than in the case of creep test to carry out stress
relaxation tests of very long duration, mainly because of the difficulty of controlling
the temperature. Even so, stress relaxation tests have the advantage of enabling
a wide range of viscoplastic strain rates to be covered, typically from 10�2 to
10�12 s�1. The residual value reached when the fall in the stress has practically
stopped (rates of less than 10�10 s�1) corresponds to the upper limit 
c of the elastic
domain, introduced in Sect. 4.2.1.2. Classically, for a given material, this limit is
smaller the higher the temperature. But its value remains often sufficiently high for
being unreasonable to work without an elastic domain. The different forms obtained
for the stress relaxation curves can be derived from identified creep laws. In most
cases, simple laws that do not involve internal stresses are not able to describe both
creep and stress relaxation simultaneously.
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Fig. 4.10 Comparison of the
time-hardening and
strain-hardening assumptions.
Curve OMM’ is for stress 
1;
curve OP for stress 
2; point
M corresponds to the shift
from stress 
1 to stress 
2.
Strain-hardening translates
OP parallel to the strain axis;
time-hardening to the time
axis

4.2.1.4 Stress Changes During Creep Tests

The application of sudden changes to the applied stress during primary creep enables
the work-hardening in this stage to be investigated. The results of such tests can
be studied from a plot on a viscoplastic strain-time diagram. The two classical
assumptions are that the best indicator of the state of work-hardening is provided,
(i) by the time and (ii) by the deformation. This leads to deriving curves for
different values of stress by means of translations parallel either to the time axis
(time-hardening) or to the strain axis (strain-hardening): see Fig. 4.10. The second
assumption is the one most often used, the first not having any firm foundation (a
problem that arises is what to do with the origin if the test is interrupted?). It is
expressed in terms of Norton’s law, modified to allow the constant K to vary with
the viscoplastic stress:

P"v D
�




K ."v/

�M
(4.5)

Usually K("v) is taken as a power function.
In the dip test, used to locate the elastic domain, the loading path is more

elaborate. It starts with the material in the secondary creep phase, under the stress 
0,

and it is the variables corresponding to this load state that are to be investigated. As
Fig. 4.11 shows, a sequence of unloadings of greater or lesser amplitude is made,
returning after each to the original stress 
0 so as not to depart too far from the
steady state being studied.

The following effects are normally seen:

• After a small unloading (A in the diagram) viscoplastic flow occurs, possibly
after a latency interval: this is creep hesitation.
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Fig. 4.11 The various stages
in a dip test

• After a moderate unloading (B) there is no further flow, and the stress state is
inside the elastic domain.

• After a large unloading compressive (C) viscoplastic flow may occur, the applied
stress remaining positive (i.e. tensile). This shows that the elastic region has been
crossed and the effective stress that determines the strain rate has changed sign.

Tests of this type give an indication that only laws that involve a threshold term
can give a correct representation of the behaviour of a material. Norton’s law can be
modified with this aim in view by replacing 
 by 
 – 
 s:

P"SV D
�
 � 
s

K

	M
(4.6)

Thus kinematic work-hardening occurs in viscoplasticity as in time-independent
plasticity. The formulations that lead to (4.5) and (4.6) respectively are in fact
complementary rather than alternative, since both may be required to model general
viscoplastic behaviour.
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Fig. 4.12 Dynamic recovery
during torsion tests

4.2.1.5 Recovery

At high temperatures viscoplasticity is accompanied by other temperature-
dependent phenomena that evolve with time; recovery is one of these.

Static recovery is the name given to the phenomena associated with thermally
activated microstructural rearrangements, dislocations in particular, which occur
during annealing (see Sect. 3.4.2.2g). Recovery usually results in the partial or
complete loss of the work-hardening built up in the course of the deformation; to
account for this a fading memory term must be included in the work-hardening laws,
as a function of time. The effect is seen at very low strain rates, even zero.

Dynamic recovery, on the other hand, is directly related to the deformation
process and appears in the course of this when the rate is high, say from 1 to
100 s�1. In particular, it occurs during torsion testing of solid cylindrical bars in
which the strains can be 100% or more. These tests are largely used to simulate
metal forming operations at elevated temperature. Results of such tests are given
in Fig. 4.12 for different strain rates, increasing from bottom to top (Sellars and
Teggart 1966). The peak of the curve corresponds, in the case of materials with
low stacking-fault energy such as stainless steels, to a recrystallisation, and in those
for which this is high, such as aluminium alloys, to a polygonisation in the grains
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(see Sect. 3.4.2.2i); the oscillations after the peak are due to alternations between
work-hardening and recrystallisation or polygonisation.

Detailed interpretation of such tests is difficult because new dislocation-free
material is formed continuously, so that the state of the work-hardening becomes
non-uniform through the test piece. Nevertheless, the test enables different materials
to be classified relative to one another.

4.2.1.6 Ageing

There can be other phenomena at the microstructural level, for example increases in
the volume fraction of precipitates already formed, or new precipitation, of carbides
for example. In contrast to recovery, these can lead to hardening, which becomes
evident for example in a tensile test in which the test piece is held for a time at high
temperature and zero load (Fig. 4.13). Reapplying the load can display a temperature
past history effect characterised by a rise above the initial stress–strain curve. There
can also be softening effects, which demonstrates that in certain cases tertiary creep
can be due to modifications of the deformation behaviour and not to damage.

4.2.1.7 Cyclic Tests

As well as materials that obey the laws of instantaneous plasticity, viscoplastic
materials can be characterised with respect to their behaviour under cyclic loading
(see Sects. 1.4 and 3.5. in this volume). The cyclic work-hardening curve can be
defined as before, but now depends on the loading rate. The Bauschinger effect is
seen again in the stress–strain loops, which can be more rounded than those for an
elastoplastic material to the extent that positive viscoplastic flow continues as the
tensile load is reduced (Fig. 4.14). Among tests currently in use, in particular for
calibrating the damage laws (see Volume II) are those of cyclic relaxation (b) and
cyclic creep (c).

4.2.2 Multiaxial Loading

To the extent that uniaxial tests raise doubts concerning the concept of an elastic
domain it is reasonable to ask what might be retained from the formalism of
time-independent plasticity in viscoplastic behaviour. Some answer can be derived
from results of experiments with multiaxial loads. In plasticity experiments the
delineation of the elastic domain, either initially or after the first loading, can be
made by recording the start of plastic flow in certain directions in a loading plane,
for example ¢11, ¢12 or ¢11, ¢22. In the corresponding tests on a viscoplastic material
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Fig. 4.13 Ageing effect in a
tensile test

the strain rates are measured, and the test is in fact one of partial unloadings in
multi-axial creep. Figure 4.15 is for a biaxial creep test in the ¢11, ¢12 plane in
which, after arriving at a stable secondary creep regime, the loads are reduced by
varying amounts over short intervals (Fig. 4.15) and the magnitude and direction
of the viscoplastic strain rate are measured. The results plotted in Fig. 4.15 show
that the vector representing the direction of the flow is in general normal to the
equipotentials in the stress plane, located with respect to a domain displaced from
the origin. The magnitude of the flow vector is greater, the further the working point
is from the centre of this region.

These experimental data fit very well into a scheme that uses at the same time
the von Mises criterion, kinematic work-hardening and the normality rule.
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Fig. 4.14 Viscoplastic stress–strain cycles; (a) low-cycle fatigue test; (b) relaxation test with
intervals at constant extension; (c) creep test with intervals at constant tension and constant
compression
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Fig. 4.15 Tension-torsion test with partial unloadings; (a) principle of the test; (b) equipotentials
and flow directions in the ¢11, ¢12 plane

4.2.3 Summary

The experiments we have been describing show that for a viscoplastic material
the stress has to be treated as the sum of a critical stress for plastic flow and a
“viscous” stress. The first, which can vanish in certain conditions, in particular
at high temperature, depends primarily on the deformation (more generally, on
the work-hardening) and possibly also on the time over which the time-dependent
recovery mechanisms are active. The second depends primarily on the strain rate
and possibly on the deformation itself (in formulations of strain-hardening type)
(Sect. 4.2.1.4). Thus there are two ways of describing the hardening of a viscoplastic
material: as modifying the elastic domain (additive hardening, since the changes
raise the stress threshold); or as reducing the rate of flow outside the elastic domain
(multiplicative hardening, since the work-hardening terms multiply the factor that
normalises the rate of viscoplastic flow). In models, the work-hardening that affects
the critical stress for plastic flow will follow a plastic-type law and can be isotropic
or kinematic, linear or nonlinear. That which affects the viscous stress will, by its
very nature, be isotropic. As in plasticity, kinematic work-hardening has to be used
in order to model cyclic loading correctly.

The problem of activating viscoplastic flow is simpler than the corresponding
problem in plasticity, since now there are only two regimes to be considered: elastic,
when the working point is inside the elastic domain and viscoplastic otherwise.
Further, for any given point outside the elastic domain the viscoplastic strain
rate is completely independent of the rate of change of stress and depends only
on the instantaneous values of the stress tensor components and of the work-
hardening variables. There is no longer a consistency condition. Thus there is one
equation lacking for the evaluation of the strain rate, which gives more freedom in
defining this.
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The choice between the descriptions we have given will be guided by a
consideration of the physical mechanisms we describe next, in particular those
concerning the threshold and the law of viscosity.

4.3 The Physical Mechanisms Responsible for Viscoplasticity

In this section we look at the physical mechanisms that produce viscoplastic
behaviour in crystalline materials. At low temperatures, T/Tm < 0.3, only thermal
activation of plasticity is responsible for the rate effects observed in a number of
metallic alloys. The dislocations meet obstacles in the course of their movements,
which they can overcome thanks not only to the forces acting on them but also
to thermal activation; in this temperature region diffusion is too slow to operate. At
higher temperatures, T/Tm > 0.5, it is diffusion that is responsible for viscoplasticity,
whether over short or long distances (dislocation or diffusional creep respectively).
We consider the two temperature regions in succession.

4.3.1 Low-Temperature Activation of Plastic and Viscoplastic
Deformation

4.3.1.1 Introduction

When carrying out tensile tests on certain metals to measure the yield strength Rp

at very low temperatures (T/Tm< 0.2) we find that it is strongly dependent on the
temperature and on the strain rate; this is shown in Fig. 4.16. More generally, the
flow stress, measured for example in a tensile test, is a function of strain rate, as
indicated in Sect. 4.2.3 above (see Fig. 4.5). The best example of this is provided
by metals and metallic alloys with BCC structures; in this case the cause of such a
behaviour is the lattice friction forces or Peierls-Nabarro forces (see Sect. 3.4.2.1)
under the influence of the thermal activation. We shall show later that other obstacles
may be by-passed by the dislocations under the combined effect of this and the
applied stress, but first we shall give the general formalism for the thermal activation
of plastic deformation.

4.3.1.2 Thermal Activation of Plastic Deformation

(a) Basic mechanisms. Let �M be the density of mobile dislocations with Burgers
vector b and v their mean velocity; from Sect. 3.3.3.3 the corresponding strain
rate is:

P
v D �Mbv (4.7)
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0 0.1 0.2 0.3 T/Tm

Rp /E

Tc

e

Fig. 4.16 Diagram showing
that at low temperature
(T/Tm < 0.2) the yield
strength varies with both
temperature and strain rate.
Above a critical temperature
Tc is the “athermal” region

This important relation holds whether the displacement of the dislocations is
controlled by slip or by climb. An equivalent form which is better suited to the
activation formalism is:

P
v D Nm
�A

V
b� (4.8)

where Nm is the number of activation sites, that is, those regions in the crystal
where a segment of a dislocation is held by an obstacle, which the combination
of the applied stress and the thermal agitation can help to overcome; b�A/V is the
elementary strain produced when the dislocation crosses a potential barrier that is
opposing its free movement (�A is the area swept out and V is the volume of the
crystal); and � is the frequency of activation, that is, the number of times per second
that a site is activated and the dislocation succeeds in overcoming the obstacle.

Two cases arise, according to the distance � travelled by the dislocation in
crossing the potential barrier (Fig. 4.17). If this is a small multiple of the length
b then �A is of the order of �l, where l is the length of the liberated segment,
and it is possible for the segment to jump back to its original location. But if it is
large, corresponding to the distance between precipitates, 102�103b, return is not
possible.

Over the years 1955–1960 the results of the theory of chemical reaction were
applied to the basic physical phenomena underlying the deformation of crystalline
solids; this required a number of simplifying assumptions, which we now describe.

(b) General form of expressions relating dislocation rate to stress and temperature
Taking first the case in which the return jump is possible, the effective frequency
will be the algebraic sum of the forward (�C) and backward (��) frequencies:
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Fig. 4.17 Energy – distance
diagram, activation energy

N� D �C � �� D �0 exp

�
�Q0 � �bA

kT

�
� �0 exp

�
�Q0 C �bA

kT

�

D 2�0 exp

�
�Q0

kT

�
sinh

�bA

kT
(4.9)

Here Q0 is, to a first approximation, the height of the potential barrier: we shall
give the precise significance of this quantity later, and of A, the area swept by the
dislocation. �0 is the jump frequency. If the probability of return is very low we
have:

N� D �0 exp

�
�Q0

kT

�
exp

�bA

kT
(4.10)

Substitution of these results in (4.8) enables us, under certain conditions, to give
the general form for the relation P"v D f .T; 
/:

(c) Internal stress and effective stress
As we indicated above when presenting some typical experimental results, it is often
found necessary to introduce the concept of a threshold; metal physicists usually
express this as an internal stress, which we wrote as 
c, so that the “effective” (
eff)
or “viscous” (
v) stress is written1:


v D 
eff D 
 � 
c (4.11)

1The counterpart of the stress 
 at the grain level is the resolved shear stress denoted � . Shifting
from the micro level, when studying elementary mechanisms, to the macro level of experimental
results is however somewhat problematic as will be explained later.
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Table 4.2 Classes of various obstacles according to their range

Long range Short range
Activation area (short
range obstacles)

Frank network Peierls troughs 10 b2

Attractive junctions Repulsive junctions 100 b2

Precipitates Solute atoms 100 b2

Fig. 4.18 Force – distance
diagram, illustrating the
concept of internal stress and
viscous or effective stress.
Shaded area I represents the
energy provided by the
effective stress, area II that
provided by thermal
activation

We shall return to this relation when we come to consider very general models
for viscoplastic behaviour; for the moment we need only say that 
c is an internal
stress, at each point in the crystal the sum of the friction stresses and of all the long-
range (that is, varying like 1/r) stresses associated with crystalline defects in the
solid – that is, mainly the effects of the other dislocations. Thus the internal stress
depends only on the temperature, through the intermediary of the elastic moduli,
and on the sub-structure and thus on the level of the deformation. It oscillates in
space, with a wavelength of the order of the dimensions of the sub-structure (cells
or subgrains) – much too long for the barriers formed by the maxima of the stress
field to be surmountable by means of the thermal fluctuations. We denote by 
 s

the (non-zero) mean value of this stress. Typical values of the activation area (see
below) corresponding to three long range obstacles are given in Table 4.2.

The force-distance diagram, as in Fig. 4.18, can be helpful in representing the
overcoming of an obstacle by thermal activation; from this:

• if 
 <
 s the dislocation cannot move at all between the obstacles
• if 
 >
 s the dislocation can experience a certain displacement and take up a

position of stable equilibrium in contact with an obstacle, which will exert on it
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a short-range returning force. The stress that contributes to the by-passing of the
obstacle is: 
eff D 
 � 
 s; this provides a part of the energy required (area I in
Fig. 4.18), the remainder (area II) coming from the thermal activation.

• if the temperature is zero a stress 
 D 
 s C 
B is required for crossing the barrier.
• if the temperature is above a critical value Tc, so that thermal activation alone

can provide all the energy represented by the area under the curve, we are in the
athermal plateau region of Fig. 4.16, with 
 D 
 s.

• there is an intermediate temperature T at which the combination of effective
stress and thermal agitation is just sufficient for the obstacles to be surmounted
at the frequency which allows the strain rate to be equal to the rate prescribed.

(d) Thermal activation magnitudes
Two things are necessary to enable us to take advantage of the relations derived
from thermodynamics and to compare the thermal activation values measured in
experiments with those predicted by the formal theory. First, the theory must be
based firmly on the laws of thermodynamics; and second, the treatment must go
from the elementary activation event of a dislocation overcoming an obstacle to the
behaviour on the macroscopic scale. We shall take up these two points in order, but
in this section we shall give most attention to the first.

To a first approximation the change in Gibbs free energy between the initial
position of the dislocation (state 1), corresponding to a stable equilibrium under
the action of the stress 
eff D 
 � 
 s, and its final position (state 2), corresponding
to an unstable equilibrium when it has crossed the barrier locally, can be written:

�GA D
Z 2

1

.�B � �eff/ bldx (4.12a)

Thus, at least in principle, we can compute �GA if we know the function

B D f(x); but we must know also the way the length l(x) changes during the
activation.

Since 
eff D 
 � 
 s and 
 is constant, (4.12a) can be written:

�GA D
Z 2

1

Œ�B .x; T /C �S .x; T /� bl.x/dx � �b

Z 2

1

l.x/dx (4.12b)

in which the second term gives the work done by the applied stress. If we take 
 and
T as independent variables and 
 s as a constant we can write

d .�G/ D
�
@�G

@


�
T

d
 C
�
@�G

@T

�



dT (4.13)

from which we can define the activation entropy by:

�SA D �
�
@�GA

@T

�



(4.14)
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Now @�G/@
 has the dimensions of volume and we should prefer to define an
activation area, to which it is often possible to give a precise physical meaning; so
we define

A� D �1
b

�
@�GA

@�

�
T

(4.15)

The activation enthalpy is:

�HA D �GA C T�SA (4.16)

which after substituting the value for �SA gives:

�HA D @

�
�GA

T

�



�
@

�
1

T

�
(4.17)

We should note here that, if in this elementary process, the length l of the segment
of the dislocation is independent of the distance x travelled, then the activation area
A* D l.�x has a very precise physical meaning: it is the area swept by the dislocation
in moving from its initial position to that corresponding to the maximum of�GA. In
general, however, �x D f(�); but in spite of this restriction it is convenient to write
(4.12) in the simpler form:

�GA D
Z 2

1

.�B C �S/bldx � �bl�x (4.18)

In fact, using relations given by the theory of reaction rates, we get, for the case
in which there is no possibility of a return jump:

N� D �0 exp

"
�
R 2
1
.�B C �S/ bldx

kT

#
exp

�bA�

kT
(4.19)

The integral in the numerator is the change in Gibbs free energy: �G D�H0 �
T�S; so:

N� D �0 exp
�S

k
exp

�
��H0

kT

�
exp

�bA�

kT
(4.20)

and using (4.8) we have for the macroscopic strain rate

P
v D Nm
�A

V
b�0 exp

�S

k
exp

�
��H0

kT

�
exp

�bA�

kT
(4.21)
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If there is possibility of a back jump this becomes:

P
v D 2Nm
�A

V
b�0 exp

�S

k
exp

�
��H0

kT

�
sinh

�bA�

kT
(4.22)

Three important remarks must be made at this stage.

1. The empirical relation (4.2), used to describe stationary creep, can often be
written:

P"v D P"0 exp

�
� Q

kT

�
(4.23a)

which enables an apparent activation energy Q to be defined as:

Q D �k
@ log . P"v = P"0 /
@ .1 =T /

(4.23b)

If now in (4.21) and (4.22) we put:

P"0 D Nm
�A

V
b�0 exp

�S

k
(4.24)

and assume that the terms in P"v are independent of T, we have Q D�H0 � 
 bA*.
This shows that in the empirical relation (4.23a) the apparent activation energy is
indeed a function of the applied stress.

2. Norton’s law (4.1c) involves an exponent M; in rheological studies the parameter:

m D 1 =M D
�
@ log 


@ log P"v

�
T

(4.25)

is often used in investigations of rate sensitivity. If P"0 is independent of 
 then m
is directly related to the activation area and:

m D b
A� =kT

A� D kT

b

�
@ log .P"v = P"0 /

@


�
T

(4.26)

3. To give a physical meaning to the quantities m and Q just introduced we return
to the simplifying assumptions that l is constant and P"v is independent of T and

 , the first of which may in some respects seem inconsistent with the fact that
in general A* is a function of � . However, in the process of deriving the law of
macroscopic deformation from the elementary mechanisms, the real problems
have not been delt with; in particular, much more attention needs to be given to:

– finding a more faithful representation of the scale change from the macro-
scopic stress state to the actual stresses acting on the dislocation

– relating the deformation rate in a slip plane to the mean over the many events
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Fig. 4.19 Discrete obstacles in a slip plane, opposing the passage of a dislocation (Adapted from
Frost and Ashby 1982)

– expressing the macroscopic deformation as the mean over many slip planes.
– for all these reasons we can only claim to measure mean values, given by:

� NGA D �k

�
@ log .P"v = P"0 /
@ .1 =T /

�
T

NA D kTm

b

D kT

b

�
@ log .P"v =P"0 /

@


�
T

(4.27)

4.3.1.3 Nature and Resistance of Obstacles

The obstacles met by a dislocation in the course of gliding can be put into two main
categories, shown diagrammatically in Figs. 4.19 and 4.20:

– discrete, either already existing, such as precipitates or solid-solution atoms,
– or induced by the deformation, such as trees in the forest of dislocations,
– diffuse, such as lattice forces, which are overcome by the dislocation.

The strain rate is imposed either by the kinetics of overcoming discrete obstacles
(Fig. 4.19) or by that of development and propagation of the kinks (Fig. 4.20).
Table 4.3 gives the orders of magnitude of the energies and stresses (�0 D �B C � s)
necessary to overcome the obstacle in the absence of thermal activation, that is, at
absolute zero.

We now show how the formalism of thermal activation of plastic deformation
can be used to treat three examples concerning obstacles of the two main classes.

(a) Pre-existing obstacles: precipitates
Hardening by precipitation provides an example of pre-existing obstacles (see
Exercise 4.6). We recall that if these are perfectly coherent with the matrix then
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Fig. 4.20 Diffuse obstacles formed by kink nucleation and propagation of a dislocation through
the Peierls troughs (Adapted from Frost and Ashby 1982)

Table 4.3 Energies and stresses needed to overcome various obstacles (Ashby and
Jones 1980)

Obstacle Force Energy Q0 £0 (0 K) Examples

Strong ��b3 ��b/l Precipitates by-passed by dislocations
Medium �0.2�b3 ��b/l Dislocations of the forest

Small sheared precipitates,
Irradiation defects

Weak <0.2�b3 <<�b/l Lattice forces
Solid solution

the dislocation can shear them if they are small or by-passing them if they are above
some critical size. In the case of ordered precipitates, it is of the order of t/
A where
t is the line tension of the dislocation and 
A is the anti-phase energy corresponding
to the shearing of the particles (see Sect. 3.4.3.2).

Whether the precipitates are sheared or by-passed, it is easy to show from
the equilibrium equation that the dislocation has two equilibrium positions: one
corresponding to the start (minimum on the energy curve), the other at the break-out
(maximum of the energy curve) (Fig. 4.21, b). The way in which the dislocation
crosses the energy jump �GA, when the stress increases (and therefore when
the temperature decreases) is indicated schematically in Fig. 4.21. The exact
expressions giving the total energy and the form of the curves of the diagram are
(Exercise 4.6):

– for particle shearing:

�E D t
�
�lm C�lp

�C 
A�Sp � �b ��Sm C�Sp
�

(4.28)
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Fig. 4.21 Equilibrium positions for the crossing of two precipitates by a dislocation line by (a)
shearing; (b) by-passing; (c) positions of the corresponding energy extrema and the effect of
temperature (and thus of a given strain rate) (see also exercise 4.6)

– for by-passing:

�E D t�lm � �b�Sm (4.29)

where �lm, �lp are the increases in length of the part of the dislocation in the
matrix and the precipitate respectively, relative to some arbitrarily-chosen reference
position, and �Sm, �Sp are the increases in the areas swept out by this dislocation.
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Since for obstacles of this type the probability of a return jump is very low we
can use (4.10) to determine the strain rate. Thus:

P
v D Nm
�Ab

V
�0 exp

�
�Q0 � �bA�

kT

�
(4.30)

where Nm is a constant and�A � L�. The values of Q0 and A are easily determined
for the two modes from the expressions already given (see Sect. 4.3.1.2). Thus for
shearing under high stress, meaning in the region of absolute zero, it can be shown
that Q0 has the expected form, that is:

Q0 D  R2S
A (4.31)

and

A� D 2LRS

h
1 � .� =�0 /

2
i1=2

�0 D 2
A =RS (4.32)

The height of the activation barrier can be written:

�GA D Q0Œ1 � .� =�0 /�
3=2 (4.33)

At the macroscopic level, the strain rate can be expressed in terms of temperature
and stress, thus:

P"v D P"v
0 exp

�
�Q0

kT
.1 � 
 =
0 /3=2

�
(4.34)

where P"v
0 is constant.

This relation, with the others of the same type developed in this section, is
commonly used to represent the variation of the yield strength Rp with temperature
and strain rate.

(b) Discrete obstacles, deformation-induced: trees in the forest of dislocations.
The hardening caused by attractive and repulsive junctions between dislocations
has been studied in Sect. 3.4.2. We showed that if there is no thermal activation a
critical stress 
0 has to be applied to move a dislocation through the forest. This
critical stress is given by:

�0 D ˛�b
p
� (4.35)

with ˛ approximately between 1/3 and 1/4.
The energy required to overcome the junctions is of the order of ��b3 with:

1/5<� < 1.
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In the Orowan equation (4.7) the density of obstacles, in contrast to (a) above, is
an increasing function of the deformation. With the mean velocity of the dislocations
written as:

Nv D ˇbv0 exp

�
� Q

kT

�
(4.36)

where ˇ is a numerical factor and with the relation between the density of mobile
dislocations and applied stress written as:

�M D ˛0.� =�b /2 (4.37)

where ˛’ is a constant of the order of 1, the strain rate can in general be written:

P
v D ˛0ˇb2v0
�
�

�b

�2
exp

�
� Q

kT

�
(4.38)

The activation energy is a decreasing function of the applied stress, as in the case
of pre-existing discrete obstacles; if we assume this to be linear, that is:

Q D Q0 .1 � � =�0 / (4.39)

we obtain:

P
v D P
0 exp

�
�Q0

kT
.1 � � =�0 /

�

P
0 D ˛0ˇv0.� =�/
2 (4.40)

At the macroscopic level similar expressions are found replacing the resolved
shear stress � by the stress 
 , the shear modulus � by Young modulus E and the
shear strain rate P
 by the strain rate P".
(c) Diffuse obstacles: low-temperature viscoplasticity controlled by lattice resis-
tance.
We first recall that, at low temperatures (T/Tm < 0.2), the velocity dislocations in
most metallic materials, particularly with BCC structures, is controlled by obstacles
of another type, those associated with the atomic structure (the Peierls-Nabarro
forces). The energy of a dislocation varies with its position, as shown in Fig. 4.20;
it advances by propagating simple or double kinks and in general the velocity with
which it moves from one trough to another is controlled by the rate at which kinks
are generated. As before, the activation energy can be written:

Q D Q0Œ1 � .
 =
0 /p�q (4.41)

where Q0 Š 0.2�b3. 
0 is the elastic limit at absolute zero and p and q are of the
order of 1; according to Frost and Ashby (1982) the choices p D 3/4, q D 4/3 give
the best agreement.
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The density of kinks is an increasing function of the strain. If we assume that it
varies in the same way as that of trees in the forest, we find that the strain rate is:

P"v D P"0 exp

�
�Q0

kT
.1 � 
 =
0 /3=4

�1=4

P"0 D P"00.
 =�/2 (4.42)

The relations we have just derived do not apply in the case of the very high strain
rates (above 104 s�1) that are found in certain conditions of shock loading or in
certain forming operations.

4.3.1.4 Drag Force on Fast Moving Dislocations

Dislocation Velocity

In the electron microscope, the dislocations are usually seen to move very quickly
from obstacle to obstacle. We want to determine the relation between the dislocation
velocity and the force applied on them. The first determination of dislocation
velocity was performed by Gilman (Johnston and Gilman 1959) on LiF crystals. He
took advantage of the etch pit that is created at the emergence point of a dislocation
on the surface of the crystal. Once the dislocation had moved away from the position
where such an etch pit was created, its sides continued to grow leaving a flat bottom
contrasting with the pyramidal shape of fresh etch pits. It was thus possible to
measure the distance travelled by a dislocation from a primitive etch pit to a new
one under a stress pulse of given duration. As the displacement of dislocations can
be a jerky one, this experimental technique provides a mean velocity. The result is
that the dislocation velocity in LiF crystals is proportional to �25 up to a velocity of
the order of 10 ms�1. Above that the stress dependency of the velocity is not so high,
but never reaching the shear wave velocity in keeping with the relativistic behaviour
described in Sect. 3.3.7.8 (Fig. 4.22). Determination of dislocations velocity was
then achieved for Fe-3.35Si (Stein and Low 1960) yielding a stress exponent m of
41 at room temperature and of 38 at 198 K. The same behaviour has been found
for a number of materials. Another empirical relation between dislocation velocity
and stress is an exponential function. Table 4.4 gathers various results (see also
Fig. 4.23). Recent in-situ TEM experiments were performed by Caillard (2010a
and b) on pure iron. This author clearly showed the influence of temperature on
the dislocation movement. He measured the velocity-stress dependence of screw
dislocations at the scale of a single dislocation source, and compared those results
with macroscopic measurements of activation areas.

Equation 4.8 shows that the dependence of the proof strength on strain rate should
follow the same kind of law. This is the case (Fig. 4.24). For strain rates higher than
about 104 s�1 a much faster increase of the stress needed to achieve a given strain
rate is observed.
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Fig. 4.22 Stress dependence
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Table 4.4 Various experimental
results of dislocation velocity
versus stress, vD (� /� 0)m

Material � 0 (Pa) m

Al 1
Cu 2.7�103 1
Cu-1Al 17 at 77 K

11 at 373 K
Pb 1
Zn 2.94�104 1
Basal plane screw 3.4 at 300 K

edge 3.5 at 300 K; 1.2 at 77 K
Pyramidal screw 16 at 300 K; 7.1 at 77 K

edge 27 at 300 K; 11 at 77 K
Fe-3.35Si 30.1

38 at 198 K
41 at 373 K

Mo 6.4
LiF 25
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and Chawla 1984)

Drag Mechanisms

If we evaluate the total energy of the dislocations in a strain-hardened material with
respect to the work done by the applied stress, we find that the ratio is of the order
of only 10%. Ninety percent of the work is dissipated as heat and it is common
experience to feel the temperature increase of a metal after deformation. This means
that there are dissipative phenomena occurring while moving the dislocations. They
are linked with a drag force on the dislocations. The viscous behaviour would be
expressed as:

v D �b

B
(4.43)

with B the damping coefficient in Nsm�1.
The lower part of the velocity-stress curve with high m exponents falls out of this

formalism. It can be interpreted as a thermally activated process. The upper part of
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Fig. 4.24 Effect of temperature and strain rate on the shear yield strength for mild steel (Campbell
and Ferguson 1970)

the velocity-stress curve, with a stress exponent approaching 1 is interpreted as the
effect of a drag force on the dislocation.

A number of damping mechanisms were proposed (Nabarro 1967). There remain
two of them, which yield high enough drag forces to cope with experimental
observations (Mason 1968). They are electron and phonon viscosities. They result
from the conversion of the moving strain field of a dislocation into heat owing to
interactions with free electrons or with phonons, in the same way as sound waves are
attenuated. As shown in Fig. 4.25 the electron viscosity is the controlling mechanism
at low temperatures, whereas it is the phonon viscosity at higher temperatures, in
particular at room temperature.

Substituting (4.43) in (4.8) we get:

P
v D �Mb
2

B
� (4.44)

This relation is transposed at the macroscopic level by substituting P"v to P
v and

 to � .

At very high rates the ratio �M/B is practically independent of stress and of
temperature, so that this relation becomes an expression of Newtonian viscous flow
(Fig. 4.26).

Summary As we have just shown, this type of low-temperature viscoplasticity is
observed especially in materials with covalent bonds or with BCC crystal structures.
Figure 4.24 represents the effects of strain rate on the yield strength of a mild steel,
for various temperatures. Three regions can be distinguished, as indicated:
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Fig. 4.26 Yield strength in
shear � p as a function of
strain rate, for a mild steel at
very high strain rates
(>104 s�1) (Campbell and
Ferguson 1970)

1. Low temperature (<293 K) and low-to-moderate strain rates (<103 s�1)
2. Very high rates (>104 s�1), in which the yield strength is effectively a linear

function of the rate; this is the region of phonon drag.
3. A region in which the yield strength varies very little with rate and temperature,

corresponding to the athermal plateau of Fig. 4.16. The activation energy is now
independent of temperature and applied stress and is sufficiently high for the
thermal activation energy kT to be comparable to what is needed to overcome
the obstacles.
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4.3.2 Physical Models of High-Temperature Viscoplasticity
in Metals

As we stated in the introduction to Sect. 4.3, at high temperatures (T > 0.5
Tm) viscoplasticity involves diffusion phenomena: short-range dislocation creep
controlled by the movements of the dislocations and longer-range diffusional creep
over distances of the order of the grain size, when the deformation is caused
by movement of the material due to trans- or intergranular diffusion. We shall
study these two modes of deformation in order, together with the physical models,
which have been suggested for their interpretation. These models are based mostly
on simple creep experiments – which are why the terms dislocation creep and
diffusional creep are used.

It is beyond the scope of this chapter to describe in detail all the many models
that have been suggested for creep. More details can be found in text books devoted
to creep (see e.g. Garofalo, 1965; Poirier, 1985). We therefore limit our treatment
to introducing the concepts underlying two main classes of models: recovery creep
and creep controlled by dislocation climb; further, we shall consider only steady-
state creep.

Diffusional creep, which acts at the higher temperatures and lower stresses,
enables viscous deformation to occur without the influence of dislocations; inelastic
deformation occurs by transport of material along grain boundaries (Coble creep see
Coble 1963) or, at still higher temperatures (T > 0.8 Tm), within the grains (Herring-
Nabarro creep see Herring (1950), Nabarro (1947, 1952)). The behaviour is thus
perfectly viscous and the threshold constant 
 s in Eq. 4.6 is practically zero.

4.3.2.1 Dislocation Creep

(a) Recovery creep. Many models have been based on the original idea of Bailey and
Orowan, according to which a stationary state is reached when the work-hardening
that normally results from the accumulation of deformation and the increase in
density of dislocations is compensated for by the recovery, a phenomenon regulated
primarily by time and diffusion (see Sect. 3.4.2.2i).

When the diffusion is fairly rapid the obstacles to slip can vanish, which means
that in Fig. 4.18 we can set 
B D 0. The only barrier that remains is that due
to the internal stress, and therefore 
 D 
 s. The deformation is no longer activated
thermally in the strict sense of that term, but the rate depends on that of the recovery,
which is activated thermally through the intermediary of the diffusion.

If the creep strain rate is to remain constant so must the internal stress 
 s; thus:

d
S

dt
D
�
@
S

@"

�
t

P"v C
�
@
S

@t

�
"

D 0 (4.45)
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If we define r D �(@
S/@t)", h D (@
S/@")t for the recovery and work-hardening
rates respectively we have:

P"v D r =h (4.46)

The models proposed for this region differ from one another mainly in the way r
and h are evaluated and in the assumptions made in obtaining their values.

An approach due largely to McLean (1962) shows that creep-recovery models
lead naturally to the empirical Eq. 4.1c. His original model assumes that the internal
stress arises solely from a three-dimensional network of dislocations of mean length
�; this could correspond to the cells observed in creep at high stress. The internal
stress is then inversely proportional to �, that is:


S D �b =� (4.47)

Further, it is assumed that the deformation results from the gliding of dislocations
in this network of cells, so that the Orowan relation can be written:

" D �Mb� (4.48)

If we assume that the density of mobile dislocations (�M) is proportional to
the overall dislocation density we can write �M D ˛/�2 where ˛ is the constant of
proportionality; and taking this together with (4.47) we get:

h D .@
S =@"/t D �=˛ D constant (4.49)

In this relation it is assumed that ˛ itself is constant. Various approaches have
been made in order to determine the velocity of recovery, of which the following is
the simplest. A network of cells will tend to increase its size so as to reduce the total
length of dislocations and therefore the stored energy. Friedel (1964) assumes that
this growth is controlled by the climbing of the arcs of dislocations, which exchange
vacancies. The flow of vacancies is stimulated by the difference in free energy of
those in equilibrium in the neighbourhood of the different arcs.

The recovery rate shown by the increase of cell size with time (d�/dt) will be
proportional to the diffusion coefficient Dv and the driving force 
˝/kT, where
˝� b3 is the volume occupied by a vacancy, and this rate will increase with
decreasing cell size. Thus we can write:

d�

dt
D Dv

1

�


Sb
3

kT
(4.50)

so that:

r D �@
S

@t
D �@
S

@�

d�

dt
D Dv

kT


S
4b

�2
(4.51)
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Fig. 4.27 Mechanism of recovery creep, by climb of dislocations located in pile-ups

From which, with (4.46), we find:

P"v D ˛
D0b

kT


4

�3
exp

�
�QD

kT

�
(4.52)

where QD is the self-diffusion energy.
Equation 4.52 can be written as, adopting the form proposed by Dorn (1957):

P"vkT

Dv�b
D ˛

�



�

�4
(4.53)

Models of this type lead to laws of creep that are in reasonably good agreement
with results found in experiments with pure metals, but as we have remarked
previously, the exponent in the stress equation can differ from the value 4, and other
models give values between 4 and 5. However, it is important to bear in mind that
the agreement of the value of the exponent M deduced from a model with that found
by experiment is never of itself a proof of the validity of the model.

(b) Creep controlled by dislocation climb. The mechanism of dislocation climb can
enable recovery to take place. One model in particular, due initially to Weertman
(1968), is based on the questionable assumption that this mechanism acts through
the intermediary of a configuration of dislocations such as in Fig. 4.27, in which
there are two pile-ups of edge dislocations of opposite signs, emitted by sources S
and S’, a distance h apart and resting against a barrier which can be either a grain
boundary or another pile-up of dislocations. The stresses at the head of the pile-up,
in contrast to the case of low-temperature plasticity, can be relieved by the climb and
annihilation of the dislocations there. When a dislocation at the head has climbed the
source can become active again and emit a new dislocation. Thus as in the general
model of recovery creep there is competition between the production and the loss of
dislocations.
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An estimate of the corresponding strain rate can be derived from the equation for
the dislocation climb:

P"v D bANc =h (4.54)

where A is the area swept by the dislocation in moving between the source and the
head of a pile-up of length L, approximately L2, N is the number of sources per unit
volume and c is the mean velocity of climb.

We know that if lattice friction can be neglected the local stress at the head of the
pile-up is (Sect. 3.3.8.2):


1
  .1 � �/L

�b

2 ' 2L
2

�b
(4.55)

The component of this stress normal to the slip plane favours dislocation climb.
Vacancies will be created or destroyed according as it is a tension or a compression;
if C0 is the equilibrium concentration of vacancies in the neighbourhood of the pile-
up this is expressed by:

CS D C0 exp

�
˙2L
2b2

�kT

�
(4.56)

A flow of vacancies will be set up between the pile-ups of opposite signs, giving
a velocity of climb:

c D 1

AN

2Dv

2b

�kT
(4.57)

Proof of these relations follows the same lines as for diffusional creep, which we
shall give later in Sect. 4.3.2.2.

The height h of the climb between the pile-ups is derived from the force needed
to separate a pair of dislocations of opposite signs, a distance h apart: this is:


 D �b

4  .1 � �/ h
(4.58)

from which we find:

P"v D 2Dv

2b2

h�kT
D 8  .1 � �/ Dv


3b

�2kT
(4.59)

If we assume that both the number of sources and the sizes of the pile-ups remain
constant, this gives a creep law with a smaller exponent than is normally found in
pure metals. Weertman (1968) suggests that such an assumption is not valid, and that
L2 is proportional to 
 , giving an exponent 4.4, which is closer to what is observed;
but there is no theoretical basis for this. Further, a serious objection to this model
is that the dislocation pile-ups on which it is based have never been observed in
materials subjected to creep.
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Fig. 4.28 Herring-Nabarro model: transport of vacancies from faces in tension (AB, CD) to faces
in compression (AD, BC)

4.3.2.2 Diffusion Creep

At high temperatures (T > 0.7 Tm) and low stresses the relation between deforma-
tion rate and applied stress is often found to be linear, as indicated in the introduction
to this chapter. The deformation then results not from movement of the dislocations
but from transport of material by diffusion, either across the grains (Herring-Nabarro
model) or along the grain boundaries (Coble model). The activation energy for the
Coble model is less than that for volume diffusion; consequently Coble creep will
occur at lower temperatures than will Herring-Nabarro creep. These purely diffusive
modes of transport are very important for the study of the strain compatibility
between the grains of a polycrystal and intergranular slip; and further, they are the
origin of the deformation of super-plastic alloys. We now consider the two in turn.

(a) Herring-Nabarro creep
Herring (1947, 1952) suggested that since in a stress field that is not purely
hydrostatic the concentration of vacancies will differ on surfaces having different
orientations, there will be a concentration gradient that can generate a flow of
vacancies and consequently a flow of material in the opposite direction. We now
give a simple form of the model based on this and later improved by Herring.

Consider first a cubic single crystal, of side d, subjected to shear (Fig. 4.28); we
assume that it contains no dislocations and that the free surfaces are therefore the
only sources and sinks of vacancies. Creating a vacancy on a surface in compression
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(BC) is equivalent to moving an atom from this surface to the interior; if the atom
is represented by a small cube of side b, the atomic volume ˝ can be taken as
approximately b3. To leave the surface the atom must do work against the stress 
 ,
and the energy thus dissipated will be 
 b2 x b D 
 b3, which is equivalent to saying
that the energy of creation of a vacancy on BC is increased by 
 b3.

