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He who knows nothing, loves nothing. But he
who understands also loves, notices, sees.
The more knowledge is involved in a thing,
the greater the love.

Paracelsus



To our parents and to their memory



Preface

Mechanics is the oldest discipline among the fundamental natural sciences. The
name comes from the Greek word “mechanike”, which means “mechanism”. The
subject of mechanics as a science is the investigation of the motion of bodies and
their equilibrium under the action of applied forces. Depending on the nature of the
bodies, mechanics can be divided into three branches: (a) general mechanics,
dealing with the mechanical behaviour of material points and rigid bodies; (b) fluid
mechanics (or the mechanics of continuous media), which is concerned with ideal
and viscous fluids and (c) mechanics of deformable media, which studies the
deformation of solid bodies under applied external forces.

The knowledge of mechanical motion or displacement of bodies can be
accomplished by a very general procedure based on a system of basic axioms,
called principles. These principles are the core of what is known as Newtonian
mechanics, relativistic mechanics, quantum mechanics and so forth. During the
eighteenth century, after the huge success achieved by the mechanics of Galileo
Galilei (1564-1642) and Isaac Newton (1643—-1727), there appeared the tendency
of making mechanics more abstract and general. This tendency leads to what
nowadays is called analytical mechanics. Among the founders of analytical
mechanics are: Pierre-Louis Moreau de Maupertuis (1698-1759), Leonhard Euler
(1707-1783), Jean Baptiste le Rond D’Alembert (1717-1783), Joseph-Louis
Lagrange (1736—1813), Carl Friedrich Gauss (1777-1855) and William Rowan
Hamilton (1805-1865). Analytical mechanics has proved to be a very useful tool
of investigation not only in Newtonian mechanics, but also in other disciplines of
Physics: electrodynamics, quantum field theory, theory of relativity, magnetofluid
dynamics — to mention a few.

Classical mechanics has undergone an important revival during the last few
decades, due to the progress in non-linear dynamics, stochastic processes and
various applications of Noether’s theorem in the study of both discrete and con-
tinuous systems. We recall that there are no exactly linear processes in Nature, but
only approximately. All linear models studied in any science are only approxi-
mations of reality.
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< Preface

This book is dedicated to the principles and applications of classical mechanics,
written for undergraduate and graduate students in physics and related subjects. Its
main purpose is to make the students familiar with the fundamentals of the theory,
to stimulate them in the use of applications and to contribute to the formation of
their background as specialists.

The first two chapters are dedicated to the basic notions and principles of both
Newtonian and analytical mechanics, as different approaches to the same purpose:
the investigation of mechanical behaviour of both discrete and continuous systems.
A special emphasis is put on the large applicability of analytical formalism in
various branches of physics.

In the third chapter, the Lagrangian formalism is applied to the study of some
classic mechanical systems, as the harmonic oscillator and the gravitational pen-
dulum, as well as to the investigation of some non-mechanical systems, like
electric circuits.

The fourth chapter is concerned with the mechanics of the rigid body. The
derivation of velocity and acceleration distributions in relative motion makes
possible to study the motion of a rigid body about a fixed point. The chapter ends
with some applications, such as the physical pendulum and the symmetrical top,
together with some mechanical-electromagnetic analogies.

The aim of the fifth chapter is to make the reader familiar with the Hamiltonian
formalism. The derivation of the canonical equations is followed by several
applications and extensions in mechanics and electrodynamics. The canonical
transformations, integral invariants and the Hamilton—Jacobi formalism are also
described. They are very useful for students for their further studies of thermo-
dynamics, statistics and quantum theory.

The sixth, final, chapter deals with the mechanics of continuous deformable
media. Here, both the Lagrangian and Hamiltonian formalisms are applied in order
to study some well-known models of continuous media: the elastic medium, the
ideal and viscous fluids. Special attention is paid to the extension of Noether’s
theorem to continuous media and its applications to the fundamental theorems of
ideal fluids.

Since classical mechanics has undergone a considerable evolution during the
last century, the authors have tried to draw the attention of the reader to three main
directions of development of post-classical mechanics: theory of relativity,
quantum mechanics and stochastic processes. These three basic orientations in
post-classical mechanics are very briefly exposed in three addenda, which con-
clude the main substance of the book. At the end of the book, for the convenience
of readers, two appendices are provided, which contain the most frequently used
formulas on vector and tensor algebra, as well as on vector calculus.

The present book is an outcome of the authors’ teaching experience over many
years in different countries and with different students studying diverse fields of
physics and engineering. The authors believe that the presentation and the dis-
tribution of the topics, the various applications in several branches of physics and
the set of more than 100 proposed problems make this book a comprehensive and
useful tool for students, teachers and researchers.
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express gratitude to all of them and to acknowledge the stimulating discussions
and their useful advice. Our special thanks go to Professor Peter Presnajder for
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Chapter 1
Foundations of Newtonian Mechanics

1.1 Notions, Principles and Fundamental Theorems
of Newtonian Mechanics

In physics, by mechanical motion we mean the change in time of the position of a
body with respect to another body, chosen as a reference. Generally speaking, the
motion of a body does not reduce to its mechanical motion, since the body can be
simultaneously animated by several types of motion (mechanical, chemical, bio-
logical, etc.) depending on its complexity. For the sake of simplicity we shall,
nevertheless, call mechanical motion just motion.

The study of the motion of a body implies the choice of another body, supposed
to be fixed, with respect to which the motion of the first body is considered. The
body chosen as a reference defines, by abstraction, a reference system or reference
frame.

If the position of a body does not change relative to a certain reference frame,
then it is at rest relative to that frame. There are no immobile reference frames in
Nature; nevertheless, the motion of the bodies is conventionally referred to ref-
erence frames considered to be fixed. Any other reference frame which is immobile
with respect to the first is, in its turn, immobile.

The aforementioned considerations show that neither absolute reference frames
(i.e. independent of the motion of bodies) nor absolute rest state can exist.
However, sometimes the expression absolute motion is used when we refer to a
fixed reference frame, in order to distinguish this motion from that relative to a
frame which is mobile with respect to the first, called relative motion.

A body whose dimensions can be neglected when studying its motion is called
point mass or particle. In this case, the mass of the body is supposed to be
concentrated in a geometric point (e.g. the centre of mass). Such an approximation
depends, obviously, upon the concrete conditions of the mechanical model. For
example, a planet moving around the Sun can be considered as a particle, but this
approach is not possible when the motion of the planet around its axis is studied.
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2 1 Foundations of Newtonian Mechanics

Fig. 1.1 Geometry of the gl Ar
trajectory described by a H
particle. ﬁ As t

Y

The position of a particle is defined relative to a given reference frame. To do
this, we can chose either Cartesian coordinates x, y, z, spherical coordinates
r, 0, @, or cylindrical coordinates p, @, z, etc. Most commonly, the position of a
particle is defined by its radius-vector or position vector r, relative to the origin of
the coordinate frame.

To know the motion of a particle one has to know its coordinates (e.g. Cartesian
coordinates x; = x, x, = y, x3 = z) as functions of time

)C,':.X,'(I) (121,2,3> (1]1)
or, in vector form,
r =r(z). (1.1.2)

The vector function r(f) must obey certain mathematical requirements, imposed by
the physical phenomenon of the motion. It must be continuous and homogeneous in
time, finite in magnitude, and at least twice differentiable. The last condition is
required due to fact that the differential equations of motion are of the second-order.

When the parameter ¢ varies, the particle describes a curve called trajectory
(Fig. 1.1). In other words, the trajectory is the geometric locus of the successive
positions occupied by the moving particle.

Equations (1.1.1) are called the finite equations of motion. They express the law
of motion of the particle. At the same time, these equations are the parametric
equations of the trajectory of the particle. If the trajectory is known, then the
motion of the particle can be defined by a single scalar equation

s =s(t). (1.1.3)

Here, s is the curve between the origin and the actual position of the particle, at time ¢.

1.1.1 Velocity. Acceleration

Let P be a particle tracing the trajectory (C) and r(¢) the radius-vector of the
particle, at time ¢, relative to the origin O of the Cartesian reference frame Oxyz.
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Suppose that at time ' = ¢ + At, the particle reaches the position P, defined by the
radius-vector r(¢ + At). Then the ratio

Ar
V= — 1.14
=3 (1.1.4)
where Ar =r(t 4+ Ar) —r(¢), is a vector collinear with Ar, named average
velocity of the particle on the arc of curve PP, (averages are customarily denoted
by a bar above the corresponding quantity). If At — 0, then P; — P and (1.1.4)
yields
Ar  dr
=lim — = — =¥ 1.1.5
VEAN A T T (1.15)
which is the instantaneous linear velocity of the particle at time z. The vector
v with the origin in P is tangent to the trajectory (C) and shows the direction of
motion. If 7 is the unit vector of v, we can write

v=uvt, v=|v|. (1.1.6)

The magnitude vl of the vector v is called the speed of motion. If we denote
dr = r(t + dt) — r(f) and observe that ldrl = ds, the magnitude of v can be
defined by

_ds dr

_—:—:.. 11
S T a8 (1.1.7)

Suppose now that the particle P is forced to remain on the curve (C) during its
motion. If the curve (C) is moving, then the actual trajectory (I') of the particle and
the arc (C) will not coincide, the velocity v being tangent to the trajectory (I') (Fig.
1.2). If Ivl = const., the motion is called uniform; if Ivl changes in time, then the
motion is called varied.

Let the velocities corresponding to the positions P, Py be v and v+ Av,
respectively. The vector quantity

Av
At

a= (1.1.8)

Fig. 1.2 The instantaneous
velocity of a particle is
tangent to its trajectory.
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is the average acceleration of the particle in the time interval [r, ¢ + Af], while

. Av adv  dr .
a—Al}goA—t—E_ﬁ_v_r (1.1.9)

is the instantaneous acceleration of the particle at the time 7. If lal = const., the
motion is called uniformly varied. The definitions (1.1.5) and (1.1.9) yield the
following units for velocity and acceleration:

W] =LT', [a]=LT? (1.1.10)

1.1.2 Analytical Expressions for Velocity and Acceleration
in Different Coordinate Systems

From this point on, we shall assume that the direction of axes of the Oxyz reference
frame is fixed, and the summation convention (Einstein’s convention) for repeated
indices running from 1 to 3 is used. The summation convention was introduced by
Albert Einstein in 1916, to simplify the formulas which involved sums over
coordinates. According to this notational convention, when an index appears twice
in a product, that index is summed over, without the sum symbol being explicitly
written. If, however, in some expression an index (for example, j) appears twice,
but no sum over it has to be taken, this is customarily mentioned in brackets (“no
summation over j”). Mostly we shall use Einstein’s convention for coordinate
indices, but at some point when the formulas will become too complicated, we
shall use it also for sums over particle indices (this will be specified when it
occurs). Any exceptions to these rules will be pointed out at the right time.

(a) Orthogonal Cartesian coordinates. If we denote (see Appendix A):
i=u, j=uw, k=u;, (L.1.11)
then the radius-vector r can be written as
r = xu;. (1.1.12)
The first and second time derivatives of (1.1.12) give
vV=xuw, a=Xxu. (1.1.13)

(b) Spherical coordinates. Let r, 0, ¢ be the spherical coordinates of the particle P.
The parametric equations of the trajectory are then:

r=r(t), 0=00), o=0¢(). (1.1.14)
Since dr = ds, if we divide by dt the relation (see Appendix B)
ds = u.dr 4+ ugrd0 + u,rsin 0do,
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we obtain
v = iu, + rlug 4 rsin Ogu,, (1.1.15)
where
u, =isinfcos @ + jsinOsin ¢ + kcos 6,
uy =icosfcos @+ jcosOsinp — ksin 6, (1.1.16)
u, = —isin @ + jcos ¢.

The acceleration vector is found by taking the time derivative of (1.1.15).
Using (1.1.16) we finally get

a= (i — r0? — rp*sin® O)u, + (270 + r0 — r(* sin 0 cos @)uy
+ (2 sin 0 + 20 cos 0 + rip sin O)u,,. (1.1.17)

(¢) Plane polar coordinates. Suppose that the particle P moves in the xy-plane (6 = 7).
The position of the particle is then determined by r and ¢. Taking 0 = 7 and

0 =0in (1.1.15) and (1.1.17), we arrive at

vV = iu, + rou,, (1.1.18)

a = (i —rg*)u + (2/¢ + rip)u,. (1.1.19)

(d) Cylindrical coordinates. Observing that the cylindrical coordinate system is a
combination of the plane polar coordinates p, ¢ and a Cartesian coordinate z,
we have at once:

v = pu, + ppu, + zk, (1.1.20)
a = (b — pp*u, + (29 + pi)u, + 7k, (1.121)

where k is the z-axis unit vector.
(e) Natural coordinates (see Appendix B). If the particle P describes a trajectory
whose equation is known,

r=r(s), (1.1.22)

then the motion of the particle is defined by (1.1.3). The time derivatives of
(1.1.22) yield

dr d.
=r= d—;d—j = §t = vr, (1.1.23)

)
a:i;:i)'c—k;v:aT#—a‘,, (1.1.24)

where T = % , p is the radius of curvature and v — the principal normal unit
vector of the curve (C) at the point P.
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1.2 Principles of Newtonian Mechanics

Newtonian mechanics is based on some fundamental statements called principles
or laws. These principles were established by the generalization of a large number
of particular experiments. They cannot be demonstrated, but they have not been
contradicted by any known particular experiment. In his famous book “Mathe-
matical Principles of Natural Philosophy” (1687), Isaac Newton gave the fol-
lowing fundamental principles.

1.2.1 The Principle of Inertia (Newton’s First Law)

A body is in a state of rest or performs a uniform motion along a straight line,
unless subjected to an external force.

To give a well-determined content to this principle, one must indicate the
reference frame relative to which the motion of the body is considered. This frame
is called inertial, and the property of a body to be at rest or in uniform straight
motion with respect to such a frame is called inertia. That is why Newton’s first
law is called the principle of inertia. Any reference frame which is at rest or in a
uniform straight motion (translation) with respect to an inertial frame is also an
inertial frame.

Consider an observer in a train carriage that moves straightly and uniformly
relative to the ground. Then, there is no mechanical experiment that the observer
can perform inside the carriage that can show whether the carriage is at rest or in a
straight uniform motion with respect to the Earth. By generalizing this mental
experiment, we arrive at the classical (Galilean) principle of relativity:

No mechanical experiment can be done within an inertial frame, that can put
into evidence either the rest state or the uniform straight motion of that frame.

Let S(Oxyz) and §'(O'x'y'7’) be two inertial frames and V — the velocity of §'
relative to S (Fig. 1.3). If Ar and Af' are the time intervals between two events, as
determined by observers placed in O and O, respectively, then we shall assume
that At = A?, i.e. the two observers measure the same duration. If we choose the
same origin of the time interval in S and S, the two events are recorded

Fig. 1.3 Schematic S S’
representation of two inertial Yy y'
frames, S and S'.
—V
X
(0] o’

Z Z



1.2 Principles of Newtonian Mechanics 7

simultaneously by the observers. This postulate is called principle of absolute
simultaneity.

Letx, y, z, t, and X', ¥, 7/, ¥ be the space-time coordinates of a certain event in
S and §', respectively. Then we can write

r=r-Vt, =t (1.2.1)

If the displacement takes place along the common axis Ox = Ox/, the relations
(1.2.1) yield

X=x-W), Y=y =z, =t (1.2.1)
These transformations fulfill the properties of a group, called the Galilei trans-
formations group. The theory of special relativity shows that the Galilei-Newton
group is a limiting case (c—o0) of a more general group of transformations, the
Lorentz group:

14
x/:y(fot)7 y/:y’ 7 =z, [’y(t czx), (1.2.2)
where c is the speed of light in empty space and y = /1 — Y—f

1.2.2 The Law of Force (Newton’s Second Law)

The rate of change of momentum of a body is proportional to the magnitude of the
external force and takes place in the direction of the acting force.

This principle (which is traditionally known as the law of force) introduces two
fundamental notions: mass and force. It is very difficult to give comprehensive,
perfectly logical definitions of these notions. We shall accept as satisfactory the
following definitions:

The mass of a body is a scalar positive quantity, that characterizes the bodys; it is
a measure of its inertia and gravitational interaction with other bodies.

The force is a measure of the mechanical interaction between a body and other
bodies, characterizing the magnitude and direction of this interaction, and having
the effect of an acceleration, or a deformation.

The product mv is called linear momentum and its variation is called impulse.
The force principle can be then written in the form:

d
F = 2 (mv). (1.2.3)

In Newtonian mechanics the mass m is a constant quantity, i.e. it does not depend
on the motion. As a result,

dav
F=m— =ma 1.2.4
m = ma (124)
which is the fundamental equation of Newtonian mechanics. Equation (1.2.4)

shows that the acceleration of a particle, the second time-derivative of the
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radius-vector, is not an independent quantity, but is given by the force acting on
the particle divided by its mass m.

In classical, non-relativistic mechanics the mass occurs both as an inertial mass
and a gravitational mass. The first appears in the fundamental equation (1.2.4),
while the second is found for instance in the gravitational force formula

Fg = mg. (1.2.5)

The experiments done by Lordnd Eotvos (1890) and Pieter Zeeman (1907) showed
that the two masses are proportional (even equal, if the unit system is suitably chosen).

Most generally, the force F is a known vector function of time ¢, position r, and
velocity v, i.e. F = F(r, v, 7). The product ma is then a function of the same
variables, being a polar vector.

Observations:

(a) The first two principles can be put in a unique form, as follows:
There is at least one space—time reference frame in which the law F = ma is
valid.
Indeed, if F = 0, one has a = 0 (since m # 0), i.e. the body is either at rest, or
it moves uniformly along a straight line.

(b) The aforementioned considerations lead to an equivalent formulation of the
classical principle of relativity:
The laws of Newtonian mechanics are the same in any inertial frame,
or
The laws of Newtonian mechanics keep their form (are covariant) under the
transformations of the Galilei group (1.2.1).

(c) The second law gives rise to another principle, given by Newton in the fol-
lowing form:
If two forces act on a body simultaneously and in different directions, then the
body describes the diagonal of the parallelogram constructed on the forces in
the same time in which it would describe the sides of the parallelogram under
the separate action of the two forces. This formulation is known as the principle
of the independence of forces, sometimes referred to as Newton’s fourth law.

1.2.3 The Principle of Action and Reaction (Newton’s Third Law)

To any force (action) corresponds an equal and directly opposed reaction. In other

words, the mutual actions of two bodies are equal and directly opposed.
Following this principle, if a body (considered as a particle) A acts on another

body (particle) B with the force Fpy4, then B acts in its turn on A, with the force

Fap=—Fpa. (1.2.6)

Let us interpret, in the light of this postulate, the fundamental equation of
Newtonian mechanics (1.2.4). If F = ma is the force acting on a body, then the
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body will respond with the force —ma. The force J = —ma is called (somewhat
improperly) force of inertia.

The action and reaction principle lies at the foundation of Newtonian mechanics
of particle systems. It also extends to the electrostatic and gravitational phenomena.

Observation: Let us agree to call free any particle whose motion is in no way
restricted, i.e. it moves according to the law (1.2.4) and it is subject to applied
forces. If the motion of the particle is restricted (e.g. the particle must move on a
curve, or on a surface, or its velocity must obey a certain condition, etc.), we shall
say that the motion is subject to constraints. The constraints appear in (1.2.4) as
constraint forces, and have the character of reaction forces. This means that the
constraints are subject to the principle of action and reaction.

1.3 General Theorems of Newtonian Mechanics
1.3.1 Integration of the Equations of Motion

The fundamental problem of mechanics is to determine the motion of a particle of
given mass, knowing the force acting at any moment on the particle.

Consider a free particle of mass m, subject to the resultant force F, and having
the acceleration a. If the motion is referred to the Cartesian frame Oxyz, the
projection on the axes of the fundamental equation (1.2.4) yields

mi; =F  (i=1,2,3), (1.3.1)

which is a system of three second-order differential equations. Assuming that the
existence conditions for solutions are fulfilled, the general integral of the system
(1.3.1) is

X; :x[(t,Cl,Cz,...,CG) (i: 1,2,3), (132)

where Cj, ..., C¢ are constants of integration. To know the motion of the particle
means to know its coordinates x; (i = 1, 2, 3) as functions of time z. Therefore, it is
necessary to determine the six arbitrary constants Cy,...,Cg. To this end, we
impose as the initial conditions: at the initial time ¢ = 7, (e.g. o = 0), the coor-
dinates x? of the particle and the components 1 of its velocity are given, i.e.

X?:.X[(tO,CI,...,C6), x?:x[(t07cla"'7c6)' (133)

The system of six algebraic equations (1.3.3) yields the constants Cy, ..., Cs.
Finally, these solutions are introduced in (1.3.2) and this determines the motion of
the particle uniquely.

Example. Let us find the finite equations of motion and the trajectory of a shell of
mass m, thrown at an angle o relative to the horizontal plane and having the initial
velocity v.

Since the length of the trajectory of the body is supposed to be much longer
than any of its three dimensions, we may consider the shell as a heavy particle, the
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only force acting on it being the force of gravity. This is a simplified model, since

there are many factors contributing to the real motion of the body, like: force of

friction with the air, density of the air, speed and direction of the wind, etc. The

branch of mechanics which takes into account all these aspects is called ballistics.
Newton’s second law (1.2.4) gives

mr =F.

Next, we use (1.2.5) and project the last equation on the axes of the Cartesian
orthogonal frame Oxyz, the axis z being along the vertical line and pointing
upwards. Then,

Xx=0, y=0, Z=-—g.
Integrating these equations twice, yields

).C:Ch y:C27 Z:—gt+C3,
x=Cit+Cq, y=Cyt+Cs, Z=—§I2+C3I+C6.

To determine uniquely the motion of the body, we must find the six constants of
integration Cy, ..., Cq (otherwise, there would be 0 possibilities of motion). To
do this, one must know all six initial conditions. For instance, let us take, at t = O:

x(0) =0, y(0)=0, z(0)=0,
x(0) =vo, =0, 3(0) =voy =vpcosa, 2z(0)= vy, =vpsina,

i.e. at the initial time the shell is at the origin of the frame and its initial velocity
lies in the yz-plane. Then we find:

C1:C4:C5:C6:O, CZZU()COSOC, C3:1)()Sil’lot7
and the finite equations of motion are
_ _ __82 :
x=0, y=uvptcosua, zf—zt + vt sino.

If the initial velocity is horizontal (o = 0), then

8
x:07 Yy = vof, Z:_§t27

while in the case of ascending vertical initial velocity,

x=0, y=0, z=uvt— 51‘2.
2
The trajectory is found by eliminating the time ¢ from the parametric equations
of motion:
§ 2

z=ytano — ————y’.
20 cos?
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This is a parabola with its concavity downwards. The points of intersection with

2
the horizontal plane are y; = O and y, = %” sin 2a.. Taking the derivative of y, with

respect to o and then equating to zero the result, we conclude that the maximum
horizontal distance reached by the shell, for a given vy, is for o = I

We can also find the angle « at which the projectile reaches a certain given
point y;, z;. This is obtained by means of the last relation:

2 2 2
tana— 0|1+ 1g(zl+gy;)
gy Vo 2v5

It is clear that, if

the sought after angle has two values.

1.3.2 First Integrals

In some cases, there exists the possibility of obtaining information about the
motion of mechanical systems without the full integration of the differential
equations of motion. Suppose, for instance, that we are able to find a relation
between the time ¢, the coordinates x;, with i = 1,2,3, of the particle, the com-
ponents x; of its velocity, and a single constant C, for any initial conditions,
generally written as

Sf(r,v,r)=C. (1.3.4)

This relation is a first-order differential equation. It is called a first integral of
(1.2.4). The constants that occur in first integrals are determined by means of the
initial conditions. In our case,

f(xo,vo, 1) = C. (1.3.5)

Two or more first integrals are called distinct if there is no relation between
them. Since the knowledge of a first integral diminishes by one the number of
unknowns, the maximum number of distinct first integrals of (1.3.1) is six. It
follows then that to know six distinct first integrals of (1.3.1) means to determine
the general integral of the system.

Some first integrals present a special importance, since they express the con-
servation of certain fundamental physical quantities. The determination of first
integrals of mechanical (and, as we shall see, non-mechanical) systems is tightly
related to the general theorems that express the space—time variation of funda-
mental quantities: linear momentum, angular momentum and energy. In the fol-
lowing, we shall prove these theorems for both one-particle and many-particle
mechanical systems.
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1.3.3 General Theorems of One-Particle Mechanics

1.3.3.1 Linear Momentum Theorem

Let us consider, as before, the motion of the particle P of mass m, relative to the
fixed Cartesian orthogonal frame Oxyz. If we denote by

p=myv (1.3.6)
the linear momentum of the particle, then Eq. (1.2.3) reads:

® _p

= 1.3.
P ¥ (13.7)

which says that: The time derivative of the linear momentum of a particle is equal
to the vector resultant of the applied forces. This is the linear momentum theorem.
Note that if F = 0, then

p = const. (1.3.8)

This is a vector first integral, equivalent to three distinct scalar first integrals.

1.3.3.2 Angular Momentum Theorem

By definition, the angular momentum or kinetic momentum of the particle P about
the point O is the cross product

I=rxp=rx (mv). (1.3.9)

Taking the time derivative of (1.3.9) and observing that v and p are collinear, we
arrive at

dl

— = 1.3.1

7 M, (1.3.10)
where

M=rxF (1.3.11)

is the moment of the force F with respect to O, also called the torque about the
point O. Equation (1.3.10) expresses the angular momentum theorem: The time
derivative of the angular momentum of a particle is equal to the moment of the
force applied to it, both momenta being taken about the same point O. If M =0
(i.e. F = 0, or r||F), then (1.3.10) leads to the vector first integral

1 = const. (1.3.12)
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1.3.3.3 Areas Theorem

If the moment M of the force F is permanently orthogonal to a fixed axis (A) of
unit vector u, passing through O, then the projection of (1.3.10) on (A) gives
4(1-u) =M -u=0, leading to

1-u=1p= C(const.), (1.3.13)

i.e. a first integral. If (A) coincides with the z-axis, then
. .G
Xy — ykx = — = Cy(const.). (1.3.14)
m

The first integral (1.3.14) allows an interesting geometric interpretation. Let
r(f) and r(t 4+ dr) be the radius-vector of the particle P at times ¢ and ¢ + df,
respectively. Then Fig. 1.4 shows that the differential area dS swept by the radius-
vector r during the time interval df can be approximated by the area of the triangle
OPP;:

ds = %rxdr. (1.3.15)

Projecting (1.3.15) on the z-axis and then dividing by dt gives:
ds,

. .
e i(xy—yx). (1.3.16)

The quantity 9 s called areal velocity. Comparing (1.3.16) and (1.3.14), it

dt
follows that
ds, C,
— =C C=—]. 1.3.17
dt ( 2 ) ( )

The first integral (1.3.17) expresses the areas theorem, in projection on the
z-axis: If the moment M of the force ¥ is permanently orthogonal to the z-axis,
then the motion of the particle, in the xy-plane, is performed with constant areal
velocity. In other words, the radius-vector r sweeps equal areas in equal time
intervals (Kepler’s second law).

Fig. 1.4 Area swept by the
radius-vector r during the
time interval dr (see

Eq. (1.3.15)).
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1.3.3.4 Kinetic Energy Theorem

Let us suppose that under the action of the applied resultant force F, the particle P
undergoes an infinitesimal displacement dr. By definition, the scalar product

dW =F - dr (1.3.18)

is the infinitesimal work done by the force F as the particle performs the dis-
placement dr. We may write

dv 1 2
dW =m— -vdt =d| = .
m— v <2mv| )
The scalar quantity

T:%mM2 (1.3.19)

is the kinetic energy of the particle. It then follows that
dW =dT, (1.3.20)

which is the differential form of the kinetic energy theorem: The infinitesimal work
of the resultant of forces acting on a particle is equal, at any time, to the differ-
ential of the kinetic energy of the particle. Integrating (1.3.20) between ¢, and 1,,
corresponding to the velocities v; and v, of the particle, we get

2 vy
1 1
W= /F-dr = /d<§m|v2) = Em(vg ) =T, - T, (1.3.21)
1

vy

i.e. the integral form of the kinetic energy theorem: The work done by the force
F acting on a particle during the time interval (t,, 1,) is equal to the change in the
kinetic energy of the particle during the given interval.

1.3.3.5 Energy Conservation Theorem

If there exists a scalar function V(r, t), so that we may write

(1.3.22)

F = —grad V(r,1) E—(av v av),

dx; Oxy O3

where grad stands for partial derivative with respect to r, we shall say that the
vector field F is a potential field, V(r, t) being the potential function of the field. If
V does not explicitly depend on time, the field F is called conservative, while
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V(r) is the potential energy. The work done by the particle under the action of a
conservative force, when moving between any two positions P; and P», is:
P, Py
ov
W= [ F-dr=— a—dxi:— dVv =V, =V, (1.3.23)
Xi

Py Py Py

where Vi = V(Py),V, = V(P).

We also observe that the infinitesimal work done by a conservative force is an
exact differential. In other words, the circulation of F between P; and P, does not
depend on the path; it depends only on the initial and final positions of the particle.
In particular, the circulation of the field F = —grad V(r) along a closed curve
is zero:

7{ F-a’rz—j{ dv = 0. (1.3.24)
() (©)

Comparing (1.3.21) and (1.3.23), we deduce: T'+ Vi =T+ V,=---=
T,+V,=---, 0r

T + V = const., (1.3.25)

expressing the energy conservation theorem: The total energy of a particle in a
conservative force field is constant.
The relation (1.3.25) is also a first integral, called the energy first integral.

Observation: The definition (1.3.22) does not uniquely determine the function
V(r, £). Indeed, if we take V'(r,7) = V(r, 1) + const., we arrive at the same force
F. Hence, the choice for the zero level of V is arbitrary.

1.3.4 General Theorems for Systems of Particles

1.3.4.1 Generalities

A number of mutually interacting particles is a system of particles. The system is
continuous if there is a particle in each geometrical point of the region occupied by
the system, or, in other words, if at any point of the region one can define a non-
zero mass density. Otherwise, the system is discrete. The first five chapters of this
book deal with discrete and continuous particle systems having a finite number of
degrees of freedom.

For compactness of writing, from now on we shall represent a sequence of
consecutive positive integers between m and n (m and n being themselves positive
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integers, with m <n) by the notation 2, 77, meaning m,m + 1, ..., n. For example,
the notation i = 1, N means i = 1,2,..., N.

The forces acting on a N-particle system fall, as we know, into two categories:
applied and constraint forces. From another point of view, these forces belong to
the following two classes: internal and external forces. The internal forces act
between the particles of the system and are subject to the action and reaction
principle, i.e. if P; and P, are any two particles of the system, then (see (1.2.6))

Fy=—Fy (i,k=1,N). (1.3.26)

Any force acting on the particles from outside the system is an external force. As
an example, the solar system can be considered as a discrete system of particles;
the internal forces act between the planets and the planets and Sun, while the
external forces come from other celestial bodies.

1.3.4.2 Integration of the Equation of Motion

Consider a system of N free particles and let ry, .. ., ry be their respective radius-
vectors relative to O. Also, let F' and Z;V:l F;; be the resultants of external and

internal forces acting on the particle P; of mass m;. Then the fundamental equation
(1.2.4), written for this particle, is

N
mi; =F" + 3 F; (i=T,N), F;=0, (1.3.27)

J=1

or, in components,

0=1,3). (1.3.28)

N
mil = F+ Y F. (i=T1,N;
=1

This is a system of 3N second-order differential equations. In general, the forces
F§€> depend on the positions of particles ry, ..., ry, their velocities vy, ..., vy, as
well as the time ¢, while the forces F;; are functions of the relative positions of the
particles. The general integral of (1.3.28) is then

xr=x¥t,Cr,...,Con) (i=1,N;a=1,3). (1.3.29)
The constants Cy, ..., Cgy are determined from the initial conditions:
x?‘o :xf(to,Cl,...,CﬁN), )'C?(O :x?(IO,C],...,CﬁN), (1330)

i.e. from 6N algebraic equations.

The integration of the differential equations (1.3.27) is facilitated, as for the
one-particle mechanics, by some general theorems, which we are going to prove in
the following.
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1.3.4.3 Total Linear Momentum Theorem

If the summation over i = 1, N in (1.3.27) is performed, we obtain

EZmivi =S F'+ > 3R, (1.3.31)

Let
P=> mv (1.3.32)

be the rotal linear momentum and

N

F\ = F© (1.3.33)

i—1

1

the resultant of exterior forces. Since, in view of (1.3.26), > . Zj F;; = 0, we may
write

% _Fe, (1.3.34)

expressing the theorem of total linear momentum: The time derivative of the linear
momentum of a system of particles is equal to the resultant of the exterior forces
acting on the system. Once again we note that if F = 0, we have the first integral
P = const.

1.3.4.4 Total Angular Momentum Theorem

By definition, the axial vector
N
L= Zl’i X m;v; (1335)
i=1

is the total angular momentum, or the angular momentum of the particle system
about the point O. Taking the time derivative of (1.3.35) and using (1.3.27),
we find

dL & © =
R :Zl‘i XFie +Z r; XFij. (1336)
i=1 i=1 j=1

Due to the action and reaction principle, the last term on the r.h.s. of (1.3.36)
vanishes. Indeed, for any two particles P; and Py (i # k), the vectors rj; = r; — 1y
and F;; are collinear (rj; = AF;; A # 0), implying
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r; X Fik + I X Fk,' = (I‘,' — I‘k) X F,’k =Ty X F,'k =0. (1337)

It follows then from (1.3.36) that

dL
= =M 1.3.38
” M, ( )
where
N
MO =3"r; x F (1.3.39)
i=1

is the resultant moment of exterior forces. Equation (1.3.38) expresses the fotal
angular momentum theorem: The time derivative of the total angular momentum is
equal to the resultant moment of external forces, both momenta being taken about

the same point O. If M) =0, we arrive at the first integral L. = const.
1.3.4.5 Theorem of the Total Kinetic Energy

Assume that F; is the resultant of internal and external forces acting on the particle
P; of mass m;. The work done by the system is then

N N v,
dw = F, -dr; = i—l' dt =dT, 1.3.40
T (1340
where
1 2
T=; ;mi|vi| (1.3.41)

is the kinetic energy of the system of particles. On the other hand, since
F;, = Fl@ + Zjvzl F;;, we may write

N N N N
SFidr =Y B dr + Y Y Fyodry=aw awl, (13.42)
i=1 i=1 i=1 j=1

where dW©) and dW') are the infinitesimal amounts of work done by the external
and internal forces, respectively. From (1.3.40) and (1.3.42), we obtain the
differential form of the total kinetic energy theorem,

dT = dw'® + aw', (1.3.43)

stating that: The differential of the total kinetic energy is equal to the sum of the
infinitesimal amounts of work done by the external and internal forces.
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If one integrates (1.3.40) over a finite time interval (¢,,1,), corresponding to two
definite positions of the system, then

2

WZI/ZFi-driZI/Zd< |v,|> [XN:T] , (1.3.44)

i=1 i=1 i=1 1

which is similar to (1.3.21).
It is interesting to remark that in (1.3.43) both external and internal forces

appear. Let us write dW() in a form suitable to a direct physical interpretation.
Thus, since

N N
ZZFij-dri—ZZFﬂ dr; = ZZF, dr;, (1.3.45)

i=1 j=1 i=1 j= i=1 j=

we can write

dw') =

N 1 N
ZF,-j~dr,-:§ZZFU dr; — ZZFU dr;

1 j=1 i=1 j=1

N
> ) F-dry; (1.3.46)

i=1 j=

NE

N =

If the system of particles is a rigid (i.e. non-deformable) body, then Ir,-jl2 =
const., i.e. r;; - dr;; = 0. Since F;; and r;; are collinear, we conclude that F;; and dr;;
are orthogonal, or, in other words: In a rigid body, the internal forces perform
no work.

1.3.4.6 Theorem of Conservation of the Total Energy

The work done during a finite time interval (1, #;) by both the internal and external
forces is

2 2
N N N
W=we 4w = Z/F§> -dr; + ZZ/ij - dr;. (1.3.47)
=1 j=1 k=14
If the external forces are conservative, i.e.
F5-8> = —grad;V; (no summation; j = 1,N), (1.3.48)

where grad; stands for partial derivative with respect to r;, then the first term of the
r.h.s. of (1.3.47) reads
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2
W =-3%" / grad, Vi) -dr; = | Y v (1.3.49)
=1 =1
Suppose now that the internal forces are also conservative
Fj = —gradjkVJ(.,? (no summation; j,k = 1,N). (1.3.50)

Here, grad;, means partial derivative with respect to rj, while Vj; is the interaction
potential energy of the particles P; and Py. The last term on the r.h.s. of (1.3.47)
then becomes

N | =

Mz

33

Jj=1

l\)l'—‘

N N7
[ZZV},’()] . (1.3.51)

2
/gradlkvjk drj = —
4 j=1 k=1 1

~
I

We can define the fotal potential energy
N

N N
v=>vid+ 23S v (1.3.52)

=1 =1 k=1

| =

and, using (1.3.44), (1.3.47) and (1.3.51), we finally arrive at
E =T+ V = const., (1.3.53)

which is the law of conservation and transformation of the mechanical energy.

Observation: Our discussion refers to an ideal mechanical model. In fact, no
material system is isolated in the Universe, and mechanical energy can be trans-
formed into other forms of energy: thermal, electrical, etc. and vice versa.

1.3.4.7 Centre of Mass Theorem

Let G be the point defined by the radius-vector
T
= M ;mirh (1354)

where M = Z,N:1 m; is the total mass. The point G is called centre of mass or
centre of inertia of the system of particles. Taking the second time derivative of
(1.3.54) and using (1.3.34), we get

Mig = F), (1.3.55)
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meaning that: The centre of mass of a system of particles obeys the equation of
motion of a point in which the entire mass of the system would be concentrated,
and such that the resultant of the external forces would act there. This is the centre
of mass theorem. In particular, if F = 0,

N
Myig = Zmivi = const., (1.3.56)

i—1
i.e. the centre of mass is either at rest or it moves uniformly in a straight line.

Observation: If the system of particles is continuous, the centre of mass is
determined by

1
r6 = o /p(r)rdr, (1.3.57)
v

where dt is the volume element, p = ‘(‘;—’f is the mass density at any point of the

domain occupied by the system and M = jv p dr is the total mass.

1.3.4.8 Konig’s Theorems

Now we shall establish two results due to the German mathematician Samuel
Konig. Let us consider the motion of a system of particles relative to two reference
frames S(Oxyz) and S'(Gx'y'7’), the first being inertial and the latter non-inertial,
but having its origin at the centre of mass G and its axes along fixed directions with
respect to S. Then for any point P; of the system is satisfied the relation

r; =rg+r. (1.3.58)

Taking the time derivative of (1.3.58), we obtain v; = vg + v}, where v, = dr}/dt
is the velocity of P; with respect to G. Using (1.3.54) and (1.3.58), we obtain

> mr =0. (1.3.59)

In view of (1.3.58) and (1.3.59), the angular momentum of the system is
(Fig. 1.5)

N
L=rg vaG+Zm,-r; XV, =Lg+ L, (1.3.60)
i=1

known as Konig’s first theorem: The angular momentum of the system, relative to
O, is equal to the sum of the angular momentum of the centre of mass relative to O
and the angular momenta of the components of the system with respect to G.
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Fig. 1.5 Two reference
frames: an inertial one,
S(Oxyz), and a non-inertial
one, S'(Gx'y'7), with G at the
centre of mass, used to prove
Konig’s theorems (1.3.60)
and (1.3.61).

X

In the same way, we can calculate the kinetic energy:

1 1 <
T = 5M|vG|2 +5 S omilViP =Ts + T, (1.3.61)

which is Konig’s second theorem: The kinetic energy of the system, relative to O,
is equal to the sum of the centre of mass kinetic energy with respect to O and the
kinetic energy of the components of the system relative to G.

Consequences. Using Konig’s theorems, we shall write the angular momentum
and kinetic energy theorems relative to the non-inertial frame §'. In view of
(1.3.55) and (1.3.60), we have:

dL dr’

7 =rg XF(€)+E’ M =rg x F©) + M€
In this case, (1.3.38) yields
dL’
o M, (1.3.62)

i.e. the angular momentum theorem also applies in the case of the motion relative
to the centre of mass.
By virtue of (1.3.43) and (1.3.61), we have:

ZF cdr; = F°) . drg 4+ dw'®), (1.3.63)

N N ]
=> ) Fyj-dry=adw'’, (1.3.64)

i=1 j=1

On the other hand, multiplying (1.3.55) by drg = vgdt, we can also write

d 1
M% -VGdt:d<2M|vG|2> = F© . drg, (1.3.65)
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leading to
1
dT = d(T’ + 2M|VG|2) = dT' +F - drg. (1.3.66)

By substituting (1.3.63)—(1.3.66) into (1.3.43), we finally get:
dT' = dw'®) + aw'?) (1.3.67)

i.e. the kinetic energy theorem is valid also relative to G.

This analysis leads to the following conclusion: There exists a non-inertial
reference frame S' relative to which the angular momentum and kinetic energy
theorems keep their form. This frame has fixed axes with respect to S and has its
origin at the centre of mass of the system. Note that, if the axes of S are not fixed
relative to S, this statement is no longer valid (see Chap. 4).

1.4 Problems

1. Study the motion of a projectile of mass m, thrown at an angle « relative to the
horizontal plane, supposing that besides the force of gravity G, a friction force
F;= —yv acts on it.

2. The forces acting on a sky-diver of mass m are the force of gravity and the
force of air resistance, proportional to the squared velocity. Find the diver’s
velocity v as a function of time and the final velocity vg

3. From the upper point A of a fixed sphere of radius R, a particle P of mass
m begins to move without friction on the surface of the sphere. Find the
distance between the lower point B of the sphere and the point C where the
particle’s trajectory intersects the horizontal plane.

P

B c

AT S S SIS

4. A rope is suspended over a massless pulley. At one end of the rope a mass m,
is fastened, while at the other end a monkey of mass m, begins to climb-up,
according to the law ¢ = &(¢) relative to the rope. Find the motion of the
monkey relative to the point O. The initial conditions are: £(0) = 2/,z(0) =1,

£(0) = 0,2(0) = 0.
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5.

10.

1 Foundations of Newtonian Mechanics

A particle M traces the curve given by the equations
x =4v2sinf, y=sin20.

(a) Determine the velocity, as well as the tangent and normal components of
the acceleration of the particle with respect to the trajectory.
(b) Assuming that 0 is the solution of the differential equation
do
— =sinf
dt ’
with 0 = 0y = % at t = 0, give the explicit expression for 0 as a function
of time.
(c) Does the particle describe the entire curve if the time ¢ varies from —oo
to +00?

. Determine the plane trajectory of a particle, whose normal and tangent

components of the acceleration are constant during the motion. As initial
condition, take 0 = 0,, at t = 0.

. A body situated at a height 4 on an inclined plane of angle « is pushed

downwards with the velocity v, parallel to the plane. Neglecting the friction,
determine the value of the angle « for which the body would arrive at the
bottom of the plane in minimum time.

. Study the motion of a charged particle of mass m and charge e, moving in the

constant magnetic field B under the action of the Lorentz force
F = ev x B. The initial conditions are:

r = (0, R70), Vo = (ona Voy, UOZ)'

. Find the trajectory of an electron of charge e and mass m entering in the

variable homogeneous electric field E = A coskt, where A and k are con-
stants, with the velocity voL E. The force acting on the electron is F = —¢E.
A particle moves without friction on the surface of a cone of angle 2« at the
top, its velocity and its areal velocity being constant in the plane Ox;x,. Find
the equations of motion of the particle.
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11.

12.

13.

14.

15.

A particle of mass m moves on the ellipse ;‘—2 + i—i = 1, its acceleration being
permanently directed along the y-axis. Taking as initial conditions r = (0, b)
and v = (vg, 0) at r = 0, determine the force acting on the particle.

A heavy particle moves on a vertical circle. At time ¢t = 0, the particle is
located at one end of the horizontal diameter, its initial velocity being zero.
The velocity of the particle at the lowest point of the circle is also zero.
Determine the coefficient of friction u between the particle and the circle,
knowing that the friction force is F = uN, where N is the component of the
gravitational force normal to the surface and the direction of the friction force
is tangent to the trajectory.

Solve the equation of motion of a particle for the force F = —x%, if the
particle is subject to the initial conditions: x(0) = xo # 0, v(0) = 0.

The velocity of a particle is proportional to the (n — 1)th power of its radius
vector, while its areolar velocity is constant. Determine the acceleration of the
particle and its trajectory.

The law of universal gravitation, giving the force between a particle of mass
m and an extended object of mass M = [, p(r')d7’ is

F = —Gm/ Mdr/,

e —rf

where G is the gravitational constant. Find the gravitational potential energy
o(r) of the object of mass m in the field of M and obtain Poisson’s equation

for ¢(r):

Ap(r) —4nGmp(r) = 0.
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16.

17.

18.

19.

20.
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A point of mass m is in the presence of a homogeneous sphere of radius R and
mass M. Find the force of interaction between the particle and the sphere.
The ends of a homogeneous heavy rod move without friction on two fixed
planes, defined by angles « and f§ with respect to the horizontal line. Deter-
mine the angle 0 between the rod and the horizontal line, at equilibrium.
Discuss the elastic collision between two particles of masses m; and m, in two
coordinate systems: the laboratory frame (the frame in which one particle is at
rest) and the centre of mass frame.

Find the equipotential surfaces of the gravitational field produced by a
straight, finite and homogeneous wire of length 2¢ and linear density /.
Determine the conditions which must be satisfied by the constants
ki,ky, k3, kg, so that the force field of components F; = kx| + kpyxp, Fr =
k3x1 + kqx, (defined in the Ox;x,-plane) be conservative.



Chapter 2
Principles of Analytical Mechanics

2.1 Constraints

As we have already mentioned in Chap. 1, a particle (or a system of particles) is
subject to constraints if its motion is restricted by a constraint force on a certain
surface, or on some curve, etc. The notion of constraint is essential in under-
standing the analytical mechanics formalism, and we shall begin this chapter with
a thorough analysis of this basic concept.

By definition, a constraint is a geometric or kinematic condition that limits the
possibilities of motion of a mechanical system. For example, a body sliding on an
inclined plane cannot leave the plane, or a pebble inside a soccer ball is compelled
to move within a given volume, etc.

2.1.1 One-Particle Systems

Assuming Cartesian coordinates are used, let us begin our investigation with a
single particle. If r is the radius-vector of the particle and v its velocity at time ¢,
then a relation of the form

flr,v,r)=0 (2.1.1)

is the mathematical expression for a constraint. One says that the particle is subject
to the constraint (2.1.1).
We can classify the constraints according to three criteria:

(a) A constraint can be expressed either by an equality

f(x,y,2,1) =0, (2.1.2)
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or by an inequality

fx,y,2) <0, f(x,5,2) >0. (2.1.3)

The first type of constraint is called bilateral and the second unilateral. For
example, the relation

(x—at) +(y—bt) +(z—ct)* = R (2.1.4)

indicates that the particle is permanently on a moving sphere, with its centre at
the point (at, bt, ct), while the inequality

Ay + - R0 (2.1.5)

shows that the motion of the particle is restricted inside a fixed sphere of radius R.

(b) If the time ¢ does not explicitly appear in the equation of the constraint, this is
called a scleronomous or stationary constraint. Such a constraint is, for
instance, (2.1.5). If the constraint is time-dependent, like (2.1.4), it is named a
rheonomous or non-stationary constraint. An example of rheonomous con-
straints is provided by the system

filx,y,2,6) =0,  fa(x,y,2,1) =0, (2.1.6)

meaning that the particle is forced to slide on a moving curve.
(c) A velocity-dependent constraint is called a kinematic or differential constraint,
like

f(x7y?z7x7y7z):O’ (2'1'7)

while a constraint in which the components of the velocity do not appear is
named a geometric or finite constraint. For example, the constraints (2.1.2)—
(2.1.6) are geometric, while (2.1.1) is kinematic. From now on, we shall
consider only those differential constraints which are linear in the velocity
components, as

aixi+b=0, (218)

where
a; = a,-(r, I), b; = b,‘(r, I) (l = 1,2,3) (219)

and the summation convention has been used. Taking the total time derivative
of (2.1.2), we have:

of of

—Xxi+—==0 2.1.10

6)6,' ! or ’ ( )
meaning that a geometric constraint can be written as a linear differential
constraint. Obviously, the reciprocal of this statement is not true.

Those differential constraints which can be put in a finite form are called
integrable constraints. The geometric constraints, together with the integrable
constraints, form the class of holonomic constraints. Such constraints are, for
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Fig. 2.1 The motion of a Z
coin of radius a, rolling on a
horizontal plane, as an
example of non-integrable
constraint.

example, those given by (2.1.2), (2.1.4), (2.1.6). The non-integrable constraints,
together with constraints expressed by inequalities, are said to be non-holonomic
constraints.

As an example of non-integrable constraint, let us consider a coin of radius a,
rolling on a horizontal plane and keeping always a vertical position (Fig. 2.1). If 0
is the angle between the x-axis and the normal to the coin, and ¢ is the angle of
rotation of the coin, the velocity of the point C is

vV =adu, (2.1.11)

which is permanently orthogonal to the axis of the coin. The components of the
velocity are:

vy =ag@cosl, vy, =a@psinb, v, =0,
or, in differential form,

dx —acosOdp =0, dy—asinfde =0. (2.1.12)

These two equations cannot be integrated, because their left hand sides do not
represent total differentials of some functions. Consequently, they provide an
example of a non-holonomic (vector) constraint.

There are no general methods of solving problems involving non-holonomic
constraints. Each case must be studied separately. Fortunately, most of the prob-
lems arising in mechanics are connected with holonomic constraints.

A constraint can be characterized simultaneously upon all possible criteria. For
instance, the constraint expressed by (2.1.2) is bilateral, scleronomous and geo-
metric, while the constraint (2.1.7) is bilateral, scleronomous and differential.

There is a close relation between the number of constraints and the number of
degrees of freedom of a mechanical system. The minimal number of real inde-
pendent parameters that determine the position of a particle defines the number of
degrees of freedom of that particle. A free particle, i.e. a particle subject only to
applied forces, has three degrees of freedom. If the coordinates of the particle are
connected by a relation of type (2.1.2), the number of its degrees of freedom
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reduces to two. In the same way, the existence of the two constraints (2.1.6)
implies that the particle moves on a curve: the position of the particle is deter-
mined by a single parameter, corresponding to a single degree of freedom. In
general, each geometric bilateral constraint applied to a system reduces its
number of degrees of freedom by one.

Note that the coordinates of a particle cannot simultaneously obey more than
two independent constraints; a third constraint would either keep the particle fixed,
or make its motion known without considering the forces acting on it.

2.1.1.1 The Fundamental Equation of Motion

As we have already mentioned in Chap. 1, the existence of a constraint can be
connected with a reaction or constraint force, which determines the particle to
obey the constraint. If we denote by F and L the resultants of the applied and
constraint forces, respectively, acting on a particle P of mass m, the differential
equation of motion reads:

mi =F +L. (2.1.13)

The fundamental problem of mechanics of a system subject to both applied and
constraint forces is: given F and the initial conditions, consistent with the con-
straints, find the motion of the system and determine the reaction force L. The
constraint force L is a priori unknown, therefore in order to use Eq. (2.1.13) one
must make certain assumptions on it. The following two examples will familiarize
the reader with the methods of solving problems involving constraint forces.

(1) Motion on a curve. First, assume that the curve, considered to be fixed, is
given by its parametric equations:

xi=xi(q) (i=12,3), (2.1.14)

where ¢ is a real, time-dependent parameter. On the other hand, projecting (2.1.13)
on the axes, we have:

m¥; = F,+L; (i=1,2,3), (2.1.15)
where F,, F,, F, are given as functions of r, r, ¢ or, in view of (2.1.14),
Fi=Flg..1) (i=123), (2.1.16)

We have arrived at a system of three second-order differential equations
(2.1.15), with four unknowns, Ly, L,, L., q. To solve the problem, one decom-
poses the constraint force L into two vector components, L, and L, (Fig. 2.2).
The component L, lies in the plane normal to the curve (C) at the point P, while
the component L, is tangent to the curve and points in the direction of motion
of the particle.
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Fig. 2.2 Decomposition of
the constraint force L into
two vector components, one
normal and one tangent to the
trajectory.

(© g

The component L, is called the normal reaction and L, — the force of friction.
If L, = 0, the particle moves without friction and the curve is perfectly smooth or
ideal. If L,, = 0, the force L is tangent to a perfectly rough curve.

Assuming L, = 0, since v is always directed along the tangent to the trajectory
(which in our case coincides with the constraint), we can write

v-L=xL,+ yL,+zL. =0. (2.1.17)

We are now in possession of four equations (2.1.15) and (2.1.17) for the
unknowns L, L, L, g. Therefore, we are able to determine both g = ¢(?), i.e. the
motion of the particle on the curve, and the components of the constraint force.

Second, let us suppose that the fixed curve is given in the implicit form

fl(xvyvz):()a fZ(x;yaZ):O' (2118)

In this case, the differential equations (2.1.15), together with the frictionlessness
condition (2.1.17) and the constraint equations (2.1.18) form a system of six
equations for six unknowns: x,y,z, Ly, Ly, L..

The problem can be solved somewhat differently by decomposing the force
L into two vector components, along the normals to the two surfaces whose
intersection produces the curve (C) (Fig. 2.3). Then we may write

L =L, = Agrad fi + p grad f>, (2.1.19)

where A and p are two scalar multipliers. The equation of motion is then

0fi n 0f2

..i _ Fi Ji
mr + @x,- # @x,-

(i=1,2,3). (2.1.20)

Thus, we are left with a system of five equations (2.1.18) and (2.1.20) for the
unknowns x, y, z, 4, 4. In this way, both the motion of the particle and the con-
straint force are determined.
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Fig. 2.3 Decomposition of
the constraint force L into
two vector components, along
the normals to the two
surfaces whose intersection
produces the curve (C).

Observations:

(a) If the component L, is non-zero but known, it can be included in F:

mi=F+L,+L,=F +L, (2.1.21)

and one then follows the usual procedure.

(b) An alternative form of the equations of motion for a stationary curve is
obtained by projecting (2.1.13) on the axes of a natural system of coordinates
(see Appendix B):

mv2

mi):Fr, T :Fv‘i’Lv, 0:Fl;+L/;, (2122)
where the index t shows the tangent to the curve, v — the principal normal and
f — the bi-normal.

(2) Motion on a surface. Here the procedure is similar, though a little more
complicated. Following the same order as in the previous case, let us first suppose
that the surface is given in the parametric form

xi =x(g', %) (i=1,273). (2.1.23)

Since

. dr
=Y Yy
the equation of motion (2.1. 13) becomes

2
or
E ——4’q +E — ¢ | =F+L (2.1.24)
( @q aqﬁ “~ 0q )

=1

or, in components,

22: P, '“'Mi Ox;
m
oyl aqaaq/} 949 o Og*

q“)F,-+Li (i=1,2,3).  (2.1.25)
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There are five unknowns occurring in (2.1.25): ql,q2,LX,Ly,LZ. To solve this
problem, one decomposes L into two components, L, and L, the first being
tangent to the surface and showing the direction of motion, and the second along
the normal to the surface. If L, = 0, then L = L,,. To express this property, we
observe that L is normal to two parametric curves on the surface, i.e.

Li— =0 (¢2=1,2). 2.1.26
g =0 (x=12) (2.1.26)
We therefore have five equations, (2.1.25) and (2.1.26), for the unknowns
ql s q27 L, Lyz L.

If the surface is perfectly smooth, the constraint force L can be eliminated by
multiplying (2.1.24) by % (y = 1,2). Then, in view of (2.1.26), we have:

or 2 azr or 2 or
_E:—a/f i ) _ o _ N
" <6qv 5 0470q” 79T 5 ; o 1 0, (y=12), (2.1.27)

where

or

g 0712 (2.1.28)

0,=F
are the covariant components of the applied force F along the tangents of any two

parametric lines of the surface.
The solution of (2.1.27) is

¢ =q"(t,Cr,....Cs) (x=1,2) (2.1.29)

and, if the initial conditions are known, the finite equations of motion can be
determined. The solution (2.1.29) is then introduced into (2.1.23) and thus we
obtain the motion of the particle in the real (physical) space.

Equation (2.1.27) can be set in a more condensed form by using the metric
tensor g,p (see (2.6.35)), which is defined by

or Or
8ap = 6_q“ ’ 6_qﬁ (fxvﬁ =1,2). (2.1.30)
We have:

0g,s  O°r  Or Lo o°r
dq)  dq*dq’ dqF  Og* Oqfq

and, making a cyclic permutation of the indices «, f, 7 and then combining the
three obtained relations, we get

or o’r

@ . W = Fo:/f;,f (aaﬁaV = la2)7 (2-1~31)
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where the quantities

1 /0gp  08p  O8up
T, == : - 2.1.32

are called the Christoffel symbols of the first kind. By virtue of (2.1.31),
Eq. (2.1.27) can be put in the form

<Zgwq + Z F:x[fyq q > = Qy (V = 1,2). (2133)

o, p=1

If we multiply this equation by g’? and perform the summation over 7, we find
(q + Z I0sd"q ) Q° (0=1,2), (2.1.34)
o,f=1

where
2
Ty = & Ty (2.1.35)
=1
are the Christoffel symbols of the second kind and
Qa = Z gg"/Qy (2136)

are the contravariant components of the quantities (2.1.28).

If no applied force F acts on the particle, the kinetic energy theorem implies
that the particle moves on the surface (2.1.23) with constant speed. In this case, the
acceleration vector a is oriented along the principal normal to the trajectory which,
for L, = 0, coincides with the normal to the surface. The equations of equilibrium
of the particle, written in a geodetic form, are then

§° + Z raqf =0 (0=1,2). (2.1.37)
o, p=1

As an example, let us take ¢' = 0, g> = ¢. Then the metric (see Appendix B)

ds* = r*d0* + r*sin®> 0de* (r = const.)
yields

2 2 in2
g1 =7r, g =7r S 07 g12:0
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and, together with the condition

2
D gug” =0},
a=1

we find

1 1
11 22 12
==, el — =0.
g'= 5 &= gy 8

We are now able to calculate the Christoffel symbols of the second kind, F"; 5 The
only non-zero symbols are
'), = —sin0cos o, F%z = F%l =cot0

and Egs. (2.1.37) read

0 — sin 0 cos pp* = 0,

&+ cot 00p = 0.
We easily recognize the components of the acceleration vector (1.1.17) along the
parametric lines 6, ¢, taken for r = const.

If, as a second example, we choose g' = x,¢* =y, we have g, = J,5, which
leads to the equation of motion

¥=0, y=0, (2.1.38)

as expected.
If the fixed, ideal surface is given under the implicit form

f(x,y,2) =0, (2.1.39)

the components of the fundamental equation of motion are

mi; = F; + ;vg—f (i=1,2,3). (2.1.40)
Xi

The three equations (2.1.40), together with the equation of constraint (2.1.39),
form a system of four equations in the unknowns x, y, z, 4. Both the motion and
the constraint forces can then be determined.

2.1.1.2 Static Equilibrium of a Particle

(1) Free particle. A point mass m is in equilibrium relative to a certain frame if the
resultant of the forces acting on it is zero

mi=F =0. (2.1.41)
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The equilibrium positions are determined by solving the system of three equations
with three unknowns

mi; = F; = 0. (2.1.42)

If, in particular, the solution of the system (2.1.42) is unique, we have only one
position of equilibrium.
Assume that the particle is subject to a conservative force field

F = —gradV = grad U, (2.1.43)

where we denote U(r) = —V(r). We also assume that U(r) is a function of class
C?. The last two relations give

oU
— =0 (i=1,2,3). 2.1.44
S =0 (=123) (2.1.44)
Consequently, in order for the position P, of the particle to be a position of
equilibrium, it is necessary to have

ou
— =0 (=123 2.1.45
(5),=0 t=123, (2.145)

meaning that in P, the function U(r) has either an extremum, or an inflection point.

A position Py of the particle P is a position of stable equilibrium if, setting the
particle in a position P; close to Py, and giving it a sufficiently small initial
velocity vy, the trajectory of the particle remains in an infinitely small sphere. In
other words, the displacement of the particle from the equilibrium position is
infinitely small. More rigorously, for any ¢ > O there correspond the functions
n,(€) > 0,n,(¢) > 0, such that, if |PoP;|<n,(¢) and |vo| <n,(e), then |PoP|<e
for any .