The corresponding atomic fractions will be:

– on the faces in tension, AB, DC:

nC D exp

�
��Gf � 
b3

kT

�
D n0 exp


b3

kT
(4.60a)

– on the faces in compression, AD, BC

n� D exp

�
��Gf C 
b3

kT

�
D n0 exp

�
�
b

3

kT

�
(4.60b)

where

n0 D exp .��Gf =kT / (4.61)

is the atomic fraction in thermal equilibrium in the absence of applied stress and
�Gf is the Gibbs free energy of creation of vacancies, of the order of the sublimation
energy of the solid.

This results in a gradient in the concentration of vacancies that causes a flow of
vacancies across the body of the grains and of atoms in the opposite direction. If
the faces are perfect sources and sinks for vacancies then, in the steady state, the
number transported across a face in tension, whose area is d2, will be

� D �Jd2 (4.62)

where, from Fick’s law:

J D �DLgradC (4.63)

with DL the diffusion coefficient for the vacancies and gradC denoting the concen-
tration gradient across the faces. We can write:

gradC D ˛
�
CC � C

�
=d (4.64)

where ’ is a numerical factor, close to 1.
The concentration C is related to the atomic fraction n by

C D n=b3 (4.65)

and the diffusion coefficient Dv to DL by:

Dv D DLn0 D DLC0b
3 (4.66)
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from which relations we find:

� D 2˛Dvd

b3
sinh


b3

kT
(4.67)

The escape of an atom from the face AB corresponds to an elementary extension,
which can be calculated by regarding the atom, of volume b3, as spread over the
surface, of area d2:

" D �
b3
ı
d2
�
.1 =d / D b3

ı
d3 (4.68)

Thus the deformation rate corresponding to the flux ˚ is:

P"v D �
b3

d3
D 2˛Dv

d2
sinh


b3

kT
(4.69)

which for small values of 
 becomes:

P"v D 2˛Dv

d2

b3

kT
(4.70)

Extending this simplified calculation to the case of a polycrystal presents a
number of problems: we have to take into account first the fact that the grain
boundaries can act as perfect sources and sinks, and second the actual shape of
the grains. However, all cases lead to expressions of the form:

P"v D B
Dv
˝

d2kT
(4.71)

where the factor B is a function of the geometry and˝ (� b3) is the atomic volume.
Herring gives the value B D 16 for spherical grains.
The most important results of this model appear to be the following:

(i) diffusional creep can be expressed by a law of Newtonian viscous flow type
(ii) the rate of this creep increases with increasing temperature (Dv DD0

exp .�Q0 =kT /) and with decreasing grain size (like 1/d2).

(b) Coble creep. Coble (1963) has proposed a model for creep in polycrystals in
which the rate is controlled by diffusion, not through the grain bodies but along
the grain boundaries; this can be faster, since the intergranular diffusion energy is
only about half that of volume diffusion. The bases for the model are the same as
for Herring-Nabarro (Fig. 4.28). We give a simplified treatment here, referring the
reader to exercises in Volume III for a fuller treatment.
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Consider a grain in the form of a cube of side d. The vacancies and the atoms
flow along the boundaries and if ıGB is the thickness of the grain boundary the flux
of vacancies is:

� D ˛DL
�C

d
.4ıGBd/ (4.72)

Introducing the intergranular diffusion coefficient DGB D DLC0b3 and substitut-
ing the expression for �C deduced from Eqs. 4.60a and 4.60b:

�C D 2C0 sinh

b3

kT
' 2C0


b3

kT
(4.73)

we find:

� D 8˛ıGBDGB



kT
(4.74)

Proceeding as before we find for the strain rate:

P"v D 8˛ıGBDGB

b3

kTd3
(4.75)

In general, this can be written:

P"v D B 0ıGBDGB

˝

kTd3
(4.76)

where B’ is a constant and ıGB, the effective width of the boundaries for diffusion,
is of the order of 10b for metals. The difference between the Herring-Nabarro
and Coble models lies in the effects of the grain size and of the activation
energy. Experiments with copper have shown creep rates varying like 1/d3 at low
temperature (550ıC) and like 1/d2 at higher temperatures (840ıC).

(c) Compatibility of intergranular deformation: sliding at grain boundaries
The Herring-Nabarro models are based on simplifying assumptions concerning the
shape of the grains and the homogeneity of their deformation. However, these
may not hold to better than a first approximation, in particular because a set of
perfectly spherical grains is not compact. Further, while the deformation is occurring
the grains must remain in contact so long as there is no intergranular damage.
This compatibility condition for the deformation accounts for the development of
intergranular-type stresses, as in plasticity, which at high temperatures can be largely
relieved by viscoplasticity, with the grain boundaries sliding with respect to each
other.

The importance of intergranular sliding as a form of viscoplastic deformation
is made clear by the displacement of reference marks, as shown in Fig. 4.29.
If we define this intergranular deformation "GB as �uGB/d, where �uGB is the
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Fig. 4.29 Intergranular slide shown by displacement of reference marks in a bicrystal of lead
(Garofalo 1965)

displacementof a reference mark and d is the grain size (an approximation that in
particular does not take into account the orientation of the boundary plane with
respect to the plane of observation) we can use as a measure of the importance of
this deformation mode the ratio:

� D "GB ="T (4.77)

where "T is the total deformation
The value of � varies greatly with applied stress and less rapidly with temperature

and grain size. Fig. 4.30 gives some results for various materials reported by
Garofalo (1970); these can be put into two groups, the first consisting of aluminium
and its alloys, “-brass and tin, the second of copper, copper-beryllium, ’-iron and
stainless steel. In the first, � decreases very quickly as the stress, and consequently
the strain rate, increases; the contribution of the intergranular slip to the total
deformation falls fairly quickly to below 5%. In the second the rate of decrease
is much less. In both groups the deformations combine to form subgrains, but again
much more quickly in the first than in the second. These results suggest that there
is a relation between intergranular sliding and the changes to the microstructure
associated with intergranular deformation.

Intergranular sliding and diffusional creep are closely related (Raj and Ashby
1971). The resultant deformation can be described as due either to diffusional creep
of the grains accommodated by slip at the boundaries, or reciprocally to slip at
the boundaries accommodated by diffusion creep of the grains. Figure 4.31 gives a
simple illustration of this.
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Fig. 4.31 Sketch of boundary sliding in a bicrystal, enabling strain compatibility to be achieved

In Fig. 4.31a the tensile stress favours transport of material over the surfaces AA0,
BB0, which must be accommodated by slip along the boundary AB. In Fig. 4.31b the
shear stress favours intergranular sliding which must be accommodated by transport
of material over AB. The general situation, as in Fig. 4.31c, will be intermediate
between these extremes, necessitating both sliding and diffusion: both contribute to
the deformation and each provides the accommodation required by the other.

Raj and Ashby (1971) have made a detailed study of a non-planar boundary
(Fig. 4.32), considering the case in which the incompatibilities (or internal stresses)
created by the slip are accommodated either elastically or by diffusion. They showed
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Fig. 4.32 Diagram showing boundary glide with accommodation by diffusion. The boundary is
displaced to the right

that the way in which this accommodation is made controls the strain rate. In this
work they considered the polycrystal as a two-dimensional compact set of hexagons.

If diffusion is assumed to occur both in the bulk and along the boundary, and that
the latter can be represented by two sine waves of amplitude h D ıGB/2 and wave
length �, the strain rate is found to be:

P"v D B 00

˝

kT

Dv

d2

�
1C  ıGB

�

DGB

Dv

�
(4.78)

where B” is a numerical constant, of value about 40.
The form of this result will be seen to combine volume diffusion creep (Herring-

Nabarro) with boundary diffusion creep (Coble): this is because the hexagonal
arrangement gives �D d.

4.3.2.3 Creep Diagrams

It is helpful to gather together all the experimental information and all the theoretical
models concerning viscoplastic behaviour and present this in the form of maps
or charts, as did Ashby for a number of polycrystalline materials (see Frost and
Ashby 1982). Figure 4.33 shows one such presentation, for pure polycrystalline
nickel with a grain size of 100 �m. In this map the dimensionless stress variable
is the shear stress related to the shear modulus; it is plotted as ordinate against the
absolute temperature related to the melting temperature T/Tm,. The various regions
that we have described are identified. One such region is that defined by high
stresses and low temperatures, corresponding to low-temperature viscoplasticity,
which in the case of pure nickel, an FCC material, is of small dimension. At the
other extreme of low stress and high temperature are two regions corresponding
to diffusional creep: Coble creep in the lower part of the temperature range
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Fig. 4.33 Stress-temperature map for pure nickel of grain size 100 �m (Adapted from Frost and
Ashby 1982)

(T/Tm< 0.8), Herring-Nabarro in the upper part (T/Tm > 0.8). The rest of the map
corresponds to dislocation creep.

At high stresses and temperatures the map reported in Fig. 4.33 shows a region
of dynamic recrystallisation, which we have not considered in this chapter; it was
mentioned in the general introduction of this chapter, and in Sect. 3.4.2.2i. In the
condition shown in Fig. 4.33 nickel recrystallises as it is being deformed, hence the
term “dynamic”.

In addition to showing the regions in which the different mechanisms are
dominant the maps have curves of constant shear strain rate, where this is defined

by P
 D �
2"ij "ij

�1=2
. Care must be taken when using these to avoid attributing

too great a precision to them, since the experimental observations and the models
derived from them are necessarily not perfect; but they are very useful for several
purposes, for example:

– finding the order of magnitude of the strain rate for a given applied stress and
temperature

– identifying the type of mechanism that will be operating in given conditions
and, consequently, the type of law that will govern the creep behaviour. This
can remove the need to make risky extrapolations from data obtained under
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Fig. 4.34 Deformation map for pure nickel of grain size 1 mm. (Adapted from Frost and Ashby
1982)

conditions in which one mechanism is operating (dislocation creep, say) to
conditions in which a different one (diffusional creep, say) dominates.

These deformation diagrams have been especially well determined for pure
metals. Thus comparison of Figs. 4.33 and 4.34 will show the effect of grain size on
the behaviour of pure nickel: this makes it very clear that whilst at low temperatures
reducing the grain size will increase the resistance to deformation, the reverse is true
at high temperatures.

Figures 4.35 and 4.36 are for pure tungsten, a BCC metal very important for uses
at high temperatures. Qualitatively, the diagrams for this metal and for nickel are
quite similar. The main difference is at low temperatures (T/Tm < 0.15), where the
yield strength increases much faster with decreasing temperature for a BCC metal
than for FCC, because of the lattice (Peierls) forces. At high (T/Tm> 0.5) or even
moderate temperatures the resistance of BCC metals such as tungsten is lower than
that of FCC metals such as nickel, the difference arising from the faster diffusion in
the less dense BCC structure.

Similar diagrams are available for a number of metallic alloys of great practical
importance. Good examples are Figs. 4.37 and 4.38 for austenitic stainless steels.
The 304 and 316 steels are of essentially the same composition, 15% Cr and
10–12% Ni, differing in that 316 has also about 2.5% Mo, the effect of which is
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Fig. 4.35 Deformation map for pure tungsten of grain size 1 �m (Adapted from Frost and Ashby
1982)

to reduce the creep rate in the dislocation creep region by a factor of over 10. Both
materials are single phase FCC.

Frost and Ashby (1982) gave data for materials other than metal alloys, including
oxides of various types, and ice.

Similar deformation maps have been established for zirconium-based alloys,
which are currently used as cladding tubes in the fuel assembly of nuclear light
water reactors. These alloys have a low-temperature (’, HCP) phase and a high-
temperature (“, BCC) phase. Although the normal operating temperature is lower
than 400ıC (i.e., well within the ’ phase domain), one must ensure integrity and
excess ballooning of cladding tubes up to high temperature and for high (internal
pressure) stresses. In particular the behaviour of these materials must be investigated
when the temperature is in the two phases (’C “) domain.

Steady-state creep rate versus stress and temperature data are gathered in the map
of Fig. 4.39. Two typical alloys are considered: Zircaloy 4 (Zr, Fe, Sn) (Zy – 4) and
Zr – 1%NbO alloy. Two creep regimes were found in the near-’ domain (M ' 1
and ' 4). In the “ temperature range only one regime corresponding to the higher
exponent (M '4) was found. Only one regime corresponding to the lower stress
exponent (�1.4) was found for the (’C “) temperature range. More details can
be found elsewhere (Kaddour et al. 2004, 2011). Surprisingly, for applied stresses
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Fig. 4.36 Deformation map for pure tungsten of grain size 10 �m (Adapted from Frost and Ashby
1982)

lower than about 4 MPa, the two-phase materials show a higher creep strain rate
than does the 100% “ material at higher temperature. This behaviour is related to
the most probable underlying mechanisms, which are high diffusion kinetics along
’/“ inter-phase interfaces and a strong grain size effect.

Note: In contrast to conventional “steady state” approaches, the idea that most
normal creep curves should be envisaged only in terms of decaying primary and
accelerating tertiary stages is an essential feature of the � projection concept
introduced by Evans and Wilshire (1985, 1993) and revisited more recently by
Williams et al. (2010). The creep strain is written as:

" D �1 Œ1 � exp .��2t/�C �3 Œexp .�4t/� 1� (4.79)

where �1 and �3 quantify the primary and tertiary strains, while �2 and �4 are rate
parameters governing the curvatures of the primary and tertiary components.

The systematic variations in creep curve shape have been quantified through plots
of log �1 against 
 /Rp, so that:

�1 D G1 expH1

�


ı
Rp
�

(4.80a)
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Fig. 4.37 Deformation map for austenitic stainless steel 316 (American standard) (Z05CND17-
13, Mo content 2.5%), grain size 50 �m (Adapted from Frost and Jones 1982)

�2 D G2 exp �
Q2 �H2

�


ı
Rp
��
=kT (4.80b)

�3 D G3 expH3

�


ı
Rp
�

(4.80c)

�4 D G4 exp �
Q4 �H4

�


ı
Rp
��
=kT (4.80d)

where Gi and Hi are constants, while Q2 and Q4 are the activation energies
associated with �2 and �4, respectively.

4.3.2.4 Super-Plasticity

(a) Introduction
A material is said to be super-plastic if it can sustain elongation to fracture without
breaking - a rather loose definition - in that the “elongation to fracture” can vary
considerably ("R D 100–1,000%). It is a very familiar property in the case of a
number of non-crystalline materials – in glass-blowing, for example, or certain
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Fig. 4.38 Deformation map for austenitic stainless steel 304 (American standard) (Z05CND17-
13, no Mo content), grain size 50 �m (Adapted from Frost and Ashby 1982)

resins; and it is seen in metals and metallic alloys (Al-Zn, Pb-Sn, Bi-Sn, titanium
alloys, etc.) which have a very fine microstructure and are in general in multi-phase
conditions when deformed under certain conditions of temperature and strain rate.

For a long time, super-plasticity remained a laboratory curiosity without any
industrial applications. During the past 20 years, however, it has found practical
uses, such as shaping certain alloys that are difficult to work (isothermal forming
of some nickel-based superalloys manufactured by powder metallurgy), producing
complex shapes (hemispheres in titanium alloys) or direct fabrication of assemblies
(diffusion welding of aluminium- or titanium-alloy sheets, or forming hollow
turbine blades with honeycomb reinforcement by super-plastic inflation.).

(b) Phenomenological description
We recall that for materials deformed at low temperature the stability of the deforma-
tion of a tensile test piece is controlled by the rate of work-hardening, characterised
by the coefficient n D @ log 
 =@ log " . But in the region of the temperature-strain
rate diagram where the material is super-plastic the value of this coefficient is very
small, and stability results from the material great sensitivity to the strain rate. This
can be characterised by another coefficient, m D @ log 
 =@ log P" . The variation
of this coefficient with strain rate is displayed in Fig. 4.40 pertaining to a TA6V
titanium alloy (Vairis 2008). It can be seen that it is small (<0.2) at high rates, and
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Fig. 4.39 Deformation mechanism maps for (a) Zy 4 and (b) Zy 1%NbO under uniaxial tension.
Constant strain rate lines are plotted (in s�1) for every decade (from Kaddour et al. 2004, 2011)

reaches its greatest values, about 0.5, at rates between 10�3 and 10�2, where the
behaviour is super-plastic. At lower strain rates, the exponent m would again have
low values.

This sensitivity of super-plasticity to deformation rate can be explained qualita-
tively as follows. If the deformation becomes localised in a neck the rate increases
locally, resulting in an increase in the stress. This increase is greater, the greater the
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Fig. 4.40 Variation of the
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temperatures exhibiting a
super-plastic region at strain
rates between 10�3 and 10�2

(Adapted from Vairis 2008)

Fig. 4.41 Effect of grain size
on strain rate for four alloys,
showing that in alloys of the
9xxx series with very small
grain sizes (<1 �m),
super-plasticity can be
achieved at relatively high
rates (�10 s�1).

value of m; and its effect is to slow the development of the necking, resulting in the
production of very diffuse necking and large elongations before rupture occurs.

(c) Microstructure parameters and super-plasticity in metallic alloys.
Super-plastic behaviour occurs only at high temperatures (>0.5 Tm), and usually at
low strain rates (<10�3 s�1). The activation energy that controls the deformation is
small, in general less than the bulk diffusion energy and close to that corresponding
to intergranular diffusion QGB (approx. ½Qv) (see the tables of values at the end of
this volume.)

The microstructure of a super-plastic material must fulfil certain conditions.
Above all, the grain size must be very small. As Fig. 4.41 shows for a number of
aluminium alloys, an increase in grain size shifts the super-plastic region very much
towards small strain rates. Observations have shown that the variation of strain rate
with grain size can be expressed as:

P"v D d�ˇ (4.81)
with ˇD between 2 and 3.
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(20ıC), *: dD 2.46 �m (See
also Baudelet and Suéry
1987)

Figure 4.42, from V.N. Perevezentsev et al. (1992), gathers together the effects of
grain size, temperature, intergranular diffusion coefficient and deformation rate on
applied stress for a number of materials. These results show that the rate-sensitivity
coefficient m is close to 0.5 and that to a first approximation the rate is inversely
proportional to the square of the grain size. Generally, to obtain such small grain
sizes (<1 �m), which must remain stable during super-plastic deformation, alloys
consisting of approximately equal volumes of two phases (eutectic or eutectoid
alloys) must be used. Each phase will inhibit the growth of grain size in the other.

In some cases (high-resistance aluminium alloys) super-plastic microstructure
is associated with a very special grain structure, characterised not only by small
size but also by the presence of a precipitate-free zone around the boundaries,
which is much softer than the material of the body of the grains. Using this, it
has been found possible to develop super-plastic aluminium alloys by controlling
the intergranular diffusion of gallium and forming a low-melting solid solution of
Al-Ga in the neighbourhood of the boundaries.

After super-plastic deformation the grains remain equiaxial; sometimes their size
increases slightly, and often there is no deformation at all in the bulk. Examination
of the surface shows that the grains slide with respect to one another, and that this
intergranular sliding can account for over half of the total deformation. This agrees
with the data given in Fig. 4.30, which show that sliding at grain boundaries becomes
important at low stress.
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Fig. 4.43 Elementary mechanisms of deformation in a super-plastic polycrystalline material
(Ashby and Verral 1973)

(d) Physical models.
Most models take as starting point the following observations:

– The value of the rate-sensitivity coefficient m increases with increasing rate,
up to some critical rate which itself decreases with increasing grain size.

– Intergranular sliding plays a dominant role. If two grains slide with respect
to each other along their common boundary, cavities should form at the triple
points; but in fact such cavities appear only after some delay, or not at all. This
suggests that grain boundary sliding must be accompanied by mechanisms
such as migration of the boundaries, deformation of neighbouring grains (both
of these to only a limited extent) or diffusion of matter either in bulk or along
the boundaries.

Of the models that attribute super-plastic deformation to boundary sliding
accommodated by diffusional creep in the grains the most elaborate is that due to
Ashby and Verral (1973). These authors have shown how the deformation can occur
without the need for any deformation of the grains but as a result of sliding along the
boundaries only (see Fig. 4.43). Taking as the elementary event the change of shape
associated with a set of four grains, they showed that the intermediate position for
which the area of the boundary is maximum is a barrier. The grains slide over one
another and this sliding is accommodated by diffusional creep, which brings about
transport of material either through the volume (diffusion coefficient Dv) or along
the boundaries (DGB). Assuming that the grain boundaries are perfect sources and
sinks of vacancies, they have established the following relation:



4.3 The Physical Mechanisms Responsible for Viscoplasticity 417

P"v D 100
˝

kTd2

�

 � 0:72
GB

d

�
Dv

�
1C 3:3ıGBDGB

dDv

�
(4.82)

where 
GB is the energy of the grain boundaries.
As would be expected, this has the same form as Eq. 4.78. However, it involves

a threshold stress in the term 
GB/d, which could explain why in a logarithmic plot
of stress against deformation rate there is often a change of slope in the region of
small values of stress.

4.3.3 Creep in Ceramic Materials

4.3.3.1 Intergranular Glassy Phases in Ceramic Materials

Two specific features characterise the creep behaviour of ceramics compared to that
of metals:

– creep strains in these refractory materials are much lower than those usually
measured in metals. They are of the order of a few per thousand and are
associated with extremely low strain rates;

– intergranular phases, in particular in technical (thermo-mechanical) ceramic
materials, play a key role (Boussuge, 2009, Cannon and Langdon, 1983, 1988;
Wilkinson, 1998).

Examinations of ceramic microstructures using the techniques of high-resolution
TEM (see Chap. 1) have shown that these materials contain a thin intergranular
(generally siliceous) glass phase. The thickness of the intergranular glass phase
can be quite small, being �0.5 to �0.2 nm in some silicon nitride and zirconium
ceramics and upward of �5 nm in some alumina-based materials (Clarke1987). In
the majority of ceramic materials the intergranular phase is continuous throughout
the microstructure and, significantly, located at the grain junctions.

The presence of a remnant intergranular glass phase in ceramics can be due to a
number of different processes. In many ceramics, this phase results from the liquid-
phase sintering process used during sintering (e.g., Silicon nitride alloys, alumina
substrate materials).

In others, such intergranular phases are present because the materials are
prepared by the controlled but incomplete crystallisation of a glass (glass-ceramics).
A third, but, practically important category, is that in which the glassy phase forms
from the impurities present in the materials.

The intergranular phase wets the boundaries, meaning that it is energetically
favourable for the phase to exist at the grain boundaries. The intergranular phase
acts as a liquid phase and adopts an equilibrium thickness at high temperatures. This
phase can sustain normal stresses because of their extremely small thicknesses.
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Fig. 4.44 Ceramic materials: creep mechanisms without any deformation of the grains; (a) plastic
flow of the intergranular phase; (b) intergranular diffusion and damage of the intergranular phase

4.3.3.2 Creep Mechanisms in Ceramic Materials

Two main types of mechanisms can be invoked to explain the creep behaviour of
ceramics:

– those operating within the grains (dislocation movement; transgranular diffu-
sion), like in metals;

– those acting along the grain boundaries (Muto and Sakai1998).

The transgranular mechanisms operate in single crystalline ceramics and in a
number of polycrystalline ceramics, (in particles, in oxides) under high compressive
stresses. However these mechanisms are limited because of the covalent nature of
the bindings in ceramics materials. This explains why intergranular mechanisms
are prevalent. Several cases must be distinguished depending on the origin of the
deformation and the transport phenomena:

• Grain boundary sliding with undistorted grains (Fig. 4.44). Several types of
accommodation can be envisaged depending on the wetability and the viscosity
of the intergranular phase:

– Newtonian plastic flow of the intergranular phase (Fig. 4.44a). This mode of
deformation is limited when the amount of intergranular phase is small, which
is usually the case in most thermo-mechanical ceramics.

– Nucleation of cavities or cracks at grain boundaries (Fig. 4.44b). This
form of damage occurs significantly in technical ceramics which contain an
intergranular phase which is poorly or not recrystallised.

• Grain boundary sliding accompanied with grain deformation (Fig. 4.45). Three
main types of deformation mechanisms can operate:

– Newtonian plastic flow from the grain boundaries under compression to the
grain boundaries under tension, with dissolution – re-precipitation mechanisms
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Fig. 4.45 Ceramic materials: creep mechanisms involving deformation of the grains; (a) visco-
plastic flow; (b) transgranular diffusion; (c) intergranular diffusion

(Fig. 4.45a). This mechanism is facilitated in the presence of intergranular phases
of low viscosity and reacting with the grains,

– diffusional flow, as in metals, according to the Herring-Nabarro mechanism
(Fig. 4.45b),

– diffusion flow along the grain boundaries, according to the Coble creep mecha-
nism (Fig. 4.45c).

One example of a deformation mechanism map for ’ alumina (Al2O3) is given
in Fig. 4.46a, b (Frost and Ashby 1982). These figures clearly show that, at elevated
temperatures (>1000ıC) creep deformation is dominated by boundary diffusional
flow. In these conditions the strain rate varies linearly with the applied stress
(Fig. 4.46b).

4.3.4 Creep in Polymers

Creep deformation has been much less investigated in polymers than in metals
and ceramics. In polymeric materials it is not always possible to distinguish the
viscoelastic behaviour (see Chap. 5 of this volume) from the creep behaviour. Creep
strain, by definition, is not recovered after unloading contrarily to viscoelastic
strain. There are still very few detailed studies devoted to the description and the
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understanding of the creep behaviour of polymers. However, recently, a number
of studies on semi-crystalline polymers, such as Polyethylene (PE) and Polyamide
(PA6) materials have been reported (Regrain et al. 2009; Ben Hadj Hamouda et al.
2007).
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Fig. 4.47 Polyamide 6 (PA6) polymer. Creep behaviour: (a) creep strain versus time at an applied
stress of 76 MPa; (b) creep strain rate versus time; (c) creep strain rate as a function of applied
stress (Regrain et al. 2009)

In these semi-crystalline polymers, all chains have not the same mobility. In the
crystalline phase, chains are well ordered and tied by both covalent and hydrogen
bonds. These chains have thus few degrees of freedom. In the amorphous phase,
chains are not organised and can slip past each other. Chains in the amorphous phase
are much more mobile than those in the crystallites. Under an applied load, both
kinds of chains do not have the same behaviour. To take the contrasting behaviour
of each phase into account, it is necessary to have in mind that the stress actually
experienced by each phase can be different.

The typical behaviour of polyamide 6 (PA6) submitted to a tensile stress of
76 MPa at 25ıC and 50% humidity is reproduced in Fig. 4.47. This stress is lower
than the plateau stress (�85–90 MPa) observed during a tensile test carried out
at different strain rates (2.5 � 10�3 s�1 – 2.6 � 10�2 s�1). Figure 4.47a shows the
three typical stages observed in metallic alloys, with the existence of a minimum
“stationary” creep strain rate (Fig. 4.47b) (Regrain et al. 2009). Tests performed at
different applied nominal stresses showed that the minimum strain rate cannot be
described as a single power law of the applied stress. The examination of the results
reported in Fig. 4.47c indicates that at low applied stress (�70 MPa), the slope of
the P"v � 
 curve is close to 4.20, while at higher stresses, the slope is much higher,
of the order or 37.5.

This variation of the stress exponent of strain rate with the applied stress is
not presently understood in terms of the elementary deformation modes of the two
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phases present in semi-crystalline polymers. A constitutive multiphase model based
on the localisation of the applied stress in each phase and the homogenisation of the
local creep strains has been developed to describe the behaviour of PA6 material.
This model takes into account the degree of crystallinity, which can evolve during
deformation.

Tertiary creep is associated with the formation of a neck. A recent study has
shown that tertiary creep in pre-notched specimens does not evolve continuously
with time. A decrease of the elongation rate is observed, denoting a rheo-hardening
effect of the material (PA6), ended by final rupture (Saı̈ et al. 2011).

4.4 Mechanical Models of Macroscopic Viscoplasticity

The rheological formulation of viscoplastic behaviour can be modelled on that of
plastic behaviour, using the same basic elements. As in the case of plasticity, in
the present state of knowledge and of the computational methods available it would
be unreasonable to perform a complete shift from the microscopic scale to that of
the representative volume element (RVE), because of the many intermediate stages
and the ensuing heterogeneities. In general therefore we cannot hope that models
developed on the scale of dislocations will give quantitative information concerning
materials having a complex microstructure: their role is rather to enlighten the user
on microscopic-scale mechanisms and to define the limits within which macroscopic
mechanical models will be valid. It is these latter that will be used as a last resort in
structural computations; in general they rest on a broad phenomenological base, but
the structure and critical variables of the most powerful of them is suggested by the
local deformation mechanisms. Thus it is a question again of determining:

– the form of the elastic domain at the instant considered,
– the expression for viscoplastic flow,
– the evolution of the hardening variables.

The elastic domain is defined with the aid of a scalar-valued load function f. This
depends on the stress tensor and the work-hardening variables in such a way that
it provides a means for representing the initial form of this region and its possible
changes during loading. The viscoplastic flow is defined by reference to this function
in the classic case of associated viscoplasticity; and similarly for the work-hardening
if the model is standard; a new element enters when the mechanisms of recovery
over time or of ageing have to be taken into account. The results obtained in this
chapter relate only to isothermal conditions.

4.4.1 Viscoplastic Potential for a Single Crystal

Our study of the microscopic mechanisms has shown that viscoplastic flow can be a
consequence of slip or of diffusion. The second mechanism, which implies transport
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of material, does not come within the framework of classical models. The treatment
of deformation by slip that we shall now give will be limited to displacements in
the plane without any consideration of the mechanisms of climb, which involve
stress components normal to the slip plane and therefore violate the assumption of
normality. The success of models of this type rests on the fact that although slip
is not always the dominant mechanism it is often responsible for the major part of
the deformation. This is certainly true at low temperatures, but for dislocation creep
it holds also at high temperatures to the extent that the climb process displaces
dislocations only over short distances compared to the “long” distances covered by
the dislocations.

Under the assumption that the material obeys the Schmid law, the rate of slip P
r
on a given system (r) will depend only on the resolved shear �r D m.r/:
 :n.r/,
the work-hardening variables, here represented conventionally by a vector of
components Ym, and possibly the temperature T. This allows us to define the rate
of viscoplastic deformation, in the case when several slip systems are active, by a
functionˆ, non-decreasing with � r:

P
r D ˆ.�r ; Ym; T / P"v D
X
r

P
r.m˝ n/Sr (4.83)

Applying a virtual variation d
 to the existing stress state represented by the
tensor 
 , we have:

P"v W d
 D
X
r

ˆ .�r ; Ym; T / d�r (4.84)

The viscoplastic potential is then defined as a scalar-valued function of 
 ,Ym

and T by:

#
�

; Ym; T

	
D
X
r

Z
ˆ.�r ; Ym; T / d�r (4.85)

This function enables us to calculate the macroscopic viscoplastic strain rate
corresponding to any given state of stress and hardening; the rate vector is
orthogonal to the equipotential surface through the point corresponding to that state:

P"v D @#
.
@
 (4.86)

While no system is active, # remains constant. Without loss of generality it
can be given the value zero inside and on the boundary of the elastic domain,
and the surfaces #D constant are located inside one another and are convex. It is
easy to show that # is a convex function of 
 ; the proof is based on an inequality
relating to the slip systems, into which the stress and viscoplastic strain tensors are
substituted, thus:



ˆ.�r ; Ym; T /�ˆ

�
�r
0; Ym; T

�� �
�r � �r 0

� � 0 (4.87)
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Fig. 4.48 Viscoplastic
equi-potentials for a single
crystal

(expressing the condition that the dissipated energy must be positive), giving:
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from which, between two points 
0; 
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(4.89)

The convexity is not strict, since the resolved shear depends only on the
deviatoric part of the stress tensor; but if ˆ is a strictly increasing function of � r ,
# is a strictly convex function of the deviator of 
 . On the other hand, it is found
that an equi-potential surface is defined piecewise. If only one system is active the
surface consists of hyper-planes, since, as for the elastic domain in the case of time-
independent plasticity, the constancy of # implies that of � r also. Between two
adjacent hyper-planes (Fig. 4.48), for example if two systems r and s are active, it is
defined, for given temperature and work-hardening state, by:

Z
ˆ.�r ; Ym; T /d�r C

Z
ˆ.�s; Ym; T /d�s D constant (4.90)
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4.4.2 Viscoplastic Potential for a Polycrystal

Treating a polycrystal as an assembly of single crystals gives a “macroscopic”
viscoplastic potential, which is the sum of the single-crystal equipotentials for the
separate grains, weighted by their volume fraction. Thus for N grains:

#
�

; Ym

1; : : : ; Ym
N ; 
1

loc
; : : : ; 
N

loc
; T
	

D
NX
i

Vi

V
#i (4.91)

where each potential depends on the local stress 
i
loc

and the work-hardening

variables for the individual grain Y im, as well as on the mean stress on the aggregate.
This shows that the convexity properties continue to hold and that equi-potentials
can again be defined by their normals to the direction of viscoplastic flow.

The phenomenological approach takes this route but reduces the number of
variables used to define the state of the material: the local stresses are not evaluated
explicitly and for the work-hardening only global variables relating to the “average”
material are taken. The previous formalism is retained and, following once again the
example of plasticity, generalised standard viscoplastic materials are defined, using
the convex potentials for each of the variables 
 and Ym and putting:

P"v D @#

@

P̨m D @#

@Ym
(4.92)

For all models of this type the value of the mechanical dissipation for any given
state of stress and work-hardening exceed that of #; this ensures that it is positive,
and therefore that the second law of thermodynamics is not violated.

If recovery is to be taken into account this requires a rather different viscoplastic
potential, with two parts. The first,#v, corresponds to what we have just developed;
the second,#r, to the effects of recovery on the internal variables, and can exist even
if the representative point for the stress lies inside the elastic domain. In general, this
second potential depends only on the internal variables, thus:

# D #v

�

; Ym; T

	
C#r .Ym; T / (4.93)

4.4.3 Time-Independent Plasticity and Viscoplasticity
Compared

Time-independent plasticity can be studied by starting with a viscoplasticity law and
assuming that the equipotentials defined by the function# are very closely packed.
The inelastic strain rate will then vary very quickly with the stress, and this will tend
to give instantaneous inelastic deformations. By going to a limit, # can be replaced
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Fig. 4.49 Plastic and
viscoplastic potentials; (a)
plastic: f is the indicator
function for the elastic
domain; (b) viscoplastic: # is
the viscoplastic potential

by f, the indicator function for the elastic domain, represented by a cylinder; this
is shown in Fig. 4.49a, for comparison with the viscoplastic potential in Fig. 4.49b.
In this case it is clear that whilst the direction of flow is still specified, the same is
not true for the magnitude, all the sections being projected onto the surface f D 0.
Thus the deformation rate is specified to within a scalar factor, the plastic factor,
whose value is determined by the condition that the working point must remain on
the surface f D 0:

P"p D P� @f

@

(4.94)

Thus the essential difference between plastic and viscoplastic theory is that the
latter allows freedom of choice for the rate of inelastic deformation, whilst in
the former a further equation has to be satisfied, with the result that this rate is
determined once the shape of the elastic region has been chosen.

4.4.4 Specific Constitutive Equations

The study of physical models shows that viscoplastic behaviour occurs in various
conditions, which explain why these models can have very different forms. They are
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all characterised by an expression that gives the inelastic strain rate as a function of
the work-hardening and the current stress; this relation forbids instantaneous plastic
strain and separates the strain into an elastic and an inelastic part. However, by
passage to a limit, models can be constructed for which the strain rate is practically
independent of time, and also rigid-viscoplastic models. In the following paragraphs
we first give models that do not involve a threshold and then models that do,
finishing with some comments on the use of viscoplastic models for numerical work.

4.4.4.1 Laws Not Involving Work-Hardening

Norton’s law (4.1c) is obtained by choosing for the viscoplastic potential a power
law in von Mises equivalent stress, with two coefficients K, M that characterise the
material:

# D K

M C 1
<

N

K
>MC1 (4.95)

where <H> D max(0,H) and

N
 D
h
.3 =2/ s W s

i1=2
(4.96)

The viscoplastic flow is then given by:

P"v D @#

@

D 3

2

� N

K

�M s

N
 (4.97)

Under uniaxial loading, when the only non-zero component of the stress tensor
is 
11 D 
 , this simplifies to:

P"v
11 D . N
 =K /M

P"v
22 D P"v

33 D � .1 =2/ P"v
11 (4.98)

There is no work-hardening and the rate of viscoplastic deformation is deter-
mined fully by the secondary creep. M is the Norton exponent of (4.1c), equal to the
slope of the line in the log-log plot of strain rate against stress, as in Fig. 4.3.

Other threshold-free laws can be envisaged, in particular when the power law is
a poor approximation at high stresses. Provided that the equipotentials are given in
terms of a von Mises equivalent stress, all these laws give an expression of the type:

P"v D 3

2
PN"v
s

N
 (4.99)
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where PN"v D
h
.2 =3/ P"v W P"v

i1=2
is the absolute rate of viscoplastic strain rate under

uniaxial loading. The most currently used formulae involve products of exponentials
and powers, sometimes a hyperbolic sine. Temperature may enter explicitly through
activation terms in exp (�Q/kT):

PN"v D P"0. N
 =K /q exp ŒF . N
; T /� (4.100)

Thus the Sellars-Teggart (1966) law is:

PN"v D P"0.sinhK N
/q exp .�Q=kT / (4.101)

4.4.4.2 Laws with Multiplicative Work-Hardening

All the preceding laws state that under any non-zero constant loading the flow rate
of the material will be non-zero and constant: they reduce the elastic domain to a
single point. Hardening of the material can be represented while still retaining this
property by manipulating the spacing of the equi-potentials and thus introducing
a work-hardening variable into the expression for the deformation rate. Although
not mandatory, it has become standard to use for this the cumulative viscoplastic
deformation v, defined as:

v.t/ D
Z t

0

PN"v
.�/ d� (4.102)

In expressions of the type of (4.95) the constant K, which has the dimensions
of a stress, now depends on v and is called drag stress, expressing the resistance
to deformation due to the rate term. It has become standard also to represent the
hardening by a power law in v, K D K0vn; this leads to a new expression for v, which
can be inverted to give N
 :

Pv D< N
 =K0>
1=m v�n=m

N
 D K0 Pvmvn (4.103a, b)

with m, n> 0. Equation 4.103a gives the strain-hardening rule and shows that the
strain rate is infinite at the start of the loading and tends to zero as the strain
increases. For the case of creep in simple tension under a uniaxial stress 
0 the
relation can be integrated to give:

"v D
"
nCm

m

�

0

K0

�1=m
t

# m
mCn

(4.104)
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4.4.4.3 Laws with Isotropic Additive Work-Hardening

There are several ways in which a threshold might be introduced:

– through the existence of an elastic domain of constant size throughout the course
of the deformation. There is no work-hardening and the relation is of the type
of (4.6), in which the critical stress remains always equal to the initial elastic
limit 
0:

Pv D
� N
 � N
0

K

�M
(4.105)

– through the existence of an elastic region whose size increases in the course of
the deformation. As in plasticity, there is isotropic additive work-hardening and
the work-hardening variable depends on the cumulative viscoplastic deformation,
for example exponentially:

Pv D
�

 � R � 
0

K

�M

R D Q Œ1 � exp .�bv/� (4.106–4.107)

R and Q have the dimensions of stress. R represents a friction stress, whose
rheological image is a friction element; it corresponds to the applied stress necessary
to produce inelastic deformation. To the extent that it is independent of the direction
of the load its existence is normally associated, on the microscopic scale, with
local obstacles to the movement of the dislocations, such as interactions between
dislocations and particles or between dislocations and precipitates.

4.4.4.4 Laws with Kinematic Additive Work-Hardening

Kinematic work-hardening displaces the centre of the elastic domain in the stress
space, corresponding to a change of macroscopic “neutral state” for the material.
As we discussed in connexion with physical models (Sect. 4.3.2), this is related
to heterogeneities on the microscopic scale. These give rise to non-uniform local
stress fields over “long” distances (long range stresses), so that the shear force
on the dislocations can be determined from the local “effective” stress, that is, the
difference between the applied stress and the “back-stress”, which exerts a counter-
acting force tending to produce a deformation in the sense opposite to that of the
load. Under a uniaxial load, with a constant threshold and a back-stress 
 i, the
critical stress of (4.6) is:


s D 
i C 
0 (simple tension) (4.108a)


s D 
i � 
0 (simple compression) (4.108b)
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In both metallic alloys and composite materials there are many sources of
heterogeneities: phases, grains, precipitates, dislocation cells, : : : and to each of
these corresponds a procedure for localising the stresses and the deformations.
These redistributions are very complex and are still not fully characterised, but
in general they are all governed by local and macroscopic deformations. Thus the
corresponding phenomenological laws also are governed by the deformation; the
simplest law for work-hardening, that due to Prager, is:

X D 2

3
C P"v (4.109a)

which gives an elastic domain and a viscoplastic potential depending on both

 and X :

f D .
 �X/ � 
0 (4.109b)

In viscoplasticity as in plasticity more elaborate work-hardening laws can of
course be considered. For nonlinear kinematic work-hardening in particular, a
fading memory term can be included in the expression for strain rate, whose
direction can be given either by the present value of the back-stress or by the
instantaneous viscoplastic strain rate, thus:

PX D 2

3
C P"v � 
X Pv

PX D 2

3
C P"v � 


 
X W @f

@


!
P"v (4.110a, b)

Equations 4.109 and 4.110a were discussed in detail, in both uniaxial and mul-
tiaxial formulation, in Sect. 3.5.2.4. Equation 4.110b differs from (4.110a) only in
multiaxial loading, when it has different properties concerning the ratchetting effect.

4.4.4.5 Laws with Recovery

Recovery, which results in a softening of the material, is often considered as a
decrease of internal stresses; it is thus represented by the addition to the viscoplastic
potential of a term originating in a recovery potential#r, as in (4.93), modifying the
definition of the variable X to:

PX D 2

3
C P"v �

�
QXII

L

�l X
XII

(4.111)

where XII D
�
2
3
X W X

	1=2
.
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If l is given the value 1 this corresponds exactly to the approach given in
Sect. 4.3.2.1 for dislocation creep.

Other forms of recovery can be envisaged, in particular those bearing on the
isotropic variable in the case of additive work-hardening.

4.4.4.6 Using the Models

The work-hardening laws we have discussed should be understood as constituting a
hierarchical model, in which one can take more or fewer of the elements according
to the material, the temperature range and the particular application (for example,
whether monotonic or cyclic loading). It should never be forgotten that the more
complex the model the more tests will be needed to specify it. A fundamental
requirement for characterising viscous stress is a set of test results that covers a
wide range of deformation rates. Further, it is not always certain that the available
models give a correct interpretation of the results of both creep tests and relaxation
tests at the same time, showing that even with monotonic loading and steadily
increasing viscoplastic deformation, viscosity will make the mechanical responses
more complex.

Thus there are difficulties in specifying the coefficients that represent the
properties of real materials. Further, a viscoplastic formulation is often used in
preference to a plastic formulation for reasons of computational simplicity. It has
been shown that the viscoplastic formulation “regularises” the plasticity, leading to
more regular numerical solutions: two classical examples concern rigid-viscoplastic
models and threshold-free models with power functions in which the exponents can
be very large.

Rigid-viscoplastic models may or may not include a threshold term; they can
express for example the model of (4.103b) in terms of total deformation, assuming
that this takes place without change of volume. At any instant Pv is given by:
Œ.2 =3/ P" .�/ W P" .�/�1=2 , with Tr .P"/ D 0, and v is the integral of this with respect to
time. Given the data for the present state, represented by v and the deformation rate,
(4.103b) enables the stress state to be determined. This formulation is particularly
well adapted to finite-element calculations (P" given) in cases when the elastic
deformation is negligible, such as metal forming. Bingham’s law for viscous fluids
can be obtained by the same procedure, starting from (4.105) and treating this as a
limiting case of viscoplasticity.

The viscoplastic formulation leads to calculations in which the behaviour is
practically independent of the deformation rate. The standard method given in
literature is to choose a Norton-type law, or multiplicative work-hardening, with
a power law with a very high exponent, of the order of 200. This is the current
approach for single crystals of Ni-based superalloys in particular. A numerical
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cut-off is often associated with the method, with the reintroduction of an elastic
region, the approach by infinitesimal deformation rates not affecting the results:

P
 D 0 if � � �c

P
 D .� =�c /
M otherwise (4.112a, b)

� c is a work-hardening variable, a function of the slip in the system to which it
relates, and possibly of slips in other systems also.

4.4.5 Simultaneous Treatment of Plasticity and Viscoplasticity

In this section we have often introduced plasticity with the aim of either comparing
or contrasting the plastic formulation to the viscoplastic one: the first leads to
instantaneous and the second to delayed responses. A viscoplastic model, referred
to as “unified modelling”, can treat both types of responses. However, with some
materials it can be useful to maintain the distinction between the two regimes, one
of fast deformation and the other of slow. This is especially the case for:

– materials with considerable capacities for both work-hardening and creep, such
as austenitic stainless steels, and which are inversely sensitive to the loading rate
load in certain temperature ranges. Here “inverse” means that the stress necessary
for inelastic flow decreases as the loading rate increases;

– materials in which instantaneous deformation (plasticity) and creep (viscoplas-
ticity) occur in distinct stress regions; for example, nickel-based alloys such as
Inco 78 (18Cr, 18Fe, 3Mo, 1Ti, 5.2Nb, Bal. Ni).

Thus in the unified models two thresholds, plastic and viscoplastic respectively,
co-exist and the total deformation is the sum of three parts: elastic, plastic and
viscoplastic:

" D "e C "p C "v (4.113a)

P"p D P� @f

@

(4.113b)

P"v D @#

@

(4.113c)

The models most in current use are limited to a Norton law for viscoplasticity and
linear isotropic or kinematic work-hardening for plasticity. Experience has shown,
however, that some coupling between the plastic and viscoplastic laws must be
introduced. The resulting models, which are outside the scope of this chapter, enable
plasticity and viscoplasticity to be identified in the results of basic tests, which must
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Fig. 4.50 Construction of
inelastic strain rate for a
model covering plasticity and
viscoplasticity

then be supplemented by tests that show the plasticity-creep coupling. Figure 4.50
shows the construction of the inelastic deformation for two models with kinematic
and isotropic work-hardening in plasticity and viscoplasticity.

Detailed description of macroscopic viscoplastic constitutive equations and of
viscoplastic structural design can be found in text-books (see e.g. Lemaitre and
Chaboche 1990; Besson et al. 2009).

4.5 Methods for Reinforcing Against Creep

We end the chapter with a few indications that may be useful in the development of
materials that must resist creep under loading at high temperatures.

It will be seen from what we have shown that two approaches are possible:

– reducing the diffusional transport of material,
– blocking the slip or climb movements of the dislocations.
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Fig. 4.51 Directional solidification of turbine blades, giving elongated grains or even single
crystals (Adapted from Ashby and Jones 1980)

We study these approaches, considering first methods concerning diffusion and
then two mechanisms for blocking dislocations, one by solid solution and the other
by precipitation.

4.5.1 Reinforcement by Reducing Diffusion

This is the appropriate choice of method when working with materials of high
melting point, such as refractory metals (Ta, Mo, W, Nb) or ceramics (Al2O3, ZrO2,
Si3N4, etc.). Such materials, unfortunately, are brittle and difficult to work.

As we have seen, important contributors to creep resistance at high temperature
are grain size and intergranular slip. If the load is essentially a uniaxial tension a
good way to reduce slip at the boundaries is to orient them all in the direction of
the load, so that no shear stress is acting on them. This can be achieved by what is
called directional solidification (DS), used in the manufacture of gas-turbine blades
by casting. Figure 4.51 shows the principle. An even more radical solution to the
problem, now being developed widely, is to use this process to eliminate the grain
boundaries completely and produce single-crystal blades.

Figure 4.52 shows that up to 1960 turbine inlet temperatures were virtually the
same as the metal temperatures. After this date methods for cooling the blades �
internally by circulating air through channels running the length of the blade, or
externally by creating a cool boundary layer over the surface � enabled the inlet
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Fig. 4.52 Evolution of working temperature for turbine blades, and materials used for their
manufacture (Adapted from Ashby and Jones 1980)

temperature to be raised without changing the material. The figure shows also the
progress made possible by the use of DS materials and replacement of nickel-based
alloys by niobium alloys or composite materials; and indicates possible further
improvements that may result from studies of mixtures of conventional nickel-based
alloys and directional eutectics (see also Chap. 1, Fig. 1.2).

4.5.2 Creep of Solid Solutions

Substantial reductions in the creep rate can be achieved by adding elements in
solid solution. We have already mentioned the austenitic stainless steel with basic
percentage composition 18Cr-12Ni, for which the rate was greatly reduced by
adding 2.5% of molybdenum. Another example, of niobium alloys, is given in
Fig. 4.53. For this the reinforcement resulting from the addition of various elements
in solid solution (Mo, W, Re) is expressed by a parameter SB defined by:

SB D �

alloy � 
Nb

�
=
Nb (4.114)

where 
alloy and 
Nb are the stresses that have to be applied to the alloy and to
niobium respectively to give a creep rate of 10�5 s�1. It is important to realise that
with the value M D 3�5 of the stress exponent, the values shown for SB correspond
to reductions in rate by 2–3 orders of magnitude.
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Fig. 4.53 Increased creep resistance of niobium resulting from additions of (a) Mo; (b) W; (c) Re

As in low-temperature plasticity, elements added in solid solution constitute
obstacles to the movement of dislocations. There are three effects to consider:

– size,
– modulus,
– distortion, when the deformation field surrounding the solute atoms is not

spherically symmetrical. This is especially the case for the interstitial atoms C,
N, O in BCC metals (see Sect. 3.4.3.1).
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Further, at high temperature the solute atoms are as mobile as those of the solvent,
a situation which gives rise to what is often a rather serious difficulty in the detailed
analysis of creep phenomena. It concerns essentially the choice of the diffusion
coefficient, which, as we have seen, appears in the various models of creep. For
dilute solutions the relevant coefficient is that of the solvent itself in the solution:
stated simply, it is known that adding a “fast” solute increases the self-diffusion
of the basic metal, whilst a “slow” solute reduces this. The effect is greater, the
higher the solute concentration, up to a limit of around five atom %. This simple rule
explains, qualitatively at least, the effect of adding an atom such as molybdenum to
the matrix of an austenitic stainless steel.

With concentrated solid solutions the choice of the diffusion coefficient raises
more difficult conceptual problems.

Another aspect of high-temperature behaviour of solutions and atomic mobility
is the existence of “viscous drag”. The main origins of this are the elastic interaction
between the dislocations and the solute atoms (Cottrell effect, see Sect. 3.4.3.1d),
the segregation of solute atoms on stacking faults (Suzuki effect, see Sect. 3.4.3.1f)
and the destruction of short- or long-range order by the passage of a dislocation.
Stated simply, this drag effect can be represented by the fact that the dislocations
are submitted not only to the applied stress field but also to a force due to their
interaction with the segregated atoms.

4.5.3 Creep of Alloys Reinforced by Particles

Another, and very effective, way to impede the movement of dislocations is to
incorporate particles into the material. This can be done either by precipitation
(as with nickel-based superalloys and creep-resistant ferritic steels) or by powder
metallurgy (for example, particles of the very stable oxides of thorium or yttrium
in nickel- or aluminium-based matrices, or of silicon carbide in aluminium-based
matrices.)

Taking as example the nickel-based alloys used in manufacturing turbine blades,
the solutions adopted are based mainly on the excellent temperature stability
of compounds of the type of Ni3Al (”0 phase). The hardening due to these ”’
precipitates underlies the development of the superalloys, the most modern having
over 50% of this phase.

Figure 4.54 shows the progress made in superalloy development over more than
30 years; the average increase in resistance can be expressed as a gain of almost
10ıC per year over an entire 30 year period.

Another example is that of the ferritic/martensitic 9–12%Cr steels widely used
in the thermal power generation industry where operational temperatures are in
the neighbourhood of 550ıC. The necessity for increased operating temperatures
led to the development of compositional modifications in these materials. The first
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Fig. 4.54 The evolution of Ni-based superalloys

of these modifications was the addition of 1% molybdenum followed by tungsten,
vanadium and nitrogen. Figure 4.55 summarises the various compositions that have
been developed and gives the 600ıC creep rupture stress. There is considerable
hope in the most advanced compositional modifications for the fabrication of
components to be used in fourth-generation fission reactors. Compared to austenitic
stainless steels, these steels in addition to other advantages have superior thermal
conductivity, a lower thermal expansion and less sensitivity to radiation-induced
swelling, especially the ODS (oxide dispersion strengthened) versions that are
produced by mechanical grinding using ball milling. The new ODS steels are
strengthened by the formation of oxide nanoparticles which are extremely stable.

4.6 Exercise: Activation Energy Needed for Dislocations
to By-Pass Ordered Precipitates

In nickel-based alloys hardened by precipitates of the coherent and ordered phase
of the type Ni3 (Ti, Al) (pseudo-FCC structure, Ll2), it is found that a dislocation
will shear small particles but will wrap around those above a certain critical size.
The Orowan mechanism operates above this critical stress (see Sect. 3.4.3.2 and
Annex 2). In this annex it is suggested to calculate the activation energies for these
two modes of by-passing precipitates.
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Fig. 4.55 Chromium-bearing ferritic and martensitic steels showing the evolution in chemistry
and improvement in 100,000 h creep strength at 600ıC (Antolovich and Pineau 2011)
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Fig. 4.56 Shearing of two
precipitates

4.6.1 Shearing

Consider two particles a distance L apart in the slip plane, on which latter there
is a shear stress �A (Fig. 4.56). The dislocation penetrates the particles, taking
the position AMB; the antiphase energy 
A which holds the dislocation line is
responsible for the curvature.

4.6.1.1 By drawing the unit cell of the Ll2 structure (Annex 2), explain how this
antiphase energy originates. Show that order can be restored by the passage
of a second dislocation that has the same Burgers vector as the first.

4.6.1.2 Show that if R0 is the mean radius of particles in the bulk of the material,
those in the slip plane will have a mean radius Rs D ( /4)R0

4.6.1.3 Show that the equilibrium equations for the arc of the dislocation are

�p D tp =.
A � b�A/ (4.115)

�m D tm =b�A (4.116)

and that the following geometrical relations hold:

L=2 D �m sin �m C �p sin �p (4.117)

�p sin �p D Rs sin ' (4.118)

where tm, tp are the line tensions of the dislocation in the matrix and
precipitates respectively. If these are equal then the junction is tangential
and �m D �p D � .
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Fig. 4.57 Shearing of two particles by a dislocation: (a) stable and metastable positions of the
dislocation; (b) variation of energy �E; �GA is the activation energy

Using these relations, show that for any given value of �A there are
two possible values ® and  �® that satisfy the equilibrium conditions
(Fig. 4.57a). Show these on the energy diagram, as in Fig. 4.57b.

Note that in general, with tm ¤ tp , Eqs. 4.115, 4.116, 4.117, and
4.118 are not sufficient to define the equilibrium: the further condition
d(�E)/d®D 0 must be added, where

�E D �
tm�lm C tp�lp

� � b�A�Sm � .b�A � 
A/�Sp (4.119)

4.6.1.4 Compute the energy variation �E during the crossing; then, starting from
some reference position, for example PP’ in Fig. 4.57, find:

– the increases in length�lm, �lp of the dislocation in the matrix and the
precipitates respectively,

– the areas �Sm, �Sp swept by the dislocation in the matrix and the
precipitates.

Substitute these results in (4.119) and, with d(�E)/d®D 0, derive the
relation

2
�
tp cos �p � tm cos �m

�C .2Rs
A sin ' � bL�A/ tan' D 0 (4.120)

Show that Eqs. 4.115, 4.116, 4.117, 4.118 and 4.120 together enable the
complete solution of the problem to be found.

4.6.1.5 Assume throughout that tm D tp. Show that:

sin' D bL�A =2
ARs (4.121)

�A D �A
c .' D  =2/ D 2
ARs =bL (4.122)
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Fig. 4.58 By-passing of two
precipitates by Orowan
mechanism

where � c
A corresponds to the stress needed for crossing at absolute zero,

when there is complete absence of thermal activation.
Show that the activation energy �GA can be expressed in the simple

form:

�GA D 
ARs
2 .  � 2' � sin 2'/ (4.123)

and the activation area A*

A� D 2LRs cos' D 2LRs.1 � bL�A =2
ARs /
1=2 (4.124)

4.6.1.6 In the neighborhood of 0 K the crossing energy is given approximately by
(4.122). Show that here the expression for�GA can be simplified to:

�GA D  
ARs
2 .1 � 2bL�A = 
ARs / (4.125)

4.6.1.7 Numerical application; evaluate �GA for 
A D 0.2 Jm�2, Rs D 22�10�10 m
and compare the value with the thermal activation energy at ambient
temperature. Is it likely that shearing by thermal activation will be possible?

4.6.2 Orowan By-Passing

Use the same reasoning and the same methods for attacking the problems as
before. Figure 4.58 gives the geometry; note the two equilibrium positions for the
dislocation, as before.
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4.6.2.1 At 0 K, with no thermal activation, ' D  =2 and the two equilibrium
positions coincide. Deduce that the Orowan stress is:

� c
A D 2t

b .L � 2Rs/
(4.126)

4.6.2.2 Proceeding as in Sect. 4.6.1.6, show that

�GA D .t C bRs�A/

b�A
.  � 2' � sin 2'/ (4.127)

4.6.2.3 Show that high energies are needed for this mode of by-passing.
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Baudelet B, Suéry M (1987) Mise en forme superplastique. Techniques de l’ingénieur, M13, Paris
Ben Hadj Hamouda H, Laiarinandrasana L, Piques R (2007) Viscoplastic behaviour of a medium

density polyethylene (MDPE): Constitutive equations based on double nonlinear deformation
model. Int J Plasticity 23:1307–1327

Besson J, Cailletaud G, Chaboche JL, Forest S, Bletry M (2009) Non-linear mechanics of
materials. Springer

Boussuge M (2009) Verres et céramiques in Endommagement et rupture des matériaux 2.
Clavel M, Bompard Ph (eds) Lavoisier Paris

Caillard D (2010a) Kinetics of dislocations in pure Fe. Part I: In-situ straining experiments at room
temperature. Acta Mater 58:3493–3503

Caillard D (2010b) Kinetics of dislocations in pure Fe. Part II: In-situ straining experiments at low
temperature. Acta Mater 58:3504–3515

Campbell JD, Ferguson WG (1970) The temperature and strain rate dependence of shear strength
of mild steel. Phil Mag 21:63–82

Cannon WR, Langdon TG (1983) Review – creep of ceramics. Part I: mechanical characteristics.
J Mater Sci 18:1–50

Cannon WR, Langdon TG (1988) Review – creep of ceramics. Part II: an examination of flow
mechanisms. J Mater Sci 23:1–20

Clarke RR (1987) On the equilibrium thickness of intergranular glass phases in ceramic materials.
J Am Ceram Soc 70(1):15–22

Coble RL (1963) A model for boundary diffusion-controlled creep in polycrystalline materials.
J Appl Phys 34:1679–1682

Dorn JE (1957) Creep and recovery. American Society for Metals, Cleveland
Evans R, Wilshire B (1985) Creep of metals and alloys. The Institute of Metals, London
Evans R, Wilshire B (1993) Introduction to creep. The Institute of Metals, London
Friedel J (1964) Dislocations, Pergamon Press



444 4 Elastoviscoplasticity

Frost HJ, Ashby MF (1982) Deformation-Mechanism Maps. The plasticity and creep of metals
and ceramics. Pergamon Press

Garofalo F (1965) Fundamentals of creep and creep-rupture in metals. The MacMillan Company,
New York

Gilman JJ (1959) The plastic resistance of crystals. Australian Journal of Physics 13:327
Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21:437–445
Hoff NJ (1953) The necking and the rupture of rods subjected to constant tensile loads. J Appl

Mech Trans ASME 20:105–108
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Chapter 5
Viscoelasticity

Abstract Experimental demonstration of viscoelastic behaviour includes creep and
relaxation tests, recovery tests and dynamic mechanical analysis (DMA). Formu-
lation of linear viscoelastic functions are given and the Boltzman superposition
principle explained. The Laplace-Carson transform allows simplifying the one-
dimensional constitutive behaviour in non-ageing linear viscoelasticity. This leads to
representation with the use of partial differential equations. Spectral representation
is a generalisation. Thus, DMA can be performed. It is explained how to check the
linearity of the behaviour.

Polymers are an important case of viscoelastic materials. This behaviour is linked
to the conformation of chains in amorphous polymers. Temperature effects result:
glass transition temperature, time-temperature superposition principle. The relax-
ation mechanisms and viscoelastic behaviour are discussed. The glass transition and
the “ transition are related to the structure of polymers. Physical ageing is discussed
as well as the case of semi-crystalline polymers.

Another manifestation of viscoelasticity is internal friction in metals. There is
a distinction between relaxation peaks and hysteretic behaviour. The point defect
relaxations include the Snoek and the Zener effects. The Bordoni, the Hasiguti,
the Snoek-Köster, the damping background at elevated temperatures are dislocation
induced relaxation phenomena. Grain boundaries are also sources of relaxation
internal friction. At higher amplitudes, dislocations produce hysteretic damping.
Damping can be very high when due to phase transformations.

The 3-D formulation of constitutive equations is then given. The correspondence
theorem allows structural design. Finally, the analysis of the overall behaviour of
heterogeneous materials through the estimation of the effective creep moduli and
compliances is discussed.

This chapter is devoted to the study of one kind of constitutive mechanical
behaviour, which is intermediate between the one of Chap. 2 (viscosity is con-
sidered now in addition to elasticity) and the one of Chap. 4 (no plastic strain is

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
Macroscopic Constitutive Behaviour, Solid Mechanics and Its Applications 180,
DOI 10.1007/978-94-007-2546-1 5, © Springer ScienceCBusiness Media B.V. 2012
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present anymore). The sole coupling of elasticity and viscosity is responsible for
specific mechanical responses and it needs specific experimental investigations and
modelling approaches. Almost all materials obey this behaviour within a definite
domain of stress amplitude and temperature but this domain is especially large
for polymers, which are mainly concerned with what follows. Nevertheless, metals
are considered too, in particular for what concerns internal friction investigations.
Attention is focussed on linear (mainly non-ageing) viscoelasticity which has been
the matter of deeper analysis and of the development of many efficient experimental
and theoretical tools. After a phenomenological analysis of 1-D typical responses,
we take up the study of microstructural aspects of viscoelasticity and then we
introduce methods for structural design and for the analysis and modelling of the
behaviour of viscoelastic heterogeneous materials.

5.1 Phenomenological Analysis of 1-D Mechanical Responses

5.1.1 Experiments

Let q andQ be the displacement and force variables, respectively, and Pq and PQ
their rates. As we know (see Sect. 1.4.2), for perfect elasticity, when either q (or
Q) is imposed instantaneously and maintained constant, the other variable, Q (or
q), takes its equilibrium value instantaneously and does not evolve any longer. For
pure viscosity, the same is true for Pq and Q: with Q fixed, Pq is fixed too; when
q is constant, Pq is null and Q must be constant (actually, q cannot be applied
instantaneously so that Q is not necessarily null, but it remains constant as soon as q
is constant). The viscoelastic coupling is responsible for more complex responses:
generally speaking, the response at any time depends on the whole load history
from the very beginning. Since the material keeps some memory of all what it has
been subjected to in the past, the viscoelastic behaviour is a hereditary one (as it
was already the case for elasto(visco)plasticity). It can be characterised by a few
standard tests which are presented now for unidimensional situations. In this section,
we consider only isothermal evolutions. Dependence of the viscoelastic behaviour
on temperature is discussed in Sect. 5.2, both for metals and polymers.

5.1.1.1 Creep (or Retardation) Test

Q is applied instantaneously at the value Q0 at time t0 and q, which was zero up to
t0, is recorded as a function of time t for t � t0; it may have the discontinuity q0 at
t D t0C

and then it has a continuous, increasing non-accelerated variation (Fig. 5.1);
Pq may tend towards the constant Pq1. The creep test exhibits the creep faculty of the
viscoelastic material, i.e., its ability to flow when subjected to a constant force. The
difference with the viscoplastic creep depicted in Sect. 4.2.1.1 lies in the fact that
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Fig. 5.1 Creep test

there is now no plastic strain in the response q: even if part of this response can be
irreversible, this fact occurs for any value of Q0, as low as it is. For this reason, the
term “retardation” is sometimes preferred to “creep” for viscoelasticity, what we do
not do in the following.

This test may be summed up as follows:

Q.t; t0/ D Q0H.t � t0/ ) q.t; t0/ D ®.t; t0;Q0/ (5.1)

where H(t�t0) is the Heaviside1 unit step function at time t0 and ®.t; t0;Q0/ (which
could also be written as ®.t; t0;Q0/H.t� t0/ since q was zero up to t0) is the general
form of the creep function. At this stage, it can be a linear as well as a nonlinear
function of Q0.

5.1.1.2 Relaxation Test

The role of Q and q are inverted with respect to the creep test: q is applied
instantaneously at the value q0 at time t0 and Q, which was zero up to t0, is recorded
as a function of time t for t � t0; it may have the discontinuity Q0 at t D t0C

and
then it has a continuous, decreasing variation (Fig. 5.2); Q may tend towards the
constant Q1. The relaxation test exhibits the relaxation faculty of the viscoelastic
material, i.e., the ability of the stress variable to decrease with time at constant strain.

This test may be summed up as follows:

q.t; t0/ D q0H.t � t0/ ) Q.t; t0/ D ¡.t; t0; q0/ (5.2)

where ¡.t; t0; q0/ (which could also be written as ¡.t; t0;Q0/H.t � t0/ since Q was
zero up to t0) is the general form of the relaxation function. At this stage, it can also
be a linear as well as a nonlinear function of q0.

1Oliver Heaviside (1850–1925) was a British physicist.
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Fig. 5.2 Relaxation test

Note that, despite their similarity, there are some differences between the creep
and relaxation tests: first, it is always possible to impose instantaneously a force
but not a displacement (e.g. for a dashpot, which has no instantaneous elasticity);
second, the time constants of these two tests may be significantly different from one
another (relaxation is generally much faster than creep).

5.1.1.3 Recovery Tests

These tests are concerned with the response to boxcar (rectangle) functions,
instead of step functions above, for either Q (strain-recovery) or q (stress-recovery)
(Fig. 5.3). The strain-recovery test is much more used (Fig. 5.3a): it begins like
a creep test at time t0 but the force Q0 is suddenly removed at time t1> t0. At
t D t1, the strain variable q may have a discontinuity and it decreases continuously
afterwards. The strain-recovery may be complete ( lim

t!1 q.t/ D 0/ or only partial

( lim
t!1 q.t/ D q1 > 0/, so that q1 is irreversible (but not plastic since this occurs

with Q0 as low as wished).
Note that the Q-history can be expressed as

Q.t; t0; t1/ D Q0 ŒH.t � t0/ � H.t � t1/� (5.3)

but the q-response after t1 cannot be predicted without additional assumption, such
as linearity (see after).

5.1.1.4 Dynamic Mechanical Analysis (DMA)

A number of other tests exist for the experimental investigation of viscoelasticity,
including the classical test at constant strain-rate. The most frequent experimental
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Fig. 5.3 Recovery tests (a) strain-recovery; (b) stress-recovery (The two lower plots relate q and
t at left and Q and t at right)

investigation refers to the “dynamic mechanical analysis” (DMA) for polymers and
to “internal friction experiments” for metals. The principle is the same for both
tests: for several temperatures, the sample is subjected to an oscillatory (usually
sinusoidal) force or displacement at a given frequency, not too high for the inertia
effects to be negligible, and the response is recorded as a function of time. The
interpretation of the results is much easier for linear viscoelasticity: as shown below,
the response oscillates then at the same frequency as the load but there is a phase lag
between them. The variation of the amplitude and of the phase lag of the response
with frequency and temperature gives very useful information on both the damping
capacity of the material and its mechanical behaviour. This is shown below in this
section (Sect. 5.1.3.5) and illustrated for various materials in Sect. 5.2.

5.1.2 Linear Viscoelasticity

5.1.2.1 Linear Creep and Relaxation Functions

We now restrict ourselves to linear viscoelasticity. Before giving a general definition
for it, we can notice simply that, since linearity implies that in a creep test, when the
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force Q0 is multiplied by �, the displacement response given by (5.1) as q.t; t0/ D
®.t; t0;Q0/ must also be multiplied by �, the general form of the creep function
®.t; t0;Q0/ is now specified as

®.t; t0;Q0/ D Q0 f.t; t0/ (5.4)

where f.t; t0/ is the linear creep function. Similarly, for a relaxation test, we must
have

¡.t; t0; q0/ D q0r.t; t0/ (5.5)

where r.t; t0/ is the linear relaxation function.

5.1.2.2 The Boltzmann2 Superposition Principle

These comments can be generalised by application of the Boltzmann superposition
principle (Boltzmann 1874) which gives the general condition for a physical system
to behave linearly: this principle states that the response of this system to the
superposition of several loads is the superposition of the responses to each one.
For a linear viscoelastic system defined by the parameters (Q, q), this reads for two
Q-histories Q(1) and Q(2)

�
Q.1/ ) q.1/; Q.2/ ) q.2/

� ) �
�1Q

.1/ C �2Q
.2/ ) �1q

.1/ C �2q
.2/
�
(5.6)

Similarly, for two q-histories q(1) and q(2),

�
q.1/ ) Q.1/; q.2/ ) Q.2/

� ) �
�1q

.1/ C �2q
.2/ ) �1Q

.1/ C �2Q
.2/
�
(5.7)

These definitions obviously imply in particular the properties (5.4) and (5.5).
In addition, one can note that the recovery tests can be easily related to the creep
and relaxation tests. For example, since the strain-recovery test corresponds to the
Q-history given by the superposition (5.3), the response must be

�
Q0H.t � t0/ ) Q0 f.t; t0/
Q0H.t � t1/ ) Q0 f.t; t1/

) q0.t; t0; t1/ D Q0 Œf.t; t0/� f.t; t1/� (5.8)

Similarly, for a stress-recovery test, the response must be
�
q0H.t � t0/ ) q0r.t; t0/
q0H.t � t1/ ) q0r.t; t1/

) Q0.t; t0; t1/ D q0 Œr.t; t0/ � r.t; t1/� (5.9)

2Ludwig Boltzmann (1844–1906) was an Austrian physicist famous for his founding contributions
in the fields of statistical mechanics and thermodynamics.
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Fig. 5.4 Decomposition of a
Q-history into incremental
steps

More generally, any Q-history starting from t D t0 may be considered (Fig. 5.4)
as the superposition of the incremental steps dQ.�/ D dQ

d� d�H.t � �/.

Since, according to (5.4), the response to such a step is dQ
d� d� f.t; �/, the whole

response must be

q.t/ D Q.0C/f.t; 0/C
Z t

0

f.t; �/dQ.�/ (5.10)

where the response to a possible discontinuity of Q at � D 0C has been set apart.
Integration by parts leads to another, equivalent, expression, namely

q.t/ D Q.t/ f.t; t/�
Z t

0

Q.�/
@f.t; �/

@�
d� (5.11)

where the instantaneous and the delayed responses have been clearly separated.
Dual expressions are obtained when a q-history is prescribed. They involve the

linear relaxation function r.t; �/:

8<
:
Q.t/ D q.0C/r.t; 0/C R t

0
r.t; �/dq.�/

Q.t/ D q.t/r.t; t/� R t
0
q.�/

@r.t; �/

@�
d�

(5.12)

At this stage, the 1-D behaviour of a linearly viscoelastic material is fully
determined by the knowledge of the two scalar functions f.t; �/ and r.t; �/. Actually,
these two functions are not independent and any of them can be derived from the
other by calculation. As a matter of fact, for instance, if f.t; �/ is known, (5.10) or
(5.11) can be used for a Q-history, which reduces to the linear relaxation function
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Fig. 5.5 Response to a time-translation of the Q-history for a non-ageing material

r.t; �/: the q-response must then be the unit step-function H.t � �/. When Q and
q in these equations are replaced by the relaxation function and the unit step-
function respectively, an integral equation is obtained which allows us in principle
to calculate the relaxation function from the creep function. Obviously, the reverse
is true when q and Q in (5.12) are replaced by the creep function and the unit step-
function, respectively.

Though the property of linearity greatly simplifies, as we can see, the treat-
ment of viscoelasticity, this treatment still remains rather difficult since complex
convolution products appear in the constitutive equations (5.10), (5.11), (5.12).
An important simplification derives from the additional assumption of non-ageing
linear viscoelasticity.

5.1.3 Non-ageing Linear Viscoelasticity

5.1.3.1 Definition and Constitutive Equations

Ageing is a general property of materials which makes its physical properties evolve
with time due to microstructural evolutions deriving from various causes: chemical
reactions, radiations, long term thermally-activated phenomena : : : Nevertheless,
it may exist a sufficiently long time interval during which such evolutions are
negligible. If so (Fig. 5.5), two identical Q-histories starting at two times t0 and
t’0 will cause identical q-responses, except for the translation (t00�t0). In particular,
for a non-ageing linear viscoelastic material, two creep tests with the same unit
amplitude H(t�t0) and H(t�t00) are such that the responses f(t,t0) and f(t,t00) are
translated from each other by (t00�t0). This means that the creep function f(t,�)
actually only depends on (t��): we write it f(t��). The same must be true for the
relaxation function which reads now r(t��).
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The constitutive equation (5.11) now reads

q.t/ D Q.t/f.0/C
Z t

0

Q.�/f0.t � �/d�

D d

dt

�Z t

0

Q.�/f.t � �/d�

�

D d

dt

�Z t

0

Q.t � �/f.�/d�
�

(5.13)

So, q(t) is simply the time-derivative with respect to t of the classical convolution
product of Q and f, say .f �Q/. We write this derivative of a convolution product,
which is named a Stieljes3 convolution product,

q.t/ D d

dt
.f �Q/ D f ˇQ D Q ˇ f (5.14)

Similarly, we have for the response to a q-history:

Q.t/ D d

dt
.r � q/ D r ˇ q D q ˇ r (5.15)

We can combine (5.14) and (5.15) to obtain a relation between f and r. It reads

(
q.t/ D f ˇ .r ˇ q/ D .f ˇ r/ˇ q

Q.t/ D r ˇ .f ˇQ/ D .r ˇ f/ˇQ
(5.16)

Since the Heaviside function H(t) is the only solution to the equation

H ˇ F D F; 8F (5.17)

this means that we must have

r ˇ f D f ˇ r D H.t/ (5.18)

so that one single function of one variable, either f(t��) or r(t��), is needed to
characterise the whole 1-D mechanical behaviour (at a given temperature).

3Thomas Joannes Stieljes (1856–1894) was a Dutch mathematician.
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5.1.3.2 Use of the Laplace-Carson Transformation

Calculations of mechanical responses of a linear non-ageing viscoelastic material
are made much easier by use of a mathematical transformation which could help
dealing with the Stieljes convolution products. The Laplace4 transform L ff.t/g is
known to transform the convolution product of two functions of time, say f � g, into
the simple algebraic product of the transformed functions:

(
L ff.t/g D R1

0
exp.�pt/ f.t/dt

L ff � gg D L ffgL fgg (5.19)

where p is a complex variable. In addition, we have the property

L
�

df

dt



D p ŒL ffg � f.0C/� (5.20)

Consequently, a Laplace-transformed Stieljes convolution product reads

L ff ˇ gg D L
�

d

dt
.f � g/



D pL ffgL fgg (5.21)

This result could be of great use in order to deal with (5.14) or (5.15), but it
would be still more convenient to use the so-called “Laplace-Carson (or Carson5)
transform” f�.p/ of any function f.t/ defined by

f�.p/ D p

Z 1
0

exp.�pt/ f.t/dt (5.22)

It is such that we get simply

ff ˇ gg� D pL ff ˇ gg D f�.p/g�.p/ (5.23)

So, the Carson-transformed constitutive equations (5.14) and (5.15) read

(
q�.p/ D f�.p/Q�.p/
Q�.p/ D r�.p/q�.p/

(5.24)

4Pierre-Simon de Laplace (1749–1827) was a French mathematician and astronomer.
5John Renshaw Carson (1886–1940) was an American mathematician and electrical engineer.
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which, for any fixed value of the parameter p, are nothing but the constitutive
equations of linear elasticity. This comment will take its whole importance when
we deal with 3-D behaviour and structural design in Sect. 5.3.

In addition to (5.23), the most useful properties of the Carson transform are the
following

ŒCH.t/�� D CH�.p/ D C 8C constant�
df

dt

��
D p Œf�.p/� f.0C/� (or pf�.p/ if f is a distribution)hR t

0
f.�/d�

i� D 1
p

f�.p/

(5.25)

From (5.18) and (5.25), f�.p/ and r�.p/ are simply connected by

f�.p/r�.p/ D 1 (5.26)

From the knowledge of f(t) (or r(t)) and of the prescribed Q(or q)-history, one
can then calculate f�.p/ (or r�.p/) and Q�.p/ (or q�.p/) and deduce from them
q�.p/ (or Q�.p/) by (5.24). It still remains to derive q(t) (or Q(t)) from q�.p/ (or
Q�.p/). This can be done in principle through the Mellin6-Bromwich7 inversion
formula

f.t/ D
Z
�

f�.p/
p

exp.pt/ dp (5.27)

where the integration is done in the complex plane along the vertical line�, from the
bottom to the top, leaving at left all singularities of f�.p/=p. In practice, computing
this complex integral can be done by complementing � by an adequate path in
order to get a closed loop and by using the Cauchy8 residue theorem. Fortunately,
simpler algebraic methods can often be used from the knowledge of several Carson-
transformed basic functions, as listed in Table 5.1. Note in addition these two
important mathematical properties which are especially useful when studying limit
responses:

(
f.t/t!1 D f�.p/p!0
f.t/t!0 D f�.p/jpj!1

(5.28)

6Hjalmar Mellin (1854–1933) was a Finnish mathematician.
7Thomas John l’Anson Bromwich (1875–1929) was an English mathematician.
8Augustin-Louis Cauchy (1789–1857) was a French mathematician.
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Table 5.1 Some basic
Carson-transformed functions

Original function f(t) Carson-transformed function f*(p)

H(t) 1
•(t) p
exp.��t/ p/(pC�)
.1� exp.��t//=� 1/(pC�)
t 1/p
f(t�h) exp.�hp/ f�.p/

f(bt)exp.�at / p/(pCa)f*[(pCa)/b]

5.1.3.3 Special Case: Differential Constitutive Equations

The general expression for the constitutive equations of viscoelastic bodies is
known to be a functional relation between stresses and strains. For the present 1-
D description, the general relation (1.23) of Chap. 1 reduces to

Q.t/ D f


q.�/t�1

�
or q.t/ D g



Q.�/t�1

�
(5.29)

For linear viscoelasticity, the functionals f and g must be linear. As shown above
by use of the Boltzmann superposition equation (Eqs. 5.10, 5.11, 5.12), the linearity
of f and g implies that they can be represented as time integrals. When, in addition,
non-ageing is assumed, these time integrals reduce to Stieljes convolution products
(Eqs. 5.14 and 5.15). As a special case, these convolution products may degenerate
into differential equations of finite order with constant coefficients, say

X
i

ai
di

dt i
Q D

X
j

bj
dj

dt j
q (5.30)

This differential equation is converted by the Carson transform into

Q�.p/
X
i

aip
i D q�.p/

X
j

bjp
j (5.31)

Consequently, the Carson-transformed creep and relaxation functions

f�.p/ D
P
i

aip
i

P
j

bj pj
r�.p/ D

P
j

bjp
j

P
i

aipi
(5.32)

are rational fractions with respect to p which can be decomposed into simple
elements. According to Table 5.1, the original of every simple element is an
exponential function of the form exp.��t/ or .1 � exp.��t//=�, so that the creep
and relaxation functions read as series of such exponential functions (they are named
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E hFig. 5.6 The Maxwell model

E

h

Fig. 5.7 The Kelvin model

“Prony9 series”). This is easily checked on first-order differential equations which
correspond to the classical Maxwell10 and Kelvin11 models.

The Maxwell model: it is imaged (Fig. 5.6) by a series assemblage of a linear
spring (stiffness E) and a linear dashpot (viscosity �), whose deformation rates must
be added to give the total deformation rate Pq.

The differential equation reads

Pq D
PQ
E

C Q

�
) pq� D

�
p

E
C 1

�

�
Q� (5.33)

Consequently, the relaxation and creep functions are

8̂
<̂
ˆ̂:

r�.p/ D E�p

E C �p
) r.t/ D E exp.�E

�
t/

f�.p/ D 1

E
C 1

�p
) f.t/ D 1

E
C t

�

(5.34)

We can check on these expressions that the Maxwell model exhibits instanta-
neous elasticity, indefinite creep, complete relaxation, no strain-recovery (except
for the instantaneous elastic strain) and complete stress-recovery.

The Kelvin model: it is imaged (Fig. 5.7) by a parallel assemblage of a linear spring
(stiffness E) and a linear dashpot (viscosity �), whose forces must be added to give
the total force Q.

9Gaspard Clair François Marie Riche de Prony (1755–1839) was a French mathematician and
engineer.
10James Clerk Maxwell (1831–1879) was a Scottish physicist and mathematician.
11William Thomson, 1st Baron Kelvin (1824–1907), was a British mathematical physicist and
engineer.
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a

b

Fig. 5.8 The equivalent Kelvin-Voigt (a) and Zener (b) models

The differential equation reads

Q D Eq C � Pq ) Q� D .E C �p/ q� (5.35)

Consequently, the relaxation and creep functions are

8̂<
:̂

r�.p/ D E C �p ) r.t/ D E C �•.t/

f�.p/ D 1

E C �p
) f.t/ D 1

E

�
1 � exp.�E

�
t/
	 (5.36)

We can check on these expressions that the Kelvin model exhibits no instan-
taneous elasticity, limited creep and complete strain-recovery. Since there is no
instantaneous elasticity, the relaxation and stress-recovery tests cannot be performed
(see the Dirac •(t) singularity in the relaxation function).

Some other elementary models: This last difficulty with regard to the relaxation test
can be overcome by adding a spring in series to the Kelvin model: the corresponding
Kelvin-Voigt12 model, which is equivalent to the Zener13 model (Fig. 5.8), can be
considered as a standard linear solid model since it does not flow indefinitely at
constant stress. On the other hand, the Maxwell model, which is a standard linear
fluid model, may be enriched by putting a Kelvin model in series with it (Fig. 5.9):
this is the so-called Burgers14 model.

12Woldemar Voigt (1850–1919) was a German physicist.
13Clarence Melvin Zener (1905–1993) was an American physicist.
14Johannes (Jan) Martinus Burgers (1895–1981) was a Dutch physicist (see also Chap. 3).
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Fig. 5.9 The Burgers model

5.1.3.4 Spectral Representation

Up to now, we have considered systems which are defined by only one pair of
external parameters (q, Q). This treatment can be easily extended to systems defined
by a finite number n of such pairs, say (qi, Qi), such that the incremental work of
the external forces for a variation dqi of the geometrical parameters is

Pn
iD1 Qidqi .

Like for one single pair of parameters (q, Q), the superposition principle and the
assumption of a non-ageing behaviour lead easily, instead of (5.13), (5.14) and
(5.15), to the constitutive equations

8̂
<̂
ˆ̂:
qi .t/ D d

dt

hR t
0

fij .t � �/Qj .�/d�
i

D fij ˇQj

Qi.t/ D d

dt

hR t
0

rij .t � �/qj .�/d�
i

D rij ˇ qj

(5.37)

Application of the Carson transform to these equations leads to

8<
:
q�i .p/ D f�ij .p/Q�j .p/

Q�i .p/ D r�ij .p/q�j .p/
(5.38)

Thermodynamic arguments lead to show that the creep (or retardation) and
relaxation symbolic matrices [f�ij .p/] and [r�ij .p/], which are inverse from one
another, are symmetric. In the special case where, among the parameters qi or Qi,
only one is an external (“observable”) parameter whereas the others are internal
(“hidden”) variables, the same thermodynamic analysis shows that the Carson-
transformed creep and relaxation functions read necessarily

8̂
ˆ̂̂<
ˆ̂̂̂
:

f�.p/ D J0 C 1
�1p

C
kP
sD1

Js�s

p C �s

r�.p/ D E1 C �0p C
k0P
sD1

Esp

p C �s

(5.39)
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Fig. 5.10 Representation by a series assemblage

Fig. 5.11 Equivalent
representation by a parallel
assemblage

with Js> 0, �1> 0, J0 � 0, �s � 0, Es > 0, E1� 0, �0 � 0, �s � 0, k< n, k0< n.
Consequently, the creep and relaxation functions must read

8̂
<̂
ˆ̂:

f.t/ D J0 C t
�1

C
kP
sD1

Js .1 � exp.��st//

r.t/ D E1 C �0•.t/C
k0P
sD1

Esexp.��st/
(5.40)

This means that any linear non-ageing viscoelastic system defined by a finite
number of internal parameters can be represented by a series assemblage of Kelvin
models and one (at most) Maxwell model (Fig. 5.10) or, equivalently, by a parallel
assemblage of Maxwell models and one (at most) Kelvin model (Fig. 5.11).