The position Py is a position of maximum (or minimum) for U(P), if there is a
vicinity Q p, of Py in which U(P) <U(Py) (or U(P) > U(P,)), for any P € Qp,.
When these conditions are fulfilled without the “equal” sign, we have a strict
maximum (minimum).

Using these definitions, we shall now demonstrate the Lagrange—Dirichlet
theorem: If in the position P the function U has a strict maximum, then Py is a
position of stable equilibrium.

The proof begins with the observation that, since U(P,) = max., then
V(Po) = min. But, as we know, the origin of the potential energy V can be arbi-
trarily chosen, so that we can take V(P,) = 0. Consequently, there exists a vicinity
Qp, of Py (except for Py) for which V(P) > 0. Let L be the maximum value of
V(P) on the boundary of the domain Q p, and let us choose a vicinity Q;,O C Qp, of
Py, so that V(P) < % forany P € Q'p,- Suppose that at the initial time the particle

. . 2
is in P; € Q% and has the velocity vy, chosen so as to have im|v|"<%.

Applying the kinetic energy theorem (1.3.21), we have:
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1 1
SV = Jmivi = U(P) — U(PY)

or, since the system is conservative,

1o 1 2

§m|v| +V(P) = §m|V1| + V(P;) = const.
Thus, we may write

+Z =L

|~

1
§m|v|2 +V(P)<

The quantities T(P) = %m|v|2 and V(P) are positive, therefore T(P)<L,
V(P) <L, showing that the velocity of the particle in position P cannot be greater
than a certain value. Consequently the particle, starting from the position P;, will
never touch the boundary of the domain Qp,. Recalling the definition of stable
equilibrium, the proof is completed.

(2) Particle subject to constraints

(a) Equilibrium on a surface. Assuming again a perfectly smooth (ideal) surface,
in order for a particle to be in equilibrium it must obey the equation

mi=F+L, =0. (2.1.46)

In other words, the particle is in equilibrium relative to the surface if the resultant
of the applied forces is directed along the normal to the surface. If the surface is
given in the parametric form (2.1.23), the equations of equilibrium are:

0(y,2) , 0(z,x) . O(x,y)
3(q' =0, F+iz——75 =0, FerAW

q',q%) a(q", 4%
where the functional determinants <02 , Ozx) , oY) are the direction
a(q',q*)’ 0(q".q%) > 0(q',q*)
)

parameters of the normal to the surface. The determinant %, for example,

Fo+ 2 =0, (2.1.47)

is calculated by

Qqy dy
0:2) _|ar ag |
od'?) | &

If the surface is given under the implicit form (2.1.39), the equations of
equilibrium are

F,-+/la—f =0 (i=1,2,3). (2.1.48)
6x,»

(b) Equilibrium on a curve. Following the same procedure, we first consider the
case where the curve is given under the parametric form as in (2.1.14).
Let X', y', 7 be the direction parameters of the tangent to the curve in the point
where the particle is. Then, the constraint force L is normal to the curve if
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xiL; = 0. (2.1.49)
This condition is identically satisfied by the choice:
Ly=77 —w', Ly=px'—vz, L ,=vy -2, (2.1.50)

where A, p, v are three arbitrary parameters.

Finally, if the curve is expressed by its implicit equations (2.1.18), in view
of (2.1.20), the equilibrium condition reads:
0fi 02

+

F+
i+ ax,- 'uax,-

=0 (i=1,2,3). (2.1.51)

Example. Let us find the equilibrium position of a heavy particle, sliding without
friction on a fixed circle of radius R, situated in a vertical plane. The circle can be
conceived as given by the intersection of a sphere of radius R and a plane passing
through its centre. Choosing the origin of the coordinate system in the centre of the
sphere and the x-axis along the descendent vertical, the equations of the circle are

file,y,2)=x*+y+22—R*=0, fi(x,y,2)=2=0. (2.1.52)
The equilibrium positions are obtained by eliminating 4 and u from (2.1.51).
Multiplying this equation by €; jx %ff‘i 2%2, we have:
F. F, F
2 2 2
F ol ) (2.1.53)

o 3L Of
Ox Oy 0z

But F, = G =mg, Fy = F, =0, therefore (2.1.53) gives y = 0. These results,
when introduced into the first equation of (2.1.52), produce the following two
conditions of equilibrium:

x=+R. (2.1.54)

On the other hand, projecting Eq. (2.1.43) on axes, we have:
U = mgx + const. (2.1.55)

One observes that U has a maximum for x = R and a minimum for x = —R.
According to the Lagrange—Dirichlet theorem, the position Po(x= + R,y = 0)isa
position of stable equilibrium, while P;(x = —R, y = 0) is a position of unstable
equilibrium.
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2.1.2 Many-Particle Systems

Let Py,..., Py be a system of N particles. At any moment ¢, the radius-vectors of
the particles ry,...,ry and their velocities Iy, ..., Fy can take arbitrary values. A
relation of the form

f(l'17...,l'N7I.'1,...,I"N,l):0 (2156)

is a constraint which restricts the motion of the particles. The criteria of classi-
fication of constraints for many-particle systems are similar to those encountered
in the case of a single particle. For example, the relations

filrr,..rn, ) =0 (k=T,5; s<3N) (2.1.57)

express s bilateral, rheonomous, geometric constraints. They are also holonomic
constraints. The number of constraints cannot exceed 3N; in the case s = 3N, the
N vectors ry,...,ry would be completely determined by the constraints.

As for a single particle, we consider only those differential constraints which
are linear in the velocities:

N
> g,y t) Bt gh(r, .ty ) =0 (k=T5). (2.1.58)
i=1

It is seen that (2.1.57) can be written in a form similar to (2.1.58). Indeed, taking
its total time derivative, we arrive at

u . Ofk
> (grad; fi) - ¥ + 5 =0 (k=T (2.1.59)

i=1

The constraints (2.1.58) can be integrable (holonomic) or non-integrable (non-
holonomic). The non-integrable constraints are also called Pfaffian.

The fundamental equation of motion, written for the particle P; of mass m; of
the system, is

where L; is the resultant of the constraint forces acting on the particle.

Assuming that the holonomic constraints (2.1.57) are ideal, we can generalize
the relation (2.1.40) by multiplying (2.1.57) by Ax(7), performing the summation
over k, and introducing the result into (2.1.60):

mit; =Fi + ) Jgrad; fi (i =T,N). (2.1.61)
k=1

Equations (2.1.61), together with the constraints (2.1.57), represent 3N + s equa-
tions in the unknowns ry,...,ry (3N coordinates) and 4i,...,4,. Equations
(2.1.61) are called the Lagrange equations of the first kind. They are due to the
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Italian-French mathematician Joseph-Louis Lagrange, as are many other results,
concepts and formalisms which we shall encounter further in this book.

Observation: The problems involving static equilibrium of mechanical systems of
particles are discussed in a way similar to that used for a single particle. Notice,
nevertheless, that special care must be taken in the case of interacting particles.

2.2 Elementary Displacements

To determine the equilibrium conditions of a system of N particles subject to
constraints using the method developed in the previous section, one must separately
study the equilibrium of each particle, taking into account that the constraint forces
are a priori unknown. If the number of particles is large, we have many equations
with many unknowns. In this case the aforementioned procedure becomes
complicated.

We shall now give a more general and more useful method for solving both
dynamic and static problems of mechanics. The main difference from the already
known formalism is that the effect of constraints is expressed not by constraint
forces, but rather by elementary displacements associated with these forces.

Assume that our system is subject to s holonomic, scleronomous constraints

filer,.oen) =0 (k=1,5). (2.2.1)

Being under the action of applied forces, the particles perform certain displace-
ments which must be consistent with the constraints. Let dr; be the infinitesimal
displacement of the particle P; during the time interval dt, subject to the applied
forces and the initial conditions, and consistent with the constraints. Such a dis-
placement takes place effectively, during the time interval dt, being unique. It is a
real displacement. But, if we only fix the position of the particle at time 7, we can
have an infinite number of velocities Iy, ..., Iy, consistent with the constraints
(2.2.1). The displacements performed by particles under these conditions are called
possible. The real displacements belong to the multitude of possible displacements,
being the subset that satisfies both the equations of motion and the initial conditions.

Now, let us consider a system of displacements ér; (i = 1, N) that obey only
one condition: they are consistent with the constraints. These purely geometric
displacements are synchronic, i.e. they are taken at an instant ¢ (6r = 0). These are
usually called virtual displacements.

By differentiating (2.2.1), we get

(erad, fi) -dr; =0 (k =T,5), (22.2)
1

N
meaning that all the real (or possible) displacements dr; lie in the planes tangent to
the surfaces f; =0, ..., fy = 0. Using the definition of virtual displacements Jr;,

we infer also:
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N

> (grad; fi) - or; =0 (k=T.5), (2.2.3)

i=1

showing that any virtual displacement can become a possible one.
Passing now to the rheonomous constraints, given, for example, by Eq. (2.1.56),
we realize that the possible displacements dr; (i = 1, N) must obey the relation

S 0 fk —
> (erad; fi) - dr; + 5, d=0 (k=Ts), (2.2.4)
i=1

while the virtual displacements or; satisfy an equation similar to Eq. (2.2.3).
Writing (2.2.4) for two sets of possible displacements dr;/ and dr;’, and then

L

subtracting the obtained relations, we arrive precisely at Eq. (2.2.3), where
or; = dr; — dr}. (2.2.5)

Therefore, any virtual displacement can be considered as the difference
between two possible displacements. For example, consider a spherical balloon
with a fixed centre, taken in the process of inflation (Fig. 2.4). At the moments
t) <t <ts..., the radii of the balloon will be R; <R, <Rj3.... An ant moving on
the balloon, and being at time ¢#; in the position P, could be at time #, > ¢#; in any
position P, P, P etc., on the sphere of radius R, > R;. The displacements
dr', dr”, dr'’, etc. are possible displacements. Depending on the initial conditions
(the ant is considered a mechanical system), only one of these displacements is
real. Any virtual displacement Jr at time 7, lies in the plane tangent to the sphere
of radius R,, and obeys the rule (2.2.5). The virtual displacements are atemporal,
in our example being any displacement on the balloon surface, taken at an instant,
while R is fixed.

Fig. 2.4 Intuitive examples — _eesmTTTTe
of real, possible and virtual e .
displacements. ~ -~ S ~,
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2.3 Principle of Virtual Work

A method providing a very efficient way of eliminating the constraint forces
appearing in a mechanical problem is the principle of virtual work. Assume again
that a system of N particles Py, ..., Py is in static equilibrium and subject to ideal
constraints. If dor; is a virtual displacement of the particle P;, consistent with the
constraints, then, by definition,

is the virtual work of the force F; relative to the displacement Jr;. In the case of
static equilibrium (r; = 0), multiplying (2.1.60) by Jr; and summing for all the
particles of the system, yields:

N
> F;-or =0, (2.3.2)
i=1

where we have used the property of ideal constraints

N
> Li-ori =0. (2.3.3)
i=1

Relation (2.3.2) expresses the principle of virtual work: The necessary and
sufficient condition for static equilibrium of a scleronomous system subject to ideal
constraints is that the virtual work of the applied forces, for virtual displacements
consistent with the constraints, be zero. If the particles were free, the displace-
ments Jr; would be arbitrary.

Let us now show that from the principle of virtual work all the conditions of
equilibrium discussed in Sect. 2.1 can be derived.

2.3.1 Free Particle

The principle (2.3.2) for one particle is written as
F-or=0. (2.3.4)

Since Jr is completely arbitrary, it follows that F = 0, in agreement with (2.1.41).

2.3.2 Particle Subject to Constraints

If the constraint is an ideal surface f(x, y, z) = 0, then the condition

grad f-or=20 (2.3.5)
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expresses the fact that the particle lies on the surface. Multiplying (2.3.5) by some
scalar /4 and adding the result to (2.3.4), we fall back on the relation (2.1.48). In the
case of an ideal curve, the condition (2.3.4) must be completed with

grad fi -or =0, grad f-or =0, (2.3.6)

leading together to (2.1.51).

2.3.3 System of Free Particles

For arbitrary virtual displacements Jr;, we have

N
> Fi-or; =0, (2.3.7)
i=1

yielding the conditions of equilibrium

F,=0 (i=T1,N), (2.3.8)

which are also obtained from (2.1.60) for ¥; = 0, L; = 0. Notice that, by using the

principle of virtual work, the N relations (2.3.8) are replaced by a single relation
(2.3.7).

2.3.4 System of Particles Subject to Constraints

Assuming that the constraints are given by (2.1.57), we may write:

N
0 fx 0 fi 0 fi —
5x; 5y; 52 ) =0 (k=T.3). 23,
;<axi 5t gy it o, (k=1s. (239

From (2.3.2) we have also
N

> (Xidx; + Yidy; + Zidz:) =0, (2.3.10)
i=1

where X;,Y;, Z; are the components of the force F;. The displacements ox;, 0y;, 0z;
are not arbitrary anymore, but they must obey the s relations (2.3.9).

The (s + 1) equations (2.3.9) and (2.3.10) can be written as a single relation by
using the method of Lagrange multipliers. Let us amplify each of the equations
(2.3.9) by A, then perform the summation over the index k and add the result to
(2.3.10). We obtain:
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0 fk
0z; ) &i]

(2.3.11)

=1 i i

N . afk S afk S .
<X,'+k /Lkax >5Xi+<Yi+;)Vkay~>5yi+<Zi+kz;/bk
0

This relation must be satisfied by any 6&x;,dy;,0z; (i = 1,N). Since these
variations must obey the s linear homogeneous equations (2.3.10), it follows that
3N — s of these displacements can be taken as being independent. Then, in
(2.3.11) are determined 4; so that the parentheses which multiply the s dependent
displacements are zero, leading to a number of s equations. Next, we make vanish
the parentheses multiplying the 3N — s independent displacements, and get more
3N — s equations. Finally, we are left with 3N equations:

., 0 .0 .0
N T A DY NP g
k=1 k=1 k=1

af% —0 (i=T.N).

l

Ox; 0y;
(2.3.12)

The 3N equations (2.3.12), together with the s equations (2.1.57), form a system
of 3N + s equations for 3N 4 s unknowns: the equilibrium coordinates
Xi, yi,zi (i =1, N) and the multipliers 4, ..., 4;.

Observation: The principle of virtual work applies to the study of the equilibrium
conditions of a rigid body as well. Anticipating, we shall use (4.3.10) to write the
velocity v; of a particle P; of the rigid body, relative to a fixed frame Oxyz:

Vi=Vo+oXr. (2.3.13)

Here, v, is the velocity of some particle O’ of the body and r; the radius-vector of
P; relative to O'. If r/ is a virtual displacement of P;, consistent with the rigidity
constraints, we can write:

or; _org

VT T s

(2.3.14)

and (2.3.13) becomes
or; = org + (o x r})ot. (2.3.15)

The principle of virtual work (2.3.2) reads then:

N N N
> F-ori=6rg-» Fit+dtw- > rxF =0, (2.3.16)
i=1 i=1 i=1
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Fig. 2.5 Choice of the
systems of coordinates to find
the equilibrium conditions of
a free rigid body (2.3.20).

being true for completely arbitrary variations dry and @dr. Therefore, we obtain:
N
> F,=F=0 > rixF=M=0, (2.3.17)
i—1

where the torque M’ is taken relative to O'. But r; = r; — ro (see Fig. 2.5), so that

N N N
D rixFi=) rxF-rx) Fi=0 (2.3.18)
i=1 i=1 i=1

and, using (2.3.17),

N
M= "r xF =0 (2.3.19)

i=1

Since O is arbitrary, we conclude that M can be taken with respect to any point.
Therefore, the equilibrium conditions of a free rigid body are:

F=0, M=0. (2.3.20)

Note that any point of a free rigid body has two independent virtual vector dis-
placements, ory and wdt, equivalent to six components. Consequently, a free rigid
body possesses six degrees of freedom.

The equilibrium conditions for a rigid body subject to constraints are obtained
in a similar way. For instance, if the body has a fixed point, say O’, the reaction
force of the point O’ can be considered as an applied force, and so the body can be
regarded as being free. Hence, in view of (2.3.17),

N N
L+ZF,:0, Zr,- x F; = 0. (2.3.21)
i=1 i=1

Since O’ is fixed relative to O, we have ory = 0, and so
or; = (o x r})ot, (2.3.22)

i.e. a rigid body with a fixed point has three degrees of freedom.
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2.3.5 Application

Using the principle of virtual work, let us find the equilibrium positions of a
particle A of mass m, which can slide without friction on an ellipse of semi-axes
a and b, rotating with constant angular velocity @ about its minor axis, directed

along the vertical as shown in Fig. 2.6.
Our particle is subject to two applied forces:

force of gravity: F, = mg = —mgj,

2 2

centrifugal force: F.y = mw™r = mo*xi,

and a constraint force, due to the restriction of moving on the ellipse,

X2 y2

The principle of virtual work (2.3.2) yields:
F - or = mw*xdx —mgdy =0
On the other hand, by differentiating (2.3.25), we have:

x0x  yoy

Zz T =0

Eliminating Jy between the last two equations, we obtain

1 ?y

This means that either

Fig. 2.6 A particle sliding Ya

without friction on a rotating
ellipse.

(2.3.23)

(2.3.24)

(2.3.25)

(2.3.26)

(2.3.27)
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or

1w’y
b 0, — + -5 =0.
(b) x#0, 5+

Consequently, these two cases lead to the following possible equilibrium
conditions:

(@) x=0, y=+b, (2.3.28)

/ b2g2 ng
(b) x==xay/1— W’ y= —a2a)2 . (2329)

Obviously, if w — oo, we have x — +a, y — 0.

2.4 Generalized Coordinates

Consider again a system of N particles Py, ..., Py, of radius-vectors rj,...,Iy
relative to a Cartesian orthogonal frame Oxyz, subject to s holonomic independent
constraints

fk(r]7"'7rN7t):O (k:m) (241)

Due to the existence of the constraints, the 3N coordinates of particles are not
independent, therefore the number of independent coordinates will be

3N —s=n, (2.4.2)

meaning that our system has 3N — s = n degrees of freedom. For instance, a
system of two particles, at a fixed distance one from the other, has 6 — 1 =5
degrees of freedom.

If the number of particles is large, the presence of constraints makes the
determination of the coordinates x;,y;,z; a difficult task. We shall attach to the

n degrees of freedom a number of n independent variables q,...,q,, called
generalized coordinates or Lagrangian variables. The 3N Cartesian coordinates r;
are then expressed in terms of ¢i,...,¢q, by

ri:ri(qla"'aqnvt)Eri(q7[) (l:17N) (243)

The generalized coordinates ¢; (j = 1,n) satisfy the following properties:

(a) Any independent variation of ¢y, ..., g, yields
fk[rl(qvt)a"'arN(qat)vt] =0. (244)
(b) Any ry, ..., ry, consistent with the constraints (2.4.1), can be obtained from

(2.4.3).
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(c) There also exists the inverse transformation of (2.4.3), namely

qj:qj(rla'”arNat) (]: l,l’l), (245)
for ry, ..., ry satisfying (2.4.1).

Similarly to the Cartesian coordinates, the generalized coordinates are assumed
to be continuous functions of time, at least twice differentiable. On the other hand,
in contrast to the Cartesian coordinates, the generalized coordinates do not nec-
essarily have the dimension of length. We can choose as Lagrangian coordinates
any suitable assembly of geometrical objects, such as: segments of straight lines,
arcs, angles, surfaces, components of angular velocities, etc.

The choice of generalized coordinates is somewhat arbitrary. It is always
possible to find a point transformation

q; — q/j = q/j(QIa codny ) (J=1,n), (24.6)

such that ¢, . .., ¢, are a new set of Lagrangian variables.

If the system is not subject to constraints, we can choose as generalized
coordinates the 3N Cartesian coordinates of the particles, but there are also other
possible choices. For instance, the position of a free particle can be defined either
by its Cartesian coordinates x, y, z, its spherical coordinates r, 0, ¢, or its cylin-
drical coordinates p, ¢, z, etc.

Example. A particle P is constrained to remain on the moving sphere
(x —at)’ + (y —bt)* + (z —c1)* = R%. (2.4.7)

Since n = 2, we can choose g; = 0, g» = ¢. At time ¢, the centre of the sphere is
at the point (at, bt, ct), therefore we can write

x=at+ Rsinfcosp, y=>bt+ RsinfOsing, z=ct+ Rcosf, (2.4.8)

representing the transition from Cartesian to spherical coordinates.

2.4.1 Configuration Space

The set of radius-vectors ry, . . ., ry define the so-called configuration of the system
of particles, in the real space. If we choose ¢i,...,q, as coordinates of a
n-dimensional space R,, then to each set of values of the variables ¢y, .. ., g, will
correspond a representative point in this space, known as the configuration space.
In other words, any configuration of a mechanical system can be represented by a
single point in the configuration space R,. Note that the configuration space does
not generally have an intuitive meaning, as does the Euclidean space used in
Newtonian mechanics; but, as we shall prove, the abstract notions of generalized
coordinates and configuration space are very useful not only in mechanics, but in
other physical disciplines as well.
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As the mechanical system changes its configuration with time, the configuration
point traces a curve in configuration space, called generalized trajectory. This is by
no means any of the real trajectories of particles, but describes the motion of the
whole system. The generalized trajectory can be conceived as a succession of
representative points, each of them corresponding to a certain configuration of the
system. To know the law of motion in the configuration space means to know

qj=q,(t) (j=Ln). (2.4.9)

These are also the parametric equations of the generalized trajectory. Once (2.4.9)
are known, by means of (2.4.3), the motion of the particles in real space can also
be determined.

2.4.2 Generalized Forces

In view of (2.4.3), a real infinitesimal displacement dr; of particle P;, during the
time interval dt, is

61‘,» Gr;

dri =S —Ldg;+ =—dt (i=T1,N), 2.4.10
r >4, q;+ 7 dr (i ) ( )

while a virtual displacement or; satisfies the relation

ar, S
—T.N). 2.4.11
Z -0 ) (24.11)

The displacements dg; and Jg; in the configuration space are similar to the dis-
placements dr; and or; defined in the real space. Thus, by dg; we mean real (or
possible) displacements of the representative point during time dt, while dq; are
virtual displacements, taken at t = const. (i.e. 6r = 0). If ¢y, ..., g, are indepen-
dent, dqy, ..., dq, are also independent and can be considered as a set of n com-
pletely arbitrary displacements at an instant.

Let us now write the virtual work W, done by applied forces Fy, ..., Fy on the
particles, in terms of virtual displacements in the configuration space. In view of
(2.4.3), we have:

5W:§;Fi-5ri—z<ZF >5q,

If we define the generalized forces by

N
Qj:ZF,a—rf (j=T1,n), (2.4.12)
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the work can be written as
N n
SW=> F;i-ori =Y 0;dq;. (2.4.13)
i=1 j=1
Since, in general, the forces F; are functions of the form

F; :F,-(rl,...,rN, ry,...ry, l) (ZZI,—N), (2414)

we conclude that the generalized forces Q; have the following functional
dependence:

Qj = Qj(Q1a'--7qn7 qlw'wQVta t) = Q_/<Q7Q7t) (]:1,—7’1) (2415>

The quantities

=
TTar
are called generalized velocities and are related to the real velocities vy, ..., vy by
" Or; or;
=V, = —§i+— (i=1,N). 2.4.16
r A4 ; aqj qJ + at (l ) ( )

The physical meaning of the generalized forces Q; emerges from the signifi-
cance of their associated generalized coordinates. For example, if the transition
from Cartesian coordinates x, y, z to orthogonal curvilinear coordinates qi,q»,q3
is defined by

xi = xi(q1,92,q93) (i=1,N), (2.4.17)

then z% is a vector tangent to the curve g, = variable, while Q; = F - % is the

component of F on this direction. In particular, the choice g; =r, g2 =0, g3 = ¢
yields (see Appendix B):

Ql = Qr:F'ur:Fra
0> = Q¢ =F-(rug) =r Fy, (2.4.18)
03=0,=F-(rsinfu,) =rsin0 F,.

The generalized forces do not generally have the dimension of force, but the

product [¢gQ] has always the dimension of work.
If the forces F; (i = 1, N) derive from a potential (see (1.3.22)):

F; = —grad,V (i =1,N), (2.4.19)

then the generalized forces Q; obey a similar equation:

N ooy or oV
0, =-— B (j=1,n), (2.4.20)
J ;al‘i aqj 6qj

where V = V(qi,...,qu,t) is the potential in terms of the new variables.
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From (2.4.13) follows that a position of the representative point in the con-
figuration space, at time ¢, is a position of equilibrium, if

> 0;6q;=0, (2.4.21)
j=1

which expresses the principle of virtual work in R,,. If the virtual displacements dg;
are arbitrary and independent, it results in

Q;=0 (j=Ln), (2.4.22)

meaning that: a certain position of a system of particles, subject to holonomic
constraints, is a position of equilibrium, if all the generalized forces corresponding
to that position are zero.

2.4.3 Kinetic Energy in Generalized Coordinates

It is most useful in the development of our formalism to express the kinetic energy
T of the system in terms of the generalized coordinates ¢, .. .,q,, and the gen-
eralized velocities ¢, .. .,g,. In view of (2.4.5), we have:

al. i az. ai
Z’”‘Z<a; Gt ) Z<a; et ai)

Set
1 Z Gr, 2 i ari 6 Z 61‘, al‘,-
a = — mi|l—1| , a; = m; — - ,
2 = ot ! —~ 0q; 0g; aqk
(2.4.23)
where a, aj, aj are continuous and differentiable functions of gy, .. .,q,,t. Thus,
—a+Za1q1+ZZ apdjgr=To+ T + Ty, (2.4.24)

j=1 k=

where the meaning of Ty, Ty, 7, is obvious.

If the constraints are scleronomous, the terms T and 7 in (2.4.24) vanish and
the kinetic energy T = T, becomes a homogeneous quadratic form of the gen-
eralized velocities ¢g;:

n

Z Za,k g (2.4.25)

jlkl
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Keeping in mind the definition of aj, we see that the quadratic form T, is
positively defined, 7> > 0 (the equality sign is valid only if all ¢y, .. ., g, are zero).
For example, the kinetic energy of a particle of mass m in spherical coordinates is

1 .
T= Em(iz + 0% 4 r* sin® 0 ¢?).

We can therefore conclude that, in general, the kinetic energy has the following
functional dependence:

T =T(q,4,1). (2.4.26)

2.5 Differential and Integral Principles
in Analytical Mechanics

As Newtonian mechanics is based on the well-known principles of inertia, of force
and of reciprocal interactions, so another formulation of mechanics is constructed
on some fundamental axioms, called principles of analytical mechanics. These
postulates serve to deduce the differential equations of motion in the configuration
space. The principles of analytical mechanics are more general then those of
Newtonian mechanics; they allow not only to obtain the results of Newtonian
mechanics, but also to approach a large variety of non-mechanical problems. As a
matter of fact, the methods provided by analytical mechanics play an important
role in other physical disciplines, such as: theory of elasticity, quantum field
theory, electrodynamics, theory of relativity, etc.
The principles of analytical mechanics can by grouped in two categories:

(a) Differential principles, which give us information about the state of a system,
at different times, and take care of the behaviour of the system under infini-
tesimal variations of general coordinates and velocities in the configuration
space. In general, the differential equations of motion (in both real and con-
figuration spaces) can be considered as mathematical forms of certain differ-
ential principles. Such a principle is, for example, D’Alembert’s principle.

(b) Integral principles, which consider the motion of a system during a finite time
interval. These principles operate with global variations in configuration space.
In this category fall variational principles, that use the methods of variational
calculus, for global displacements along the generalized trajectories. The
Hamilton and the Maupertuis principles belong to this category.

The distinction between these two groups is not absolute. As we shall see
later on, there is an intimate relation between all the principles of analytical
mechanics.
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2.5.1 D’Alembert’s Principle

Consider again a system of N particles Py, ..., Py, subject to applied and (holo-
nomic) constraint forces. The Newtonian equation of motion of the particle P; is
(see (2.1.60)):

mi¥; =F;,+L; (i=1,N). (2.5.1)
Let us denote
Ji=-mi; (i=1,N) (25.2)
and call it the inertial force acting on particle P;. Then
Fi+L;+J,=0 (i=1,N). (2.5.3)

This vector equation expresses one of the forms of D’ Alembert’s principle: there is
an equilibrium, at any moment, between the applied, the constraint and the inertial
forces acting on a particle. This is the initial form of the principle, discovered by
Jean-Baptiste le Rond D’Alembert.

In the case of ideal constraints, D’Alembert’s principle can be written in an
alternative form, which is very useful in some applications. To find this expres-
sion, we multiply (2.5.3) by the virtual displacement Jr;, and then we take the sum
over all particles of the system. Since the virtual work associated with the ideal
constraints is zero, we arrive at

N
Z(J" +F,)-0r, =0 (2.5.4)
i=1
or, in a slightly different form,
N
> (Fi — mji;) - 1 = 0, (2.5.5)

i=1

meaning that: The sum of the virtual works of applied and inertial forces, acting on
a system subject to ideal constraints, is zero. This form of D’ Alembert’s principle
is most useful, because it does not contain the constraint forces anymore. It was
given by Lagrange and is used to deduce the differential equations of motion in
configuration space.

2.5.2 Lagrange Equations for Holonomic Systems

We are now prepared to derive the differential equations of motion of a system of
N particles, subject to ideal and independent constraints, in terms of generalized
coordinates ¢y, . . ., ¢,. To this end, we shall express both the variations dr; and the
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derivatives r; occurring in (2.5.5) in the configuration space. The virtual dis-
placements oOr; can be written as (see (2.4.11)):

Z O sgi (= TN, (2.5.6)

O
dq;
(2.5.8)
On the other hand, (2.4.16) yields
61",» al’,‘
— = . 2.59
3, " 3 (25.9)

The substitution of (2.5.8) and (2.5.9) into (2.5.7) gives

N

Zm,rl 5r,2[i<z ) Zmr ]5%. (2.5.10)

Recalling that

1 & >
=5 2 milki
i=1

is the kinetic energy of the system of particles, it is easy to observe that (2.5.10)
becomes

oT oT
Zm,rl or; = Z{ <an> - @j}aq_i. (2.5.11)

The last step is now to introduce (2.4.13) and (2.5.11) into the expression for
D’Alembert’s principle (2.5.5). The result is:
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“[d <6T> oT
(=) =-==-0,l6¢;,=0. (2.5.12)
; L’t %;) oq; TV

Since the constraints are independent, the virtual displacements dg; are completely
arbitrary. Therefore (2.5.12) holds true only if all the square brackets are zero, i.e.

d [ oT oT
|- == =0, i=1 2.5.1
dl(aq]'> aé]j 0; (J 7”)7 ( 5 3)

which are called Lagrange equations of the second kind. From now on, we shall
use these equations under the shorter name of Lagrange equations. They represent
a system of n second-order differential equations in the variables g;. The general
integral of (2.5.13),

qj=q;(t,C1,...,Cy) (j=1,n), (2.5.14)

expresses the law of motion in the configuration space R,. The 2n arbitrary con-
stants Cy, .. ., C,, are determined by 2# initial conditions: at time ¢ = #;, we must
know both the generalized coordinates and the generalized velocities,

4} = q;(to,Ci1,...,Ca), 4} =4q;(t0,Cr,...,Can). (2.5.15)

Once the motion in configuration space is determined, the solution (2.5.14) is
introduced into (2.4.3), giving the motion in real space.

If, in particular, there are no constraints acting on the particles, we can choose
as generalized coordinates the Cartesian coordinates, thus falling on Newton’s
second law discussed in Chap. 1.

Assume now that the applied forces F; are potential. Then, according to
(2.4.20), the generalized forces Q; are also potentials and we obtain:

d <6T> or ov

Sl )-—=——-2=0 (j=T,n),
dt \ 9q, Oq;  Oq; ( )

where V = V(q, ). Introducing the Lagrangian function or, simply, the
Lagrangian L by

L(q,4,1) = T(q.4,1) — V(q,1), (2.5.16)
we finally arrive at
d (0oL oL
N )—%5=0 (=1Ln) 2.5.17
dt(ai]j) 661]' (] an) ( )

These equations are remarkably useful for several reasons. First, as we have
already mentioned, they do not contain constraint forces. Second, all the
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information regarding the behaviour of the system is contained in a single scalar
function, the Lagrangian. These equations are widely applied in many branches of
physics, as we shall show in our further development of this formalism.

To solve a problem using the Lagrangian technique, one should proceed as
follows:

1. Identify the n degrees of freedom of the system and choose suitable generalized
coordinates g;;

2. Construct either the functions 7, Q;, or the Lagrangian L;

Impose initial conditions;

4. Integrate the Lagrange equations and then, if necessary, determine the trajec-
tories of the particles;

5. Obtain the constraint forces by means of (2.1.60):

W

Li:m,"l:,‘—F,' (l: 17N) (2518)

In particular, if there is no applied force acting on the particles, the
Lagrange equations determine the geodesics of the configuration space R,. The
already known form of the equation of geodesics (see (2.1.37)) is obtained
recalling that, for scleronomous constraints, the kinetic energy can be written as
(see (2.4.25)):

=32 Z Zafk 99 G- (2.5.19)

j=1 k=

The Lagrange equations (2.5.13) then yield:

day . . Oay . -
Za]ka“l‘ZZ ’chn Zza “qegr=Q; (j=T,n).
qdj
Introducing the Christoffel symbols of the first kind,

Oa ik aa,- 6akl
Tw.; s — - — 2.5.2
K= <6611 * Oqx a‘Ij>7 (2:5:20)

we have:

Zajkék‘FZZFk/,ji]ké]l: Q;. (2.5.21)
k=1 =1 1=1

If Q; = 0, we arrive at the geodetic form of the equilibrium equations in config-
uration space R,, (see (2.1.37)).
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2.5.3 Velocity-Dependent Potential

Let us show that the Lagrange equations (2.5.17) keep their form in the case of a
generalized or velocity-dependent potential V(q,q,t), linear in §;, if Q; can be

taken as
d [0V ov .
0= (5) a U= (22

Consider the potential

V(g.q.t) =Y ajq;+ Vo= Vi+ Vo, (2.5.23)
=1

where o, (j = 1,n) and V, are functions of g; and ¢, and add the quantity

o afov
qu dt aqj

to both sides of (2.5.13). Then it is obvious that, if (2.5.23) is true, we arrive at the
Lagrange equations (2.5.17), where

L(g;4,1) = T(q,4,1) = V(q,4,1). (2.5.24)

A classic example of generalized potential is offered by the motion of an
electrically charged particle in an external electromagnetic field. It is well known
that the electromagnetic force acting on a particle of mass m and charge ¢, moving
with velocity v in the field E, B, is:

F=¢(E+vxB). (2.5.25)
The fields E and B are usually given in terms of the electromagnetic potentials
A(r,t) and ¢(r,1) as

0A
E:_W_a_;’ B=VxA. (2.5.26)
Since the particle is free, it has three degrees of freedom. We choose
qi = xi, ¢ = X; = v; (i = 1,2,3). Recalling that ¢; and ¢; are independent with
respect to each other, we can write (see Appendix B):

V(v-A)=vx(VxA)+ (v-V)A. (2.5.27)
We also have:

dA 0A
= -V)A. 2.5.2
I o +(v-V) (2.5.28)
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Using (2.5.26)—(2.5.28), we get from (2.5.25):

B 0p  0A;
Fie{_axi_ o + v x (VxA),

{8 n- 2ol

If we define the velocity-dependent potential by

V=e(p—v-A), (2.5.29)
which is of the form (2.5.23), we see that F; can indeed be derived from (2.5.29).
Therefore, the Lagrangian of our system is

1
L= Em|v|2 —ed+ev-A. (2.5.30)

In this example we started from the equation of motion (2.5.25) and arrived at
the Lagrangian (2.5.30), but usually the problem is posed in an inverse way: given
the Lagrangian, we are supposed to find the differential equations of motion.

Observations:

(a) Systems admitting a simple or a generalized potential are called natural. In
view of the definition (2.5.16), we can write:

L=Ly+ L+ Ly, (2.5.31)
where
Lo=b, Li=Y bjg; Ly=Y_ bydjix
=1 J=1 k=1
The coefficients b, b;, by are functions of qy,...,q,,t. Taking into account

(2.4.24), in the case of a simple potential V(g, 1),
Lo=To—V, Li=T, L,="0, (2.5.32)
while for a generalized potential V(q, ¢,1) (see (2.5.22))
Lo=Ty—-V, Li=T -V, Ly=T. (2.5.32)

(b) Conservative forces represent a particular case of potential forces, therefore the
Lagrange equations are used in the form (2.5.17), observing that now the
function V is the potential energy of the system.

(c) If the Lagrangian L does not depend on one of the generalized coordinates
q1,---,qn, say g (k fixed), the Lagrange equations (2.5.17) yield:

oL
—— = const. 2.5.33
% ( )
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Such a generalized coordinate is called cyclic or ignorable, and (2.5.33) is a
first integral of (2.5.17).

(d) Let us add to the Lagrangian a term which is the total time derivative of some
function F(q, 1):

L'=L(q,q,1) + %F(q, ). (2.5.34)
Introducing (2.5.34) into the Lagrange equations (2.5.17), the terms containing
F give zero, and we obtain the same system of equations for L'. This simple
exercise is left to the reader. In conclusion, the terms having the form of a total
time derivative can be omitted from a Lagrangian. In other words, two
Lagrangian functions which differ from one another by terms being total time
derivatives give the same description of the motion and therefore the two
Lagrangians L and L' are equivalent.

A Heavy Particle Moving on a Spherical Surface

Let us find the differential equations of motion of a particle of mass m, moving
without friction under the influence of gravity on a fixed spherical surface of radius
[ (a spherical pendulum) (Fig. 2.7).

This system has two degrees of freedom. Using spherical coordinates and
choosing g = 0, ¢ = ¢, we have:

Fig. 2.7 A particle moving
without friction on a fixed
sphere (spherical pendulum).
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1 2002 202
T= Eml (6° +sin” 6¢), V =mglcos0,

hence
1 .
L= 5;1112(92 4 sin? 0 %) — mgl cos 0. (2.5.35)

Performing the calculations in (2.5.17), we obtain the equations of motion:

8

0 — sin O cos 0> — T sin0 =0, (2.5.36)

& +2cot 00¢p = 0. (2.5.37)

These two second-order differential equations are non-linear. If ¢ = const., i.e. if
the motion is performed on a vertical circle of radius /, we are left with a single
equation:

0—2° slnH =0+ 7 8 sing = (2.5.38)

which is the differential equation of a plane (or simple) pendulum. The problem of
the mathematical pendulum will be thoroughly discussed in Chap. 3.

2.5.4 Non-potential Forces

Assume that on a system of particles act both potential and non-potential forces. If
we denote by Q;(j=T1,n) the generalized non-potential forces, then the
Lagrange equations (2.5.17) take the form

dfoL\ oL .
m(aq,-) & =0 U=Tm), (2.5.39)

where, obviously, the Lagrangian L = T — V includes only the potential forces.
The infinitesimal virtual work done by the non-potential forces is

n

N
v = ZF, . 51‘,‘ = Z Qjéq] (2540)
i=1

J=1

Let us define the power P of non-potential forces:

P N
p:TVtV Z: ZQJqJ, (2.5.41)

and consider two remarkable cases:
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(1) The non-potential forces of negative power (7~3<O) are called dissipative
forces. Such a force is, for example, the friction force. If this can be written as

F/ = —kv; (i=1,N, k>0), (2.5.42)

then there exists a scalar function 7,

| LS
T =k il 2.5.4
2 i 2343
so that
Fg‘:f%zfvvj (i=T1,N), (2.5.44)

where V,, stands for the partial derivative with respect to v;. The function
T is called the Rayleigh dissipation function. It is obvious that Rayleigh’s function
for a scleronomous system is quadratic and homogeneous in the generalized
velocities §;:

T = % SO Cadja (2.5.45)

=1 k=1

The physical significance of 7 is found by writing the power of the friction forces:
~ N N

P=)YF -vi=—k> v =-2T, (2.5.46)
i—1 i—1

i.e. the function 7 is equal to half of the power dissipated by friction.
The generalized forces Q{ , associated with the friction forces F/, are:

~ Gr,» oT .
ol =¥ — = (j=T1,n). (2.5.47)

Therefore, in our case, the Lagrange equations (2.5.39) become

TN
dt 661/ aqj 6qj

0 (j=T,n). (2.5.48)

(2) If the power of non-potential forces is zero,

N n
ZF,’ V= Z Qjélj = 0, (2549)
i=1 j=1
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we deal with gyroscopic forces. Remark that, in order for (2.5.49) to be valid, F;
must be written as a cross product of two vectors, where one of them is v; or,

equivalently, O ;j must have the form

Q=Y hug (j=T.n), (2.5.50)
k=1

the coefficients hj being antisymmetric:
hj = —hy;. (2.5.51)

As two examples of gyroscopic forces, we give the Lorentz force acting on a
particle of charge e:

F, = e(v x B), (2.5.52)
and the Coriolis force (see (4.3.7)):

Fi = —Zm,(w X Vi), (2553)

where v; is the relative velocity of the particle m; and w is the instantaneous vector
of rotation.

The definition (2.5.49) shows that the instantaneous rate of the work done by a
scleronomous system subject to gyroscopic forces is zero:

n n

d .= .
$(5W) = Zzhijij =0, (2.5.54)

J=1 k=1

and therefore there exists the energy first integral.
In the next two chapters we shall give special attention to the application of this
formalism on concrete models of dissipative and gyroscopic systems.

Observation: The Lagrange equations for non-holonomic systems are derived and
applied in Chap. 4 (see (4.6.52)).

2.6 Elements of Calculus of Variations

Hamilton’s principle (see Sect. 2.7), which is one of the most important principles
of theoretical physics, belongs to the category of variational principles. For a
better understanding of the formalism implied by the use of this principle, let us
briefly review some elements of variational calculus.

The calculus of variations deals with the study of extremum values of functions
depending on a curve, or on another function, rather than a real number. For the
beginning, let us consider a function f(x) of class at least C* (i.e. continuous,
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together with its second partial derivatives), and expand it according to Taylor’s
formula, about a fixed value xg:

X — X0
1!

(x — xo)2
2!

f(x) = fxo) + f'(x0) + f"(x0) +--- (2.6.1)

The quantity

Of = (x = x0) f'(x0) = f'(x0)0x

is called the first variation of f at the point xy. The necessary and sufficient
condition that the function f has a stationary value at x is that of = 0, for any
arbitrary variation ox. This yields:

f'(x0) = (%)xwz (2—90: 0, (2.6.2)

which reminds us of the condition of static equilibrium (2.1.45). Going further, we
can define the second variation of f as

O’ f = %(x — x0)f" (xo0). (2.6.3)

If f”(xo) >0, we have a local minimum at xo, while if f”(xo) <0, xo is a local
maximum.

Assume now that f is of the form f(xi,...,x,). Then its first variation at
(x ., x%) s
"~/ d
5f:Z(6xf~> 0x;, 5xj:xj—x?, (2.6.4)
j=1 770
while the condition that f has a stationary value at (x9,...,x°), for independent
and arbitrary Jx;, reads:
of
— ) =0 (j=1,n). 2.6.5
() -0 u-1m (265)
If the variables xy,...,x, must obey s independent constraint equations
gk(x1,.. 0 x,) =0 (k=1,s), (2.6.6)
where gi,..., g are functions of class C?, the variations dx; are no longer inde-

pendent, but must satisfy the system of s equations

n ag -
5gkzz<a];>05xj20 (k=T,s). (2.6.7)

=1
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To find the stationary conditions in the presence of constraints, one multiplies

(2.6.7) by some arbitrary Lagrange multipliers 4; (k = 1,s) and add the result to
(2.6.4). Thus, we have:

- af : 5 agk B
;K@)o*;“‘(aju 0% = 0. (268)

Here the variations dx; are independent, therefore the stationarity condition reads:

(g—f> “"iik(%) =0 (]:1,—11) (2.6.9)
XiJo = Xji/o

Let us now consider the definite integral

X2
I[y(x)] = / f(x, .Y )dx, (2.6.10)
where y = y(x) is a curve in the xy-plane and y' = %‘ The function f(x, y, y') is of

class C? in each of its arguments. The integral (2.6.10) is a functional of y(x),
giving the correspondence between the function f and the number /, associated to
the curve y = y(x).

One of the central problems of the calculus of variations is to find the curve
y = y(x) for which the associated integral (2.6.10) is an extremum in the given
interval x; <x <x,.

Denote by (C) the path y = y(x) that makes the integral (2.6.10) an extremum
and consider a neighbouring curve (C"), given by

y(x) = y(x) + en(x), (2.6.11)

where € is a small parameter independent of x, while #(x) is a function of class C'
which satisfies the conditions

n(x1) =n(x) = 0. (2.6.12)

Therefore, the two paths (C) and (C") have the same initial and final points,
Pi(x1,y1) and P>(x7, y2) (Fig. 2.8). Varying the parameter &, we obtain a family of
curves C7,C3, ..., all of them passing through P; and P,. The functional associ-
ated to the curve (C*) is

Fig. 2.8 The two paths by
(C) and (C"), having the same By
initial and final points.

©
)
B, ey x
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X2
1) = [ £l (26.13)
Since
f(-xay )Y /) = f(xay+€777yl+6'7/> = f(-xayay/) +€776_y +€’7,a_y, +y
the first variation of the integral [ is
[(of, of
ol = = ' |d 2.6.14
6/<n%f+naﬂ)x’ ( )
X1
or, upon integration by parts of the second term and using (2.6.12):
X2
of d (of
1= - - —| = . 2.6.1
o= [l - & (7))@ 2613

X1

Recalling that #(x) is arbitrary, except for the condition (2.6.12), the necessary and
sufficient condition for a stationary value of [ is

of d (af\
5§E<@JQ (2.6.16)

Consequently, among all curves passing through the fixed points Pj(x1,y;) and
P5(x2, y2), the curve which makes the integral I stationary satisfies Eq. (2.6.16).
These considerations can be generalized for functionals of the type

X2
I[yl(-x)a RS yn<x)] = / f(-x7yla EERX) ynaylla RS Y:,)d% (2617>
X
where y; = y;(x) (i = I, n) are n functions of class C* and y; = 2% (i = T,n). Let
X, ¥1, ..., yn be the coordinates of a point in a (n 4+ 1)-dimensional space Q,,,; and

let Pi(x',y}), P(x?, y?) be two fixed points in Q,.;. Then, if

yi=yi(x) (i=1Ln) (2.6.13)

are the equations of the curve which makes (2.6.17) an extremum, and

yi = yi(x) + en;(x) (2.6.19)

are the equations of a neighbouring curve passing through the same initial and final
points, then, following a similar procedure, we obtain the condition which y;(x) has
to obey so that the integral (2.6.17) be an extremum, in the form
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of d(of\ . . —
a_yi_a<a_y;>_0 (i =Tn). (2.6.20)

These equations were first obtained by Leonhard Euler in 1744 and later used by
Lagrange in mechanics. They are usually called the Euler—Lagrange equations.

Before going any further, we shall apply this formalism to some classical
problems of variational calculus.

2.6.1 Shortest Distance Between Two Points in a Plane

Our aim is to minimize the integral

X2 X2
I:/ds:/\/l—&—y’zd)g (2.6.21)
X1

X1

where s = y/x2+ )2 is the arc length in the xy-plane. Comparing (2.6.21)

with (2.6.10), we get f = /1 + y2, and the Euler-Lagrange equation (2.6.16)
yields:

of _ Y of _

oy iy oy

hence

iy O Y e @

leading by integration to the equation of a straight line, y = C;x 4+ C;. The con-
stants C; and C, are determined by the condition that the curve must pass through
the points P;(x1,y1), P»(x2, y2). Note that our solution produces an extremum for
(2.6.21) and we cannot know the nature of this extremum at the beginning. But the
investigation of the problem, together with our common sense, tells us that the
extremum is a minimum.

y —C / C

Fig. 2.9 Choice of E (0,0 y
coordinates for the (0]

brachistochrone problem. The
points Py(0, 0) and P(xy, y1)
are fixed.

B x,y)
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2.6.2 Brachistochrone Problem

Among all curves lying in a vertical plane and passing through two fixed points,
find the one for which a heavy particle would slide down the curve without friction
in minimum (extremum) time.

This problem was formulated in 1696 by the Swiss mathematician Johann
Bernoulli, being the problem which lead to the calculus of variations. The word
brachistochrone derives from the Greek brachistos (shortest) and chronos (time).

Choosing the coordinates as in Fig. 2.9, with the fixed points Py(0, 0) and
Pi(x1,y1), the time of descent from Py to Py, on any curve, can be written as

d
T (2.6.22)
v
Py

where v is the speed of the particle along the curve. Using the kinetic energy
theorem (1.3.21),

1
mgx = Emvz, (2.6.23)

and the relation ds = /1 + y"2dx for the path element, we obtain:

X
1 14 y?
t= dx. 2.6.24
@/Vx . (2.6.24)
0

Next, we apply the Euler-Lagrange equation (2.6.16), where f = %
Performing simple calculations, we have:
0 0 d 1
f_o (2.6.25)

oy W Lty Vaa

where a is a constant. Separating the variables and integrating, we arrive at

[ x
y= / 5 xdx. (2.6.26)
0

Fig. 2.10 Generation of the
cycloid x = a(1 — cos 0).
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Fig. 2.11 Surface of
revolution of minimum area. P,(x,y)
The points Py (xy,y;) and

P,(x,
P> (x2,y,) are fixed. 2( zyz)

S 2
o
5,
z
To perform the integration, one makes the change of variable
X 2
= 2.6.27
5 = (2.6.27)
hence
1 u u Y
y=-2a [ ud el —2a T2 07 [arctan ulg .
0
A new substitution
0
u=tan 5 (2.6.28)
yields finally
y=a(0 — sin0), (2.6.29)
while x is found from (2.6.27) and (2.6.28):
x=a(l —cos0). (2.6.30)

Equations (2.6.29) and (2.6.30) are the parametric equations of a cycloid,
having the y-axis as basis and the concavity upwards. The constant a is the radius
of the circle that generates the cycloid (Fig. 2.10). In fact, we have shown that the
path of the cycloid insures a stationary value of ¢, but it is obvious that the
extremum must be a minimum.

2.6.3 Surface of Revolution of Minimum Area

Let Pi(xy,y1) and P,(x;,y,) be two fixed points in the xy-plane. Find the curve
y = y(x) passing through P; and P, which would generate by revolution about an
axis (say, x) a surface of minimum area.

Examining Fig. 2.11, one observes that upon a revolution about the x-axis,
a geometric volume has appeared, with fixed basis areas S; and S,. With two
planes orthogonal to the x-axis, we delimit an elementary cylinder, of lateral area

dS =2nyds = 2ny+\/1 + y?dx.
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The area generated by the curve passing through P, and P, is

X2

S = 2n/ ¥V 1+ y?dx. (2.6.31)

xi

To make (2.6.31) a minimum (a maximum would not make any sense), the
integrand f = yy/1 + y?2 must satisfy the Euler-Lagrange equation (2.6.16).
The easiest way to get the result is to observe that, since f does not explicitly
depend on x, Eq. (2.6.16) admits the first integral

of
/I -J _
y 3y Jf = const. (2.6.32)
Since
of »y

o Ty

from (2.6.32) we obtain:

/2
/—fiylz EVAY 1+y,2:C13

and, separating the variables and integrating,

d
x=C / _ D +C, =C arccoshl + Cy,
V¥ =G G
yielding finally:

—c
y=C,cosh > . (2.6.33)
1

which is the equation of a catenary (from the Latin catena, meaning chain). This is
the shape, for instance, of a uniform, flexible heavy chain under gravity, when it is
held fix at two points. The constants C; and C, are determined from the boundary
conditions.

2.6.4 Geodesics

A geodesic is defined as the shortest distance between two points in a given space.
We have already encountered this notion earlier in this chapter, but only in two
particular cases. We wish now to give a general theory of geodesics, useful not
only in classical mechanics, but also in the general theory of relativity.

First, we must define the metric tensor. Let E,, be an Euclidean space with the
Cartesian coordinates yi, ..., ¥, and write the line element in the form
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ds* = dy;dy;. (2.6.34)
=1
Let now R, (n<m) be a n-dimensional manifold in E,, and let x!,..., x" be the
coordinates of a point in R,. Since y; = y;(x',...,x"), we have:

_m ayjayjzk
_z::k S padrdx

and, with the notation

= Oy, 6y,
8x’ oxk

gun(x!, X" =g = (2.6.35)

for the metric tensor, we arrive at the following form of the metric (squared line
element):

ds* = gudx'dx". (2.6.36)
ik=1

If gy = di, i.e. if the manifold R, is Euclidean, we fall back on the metric
(2.6.34).
If the metric (2.6.36) is invariant under a general coordinate transformation

X=X (i=T,n), (2.6.37)

the manifold R, is called Riemannian. In our case, the metric tensor g; is
associated with transition from Cartesian to general coordinates, but the
transformation can be performed between two manifolds of the same dimension.
We can also write

ds* = dxidx’, (2.6.38)
hence
dx; = gudx* (i =Tn). (2.6.39)
k_

This can be considered as a system of n linear algebraic equations in the unknown
quantities dx', ..., dx". Solving the system by Cramer’s rule, we get:

dx* =" gldx;  (k=Tn), (2.6.40)
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where

gki _ gik _ Gy
8

(2.6.41)

are the contravariant components of the metric tensor, while Gy; is the algebraic
complement of the element g;; in the determinant

g = det(gxi)- (2.6.42)

Since

n n
dx; = ; gidx* = 1; ging"dx;,

we must have

Y sud' =g =6 (i.1=Tn). (2.6.43)
k=1

These elements of tensor calculus are useful in the derivation of the differential
equation of geodesics.
Let x'(i = 1,n) be the coordinates of a particle in R, and let

x=x(s) (i=T,n) (2.6.44)

be the parametric equations of a curve passing through the given points 1 and 2.
The arc length between the two points is

2 2
L:/ds:/
1 1

= (2.6.45)

(2.6.46)

must satisfy the Euler-Lagrange equations (2.6.20):

d(af> Yy m=Ton). (2.6.47)

ds \ 0x™ ox™
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Evaluating the derivatives, we have successively:

axm ngkx
() Z s S

6f %-i-k

— = — x'x
oxm 2 &= Qxm ’
ik=1

and (2.6.47) yields:

2 . l agmk agtm agik ik
— : —_— — ‘X =0.
kz:; gt 2 = < ox + Oxk o )N

If we denote

1 (Ogmk  Ogim  Ogik
Liw == - — 2.6.4
thom 2( Ox' + oxk  oxm )’ (2.6.48)

the last equation becomes

3 g + ) Timi's* = 0. (2.6.49)
=1 k=1

The quantities (2.6.48) are the Christoffel symbols of the first kind. Multiplying
(2.6.49) by g™, then summing over m and using (2.6.43), we finally arrive at the
differential equation of geodesics in R,:

i+ Zrkxx =0 (I=T1,n), (2.6.50)
where

T = ¢"Tim (2.6.51)

are the Christoffel symbols of the second kind. It can be shown that the Christoffel
symbols are not tensors (except for linear transformations).

If we take four dimensions, then (2.6.50) are the equations of geodesics in the
Riemannian manifold R4, used in the relativistic theory of gravitation. Here, I'},
determine the intensity of the field, while the components of the metric tensor g;;
play the role of potentials of the gravitational field.

Observation: If we denote

1<~
=5 aud'i, (2.6.52)
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then the equations

2 3 _
%(@%) - ax(i —0 (m=Tn) (2.6.53)

yield the same result (2.6.50). Consequently, the following two variational
equations:

and

(2.6.54)

are equivalent.

Geodesics of a Sphere

Let us find the geodesics of a sphere of constant radius R = 1. The sphere can be
imagined as a two-dimensional Riemannian manifold embedded in the three-
dimensional Euclidean space E;. The arc element on the sphere of unit radius is

ds* = d0* + sin® 0 dg?, (2.6.55)

and thus our variational principle can be put in the form
ds’ W2 2002
0 [ds=9 Eds =9 [ (0" +sin" 09~ )ds =0, (2.6.56)

where 0 = R and ¢ = I - Obviously, in our case

=0 +sin? 09> = 1. (2.6.57)

The geodesic for the variable ¢ is obtained by using the Euler—Lagrange
equations (2.6.20). Performing elementary derivatives, we arrive at:

®+2coth 0o =0. (2.6.58)

To obtain the explicit equation of the geodesic ¢ = ¢(6), we must eliminate the
parameter s between the last two equations. First, we observe that (2.6.58) can be
written as

dp+2pcotfdd =0,
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giving by integration

C
D= —— ), 2.6.59
¢ sin® 0 ( )
where C is a constant. Then, we can write:
. do do .
0=—=—¢
ds do
and, in view of (2.6.57) and (2.6.59),
_¢ _d ¢
sin20  do sin®0’
Separating the variables, we have:
C
dp= —————d0),
sin 0Vsin? 6 — C2
therefore
cos(p — @) = Lcot@ (2.6.60)
P e >

where ¢ is a constant of integration. This is the equation of a plane through the
origin of the coordinate system, which is also the centre of the sphere. Being at the
intersection of this plane with the sphere, the geodesics of our problem are great
circles. To make our result more obvious, let us write (2.6.60) in Cartesian
coordinates. Using the well-known formula for cos(¢ — ¢,) and the relations of
transformation

x=sinfcos¢p, y=sinfsing, z=cosb,
we find the equation of our plane in the normal form:

V1 —C?(xcos @y + ysingy) — Cz = 0. (2.6.61)

The constants ¢, and C are determined by the choice of the fixed points.

2.7 Hamilton’s Principle

The purpose of the previous section was to prepare the reader with regard to the
characteristics of the variational principles of mechanics. For a better under-
standing of the importance and usefulness of these principles, we shall begin our
study in real, physical space.

Let us consider a system of N particles, subject to ideal holonomic constraints
of the form (2.1.57), and suppose we know the real motion of the particles during
the time interval (7, 1,), i.e. we know the functions
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Fig. 2.12 Virtual variation
of the radius-vector of a
particle from one point of the
real trajectory (C) to the
corresponding point of the
varied path .

ri=r(t), n<t<t, (i=1,N). (2.7.1)
Let us also consider another law of motion, given by
r; =r; (1), (2.7.2)

which is consistent with the constraints (2.1.57), but does not obey the equations of
motion, expressing, as we already know, a virtual motion of the system. We also
assume that

ri(t) =ri(t,) (x=1,2i=T1,N), (2.7.3)

meaning that both the real and the virtual trajectories pass, at times #; and f,,
through the same fixed points of the real three-dimensional space. Hence, the
virtual displacements

ori=r:(t) —r:(t) (i=T,N) (2.7.4)

represent the variation of the radius-vector of the particle P; from one point of the
real trajectory (C) to the corresponding point of the varied path (C*) (Fig. 2.12). It
follows that

ori(t;) =ori(r) =0 (i=1,N), (2.7.5)
as well as
d d o P so g
E(ér,-) = E(ri —rf)=vi—v,=0v; (i=1,N). (2.7.6)

Let us now direct our attention to the kinetic energy 7, associated with the
virtual motion. Supposing the trajectory (C") is infinitely close to (C), we may
write:

Zm, |r,| —2F; - O1;) = Zm,r, Or;. (2.7.7)

Using this result, we shall make some transformation in D’ Alembert’s principle
(2.5.5), as follows:
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Fig. 2.13 Virtual 4
displacement in the
configuration space.

<R

o

N d (& N d (&
it - or; = — it - or; | — it - OF; = — it; - or; | — 0T,
;mr = ;mr r ;mr = ;mr r
(2.7.8)

where 6T =T — T is given by (2.7.7). In view of (2.4.13), we can write:

‘ (ﬁ: i 5ri> = 5(T + W). (2.7.9)

Integrating with respect to time between the fixed limits #; and 7, and using (2.7.5),
we obtain:

/ 5(T + W)dt = 0. (2.7.10)

In the case of potential forces, the virtual potential V" can be calculated in terms
of the real potential V in a similar way:

V' =V(r],...,ry,t) = V(r; — ory,...,ry — ry,1)
N
~ V(ry,...,rn,1) — Y (grad,V) - or;, (2.7.11)
i=1
therefore the virtual work done by the system is:

N
W = ZFi O =V =V =-4V, (2.7.12)
i=1

and relation (2.7.10), with notation (2.5.16), becomes:

15}

5]
/(3Ldt:5/Ldt:O. (2.7.13)
|

n
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This relation expresses Hamilton’s principle. Since r; and r; are not indepen-
dent variables, but must satisfy the same constraint relations, this principle is
usually used in the configuration space. Let ¢; = ¢,(¢) and ¢ = q;(¢) (j = 1,n) be
the parametric equations of generalized trajectories corresponding to the real
and (one of the) virtual motions, respectively, and define the virtual displacements
dq; by

J

6q,(t) = q;(1) —q;(t) (j=1,n). (2.7.14)

According to the condition (2.7.5), the generalized trajectories corresponding to
the real and virtual displacements pass through the same points in configuration
space, i.e.

dq;(t) = dq;(2) =0 (j=1,n). (2.7.15)

Except for (2.7.15), the virtual variations dg; are independent and, as pointed out in
Fig. 2.13, they are orthogonal to the #-axis. Therefore, we can write (2.7.13) as

%)

5/L(q,c’1,t)dt:0. (2.7.16)

I

The integral

5]

S:/L(q,c'],t)dt (2.7.17)

n

is called the action integral. We are now able to formulate Hamilton’s principle:
Out of all the possible generalized paths passing through two fixed points, cor-
responding to the times t| and t,, the real motion is performed on that path for
which the action is stationary. Hamilton’s principle is also called the principle of
stationary action. Since, in general, the stationary extremum is a minimum,
sometimes it is named the principle of least action.

The principle was published in 1834 by William Rowan Hamilton. Its discovery
played an important role in the development of various aspects of theoretical
physics and we shall support this statement by many examples.

2.7.1 Euler-Lagrange Equations for the Action Integral

Let us prove that the Lagrange differential equations of motion, for both potential
and non-potential forces, can be derived from Hamilton’s principle. Taking the
first (virtual) variation of the action, we have:

5]
", /0L oL
55/2(—5q1'+ —..5511‘) dr,
n j:1

0g; 0g;
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or, if we integrate by parts the second term,

S MR

Using (2.7.15) and the arbitrariness of the variations dg;, we arrive at the Lagrange
equations (2.5.17).

In a similar way, starting from (2.7.10), we can obtain the Lagrange equations
for non-potential systems (2.5.13). Indeed, we may write

/Z( -0q; + 5q, + Q,éq,) dt=0

and, after an integration by parts,

15 15}
".oT or orT
—8q; _|_/{_ < >—|—Q]5th 0.
|Jl aqj ]] oo aqj aqj ’ ’

Since dq;(t;) = dq;(t,) =0, for independent and arbitrary dg; we arrive at
(2.5.13), as expected.

The condition (2.7.10), sometimes called generalized Hamilton’s principle, can
also be used to derive the Lagrange equations in case of existence of a velocity-
dependent potential V(q, ¢,). To show this, we must prove that there exists a
function L = T — V(q, g, 1), such that (2.7.10) is equivalent with (2.7.16) if the
condition (2.5.23) is satisfied. Indeed, we have:

5]

/(5T+5W)dt /{5T+Z{dt<§;) gﬂéq]} =0

1

and, after integration by parts,

jlér Z(SV&I, 2 )]dt /5T th_a/Ld;

51 ]1

which completes the proof.

Finally, let us show that Hamilton’s principle (2.7.16) is a variational principle.
Comparing (2.6.10) with (2.7.17), it appears obvious that the action S is a func-
tional of qy,...,q,, while the correspondence

X — 1, yi(x)_)qj(t)a f(yvy/vx)_)L(Q7Q7t)a
I(y1,-- ;) = S(q1, -, qn)
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shows that the Euler—Lagrange equations (2.6.20) are formally identical with the
Lagrange equations for natural systems (2.5.17).

Before closing this section, we wish to emphasize the importance of the vari-
ational principles, Hamilton’s principle being one of them. (Another variational
principle will be discussed in Sect. 2.9; its understanding needs some extra
background, which by then will be given.) Compared with several other formu-
lations of mechanics, this principle offers certain advantages. First, since we deal
with quantities defined with respect to any frame, the principle does not depend on
the choice of coordinates. Second, once a single scalar function, the Lagrangian, is
known, one can obtain both the differential equations of motion and the associated
laws of conservation, in a direct and simple way. Third, the variational principles
can be used for a unitary description of some other systems, like fields. This
extension is possible because the Lagrangian has the dimension of energy and this
quantity can be defined for any type of motion, while not all interactions can be
described by forces. As we shall see later on, the fundamental equations of
electrodynamics (Maxwell’s equations), of the theory of linear elasticity (Lamé’s
equations), of quantum mechanics (Schrodinger equation), etc. can be derived
from Hamilton’s principle.

2.7.2 Criteria for the Construction of Lagrangians

There are several criteria which must be obeyed in constructing the Lagrangian
function used in our formalism. They are:

(a) Superposition principle. If the physical system consists of two (or more) inter-
acting particles, the Lagrangian is composed of three groups of terms: (i) The
Lagrangians of each particle, when the others are absent; (ii) Terms expressing
the interaction between particles; (iii) Terms describing the interaction between
the system and the exterior fields (if there are any).

(b) Invariance principle. The action must be invariant with respect to the appro-
priate group of transformations (e.g. Galilei group in Newtonian mechanics,
Lorentz group in relativistic mechanics).

(c) Correspondence principle. The Lagrangian must be constructed in such a way,
that all results of Newtonian mechanics be obtained by Hamilton’s principle.

(d) Principle of physical symmetry. The choice of the generalized coordinates must
provide a Lagrangian function not only simple, but also useful, i.e. suitable to
the symmetry properties of the system.

2.8 Symmetry Properties and Conservation Theorems

We already know that the motion of a mechanical system can be determined, in
principle, by integrating the Lagrange equations (2.5.17). We say ‘in principle’,
because there are circumstances when this operation is neither useful nor even
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possible. Nevertheless, there exist some cases when it is possible to obtain
information about our system without a full integration of the equations of motion.
This is done by using the first integrals.

2.8.1 First Integrals as Constants of Motion

Consider a system of N particles with n degrees of freedom, subject to holonomic
constraints, and assume that we found a relation of the type:

F(q1y . qnyquy- - Gn,t) = C(const.), (2.8.1)

which is identically satisfied by any solution of the Lagrange equations and for any
initial conditions. Then (2.8.1) is called a first integral of (2.5.17) or a constant of
motion (see Chap. 1, Sect. 1.2)

Suppose we know A distinct first integrals

fi(q,4,t) =Cs (s=1,h). (2.8.2)

Then any function
F(fi,..., fu) = const. (2.8.3)

is also a constant of motion, but not independent of (2.8.2). Since the general
integral of the Lagrange equations (2.5.17),

qj :qj([a C17"'aC2n) (]:177)) (284)
depends on 2n arbitrary independent constants, it follows that the maximum
number of distinct first integrals is 2n. The constants Cy, ..., Cy, are determined

from the initial conditions:

q(}:qj'(t(),cl,...,CQn), q(j] :é]j(tQ,C|,...,C2n) (]:1,_7’!) (285)

The integration of the Lagrange equations is considerably facilitated by the
application of first integrals, because:

(1) Finding a solution of a first-order differential equation is an easier task;
(ii) A first integral offers information on the physical nature of the system, as well
as its symmetry properties;
(iii) In some cases, first integrals express the conservation of fundamental physical
quantities, such as linear and angular momenta, energy, etc.

Consequently, finding the first integrals (if there are any) is a necessary step in
solving a problem by the Lagrangian technique.
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As we have already mentioned in Sect. 2.5, if ¢, is a cyclic coordinate, then the
quantity (% is a constant of motion. Let us define the quantities
oL
7

Pj (j=1,n) (2.8.6)
and call them the generalized momenta associated (or conjugated) to the gen-
eralized coordinates g;. The dimensions of p; are given by those of g;: if g is a
distance, then p is a linear momentum; if ¢ is an angle, then p is an angular
momentum, etc. But in any case, we must have:

[p;q;] = ENERGY] = ML*T 2. (2.8.7)

Introducing (2.8.6) into the Lagrange equations (2.5.17), we obtain:

oL
p; = — j=1,n). 2.8.8
pj aqj (.] 7”) ( )
If the coordinate g is cyclic, then (2.8.8) yields
Pr = const., (2.8.9)

expressing the conservation of the generalized momentum associated with a cyclic
coordinate.

Equation (2.8.9) gives either the conservation of linear momentum, or that of
angular momentum. It is valid not only in mechanics, but also for other physical
systems. For example, since the coordinate x; does not appear in the Lagrangian
(2.5.30) describing the behaviour of a charged particle in an external electro-
magnetic field, the conjugated momentum is conserved:

pr = muvy + eAy = const. (2.8.10)

Therefore, in solving a concrete problem we should follow the rule: look for cyclic
coordinates, each of them being associated with a first integral. Then, if there are
not any, search for another set of generalized coordinates q’j (j = 1,n), of which at
least one being cyclic.

A useful example is offered by a particle moving in a central field. When
expressed in Cartesian coordinates, the Lagrangian

1
L= om(#+ ) = V(x,)

does not display any cyclic coordinate, but if it is written in terms of polar
coordinates,

1
L= Em(i’2 + r2¢2) - V(r),
it shows the ignorable coordinate ¢, leading to the first integral

Py = mr*( = const. (2.8.11)
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2.8.2 Symmetry Transformations

As we have mentioned, the first integrals are related with the conservation of the
fundamental physical quantities. This fact emerges from the intrinsic properties of
the space—time continuum and expresses the connection between different types of
motion and the conservation of associated quantities.

The study of a large amount of experimental data has led to the conclusion that
the real, physical space is homogeneous (there are no privileged reference frames)
and isotropic (there are no privileged directions), while time passes uniformly
(there are no privileged moments of time). The homogeneity of space results in the
fact that the properties of an isolated mechanical system do not change if all
particles of the system perform infinitesimal translations with the same velocity v,
while the isotropy yields the conservation of the properties of the system if all
particles execute infinitesimal rotations of the same angle, about the same direc-
tion. Finally, the uniformity of time shows that the origin of the time interval can
be arbitrarily chosen, meaning that the properties of the system remain unchanged
at an infinitesimal displacement of the time origin.

An important role in the study of physical systems is played by those
transformations which leave the form of the differential equations of motion
unchanged. These are called symmetry transformations. For example, we can cite
space—time transformations, gauge transformations, etc. In the first category are
included the space displacements (translations, rotations) and time transforma-
tions. The gauge transformations appear when one (or more) physical quantity is
not completely determined by its equation of definition, and we shall familiarize
the readers with them later on in this book.

2.8.3 Noether’s Theorem

As we mentioned earlier in this section, the cyclic coordinates lead to constants of
motion, expressing the symmetry of the Lagrangian with respect to certain space—
time transformations. But not all constants of motion come from evident symmetry
properties of the system, or have a simple form. That is why there appears the
necessity of giving a general method to obtain the first integrals. Such formalism
was provided in 1918 by the German Jewish mathematician Emmy Noether.'

Let us consider a physical system, described by the generalized coordinates g;
and velocities ¢;, and assume that the Lagrangian L(g,q,t) of the system is
known. A transformation of coordinates and time

q/j:q,j(qh“qu;t)a tl:t,(qla"'aqn?t) (2812)

' Noether, E.: Invariante Variationsprobleme. Nachr. Kgl. Ges. Wiss. Gottingen 2, 235 (1918).
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is a symmetry transformation if it leaves Hamilton’s principle invariant or, in view
of (2.5.34), if

dq’ dF
L(c/, d-f,,t’) df = [L(q,c'[,t) + %’t) dt. (2.8.13)

Let us now specify the transformation (2.8.12), namely that it is an infinitesimal
transformation of the form:

d;=q;+enqt) (j=Ln), =t+e(q) (2.8.14)

where #; and t are arbitrary functions, while the parameter ¢ is small enough as to
keep only terms linear in it. Since

dar dt dt dt
— =1 — — ~ ] —e— 2.8.15
dt Jredt’ dr “dr ( )

we have:

dq dq dt . dn; dt . dﬂj o dt

LD L (gire—L)(1—e= ) ~g; . (2.8.16

di'  dt dt Gty dt G\ g ( )
Introducing (2.8.15) and (2.8.16) into (2.8.13), we arrive at:

. dn dt dt . do

L = t l+e— | =1L =

[q+6n7q+6<dt th) +61K +6dt> (:4,1) + e,

where we took F(g,t) = e(q,t) because, obviously, F must be infinitesimal and

linear in e. Using Taylor’s formula for series expansion in the Lh.s. and keeping

only terms linear in ¢, after some reduction and rearranging of terms we are
left with

dt dn; . dt\ 0L oL d¢|
Ldt+z j +Z( QJE>@+ E—E =0. (2.8.17)

The transformation (2.8.14) is a symmetry transformation if, for a given L, there
exist some functions 7; (j = 1,n) and 1, so that the Lh.s. of (2.8.17) is a total time
derivative of a function of g;, . The first integrals of motion are obtained from the
condition of stationary action S, on any path where the equations of motion
(2.5.17) are satisfied. Before applying the action principle, we should mention that
the variations dq; = ¢, —q; (j = 1,n) and 6t = ¢ — ¢ differ from those previ-

€

ously used by the fact that they perform a transition between two possible tra-
jectories. Therefore, the first variation of the action S reads:

15 "
B ! oL “\(dn; . dt\ oL dt oL dd)
5S_€/[Z j dq; +Z.7 <dz — 4 dt)aqj LTy T
b Jj=1 j=1
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or, recalling that L is a function of g;,g;,

153

d | oL "\ 0L
s=c [ (@[5 G (50§ )|

n j:1
1 d (0oL oL
‘= ] 70 dt ac]/ aqj

The invariance of Hamilton’s principle under the symmetry transformation
(2.8.14) means S = O for any time interval within which the Lagrange equations
are valid. This implies

", oL "~ 0L
Ni— —1 —g;i—L|—-¢=C, 2.8.19
Sty (o) .

where C is a constant. This equation expresses Noether’s theorem for discrete
systems of particles: To any continuous symmetry transformation (2.8.14), one can
associate a first integral (2.8.19). Noether’s theorem can also be written for
infinitesimal quantities en;, €, e¢, €C, which is useful in some applications.

We shall now consider some particular cases, which will show the connection
between Noether’s theorem and the general theorems of mechanics discussed in
Chap. 1.

1. Let us consider an isolated system of N particles (V') = 0) with n degrees of
freedom and assume that the particle P; performs an infinitesimal space dis-
placement of the form

ri=r;,+or; (i=1,N), 7=t (2.8.20)
Since
oL ot L . o L . o
= = = mri - — = mixi - =,
0q;  0q; ; 0q; ; g
we obtain:
" QL No(Z. . o o
62,7].? - EZ Z’"i"i A ) = Zmiri .o, (2.8.21)
= Y i=1 \j=1 9j i1

Suppose now that our space displacement is a translation, i.e. all particles of the
system perform a straight motion in the same direction with the same velocity.
Then we have

or; = or =nor, (2.8.22)

n being the unit vector along the direction of translation. Taking ¢ = 0 in
(2.8.19), we get:


http://dx.doi.org/10.1007/978-3-642-17234-2_1
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N
orn- Zm,-i‘,- = const., (2.8.23)

i=1

showing the conservation of total linear momentum in the direction of trans-
lation (Chap. 1, Sect. 1.3)

2. If the infinitesimal space transformation (2.8.20) is a rotation of all the parti-
cles, about the same axis and in the same direction:

or; =00 X r; = 60s X r;, (2.8.24)

where s is the unit vector along the axis of rotation and 60 is the constant angle
of rotation, then:

n aL N N
627’“@ = zl:mif‘i : (50 X I‘i) = 595-2]:1’)1,'1‘,' X T;
j= i= i=

and, according to Noether’s theorem (2.8.19),

N
00s - Zm,-ri X F; = const., (2.8.25)
i=1

which is nothing else but the conservation of the total angular momentum
(Chap. 1, Sect. 1.3)

3. A special type of space transformation is that associated with the Newtonian
mechanics principle which states that two inertial frames are equivalent in
describing the motion of a mechanical system. The transition from one frame to
another is given by an infinitesimal Galilean transformation:

ri =r; + (dvo)1, (2.8.26)

where the infinitesimal constant vector dv is the relative velocity of the frames.
Indeed, taking the time derivative of (2.8.26), we have:

V. = v; + dv. (2.8.27)

Choosing

N N
Gd) = 75V0 . Zmiri, eC = — (Z mi> I'OG . 5V0 (2828)
i=1 i=1
in (2.8.19) and using (2.8.26), we obtain:

N N

-1 m;r; -1 M;V;

5V() . 217\,] rtr l'((); _ Zl—] [ t] = O,
Di1mi i

or

n-(rg —r% —vgt) =0, (2.8.29)
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which is the centre of mass theorem for isolated systems (Chap. 1, Sect. 1.3).
Here, n is the unit vector of dv,, while the meaning of rg and vg is obvious.
4. Let us now consider a pure time transformation and take

t=1, 69;=0, ¢=0

in (2.8.19). Hence:
oL
—q;—L=C. (2.8.30)
— 0q,
To understand the physical significance of this equation of conservation, we
shall first make some comments on the function

H=Y pjg;—L, (2.8.31)
j=1

where p; is given by (2.8.6). This function is called the Hamiltonian of the
system. Recalling Euler’s theorem for homogeneous functions:
n af

U 2.8.32
xi=mf, (2832)

i=1

where f(x,..
we may write:

., X,) is a homogeneous function of grade m, and using (2.5.31),

" BL oL
H:Z X Zaz%—L Li+2Ly — (Lo+ Ly + Ly) = Ly — Lo

=T -Ty+ V. (2.8.33)
If the constraints are scleronomous, then 7y = 0, T = T,, and we arrive at
H =T+ V = const., (2.8.34)

which shows that the Hamiltonian of a conservative system represents the total
energy, being a constant of motion.

The function H is of great importance in analytical mechanics. We shall
encounter it again in Chap. 5 and discuss there its properties more thoroughly.

2.9 Principle of Least Action

This principle was discovered in 1745 by Pierre-Louis Moreau de Maupertuis and
it is the first integral principle of mechanics. Its initial formulation was nebulous
and it was the merit of Euler, Lagrange and Jacobi that the principle acquired its
current form.


http://dx.doi.org/10.1007/978-3-642-17234-2_1
http://dx.doi.org/10.1007/978-3-642-17234-2_1#Sec8
http://dx.doi.org/10.1007/978-3-642-17234-2_1#Sec8
http://dx.doi.org/10.1007/978-3-642-17234-2_5

2.9 Principle of Least Action 87

In the discussion of Hamilton’s principle, we used the notion of virtual dis-
placements consistent with the constraints dg;, being performed by the represen-
tative point in the configuration space, when passing from a point P of the real
generalized trajectory (C), to some point P" of an infinitely close trajectory (Cat
the same time t (synchronic variations):

P(q.t) — P*(q+ 0q.1). (2.9.1)
Since the boundary points were supposed to be fixed, we also had:
dq(t1) = 0q;(t2) = 0. (2.9.2)

Summarizing, we can state that ¢ is a linear operator that satisfies the following
conditions:

(i) dq; are arbitrary except for the end points, where dg; = 0;
(i) or=0.

Let us now introduce a new operator A, including the variation of both space
and time variables, defined by:

d
A=5+At= 9.
o+ i, (2.9.3)

with the properties:

(i) Ag; are arbitrary, except for end points, where Ag; = 0;
(ii) At is arbitrary.

As we can see, the asynchronous variations given by A are less restrictive than
those produced by J. Applying A to g;, we have:

Aq]' = 5q] + é]jA[, (294)

expressing the correspondence between two points, one on the real and the
other on the neighbouring path (Fig. 2.14). In the end points dg;(t;) # O,

561j(t2) 7é 0, but
Ag;j(11) = Ag;(r2) = 0. (29.5)

Let us now apply the operator A to some function f(q,q,1):

d 0 of 0
Af:éf+7{m_z<afaq, 5q,>—|—2(a q;+ afq]>At+ afA

j=1
@f . of
= E A —Ag; —A 2.9.
(65], it qj qj>+ ot ; (2.96)

which is the usual differential of f(q,q,1). Next, we apply A to the action integral
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Fig. 2.14 Correspondence q

between two points, one on .

the real and the other on a

neighbouring path, when both

space and time variations are P
considered.

P

Ban gy t
0 1t AT

5]

S:/L(q,é],t) dt, (2.9.7)

3]

where the limits #; and 7, are now variable. Let A(¢) be the primitive function of the
Lagrangian L[q(t), g(t), #]. It then follows that

15}
AS = A/Ldt = AA(t) — AA(n), (2.9.8)
4]

or, in view of (2.9.3),

5]
AS = 3A(12) — 0A(1)) + A(2) Aty — A(t) Aty = & / Ldt+[LA?.  (2.9.9)

Al

On the other hand, the Lagrange equations (2.5.17) allow us to write

“ [ OL oL . . :
oL = Z(—5Qj+ @5%) = Z(Pj5Qj+Pj5CIj)

=1 0q,j =
d n d n '
T dr > pida; | = i > (piAg; — pja;An). (2.9.10)
Jj=1 j=1

Therefore, using (2.9.5) and (2.8.31), we obtain:

153

AS:A/Ldt: [(Z—pjé]j—i—L)At
j=1

1

5]

= —[HA". (2.9.11)

1
If the system is conservative, then

H=E=T+V = const, (2.9.12)
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meaning that on any varied path (C"), the energy has the same value as on the real
path (C). Therefore,

1% 1)
[HA#; = H(At, — Aty) = HA/dt = A/ Hdt. (2.9.13)
n n
Introducing this result into (2.9.11), we arrive at
15}
A/ijq,-dt =0, (2.9.14)
f J=1

which is one of the forms of the principle of least action: The action taken for a
real generalized trajectory is stationary with respect to any neighbouring isoen-
ergetic path. The quantity

153
n
W= /iji]jdt (2.9.15)
151 ‘1:1

is called Maupertuisian action.

The principle of least action can be written in different equivalent forms. For
example, recalling that the system is conservative, the kinetic energy 7 is a qua-
dratic homogeneous form of generalized velocities:

or
ijqj Za CIJ—ZT

and (2.9.14) yields:

%)
A/ZTdt:O. (2.9.16)

n

Another form of this principle was given by Carl Jacobi. To write it, let us
extract dt from the kinetic energy formula,

1 N P 1 & ds;
oA 3 (%)
and then introduce it into (2.9.16):
N
A/ 2E—-V)> mds} =0, (2.9.17)

i=1

where P, and P, are the positions of the system at the times #; and #,, in the real
space. If ds7 is expressed in terms of gj> then Py and P, are end points in
configuration space. For a single particle, (2.9.17) reduces to
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A/ \V2m(E—V)ds=0. (2.9.18)
Py

Let us define the n-dimensional manifold R, by the metric

N
do® =2(E— V) mds;. (2.9.19)
i=1

P,
A/da:O
P

defines the geodesic line in R,, between P, and P,. If, in particular, R, is the
configuration space R, then the metric is (see (2.4.24)):

Then, as we know,

do® =2(E— V)Y Y ajdq;dg (2.9.20)
j=1 k=1

and the principle of least action finally acquires the form:

Py

A / 2E-V)> Y audqgdg; = 0. (2.9.21)

4 j=1 k=1

Equal-Action Wave Front

Let us first determine the connection between the Hamiltonian (S) and Mau-
pertuisian (W) actions. Assuming again that the system is conservative, we have:

5]

15 15
S:/Ldt:/(T—V)dt:/(zT—E)dt:W—E(tz—rl).
151 n

sl
Taking #, =t, t; = 0, we arrive at:
S(g,t) = —Et+ W(q). (2.9.22)

On the other hand, Hamilton’s principle (2.7.16) and the definition of the
Hamiltonian (2.8.31) yield:

ds oS "~ 0S -
_———|-E —'-—_E iq;i—H 29.2
dr or < aqﬂ_z Pjq;j ) (2.9.23)
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therefore, in view of (2.9.22),

oS
0
(This is only a rough deduction of generalized momenta in terms of S, needed in
this application; for more details, see Chap. 5).

Let our conservative system be a single particle and choose ¢; = x;
(j=1,2,3). Then

pj (j=1,n). (2.9.24)

oS ow
pi=— = = (gradW), (j=1,2,3 2.9.25
1=y = o, = @AW, ) (29.25)

which, together with the formula of the Hamiltonian,

1
5 lerad W[+ V =E,

yields

|grad W| = \/2m(E — V). (2.9.26)

With our choice of coordinates, the configuration space coincides with the real,
three-dimensional space, while the generalized trajectory is just the real path of the
particle. Then the equation

W(x,y,z) = const. (2.9.27)

represents a family of fixed surfaces, while

S(x,y,z,t) = const. (2.9.28)
stands for a family of moving surfaces. For example, if at t = 0 the surfaces S; and
W, coincide, after a time interval dt, the surface S; has passed from W, to W +

E dr (Fig. 2.15) and so on, similarly to the propagation of a wave front. If ds is the
elementary displacement of the wave front in normal direction, we can write

dW = |grad W|ds = E dr,
which helps to write the phase velocity of the wave front:

E E E E
|grad W| V2m(E—-V) V2mT p

where p is the momentum of the particle. In other words, (2.9.29) gives the phase
velocity of propagation of the equal-action wave front.

To study the nature of these waves, one must find certain characteristic quan-
tities, such as frequency and wavelength. These can be obtained by making an
analogy with the propagation of light waves, whose equation is:

n? 8%y
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Fig. 2.15 Geometry of fixed
(W = const.) and moving
(W + E dt = const.)
surfaces, propagating as a
wave front.

Here, n is the index of refraction of the medium. If n = const., the solution of
(2.9.30) is

Y= p(x, y,2)e®rn, (2.9.31)

where k = "2 = nk is the wave number. Taking K in the positive direction of the
x-axis, we have:
¥ = Yolx, y, 2)e o, (2.9.32)

If n is no longer a constant, but its variation is smooth, the solution of (2.9.30) is
close to the form

Y = o (x, y, g)elbottomalmer, (2.9.33)
The quantity L is called eikonal. If n = const., then L = nx (optical path length).
Introducing (2.9.33) into (2.9.30), evaluating the derivatives and then separating
the real and imaginary parts, we obtain:

Yoki[n? — |grad L|*] + Ay = 0, (2.9.34)
WoAL + 2(grad ) - (grad L) = 0. (2.9.35)

Suppose that the wavelength is small compared to the distance on which the
medium displays its non-homogeneity. Then the presence of k3 makes the first
term in (2.9.34) much greater than the second, which results in

|grad L| = n. (2.9.36)

This is the eikonal equation, fundamental in geometrical optics. The equal-phase
surfaces are given by

f(x,v,z,1) = koL(x,y,z) — ot = const. (2.9.37)

Comparing (2.9.26) with the eikonal equation (2.9.36), we realize that they are
similar: the quantity /2m(E — V) plays the role of the refraction index and the
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function W that of the eikonal, while the surfaces S = const. are analogous to the
surfaces f = const. Therefore, we can set:

S=oaf, W=oakoL(x,y,z), E=ow, (2.9.38)
where o is an arbitrary constant. Hence:

1
n=lgrad L] = - Jgrad W] = é V2Zm(E — V). (2.9.39)

This analogy shows that the propagation of equal-action waves and light waves
are similar phenomena. In their remarkable papers, Erwin Schrodinger and Louis
de Broglie showed that the relation between wave and geometrical optics is similar
to that between quantum and classical mechanics. If we apply the principle of least
action in the form (2.9.18) and observe that according to (2.9.39) the integrand is
proportional to n, we have:

A/nds =0, (2.9.40)

which is nothing else but the well-known Fermat principle of geometrical optics.
Concluding our discussion, we can state that: If applied forces are absent, the
trajectory described by a particle of light (photon) is a geodesic (minimal optical
path).

2.10 Problems

1. Determine the covariant and contravariant components of the metric tensor g;;
in spherical coordinates r, 0, ¢.

2. Study the tensor properties of the Christoffel symbols I';x; and Fﬁk.

3. Determine the shape of the curve traced by a catenary of mass m and length /,
whose fixed ends are at the same height. The distance between ends is a.

4. Find the plane closed curve of given perimeter, which encloses the maximum
area (isoperimetric problem).

5. Study the motion of a heavy particle, constrained to move without friction on
the surface of a cone.

As
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10.

11.

12.

13.
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. A particle of mass m and velocity v, passes from a semi-space in which its

potential energy U, is constant, to a semi-space in which its potential energy
U, is also constant. Determine the change in the direction of the particle.

. A particle P of mass m moves without friction on the curve y = f(x) passing

through the origin. Assuming that the curve rotates about the vertical axis Oy
with constant angular velocity g, find the shape of the curve so that the
particle remains at rest with respect to the curve.

. Construct the Lagrangian for a system of N charged particles interacting via

Coulomb law, and placed in an external variable electromagnetic field E, B.

. Find the Lagrangian of a double coplanar pendulum and write the differential

equations of motion. Linearize these equations for small motions.

Two masses m; and m, are fastened at the ends of an inextensible, flexible
rope, running over a massless pulley (Atwood machine). Determine the law of
motion and the force of constraint.

Investigate the motion of a plane pendulum of mass m; whose point of support
of mass m; is able to perform one of the following motions:

(a) A displacement on a horizontal straight line;

(b) A displacement on a vertical circle with constant angular velocity w;
(c) Oscillations along a horizontal line according to the law a cos wt;
(d) Oscillations along a vertical line according to the law a sin wt.

Determine the equations of motion and the period of small oscillations of the
system shown in the figure.

The point of support of a simple pendulum of mass m moves uniformly on a
vertical circle of radius R, with the constant angular velocity . Construct the
Lagrangian and write the equation of motion.
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14.

15.

16.

17.

18.

19.

20.

A system is composed of a particle of mass M and n particles of mass
m. Separate the motion of the centre of mass and reduce the problem to the
motion of n particles.

Discuss the one-dimensional motion of a particle of mass m in the field with
potential energy U(x) = Up(e > — e™*) (the Morse potential). Here,
Uyp>0,0>0.

Assume that a particle of mass m moves in a field whose potential is either
(@)U =U(p),or (b) U = U(z), where p, ¢, z are cylindric coordinates. Find
the first integrals of motion in both cases.

A particle moves on a helix of equations p = a, z = bp, where a and b are
constants. If the potential energy is

V= Skt + ),
2

where k is another constant, find the law of motion of the particle and the force
of constraint.
Two particles m, and m, are connected by a cord passing through a hole in a
horizontal table. The mass m; moves like a simple pendulum, while the mass
m; slides without friction on the table. Identify the constraints and write the
equations of motion.
Show that the transformation

xﬁ = X; + n;a; sin wt, /=t (i=1,2,3),

where a(a;,as,a3) is an arbitrary constant vector and »® = k/m, is a sym-
metry transformation for the Lagrangian

L="¢_ lkr2

2 2

(space oscillator) and find the first integral of motion associated with this
transformation.
Using the first integral found in the previous problem, as well as some other
first integrals corresponding to the motion described by this Lagrangian,
determine the law of motion and the trajectory associated with the following
initial conditions:

r(0) = (x0,0,0), #(0) = (0, v,0).



Chapter 3

Applications of the Lagrangian
Formalism in the Study of Discrete
Particle Systems

3.1 Central Force Fields
3.1.1 Two-Body Problem

Consider a system of N bodies, supposed to be particles, and assume that they are
subject only to internal forces F;; (gravitational, electrostatic, etc.). The problem of
determining the motion of each body in the presence of the other N — 1 is known
as the problem of the N bodies. The difficulty of solving such a problem is
obviously dependent on the number of the bodies involved. The simplest case
(N = 2) is found in classical systems, like Sun—Earth, or nucleus—electron, and is
called the two-body problem.

Let us consider an isolated system of two particles of masses m; and m, and let
ry, rp be their radius-vectors relative to the origin of coordinates. The Lagrangian
of the system is

L= T(i‘l,i'z) — V(I‘] — rz,f'] — 1'2)

If we denote by rg the radius-vector of the centre of mass, by r}, rj the radius
vectors of particles relative to G and by r the differencer =r, —r; =1, —r{, in
view of (1.3.59), we have:

/ / /
miry +mor, =0, r,=r,—rg (ax=1,2).

Hence,
(3.1.1)

where M = m; + m,. Using Konig’s theorem (1.3.61), the Lagrangian becomes:

1 I . .
L= §M|Vg|2 + §ﬂ|r|2 - V(I’, 1‘), (312)
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with the notation

miniy miymyp
= = 3.13
= = M (3.1.3)

for the reduced mass of the system.
Since the components of rs are cyclic variables, we have

P = Mvs = const.,

meaning that the centre of mass moves independently of the motion of particles,
being completely determined by the initial conditions. Consequently, we can
choose the origin of coordinates in the centre of mass and the Lagrangian
becomes:

1
L= Eulflz — V(r,F). (3.1.4)

Therefore, the motion of the system of two particles can be studied as a motion of
a fictitious particle of mass u and radius-vector r, in an external force field of
potential V. If we can write (see (2.5.23))

d (oV ov

Fror)=—| — ) - —

(0 =2 ( ar) o’

where it is assumed that V depends linearly on the velocity r, then the particle with
reduced mass p obeys the equation of motion

ur = F(r,r). (3.1.5)
If one of the particles, say m,, is much more massive than the other, m, > m,
then

mj
- my
ler2

~

~m

u

and the centre of mass almost coincides with the particle m,. In this case, the
problem can be studied as motion of the lighter particle in the field of the more
massive one, which is assumed to be fixed.

A particularly interesting case is that in which the interaction potential between
particles does not depend on their relative velocity and depends only on the
relative distance r = |r| between the particles, i.e. V = V(r). Then

F=F(r)= f(r)-, (3.1.6)
with

) =-2". (3.1.7)
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The field produced by such a force is called central force field. If V(r) increases
with r in some region, meaning ‘2—‘: > 0, or f{(r) < 0, the force points to the centre
of the field, being a force of attraction in that region. In the opposite case, the force
is repulsive.

3.1.2 General Properties of Motion in Central Field

Observing that M =r x F = 0, the angular momentum theorem (1.3.10) yields
1=mr x r = C (const.). (3.1.8)

Taking the scalar product of this equation and r, we obtain:
r-C=xC,+yC,+zC, =0. (3.1.9)

This is the normal form of the equation of a plane passing through the points
P(x,y, z) and O. Consequently, a particle subject to a central force describes a
plane trajectory.

Let the plane of motion be the x;x;-plane (we re-label the Cartesian coordinates
x, y and z by x1,x, and x3, respectively). Due to the spherical symmetry of our
problem, it is convenient to choose g =r, g» = ¢ as generalized coordinates.
Written in these coordinates, the Lagrangian of the system is

1o 2.2
L= Em(r +r°97) = V(r). (3.1.10)

Since ¢ is a cyclic coordinate, the associated generalized momentum is a constant
of motion:

2 .
Po==——=mr¢o=_0Cj. (3.1.11)
P a(p
The physical significance of (3.1.11) is found by projecting Eq. (3.1.8) on the
X3 = z-axis:

I, = m[ru, x (iu, +rou,)] -k = mr*p = C.. (3.1.12)

Comparing the last two relations, we conclude that C; = C, = C, meaning the
conservation of angular momentum, in projection on the axis of rotation (z).

Another first integral is obtained from the fact that the system is conservative.
Indeed, the Lagrangian (3.1.10) does not explicitly depend on time, therefore the
total energy E is constant:

1
E= 5m(f2 + 7 Q*) + V(r). (3.1.13)

The elimination of ¢ between (3.1.11) and (3.1.13) yields a relation between the
total energy of the particle and the variable r:
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1
E= Emﬂ + Vg (1), (3.1.14)

where the quantity

C2

53 (3.1.15)

Vegr(r) = V(r) +
is called effective potential. It can be considered as giving rise to an effective force:

dv, c? :
() = fd_rﬁ = f0)+ - = f) + @ (3.1.16)

The second term on the r.h.s. of (3.1.16) is a centrifugal force and therefore the
term % in (3.1.15) is called centrifugal potential. This term becomes important
near the origin.

The existence of the two first integrals (3.1.11) and (3.1.13) makes possible the
derivation of the finite equations of motion by a straightforward integration.

Indeed, (3.1.14) leads to

+ const., (3.1.17)

"W@/ﬁéﬁm

which determines r = r(f). Introducing now r(¢) into (3.1.11), we obtain the other
coordinate, ¢ = ¢(t):

C dt
Q= P / W -+ const. (3-1-18)

The explicit equation of the trajectory, ¢ = ¢(r), is obtained by eliminating the
variable ¢ between the last two equations:

+ const. (3.1.19)

— i/ < dr
? ? /2m(E — Vg (n))

If we denote % = u, the last equation takes the form:

du
¢ =+
N

All constants which appear in our calculations, including C and E, are determined
from the initial conditions.

Although we have already found the finite equations of motion and of trajectory
as well, there are several good reasons to derive the differential equation of tra-
jectory. Thus, observing that

+ const. (3.1.20)
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dr . C dr Cd[1
y = — qo = ——— = - — — — 5
do mr? do m do

we obtain from (3.1.14):

g C |1 (dr {H
- 2mr? |2 \do

E c? du 2+ 5

=—|| - u
2m | \ do

which is Binet’s equation. If V(r) is known, this equation can be integrated by

separation of variables.

Binet’s equation receives an alternative form by using the differential equations
of motion. Thus, the Lagrange equation (2.5.17) for the variable r gives:

+V(r), (3.1.21)

or, in terms of u,

+V<i), (3.1.22)

mi — mro* = f(r). (3.1.23)
But
.. c? g /1
r=——=—|\ -
m2r2 dep? \r )’
hence
cCld (1 1
_— | == | = .1.24
i (5) +1] =0 (3.124)
or
Cc? L[ du 1
_ it = — . 1.2
mu (d(p2+u> f(u) (3.1.25)

Binet’s equation can also be used to determine the potential energy V(r) or the
force f(r), if the trajectory r = r(¢) is known.

3.1.3 Discussion of Trajectories

The formulas obtained in the previous section permit the determination of both the
trajectory and the law of motion, if the potential energy V(r) is known. Never-
theless, certain general characteristics of trajectories can be found without
knowing the analytical structure of this function.
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Fig. 3.1 Graphical Vi
representation of an arbitrary

potential energy V as a

function of the distance r. Es

7 [
v - M 2 i r
E’h‘.')\ /nn N T
~—

Since 7, t, ¢ are real quantities, it follows from (3.1.14), (3.1.17) and (3.1.19)
that one must have V,;(r) < E. This relation determines the domain of variation of
r, for given values of E and C. The boundary of this domain is provided by the
equality

Vs (r) = E. (3.1.26)

According to (3.1.14), on the boundary the radial component of velocity vanishes
(F=0), but @ # 0, if C # 0. Consequently, the condition # = 0 determines a
turning point of the trajectory: the function r(#) changes its sense of variation, i.e. 7
changes its sign. According to (3.1.11), ¢ does not change its sign, therefore ¢ is a
monotonic function of time. This means that in (3.1.17)—(3.1.19) the limits must be
chosen as to correspond to a monotonic interval of variation of r, while the sign
must be suitably taken.

There are maximum and minimum values of » among the roots of (3.1.26), say
rar and r,, respectively. The relation V,;(r) < E will therefore determine the
domain of variation of 7:

0<r,<r<ry. (3.1.27)

The roots of Eq. (3.1.26) can be determined graphically, as being given by the
intersection points of the curve V = V,;(r) with the straight line V = E (Fig. 3.1).
As one can see, the number of roots depends on the structure of V(r), as well as on
the values of the constants C and E.

3.1.3.1 Bound Orbits

If ry, is finite, we have bound trajectories. In this case, assuming r,, > 0, the
motion takes place within the circular crown (annulus) determined by the con-
centric circles of radii r,, and ry, (Fig. 3.2). The turning points for which r = r,,
are called pericentres, while those corresponding to r = r,, are called apocentres.
If the centre of force is the Earth, they are known as perigee and apogee, while
around the Sun, the trajectory of each planet has a perihelion and an aphelion.
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Fig. 3.2 Bound trajectories
of a planet. The circles of Pericentre
radii r,, and ry, are

Apocentre —

The trajectory is symmetric about any turning point. Indeed, if we choose the
coordinate axes so as to have ¢ = 0 in a turning point, then according to (3.1.19)
near this point we have two pairs of symmetrical positions, (r, ) and (r, —¢),
given by

r

C dr
o= [ 5———,
r\/2m(E — Vep)
To
where rq is r, for a pericentre, and ry, for an apocentre. The angle at centre
between a pericentre and the next apocentre is

(3.1.28)

™
(I):/ £L7
2 \/2m(E — V,g)

and, in view of the aforementioned discussion, the angle between two consecutive
pericentres (apocentres) is Ap = 2.

A bound orbit could be closed or open. To be closed, an orbit must satisfy the
relation:

/!

Ap =20 = 21> (n,n’ integer numbers), (3.1.29)
n

i.e. after n revolutions about the centre, the radius-vector sweeps a multiple n’ of
27 radians. If this condition is not fulfilled, the orbit is open, which means that the
orbit never passes twice through a given point. There exist only two types of
central fields for which all bound orbits are also closed, namely those characterized
by the potentials:

V(ir)=ar’, a>0, (3.1.30)
k
V(r)=~, k<0 (3.1.31)

This statement expresses Bertrand’s theorem and will be proved in Sect. 3.1.4.
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The effective potential V. has a minimum in a point of the annulus
rm <r<ry, given by:

dv, -
|:—d#<r):| :O — rmSFSVM- (3132)
r =7

If r,, = ry = r¢, the trajectory degenerates in a circle of radius r., and we have:

dVey
a =0 3.1.33
|: dr } Fr=r, 7 ( )
meaning that r, corresponds to that value of r for which V,; = (Veﬁ)mma and is

realized when the energy E equals (V,z),.;,-

3.1.3.2 Unbound Orbits

If the domain of variation of r is given by r > r,,;,,, the particles may go to infinity.
It then follows that:
E> lim Vp(r) = lim V(r) = V.
Fr—00 : r—00

The limit V,, is finite and one usually chooses V., = 0, so that the “escape to
infinity” condition is

E>0.

The physical interpretation of this condition is simple: at infinity the interaction
between the particle and the centre of force ceases, V., = 0, and the particle is left
with kinetic energy only: £ = T > 0. Note that the symmetry of the orbit with
respect to the straight line passing through the centre of force and pericentre
remains valid. A particle describing an unbound trajectory passes only once
through pericentre.

3.1.3.3 Falling on the Centre of Force

If r,, = 0, the particle passes through (or stops at) the centre of force. Assuming
C # 0(C = 0 would correspond to a motion along a straight line), the centrifugal
term in V prevents the particle from falling on the centre, even if the force is
attractive. The condition of passing through the centre of force is V.5 < E, which
can be written as

C2
rPV(r) + 7 < Er.

For r to take the value r,, = 0, one must have
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C2
lim [FV(r)] < — —
lim [Vl < - 5,

i.e. near the origin the potential must decrease at least as

—Ar? A> C—Z, (3.1.34)
2m
or
—Ar", A>0,n>2. (3.1.35)

3.1.4 Bertrand’s Theorem

Let us prove that the only central fields having the property that all bound orbits
are also closed, are those given by (3.1.30) and (3.1.31) (Bertrand’s theorem).
The proof is based both on condition (3.1.29) and on the fact that there is a
bound and closed orbit for which V,4(r) admits a minimum. Such an orbit is the
circular orbit of radius 7 given by condition (3.1.32). In other words, for a given
central field, we can have a circular orbit if the angular momentum of the particle
has a value that satisfies (3.1.33), while the kinetic energy fulfills the condition
(3.1.26),
— c?
E=Vy7F)=V({F) + —, 3.1.36
57 = V() + 3= (3.1.36)
where, according to (3.1.32), Veﬁr(?) is the value of V,4 corresponding to the
considered minimum. We also have:
V! (F) =0, (3.1.37)

e
VIi(F) > 0, (3.1.38)

Let us now consider an orbit corresponding to an energy E, close to the circular
shape, and demand that this orbit is also closed. It is essential that the condition
(3.1.38) be fulfilled, because in case of a maximum, the circular orbit would not be
stable, the orbit would be unbound, and the problem would become meaningless.

The angle at centre between two consecutive turning points of the almost
circular orbit, in view of (3.1.28), is:

(3.1.39)

C 7 du
o= —— [ ——
Vm / V2E = 2V(u)
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Here,u,, = }, Uy = i, V(u) = Vog(1). Wealsohave E — E + ¢, with £ < 1.

Expanding V(u) according to Taylor’s formula about 7 = %, we have:
V) = V(@) + V@)~ )+ g V@ -+
or, in view of (3.1.36) and (3.1.37),
Vu)=E+ %V"(ﬁ)(u —u)
With this approximation, (3.1.39) becomes:

C T’ 1 (— —\21—4
cb:ﬁu/[ze—v @) — 1) du

im V(@) arcsin[ Vﬂz(eﬁ) (u — ﬁ)] ;

up

2e
V// (E)

1. .
where w,, y = U £ | ]2 in the new variables. It then results that

® = ClmV"(@0)] 2. (3.1.40)
Using the condition (3.1.33), we obtain:

mV" ()

= = >0, (3.1.41)

where « is a rational number, so as to have

T

= (3.1.42)

These considerations are valid for almost circular orbits. But it is clear that,
once the potential V(r) is found, by varying the pair of quantities (E, C), we can
pass from one circular orbit to another by a continuous variation of 7. This means
that the discrete parameter « must be the same, for any circular orbit, i.e. for any
7= % Under these circumstances, Eq. (3.1.41) serves to determine the potential

V(r). In view of (3.1.15), we then have:

v » dv
= —3)=
" ar (a ) dr’
with the solution:
V(r) = A2, (3.1.43)

Since o = /2 is not a rational number, we can take o> #+2.
Let us first discuss the case o > 2. This leads to V,; — oo for r — 0. But
E > V,r, meaning that E also becomes infinite, and therefore r,, = 0 is a turning
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point of infinite energy. In view of (3.1.43), the function V(u) can be written as
follows:
c? i
V()= —u”+ Au"". (3.1.44)
2m

Introducing (3.1.44) into (3.1.39), and taking into account the fact that now
E =V(uy), we have:

1
2

c fre o
= — — (% —u?) +2AW ™ —u**)|  du.
'm / |: mm m
un

Making the substitution # = u,,x, we obtain:

1

o= / [ 2mA 31’ (1 —x2°‘2)} dx.
C?

“m
um

=

In the limit E — oo, i.e. u, — o0, this integral reduces to

1

1m®:/u—ﬁﬁw:

E—oo
0

m
—. 3.1.45
. (3.1.45)
Comparing this relation with (3.1.42), we obtain a = 2, and (3.1.43) leads to
(3.1.30). Here, the constant o must be positive, otherwise we would have only
unbound orbits.

Let us finally discuss the case 0 < o> < 2. One can see that the effective potential
tends to zero by negative values, when r—oo. The point ry = oo (uy = 0) is
therefore a turning point of zero energy. There exists also another turning point of
zero energy, given by V.5 (r,,) = 0, or

c? >
— 4+ Au * =0. 3.1.46
o+ Au, (3.1.46)
Relation (3.1.39) yields:

Um

du,

EQ
o
/T\
:
I
[\S)
S
=N
\_/
|

or, in view of (3.1.46),
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The integral is worked out by the substitution # = u,,x**, which gives:

1

2

:_2/1_x -4 :a_’z, (3.1.47)
0

K

Comparing (3.1.47) with (3.1.42), we obtain o« = 1, therefore (3.1.43) yields
(3.1.31).

In conclusion, we have shown that only the fields having a potential of the form
(3.1.30) or (3.1.31) can produce closed orbits. The proof of the theorem is
complete.

3.2 Kepler’s Problem

In this section we shall study the central field with potential energy of the type
V(r) = -. (3.2.1)

In this category fall the gravitational (k < 0) and Coulombian (k <0, k > 0) fields.
The structure of orbits corresponding to this potential can be qualitatively analyzed
by drawing the graphic of the function
kK C?
Veg(r) = -+ 5—. (32.2)

If the force is one of attraction (k < 0) (Fig. 3.3), we distinguish the following
types of orbits.

For E = (Vog),uin = Veg(F), we have a circular orbit of radius

C2
F= —— 3.2.3
ot (3:23)
Fig. 3.3 Graphical vV k<0
representation of V as a f V= Veff ™
function of r for an attractive
force (k < 0). E, F
\\ 2mr?
A
WP A~ —~—_ £ __.
0
EI PPt r
E 2 k
s
/ r
/
/
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Fig. 3.4 Graphical
representation of V as a
function of r for a repulsive
force (k > 0).

which is obtained from (3.1.32). For the energy E,, with (Vg),,., <E1 <0, we
have bound orbits in the annulus defined by r,, and ry,. These curves are also
closed, and we shall show that they are ellipses. For another energy E, >0, the
orbits are unbound, the pericentre being given, say, by r/, .

If the force is repulsive (k > 0) (Fig. 3.4), we have only unbound orbits, with
the pericentre v/, for any E > 0.

m?>

3.2.1 Determination of Trajectories

Choosing the x;-axis to pass through the pericentre (¢ = 0 corresponds to r = r,,),
we obtain from (3.1.19):

r 1
c? k Cc? o2
— —2mlE—- - - — d 2.4
¢ / r? { m( r 2mr2>} " (3.2.4)
or, if we pass to the new variable u = % (see (3.1.20)),

1
2mE  m2k? mk\?| °
+ — —|u+ —= du.

Um Um

(PZ/VC—HZ(E—ku)—uz} %du:/

u u

C? ct

(3.2.5)

If E= E(<0), which is possible only for k < 0, one obtains a circular orbit.
Indeed, using (3.1.14) and (3.2.3) to write

,’~2—_ E_A'_i
o cC mr?t)’

we get the solution 7 = 0, that is
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c? c?
P Tk T
Therefore, we shall assume
— mk?
E>FE=——. 3.2.6
2C? ( )

Using condition (3.2.6), we integrate (3.2.5) and obtain:
= arccos l + m—k 72mE + 7m2k2 h
?= rre)\e e ’

1 1 k
- = — +ECOS(/)>. 3.2.7
r p( K| 327

which yields

This is the equation of a conic, having one focus in the centre of force O. Here,

CZ
= 3.2.8
P= ik (3.2.8)
is the parameter of the conic and

1

2EC*\?
=14+ — 329
‘ < * mkz) ( )

is its eccentricity.
One can also write the equation of the conic in Cartesian coordinates. To do
this, we observe that our choice of axes yields

X1 X1
COSQP = — = ————,
r \/x%—&—x%

hence Eq. (3.2.7) leads to:
X4 x2—(ex; —p)* =0. (3.2.10)

If E < 0, which is possible only if k < 0, we have a bound orbit. In this case
e<1, and (3.2.10) yields:

(1 — )x} + x5 + 2pex; = p?,

or

(3.2.11)
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Fig. 3.5 Graphical \ X2
representation in the
Oxx,-plane of a closed =
elliptic orbit.
b P r
c
(4 >
(o} (0] X,
a

which is the equation of an ellipse of semi-axes (see Fig. 3.5)

p lk| k
= = = 3.2.12
T1-a T 2E " 2E (32.12)
p C
b= = , 3.2.13
Vi—e  \/2m|E| ( )
while the focal distance (distance from the centre to a focus) is
c= - —wa=Va - (3.2.14)

=

The distances from the centre to the pericentre and apocentre are, respectively:

rm:a—c:(l—e)a—L, rm=a+c=(1+ea= P

= . (3.2.15
1+e€ 1—¢ ( )

It is interesting to note that the semi-major axis of the ellipse, a, depends only on
the mechanical energy of the particle, being equal to %

If E > 0, the trajectory is unbound, irrespective of the sign of k, while € > 1.
Thus, Eq. (3.2.10) reads:

(& — 1)x? — x5 — 2pex; = —p?,

or

2y (,”j)z =1, (3.2.16)

which is the equation of a hyperbola, of semi-axes:

p k|
51 = o (3.2.17)
p C

- Vet —1 - V2mE

a =

b

(3.2.18)
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Fig. 3.6 Graphical

%

representation in the
Ox1x,-plane of an unbound k<0
orbit for £ < 0.
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e > .
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Fig. 3.7 Graphical Aa,
representation in the
Oxyx,-plane of an unbound >0
orbit for k > 0.
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and having the focal distance

c=-L" =+ (3.2.19)

e —1

The angle made by the asymptote with the x-axis is given by

b 2CE
- € —_.
a K]
As shown in Figs. 3.6 and 3.7, if k < 0, the particle moves along the branch of the

hyperbola which surrounds the centre of force, while for k > 0, it moves on the
other branch. The distance to pericentre is calculated by putting ¢ = 0 in (3.2.7):

_ P
m = =ale—1)<c (k<O0), (3.2.20)
o = pl —ale+1)>c (k>0). (3.2.21)
p—
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Fig. 3.8 Graphical 2%
representation in the

Ox1x,-plane of an unbound

orbit for k <0 and E = 0. =0

k<0 p
o
It is seen that, during the motion of the particle on the trajectory, the value r,, is
reached only once.

If E = 0, which is possible only if £k < 0, we have unbound orbits, the particle
being at rest at infinity. Then (3.2.9) yields € = 1 and (3.2.10) reads

2= —2p(x1 - g) (3.2.22)

RV

y
?
B
v

which is a parabola. The distance to pericentre is

p_ C
= = = , 3.2.23
T omlk] (3223)
while the points of intersection of the parabola with the x;-axis are
x, = =+ p (Fig. 3.8).
Summarizing, we conclude that the type of orbit is completely determined by the
possible values of mechanical energy, which directly determine the eccentricity:

(a) E <0 — e<1: ellipse;

(b) E> 0 — e > 1: hyperbola;

(c) E =0 — €= 1: parabola;

d) E=E=-25 — ¢=0: circle.

Cases (a), (c) and (d) can be realized only for attractive forces, while (b) is possible
for both attractive and repulsive potentials.

3.2.2 Law of Motion

To determine the finite equations of motion, i.e. r = r(t), ¢ = @(t), we assume
that at + = O the particle passes through the centre. Then the integral (3.1.17)
yields:

r 1

2F 2k c2]

t = / [rz - —r—— rdr. (3.2.24)
m m m
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Fig. 3.9 Geometrical X2
representation of the real ~eeeea
anomaly ¢ and the eccentric ‘,."" ) " P"
anomaly €. i *

We shall calculate this integral for the situations (a), (b) and (c) presented above.

(a) E <0 (k <0). Relations (3.2.12)~(3.2.14) yield:
k=2aE, C*=2m|E|b*=2m|E|d*(1 — ),
and, in view of (3.2.15),

(1-¢)a
With the substitution
r=a(l —ecos¢), (3.2.25)
the result of integration is:
t= n|1ka|3 (¢ —esiné). (3.2.26)

The last two relations give r, ¢ in terms of the parameter &, while ¢ can be

1
obtained from (3.2.7). If we put (%) ‘= vyin (3.2.26), we obtain:

&—esiné =, (3.2.27)

known as Kepler’s equation.

The parameter £ has a simple geometric interpretation. Assume that the
semi-major axis a of the ellipse is taken along the x;-axis, one of the foci being
at O and the centre at C (Fig. 3.9). Consider a point P on the ellipse, corre-
sponding to a value ¢ of the polar angle, and draw a perpendicular at P on x;.
Let P/, P be the intersection points of this perpendicular with the x;-axis and

with the circle of radius a and centre at C, respectively. If we denote & =
PWEO, then
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(b)

Kepler’s Problem

acosé =c+rcoso.
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(3.2.28)

Using now (3.2.7), we arrive at (3.2.25), which means that the parameter ¢

identifies with the angle P'CO. In astronomy, ¢ is known as the eccentric

anomaly, while ¢ is called the real anomaly.

Relation (3.2.28) shows that a complete revolution of the particle on the
ellipse corresponds to a variation of 2m of £. The period of revolution, T,

results from (3.2.27):

VT = 27,
yielding
7 _ 4n’m
ad k[

which is Kepler’s third law.
The Cartesian coordinates of the particle are:

x1 =rcos @ = a(cos & — ¢),

Xy =1/r? —x} =aVv1—esiné.
E > 0. From the relations (3.2.17)—(3.2.19), we obtain:
k| = 2aE, C*=2mb’E =2ma*E(é® — 1),

while (3.2.20) and (3.2.21) can be written under a unified form

a<+ k)
rm=ale+ — ).
Ik|

Thus, the integral (3.2.24) reads:

=i / (4 >] rar

Making the substitution
k
r=al ecosh & + )
( k|

the integration is easily performed and we obtain:

t= ,/%a(esmhf—k |Z‘ é)

(ST

or

(3.2.29)

(3.2.30)
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ma3

k
t=4/——|esinh&+ —é). 3.2.31
K] ( ] (3.231)

This time, the parameter ¢ can take all values from —oo to +00 and does not
have a simple geometric interpretation anymore. Passing to Cartesian coor-
dinates, we have:

k
Xy =a e—l—coshf),
(7

X, =aVe? — 1sinh €.
(¢) E=0(k<0). In view of (3.2.23), the relation (3.2.24) reads:

m p)*%
t= ) [ (r=2) *ra
2|k|/<r 2)
g

which can be solved easily. The result is:

SRR Y] e

Using now (3.2.7), with € = 1, k<0, = tan §, we have:

(3.2.32)

r= g(l +172). (3.2.34)
Introducing (3.2.34) into (3.2.33), we obtain:
1 [mp3 n
=4/ —n(1+ = ). 3.2.35
s (1 (3235)

Finally, the Cartesian coordinates of the particle are given by:

p 2
-2
==, (3.2.36)
X2 = pH.

3.2.3 Runge—Lenz Vector

We wish to show that the field characterized by V(r) = ’;‘ admits a third first
integral. In view of (3.1.6) and (3.1.7), Newton’s fundamental equation reads:
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.. kr
r=——

e (3.2.37)

Using this formula, let us calculate the cross product r x 1, where 1 is the angular
momentum of the particle:

But r - r = r7, therefore
d (1 r d/r
Pxl=—hrl (=) &l = f—(kf).
dt ( r) r dt\ r
On the other hand, since = 0, we may write:
d
rxl=—(rxl).
LRl
The last two relations give
d r
2k x1 k-) —0,
dt (r + r
which shows that the vector quantity
R=tx14+k" (3.2.38)
r

is a first integral. It is called the Runge—Lenz vector.
The magnitude of R is calculated observing that

22 k
e x 1> = —(E— —>
m r

and
. . 1,
r-(Exl)=1-(rxr)=—I" (3.2.39)
m
Therefore, recalling that in our case [ = C (const.), we have:

RI = 2EC?

+ K,
or, if we use the notation (3.2.9),

IR| = [kle. (3.2.40)
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Since R -1 = 0, the vector R passes through O and lies in the plane of motion.
If we direct the x;-axis along R, the angle between r and R is the polar angle .
Then, in view of (3.2.39), we have:

C2
r-R=r|R|cos¢p = ﬁ—i—kr7

or, if we use (3.2.40),

C2
r(lklecos @ — k) = —.
m

If we now introduce the notation (3.2.8), we obtain the equation of a conic in the
form given by (3.2.7). This shows that the Runge-Lenz vector is oriented from the
centre of force to the pericentre, irrespective of the sign of k.

3.2.4 Artificial Satellites of the Earth. Cosmic Velocities

Assuming the Earth as an isotropic sphere of radius R, the potential energy of a
body in the gravitational field of the Earth is given by (3.2.1), with the parameter
k = —y mmg, where my, is the mass of the Earth and y — the gravitational constant.
If we neglect the rotation of the Earth about its axis, we have:

mmeg
mg = —y R
which yields k = —ngz, and thus
mgR?
V(r) = — . (3.2.41)
r

Consider an artificial satellite of mass m, which takes off from the leading
rocket at a height 4 relative to the Earth’s surface (point P, Fig. 3.10). The velocity
of the satellite with respect to the Earth is v,, while the angle between vy and the
vertical in P is a.

In this application we shall use our previous results. In order to have a closed
orbit, the following conditions must be fulfilled: k<0, E <0. Since

2 2
mv; mgR

E=—"2"__—°_ 3.2.42
2 R+h’ ( )
the condition E < 0 produces:
2gR?
2
<—. 3.2.43
SRy ( )
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Fig. 3.10 Geometrical
representation of the
trajectory of an artificial
satellite of the Earth.