In the series assemblage, the stiffness coefficients are Es D 1=Js; E0 D 1=J0
and the viscosity constants are �s D 1=.�sJs/ and �1. Every Kelvin model
may be characterised by the compliance Js and the “retardation time” �s D 1=�s
and the whole set of the retardation times associated with the corresponding
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compliances constitutes the retardation spectrum. This spectrum has a finite number
of discrete lines. Similarly, in the parallel assemblage, every Maxwell model may
be characterised by the moduli Es and the “relaxation time” �s D 1=�s. The
corresponding relaxation spectrum (Es, � s) consists also of a finite number of
discrete lines.

There is no difficulty to pass from that to an infinite number of discrete lines and
then to a continuous spectrum. For the retardation spectral representation, let j(�)
be the sum of the elementary compliances for retardation times lying between � and
(� C d�). The global creep function will read

f.t/ D J0 C t

�1
C
Z 1
0

j.�/.1 � exp.�t=�//d� (5.41)

whereas, with g(�) the sum of the elementary moduli for relaxation times lying
between � and (� C d�), the global relaxation function is

r.t/ D E1 C �0•.t/C
Z 1
0

g.�/exp.�t=�/d� (5.42)

Note that the retardation and relaxation spectra j(�) and g(�) cannot be obtained
directly from experiment. Nevertheless, formulae have been proposed to connect
them in an approximate manner with the time derivatives of the creep and relaxation
functions, respectively.

5.1.3.5 “Dynamic” Investigation

The so-called “dynamic” investigation, which actually is a quasi-static one, refers
to forced oscillation tests where q or Q is imposed as a harmonic function of
time. After a while, the transitory regime has faded enough for the response to be
harmonic too. The comparison of this steady-state response with the applied load
yields rich information on the viscoelastic behaviour of the investigated material.
Let us consider for example an imposed sinusoidal q-history which we write

q.t/ D q0 cos!t D q0Re .exp.i!t// D Re . Oq.t// (5.43)

where i2 D �1 and Re . Oq.t// is the real part of the complex function Oq.t/ given by

Oq.t/ D q0exp.i!t/ D q0.cos!t C i sin!t/ (5.44)
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The Q-response in the steady-state regime can be obtained by application of the
superposition principle with the time origin at � D �1:

Q.t/ D q.�1/r.1/C
Z t

�1
Pq.�/r.t � �/d�

D q.�1/r.1/C
Z t

�1
q0Re.i!exp.i!�//r.t � �/d� (5.45)

The initial value q.�1/ can be considered as zero; so we have, with u D t � � :

Q.t/ D �
Z 0

1
q0Re.i!exp.i!.t � u///r.u/du

D q0Re

�
exp.i!t/i!

Z 1
0

exp.�i!u/r.u/du



(5.46)

Remember now that the Carson-transformed relaxation function reads

r�.p/ D p

Z 1
0

exp.�pt/r.t/dt (5.47)

So, we can recognise within the term between braces of (5.46) the value of r�.p/
for p D i!, i.e., r�.i!/. Finally, we get

Q.t/ D q0Re fexp.i!t/r�.i!/g D Re f Oq.t/r�.i!/g (5.48)

or

OQ.t/ D Oq.t/r�.i!/; with Q.t/ D Re. OQ.t// (5.49)

This result shows that the steady-state Q-response is sinusoidal too, with the
same frequency as q(t) but with some phase lag '(!) and an amplitude Q0(!) which
depend on the frequency. If the complex function r�.i!/ is written in the form

r�.i!/ D R.!/exp.iı.!//; R.!/ D jr�.i!/j (5.50)

it is easy to see that the phase lag '(!) reduces to ı(!), the argument of r�.i!/,
and that the amplitude Q0(!) is equal to q0R.!/, where R.!/ is the modulus of
r�.i!/. So, r�.i!/ gives all information on the steady-state Q-response: it is named
the “complex modulus” and often written as

r�.i!/ D G0.!/C iG00.!/ (5.51)
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Fig. 5.12 Cole-Cole diagram of (a) the Kelvin model; (b) the Maxwell model

G0(!) is called the storage modulus and G00(!) the loss modulus. The phase angle
ı(!) is the loss angle and its tangent is the loss tangent or the damping factor:

tan ı D G00=G0 (5.52)

All these terms originate in the hysteretic analysis of one cycle in the steady-state
regime: in a (Q, q) plot, this cycle is elliptic. One part of the mechanical energy is
stored (and then restituted) and the other part, �Wd, is dissipated (or lost) as heat.
The internal friction coefficient � is defined as the ratio of the dissipated energy to
twice the average elastic energy per cycle We

� D �Wd

2We
D  q0Q0 sin ı

.1=2/q0Q0 cos ı
D 2  tan ı (5.53)

The complex modulus is conveniently represented by two plots: the Cole15 and
Cole diagram (G0, G00) and the (tanı, !) plot. It is easy to see that the Cole and Cole
diagram for a Kelvin model is a vertical half straight line whereas it is a half-circle
for a Maxwell model (Fig. 5.12) since we have

Kelvin model: r�.i!/ D E C i�! ) G0 D E; G00 D �!

Maxwell model: r�.i!/ D iE�!

E C i�!
)

8̂
<̂
ˆ̂:
G0 D E�2!2

E2 C �2!2

G00 D E2�!

E2 C �2!2

(5.54)

15Kenneth Stewart Cole (1900–1984) was an American biophysicist. Robert H. Cole was his
younger brother.
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More general diagrams and their dependence on temperature are shown in
Sect. 5.2.1.

The connexion between the complex modulus and the relaxation function can be
used to complement a given set of experimental data by computation in the real time
space without recourse to the Carson transform. As a matter of fact, we have

r�.i!/ D i!
Z 1
0

exp.�i!t/r.t/dt D i!
Z 1
0

r.t/ .cos!t � i sin!t/ dt (5.55)

and then, after an analysis of the limit response at t ! 1
(
G0.!/ D r.1/C !

R1
0
Œr.t/ � r.1/� sin!tdt

G00.!/ D !
R1
0
Œr.t/ � r.1/� cos!tdt

(5.56)

Conversely, when the storage and loss moduli G0(!) and G00(!) have been
determined experimentally, the relaxation function r(t) can be computed through
the Fourier16 inverse transform

r.t/ D 2

 

Z 1
0

G0.!/
!

sin!td! D r.1/C 2

 

Z 1
0

G00.!/
!

cos!td! (5.57)

Finally, note that all the foregoing developments related to the complex modulus
could have been applied with few obvious modifications to the complex compliance
f�.i!/ D 1=r�.i!/.

Applications of this paragraph to polymers will be found in Sect. 5.2.1.5.

5.1.3.6 Criteria of Linearity

As shown above, the properties of linearity and non-ageing are of great use for the
study of viscoelasticity. It is then interesting to generate practical methods for the
experimental determination of the domain of linearity of a given material. We briefly
comment some of these methods.

Proportionality criterion: various creep tests are performed on the same material
for different loads Q. The creep responses are q D q.t;Q/. Linearity implies that
q.t;Q/ D Qf.t/. For any time t, the relation between q and Q for different values of
Q must be linear. On the corresponding plot (q, Q), the domain of linearity is limited
by the occurrence of bends on the experimental curves (Fig. 5.13). Of course, the
same approach can be applied to relaxation tests at various imposed displacement
levels.

16Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician.
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Fig. 5.13 Determination of
the domain of linearity from
creep tests

Prediction of the recovery response: according to (5.3), the Q-history for a strain-
recovery test starting at t D 0 with unloading at t D T is given by:

Q.t;T/ D Q0 ŒH.t/ � H.t � T/� (5.58)

Linearity leads to (5.8) and non-ageing implies the response to be

q.t/ D Q0 Œf.t/H.t/ � f.t � T/H.t � T/� (5.59)

Consequently, if, on the plot (q, Q), from t D T up to t D 2T, we add q(t) and
q(t�T), we must get points which lie on the continued creep curve between T and
2T (Fig. 5.14). Thus, linearity can be easily checked in this way. The same treatment
can work for a stress-recovery test.

Harmonic tests : as we know, a (Q, q) plot during such a test must be and stay the
same ellipse at any cycle for linear viscoelastic non-ageing materials. This property
could be used in principle as a linearity criterion. Nevertheless, it is practically rather
difficult to be sure that a closed curve is an ellipse and that it does not evolve from
one cycle to another. That is why static tests are preferred for checking linearity.

5.2 Microstructural Aspects and Physical Mechanisms

5.2.1 Viscoelasticity of Polymers and Related Phenomena

Before studying viscoelasticity of polymers as such, we need to look at their elastic
properties as they derive from their structures, described in Annex 1. We are then
led to some repetitions for easier comprehension.
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Fig. 5.14 Linearity check by a recovery test: (a) strain-recovery; (b) stress-recovery
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Fig. 5.15 Conformation of a carbon-carbon bond in a vinyl polymer. (a) Newman’s representation
(b) shape of the variation of the potential energy with the angle �

5.2.1.1 Chain Conformation in Amorphous Polymers

Chain conformation in amorphous polymers is described in Annex 1. It is shown
that the potential energy variation as a function of the angle of rotation of carbon
atoms with respect to one another has minima for some orientations. To make a
complete rotation the molecules must jump over the highest potential barrier e.g. ET

in Fig. 5.15.
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The probability for a jump is given by:

PD D exp

�
�ET

kT

�
(5.60)

PD is called the dynamic stiffness of the molecule.
Trans and gauche configurations can coexist at a given temperature. Their

population ratio is directly linked to the static stiffness factor of the molecule defined
as:

PS D exp

�
�ET � EG

kT

�
(5.61)

If the chain is long enough relative to the persistence length (see Annex 1), the
average of a large number of chain configurations corresponding to a trans/gauche
ratio is a random coil, which can be characterised by its mean end-to-end distance
<r>, which is a decreasing function of the chain tortuosity. This latter is charac-
terised by the chain characteristic ratio C1 for a chain having N bonds of length l
(Flory 1953):

C1 D lim
N!1

�
< r2 >

N l2

�
(5.62)

For totally free rotations, C1D 1, where C1 expresses the constraints (geomet-
ric linked to valence angles and energetic linked to energetic barriers) opposed
to free rotations. For industrial polymers, generally C1 ranges from about 2
(aromatic polymers of the polycarbonate type) to about 10 (polymers with bulky
side groups of the polystyrene type). There are important relationships between
certain thermomechanical properties and C1 (see later). It will be just remarked
here that, if for a long chain in the undeformed state, the end-to-end distance is:

< r>0 D
�
lC11=2

	
N1=2 (5.63)

for the fully extended chain it is:

< r>f D gN (5.64)

where g is a factor linked to the geometry of the monomer unit. The maximum
extension ratio of a chain is thus:

�max D < r>f

< r>0
/ N1=2 (5.65)

In rubbers, if the elastically active chains have a molar mass Me and a number
of bonds Ne (proportional to Me), the maximum elongation is proportional to Ne

1/2
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Fig. 5.16 Schematisation of
conformational changes in an
initially all trans segment

(Flory1953; Treloar1975; Sperling1992) whereas the shear modulus G (also named
� elsewhere in this book) is proportional to Me

�1, i.e., to Ne
�1. We expect thus that:

G / �max
�2 (5.66)

The maximum elongation of rubber is a decreasing function of its stiffness. In
a linear polymer the maximum extensibility is mainly linked to the chain length
between entanglements.

A chain can undergo conformational changes caused by thermal agitation or
mechanical loading. A trans ! gauche local change can be schematised by
Fig. 5.16.

5.2.1.2 Temperature Effect on the Conformational State. Transitions

Let us consider the case, schematised in Fig. 5.15. where the gauche conformer
has the highest potential energy, i.e., is the less stable. Since the population ratio
gauche/trans is linked to the factor exp

��EG�ET
kT

�
, it is expected to increase with

temperature. The polymer entropy S, which is directly linked to the conformational
state, also increases with temperature. Let us now consider the change of the molar
fraction g of gauche conformations during cooling at a constant rate � started at a
temperature T1 in the liquid state (Fig. 5.17). During cooling, when the temperature
varies between T and T – dT the mole fraction g of gauche conformatiofn is
expected to vary from g to (g – dg). Conformational changes are however not
instantaneous; they are characterised by a rate which is an increasing function
of temperature. At high temperature, rotations are fast and the polymer adopts
almost instantaneously its equilibrium conformation. Below a certain temperature,
however, rotations become too slow relatively to the time scale fixed by the cooling
rate. Then, the chains leave their thermodynamic equilibrium and tend rapidly
towards a “frozen” conformational state. This transition is called glass transition
and the state out of equilibrium is called glassy state. This process calls for the
following remarks:

1. The glass transition displays many characteristics of a secondary thermodynam-
ical transition. It is characterised by jumps of the volume expansibility ˛D˛l –
˛g, heat capacity�Cp D Cpl – Cpg and compressibility�k D kl – kg.
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Fig. 5.17 Schematisation of
the change of the molar
fraction of gauche conformers
during a cooling experiment
at rate �1 (full line) and
�2<�1 (dashed line)

For a true thermodynamical transition, we expect:

Tg
�
�˛2

� D �Cp�k (5.67)

Polymers can deviate from this law because glass transition occurs between an
equilibrium (liquid/rubbery) and a non-equilibrium (glass) state, whereas in a
true thermodynamical transition, the material is expected to be in equilibrium on
both sides of the transition.

2. Owing to the kinetic character of the glass transition, its coordinates depend
on the cooling rate � . The lower � , the lower Tg and the lower the gauche
molar fraction in glassy state (Fig. 5.17). In the range of experimentally available
cooling rates, however, Tg cannot vary by more than 10–20ıC.

3. At Tg the molecular mobility, as characterised for instance by viscosity or NMR
relaxation time, varies by several orders of magnitude. There is a great diversity
of physical methods giving access to quantities more or less sharply linked to
molecular mobility, for instance ESR (Electron Spin Resonance), NMR (Nuclear
Magnetic Resonance), photophysical methods, etc.

These methods allow putting in evidence four important temperature domains
separated by three more or less fuzzy transitions (Fig. 5.18).

There are eventually several types of local motions, each one characterised by
the temperature at which it begins to be significant. These sub-glass transition
temperatures are called T“, T” , T•, etc., in order of decreasing temperature, starting
at Tg (T’). Cooperative motions are also named ’motions. Local motions are named
“, ”, •, etc. In the following, only the first sub-glass transition T“ will be considered
for the sake of simplicity.
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Fig. 5.18 Temperature domains of the main distinct mechanical behaviours of polymers and
corresponding transitions. N.B. The transition temperatures depend more or less on the timescale
in which they are observed

5.2.1.3 Time-Temperature Superposition

Let us consider for instance a relaxation experiment in which the strain "D "0 is
fixed; the stress 
(t) is recorded and variations of the modulus E(t) D 
(t)/"0 are
studied. Experiments of this type are difficult to perform in very short time scales,
for instance < 0.01 h, owing to the key importance of the loading history. They are
also difficult to perform in very long time scales, for instance >104 h, for obvious
economical reasons. This is the reason why the application of a time-temperature
superposition principle appeared soon as the key research objective in the field
of polymer mechanics. Such a principle would be especially interesting if it was
expressed by the following equality (Ferry 1970):

P .t; T / D P

�
t

aT
; TR

�
(5.68)

where TR is an arbitrary reference temperature and aT a shift factor depending only
on temperature. As a matter of fact, using such a principle, it is possible to build a
master curve by a simple translation along a logarithmic scale, as shown in Fig. 5.19.

Indeed, if a mathematical function aT D f(T) is found, it must keep an invariant
form with the choice of the reference temperature. Williams et al. (1955) found for
the first time such a relationship, which is now called the WLF law:

logaT D �C1 .T � TR/

C2 C .T � TR/
(5.69)

The following remarks and observations can be made:

1. This law is not equivalent to the well known Arrhenius law. In other words the
temperature effect on relaxation kinetics does not result only from the fact that
the system jumps over a barrier of potential.

2. aT ! 1 when T ! T1 D TR – C2. It can be written: logaT D � C1 C C1C2/
(T – T1), i.e., aT D BVexp[CV / (T – T1)]. This law was previously known as
the Vogel’s law.
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Fig. 5.19 Schematisation of the elaboration of a master curve at TR from experiments made over
three time decades, at temperatures ranging from TR – 40ıC to TRC 60ıC

3. It was remarked that if the reference temperature is chosen as equal to Tg, the
corresponding parameters: C1g � 17 and C2g � 50 K are quasi universal.

4. It is easy to show that the WLF law can be derived from the free volume
considerations, writing that a relaxation time � , for instance, is linked to the free
volume fraction f by:

�.T / D �0 exp
B

f

�
�
Tg
� D �0 exp

B

fg
(5.70)

where B is a constant, so that:

log
�.T /

�
�
Tg
� D � C1g

�
T � Tg

�
C2g C �

T � Tg
� D log aT (5.71)

where C1g D B/fg and C2g D fg/˛.
The constant B is usually taken equal to unity but this hypothesis lacks a physical

justification. Since C2g � 50 K and ˛� 5�10�4 K�1, it comes fg � 0.025.
In spite of its seductive simplicity, this interpretation does not constitute a

rigorous proof in favour of the free volume theory. First the product C1gC2g˛,
which is expected to be equal to unity, varies significantly from one polymer to
another. Second, it is possible to reach the WLF equation starting from entropy
considerations as established by Gibbs and Di Marzio (1958) who observed that,
plotting the chain entropy against temperature, a graph similar to Fig. 5.17. is
obtained, in which extrapolation of the straight line corresponding to equilibrium
gives a zero entropy at T1� Tg – 50 K (Fig. 5.20).
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Fig. 5.20 Shape of the chain
entropy – temperature plot
according to Gibbs and Di
Marzio (1958)

5.2.1.4 Molecular Relaxations

Let us consider a polymer in solid state undergoing a stimulus S and a method to
record its response R. The stimulus modifies the polymer structure (conformational
state, free volume, intermolecular distances). When the stimulus is released, the
polymer tends to relax, i.e., to recover equilibrium thanks to molecular motions.
The polymer response, initially R0, tends to the equilibrium value R0 at a rate which
is an increasing function to the distance to equilibrium (R – R0). In the simplest case:

dR

dt
D �k .R � R0/ (5.72)

so that:

R �R0 D .R0 �R1/ exp .�kt/ D .R0 � R1/ exp .�t =� / (5.73)

� is called relaxation time.
In reality, there is a diversity of situations. For instance segmental motions can

be faster near the chain ends than in their middle. Motions are especially hindered
in the vicinity of entanglements, etc. Relaxation kinetics are thus characterised by a
relaxation spectrum rather than by a unique relaxation time.

It is then usual to represent relaxation kinetics by the Kolrausch-Williams-Watt
(KWW) equation:

R � R0 D .R0 � R1/ exp
h
�.t =� /ˇ

i
(5.74)

with 0<ˇ< 1.
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Table 5.2 Relaxation characteristics for ’ and “ motions

Transition “ Temperature dependence of � Apparent activation energy (kJ/mol)

’ (glass) 0.3–1.0 WLF 290–1,000
“ (sub-glass) 0.01–0.1 Arrhenius 0–150

Here � is an average relaxation time and ˇ is a measure of the width of the
relaxation spectrum. Arrhenius plots of the relaxation time are called relaxation
maps (Fig. 5.21). The glass transition Tg and the sub-glass transitions can be
distinguished by many characteristics (Table 5.2).

5.2.1.5 Linear Non-ageing Viscoelasticity

Phenomenological Aspects

In the domain of small strains, polymers are assumed to obey the Boltzmann
superposition principle according to which, when there are changes of stimulus, the
effects of the changes are additive when the corresponding responses are considered
at equivalent times (see Sect. 5.1.2.2).

R.t/ D
NX
iD0

Y .t � ti / Si (5.75)

If Si is a stress 
 i applied at time ti, R(t) is a strain "(t) and Y(t) is the time
dependent creep compliance J(t). If Si is a strain "i applied at time ti, R(t) is a stress

(t) and Y(t) is the time dependent relaxation modulus E(t). Note that J(t) and E(t)
are proportional to f(t – t0) and r(t – t0) defined above in Sect. 5.1.3.1.



474 5 Viscoelasticity

Thus applying a programmed stress 
(t), the resulting strain "(t) is:

".t/ D
Z t

�1
J .t � �/ P
 .�/ d� (5.76)

which is the equivalent of Eq. 5.14. P
.t/ is the loading rate.
In the same way for a programmed strain "(t):


.t/ D
Z t

�1
E .t � �/ P" .�/ d� (5.77)

which is the equivalent of Eq. 5.15.

Dynamic Testing

It is the most common way to establish relaxation maps. A sinusoidal load is applied
and the sample response is recorded (see Sect. 5.1.3.5). It is also sinusoidal but
with a delay ı linked to the polymer viscosity. For instance, applying "D "0sin!
t, one obtains 
 D 
0sin(! t C ı). Using complex variables "* D "0exp(i! t) !

* D 
0exp[i(! t C ı)]. The complex modulus is thus E* D E0C iE00 (equivalent of
Eq. 5.51), where E0D (
0/"0)cosı (storage modulus), and E00 D (
0/"0)sinı (loss or
dissipation modulus). tanıD E00/E0 is the damping factor (Eq. 5.52).

Dynamic testing allows to study the variations of E0 and E00 in a more or less large
domain of temperatures (typically 150–600 K) and frequencies (typically 10�1–
103 Hz). The curves display several transitions, each one corresponding to a polymer
relaxation of characteristic time � such that !� D 1.

The shape of E0 and E00 variations is shown in Figs. 5.22 and 5.23.

Viscoelastic Spectra in the Frequency Domain

It is usual to transpose the results of Figs. 5.22 and 5.23 into Cole-Cole diagrams
E00D f(E0) (see Sect. 5.1.3.5). There is a wide variety of mathematical models
expressing the complex modulus E* as a function of angular frequency !. Some
models and the corresponding Cole-Cole plots are shown in Fig. 5.24.

Experimental Cole-Cole plots have generally a shape close to the Harriliak-
Nagami (1967) one. It seems that, to simulate experimental curves, a model must
have at least two exponents. They are in the case of the model proposed by Perez
(1992):

E� D E0 C E1 �E0
1C .i!t/�

0 CQ.i!t/�
00

(5.78)
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Fig. 5.24 Some models for the frequency dependence of complex moduli and shape of corre-
sponding Cole-Cole plots. NB C is the centre of the circle

According to this author all parameters could be interpreted in terms of structure-
properties relationships and the counterpart of the model in the time domain would
be the KWW equation.

An example for the modelling of the temperature dependence of modulus is the
approach of Gilbert, Ashby and Beaumont (1986) (Fig. 5.25).

The unrelaxed modulus Eu obeys a dilatation law:

Eu D E0

�
1 � ˛

T

Tg

�
(5.79)

The modulus E at a given temperature T is:

E D Eu �
X

�Ei (5.80)
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Fig. 5.25 Shape of the temperature variation of modulus (left) and chosen rheological model
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where �Ei is the modulus drop corresponding to the ith transition below the
temperature T and ˛ is a dimensionless parameter of the order of 0.3.

The rheological model consists of a spring in parallel with an infinity of Maxwell
elements differing by the viscosity � of the dashpot. The viscosities obey the
Arrhenius law in the glassy domain and the WLF law in the glass transition and
rubbery domain:

� D �0 exp

�
Q

kT

�
and � D �0 exp

"
C1g

�
T � Tg

�
C2g C �

T � Tg
�
#

(5.81)

It is assumed that viscosities differ only by their activation energy for the
Arrhenius equation and by C1 for the WLF equation. Q and C1 are assumed to have
a Gaussian distribution. For instance the proportion of units with activation energies
between Q and Q C •Q is f(Q)•Q where:

f .Q/ D 1p
2��Q

exp

"
�1
2

�
Q �Q’

�Q

�2#
(5.82)

The corresponding modulus drop is (for the ith transition):

ıEi D �Eif .Q/ıQ (5.83)
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Table 5.3 Characteristics of the “
transition of PMMA and PS according to
Gilbert et al. (1986)

Polymer PMMA PS

Tg (K) 378 373
E0 (GPa) 8.6 6.2
˛ 0.28 0.30
T“/Tg 0.75 0.80
Q“ (kJ/mol) 121.3 125
�E“/E0 0.47 0.03
�Q“/Q“ 0.2 0.4
�0 (Pa s) 1.5�10�15 8.3�10�17

The standard deviation �Q is adjusted to fit experimental data. Some parameter
values were given by Gilbert et al. (1986) for two polymers poly (methylmethacry-
late) and polystyrene (Table 5.3).

For the glass transition the authors take C1g D 17.4 and C2g D 52 K for both
polymers. The fractional spread of C1 is noticeably lower than for the “ transition:
�C1/C1 D 0.05 (PMMA) and 0.08 (PS).

5.2.1.6 Structure-Property Relationships

Glass Transition

In linear polymers, Tg is an increasing function of molar mass M. This is due to the
free volume excess of chain ends. According to the free volume theory (Fox and
Flory1954):

Tg D Tg1 � KFF

Mn
(5.84)

where Tg1 is characteristic of the chemical structure and KFF is an increasing
function of Tg1. It can be shown empirically that KFF � 10�3Tg1 2. Tg1 is
sharply linked to the chain dynamic stiffness. All the factors hindering segmental
rotations tend to increase Tg1. In the case of flexible chain (aliphatic) polymers,
the main factor is cohesion. Poly(vinylalcohol) (Tg � 360 K) can be compared
to polypropylene (Tg � 270 K), a chain of close geometry but considerably less
cohesive. In the same way, poly(vinylchloride) (Tg � 353 K) can be compared to
polypentene (Tg � 233 K). The geometry of side groups plays a complex role. For
instance, polystyrene (Tg � 378 K) appears stiffer than poly(vinylchloride) despite
the fact that the latter is more cohesive. In other structural series, for instance
polyalkenes or polyalkylmethacrylates, Tg tends to decrease with the bulkiness of
side groups.

At high temperatures, typically 400 K, the network of polar interactions collapses
and another factor becomes predominant: the inertia of rotatable units in the polymer
skeleton. The influence of the “rigid rods” inertia appears clearly in the series of
Table 5.4 where the ether groups are the unique “knee joints”.
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Table 5.4 Glass transition temperature of some aromatic backbone polymers and
their molar mass per ether link

Acronym Structure Tg (K) M/ether link (g/mol)

PEEK 414 144

PC 425 127

PSU 463 221

PES 483 232

PPMA 623 382

Here, isopropylene (�C(CH3)–) and sulfone (�SO2–) bridges block the rotations
of phenylene groups and do not work as “knee joints”.

In cross-linked polymers, Tg is an increasing function of the cross-link density.
There are many theories about this influence. The most pertinent one might be Di
Marzio’s (1964) theory according to which:

Tg D Tgl

1 �KDMF�
(5.85)

where Tgl is the glass transition temperature of a hypothetical linear copolymer
containing all the difunctional units of the network; KDM is a universal constant of
the order of unity; F is the flex parameter expressing the inertia of the chain units:
F D (molar mass of chains/number of rotatable bonds); � is the cross-link density
expressed in moles of elastically active chains per mass unit.

Bellenger et al. (1987), from a study of a large series of epoxy networks (with
trifunctional cross-links), showed that KDM � 2; F varies from about 14 g/mol
(polymethylene sequences) to about 60 g/mol (highly aromatic chains). Tg varies
in the same way as F and obeys the same structure-properties relationships as for
linear polymers. Note that:

dTg

d�
D KDMF

Tg
2

Tgl
(5.86)

The sensitivity of Tg to the variations of the cross-links density is an increasing
function of Tgl. It is very low for networks made of flexible chains; especially
rubbers and high for networks made of stiff chains (aromatic thermosets).
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The relationships between the characteristics of the “ transition and the polymer
structure are not as clear as for the glass transition. Wu (1992) found empirically
that there is an important influence of chain characteristic ratio C1(Sect. 5.2.1.1):

T“

Tg
D 0:135˙ 0:027C .0:082˙ 0:004/ C1 (5.87)

In other words, aromatic polymers of the polycarbonate type have a “ transition
well separated from Tg (more than 200ıC in the case of PC), whereas statically stiff
polymers as polystyrene have a “ transition close to Tg.

The separation between Tg and T“ plays also a great role in other properties,
for instance structural relaxation and fracture properties. “ transitions are more or
less active, i.e., the corresponding modulus drop is more or less strong depending
on various factors among which the difference of extension between relaxed and
unrelaxed conformers. Polycarbonate, polysulfones, aromatic amine, cross-linked
epoxys have a very active “ transition that explains why they have a relatively low
modulus compared to polymers having the same cohesivity. For instance polycar-
bonate, polysulfones and some aromatic amine cured epoxies have tensile modulus
values at ambient temperature, 10�3˙2 s�1 tensile rate, of the order of 2.6 ˙ 0.2 GPa,
whereas for polystyrene, despite its lower cohesivity, it is 3.1 ˙ 0.1 GPa. Let us
recall that the bulk modulus K decreases slowly with temperature but is unaffected
by secondary (sub-glass) transitions. As a result the Poisson ratio � varies in the
opposite way as the shear and tensile moduli (Fig. 5.26).

For instance at ambient temperature, for a tensile rate of the order of 10�3˙2 s�1,
the Poisson ratio is of the order of 0.41 ˙ 0.01 for polymers of the polycarbonate or
epoxy (amine cross-linked) type, and of the order of 0.37 ˙ 0.01 for polystyrene or
styrene cross-linked polyester type.
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5.2.1.7 Structural Relaxation. Physical Ageing

Since polymers are out of equilibrium in the glassy state and since they have a
certain residual (“) mobility in a certain temperature interval below Tg, they can
evolve towards equilibrium. This structural relaxation can be described as well
as a progressive disappearance of the excess of unstable conformations or as a
progressive collapse of the free volume excess. In both cases the phenomenon
consumes the sources of mobility so that it is self-retarded. In a first approach
it could be assumed that the rate of evolution, for instance the rate of volume V
decrease, could be proportional to the distance to equilibrium as schematised in
Fig. 5.27.

According to the hypothesis of first-order process:

dV

dt
D �V � V1

�
(5.88)

Kovacs (1963), who discovered the phenomenon in 1963, showed that it (as
viscoelasticity) cannot be modelled with a single relaxation time but is characterised
by a relaxation spectrum. Struik (1978) studied the structural relaxation using
essentially creep tests. Structural relaxation, called here physical ageing, leads to
a decrease of mobility and thus a decrease of creep rate. Creep curves for samples
differing by their ageing time tV at a given temperature have the shape shown in
Fig. 5.28.

Struik found that in a log (compliance) vs log (time of creep) graph the curves
corresponding to various ageing times could be obtained one from an another by a
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translation along the time axis and that, in a more or less wide temperature interval,
the shift factor aV was such that:

aV D � log t .creep/

� log t .ageing/
� 1 (5.89)

It appeared later that this is a common property of a wide variety of phenomena
of physical ageing, from emulsions to sand heaps. As expected, the shift factor av

remains close to unity in a wide temperature interval below Tg for polymers of the
polycarbonate type having their “ transition well separated from Tg. In contrast, the
curve av D f(T) displays a relatively sharp maximum just below Tg for polymers of
the polystyrene type having their T“ close to Tg.

5.2.1.8 The Case of Semi-crystalline Polymers

The temperature dependence of tensile or shear moduli of semi-crystalline polymers
is schematised in Fig. 5.29.

In glassy state, the crystalline phase is stiffer than the amorphous phase because
it is more densely packed (�c/�a � 1.17 in average). However the moduli of
both phases are of the same order of magnitude. In rubbery state, however, the
crystalline phase is about one thousand times stiffer than the amorphous phase. In
a first approximation, the modulus of a semi-crystalline polymer above Tg is quasi
proportional to the degree of crystallinity xc. A more precise approach needs to take
into account the crystalline morphology, especially lamellae dimensions.

Practitioners define the heat deflection temperature (HDT) as the temperature
above which a sample submitted to a fixed stress undergoes a deformation higher
than an arbitrary value. It can be understood from Fig. 5.29 why, in an amorphous
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polymer, HDT � Tg – �T, where �T � 5–10 K, whereas for a semi-crystalline
polymer HDT is higher than Tg and is often given by: HDT � Tm – �T, where
�T � 40–100 K depending on the crystallinity ratio.

5.2.2 Internal Friction of Metals

5.2.2.1 Terminology and Methodology

We referred to internal friction in Chap. 3 as far as it provides information
concerning various dislocations mechanisms. Internal friction manifests itself by
energy dissipation in cyclic deformation.17 It means that the loading path in a load vs
deformation plot is a closed loop, the area of which measures the energy dissipation.
Small local stress sensitive phenomena produce measurable internal friction, which
makes mechanical spectroscopy an interesting tool to study these phenomena or to
detect their presence and their importance.

Internal friction is a manifestation of viscoelasticity. The notions introduced
in Sect. 5.1 are applicable. However, internal friction specialists have their own
terminology. It is appropriate to give it here, at the expense of repeating what has
been already introduced in Sect. 5.1 or developed in Sect. 5.2.1 about dynamic
testing of polymers.

An important distinction must be made between anelastic relaxation and hys-
teretic behaviour. Linear viscoelasticity, for which the loss factor is amplitude
independent, is associated with anelastic relaxation. On the contrary, the loss factor
in hysteretic behaviour is amplitude dependent. It is usually connected with a
frequency independent contribution to the hysteresis. In particular it remains present
in purely static loading.

17The book of Blanter et al. (2007) was of great help in writing this section.
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In the following, we will deal most of all with anelastic relaxation phenomena,
like for instance point defects relaxation. We will afterwards briefly mention
some phenomena producing hysteretic behaviour, like phase transformations or
dislocations escape.

Figure 5.3 represents a typical load-displacement curve of anelastic behaviour,
with complete recovery, if, after complete unloading, the deformation goes back
to zero. A completely similar figure can be drawn representing the stress-strain
behaviour. Upon application of the stress, the strain takes instantaneously a value
called the unrelaxed strain "U and then the creep strain "(t) (related to the linear
creep function f(t,t0) defined in Sect. 5.1) tends to the relaxed strain "R. The
behaviour is characterised by the relaxation strength �D ("R – "U)/ "R. The
relaxation strength can as well be expressed as a function of the modulus E(t).

The standard anelastic solid or standard linear solid (see Sect. 5.1.3.3) is
characterised by three parameters only: "U (or EU), "R (or ER) and a single relaxation
time � (� D �¢ D �"), so that the creep strain is proportional to exp(� t/�). (� is
designated by � in Sect. 5.1.3.3). In cyclic loading, the response to an applied
sinusoidal stress 
� D 
0 exp .i!t/ is a strain "� D "0 exp .i!t � �/. The complex
modulus E* is then:

E� D 
�

"�
D E .!/ exp Œi� .!/� D E 0 .!/C iE 00 .!/ (5.90)

Thus are distinguished the storage modulus E0 and the loss modulus E00, whereas
� is the loss angle. And now:

tan � D E 00

E 0
D �W

2 W
D Q�1 (5.91)

All this is but a repetition of what has been written in Sect. 5.1.3.4 (Eqs. 5.51,
5.52, 5.53), giving however the usual notations used in the discipline of internal
friction. Note in particular that the energy dissipation is denoted Q�1.

The dynamic response functions of the standard anelastic solid are given by the
Debye18 equations:

E 0 .!/ D ER

�
1C�

!2�2

1C !2�2

�
D EU

�
1C �

1C�

1

1C !2�2

�
(5.92)

and

Q�1 .!/ D �p
1C�

!�

1C !2�2
(5.93)

As a general rule � can be neglected in front of 1 and the preceding equations
are simplified.

18Peter Joseph Wilhem Debye (1884–1966) was a Dutch physicist and chemist who won the Nobel
Prize in chemistry in 1936.
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Fig. 5.30 Dynamic modulus E and internal friction Q�1 of the standard anelastic solid: (a) as a
function of frequency on a log!� scale; (b) as a function of temperature at constant frequency

Figure 5.30 shows the Debye peak and these various parameters (see also
Figs. 5.22 and 5.23). Note that the loss of internal friction is only detectable around
!� D 1. At high frequencies the defects responsible for relaxation do not move. At
low frequencies they have all the time needed to achieve equilibrium.

Most of the relaxation phenomena are thermally activated, so that the relaxation
time can be assumed to depend on temperature in the following way:

� D �0 exp

�
H

kT

�
(5.94)

� represents then the reciprocal jump frequency �–1 over energy barriers of height
H. The energy dissipation Q�1 can then be expressed as a function of temperature
at fixed frequency f D!/2 . If Tm is the temperature at the Debye peak for !� D 1,
the internal friction is:

Q�1 D �

2
sech

H

k

�
1

T
� 1

Tm

�
(5.95)

in which expression sech x D (cosh x)�1. The Debye peak is symmetric with a half
width equal to 2.635 k/H.

The activation parameters: apparent activation energy H and limit relaxation time
(reciprocal attempt frequency) �0 D �0

�1 are obtained from the shift of the peak
temperature when changing the frequency:

log

�
f2

f1

�
D H

k

�
1

Tm1
� 1

Tm2

�
(5.96)
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Table 5.5 Some internal friction parameters for some metals

Composition f (Hz) Tm (K) Qm
�1 (10�4) H (kJ:mol) � 0(s)

Cu4-14Mn10Al 1.1 273–113 350–2,000 – –
Cu13.75Al4.95Ni 1 260–290 3,300 – –
Al 0.03–0.6 450 60–120 101 2.5�10�12

Al 107 185–190 50–85 14.5–16 –
Pb 1 30 30 – –

110 250
250 200

Ti3-4N 1 773 – 240.6 –
Ti51Ni 1 178 cooling �300

181 heating
FeC 1 314 3.5 83.7 1.9�10�15

FeN 1 296–298 – 73.4–76.9 (5–18)10�15

FeH 1 105–210 <10 29 –

These examples are there to provide orders of magnitudes for typical systems. There are many
different values given in the literature

All this can be repeated when there is not a single relaxation time but a relaxation
spectrum. The internal friction peaks as a function of temperature are then broader,
and what is determined is an average value of the parameters.

It must be noted that experimentation as a function of temperature is much easier
than as a function of frequency. Internal friction determinations (see Table 5.5) are
usually performed at fixed frequency and varying temperature.

5.2.2.2 Measurement of Internal Friction

There exists a wide variety of techniques for measuring the internal friction. We
cannot give here a complete description of them. We limit ourselves to evoke the
most widely used ones.

The low frequency forced torsion pendulum works well below the resonance
frequency in forced oscillations. The determination of the internal friction consists
in measuring the time lag �. The main advantage of this technique is that it offers
the possibility to perform isothermal experiments over a continuous frequency range
from 10�4 to 102 Hz.

However, resonant experiments are much more common. They use torsion
pendulums, vibrating reeds, composite oscillators and resonant ultrasound spec-
troscopy. It is possible to measure directly the energy loss by analysing the relative
magnitude of the input and output signals. However, it is more usual to measure
either the width of the resonant peak or the free decay. This last method is the most
widely spread.

The free decay method uses the free damped vibrations after turning off the exci-
tation. The logarithmic decrement ı is determined, which is equal to log (An/AnC1),
A representing the successive amplitudes of oscillations. Then
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Q�1 D ı =  (5.97)

It is usual practice to put the equipment under vacuum in order to suppress the
friction in air. Various devices allow varying the temperature.

5.2.2.3 Point Defect Relaxation

Point defect relaxation is usually caused by the redistribution by diffusion of point
defects under the influence of an applied stress. This requires an elastic interaction
between the applied stress and the lattice distortion due to the defect. Shear
components of the applied stress interacting with anisotropic distortions around the
defects induce short-range diffusion, over distances of the order of the interatomic
distances. The corresponding relaxation times are short.

The Snoek Relaxation

In Sect. 3.3.4.1 we mentioned that interstitial atoms C, N in ’-Fe, in octahedral
sites, being larger than the available interstice between atoms of iron increased the
cube edge of the lattice (Fig. 3.75) and we briefly described the redistribution of
the interstitial atoms when an applied stress elongated the lattice in one direction.
Under cyclic stress, this produces a relaxation called the Snoek relaxation. This
phenomenon is not limited to C and N in ’-Fe. It is observed as well for O, C and
N solid solutions in BCC metals V, Nb, Ta, Cr, Mo and W.

When a tensile stress is applied, the dimensions of part of the octahedral
interstices are increased while the Poisson effect reduces the dimensions of the
other. A difference in the concentration of interstitials in the elongated and
contracted interstices results. When the stress is reversed there is a redistribution
of the interstitials in the second ones now of greater length than the first. This
redistribution requires diffusion of the interstitials over atomic scale distances and
the phenomenon is thermally activated with an activation energy, which is that of
the diffusion. The relaxation time is related to the diffusion coefficient D:

� D a0
2

36D
(5.98)

The Snoek peak temperature Tm for 2 f� D 1 is then given by:

Tm D H

Rlog . a02f =18D0 /
(5.99)

Figure 5.31 shows an example of a Snoek peak for niobium.
The Snoek peak temperatures at a frequency of 1 Hz are 314 and 300 K for

Fe’ – C and for Fe’ � N respectively. The corresponding activation energies H are
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Fig. 5.32 Activation energy versus Snoek peak temperature for various BCC solid solutions
(Adapted from Weller 1985)

83.7 and 78.8 kJ/mol while the relaxation times �0 are 1.89�10�15 and 2.38�10�15 s.
Parameters for other solid solutions of BCC metals can be found in Blanter et al.
(2007).