On the other hand, we must consider the fact that the satellite should not intersect
the Earth’s surface, therefore according to (3.2.15), a —c> R. Since ¢ = ea,
we have

e<t1- X (3.2.44)
a

This condition is fulfilled if @ > R, which, in view of (3.2.12) and (3.2.42), leads to
the inequality

-0 > 7 (3.2.45)

or, using (3.2.9),

c? E
S safr- L)
m-gR mg

From (3.2.42), observing that [ = mvy(R + h) sino, we get:

2h

2
Yo [M > e (3.2.46)

R 2 sin® & — cos? oc}
8

In order to solve simultaneously the inequalities (3.2.43), (3.2.45) and (3.2.46), we
introduce the notations:

v; = \/gR = 7,906m/s, (3.2.47)
=20 cos o, = 2 in o, (3.2.48a,b)
Vr vy

(3.2.49)
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Fig. 3.11 Geometrical Ay
representation of the conditions
that a launched object must
obey, in order to become an
artificial satellite of the Earth. —
The three inequalities (3.2.50), y
(3.2.51) and (3.2.52) are
simultaneously satisfied if the
point (X, Y) is in the netted
domain.
o’ o
leading to the new form of the three inequalities:
2 2 2
X +Y<—-, (3.2.50)
n+1
) 1 —mn
X2 4+y2> , (3.2.51)
1+n
) ) 2n
—X"+nn+2)Y" > . (3.2.52)
n+1

Consider the O’xy-plane, where to each point is attached a pair of variables
(X, Y). Then all three inequalities are simultaneously satisfied if the point (X, Y) is

inside both the annulus determined by the circles of radii (ﬁ)% and (ﬁ)% (the

domain marked by vertical lines in Fig. 3.11) and the hyperbola

X? Y?
-t =1, (3.2.53)
n+1 (n+1)(n+2)

(the region indicated by horizontal lines). Consequently, the inequalities are
simultaneously satisfied by the points in the netted domain.
Let Y', Y be the points of intersection of the hyperbola (3.2.53) and of the

circle of radius (ﬁ)% with the O’y-axis. Then:

[l (52"

Since Y > Y, the condition (3.2.51) (or (3.2.45)) is always satisfied. The

hyperbola always intersects the circle of radius (%)% in the points
(Xl, Y])7 (—Xl, Y]), with

X

(3.2.54)
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meaning that the netted domain exists always, i.e. for any % (any n) it is possible to
choose vy and o in such a way that the launched object become an artificial satellite
of the Earth.

Assume that the launching takes place near the Earth’s surface. In this case,
since h < R, we can take n ~ 01in (3.2.52) and obtain X ~ 0, or o ~ zZ, meaning
that the launching has to be done parallel to the Earth’s surface. Taking X =~
0, n ~ 0 in (3.2.50) and (3.2.51), we obtain 1 <Y <+/2, or

vy < v <y,

where v;; = \/Evl ~ 11,180 m/s. The velocities v; and vy, are called the first and,
respectively, the second cosmic velocity. It is obvious that v; and v, represent the
minimum and the maximum speeds of launching a body from the Earth’s surface,
in order to become a satellite. If vy > vy, the object either leaves the gravitational
field, or falls back on the Earth. From (3.2.54) we can also obtain the possible
interval of variation of the angle «, for given & and vy:

o o o
2 0> =9 0,

where oy = arctan \/n.

3.3 Classical Theory of Collisions Between Particles
3.3.1 Collisions Between Two Particles

Consider two particles in motion, which initially are far away from each other, so
that each of them can be considered free. If the distance between particles becomes
small enough, they begin to interact and, if certain conditions are fulfilled, they
collide. The collision is called elastic if it does not produce any change in the
internal state of the particles, and inelastic, if such a change happens. In the case
that the particles remain glued together after the interaction, the collision is termed
completely inelastic.

Our system of two particles of masses m; and m, is supposed to be isolated,
therefore the total momentum is conserved:

mivy +movy =m v + I’I12V/2, (3313)

or
P +P= p'l + p/z, (331b)

where unprimed and primed letters stand for velocities and momenta before and
after collision, respectively. Introducing the relative velocities:

v=v,—v;, V=vV,—-V|, (3.3.2)
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and the velocity of the centre of mass:

mivi +mvs Pt Py

V = )
M M

M =my + my, (333)

we can write the velocities of the particles before and after collision as

m m
v, =V— ﬁzv, v, =V+ ﬁlv, (3.3.4)
Vi=V- %v’, Vo=V + %v’. (3.3.5)

If the collision is elastic, the field of interaction between particles is conser-
vative, while the interaction potential V;,(r) must vanish at infinity:

lim Vi (r) = 0.

In this case, the total kinetic energy is conserved:

1 1 1 1,
T=-MV*+ —w?=-MV>+ —uw/ =
> V+2,uv 5 V+2,uv, I

nimy
k)
mp + mp

which leads to the conservation of the magnitude of the relative velocity:
[v| = |v']. (3.3.6)

Using the fact that the centre of mass moves uniformly in a straight line, let us
consider an inertial reference system with respect to which the centre of mass is at
rest. Such a frame is called the centre of mass system (CMS). We choose the origin
of CMS in the centre of mass. Denoting by a star each vector defined with respect
to CMS, in this frame we have

p; =mvi =m(vi = V) = —pv, p;=myv, =my(vo — V) = pv,
which yields:
pi+p; =P +p2=0. (3.37)

This relation can be taken as definition of the centre of mass. In view of (3.3.6),
we remark that

pil = Ip3| = [p'1] = [P3)- (3.3.8)

The relation between momenta relative to CMS is represented graphically in
Fig. 3.12. Before collision, the momenta of the two particles, equal in magnitude
but opposite in direction, lie on a straight line. This property survives after col-
lision, but the momenta are directed along a different straight line. The angle 0y,
between these two lines is called scattering angle.

Usually, one of the particles is considered to be the ‘target’, being at rest
relative to the experimental device. Such a reference system is termed laboratory
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Fig. 3.12 Relation between
momenta relative to the
centre of mass reference
system in a collision of two
particles.

system (LS). If we choose particle 2 as being at rest, then LS is defined by the
condition

Vo = 0.
In the following, to simplify the notation, we shall use the letter L to specify the
vectors defined relative to LS, and remove the star in case of the vectors defined
with respect to CMS. The velocity of CMS relative to LS is then

mvip
M

V:

(3.3.9)

Let us find the relations of transition between the two systems. Since v, =
vy, — V = =V, it follows that:

myp nmi
hence
M ni
plL:le]L:MV: m—zplz (1+n12>p1 (3311)

After collision, the particle 1 has the momentum:

m
pi=mvi=m((,+V)=p |+ m—;Pu (3.3.12)

while the momentum of particle 2 (the ‘target’) is:

P =P —PiL=P P (3.3.13)

Relations (3.3.11)—(3.3.13) have a simple geometric interpretation. We can
distinguish three cases: % > 1,=1, <l1.In Fig. 3.13 the vector OB stands for py,
OC stands for p’, and Ocy = BOC. The vector AO (collinear with OB) is %pl,

therefore ABis p,; given by (3.3.11). From (3.3.12), AC= OC+ AOis p',;.
while, in agreement with (3.3.13), CB= OB— OCis p’,; . If we denote by 0, the
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(b)

Fig. 3.13 Various possibilities of scattering between two particles, in terms of the ratio m; /ms:
(@) my > ma, (b) my =my, (¢) my <my.

angle between p’;; and p,; (scattering angle in LS) and by 0,; the angle between
p’»; and p,, (scattering angle of the target particle), in all three cases we have

1
02L = E(TE — OCM)- (3314)

Let us now find the relation between the scattering angles 6; and Ocy,.
Examining Fig. 3.13, we can write:

|AC|sin 6, B |OC| sin Oy

tanl; = — = — = .
|AClcosO0p  |AQ + |OC|cosOcyu

But |OC| = |p/;| = |p;| and |40 = L pi |, hence:

myp sin HCM

tan 0 = (3.3.15)

mq + m», CoS HCM '

We shall now analyze various cases, depending on the value of the ratio 7. If

2

my > m;, the point A is outside the circle of radius |p,| (Fig. 3.13a). In this case,

0; takes values in the interval [0, 0 1,,..], where 07, is the angle CTA\O, while
0cu takes values in the interval [0,7]. Note that

phl _m

sin ngax =~ m - )
my
m Ipi| mi

(3.3.16)

which implies Opax < 5.
If m; = m, (Fig. 3.13b), the point A is on the circle of radius |p,|, therefore
0, = %, ie. Ocy € [0, %]. In view of (3.3.14), we obtain

m
Op + 0 = 5
which means that, after collision, the two particles move in LS along orthogonal
directions.

Finally, if m; <m, (Fig. 3.13c), the point A is inside the circle, and the intervals
of variation of 0; and 0, are the same.
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We realize that by means of the equations of conservation of momentum and
energy, we can determine only the magnitude of momenta in CMS. To find the
scattering angle (either 0cy, or 0;), we must know both the law of interaction
between particles and their mutual position. This means that we have to find the
law of motion during collision and we shall discuss this matter in the next section.
Nevertheless, in some particular cases we can obtain some information from the
aforementioned formalism. For example, as we have shown, if m; > m,, the angle
0, is limited by 0p,,.. (see (3.3.16)), which means that, if m; > m,, we have
Ormax~ 0, leading to 0, =~ 0, i.e., the particle does not change its initial direction
after collision. If m;<m,, 0;, as well as 0Oy, can take the value m. For
0; = Ocy = m, Fig. 3.13¢c shows that p’; = —p,, and the relations (3.3.12),
(3.3.13) yield:

ni
PiL=p ( - 1)a P =2p;.
nip

The kinetic energy of the ‘target’ after collision, measured in LS, is

1 2 1 2
TZ/L = %|P,2L| = m—2|P1| (1 —cosOcu)

and, for O¢y, = m, in view of (3.3.11),

2 2m; 4u
(T30 ) max = HTZ|I’1|27|I)1L|2 =T (3.3.17)

m? M

Therefore, in case of the ‘backwards scattering’ (0, = Ocy = 7), the energy
obtained by the target particle after collision is always smaller than the initial kinetic
energy of the incident particle, which is equal to the total initial energy. One can
verify that this is the largest energy of the target particle after collision (if ; varies
from O to 2m). If m; < m,, we have 0 ~ 0Ocjy, but this time 0; is not limited (like in
casem| > my), because the target particle remains at rest in LS, while the motion of
the particle 1 depends on the law of interaction and the initial conditions.

3.3.2 Effective Scattering Cross Section

In physical applications we have to deal with the scattering of a large number of
particles by a centre of force (Fig. 3.14), rather than with the deviation of a single
particle. The incident beam is formed by independent, free particles, having the
same mass m; and the same velocity v;. Coming close to the centre of force, also
called the centre of scattering, all particles are subject to the same law of inter-
action given by the potential V = V(r). After scattering, the particles are consid-
ered free again, but having different velocities and moving in different directions.
We shall analyze here only elastic scattering. Assuming that at infinity the non-
interaction condition is given by lim,_, V(r) = 0 and recalling that T,, = E >0,
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Fig. 3.14 Schematic representation of a scattering.

this means that in the process of collision the mechanical energy of the particles is
positive (E > 0).

To describe the scattering, let us take the origin of coordinates O at the centre
and the xs-axis parallel to v;. We call impact parameter b of a particle of the beam
the distance between the centre of scattering O and the initial direction of motion
of the incident particle (Fig. 3.14). Since the central force is conservative, the
energy of each particle remains constant:

2
mv
E=T =1 (3.3.18)
2
On the other hand, the plane of the trajectory of each particle is determined by its
conserving angular momentum. Since ! = mvr, where r, is the projection of r
on v, with r, = b at infinity, we can write the angular momentum in terms of the

impact parameter:
[ :mlv]b. (3319)

The trajectories of the particles are symmetrical relative to a line drawn from the
centre O to the pericentre P (Fig. 3.15). The scattering angle 0 is the angle made
by the two asymptotes to the orbit, being the same for all particles having an
identical b.

In the theory of particle scattering, an important quantity is the effective scat-
tering cross section do, defined as the ratio

where dN is the number of particles scattered per unit time within the solid angle
dQ and Nj is the number of particles passing in unit time and in normal direction a
unit area of the beam cross section. Observing that the scattering angle is a
monotonically decreasing function of b, the particles having the impact parameter
in the interval (b, b + db) will be deflected at angles in the interval (0, 0 + d0).
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Fig. 3.15 Trajectory of a scattered particle in a repulsive potential V, and the scattering angle 6.

Fig. 3.16 Geometrical
representation of scattering,
in terms of the impact
parameter b, for a repulsive
centre.

These particles pass in the normal direction through the area b db d®, where @ is
the polar angle of rotation about the x3-axis. Thus,

dN = Nobdbd®.

Due to the axial symmetry, none of the quantities involved depend on @, therefore
we may consider particles passing through the annulus formed by the circles of
radii b, b + db, and which, after scattering, lie in a conic shell (Fig. 3.16), i.e.

dN = 2nNob db.

Denoting by dQ = 27 sin 6d0 the solid angle defined by the directions (60, 6 + d6),
we have:

b |db

dQ
sin 0 . ’

where the choice of the absolute value of the derivative % is determined by the
fact that it is usually negative, while dN is positive by definition.



128 3 Applications of the Lagrangian Formalism

Solving the equations of motion and using (3.3.18)—(3.3.19), we obtain
0 = O(E, b), or conversely, we can calculate b as a function of 0, E, which makes
possible the determination of the differential cross section:

(3.3.20)

1 db?
7= 2sin0| dO

1| a»?
2|d(cosB)|
This relation shows that the function b(0) contains all the information regarding
the behaviour of the scattering centre.

Note that 2¢,,, +0=mn if the centre is repulsive (Fig. 3.15), while
2¢,,.x — 0 = 7 in the opposite case (Fig. 3.17). These two relations can be written
in a condensed form:

0= |TC - 2(pmax|'
Using (3.1.19), we have:
0=|n— 2/ Cr*{2m,[E — Ve‘,jr(r)]}f%dr,

I'm

or, in view of (3.1.12), (3.3.18) and (3.3.19):

0= n—Zb/ool[l— Vir) _ b2]%dr. (3.3.21)

r? E r?
Ym

The value of r,, depends in general on b, and this gives rise to a complicated
relation 6 = 0(b), sometimes impossible to invert.

Our theory is based on a model involving the motion of a beam of particles in
an external central field. But we can also conceive this process as a number of
collisions between pairs of particle, one particle of each pair being the ‘target’.
Each of these systems, in view of the theory developed in Sect. 3.1, can be
considered as a ‘particle in a central field’, which means that all our formulas
remain valid in CMS, if instead of the mass m, of the incident particle we put the
reduced mass pu of the pair.

Recall that the differential cross section do, being defined as a ratio of numbers
of particles, is independent on the reference frame, therefore it does not change
when passing from CMS to LS. But the solid angle changes, so that the cross
section per unit of solid angle is:

do do
= —1dQ = — Q.
i~ (36 )1 (55 o

Since the axial symmetry is manifest also in LS, we have

dQp =2nsin0,d0;, = —2nd(cos 0),
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Fig. 3.17 Geometrical
representation of scattering,
in terms of the impact
parameter b, for an attractive
centre.

which can also be written as

d(cosf;)
d(cos 0)

dQ; = 2nsin 9d0'

| d(cos0r)
B ‘ d(cos 0)

For the incident particles, in view of (3.3.15), we have:

do 1+”m%cos9 do 339
0~ ilaa),, (33.22)
[1+2Z—;cos()—|—ﬁ] 1

2
m 2

where m, is the mass of the target particles and (do/dQ),; is the differential cross
section of the incident particles. If 6,; is the angle between the directions of the
incident particles and the target after collision, using (3.3.14) we obtain:

do 1 do 1 do
= - ([ Z= =— [ = 3.3.23
dQ  4|sin Y| (dQ>2L 4| cos 0y | (dQ>2L’ ( )

where (do/dQ),, is the differential cross section of the target particles.

3.3.3 Scattering on a Spherical Potential Well

By ‘spherical potential well” we mean a central field with the potential
V(r)=0, r>R,
V(T)Z—VO, }"SR,

where Vj is a constant. On each portion of its trajectory, the particle is free. Its
velocities outside and inside the well are v; and v, respectively, both being con-
stant. Since the field is central and conservative, both energy and angular
momentum are conserved:

2 2
miv miyv
E = 21 = 2 —V0>0, l:mlv]b:mlvrm,

where r,, = OP (Fig. 3.18). From these relations we get
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Fig. 3.18 Scattering on a spherical potential well.

(3.3.24)

v
b= —r, =nry,,
V]

with
Vi
n =4/1+ EO > 1, (3.3.25)

known as the refraction index of the potential well. Using Fig. 3.18, we find

Il
S|

n 0
m = R =R 5T 5%
r, cos f8 cos(2+2 cx)

or, after some trigonometric calculations,

0 0
rm = —VR?Z — b?sin 3 + bcos X
Introducing this relation into (3.3.24), we obtain:
2 n2 0
n-sin” 5
5 2 (3.3.26)
n? —2ncos 5 + 1

=

and formula (3.3.20) yields:

do  (ncos Y —1)(cos § —n) n’R? (3.3.27)

aQ cosg(nz—chos§+1)2 4

The impact parameter b varies from 0 to R (for b > R, the particles pass without
deviation), while the scattering angle takes values from O to 6,,,,, given by

1
0,ax = 2 arccos —.
n

Integrating over the solid angle 20,,,,, which contains all scattered particles, we

arrive at the total effective cross section:
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Onmax 1

azZn/ j—gsinf)dH:Znanz/

(nz = 1)(n—z2)

—2nz + 1)
0

The result of integration is 7 R?, as expected.

3.3.4 Rutherford’s Formula

The scattering of electrically charged particles in the Coulomb field of the targets
is a process which served as a model in the well-known experiment of Ernest
Rutherford, leading to the discovery of the atomic nucleus. Since the particles
involved in this type of interaction are elementary, a correct treatment of the
problem can be performed only by using the quantum mechanical formalism.
Nevertheless, some useful results are deduced within the classical approach.

Let us consider the scattering of a beam of particles of mass m; and charge ¢,
on the target formed by particles of mass m, and charge ¢,. Assuming that the
potential is of the type (3.2.1), with

_ q192
47'[6()7

(3.3.28)

we shall determine the scattering angle 6 in CMS. The field being Coulombian, the
relation between ¢,,,, and 0 can be written as

o k0
Pmax = 2 | k| 25

thus accounting for both the attraction and repulsion forces. Since
Opar = lim,_ @(r), Eq. (3.2.7) yields:

On the other hand, setting [ = pvob and E + ”TU‘ZJ in (3.2.9), we have:
2
uvgh
=1
€ + < X ) s

R0
—— cot” —.
12 2

hence
b =

Introducing this relation into (3.3.20), we arrive at Rutherford’s formula:
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do ko1
— = — . 3.3.29
dQ (2;11% > sin* ( )

The effective cross section for the incident particles in LS, (45),, . is obtained
by substituting 6 by 6; in (3.3.22) and (3.3.29), and by using (3.3.15), which leads
to a very complicated relation. Much simpler is the expression for the effective
cross section of the ‘targets’. Since 20,; = n — 0, we get from (3.3.23) and

(3.3.29):
do k\? _
(d_Q) - <W) |cos Oy | . (3.3.30)
2L 0

A simple, but approximate formula can also be found for the cross section of
incident particles if m| < my. In this case, u ~ m;, 0, ~ 0, therefore

do k(. 0\ 7*
(d!})lL_ (4E‘1> <S1n 2> , (3331)

2 2
where E| =m; % ~ pu2 is the energy of the incident particles.

In the case m; = my =2y, since O, = § =0,, 0, =3 — § =2 —0,, both

Cross sections (5—5)1 L and (j—g)ﬂ are easily calculated. In this case, after scat-

tering we cannot make any more distinction between incident and target particles.
Then, we can define the differential cross section as

d d
do = K—") aQ,, + (—6> szL} 7
aQ /), aQ /), 01.=01, 00, =5 —0;

doy _ (K i ! + ! cos 0
dQ ), \E) \sin*0,  cos*0, b

The Coulomb field is characterized by an infinite total effective cross section:

do
- [ L0
’ / Qe

47

hence

as a result of its infinite radius of action.

3.4 Periodical Motion of a Particle Under the Influence
of Gravity

A particle constrained to move on a curve or a surface, subject to the force of
gravity and performing periodical motions about a fixed point, is a mathematical
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pendulum. We shall discuss three classic models: simple, cycloidal and spherical
pendulums.

3.4.1 Simple Pendulum

The simple or plane pendulum is a system formed by a heavy particle, moving
without friction on a vertical circle. Let R be the radius of the circle, the motion

being performed in the x|x,-plane, with Ox || G (Fig. 3.19). The (holonomic)
constraints are:

2, 2 2
x{+x3=R", x3=0,

therefore the system has one degree of freedom. Such a model is realized by a
particle P of mass m, fastened at one end to a massless rigid rod, the other end
being suspended in a fixed point O. If the rod is replaced by a non-extensible but
flexible wire, the constraint becomes non-holonomic: x% + x% < R%.

The most convenient choice for the generalized coordinate is the angle 0
between OP and the x;-axis. Since x; = rcos6, x, = rsinf, the kinetic and
potential energies are:

T = %Rzéz, V =—mgRcos0

and the Lagrangian reads:

L= %rzéz—kngcosH. (3.4.1)
The differential equation of motion is obtained by using the Lagrange equations
(2.5.17):

Fig. 3.19 Simple (plane)
pendulum. The system has
one degree of freedom.
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0+ % sin 0 = 0. (3.4.2)

This is a non-linear differential equation, which yields 0 = 0(¢). In the fol-
lowing, we shall determine the exact solution of (3.4.2). To this end, we use the
first integral of motion expressing the conservation of mechanical energy:

E = %Rzéz — mgR cos § = const.

The constant is determined by the initial conditions: 6(0) = 6, 0(0) = 0. Then,
E = —mgRcos ) and we obtain:

. 2
0= i\/}g (cos O — cos bp). (3.4.3)

Since 0 is a real quantity, we must have |0| <0y. This means that at the

beginning of the motion 0 decreases, i.e. 0 <0 (which corresponds to the minus
sign in (3.4.3)), varying from zero at 6 (0) = 6, to its minimum value at § = 0,
then increases to zero, while 0 decreases from zero to —0,. Next, the motion
repeats itself, but in the opposite sense: the angle 0 increases from —0, to 0, while
0>0 (the plus sign in (3.4.3)) and increases from O to its maximum value, etc.
The turning points of the trajectory are, therefore, 0 = +60,. The motion repeats
itself periodically, with the angular amplitude 0. It is obvious that in each of the
intervals (6, 0), (0,—6)), (—6o,0), (0,6,) the motion is similar, which means
that the period of the pendulum is

db.

- /
\/25’ cos 0 — cos 0p)

Using the substitution (note that ¢ does not have the meaning of an extra degree of
freedom besides 0!)

.0 . 0 . Isi
sin — = sin — sin @ = ksin
3 ) @ @

one obtains:

b
| R 1
t=4 —/ do (3.4.4)
gO \/lfsinz%osinzgo
We have arrived at an integral of the form

Po

1
F(pg, k) :/ md% (3.4.5)
0
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which is an elliptic integral of the first kind. The function ¢ is the amplitude
and k is the modulus of the integral. The integral K(k) = F(5,k) is termed
complete elliptic integral of the first kind. Tables of elliptic integrals can be found
in special mathematical publications. Using our notation, we can write the period

of motion as
R T R
r=ay [ F(5 k) =4 KK (3.4.6)

Excluding the singular value 0y = 7, we may take Ikl < 1. Then we can perform a
series expansion of the integrand in (3.4.5):

1
(1 — k2 sin? (p)_% =1+ §k2 sin” ¢ + ﬂk4 sin* ¢ + - -
3.4.7
:il-S-S...@n D g g (3.4.7)
2-4-6...2
n=0

This series is absolutely and uniformly convergent for lkl < 1 in the interval
(0, m), which means that we can integrate it term by term. To do this, we shall
deduce an auxiliary formula, first obtained by the English mathematician John
Wallis. Let us denote

x
Ay = /sinz" odo, (3.4.8)
0

where 7 is an integer. We can write

sin® 2 ¢ cos” pd,

© \ ol

%
Ay, = /sinz”‘2 (1 —cos® @)dp = Asy 5 —
0
or, if we integrate by parts,

1
Ay = Ay p— —— Sinzn (PdQD

2n —1

S —
[SIE]

In view of (3.4.8), we can write the following recurrence relation:
2n Azn = (271 — 1)A2n,2. (349)

Giving to n all values from 0 to n and then taking the product of the obtained
relations, we find

1 (2n—1)

.3.5..
A
2.4.6..2n 0

Ay =
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or

(3.4.10)

o\m\:
z
=
[~
=
S
U
hS)
I
| W
N
[@)}
[\°)
S
o
|
V)
S
s
N

which is Wallis’ formula. Using this result in (3.4.6), we obtain finally the period
of the pendulum as

_ ||
Z[ "2,1”'1 ]smz’ 020 (3.4.11)

This result is exact (we have not made any approximation). If 0p <%, we can

expand in series sin % and obtain

R 2 4
=2 — — . 4.12
T=2m/ g( 0 30720 ) (3 )

For small amplitudes (6, < 4°), the terms containing 03, 63, etc. are negligible
with respect to 1, and we arrive at the well-known approximative formula

/R
T =21 —,
8

which says that the small oscillations of pendulum are tautochronous (from the
Greek tauto (the same) and chronos (time)). This property is used in the con-
struction of astronomical clocks (0, = 1°30/).

Let us now calculate the force of constraint. The tangent and normal projections
of the equation L = mr — G are:

L, =mRO+ mgsinf, L, = —mRO* — mg cos 6.
In agreement with (3.4.2), we have L, = 0, as expected. Using (3.4.3), we find
L, =mg(2cos 0y —3cos0). (3.4.13)

If 0y < 7, then for any 0 the vector L points towards the centre O. In this case, the
constraint remains holonomic if the rigid rod is replaced by an inextensible, but
flexible wire, whose initial length is R.

3.4.2 Cycloidal Pendulum

A heavy particle moving without friction on a vertical cycloid with the concavity
upwards is a cycloidal pendulum (Fig. 3.20). The parametric equations of a cycloid
are (see (2.6.29), (2.6.30)):


http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ205
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Fig. 3.20 Cycloidal A,
pendulum. The system has
one degree of freedom.

P
o an A
x; =a(0+sin0), x, =a(l —cosl), x3=0 (3.4.14)

and we have again a system with one degree of freedom. Taking 6 as generalized
coordinate, the Lagrangian reads:

L = ma*(1 + cos 0)0° + mga cos 0, (3.4.15)

leading to the equation of motion:

2(1 4 cos 0)0 — sin 00 + 8 sing = 0,
a

or

a (. 0 g . 0
dt2(51n2>+4as1n2—0.

Taking 6(0) = 6y and 0(0) = 0 as initial conditions, the last equation yields the

solution
N ) / &
sin o = sin — cos( o t). (3.4.16)

Consequently, the motion is periodical, with the period 47 \/g . The same result is

obtained using the energy first integral.
The time needed for the particle to move from Py to O (0 = 0) is

a
h=mn/=, 3.4.17
I . ( )

i.e. the periodical motion on a cycloid is tautochronous, for any angle 6.

3.4.3 Spherical Pendulum

By spherical pendulum we mean a heavy particle moving without friction on a
fixed sphere. Such a system can be obtained by suppressing the constraint which
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(a) (b)

Fig. 3.21 Spherical pendulum. The system has two degrees of freedom.

determines the simple pendulum to move in a plane. Choosing the coordinate

system Oxxpx3, with the origin at the centre of the sphere, and 0_563 I G
(Fig. 3.21a), we have a single constraint,

X+ x4+ x5 =R (3.4.18)

which means that the system possesses two degrees of freedom. Taking the polar
and azimuthal angles 0, ¢ as generalized coordinates, the Lagrangian reads:

L
2

R(07 + sin 0¢?) + mgR cos 0. (3.4.19)
As we already know, since ¢ is cyclic, p, = [3 is a first integral of motion:

pp = mR*sin’ 0¢ = I3 = const. (3.4.20)

Another first integral is furnished by the conservation of the total energy:

E = msz P + 2mR§sin2 5 mgR cos 0. (3.4.21)
Defining the effective potential
A
Ve (0) = Rl mgR cos 0, (3.4.22)
the relation (3.4.21) yields:
P [E — V,5(0)]. (3.4.23)
mR?

During its motion, the particle will reach only those values of 6 which correspond
to E > V,;(0). The limit values of 0 can be obtained as the intersection points of
the curve V = V,4(0) with the straight line V = E, in the plane of variables (0, V).



3.4 Periodical Motion of a Particle Under the Influence of Gravity 139

Since Vegly_o = Velg—r = 00, the pendulum never passes through the two poles
of the sphere. These points are equilibrium positions of the particle: stable equi-
librium for 6§ = 0 and unstable for 8 = n. If ¢ = 0, then /3 = 0, which yields
@ = const., and we arrive at the particular case of the simple pendulum. Therefore,
in the following we shall assume ¢(0) # 0, I3 # 0.

Introducing the new variable u = cos § and using the last two equations, we
obtain

i’ = P(u), (3.4.24)
where P(u) is a polynomial of third degree in u:
2E  2g s I \?

The motion is possible for those values of u, for which P(u) > 0. The law of
motion for the variable 0 is obtained from (3.4.24) as an implicit function:

t=+ /[P(u)]—%du,

ug
where the sign is chosen as to produce a monotonically increasing time. The
trajectory is found by using (3.4.20):

B - 13 / du
PP R +(1—u2)\/P(u)

uo

To analyze the roots of the polynomial P(u), let us first observe that we must
have P(ug) > 0, where uy = cos 0(0) € (—1,1). Since P(£1) = —(1—3)2<O, it

mR?
results that P(u#) has two roots in the interval (—1, +1), say u; and u, (u; <uy).
Observing that lim,_, 4 P(u) = £oo, there is a third real root uz € (—o0, —1),
which does not have a physical meaning.
Since ug € [uy, us|, during the motion we must have u € [u;, 4|, meaning that
the trajectory is between the parallel circles 0y, 0,, with 0, > 0, (see Fig. 3.21b).

In view of (3.4.25), we can write:

Uy + ujuz + upuz = —1,
or

us(uy +uz) = —1 — uyus.
Since |ujuz| <1, while u; < 0, we must have

up +ur >0.
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This means that at least u, > 0, i.e. 8, < Z, which shows that the trajectory of the
pendulum cannot be situated only in the upper hemisphere (Fig. 3.21b).

We conclude that 6 is a periodical function, with values between 6; and 0,,
corresponding to 0 = 0. If the initial conditions are such that E = (Ve ) in> then
P(u) has a double root u; = u, in the interval (—1, +1). In this case, the condition
P(u) >0 yields P(u) =0, which is the constant value u; for u and, since
ug € [uy,us], it follows that u = uq all the time. Therefore the particle describes a
horizontal circular trajectory, defined by 60 = 6,. During this motion, the radius
vector OP generates a cone of angle 26, for which reason the system is called a
conic pendulum. If the energy E is not much different from (Vez),,;,» the trajectory
is close to the circular shape. This shows that the trajectory corresponding to the

horizontal circle 0 = 0,, with [‘g—ef’} - = (), is stable.
—=Vo

3.5 Motion of a Particle Subject to an Elastic Force

In this section we shall discuss the motion of a particle under the influence of the
attractive central force field

F = —kr, (3.5.1)

corresponding to the potential energy (see (3.1.30))

V(r) = %kﬁ, (3.5.2)

where k is positive.

3.5.1 Harmonic Linear Oscillator

A harmonic linear oscillator is a particle of mass m, constrained to move along a
straight line, subject to an elastic force, periodically passing through a fixed point
of the straight line. Taking this point as the origin and choosing as generalized
coordinate the oriented distance x from O to the particle, we have:

1
F=—kx, V= Ekxz. (3.5.3)

Writing the Lagrangian

1 1
L= me2 — Ekxz (3.5.4)

and using the Lagrange equations (2.5.17), we arrive at the equation of motion:


http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ138
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¥4+ w*x =0, (3.5.5)

w= \/g (3.5.6)

The two linearly independent solutions of Eq. (3.5.5) can be written in the
condensed form

where

x(t) = acos(wt + @), (3.5.7)

showing that the particle performs harmonic oscillations about the equilibrium
position O. The deviation x from the equilibrium position O is called elongation,
a is the amplitude of oscillation, while w is the circular (or angular) frequency of
the periodical motion. The argument of the cosine is the phase of the motion, ¢
being the initial phase. The constants a and ¢ are determined from the initial
conditions: assuming x(0) = xo, x(0) = vy, we have:

Sometimes it is more convenient to use the complex solution of (3.5.5),

X(t) _ Aeii(wt+q0)7

instead of the real solution (3.5.7). Here, the constant A is complex and ¢ is real.
Our model is conservative, consequently we have the energy first integral:

1 1
E = mez + Ekx2 = const.

The linear harmonic oscillator is a very simple model, but it can be applied in
the study of various physical systems. The reader is acquainted with the theory of
damped and forced oscillations from the courses on general physics. Here, we shall
discuss only some applications, especially useful in physical chemistry.

3.5.2 Space Oscillator

A space oscillator is a mechanical system with three degrees of freedom, formed
by a particle subject to an elastic central force (3.5.1). As we already know, the
trajectory lies in a plane. Assuming the origin of coordinates at the centre of force
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and Ox; || 1, the motion will take place in the plane Oxx,. Therefore, it is con-
venient to choose r, ¢ as generalized coordinates.
In order to determine the trajectory, we shall use (3.1.19), where the effective
potential energy V. is:
k , 2 mo?® , 2

Ve = 2" +2mr2 -2’ +2mr2'

If we take the x;-axis to pass through the pericentre, then

1
i _1
1 & EN’|
¢=-3 / [’%(E2 —Po?) - <u2 — n;_2> ] du?, (3.5.8)
L

where r,, is the solution of the equation £ — V5= 0, i.e.

~

=

2= — [ E? — 12w2]. (3.5.9)

Since E? — I*w? >0, the quantity r2, is always positive. It is easy to verify that

(Veﬂ)mirl = lo.
Working out the integral (3.5.8), we obtain:

1 mE

r2 12

N

| mE Po?
r_zz”ll_2<1_\/1—E—°‘;cos2<p>, (3.5.10)

which represents an ellipse of semi-axes

1 1
E+VE*—Po? )\’ E-VEX—Po?\’
N N [
maw maw

The same result is obtained in Cartesian coordinates, using the Lagrangian

2¢ + m = arccos

or

2
s Mo

m . .
L:—(x%—&-xz)— 3 (x%+x§).

Then the Lagrange equations lead to two independent equations
¥ 4o’ =0, ¥+ o’x; =0, (3.5.12)

which have solutions of the form (3.5.7).
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3.5.3 Non-linear Oscillations

In all cases previously analyzed we had to deal, from the mathematical point of
view, with second-order linear differential equations, whose general form is:

i+ a(t)i + B0)x = (1) (3.5.13)

The systems described by such equations perform linear motions. But there are
cases when the behaviour of one-dimensional oscillating systems is described by
equations of the type

i+ f(x,x,0) =0, (3.5.14)

where f(x,x,t) is a non-linear function of the variables x, x,t, i.e. it contains
terms like: x2, xx, xt, etc. The oscillations performed by such systems are called
non-linear.

If the displacements from the equilibrium positions are not small enough, the
formulas (3.5.1) and (3.5.2) are not valid anymore, because they do not approxi-
mate well enough the physical reality. In this case, the Lagrangian must contain
terms of higher order, producing non-linear differential equations of the type
(3.5.14). As a matter of fact, most physical systems are described by non-linear
differential equations and the linear approximation appears as a particular case,
corresponding to small oscillations.

There are no general methods of integration of non-linear differential equations,
but there exist special techniques, like the method of successive approximations, or
the expansion in Fourier series, etc. These problems are studied by non-linear
mechanics.

As an example, let us consider the free motion of a plane pendulum. Here, for
small angles, the non-linear equation (3.4.2) becomes:

. g -
b+ 50=0,

similar to (3.5.5), where we assumed sin 0 ~ 0. If we take into consideration the
second term in the series expansion of sin 0, the corresponding equation is:

. § _i3:
0+ 50— 0 =0, (3.5.15)

which is a non-linear equation with constant coefficients. It is not our purpose to
find a solution of this equation, but, at least, we can find the Lagrangian leading to
(3.5.15). Indeed, expanding in series the potential energy about 0 = 0, we have:

0 0
= —mgR ~—mgR(1- —+ — ).
V(0) mgRcos 0 mg ( 5 + 24>

The Lagrangian of the system is:
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L= imr2ip +ng(1 ¢ + 9—4>. (3.5.16)
2 2 24

It is easy to prove that the Lagrange equations, for the Lagrangian (3.5.16), lead to
(3.5.15). The problem is solved in a similar way if the motion takes place in a
resistant medium.

We conclude that in most physical problems, the higher we go with the
approximation, the closer to the reality becomes the result, implying a more
complicated mathematical formalism.

3.6 Small Oscillations About a Position of Stable Equilibrium

In the case of systems with many degrees of freedom, the Lagrange equations are
very complicated, appearing as non-linear coupled equations, and their exact
integration is not possible. In the following, we shall give a method of approxi-
mating the solution, with many applications in different branches of physics.

Consider a conservative system of N particles, subject to (at most) scleron-
omous constraints. A configuration {r?, i = 1, N} is an equilibrium configuration
at the time 7y = 0, if at any ¢ > 0 are satisfied the conditions:

I','(l‘) = I‘,'(O) = I‘?, f','(l‘) = I‘,(O) =0 (l = I,N)

In our case, these conditions are fulfilled if

(Fi+ Ly o =0 (i=TN). (3.6.1)

Let us now pass to the generalized coordinates ¢, .., g,. Denoting by ¢° : {q(}, Jj=

1,n} the coordinates corresponding to the equilibrium position and using (2.1.61),
(2.4.12), the generalized forces Q(} = Q;(¢") associated to this position are

0 ISR T ST gy ferad o
Qj_ Z it a—qj = - Z ~k[gra ifk(rly"7rN)]
q=q°

i=1 k=1 0q, .

But

. or;  Ofi
;[gradifk(rla“vrl\’)] : aq] - a_q] -

therefore Qj(qo) = 0. Since the system is supposed to be conservative, there exists
a function V(g) with the property

0i(q°) =~ {%qu 0 (j=1,n). (3.6.2)
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In other words, the equilibrium configuration corresponds to a minimum of the

potential energy. According to the Lagrange—Dirichlet theorem (see Chap. 2), the

equilibrium is stable if this extremum is a strict (absolute) minimum. Indeed, in

case of a maximum, say V(") = E,, if we furnish to the system an energy a little

larger than E, then the bigger the distance from the equilibrium position, the

bigger is the difference E — V = T, which means that the equilibrium is unstable.
Let us introduce as new generalized coordinates

&=aq,—4) (j=Tn), (3.6.3)
to express the small deviations from the equilibrium position. These new coor-
dinates are considered small, to allow us to retain only terms quadratic in ¢ in any
calculation. Expanding V(g) by Taylor’s formula, we have:

“~ [V 1 G/ OV
1% =V+§ — -—Q+—§§(—) — Y ar — q°
@ ' = (aCIj)o(qj %) e 0q j0qx 0(6], 41 = )
+oy (3.6.4)

where the subscript ‘zero’ means that the derivatives are calculated at the equi-
librium configuration. The first term in (3.6.4) is an additive constant which can be
taken zero, while the second term vanishes by virtue of (3.6.2). Denoting

o’V
Vik = ( ) = Vij, (3.6.5)
0

0q,0qx

we obtain the first approximation for the potential energy as

n n

V= % SO> Viéig. (3.6.6)

j=1 k=1
If the configuration {¢;, j = 1,n} is of stable equilibrium, then according to the
Lagrange—Dirichlet theorem, the form (3.6.6) is positive definite. From (2.4.25),
the kinetic energy is:

r= % Zzaﬂ‘(q)qﬂk - % Zzaﬂ((‘néjgk- (3.6.7)

j=1 k=1 j=1 k=1

But

NPT o (0 W N
xla) = (o + Y5 ) tar =) (368)

therefore, using our convention,
ajk(Q) = (ajk)o = Ajkx = Aij, (3.6.9)

and the kinetic energy reads:


http://dx.doi.org/10.1007/978-3-642-17234-2_2
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n

Z apéié. (3.6.10)
j=1 k

=1

T =

| =

3.6.1 Equations of Motion. Normal Coordinates

The Lagrangian of the system is

1 n n

L=3 ZZW E&— Vi &) (3.6.11)

j=1 k=1

and the Lagrange equations yield

n

a4+ Vi&) =0 (j=Tn) (3.6.12)
k=1

This is a system of n coupled linear differential equations. Let us show that, if the
variables are suitably chosen, the solution of the problem reduces to the integration
of n equations of the form (3.5.5). To this end, we shall look for solutions of the
form

iwt
Ae'”,

the coordinate ¢; being the real part of this complex quantity. Introducing this
solution into (3.6.12), we obtain the linear, homogeneous, algebraic system of
equations

n

k=1

This system has non-trivial solutions for the amplitudes A, only if
det (Vi — w?ay) =0, (3.6.14)

which is an equation of degree n in w?, called the characteristic equation. Its roots
are real and positive (see Appendix A). This property follows immediately if one
multiplies (3.6.13) by the complex conjugated A’ and sums over j, which yields

2 _ 2ot 2t VikAj Ag
Y D ap Aj AL

where both the numerator and denominator are real and positive. In general, we
have n distinct solutions w? (s = 1,n); if two or more solutions are equal, we have

a degeneracy. The corresponding frequencies are called normal frequencies. To
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each normal frequency corresponds a solution of Eq. (3.6.12); thus, the general
solution is:

&= CRe{|Ae @0} = 37 Re{al el 0:)}, (3.6.15)
s=1 s=1

where the constants ¢}, aj are real. Considering the particular complex solutions

s i(ogte
éj*aje( s s),

the characteristic system of equations becomes:
n n
w? Zajk a, = Z Vica; (no summation over s; s, j = 1,n). (3.6.16)
k=1 k=1

Since these equations are homogeneous, only some of the amplitudes a; are
determined. In the non-degenerate case, the matrix V — w?a is of order n — 1,
which means that, for each s, we can express n — 1 amplitudes as functions of an
arbitrary one, say aj. All together, we have n undetermined amplitudes and
n initial phases, ¢@,, i.e. 2n constants which are determined from the initial
conditions. The situation is similar to that encountered in the degenerate case.
Suppose, for example, that w; = wy = - - - = Wy, i.€. @, is a multiple root of order
m, the rest of the roots being distinct. In this case, the rank of the matrix V- w?&
is (n — m), and so m amplitudes Aj(»l) remain undetermined. For each s = m + 1,
m +2,...,n there remains an undetermined amplitude, which means (n — m)
amplitudes. The total number of arbitrary amplitudes is, again, n, and together with
the initial phases, there are 2n arbitrary constants.

The choice of generalized coordinates is, to a great extent, arbitrary, which
allows us to represent the system by a system of harmonic oscillators, each of them
being associated with a degree of freedom. In other words, with each normal
frequency one associates a generalized coordinate, which varies periodically with
time, with the respective frequency. These coordinates are called normal. To make
an appropriate choice for normal coordinates, let us first write a few useful
relations.

Multiplying (3.6.16) by (r # s; r=1,n) and performing summation over j,
we obtain:

n n n n
2 ros P
wy E E ajrd;a, = E E ijajak.

J=1 k=1 =1 k=1

Interchanging now r and s in the last relation, then subtracting the result from the
original expression, we have:



148 3 Applications of the Lagrangian Formalism

(w? — ) ZZajk dia;=0. (3.6.17)
=1 k=1

In the non-degenerated case, for r # s we have w, # wy, therefore the double sum
in (3.6.17) must be zero. If r = s, the double sum cannot be zero (this would mean
that all the amplitudes a; would be zero), so we can choose the amplitudes
such that

n n
Z ajpala; =1 (no summation overs; s = 1,n). (3.6.18)
=1 k=1

These relations represent n supplementary conditions which yield the n ampli-
tudes, remained undetermined after solving (3.6.16). All these conditions can be
written in the compact form

Z ajia’;ay = Oy (r,s = 1,n). (3.6.19)
1

J=1 k=
We shall now define the normal coordinates as the following linear combina-
tions of &;:
ny = ReZZajkai & (s=1,n). (3.6.20)
j=1 k=1
In view of (3.6.15) and (3.6.18), we obtain:
Ny = Re{e @)} = cos(wgt + ¢,) (s =1,n), (3.6.21)
which, for any s, satisfies equations of the form:
iy + i, =0 (s=1,n). (3.6.22)

Using (3.6.5) and (3.6.12), we can write the coordinates ¢; as functions of the
normal coordinates:

S=ajm, (j=1n). (3.6.23)

Conversely, the definition (3.6.21) of normal coordinates can be obtained by
inverting the linear system (3.6.23).

Let us show, finally, that the use of the linear transformations (3.6.23) in the
kinetic energy T, the potential energy V and the Lagrangian L, turns these func-
tions into diagonal forms (sums of squared quantities). Indeed,

T— % S°S anld i) @y i),

j=1 k=1
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which, in view of (3.6.19), becomes:
1 n
T=; > i (3.6.24)
s=1

Similarly, from (3.6.6) and (3.6.16), using (3.6.23), we arrive at

I~ 50
V= 3 SE:] Wi, (3.6.25)
therefore
1 Zﬂ ) 2.2

is the Lagrangian of n independent harmonic oscillators, of unit mass and normal
frequencies.

To summarize, the importance of this formalism is that once the functions
V, T, L are determined, we are able to find a linear transformation leading to a set
of new generalized parameters — the normal coordinates. Written in terms of these
coordinates, the Lagrangian becomes diagonal and provides Lagrange equations of
the type (3.6.22), which are easy to integrate.

Observation: The condition (3.6.18) is not indispensable. If it is not imposed, then
each parenthesis in the expression for the Lagrangian (3.6.26) will be amplified by
a constant, which obviously does not modify the equations of motion.

3.6.2 Small Oscillations of Molecules

The formalism developed in the previous section can be applied in the analysis of
small oscillations of coupled pendulums or elastic rods, but more interesting and
useful is the study of molecule vibrations. For example, the investigation of
small oscillations in a one-dimensional crystal provides important information
concerning the thermodynamical properties of a solid body.

Assuming the molecule to be formed of N atoms, we should first note that not
all the motions corresponding to the 3N degrees of freedom have the meaning of
oscillations about the equilibrium configuration. Indeed, there can be a translation
and/or a rotation of the whole molecule, each of these motions possessing three
degrees of freedom, meaning that only 3N — 6 degrees of freedom are left for
oscillations. A special situation is encountered in a linear molecule: in the state of
equilibrium, all atoms are disposed along a straight line. Here, we have only two
degrees of freedom for rotation, therefore we are left with 3N — 5 degrees of
freedom for oscillation.
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If we are interested only in molecule oscillations, it is convenient to eliminate
the motions of rotation and translation. To remove the rotation, we shall demand
that the centre of mass be at rest, which means that the study is done in CMS.
Denoting by r? (i = 1, N) the radius-vectors of the atoms at equilibrium and by
& (i =1, N) the radius-vector of the atom i relative to its equilibrium position, in
view of (1.3.54), we have:

or

> mig =0. (3.6.27)

To eliminate the rotation, we impose the condition that the total angular
momentum vanish:

N

N
0= Zmi(l‘? +&) x &~ Zmi(r? x &),
i=1

i=1

where the small term Zfil m;&; x é‘,- has been neglected. Integrating with respect
to time the last relation, we obtain

N
> mx{ x & =0. (3.6.28)
i=1

Here, the integration constant was taken to be zero, because all & vanish at
equilibrium.

Let us discuss, as an example, the symmetrical linear triatomic molecule, which
happens to be the situation in the molecule CO,. There are two degrees of free-
dom, i.e. two normal oscillations along the molecule (N — 1, in general). For non-
longitudinal displacements, we have two degrees of freedom (2N — 4, in general),
but only one normal oscillation (N — 2), because due to symmetry reasons, the
oscillations taking place in two planes mutually orthogonal and passing through
the molecule must be identical.

We shall deal first with the longitudinal motion. Assuming the x-axis along the
molecule (Fig. 3.22a), let x;, x, be the coordinates of the two atoms of mass m,
while x3 defines the position of the centre of mass M. If x? (i =1,2,3) are the
coordinates of the stable equilibrium position, to study the small oscillations it is
convenient to define as generalized coordinates

éi:xifx? (l:17273)

The kinetic energy is then


http://dx.doi.org/10.1007/978-3-642-17234-2_1#Equ85
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1 . . .
T = 5m(&+&) + M), (3:6:29)

while the potential energy, considering only the interaction of the atoms of mass
m with the central atom of mass M, is of the form:

V= V(XQ — X3, X3 —xl).

In the approximation of small oscillations, we have

1
V= E[a(fz — &)+ 2b(Ey — &) (E — &) + (& — &)1,
where
B 0V (u,v) B *V(u,v) B 0*V(u,v)
i R b ol IR o S

with ug = x3 — x9, vo = xJ —x%. The molecule is symmetrical, therefore the
interchange of the atoms 1 and 2 does not modify its structure. Consequently,
under the interchange, the potential energy V remains the same, which leads to
¢ = a, hence:

1 .
V= E{a[(éz — &)+ (&G =8 +2b(E - &)(E - &)} (3.6.30)
Then the condition (3.6.27), which eliminates the translation, becomes

_%(51 + 52)7

and serves to eliminate &5 from (3.6.29) and (3.6.30):

&=

T @48+ vy
_E[m(-1+62)+ﬁ(.1+62)]a

1 a
2b ) ) 2 2
i [(M” +2m" +2mM)& & +m(m + M)(& + &) o
It is easily seen that these two expressions can be diagonalized by the change of
variable &, = An, + By,, & = An, — Bn,. Imposing that the kinetic energy has
the form (3.6.24) in the new coordinates, we obtain &;, &, in terms of the normal

coordinates 1,, #,:
£ = 1 L /| M 1 L /| M
1 — \/i;n- s 2m+M’7a \/Tn; s 2m+M’7a

The kinetic and potential energies will be thus given by

) 62:
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Fig. 3.22 Various 1 3 2
possibilities of small —® %
oscillations of molecules. @
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T = 5(:7? + i) (3.6.31)
and
v 1la+b 2 (a=b)2m+M) , .
20 m ¢ mM “
The normal frequencies are then:
1
b 2
Wy = (“ + ) , (3.6.32)
m
1
—b)(2 M) 12
W, = {(a)(m—i—)] ) (3.6.33)
mM
If n, = 0, we have & = —¢&;, & = 0, meaning that w, corresponds to a sym-
metrical oscillation (Fig. 3.22b). On the other hand, if we take 1, = 0, we arrive at
E=¢, 8 =— %’”é] (Fig. 3.22c¢). There can occur an accidental degeneracy, for

ma = (m + M)b, in which case both the symmetrical and antisymmetrical oscil-
lations have the same frequency.

In order to investigate the transverse displacements, we shall also consider the
oscillations perpendicular to the x-axis, in the xy-plane. Since in the equilibrium
configuration the atoms are on the x-axis, the generalized coordinates suitable to
our investigation are y;, y», y3. The conditions (3.6.27) and (3.6.28) then yield

2m

y3 = _ﬁyla Y2 = i1,

hence

12m(2m+ M) .,
T=-——-—= 3.6.34
2 M yl’ ( )
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1
V= Eky%. (3.6.35)

Introducing the normal coordinate

we obtain:

T =i, (3.6.36)

ol

1 Mk }
V==

e e 2
2 [2m(2m Ty M (3637)

corresponding to the normal frequency

1

Wy = {#’;M)] ' (3.6.38)

and to the transverse oscillation shown in Fig. 3.22d. This oscillation, as we
already know, is degenerated, because a transverse oscillation, having the same
frequency w, = w,, will also appear in the xz-plane.

3.7 Analogy Between Mechanical and Electric Systems

3.7.1 Kirchhoff’s Rule Relative to the Loops
of an Electric Circuit

The study of alternating current circuits displayed an analogy between these
systems and mechanical systems of particles. This analogy was identified in the
19th century by James Clerk Maxwell and allows the application of the Lagrangian
formalism in the study of electric circuits. In the following, we shall consider the
case of alternating current circuits in steady state.

Consider a circuit composed of many branches, each of them having loops and
junction points, and assume that there are resistors, capacitors, coils and electro-
motive forces on each branch of every loop. Let I; = ¢, be an arbitrary current,
having the same magnitude in each point of the loop k. By ¢ we denote the electric
charge. If ¢, is the magnetic flux generated by the current I;, which passes through
the neighbouring loop i, then the quantities ¢); and I; are related by

©; = My Iy = My g (no summation), (3.7.1)
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where M, is the mutual inductance between the loops i and k. Fori =k, M;; = L;
is the self-inductance of the loop i. If the circuit is composed of n loops, one must
perform summation over k:

®; = ; Ml = kZ]: Mik G- (3.72)

The magnetic energy of the circuit is:

Winag = % D> Mucdiine (3.7.3)

i=1 k=1

In a similar way, we can find the electric energy of the circuit. Let V; be the
electric potential of the conductor i and g, the electric charge distributed on
conductor k and producing the potential V;. The relation between V; and g is

Vi = Sitqr  (nosummation), (3.7.4)

where the coefficient S;; is called elastance and represents the reciprocal of the
influence coefficients Cy: Six = Ci’kl. For i =k, C;; = C; are called capacitance
coefficients. If the potential V; is produced by all n conductors of the circuit, then

Vi= Sudx (3.7.5)
k=1

The electric energy of the circuit is then:

Wel = % Xn:i Sik qi gk- (3.7.6)

i=1 k=1

According to Ohm’s law, for the loop i we can write:

U = ; Ricly = ; Rit (3.7.7)

where R;; are some constant coefficients, with the significance of electrical resis-
tance, common for both loops i and k. For i = k, R;; = R; is the self-resistance
of the loop i.

We also assume that the loop i has voltage generators, the total electromotive
force produced by them being &;(¢).

The analysis of the relations (3.7.1)—(3.7.7) suggests the following correspon-
dence between electric and mechanical quantities:



3.7 Analogy Between Mechanical and Electric Systems 155

Generalized coordinate g(7)
Generalized velocity (1)
External periodical force F
Mass m

Elastic constant k
Damping force constant r
Kinetic energy T

Potential energy V

Electric charge ¢(7)
Electric current ()
Electromotive force £(r)
Inductance L

Elastance S

Electric resistance R
Magnetic energy W,
Electric energy W,,

Lol bl

According to this analogy, our electric circuit can be conceived as an oscillating
system with n degrees of freedom, subject to two potential forces and a non-
potential, dissipative force. The potential energy of the system is:

1 n n n
V= Sikqigr — Ei 3.7.8
while the Rayleigh dissipation function (see (2.5.49)) is:
1 n n L
T=; >3 Rudidn (3.7.9)
i=1 k=1
Using the Lagrange equations in the form (2.5.48), with the Lagrangian
1 n n n
L= Mirgiqr — Sikqi Ei(1), 3.7.10
2;;( kqiqk kQQk)+;qg() ( )

we arrive at

n

> (Mudi + Ricdic + Suqe) = &) (i =T,n), (3.7.11)
k=1

which is nothing else but Kirchhoff’s rule relative to the loop i of the circuit. An
equivalent form of this rule is:

- dl —
Z(Mikd—tk + Riclk + Sik/lkdl‘> =&(t) (i=1,n). (3.7.12)
k=1

Each model of oscillating mechanical system has a correspondent model among
the alternating current circuits. Let us discuss two simple examples.

3.7.1.1 LC Series Circuit. Free Oscillations

Consider the circuit shown in Fig. 3.23, where C is the capacitance of the capacitor
and L is the inductance of the coil. If the capacitor is charged by some method and
then discharged through the coil, the instantaneous electric charge ¢(¢#) on the
capacitor, according to Kirchhoff’s rule (3.7.11), is the solution of the equation


http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ167
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Fig. 3.23 LC series circuit. | |

[ [
F 11 .
ree oscillations C
K\
L
—
G+ wyq =0, (3.7.13)
where we made the notation
o = (3.7.14)
= 1¢ .
The solution of (3.7.13) is
q = Acos wot + Bsin wot. (3.7.15)

The constants A and B are determined from the initial conditions: ¢(0) = g,
1(0) = Iy = ¢(0) = 0, and the solution reads:

q = qo cos wot. (3.7.16)

We conclude that the discharge of the capacitor through the coil is a periodical
phenomenon, with the period T = 2n+/LC (Thomson’s formula).

3.7.1.2 RLC Series Circuit. Forced Oscillations

Assume the circuit shown in Fig. 3.24, where U = Uj sin wt, and let us determine
the instantaneous value of the current passing through the circuit. In view of
Kirchhoff’s rule (3.7.12), we have:

dl

1
L— +RI+ — [ Idt =Upsinwt
dt+ —|—C/ 0 SIn wt,

or, by taking the derivative with respect to time,

P21 Rdl 1 U
2Ty = 2% s 717
a "Ta e T Lo (37.17)

This equation is similar to that obtained in the study of a mechanical oscillator,
subject to both friction and external (periodical) forces. The steady-state part of the
solution is
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Fig. 3.24 RLC series circuit.
Forced oscillations.

Uo

I:
i\/(XL — Xc)? + R?

cos(wt + f), (3.7.18)

where X; = oL is the reactive inductance, X¢c = (wC)f1 is the reactive capaci-
tance and

p = arctan —.
X, — X¢

Since

X, —X
cos(wt + f) = —sin(wt +p - g) = —sin (a)t — arctan %),

by choosing the minus sign in (3.7.18), we obtain the solution

U
= =2 sin(wt — @), (3.7.19)
|Z]
where
17l = (X1 = X + R (3.7.20)

is the magnitude of the impedance of the circuit and

X, - X
¢ = arctan == = (3.7.21)

is the phase angle between U and I. In particular, for a given R, the current is
maximum for X; = X¢ (resonance), and we arrive again at Thomson’s formula
(3.7.14), as expected.

3.7.2 Kirchhoff’s Rule Relative to the Junction Points
of an Electric Circuit

Let us consider a junction point of an electric circuit, as the intersection point of
n branches, and let I; be the current which enters the junction point on the branch i.
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If all n branches are subject to the same voltage U(¢), then the experimental data
furnish the following analogies:

Generalized coordinate ¢g() - Electric voltage U(t)
Generalized velocity §(t) - %ﬁ’)

External force F - %

Mass m - Capacitance C

Spring constant k - Reciprocal of inductance, £ = %
Damping force constant r - Conductance 4

Kinetic energy T - I S CaUi U

Potential energy V - L Y LaUiUs

Rayleigh function 7 - % Yo D Aik U:Ur.

The Lagrangian of the system is then

1 n n . . n d]l
L=3 > > (Calili = LylU;Up) + ) Ui (3.7.22)
i=1 k=1 i=1

and, using the Lagrange equations (2.5.48), we arrive at:

n . ) dr, .
> (Caclk + 7aUs + LaUs) = — (i=Tn). (3.7.23)
k=1

Integrating with respect to ¢, we finally find

n

Z(CikUk + Ui + Eik/ del> = 1,'([) (l = L_n), (3724)

k=1

which is Kirchhoff’s rule relative to the junction point i of the circuit. Here is an
example.

3.7.2.1 RLC Parallel Circuit. Forced Oscillations

From Fig. 3.25 we notice that all component elements R, L, C of the circuit are
subject to the same voltage U(r). Using Kirchhoff’s rule (3.7.23), we can write

.. 1. 1
CU + EU—i— ZU: Iy cos wt,

where we assumed that the time variation law of 7 is: I = I sin wt. We can rewrite
the latter formula as


http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ170
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Fig. 3.25 RLC parallel
circuit. Forced oscillations.
Y —
C U R L C —
The steady-state part of the solution of this equation is
Iy .
U= Z sin(wt — @), (3.7.25)
where
1 *
Z| = — —wC ) +— 3.7.26
2=/ (o ~C) 3 (3:7.26)
and

1
Q= arctanR(m - wC>. (3.7.27)

If X, > X, the current I leads the voltage U in phase by ¢, while if X; < X, the

current lags the voltage in phase by .

The reader is advised to choose some other examples of electric circuits and
obtain by means of the Lagrangian formalism all the main formulas encountered in

the general course of electricity and magnetism.

3.8 Problems

1. Determine the explicit equation of the trajectory (3.2.7), as well as the

eccentricity (3.2.9) for the choice of the potential energy (3.1.31), by using
Binet’s formula (3.1.24) and the initial conditions: r(0) = ro, @(0) = @,
7(0) = 7o, ¢(0) = .

. Show that there is no central field with a straight line as the trajectory.

. A particle P of mass m is at the distance r from the centre of force C in a field

of potential energy U(r) = %kr3. Its velocity v makes an angle o = 7 with

respect to the straight line PC. Find the magnitude v, of the velocity for which
the trajectory is a circle.
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10.