It was found that the D0 values recorded were almost the same for various
solid solutions. Hence, the Snoek peak temperature is proportional to the activation
energy of diffusion (Fig. 5.32). This corresponds to �0 D 2.08�10�15 s and Tm

(K) D 3.765 H (kJ/mol).
The height of the Snoek peaks is proportional to the solute concentration

(Fig. 5.33). The slope is higher for carbon atoms (0.215 per 1 at% solute) than
for nitrogen ones (0.2 per 1 at% solute) as they are bigger and distort more the BCC
lattice. Measurement of Snoek peaks is a very sensitive method, which is able to
detect small amounts of solutes.

More about Snoek peaks can be found in Blanter et al. (2007) concerning for
instance the influence of alloying elements in FCC and HCP metals.
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The Zener Relaxation

Substitutional alloying elements do not distort the solvent lattice. Isolated they do
not produce any relaxation. However, if they are grouped by pairs, they introduce
an anisotropy, which is responsible for internal friction relaxation peaks. These
are called Zener relaxation peaks. They are found in the temperature range around
700 K where the solute atoms are able to move by diffusion.

The relaxation strength�Z is proportional to the square of the solvent concentra-
tion. The activation energies are found to be slightly less than the activation energies
for diffusion. This is due to the grouping by pairs of the solvent atoms responsible
for the relaxation.

The heights of the peaks are much lower than the ones of the Snoek peaks. This
is because the distortion of the lattice by substitution atom pairs is weaker than by
interstitials.

5.2.2.4 Dislocation Relaxations

Applying a small enough stress moves the dislocations in a reversible fashion with
nevertheless a time lag for the strain response giving rise to internal friction. When
the yield strength is reached, plastic deformation produces an amplitude dependent
internal friction. The relaxation phenomena intervening in the first type of internal
friction at very low strain amplitude give rise to a number of peaks, which are
denoted B and P in FCC and HCP metals and ’, “ and ” in BCC metals in order
of increasing temperature. The internal friction is also related to the interactions
between foreign atoms and dislocations. We will now describe the main phenomena
responsible for dislocation relaxation.
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The Bordoni Relaxation

The displacement of dislocations from a Peierls trough to another occurs by
nucleation and displacement of kinks (Sect. 3.4.2.1). Low temperature relaxation
peaks are associated with these kinks. The B1 and B2 peaks, in order of increasing
temperature, in FCC metals for which the kink energy is low, are dependent
on the strain amplitude. The second one appears only if this is sufficient and it
increases with the strain amplitude. In BCC metals, the ’ peaks are observed at low
temperatures (around 100 K), while the ” ones occur in the temperature range from
300 to 700 K (Fig. 5.34). In general the presence of impurities decreases the height
of the Bordoni peaks owing to the anchoring of dislocations, notwithstanding some
stacking fault energy effects.

The presence of two B peaks in FCC metals and of ’ and ” peaks in BCC ones
is explained by the difference of the nucleation energies of kink pairs on pure screw
dislocations (B1 and ”) and on mixed ones (B2 and ’2). The ’1 peak in BCC metals
is attributed to the displacement of kinks.

The relaxation strength of the Bordoni relaxation is proportional to the disloca-
tion density and the relaxation time to the drag coefficient of the dislocation velocity.

Hasiguti Relaxation

These peaks called P in FCC metals are found at higher temperatures than the
Bordoni peaks; called “ in BCC metals, they are found at intermediate temperatures
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between the ’ and ” Bordoni peaks. In FCC metals there are three Hasiguti peaks
P1, P2 and P3 in order of increasing temperature. The Hasiguti peaks are attributed to
the interaction of dislocations with self-point defects created by plastic deformation:
vacancies, interstitials and divacancies.

Snoek-Köster Relaxation

This kind of relaxation is due to the interaction between interstitial solute atoms and
dislocations. The corresponding peaks (SK peaks) are found at higher temperatures
than the ones due to other relaxation mechanisms (except when the foreign atoms are
H, because then their diffusion is very fast). The height of the SK peaks increases
with the concentration of solute atoms and with prior plastic deformation. It also
increases during annealing. The peak temperatures and the activation energies are
also concentration and deformation dependent.

As the solute interstitial atoms as well as the dislocations and their kinks are
all moving in internal friction experiments, the detailed explanation of the SK
relaxation is complicated and there are several possible mechanisms. It could be
due to the bowing of the dislocations segments combined with the dragging of the
interstitial atoms. At the same time there could be diffusion of these atoms along the
dislocation lines. Another mechanism could be the interaction of mobile interstitials
with the formation of double kinks, related then to the Bordoni peaks.

Another related relaxation is the dislocation enhanced Snoek effect. This en-
hancement of the height of the Snoek peaks is brought about by strain-hardening. It
shows again an interaction between interstitials and dislocations.

Damping Background at Elevated Temperatures

Finally, it should be mentioned that can be observed a background, which increases
exponentially with temperature above 0.6–0.7 the absolute melting temperature.
The mechanism could be interactions between dislocations and grain boundaries
or dislocation walls. In fact it is grain size dependent and varies also with the degree
of polygonisation.

5.2.2.5 Grain Boundary Relaxation

Kê (1947) found a relaxation peak in polycrystalline aluminium at about 500 K,
which is absent in single crystals. It was attributed to grain boundary mobility. It
was found as well in various alloys.

The relaxation time of grain boundary relaxation should be proportional to the
grain size. The relaxation strength should not depend on the grain size.
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Heat treatments, which produce precipitates in the grain boundaries, suppress
the grain boundary relaxation. An example is precipitation of chromium carbides in
Ni-Cr alloys.

We would expect this kind of relaxation to be very important in nanocrystalline
materials. It has been found that these materials exhibit an internal friction peak with
an activation energy of about 1 eV, which does not exist in materials with grains of
ordinary size. Although this relaxation could be of the Kê type, it could be attributed
also to recrystallisation.

5.2.2.6 Dislocation Related Amplitude-Dependent Internal Friction

At very low stress amplitude the motion of dislocations gives rise, as we have
previously discussed, to pure amplitude-independent relaxation phenomena. Now,
if the amplitude increases above a yielding threshold the dislocations can escape
from their anchorage points and move over relatively large distances. This produces
amplitude-dependent internal friction of the hysteretic type. It is observed that above
this critical stress, internal friction rises exponentially when the stress amplitude
increases.

In Sect. 3.4.3 we studied the interaction of dislocations with foreign atoms: we
saw that they first bow between the pinning points and we calculated the stress
needed for the dislocations to escape. When the stress is reversed the dislocations
move backwards and are pinned again by the same atoms.

The corresponding internal friction was modelled by Granato and Lücke (1956).
They get the following expressions for the internal friction Q�1 and for the internal
friction strength� (at 0 K):

Q�1 D �

 


c


0
exp

�
�
c


0

�

� D �mb
2�2

12t"0 =
0

(5.100)

where 
c is the stress needed to break away the dislocations from their pinning
points, that is K/bL if K is the force exerted by the obstacle on the dislocation,
b the Burgers vector and L the mean distance between pinning points; 
0 is the stress
amplitude; �m is the density of mobile dislocations; � is the length of dislocations;
t the line tension (�b2/2); "0 the unrelaxed strain.

The model yields indeed an internal friction, which is an exponential function of
the stress amplitude. Plotting log "0Q�1 as a function of 1/"0 should give a straight
line, the slope of which yields the critical stress and the intercept the dislocation
density. Thus internal friction experiments, performed in the kHz range, can provide
interesting information about the pinning obstacles and their evolution during heat
treatment for instance.
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For temperatures different from 0 K, the activation energy for the overcoming
of obstacles must be taken into account and this leads to the same expressions as
(5.100) with a slight additional frequency dependence of Q�1. The internal friction
is then a mixture of relaxation and hysteresis.

5.2.2.7 Hysteretic Internal Friction due to Phase Transformations.
High Damping Materials

Hysteretic internal friction occurs owing to phase transformation when this is
accompanied by volume change of shear deformation. A common example is the
martensitic transformation. It was studied in Sect. 3.4.4.3. Transformation plasticity
(Sect. 3.4.4.4) is also to be associated with this kind of internal friction. Cyclic
straining can produce back and forth transformations with a lag of the strain
response.

The transient damping QTR
�1, as opposed to non-transient and to intrinsic

damping, is by far the most important contribution. The non-transient damping is
due to interfaces and dislocations displacements and the intrinsic damping to the
combination of the damping of the two coexisting phases. The transient damping is
attributed to the transformation rate accompanied by anelastic strain. It depends on
the rate of cooling and heating ( PT effect). It increases with this rate. It is inversely
proportional to the frequency. At low amplitudes, the mechanism is that of Granato-
Lücke escape of dislocations, but the phase transformation internal friction itself,
increasing with the amplitude, appears above amplitudes larger than 5�106 to 2�105.

The shape memory alloys, a prototype of which is nitinol NiTi at near equi-
atomic composition, are examples of materials producing phase transformation
damping. For these alloys, during cooling, in the temperature range between 150ıC
and �40ıC depending on the composition, the high temperature BCC (B2) is
transformed in a monoclinic (B19’) martensite. During cooling then, the internal
friction Q�1 goes through a maximum. It is again the case upon heating but at a
higher temperature.

Other examples are zinc, aluminium or tin based copper alloys, which display a
martensitic transformation, the high temperature disordered phase transforming to
an ordered one upon cooling. The damping for these alloys, in particular Cu-Al-
Ni alloys, is very high allowing their use as Hidamets or high damping materials
(HDM) in various practical applications. Cu-Mn alloys (32–42 wt% Mn and 2–
4 wt% Al) known as “Sonoston” are used to fabricate ship propellers owing to
their high damping capacity. Classifying an alloy as HDM cannot be done without
reference to a particular application, because the damping characteristics depend on
many different factors (as amplitude, temperature, frequency).

In view of the large number of applications in which the damping capacity of
materials is an important parameter, we limit ourselves to these typical examples of
HDM only, referring the reader to Blanter et al. (2007) and to Lakes (2009).
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5.3 Viscoelastic Structures and Heterogeneous Materials

In this section, we restrict ourselves to linear (mainly non-ageing) viscoelastic
behaviour, isothermal evolutions and infinitesimal transformations. We first extend
the consequences of the superposition principle, which have been described in
Sect. 5.1 for a global 1-D description, to general local 3-D situations. Then, we take
advantage of the assumption of non-ageing and of the use of the Carson transform to
reduce viscoelastic to elastic structural design through the correspondence theorem.
Finally, we apply this theorem to heterogeneous materials and we introduce the
basic homogenisation techniques for viscoelasticity.

5.3.1 Local Viscoelastic Constitutive Equations

5.3.1.1 General Case

We have already studied the case of a global linear non-ageing viscoelastic
system defined by a finite number of pairs of parameters (Qi, qi) and obtained
the constitutive equations (5.37). The same treatment can be applied to the local
description of a volume element defined by the stress and strain tensors .
; "/. When
the local behaviour is supposed to be linear viscoelastic, the superposition principle,
applied in the same way as in Sect. 5.1.2.2, leads to the generalisation of (5.10),
(5.11) and (5.12), namely
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.0C/C
Z t
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(5.101)

and
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(5.102)

Here, f(t,�) and r(t,�) are fourth-order tensorial functions of the two independent
variables t and � , the creep and relaxation tensors, respectively. This meaning
is proved by considering the responses to the stress and strain imposed histories
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0
H.t � �/ and "

0
H.t � �/, respectively. This can be done, for instance, for

homogeneous uniaxial stress or strain histories so as to recover the 1-D description
of Sect. 5.1.

When non-ageing linear viscoelasticity is assumed, as in all what follows, the
creep and relaxation tensors only depend on the variable (t��) and we find the
generalisation of (5.37), namely
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where the symbol ˇ W denotes at the same time a Stieljes convolution product and
the double product of a fourth-order tensor and a second-order tensor, e.g.:
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(5.104)

Now, the Carson transform works in the same way as in (5.38), i.e.,

(
"�.p/ D f�.p/ W 
�.p/

�.p/ D r�.p/ W "�.p/

(5.105)

Due to the symmetries of "�.p/ and 
�.p/, the fourth-order tensors f�.p/ and
r�.p/ have only 36 independent components instead of 81 since we can state that

(
f �ijkl .p/ D f �j ikl .p/ D f �ij lk.p/

r�ijkl .p/ D r�j ikl .p/ D r�ij lk.p/
(5.106)

In addition, a thermodynamical analysis within the framework of the Biot19

theory (Biot 1954, 1956), based on the use of the Onsager20 principle, leads to
establish their diagonal symmetry(

f �ijkl .p/ D f �klij .p/

r�ijkl .p/ D r�klij .p/
(5.107)

Finally, f�.p/ and r�.p/ are inverse from each other.
So, in the space of the Carson-transformed functions, the “Carson space”, say,

for any fixed value of p, there is no difference between the constitutive equations

19Maurice Anthony Biot (1905–1985) was a Belgian-American physicist.
20Lars Onsager (1903–1976) was a Norwegian-born American physical chemist and theoretical
physicist, winner of the 1968 Nobel Prize in Chemistry.
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(5.105) and those of linear elasticity. This remark is more developed below in the
next paragraph. So far, we could specify f�.p/ and r�.p/ for different types of
anisotropy as we did for linear elasticity in Chap. 2 (Sect. 2.3.2): the results would
be the same by substituting c with r�.p/ and s with f�.p/. Let us only mention the
case of isotropy.

5.3.1.2 Isotropic Non-ageing Viscoelasticity

Instead of (2.78) and (2.81), we write now

8̂
<
:̂

�.p/ D ��.p/Tr

h
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Tr
h
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i
•

(5.108)

where ��.p/ and ��.p/ are the Carson-transformed functions of �.t/ and �.t/
which are the equivalent of the Lamé coefficients � and �; E�.p/ and ��.p/ are
the Carson-transformed functions of E(t) and �(t) which are the equivalent of the
Young modulus and Poisson ratio, respectively. The elastic bulk modulus k has also
its viscoelastic counterpart k(t) which is linked with �.t/ and �.t/ like k with � and
�. More generally, since isotropy implies that the elastic moduli c can be put in the
form c D 2�K C 3kJ with Jijkl D .1=3/•ij •kl and K D I � J (see footnote 24 of
Chap. 2), we have for isotropic non-ageing viscoelasticity

r�.p/ D 2��.p/K C 3k�.p/J

) 
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h
"�.p/

i
•

(5.109)

where e is the strain deviator.
It must not be forgotten that the condensed form of (5.108) relates to a complex

expression in the time-space, namely
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These expressions are a little bit simplified when the Poisson ratio is assumed to
be constant, as it is frequently considered for polymers, especially with � D 1=2

(isochoric deformation).
Like for the 1-D global description, additional simplifying assumptions can be

made, e.g. the degeneracy of Stieljes convolution products into ordinary differential
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equations with constant coefficients. First-order differential equations can be illus-
trated by the isotropic 3-D generalisation of the Kelvin and Maxwell models.

The generalised Kelvin model: instead of Q D Eq C � Pq, we have simply


 D
h
�1Tr."/C �2Tr.P"/

i
•C 2.�1"C �2 P"/ (5.111)

This equation corresponds to a special case of (5.108) with
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The generalised Maxwell model: the 3-D transcription of Pq D PQ=E CQ=� reads
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This is a special case of (5.108) too, with
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whence the derivation of E(t) and �(t). Of course, other 1-D rheological models can
be generalised in the same way.

5.3.1.3 Comments

For the sake of brevity, we do not develop here other 3-D generalisations of methods
already presented for the 1-D description of Sect. 5.1 (recovery tests, DMA and
complex moduli : : : ). Let us only mention that the spectral representation approach
also works for a 3-D local description. For example, the integral representation of
any scalar relaxation function (5.42) would read now:

r.t/ D c1 C ˜0ı.t/C
Z 1
0

g.�/exp.�t=�/d� (5.115)

with use of the fourth-order tensors r(t), c1, ˜0 and g.�/.
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5.3.2 The Correspondence Theorem: Principle
of Structural Design

5.3.2.1 The Correspondence Theorem

We have already noted that the Carson-transformed constitutive equations for linear
non-ageing viscoelasticity (5.105, 5.106, 5.107) look like the equations of linear
elasticity, depending on the parameter p. It may then appear interesting to study the
conditions for which the whole set of field equations for a boundary-value problem
of viscoelasticity could reduce, after application of the Carson-transform, to those
of some boundary problem of elasticity. The answer to this question is given by the
“correspondence theorem” (Lee 1955; Mandel 1955, 1966; Salençon 2009).

Like for elasticity (see Sect. 2.3.4), the whole set of field equations for a
quasi-static problem of linear non-ageing viscoelastic boundary-value problem at
infinitesimal strain is the following:

(a) equilibrium: div 
.x; t/C f .x; t/ D 0

(b) compatibility:

8<
:

Inc
h
".x; t/

i
D 0 or

".x; t/ D 1
2



grad u.x; t/C gradTu.x; t/

�

(c) constitutive equations

8<
:
".x; t/ D

�
fˇ W 


	
.x; t/


.x; t/ D
�

rˇ W "
	
.x; t/

(d) boundary conditions: we have to specify that the complementary parts Su(t) and
ST(t) of the whole surface S D @V actually do not depend on time t, at least
during the considered time interval, that is

8̂
<̂
ˆ̂:
Su [ ST D @V; Su \ ST D Ø

u.x; t/ D ug.x; t/ on Su 8t
T .x; t/ D T g.x; t/ on ST 8t

(5.116)

where ug and T g are imposed on Su and ST, respectively.
We can now apply the Carson transform to all these equations, at any point, and

we obtain the following field equations, depending on the space variable and the
parameter p:

div 
�.x; p/C f �.x; p/ D 0

"�.x; p/ D 1

2



grad u�.x; p/C gradTu�.x; p/

�
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(
"�.x; p/ D f�.x; p/ W 
�.x; p/

�.x; p/ D r�.x; p/ W "�.x; p/ with f�.x; p/ W r�.x; p/ D I

8<
:
Su [ ST D @V; Su \ ST D Ø
u�.x; p/ D Œug��.x; p/ on Su

T �.x; p/ D ŒT g�� .x; p/ on ST

(5.117)

These equations are nothing but those of a linear elastic boundary-value problem
with the “elastic” moduli and compliances f�.x; p/ and r�.x; p/ (which means
that this problem may concern an heterogeneous body) and with regular boundary
conditions. The only difference with a classical problem of elasticity lies in the
fact that all the considered variables depend on the complex parameter p, but no
special difficulty arises from that: this only means that the solution, derived by use of
classical (including numerical) methods of elasticity, also depends on this parameter.
Nevertheless, the solution to the viscoelastic problem is expected to depend on the
real time variable t, which still needs an inverse Carson-transform operation.

5.3.2.2 The Inverse Carson-Transform Operation

As already discussed in Sect. 5.1.3.2, this inversion can be performed in principle
through the Mellin-Bromwich formula (5.27) or, for simple cases, by using tables
for direct Carson transform of current analytical functions and expressing the
function to be inversed in terms of them. Nevertheless, this is not always easy nor
even possible, especially when recourse has been made to numerical treatments for
the resolution of the symbolic elastic problem (parametrised with p). In such cases,
some techniques have been developed to get an approximation of the viscoelastic
solution. We briefly mention two of them.

The collocation technique: an approximation fcol(t) to the original of some given
function (let it be analytical or numerical) f �.p/ is searched for, after sub-
straction of instantaneous and asymptotic contributions, in the form of a Prony
series21 such as

fcol.t/ D
NX
iD1

fiexp.�t=�i / (5.118)

with, at this stage, arbitrary parameters fi and �i . So, f �.p/ is approximated by
f �col.p/ given by

f �col.p/ D
NX
iD1

fi
p

p C .1=�i /
(5.119)

21Note that when the considered function f (t) is a relaxation function, according to (5.42), this
approach reduces to the approximation of its continuous relaxation spectrum by a discrete one.
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It can be proved that, when the times � i have been chosen, as proposed by the
simplest collocation technique (Schapery 1962), the best approximation to f �.p/
deriving from the condition

min
fi
E D min

fi

Z 1
0

Œf .t/ � fcol.t/�
2dt , @E=@fi D 0 (5.120)

is obtained when we have

f �col.1=�i/ D f �.1=�i / 8i D 1; :::;N (5.121)

These conditions define a system of N linear equations with N unknowns whose
solution yields fcol(t) by (5.118). In practice, N is of the order of 10 and the times � i

are often chosen equidistant on a logarithmic time scale.

The quasi elastic approximation: this method, also named the “direct method”,
derives from the approximation (Schapery 1965)

log10 10
we�10w Š •.w � w0/ (5.122)

with an adequate value of w0. From that we get

®.t/ Š ®�.p/jpD 10w0

t
(5.123)

With the usual choice w0 D 0, this means that the original ®.t/ is approximated
by ®�.p/ itself at p D 1=t . This rather crude but very convenient approximation
is found to be rather satisfactory for smooth enough functions. Improvements result
from specific choices for w0, depending on the shape of ®.t/ (Brenner et al. 2002).

5.3.3 Homogenisation

5.3.3.1 Introductory Comments

From what precedes we can guess that the basic approach to linear non-ageing
viscoelastic homogenisation consists in converting this problem into a linear elastic
one through the use of the Carson transform. This is only partly true since one
essential part of the elastic homogenisation theory has no viscoelastic counterpart,
namely the variational approach and the bounding techniques. The reason for that
lies in the fact that, at variance with elasticity, viscoelasticity cannot be defined
energetically by one single potential: two potentials are needed for that, due to
the viscoelastic coupling and, at the time being, no general variational approach
is available for the homogenisation of the overall behaviour of heterogeneous
materials whose local behaviour cannot be defined by one single potential. Some
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partial results can be derived in terms of bounds for specific loadings (e.g. harmonic
tests) but not for any loading, as it was the case for elasticity. Thus, we only give in
what follows basic elements for the definition of the overall (relaxation) moduli and
(creep) compliances and for the derivation of estimates for these quantities.

5.3.3.2 Effective Relaxation Moduli and Creep Compliances

The arguments of linearity which allowed us for the definition of the strain and
stress concentration tensors A and B in elasticity still work for linear viscoelasticity,
except for the fact that they are no more simple fourth-order algebraic tensors but
operators. Instead of (1.27), namely

(
".x/ D A.x/ W E

.x/ D B.x/ W ˙

(1.27)

we get for linear non-ageing viscoelasticity

8̂
<
:̂
".x; t/ D A.x; �/ˇ W E.�/

ˇ̌̌t
�D�1


.x; t/ D B.x; �/ˇ W ˙.�/
ˇ̌̌t
�D�1

(5.124)

where the whole macroscopic strain or stress history has to be taken into account.
These concentration equations have then to be combined with the local constitutive
equations (5.103) in order to yield, with simplified notation

8<
:

 D rˇ W

�
Aˇ W E

	
) ˙ D< 
 >D< rˇ W A > ˇ W E

" D fˇ W
�

Bˇ W ˙
	

) E D< " >D< fˇ W B > ˇ W ˙ (5.125)

and then
(

Reff D< rˇ W A >

Feff D< fˇ W B >
(5.126)

As expected, the Carson-transformed effective relaxation moduli and creep
compliances then read

( �
Reff

��
.p/ D< r�.p/ W A�.p/ >�

Feff
��
.p/ D< f�.p/ W B�.p/ >

(5.127)
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Since r�.p/ and f�.p/ are uniform within every phase (r), these formulae can
also be written in the form

8̂
<̂
ˆ̂:

�
Reff

�� D
nP
rD1

frr�r W A�r ; A�r D< A�>.r/ with
nP
rD1

frA�r D I

�
Feff

�� D
nP
rD1

fr f�r W B�r ; B�r D< B�>.r/ with
nP
rD1

fr B�r D I
(5.128)

Like in elasticity, these general results could be complemented by dealing with
initial strains and stresses, that is with eigenstrains and eigenstresses: this can be
especially useful to study the case of heterogeneous thermo-viscoelasticity.

Nevertheless, like in elasticity, these theoretical results are of small usefulness
for random heterogeneous materials because little is known about the spatial
distribution of the phases in the RVE so that, in general, the per phase average
concentration tensors A�r and B�r cannot be computed unambiguously. Since
variational approaches aiming at deriving bounds for the effective quantities are not
available, the only way to go further is to search for estimates for these quantities.

5.3.3.3 Estimates for the Effective Relaxation Moduli and Creep
Compliances

The general approach to derive such estimates is quite similar to the one defined
in Sect. 2.6 for elasticity, except for the use of Carson-transformed quantities
instead of constant ones. Moreover, thanks to the correspondence theorem, the
Green techniques which have been used to solve the inclusion problem and other
parent situations in elasticity have their viscoelastic counterpart when dealing with
Carson-transformed quantities. Since the solution to these elementary problems has
been used to build definite estimates, we can go directly to these elastic estimates
and replace the elastic constants on which they depend by the Carson-transformed
equivalent quantities (Laws and McLaughlin 1978): thus we get in the Carson space
as many viscoelastic estimates as we got in elasticity (laws of mixtures, Mori-
Tanaka model, self-consistent scheme, Hashin estimates, etc.). Nevertheless, one
additional operation is needed, namely the inverse Carson transformation of the
final elastic results. This question has been discussed above in Sect. 5.3.2.2.

One simple example can be discussed in conclusion (see Volume III for details):
we consider an isotropic incompressible two-phase material with Maxwellian
isotropic incompressible phases and we are looking for a self-consistent estimate
for the effective shear relaxation modulus �eff(t). The elastic solution is known to
be the positive root of the second-order equation

X2 C 2

�
5f � 3
6

C 2 � 5f

6
ˇ

�
X � 2ˇ D 0

with X D �eff=�1;ˇ D �2=�1;f D f2

(5.129)
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that is

X D �5f � 3

6
� 2 � 5f

6
ˇ C

s�
5f � 3

6
C 2 � 5f

6
ˇ

�2
C 2ˇ (5.130)

The strain and stress deviators in each phase (i) obey the constitutive equations

Pe D ai s C bi Ps; i D 1; 2 ) 2��i .p/ D p

ai C bip
(5.131)

Consequently, the Carson-transformed solution X*(p) reads

X�.p/ D �5f � 3

6
� 2 � 5f

6
ˇ�.p/C

s�
5f � 3

6
C 2 � 5f

6
ˇ�.p/

�2
C 2ˇ�.p/

with X�.p/ D �eff�.p/=�1�.p/; ˇ�.p/ D �2
�.p/=�1�.p/;f D f2

(5.132)

This expression happens to be invertible in closed form (Rougier et al. 1993); it
is still more interesting to compute analytically the associated relaxation spectrum,
geff(t), defined by

�eff.t/ D
Z 1
0

geff.�/ exp .�t=�/d� (5.133)

Whereas the relaxation spectrum of every (Maxwellian) phase reduces to one single
line, the one of the two-phase material is found to be constituted of a continuous one
on a given time interval and, according to the volume fraction f, of one or two single
lines outside this interval. This continuous contribution is a good example of the
effect of the viscoelastic coupling and of the complexity of the delayed interactions
between the phases, which depend on the whole loading history. This result is a
particular case of a general result (Suquet 1987), which states that a multiphase
material with Maxwellian phases obeys the “effective” differential equation

PE D Seff W Ṗ C Veff W ˙ C
Z t

0

Y.t � �/ W Ṗ .�/d� (5.134)

which differs from a Maxwellian behaviour by the convolution integral term with
the kernel Y(t��): this term expresses the “long range memory effect” which was
also responsible for the continuous part of the relaxation spectrum in the foregoing
example of a two-phase material. It is also responsible for the need of two potentials
to define a viscoelastic behaviour and for the associated difficulty to conceive
variational approaches and bounding techniques for the overall behaviour.
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Appendix A
Annex 1: Atomic and Molecular Structures

Annex 1 gives background notions dealing with atomic and molecular structures in
an abbreviated way, for the convenience of the user of the book. On the other hand,
it is also easy to gather useful information on the web.

A1.1 Types of Bonds

The main types of chemical bonds are listed in Table A1.1.

Table A1.1 Types of bonds

Type of bonds Mechanism
Order of magnitude
(kJ/mole)

Covalent Shared electrons 102

Metallic Free electrons cloud 102

Ionic Electrostatic attraction 102

Van der Walls Molecular attraction 10�1

Hydrogen bond Dipoles attraction 1

Adding a repulsive term to the attractive one gives the usual expression for the
energy:

U D B

rm
� A

rn
(A1.1)

(A, B positive; B is Born’s constant1)
where r is the distance between the atoms

m is of the order of 10
n D 1 for ionic bonds, D 6 for van der Waals bonds

For an ionic crystal the attractive force is qq0/r2, where q, q0 are the charges on
the ions.

1Max Born (1882–1970), Nobel Prize winner, was a German physicist.

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
Macroscopic Constitutive Behaviour, Solid Mechanics and Its Applications 180,
DOI 10.1007/978-94-007-2546-1, © Springer ScienceCBusiness Media B.V. 2012
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For NaCl, A D �e2, where e is the charge on the electron and � D 1.7475 is
Madelung’s constant2.

A1.2 Crystalline Solids – Elements of Crystallography

A1.2.1 Symmetry Groups

Figure A1.1 shows the elements of symmetry and the corresponding Hermann-
Mauguin symbols3, an integer for axes of symmetry and m for a mirror plane. The
notation 2/m corresponds to common axis and normal to the mirror plane.

The following operations are identical

N2 � 2 � N1
N3 � 3 � N1
N4 � 4 � N1

N6 � 6 � N1 � 3 � N2 � 3m

Fig. A1.1 Point groups of symmetry and the corresponding Hermann-Mauguin symbols

2Erwin Madelung (1881–1972) was a German physicist.
3Charles Victor Mauguin (1878–1958) was a French mineralogist; Carl Hermann (1898–1961) was
a German mineralogist.
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A1.2.2 Crystallographic Systems

The crystallographic systems are listed in Table A1.2.

Table A1.2 Crystallographic systems (Barrett and Massalski 1988)

System Characteristics Symmetry element

Hermann-Mauguin
symbol (32 point
groups) Examples

Triclinic Three unequal axes,
no pair at
right-angles

None 1 K2CrO7

a¤ b¤ c,
’¤ “¤ ” ¤ 90º

Monoclinic Three unequal axes,
one pair not at
right angles

One binary axis of
rotation or one
mirror plane

2, N2 .D m/
2/m

S“,
CaSO4�2H2O

(gypsum)
a¤ b¤ c
’D ” D 90ı ¤ “

Orthorhombic Three unequal axes,
all at right angles

a¤ b¤ c
’D “D ” D 90ı

3 orthogonal binary
axes of rotation
or 2
perpendicular
mirror planes

222, 2 mm
2/m2/m2/m

S’, U’, Ga
Fe3C (cementite)

Tetragonal Three axes at right
angles, two equal

aD b¤ c,
’D “D ” D 90ı

One quaternary axis
of rotation or of
rotation-
inversion

4, N4, 422,
4 mm,N42m

4/m, 4/m2/m2/m

Sn“ (white)
TiO2

Cubic Three equal axes, all
at right angles

4 ternary axes of
rotation

23, 432, N43 =m
2 =m N3; 4=mN32=m

Cu, Ag, Au, Fe
NaCl

aD bD c,
’D “D ” D 90ı

Hexagonal Three equal coplanar
axes at 120º, a
fourth orthogonal
to the plane

One 6-ary axis of
rotation or of
rotation-
inversion

6, N6, 6 mm, N6m2,
6/m, 6/m2/m2/m

Zn, Mg, Ti
NiAs

a1D a2D a3¤ c,
’D “D 90ı

” D 120ı

Rhombohedric Three equal axes,
angles equal but
not right angles

aD bD c,
’D “D ” ¤ 90ı

One ternary axis of
rotation or of
rotation-
inversion

3, 32, 3 mN3,N32 =m
As, Sb, Bi
Calcite
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Structural types.
The following nomenclature is used in the Strukturbericht:

A simple elements
B AB compounds
C AB2 compounds
D AmBm composites
L alloys
O organic compounds
S silicates

A1 materials are FCC; A2 are BCC, A3 are CPH, A4 are diamond cubics,
The most common structures in metallic materials are the face-centred cubic

(FCC), the body-centred cubic (BCC) and the close-packed hexagonal one (CPH).
Face-centred cubic (FCC) and close-packed hexagonal (CPH) are compact struc-
tures that can be created by stacking hard spheres, as in Figs. A1.2 and A1.3.

In the FCC structure the packing is PQRPQR, in the CPH it is PQPQP.
In these structures the insertion site is at the centre of the tetrahedron formed

by the stacked spheres at position (1/4, 1/4, 1/4)a and of radius (1/4)(
p

3�p
2)a D

0.079a D 0.112r0, a being the lattice parameter and r0 the inter-atomic distance.
In BCC there are two sites:

tetrahedral (1/2, 1/8, 1/8)a, radius (1/8)(3
p

2�2
p

3)a D 0.097a D 0.112r0

octahedral (1/2, 0, 0)a, radius (1/4)(2�p
3)a D 0.067a D 0.077r0, in term of the

inter-atomic distance r0.

A1.2.3 Ordered Structures

Long-range order. The degree of order S is defined by S D (p � r)/(1 � r), where p
is the probability that a site that should be occupied by an atom A is in fact occupied
by an atom A, and r is the fraction of sites occupied by atoms A when the order is
perfect. S varies between 0 for complete disorder and 1 for perfect order.

Short-range order. The degree of order 
 is defined as the difference between the
probability of finding a different atom adjacent to a given atom and that of finding
an atom of the same kind (Table A1.3).

A1.2.4 Miller Indices4

Direction: [uvw] denotes the direction of the vector with co-ordinates u, v, w in
terms of the parameters of the lattice

4William Hallowes Miller (1801–1880) was a British mineralogist and crystallographer.
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Fig. A1.2 The 14 fundamental Bravais5 crystal lattices: types of structure and Hermann-Mauguin
indices (Hermann 1949, Steuer 1993)

5Auguste Bravais (1811–1863) was a French physicist.
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Fig. A1.3 Close packing: the
dense planes denoted P, Q, R,
are projected one on the other
to show the successive
positions of the atoms

Table A1.3 Ordered structures

Type Sketch Examples
L12 or Cu3AuI Cu3Au, AlCo3, AlZr3

FeNi3, Ni3Al

B2 or brass “ CuZn“, AlNi“, NiZn“

L10 or CuAuI AlTi, AuCuI, CuTi•,
FePt, NiPt

L11 CuPt or CuPt

(continued)
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Table A1.3 (continued)

Type Sketch Examples

DO3 or L21 AlCu“, AlFe3,
Cu3Sb“, Fe3Si’

L2 structures are
ferromagnetic

DO19 or Mg3Cd

Analogous to L1 but
consisting of 4
hexagonal sub-lattices

Cd3Mg, Mg3Cd,
Ni3Sn“, Ni3Nb

Fig. A1.4 Miller indices for
a plane

Plane: (hkl) denotes the plane whose intercepts on the lattice axes are m/h, m/k, m/l,
where m is chosen so that h, k, and l are the smallest possible integers (Fig. A1.4).

fhklg means the set of all planes with indices jhj, jkj, jl j.
<uvw> means the set of all directions with indices juj, jvj, jwj.
For CPH, it is customary to use a 4-index system, taking 3 axes at 120ı in the

basal plane: a direction is denoted by [uvtw], with u C v C t D 0

a plane is denoted by (hkil), with h C k C i D 0
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In this system it is equally practical to use orthohexagonal axes, such that a D
a1, b D a1 C 2a2. With these, a direction [pqr] is such that [uvtw] D [p C q, 2q,
�p�3q, r] and a plane (efg) is such that (hkil) D (e, (f �e)/2, �(f C e)/2, g).

In cubic systems a direction [hkl] is perpendicular to the plane (hkl).

A1.2.5 Reciprocal Lattice

The reciprocal lattice a
�

�, b
�

�, c
�

� of lattice a
�

, b
�

, c
�

is defined by the relation:

h
a
�

�b
�

�c
�

�
iT D

h
a
�
b
�
c
�

i�1
(A1.2)

which can be written as:

a
�

� D
b
�

^ c
�

a
�

�
�
b
�

^ c
�

	

b
�

� D
c
�

^ a
�

b
�

�
�
c
�

^ a
�

	

c
�

� D
a
�

^ b
�

c
�

�
�
a
�

^ b
�
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D 1 (A1.3)

Each point h, k, l, in the reciprocal lattice corresponds to a set of (hkl) planes in
the real space lattice. The vector h, k, l, in the reciprocal lattice is perpendicular to
the planes (hkl) in the real space lattice.

The distance between two (hkl) planes is:

dhkl D 1ˇ̌̌
d
�

�
hkl

ˇ̌̌ D 1ˇ̌̌
ha

�

� C kb
�

� C lc
�

�
ˇ̌̌ (A1.4)

In a cubic crystal: a
�

� D a
�

ı
a2 ; b

�

� D b
�

ı
a2 ; c

�

� D c
�

ı
a2 .
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Fig. A1.5 Stereographic
projection

A1.2.6 Stereographic Projection

P is the pole of the plane, that is, the intersection of the normal to the plane with
the reference sphere. The main properties of this projection (see Fig. A1.5) are as
follows:

1. The projection on to the sphere of a circle of centre P is a circle whose centre is
different from the projection P0 of P

2. Great circles on the sphere project into circles intersecting the base circle (the
projection of the equator) in two diametrically opposite points

3. The angle between two poles can be measured if they are on the same meridian
4. The angle between two poles is not changed by rotation about the axis of

projection.
5. If R is the radius of the base circle, the distance between its centre and the

projection of a pole making an angle ' with the axis of projection is R tan('=2).

Figure A1.6 is a Wulff6 net, the projection of the meridians; Fig. A1.7 is the polar
projection. If drawn on transparent paper they enable the angles between any pair of
poles to be found by bringing them on to the same meridian.

Figure A1.8 is the stereographic projection of a cubic crystal; Fig. A1.9 that of a
CPH crystal with c/a D 1.86 (c/a D 1.89 for Zn and Cu).

6Yuri Viktorovitch Wulff was a Russian mineralogist.
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Fig. A1.6 Wulff net
(2ı � 2ı)

Fig. A1.7 Polar
stereographic net

Direction [uvw] is the zone axis of the family of planes (hkl) if uh C vk C
wl D 0. It is the zone axis for two lattice planes h1k1l1 and h2k2l2 if it satisfies:

uˇ̌̌
ˇk1 l1
k2 l2

ˇ̌̌
ˇ

D vˇ̌̌
ˇ l1 h1
l2 h2

ˇ̌̌
ˇ

D wˇ̌̌
ˇh1 k1
h2 k2

ˇ̌̌
ˇ

(A1.5)
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Fig. A1.8 Standard (001) projection of the poles and zone circles for a cubic crystal

Three lattice planes are in zone if:
ˇ̌̌
ˇ̌
ˇ
h1 k1 l1
h2 k2 l2

h3 k3 l3

ˇ̌̌
ˇ̌
ˇ D 0 (A1.6)

A1.2.7 Twinning

A twin is a polycrystalline structure formed by putting together two or more pieces
of material of the same crystallographic structure, assembled according to well-
defined laws. We distinguish between
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Fig. A1.9 Standard (0001) projection for CPH zinc (c/aD 1.86)

– grown-in twins formed during solidification
– recrystallisation twins
– mechanical twins resulting from shearing.

Figure A1.10 shows the twinning elements, in which the two crystallographic
planes K1, K2 are unchanged. The twinning results from a shear parallel to the
direction ˜1 of K1; this plane and this direction are called the twinning plane and
twinning direction respectively. The plane of the shear is normal to K1 and contains
the direction ˜1, intersecting K2 in a line whose direction is ˜2. The twinning causes
K2 and ˜2 to rotate to the new orientations K2

0 and ˜2
0.

The shear is such that:


 D s=h D 2 tan. =2� ˛/ (A1.7)
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Fig. A1.10 Elements of twinning

Table A1.4 Main elements of twinning in metals

Structure
Twinning
plane K1

Twinning
direction ˜1 K2 ˜2 Shear s/h

BCC f112g < 11N1 > ˚
11N2� <111> 0.707

FCC f111g < 11N2 > ˚
11N1� <112> 0.707

CPH all
˚
10N12� < N1011 > ˚N1012� < 101N1 > Depends on c/a ratio˚
11N21� < 11N2N6 > f0001g < 11N20 >

CPH some cases
˚
11N22� < 11N23 > ˚

11N2N4� < 22N43 >
Cubic diamond f111g < 11N2 > ˚

11N1� < 112 > 0.707
Tetragonal Sn “ f301g < N103 > ˚N101� <101> –
Orthorhombic U ’ f130g < 3N10 > ˚

1N10� < 110 > 0.299
Irrational < 312 > f112g Irrational 0.228
f112g Irrational Irrational < 3N10 > 0.228
f121g Irrational Irrational < 311 > 0.329
Irrational < 5N12 > ˚

1N11� Irrational 0.214

Twins of the first kind are such that K1 and ˜2 have rational Miller indices. Twins
of the second kind are such that K2 and ˜1 have rational Miller indices. To each type

there corresponds a conjugate such that

� NK1 D K2

Ñ 1 D ˜2

NOTE The boundary between the twin and the mother crystal is not necessarily the
twinning plane.

If the indices of K1 and ˜2 are (HKL), [UVW], a direction [uvw] becomes [u0v0w0]
after the twinning, where u0 D u � 2Uˇ, v0 D v � 2Vˇ, w0 D w � 2Wˇ, with ˇ D
(Hu C Kv C Lw)/(HU C KV C LW).