11.

3 Applications of the Lagrangian Formalism

. The velocity of a particle moving in a central field is v = 4, where r is the

rll 9
distance from the centre of force. Assuming that the angular momentum / is

given, determine the trajectory of the particle and the law of force.

. A particle moves in a central field whose potential energy is

U(r) = —% (k > 0). Find the trajectory of the particle if its total energy is zero.
A particle of mass m situated in a central field U(r), having energy E and
angular momentum /, moves on a closed orbit. Determine the displacement
0(A@) of the orbit perihelion, as well as the variation dt of the radial oscil-
lations, if there is a small variation 0U(r) in the field potential.

. Show that the transformation

=r+evx(rxr)+rx(vxr), =t

where v is any fixed vector, is a symmetry transformation of the Lagrangian

1 .. k

L= - -
2 m |r| r Y

and find the corresponding first integral of the motion.

Show that the trajectory of a spherical pendulum performing small oscillations

about its position of stable equilibrium is an ellipse.

. Consider a linear, homogeneous and neutral medium (gas), and let N be the

number of electrons per unit volume, each atom having an electron of mass
m and charge —e, the electron being elastically connected with its nucleus.
Assume that each electron is subject to: (a) an elastic force F, = —mw(z)r; (b) a
damping force F; = —myr; (c) a Lorentz force F, = —e¢(E + v x B) ~ —¢E.
If in the medium propagates an electromagnetic plane wave, given by

E — Eoei(kx_wt), B — Boei(kx—(/}l)’

using the model of the damped oscillator with an electric driving force, find
the dispersion equation n = n(w) of this physical model.

A particle of mass m moving in the vertical direction is subject to gravitational
force and friction force, the latter being proportional to the speed of particle.
Find the law of motion of the particle and determine the approximate solution
containing terms up to £

The point of support of mass m of a plane pendulum of mass M is able to move
on a straight horizontal line, which lies in the vertical plane of motion. Find
the finite equation of motion.

O m
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12. Determine the effective cross section of scattering of particles from a sphere
of radius R. It is assumed that V(, . z) = o0, V(;5r) = 0.

13. Find the small oscillations of a coplanar double pendulum.

14. Determine the effective cross section of the spherical ‘gap’ of potential

—U()(U()>O), 0<r<R
U =
0, r>0

15. Show that the cross section of scattering produced by a central force f =
k/r (k > 0) is

2
o0)= 2520
2E ¢*(2n — 0)*sin 0
where E is the energy of a particle.

16. Two fixed points A and B act on a particle P of mass m with the elastic
forces f; and f,. (The elastic constant k is the same for both forces.)
Determine the initial conditions under which the trajectory is a circle passing
through A and B.

17. Determine the self oscillations of a linear chain of N identical particles,
coupled by identical strings of elastic constant k.

18. A pendulum is formed by a bead P of mass m situated at one end of a massless
rigid rod of length [, the other end being suspended in a point M of mass
m. The point M can slide without friction along a horizontal rod, having two
springs of elastic constant k, as shown in the figure. The distance AB is 21y,
where [y is the length of one spring at rest. Determine the frequencies of the
small oscillations of the system.

M

P
m

19. Investigate the oscillations of the system corresponding to the Lagrangian

Lo 1
L= (i +8) = 5 (0ix + o) + ko,

where w1, w, and x are constants.
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20. The radial electric field between two homogeneous coaxial cylinders of radii
R, and R,(>R;), maintained at potentials @, and ®,, is
1P, -
E="= 17162.
r log X

Find the differential equation of the trajectory of a charged particle introduced
between these electrodes. It is assumed that the initial velocity lies in a plane
orthogonal to the common axis of the cylinders.




Chapter 4
Rigid Body Mechanics

4.1 General Considerations

By rigid or non-deformable body we mean a continuous or discrete system of
particles, with the property that the distance between any two particles does not
change during the motion. Under normal conditions, within certain pressure and
temperature limits, bodies made out of metal, glass, stone, etc. can be considered
rigid.

Let P; and P, be any two particles of the system and r;, r; their radius-vectors
relative to the origin of the frame S(Oxyz) (Fig. 4.1). The rigidity condition is then
expressed as

|r; — rg| = |ri| = const. (4.1.1)

The number of degrees of freedom of a rigid body is six. To prove this, we
observe that the position of the body relative to O is fixed by the position of any
three non-collinear particles. If these particles were free, then their positions would
be determined by nine independent parameters. But, since the coordinates of the
particles are related by three constraints of the form (4.1.1), the number of
independent parameters reduces to six. It is obvious that the number of degrees of
freedom of a rigid body subject to external constraints (e.g. a body with a fixed
point, or having a fixed axis, etc.) is smaller.

As a convenient choice of the generalized coordinates associated with the six
degrees of freedom of a rigid body, one usually takes a certain point O’ of the body
and defines the Cartesian orthogonal frame S'(O’x’y'7’), invariably related to the
body (body coordinates) (Fig. 4.2). The position of the body is then determined by
three coordinates of O’ (translation coordinates) and three more coordinates that
define the motion of the body about O', i.e. the orientation of the axes
o'x',0'y,0'7, relative to Ox, Oy, Oz (rotation coordinates). Let us analyze the
motion of rotation (see also Appendix A).

If r is the radius-vector of some point P of the rigid body relative to O and if we
assume that O = O', since r(x,y,z) = r(x',y,z'), we can write

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2_4, 163
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 4.1 A rigid body in a
system of coordinates.

Fig. 4.2 Translation and
rotation degrees of freedom
of a rigid body.

x;u; = X;u; (l = 1, 2, 3), (412)

where u; and u; (i = 1,2, 3) are orthonormal vectors in S and ', and the relation
(1.1.12) and the summation convention have been used. Taking the scalar product
of (4.1.2) with u} and observing that x/d; = x}, we have:

X, =aux; (i,k=1,2,3), (4.1.3)

where ay; = ), - w; is the cosine of the angle between the axes O'x) and Ox;.
Since the distance between any two particles of the rigid body must be invariant
(xix} = x;x;), we deduce that the coefficients aj satisfy the orthogonality condition

a;ra; = 51{1 (i,k,l = 1,2,3). (414)

The linear transformation (4.1.3), in which the coefficients a;; obey the condition
(4.1.4), is called an orthogonal transformation. Since the nine direction cosines a;;
are related by the six relations (4.1.4), there are three independent coefficients aj.
They can be chosen as generalized coordinates.
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The coefficients a;; can be regarded as elements of the transformation matrix
A = (ap):

ayp ap a3
A=|ay an an
as)p  asy dass

The matrix A is the operator carrying out the transition x — x'. If, in particular, the
trajectories described by the particles of the rigid body are parallel to a steady
plane, for example Oxy, then (4.1.3) will give a rotation about an axis passing
through O and orthogonal to the plane. In this case, the four direction cosines
ajx (i,k = 1,2) will be subject to the three orthogonality conditions (4.1.4), and
thus only a single independent parameter remains. Let this be the angle « between
O'x’ and Ox. The transformation matrix is then

cosae  sina 0
A= | —sina cosa 0 |. (4.1.5)
0 0 1

The relation (4.1.3) can also be written in matrix form:

x' = Ax, (4.1.6)

where x’ and x are one-column matrices. For more details, see Appendix A.

4.2 Distribution of Velocities and Accelerations in a Rigid Body

To study the motion of a free rigid body, it is necessary to know the velocity and
acceleration fields associated to its six degrees of freedom. In this respect, we shall
analyze the general case of the so-called relative motion of the particle which, in
particular, will lead us to the distribution of the velocities and accelerations of the
particles of a rigid body. The influence of the inertia forces on the motion of the
bodies at the surface of the Earth will be also considered in this chapter.

Let us consider the motion of a particle P with respect to two reference frames,
S (Oxyz) and S'(O'x'y'7"). The frame S is supposed to be fixed (inertial) and S’ is
non-inertial relative to S (Fig. 4.3). As an example, we can consider the motion of
a car on the Earth’s surface, the Earth being, in its turn, in motion with respect to
the Sun.

In order to distinguish the motion of the particle P relative to the two frames,
we shall call absolute its motion with respect to S and relative — the one with
respect to §'. If the particle P is fixed with respect to §', then the motion of §’
relative to S is named transport motion. Such a motion of the particle is called
composite motion. In the Universe, any motion can be studied as a composite
motion.
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Fig. 4.3 Choice of the zb P
coordinate systems in order to
obtain the distribution of z
velocities and accelerations in
a rigid body. r' )

! Y

'y
oY
T, /N
sk ’
> —>,

From Fig. 4.3, we have
r=ry+r. (4.2.1)

In view of the principle of absolute simultaneity (see Chap. 1), the time derivative
of (4.2.1) gives:

V=i=1y+T1, (4.2.2)

where v is the velocity of the particle relative to S, called absolute velocity. Using
the summation convention, we can write r' = xju; (k = 1,2, 3). Thus, keeping in
mind that wj, vary in time, we have:

Y Y R
I = X + xa = v, 4+ X, (4.2.3)

where v, = xjuy, is the relative velocity, i.e. the velocity of P with respect to §'.
To understand the significance of the term xjw in (4.2.3), let @} (k = 1,2,3) be
the components of the vectors w in the orthonormal basis u), namely

u, = o u';. (4.2.4)

The basis uj, being orthonormal, by taking the time derivative of the orthogonality
condition uj, - w, = J;, and using (4.2.4), we find:

W + oty =0, (4.2.5)

which means that the coefficients w); are the components of a second-order
antisymmetric tensor. Let @ be the axial vector associated with this tensor, and
having the components (see Appendix A):

W = o) (ks =1,2,3). (4.2.6)
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Substituting (4.2.6) into (4.2.4), we get:
= o} (€ uy) = (0 u) X uj,
ie.
w=oxu (k=1,2,3), (4.2.7)
called Poisson’s formula. Using (4.2.2), (4.2.3) and (4.2.7), we find the absolute
velocity of the particle:

V=vo+V,+oxr, (4.2.8)

where vy = Iy is the velocity of the origin O'.
The absolute acceleration is found by taking the time derivative of (4.2.8):

a=vo+iu+iu+oxr+oxr
or, using (4.2.3) and (4.2.7),
a=a t+a+oxr+ox(oxr)+2mxv,. (4.2.9)

Here, ay = vg is the acceleration of O’ and a, = xi u, — the acceleration of the
point P with respect to O, called relative acceleration. The term @ X (@ X r') is
named centripetal acceleration and the term 2w X v, is the Coriolis acceleration.

Suppose now that P is a certain point of a rigid body R, invariably related to the
frame §'. In other words, the rigid body identifies with the frame S'. In this case, it
is obvious that v, = 0, a, = 0, while the formulas (4.2.8) and (4.2.9) become:

Ve =Vo+oxr, (4.2.10)
a,=a +oxr +ox(oxr), (4.2.11)

where v, and a, denote the transport velocity and transport acceleration,
respectively. We may also write:

V=V, +V,, (4.2.12)
a=a,+a,+a. (4.2.13)

If the origins O and O’ of the two reference frames coincide (i.e. there is no
translation motion), then ro = 0, vo = 0, a; = 0, and we are left with

V=0 XT, (4.2.14)

a=oxr+ox(oxr). (4.2.15)

Physical Significance of the Vector »

We know so far that w is an axial vector, associated with the antisymmetric tensor
w',., its components having been introduced as coefficients of the linear expansion
(4.2.4). In order to find the physical significance of this vector, let us consider a
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Fig. 4.4 Physical
significance of the vector w:
it is directed along the axis
of rotation and its magnitude
is equal to the angular
velocity ¢.

rigid body moving around a fixed axis. It is obvious that such a system possesses
one degree of freedom. There is no loss of generality if we take O = O’ and
0z = 07 as the fixed axis (Fig. 4.4).

With this choice, (4.2.7) leads to k=oxk= 0, which says that o is collinear
to the axis of rotation: @ = wk. On the other hand, (4.2.14) leads to the conclusion
that the velocity v of any point P of the body is orthogonal to the plane defined by
vectors » and r and has the magnitude

[v| =|o x r| = or sino. = o R. (4.2.16)

But, in view of (1.1.18),
[v|=¢@R. (4.2.17)
The last two relations give then w = @, i.e. the vector (r) is directed along the

axis of rotation and its magnitude is equal to the angular velocity ¢. It is called
instantaneous vector of rotation.

4.3 Inertial Forces

Let us again consider the two reference frames S and S, S being inertial and S’
non-inertial relative to S. As we know, the fundamental equation of motion written
for a particle of mass m is

ma =F. (43.1)

By using the Lagrangian formalism developed in the previous chapters, we wish
now to find the form of the equation of motion of the same particle, relative to the
non-inertial frame S'. To this end, we shall use the fact that the Lagrange equations
do not change their form when the reference frame changes, provided that the
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Lagrangian in the new frame is suitably chosen. Supposing that a conservative
force field acts on the particle, the Lagrangian in the frame S is given by

L= %m|v|2 — V(r), (43.2)
where v is the velocity of the particle with respect to S and V(r) is its potential
energy.

In order to write the equation of motion of the particle in ', it is necessary to
express the Lagrangian L as a function of the coordinates x; (i = 1,2,3) of the
point and the components x; of its velocity relative to S'. Using (4.2.8), we obtain:

1
L= Em[|v,|2 +lox P +2v, - (@ x )+ |[vo]* +2vo - v,

+2vp - (0 x 1) — V(r). (4.3.3)

The last three terms in the square bracket can be written as follows:
2 / 2 d d /
[Vo|” 4 2v0.v, +2vp - (@ X ') =2vo - v— |vo| =g - E(Zr—ro) :VO-E(rO—&-Zr)

E[Vo -(2r' +1r9)] —2a - ¥’ —ay - ro-

Since the Lagrangian L is defined up to a term which is the total derivative with
respect to time of any scalar function of generalized coordinates g; and time ¢, we
may omit the total time derivative in the last relation. In its turn, the term ay - ry is
a function of time only, i.e. it can be written as a total time derivative, meaning
that it also can be omitted. Thus, we can finally write the Lagrangian in the form:

1 1
L=-m|v,/ 4+ zmloxt] +mv, - (0xr)—may-r — V() (434)

2 2
In order to obtain the equation of motion of the particle relative to the frame S,

it is convenient to write the Lagrangian as

| B 1 1 .
L= L midid L m(jo) () — & m(xof)(hol) + meg ¥ 2]

— mayx; — V(x), (4.3.5)

where x;, X/, !, a); are the components of ', v,,®,a, in the frame S'. Then we
have, successively:

_ ./ PN
— mxs—|—mes,kwjxk,

- 7L ./ + X -/ ! + ; /!
= mX; + megr ;X + Még @ Xy,

/
Xy
/
Xs

oL ov

! / o/ / /
= m(w,w))x —m(x.w;)w, + megx. 0. —may, — =— .
ax ( k k) (z z) s Sy i g Os axi
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Next, we use the Lagrange equations (2.5.17) and take x| as generalized

coordinates:
d [ OL oL
( ) =0 (s=1,2,3),

dr\0i; ) ox,
arriving at the second-order differential equation
mx, + m(o x v'), +may, + mlo x (0 x ¥')), 4+ 2m(o x v,), + S)Z =0,
which is the x’-component of the vector equation
ma, =F —mag —mo X v —mo x (o X1r') —2mo X v,. (4.3.6)
Taking into account (4.2.11) and introducing the notations
F, = —ma,, F.= —ma,, (4.3.7)

the equation of motion of the particle with respect to the non-inertial frame S’
reads:

ma, =F +F, +F.. (4.3.8)

It then follows that in the frame S’ Newton’s fundamental equation does not keep
its form, as we expected. There are two more forces, in addition to the applied
force F. The force F is customarily called real or actual, while the forces F,, and F..
are known as inertial, or apparent, or, still, complementary. They have a fictitious
character, in the sense that they cannot give rise to, transmit, or maintain the
motion. They occur only during the motion and because of the motion of the
non-inertial frame §'.

One observes that if ag =0, o = 0, i.e. if & is, in its turn, an inertial frame,
then Eq. (4.3.8) acquires the form (4.3.1), as it has to happen by virtue of the
principle of classical relativity.

4.3.1 Action of the Coriolis Force on the Motion
of Bodies at the Surface of the Earth

Let the origin O of the frame S be at the centre of the Earth and have its axes fixed (e.g.
pointing towards three fixed stars). Rigorously speaking, such a frame is non-inertial,
since the Earth performs a non-uniform motion around the Sun. However, for a short
time interval, the trajectory of the point O can be considered as being straight and its
motion uniform. Under these assumptions, the frame S can be considered inertial.

Next, we shall take the origin O’ of the non-inertial frame §’ at a fixed point on
the surface of the Earth, its axes being chosen as follows: Oz’ along the ascending
vertical, O'y’ tangent to the parallel going through O’ and pointing West, and O’x’
tangent to the meridian through O’ and pointing North (Fig. 4.5).
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Fig. 4.5 Action of the z X
Coriolis force on the motion X ,
of the bodies at the surface of 2
the Earth. 0
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In order to study the motion of a body (considered as a particle) at the surface of
the Earth, we shall use the Lagrangian (4.3.4). Observing that the point O’
describes a circle of radius R cos 0, we may write:

ag = —Rw’tcos
= —Rw*(K cos 0 — i sin 0) cos 0, (4.3.9)

where t is the unit vector of the radius of the parallel circle passing through O’ and
pointing outwards. Since @ is small in magnitude (w ~ 7.27 x 107 s~!), we may
neglect the terms in o which occur in (4.3.4). On the other hand, since we deal
with quantities determined in §’ only, we shall temporarily omit the index ‘prime’.
(This convention is valid only in this application).

The only applied force acting on the particle is its gravity, so that the
Lagrangian is:

L= %m|vr\2+mv,-(w><r)+mg-r, (4.3.10)
where we took into account that the components of g are (0, 0, —g), which leads to
the relation —mgz = mg - r.

If we choose x; and v; as generalized coordinates and generalized velocities,
respectively, and recall that w is a constant vector, the Lagrange equations (see
Chap. 2) lead to the differential equations of motion of the particle:

mjé,- =mg; — 2me,-jk @ jCk,
equivalent to the vector equation
my =mg —2mm X v. (4.3.11)

This equation tells us that the motion of a body at the surface of the Earth is
affected by the Coriolis force, orthogonal to both the pole axis and the direction of
motion of the body.
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4.3.2 Foucault’s Pendulum

In view of the above considerations and using the Lagrangian formalism, we wish
now to analyze the classical case of the Foucault pendulum. Roughly speaking, this
is a spherical pendulum, subject to both the gravitational and Coriolis forces. Let us
assume that the pendulum P is suspended in the point Q, situated above the point
P, and let / be the distance PQ, as measured on the vertical line passing through
P. The equations of motion are then obtained from the Lagrangian (see (4.3.10))

1
L= 5m|v|2 +mo - (r xv) —mgz, (4.3.12)
where z = 0 corresponds to the vertical position of the pendulum. If the oscilla-
tions are small enough, the coordinate z can be deduced with the help of the

constraint x> + y*> + (z — 1)2 = [?. Since z> <« x* + y*, we can write
1
7= Z(xz + 7). (4.3.13)

In the same way, taking into account that |@| is small, we neglect the terms in
which products of the type w;z or w;z (i =1,2,3) occur in the mixed product
- (r x v). Then

- (rx V) = o, (x) - y)
and the Lagrangian (4.3.12) becomes:

1 mg
I = - ) 2\ ME
Smli+3) - 2
Instead of the Cartesian coordinates x, y, it is more convenient to use the polar
coordinates r, ¢ of the projection P’ of the point P on the O’xy plane. Since

X =rcos @,y = rsin ¢, we find:

X 4 37) 4 mo(xy — yx). (4.3.14)

1
L= m(P+r¢%) - %rz + ma.r? . (4.3.15)

This form is particularly convenient, because it displays the cyclic coordinate ¢,
associated with the first integral

Do = oL =mr*o+mr*o, = C,
11

or
o+ o, = C, (4.3.16)

where C and C| = n—cl are constants.
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The physical system being conservative, we also have the energy first integral

1
E=—m(i* +r¢*) + - hy(const.),
2 21
or
2
Pyt =h- 2P (h: ﬂ) (4.3.17)
l m

In order to understand the physical significance of (4.3.16) and (4.3.17), let us
make a clockwise rotation of the O’xyz frame about the O’z axis, of angle
w,t, arriving at the frame O’x;y;z. (Remember that we have omitted the index
‘prime’ of the coordinates in this application). In the frame O’x;y; the polar
coordinates of P’ are ry, o, where o = ¢ + w,t (Fig. 4.6). The new Cartesian
coordinates x|, y; are then found via the matrix relation:

x1\ _ [ cosw;t sinw,t X (4.3.18)
yi)  \ —sinw,t cosw,t)\y) -

Therefore, x; = xcosw,t+ ysinw,t, yj = —xsinw,t + ycosw,t, leading to
17 =r%. Since in the two first integrals (4.3.16) and (4.3.17) occurs only the
second power of r, we shall keep the former notation r. Then the first integral
(4.3.16) becomes:

e =Cy, (4.3.19)

which is the projection on the O’z-axis of the areas theorem. Introducing ¢ =
o — w.t into (4.3.17) and neglecting the terms in w?, one finds:

i g
P4+ 2+ 7r2 =hy, hy=h+2C 0, (4.3.20)
r

Recalling the results obtained in the study of the central force problem, we
observe that the trajectory of the spherical pendulum is an ellipse, its centre being

Fig. 4.6 Rotation of the y

. y

coordinate axes of the 4
Foucault pendulum.

P
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at O’ and its axes uniformly rotating clockwise about the point O, in the
O'xy-plane, with the angular velocity w, = wsin 0. If we choose the initial con-
ditions as:

r(0) =ro,  @(0) = @y,
7(0) =0, ¢(0)=0,

i.e. the pendulum is pulled out of its equilibrium position and then allowed to
move freely, we have |vy| = row,, meaning that its initial velocity vq (relative to
0') is orthogonal to ry. It follows from (4.3.19) that C; = r%wz, which leads
to hy = r§(w} + w?), where 0§ = &. We have:

CZ
i = wy(ry — ) + rgw? — —21. (4.3.21)
The turning points of the trajectory are given by the roots of the equation i> = 0, i.e.

w? w2
- (1+—) i+ =g =0. (4.3.22)
@y

The solutions to the biquadratic equation (4.3.22) are: r; =rg, ryy =ro g—;,
meaning that the ends of the ellipse axes describe two circles of diameters 2a and
2b, where a = ry is the major semi-axis and b = roi—; is the minor semi-axis.
The trajectory of the particle is then situated between the two circles. One observes
that a depends on the initial conditions only, while b varies with the latitude of the
location of the experiment on Earth. Since w is small, the ratio

b \/7
- =— =w,/—cos0
a Wo 8

is also very small, meaning that the ellipse is very flattened and may practically be
identified with a straight line. In particular, if we take ¢ = 0, then & = w,, and
(4.3.20) gives:

Ftoir=0 (o] =)+ o), (4.3.23)

i.e. the pendulum behaves like a harmonic oscillator. The oscillation plane O'x;z
rotates with the angular velocity w, about O’z, in the direction East-South-West-
North. (In the Southern hemisphere, the direction of rotation is opposite.) The

time of a complete oscillation is 7} = (20" =2n,/+, while the period of the
revolution about O’ is 1, = (27“ = u)sm(-) For example, 1f 0 = 45°, 1, = 1.414 days
= 33 h 50 min.

This effect was discovered and studied by the French physicist Jean Bernard
Léon Foucault. His most famous experiment was done in 1851, with a
pendulum having m = 28kg,/ = 67 m, under the cupola of the Paris Panthéon
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Fig. 4.7 A trajectory of the 2y
Foucault pendulum.

(60 = 48°50min). He found 7, =32 h, in good agreement with the theoretical
prediction.

Figure 4.7 shows the Foucault pendulum trajectory corresponding to our initial
conditions. Different initial conditions give different trajectories.

Observation: An observer located in an inertial frame (e.g. the Sun) would see the
pendulum oscillating in a plane, the Earth being in rotation relative to this plane.
The Foucault pendulum shows, then, the motion of rotation of the Earth, without
any other astronomical observations.

4.4 Euler’s Angles

As we have seen in Sect. 4.1, the position of a free rigid body is fully determined if
one knows the position — relative to S — of a certain point O’ of the body and the
angles between the two frames S and ', as well. Here it is assumed that S is fixed in
space, while S’ is fixed to the body. Since the definition of O’ is an easy matter, in the
following we shall consider the motion of the body about this point.

From the practical point of view, the choice of three direction cosines as inde-
pendent parameters is not convenient. One has to look, then, for other solutions.
The most efficient method was devised by Leonhard Euler. He defined a system of
three angular parameters, attached to a group of three successive rotations about
three conveniently chosen directions. In this way, the transition from S(Oxyz) to
S'(O'x'y'7') is realized. There are three successive steps in the transition, as follows:

(a) A direct (i.e. counterclockwise) rotation of angle ¢, in the xy-plane about the
Oz-axis, until the new axis Op (Fig. 4.8a) is orthogonal to Oz'. (The orien-
tation of S relative to S is given!) Thus, we go from the frame S, of unit
vectors i, j, K, to the frame Opgz, of unit vectors t, t,, k (Fig. 4.8b). The
transformation relations are:

t; =icosg +jsin e,
t, = —isinp + jcos ¢, (4.4.1)
k =k.
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Fig. 4.8 Geometrical representation of the Euler angles: ¢, 6 and .

The Op axis is known as the line of nodes and ¢ — as the precession angle,
varying from 0O to 2.

(b) A direct rotation of angle 0, in the Ogz-plane, about the line of nodes Op, until
Oz coincides with O7’, i.e. the transition from Opgz to Oprz’, of unit vectors
t;, t3, K. The transformation formulas are:

t=t,
t; =ty cos 0 + Kksind, (4.4.2)
k' = —t, sin 0 + kcos 0.

The angle 0 is called angle of nutation and takes values from O to 7.

(c) A direct rotation of angle y, in the Opr plane, about the Oz’-axis, until Op
coincides with Ox'. If i’, j/, k' are the unit vectors of ', then the transition
from Oprz’ to Ox'y'7' is given by:

i’ = t; cosy + t3siny,

j = —tysiny + t3 cos iy, (4.4.3)
k' =K

The angle V is the angle of self-rotation and takes values from 0 to 2.

The angles ¢, 0, are called Euler’s angles. Their names will be justified later
in this chapter.

Let us write the direction cosines a;; in terms of Euler’s angles. To this end, we
define the column matrices:

t t; i i
Tl = t2 ) T2 = t3 ) T3 = jl ) T = J (444)
k K’ K’ k

The transformation formulas (4.4.1)—(4.4.3) can be then written in the matrix form
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T, =DT, T,=CT,, T;=BT),,

where D, C, B are the three transformation matrices:

cosp sing O 1 0 0
D=| —sinp cosep 0|, C=1]10 cosf sinf |,
0 0 1 0 —sin0 cos0
cosy siny O
B=| —siny cosy O (4.4.5)
0 0 1

The transition from the coordinates x; to x} (i = 1,2,3) is given by the matrix
relation x' = Ax, where A = BCD. Any element a;; of the matrix A is calculated
according to the rule

aix = (BCD); = bis Cim A (4.4.6)

Performing the necessary calculations, we obtain the transformation matrix A in
terms of the Euler angles:

A:(aik)
cosycosp —cosOsingsinyy  cosyrsing+cosfcospsiny  sinfsinys
= | —sinycosp —cosfOsinpcosyy —sinysing+cosOcos@cosyy sinfcosy
sinfsin ¢ —sinfcos @ cos0

(4.4.7)

4.5 Motion of a Rigid Body About a Fixed Point

In this section we shall use Latin indices (i, j, k,...) to indicate the number of
particles and Greek indices (o, f, y,...) for the vector components and gen-
eralized coordinates. The summation convention over repeated (Greek) indices
running from 1 to 3 will also be used.

As we already know (see Sect. 4.1), a free rigid body has six degrees of freedom:
three of them associated with the three Cartesian coordinates of a certain point of
the rigid body, describing its translation, and three independent angular parameters
(e.g. Euler’s angles) which define the rotation about this point. If the origin O’ of the
frame S’ is chosen in the centre of mass G of the body, then according to (4.2.10)
both angular momentum and kinetic energy will each be composed of two terms:
one term containing only the Cartesian coordinates of the centre of mass and the
other written only in terms of angular coordinates, describing the rotation. This
decomposition also occurs when we deal with the potential energy. For instance, the
potential energy of the electric dipole placed in a uniform field depends only on its
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orientation, while the gravitational potential energy of a body depends only on the
coordinates of its centre of mass. Going further, we may say that the Lagrangian of
such a mechanical system has the same property. As a result, the translation and
rotation motions can be studied independently of each other.

In view of these considerations, in the following we shall analyze the motion of
a rigid body about a fixed point, chosen so that O = O’ = G. At the end of this
section, we shall give the method used when both translation and rotation motions
are taken into consideration.

In order to present the dynamical approach to the motion of the rigid body about
a fixed point, we shall first introduce some elements which are necessary for the
derivation of the equations of motion.

4.5.1 Kinematic Preliminaries

Since the fixed point coincides with the common origin of the two frames, O = O’
(Fig. 4.9), the instantaneous velocity of a certain point P of the rigid body is (see
(4.3.14)) v = @ x r, which means that at any moment the body is engaged in a
motion of rotation about an axis passing through O. This axis is oriented along the
vector o and it is called instantaneous axis of rotation. All particles of the rigid
body situated on this axis have zero velocity (r = Aw, so that v= o x o = 0).

We observe that the instantaneous vector o can be written as the resultant of
three vectors, each of them corresponding to successive rotations about Oz, Op
and Oz'. Therefore, using the definition of Euler’s angles, we have:

o = gk + 0t, + JK. (4.5.1)
In order to find the components w,, wy, w, of @ on the axes of the mobile frame

S’, we successively multiply (4.5.1) by i, j', K. In view of (4.4.1)—(4.4.3), we get:

Fig. 4.9 Rigid body with a . z
fixed point.
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oy =0, =) = @ sinOsiny + 0cosy,
Wy = o, = o = @sindcosy — Osiny, (4.5.2)
wy =0, =)= P cos 0+ .

The components of the vector @ on the axes of the frame S are obtained in the
same manner, multiplying (4.5.1) by i, j, k:

w, = w; = 0cos ¢ + | sin O'sin ¢,
Wy =Wy = Osin ¢ — Y sin0cos @, (4.5.3)
w, = w3 = @+ cos b

4.5.2 Angular Momentum

In view of (1.3.35), the angular momentum L of the rigid body relative to
0O'=0is:

L= ;m (ri X vi) = ;m [t % (o % 17)], (4.5.4)

where r; and v; are the radius-vector and the velocity of the particle P; of the mass
m; of the body relative to the fixed point.

Using the convention adopted in the beginning of this section, the projection of
(4.5.4) on the axes of the frame S’ yields:

N N
L, = Zmi [|ri|2(w ‘u,) — (ri - o)(r; '“;)} = Zmi [|I‘i|2w; - (x;ﬁw;i’)x;x

i=1 i=1
N
;;Z (X, X, 0p — X7, X ) (o, B,y = 1,2,3),

where x}, are the components of r; on the axes of §’. If we denote

N
Ly =" mi(x}, x}, 8.5 — X}, xly), (4.5.5)
i1
we can write:
L,=lLgwp (a,f=1,23). (4.5.6)

The components L/, of the angular momentum on the axes of the frame §’ are
therefore obtained by means of a linear transformation. The quantities (4.5.5) are
the components of a tensor, called the inertia tensor. From (4.5.5) it follows that
the inertia tensor is symmetric. Its diagonal components I}, I},, I}5, e.g.
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N N
I, = Zmi (\I‘i\z Z +z ) etc., (4.5.7)
i=1 =

are the axial moments of inertia, while the non-diagonal components Ij,, I};,
I§17 c.g.

N
Iy =1y == mxly, etc, (45.8)
i=1

are the centrifugal momenta or inertia products.

Observation: Although the inertia tensor ];If was defined relative to the centre of

mass O, sometimes it can be found in a more convenient way by first calculating
its components with respect to some other point. For instance, let us now choose a

reference frame S, invariable with respect to §' and with the origin at O, defined
by the radius-vector R(X’,Y’, Z') relative to O’. In order to determine the rela-

tionship between the components of the tensor /,4, given in the two frames S and
S’, we denote ¥; = r; — R. Then,

N
Iocﬁ = Zm,»(i,'yic,-yéaﬁ - xiaiiﬁ)

N
=3 (0 — Xl — X — (o — Xy — X))

consequently
Ly = I+ M(R*3,5 — X, X)), (4.5.9)

where M is the mass of the body. If Lﬁ is known, we can immediately determine 7, "

4.5.3 Kinetic Energy

Using (4.2.14), we find the kinetic energy:

lN 5 N
:EE m;|v;|” = E (o xr;) = w E m;r; X v;,

or, by virtue of (4.5.4) and (4.5.6),

N | —
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1 1
T=3o0- L= El;ﬁ(u;w;;. (4.5.10)

The tensor l;ﬁ being given by (4.5.5), we can also write:

1 X
7= 3 Y mlefo? — (-],
i=1
or, if s is the unit vector of w,
T = —lo?, (4.5.11)
where
N
I = Zm,» |:‘l'l‘|2 — (I'l' . 5)2 (4512)
i=1

is a scalar, called the moment of inertia of the rigid body relative to the axis of
rotation. As one can see (Fig. 4.10), d? = r? — (r; -s), i.e.

N
1= md:. (4.5.13)
i=1

Comparing (4.5.6) and (4.5.10), we obtain

oT
L =
*  dw

o

(x=1,2,3). (4.5.14)

Fig. 4.10 Auxiliary
construction used to
determine the specific
quantities associated with a
rigid body: the kinetic energy
and the ellipsoid of inertia.
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4.5.4 Ellipsoid of Inertia

The moment of inertia (4.5.12) can be expressed in a form leading to a remarkable
and useful geometrical interpretation. If s/, (« = 1,2, 3) are the direction cosines of

s relative to ', we may write s = s/,u/, such that

s =1= S, S, - Wy = 8,550y,
leading to
% 2
I = Zmi(|ri| $,850up — S,SpXiXig) = L ps, Sl (4.5.15)
i=1
We take now a point M on the axis of rotation, given by
s
i
If X!, («=1,2,3) are the components of OM on the axes of S, then (4.5.15)
leads to

OM =

o,

LyX, Xy =1. (4.5.16)

This formula tells us that the geometric locus of the point M, when the direction of
the axis of rotation varies in time, is a quadric surface with its centre in O'. Since
I' > 0, the segment OM is always finite; in other words, the quadric surface does
not have points at infinity. This means that our quadric is an ellipsoid, called
ellipsoid of inertia. If the coordinate axes coincide with the symmetry axes of the
ellipsoid of inertia, then its equation has the canonical form:

I X7+ DX+ Xy = 1.

The axes of the ellipsoid of inertia are called principal axes of inertia, while its
symmetry planes are the principal planes of inertia. Relative to these axes, the
products of inertia I, (o # f§) are zero, i.e. the inertia tensor is diagonal. If the
point O’ coincides with the centre of mass of the body (our case), the ellipsoid of
inertia is called central ellipsoid of inertia and its axes — central principal axes of
inertia.

Observation: In some cases, it is convenient to write the tensor of inertia in a
dyadic form (see Appendix A). This form is useful because it allows us to utilize
the usual vector operations. In view of (4.5.5), we define the dyadic vector {I} by

N
{1 =" m(r {1} —riry),
i=1

where {1} = u}u; is the dyadic unit vector. Then,
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{I} - o= ZNI:m,- [|r,~|2w —(r; ~w)r,} =L,

1 1 1
Tziw'L:Ew-{I}-w:§w25~{1}~s.

Since

(1) s =+ [Ins - s)n] = Y millnf - (r -9 = 1

i=1 i=1

we finally obtain

4.5.5 Euler’s Equations of Motion

First, we notice that the coordinates x},(i = 1, N;o = 1,3) of the particles of the
rigid body relative to S’ do not change in time, meaning that the components I s of
the inertia tensor are also constant. Second, we recall that w is a function of time
only: @ = o(r). In order to derive the differential equations of motion of the rigid
body having one point fixed, we shall use the Lagrange equations (2.5.13):

d(oT\ or
a (@) ~ Lo, (r=129) (45.17)

where the role of general coordinates is played by Euler’s angles: g = 0, ¢ =
@, g3 = . Such a choice is dictated by the fact that the unit vectors t;, k, k' (in
this order!) form a clockwise orthogonal frame. By virtue of (4.5.10), we can
write:

or /660;f 1 , aw” ow ’

1 ! !
o, 2 nwn@ 2183, _Iﬁwﬁa

d [/ oT 7,_,6w:1 ., d 60):7
ar\ 3, = L35 T s g o, )

oT , 0w

7 _n
dq, npPp dq,

and Egs. (4.5.17) lead to:

O, d (0w 0w,
[ﬂﬁwﬁ a +I,,,/; /}[ t(a) - _:| =0, (4518)
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where Q, are the components of the generalized force along the directions 0, ¢, .
Using the definition (2.4.12), we obtain:

Q‘:in- or; :ZN:F.’ Oy :zN:F.’ Oy
=~ AP
But
X, = (0 X 1), = €qp, w;; Xy
such that
N /
0,=)Y Q{l;é]?;“x;éaaczi. (4.5.19)

i=1
On the other hand, the components ./\/l;; (p = 1,2,3) of the resultant moment of
exterior forces relative to S’ are, by definition,

N N
My =" xFi)y = epeaic F,. (4.5.20)
i=1 i=1
Comparing the relations (4.5.19) and (4.5.20), we arrive at
! wﬁ
, = —. 4.5.21
o, B oq, ( )
Before going further, we must remember that in (4.5.21) Q, are the components

Qo, Qp; Qy, while Mj; stands for My, M, M.
It can be proved that the vector @ defined by (4.5.1) satisfies the identity

d (dw , oy
2 =) =u,—2 . 4.522
a5 ) =5 4322

If we denote
ti=s;, k=s,, Kk =s3,
then we may write w = ¢g,8, and (4.5.22) leads to

ds, / aw?f

dr uﬁa—%

(4.5.23)

Since u;; (f =1,2,3) do not depend on g,, from (4.2.7) and (4.5.23) we obtain:

d aw’/} ow' ow'
T < B — B
u ( o, > +oXu o, ug o,
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or, in projection on the axes of the frame ',

d (0w 0w/ ow'.
- < aqj) - qu = €yta w;@f. (4.5.24)

Replacing the square bracket in (4.5.18) by the r.h.s. of (4.5.24) and using (4.5.21),
we arrive at

! -/ / /gy ! aw/ﬂ
(1 0+ nca 0 0 Ly = M) % =0 (4.5.25)
where the summation indices have been conveniently changed. It is easy to
show that

Owjy )
det(—_) =sin0#0 (0<0<m),
oq,
meaning that the system of homogeneous linear equations (4.5.25), in which the
number of equations equals the number of unknowns (i.e. the brackets) admits
only the trivial solution, which is expressed as
L @ + eyzg 0 )y Ig = My (o, f,0,¢ =1,2,3). (4.5.26)

These are the equations of motion of the rigid body, called Euler’s equations.

Equations (4.5.2), together with (4.5.26), form a system of six first-order dif-
ferential equations, with six unknowns |, w), o}, 0, ¢, , leading to the expres-
sions for Euler’s angles as functions of time. The general integral of the system
(4.5.26) depends on six arbitrary constants, which are determined from the initial
conditions: at the initial time ¢ = 0, the values of the variables are fixed to
@}(0), 5(0), @5(0), 6(0), ¢(0), ¥(0).

Using (4.5.2), we can obtain the components O, of the generalized force in
terms of Euler’s angles:

Qyp = M’ cosyy — J\/l’v sin y,
0, = M, sinOsiny + M sin 0 cos ) + M cos 0, (4.5.27)
Qy = M.
We remind the reader that M’ M;,, M/Z mean, in fact, My, My, M.
If, in particular, the axes of the frame S’ coincide with the symmetry axes of the

ellipsoid of inertia, then the angular momentum, the kinetic energy and Euler’s
equations are given respectively by:

oo

3
L=> Lo (4.5.28)
a=1
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1 3
T=; > Lol (4.5.29)
a=1

Loy = (L = L)o
/

Lo — (I — I o) = M5, (4.5.30)
Loy — (1) = L)) oh = M,
where the following notations have been used:
=10, In=10 Iy=1I (4.5.31)

If no torque is applied to the rigid body, or if F is permanently directed towards
the fixed point O’, then Euler’s equations (4.5.26) reduce to

I:,ﬁ w;f + €na O w;} I;ﬁ =0.

Euler’s equations do not change their form if all quantities are expressed in the
inertial frame S, i.e.

Lg wp + expy wp 0y Ly = My, (4.5.32)

where the components I, of the inertia tensor are functions of time. To prove this
statement, let us apply the angular momentum theorem (1.3.38). Since the unit
vectors u, of the frame S are constant, we have:

dL,

dt
On the other hand, since L, = I,gwg, where

= M,.

N
Ly = Z mi(x,-, Xiy 51/; — Xig xi/;),
i=1

we may write:
La = .106/360/3 + 11,5(1')/3.
But (see Appendix A)

Lp = agy agp Iye,
therefore

Ly = (aoy azp + agy acp) Iy: = (Gox acp agy agy + gy acp agy agy) Ly
= gy agy Lg + azp agy L.
On the other hand, since

/
U, = dapUg,
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we have:

o . /
U, = dgpUp = dgp dyp uy‘

A comparison of the last relation with (4.2.4) yields:

! o
wozy = Qup Qyp

and, in view of (4.2.6),

Lug = 0y Lip + 0gp Ly = €3 0 L + eype O Ly,

from which we obtain:

Ly = €0: 0p 0 Lip + Ly o,

which completes the proof.

Observations:

(a)

(®)

A rigid body whose principal moments of inertia are all different (I} # I} #
I, I} # 1) is called asymmetrical top. If any two principal moments of
inertia coincide (e.g. I} = I} # I;), we have a symmetrical top. In the case
I} = I = I we deal with a spherical top.

The determination of the principal moments and principal axes of inertia is
facilitated if the rigid body has planes or axes of symmetry. If there is a plane
of symmetry, then the centre of mass and two principal axes of inertia lie in
this plane, the third being orthogonal to the symmetry plane. For instance, if a
discrete system of N particles is distributed in the plane O'x’y’, we have:

N N
I{zZmiy;Z,G:Zmix I—Zml Py =1 +1, (4.5.33)
i-1 i=1

If the rigid body possesses an axis of symmetry, this coincides with one of the
principal axes of inertia and the centre of mass lies on it. If, in particular, the
system of particles is distributed along a straight line (say, the O’z’-axis), then

I =1= Zmz,g

Such a system is called rotator and has only two degrees of freedom.

If the rigid body is subject to potential forces only, then Euler’s equations
(4.5.26) can be obtained by means of the Lagrange equations in the form
(2.5.17). In this case,

(4.5.34)

1
L=T-V= El;;w; = V(0,0,Y). (4.5.35)
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(c) If we consider the general motion of a rigid body relative to the frame S, i.e.
both translation and rotation are considered, then the Lagrangian will be
composed of two parts:

L = Lyans + Lyor-
The kinetic energy can be calculated by using (4.3.10), with vy = vg:
1 2 1 ! AN
T = 5M|vc\ + El“ﬁ W, W (4.5.36)
and we finally can write
1 1
L= EM|VG|2 + E];ﬁ o), oy = V(x6, Y6, 26, 0, @, ). (4.5.37)

We mention, once again, that this analysis is valid only if the origin O’ of the
reference frame S, rigidly fixed to the body, is chosen in its centre of mass.

4.6 Applications

The purpose of this section is to study, by use of the analytical mechanics for-
malism and the theory developed in this chapter, both some classical applications
and several extensions of this formalism to non-mechanical systems. This will be
done by virtue of the analogies that can be identified between mechanical models
and other physical representations.

4.6.1 Physical Pendulum

A rigid body able to oscillate about a fixed horizontal axis, which does not pass
through the centre of mass, is a physical pendulum, or a compound pendulum
(Fig. 4.11). Since the only applied force acting on the body is the force of gravity,
the projection of the equation Mg = —grad V on the axes of the frame S gives by
integration the potential energy of the pendulum:

V = Mgl(1 — cos 0).

Here, [ = OG, M is the mass of the body, while the integration constant is
determined from the condition: V = 0, for x = .

The instantaneous vector of rotation o is directed along the fixed axis and has
the magnitude || = @, = 0. In view of (4.5.11), the kinetic energy is T = 1 16%;
thus, the Lagrangian of the physical pendulum reads:

1 .
L= 5102 — Mgl(1 — cos 0). (4.6.1)

Let 0 be the generalized coordinate associated to the only degree of freedom of
the body. Therefore we have a single equation of motion,
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Fig. 4.11 Physical
pendulum.

x

10 + Mglsin 6 = 0, (4.6.2)

formally identical with the equation of a simple pendulum. For small amplitudes
(sin 0 ~ 0), the period of oscillation is

1
=2 —. 4.6.
T=2mn Mgl (4.6.3)

The physical pendulum is used in determining the acceleration of gravity, in the
calculation of the moments of inertia of a rigid body, etc.

4.6.2 Symmetrical Top

Keeping the index ‘prime’ associated with the quantities in the frame ', let
the symmetrical top be such that 1 = I} # I}. In the following, we shall study the
motion of the symmetrical top in two different cases: the force-free motion and the
motion in the gravitational field of the Earth.

4.6.2.1 Force-Free Motion

The equations of motion of the rigid body are in this case Euler’s equations
(4.5.30), in which M, = 0. Since I; = I, the last equation gives w, = const.,
while the first two equations yield:

o) =-Qo, )y=0Qw, (4.6.4)

Z’
where
! A
— 13 — 11 /

Q L.
n

(4.6.5)
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Then we can write
o =Q X w. (4.6.6)

From (4.6.5), (0,0,€Q') is a constant vector, directed along the symmetry axis
07 of the top, while (4.6.6) means that the vector @ performs a uniform rotation
about the Oz’-axis, with the angular velocity Q'. The convention O = O’ = G has
been adopted also in this application.

Since 07’ is a symmetry axis, it is also a principal axis of inertia. The other two
principal axes of inertia Ox’ and Oy can be arbitrarily chosen, because the section
of the ellipsoid of inertia by a plane orthogonal to the axis Oz’ is a circle. Since
M., =0, we observe that the angular momentum L is a constant vector. If we
choose Ox’ orthogonal to the plane determined by L and OZ’, it results that L =
Ly =0, and from (4.5.28) it follows that @] = 0. In other words, the vectors o, L
and the axis Oz’ are coplanar. This shows that the velocity v; of a certain particle P;
of the symmetry axis is orthogonal to this plane (v; = @ X r;), meaning that the 7’
axis performs a uniform rotation about L. This motion is called regular precession.

Our result acquires a more suggestive interpretation if we make use of Euler’s
angles. Let the axis Oz of the fixed frame be directed along L = const., the Oz’
axis along the top axis (as above), and the Ox’-axis along the line of nodes, i.e.
Y = 0 (Fig. 4.12). The components of the vector w in S are then given by (4.5.2):

o, =0, o)=psinb, of=@cosd+. (4.6.7)
The angular momentum is in the Oy'z’-plane, so that
L)'=0, L,=Lsin0, L= Lcoso, (4.6.8)
where L = L,. In view of (4.5.28), we also have:

L =TLo, =10, L),=ILo,=1I¢sin0,

, o . . (4.6.9)
L) = Lo, = I(pcos O+ ).
A comparison between (4.6.8) and (4.6.9) gives:
. . L 0
0=0, ¢p=—, wy=dcosl+y= C(,)S ) (4.6.10)
I, 1

The first relation shows that the angle 6 between the directions of the top axis
and the angular momentum is constant; the second, that the precession angular
velocity ¢ of the top axis about Oz is also constant; the third relation defines the
angular velocity of the top about its axis of symmetry, which is constant as well.

The same result is obtained by integrating Euler’s equations (4.5.30). In this
respect, we see that the system (4.6.4) admits the solutions

o) = AsinQ't, o) = AcosQ't,

meaning that the solutions of Euler’s equations are:
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) = AsinQ't = gsinfsiny,
wh = AcosQ't = @sinfcosy,
o} = ¢ cos O + y = const.,

leading to the already known result:

A = @sinf = const., Y =Q't. (4.6.11)

Observation: The geometric locus of the instantaneous axes of rotation with
respect to S’ is a cone with its top at O, called polhodic cone; the geometric locus
of the instantaneous axes of rotation relative to § is also a cone with the top at the
same point, named herpolhodic cone. It can be shown that the two cones are
tangent, and the polhodic cone is rolling without slipping over the herpolhodic
cone (Fig. 4.12).

4.6.2.2 Motion in the Gravitational Field

Suppose that the fixed point of the top is on its axis of symmetry. We choose the
origins O and O’ in the fixed point, and the axis Oz’ directed along the symmetry
axis of the top. As one can see, in this case the centre of mass and the fixed point
do not coincide anymore (Fig. 4.13). Then, if the principal moments of inertia
I, I, I relative to a frame fixed with respect to the rigid and having its origin in
G are known, from (4.5.9) we obtain:

I =L=0L+MP* I=1I, (4.6.12)

where M is the mass of the top and [ is the distance between the fixed point O and
the centre of mass G.
The kinetic energy of the moving top is found by means of (4.5.29):

1< 2 1 2 2 1 2
TZE;I(Q‘U; :Eli(wll +w'2)+§ 30057,

Fig. 4.12 Symmetrical top. Herréglhodic
Herpolhodic and polhodic A2 He
cones.
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Fig. 4.13 Motion of the ; AZ
symmetrical top in the x
gravitational field. _ 0
/'/—'_'_'_.
) y‘
M Q
y
x. VN ,
N# X
or, in view of (4.5.2),
1 . 1 :
T= E1’1(<p2 sin? 0 4 0%) + 513(¢cose+lp)2. (4.6.13)
The potential energy of the body situated in the terrestrial gravitational field is
V = Mgl cos 0.
The Lagrangian is then:
1 . 1 .
L=3 1% sin® 0 + 0%) + Elg((p cos 04 y)* — Mgl cos 0. (4.6.14)
The two cyclic coordinates ¢, lead to the following first integrals:
oL .
Po= 7= (I} sin* 0 + I} cos® 0)p + Iy cos 0 = Cy, (4.6.15)
%
oL 1/ 0 ] N
Py = o = L(pcosl+y) = Lol = C,. (4.6.16)
Since the physical system is conservative, there also exists the energy first integral:
1 . 1 ;
51 (¢*sin® 0 + 0%) + 5 l5(@cos 0+ ¥)? + Mglcos = E. (4.6.17)

The constants C;, C,, E are determined from the initial conditions.

The existence of first integrals whose number is equal to that of the degrees of
freedom, allows us to derive the finite equations of motion (in our case, Euler’s
angles as functions of time) by quadratures. The cyclic variables ¢, can be
eliminated from (4.6.17), with the help of (4.6.15) and (4.6.16). Then we obtain

(b,t.ﬁ as functions of 0:

. C; — Cycos0 . C, C;—Cycosl
A A A A T R (o189
1 3 1

and (4.6.17) becomes:
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H 13 1
E=-I0+ 3 1—2 + m( — Cycos0)* + Mglcosf.  (4.6.19)

Introducing the notation

1
E=3 7 = Ey = const,, (4.6.20)
1
20 sin? 0 (C1 = Crcos0)” + Mgl cos 0 = Ve (0), (4.6.21)
we have:
1 .
Ey = S 10° + Veg (0), (4.6.22)

or, by integration,

/dt / eﬁ(ﬂ)] . (4.6.23)

This equation gives 6 = 6(¢). Introducing then 0(¢) into (4.6.18), we find ¢ = ¢(¢)
and ¥ = Y(¢). This means that the problem of the motion of the rigid body —
at least in principle — is determined. But the study of the potential energy V., (0)
and the resolution of the elliptic integral (4.6.23) encounter great difficulties, since
Vs (0) depends on two parameters, C; and C,, whose values are not a priori
known. In the following, we shall give a brief account of the problem, considering
only the most interesting cases.

First, we see that the integral on the r.h.s. of (4.6.23) acquires a more conve-
nient form by the substitution u = cos 6. Second, let us denote

2E, 2Mgl
o= —, f= (4.6.24)
n h
and choose the constants a, b given by
C1 = I;b, C2 = 1’161, (4625)

instead of Cy, C,. Then, (4.6.23) becomes:

u(r) J u(t) p
t—1ty)= / ! = ! (4.6.26)
u(t)

Vo= puy— o —an 0 VI

where f(u) is the polynomial under the square root.
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The polynomial f(u) is of third degree in u, meaning that the integral occurring
in (4.6.26) is an elliptic integral. We shall use, however, a method to solve the
problem without resorting to elliptic functions. Let us write

2= f(u)=(1—u?)(o— Pu) — (b —au)’. (4.6.27)

In order that Eq. (4.6.27) has a real solution, it is necessary that f(u)>0. This
condition must also be fulfilled by uy = u(t), i.e. we must have f(ug)>0. Let us
analyze the two cases, f(up) > 0 and f(uy) = 0.

(a) f(up) > 0. Let u in (4.6.27) vary in time. We find:
f(=00)<0, f(-1)<0, f(+1)<0, f(400)>0.

Since ug = cosfy takes values in the interval (—1, +1), the polynomial
f(u) changes its sign in the intervals

(=Lyup), (ug,+1), (+1,4+00).
The three real roots of f{u) will then be situated in these intervals:
uy € (=lug), uz € (uo,+1), u3z € (+1,+00).

Since the root u3; does not make sense, we shall leave it out. The graphic
representation of the case (a) is given in Fig. 4.14.

(b) f(up) = 0. In this case, we have uy = u; = u,, the solutions ¥ = +1 and
u = —1 giving the vertical position of the top. It follows, then, that u = cos 0
is permanently within the interval (uy,u,), i.e. the inclination limit angles of
the axis of the top with respect to the vertical line are 0; = arccosu; and
0, = arccosup. These two limit angles determine two circles on a sphere
with the centre in the fixed point, so that the trajectory described by the
intersection point of the top axis and the sphere lies between the two circles.
One observes that

i? = f(u) = 0*sin,

meaning that 0 = 0 on the two circles, which correspond to the turning points.
In order to determine the shape of the curve described by the point produced
by the intersection of the top axis and the sphere with its centre in O, let us
calculate the tangent of the angle o made by this curve and the meridian circle
defined on the sphere by the plane ¢ = const. Thus, we have (see Appendix B)

dsg =rd0, ds,=r sin0do;

consequently (see Fig. 4.15),

d
tano = s sin 0.

do
But
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Fig. 4.14 Graphical
representation of the case (a)
f(u()) > 0.

Fig. 4.15 Parameters
describing the case (b)
f(u()) =0.

dp dpdu  do
d0  dudf  du

On the other hand, in view of (4.6.18), (4.6.25) and (4.6.27), we can write

d£_¢_ b—au

du (1 =) [fw)]

)

leading to

b—
tano = 2 (4.6.28)

+[f ()]

Let u’ be the root of the equation b — au = 0. Then, depending on the initial
conditions, one of the following situations can occur:

(1) u’ is outside the interval [u,us];
(2) u’ is inside this interval (uy,u;);
(3) u’ coincides with either u;, or us.

In the first case, if we write (4.6.18); in the form

. b—au
(P = l _ uz )

we realize that ¢ does not change its sign, meaning that the axis of the top
performs a precession motion about the vertical line passing through O. If ¢ = 0,
the precession is monotonic. When u reaches the values u; or u,, in view of
(4.6.28), tan o = o0, i.e. the curve @ = @(0) on the sphere is tangent to the
parallel circles 6 = 61, 0 = 0,. The axis of the top performs a periodic motion of
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(a) (b)

Fig. 4.16 Geometrical representation of nutation for various conditions.

lifting and descending. This motion is done on the background of the precession
motion and it is called nutation (Fig. 4.16a).

In the second case, the curve ¢ = @(0) is also tangent to the parallel circles
0 = 0,, 0 = 0,, but ¢ changes its sign for u = u’, meaning that the directions of
the precession on the circles 6 = 6, 8 = 0, are opposite (Fig. 4.16b).

Let us, finally, analyze the third case. Putting b = au’ in (4.6.27), we have:

fl) = (1 =) (e — pu) — a*(u' — u)’ (4.6.29)
and, since either u’ = uy, or u’ = u,, it follows that

') = (1 —u?)(a—pu') =0.
This leads to o = fu’, and (4.6.29) takes the form:

flu) =W —u)p(l —u®) —a*(u' — u)). (4.6.30)

Writing (4.6.30) for the two roots u; and u,, we have:

fl) = (' —up)[B(1 = ui) — @ (u’ —uy)] =0,
flu) = (' = w)[B(1 = u3) — a*(u’ — uz)] = 0.

As we can see, if in one of these equations the parenthesis vanishes, in the other
the bracket becomes zero. Since 1 — u* > 0, it results that either u’ > u;, or
u' > u,. But u’ > uy does not have any sense, so that the only remaining possi-
bility is u’ > u;. This inequality is satisfied only by u’ = u,, i.e. v’ may coincide
only with the biggest of the two roots uy, u,.

At the same time, (4.6.28) leads to tan o = 0, for u = u’ = u,, which means
that the angle o, made by the curve ¢ = ¢(0) at the intersection points with the
parallel circle 0 = 0,, is zero. Since ¢ does not change its sign in the interval
(u1,u2), we conclude that these points are turning points (Fig. 4.16c).
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In order to explain the motion of nutation, let us take as initial conditions:
0(0) =0y # 0,7, 0(0) =0, @(0)=0. (4.6.31)
The relations (4.6.16), (4.6.19) and (4.6.20) then lead to

(Ev),—o = (E - %Igdf) = Mgl cos 0y = const. (4.6.32)
t=0

In the light of this result, let us now give a physical interpretation of the equation
of conservation (4.6.17). It shows that, if at the initial moment t = 0, the quantity
E, satisfies Eq. (4.6.32), then the potential energy must diminish with the growth
of ¢,0. The angle 0, is then precisely the minimum value 6, of 0, i.e. the top
always begins its motion with a falling tendency. The axis of self-rotation inclines
until 0 reaches its maximum value 0, then the top gradually recovers, the angle 0
diminishes up to its minimum value 6,, and the motion repeats itself in this
manner, periodically. As we have already mentioned, the nutation is interwoven
with the motion of precession.

4.6.3 Fast Top. The Gyroscope

A symmetrical top with a fixed point on its axis of symmetry, having a rapid
motion of rotation about this axis, is called gyroscope. The initial conditions
(4.6.18) and (4.6.31) yield

b—aup=0. (4.6.33)

Similarly, the relation (4.6.19) with the notations (4.6.20), (4.6.24) and (4.6.25)
leads to

o — Pug = 0. (4.6.34)

By substituting b and « given by (4.6.33) and (4.6.34), respectively, into (4.6.27),
we find that

flu) = (ug —u)[p(1 —u?) — a*(up — u)]. (4.6.35)
We recall that u’ is the root of the equation b — au = 0, so that (4.6.33) gives
u' = uy. For u = u; and u = u,, we have f(u) = 0, i.e. uy equals either u;, or u,.
Since uy = u’, the only possibility is uy = u, (the case (3) above). Then u may
vary between the limits u; and u; = uy.
If u = uy, (4.6.35) yields:

uo—ulza—ﬁz(l—uz)>0.

Since 1 — u®> > 0, we can write
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p
O<ug—u1 < ol (4.6.36)

Suppose now that the angular velocity of the top about its axis is very high.
In this case, a—ﬁz — 0 and (4.6.36) shows that the domain of variation of u is very
small. Then u ~ uy, the two parallel circles 0 = 0, and 0 = 0, coincide, and the
top seems to move without nutation. From (4.6.18),; and (4.6.36), we obtain:

o a(ug —u) B uo —u;

— . 4.6.37
1 —u? <|a|1—1,t2 ( )

Since lal is large and the difference uy — u; is very small, it follows that the motion
of precession is very slow. The formula (4.6.37) also shows that ¢ and a have the
same sign, i.e. the motions of precession and spinning about the top axis have the
same sense.

Observation: This analysis justifies the names given to Euler’s angles: 6 — angle
of nutation, ¢ — angle of precession and  — angle of self-rotation.

4.6.4 Motion of a Rigid Body Relative to a Non-inertial Frame.
The Gyrocompass

Consider a rigid body moving with respect to a non-inertial frame §'(0'x'y'7),
which in its turn moves relative to an inertial frame S(Oxyz). Let §”(0"x"y"7") be
the orthogonal frame invariably related to the body, @ — the instantaneous vector
of rotation of the body about its own axis and € — the instantaneous vector of
rotation of ' relative to S. If O” = G and we take into account the notations used
in Fig. 4.17, we can write:

r,=rg+r. (4.6.38)

In order to study the motion of the body relative to S’, we must first find the

form the Lagrangian. To this end, we shall take advantage of the formula (4.3.4),

furnishing the Lagrangian L; of a certain particle P; of the body with respect to the
non-inertial frame S':

L= %m,‘|v,|2 + %mi|w X E 4+ mv, - (0 x 1)) = V. (4.6.39)
Here, the term —m,r} - a9 has been included in the potential energy V;, because
ao can always be considered as due to a uniform gravitational field acting on the
body, while v, = vg + @ x r; is the velocity of P; relative to O'. In view of
(1.3.58) and (4.6.39), the Lagrangian separates into two groups of terms, one
corresponding to the motion of the centre of mass and the other giving the
rotation about it:


http://dx.doi.org/10.1007/978-3-642-17234-2_1
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Fig. 4.17 Choice of the

. . zZA
coordinate systems in order to
study the motion of a rigid
body relative to a non-inertial .,
frame. Yy
zl
O
x
N 1 )
L= ; i=Tc + EM(\I'G| Oup — XGa XGp)Qy Qp
1
+ 9 Lo + Tror - 5 LpQuQp + @ Loy — V, (4.6.40)
where

m'(x// x// 5 _ xll x// )
i\Aiy Ay Cap i rip )

M=

Ly =

—_

/! /!
L, = m;r; x (o xr}),

-

i=1

Tror = 511/3 Wy Wp,
while V depends both on the centre of mass coordinates and on the parameters
describing the motion about this point (Euler’s angles). If a point belonging to the
body, e.g. its centre of mass is fixed, then the Lagrangian associated with the
motion about G is:

1
L=Tou+ 5Ly QuQpt+ @ Loy~ V, (4.6.41)

where the quantities T, /.4, and L,,, are defined relative to the fixed point. The
second term in (4.6.41) is called centrifugal term and the third — Coriolis term.
Since the Lagrangian (4.6.41) is invariant under rotations, it will keep its form
relative to the frames S and §'.

The aforementioned analysis represents the theoretical basis of the construction
of the gyrocompass. This is a very rapidly rotating gyroscope, its symmetry axis
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Fig. 4.18 The gyrocompass.

lying permanently in the horizontal plane. Without reducing the generality of the
problem, we presume that the origins of the frames S, S, §” coincide with the fixed
point. Next, we take the frame S invariable with respect to the Earth, with its x-axis
pointing North and its y-axis pointing West. The x'-axis is taken along the gyro-
scope axis, while Euler’s angles ¢, 0 are chosen as shown in Fig. 4.18. Since the
x'-axis remains permanently in the horizontal plane, we have yy = 0.

It is more convenient to express all quantities relative to the frame S’ (e.g. the
ship, or the airplane where the gyrocompass is installed). In this frame, the vector

o= ¢k + 0i' has the components:
o) =0, oh=0, of)=4p. (4.6.42)

Since Ox’ is a principal axis of inertia, we have I} = I} # I{. The angular
momentum and the kinetic energy of the gyroscope are given by (4.5.28) and
(4.5.29), respectively:

Lh=10, L,=0, L;=1L0, (4.6.43)

1, 1
T= 51;02 + 51;(;;2. (4.6.44)

Let y be the angle between the z-axis and the instantaneous vector of rotation £
of the Earth (Fig. 4.18). Then,

Q) =Q'sinycosp, Q,=-Q'sinysing, Q) =0 cosy,

such that
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Q=1 Q7 cos?y + Q7 sin® y(I} cos® ¢ + I sin® ),
Q L, =1I0Q sinycos p + I, p Q cos .
Therefore, the corresponding Lagrangian is

1. 1 1
L= 51{92 + 515(])2 + 59/2 sin® (I} cos® @ + I, sin” @)

+ 1,Q%cos>y + I 0Q sinycos ¢ + I, p Q cosy, (4.6.45)

where the constant potential energy has been omitted.
We observe that the generalized coordinate 6 is cyclic, so that we have the first
integral

oL

e 104 Q' sinycos ) = C;. (4.6.46)

Po
Another first integral follows from the fact that the energy is conserved, since
the Lagrangian L does not depend explicitly on time. In view of (2.8.30), we may
write:
—L= L Oy
L == -
Paqo Y 20 p
1. 1 1

= EI; 0> + Elégbz — EQ/Z sin® (I} cos® @ + I sin® @) — I,Q? cos® y = C,.
(4.6.47)

Using these two first integrals, let us write the differential equation of motion

corresponding to the variable ¢. To this end, we eliminate 0 from (4.6.46) and
(4.6.47) and then take the time derivative of the result:

I, + C,1Q sin ysin @ — [,Q? sin® y sin ¢ cos ¢ = 0,

where ¢ # 0 has been simplified. If we neglect the term in Q7 (recall that
Q' ~ 727 x 107 s71), we finally obtain:

€Y sin
b+ ITS”” sing = 0. (4.6.48)

This non-linear second-order differential equation is similar to the equation of a
simple pendulum. Consequently, if C; > 0 and the gyroscope is initially oriented
to show North, this is a position of stable equilibrium. Once directed towards
North (¢ = 0), the gyroscope axis tends to remain in this direction. Such a system
is called gyroscopic compass or gyrocompass.



202 4 Rigid Body Mechanics

4.6.5 Motion of Rigid Bodies in Contact

Let us consider a moving rigid body, constrained to remain permanently in contact
with another rigid body. In this case, there occurs a constraint force in each of the
contact points. This force can be decomposed into two vector components: the
normal reaction and the force of friction. The first is normal to the contact surface,
while the second lies in the plane tangent to this surface.

The relative displacement of the two rigid bodies can be performed either by
sliding, or by rolling. If the contact surfaces are perfectly smooth, we are dealing
with a pure sliding, while in the case of perfectly rough surfaces, the displacement
is a pure rolling. In practice, there is a mixture of these two cases.

The constraints imposed by the contact between bodies are, in general, non-
holonomic, and can be expressed by relations of the form (see (2.1.58)):

N
> g (ry,. 1) E A gh(ry, .y, 1) =0 (a=T.5).
i=1

Since r; =r; (¢,7) and £; =, _, 2;7 qs + %, we can write:
n
> B, + b =0, (4.6.49)
o=1

where

N N
or; or;
o § :gl aqa> 0 80 + ;Zl:gz ot

i=1

The elementary displacements dg, must be compatible with the constraints
(4.6.49), i.e. they must satisfy the relations

> b3oq, = 0. (4.6.50)
a=1

On the other hand, by D’ Alembert’s principle (see Sect. 2.5), we have:

" [d (aT) oT }
—|=— ] —=— — 04|09, =0. (4.6.51)
; |:dt 0q, 0q,

In order to derive the equations of motion, we multiply (4.6.50) by the arbitrary
parameters 4, (Lagrange multipliers) and subtract the result from (4.6.51).
We obtain:

d [ 0T oT s _
drory _ o _ 4 Jb? (a=T,n), 4.6.52
dt(%) = Ot 2 =T (4.6.52)


http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ58
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the infinitesimal displacements dg, being now arbitrary. Equations (4.6.52) are
called Lagrange equations with multipliers. These equations, together with the
equations of non-holonomic constraints (4.6.49), form a system of n 4 s equations
with n + s unknowns qi, ..., gn, 41, - - -, 4s-

Let us analyze, as an example, the case of a homogeneous sphere of radius R,
rolling (with pivoting) on a horizontal plane. If v is the velocity of the centre of
the sphere and w is the instantaneous vector of rotation, then the constraint is
expressed by the condition that the velocity of the contact point P is zero, i.e. (see
(4.2.10)):

Ve +o xR, =vg+ox GP=0. (4.6.53)

Let the xy-plane of the fixed frame S(Oxyz) be the horizontal plane, the z-axis
being oriented along the ascending vertical, while the frame §'(Gx'y'7') — as
usual — is invariably related to the sphere. In this case, the point G will always lie
in the plane z = R. Projecting the equation (4.6.53) on the axes of the frame S and
using (4.5.3), we arrive at:

%G — R(0sin ¢ — sin 0 cos =0,
6~ R(Bsing =4 2 (4.6.54)
6 + R(Ocos @ + YsinBOsin @) = 0.

Thus, the generalized coordinates xg, yg, 0, @, satisfy two non-integrable con-
straints. This means that we have a non-holonomic, scleronomous system, with
three degrees of freedom.

To solve the problem, we shall make use of the Lagrange equations with
multipliers (4.6.52). Since
2
1;:1;:13:1’:§MR2
and recalling (4.5.36), the kinetic energy of the body is:

1 1. . . .
T = 5M()'cg + %) + 51’(62 + >+ + 2¢y cos 0).

Using (4.6.52), we obtain the following system of equations:

Mg = A1,
M.}}G = ;“27
I'(0+ @y sin0) = R(4z cos ¢ — 21 sin @), (4.6.55)

@ +  cos 0 = const.,
d .
I,a (¥ + @cos ) = R(A1 cos @ + A sin ) sin 0.
In addition to these equations, we have the energy first integral:

1 . . 1 . . .
EMzrez(e2 + /% sin® 0) + 51’(92 + &% 4 Y% 4 2¢y cos 0) = const.,
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Fig. 4.19 A homogeneous
cylinder rolling without
sliding on an inclined plane.

where we have used (4.6.54) and took V = 0, because of the position of the centre
of mass.

Another first integral is obtained from the remaining equations by eliminating
the unknown parameters A;,4,. To this end, one introduces (4.6.54) into
(4.6.55)1 5, the result is substituted into (4.6.55); and then one eliminates ¢
between the obtained equation and (4.6.55),. Consequently,

1,.bsin20: Cy + Cycos0,

where C; and C, are two constants. Since we have obtained three first integrals,
our problem has been reduced to quadratures.

If the axis of rotation of the rolling sphere does not change its direction, then the
constraint (4.6.53) becomes holonomic. This is the case, for instance, of a
homogeneous cylinder, rolling without sliding on an inclined plane (Fig. 4.19).
At the point of contact between the plane and the circle of transversal section with
its centre in G, we have R = —RK, such that:

V¢ = Ro xk, |vg|=5= R|ow x k| = Ro = R0.

If we choose s(0) = 0, 6(0) = 0, we find s = R0. A survey of the forces acting
on the cylinder (see Fig. 4.19) leads to the Lagrangian:

1 .
L = 5 (I + MR*)0> + RMg0sina,
where I; is the moment of inertia of the cylinder relative to its axis. Then the

Lagrange equations (2.5.17) yield:

. 2
0 — —gsinoc:O.
3R

This equation, together with the initial conditions, determine uniquely the motion
of the cylinder.


http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ138
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4.6.6 Mechanical-Electromagnetic Analogies

4.6.6.1 Larmor Precession

Let us consider a system of charged particles (electrons), performing a finite
motion in a central electric field, created by a fixed point charge. We also assume
that the whole system is in an external, constant, homogeneous magnetic field B.
An atom placed in a magnetic field can be considered as such a system: the
electrons are point charges, moving in the central field of the nucleus. In the
following, we suppose that all particles of the system have the same charge e and
the same mass m.

In order to study the action of the magnetic field on the particles, we first write
the Lagrangian of the system relative to a frame having the origin in the centre
of the electric field (nucleus) and performing a rotation about an axis passing
through the fixed centre. The rotation is considered relative to a fixed frame with
the same origin. Then (4.3.4) yields:

N N N
L= %Z\V,-|2+ % Yloxrf+mdY vi-(@xr) -V, (4656
i=1 i=1 i=1

where v; is the velocity of the particle P; relative to the mobile frame and V is the
potential energy of the system of particles.

On the other hand, the Lagrangian of a system of N charged particles, moving in
the electric field produced by the nucleus and the magnetic field B (see (2.5.30)), is:

N N
L= %ZM\Z‘F@ZV:"A—W%
i-1 im

where A is the vector potential of the field B, while the potential ¢ can include a
term proportional to ) . j e’/ r;j. If B is constant and homogeneous, it is easy to prove

that the equation B = curl A has the solution A = %B x r. Then, we may write:

N N
o m 2 e
L = 3 i:E] |Vi| + E i:E] \/ (B X l',') — €¢. (4657)

We observe that the two Lagrangians (4.6.56) and (4.6.57) are equivalent if we set

e
=—B 4.6.58

w=5 ( )

and if the second term in the r.h.s. of (4.6.56) can be neglected. The second

condition is fulfilled if B is weak (B2 ~ (), while the first shows that the motion of

the system of particles relative to the frame rotating with the angular velocity

o=— ;E does not differ from the motion of the system relative to the fixed frame,

when B is absent.


http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ151
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We then conclude that a weak homogeneous and constant magnetic field
B gives rise to a motion of rotation of the system of charged particles about the
direction of the field (precession), with the angular velocity |w, | = £2. This is
known as Larmor’s theorem, while the corresponding angular velocity w; is
usually referred to as the Larmor frequency.

Larmor’s theorem is still valid if there are rigid connections among the particles
of the system. Let u be the resultant of magnetic moments of the closed currents
produced by the charges and L be the angular momentum of the rigid system
relative to one of its points, considered to be fixed (e.g. the centre of mass). As it is
well known from the general courses on electricity and magnetism, the resultant
moment of the magnetic forces acting on the particles of the rigid body is

M=puxB,
while g and L are related by
e
= —L
A 2m

Then the angular momentum theorem (1.3.35) yields:

dL B
Z:yxB:—e—xL:wLxL. (4.6.59)

2m
This result shows that the vector of constant magnitude L performs a uniform
motion of precession about B (Larmor’s precession), just like in the case of the
symmetrical top, with angular velocity w;. The same motion is performed by

the vector u = /L, where 4 = 5. The sense of precession depends on the sign of
the electrical charge of the particles.

4.6.6.2 Gyroscopic Forces

If we compare the Lagrangian (4.3.4) of a particle of mass m moving relative to the
non-inertial frame §':

1 1
L= §m|vr|2 + §m|w xr'P+mv, - (@xr)—mag-r' —V,

with the Lagrangian of a charged particle subject to an electromagnetic force
(2.5.30):

1
L= §m|v|2—e¢+ev'A,

as well as the equations obtained by the use of these two Lagrangian functions, we
can see some remarkable similarities.
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First, both the Coriolis force F.=2mv, x o and the Lorentz force
F = ev x B are gyroscopic forces. Since we are dealing with a motion in a non-
inertial frame, we shall keep the notation v instead of v, and r instead of r’.

Second, each of the two Lagrangians contains two velocity-dependent terms.
The remaining terms are only position-dependent.

Third, if we assume that the field B is constant and homogeneous, then
A = JB xr. This means that the terms mv- (w x r), belonging to the first
Lagrangian, and ev-A, which occurs in the second, are equivalent if we make the
correspondence m < e and choose

1
A= FOXT, (4.6.60)
meaning that
o = curl A". (4.6.61)

This analogy leads to the following Lagrangian of the particle, relative to the non-
inertial frame:

1
L= 5m|v|2 —m +2mv-A — V(x;), (4.6.62)
where A’ is defined by (4.6.60) and ¢’ by
1
¢ =r-ay— §|w xr. (4.6.63)

Note that the potentials A’ and q’)' are functions of the coordinates x; and the time ¢,
while V(x,) yields the potential force (the force of gravity in our case). Also note
that the quantities ¥ = v and ¥ = a are relative to the non-inertial frame S'.

The equation of motion is obtained by applying the Lagrange equations (2.5.17).
Performing calculations similar to those leading to (4.3.6), we arrive at:

mrt + 2mA’ +m grad ¢' — 2m grad(v-A’) + grad V = 0,
or, if we make some rearrangements of the terms and use the results of Appendix B,
mt =m(E +v xB')+F, (4.6.64)

where E’ and B’ are given by:
0
E = —grad ¢’ — &(2A'), (4.6.65)

B’ = curl (2A"). (4.6.66)

Equation (4.6.64) shows that the terms E’ and v x B’ have the units of acceleration.
It also tells us that the particle moves in an applied (F) and an inertial fields of force,
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the latter being defined by means of the potentials A’, ¢', as can be seen from the
definitions (4.6.65) and (4.6.66).

If the frame S’ becomes inertial and F is absent, then ag = 0, w = 0, and
equation (4.6.64) reduces to r = 0, as expected. We reach the same result if the
charged particle is neither accelerated by the electric field E, nor engaged in a
motion of rotation about the magnetic field B.

This analogy can be further developed. For instance, remark that E’ and B’ obey
the well-known source-free Maxwell equations:

/

curl E' = —66%7 divB' = 0. (4.6.67)

In conclusion, the study of a heavy non-charged particle in a non-inertial frame
can be accomplished by using the same Lagrangian formalism as for a charged
particle, moving in a velocity-dependent field of force, the generalized potential
being given by

V=m(¢ —2v-A). (4.6.68)

4.7 Problems

1. Determine the principal moments of inertia of the following homogeneous
rigid objects:

(a) A sphere of radius R;

(b) A circular cylinder of radius R and height #;
(c) A circular cone of base radius R and height #4;
(d) A rectangular parallelepiped of sides a, b, c;
(e) An ellipsoid of semi-axes a, b, c.

2. Making an abstraction for the oscillation and vibration motions, determine the
principal moments of inertia of the following molecules, considered as rigid
systems:

(a) A diatomic molecule AB;

(b) A triatomic molecule A,B, with the atoms disposed as an isosceles
triangle;

(c) A tetratomic molecule A3B, with the atoms disposed as a tetrahedron, the
basis being an equilateral triangle.

3. Assuming that the Earth is a homogeneous sphere of radius R, uniformly
rotating about the Poles-axis, determine the acceleration of gravity g at some
point on the Earth in terms of the angular velocity w and the radius R.
For which latitude 4 does the deviation from the geocentric vertical attain its
maximum?
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10.

11.

12.
13.

14.

15.

16.

17.
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. A heavy particle of mass m falls without initial velocity from the height 7 > 0.

Using the successive approximation method, determine the influence of the
Coriolis force on the falling particle.

. Determine the deviation of the plane of motion of a body thrown from the

surface of the Earth with the initial velocity v,

. Show that the trajectory of a particle constrained to move in a horizontal plane

(but otherwise free) is always deviated to the right in the Northern hemisphere
and to the left in the Southern hemisphere (Baer’s rule).

Check the validity of the relations (4.5.2) and (4.5.3), expressing the com-
ponents of the vector @ on the axes of the frames S and §'.

. A homogeneous disk of mass M and radius R can rotate about its centre. Study

the motion of the disk, assuming that at time # = 0 the angular velocity of the
disk is wq, while the angle between the instantaneous axis of rotation and the
normal to the disk is a.

A homogeneous sphere of mass M and radius R rolls without sliding on an
inclined plane of angle o. Using the Lagrange equations with multipliers,
determine the law of motion. The initial velocity is assumed to be zero.
Find the kinetic energy of a cylinder of radius R rolling on a plane. One
assumes that the principal axis of inertia is parallel to the axis of the cylinder.
The moment of inertia relative to this axis is I, while the moment between the
two axes is a.

Find the kinetic energy of a homogeneous cylinder of radius a, rolling within
a cylinder of radius R.

Determine the kinetic energy of a homogeneous cone rolling on a plane.
Using Euler’s equations, show that the torque of constraint for a body rotating
about one of its principal axes is zero.

A thin rod AB of mass M and length [ is pinned at one end to a rotating shaft.
Find the equilibrium value of the angle «, for a given constant angular
velocity w of rotation of the shaft.

Find Euler’s angles as functions of time, for the free rotation of a symmetrical
top.

Under which conditions does a rigid body with axial symmetry behave like a
symmetric top? Apply the result to a homogeneous cylinder.

The mass density of a rigid ellipsoid of semi-axes a,b,c (a # b # ¢) varies
according to
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xZ
P(xh X2, -x3) = p0<1 +OCC§>7

where pg and a are two constants. Prove that o can be chosen in such a way
that the rigid body behaves like a symmetric top.

18. Determine the condition under which the rotation of the symmetric top about a
vertical axis is stable.

19. Study the motion of a symmetric top for which the kinetic energy of self-
rotation is bigger than the gravitation energy (rapid top).

20. A right homogeneous cylinder of mass M, radius R and height % rotates about
a vertical axis z passing through its centre of mass G, with a constant angular
velocity w. If the angle « between the vertical axis and the cylinder’s axis
of symmetry is also constant, find the lateral pressure at the two bearings
A and B.

z
f------§-

B

W------2_.
0




Chapter 5
Hamiltonian Formalism

5.1 Hamilton’s Canonical Equations

The previous three chapters have been primarily concerned with the use of the
Lagrangian formalism in the study of various mechanical problems. Assuming
again that our field of investigation concerns only natural systems (i.e. systems
possessing either a simple, or a generalized potential), we remind the reader that
the Lagrangian approach to mechanical systems with a finite number of degrees of
freedom consists of the definition of the Lagrangian L, as a scalar function of the
generalized coordinates ¢; (j = 1,n), generalized velocities ¢; (j = 1,n) and the
time t:

L(q,é],l):T(q,q,t)*V(q,q,l‘), (511)
and the integration of the Lagrange equations:

d (0oL oL —

(=) - ==0 =1 5.1.2

a(5) - -0 G=Tm. (5.12)

which means the determination of g; as functions of the time:

q;=qj(t) (j=1,n).

These are the finite equations of motion of the system in the configuration space
and, at the same time, the parametric equations of the generalized trajectory
described by the representative point. The two sets of variables g; and ¢; com-
pletely determine, at any time, the position and the velocity of the system in the
configuration space.

As it has been shown, the definition (2.8.6) of the generalized momenta,

oL
= — i=1,n 5.1.3
Pi= 5, (j=1Ln), (5.1.3)
M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2_5, 211
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leads to a slightly different form of the Lagrange equations:

oL
0q,

Dj (j=1,n). (5.1.4)

On the other hand, the theory of differential equations shows that a system of
n second-order differential equations with n variables of the type (5.1.2) can be put
in a normal form, i.e. it can be expressed relative to the derivatives of the highest
order ¢;:

éj:gj(qaibt) (J: 17”)7 (515)

if the Hessian determinant is non-zero, that is, in our case,

_ | 9P«

= 3,

} L £0. (5.1.6)

0¢ j0qx

Recalling the meaning of the functions 7" and V, we conclude that, in our case,
this condition is fulfilled. Equation (5.1.3) can be solved with respect to §;:

;= hilg,p.t) (j=Ton), (5.1.7)

and then (5.1.4) takes the form:

. 0 —
pi==—L(q1, - qn;h1,... hy,t) (j=1,n). (5.1.8)
aqj hy,...,h,=const.

The system of n second-order differential equations (5.1.5), written in normal
form, is equivalent to the system of 2n first-order differential equations (5.1.7) and
(5.1.8), which are not yet in normal form. Let us show that these 2n equations can
be written in a symmetric form, customarily called canonical. To do this, we pass
from the set of independent variables (g;,¢,) to the set (¢;, p;), j = 1,n. In this
new representation, our system is completely determined by n generalized coor-
dinates ¢g; and n generalized momenta p;. This implies the substitution of the
Lagrangian function L(qg, ¢,1) by another characteristic function, in which g; and p;
appear as independent variables.

The mathematical procedure that gives the transition from the old set (¢, §;) to
the new set (¢, p;) is called Legendre transformation. To illustrate the method, let
us write the total differential of a two-variable function fix, y):

of of

df = Ldx + Ldy = od dy. 5.1.
f axHayy @dx + dy (5.1.9)

Here,
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and the subscripts show which variable is kept constant at the derivation.
We realize that, if (x, y) are chosen as independent parameters, then (¢, ) are
obtained by taking the partial derivatives of the function f with respect to the
independent variables.

If, instead of y, we take i as an independent variable,

(x, ) = (%, ¥),

then, obviously, the characteristic function will be different. To find it, we subtract
d(yyy) from both sides of (5.1.9). The result is:

dn = @dx — ydy, (5.1.11)
where the new characteristic function #7(x, y) is defined by
n=rf—w. (5.1.12)
Then, (5.1.11) yields:
on on
== =—|{=1. 5.1.13
v ( Ox ) 1//7 Y ( alﬁ ) X ( )

The Legendre transformation is widely used in thermodynamics. To show how
it works, let us write the fundamental thermodynamic equation for reversible
processes:

dU =TdS — pdV, (5.1.14)

where U(S, V) is the internal energy, T — the absolute temperature, S — the entropy,
p — the pressure and V — the volume. If we subtract d(7S) from both sides of
(5.1.14), the result is

dF = —SdT — pdV, (5.1.15)

where the state function F,
F=U-TS, (5.1.16)

was defined by Hermann von Helmholtz and has the meaning of free energy. Now
the new independent variables are (7, V), while S and p are given by:

S:_<Z_I;>v’ p:_(g_i)T. (5.1.17)

Going back to our formalism, we first notice that the change of the independent
variables (q,q) — (g, p) does not affect the variable ¢, which remains the same in
both representations. Differentiating (5.1.1), we may write:

"~ /0L oL oL - oL
dL = —dq»+—.dq->+—dt: pidq;+ p;dq;)+—dt, (5.1.18
;(aqj J oq; 7 ot ;( €4 jd4;) ot ( )
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where (5.1.3) and (5.1.4) have been used. Now, if we subtract the quantity
d >, pjq; from both sides, we get:

. . oL
—dH = (p;dg; —q;dp;) + 5 dr, (5.1.19)
=1
where
H(g, p.t) =Y pjdj = L(4:4: Doy g0 (5.1.20)
=1

and the velocities g; have to be replaced according to (5.1.7). The function
H(p, g, 1) is the already known Hamiltonian function or, as it is usually called, the
Hamiltonian. Equation (5.1.19) shows that the independent variables are now

(qj7 p])' Thus7

, aH) . <6H> .
gi= | — , pi=—| =— (]217}1)7 (5121)
! (apj 0q;/,
oL 0H
= .1.22
ot ot G )

The system of 2n first-order differential equations (5.1.21) is equivalent to the
system of n second-order differential equations (5.1.2). By integration, one obtains
the set of independent variables (g;, p;) as functions of time and 2n arbitrary
constants. In order to uniquely determine the motion of the system in the space
defined by the variables (g;, p;), one must know 2n independent initial conditions,
e.g. ¢;(0), p;(0) (j = 1,n). Remark that Egs. (5.1.21) are written in a normal and
symmetric form. They were established by William Rowan Hamilton and are
known as Hamilton’s canonical equations. The function H, as well as the
canonical equations, play a fundamental role in analytical mechanics, with many
applications in physics, chemistry, mathematics, etc.

The independent variables (g;, p;) are called canonical variables, or conjugate
variables. Each generalized momentum p,, (k fixed) is canonically conjugated to a
generalized coordinate g;. The variables g1, . .., q,, p1, - - ., p, can be considered as
the coordinates of a generalized or representative point in a 2n dimensional space,
introduced by the American physicist Josiah Willard Gibbs and called the phase
space. In this space, any solution ¢;(t), p;(¢) of the canonical equations (5.1.21) is
represented by a generalized curve, which is the generalized trajectory of the
representative point.

Before going further, we wish to deduce Hamilton’s equations in a different
way. To this end, we remember that the Lagrange equations (5.1.2) can be derived
by means of Hamilton’s principle,

5]
5/L(q,c'1,t)dt:0. (5.1.23)
1
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The equivalence between Lagrange’s and Hamilton’s systems of equations
gives us the idea that the canonical equations can also be obtained using Hamil-
ton’s principle. Indeed, by substituting (5.1.20) into (5.1.23) and performing the
variation indicated by the operator , we have:

0H 0H
pidq;+qiop; — —9q; — 5p')dt0, 5.1.24
/Z< 04+ q;op; 3, qj p; J ( )

where we used the fact that the virtual displacements dg;, 6p; in the phase space
are taken at t = const. (6r = 0). Integrating the first term on the Lh.s. of (5.1.24)
by parts, we obtain:

15 1%}
n n <

/ > pidq; =) pida;| -
f J= = h

‘o
/ Z j?jéqj dt,
1 J=1

or. since (34;), = (44;), =0,

/Z[(q, )517, (p,-+ %)5%} dt =0. (5.1.25)

For arbitrary and independent dg;, dp;, this equality holds true if and only if
each of the 2n parentheses is zero. As a result, we obtain again Hamilton’s
equations (5.1.21).

Observations:

(a) If one of the n generalized coordinates ¢y, ..., g,, say g (k fixed), does not
explicitly appear in the Lagrangian L, i.e. if g, is cyclic, then it remains cyclic
in the new representation. Indeed, (5.1.21), yields

P = const., (5.1.26)

showing that the general momentum theorem holds true. If all the generalized
coordinates are cyclic:

Pr=Ci,...,pp=0Cy,

the Hamiltonian H becomes a function of time only,
H=H(C,...,Cy,1),

and so the cyclic coordinates are obtained by quadratures:

0H
qj:/adﬁqg (j=T.m), (5.1.27)

where the integration constants ¢ are determined from the initial conditions.
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(b) The relation

(©)

f(q1y--,qn, D1y -, Pu,t) = const. (5.1.28)

is a first integral of Hamilton’s equations (5.1.21) if fis a constant for any
solution of these equations. The first integrals are also called constants of
motion. For example, the relation (5.1.26) is a first integral. If the Hamiltonian
does not explicitly depend on the time, then

H(q1,---,qn, P15 - -, Pn) = CODSL. (5.1.29)

is also a first integral, since

dH I~(0H. 0H ", (OH O0H OH 0H
dt ; ( og;, 7 " o, pj) ; ( 0q; Op;  Op; Oq; )

In view of (5.1.22), we also have:
dH 0H 0L

E—E—_E. (5.1-30)

To know A cyclic coordinates means to know £ distinct first integrals of the
canonical equations (5.1.21). If we are able to find 2n distinct first integrals of
Hamilton’s equations, then the system is integrated.

We recall (see Chap. 2, Sect. 2.8) that the Hamiltonian of a natural scleron-
omous system represents its total energy. If the time ¢ does not explicitly occur
in the potential function V, then (5.1.29) reads:

H =T+ V =const., (5.1.31)

i.e. the energy first integral. This result also holds true for the case of a
generalized potential.
The Hamiltonian for rheonomous systems is given by (2.8.33):

H=T,—Ty+V=T+V— (T +2Ty), (5.1.32)

meaning that in this case the function H is not identical to the total energy. If
the time ¢ does not explicitly appear in (5.1.32), H is a first integral, without
being the total energy. It is also possible for H to be the total energy, without
being a constant of the motion. Finally, there are cases with H being neither a
first integral, nor the total energy.

In the examples to follow, we shall show how to find the Hamiltonian and how to

determine the differential equations of motion by means of the Hamiltonian formalism.

5.1.1 Motion of a Particle in a Plane

Consider a particle of mass m, moving without friction in the plane z = 0, subject
to the conservative force F = —grad V. Choosing g¢; = x, g» = y, we can write:
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1
2
In order to make the use of the Hamiltonian formalism possible, it is necessary

to express H as a function of the generalized coordinates x, y and the generalized
momenta py, p,. To this end, we use (5.1.3):

H=T+V=—(i+7%)+ V(x,y) = const. (5.1.33)

oL . oL .
px — a_x e mx’ [)y = a—y = my’ (5134)
such that
L, 2
H= %(Px‘Fl’)v)*'V(x:)’)- (5.1.35)

According to the canonical equations (5.1.21), we have:

Px . Py . ov . ov
= — = — X:_—7 :——7 5136
k=0 y=o b w0 T ( )
or, finally,
.. ov . ov

mi = - =F,, my:—a—y = F,, (5.1.37)

which are projections on the x- and y-axis of the vector equation
mr = —gradV =F. (5.1.38)

Sometimes, as we already know, it is more convenient to choose the polar
coordinates g; = r, q» = ¢. Then,

1
H= Em(r2 +7r29*) + V(r, ). (5.1.39)
Since
oL oT oL oT 5
= AT = < = ', = 0 = " = .’ 5.1.40
P or or ' P op 0¢ mre ( )
the Hamiltonian reads:
1 2, 1,
H= m(p’+;’2p‘”) + V(r, p). (5.1.41)
The canonical equations (5.1.21) yield then:
0H . . 0H
=B _ P 20 Pe (5.1.42)
op, m op, mr?
. OH Do ov ) OH ov
Yy =——= = - =, == =—-=, 5143
P or  mr o Pe Rl7) 1) ( )
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leading to the expected equations of motion:

_aa_" =F, mQ2ip+rp)= L Fy. (5.1.44)
p

If V is independent of ¢ (cyclic variable), the associated generalized momen-
tum is the area first integral:

P = mr*{p = const. 5.145
®

5.1.2 Motion of a Particle Relative to a Non-inertial Frame

The Lagrangian corresponding to a particle moving with respect to a non-inertial
frame is (see (4.3.4)):

1 1
L= 5m|v,\2 + 5 mlo x v+ mv, (0xr)—mr -ag—V, (5.1.46)

where 1’ = xju'; is the radius-vector of the particle relative to the non-inertial
frame and v, = x}(u;{ is its relative velocity. To shorten the calculation, we take r’
as a vector generalized coordinate. The vector generalized momentum

/

L
p =mv, + mo xr (5.1.47)

= a—vr
is then introduced into (5.1.20), yielding:

1 1
H=p -v,— L= 5m|v,|2 — 5 mlo x v)F+mr -ag+ V. (5.1.48)

If the origin of the non-inertial frame has the acceleration ap = g, meaning that
V is not connected with the gravitational force, we have:

I
H= o |p =0 (0xx) +mr -2 + V. (5.1.49)
m

From (5.1.21), we obtain:

0H 1
Vr:a—plzap'—a)xr/’ (5.1.50)
. 0H ov
p/:7@ :—wxp'fmao*§~ (5.1.51)

Equations (5.1.50) and (5.1.51) yield the expected equation of motion of the
particle relative to an accelerated frame:

ma, =F —may — mo x r—mo x (0 xr') —2mo x v, =F + F, + F,,
(5.1.52)
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where

ov
a, = xu'y, =3 (5.1.53)

5.1.3 Motion of a Charged Particle in an Electromagnetic Field

Let us choose g; = x, g2 = ¥, g3 = z as generalized coordinates. The Lagrangian
associated to a particle of mass m and charge e, moving in the electromagnetic
field E, B is (see (2.5.30)):

1
L= Emvjvjfed)JrevjAj. (5154)

The generalized momenta

L
pi=— =mvj+eA; (j=1,2,3) (5.1.55)
6vj

are then introduced in the Hamiltonian, which reads:

1
H:pjvj—L:Emvjvj-&-ed), (5.1.56)
or, in terms of x;, p;,
1
H = o (pj—eAj)(p;j—eA;) +ed. (5.1.57)

Hamilton’s canonical equations (5.1.21) yield:

0H 1 1

X =v = R E(Pj_eAj)éjk: p (Px — eAy), (5.1.58)
o0H e 0A; 0¢
D= —— = —(p;i—eA;)—L —e 2. 5.1.59
Pk an m (p] € J) a)Ck € axk ( )
The total time derivative of Ai(x, y, z, t) is:
. 0A, 0A;
Ay = — P — 5.1.60
T Yy (3.1.60)
consequently,
. . 0 0A; 0A; 0A;
= = —e—"1 —e— = | =L - =—=. 5.1.61
mug = miy ean e o + ev; ( o 5%, ( )
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Since

0A; 0A;

—L — = =€im 1A) |

oxy  Ox; in (CUrl A),,
we notice that

0A;, 0A
”f(ax,: - axf) = exjmvj(curlA), = (v x curlA),
and finally
mi; =e(E+v xB), (5.1.62)

which is the x,-component of the equation of motion.
An interesting and useful special case concerns a stationary electromagnetic
field with axial symmetry, characterized by

E = —grad¢, B =curlA,

where the potentials A, ¢ do not depend explicitly on time. Let us choose a

cylindrical system of coordinates p, ¢, z, direct the z-axis along the symmetry axis

and assume that A, =0, A, #0, A, = 0. Since by definition B, = 0, the non-
zero components of B are:

0A 10

B,=——", B,=——(pA,).

14 Z p a p (p QD)

Noting that A and ¢ do not depend on ¢, we may write the Hamiltonian as

1 1
i o+ Sl —eprulp P 2 +edlna) (1Y
Hamilton’s equations for the conjugate variables ¢ and p,, are:
0H 1 OH
¢ Py mp? (P(p ep <p)7 Po 30 )

and lead to the first integral
Pp = mp>p + epA, = const. (5.1.64)
Since H does not explicitly depend on time, we also have the energy first integral:

1
E= B m(p? + p*@* + %) + e = const. (5.1.65)

The differential equations of motion for p and z are obtained either by using the
canonical equations, or directly from (5.1.62):

m(p — pp*) = eE, + epB., (5.1.66)

mZ =eE, —epB,. (5.1.67)
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Fig. 5.1 A magnetic lens.

Assume now that E = 0, while B is constant and homogeneous. Then (see
Chap. 4, Sect. 4.6.6):

1 1
A(P = E(B X r)(p = EpBZa
and the first integral (5.1.64) reads:
1
mp*p + = ep* B, = C(const.), (5.1.68)

2

known as Busch’s relation. If at the time r = 0 the particle is at the origin O of the

coordinate system, where B, = 0, v, = 0, then C = 0, and the last relation yields:
eB,
2m’

o= (5.1.69)
meaning that the particle performs a motion of precession about the z-axis
(Fig. 5.1).

This effect is applied in the construction of magnetic focusing devices, called
magnetic lenses. The substitution of (5.1.69) into (5.1.66) leads to the second order
differential equation

. eB, 2

Assume that the particles move close to the z-axis and that the magnetic field
acts only on a small portion of the path of the beam (paraxial beam). Then the
components of the velocity along p and ¢ are negligible in comparison with the
component along z. If Z = v = const., we have:

_ 2 dp _ Uzdz_P
dz? dz?

and (5.1.70) yields:

d*p eB, 2

— ' =0. 5.1.71

dz? M (va P ( )
Since ZZT’Z’ <0, the magnetic lens is converging, independent of the sign of the

charged particles.
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The electric lens is based on a similar focusing principle. Both electric and
magnetic lenses are used in electronic microscopy, television devices, etc.

5.1.4 Energy of a Magnetic Dipole in an External Field

Let us consider a charged particle describing a circular trajectory in the constant and
homogeneous magnetic field B. This is a closed circuit, equivalent to a magnetic
dipole. Recall that for such a field the equation B = curl A admits the solution

1
A= Eer' (5.1.72)

Substitute this relation into the Hamiltonian (5.1.57) and assume that B is weak
enough so that we can neglect its second power. Thus,

1
H:ﬂ|p|2+e¢_§v.(er):H0+H/, (5.1.73)

where H, is the energy of the dipole when B is absent and H’ is the supplementary
energy of the dipole due to the existence of B:

1 e
Ho = - Ip|> + e, H'=—2v-(Bxr). (5.1.74)
The area AS swept by the radius-vector of the particle during the time At is:
AS = ! r X Ar
=3 ,
and the areal velocity reads:
85 _ Ly
At 2 ’
such that
AS e
H = —eB- "> = B (<AS) = ~B- (IAS).
A At (148)

But u = IAS is the magnetic moment of the dipole and we arrive at the expected
result:

H =—p-B. (5.1.75)

5.2 Routh’s Equations

The Lagrangian and Hamiltonian methods are distinct from each other by the
choice of the independent variables: the generalized coordinates and velocities
(¢;,g;) (j = 1,n) in the Lagrangian approach and the canonical variables (¢, p;)
in the Hamiltonian formulation.
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In some circumstances, as in that of cyclic coordinates, it is convenient to
choose as the set of independent variables a mixture of Lagrangian and Hamil-
tonian parameters. Such a method was given by the English mechanicist Edward
John Routh.

Assume a dynamic system with n degrees of freedom, defined by two sets of
independent variables: the Lagrangian variables (q;,¢;), j = 1,s, and the Hamil-
tonian variables (q,, p,), o = s + 1,n. The variables

QjanaQavpzat (5.2.1)
are called Routhian variables. The transition from the Lagrangian set (g;, §;, 1),

j=1,n, to the Routhian variables (5.2.1) is performed by a Legendre transfor-
mation. For infinitesimal and arbitrary variations of the parameters, we have:

dL(ql)"'aqS7('IS+17"'7ql’l)QI7" 7qS7QS+15" 7‘.]}17 )

:Zaa?l' q,—i—z dq“+Za_qu+Z dqa afdt.
=1 94

o= s+1 oa=s+1

Subtracting the quantity d(zm_Y o qy) from both sides, we obtain:

dR = — ‘ Za dqj+ZQadpa_Zpadqq__ )

j=1 o=s+1 o=s+1

(5.2.2)

where

n
R(qb .. ‘761s7q1a .. wésaCIerb oo dny Ds+1y -+ oy me) = Z pozc']a —L (523)
o=s+1

is Routh’s function, or, simply the Routhian. Equation (5.2.2) yields, on the one hand,
oL  OR oL  OR
d, " a4 B4, 0

or, by means of the Lagrange equations (5.1.2),

d [ OR OR
22y 22 =90 i=1.5). 52.4
dr (aq) ag, 0 VT 24
On the other hand, we have:
OR OR -
= , pu=—— (a=s+1,n), 5.2.5
G=g, P o ( ) (5.25)
as well as
OR B oL

—_— = - 5.2.6
ot ot ( )
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We conclude that the characteristic function R generates simultaneously two
sets of equations: s second-order Lagrange-type differential equations (5.2.4) and
2(n — s) first-order Hamilton-type differential equations (5.2.5). In the first set
R plays the role of the Lagrangian, while in the second it stands for the Hamil-
tonian. The equations (5.2.4) and (5.2.5) are called Routh’s equations.

Combining (5.2.6) with (5.1.22), we obtain:

oL 0H  OR

== (52.7)

meaning that if one of the three functions L, H, R does not explicitly depend on
time, neither do the other two.

The definition (5.2.3) of R shows that if a coordinate g, (k fixed) is absent from
L, it will likewise not occur in the Routhian. Suppose that all the (n — s) variables
g« (2 =s+ 1,n) are cyclic. Then (5.1.4) gives (n — s) first integrals:

Py =hy, (x=s+1,n), (5.2.8)

where h, are some arbitrary constants, such that

R = R(ql, <o (s, (.]] e -74?7 hs+1, ceey hn, I). (529)
This means that the Lagrange-type equations (5.2.4) will be expressed in the non-
cyclic coordinates ¢, . . ., ;. Integrating these equations, we obtain the non-cyclic

coordinates ¢; = ¢;(f) and the associated velocities ¢; = ¢;(f). These quantities
are then introduced into R and, by means of (5.2.5);, the cyclic coordinates are
found by quadratures:

OR -
qa:/ dt+q° (x=s+1,n), (5.2.10)
Oh,
where g’TR are functions of time only. The constants g5 are determined from the

initial conditions. In this way, the existence of the (n — s) cyclic variables reduces
the number of Lagrange equations from n to s < n.

Application. Let us study, using the Routhian formalism, the motion of a
particle subject to a central force. The already known Lagrangian

1
L=3 m(i* 4+ r*@*) — V(r) (5.2.11)
displays the cyclic coordinate ¢, such that
oL
Do = % = mr*p = h,(const.). (5.2.12)

The Routh function is then

1 1
R=pyp—L= Emrqu2 ~3 mi® + V(r)

or, in view of (5.2.12),
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h? 1
R(r,ihy) = quﬂ ) mi? + V(r). (5.2.13)

The non-cyclic coordinate r is obtained by integrating

d (OR OR 0
dr \ or or
which, by means of (5.2.13), becomes:

mi— —2% =_ "~ =F. (5.2.14)

The solution » = r(f) of this equation is then introduced into (5.2.10) to determine
the cyclic coordinate ¢:

OR h dt
= [ ——dt+ o, = —“’/— + . 5.2.15
@ / an, Po =" P ®o ( )

The last step is the substitution in (5.2.15) of r(¢) by its value earlier determined.
As one can see, the variable ¢ = ¢(r) has been found by a quadrature.

5.3 Poisson Brackets

A mathematical device, which proved to be very useful in the analytical study of
mechanical and non-mechanical systems, is the so-called Poisson bracket for-
malism. Let f(q, p, t) and g(q, p, t) be any two functions of the canonical variables

qis--+sqn, P1,- - -, Pn and of the time z. The functions are supposed to be contin-
uous and differentiable with respect to the variables. The expression
—~(0f dg 0of dg
{f’g}zz(a_a__a_a_ (5.3.1)
“={\0q; 0p; 0Op; g,

is called the Poisson bracket of f and g.
By means of this abbreviation and of the canonical equations (5.1.21), we can
write the total time derivative of any function f(q, p, f) as

df af of . f of of 0H Oof 0H
it = Z( ’+_/’>_5+Z<©_qj@_m_@_m%>’

or

5 H{fH) (5.3.2)
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Then, the relation

aa—];—k{f,H}:O (5.3.3)
expresses the necessary and sufficient condition that f(q, p, f) = const. be a first
integral of Hamilton’s equations (5.1.21). Indeed, since f = const. is a first integral
of (5.1.21), it satisfies (5.3.3). Reciprocally, the function f deduced from (5.3.3) is
a first integral of the canonical equations, because the characteristic system
associated with (5.3.3) is the canonical system. If f does not explicitly depend on
time, (5.3.3) reduces to:

{f,H} =0. (5.3.4)

The following properties result immediately from the definition (5.3.1) of the
Poisson bracket:

1°. {C,f} =0, C = const,;

2°.{f, Cg} = C{f. gks

3. {f.g} = —{&fh

4. Hf —gt = —{f g}

s A+ fgh=1{f,8t +{f. 8}

6°. {fleag} = fl{fZ;g} + {flvg}fZ;

7°. D{f,g} ={Df,g} + {f,Dg}, where D is any scalar or vector differential

operator, like %, % , V, etc.;

8°. {ai,q;} = {pi,pj} =0

9°. {qi, px} = ouxs

10°. {f, {g, h}} + {h, {f. g}} + {g. {h, f}} = 0 (Jacobi’s identity);
11°. {fvg(ylv" '7yn)} = Z?:l %{fa yt}

Property 3° shows the antisymmetry of the Poisson bracket and 5° its linearity
relative to both functions. Property 7° is called the Leibniz rule. The brackets
given by 8° and 9° are known as the fundamental Poisson brackets. Any pair of
conjugate variables g, py (k fixed) obeys the relation

{ae, pr} = 1.

The proof of each property is very easy, except for Jacobi’s identity 10°. To
verify its validity, let us calculate:

(£ g h}} —{g.{f.h}} = {fZ(a%g% - %%)}
= J Y J

e(u e v
& “=\0q; Op;  0p; g,

or, in view of property 6°,
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{f {gvh}} - {gv {f&h}}

Sl -Sallea ]
+Z{@qz{f’@m} @ali{ aq/} Gq/{g’%}Jrs_li{g’%H'

The third sum vanishes and, using the property 7°, we finally arrive at:

(o)~ e ) == D |G U0 = g (0]
= _{h’{fvg}}a

which completes the proof.

Poisson’s Theorem. If f{q, p, t) = const. and g(q, p, t) = const. are two first
integrals of Hamilton’s equations, then {f, g} = const. is also a first integral of the
same system.

To prove the theorem, we first note that, by hypothesis,

d d
f+{f,H}—o a—f+{g,H}:0. (5.3.5)

We now write Jacobi’s identity for f, g, H:

{file HYy +{H,{f,8}} +{g:{H, f}} =0
which, by (5.3.5), becomes:

{Loeh+{rEh+ttram=o

or, in view of property 7°:

g s =0,

and thus Poisson’s theorem is proved.

The procedure indicated by Poisson’s theorem does not always lead to a new
(i.e. independent) first integral. Indeed, the number of the independent first inte-
grals is limited by the number of canonical equations. Besides, the Poisson bracket
of, say, fand g, can be either a linear combination of these functions, or even zero;
in both situations Poisson’s theorem will not lead to any independent first integral.

Observations:

(a) If the Hamiltonian H does not explicitly depend on time, H = H(q, p), then by
(5.3.2), we have:
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dH
— ={H,H} =0.
= {1}

By taking the partial derivative with respect to time of (5.3.3), we also obtain:

o [/of of

—| = —,H;=0

at<at>+{ar’ } ’
meaning that, if f(q, p, ¢) is a first integral of Hamilton’s equations, then so is %—{ .
(b) Using definition (5.3.1), we can give another form of the canonical equations
(5.1.21). To this end, we calculate the Poisson brackets {g;, H} and {p;, H}:
" (dq; OH dq; OH 0H 0H
{q;, H} _Z(aja - 616> = —0p ==,
=\ 0qx Opx  Opx Oqx Opk op;j

" (dp; 0H dp; 0H oH oH
{P./,H}—Z(—j— - _J—> =50k =5

<\ Oqx Opx  Opx Oqk Oqk g,
leading to Hamilton’s equations (5.1.21) in the new form:
q;={a;,H}, pj={p;, H}. (5.3.6)
5.3.1 Poisson Brackets for Angular Momentum
1. Assume the choice:
X\ =X, Xa=Yy, X3=12, p1=Ppx, P2=Dy P3=D: (5.3.7)

Let us show that, if /; and /; are any two components of the angular momentum of a
particle,

I=rxp, [i=ce€ux;p, (5.3.8)
then
{li,1;} = €ijilk, (5.3.9)

where the summation convention has been used.
To prove (5.3.9), we use (5.3.8) and the definition (5.3.1):

o o, ol al
© Oxx Opx Opx Oxx

= 6ismejuv(551651)k-xupm - 6/71k5ukxspv)7

which, after some index manipulation, leads to

{li7lj} = (5mj5iu - 5mu5ij>(xupm - meu)-
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Performing the summation over « and v, we obtain:
{li,1;} = xipj — x;pi. (5.3.10)

The antisymmetric tensor L;; = x;p; — x;p; can be uniquely associated with the
axial vector /; (see Appendix A), such that

lk = % ekijLij; Lij = Eijklk, (5311)
which yields (5.3.9). The cyclic permutation of indices leads to three relations for
the three components of the angular momentum 1. The significance of (5.3.9) is
that, in view of the fundamental brackets 8° and 9°, no two components of the
angular momentum can simultaneously play the role of conjugate momenta in a
given system of reference. This relation also shows that, if /; = const., /, = const.
are two first integrals of the canonical equations, then there exists a third first
integral I3 = const., i.e. only two out of the three components are independent.

Let us now apply the theory to the isotropic oscillator, considered as a con-
servative system. The Hamiltonian

1 1
H=— pipi+ = kxix; 5.3.12
57 PiPi+ 5 kxix ( )

and the canonical equations (5.1.21) yield:

. 1 . .
Xj=pps bi=—kx (j=123). (5.3.13)

Three first integrals (two of them independent) are:
Il =const. (i=1,2,3). (5.3.14)

Another first integral can be deduced from (5.3.12), by any choice of the index j,
say j = 1:

1
—~ PP+ kx? = E,. (5.3.15)
The Poisson bracket of /3 and E; gives:
2
{l3,E1} = 2kx1x, + Eplpz = 0. (5316)

The independent first integrals are then: H, I, I3, E;, op. Poisson’s theorem
cannot furnish any new independent constant of motion. Otherwise, all the six
coordinates and momenta would be equal to some constants and the integration of
the canonical system would reduce to an algebraic exercise.

Nevertheless, a time-dependent sixth integral can be obtained from the
equations of motion (5.3.13):

1 . k
WoX1 COS Wot — — p1 Sin wgt = oy w% = —|.
m m
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Since we have already found six independent first integrals, it can be proved easily
that neither Poisson’s theorem, nor any other method can furnish any more
independent constants of motion.

2. Let us now show that, if /> is the squared angular momentum of a particle,
then

{1,,’} =0. (5.3.17)
In view of property 6° and Eq. (5.3.9), we have:
{li,l2} = {li,ljlj} = Q.Zj{li,lj} = 2€ijkljlk = 0,

since € is antisymmetric and the product /;l; is symmetric in the summation
indices j and k. We conclude that /* and any component of I can be simultaneously
chosen as conjugate momenta.

3. If x; is an arbitrary Cartesian coordinate and /; is an arbitrary component of
the angular momentum, then

{xi, 1} = ejex. (5.3.18)
This relation is verified if one makes use of the properties 6°, 8° and 9°:
{xh l]} = Ejms{xizxmps} = 6jmsxméis = € jmXm-

In a similar way it can be proven that

{pi,lj} :Eijkpk~ (5319)
4. A useful Poisson bracket is that of the Hamiltonian of a particle of mass m,
subject to a conservative force F = —grad V(x, y, z), with any component /; of its
angular momentum. Let us prove that
{li,H} = (r xF), = M,, (5.3.20)
where
1
H= o pjpj+V(xy,z). (5.3.21)
Indeed,

1 1 ; ;
U Hy = 5 Aloppy + VY = —pllap} + 5o 5 — 0o
or, using (5.3.8) and (5.3.19),

{li7H} = —ei‘vkxxg—:]; = (l’ X F)
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which proves (5.3.20). If the force F is central, then
{li,H} =0, (5.3.22)
i.e. in this case /; and H can be simultaneously regarded as conjugate momenta.
The relation (5.3.22) also shows that, if /; is time-independent, then /; is a first
integral of the canonical equations (areas theorem).
The result is the same if the particle carries the electric charge e and moves in

the static electromagnetic field E, B. In such a case,

H :L(pj —eAj)(pj —eAj) +eg, (5.3.23)

2m
li = €juxj(px — eAg), (5.3.24)

and the Poisson bracket reads:

{li, H}y = {Eiijj(pk —eAy), ﬁ (pj —eA;)(pj—eAj) + €<f>}

1 0A
= E |:€isk(Pk — eAk) — ee,-jkxjgj (pS — eAS)

e 0A 0
— €ijsX; _E(Pk — eAy) 6): +€a—;ﬁj

e, (oA 0a
= Gt Oxg ox, ox /|

Thus, by (5.1.61) and (5.1.62), the relation (5.3.20) follows immediately.

5.3.2 Poisson Brackets and Commutators

In all the aforementioned examples the physical quantities occurring in the Poisson
brackets had the property of commutativity, meaning that for any two quantities
A and B, the relation

AB = BA (5.3.25)

is valid. In other words, in classical (non-quantum) mechanics we do not care

about the order of the factors in a product. But, if A and B are two operators
associated with the physical quantities A and B then, in general, the two opera-
tors are non-commutative, i.€.

AB + BA. (5.3.26)

This property lies at the basis of quantum mechanics, where to each physical
quantity we associate a linear Hermitian operator. If we apply (5.3.26) to some
function f, then

A(B f) # B(A f), (5.3.27)
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which means that the order of action of the two operators is not arbitrary. The
difference

AB — BA = [A, B] (5.3.28)

is called commutator. Therefore, if [1217 E] =0, we say that the two operators

commute and if [A, B] # 0, the operators do not commute. In the language of
quantum mechanics, the commutativity of any two operators expresses the fact
that the associated physical quantities can simultaneously be measured with
arbitrary accuracy; if the operators do not commute, the simultaneous measure-
ment of the associated physical quantities cannot be made more precise than a
certain minimal value, given by Heisenberg’s uncertainty principle.

In the Hamiltonian formulation of quantum mechanics, the Poisson brackets are
replaced by commutators of operators, and in the following we shall establish the
correlation between the Poisson bracket of any two physical quantities and the
commutator of their associated operators. To this end, we assume that properties
2°-7° are valid, except for the arbitrary order of the operators appearing in
property 6°. Let us denote by {A, B} the quantum analog of the Poisson bracket of

the two operators. In view of 6°, for any three operators A, B, C we can write
{A,BC} = B{A,C} + {A, B}C, (5.3.29)
as well as
{AB,C} = A{B,C} + {A,C}B. (5.3.30)

{AB,CD} = A{B,
AC{B.
and on the other hand:

(AB,CD) =

, by subtracting one from the other:

{A,C} {D,B}
[A,C]  [D,B]’

meaning that for any pair of operators 7. & we may write:

{f.8} = Clf.2], (5.3.31)
where C is a constant. In quantum mechanics, it is shown that the operator @
corresponding to an observable physical quantity has to be Hermitian: ¢! = &.
This property is satisfied if we take C' = —C. The units of C follow from the
definition of the Poisson bracket:
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[C] = (Energy x Time)™".

All these conditions are fulfilled by the choice

i h
== h=— 3.32
c=—2 ( 2n>, (5.3.32)

where 4 is the Planck constant. Thus, finally we can write:

{r.8}= %[}‘,él (5.3.33)

Using property 9°, let us write (5.3.33) for the operators %; and p;, associated
with the conjugate variables x; and p;, respectively:
. i
{xi, pj} = 7 [%i, pj] = 6ij,

or
[%i, pj] = iho;; (i,j=1,2,3), (5.3.34)

which is the well-known Heisenberg commutation relation. It is clear that (5.3.34)

is satisfied by the choice
)AC,' = Xi, i’j: ?ai;] (l,]: 1,2,3) (5335)
Here, X is the coordinate operator and p is the momentum operator. They play an
important role in quantum mechanics.
Let us now transpose in the quantum language some results obtained in this
section. By (5.3.2) and (5.3.33), the operator A associated with a certain physical
quantity A obeys the relation:

dA  0A 1

— =—+ —[AH 5.3.36

dr o ih[ Hl, ( )
where the Hamiltonian operator is defined by

- 1 N

H= % PjiPj + V(x) (5337)

or, using the representation (5.3.35),

. K2 .
H= —%A'f' V(x), (5.3.38)

where A = % is the Laplacian operator. Applying the operator H to the state
I

function / associated with the microparticle, we find the Schrodinger equation for
non-stationary states:

K2 . . )
—— A+ VI|y=E E=——_—. 5.3.39
< 2m + )lp v, i Ot ( )
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The commutation relations for the operators associated with the components of
the angular momentum are obtained in the same way, from the corresponding
Poisson brackets:

[Zi,zj] == iheiﬂjk, (5340)

;7] = 0. (5.3.41)

5.3.3 Lagrange Brackets

Let ¢(q, p,t) and Y(q, p, t) be two arbitrary functions, continuous and derivable
with respect to all arguments. Their Poisson bracket is:

-\ aq)alpa(paw)
{qo,w};(aqj 50 o)) (5.3.42)

As we can see, the r.h.s. is a sum of n functional determinants (Wronskians),

9 %9 29
Ae) _ G Wl (k fixed), (5.3.43)
a(Qk, pk) 3 Bpe
and we may write:
~ (e, ¥) _ e ¥) (¢, ¥)
.Y} = = o 5.3.44
to-vh ; g, py) g1, p1) 0(qn, Pn) ( )
If the Wronskians do not vanish,
(e, ¥)
— #0, (5.3.45)
(g, ))

then the transformation (¢, ) — (g, p) is locally reversible and we have:

q;=q;(,;¥), p;j=rpi(e,¥). (5.3.46)
Let us now introduce the notation
~(0q; 0p;  q; Op;
= E — =t - 3.4
(¢.¥) ( op 0y Y ¢ )’ (5:347)

=1

called the Lagrange bracket of the two functions, ¢ and .
The Lagrange brackets obey properties similar to 1°-11°. For example, the

choice ¢ — qi, ¥ — ps (k,s = 1,n) yields:

(qxs ps) = —(Ps; qx) = s- (5.3.48)
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Similarly,
(qx,45) = (P, ps) = 0. (5.3.49)
The brackets (5.3.48) and (5.3.49) are the fundamental Lagrange brackets. Since
~ 0(qx, Pr)
oY) =) A 5.3.50
@)= 2 B0 (5:3.50)
we have:

B 0(qk: px) O, )
mwmw—;:aéﬁ'mm»

_ q’“”" ZZajk =n. (5.3.51)

j=1 k=1 qJ’ j=1 k=

Let us now prove that, if

Pa = Palq,p,t) (a=1,2n) (5.3.52)

are 2n independent and invertible functions, then

2n
D (@0 @) Par o1} =05 (jk=T,n). (53.53)

a=1

From the definitions (5.3.1) and (5.3.47), we have:

2n 2n n n
dg, Ops  Ogq, Opy (6% 0, 09, fm)
Pus @) Pus 01} = | Y <P ppe s ) B
2 (0w 0 000r) ;{;(a%@% 99,00, ) 5=\ P Opm O

a=1

But

Z aq? a(Pu Z apY a(pa — sm,

aq)a aqm a(pa apm
dqs Op, dps 09, _
Z 0¢, Opm Z 0p, Oqm 0

and thus, finally,

E ah% a(/)k aps a(Pk 0g; a(Pk
q)av(p qoavq) sm+— 5sm :—:5
( 2 b= =1 m= 1(61"" j 0qm 0p; 09, %

As an immediate application of (5.3.53), we shall obtain the fundamental
Poisson brackets, starting from the Lagrange fundamental brackets. To this end,
we split the sum into two groups of terms:
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2n n 2n
D (@0 0 0w o} =Y (0 o) {0 0k + Y (01 0){0i, i}
a=1 i=1 i=n+1

Now we choose ¢; = g; in the first sum on the r.h.s. and ¢, ,; = p; in the second.
Then, for ¢; = g, ¢, = pk, we find:

n n

Z(Cb, qi){gi, pi} + Z(Pi’ a;){pi,px} =0,

i=1

or, by (5.3.48) and (5.3.49),
{pi7 Pk} =0.