Similarly the plane (hkl) becomes (h0k0l0), where h0 D h � 2H˛, k0 D k � 2K˛,
l0 D l � 2L˛, with ˛ D (Uh C Vk C Wl)/(UH C KV C LW) (Tables A1.4 and A1.5).
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Table A1.5 Values of the twinning shear for CPH according to the c/a ratio

Element Cd Zn Mg Zr Ti Be

c/a 1.886 1.856 1.623 1.592 1.587 1.568
s/h 0.175 0.143 �0.131 �0.169 �0.175 �0.186

A1.2.8 X-Ray Diffraction

A1.2.8.1 Diffraction Conditions

The Laue’s equation7 states the condition that the X-rays scattered by atoms are in
phase, and is therefore the condition for diffraction. It is written:

�
S
�

� S
�
0

	
� a

�
D n� (A1.8)

where S
�
; S

�
0 are unit vectors in the directions of the diffracted and incident rays

respectively, a
�

is the vector joining two atoms, � is the wavelength and n is an

integer.
The Bragg’s law8 states the condition for diffraction by a crystallographic plane.

It is written:

2d sin� D n� (A1.9)

where d is the distance between reflecting planes, � is the angle of incidence and, n
and � are as before.

These relations can be written:

S
�

� S
�
0 D r

�

�� (A1.10)

where r
�

� is the vector in the reciprocal lattice r
�

� D ha
�

� C kb
�

� C lc
�

�

A1.2.8.2 Coherent Scattered Intensity

For an un-polarised beam the scattered intensity of X-rays by an electron is, in SI
units:

Ie D I0e4

r2m2c4
1C cos22�

2
D �

7:934 � 10�30� I0
r2
1C cos22�

2
(A1.11)

7Max von Laue (1879–1960) was a German physicist, winner of the Nobel prize.
8William Henry Bragg (1862–1942) and his son William Lawrence Bragg (1890–1971) were
British physicists winners together of the Nobel prize.
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Fig. A1.11 Scattering of X-ray by an electron

where I0 is the incident intensity, e the charge on the electron, c the velocity of
light, r the distance and 2� the scattering angle. The factor (1 C cos22�)/2 is the
polarisation factor (Fig. A1.11).

Scattering by an atom. The scattering factor f is given by f 2 D Ia/Ie, the ratio of
the scattered intensity for an atom to that for an electron. If � is small the ratio tends
towards the number Z of electrons in the atom.

At 0 K the atomic scattering factor is given by:

f0 D
Z 1
0

U.r/
sin kr

kr
dr (A1.12)

where U(r) dr is the number of electrons between r and dr from the centre of the
atom, assumed spherical, and k D 4  sin� /�.

The structure factor F is the sum of the amplitudes of the waves diffracted by the
plane (hkl); it is:

F D
X
j

fj exp


2�i

�
huj C kvj C lwj

��
(A1.13)

where fj is the diffraction factor for the atom j at the point (uj, vj, wj) of the lattice.
The diffracted intensity is F2, given by the product of F with its complex conjugate.

If there is no diffraction, then F2 D 0, which holds for centred lattices when
h C k C l is odd and for face-centred structures when h, k, l are not simultaneously
odd or even (Table A1.6).

A1.2.8.3 Textures

We distinguish between fibre textures (threads, bars) and pole figures for more
complex preferred orientations (sheets). Figure A1.12 shows the correspondence
between the X-ray diagram and the stereographic projection; it follows from Bragg’s
law that all planes (hkl) that are able to diffract have their poles on a circle, called
the reflection circle, at ( /2 � �) from the central beam.
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Table A1.6 Orders of diffracted rays for cubic structures
(QD h2C k2C l2D (4a2/�2)sin2� )

Q FCC BCC

2 – f110g
3 f111g –
4 f200g f200g
6 – f112g
8 f220g f220g
10 – f310g
11 f113g –
12 f222g f222g
14 – f123g
16 f400g f400g
18 – f411g f330g
19 f331g –
20 f420g f420g

X-ray source

slit

P’

P

S

a a

q

reflection circle

projection plane

Ewald sphere

diffractometer plane

Debye ring

Fig. A1.12 Relation between the crystallographic plane, the diffracted beam and the stereographic
projection

Consider an ideally textured fibre for which all the grains are aligned in a
direction [uvw] with respect to the axis of the wire. Since all the poles of the planes
(hkl) form an angle �with this direction they lie on the same line in the stereographic



A1.2 Crystalline Solids – Elements of Crystallography 523
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reflection circle

C D
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a

r

q

Fig. A1.13 Ideal pole figure
for f111g planes in a cubic
metal wire having a [111]
fibre texture. The poles C, D,
E, F diffract if the direction of
the beam is B

projection, so the rays diffracted by these planes will be at the intersection of this
line with the reflection circle: Fig. A1.13 shows the (100) reflections for the case of
a [111] texture in a fibre of cubic structure. On the stereographic projection the pole
figures give the density of the poles of particular (hkl) planes.

Figure A1.14 gives an example of the figure for the (111) poles for a brass sheet,
RD being the rolling direction. The poles are seen to be grouped around the expected
position � if the (110) plane is parallel to the rolling plane with direction



1N12� in

the direction of rolling.
For fibre textures it is an advantage to use inverse pole figures: these give density

distributions of some important direction � of the fibre axis, for example � on the
stereographic projection of the crystal lattice in its standard orientation.

A1.2.8.4 Small-Angle Scattering

Any region of microscopic scale whose density differs from that of its environment
will scatter X-rays in a way that is characteristic of its size, shape and number; and
the values of these quantities for small diffraction angles can be deduced from the
intensities of the scattered rays.
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A1.3 Polymers

A1.3.1 Chemical Structure

Polymers are constituted of macromolecules. These later are mainly constituted
of linear segments resulting from the chaining of difunctional elementary (unde-
formable) groups. These groups can be ranged in two categories: “knee-joints”
allowing rotations around skeleton bonds and “rigid rods” in which no rotation is
allowed.

Branched and tridimensional polymers are formed of linear segments joined
together by “crosslinks” which are groups of functionality strictly higher than 2
(Fig. A1.15).

Two important observations can be made concerning the side groups of knee-
joints:

1. their electrical dissymmetry (polarity) is a key characteristic. Cohesion, refractive
index, dielectric permittivity and hydrophilicity are for instance increasing
functions of polarity. One can distinguish roughly three group families:

• groups of low polarity, for instance – CH2� and all the hydrocarbon groups
• groups of medium polarity, for instance ethers, ketones and esters
• groups of high polarity, especially those able to establish hydrogen bonds

(alcohols, acids, amides).
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Fig. A1.15 Some common elementary groups of industrial polymers

Fig. A1.16 Schematisation of a polymer having small (a) or bulky (b) side groups illustrating the
steric hindrance effect

2. their bulkiness can induce steric hindrance and thus can more or less disfavor
rotations of skeletal bonds (Fig. A1.16)

Macromolecules can be natural (cellulose, silk, rubber), artificial (cellulose tri-
acetate, vulcanised rubber), or synthetic (the great majority of industrial polymers).
In this case they are made of reactive molecules (monomers) able to connect
one to another by covalent bonds through chains (polymerisation) or step-by-step
(polycondensation) reactions.
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Fig. A1.17 A homopolymer: polyethylene and a copolymer: polyethylene-vinyl acetate

Table A1.7 Energy and length of covalent bonds

Single Double Triple

Bond
Energy
(kJ/mol)

Length
(10�10 m)

Energy
(kJ/mol)

Length
(10�10 m)

Energy
(kJ/mol)

Length
(10�10 m)

C–C 334 1.54 589 1.34 836 1.21
N–N 88 1.46 267 1.25 710 1.10
O–O 146 1.49 489 1.21 – –
C–N 234 1.47 468 1.28 673 1.16
C–H 395 1.1 – – – –

A1.3.2 Structural Arrangements

A1.3.2.1 Chain Configuration

A polymer consists of chains molecules, formed by the polymerisation of one
or more monomers (Fig. A1.17), the chaining resulting from the juxtaposition of
covalent bonds in various groups. In a homopolymer there is only one type of
monomer, in a co-polymer there are two types, possibly more. Figure A1.17 shows
the homopolymer polyethylene and the copolymer polyethylene-vinyl acetate.

Table A1.7 gives the energy and the length of covalent bonds, which link together
polymeric molecular chains.

Hydrogen bonds, with energy of 20–40 kJ/mol, hold H to electronegative atoms
like O, N, F, S. The bonds can be intra- or inter-molecular.

The molecular chains are held together by van der Waals interactions, with an
energy of about 2.5–4 kJ/mol.



A1.3 Polymers 527

Table A1.8 Cohesive energy density for
some industrial polymers (Van Krevelen
1993)

Polymer Acronym dc (MPa)

Polytetrafluorethylene PTFE 165
Polyvinylidene fluoride PVDF 190
Polydimethylsiloxane PDMS 210
Polyethylene PE 260
Polypropylene PP 290
Poly(vinylchloride) PVC 390
Polystyrene PS 410
Polyoxymethylene POM 440
Poly(etheretherketone) PEEK 525
Poly(ethyleneterphthalate) PET 540
Poly(vinylalcohol) PVAL 1,100
Polyamide 6 PA6 1,110

The cohesive energy Ecoh is the sum of secondary bonds in the molar volume
V of the polymer constitutive repeat unit (CRV). The cohesive energy density dc is
defined as Ecoh/V. Some values of dc are given in Table A1.8. The highest cohesive
energy densities are due to H bonds.

Monomers within a copolymer can be organised along the backbone in a variety
of ways:

– Alternating copolymers possess regularly alternating monomer residues:

ŒAB : : :�nW � A � B � A � B � A � B�

– Periodic copolymers have monomer residue types arranged in a repeating
sequence: [AnBm : : : ], m being different from n:

� A � A � A � B � B � B � B � B � A � A � A � B � B � B � B � B

� A � A � A�

– Statistical copolymers have monomer residues arranged according to a known
statistical rule. A statistical copolymer in which the probability of finding
a particular type of monomer residue at a particular point in the chain is
independent of the types of surrounding monomer residue may be referred to
as a truly random copolymer.

– Block copolymers are obtained by the sequential addition of two or more
homopolymer subunits linked by covalent bonds.

– Graft or grafted copolymers contain side chains that have a different composition
or configuration than the main chain (Fig. A1.18).

Tacticity refers to the orientation of the molecular units (Fig. A1.19). In isostatic
polymers all the substituents are oriented on the same side of the backbone molec-
ular chain (isotactic polypropylene is the most important industrial application).
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Fig. A1.18 Main types of copolymers

In syndiotactic polymers the substituents are alternatively on either sides of the
backbone chain. In atactic polymers the substituents orientations on the side of the
backbone chain are random.

A1.3.2.2 Architecture of the Chains

The simplest is a linear chain: a single backbone with no branching. In a branched
polymer side chains are linked to the main backbone chain. A star polymer has
branches linked together at a single end. In brush polymers the chains are attached
to an interface. In dendronised polymers, dendrons, which are tree-like regularly
branched chains, are attached to the main backbone chain. When the dendrons
are attached together at the same end, the sphere-like polymer is a dendrimer
(Fig. A1.20).

By creating covalent bonds between molecular chains is obtained a cross-linked
polymer. A typical example is vulcanised rubber. Sufficiently high cross-linking can
lead to the formation of an infinite network, a gel.
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Fig. A1.19 Isotatic, syndiotactic and atactic polymers. Dark pies indicate a substituent pointing
out to the front of the plane of the figure; light pies indicate substituents pointing out to the back
of the plane of the figure

Networks

An ideal network is a network in which all the chains are linked. The cross-link
density is often assimilated to the chain density. In a non-ideal network, there are
cycles (two chains have the same extremities) or dangling chains (chains with one
free end).

Entanglements in Linear Polymers

Above a critical molar mass Mc the polymers are entangled and can be considered as
topological networks. The chains are able to disentangle by reptation (de Gennes9

1979). The molar mass between entanglements can be determined from the shear
modulus in molten state, using the rubber elasticity theory (Chap. 2) (Fetters et al.
1999).

9Pierre-Gilles de Gennes (1932–2007) was a French physicist and the winner of the Nobel prize in
1991.
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Fig. A1.20 Various architectures of polymer chains

Chain Conformation in Amorphous Polymers

Figure A1.21 shows the three conformations of a carbon-carbon bond in a vinyl
polymer – (CH3–CHR)n–. The bond distances and the valence angles are fixed but
the carbons can rotate more or less easily and the system displays three minima
of potential energy (Fig. A1.22). In the trans conformation the bond between the
carbons under consideration and the bonds linking these carbons to the next carbon
chain atoms are coplanar. A projection in the plane perpendicular to the carbon-
carbon bond leads to Fig. A1.22. The all trans conformation is a rigid plane zig-zag.
Trans and gauche configurations can coexist. The length of trans-trans sequences is
called persistence length. Three distinct situations are schematised in Fig. A1.23.

A1.3.2.3 Crystallinity

Some molecular chains can be folded or stacked together with other chains so as to
form locally a crystalline structure. The polymer includes then crystalline regions
within the amorphous structure. The proportion of such crystals is the degree of
crystallinity. It can be determined from density or enthalpy measurements, or also
by spectroscopy. In certain cases the polymer can be entirely crystalline.
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Fig. A1.21 Representation of three conformations of a carbon-carbon bond in a vinyl polymer

Fig. A1.22 Conformation of a carbon-carbon bond in a vinyl polymer. (a) Newman’s representa-
tion and (b) shape of the variation of the potential energy with the angle �

Three types of polymers can be distinguished:

1. polymers that crystallise easily. They have a symmetric structure and an aliphatic
(flexible) skeleton (polyethylene – CH2)n–, polyoxymethylene – (O–CH2)n–)

2. polymers having a regular structure but with a slow crystallisation linked to the
monomer asymmetry or to high chain stiffness. Their glass transition temper-
ature is higher than room temperature and they are used as glassy polymers
(poly(ethylene terephtalate) PET, poly(ether etherketone) PEEK).

3. polymers having irregular structures do not crystallise whatever the cooling rate
(atactic polystyrene, atactic poly(methylmetacrylate))
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Fig. A1.23 Schematisation of chains: (a) all trans, (b) with a high persistance length and (c) with
a low persistance length
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Fig. A1.24 Bidimensional schematic representation of the lamellar structure in a semi-crystalline
polymer

Crystallisation proceeds generally by regular chain folding (Fig. A1.24) leading
to quasi parallelipipedic lamellae of a few nanometres thickness, separated by
amorphous layers of the same order of magnitude.

When the cooling rate is low enough, lamellae tend to extend longitudinally to
form long ribbons growing radially from a nucleation centre to give spherulites
(Fig. 1.21 in Chap. 1), which can reach the millimetric scale.



A1.3 Polymers 533

Fig. A1.25 Relative
locations of the various molar
mass averages of the chain
lengths distribution

A1.3.2.4 Structural Parameters

The distribution of molecular weights is an important parameter in the characteri-
sation of the structure of polymers. The average molar mass is characterised by the
ratio:

NM D
X
i

niMi
’
.X

i

niMi

’�1
(A1.14)

where ni is the number of molecules of weight Mi and ’ an integer parameter:

’ D 1 yields: NMn D P
i

niMi=
P
i

ni i , the number average molar mass.

’ D 2 yields: NMw D P
i

niMi
2=
P
i

niMi , the weight average molar mass.

’ D 3 yields: NMz D P
i

niMi
3=
P
i

niMi
2
, the Z average molar mass.

For a homodisperse polymer Mn D Mw. For a polydisperse polymer, IPDMw/Mn

is the polydispersity index (Fig. A1.25).
The viscosity average molar mass is defined as:

NMv D
 X

i

niMi
1C˛.X ni Mi

!1=˛
(A1.15)

The number average molar mass can be determined by osmometry:

�

RTc
D 1

NMn

C Ac C ::: (A1.16)

where � is the osmotic pressure of a solution of polymer, R the perfect gas constant
and c the concentration.
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The weight average molar mass can be determined by measurements of scattered
laser light:

�Kc

R0
D 1

NMw
C Bc C ::: (A1.17)

where R0 is the intensity of the light scattered in the direction of the axis of the
incident beam.

The most common methods to determine molecular weight distributions are
variants of high pressure liquid chromatography (size exclusion chromatography
SEC also called gel permeation chromatography GPC).

The viscosity average molar mass can be determined by viscosimetry; the Z
average molar mass by sedimentation in ultracentrifugation.

The composition of polymers can be determined by Fourier transform infrared
spectroscopy (FTIR), Raman spectroscopy or nuclear magnetic resonance (NMR);
their crystalline structure by wide or small angle X-ray scattering or by small angle
neutron scattering.

Density, Packing Density

Polymer density depends first on atomic composition. If the monomer unit of molar
mass Mm contains Nm atoms, an average atomic mass can be defined as Ma D Mm

/ Nm. Ma ranges from about 4.7 g/mol (hydrocarbon polymers) to about 16.7 g/mol
(polytetrafluorethylene) for industrial polymers. The density of amorphous phases
at ambient temperature varies approximatively as �a D kaMa

2/3, where ka � 31,000
˙ 1,000 kg1/3 m�3 mol2/3.

The density is also under the second-order influence of cohesion (it increases
with the cohesive energy density), crystallinity (�c � 1.117 �a in average according
to Bicerano (2002)) and several other factors. For certain authors as van Krevelen
(1993), the key factor is the packing density �* D van der Waals volume / molar
volume D VW / V D �Vw / M. Packing densities of glassy polymers at ambient
temperature can vary from about 0.63 (non polar polymers such as polystyrene) to
about 0.72 (highly polar, hydrogen bonded polymers such as poly(vinylalcohol)).
Authors have suggested that �* could be structure independent at 0 K or at Tg, but
this is contradicted by experimental data.

Free Volume

The free volume concept starts from the idea that in condensed state, a given
molecule displays restricted mobility because the surrounding molecules form a
“cage” limiting or hindering its motion. It has been decided to define free volume as
the volume needed by large amplitude cooperative segmental motions responsible
for viscoelasticity in rubbery state. It could be imagined, in a first approach, that the
free volume corresponds to the unoccupied volume (1 – �*) � 0.37 ˙ 0.05 or that the
free volume is the volume excess of amorphous phase relatively to crystalline one
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(�0.12 in average), but no suitable prediction can be made from these hypotheses.
A more fruitful approach starts from the observation that the volumic expansion
coefficient is higher in rubbery state (’l � (5–10)10�4 K�1) than in glassy state
(’g � (1–4)10�4 K�1). The free volume would be then the volume excess created
by dilatation in rubbery state: vf D ’vg(T-Tg) where vf is the free volume per mass
unit, vg is the specific volume at Tg and ˛ D ˛l – ˛g is called expansion coefficient
of free volume.

This concept has been refined considering that a certain mobility remains in a
short temperature interval below Tg and the definitive definition of free volume is:

f D vf

vg
D fg C �

˛l � ˛g
� �
T � Tg

�
(A1.18)

where vg is the specific volume at the glass transition temperature Tg.
Free volume theory applied to miscible blends. Let us consider a miscible mixture

of a polymer (Tgp, ˛p) with a solvent (Tgs<Tgp, ˛s), which can be a true solvent (for
instance absorbed water), an additive (for instance a plasticiser), another polymer
(provided it is miscible) or even a random comonomer. Let us call respectively v
and (1 – v) the volume fractions of the solvent and of the polymer. The simplest
version of the free volume theory starts from two hypothesis:

1. the free volume fractions are additive: f D (1�v)fp C vfs
2. the free volume fraction at Tg is a universal value (classically fg D 0.025)

Combining both hypotheses, the following relationship is obtained:

Tg D .1 � v/ ˛pTgp C v˛sTgs

.1 � v/ ˛p C v˛s
(A.19)

Combining with the Simha-Boyer rule: ˛Tg D constant, one obtains:

1

Tg
D 1

Tgp
C Asv (A.20)

where As D 1/Tgs – 1/Tgp.
The effect by which a compound of low Tg induces a decrease of the glass tran-

sition temperature of a polymer matrix to which it is mixed is called plasticisation.
Additives used to decrease Tg are called plasticisers.

Figure A1.26 shows the scale of sizes of basic structural elements of polymers.

A1.3.3 Main Polymers

There are two types of polymerisation: condensation, in which a chemical reaction
takes place (Fig. A1.27), with the elimination of a small molecule such as water or
an alcohol; and addition, in which nothing is eliminated (Fig. A1.28) (Table A1.9).
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Fig. A1.26 Scale sizes of basic structural elements of polymers, with methods of observation

A1.4 Amorphous Materials

A1.4.1 Glasses

Figure A1.29 is a schematic indication of the difference between a crystalline and
an amorphous solid. It is possible for the dispositions of nearest neighbours in the
crystalline form to be preserved, as is the case for silica glass.

As there is no periodic structure the phenomena of X-ray diffraction by a crystal
are not seen, but as the distribution of interatomic distances is not entirely random
there are observable angular variations in the diffracted intensity. Fourier analysis
can give the probability of a volume element being occupied by an atom, as a
function of the distance from a given atom.

Oxides forming glasses are SiO2, B2O3, GeO2, P2O5.
Al2O3, BeO2 are intermediate glasses; they form glasses when combined with

others: aluminosilicate, aluminoborate, aluminophosphate.
MgCC, ZnCC, CaCC, SnCC, PbCC, BaCC, LiC, NaC, KC, CsC ions are

modifiers.

A1.4.2 Amorphous Metals

Amorphous metals are super-cooled liquids. They were first obtained by very fast
cooling; other techniques are available like mechanical alloying, vapour deposition.
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Fig. A1.28 Examples of addition polymers

A1.5 Exercises

1. Calculate the repulsion potential of NaCl, given that the lattice parameter is
3.96 x 10�10 m and the binding energy is 777.9 kJ/mol.

2. Which f110g planes contain the direction [111]?
3. Is the direction [123] in the plane (111)? – in the plane

�
11N1�?
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Table A1.9 Densities and melting characteristics of some technologically important semi-
crystalline polymers

Polymer Acronym �a (kg/m3) �c (kg/m3) Tm (K) Hf (10�3 J/kg)

Polyethylene PE 850 1,000 413 285
Polypropylene PP 850 950 440 238
Polytetrafluorethylene PTFE 2,000 2,350 604 59
Polyoxymethylene POM 1,250 1,540 460 237
Polyamide 6 PA6 1,080 1,230 496 195
Polyamide 11 PA11 1,010 1,180 463 227
Poly(ethyleneterephthalate) PET 1,330 1,460 540 120

¡a is the density in the amorphous state; �c the density in the crystalline state; Tm the melting
temperature; Hf the enthalpy of fusion

Fig. A1.29 Sketches showing (a) crystalline silica, (b) amorphous silica and (c) silica glass
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Fig. A1.30 Slip lines in aluminium (a) single slip and (b) two slip systems

4. Find the densest planes and directions in FCC, BCC and CPH structures.
5. For the three structures of Exercise 4

– what is the number of atoms in the unit cell?
– find the ratio of the atomic radius to the unit cell volume
– find the dimension of the insertion sites
– what are the reciprocal lattices?
– how many (a) nearest (b) second nearest neighbours are there?

6. What is the value of c/a for close packing of spheres in the hexagonal system?
7. Find the angle between the directions

(a) [123] and [110],
(b) [111] and [122] in cubic systems.

8. Find the condition that must be satisfied by the indices h, k, l for planes in the
zone whose direction is [u v w].

9. Using the stereographic projection, find the possible orientation of the grains
on which the slip lines of Fig. A1.30 are seen.

10. Explain the shape of the Laue spots in Fig. A1.31.
11. Explain the Laue transmission photograph of a steel sheet (Fig. A1.32).
12. Interpret the diffraction spectrum of Fig. A1.33
13. Find the change in the diffraction angles for a polycrystal subjected to a tension

of E/105, where E is Young’s modulus. Show how X-ray diffraction can be used
to measure an applied tension.

14. Prove the parity rules for the indices of reflecting planes for BCC and FCC
structures.
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Fig. A1.31 Laue
transmission photograph of a
thin crystal of alpha-iron
(Mo radiation)

Fig. A1.32 Laue
transmission photograph for
an annealed steel sheet. The
Debye rings are due to the
diffraction of Mo K’

Fig. A1.33 Powder diffraction spectrum (filtered radiation of Cu K’)
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Appendix B
Annex 2: Phase Transformations

A2.1 Introduction

The term phase covers two different concepts:

– in the thermodynamic sense it refers to a defined volume of matter, characterised
by particular values of a number of thermodynamic potentials, notably the free
enthalpy, or Gibbs free energy, G(P, T, Xi) where P is the pressure, T the
temperature and Xi the concentrations of the constituents; the same phase can
exist at different temperatures.

– in the crystallographic sense it refers to a distinct crystal structure; there are many
examples of phases being given particular names, for example, in the case of
steels, ferrite, austenite, martensite and others.

A consideration of different aspects is necessary for the understanding of
transitions between phases:

– thermodynamic: Gibbs free energies of the phases concerned and the chemical
potentials of their constituents

– crystallographic: crystal structures, orientations, nature of the interfaces
– kinetic: rates of transformations.

There are two main types of phase transformation:

– homogeneous: brought about by continuous processes that involve all the relevant
atoms simultaneously; for example, spinodal decomposition, order-disorder
transformation

– heterogeneous: brought about by discontinuous, localised processes such that at
any instant only a limited number of atoms are passing from the initial to the final
state; for example, diffusion-controlled transformations.

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
Macroscopic Constitutive Behaviour, Solid Mechanics and Its Applications 180,
DOI 10.1007/978-94-007-2546-1, © Springer ScienceCBusiness Media B.V. 2012
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Table A2.1 Types of phase transformations

– – Short range Order-disorder
diffusion Allotropic

Recrystallisation
Vapour phase
deposition

– Thermoactivated growth Long range diffusion Continuous
precipitation and
solution
Proeutectoid
Eutectoid
Discontinuous
precipitation

Heterogeneous – With heat flow Solidification
Fusion

– Athermal growth Athermal –
martensitic

– – Isothermal –
martensitic

Homogeneous Spinodal – –
decomposition
Order-disorder
transformation

Table A2.1 gives a classification of the phase transformations, to which the
following definitions relate:

order-disorder: change from a solid solution state in which the solute atoms are
distributed at random (disorder) to one in which they occupy specified sites (order);
example Au Cu, AuCu3 (see Annex 1, Sect. A1.2).

thermo-activated growth: strongly influenced by the time for which a given temper-
ature is maintained; this is the case for all diffusion-controlled transformations.

athermal growth: in general, not dependent on time; for example, martensitic trans-
formations, which most often depend only on the temperature. For a comprehensive
treatment of phase transformations see Haasen (1991).

A2.2 Equilibrium Diagrams

A2.2.1 The Nature of Equilibrium

Equilibrium between phases is established at the interface under the effect of
thermal agitation and extends into the volume by diffusion and by movement of the
interface; as a general rule, diffusion is involved. Complete equilibrium is reached
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only after a time that is greater, the lower the temperature; thus for example the
iron-carbon equilibrium diagram is used in the metastable form Fe-Fe3C, since
only certain slowly-cooled melts can have a microstructure composed of iron and
graphite. The same applies to the martensitic structure characteristic of quenched
steels, which only under heat-treatment annealing can evolve, by diffusion and
precipitation, towards the stable state of the diagram.

A2.2.2 Thermodynamics of Equilibrium

When two phases are in equilibrium the atoms at the interface can move freely
between the two, the bonds that a given atom has in Phase A being replaced
by those in Phase B where the structure is different. There is a difference in
binding energy between the two phases, measured by the change in enthalpy �H.
The number of bonds in an ordered crystal lattice is greater than in a disordered
state (liquid or gaseous, for example), which favors the ordered state. In contrast,
thermal agitation favors the disordered state, the disorder being expressed by the
configuration entropy S. These two opposing effects are brought together in the free
enthalpy or Gibbs free energy G:

G D H � TS (A2.1)

H (<0) is smaller, the stronger the bonds; S (>0) is greater, the greater the
disorder, that is, the greater the number of possible configurations.

Phases A and B are in equilibrium if �GA!B D 0; a system is in equilibrium
if its Gibbs free energy, the centre of mass of the free enthalpies of its constituent
phases, is minimal (Fig. A2.1).

Enthalpy of a solid solution. Suppose there are initially two phases consisting of
atoms A and B with bonds AA, BB respectively (Fig. A2.2), and that a solid solution
in which there are AB bonds can form by diffusion. If nAB is the number of these
bonds the changes in enthalpy and entropy are

�H D nAB ŒHAB � .HAA CHBB/ =2 �

�S D k log˝ D k log
�
CnA
n C CnB

n

�
(A2.2)

Here n D nA C nB is the total number of sites, nA, nB are the numbers of atoms
of A and B respectively and C r

m is the number of combinations of r objects taken
from a set of m. Thus if CA D nA/n is the atomic concentration of A

�S D �nk ŒCA logCA C .1 � CA/ log .1 � CA/� (A2.3)

The change in entropy will be maximum for CA D CB D 1/2, when �S D nk
log2, or:�S D Rlog2 per mole of solution. This is possible only if the solid solution
exists in continuous form between the phases A and B.
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Fig. A2.1 A binary alloy,
composition X, is in
equilibrium as two phases ˛
and ˇ of compositions X’ ,
X“. The diagram shows the
change in free energy �G

Fig. A2.2 Evolution towards
a solid solution AB

The overall balance �G will depend on the relative positions of �H and �S
(Fig. A2.3).

If HAB>½(HAA C HBB) there are two situations:

– at the higher temperature T2, the alloy remains as a single phase, ’.
– at the lower temperature T1, �G goes through a local minimum and in this

domain the solid solution is a mixture of two solutions rich in A and B,
respectively. The more stable state is on the lowest tangent. The corresponding
equilibrium shows a miscibility gap. The proportions of the phases present are
found by the “lever rule”: thus:

m.˛1/ =m D MM2 =M1M2 .phase ˛1/

m .˛2/ =m D MM1 =M1M2 .phase ˛2/ (A2.4)

A2.2.3 Multi-phase Equilibria – Equilibrium Phase Diagrams

If metals A, B cannot form a continuous solid solution � for example, because their
crystal lattices are too different � we have to compare the stabilities of two solid
solutions ’, “ and possibly a third, liquid, phase (Fig. A2.4).
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Fig. A2.3 (a) Free energies
in a solid solution at
temperature T1, T2; (b)
equilibrium phase diagram in
the solid domain

NOTES

1. Whilst in general equilibrium diagrams are established experimentally, in certain
cases thermodynamic models of solutions will enable them to be constructed
theoretically.

2. There are precise rules � the Hume-Rothery rules (Hume-Rothery 1955) that
enable the conditions under which certain phases can exist to be predicted; the
two most important are:

(a) solid solutions by substitution. The solubility of B in A can be high only if
the sizes of the A and B atoms do not differ by more than 15%.

Example: silver (rAg D 0.159 nm) is only weakly soluble in copper but
copper has unlimited solubility in nickel (rCu D 0.141 nm, rNi D 0.138 nm).

(b) formation of intermediate phases. Certain crystal structures are always stable
for particular electronic concentrations (number of electrons per atom)
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Fig. A2.4 Equilibrium
between two solid phases ’
and “ and a liquid L. The
three phases equilibrium
(common tangent to the 3
phases) can occur only at one
precise temperature Tg

corresponding to the
formation of a eutectic
(pressure is kept constant)

Table A2.2 Example of stability of
phases in the Cu Zn system

Material CuZn Cu5Zn8 CuZn3

Electrons per atoms 3/2 21/13 7/4
Structure BCC Brass (g) HCP

Example: Cu, valence 1 and Zn, valence 2; the following table gives the
corresponding data (Table A2.2).

Equilibrium diagrams are composition-temperature diagrams from which we can
find the composition and the relative proportions of the different phases present at
equilibrium at any given temperature. They do not give any structural information,
or anything concerning the possible existence of metastable phases or components.
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Fig. A2.5 Equilibrium
diagram for a binary alloy

The phase rule. The variance v of a system (the number of independent parameters
in the equilibrium) is:

v D N C 2 � ' (A2.5)

where N is the number of independent constituents and ' the number of phases.
Since most usually the pressure is fixed at atmospheric this will be reduced to:

v D N C 1 � ' (A2.6)

Thus in the binary system (N D 2) of Fig. A2.5 there are 1-phase regions (solid
solution, liquid) in which T and CB can be chosen independently, 2-phase regions in
which, when the temperature is chosen, the concentrations of the two phases present
are fixed, and the 3-phase points at temperature TE at which the compositions of all
three phases are fixed.

Ternary or quaternary diagrams are much more complex and more difficult to use
because of the difficulty of representation.

Examples of equilibrium diagrams
In the following pages we give a few examples of diagrams for binary alloys, as

a help to understanding the heat treatments applied to a number of industrial alloys.
Because of the importance of equilibrium phase diagrams the reader should attempt
the exercises at the end of this Annex.

A2.2.3.1 Ferrous Alloys

Diagram 1: Iron-Carbon (Fig. A2.6)
Diagram 2: Iron – Nickel (Fig. A2.7)
Diagram 3: Iron–Chromium (Fig. A2.8)

A2.2.3.2 Light Alloys

Diagram 4: Aluminium–Silicon (Fig. A2.9)
Diagram 5: Aluminium�Copper (Fig. A2.10)
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Fig. A2.6 Iron�Carbon diagram. ”: Austenite FCC; •: Ferrite, high temperature BCC, ’: Ferrite,
low temperature BCC; Fe3C: Cementite orthorhombic. Full lines: metastatable diagram for
Fe – Fe3C, corresponding to transformations in steels that have been cooled rapidly. Dotted lines:
equilibrium diagram for Fe – C (graphite), in practice, this corresponds only to melts that have
been cooled slowly (Hansen, Constitution of binary alloys, McGraw-Hill 1958)

NOTES

– Diagram 1. Fe3C is not shown in this diagram; it would appear as a vertical line
at 6.67% C (by mass). Notice the difference in solubility of carbon between the ’
and ” phases: this property forms the basis of practical heat-treatments of steel.

– Diagram 2. Notice that adding nickel enables the ”-domain to be considerably
extended: Ni is said to be a gammagenic element. However, significant departures
from this diagram are observed in practice; especially for the low-temperature
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Fig. A2.7 Iron�Nickel diagram (Hansen, Constitution of binary alloys, McGraw-Hill 1958)

transformations, which are important for heat-treatments. The ” ! ’0 transfor-
mation at sufficiently high nickel content (over 20%) is martensitic in nature.

– Diagram 3. This shows the very alphagenic character of Cr; also the presence
of an ordered ¢ phase. This latter appears, under certain conditions, in stainless
steels and certain superalloys; it can cause serious thermal embrittlement.

– Diagram 4. The eutectic corresponds to an alloy Al – 13Si: this is Alpax, much
used for castings, for example for automobile engine cylinder heads. It is the
aluminium analogue of the Fe – 4.3 C steel used for engine cylinder blocks.
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Fig. A2.8 Iron�Chromium diagram (Hansen, Constitution of binary alloys, McGraw-Hill 1958)
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Fig. A2.9 Aluminium�Silicon diagram (Hansen, Constitution of binary alloys, McGraw-Hill
1958)

– A study of the phase diagram explains the importance of Alpax. In the Al � Si
system the fusion point reaches its lowest value at the composition corresponding
to the eutectic, and solidification occurs at a precisely-defined temperature rather
than over a significant interval. Further, the coupled solidification of two phases,
silicon platelets in the aluminium, causes the liquid metal to flow easily and hence
makes possible the production of complex shapes.

– Diagram 5. At high aluminium contents the solubility of copper begins to fall
rapidly at 548ıC: this is the basis of heat-treatments of light alloys containing
copper. In alloys sufficiently rich in copper the phase Al2Cu (™) is formed.
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Fig. A2.10 Aluminium�Copper diagram (Hansen, Constitution of binary alloys, McGraw-Hill
1958)

A2.3 Kinetics – Diffusion

Diffusion is the phenomenon of transport of atoms from one site to another, the
displacements of the individual atoms being related to the thermal agitation. It is a
fundamental phenomenon, controlling the evolution of the chemical composition of
the phases present and the growth of new phases by precipitation or solidification.
Diffusion enables the equilibrium predicted by the diagram to be reached.
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Fig. A2.11 Mechanism of
self-diffusion by vacancies

Table A2.3 Orders of magnitude of vacancies
concentrations in copper at various temperatures

�Hf D 1 eV and �Sf D k (approx.)

T/Tf 0.22 0.591 0.961
C 10�17 6.10�7 1.3.10�4

A2.3.1 Basic Diffusion Mechanisms

A2.3.1.1 Self-diffusion (Fig. A2.11)

In a crystal lattice an atom cannot change its position unless there is a vacant site
in its immediate neighbourhood, that is, a vacancy. Diffusion thus depends on the
number of vacancies in the lattice, and this increases with increasing temperature;
at absolute temperature T the equilibrium concentration of vacancies C is:

C D exp

�
T�Sf ��Hf

kT

�
(A2.7)

where �Sf, �Hf are the entropy and enthalpy of formation respectively (Ta-
ble A2.3).

In self-diffusion the mobility of the vacancies, and therefore of the atoms, is
governed by the Maxwell-Boltzmann distribution giving the frequency � of atom
vacancy interchanges:

� D N� exp

�
��Gf C�Gm

kT

�
(A2.8)

where N� is the mean frequency of vibration of the atoms

�Gf is the free energy of formation of the vacancies
�Gm is the free energy of migration of the vacancies.

A2.3.1.2 Hetero-Diffusion

Solid solutions by substitution (Fig. A2.12).
This again depends on the movement of vacancies. The rate differs from that of

self-diffusion, and is slower, the greater the diameter of the foreign atom than that
of the atoms of the solid solution.
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Fig. A2.12 Basic
mechanism for diffusion by
substitution in a solid solution

Fig. A2.13 Mechanism for
diffusion by insertion in a
solid solution

Fig. A2.14 Diffusion
coefficient for Cu in Al as a
function of temperature, in
the solid and liquid state

Solid solution by insertion (Fig. A2.13)
In this case vacancies are not necessary for the movement of the foreign atoms.

The speed of diffusion is, in general, much greater than in the two previous cases
and the activation energy is less than that required for diffusion by vacancies.

NOTES

1. Since diffusion rate is a function of bond energy and thermal agitation it is
greater, the lower the fusion temperature Tf and the latent heat of fusion.

2. Diffusion is slowest in compact lattices, e.g. FCC and CPH; and is faster in
liquids than in solids (Fig. A2.14).

3. When diffusion into the volume is slow � the effect of large size, low tempera-
ture, etc. � it occurs preferentially along defects in the crystal lattice such as grain
boundaries and dislocations, which form diffusion short circuits. The activation
energy is then lower, as Fig. A2.15 shows.
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Fig. A2.15 Diagram
showing how, at high
temperature, volume
diffusion overtakes
short-circuit diffusion

Fig. A2.16 Variation of
concentration with distance
and associated atomic flux

A2.3.2 The Diffusion Laws

A2.3.2.1 Fick’s First Law

The atomic flux � is given by:

� D �D@C
@x

(A2.9a)

in one dimension (Fig. A2.16) and by

� D �DgradC (A2.9b)

in three dimensions.
The variation of the diffusion coefficient D with temperature is given by

Arrhenius’s law:

D D D0 exp .�Qd =kT / (A2.10)
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Table A2.4 Diffusion coefficients and activation energies

Solvent Solute D0 10�4 m2/s Qd kJ/mol

Self-difffusion Fe ’ Fe 1.9 240
Fe ” Fe 0.8 269
Cu Cu 0.2 197
Ag Ag 0.4 184
Si Si 0.032 410

Diffusion of atoms in solution by substitution Cu Al 0.045 165
Al Cu 2.3 140
Cu Zn 0.34 191
Fe ” Ni 0.77 280
Si P 0.39 201

Diffusion of atoms in solution by insertion Fe ’ C 0.02 84
Fe ” C 0.2 134
Fe ’ N 0.003 76
Fe ” N 0.001 13.4

Fig. A2.17 Thin layer
sandwiched between two
samples of material A

Fig. A2.18 Variation of
concentration with distance

where D0 is a constant, 0.2–2.10�4 m2 s�1 approximately, and Qd is the diffusion
activation energy. For diffusion by vacancies Qd D �Gf C �Gm, in general
100�200 kJ/mol. More precise values are given in Table A2.4.

A2.3.2.2 Fick’s Second Law

@C=@T D D
�
@2C=@x2

�
(A2.11a)

in one dimension;
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@C=@t D Dr2C (A2.11b)

in three dimensions.
We deduce from the solution that the distance L diffused in time t is given by:

L D p
Dt (A2.12)

Example: Thin layer in an infinite sample (often of a radioactive tracer)
(Fig. A2.17)

If Q is the quantity of matter per unit area in the layer, the solution of Fick’s
equation with the appropriate boundary conditions is:

C .x; t/ D
�
Q

p
2�Dt

	
exp

��x2 =Dt � (A2.13)

At any given time t the curve of C against distance x is a gaussian centred on the
interface (Fig. A2.18). This method is widely used in experimental studies of the
variation of D with temperature.

NOTES

1. In a complex system such as a solid solution with a number of constituents the
diffusion coefficient D is no longer simple and a number of diffusion coefficients
may have to be defined.

2. Diffusion enters into many applications, for example:

– homogenisation of alloys (Exercise A2.11.6)
– heat treatments
– cementation of steels (Exercise A2.11.5)
– welding and brazing
– oxidation of metals
– doping of semi-conductors
– chemical modification of glasses
– sintering

A2.4 Nucleation

Theories of nucleation are very useful for the understanding of phase changes.
They apply quite well to liquid systems, solidification being a good example (cf.
Sect. A2.7). Application to the solid state may need more care, at least if quan-
titative results are required; even so, they can give important information in such
cases.
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Fig. A2.19 Relation between
radius r of an embryo and
change in free energy �G

A2.4.1 Free Energy Associated with Variations
in the Configuration

We consider a system that is undergoing a change of state, for example from liquid
to solid or an allotropic change in the solid state. Suppose an embryo consisting of
the new phase (“) is formed from the initial phase (’); taking the embryos to be
spheres of radius r the change in free energy is:

�G D 4

3
  r3�Gv C 4 r2
 (A2.14)

where �Gv D G“ � G’ is the difference in free energy between the two phases;
(�Gv< 0) and 
 is the interface energy.