Using the same procedure, an appropriate choice of ¢;, ¢, yields the rest of the
fundamental Poisson brackets:

{qjan} =0, {qjapk} = 5jk'

5.4 Canonical Transformations

As we have seen, the choice of generalized coordinates within the analytical
formalism is not unique, but it should be made appropriately, so that to obtain the
maximum information about the physical system in the simplest possible way. For
example, the coordinates r, ¢ are more useful than x, y in the study of central force
problems.

In the three-dimensional space, the transition from the Cartesian coordinates x;
(i =1, 2, 3) to, for example, the curvilinear orthogonal coordinates ¢; j = 1, 2, 3)
is given by:

xi =xi(q1,q2,93) (i=1,2,3). (5.4.1)

This transformation can be generalized in the configuration space. Here, the position
of the representative point can be determined by any appropriate choice of Lagrangian
variables. Let g; and Q; (j = 1,n) be two such sets of variables. The relations

0;=0j(q1,--an,t) (j=T1n), (5:4.2)

where it is assumed that the variable ¢ appears explicitly, represent a point
transformation in the configuration space. If the Jacobian of the transformation
(5.4.2) is non-zero, we also have the inverse transformation,

Qk:qk(Qla"'aant) (kzl,_l’l) (543)

Passing now to the Hamiltonian formalism, we first recall that the generalized
coordinates and the generalized momenta are independent variables. This means
that in the phase space the most general transformation is
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Qj:Qj(qvpvt)v Pj:Pj(qapvt) (]:17_”)7 (544)

where, as before, we have left out the indices inside the parentheses. This is,
obviously, a point transformation in the 2n-dimensional phase space. We also
assume that the transformation (5.4.4) is locally invertible, i.e.

a(Q,P) a(Qla"'vaPla"'an)

= 0. 5.4.5
a(va) a(le"mePla"an) # ( )

If the system of canonical equations (5.1.21) keep their form under the trans-
formation (5.4.4), that is if the new variables Q;, P; obey

. oM . oH
ija—Pj, Pf*fa—Qj (j=1Ln), (54.6)

where
H=H(Q1,.-.,0n, P1,..., Py,t) (5.4.7)

is the Hamiltonian of the system in the new representation, the transformation
(5.4.4) preserving the form of Hamiltonian equation of motion is called canonical.
In mathematics, such a transformation is called contact transformation, whereas
the concept of canonical or symplectic transformation refers to the case when none
of the physical quantities explicitly depends on the time ¢, i.e., there is no explicit
t-dependence in (5.4.2)—(5.4.4) and similarly H = H(q, p) and H = H(Q, P) are
time-independent. However, the contact geometry is related but different from the
symplectic one.

Since not all the transformations of the form (5.4.4) have this property, let us
find the condition of canonicity. To this end, we use Hamilton’s principle (5.1.23)
in the form:

5]
1

5/[; pjdq; — H(g; p,1) dt] =0. (5.4.8)

The reader is already acquainted (see Sect. 5.1) with the fact that the canonical
equations can be derived by means of Hamilton’s principle. In order that the new
variables Q;, P; also satisfy the canonical equations, they must verify Hamilton’s
principle:

5/[2 P;dQ; —H(Q, P,1) dt] =0. (5.4.9)

The equations deriving from (5.4.8) and (5.4.9) must describe the same motion, so
that we must have
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5]

o)
/( pjdqj— Hdt) = C/ (Z P;dQ; — Hdt), (5.4.10)
no N J=1

4]

where the constant ¢ is called the valence of the canonical transformation. If
¢ = 1, the transformation is univalent. Here and hereafter we shall deal with
univalent canonical transformations only.

The integrands in (5.4.10) can differ only by a total differential of some scalar
function F, because

5]

P / dF = 8F(1) — 3F(t;) = 0.

131

Consequently, we obtain:
> pidq; — Hdt = PidQ; — Hdt + dF, (5.4.11)
=1 =1

known as the canonicity condition.

The function F is called the generating function of the canonical transformation
(5.4.4). As one can see, it is a function of 2n + 1 independent variables:
qis s qn, Q1 ..., On, t. Let us name it F (g, Q, t). Then,

1 6F1 6F1 aFl

J=1

and, in view of (5.4.11),
p_;=T7 Pi=—-_— HzH—i——t (j=1,n). (5.4.13)

Equations (5.4.13); give Q; in terms of qi,...,qu, p1,-- -, Pu,t, i.e. the first set
(5.4.4), of the canonical transformations. These are then introduced into (5.4.13),,
which gives the second set (5.4.4), of the canonical transformations. Finally,
(5.4.13); expresses the connection between the two Hamiltonians, H and H.

The generating function F' makes possible the transition from the old variables
qj, p;j to the new variables Q;, P;. It must depend on n old variables (either g; or
p;), n new variables (either Q; or P;) and, of course, on the time ¢. Thus, besides our
previous case, there are still three other possibilities:

F(q,P), F(p,Q), F(p,P).
The transition from g, Q; to g;, P;, as independent variables, is performed by
means of a Legendre transformation. Adding the quantity d (Z?Zl P;0 j) to both
sides of (5.4.11), we find
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> pidq; — Hdt = =" Q;dP; — Hdt + dF, (5.4.14)
j=1 j=1
where
Fy(q,P,t) = Fi(q,Q,0) + Y P;Q; (5.4.15)

J=1

is the new generating function. Following the procedure given in the previous case,
we obtain:

oF, 0F, oF, ;
_ _ —H+ 2 Gi=Tn). 4.16

Another possible Legendre transformation is realized by subtracting
d(3231 pjaj) from both sides of (5.4.11). The result is:

~> qjdp; — Hdt = P;dQ; — Hdt + dF3, (5.4.17)
j=1 j=1
with
F3(p7Q5t) Fl qu t ZPJ('IJ (5418)

The transformation equations are:

6F3 6F3 aF3
=2 p.=__2 =H o 4.1

The last possible choice is the transition from g;, Q; to p;, P; as independent
variables. This is done by a double Legendre transformation. Adding
d_1(P;Q;— p,q;) to both sides of (5.4.11), we arrive at:

~> qidp;— Hdt == Q;dP; — Hdt + dFi, (5.4.20)

J=1 J=1

where we have denoted
n
Fi(p, P,1) = Fi(q,Q,1) + Y (P;Q; — pja))- (5.4.21)
=1

The corresponding equations of transformation are:

OF, OF, oOF,
= %5, H=H+ " (5.4.22)
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Observations:

(a) The differential equation (5.4.11) expresses the necessary and sufficient con-
dition of canonicity. The first part of this assertion has already been proved. To
prove the sufficiency, we must show that, if (5.4.13) and the canonical
equations (5.1.21) written for g, p; are satisfied, then the canonical equations
in terms of Q;, P; are also valid. The total time derivative of (5.4.13), yields:

PF < 62F1 nORF .
pj= 'k + Ok
/ ataq, Z kz:,: 00«0q;

Opx P .
= —_— — 0 5.4.23
aq} k= a kz J “ ( )

But, in view of (5.4.13),

H(Qa P, t) = H[Q7P(Q7 Qvt)7t]7 H(C],p,t) = H[Cbp(qa Qvt)at}a

and thus
3 " OH 0P, OH D 0H
—(H-H)= § <—H—" - —ﬂ> - (5.4.24)

Substituting (5.4.24) into (5.4.23) and taking into account (5.1.21), we arrive at

"/ OH \ 0P —
=l ( aPk aqj
If oP
k
—= 40, 5.4.26
0q; ( )

then we obtain the first set of canonical equations (5.4.6). The second set is
deduced in a similar way, by taking the total time derivative of (5.4.13), and
following the same procedure. This last step is left to the reader as an exercise.

(b) Irrespective of the type of the generating function F, the new Hamiltonian
H(Q, P,t) is obtained from the old one H(g, p, f) by adding the partial
derivative with respect to time of the function F. If the generating function
does not explicitly depend on time, then

H=H. (5.4.27)

In this case we have a completely canonical transformation.
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5.4.1 Extensions and Applications

The choice of the set of independent variables is indicated by the characteristics of
the problem. The following examples will give the reader a better idea of the
utility of canonical transformations.

1. Consider the generating function

F=F=> q;P; (5.4.28)
j=1

Then the transformation equations (5.4.16) yield:
pi=P, Qj=¢qj, H=H (j= 1,7), (5.4.29)

meaning that (5.4.28) generates an identity transformation. Reciprocally, it can be
shown that any identity transformation is canonical.
Now, if instead we choose

F=F=-) q;P, (5.4.30)

then
I (5431

hence any inversion in the phase space is a canonical transformation.
2. Consider the completely canonical transformation

Q;=0Q,lg,p), P;=Pj(qg,p) (j=1,n). (5.4.32)
Since in this case H = H, Eq. (5.4.11) reads:

> pidqj = PdQ;+dF(q,0), (5.4.33)
= =

or, in view of (5.4.32),
0Q; 00; " [ OF oF
zp,dq, zzp( %00 e + 22 4y )+Z(_dq,+_dp,>,
=1 k= Opr =1 a‘h apj

which yields:

OF <~ , 00« . an —
= P —T,n). (5434
p] aqj £ k aq1 apj kzzl: k'~ (.] ) ( )
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Next, take partial derivative of (5.4.34); with respect to p,, then change the index
J to s in (5.4.34), and take its partial derivative with respect to g; and finally
subtract one equation from the other, obtaining

(an 0P _ 00 aP’c) — () ps) = b5, (5.4.35)

k=1 aCIj aps aps acﬁ

i.e. one of the fundamental Lagrange brackets. Suitable derivatives of (5.4.33) give
the remaining fundamental Lagrange brackets:

(4j,95) =0, (pj,ps)=0. (5.4.36)

This analysis shows that the transformation (5.4.32) is canonical, if the
Lagrange fundamental brackets hold true. If this transformation is invertible, a
similar procedure leads to the Lagrange brackets in the new variables:

(Om, Px) = Oims  (Qm, Qx) =0, (P, Pt) =0. (5.4.37)

3. Let us now show that the Poisson bracket of any two functions of the
canonical variables is invariant under the canonical transformation (5.4.4), i.e.

{o.¥}op=A{0.¥},, (5.4.38)

We begin by proving the invariance of the fundamental Poisson brackets:

{gjsPiYor =AapPi}ep Adp@tor =190y,
{Pjspiyor = 1Pi Pity, (5.4.39)

Taking the partial derivative of (5.4.13); and (5.4.13), relative to O, and g,
respectively, and choosing suitably the indices, we have:

op;  OF o, OF
00, 0q;00," 0q; 00,9q;’
and thus
op; O,
= s=1,n). 5.4.40
30, 3, (J ) ( )

Similarly, by means of (5.4.16), (5.4.19) and (5.4.22), we obtain:
apj o aQY GQJ o an aqj 7an

= = = s =1,n). 4.41
a0 30 "y ah gy Ue=TM (44D

On the other hand, the Poisson bracket of g; and p; in the new variables Q;, P;, is:

~( 0q; Opx  Oq; Opx A —
{ijpk}Q,P = Z;(aQ]SaPS - aipjs aiQs (Jak = 17”)7 (5442)
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or, using (5.4.40) and (5.4.41),

. aqj aQs GQj aPs an
{9 Pitor= ;(6& 50 P30, ) " Ba Ok = (qjs Py p-

Also,
“~( 9q; Oqr  0q; Ogx
wadar=3(38 o5 ~ of 56,

B 0q; 0Qs, 0g; OPs B qui B
=3 (a0 o ek o) = e =0 iy

as well as
{pj, pk}Q,p =0= {pja pk}q}p?

which completes the first part of our proof.
Now, going back to the Poisson bracket of ¢ and y, we have:

[ 0p Oy 0p Y
{(Paw}Q.P = Z(an 0P, 0P, 00
Z[ G (ax// Sq; , O 61%) 3 (aw Bq; %)]
an 6q] aPk apj 6Pk aPk aqj an apj an
which becomes, after some manipulation,
n al// n al//
{0 Wor=> {0 ditor+ > ~—10. P} op (5.4.43)
j=1 aq} j=1 apj

Apply now this relation to the brackets {g;, @}, p and {p;, ¢}, p. Since

n a(p n a(p n a(p a(p
jy = A B + A s = — 0= ~_
{a; QD}Q,P ; o {a; ‘Ik}Q,P ; o {a; Pto.p E e Jk @pj

n a(p n a(/)
o = ~_ o + ~_ iy -
{pj QD}Q,P k§:1 g {p] Qk}Q,P ]?:1 i {pj pk}Q,,P E aq
equation (5.4.43) simplifies to

_N~ (S0 % O aw>
{(p?lp}Q,P ;(aqj apj apj aq] {(P,lp}%p,

which completes the proof of (5.4.38).

This property enables us to show that the successive application of two
canonical transformations is also a canonical transformation. Let us assume that
the first transformation is given by (5.4.4), while the second is

= 0(Q,P,1), P;=PF(Q,P,t) (j=Tn). (5.4.44)
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The transformation (5.4.4) is canonical if, according to (5.4.38),

{Q’j7 P,'c}w = {Q’j, P,’(}Q_p, (5.4.45)
while (5.4.44) is canonical if it satisfies the fundamental Poisson bracket,
{0}, Pilopr =0k (5.4.46)

The last two relations then yield
{Q’j7 P,’(}w = 0. (5.4.47)
In a similar way we find:
{Q_’].7 Q;(}W =0, {P;, P,i}w =0. (5.4.48)

The relations (5.4.47) and (5.4.48) give the proof of the aforementioned property.
Combining this result with the existence of the identity and inverse transforma-
tions as canonical transformations, eqs. (5.4.28)—(5.4.31), we conclude that the
class of canonical transformations has a group structure.

Using a similar procedure, it is not difficult to prove that the Lagrange bracket
(¢,) is also invariant with respect to the canonical transformation (5.4.4):

(@:¥)g.p = (@:¥)y - (5.4.49)

This proof is left to the reader.
4. Let us show that the absolute value of the Jacobian of any canonical trans-
formation is equal to one. We first observe that the Jacobian

30 ;. P _
g2 AQnP) T (5.4.50)
0(qs, pm)
is a 2n x 2n determinant:
99, 99,
der o
J=1 - B (5.4.51)
0P, op,
R
Using (5.4.40) and (5.4.41) in (5.4.51), we have:
ops _ %m
op;*t T oP; o( )
J=| C = 2Py e (5.4.52)
_ O .
o0 e

and thus /> = 1 and IJl = 1.

5. In some applications, the generating function F is given and we are supposed
to find the associated transformation and show whether it is canonical. In other
cases, the transformation is given and we have to show whether it is canonical and
find the generating function.
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Let us consider an example in which the generating function is

F=F(q,P)= P+l P (5.4.53)
= I\qg, =q 6 m g .
where m is the mass and ¢ is the vertical coordinate of a freely falling particle in
the constant gravitational field specified by the acceleration of gravity g. Since in
our case the independent variables are g and P, using (5.4.16) we obtain:

oF, OF, 1 P?
=—=P = — = ——. 5.4.54
% . 0= %5 9% 5 g ( )
It is very easy to show that this transformation is canonical. Indeed, calculating the
Jacobian, which in our case coincides with the Poisson bracket {Q, P}, we have:

Since the generating function does not explicitly depend on time, the Hamiltonian
of our application is found by using (5.4.16); and (5.4.54):

2
H=H=2" 1 mgg=mgo. (5.4.55)
2m

Hamilton’s canonical equations (5.4.6) then yield:

. 67‘( . @'H

which, by integration, give:
0=C;, P=-—-mgt+Cy,

where C;, C, are constants. Therefore the expected solution of the problem,
written in the variables g, p, is:

P2 1
- :——gt +C3st+Cy, p=P=—mgt+ Cy, (5.4.56)
2m3g 2

q=0 -
with C3 = Cy/m,Cy = C; — C3/2m?g. The integration constants C; and C, are
determined from the initial conditions.

The reader is advised to solve the same problem using the remaining possible
forms of the generating function: Fi(q, Q), F5(p, Q), Fa(p, P). Are all these
functions consistent with the theory?

6. Consider now the following generating function:

1
F=F = 3 mawog* cot Q, (5.4.57)

where m and y, are two constants. Then, using (5.4.13), we find the variables p, P,
and H as functions of the independent variables ¢, Q:



246 5 Hamiltonian Formalism

oF
p=—1 =mawygcot O, (5.4.58)
Oq
aFl mayo )
P=—— = , 5.4.59
00 2sin’ Q i ( )
‘H=H. (5.4.60)
The desired transformation is then:
2P : . 1
g=|—| sinQ, p=(2mwyP)2cosQ, (5.4.61)
mao
or, conversely,
1 1
Q = arctan mCUoC]’ P=— p2 + = mwoqz. (5.4.62)
p 2mamy 2
Since
0Q OP 0Q OP
o, py— Q0P _0Q0P _, (5.4.63)

the transformation (5.4.61) is canonical.
Assume now that m and w, are the mass and the angular frequency of a
harmonic oscillator. In this case,

2
—a=P s
H—H—2m+2mw0q

and, according to (5.4.61),

H = woP. (5.4.64)
The coordinate Q is cyclic, which means that we have the first integral

P = const., (5.4.65)
while the canonical equations (5.4.6) give:

Q0 = wot + B, (5.4.66)
where f is a constant of integration. Using (5.4.61) and (5.4.66), we arrive at
1
q= (2—P> 2sin(wot + f) = A sin(wot + f).
mamyg

The constants A and f are determined from the initial conditions.
7. Suppose, this time, that the transformation

Q =+/2gé'cosp, P=/2ge 'sinp (5.4.67)
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is given and we have to show that it is canonical and to find the generating
function. To show the first part of the problem, we can either prove that the
absolute value of the Jacobian is one, as above, or use the canonicity condition
(5.4.11), which yields:
pdq — PdQ = (p — sin pcos p)dg + 2q sin® p dp, (5.4.68)
or, after a convenient grouping of terms,
pdq — PdQ = d(qp — gsin pcos p),

and consequently
F = q(p — sin pcos p), (5.4.69)

The last step is to express F in terms of g (or p) and Q (or P). Using (5.4.67), we
obtain the generating function in the form:

F(q,Q,1) = gcos™' Q\/g—qt - % Qe '\2g— Q% e (5.4.70)

Note that we arrived at the result (5.4.68) by a straightforward calculation, but
in general one uses mathematical formalism to prove that a differential expression
is an exact differential. In our case, in view of (5.4.68), we must have

0 0

— (2¢sin® p) = — (p — sin pcos p),

g (asin® p) = 7 )
which is true. Since

oF . oF . 2
— = p—sin pcos p, — =2g sin” p,
Jq op

by integration we obviously obtain the same result (5.4.69).

5.4.2 Mechanical-Thermodynamical Analogy.
Thermodynamic Potentials

In some applications, like in the study of the motion of a fluid, the parameters
characterizing the thermodynamical behaviour of the system must also be taken
into account. Since the principles of mechanics do not provide the equations
describing thermodynamical processes, we ‘borrow’ from thermodynamics the
equation of state, usually written in the form:

f(p,V,T) =0. (5.4.71)

Here, p is the pressure, V — the volume and T — the absolute temperature of the
system. The principles of thermodynamics connect these three parameters and two
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other thermodynamic functions, the entropy S and the internal energy U, by the
relation

T dS>dU + p dV, (5.4.72)

where the equality corresponds to the equilibrium processes. Assuming that we are
concerned only with equilibrium transformations, let us compare

T dS=dU+ p dV (5.4.73)

with (5.4.1),, written for a complete canonical transformation:
Y pida;j = PidQ;+dF(q, Q). (5.4.74)
j=1 j=1

It is obvious that (5.4.73) expresses the canonical transformation of the variables
S, T to the parameters V, p, the generating function being U(S, V). Since S, V are
independent variables, the functions p, T are given by (5.4.13):

T— (%’;)V p:_<2—'é>s. (5.4.75)

Here, the volume V plays the role of a generalized coordinate conjugated to the
pressure p, while the entropy S is a generalized coordinate conjugate to the tem-
perature 7. Then, p and T are generalized momenta, while the phase space reduces
to two dimensions: 7, S in the old variables and p, V in the new ones. This gives
the possibility of graphic representations of the thermodynamic transformations.

The function U(S, V) is called thermodynamic potential. The name shows that
T and p are expressed in terms of U by (5.4.75), very much like a force F is
obtained from a given potential energy.

The choice of U(S, V) as a thermodynamic potential is not useful, because the
independent variable S cannot be directly determined. Then, for practical reasons,
instead of U are used some other thermodynamic potentials: the enthalpy H, the
Helmbholtz free energy F' and Gibbs’ free energy (sometimes called free enthaply)
G. The transition from U to the new characteristic functions is realized by some
appropriate Legendre transformations. A comparative table for the canonical
variables and the generating functions is given below:

T=T(SV), p=p(SV), F(S, ) u(s,v),

T=T(S,p), V=V(S,p), FS,p)=H(S,p) =U+pV,

S=S(.V). p=p(T.V). BT ) Fr V) =U-15  O470
p(T,S), V=V(T,S), FyT,S)=G(T,S)=U-+ pV —TS.

The choice of one or another of the potentials U, H, F, G depends on the
physical problem at hand. In their turn, these functions can be taken as indepen-
dent variables, leading to new sets of generating functions. Nonetheless, not all the
state functions obtained this way have a practical utility.
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The use of the Legendre transformation method yields:

dH=TdS+Vdp, dF=-SdT —pdV, dG=—SdT+V dp, (54.77)

0 OH
T: (_) ’ V: (_> ’
s/, op /g
S=— a—F = a—F 5.4.78)
~\or), P \ev), (5.4.
(L) v- (%)
or /, op )
By means of (5.4.76) and (5.4.78), we find:
U=F-T a—F
B oT )

Hec-1(% ,
o ),

which are the well-known Gibbs—Helmholtz relations.

as well as:

(5.4.79)

5.5 Infinitesimal Canonical Transformations

We call infinitesimal canonical transformation any canonical transformation that
differs infinitesimally from the identity transformation (5.4.29).

In the previous section, we assumed that the transition from the set g;, p; of
canonical variables to the set Q, P; is performed by a finite canonical transfor-
mation. Since the canonical transformations have group structure then, supposing
that the generating function of the canonical transformation (5.4.4) is continuous
and derivable, any finite canonical transformation can be regarded as a succession
of infinitesimal canonical transformations. The fundamental property of an infin-
itesimal canonical transformation is that it can be expressed in an explicit form.
This gives rise, in turn, to an intimate connection between some infinitesimal
canonical transformations and the symmetry properties of mechanical systems.

Recall that

Fx(g, P) =Y q;P;
=

is the generating function of the identity transformation
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Qj=q;, Pi=p; (j=TLn).
If the canonical variables Q ;, P; differ from ¢;, p; by some arbitrary infinitesimal
variations dg;, dp;, then

Q;=qj+9dq;, Pj=pj+dp; (j=1n) (5.5.1)

is an infinitesimal canonical transformation. Its generating function is
n
F, = q;jPj+¢eW(q, P), (5.5.2)

j=1

where W is an arbitrary function of ¢g;, P; and ¢ is an infinitesimal parameter,
independent of the canonical variables. Using (5.4.16) we obtain

oF, oW(g, P) oF oW(g, P)
pj éqj J te 6q1 ’ Qj 6PJ qj ¢ 6P] ’
oW(q, P
H:H+s$, (5.5.3)
and the infinitesimal variations in (5.5.1) become:
oW(q, P) oW(q,P) .
Qj—qj‘:(sqj':EIa—Pj, Pj—pjzépj:—STj (]:171’1)
(5.5.4)

Since P; is only slightly different from p;, we can take W(q, p) instead of

W(q, P) and % instead of %. Thus,
J J

ow ow
6qj:8a, 6pj:—gaj (j=1,n). (5.5.3)
Here, W(q, p) plays the role of the generating function of the infinitesimal
canonical transformation, while dg;, dp; stand for the canonical variables.
Let f(q, p, t) be any function of the canonical variables. Its variation Jf due to
the infinitesimal transformation (5.5.1) can be written using (5.5.5) in terms of
Poisson brackets as

of =e{f, W} (5.5.6)
For dqj, 6p; and 6H, this yields:

5q]':6{q‘j,W}, 5pj:8{pj,W}, 5H:8{H, W} (557)

As we already know, if W(qg, p) is a constant of motion, the Poisson bracket
{H, W} vanishes. As a result, the first integrals of motion are the infinitesimal
generators of the canonical transformations that leave the Hamiltonian invariant.
This conclusion implies a connection between the symmetry properties and the
constants of motion.

Let us exemplify this property in the case of an isolated and constraint-free
system of N particles.
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5.5.1 Total Momentum as Generator of Translations

The infinitesimal generator of the spatial translations, along a direction of unit
vector s, is the projection of the total momentum on that direction:

N
W=s->p; (5.5.8)
i=1

Then, by (5.5.7):

N
Sxiy = e{xi, Wy =& > splia, pig} = e(sp00p); = e(s52);

3
j=1 p=1

N 3
iz = e{pin, W} = 62 Zsﬁ{Pim pig} =0,
J=1 p=1
or, in vector form,
or; = (da)s;;  op; =0, (5.5.9)
where da = e.
The Hamiltonian of the system,

1L 1
H= - —pl+V 5.5.10
;mip,+ : (5.5.10)

is invariant under the transformation (5.5.9). Thus W given by (5.5.8) is a constant

for any s, which shows the conservation of the total momentum P = Zf\i , P; (see
Chap. 1 and Chap. 2).

5.5.2 Total Angular Momentum as Generator of Rotations

The infinitesimal generator of the spatial rotations of angle 60 about an axis of unit
vector s is the projection of the total angular momentum on that direction:

N
W=s-L=s-) rxp, (5.5.11)

Following the same procedure as in the previous case, we have:

N 3 3
Oxio = S{Xixv Z Z eﬂvrlsﬁxjvpm} =¢ Z CapySpXiy,

J=1 Byn=1 Br=1

N 3 3
Opiy = 8{191'0” Z Z 6/3}*!7S[3xjypjr7} =é Z €xpySpPiy,

J=1 Byn=1 Boy=1
or, in vector form,
or; =00 xr;, op; =00 x p;, (5.5.12)
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where 060 = s60 and 06 = . Since the Hamiltonian (5.5.10) is invariant under the
transformation (5.5.12), the quantity (5.5.11) is a first integral of motion and shows

the conservation of the total angular momentum L = Zf\i L Ti X p; (see Chap. 1
and Chap. 2).

5.5.3 Hamiltonian as Generator of Time-Evolution

Let us now show that the time-evolution of the canonical variables is a succession
of infinitesimal canonical transformations, with the Hamiltonian as the generator
of the transformation. Suppose that at the time 7, we have

q(J) = ('Ij(t())a p(]) = pj(t()) (.] = I,_Vl),
while at the time ¢ = ¢y + J1,
a;() =q;(a",p°,1), p;(t)=p;(d’p°1) (j=T.n).
Using the canonical equations (5.1.21), we obtain:

aH(qO, pOa tO)

ot, 5.5.13

;= 4} +q;0t = ¢ +

aH(qu P07 tO)

pj:p(j)+pj5[:p(j)— 30" 51‘, (5514)
4qj
as well as
H(qv P, t) = H[q(t() + 5t)7 p(t() + 5t>a t() + 5t]
OH
=H(q", p°,10) + {— +{H, H}] 5t,

or 0

or

aH(qO, p07 tO)

ot. 5.5.15
oo t ( )

H(q, p,1) = H(q", p’,10) +
In general, any mechanical quantity f obeys the rule:
0
Flq(to + 61), p(to + 8t), 1o + 6t = £(q°, p°,10) + [a—{ +{f, H}} or. (5.5.16)
0

If f does not depend explicitly on time, then

Flatto +61), plio + 0] = £(g", p°) + { £, H}or. (55.17)
Compare now (5.5.13)—(5.5.15) with (5.5.3). This shows that H is the infinitesimal
generator of the transformation of parameter or = ¢. If we take
_ t—1

ot = - (n — o0)

and use the group property of the canonical transformations, then
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a;(t) =a;(@",p°,1), pi() =" P 1) (j=T.n) (5.5.18)

is a canonical transformation. The proof is therefore complete.

5.6 Integral Invariants

We have emphasized, in various approaches, the importance of the invariance
properties of mechanical systems. The invariance is expressed either as a principle
(e.g. Hamilton’s principle), as a theorem (e.g. Noether’s theorem), or in other ways
still to be encountered. In each case, the invariance leads to important results, some
of them being fundamental in physics.

The development of analytical mechanics shows that the study of canonical
equations necessarily leads to some integral expressions which are invariant with
respect to certain transformations. Henri Poincaré called these expressions inte-
gral invariants. This notion finds many applications both in physics and in many
other branches of science.

Let us consider the system of 2n first-order differential equations

Xy = Xs(x1, 0oy Xon, 1) = Xs(x, 1) (s =1,2n), (5.6.1)

where X, ..., Xp, are 2n functions, derivable in a certain domain D. Equations
(5.6.1) are the equations of motion of a point in the 2n-dimensional space R,,.
If we take as initial conditions x,(to) = x° (s = 1,2n), then the general solution of
(5.6.1) is:

x; = x,(x°,1) (s =T1,2n). (5.6.2)

Suppose that all the points which obey (5.6.1) at time f, are in a p-dimensional
(p < 2n) manifold V[? C Ry, . If the Jacobian of the transformation (5.6.2) satisfies
the condition

o(x)

J= ) £0, (5.6.3)

then to any initial point Py € Vg, it will correspond at the time ¢ > f, a single point

P of a manifold V, C Ry, (p =1,2n). In other words, this correspondence con-
serves the dimension of any manifold V,, (p < 2n), i.e. the set of points which at
the time 7 form a p-dimensional manifold, will form, at time 7 > #;, a manifold of
the same dimension.

In general, if V, (p <2n) is a p-dimensional manifold in R,, and er
(h =1, ..., v) is one of the v = (5, components of the ‘volume element’ that can
be formed in R,, (for example, dr}, = dxydx;,...dx,), then
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"
k
I,= / fi(x,1) dr,, (5.6.4)
VP

is an integral invariant of p-order of the system (5.6.1), if the integral is inde-
pendent of time, i.e.

dl
7; =0 (5.6.3)
or, equivalently,
v v
/ > 2 10) d(7h), = / Se(x,1) d,. (5.6.6)
70 k=1 p k=

Here, d(1}), is the volume element of the manifold v

The integral invariants are of the first order, second order, etc., as p takes the
values 1,2... If V,, is an open manifold, the integral invariant is called absolute; if
V), is a closed manifold, we are dealing with a relative integral invariant. It can be
shown that a relative integral invariant of order p is equivalent to an absolute
integral invariant of order p + 1. For example, by using the generalized Stokes’
theorem (see Appendix B), we can see that

2n 2n
afk afm
> fidr = /§ <— - —)dxmdxk, (5.6.7)
f = ) Ox,, Oxy

km=1
k<m
where the surface S of arbitrary shape is bounded by the closed curve I
Let us consider the absolute invariant integral of order 2n:

Toy = / Fle.1) d, (5.6.8)

where dt = dx,...dxy,, and find the condition which must be obeyed by the
function f, so that (5.6.8) is an integral invariant, i.e.

dI,, d

il / f(x,t) dT =0. (5.6.9)

Vay

To perform the derivative in (5.6.9), recall that our domain is moving, i.e. dt
changes in time. Making use of (5.6.2), we have:

dT,, dJ d
th = / {Ef[x(x°7t)] + Jd—{ } dr°, (5.6.10)
Vi

where J is the Jacobian of the transformation (5.6.2) and
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0_ 4.0 0
dv =dx|...dx,,

is the volume element of the manifold V3,. The total time derivative of the
Jacobian is performed by the usual rule:

xl7-- y Xi— laXla-xHrl?"'v-xZn) 56.11
72 0 0) ’ ( -9- )
xl,xz,...7x2n

where (5.6.1) has also been used But

0X; ax,
i k=1,2

axk

and thus the only non-zero determinants in (5.6.11) are those obtained fori = j, i.e.
a(x[) GX, - J@X,

a(xg) ox; = Ox;

(no summation),

therefore

Z ax (5.6.12)

known as Euler’s theorem. Introducing this expression into (5.6.10), we obtain:
dZ,, df 20X\ o / df 29X,
= J—= J dt = — dr.
dt /(dt+f;ax,- t dt+f;6x,- t
N Van N

Vi,
Since the domain of integration V,, is arbitrary, the function f must satisfy the
following condition of continuity:

2n
a H ax = 0. (5.6.13)

5.6.1 Integral Invariants of the Canonical Equations

Let us assume that R,, is the phase space and that the 2n first-order differential
equations (5.6.1) are precisely the canonical equations (5.1.21). Then, any integral
invariant of the type (5.6.4) is associated with the system of canonical equations
or, equivalently, with the canonical transformation (5.5.18). Consequently, if one
finds some integral which proves to be invariant with respect to a canonical
transformation, then this integral is an integral invariant of the canonical
equations.
We can construct the following absolute integral invariant:

Ny

Von
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where v = C? (p<n), V,, is a 2n-dimensional manifold in the phase space and

k
drﬁ = qua,. dpy,.

i=1

Here, oy,...,04 are kK numbers out of 1, ..., n, taken in an arbitrary order. The
relation between Z,; and the relative integral invariant I,;_; is:
Dy =1y. (5.6.13")

The integral invariants in which the Hamiltonian H does not occur are called
universal.
In the following, we shall discuss two cases: [ = 1 and / = n.

5.6.2 The Relative Universal Invariant of Mechanics

In the case [ = 1, formula (5.6.13") gives:
— > piday= [ Y- dpda; =T
r /=1 s

=1

Here, I" is a one-dimensional closed manifold, while S is a two-dimensional open
manifold. We wish to prove that I, is indeed an invariant, associated with the
transformations (5.5.18). In view of (5.6.6), the condition of invariance can be

written as ) .
/dejdqj:/de(;dq(}. (5.6.14)
s J=! 5 I

To prove this identity, let us express q(}, p(} as functions of two parameters vy, v;:

q(j)» = q?(vh v2), P(} = P(}(Uu v2). (5.6.15)

Using the definition of the Lagrange bracket, we can write:

(4j: P))
/de]dq] /Z 5 vjl,v; dvidv, = /(vl,vz)dvldvz,
pa
(4}, PY)
/Zd[’ ) = /Z 3 v/hv; vidvy = /(Ul»vz)odvldvh
b

where X is the integration domain in the plane of the variables vy, v, and the
subscript ‘zero’ shows that the Lagrange bracket is calculated in terms of the
canonical variables q(])-, p(}. On the other hand,

s, pi) _ Z {@(qj,pj) 3(qp-a7)
O(vi,v2) A= L0(gl.qp) O(vr,v2)

0(q;, p;) 0(qy, pY) N (g, p) (P}, pY)
0(q, pY) O(vi,v2) — B(pY, pY) O(vi,v2)

+
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or, if the summation over j is performed,

_ ~[0(a.q) o0 o o(as 1), o op P, o o
(Ul’v2> _lc,zl:l[a(vl’vz) (Qk’ql)—’_ @(vl,vz) (qk’pl) + a(vl’vz) (pk7pl) .

If we remember that the Lagrange bracket is invariant with respect to any
canonical transformation, we are left with

61 aP
vl, 1)2 Z a vﬁ,v; 5 Kl — (Ul, 7)2)0, (5616)

and (5.6.14) follows immediately. We conclude that I;(=Z,) is an integral
invariant associated with the transformation (5.5.18).

The contour I' occurring in the definition of the integral invariant /; is com-
posed by a set of representative points in the phase space, determined at the same
time . The integral invariant /; was introduced by Henri Poincaré and it is called
the relative universal invariant of mechanics. Later, Eli Cartan gave a general-
ization of this invariant for closed paths considered at different times. In particular,
the quantity:

1= ]{(Z pidq; — Hdt) (5.6.17)

r N

is the Poincaré—Cartan integral invariant.

A suggestive explanation of the conditions related to the path of integration is
given by the following geometric interpretation. Let us define the state space, or
the extended phase space R, . Each point of this space corresponds to a state of
the system. When referring to the invariant [;, the paths I'y and I lie in the
hyperplanes #, = const. and ¢ = const., respectively. In contrast, the closed contour
I' for the Poincaré—Cartan invariant / has no connection with any hyperplane ¢ =
const. If the integration path in (5.6.17) corresponds to simultaneous states, then
along the integration path we have dr = 0 and we get back the invariant I;.

The importance of the Poincaré—Cartan integral invariant (5.6.17) is that
through it one can reformulate the fundamental postulate of mechanics: The
motion of a mechanical system is described by the system of 2n first-order dif-
ferential equations

q =A; (qap7 )7 Pj:Bj(anaf> (.]:17’1); (5618>

with the initial conditions q(ty) = q(}, pi(to) = p‘;(j = 1,n), if the system (5.6.18)

admits the integral (5.6.17) as a relative integral invariant.
Indeed, in order that (5.6.17) be an integral invariant, the following conditions
must be fulfilled:
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1"

Fig. 5.2 The extended phase t,
space (state space).

I

Ajii, Bj:*f (j:1,l’l), (5619)

which leads to the canonical equations (5.1.21).

To justify this statement, let I’y and I" be two neighbouring closed paths, I
being the image of I'j in the state space. The one-to-one correspondence between
I' and I'y shows that the generalized trajectories connecting the points on I" with
the points on I'y do not intersect with each other, giving rise to a tube-like geo-
metric volume (Fig. 5.2). The variation of (5.6.17), when passing from I'j to I, is:

ol = f{ lz Spidg;+_ p;d(dg;) — SH dt — H(S(dt)] :

=1 =1
r

The operators é and d are independent; consequently,

5(dqj) = d(Sq;), d(dr) = d(5),
and thus, integrating by parts and expanding 0H, we obtain:
- H - H OH
ol = 7{ Z(dqj — a—dt)épj - Z(dp,- + a—dt)éq,» + (dH - —dt)ét .
/ = apj = aqj ot

The integral / is an invariant if 6/ = 0. Then, for arbitrary variations dq;, dp;, ot we
find the canonical equations (5.1.21), as well as the property (5.1.30) of the
Hamiltonian.

5.6.3 Liouville’s Theorem

In the case [ = n, the integral invariant is:

I, = / dqy ...dq,dp,...dp, (5.6.20)
Vz,,
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and expresses the fact that the “volume” of any portion of the phase space remains
invariant under the transformation (5.5.18). The proof of the invariance of (5.6.20)
is simple. Let us write

(g, p) 0 07,0 0
————~dq;...dq,dp; ...dp,.
(g0, po) !

But the transformation (5.5.18) is canonical, meaning that J = 1, which proves the
invariance of Z,,.

If by V3, we mean a vicinity of the representative point Py, at the time 7,, and by
V5, the vicinity of the point P, reached by the system at the time ¢ > f,, we have
arrived at an important theorem: The “volume” of any vicinity of the represen-
tative point does not change in time. This is Liouville’s theorem.

Liouville’s theorem is fundamental in statistical physics, where it was intro-
duced in connection with the notion of statistical ensemble. Let us imagine a large
number of replicas of a system, which are macroscopically identical, but micro-
scopically distinct. Assume, for instance, that our system consists of N identical
molecules, enclosed in a container. These molecules are characterized by
qi(t0), pj(to), at the time o, and by g;(r), p;(z) at the time 7. To each of these sets is
associated a point in the phase space. Let dN be the number of particles which, at
the time ¢, have their generalized coordinates in the infinitesimal interval
(9j,q; +dgq;), and their generalized momenta in the interval (p;, p; + dp;). Then
we can write

dq, ...dq,dp, ...dp, =

dN = f(q, p,t)dqi ...dg,dp: .. .dp,. (5.6.21)

Here, flg, p, t) is the distribution function, which expresses the probability of
finding the set of N particles in a cell of the phase space, whose ‘volume’ is

dt=dgq, ...dq,dp; ...dp,.

Assuming that there are no collisions between particles, the number of particles
which, at time ¢ + dt, are in the same cell of the phase space, is:

dN' = f(q+dq,p+dp,t+dt)dq, ...dg,dp; ...dp,.
The variation 0N of the number of particles in the elementary volume drt is
ON =dN' —dN = [f(q +dq, p+dp,t+dt) — f(q, p,t))dq;...dg,dp;. ..dp,.
If in the Taylor series expansion for dN we keep only those terms which are linear

in dqj,dp;, ot, we get:

" of . ~of . Of
SN ~ Z_qur ijJra— dzdt. (5.6.22)
=1 OPi !

Since, by hypothesis, the collisions are absent, N = 0, and (5.6.22) yields
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df
dt
as a consequence of Liouville’s theorem. This shows that the distribution function
flg, p, 1) is a first integral of the canonical equations.
The phase space may be imagined as a 2n-dimensional fluid. Indeed, the
position at time ¢ of a certain molecule of the fluid is given by (5.6.2):

X :xi(x?,xg,xg,t) (i=1,2,3),

=0, (5.6.23)

where x? and x; are the Cartesian coordinates of the molecule at times 7, and 7,
respectively. This hydrodynamic model can be compared with the phase space, the
only difference being the number of coordinates that determine the position of the
representative point. This 2n-dimensional fluid is called the phase fluid.

The Hamiltonian of a conservative system is a constant of motion:

H(q1,-..,qn, D1, -, Pn) = E = const. (5.6.24)

This relation leads to an interesting geometric interpretation. In the phase space
R»,, (5.6.24) represents a hypersurface, which is any s-dimensional manifold with
2 < s < 2n. Thus, if at the time f, the state of the system lies on some energetic
hypersurface, at any time ¢ > t, it will lie on the same hypersurface. This analogy
also shows that the phase fluid associated with the canonical equations behaves
like an incompressible fluid. This property is easily proved by integrating the
divergence-free condition

Z ax (5.6.25)

over some 2n-dimensional manifold of R,, and then applying the Green—Gauss
generalized formula:

/ i 6xl / Zde =0, (5.6.26)

Von Van—i
where
dt =dx; ...dxy;, =dS; dx; (no summation), (5.6.27)
with
dS,' = d)C1 .. .a’xi,ldx,-ﬂ .. .dXQ,,, (5628)
while V,,_; is the boundary of V,,. If we take xi,...,x, as the generalized
coordinates ¢y, . ..,qn, and x,41,...,X2, as the generalized momenta py,..., p,,

then, in view of (5.1.21) and (5.6.1),

Z o Z(% T %) =0. (5.6.29)
P o

O0g; Op;

Thus, Eq. (5.6.26), in hydrodynamic notation (see Chap. 6), reads:
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/ div v dt = / v-dS =0, (5.6.30)

Vay Van—i

meaning that the flux of the phase fluid passing through a closed hypersurface of
the phase space is zero. This is a different way of expressing the incompressibility
of the phase fluid. It also represents another formulation of Liouville’s theorem.

5.6.4 Pfaff Forms

Let us consider the differential expression

o(d) = Xidx;, (5.6.31)
i=1
where X; = X;(x1,...,x,) are n functions defined in some domain of the

n-dimensional space R,. The expression (5.6.31) is called a Pfaff form. We notice
that the integrand of a first-order integral invariant is a Pfaff form.

Consider now the Pfaff form w(J), associated with the variation performed by
the operator ¢, independent of the operator d:

w(d) = Z X, 6x;. (5.6.32)

The difference

Aw = dw(d) — dw(9) (5.6.33)
is known as the bilinear covariant associated with the form w. Since the operators
d and 6 commute, we can write:

Aw =Y Tidxdx;. (5.6.34)
ik=1
Here,
aX,' an
T = — 5.6.35
k Oxy Ox; ( )

is a the second-order antisymmetric tensor (if X; are the components of a
n-dimensional vector). If w is a total differential, then Stokes’ theorem implies

Ao = 0. (5.6.36)

By using this property, it is not difficult to show that two Pfaff forms which differ
from one another by a total differential of some twice-differentiable function
F(x1,...,x,) have the same bilinear covariant. Indeed, since 6(dF) = d(JF), the
two forms

w(d) = i Xidxi,
i=1
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o' (d) = o(d) + dF (x1,. .., x,)

give
Ao = Aw'.
If we denote
o = ;(ka - %f!‘)dxi (k=T,n), (5.6.37)
the expression (5.6.34) reads:
Aw = Y WrOXy. (5.6.38)
k=1

For arbitrary and independent variations ox;, we have Aw = 0 if
op =0 (k=1,n). (5.6.39)

The n equations (5.6.39) form a system associated with the Pfaff form (or contact
1-form) w.

Let us show that the canonical equations (5.1.21) can be considered as a system
associated with the Pfaff form

o(d) = Z pidg; — Hdt, (5.6.40)
p

which is nothing else but the integrand of the Cartan—Poincaré integral invariant
(5.6.17). Using the definition (5.6.33), we can write:

Ao = Z[épid%' + pio(dg;) — 0H dt — Ho(dr)

i=1
— dpiéqi — Di d(éq,) +dHot+ H d(ét)]
But the operators ¢ and d commute, such that

Aw = Zl:(dc]i 0 dt) opi — <dpi + ¢ dl) 56]{] + <dH - %d;)ét.

i=1 apl aqt

Therefore the condition Aw = 0, for arbitrary and independent dq;, dp;, dt, leads
indeed to the canonical equations (5.1.21). Reciprocally, if g; and p; are canonical
variables, the bilinear covariant of the corresponding Pfaff form is zero.

As a final example, let us consider the transformation (5.4.4):

q;=q,(Q,P,1), pj=pi(Q,P1) (j=T1n). (5.6.41)

Since, as we have already proven, the canonical equations written for ¢;, p; form a
system associated with the Pfaff form (5.6.40), the transformation (5.6.41)
is canonical if Hamilton’s equations written for Q;, P; are associated with the
Pfaff form
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Q=>"PdQ; — Hdt. (5.6.42)
i=1

But the two forms o and Q have the same bilinear covariant, namely zero, and
thus they can differ from one another only by a total differential of some function

F(q, Q. 1), i.e.

> pidq;— Hdt =Y PidQ; — Hdt +dF(q, Q,1),
j=1 j=1

which is precisely the canonicity condition (5.4.11).

5.6.5 Quantum Mechanical Harmonic Oscillator

The quantum theory of the atom was initially based on the Bohr—Sommerfeld
quantization rule:

Ji= %p,»dq,' =n;h  (no summation), (5.6.43)

where the index i takes as many values, as there are degrees of freedom in the
system, n; are positive integers and /% is the Planck constant. Since the units of the
product pqg are

[p % q] = Energy x Time,

the integral (5.6.43) is called the action modulus. One also observes that J; is a
relative, first-order integral invariant.

Let us use the rule (5.6.43) to derive some essential properties of the one-
dimensional quantum harmonic oscillator. The system possesses a single degree of
freedom, and so the phase space reduces to a phase plane (p, g). Since the system is
conservative, the total energy is constant:

Pl
E=T+V="—+ — kq* = const.
2m 2
Alternatively, dividing by E we get:
2 2
q p
=+ —=1 5.6.44
2zt 2mE ( )

k

This shows that the trajectory in the phase plane is an ellipse, with its centre at the
origin of the coordinate system, the semi-axes a and b being given by

a=1\—, b=+V2mE. (5.6.45)
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The condition (5.6.43), corresponding to a single degree of freedom, reads:

%pdq = 2mnh. (5.6.46)

This integral is nothing else but the ellipse area in the phase plane:

[2FE
nab =1 " 2mE,

leading by the quantization condition (5.6.46) to
E, =nhvy = nhawy. (5.6.47)

Here, wy is the angular frequency associated with the periodic motion of q.

The relation (5.6.47) shows that the quantum harmonic oscillator can exist only
in certain energy states. Further developments in quantum mechanics showed that
a better description is provided by the relation

1
E, = (n + E>hvo. (5.6.48)

Going back to Eq. (5.6.44), one can see that to each quantized value of the
energy E corresponds an ellipse. Then the energy hypersurfaces (5.6.24) are here
reduced to some closed curves, being also current lines of the two-dimensional
phasic fluid. The relation p = mg shows that, if p > 0, then g increases with time,
and thus we find the sense of the representative point on the trajectory (Fig. 5.3).

The state space has three dimensions, associated with ¢, p, t. The trajectory of
the representative point is a cylindrical helix, any cross section obtained by a plane
t = const. being an ellipse (Fig. 5.4), corresponding to the energy E = const. of the

harmonic oscillator.
Fig. 5.3 Energetic p
representation of a quantum
harmonic oscillator in the

N

E;
£

N

Fig. 5.4 Trajectory in the
state space of the
representative point
associated to the harmonic
oscillator.
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5.7 Hamilton-Jacobi Formalism
5.7.1 Hamilton-Jacobi Equation

The canonical transformations studied in Sect. 5.4 are particularly useful in the
derivation of the canonical equations (5.4.6) in terms of the new variables
Q;, P;(j =1,n) in the simplest possible form, i.e.:
0;=0, P;=0 (j=1,n), (5.7.1)
which can be integrated immediately, to yield

Qj:bja Pj:aj (]:1,7), (572)

where aj, b; are 2n constants of integration. Equations (5.4.6) yield (5.7.1) if the
Hamiltonian H does not depend on Q; and P}, or if it is a constant. Since only the
derivatives of H occur in the canonical equations, we may take H = 0. Let us then
find the canonical transformation leading to H = 0.

If we choose g, P; as independent variables, the transformation formulas are
given by (5.4.16):

oF, 0F, OF, o0F, 0OF e
== i=bi=—, —+H oGy ==t | =0 =1,n).
Pj aqjv QJ J apja ot + (417 4 aql aqn t) (] n)

(5.7.3)
Denoting

FZ(ql7"'7qu7Pl7"'a P117t> = FZ(qla"'aqnaal?"'aamt) = S(‘]J)7 (574>

equations (5.7.3) become:

oS oS .
pj= qu’ bj - aaj (] = 17”)7 (575)
oS oS oS
— + H e Gny Ty = =0. .
3 T (ql, 5 o, t) 0 (5.7.6)

The first-order partial differential equation (5.7.6) is called the Hamilton—
Jacobi equation, while S(q, t) is Hamilton’s principal function. If we are able to
integrate the Hamilton—Jacobi equation, then, by substituting the solution
S(q, t) into (5.7.5),, we find:

qj:qj(alv"'7an,bla"'7bn7t) (]:1,71),

i.e. the generalized coordinates as functions of time and 2n constants of integra-
tion, which are determined from the initial conditions. This means that the inte-
gration of the canonical equations, on the one hand, and of the Hamilton—Jacobi
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equation, on the other, are equivalent. Let us more thoroughly investigate the
solution of the Hamilton—Jacobi equation.

Jacobi’s Theorem. If S(q, a, t) is any complete solution of the Hamilton—
Jacobi equation (5.7.6), then the general solution of the canonical equations is
provided by (5.7.5).

Before proving the theorem, we remind the reader that a complete solution or
complete integral of a first-order partial differential equation is a solution of this
equation which contains as many independent arbitrary constants as there are
independent variables. In particular, if we choose ¢ as an independent parameter,
then a complete solution of the Hamilton—Jacobi equation should contain n + 1
independent constants. But, since only the partial derivatives of S appear in Eq.
(5.7.6), one of the constants ay,...,a,+1, Say a,4, is purely additive and disap-
pears upon differentiation. Therefore, the most general form of a complete integral
of the Hamilton—Jacobi equation is

S(qi1y- -, qn,a1,...,an,t) + const. (5.7.7)

The independent constants ay, .. .,a, are called essential.
To prove the theorem, we start by taking the total time derivative of (5.7.5):

d [ dS 0 <. 0 \os ’s )
E(Ej) - (5 +k§;qk@_%>$j - 0rda; +,;qk@f1k@aj Y

and also the partial derivative with respect to a; of the Hamilton-Jacobi equation:

s Z oH 0(5;) _ ¥'s LNOH OS5
Oajor 4= 6(2—;) Oa; Oa;0t 4= Opx Oqx0a;

Subtracting these two equations one from the other, we find that

- oH\ oS
= 5 ) a0 aa. = O 578
;(Qk apk>@qk6aj ( )
Assuming that
0%s
dapa|” (5.7.9)
we obtain:
o0H
=7 k=1 5.7.10
o Opk ( ), ( )

which is the first group of Hamilton’s equations.
Next, we take the total time derivative of (5.7.5); and the partial derivative with
respect to g, of the Hamilton—Jacobi equation (5.7.6):
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d(asy o +z”:. s
ai\dq;) ~ g0 L oq0q ~ 7

*Ss  oH Z oH L) @S O0H J~0H S
0

=+t + = ) =
0q;0t * dq; = (L) g 0q;j0t ~ 0q; 4= Opx 0q;0qk

Using (5.7.10) and assuming that
‘ o’

T 5.7.11
0q j0qx ( )

we obtain:

pij=—7z— (j=Ln), (5.7.12)

0q;
i.e. the second set of Hamilton’s equations.

Observation: Let us consider the action integral (2.7.17), taken on the generalized
trajectory, and assume that only one of the two end-points is fixed:

t

S(q,q.1) = /L(q,q,t)dt. (5.7.13)

Iy

Take now the variation of the action for all possible neighbouring trajectories:

=35« [3LG (5 o

Since on any of these trajectories the Lagrange equations are satisfied, the second
term above vanishes and we arrive at

oS = 2 8 g Pjoq;, (5.7.14)
which yields:
oS S
L= — ':1 . . 1
pi=g, (=T (57.15)

On the other hand, the total time derivative of S is

dS
E - Zaq} qj?
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from which, using (5.7.15), follows

ijqj L = H(q, p,1). (5.7.16)

We can also write

ds = Z dt Zp,dq, H dt,

which shows that the action S satisfies the can0n1c1ty condition required for the
generating function. For this reason, we used the same letter, S, to denote the
generating function of the canonical transformation (5.7.1). We also have

S= /Ldt -+ const., (5.7.17)
showing that Hamilton’s principal function differs from the indefinite time integral

of L by at most a constant.

5.7.2 Methods for Solving the Hamilton-Jacobi Equation

We should mention from the very beginning that there are no general methods of
finding a complete integral of the Hamilton—Jacobi equation. However, in some
particular cases, a complete integral can be determined by separation of variables.

5.7.2.1 Separation of Time

If the Hamiltonian H does not explicitly depend on time, we look for a solution of
the Hamilton—Jacobi equation of the form:

S(g,a,t) = W(gq,a) + Si(a,1). (5.7.18)
Then, (5.7.6) becomes:
0S(a,t) oW(q,a)
—— 4+ H —= ] =0. 5.7.19
T (q, % ( )

Since the first term depends only on the time variable and the second only on the
independent variables g;, Eq. (5.7.19) is satisfied only if the first term equals a
constant E and the second one equals —E. Thus,

0S8
— =-F 5.7.20
ot ’ ( )
and, by integration,
Si(a,t) = —Ext, (5.7.21)

where the additive constant has been omitted. We have also
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—E, (5.7.22)

( ow 6W>
H qi,---4n,

called the abbreviated (or restricted) Hamilton—-Jacobi equation. Since the Ham-
iltonian H does not explicitly depend on time, the constant E is usually the total
energy of the system.

As one can see, the function W depends essentially on the constant E, which
cannot be independent of the other constants ay,...,a,. But the number of the
independent constants must be n and it is customary to choose a, = E. Then the
complete integral (5.7.18) reads:

S(q1y- - qn, A1y -y an,t) = —Et + W(q1,...,qn,a1,...,an-1, E),  (5.7.23)
while Eqgs. (5.7.5) yield:

ow
2a, by (k=1,n-1), (5.7.24)
ow
E t = +t(const.), (5.7.25)
ow
— =p; (j=1,n). 5.7.26
o = =T (57.26)

The n — 1 equations (5.7.24) determine the generalized trajectory in the con-
figuration space, Eq. (5.7.25) gives the law of motion, i.e. the generalized coor-
dinates as functions of time, while (5.7.26) define the generalized momenta. The
constant #; has the units of time and only one sign is chosen.

5.7.2.2 Separation of Variables

The Hamilton—Jacobi formalism is useful when the variables are separable,
meaning that S can be written as a sum of n functions, each function depending
only on a single variable. In this case, the Hamilton—Jacobi equation leads to
n first-order differential equations in each variable. There are also situations in
which only part of the variables are separable.

A particular case of separable variables are the cyclic ones. Assume that the
variable g, is cyclic and look for the solution S of the form

S(Qla - qn, Aty - - ’7an7t) = S/(qh cqn-1,01, .- '7an7t) + aoqn- (5727)

The generalized momenta are:

a8’
= ((k=Tn-1),
Pe= g n=1) (5.7.28)

Pn = Ao,
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and the Hamilton—Jacobi equation reads:

oS’ oS oS

— +H R T t| =0. 5.7.29

6t + <6117 yqn—1, aq1 ) ’ aqnfl ,ao, ) ( )
The constant ao must depend on the essential constants ay, . . ., a,, so that the most

convenient choice is agp = a,. Consequently, (5.7.5), leads to:

!
%S:bk (k=T,n—1),
aslj (5.7.30)
da + qn = ba.

If there are several cyclic variables, say ¢, (o = 7,71), the generalized complete
integral is

S(Qh e qn,ay, .. '7an7t) = S/(C]h e qr—1,01, .. .,d”,t) + Zadq&' (5731>

Example. Let us illustrate the separation of variables in the case of a particle

moving in a conservative force field F = —grad V, admitting that V = V(r, 0)
(cylindrical symmetry). The corresponding Hamiltonian is:
1 1 1
H=_—(p+ 5 pj+——5 1)+ V(r0). 5.7.32
s (P2 2 Pt g 1) 4 V00) (573)

The variable ¢ is automatically separated due to its cyclicity, and the other two
variables, r and 0, can be separated if the potential is of the form:

V(r.0) = u(r) + rlz o(0). (5.7.33)

The Hamilton—Jacobi equation reads:

oS 1 , 1, 1 ) 1
o ' 2m ) PRI = =0. 7.34
o + m (Pr + 2 Do + rzsinzopq’ +u(r)+ 2 v(0) =0 (5.7.34)

Since the Hamiltonian does not depend explicitly on time, we can take
S=—FEt+ W(r,0,9),

which leads to

L a_W 2+ ()_A'_L a_W 2_~_l (0)‘1‘; a_W 2—E
2m \ Or T a0 2"’ 2mr2sin?0 \ 0p )
(5.7.35)

Since the variable ¢ is cyclic, we choose

W(r,0,9) = @p, + R(r) + O(0). (5.7.36)
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This leads to the separation of variables in (5.7.35). Following the usual procedure,
we find:

L d—R2+()+LfE
2m \ dr u\r 2mr:

d® P,
2 ¢ =
(d@) +2mv(0) + il

where a is a constant. The solutions R(r) and ©(0) of these equations, when
introduced into W, deliver the complete integral:

S=—Et+W(r,0,9,a,E, p,), (5.7.37)

where

W(r,0,0,a,E,p,) = ¢py + / \/2mE = 2mu(r) — % dr

/\/ —2mu(0 do. (5.7.38)
sin’ 9

With this solution, Eqgs. (5.7.24) and (5.7.25) give, respectively, the trajectory and
the equation of motion. The explicit form of u(r) and v(0) depend on the concrete
conditions of the problem.