It is easy to show that�G will have a maximum if the supersaturation, measured
by �Gv, is great enough, and therefore if the temperature is low enough; this is
shown in Fig. A2.19. When the embryos have reached a critical size r* we say we
are dealing with nucleii, and then:

r� D �2
 =�Gv

�Gc D 16 

3


3

�Gv
2

(A2.15)

The size of the nucleii increases with decreasing temperature, but they are
difficult to see, as Fig. A2.20 shows for the solidification of copper: at 30ıC
undercooling the critical radius is 0.01 �m, at 0.3ıC it is 1 �m.
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Fig. A2.20 Variation of
critical nucleation radius r*
with under-cooling, for
copper (�T D Tm � T)

The height of the potential barrier�Gv that the embryos have to overcome is, to
a first approximation, proportional to (�T)2; this determines the rate of formation
of the nucleii, which, from the Becker-Doring theory (Russel 1980), is given by:

I D I0 exp .��Gv =kT / (A2.16)

where I0 is constant to first approximation. This shows that for a high density of
nucleii jT�TEj must be large, where TE is the equilibrium temperature.

Solid phases give rise to two complications. The first, purely mechanical in
nature, is due to the precipitates not occupying exactly the same volume as the
matrix, resulting in a distortion of the lattice. This requires a second, volumetric,
term to be included in the energy balance, the effect of which is to require still
higher undercooling and therefore still greater departures from equilibrium. The
second difficulty is related to the possibility of changes in composition, when it
becomes more difficult to treat the problem rigorously; it does however enable the
existence of the metastable phases that are often encountered to be explained, for
example the ™0 and ™00 phases in the Al�Cu system (Fig. A2.21).

A2.4.2 Heterogeneous Nucleation

The height �Gv of the energy barrier to be crossed can be reduced by reducing the
surface energy 
 . This can be done, under certain conditions, by heterogeneous
nucleation on preferential sites such as, in the solid phase, grain boundaries or
dislocations: Fig. A2.22 relates to the grain boundary case; it gives the resulting
ratio of �Gc

j (heterogeneous) to �Gc
h (homogeneous) as a function of the ratio:


’’/2
’“. As this ratio tends to 1, � tends to 0 and the embryo “wets” the boundary
perfectly.
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Fig. A2.21 Solubility curves
for the stable and metastable
states of Al�Cu alloys

Fig. A2.22 Heterogeneous nucleation on a grain boundary; this is easier, the better the embryo
“wets” the boundary

A2.5 Thermally-Activated Growth

We are concerned here with the growth of a phase “ in a phase ’. Figure A2.23
shows the two extremes for the concentration profiles that we have to consider.
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Fig. A2.23 (a) reaction at the interface and (b) growth by diffusion. The full curves are the
concentration profiles at t1, the dotted curves at t2> t1

A2.5.1 Growth Governed by a Reaction at the Interface

The governing feature is the kinetics of atoms sticking to the interface ’/“; if R is
the size of the “ zone at a given temperature, the growth rate dR/dt is constant. This
has been adequately verified for allotropic transformations, but difficulties arise if
there are impurities at the interfaces.

A2.5.2 Growth Governed by Diffusion: Zener’s Theory

From Fick’s equations and the conservation of mass at the interface, with some
simplifying assumptions, it can be shown (Zener 1952) that the size of the growing
particles is given by:R D v

p
Dt , where v becomes constant after a long enough

time. It follows that the rate of growth is inversely proportional to
p

t. However,
there is relatively little experimental evidence to support this except for the case of
steels; Fig. A2.24 gives results for the growth of ferrite.

A2.5.3 Coalescence

After the formation of the precipitated new phase “ the system can reach a quasi-
equilibrium, with the concentration Cm of the solute in the matrix having reached
the value CE corresponding to the equilibrium diagram (Fig. A2.25); but the system
is not yet in true equilibrium. It tends to reduce the total surface separating the “
particles from the ’ matrix, and the particles continue to grow, the larger at the
expense of the smaller: this is called coalescence or ripening. This phenomenon is
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Fig. A2.24 Thickness of
ferrite transformed zones as a
function of (time)1/2; 0.11%
carbon steel at 740ıC and
770ıC

Fig. A2.25 Decomposition
of an alloy of initial
concentration C0 of phase “,
precipitated in the ’ matrix

particularly important in the study of microstructural stability of metallic materials,
for example of the hardening phase ”0 (Ni3TiAl) of nickel-based superalloys.

A2.5.3.1 The Gibbs-Thomson Equation

For a given particle size r the equilibrium concentration C(r) at the interface does
not have exactly the value C1E corresponding to an interface of infinite radius of
curvature. Theory gives

C.r/ D C
1
E

�
1C 2
˝

kT r

�
(A2.17)

where˝ is the atomic volume.
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Fig. A2.26 Distribution of
particle size in a system in
process of ripening

Thus there is a difference in concentration between two particles of different sizes
and therefore a flow of material, such that the smaller one becomes dissolved, to the
advantage of the larger. Thus a system with a large number of particles ends in an
asymptotic state, described by the theory of Lifschitz, Slyozov and Wagner (LSW),
see Lifschitz and Slyozov (1961), Wagner (1961) or Wagner and Kampmann (1991).

A2.5.3.2 Kinetics of Ripening (LSW Theory)

1. The variation of mean particle size with time is given by:

Nr3 � Nr30 D 64
DC1E ˝2

9kT
.t � t0/ (A2.18)

The time t0 is that at which the system begins to coalesce, when the mean
particle size is Nr0. In strongly supersaturated systems C0 > C1E it is often
found that t0 and r0 are both zero, and it is then possible to predict the rate
of coalescence of the particles. The relation has been well verified for many
systems, for example for precipitates of ”0 in nickel-based alloys � see Exercise
A2.11.8.

2. Particle size distribution
Writing � D r = Nr , the distribution function is:

g .�/ D �2.3C �/�7=3 .3 =2 � � /�11=3 exp

�
� �

3 =2 � �

�

g .�/ D 0 � > 3 =2 (A2.19)

Observations of real systems show that a much wider spread of particle size
(� > 3/2) often occurs than the theory would predict (Fig. A2.26).

NOTE A system can continue to evolve if there are applied stresses (see Exercise
A2.11.9). Differences in the crystallographic parameters and elastic constants for
the two phases lead to the presence of a term expressing the interaction between the
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mechanical loading and the system. This interaction energy can be calculated from
Eshelby’s theory of inclusions and heterogeneities (see Chap. 2 in this volume),
from which zones of stability of shape can be defined for the particles.

A2.6 Phenomenological Theories of Kinetics and Phase
Changes

So far we have described the different stages through which a transformation goes �
nucleation, growth, ripening. We must now attempt to predict the overall kinetics of
the transformation, that is, the way the fraction transformed develops with time. In
general it is difficult to derive this from the basic mechanisms of nucleation and the
growth laws; consequently we often have to turn to the phenomenological laws that
we now describe. We treat these in two groups, for isothermal and non-isothermal
transformations respectively.

A2.6.1 Isothermal Transformations

Let � be the rate of transformation at any instant. If the growth is controlled by
reaction at the interface, the associate growth law is linear and the overall kinetics
is described by Avrami’s law:

� D 1 � exp .�kt˛/ (A2.20)

where k is constant at a given temperature and 3 � ˛ � 4 (see Table A2.5 below).
If the process is controlled by diffusion, the associated growth is parabolic and

in the overall kinetics equation (A2.20) the exponent ˛ is equal to 5/3 or 3/2
according to the assumptions made concerning the saturation of the nucleation sites.
The following lists give the values corresponding to different mechanisms, from
which it is seen that the value of the exponent alone is not sufficient to identify the
mechanism (Christian10 1965).

A2.6.2 Non-isothermal Transformations

Transformations often take place during cooling, for example with steels and light
alloys. To represent these we use CCT � Continuous Cooling Transformation �
curves, of which Fig. A2.27 is an example, for a steel, trajectory 1 corresponding to

10Christian JW (1965) The theory of transformations in metals and alloys. Pergamon Press,
Amsterdam.
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Table A2.5 Values of the
exponent in the Avrami’s law for
various mechanisms

Interface reaction
Nucleation rate constant 4
instantaneous 3
increasing >4
decreasing 3–4
Nucleation at triple junctions after saturation 2
at boundaries after saturation 1

Diffusion
Nucleation rate constant 5/2
instantaneous 3/2
increasing >5/2
decreasing 3/2–5/2
Growth of particles of initially appreciable size 1–3/2
Rods and platelets small relative to separation 1
Thickening of long rods 1
Thickening of very large platelets 1
Segregation at dislocations 2/3
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Fig. A2.27 Transformation
of a steel on cooling

isothermal heat treatment. The TTT � Transformation, Temperature, Time � curve,
obtained in isothermal conditions, can also be used. Trajectory 2, in contrast, is a
cooling curve.

Derivation of non-isothermal transformation curves from isothermal runs up
against a number of difficulties. The main one arises from the independently varying
rates of nucleation and growth with temperature. The problem can be treated fairly
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Fig. A2.28 Phase changes in the heat-affected zone in welding of a 0.15% carbon steel

simply provided that the instantaneous transformation rate is a specific function
of the quantity transformed � and the temperature T, in which the variables are
separated, that is, of the form:

d� =dt D h.T /g .�/ (A2.21)

Such a transformation is said to be isokinetic. The principle of additivity
according to linear cumulation can then be applied, and in general we can write

Z t

0

dt =ta.T / D 1 (A2.22)

where ta(T) is the time needed to reach an amount transformed �a according to an
isothermal diagram and t is the time to reach the same amount in non-isothermal
conditions.

In general, this does not apply to cases where the parameter k in the Avrami
equation (A2.20) can itself vary with time. However, in certain conditions, in
particular when the nucleation rate is very high, it can give acceptably correct
results. It is therefore very useful for treating particular problems, such as very rapid
cooling after welding, as shown schematically in Fig. A2.28.
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A2.7 Solidification

Solidification of a pure metal or an alloy is a phase change to which the theories
developed in the preceding sections apply well. The practical importance of the
microstructures produced in solidification is such as to justify a detailed study of
the phenomenon.

A2.7.1 Nucleation in the Solid Phase

Using the theory of nucleation it is easy to evaluate the quantity �GV D GS � GL

as a function of the temperature difference �T D Tm � T at equilibrium. At T D
Tm we have:

�GV D GS �GL D 0 that is HS �HL D Tm .SS � SL/ (A2.23)

from which, assuming that near Tm both �H and �S are independent of T, it
follows:

�GV D .HS �HL/ .1 � T =Tm / D .HS �HL/�T =Tm (A2.24)

and hence the critical size of the embryos is r� D 2
SLTm =Lm�T .
An accurate value of (HS � HL) can be derived from the measurement of the

latent heat of solidification Lm.
Homogeneous nucleation, initiated by embryos of the solid phase, can occur only

at several hundred degrees of under-cooling, and such temperatures have not often
been reached except in very special cases, such as with very fine, very pure droplets.
Solidification usually takes place from only a few degrees of under-cooling, with
heterogeneous nucleation, with the solid phase growing on foreign particles or
outwards from the walls of the mould. It is clearly important to be able to control
heterogeneous nucleation in practice; for light alloys it can be initiated by adding
various elements at the moment of solidification, or Mg in the case of cast iron with
spheroidal graphite.

A2.7.2 Growth of the Solid Phase

The equilibrium curves of Fig. A2.29 show the formation of solid, which in general
is less rich than the liquid in the added element B. The liquid becomes richer in B
and the solid does so in turn so as to remain in equilibrium. Finally there is liquid
with composition C1

f in equilibrium with solid of composition C0.
The theoretical condition for homogeneity of the liquid is quite well satisfied

in practice since diffusion is fast and it is favoured by convection. The solid can
remain homogeneous only by diffusion of B from the interface, which requires the
cooling to be very slow indeed. In actual conditions, the diffusion is insufficient
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Fig. A2.29 Equilibrium
diagram for solidification
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Fig. A2.30 Solidification
phase diagram: equilibrium
and out-of-equilibrium

and the solid is heterogeneous with an average composition that is a mean between
its initial value C0

S and the interface value NCS. Thus its composition follows a real
solidus, as in Fig. A2.30, rather than the equilibrium solidus.

At the end of a real solidification, when CS D C0, the temperature is lower than
the equilibrium value. Very often a small quantity of a eutectic is formed (as shown
in Fig. A2.30), even if this would not be predicted by the equilibrium diagram; this
has many and important practical consequences:

– a heterogeneous solid results, which has to be homogenised by diffusion at high
temperature

– rolling and forging temperatures have to be reduced, otherwise there could be
local re-melting resulting from melting of the eutectic (“burning the alloy”)

– much segregation of poisonous elements, such as sulphur and phosphorous.
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Fig. A2.31 Representation
of structural under-cooling

Reducing the rate of solidification does not in practice give any significant
improvement; in fact, it results in both a coarser structure � the effect of the
nucleation � and diffusion distances that do not compensate for the expected effect
of increasing the homogeneity of the material.

A2.7.3 Morphology of the Solid Phase

Ahead of the advancing front of solidification, the liquid is richer than the solid;
at the interface the concentration in the liquid is CS/k, where k is the partition
coefficient between the solid and liquid phases. Thus we might say that if the
concentration at a distance x from the front is C(x), this will correspond to a liquidus
temperature T2 >T1, where T1 is the temperature corresponding to the interface
(Fig. A2.31).

However, the actual temperature of the liquid, controlled by the rate of loss
of heat from the mould containing the alloy, is given by the line E in the figure
and is below T2 over the distance XS: we say there is a zone of structural under-
cooling. This distance XS is determined by the cooling conditions; it is small if the
temperature gradient in the liquid is high, large if this is low.

The distance over which this structural under-cooling extends has a marked
influence on the morphology of the solid formed: it causes alloys to form a dendritic
structure on solidifying. As will be readily understood, any protuberance from the
solidifying front is unstable; it will grow quickly up to the limit of the under-cooled
zone, displacing solute laterally which can generate new instabilities, secondary and
tertiary in order: this is shown diagramatically in Fig. A2.32. The main axis along
which the dendrite grows is in the direction of the heat extraction and its length is
of the order of XS. The axes and arms of the three-dimensional dendritic structure
are in the rapid crystalline growth directions, which for FCC metals are the <100>
directions.
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Fig. A2.32 A dendrite:
secondary and tertiary
branches develop from the
primary stem, enabling heat
to be exchanged more easily
between solid and liquid

Circulating between the dendrites is a liquid rich in solute, from which there is
what is called minor segregation. The circulation through the dendritic forest is slow,
and the difficulty of maintaining a supply of fresh liquid can lead to the formation
of micro-porosities.

To avoid instabilities of the dendritic type, and to ensure regular growth, a
controlled, high thermal gradient � cf. line (E) in Fig. A2.31 � must be imposed,
and a slow solidification achieved by gradual reduction of this. Turbine blades with
improved characteristics, in which the solidification is oriented, are produced in this
way, Fig. A2.33 showing the principle of fabrication. The solid-liquid interface is
effectively planar; eliminating certain grains and initiating the solidification with a
well-oriented nucleus can produce single-crystal blades.

A2.7.4 Solidification of Eutectics

This type of solidification, described in Figs. A2.34 and A2.35, is another illustra-
tion of the phenomena of diffusion in the liquid phase, of great practical importance
in low-melting alloys and in the fabrication of oriented structures by unidirectional,
controlled solidification.

When the liquid reaches the eutectic composition after depositing ’ (called the
primary) from the solid solution it follows the ’-liquidus, curve 1 in Fig. A2.34. The
diagram shows that the under-cooling relative to the “-liquidus (curve 2) increases
rapidly, all the more easily as the liquid at the interface becomes richer in B. There
is then nucleation of “, which reduces the concentration of B locally � the passage
from (1) to (2) � and results in a large under-cooling relative to ’. Thus nucleation
and growth of ’ alternates with that of “, as shown in Fig. A2.35. The growth of the
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Fig. A2.33 Controlled solidification process for manufacturing turbine blades
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Fig. A2.34 Solidification of
a eutectic alloy

Fig. A2.35 Structure of a
eutectic alloy



574 Annex 2: Phase Transformations

1 cm

1
m

ou
ld

2 3

Fig. A2.36 (a) Transverse section through a steel ingot, showing solidification structures; (b)
diagram showing the solidification zones from the surface in contact with the mould to the centre
of the ingot. The axes of the dendrites are shown in the grains; zones are (1) skin, (2) basaltic, (3)
equiaxial

eutectic implies that the liquid in front of ’, which will be rich in B, exchanges, by
diffusion, the elements A and B with the liquid in front of “, which will be rich in A.

The rate of solidification determines the diffusion length in the liquid and through
this the details of the microstructure of the eutectic. If this rate is high the diffusion
length is small and the structure is fine; if low, the length is greater and the structure
is coarser.

A2.7.5 Structure of Solidified Material

In general there are three distinct zones in a piece of solidified material: skin,
basaltic and equiaxial (Fig. A2.36).

A2.7.5.1 Skin Zone

When the molten metal comes into contact with a mould whose temperature is much
lower than the liquidus, the under-cooling is very great. Nucleation occurs quickly
and a dense network of dendritic crystals forms in the metal, randomly oriented. The
structural under-cooling distance in this zone is small and the temperature gradient
in the liquid is high.
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Fig. A2.37 Micrograph of a rolled X65 pipeline steel (0.09 C, 1.59Mn, 0.29Si, 0.05 V, 0.025Nb)
with a yield strength of 440 MPa in the longitudinal (L) direction and 500 MPa in the transverse
(T) direction. Notice banded structure of ferrite and pearlite due to the segregation of the alloy
elements during solidification. S corresponds to the short transverse direction

A2.7.5.2 Basaltic Zone

The structural undercooling distance increases and dendritic growth continues, with
preferential development of dendrites whose axes are in the direction of the heat
flow. The length of the basaltic grains can reach several centimetres.

A2.7.5.3 Equiaxial Zone

At the end of the solidification the development of the basaltic zone is constrained
by the nucleation of many crystals in the body of the remaining liquid, which
is everywhere above melting point. This nucleation, often occurring on dendritic
debris, is heterogeneous and the grains in this zone are randomly oriented. The zone
is very rich in elements of the alloy: we have major segregation.

The major and minor segregations are responsible for the local compositional
changes, which explain the variations in the microstructure, even in material that is
afterwards rolled: Fig. A2.37 shows an example. It is very difficult to eliminate this
segregation, even the minor, without some very lengthy homogenisation treatment.
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Fig. A2.38 Kinetic isotherm
for precipitation; q is the
fraction precipitated, t0 is the
incubation time required for
the nucleation

Fig. A2.39 Variation of incubation time t0 with temperature, for isothermal precipitation. At a
high temperature �1, the mobility of the solute atoms is high (a) but the incubation time is very
long because the embryo formation energy is high. (b) At a low temperature �3 it is long again
because the atomic mobility is low. The minimum time occurs at some intermediate value �2(c)

A2.8 Precipitation

As in the liquid phase, precipitation in the solid phase is due to nucleation and
growth. Its rate is controlled by diffusion in the solid phase. Embryos of the
precipitates begin to form as ageing starts in the supersaturated matrix, their size
being smaller the further the temperature of the alloy is below equilibrium (see
Sect. A2.4). The amount precipitated increases with time in the manner shown in
Fig. A2.38. The curve is of the Avrami type described in Sect. A2.6; t0 in the figure
is an incubation time, necessary for the nucleation.

The mechanism of isothermal precipitation by nucleation and growth depends
essentially on two factors: the energy of formation of the nucleii and the mobility of
the atoms. The lower the formation energy�Gc for an embryo of critical radius r*,
the shorter is the incubation time; but the rates of nucleation and growth increase
with the atomic mobility, which itself increases exponentially with increasing
temperature. The overall kinetics of the precipitation is thus determined by two
opposing effects, as indicated in Fig. A2.39; this gives a qualitative explanation
of the C-shape characteristic of isothermal transformation curves.
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Fig. A2.40 Fe-Cr-Ni-Al aged for 10 min at 600ıC. The two-phase (Fe-NiAl) zones A, B
developed from the ’/“ boundary. The platelets of the NiAl phase are oriented with respect to
the B grain (By courtesy of R. Taillard)

A2.8.1 The Two Types of Precipitation

We distinguish between continuous and discontinuous precipitation. In the first,
the concentration of the solute in the mother phase falls continuously until the
equilibrium value is reached.

Discontinuous precipitation occurs when, during the transformation, the crystal
becomes divided into regions of two types. In those of one type the transformation
is complete; whilst in those of the other type the supersaturated solid solution
remains unchanged. This type of precipitation requires the nucleation and growth
of cells of 2-phase products. The reaction progresses by the advance of the
boundary separating the part that has been transformed from the part that has
not, and this advance is shown by a sudden change in the properties of the
matrix (composition, crystallographic parameters) � hence the name discontinuous.
Discontinuous precipitation occurs generally in association with a recrystallisation,
more precisely with a migration of a boundary; it is also referred to as a cellular
reaction. Figure A2.40 shows an example, precipitation of the NiAl phase in
a Fe-Cr-Ni-Al steel. This type of reaction commonly occurs when the level of
supersaturation is low. The precipitates tend to make the material brittle, as we
indicated in Chap. 1 (Fig. 1.45) in relation with Al-Li alloys, and steps are therefore
usually taken to avoid it.

A2.8.2 Coherency Between the Precipitates and the Matrix

In continuous precipitation the individual precipitates grow larger by draining of
solute atoms. The crystallographic orientation relations between the mother phase
and the product determine the energy associated with the ’/“ interface and the
elastic energy stored in the precipitate and the matrix. Products of three types can
be envisaged, as in Fig. A2.41:
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Fig. A2.41 Types of precipitation in the solid phase

1. coherent, in general having the same crystal structure as the matrix, cases (a) and
(c) in the figure; or a different structure, case (b), that can be obtained from the
mother phase by a shear.

2. semi-coherent, with a number of linear defects in the interface between the
precipitate and the matrix: case (d).

3. incoherent, with a structure so different from that of the matrix that no coherent
interface can be found: case (e).

Precipitates of the first two types often belong to the class of metastable phases. It
seems that there is always a significant level of well-defined coherency between the
precipitates and the matrix in the first stages of the process, and that this diminishes
as the reaction advances; thus the first stages are so coherent that we should speak
of pre-precipitation rather than precipitation. The clusters so formed, which are of
very small size, about 10 nm, are called Guinier-Preston zones (Guinier 1938, 1939)
in the case of light alloys; their shape can vary greatly according to size and to the
electronic structures of the solvent and the solute: for example, spheres in Al-Mg,
ellipsoids in Al-Zn, discs in Al-Cu.

Taking as an example the widely studied Al-Cu alloy (duralumin), for which
we gave the equilibrium diagram in Sect. A2.2, and the metastable diagram in
Fig. A2.21, the precipitation sequence is:

Solid solution ! GP zones ! ™00 ! ™0 ! ™ .Al2Cu/

Three metastable states have to be traversed before equilibrium is reached. The
GP zones and the ™00 and ™0 phases are formed on the f100g planes of the matrix,
™00 and ™0 having a tetragonal structure. ™00 is coherent with the matrix and ™0 is
semi-coherent.
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NOTES

1. Very advanced techniques are now available, which make it possible to follow
the precipitation sequences in great detail: high-resolution (0.2�0.3 nm) electron
microscope, neutron diffusion, etc. (see Chap. 1).

2. The problems of gaining a detailed knowledge of the decomposition of a solid
solution are still very alive; they arise in many contexts, not only with metals but
also with glasses.

3. Such knowledge is essential for the understanding of the relations between the
mechanical properties on the one hand, such as monotonic and cyclic plasticity,
damage (strength, stress corrosion), and on the other the microstructure of a
material at any instant.

A2.9 Martensitic Transformations

In contrast to the phase changes described so far, martensitic transformations occur
without diffusion. They exist in many metallic systems � steels, Fe-Ni and Cu-Al
alloys, alloys of titanium and of cobalt, etc. To describe their general features we
consider first the martensitic ” ! ’0 transformation in steels.

A2.9.1 General Features of Martensitic Transformations
in Steels

Figure A2.42 is the TTT curve for a eutectoid (0.8 %C) steel. We see from this that
if, starting from the stable austenitic (”) domain, the steel is cooled very quickly,
transformation of a new type, different from those that involve diffusion (pearlitic
and bainitic transformations), begins to occur at the temperature MS at the start of
the phase change. This is the martensitic transformation in which the austenite is
transformed into a new structure with the same composition, martensite.

In this transformation the carbon does not have time to diffuse so as to partition
itself between the two phases corresponding to the equilibrium diagram, ferrite and
cementite; it remains in place during the allotropic transformation ” (FCC) ! ’0
(BCC) of the austenite. In carbon steels the martensite is not in fact strictly centred
cubic, but centred quadratic as in Fig. A2.43, where we show the particular location
of the carbon atom. In a eutectoid steel with 0.8% carbon 7.2% of the cells have a
carbon atom in this position and the c/a ratio for the lattice is 1.04. Martensite is
a ferrite so highly supersaturated with carbon that these atoms bring about a large
distortion of the centred cubic lattice. The resulting microstructure is very charac-
teristic (Fig. A2.44), the martensite appearing in the form of needles, laths or plates.
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Fig. A2.42 Isothermal transformation curves for a eutectoid steel (0.8% C); austenising 30 min.
at 850ıC

Fig. A2.43 Centred
quadratic martensite cell for
a carbon steel, showing the
location of the carbon atom

Mainly because of the large volume change (1�4%) accompanied by the
transformation from austenite to martensite, the latter is greatly deformed and
includes a large number of defects (dislocations and twins); its hardness is mainly a
function of the carbon content of the austenite (Fig. A2.45).

The rate of the martensitic transformation is very high, approaching that of
sound in the material, around 103 m/s. Unlike precipitation reactions, it involves
not diffusion but a “co-operative” movement of the atoms, which does not require
thermal activation. Thus the fraction transformed is, in general, independent of time
and depends only on the temperature, which must be less than MS (at which the
phase change starts).



A2.9 Martensitic Transformations 581

Fig. A2.44 Optical
micrograph showing the
martensite structure in a 0.8
%C steel

Fig. A2.45 Dependence of
the hardness of quenched
martensite on the carbon
content of the steel

The passage from the crystalline structure of the ” phase to the martensitic phase
is brought about a crystallographic mechanism of shear type, which moves the atoms
from their positions in the initial lattice to those in the lattice of the transformed
product; for carbon steels this shear stress is of the order of 20%. Support for the
belief that such a mechanism is in action is given by the following:

1. the change of shape, or the relief effects seen on what were plane surfaces in the
mother phase (Fig. A2.46).

2. the displacement of fine scratches by platelets of martensite (Fig. A2.47).
3. the crystallographic relations found to exist between the austenite and the

martensite: in steels with a carbon content exceeding 1.5%; the Kurdjumov-
Sachs orientations relationships are often found to hold, that is: .111/”==.011/’0

and


0N11�

”
==


1N11�

’0
.
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Fig. A2.46 Homogeneous
shear associated with the
”! ’0 transformation,
producing a relief effect on
the surface

Fig. A2.47 Displacement of
lines a, b by shear associated
with the martensitic
transformation

Fig. A2.48 Defining
temperatures for the
martensitic transformations

A2.9.2 Critical Points of the Transformation, and a Note
on Thermodynamics

A2.9.2.1 Temperatures

On cooling, if the transformation is purely athermal (meaning no time effects) it
can be described by the two temperatures Ms, at which it starts, and Mf, at which
it ends. On heating, provided that this is rapid enough, the inverse transformation
’0 ! ” can itself be martensitic. This is difficult to achieve in the case of
carbon steels because of the speed with which the carbon precipitates; it is less
difficult in other systems, such as Fe-Ni and Co-Ni. Correspondingly, this inverse
transformation can be defined by its starting and finishing temperatures As, Af

(Fig. A2.48)
In steels the difference Ms � As is considerable, from 100ıC to 400ıC, whereas

in other systems, such as thermoelastic martensites, it is only a few degrees. It
expresses a large departure from the thermodynamic equilibrium of the two phases,
which latter can be reached by raising the temperature above Ms � if that can
be done without initiating any diffusional transformation � and applying a plastic
deformation. This leads to defining a temperature Md above which it is not possible
to initiate the martensitic transformation by plastic deformation. As a general rule
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Fig. A2.49 Transformation points for the spontaneous martensitic transformation: Ms cooling, As

heating, Md deformation-induced for Fe-Ni alloys

we can take Md D ½(Ms C As) � see Fig. A2.49 � and Md is approximately the
equilibrium temperature for the phases ” and ’0, that is, for which�G”!’0 D 0

Empirical relations have been found which enable MS to be calculated from the
known composition by weight of the austenite; the Stevens-Haynes formula, often
used for steels, is:

Ms D 561� 474 .%C/� 33 .%Mn/ � 17 .%Ni/ � 17 .%Cr/ � 21 .%Mo/
�
inıC

�

A2.9.2.2 Thermodynamics

For transformations that involve diffusion and some chemical change to the phases
present the phase equilibrium condition is expressed by the equality of the chemical
potentials of the various constituents in their various phases. The situation is
different in the case of martensitic transformations, since in these there are no
changes of composition and the equilibrium is expressed by the equality of the free
energies of the two phases. For ferrous alloys the variation in free energy is:

�G”!’0 D G” �G’0 (A2.25)
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Fig. A2.50 Variation of free
energy �G’0

!” with
temperature Ms for alloys
Fe�C, Fe�Ni, Fe�Cr

The necessary condition for the transformation is that�G is negative. In general,
for a ferrous alloy containing a dissolved element A (e.g. C, Ni, Cr, Mn, Si):

�G”!’0 D .1 � X/�GFe”!’0 CX�GA”!’0 C�Gm
”!’0

where�GFe”!’0 is the variation in free energy for pure iron.

�GA”!’0 is the variation in free energy for pure A.
�Gm

”!’0

is the variation in free energy for the mixture.

Only the first term in this relation is known. Kaufman and Cohen (1958)
suggested the following relation: �G’!” D 1,202 � 2.63.10�3 T2 C 1.54. 10�6 T3

(cal/mol)
The two other terms cannot always be found experimentally and have to be

deduced from models of the solid solution.
For steels, �G associated with martensitic transformations is large, around

300 cal/mol (Fig. A2.50). This is a consequence, as we indicated earlier, of the
considerable distortions that accompany the transformation.
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A2.11 Exercises

A2.11.1 Equilibrium Diagram, Purification by Zone Melting

A beam of an alloy AB, whose equilibrium diagram is given below, is placed in a
furnace, which is moved slowly so that a moving liquid region is formed. Use the
diagram to explain the redistribution of the solute B between the liquid and solid
phases. Can the operation be repeated? if so, in what circumstances? This is the
method used to purify Ga and Si semiconductors and to produce certain high-purity
metals (Fig. A2.51).

A2.11.2 Steel Microstructures

Steels of various carbon contents are cooled slowly from the austenitic state.
Figure A2.52 gives micrographs of the structures. What is the carbon content of
each? Use the Fe�Fe3C part of the iron-carbon equilibrium diagram to justify your
answers.
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Fig. A2.51 Melting zone purification

Stage of treatment % residual austenite

Alloy 12�5 Alloy 12�7

A 0 0
B1 5 23
B2 0 8
C 25 4.7

A: austenitising at 1,030ıC, quenched in air
B1 tempered at 700ıC for 1 hC recooled in air
B2 as B1, recooled in liquid nitrogen
C tempered at 600ıC for 5 h after B2

A2.11.3 Martensitic Transformation

Two steels with 12% Cr and 5% and 7% Ni respectively are thermally treated.
They are quenched from 1,000 ıC: what can be predicted from the Fe�Cr�Ni
equilibrium diagram given in Fig. A2.53? (martensite laths are formed in both
cases). They are then subjected to a repeated annealing: 1 h. at 700ıC � cooling in
air � cooling to �196ıC � 5 h at 500ıC, after which the residual austenite content
is measured at ambient temperature. The data are given in the table. Explain what
has happened; would you expect an increase in the nickel content in the austenite?
Electron microscopy shows that the ” phase is distributed in bands: how do you
explain this? Figure A2.54 gives the results of tensile tests to determine the yield
strengths of the two specimens: how do you explain the rapid variation of this with
temperature?
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Ferrite

Pearlite

Ferrite

Pearlite

100% Pearlite

10 μm 10 μm

Intergranular
cementite

Fig. A2.52 Micrographs of structure of 4 steels

A2.11.4 Steel Microstructures

Various heat treatments have been applied to a Cr�Mo steel (0.39C, 1.5Cr, 0.5Mo),
the TTC curve for which is given in Fig. A2.55. This steel is much used in
mechanical engineering for items such as gears. Why is such care taken over the
conditions for austenitising (maintaining in the ” phase) and the resulting grain size
of the austenite? Four structures resulting from various cooling rates are shown in
the figure. Identify these microstructures.

A2.11.5 Surface Treatment: Cementation

Carbon cementation. Cementation is a thermo-chemical treatment, the aim of which
is to increase the carbon content of the sample at the surface. This enrichment
is achieved by keeping the surface in contact with a carbon-donating material in
powder, paste or liquid form. The diffusion process is always followed by the
thermal treament of quenching � why is this? The quenching creates residual
compressive stresses in the surface � why?

Suppose the operation takes place in the gaseous phase (Fig. A2.56); show that
the solution to Fick’s second equation is:

C � C0

CS � C0
D erf

�
x

2
p
Dt

�



588 Annex 2: Phase Transformations

1600

1200

600

A A

0% Cr

18% Cr 21% Cr 24% Cr

9% Cr 12% Cr 15% Cr

3% Cr 6% Cr

A

AAA

A

F

F F F

F F F

F F F F F

FFF

F F F F F F

A A

A A

AA

A

A
+ + +

+ + +

+ + +
A AA

400

0
1600

T
E

M
P

E
R

A
T

U
R

E
, �

C 1200

600

400

0
1600

1200

600

400

0
0 5 10 15 0 5 10

NICKEL, %

15 0 5 10 15

Fig. A2.53 Equilibrium diagram for the ternary system Fe�Ni�Cr (AD austenite, FD ferrite)

where erf.x/ D 2p
 

R x
0 exp

��u2
�

du. C0 is the initial carbon content of the steel, CS

the saturation value for the ” phase at the temperature of the treatment.
Figure A2.56 gives carbon concentration profiles for a steel with C0 D 0.15%, CS

D 1.3% at 925 ıC. Use these to find the diffusion coefficient of carbon in the ” phase
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Fig. A2.54 Variation of yield strength with temperature

and compare your value with that given in the tables in Sect. A2.3.2 (Table A2.4).
What do you think of the result? Why is it necessary to conduct this process at a
temperature above that of the eutectoid?

A2.11.6 Solidification

Solidification of a Fe�C�Ni alloy has resulted in segregations of the additive
elements C, Ni. The distances over which these segregations occur depend on the
conditions during the solidification and on the growth of dendrites. Taking the data
in Table A2.4 concerning the diffusion coefficients for these elements in Fe” , show
that there is a possibility of homogenising this alloy by holding it in the austenitic
phase for a long time. What quicker methods can you suggest for the process,
bearing in mind that band structures such as those shown in Fig. A2.37 are to be
avoided?

A2.11.7 Hardening by Precipitation and Coalescence
of the Precipitates in a Ferritic Stainless Steel

Experiments have been made with steels of the following percentage composition:

.a/ Fe � 19:6Cr � 2:03Ni � 0:97Al .b/ Fe � 19:6Cr � 4:15Ni � 1:87Al
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Fig. A2.55 (a) Continuous cooling transformation diagram for a steel containing 0.39% C, 0.37%
Si, 1.45% Mn and 0.49% Mo austenised at 835ıC for 20 mn; (b) Typical microstructure at various
rates) (From W.W. Cias. Phase transformation kinetics and hardenability of medium-carbon alloy
steels, Climax Molybdenum Company)
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Fig. A2.56 Carbon concentration profiles after gaseous cementation for various periods of time

1. Explain the choice of these compositions, knowing that the hardening phase
produced by the precipitation has the composition NiAl (structure B2, CsCl, see
Annex 1). Is it normal for these steels to have a BCC structure?

2. Samples of the steels have been held at 1,150ıC for 1 h; what structure will
they then have? After this they are cooled quickly and then aged at various
temperatures. The curves of Fig. A2.57 give the variations of hardness with time
of ageing and the micrographs of Fig. A2.58 show the precipitation of the NiAl
phase.

1. Is the form of the hardness curves what you would expect?
2. Comment on the legend on the micrographs. Why is there a diffraction spot

of structure of the type (001) in the [001] section?

A2.11.8 Precipitation

Figure A2.59 shows the variation of precipitate size with time at various tempera-
tures, suggesting a growth law of the form:

A D 64
DC1E ˝2

9kT
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Fig. A2.57 Effect of time and temperature of ageing on hardness of two steels (By courtesy of R.
Taillard)

Fig. A2.58 Electron micrographs of NiAl precipitates: (a) light field (b) dark field (c) and (d) are
diffraction conditions (By courtesy of R. Taillard)
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Fig. A2.59 Variation of size of NiAl precipitates in Fe-Cr-Al alloy (By courtesy of R. Taillard)

Deduce the value of the apparent activation energy Qd for diffusion of Al and Ni
in ’�iron (Fe�20Cr), assuming that 
S and˝ are independent of temperature. The
variation of the solubility has been determined � how could this be done? – and the
results tabulated; discuss the values found for Qd.

A2.11.9 Effect of Applied Stress on the Morphology
of Precipitates in Nickel-Based Alloys

As Fig. A2.60 shows, the morphology of single-crystal materials containing a large
volume fraction of precipitates (f”’ about 50–60%) is considerably changed by
the application of stress. In this case (the alloy Udimet 700), tension leads to a
rafting process and a redistribution of precipitates, initially cubic and distributed
isotropicaly, into layers perpendicular to the direction of the stress. In contrast to
this, compression rearranges them into rods aligned parallel to the stress. These
changes have an important effect on the behaviour of the material in creep.

Give a qualitative explanation of these changes, bearing in mind the following:

– the precipitates are coherent with the matrix
– any departure from coherence, measured by the relative difference in the values

of the parameters for the ”0 phase and the matrix, ı D (a”0 � a”)/a” , can be
positive, negative or zero.
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Fig. A2.60 Morphology of
coalescence in single crystals
of U�700, T D 954ıC, 
 D
155 MPa, tD 100 h; (a)
tension; (b) compression
(Tien JK, Copley SM (1971)
Metall Trans 2:215–219)

– the elastic constants, Young’s modulus in particular, are different for the precip-
itates and the matrix.

Further information can be found in:

Pineau A (1976) Influence of uniaxial stress on the morphology of coherent
precipitates during coarsening-Elastic energy considerations. Acta Metall 24:559

Nabarro FRN (1996) Rafting in superalloys. Metall Mater Trans 27A:513–530



Appendix C
Annex 3: Continuum Mechanics: Basic
Concepts and Equations

Main Formulae
NB: all refer to small perturbations

Strains

" D 1

2

�
grad u C gradTu

�

Rectangular cartesian coordinates: "ij D 1
2
.ui;j C uj;i /

ds2 � ds20 D 2dx:":dx

eu D u:":u

�V=V D Tr."/

Compatibility: "22,33 C "33,22 D 2"23,23 etc.
"23,31 C "31,23 D "12,33 C "33,12 etc.

Boundary conditions: u.P / D ug; P 2 @V; ug given on @V

Stresses

T .M; n/ D 
.M/:n D 
nC �t .
 D n:
:n/

Equilibrium and motion: 
 D 
T, div
 C �f D �


Boundary conditions: 
.P /:n D T g; P 2 @V; T g given on @V

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
Macroscopic Constitutive Behaviour, Solid Mechanics and Its Applications 180,
DOI 10.1007/978-94-007-2546-1, © Springer ScienceCBusiness Media B.V. 2012
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Linear isotropic elasticity

8̂̂
<
ˆ̂:


 D �Tr."/•C 2�"


ij D �"kk•ij C 2�"ij

" D Œ.1C �/=E� 
 � .�=E/Tr."/• "ij D Œ.1C �/=E� 
ij � .�=E/
kk•ij

E D 2�.1C �/ D 3k.1 � 2�/ � D k � 2�=3 D E�=.1C �/.1� 2�/

Navier equations:

(
.�C �/ grad divu C �r2u C �f D �


.�C �/uk;ki C �ui;kk C �fi D �@2ui =@t2

A3.1 Deformations

A3.1.1 Strain Tensor for a Solid

Let a.a1; a2; a3/ be the initial position of a point M of the body and x.x1; x2; x3/
its present position; the transformation is defined by x.a; t/; u.a; t/ D x.a; t/ � a

is the displacement vector. The second-order transformation gradient tensor F is
defined by

dx D F :da (A3.1)

A3.1.1.1 Rectangular Cartesian Coordinates

In rectangular cartesian coordinates, we have, with ˝ denoting a tensorial product

F D @xi

@aj
ei ˝ ej

�
Fij D @xi

@aj

�
(A3.2)

This is an asymmetrical tensor; starting from this we define strain tensors in
Lagrange (�) or Eulerian (A) variables:

2�ijdaidaj D jdxj2 � jdaj2 D 2Aijdxidxj (A3.3)

These tensors characterise completely the deformation of the solid, that is, they
enable us to find the changes in lengths, angles and volume at any point. They are
symmetrical, and therefore there is a coordinate system in which they are diagonal.
In cartesians

2�ij D @xk

@ai

@xk

@aj
� •ij D

�
F T:F � •

	
ij

(A3.4)
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which can be expressed also in terms of the displacement

�ij D 1

2

�
@ui
@aj

C @uj
@ai

C @uk
@ai

@uk
@aj

�
(A3.5)

With the small perturbation hypothesis, this becomes

"ij D �lin
ij D 1

2

�
@ui
@aj

C @uj
@ai

�
(A3.6)

where

"11 is the length variation in the direction e1
2"12 is the angular variation of (e1, e2)
� D "11 C "22 C "33 D Tr."/, the relative volume variation�V/V.

A3.1.1.2 Orthogonal Curvilinear Coordinates

M
�
.�i / defines a point M in an orthonormal system of curvilinear co-ordinates

(� i):

in cylindrical polars (� i) ! (r, � , z)
in spherical polars (� i) ! (r, � , ')

Write Ei D @M=@�i ; the orthogonal coordinate system related to the parameter
� i and ei D Ei= jEi j the associated physical orthogonal coordinate system.

The transformation takes the pointM
�
.�i / toM

�

0.�i /; from dM 0 D F :dM we get

F D .1= jEi j/


@M 0.�k; t/=@�i ˝ ei

�

) 2�ij D 1

jEi j
1

jEj j
�
@M 0

@�j
.�k; t/

@M 0

@�i
.�k; t/

�
� •ij

(A3.7)

which conforms with the definition

2 jEi j jEj j�ijd�id�j D dM 0:dM 0 � dM:dM (A3.8)

A3.1.2 Strain Tensor for a Variety (Curve or Surface)

The dimension of the strain tensor depends on the model chosen to represent the
material being studied. If this is a curve the tensor has dimension 1 (but order 2),
characterised by a single component, and we speak of the deformation of a thread
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or cord; if it is a surface we have a symmetric tensor of dimension 2, with three
independent components. In calculating the tensor we must note that a variety of
dimension p (p D 1, 2 or 3) is parametrised by p parameters � i: for example, the
natural parameter for a curve is its curvilinear abscissa.

Thus the displacement of a point of the variety depends on the parameters � i (and
is not defined outside the variety). The above basic relations remain valid, provided
that the � i define an orthogonal coordinate system (see exercises in Volume III).

A3.1.3 Eulerian Tensors for Virtual Strain and Strain Rate

If •u.x; t/ and v.x; t/ are the virtual displacement and velocity respectively at
a point, the tensors •A and PA are strictly linear functions of •u and v; for a 3-
dimensional solid

•Aij D 1

2

�
@•ui
@xj

C @•uj
@xi

�
PAij D 1

2

�
@vi
@xj

C @vj
@xi

�
(A3.9)

In other cases, •A (or PA/ can be calculated by replacing u
�

by •u (or v/ in the

linearised strain tensor ".

A3.1.4 Compatibility Equations

These express the fact that the deformation field is derived from a displacement
field. In rectangular coordinates, these are written for small strains, as

2ikl2jmn"km;ln D 0 (A3.10)

where 2ijk is zero if any two of i, j, k are equal and C1 or �1 according as ijk is an
even or an odd permutation of 123. This gives six equations for the " components,
of which three are independent.

A3.2 Stresses

A3.2.1 Definitions and Properties

The second-order tensor 
.M/, with components 
 ij(M) is the Cauchy stress
tensor at the point M in the structure, a Eulerian tensor, defined on the current
configuration; it is symmetrical, 
 ij D ¢ ji. If media (1) and (2) are separated by
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an interface passing through M the stress vector exerted by (1) on (2) is

T .M; n/ D 
.M/:n (A3.11)

where n
�

is the unit normal to the interface from (2) to (1).

T
�

is traditionally decomposed into a normal component 
 D T :n D n:
:n and

a tangential or shear component � : T D 
nC �t .
In cartesians, taking ex D n

�
, it is easily established that


xx is the normal stress on the plane with normal e
�
x


xy is the shear stress on this plane, acting in the direction e
�
y

If 
1, 
2, 
3 are the principal stresses, the set of couples (
 , �) cover the area in
the (
 , �) plane common to the three circles with centres on the 
-axis and passing
through the points with abscissae 
1, 
2, 
3 (the Mohr circles).

A3.2.2 Field Equations

The following relations, which express the fundamental principles of mechanics
(statics and dynamics), hold always:

– in the static case the equilibrium equations

div 
 C �f D 0 (A3.12)

where �f is the body force per unit of mass
– in the dynamic case the equations of motion

div 
 C �.f � 
/ D 0 (A3.13)

where 

�

is the acceleration.


 also satisfies the boundary conditions:


.P /:n.P / D F .P / (A3.14)

where P is a point in any part of the boundary where a surface force F
�

is

prescribed. Stress fields 
 that satisfy (A3.12) and (A3.14) are said to be
statically admissible with the body and surface forces �f

�

and F
�

.

When the assumption of small perturbations can be made the current config-
uration can be taken to be the initial configuration for expressing the boundary
conditions (A3.14).
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In cartesians (A3.13) is written in full as :

8<
:
@
xx

ı
@x C @
xy =@y C @
xz =@z C �.fx � 
x/ D 0

@
xy
ı
@x C @
yy

ı
@y C @
yz

ı
@z C �.fy � 
y/ D 0

@
xz
ı
@x C @
yz =@y C @
zz =@z C �.fz � 
z/ D 0

(A3.13 bis)

In orthogonal curvilinear co-ordinates div 
 is found by using the relation

r ˝ 
 D 1

jEkj
@

@�k

�

ijei ˝ ej

	
˝ ek (A3.15)

where k is the index with respect to which the derivation is performed. This gives a
third-order tensor, from which the result follows by contracting the two last indices.

A3.3 Problems in Linear Elasticity

We restrict ourselves to quasi-static problems with simple mixed boundary condi-
tions with the assumption of small perturbations.

Data: The solid occupies a volume V, with boundary @V
Body forces �f

�

.M/ (per unit of mass), M 2 V

Surface forces F
�
.P / (per unit of area), P 2 ST

Prescribed displacement u
�

g.P /, P 2 Su

ST [ Su D @V, ST \ Su D ¿ (simple mixed boundary conditions)
Unknowns: Displacement field u

�
.M/, 8M 2 V (3 unknowns)

Strain field ".M/ (6 unknowns)
Stress field 
.M/ (6 unknowns)

Equations: (rectangular cartesians)

"ij D 1=2.@ui =@xj C @uj =@xi / W 6 linear equations (A3.6 bis)

P
j

�
@
ij

ı
@xj

�C �fi D 0 W 3 linear equations (A3.12 bis)

and the 6 relations for linear homogeneous isotropic elastic behaviour


ij D �"kkıij C 2�"ij or E"ij D .1C �/
ij � �
kk•ij (A3.16)

where �, � are Lamé’s coefficients, � is Poisson’s ratio
E is Young’s modulus.

Boundary conditions: u.P / D ug on Su, 
ij.P /nj D Fi on ST



A3.3 Problems in Linear Elasticity 601

The problem is completely linear: with the assumption of small perturbations the
regions ST and Su can be defined in the load-free state and remain unchanged;
thus we can use the method of superposition of solutions and the uniqueness of
the solution could be established.

A3.3.1 Navier Equations for Linear Homogeneous Isotropic
Elasticity

If we take as principal unknown the displacement field u
�

(with 3 components) the

above set of equations will be satisfied if u
�

satisfies the following vector equation,

the Navier or Lamé-Clapeyron11 equation:

8̂̂
<̂
ˆ̂̂:

.�C 2�/grad div.u/ � �curl curl.u/C �f D 0

or equivalently
.�C �/grad div.u/C �r2u C �f D 0�
.�C �/uj;ij C �ui;jj C �fi D 0

�
(A3.17)

This gives 3 scalar equations, to which the boundary conditions have to be added.

A3.3.2 Beltrami Equations

If we take as principal unknown the stress field 
 (with 6 components) and
we express the compatibility equations (A3.10) in terms of stresses through the
constitutive equations (A3.16), taking account of the equilibrium equations (A3.12),
we find the Beltrami12 equations

8̂
<̂
ˆ̂:

r2
 C 1

1C �
grad grad.Tr
/C �

1� �
divf •C gradf C gradf T D 0

�

ij;kk C 1

1C �

kk;ij C �

1 � � fk;kıij C fi;j C fj;i D 0

�

(A3.18)

Note that these six equations are not fully independent; they have to be used
together with the equilibrium equations (and the boundary equations) for the
problem to be solved.

11Benoı̂t Paul Emile Clapeyron (1799–1864) was a French engineer and physicist.
12Eugenio Beltrami (1835–1900) was an Italian mathematician.
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More detailed developments, especially at finite strain, can be found e.g. in
Salençon (2001).

Reference

Salençon J (2001) Handbook of continuum mechanics. Springer, Berlin



Appendix D
Tables

Table D1 Structural parameters of various elements and compounds

Compounds Structure
Lattice parameters
(10�10 m)

Interatomic distance
(10�10 m)

Metals – – –
Li BCC 3.5093 at 78 K 3.039

FCC 4.404 3.114
CPH 3.111 at 78 K 3.111

5.093 3.116
Be CPH 2.2858 2.2858

3.5843 2.226
Mg CPH 3.2093 3.2093

5.2103 3.197
Ti alpha CPH 2.95 2.95

4.686 2.897
Ti beta BCC 3.3065 at 900ıC 2.863
Zr alpha CPH 3.232 3.232

5.147 3.179
Zr beta BCC 3.62 at 900ıC 3.135
Hf CPH 3.1967 3.1967

5.0578 3.131
V BCC 3.024 2.619
Nb BCC 3.3004 2.601
Ta BCC 3.3058 2.649
Cr BCC 2.8839 2.497
Mo BCC 3.1473 2.726
W BCC 3.16469 2.741
Fe alpha BCC 2.8665 2.482

(continued)

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
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Table D1 (continued)

Compounds Structure
Lattice parameters
(10�10 m)

Interatomic distance
(10�10 m)

Fe gamma FCC 3.642 at 950ıC 2.575
Co alpha CPH 2.5071 2.5071

4.0686 2.497
Co beta FCC 3.5442 at T > 450ıC 2.506
Ni FCC 3.52387 2.491
Rh FCC 3.8031 2.689
Pd FCC 3.8898 2.750
Ir FCC 3.8394 2.714
Pt FCC 3.9231 2.774
Cu FCC 3.61496 2.556
Ag FCC 4.0862 2.889
Au FCC 4.07825 2.883
Zn CPH 2.6648 2.6648

4.9467 2.913
Cd CPH 2.97887 2.97887

5.61765 3.293
Al FCC 4.04958
Sn alpha gray tin Cubic diamond 6.4912 2.810
Beta white tin Tetragonal 5.8197 3.022

3.17488
Pb FCC 4.9505 3.500
U alpha Orthorhombic 2.854 2.754

5.869
4.955

Covalents – –
C diamond C diamond 3.56679 1.544
C graphite Hex 2.456 1.421

6.696
Si C diamond 5.4307 2.351
Ge C diamond 5.65735 2.450
Carbides and – –

nitrides
SiC Cubic ZnS 4.348 3.074

Hex wurtzite 3.076 3.086
5.048

TiC FCC 4.3186 3.053
WC Hex (P6mm) 2.9065 2.9065

2.8366 2.8366
Fe3C Orthorhombic 5.08493
BN h or alpha Hexagonal
Beta Diamond 3.615 2.556

(continued)
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Table D1 (continued)

Compounds Structure
Lattice parameters
(10�10 m)

Interatomic distance
(10�10 m)

Oxides – –
SiO2 alpha quartz Rhombohedral 7.12
Beta quartz Hex 4.913 2.635

5.404 2.660
Al2O3 alpha Rhombohedral 4.754 3.97

12.982
CaO FCC 4.815 3.404
MgO FCC 4.216 2.980
ZrO2 FCC 5.1291 3.626

Monoclinic 5.169
5.232
5.341

TiO2 Tetragonal 9.174
5.449
5.138

Table D2 Molecular weight and density of various elements and compounds

Compounds Molecular weight Density (kg m�3)

Metals – –
Li 6:941 534
Be 9:012 1,848
Mg 24:3050 1,738
Ti 47:867 4,510
Zr 91:224 6,520
Hf 178:49 13,310
V 50:9415 6,100
Nb 92:90638 8,570
Ta 180:9479 16,400
Cr 51:9961 7,150
Mo 95:94 10,220
W 183:84 19,300
Mn 54:938 7,300
Fe 55:845 7,874
Co 58:933200 8,900
Ni 58:6934 8,902
Rh 102:90550 12,410
Pd 106:42 12,020
Ir 192:217 22,562
Pt 195:078 21,450
Cu 63:546 8,960
Ag 107:8682 10,500

(continued)



606 Appendix D Tables

Table D2 (continued)

Compounds Molecular weight Density (kg m�3)

Au 196:96655 19,300
Zn 65:409 7,134
Cd 112:411 8,690
Al 26:981538 26,98.9
Sn 118:710 7,290
Pb 207:2 11,350
U 238:028 19,100
Covalents – –
C diamond 12:0107 3,508
Graphite 2,250
Si 18:09 2,330
Ge 72:61 5,323
Carbides and nitrides – –
SiC 40:07 3,217
TiC 59:91 4,940
WC 195:87 15,630
Fe3C 179:5457

BN h or alpha 24:818 2,250
C or beta 2,300
Oxides – –
SiO2 50:09 2,650
Al2O3 149:828 3,950–4,100
CaO 56:077 3,300–3,400
MgO 40:304 3,580
ZrO2 123:2228 5,700
TiO2 79:8658 4,224

Table D3 Thermodynamic properties of various elements and compounds

Compounds
Enthalpy of formation
(kJ/mol at 298 K) Fusion temperature (ıC)

Enthalpy of fusion
(kJ/mol)

Metals – – –
Li – 180.54 4.60
Be – 648.85 9.80
Mg – 1277.85 9.04
Ti alpha 0
Beta 473 1659.85 20.90
Zr – 1851.85 23.00
Hf – 2229.85 25.50
V – 1886.85 17.60
Nb – 1467.85 27.20
Ta – 2995.85 31.40
Cr – 1856.85 15.30
Mo – 2616.85 27.70
W – 3406.85 35.20

(continued)
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Table D3 (continued)

Compounds
Enthalpy of formation
(kJ/mol at 298ıK) Fusion temperature (ıC)

Enthalpy of fusion
(kJ/mol)

Mn – 1243.85 14.40
Fe – 1534.85 14.90
Co – 1494.85 15.20
Ni – 1452.85 17.60
Rh – 1965.85 21.55
Pd – 1551.85 17.20
Ir – 2409.85 26.40
Pt – 1771.85 19.70
Cu – 1083.45 13.00
Ag – 961.93 11.30
Au – 1064.43 12.70
Zn 130.4 419.58 6.67
Cd – 320.95 6.11
Al – 660.37 10.67
Sn gray 301.2 331.97 7.20
White 0
Pb – 327.50 5.12
U – 1132.35 15.50
Covalents – – –
C diamond 1.92 3546.85 105.0
Graphite 0
Si – 1409.85 39.60
Ge – 937.45 34.70
Carbides and

nitrides
– – –

SiC �71.55 2,730 –
TiC �184.10 3,160 –
WC – 2,870 –
Fe3C – 1,227
BN 476.98 2,973 –
Oxides – – –
SiO2 �910.86 1,610 –
Al2O3 �1675.7 2,072 –
CaO �635.09 2,570 –
MgO �601.24 2,800 –
ZrO2 �1,080 2,683 –
TiO2 �938.72 1,853 –
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Table D4 Thermal properties of various elements and compounds

Compounds
Specific heat
(J/kg K)

Thermal conductivity
(W/m K)

Coefficient of thermal
expansion (10�6/ K)

Metals – – –
Li 3,600 84.70 46
Be 1,820 200 11.5
Mg 1,020 156 26
Ti alpha 520 21.9 8.5
Ti beta –
Zr alpha 270 22.7 5.7
Zr beta –
Hf 140 23 –
V 490 30.7 8
Nb 260 53.7 7.2
Ta 140 57.5 6.5
Cr 450 93.7 6.2
Mo 250 138 4.9
W 130 174 4.5
Fe alpha 440 80.2 11.8
Fe gamma
Co alpha 420 100 12.3
Co beta
Ni 440 90.7 13
Rh 240 150 8
Pd 240 71.8 11.8
Ir 130 147 6.4
Pt 130 71.6 9
Cu 380 401 16.4
Ag 240 429 18
Au 130 317 14.4
Zn 390 116 29.7
Cd 230 96.8 30
Al 900 237 69
Sn alpha gray tin 230 66.6 23.4
Beta white tin
Pb 130 35.3 29
U alpha 120 27.6 13.9
Covalents – –
C diamond 710 990 1.2
C graphite 7.9
Si 710 148 5.1
Ge 320 59.9 6.1

(continued)
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Table D4 (continued)

Compounds
Specific heat
(J/kg K)

Thermal conductivity
(W/m K)

Coefficient of thermal
expansion (10�6/ K)

Carbides and nitrides – – –
SiC 1,130 18.5 (at 400ıC) 4.8
TiC 560 – –
WC 210 – –
Fe3C - – –
BN h or alpha 1,610 20 k; 27? 2.7 k; 38?
Beta 1,470
Oxides – –
SiO2 alpha quartz 670–750 – 0.77–1.4
Beta quartz
Al2O3 alpha 753–850 – 5.4
CaO 750 – –
MgO 920 – –
ZrO2 400–610 – –
TiO2 690 – –



Appendix E
Physical Constants; Conversion Factors

NA Avogadro’s number 6.022 141 79�1023 Number of atoms in 12 g of
12 C

˙ 3.0�1016 mol�1

u Atomic mass unit 1.660 538 782(83) 10�27 kg 1/12 the mass of 12 C
h Planck’s constant 6.626 068 96�10�34 The energy of a photon is

the product of its
frequency by the Planck
constant

˙ 0.000 000 33 10�34 J�s
„ - 1.054 571 628�10�34 h/2 

˙ 0.000 000 053�10�34 J�s
- Mass of the electron 510.998 918 keV�c�2 –

(9.109 382�10�31 kg)
e Charge on the electron �1.602 176 53�10�19ıC –
F Faraday’s constant 96 485.3399ıC�mol�1 NAe
œ0 Wave length of X-ray

corresponding to 1 eV
12 398.04 10�10 –

˙ 0.12 10�10 eV�m
c Velocity of light 299 792 458 m�s�1 –

300 000 km�s�1

k Boltzmann’s constant 1.380 650 4(24) 10�23 J�K�1 –
8.617 343(15) 10�5 eV�K�1

R Gas constant 8.314 472(15) J�K�1�mol�1 RDNAk
1.985 8775(34) cal�K�&�mol 1

- Melting point of ice 273.16 K –

(continued)
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(continued)

- J (joule) eV (electron-volt) cal (calorie)

1 JD – 6.241 506 48�1018 0.238 845 896 63
1 eVD 1.602 177 3�10�19 – 3.826 734 377�10�20

1 calD 4.186 8 26.131 939 331�1018 –

1 JD 107 erg
1 JD 0.737562 ft lbD 0.000948 BTU
1 ft lbD 1.355818 J 1 BTUD 1,054 J

–
MPa
(mega pascal) bar atm (atmosphere) psi (pound per square inch) mm Hg

1 MPaD – 10 9.869 145 7,500
1 barD 0.1 - 0.987 14.5 750
1 atmD 0.101 1.013 - 14.7 760
1 psiD 6.89 10�3 0.069 0.068 – 51.71
1 mmHgD 133 10�6 1.333 10�3 1.316 10�3 19.34 10�3 –

1 MPaD 106 N�m�2

1 mD 39.37 in.
1 in.D 0.0254 m



Appendix F
Coordinate Systems

The following tables give the expressions for the various quantities and functions
used in the text, in the three main coordinate systems: rectangular cartesians,
cylindrical polars and spherical polars respectively.

F.1 Rectangular Cartesian Coordinates

Definitions

ei D @M

@xi

Coordinates OM D xiei
Vector field u.M/ D ui .M/ei

(continued)

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
Macroscopic Constitutive Behaviour, Solid Mechanics and Its Applications 180,
DOI 10.1007/978-94-007-2546-1, © Springer ScienceCBusiness Media B.V. 2012

613



614 Appendix F Coordinate Systems

Unit base vectors dei D 0

dM D dxiei

Gradient of a scalar f
df D grad f � dM

gradf D @f

@xi
ei D f; i ei

Gradient of a vector field u
du D .grad u/.dM

grad u
�
D @ui
@xj

ei ˝ ej D ui;j ei ˝ ej

Deformation field
D (1/2)(grad uC gradTu)

"D "ijei ˝ ej "ij D 1

2

�
ui;j C uj;i

�

Divergence of a vector field

div u D Tr
�

grad u
	 div u D uk;k

Laplacian of a scalar

�f D div
�

gradf
	 �f DP

i

@2f

@xi 2
D f; i i

Laplacian of a vector field

�
�

u
�
D div

�
gradu

	 �uD ui ; kkei

Second-order tensor field T T D Tijei ˝ ej
Divergence of a symmetric second-order tensor field

div 

div 
 D 
ij;j ei

Change of coordinates for a vector u
�

u
�
D ui ej

Change of coordinates for a symmetric second-order
tensor

"D "ijei ˝ ej

F.2 Cylindrical Polars

Definitions z

x

r

ez
eq

q

M

y

er

er D @M

@r
e™ D 1

r

@M

@�
ez D @M

@z

(continued)
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Coordinates OM D rer C zez

Vector field
u
�
.M/

u.M/D urer C u™e™ C uzez

Unit base vectors der D d�e™ de™ D �d�er dez D 0

dM D drer C rd�e™ C dzez

Gradient of a scalar f
df D gradf � dM

gradf D @f

@r
er C 1

r

@f

@�
e™ C @f

@z
ez

Gradient of a vector field u
�

du
�
D .grad u

�
/:dM

grad u D

2
6666664

@ur

@r

1

r

�
@ur

@�
� u™

�
@ur

@z
@u™
@r

1

r

�
@u™
@�
C ur

�
@u™
@z

@uz

@r

1

r

@uz

@�

@uz

@z

3
7777775

Deformation field
"D
.1 =2 / .grad uC grad Tu

�
/

" D

2
6666664

@ur

@r

1

2

@u™
@r
C 1

2r

�
@ur

@�
� u™

�
1

2

�
@ur

@z
C @uz

@r

�

1

r

�
@u™
@�
C ur

�
1

2

�
@u™
@z
C 1

r

@uz

@�

�

sym
@uz

@z

3
7777775

Divergence of a vector field
div u D Tr.grad u/

div uD @ur

@r
C 1

r

@u™
@�
C ur

r
C @uz

@z

Laplacian of a scalar
�f D div .grad f /

�f D @2f

@r2
C 1

r

@f

@r
C 1

r2
@2f

@�2
C @2f

@z2

Laplacian of a vector field
�
�

u
�
D div.grad/ u

�

�u D
�
�ur � 2

r2
@u™
@�
� ur

r2

�
er C

�
�u™ C 2

r2
@ur

@�
� u™
r2

�
e™

C�uzez

Second-order tensor field T T D Trrer ˝ er C Tr™er ˝ e™ C Trzer ˝ ez

C T™re™ ˝ er C T™™e™ ˝ e™ C T™ze™ ˝ ez

C Tzrez˝ er C Tz™ez ˝ e™ C Tzzez ˝ ez

Divergence of a symmetric
second-order tensor field
div 


div
 D
�
@
rr

@r
C 1

r

@
r™

@�
C @
rz

@z
C 
rr � 
™™

r

�
er

C
�
@
r™

@r
C 1

r

@
™™

@�
C @
z™

@z
C 2
r™

r

�
e™

C
�
@
zr

@r
C 1

r

@
z™

@�
C @
zz

@z
C 
zr

r

�
ez

Change of coordinates for
the base vectors

er D cos �e1 C sin �e2

e™ D � sin �e1 C cos �e2

ez D e3

(continued)
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e1 D cos �er � sin �e™
e2 D sin �er C cos �e™
e3 D ez

Change of coordinates for a
vector u

�

u1 D urcos� � u™sin�
u2 D ursin� C u™cos�
u3 D uz

ur D u1cos� C u2sin�
u™ D �u1sin� C u2cos�
uz D u3

Change of coordinates for a
symmetric second-order
tensor "

"11 D "rrcos2� C "™™sin2� � 2"r™ sin � cos �
"22 D "rrsin2� C "™™cos2� C 2"r™ sin � cos �
"33 D "zz

"12 D ."rr � "™™/ sin � cos � C "r™.cos2� � sin2�/
"13 D "rz cos � � "™ z sin �
"23 D "rz sin � C "™ z cos �

"rr D "11cos2� C "22sin2� C 2"12 sin � cos �
"™™ D "11sin2� C "22cos2� � 2"12 sin � cos �
"zz D "33
"r™ D ."22 � "11/ sin � cos � C "12.cos2� � sin2�/
"r™ D "13 cos � C "23 sin �
"™z D �"13 sin � C "23 cos �

F.3 Spherical Polars

Definitions

x

y

M

Z

j

q r
eθ

er eϕ

er D @M

@r
e™ D 1

r

@M

@�
e® D 1

r sin �

@M

@'

(continued)



F.3 Spherical Polars 617

Coordinates OM D rer

Vector field
u
�
.M/

u
�
.M/ D urer C u™e™ C u®e®

Unit base vectors
der D d� e™ C sin � d' e®
de™ D �d� er C cos � d' e®
de® D � sin ™ d' er � cos � d' e™
dM D dr er C rd� e™ C rsin� d' e®

Gradient of a scalar f
df D gradf � dM

gradf D @f

@r
er C 1

r

@f

@�
e™ C 1

r sin �

@f

@'
e®

Gradient of a vector
field u

�

du
�
D .grad u

�
/:dM

gradu D

2
6666664

@ur

@r

1

r

�
@ur

@�
� u™

�
1

r

�
1

sin �

@ur

@'
� u®

�

@u™
@r

1

r

�
@u™
@�
C ur

�
1

r

�
1

sin �

@u™
@'
� u®

tan �

�

@u®
@r

1

r

@u®
@�

1

r

�
1

sin �

@u®
@'
C u™

tan �
C ur

�

3
7777775

Deformation field
"D .1 =2 /

.grad uC grad Tu
�
/

" D

2
6666664

@ur

@r

1

2

@u™
@r
C 1

2r

�
@ur

@�
� u™

�
1

2

@u®
@r
C 1

2r

�
1

sin �

@ur

@'
� u®

�

1

r

�
@u™
@�
C ur

�
1

2r

@u®
@�
C 1

2r

�
1

sin �

@u™
@'
� u®

tan �

�

sym
1

r

�
1

sin �

@u®
@'
C u™

tan �
C ur

�

3
7777775

Divergence of a
vector field
div u D Tr

�
grad u

	
divu D @ur

@r
C 1

r

@u�
@™
C 2ur

r
C 1

r sin �

@u®
@'
C u™
r tan �

Laplacian of a scalar

�f D div
�

gradf
	 �f D @2f

@r2
C 2

r

@f

@r
C 1

r2
@2f

@�2
C 1

r2 tan �

@f

@�
C 1

r2sin2�

@2f

@'2

Laplacian of a vector
field
�
�

u
�
D div.grad u/

�u D
�
�ur � 2ur

r2
� 2

r2 sin �

@.u™ sin �/

@�
� 2

r2 sin �

@u®
@'

�
er

C
�
�u™ C 2

r2
@ur

@�
� u™
r2sin2�

� 2 cos �

r2sin2�

@u'
@®

�
e™

C
�
�u® C 2

r2sin2™

@ur

@'
� u®
r2sin2�

C 2 cos �

r2sin2�

@u™
@'

�
e®

Second-order tensor
field T

T D Trrer ˝ er C Tr™er ˝ e™ C Tr®er ˝ e®
C T™re™ ˝ er C T™™e™ ˝ e™ C T™®e™ ˝ e®
C T®re® ˝ er C T®™e® ˝ e™ C T®®e®˝ e®
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Divergence of
a symmetric
second-order
tensor field
div 


div
 D
�
@
rr

@r
C 1

r

@
r™

@�
C 1

r sin �

@
r®

@'
C 1

r
.2
rr � 
™™ � 
®®C 
r™ cot �/

�
er

C
�
@
™r

@r
C 1

r

@
™™

@�
C 1

r sin �

@
™'

@'
C1
r
.
™™ cot � � 
®® cot �C3
r™/

�
e™

C
�
@
®r

@r
C 1

r

@
®™

@�
C 1

r sin �

@
®®

@'
C 1

r
.3
r® C 2
™® cot �/

�
e®

Change of
coordinates
for the base
vectors

8<
:
er D sin � cos ' e1 C sin � sin' e2 C cos � e3
e™ D cos � cos ' e1 C cos � sin ' e2 � sin � e3
e® D � sin' e1 C cos ' e28̂<

:̂
e1 D sin � cos ' er C cos � cos' e™ � sin' e'
e2 D sin � sin' er C cos � sin' e™ C cos ' e®
e3 D cos � er � sin � e™

Change of
coordinates
for a vector u

�

8<
:

u1 D ur sin � cos ' C u™ cos � cos' � u® sin'
u2 D ur sin � sin' C u™ cos � sin' C u® cos'
u3 D ur cos � � u™ sin �

8<
:

ur D u1 sin � cos ' C u2 sin � sin' C u3 cos �
u™ D u1 cos � cos ' C u2 cos � sin' � u3 sin �
u® D �u1 sin' C u2 cos '

Change of
coordinates
for a
symmetric
second-order
tensor "

8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
:

"11 D "rrsin2�cos2' C "™™cos2�cos2' C "®®sin2'

C 2"r™ sin � cos �cos2' � 2"r® sin � sin' cos ' � 2"™® cos � sin ' cos '
"22 D "rrsin2�sin2' C "™™cos2�sin2' C "®®cos2'

C 2"r™ sin � cos �sin2' C 2"r® sin � sin' cos ' C 2"™® cos � sin' cos '
"33 D "rrcos2� C "™™sin2� � 2"r™ sin � cos �
"12 D "rrsin2� sin' cos ' C "™™cos2� sin' cos' � "®® sin' cos '

C 2"r™ sin � cos � sin' cos ' C ."r® sin � C "™® cos �/.cos2' � sin2'/
"13 D ."rr � "™™/ sin � cos � cos ' C "r™.cos2� � sin2�/ cos '

� "r® cos � sin' C "™® sin � sin'
"23 D ."rr � "™™/ sin � cos � sin' C "r™.cos2� � sin2�/ sin '

C "r® cos � cos ' � "™® sin � cos '
8̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

"rr D "11sin2�cos2' C "22sin2�sin2' C "33cos2�

C 2"12sin2� sin' cos ' C 2"13 sin � cos � cos ' C 2"23 sin � cos � sin'
"™™ D "11cos2�cos2' C "22cos2�sin2' C "33sin2�

C 2"12cos2� sin' cos ' � 2"13 sin � cos � cos ' � 2"23 sin � cos � sin'
"®® D "11sin2' C "22cos2' � 2"12 sin ' cos '

"r™ D "11 sin � cos �cos2' C "22 sin � cos �sin2' � "33 sin � cos �

C 2"12 sin � cos � sin' cos ' C ."13 cos ' C "23 sin'/.cos2� � sin2�/
"r® D ."22 � "11/ sin � sin' cos ' C "12 sin �.cos2' � sin2'/

� "13 cos � sin' C "23 cos � cos '
©™® D ."22 � "11/ cos � sin' cos ' C "12 cos �.cos2' � sin2'/

C "13 sin � sin' � "23 sin � cos '



Appendix G
Notations

Scalar Quantities

@V surface of a volume V
a distance between crystallographic planes

unit cell parameter
radius of the neck cross-section of a tensile specimen

aT shift factor (relaxation of polymers)
aV shift factor (creep of polymers)
a0 atomic radius
a0S solute atomic radius
a1, a2, a3 initial coordinates of a point
b interatomic distance

Burgers vector amplitude
c atomic concentration

volume fraction
c1 longitudinal wave speed
c2 shear wave speed
d distance between dislocations

distance between slip lines
distance of a dislocation to an interface
grain size
standard deviation

e density of internal energy (per unit mass)
extension

f amplitude of a force acting on a dislocation
density of free energy (per unit mass)
volume fraction

f(t) creep function
ft total Helmoltz free energy
fv volume fraction

Helmoltz free energy per unit volume

D. François et al., Mechanical Behaviour of Materials: Volume 1: Micro- and
Macroscopic Constitutive Behaviour, Solid Mechanics and Its Applications 180,
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g slip amplitude
h, k, l Miller indexes
h distance between dislocations in a wall

distance between slip planes
work-hardening modulus

k Boltzmann constant
k yield strength in simple shear

stiffness coefficient
coefficient of compressibility, elastic bulk modulus

l dislocation line
l length

distance between trees
lD mean distance travelled by a dislocation
lG .... by a geometrically necessary dislocation
m fraction transformed

strain rate sensitivity exponent
mS Schmid factor
mT Taylor factor
n number of dislocations; in particular in a pile-up

number of jogs
number of phantom molecular chains of an elastomer
strain-hardening exponent
atomic fraction of vacancies

ni components of the normal to the slip plane
p cumulative plastic deformation

pressure
q deformation parameter

displacement
Pq deformation rate parameter
r polar coordinate (radial)

rate of heat flow into unit volume
radius
inter-atomic distance

r* complex modulus
r(t) relaxation function
<r> mean end to end distances of molecular chains
r0 core radius of dislocations

inter-atomic distance at equilibrium
s curvilinear coordinate

displacement in twinning
entropy density (per unit mass)

t line tension
wall thickness
time

ti stress components
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tR time to fracture
u displacement
uGB intergranular displacement
v dislocation velocity
w width of a precipitate or of an inclusion

width of a ribbon of stacking fault
length

w* critical length of a dislocation loop
xc degree of crystallinity
x1, x2, x3 present coordinates of a point
x, y, z cartesian coordinates
z cylindrical coordinate (axial)
A area swept by a dislocation

percentage elongation after fracture
Ag percentage elongation non-proportional at maximum force
C torque

concentration of vacancies
Cp specific heat (per unit mass)
C1 polymer chain characteristic ratio
D diffusion coefficient

diameter
dimension
relative cross-section ratio

DGB intergranular diffusion coefficient of vacancies
DL diffusion coefficient of vacancies
Dv self-diffusion coefficient
E Young modulus

elastic energy
Ed elastic energy of a dislocation
Ek energy of a kink
EPN energy for overcoming Peierls-Nabarro hills
ET elastic energy due to external forces
E* complex modulus
E0 storage modulus (real part of E*)
E00 loss modulus (imaginary part of E*)
F load

Helmoltz free energy
inertia parameter of polymer chain units (molar mass of chains /
number of rotatable bonds)

G Gibbs free energy (free enthalpy)
G0 storage modulus (real part of r*)
G00 loss modulus (imaginary part of r*)
�G variation of Gibbs free energy (free enthalpy)
�Gf Gibbs free energy for the creation of a vacancy
H(t-�) Heaviside unit step function
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HDT heat deflection temperature (for polymers)
J Jacobian

flux of vacancies
creep compliance

I1, I2, I3 invariants of the stress tensor
J1, J2, J3 invariants of the deviatoric stress tensor

K force exerted on a dislocation by an obstacle
constant in Norton’s law

KIc fracture toughness
L distance between points of anchorage of a dislocation

mean distance between dislocations
size of a pile-up – length of the slip lines
dislocation length
length between marks for a tensile specimen

L0 initial length between marks for a tensile specimen
Le gauge length of extensometer
LF size of the Frank’s net (mean distance between dislocations)
M strain rate exponent

rigidity coefficient (D �/2  for a screw dislocation
D�/2 (1-�) for an edge dislocation)
molar mass

Mc molecular weight
N number of dislocations

number of molecular chains per unit volume
number of loops
strain-hardening exponent

Q load parameter
load
activation energy

Q0 heat rate
Q0 activation energy of self-diffusion
PD dynamic stiffness of molecules
PS static stiffness of molecules
R Perfect gas constant
R radius of curvature

radius of action of a dislocation
radius of Mohr circle
radius of a test piece
radius of a cylindrical vessel
Lankford coefficient

NR mean value of the Lankford coefficient
Rc radius of a dislocation loop
Re limit of proportionality
Re
0 yield strength in compression

ReH upper yield strength
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Rel lower yield strength
Rf average plastic flow stress
Rm tensile strength
Rp proof strength
Rp0.2 conventional proof strength at 0.2% extension
Rt proof strength total extension
Rr permanent set strength
Ru true tensile strength
S0 initial cross-sectional area of a tensile specimen
Su surface over which displacements or velocities are imposed
ST surface over which tractions are imposed
�S variation of entropy
T absolute temperature
Tg glass transition temperature
Tgl glass transition temperature of a hypothetical linear copolymer
Tg1 characteristic temperature of a polymer (linked to the chain dy-

namic stiffness)
Tm melting point
T“ “ transition temperature
U interaction energy

cohesion energy
U0 cohesion energy at equilibrium
UL energy of a dislocation loop
UL* activation energy for the escape of a dislocation loop
V volume

striker velocity
flow variables associated with the work-hardening parameter

VL longitudinal sound wave velocity
VT transverse sound wave velocity
�V/V relative volume change in a transformation

relative variation of the atomic volume
W work
W 0def virtual deformation work
Wk kinetic energy
Wp work done in plastic deformation
WS stored energy
X atomic fraction
Y parameter for isotropic work-hardening
Ym work-hardening parameter
Z percentage reduction of area
˛ coefficient of thermal expansion

portion of the Burgers vector b by which the centre of a dislocation
is displaced

’, “ slip lines
˛, ˇ factors
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ı relative cross-section increment ratio
loss angle (tanı is the damping factor)

ıGB thickness of grain boundary

 shear strain, slip ( P
 slip rate)

A antiphase energy

 f stacking fault energy

 i interface energy

 s surface energy
”0 precipitate of Ni3Al type
" strain
"v viscous strain
P"v viscous strain rate
P"sv secondary creep strain rate
"GB intergranular deformation
"hg homogeneous strain
"p plastic strain
"T total deformation
� size factor

viscosity
� angle between the slip direction and the tensile axis

distance between hard points in work-hardening: cell size
extension ratio
Lamé coefficient

� shear modulus (or Coulomb modulus)
�d depressed shear modulus
� Poisson ratio

cross-link density in a polymer
! angular frequency
� density of elastic potential
' angle of rotation
$ density of complementary elastic potential
� mass density (per unit volume)

dislocation density
internal friction coefficient

�a density of amorphous polymer
�c density of crystalline polymer
�D dislocation density
�G density of geometrically necessary dislocations
�M density of mobile dislocations
�S density of dislocation sources

 tensile stress

v “viscous stress”

 ij stress tensor components

 i, 
 I, 
 II, 
 III principal stresses

h stress parameter in the constitutive equation
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m mean stress (D 1/3 Tr
)

p tensile yield strength of a single crystal

 s threshold stress
N
 equivalent stress
� shear stress

relaxation time
� c critical resolved shear stress
� chem chemical stress (martensitic transformation)
� i internal frictional shear stress on dislocations
�M maximum shear stress
�p flow shear stress
�PN Peierls-Nabarro critical shear stress
�R maximum shear stress at the surface of a torsion specimen
�w stress needed to nucleate a twin
�0 theoretical yield strength in shear
� volume dilatation (D Tr")

angle, polar coordinate
cooling rate

� a/2(1-�), a being the distance between slip planes; 2� is the half-
width of a dislocation

� distance between precipitates
length of dislocation

� diameter
angle between the normal to the slip plane and the tensile axis
flux of vacancies

˚ volume dissipation of energy
˝ volume of a solid

atomic volume
@˝ boundary of a solid
�ij Green-Lagrange strain tensor
P�ij Green-Lagrange strain rate tensor

r2 Laplacian operator, often written �

Vectors

b
�

Burgers vector

f
�

force per unit length exerted on a dislocation body-force field

g vector of reciprocal lattice
l
�

unit vector along a dislocation line

n
�

unit normal vector

q heat flow
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u
�
.x/ displacement field

uD displacement of the surface of a solid in creating a dislocation
ug imposed displacement
u
�

0 virtual displacement vector

T finite transformation
v
�
.x/ velocity field

vg velocity imposed on a boundary
v
�

0.x/ kinematically admissible velocity field

T external applied forces
T D external forces to create a dislocation

.x/ acceleration field

G.1 Tensors

Second-order tensors are underlined twice; higher order tensors are written with
bold roman letters. Matrixes are denoted by square brackets: [˛].

A strain concentration tensor
B stress concentration tensor
" Eulerian strain tensor
d Eulerian strain rate tensor
� Green-Lagrange strain tensor

e deviatoric strain tensor (" D 1

3
�•C e)

"0 .x/ admissible strain field
P"0 .x/ admissible strain rate field
E macroscopic strain
"PT transformation strain
F transformation gradient
c elastic moduli
C elastic moduli (Cijkl, CIJ)
S elastic compliances (Sijkl,SIJ)
SEsh Eshelby tensor
X kinematic work-hardening parameter

 Cauchy stress tensor
s deviatoric stress tensor (¢ D 
m•C s)

� .x/ statically admissible stress field

 0 .x/ stress associated with P"0 .x/
˘ Piola-Kirchoff stress tensor
˙ macroscopic stress tensor
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• second-order unit tensor (or Kronecker tensor) (•ij D 1 if i D j and 0
otherwise)

I fourth-order symmetric unit tensor (Iijkl D 1=2
�
•ij•kl C •ik•jl

�
)


 D 
m• C s D �p• C s, i.e. 
ij D 
m•ij C sij D �p•ij C sij, p is the
hydrostatic stress (pressure).


� statically admissible stress field

G.2 Vector and Tensor Operations

The summation convention is mostly used, repetition of a suffix implying summa-
tion over all values for that suffix, e.g. aijbj D †jaijbj

u
�
:v
�

D P
j uj vj .D uj vj /(inner product)

w D u � v (wi D 2ijkuj vk) (cross product) 2ijkD 0 if any two suffixes are equal,
C1 or �1 according as ijk is an even or an odd permutation of 123.
w D u ˝ v (wij D uivj) (dyadic or tensorial product)
t D 
:n (ti D 
 ijnj)

 W " D 
ij"ij

CDa ˝ b (Cijkl D aijbkl)
B D A.u (Bijk D Aijklul)
b D A W a (bij D Aijklakl)
C D A ˝ a (Cijklmn D Aijklamn)
f D div 
.fi D 
ij;j for rectangular cartesian coordinates)
� D Inc" (�ij D 2ikl2jmn"km;lnfor rectangular cartesian coordinates)
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Florêncio, A., 488
Flory, P.J., 92, 467, 468, 478
Flower, H.M., 44, 46
Foreman, A.J.E., 269–271
Forest, S., 433
Fourier, J., 464

Fox, T.G., 478
Franciosi, P., 311
François, D., 54, 64
Frank, F.C., 174, 187
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