5.7.2.3 Separation of Pair-Variables

Suppose that the variables ¢, and p, = a_s appear in the Hamilton—Jacobi equa-
tion only as the combination
oS
n ny ~_ |- 5739
(a5 ) (57.39)
In this case, the Hamilton—Jacobi equation reads:
oS oS as oS
— +H coslu—1y =y = ful qu, =— |, 2| =0. 5.7.40
ot + |:qlv s qn—1 aql Ganl f (q aqn> :| ( )

We look for a complete integral of the form
§=S(q1,- s qn-1:1) + Su(qn), (5.7.41)

which leads us to

oS’ oS’ oS’ oS,
—+H e Gy ey —— — =0. .7.42
ot + [6]1, yqn laaq17 ’aqnl,fn<qn,aqn>,t:| 0 (57 )
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This equation becomes an identity with respect to g, if S, satisfies the differential
equation

oS,
| gn, =— | = ax(const.), 5.7.43
/ (q 6%1) ( ) ( )
so that
6S/ aS/ asl
D L H(q g, 2 ) =0, 5.7.44
ot + <QI7 ydn—1 aql aqn_l a ) ( )

which is a equation with n partial derivatives of §'. The function S, can be found
by reversing (5.7.43):

aSn
= Fu(qn,an
o0 (90, an)
and integrating the result:
S z/Fn(q,,,an)dqn. (5.7.45)

If this procedure can be continued further, then we may, for example, have:

n
S(le’ cqn,ayy .. '7an7t) = Sl(Qlw o qr—1,41, .. .,Cl,17t) + Z/ Fk(Qk,ak)ko.
k=r

(5.7.46)
If all the variables ¢, . . ., g,, t can be separated, the form of a complete integral of
the Hamilton—Jacobi equation is:
S(q1y- - qn, A1y -« yan,t) = —E(ay,...,a,)t + Z Sk (qr, ax). (5.7.47)
k=1

Each one of the functions F; (k = 1,n) are obtained by inverting equations of
the form

GAYS
— | = ay. 5.7.48
Ji <£1k, 0 > ag ( )

The dependence of the energy E upon ay,...,a, is obtained by introducing
W = 3", S into the abbreviated Hamilton—Jacobi equation (5.7.22). We notice
that the separation of the cyclic variables can be discussed as a particular case
of this procedure. Indeed, for a cyclic variable, say ¢,, we have gj“ = f,, then
by taking f, =a, and integrating the result, we arrive at S, = a,q, (no
summation).
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5.7.3 Applications

5.7.3.1 Free Particle

Let us study, in the Hamilton—Jacobi formalism, the motion of a free particle of
mass m. Since no force acts on the particle and p; = g—; by (5.7.5), the Hamilton—
Jacobi equation is

as 1 )
a + ﬁ(grad S)”=0. (5.7.49)

The Hamiltonian does not explicitly depend on time and all the variables x, y, z are
cyclic, therefore a completely separated solution is

S=—-FEt+a-r. (5.7.50)

In order for (5.7.50) to be a solution of (5.7.49), we must have

E— 2
2m
consequently
a2
S=——1 -T. 5.7.51
o +a-r ( )
Next, using (5.7.5), we get:
1
b=r— —ar,
m
which is the law of motion
1
r=—at+b, (5.7.52)
m
as well as the first integral:
p = grad S = a(const.). (5.7.53)

If we do not wish to separate the variables in the Hamilton—Jacobi equation
(5.7.49), we can take as a complete integral

§=5.(r= a)’. (5.7.54)

Again using (5.7.5), we arrive at a similar result:

1
r=——bt+a, (5.7.55)
m

p =grad S = —b. (5.7.56)
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5.7.3.2 Linear Harmonic Oscillator

Since the system possesses one degree of freedom and the Hamiltonian is time-
independent, we search for a complete integral of the form

S = W(x,E) — Et. (5.7.57)

The abbreviated Hamilton—Jacobi equation,

1 (dw\* 1 ,,
— | — — =E 5.7.58
Zm(dx) Famenr =5 (5.7:58)
has the solution
W(x,E) = / \/2mE — m>wjx*dx.
The integration is performed via the substitution x = , /25 sinu, so that
0

E 1
W(x,E) = o (u + 3 sin2u),

and (5.7.57) finally reads:

E
S = )72(\/2mE — m2w3x? + o arcsin(,/ 2mEcoox) — Et.

Using (5.7.5), we obtain:

t os t+ ! arcsin m ,
= - = — —_— — x
' OE wo 2E )

GN
P=a \/(2mE — m2w3x?)
and, finally, with the substitution #;wy = ¢(const.):

:—\/ s1nco0t+(p

= V2mE cos(wot + @),

which is the expected result.

5.7.3.3 Newtonian Central Force

As we know (see Chap. 3), the trajectory of a particle subject to such a force lies in
a plane. Let us choose g; = r,g> = ¢ as the Lagrangian parameters. Since
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av

k
F(r) = =5 = —(grad V), = =2,

by integrating from r to co, with V(o0) = 0, we have:

V=-—-.
r

(1) K
T oam \Pr T 2P r

The cyclic variable ¢ is associated with the first integral

The Hamiltonian is then:

Do = mr*{p = const.

The Hamilton—Jacobi equation,
oS 1 as l S k
_|_ J— _ —
o 6r 6 r

is a particular case of (5.7.34), with 0 = 5, pg = 0,v Ju(r) =
we can take

S=—Et+ ¢p,+ R(r)

(AR L Lk,
2m dr rzp“’ ro

Recalling that p, = const., we can recast (5.7.62) in the form:

and so we get

dR )
r (dr) —2mEr* — 2mkr = —p, = —2y(const.)

275

(5.7.59)

(5.7.60)

(5.7.61)

— ’;‘ . Then,

(5.7.62)

and then integrate, to find a complete integral of (5.7.62) with the expression

1
W(r, o, E,p) = /270 + / —\/2mEr? + 2mkr — 2ydr.
r

The trajectory is given by (5.7.24):

0
w_ 7, (const.),

dy

which, upon differentiation, yields:

2
¢ — @y = / V2 dr, y,4/2y = @y(const.).

r/2mEr? + 2mkr — 2y

(5.7.63)

(5.7.64)
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The integral is easily worked out by using the following substitution:

V2 2mk
x = —y, p= m , q=2mE, (5.7.65)
r 2y
which gives:
X — V4 1 _ mk
¢ — (o = arccos 722 = arccos —— \/2_y2 -
mE k
q+ ERR

Using the notation

mk 1 mE+m2k2_e
2y p’ y 4 p’

we finally arrive at the previously established result,

T =l +ecos(p — go)l (5.7.66)

r

which says that, when subject to a Newtonian central force field, the particle
describes a conic.

5.7.3.4 Symmetrical Top

As a final example, using the Hamilton—Jacobi formalism, let us find the finite
equation of motion (4.6.26) of the symmetrical top. To this end, we use the
Lagrangian (4.6.14):

1 . 1 .

L= E]i(<))2 sin® 0 + 0%) + §I§(¢cos9 + ) — Mgl cos 6.

Since the variables ¢, are cyclic, the associated conjugate momenta p,, py are
first integrals and if we choose g1 = ¢, g2 = 0, g3 =, we find:

po = (I} sin® 0 4 I cos? 0)p + Iy cos 0 = C,

po = 1,0,
py = I(¢eos0+1)) = Cs.
The Hamilton—Jacobi equation then reads:

oS 1 p% Pi 1 (py — py cos 0)2
|z, v, Mo PAVETRT Mgl 0=0. 5.7.67
T I * 1 - I sin® 0 - Mgteos ( )

Since H does not depend explicitly on ¢, ¢, or ¥, we can take

S = —Et+ W(p,0,) = —Et + C1p + Caoif + ©(0). (5.7.68)
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The substitution of (5.7.68) into (5.7.67) leads to an equation with 6 as single
variable:

+ Mglcos = E,

2|1\ do Lo sin® 0

1[1 <d®>2 €3 1 (Ci— Cycos0)
2

which can be integrated to give

do,

\/211 sin? (E — A — Mgl cos 0) — (C; — C, cos )*
©(9) :/ sin 0

2

where A = 2%% Therefore, a complete integral of the equation (5.7.67) is:
3

W(QDJ Halpvcl ) C27 E) = CIQD + CZ'#

\/21’1 sin? 0(E — A — Mglcos0) — (C; — Cycos 0)*
+/ sinf d0
i

Following the general procedure, the finite equation of motion for the coordinate 0
is found by applying (5.7.25):

JI;sin@ do
\/Zli sin? O(E — A — Mgl cos 0) — (C; — C; cos 0)*

t—tHh =—

With the change of variable cos # = u and the notations (see (4.6.24))

2E—A) 2E 2Mgl

o= = ﬁ: 9
n L h

C1 :Illb, szlia,

we arrive at:
du

t_t1:/¢<1u2><aﬂu><bau>2’

which is precisely Eq. (4.6.26).

Conclusion. The Hamilton—Jacobi formalism provides an ingenious and efficient
method of integrating the canonical system of equations. This formalism consists
in the determination of a complete integral of a single first-order partial derivative
equation. This procedure is most useful when the possibility of the separation of
variables exists.
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5.7.4 Action-Angle Variables

In many physical problems we deal with systems performing a periodic motion. A
useful procedure of studying these problems derives from the Hamilton—Jacobi
formalism and consists in using some new canonical variables: J,, — action variables
and w,, — angle variables, instead of the constant canonical parameters (5.7.2).

5.7.4.1 Systems with One Degree of Freedom

To make the procedure as clear as possible, let us first consider a conservative
system with one degree of freedom. Then we can write

H(q,p) = E, (5.7.69)

which is the implicit equation of a curve in the phase plane and represents the
generalized trajectory corresponding to the evolution of the given system pos-
sessing the constant energy E.

The properties of the periodical motion are given by the type of the generalized
trajectory. We can speak about two types of periodical motion:

1. If the generalized trajectory is a closed curve, the motion is called vibration.
(In most books on mechanics the term /libration is used instead; but, since the
linear harmonic oscillator falls into this category, the word ‘vibration” would be
more appropriate for a physicist.) In this case, g oscillates between two constant
values, both g and p being periodical functions of time with the same period
(Fig. 5.5a).

2. If by solving Eq. (5.7.69) we obtain

p=plq,E) (5.7.70)

as a periodical function of ¢ with period g, i.e. p(q + kqo, E) = p(q, E), with
k integer, the periodical motion is termed as rofation or, sometimes, revolution.
In this case the coordinate ¢ can take any value (Fig. 5.5b). A very simple
example for such a system is a rigid body rotating about a fixed axis, the
generalized coordinate g being the angle of rotation.

It is important to note that a certain system can perform, in certain conditions,
either vibration or rotation motions. For example, let us consider again the case of
the simple pendulum discussed in Chap. 3, Sect. 3.4. Using the Lagrangian (3.4.1),
we can construct the Hamiltonian and (5.7.69) yields:

R p> —mgRcosl =E,

where p is the momentum conjugated to the coordinate 6. The equation of the
generalized trajectory in the phase plane (0, p) is then

p=+\/2mR2(E + mgRcos0). (5.7.71)
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Fig. 5.5 Geometrical representations of the action variable in the phase space under various
conditions.

If E < mgR, the pendulum performs periodical motions as the angle 0 varies
between —0, and 0y, where 0 is defined by
E

cosy = — gk’ (5.7.72)

In this case we have a vibration-type motion, the generalized trajectories in the
phase plane (0, p) being the closed curves (1) as shown in Fig. 5.5¢. But if E >
mgR, there are no limitations for the angle 0, and the pendulum rotates around the
suspension point. The corresponding generalized trajectories are the curves (3) in
Fig. 5.5c. A special situation appears in the limit case £ = mgR, marked on
Fig. 5.5¢ by the curves (2) or (2'). These curves correspond to the situation when
the pendulum reaches the positions with 0 = £x (in general 0 = (2k + 1)x), where
p = 0, therefore these are positions of unstable equilibrium. A small perturbation
can remove the pendulum from such a position, and the representative point may
trace out either curve (2), or curve (2).
We define the action variable by

J= %p dq, (5.7.73)
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where the integral is taken over a complete cycle of variation of g. It represents
either the area of the closed curve of Fig. 5.5a (vibration), or the shadowed area of
Fig. 5.5b corresponding to a period of motion (rotation). It is obvious that J has the
dimension of angular momentum (or of action integral). In view of (5.7.70),
we have:

J=J(E), (5.7.74)
or, if we invert the functional dependence,
E=E(). (5.7.75)

The complete integral corresponding to the Hamiltonian (5.7.69) is S(g, E) (with a
single essential constant E), therefore by means of (5.7.75) we can write:

S =38(g,J). (5.7.76)

The canonical coordinate w associated with J is called the angle variable, being
defined by

oS
w= =, (5.7.77)

while the new Hamiltonian, in view of (5.7.69) and (5.7.75), is:
H=H(J). (5.7.78)

Since the coordinate w is conjugated to an angular momentum, its dimension is
that of an angle.

With this choice, the canonical equations yield:
oH
oJ
meaning that J is a constant (which is already known from (5.7.74)) and, conse-
quently, v is also a constant (depending on J). Integrating (5.7.79),, we obtain:

w =i+ Q. (5.7.80)

J=0, w= =v(J), (5.7.79)

To find the significance of the constant v, let us determine the variation of the
angle variable w when ¢ performs a complete cycle of variation (either vibration or
rotation). We have

or, using (5.7.77) and the definition & —q =p,
Aw = ]fa”d— dg =1 (5.7.81)
w = aan q pdg=1. 1.

If we denote by t the period corresponding to a complete cycle, from (5.7.80) and
(5.7.81) we obtain Aw = vt = 1, hence:
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= - 5.7.82
= (57:82)

This result means that v is the frequency of the periodical variation of g. It then
follows that we can determine the period of the motion if we know the dependence
of the Hamiltonian on the variable J, without solving the equations of motion.
Inverting relation (5.7.76) and using (5.7.80), we can obtain the time-dependence
of the coordinate ¢g. If the coordinate g is cyclic, the corresponding momentum p is
conserved, p = const. The representative point then traces a straight line in the
(g, p)-plane. This can be regarded as a limiting case of rotation (see Fig. 5.5c,
curve 3) with arbitrary period. Since w is an angle variable, it is natural to choose
its period as 27m. Consequently, for cyclic coordinates, the corresponding action
variable is always J = 2mp.

Example. Let us now apply the aforementioned formalism to the motion of
vibration of a simple pendulum. Using (5.7.71), the action variable J reads:
—(')0 00
J=-2 / [2mR*(E + mgR cos 0)]? dO = 4/[2mR2(E + mgRcos 0)]* do.
fo 0
By virtue of (5.7.69), we can write (5.7.79), in the form

=T ()

Then, according to (5.7.82), the period can be written as

Y
- dE’

or, after the derivative is performed,
0o

124/ %(cos@—cos@o)fé do,
0

which is an already known formula (see Chap. 3, Sect. 3.4). In the case of small
oscillations, using the Hamiltonian

1 1
H= >+ —mgR*0=E
2P T M8 :

IR
J=2nE[ =, (5.7.83)
8

yielding the well-known relation

we easily obtain

(5.7.84)
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5.7.4.2 Systems with Many Degrees of Freedom

Next, we shall generalize this formalism for conservative systems with many
degrees of freedom. Assuming that the variables are completely separable, a
complete integral W of the abbreviated Hamilton—Jacobi equation can be written as

W(q,a) :E;sj(q,,a) (a=ay,....a) (5.7.85)
=
and Eqgs. (5.7.5), give:
= %Z;’a) (j = 1,n; no summation),
or
pi=rpilg;,a) (j=T1n). (5.7.86)

For a given index j, this is the equation of a curve in the phase plane (¢;, p;).
Therefore we can introduce the action—angle variables only if, for any j, these
curves are either closed (vibration), or correspond to some periodical functions of
q; (rotation).

Thus, the action variables J; are defined by

0S;(q;
J;i= ?{pj dq; = % M dq; (no summation). (5.7.87)
qj
These integrals are calculated for a complete cycle of variation of g; and can be
considered as the increase of the generating functions S; during this cycle. The last
relation yields

Jy=Ja) (j=Tn), (5.7.88)
or, by inverting the functional dependence,
a;=a,(J) (j=Tn), (5.7.89)

which is possible because the Jacobian 0(J)/0(a) is always non-zero. Here, by J we
mean the set of variables Jy,..., J,.
Now, we can write:

Si(aj,a(d)) = S(a;,J), (5.7.90)

as well as S(a,J) =37 S;. Using again (5.7.5), we obtain the canonical
transformation from the set of variables (g, p) to the set (J, w):
oS oS 08,

w-:—’ = — = — .:171’1. 5791
J ajj p] aqj aq} (] ) ( )
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The first n relations (5.7.91) define the angle variables w;. In order to define the

new Hamiltonian, we recall that the system is conservative and, therefore, we can
write H(g, p) = E(a). In view of (5.7.89), this yields:

H =H(J),

which shows that H does not depend on the new canonical variables w.
The canonical equations, written in terms of the new variables J and w, are:

OH oH
a3, bj= =7 =Vj =1 7.92
aw] O’ w/ 6J] VJ(") (.] 7n)a (579 )

Jj

and, by integration,

Jj=const., w;=vit+q; (j=1,n). (5.7.93)

Let us now show that the quantities v; have the significance of frequencies of
the motion. One first observes that, according to the definition (5.7.91), the vari-
ables w; depend on coordinates g. To realize the meaning of this dependence, we
shall calculate the variation of w; while one coordinate — say g, — performs a cycle
of variation, the other ones being fixed. Obviously, during the variation all J;
remain unchanged. Denoting this variation by Ajw;, we have:

ow; o’S o [aS 0J
dg, = — —  dg, = do, = _
¢ f{aqkajj %= 37, § aq “%T 3

This relation shows that wy is a monotonic periodical function of the coordinates
qrx (k # j) (it increases by 1 after each complete cycle). But this fact does not
allow us to conclude on the behaviour of v;, as we did in problems with one degree
of freedom, because all the coordinates change during the motion.

Using Eqs. (5.7.91), we can write the canonical transformations (g, p) — (J, w)
and their inverse as well:

q;i=q;,(J,w), p;j=pj(J,w) (j=T1n). (5.7.95)

According to (5.7.94), in the case of vibration, we have:

q;i(J,w+m)=gq;(J,w), (5.7.96)

where w + m means the set (w; + my, ..., w, + m,), with my integers (k = 1,n).In
the case of rotation, we have:

qi(J,w+m)=gq;(J,w) +q?nj,

where qJQ are the periods of the functions (5.7.95). One observes that the quantities
q’j =gq;— q(J).w ; satisfy the relations (5.7.96), which means that we can use in the
case of rotation, for the quantities qj’ , the formalism developed for vibration.
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Assume that the frequencies v; are commensurable, that is there exist integers
m; and my so that

V; Vi

Vi Ve (5.7.97)
m; my
for any j,k = 1,n. Therefore, after a time interval
r= T (5.7.98)
V; Vi

all coordinates g; recover their values:
Qj(l+f) ZQJ(I), (5799)

meaning that the real motion is periodical with period t. Indeed, using (5.7.93) and
(5.7.98), we have:

wit+1)=w;(t)+m; (j=1,n) (5.7.100)

and (5.7.96) leads to the above statement. It can be shown that, starting from
(5.7.99), we arrive at the condition of commensurable frequencies (5.7.97).

If condition (5.7.97) is satisfied for any j, k, and hence (5.7.99) is fulfilled for
any j, we call the system completely degenerated and the real motion is a truly
periodical motion. Even in this situation, the frequencies v; cannot be identified
with the individual frequencies of the motion. Indeed, if (5.7.99) are satisfied for
any j, the only thing we can say is that there exist the quantities t; (j = 1,n) so
that the conditions (5.7.98) can be written as

T=m;T; = MjTg.

In this case 7; is the shortest time interval for which the relation ¢;(t + 1) = ¢;(t)
holds true, for any j and ¢, i.e. 7; is the period of g;(#) only.

If relation (5.7.100) holds true only for certain values of j, the system is called
simply degenerated. 1f the frequencies are not commensurable for any pair v;, v,
the system is said to be periodically conditioned. In this case the system does not
come back to its initial state, and the generalized trajectory in the configuration
space fills up a certain domain in this space. The action—angle formalism proves to
be a powerful tool in such cases, since it provides all the frequencies of the
individual motions, without the complete solutions being known.

Example. Let us discuss the Kepler problem within the frame of the action—angle
formalism. The problem is described by the Hamiltonian (5.7.32) with the
potential (5.7.33), in which u(r) = —Ikl/r, v(0) = 0. We denote p, =I3,a = 2,
where [ is the magnitude of the angular momentum. The complete integral cor-
responding to our problem is then (see (5.7.38)):

k| 12 l%
S=—Et+ oz + 2mE +2m— — — dr + 12— —5— db,
r r sin” 0




5.7 Hamilton-Jacobi Formalism 285

leading to the action variables:

oS,
T, :?{ aqf dop = f@ do, (5.7.101)
1
6S 2
" do = 7{{12 } do, (5.7.102)
sin 0
as, mlk| P13
J, = omE+ 2 | ar (5.7.103)
or r r
The first integral yields:
T, = 2nls, (5.7.104)

as we expected, since ¢ is a cyclic variable.
In a cycle, the variable 0 increases from —0, to 0, then decreases from 0, to
—0,, where

.
0y = arcsin 7

therefore

0o 1
2 l% : 4o
Jy=4 I — > .
0 /[ sinzﬂ]
0

The integral is easily worked out with the substitution

. 1 + lzx
sinf = T2 |
which gives:
B\ [ 5]
J94l< - l—2>/[(1+ )<1+ X )] dx,
0
and finally:
Jo=2n(l - 13). (5.7.105)

The motion is periodical only for E < 0. In this case, r varies cyclically from r,,
to ry and back to r,, where r, and ry are the roots of the equation
2mEr* + 2mlk|r — I = 0. Then, the integral (5.7.103) can be written as
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'm
J, = 2/[2mEr2+2m|k|r—12]% dr.

T'm

Using the substitution

RmE(r —ry)(r— rM)]% =y(r—ru),
we finally obtain:

2m

J, = 7lk]| E|

—2nl. (5.7.106)

Relations (5.7.104) and (5.7.105) yield Jy + J, = 2nl and therefore (5.7.106)
leads to

H=E=-2n*mk*(J, + Jo+ J,) " (5.7.107)
In view of (5.7.92), the frequencies are:
Ve = Vg = vy = 4Pmk> (o 4+ Jo + J,) ", (5.7.108)

which means that the system is completely degenerated. The motion is periodical,

with the period 7= |- = - = i, that can be expressed, using (5.7.107), as
n
T=nmnlk|, | —=
k| AT

which is nothing else but Kepler’s third law (see Chap. 3, Sect. 3.2.2).

Observation: Since the integrals (5.7.101) and (5.7.102) do not depend on V(r),
the relation 27/ = Jy + J, holds true for any central field. Consequently, by
integrating (5.7.103) for any given V(r) we obtain E as a function of J, and I,
which means that E depends on Jy and J, only through the sum Jy + J,.
Consequently, the frequencies vy and v, are always equal. This simple degen-
eracy of the motion in a central field is a consequence of the fact that the motion
takes place in a plane, orthogonal to the angular momentum 1, and thus the
variations of the angles 0 and ¢ are related (a variation of 27 in ¢ corresponds
to a variation of 410yl in 0).
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5.7.5 Adiabatic Invariants

Consider a mechanical system whose Hamiltonian depends on some real param-
eter 2 H = H(q, p, ). This parameter can be internal (i.e. characterizes the
system itself) or external (e.g. defines the external field in which the system is
placed). We shall also assume that the problem of motion of the system can be
solved by using the action—angle variables for all fixed values of 4 and that there is
no relation of type (5.7.97) (the system is not degenerated).

If A depends on time, the system is not conservative and, therefore, the action
variables J; are not constant. Nevertheless, it can be shown that, if 4 varies slowly
in time, that is if

< A

where 7 is the period of the motion, then the action variables J; still remain
unchanged. Such quantities are called adiabatic invariants.

The adiabatic invariants have been originally defined by Paul Ehrenfest in
connection with the earliest research on quantum theory of the atom. For example,
the Bohr—-Sommerfeld quantization rules were postulated precisely for the adia-
batic invariants J;. During the recent years, the study of adiabatic invariants has
been resumed, in connection with their use in plasma physics, thermonuclear
processes, particle accelerators, etc.

To simplify the discussion, we consider a system with only one degree of
freedom, for which we rewrite (5.7.69) and (5.7.70) as follows:

H(q,p,.) =E, (5.7.109)

and

p=r(g.E, 1), (5.7.110)

with the parameter A varying slowly in time. Introducing (5.7.110) into (5.7.73), it
results that J depends on time through 4. To determine the time variation of J over
a period of motion, we first calculate its derivative with respect to time:

dj opdE Op.
E —f(@d—t‘f'ai)dq, (5.7.111)

and then take the average for one period of motion. By virtue of (5.7.109), we have:

dE 0H 0H:

— = =k (5.7.112)

By averaging this relation and assuming that during the time interval 7:,)1 is
practically constant, we obtain:
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T

dE .0H 1. OH
— =A== -1 — dt. 5.7.113
i~ tan T3 / o7 ( )
0
The dependence of the rate of change of the energy on the time variation of 4 is

taken into account in (5.7.113) through the factor Z, therefore %—ﬁ’ under the

integral can be considered only as a function of the varying ¢ and p, for fixed A.
Using the canonical equation § = 0H/Op, we can replace the integration with
respect to time by one with respect to the coordinate g. Since

T
oH\ "'
dt—<—) dgq and r:/dt7
op

0
we have:

(=)

W:ﬁa—?%)ldq

“g() @

with the integrals taken for fixed 4. Consequently, we regard A and E as constant
independent parameters in (5.7.109) and (5.7.110). Thus, H depends on /
explicitly, and implicitly through p, therefore the derivative with respect to 4 of
(5.7.109) is:

, (5.7.114)

0H OH dp
7

This relation serves to obtain

OH (OH\™'_ 0p
a\op) ~ o

Since, according to (5.7.109) and (5.7.110), we also have:
oH\"'_2p
op ~ OE’

introducing the last two relations into (5.7.114), we arrive at
aE

/‘lf%d‘i
dr fg—fgdq'

As neither Z, nor % depend on ¢, the last relation can be written as

op= Op. -
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Comparing now this equation with (5.7.111), we finally obtain:

dJ

=
where J = § pdg, meaning that in this approximation the action variable J remains
unchanged during the variation of the parameter A. Therefore, J is an adiabatic
invariant.

For oscillatory motion, the adiabatic invariant J = ¢ pdq represents the area of
the surface bounded by the closed generalized trajectory in phase space. In the case
of a one-dimensional oscillator, for example, as we know (see (5.6.45)), the path in
the phase plane ¢, p is an ellipse with semi-axes a = \/2E/mw? b = V2mE
which has the area

E
nab = 2n—,
W

and thus J = 2nFE/w is an adiabatic invariant. In other words, if the parameters of
the linear oscillator vary slowly, the energy and the frequency are proportional.

We also mention, as another example, the case of the simple pendulum. Here
we can take as the slowly varying parameter either its length /, or the gravitational
acceleration g. In view of (5.7.83) and (5.7.84) it then results that the ratio of the
energy E to the frequency v = \/? is practically constant.

As a final remark, it should be mentioned that one must also know the physical
conditions which have to be fulfilled in order to have an adiabatic invariance.
Indeed, we may vary very slowly but periodically the length of the simple pen-
dulum, such that the period of the variation of the parameter is n/2 times (n inte-
ger) bigger than the period of oscillation of the pendulum. Then we can reach the
so-called phenomenon of parametric resonance, in which the amplitude (and,
consequently, the energy) increases rapidly with time, although the frequency
performs a slow variation.

5.8 Problems

1. Determine the Hamiltonian of the double coplanar pendulum and write the
equations of motion.

2. Determine the motion of a charged particle of mass m and charge e, moving in
the static electromagnetic field (E, B). The angle between E and B is arbitrary
and the initial velocity v, of the particle is orthogonal to the plane determined
by the (E, B) field.

3. A heavy bead of mass m slides without friction in a straight pipe, which rotates
at a constant angular velocity w in a vertical plane about one of its points,
considered fixed. Find the finite equation of motion.

4. A homogeneous straight rod moves in a vertical plane, with its ends sliding
without friction on two perpendicular walls, one on the horizontal plane, and
the other on the vertical. Using the Hamiltonian formalism, determine the
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10.

11.

12.

13.
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trajectory of some point P of the rod. Also, find the motion of P if its mass is
m and the mass of the rod can be neglected.

. Write the differential equations of motion of a spherical pendulum of mass m,

sliding without friction on a fixed sphere of radius R.

The point of support P of a simple pendulum of mass m and length [ moves
horizontally according to the law Y(z) = A sin wt. Find the law of motion in
the following two frames:

(a) The reference frame is fixed, with the origin at O;
(b) The origin of the frame is at the point P.

P

Sy

v

A particle of mass m is subjected to a central force. Compare the Hamiltonian
H of the particle relative to an inertial (say, fixed) frame S, with the Hamil-
tonian H’ relative to a frame §', rotating about the centre of force at a constant
angular velocity w. Write the canonical equations in both representations.

. Construct the Hamiltonian of a dipole whose opposite charges have masses m,

and m,, and which is located in the homogeneous electric field E.

Using the Routhian formalism, obtain the integrals of motion of a spherical
pendulum of mass m and length .

Find the Poisson bracket {¢,[;}, where ¢ is any function, spherically sym-
metric about the origin, and depending on the coordinates and momentum of a
particle, while /; (i = 1, 2, 3) is any one of the three components of its angular
momentum.

Show that {f, L.} = k x f, where f is a vector function of r and p, while k is
the unit vector of the z-axis.

Use the Poisson bracket, the Lagrange bracket and the bilinear covariant
methods to show that the transformation

Q=+/e2—p2 P=cos '(pe)

is canonical.
Prove that the transformation

0 =log smp7 P=gqcotp
q

is canonical and find all possible versions of the generating function.
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14.

15.

16.

17.

18.

19.

20.
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Show that under the transformation

Qj=qe ", Pi=pie (j=T1n)
the system

. OH ny . OH "
q4j = ~ 4dj; Pj =~ TVPi
J apj J J qu i
becomes canonical and find the corresponding Hamiltonian H(Q, P, 1).
Show that the transformation

O1=q1 —vot, P =pi—o,

Q2 = 1/ 2p2€7t Sil’lqz, P2 =1/ 2p2€t COS ¢»

is canonical. If the Hamiltonian in the original variables is H = %(p%—i—
p5+4q?}), find the generating function F,(g, P, f), the new Hamiltonian
H(Q, P,t) and the canonical equations in terms of Qy, Oz, Py, P,.

The Lagrangian associated with a damped linear harmonic oscillator subject to
the forces F| = —kx, F, = —rx is

Using the Hamilton—Jacobi formalism, find the integral of motion.
Determine the values of a and b, so that the transformation

0 = (2q)'cos’ p, P =(29)"sin’q

is canonical and find the generating function associated to this transformation.
Show that the line integral

I= / > aidp
j=1
Y

is a relative integral invariant associated with the canonical system.
Find the conditions which must be satisfied by the functions Aj(q, p),

Bj(q,p) (j =1,n), in order that
1= § > (s, + By
=1

be an integral invariant of Hamilton’s canonical equations.

A particle moves without friction on a fixed sphere of radius R. Using the
Hamilton—Jacobi formalism, determine the trajectory of the particle and find
the finite equation of motion. The initial conditions are:

0(0) = p(0) =0, ¢ =0, 9(0):”—12.



Chapter 6

Mechanics of Continuous Deformable
Media

6.1 General Considerations

By a continuous medium we mean a material body which fills a certain spatial
domain in such a way that there is a mass point of the medium in each geometric
point of the domain. But, since the substance possesses a granular structure, this
definition has to be more accurate.

Consider a portion of our medium, of mass Am and volume Az, and assume that
the number of molecules contained in this volume is AN. In order that the medium
satisfies the property of continuity, there must exist the limit

. Am
e (©11
meaning that no matter how small the volume At is, it must contain a sufficiently
big number of particles. Since this division is limited by the atomic structure of the
medium, to give a physical sense to the definition (6.1.1) we introduce the notion
of physically small infinity. So, by a physically infinitely small volume we mean an
elementary volume, small by comparison with macroscopic volume inhomoge-
neities, but big enough so as to contain a large number of molecules. The number
AN of molecules contained in a physically infinitely small volume produces a
physically infinitely small particle. From now on, in the study of continuous
deformable media, by particle we shall mean a physically infinitely small particle.
Thus, formula (6.1.1) defines the mass density at some point P of the medium, with
the aforementioned restrictions regarding the limit.
In general, the mass density p is a non-negative continuous function of position
and time:

p = p(r,1), (6.1.2)

where r is the radius-vector of the particle of mass Am. In other words, the mass
density is a scalar field.

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2_6, 293
© Springer-Verlag Berlin Heidelberg 2012
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A continuous medium can be either at rest or in motion relative to an arbitrary
reference frame. If the distance between any two points of the medium does not
change during the motion, the medium is a rigid body (see Chap. 4), while in the
opposite case we have a deformable medium. This chapter is concerned with the
mechanical study of continuous deformable media (CDM).

A deformable medium can be in either a solid or a fluid state. A solid medium
can have either elastic or inelastic properties, while a fluid can be either com-
pressible (% # 0) or incompressible (% = 0). A special type of continuous
deformable medium is the plasma, which is a mixture of neutral and excited
atoms, ions, electrons and photons.

A macroscopic volume of a continuous medium contains a big (practically,
infinite) number of molecules. To describe the motion of each molecule, one must
characterize it by a finite number of Lagrangian parameters. It then results that a
continuous deformable medium has a huge, practically infinite number of degrees
of freedom. As we shall see, this gives rise to a special analytical treatment of the
motion of such media.

6.2 Kinematics of Continuous Deformable Media
6.2.1 Lagrange’s Method

Consider a portion of a continuous deformable medium (CDM) which, at time 7,
occupies the domain Dy(#), of volume Vj in the physical, Euclidean space Es.
Due to the motion, the form and the volume of the domain occupied by the
medium vary. Let V be the volume of the domain D(#) occupied by the medium at
time ¢ > £, (Fig. 6.1).

According to Lagrange, to know the motion of the medium means to follow and
determine the motion of each particle. Consider a particle which, at the time ¢, is
at the point Py(xY,x9, x3) and at the time 7 > t, is at the point P(xy,x2,x3). Since
the position of the particle depends both on the time ¢ and its initial position, we
can write:

xi = x(x), 29,530 (i =1,2,3), (6.2.1)
or, in vector form,
r = r(ro, 1), (6.2.1)

where r and r, are the position vectors of the points P and P, respectively. The
quantities x9, x5, x3, ¢ are called Lagrange variables. Equations (6.2.1) define the
law of motion of the particle P which, at the time #,, was at the point P. In order to
find the motion of the medium, we must find the equation of motion of each

particle.
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Fig. 6.1 Evolution in time of 24
a domain occupied by a
cont{nuous deformable D,(t,)
medium.

X

Assume that the vector function r is continuous with respect to the Lagrange
variables and at least twice differentiable, and that there is a one-to-one corre-
spondence between the domains Dy and D, i.e.

a(-x17-x23-x3)

J=—"""""7:H0 6.2.2
o g 7 (622)

where J is the Jacobian of the transformation (6.2.1).

The trajectory of the particle is given by Eqgs. (6.2.1), where the initial position
ro of the particle is fixed, while the time 7 varies. Using (6.2.1"), we can write the
velocity of the particle as

—(x7,x3,x3,1), (6.2.3)

while its acceleration is

o’r
a= 7 (x?,x%xg, r). (6.2.4)

6.2.2 Euler’s Method

Suppose that, instead of following the particles in motion, we choose a fixed point
P(x1,x2,x3) and look for the characteristic quantities (velocity, acceleration) at
this point. For example, an observer fixed with respect to the banks of a river
determines the velocity of the water at his observation point.

If we use (6.2.1) to express x(l), xg, xg in terms of x;, x», x3, and then introduce

them in (6.2.3), we obtain the velocity field at the time #:
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v = v(x1, X2, X3,1). (6.2.5)

The quantities x;, x», x3,t are called Euler variables.

Once the velocity field is known, the parametric equations of the particles of the
medium are determined by integrating the system of first-order differential
equations

dx;
7); = v;(x1,x2,x3,7) (i =1,2,3). (6.2.6)
The general integral of the system (6.2.6) is

x; = xi(C1, C2, C3,1), (6.2.7)

where the integration constants Ci,C,,C3 are determined from the initial
conditions,

x? :x,-(Cl,Cz,C3,to). (628)
Therefore, the expressions (6.2.7) become:
Xi = xi(x(l)7 x(2)7 )Cg,[),

which are precisely Eqgs. (6.2.1).
The acceleration field in Euler variables is determined by calculating the
derivative

d
a = —v(x1,x,x3,1), (6.2.9)
which yields
aza(xl,xg,x3,t). (6210)

Trajectories and Streamlines

By eliminating the time 7 between the three parametric equations of the trajectory
(6.2.1), we obtain two equations in x;, x) (i = 1,2,3), i.e. a family of curves
depending on three parameters, xV, x3, x9. Each trajectory is tangent to the
velocity in each point and at any moment. The differential equations of trajectories
can also be written as

dx 1 d)CQ dx;

U](l‘, t) - Uz(r, l‘) - 1,)3(1:7 t) : (6211)

The same system of equations is obtained by projecting on axes the obvious vector
relation



6.2 Kinematics of Continuous Deformable Media 297

v Xdr=0.

If in Egs. (6.2.11) we take a fixed value for the time #, we obtain a family of curves
tangent to the velocity at that moment. These curves are called streamlines (or
current lines).

Substantial and Local Derivatives

Let f(x1, x2, x3,1) be a function defined on the domain D C E3 for fp <t <1, and
let us calculate its derivative with respect to time in two cases:

(a) If x; (i = 1,2,3) are the coordinates of a moving particle of the medium, then

df of . of of

- A . 2.12
dr ot x’axj 6t+(v V) (62.12)

is called substantial or total derivative of the function f.
(b) If x; (i = 1, 2, 3) are the coordinates of a fixed point, we have

df _of
= (6.2.13)

which is the space or local derivative.

As an example, the substantial acceleration 2¥ and the local acceleration % are

dr
related by:

dv 0v
— . ) 2.14
o (v-V)v (6 )

Observation: In the case of small displacements and deformations, the difference

between the Euler and the Lagrange variables disappears. The first are mostly used
in fluid mechanics and the latter — in the theory of elasticity.

6.3 Dynamics of Continuous Media
6.3.1 Equation of Continuity

Consider a continuous deformable medium in motion and delimit an arbitrary
portion of the medium which, at the time 7, occupies the domain Dy(#) and at the
time ¢ > fy — the domain D(f). The mass of the medium contained in the domain is

m :/p(r,t)dr. (6.3.1)

Vv
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If there are no mass transformations during the motion, this mass conserves. The
conservation of mass is expressed by the equation of continuity.

This equation is easily obtained by means of the theory of integral invariants
developed in Sect. 5.6. The mass expressed by (6.3.1) is an integral invariant of the
transformation

X = xi(l'(),l) (l = 1,2,3) (632)

if the mass density p satisfies the equation

d
7’; +pdivy =0. (6.3.3)

Using (6.2.12), this can also be written as

0
a—f—&—pdivv—&—v-gradp =0,
and finally
op .
e +div(pv) = 0. (6.3.4)

This is the equation of continuity in the form given by Euler. It is a first-order
partial differential equation which connects the velocity field v(r, 7) and the density
field p(r, f). Using the convention of summation, we can also write it as

—+—(pv;) =0. 6.3.5

o T ax PY) (6.3.5)
To give a more suggestive physical interpretation of the equation of continuity

(6.3.4), let us integrate it over an arbitrary, fixed volume V, inside the medium:

/apd /dlv(pv)d

or, in view of the Green—Gauss theorem (see Appendix B),

d
at/pdt = —]{pv - dS, (6.3.6)

N

where d8 is an oriented element of the surface S which bounds the volume V. The
particles of the medium can enter and leave the volume V through the boundary
surface S. The Lh.s. clearly represents the rate of variation of the mass within the
volume V. To emphasize the physical significance of the r.h.s. of Eq. (6.3.6), let
v be the velocity of a particle passing through S during the time interval dt. The
mass dm of the particle is proportional to the volume of an infinitesimal cylinder,
of base dS and generatrix vdt (Fig. 6.2):


http://dx.doi.org/10.1007/978-3-642-17234-2_5

6.3 Dynamics of Continuous Media 299

Fig. 6.2 Intuitive n

representation of the \
conservation of mass in the
mechanics of continuous vdt

deformable media.

dm = p(v - dSdr).

The quantity pv - dS is then the mass which flows in unit time through the surface
element dS. Choosing the outward normal, this quantity is positive if the mass
leaves the volume V (v - n > 0), and negative if the mass enters the volume
(v - n < 0). Consequently, the quantity 3§V pv - dS represents the total mass which
leaves or enters the volume V per unit time. The vector quantity pv is termed mass
current density. Its direction coincides with that of v, while its magnitude
represents the mass passing in unit time a unit area orthogonal to v.

An alternative form of the equation of continuity was given by Jean-Baptiste le
Rond D’Alembert. Using again the theory of integral invariants (see (5.6.6)), the
invariance of the mass contained in the volume V can be written as

/p(x(l),xg,xg,to)drg:/p(xl,xz,xg,t)dr. (6.3.7)

Vo v

But, in view of (6.2.1),

dt = dxdxydxs = %dx?dxgdxg = Jdr,
leading to
/(po — Jp)dty =0, (6.3.8)
Yo
where we denoted
po = p(ro,to), p=p(r,1). (6.3.9)

Since the integration volume V), is arbitrary, relation (6.3.8) yields D’ Alembert’s
version of the equation of continuity:

Jp = po- (6.3.10)

It is easy to prove that Eqs. (6.3.6) and (6.3.10) are equivalent. Indeed, taking
the total time-derivative of (6.3.10) and using formula (5.6.12), we obtain:


http://dx.doi.org/10.1007/978-3-642-17234-2_5
http://dx.doi.org/10.1007/978-3-642-17234-2_5
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Fig. 6.3 Interior forces
acting on the particles of a
continuous deformable
medium.

dp
J—+pJdivv=0
ar +pJ divv ,
leading straightforwardly to (6.3.6) after simplification by J # 0.
The equation of continuity expresses fundamental conservation laws of physics,
for example conservation of mass in mechanics, conservation of charge in elec-

trodynamics, or conservation of probability in quantum mechanics, etc.

Observation: If the medium is incompressible and homogeneous, then
p(r, f) = const., and the equation of continuity (6.3.4) reduces to

divv =0, (6.3.11)

which means that, in this case, the velocity field is solenoidal (or source-free).

6.3.2 Forces Acting upon a Continuous Deformable Medium

Unlike the case of rigid systems, the action of a force upon a continuous
deformable medium depends on whether the particle on which it acts lies on the
boundary of the body, or in its volume. Consider a portion of the medium in
motion, which at the time ¢ occupies the volume V(f), bounded by the surface S(7).
The forces acting on it fall into two categories:

(a) Body forces, which act on three-dimensional particles of the domain con-
taining the medium. These forces are proportional to the mass Am of the
particle contained in the volume At. Denoting by F the specific body force
(force acting on unit mass), the body forces can be written as FAm (Fig. 6.3).
In general, the vector quantity F is a function of the position of the particle, its
velocity and the time: F = F(r, v, 7) (see Chap. 1).

(b) Superficial forces, acting on the particles which form the boundary surface of
the medium. These forces are proportional to the area AS of the surface element,


http://dx.doi.org/10.1007/978-3-642-17234-2_1
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Fig. 6.4 The internal forces
obey the action and reaction
principle.

and we shall denote them by T A S, where the force T acting on unit area is
known as the stress or tension. In general, T is a function of the position of the
surface element, its orientation and time: T = T(r, n, f), where n is the unit
vector of the outward normal to AS. Let T = ITI.If T - n = —T, the stress is a
pressure; if T - n = T, the stress is a traction; finally, if T - n = 0, we have a
shear stress. In practice, we usually find mixtures of these particular cases.
In the study of fluid media, superficial forces occur as pressures, while in the
case of solid deformable media we meet all possible kinds of tensions.

Both body and superficial forces can be grouped, in their turn, into two classes:

(a) Body (superficial) exterior forces, coming from bodies outside our medium,

(b) Body (superficial) interior forces, due to the mutual interactions of the particles
of the medium. According to the action and reaction principle, any pair of these
forces are equal and directly opposed to each other. Consider, for example, two
portions of the medium, which at the time 7 occupy the domains D; and D,,
being in contact through the surface S (Fig. 6.4). Then, one must have:

T(r,n,t) = —T(r,—n,1). (6.3.12)

6.3.3 General Theorems

By definition, the linear momentum of a CDM, which occupies the domain D(¢) of
volume V, bounded by the surface S, is

P:/vdm:/pvdr7 (6.3.13)

\% 14

while the angular momentum of this system, relative to the origin O of a Cartesian
system of coordinates, is
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L:/rxvdm:/prxvdr. (6.3.14)
v v

In continuous media mechanics, the theorems of variation of linear and angular
momentum, proven for discrete mechanical systems, remain valid. This can be
shown straightforwardly by taking the continuum limit of (1.3.34) and (1.3.38).
Here we omit the proof.

Including both body and superficial forces, we shall write the linear momentum
theorem as

d
= ovdr = /de‘c—&-%TdS, (6.3.15)
v 14 s

while the angular momentum theorem becomes:

d
E/prxvdr:/perdr—kfrdeS. (6.3.16)
Vv Vv N

Here all momenta are taken with respect to the same point, the origin O.
In a similar way, one can define the kinetic energy:

1

T= E/pvzazf (6.3.17)

Vv

and the radius-vector of the centre of mass:

1
rc :M/prdr, M:/pdr. (6.3.18)
4 v

Using these definitions, the reader can easily prove that in continuous mechanics
the centre of mass theorem (1.3.55) and Konig’s theorems (1.3.60), (1.3.61)
remain valid.

6.3.4 Equations of Motion of a CDM. Cauchy Stress Tensor

Let us choose an arbitrary point P of our CDM and construct the Cartesian
orthogonal frame Px;x,x3. A plane defined by the normal vector n intersects the
axes at the points Py, P, and P;, forming the elementary tetrahedron PP,P,P;
shown in Fig. 6.5, in which

PP,‘:dl‘ (ZZ 17273)7 (6319)


http://dx.doi.org/10.1007/978-3-642-17234-2_1#Equ65
http://dx.doi.org/10.1007/978-3-642-17234-2_1#Equ69
http://dx.doi.org/10.1007/978-3-642-17234-2_1#Equ86
http://dx.doi.org/10.1007/978-3-642-17234-2_1#Equ91
http://dx.doi.org/10.1007/978-3-642-17234-2_1#Equ92
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Fig. 6.5 Cauchy’s
tetrahedron. Sign convention:
the tension is positive if it
acts on a surface whose
normal points in the positive
direction of the axes of
coordinates and negative
otherwise.

where ¢ > 0 is a small parameter (2 ~ 0). This is known as Cauchy’s
tetrahedron.

Let dS be the area of the basis P; P, P; and denote by n,n,,n3 the direction
cosines of the normal to dS. Then the surfaces of the orthogonal faces of the
tetrahedron, which are the projections of the oblique face on the corresponding
planes of coordinates, can be expressed as

dS; = (ndS), = n;dS (i =1,2,3). (6.3.20)

Also, let T be the average stress on dS and T; the average stress on dS;
(i=1,2,3). Then T}, T;; are the components of T and T;, respectively, on the
axes of the Cartesian frame.

With our sign convention (see Fig. 6.5), D’ Alembert’s principle (2.5.3) for the
forces acting on Cauchy’s tetrahedron reads:

adm —Fdm +TdS — T;dS; =0, (6.3.21)

where the summation convention has been used and F represents the body forces
acting on the tetrahedron. Since the tetrahedron is infinitesimally small, we can
assume that the tensions on the four faces are actually applied all at the point P. If
dm is the mass of the elementary tetrahedron and dr its volume, we have:

(a—F)dm = (a—F)pdr = é (a—F)pelilyl5.
Since this expression is proportional to €, it can be neglected with respect to the
rest of the terms in (6.3.21), and we are left with
TdS =T,dS;,
or, in view of (6.3.20),
T=nT, or T, =nTy (i,k=1,2,3). (6.3.22)


http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ124
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This is Cauchy’s formula. The quantities T, define a second-rank tensor, called the
stress tensor. Its diagonal elements 711, Ty, T33 are the normal stresses and the
non-diagonal elements 77, T»3, T3; are the tangent or shear stresses.

Cauchy’s formula (6.3.22) shows that, if the stresses at P along three orthogonal
directions are known, then we can determine the stress at P relative to any
direction n.

To deduce the equations of motion of our CDM, we shall apply the momentum
theorem (6.3.15). Using Euler’s theorem (5.6.12), and the equation of continuity
(6.3.4) and the definition of the substantial derivative (6.2.12), we have:

d d d .
E/pvdr—E/pdero—/[Ja(pv)—&-pdewv}dro
v Vo

Vo
d d
/{d[(pv)erVdivv] dt:/pd—: dr:/padr.
14 4 14

Therefore, the linear momentum theorem taken for a finite domain D of volume

V and boundary S, reads:
/p(a _F)dr = ]des.

Vv N

Recalling that n is the unit vector of the outward normal to dS and using Cauchy’s
formula (6.3.22) and the Green—Gauss theorem, the r.h.s. of the above equation

becomes:
oT
%TdS: %nka ds = kadsk = [ % ax,
6xk
S S S \%4

hence

V/[p(a—F)—Z—Zf]dTZO.

Since the integration volume is arbitrary, we obtain

oT Ty
pa=pF+_—— or pa;=pF +-"
Oxy Ouxy

(i=1,2,3). (6.3.23)

These are the equations of motion the CDM. They have been first deduced by
Augustin-Louis Cauchy. Because the model of CDM is not specified, it is said that
this is the non-definite form of the equations of motion. Using the derivation rule
(6.2.14), we can recast Cauchy’s equations in the form:


http://dx.doi.org/10.1007/978-3-642-17234-2_5
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ov; v 0Ty
— = pF; . 6.3.24
p ( ot U avk> prit Oxy ( )

Let us now show that the stress tensor Ty; is symmetric. To this end, we shall
apply the angular momentum theorem (6.3.16) to the domain D(¢), bounded by the

surface S(7):
/prx (a—F)dT:]{rdeS,

v s
or, in components,
/peijkxj(ak — Fk) dt = feiijka ds.
v s
Using Cauchy’s formula and the Green—Gauss theorem, we obtain:

%fz‘jkijk ds = /eijkij;k ds;
s s

0 0T
:/eijkafxl(ijlk) dr/eijk(éﬂﬂk+xjaxl) dt
|4 \%4

and with this result, the expression for the angular momentum theorem can be put

in the form:
0T,
/e,-jkxj |:p(£lk — Fk) — 6x11k] dt = /eijijk dr.
Vv Vv

But, according to (6.3.23), the Lh.s. is identically zero. Then, since V is arbitrary,
we have:

E,'jijk =0.

Since the pseudo-tensor ¢; j is antisymmetric in the summation indices j and k and
the product is zero, it follows that the stress tensor T has to be symmetric:

Ty = Ty, (6.3.25)

The equations of motion (6.3.23), together with the equation of continuity
(6.3.4), represent a system of four partial differential equations with ten unknowns:
the density p, the components v; (i = 1, 2, 3) of the velocity and the six inde-
pendent components of the stress tensor Ty (i, k = 1, 2, 3). Since the principles of
mechanics do not furnish any other equation connecting these variables, in order to
determine the motion of the medium one must know some supplementary data,
like: the radius-vectors and the velocity fields at the initial time, the constraint
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Fig. 6.6 Deformation of a
continuous deformable
medium about a point.

forces, the relations between the applied forces and the resulting deformations, etc.
A part of these data is determined experimentally. In this way, one defines certain
models of CDM, like: the elastic medium, the perfect fluid, the viscous fluid, etc.
We shall present some of these models, but we must first introduce some new
concepts, necessary in the study of any CDM.

6.4 Deformation of a Continuous Deformable Medium About
a Point. Linear Approximation

6.4.1 Rotation Tensor and Small-Strain Tensor

Consider a particle of a CDM which, at the time 7, occupies the position P, and let
D(t) be a vicinity of the point P. Assume that during the time interval dr the
particle has moved from P to P’, while the vicinity D() of P has become the
vicinity D(¢ + df) of P'. Our purpose is to study the deformation of the domain
D during the motion, i.e. how the relative distances between its points change.
Take another particle at the point P, of D(f) and let P| be its image at time
t + dt (Fig. 6.6). If we denote by u = dr the infinitesimal displacement vector

PP’ and by v the velocity of the point P, we can write:
dr =u=vdrt (6.4.1)

Our continuous medium is deformable, which means that the elementary dis-
placement is a function of the coordinates of P: u = u(xy,x,,x3). The distance
between the points P and P, at the time 7 is given by the vector &. At ¢ + dt, the
distance between P’ and P’1 will be ¢. From Fig. 6.6, the variations of u and &
during the motion are:

Su= PP — PP =u —u, dé=PP —PP=¢-¢ (6.4.2)
But £ 4+u; — & —u = 0, therefore
dé = du. (6.4.3)
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Assuming that the displacement-gradient matrix STML has infinitesimal elements, we
can write:

Ou Ou
ou=u(r)—ulr)=ulr+§& —ulr)=ulr)+&—+ - —ulr) = &—,
axk axk
and with this linearization, formula (6.4.3) becomes:

du Ou; .
d§ = aixkék or dé, = ai_xkék (l = 172,3) (644)

In the case of orthogonal coordinates, the quantities g—)’:; are the components of a

second-rank Cartesian tensor. Denoting Ay = %, we have:

d&; = Apiéy. (6.4.4")

We know (see Appendix A) that any second-rank Cartesian tensor A;; can be
written as the sum of an antisymmetric and a symmetric tensor:

1 1
A = E(Aki — Ai) + 3 (A + Ai)
= Wy + €i- (645)
The antisymmetric tensor
1 1 (Ou; Ouy
i == (A — Ai) =5 - 6.4.6
Wk 2( k k) 2 (axk Gx,-) ( )

is called the rotation tensor, while the symmetric tensor

1 1 /Ou; Ouy
i—_Al.+Ai = — + 6.4.7
ek 2( k ) 2 <©xk axi> ( )

is called the small-strain tensor. Let us find their physical significance.
Beginning with wy;, let @ be the axial vector associated with it:

Wi = €k jA . (648)
Therefore, if we ignore the second term in (6.4.5), we find:
déi = eijkwjék = ((1) X €>i7 (649)

which corresponds to a rigid rotation about a fixed axis. Examining the defining
relation (6.4.6), we notice that the rotation vector ® is given by

1
o= icurl u. (6.4.10)

From (6.4.2) and (6.4.9), we obtain:
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E=¢4+dé=E+oxE (6.4.11)

meaning that, when its components are very small, the antisymmetric tensor wy;
produces an infinitesimal rigid rotation, without deformation (see Sect. 4.3).

Passing now to the small-strain tensor ey, it is seen that if we omit the first term
in (6.4.5), we can write:

dé; = eéy = % (%ekjfkfj) (6.4.12)

Consider the quadric

1

Eekjfkéj = const. (6.4.13)
Since this quadric is invariant with respect to an orthogonal transformation, we can
choose the coordinate system with its origin at P, and having the axes along the
axes of the quadric. In this case, the quadric (6.4.13) can be written in the
canonical form:

6116/12 + 6226/22 + 6335,32 = const. (6414)
This formula expresses the fact that the elementary deformations

déy =enéy, d& =epné, di=ené; (6.4.15)

are performed along the axes of the quadric (6.4.13). The quadric (6.4.13) is the
deformation quadric and its axes are the principal axes of deformation.

If we take the value 1 for the constant in (6.4.13), then we may encounter one of
the following situations. If all quantities e, ez, €33 are positive, our quadric is an
ellipsoid and the deformation is a dilation. In particular, if e} = ey = e3s, the
ellipsoid becomes a sphere. If e, e,, e33 have different signs, the quadric is a
hyperboloid and the deformation can be either a contraction, or a shear stress.
When the elements of the rotation matrix are zero, we have a pure deformation or
a pure strain.

Concluding our discussion, during the motion of a CDM we can have both
rigid-body motion, i.e. translations and rotations, and pure deformations, produced
by the mutual displacements of the particles of the medium. In view of (6.4.4) and
(6.4.11), we thus can write

E=¢+oxE&+Vp, (6.4.16)

where

1
B= gekjékij-
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6.4.2 Saint-Venant Compatibility Conditions

If the strain distribution in a CDM is known, then the displacement functions
u;(x1, X2, x3) can be found by solving the differential equations which, by virtue
of the definition (6.4.7), represent the six independent components of the sym-
metric tensor e;;:

. Ouq . Ouy o Ous
el = oxy €2 = oy €33 = oy
_1 6u2+6u1 _1 6u3+6u2 _1 6u1+6u3
€2 =3 ox; Oxp )’ 3 =5 Ox,  Ox3)’ =5 Ox3 Ox; /)’

(6.4.17)

The system of six differential equations (6.4.17) in general overdetermines the
three unknowns u;, u, and u3. However, due to the continuity of the displacement
field in a CDM, there exists a functional dependence between the quantities e;;.
These extra conditions remove the overdetermination, rendering the system
(6.4.17) integrable. Indeed, taking suitable derivatives in (6.4.17), we arrive at the
following system of six second-order partial differential equations:

62811 62622 - 62612
6x§ Gx% 6x1 6x2 ’
62622 62633 - 62623
ox3 0x3 0x,0x3
62633 82611 o 62631
6x% 6)(% 6x36x1 ’

62611 - 0 (6.931 6612 6623>

0xp0x;  Oxy \dxy | Ox3  Oxp

4.1
Ox, Oxz3  Oxg (6.4.18)
62622 0 (6612 6623 6631>

dndx,  ox \dx3 | Ox;  Oxy

62633 0 <6€23 6631 6612>

dxj0x;  Oxs \Ox; | Ox;  Oxz

These equations were first obtained by Barré de Saint-Venant and they represent
compatibility conditions. They can also be written in the condensed form

2
0 €kp

.. Eg.) /
€i jk€mpq ax]@xq 0. (6418 )
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The role of the conditions (6.4.18) is to ensure the compatibility of the defor-
mations with the displacements. This can be intuitively seen by dividing the
undeformed CDM into small volumes, which are then strained. The CDM can be
re-composed after the deformation only if the strains of the individual small
volumes are compatible with each other, what is ensured by Eqgs. (6.4.18).

6.4.3 Finite-Strain Tensor

Let x; and x; (i =1, 2, 3) be the coordinates of a particle before and after
deformation, respectively. Assuming that the displacement u(r) is finite, we
can write

x; = x; +u;(r), (6.4.19)

which, by differentiation, yields:

Ou;
dx; = dx; + ldxk.
6xk

If ds® and ds” are the squared distances between any two points before and after
deformation, using the last relation we find:

Ou; Ou;
dxidx; = (a’xi + ldxj) (dx,- + dek)
Ox; Oxy

Oup Ou; Ou;Ou;
= dx;dx; — 4+ 4+~ —ldxid

i + <6xj Oxp  Ox;Oxy XETks

or
ds? — ds* = 2E pdx dxy,
where
1 (Ou;, Ou; Ou;Ou;
Ejp == ok 2 o 6.4.20
) (ax,- + Oxy + Ox; 6xk> ( )

are the components of a second-order symmetric tensor, which is the finite-strain
tensor, expressing the change in the squared length of the vector dr upon the
deformation.

On the other hand, since

Ox) Ox!

ds”? = dxidx; = axl@—x/idxjdxk = g jdx jdxy,
j
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where g is the metric tensor of the transformation x! = x}(x, x2, x3), we can also
write:

ds? —ds* = (g — 0 )dx dxy,
leading to the general expression for the finite-strain tensor:

1
Ejk = 5 (8jk = 9jx)-
Equations (6.4.20) show that the finite-strain tensor contains only linear and
quadratic terms in the displacement-gradient components. This is an exact result
and not a second-order approximation. If the deformations u; are small enough so

as to neglect the product 53 7= with respect to the rest of the terms in (6.4.20), then
J

E j — ej, which has been defined earlier for the linear theory of deformations.
Noting that our study will be done within the framework of this linear approxi-
mation, we shall next discuss some of the basic models of CDM, like the elastic
medium, the perfect fluid, and the viscous fluid.

6.5 Elastic Medium
6.5.1 Hooke’s Generalized Law

By an elastic medium we mean a body which recovers its initial form and position
when the deforming force stops its action.

The connection between applied forces and the deformations produced by them
has been for a long time the object of experimental studies, leading to the so-called
stress-strain relations or constitutive equations. In 1678, Robert Hooke revealed
his discovery of the proportionality between forces and deformations (ut tensio, sic
vis), and gave the law of elasticity:

Al 1F
L " ES (6.5.1)
Here, [; is the initial length of a thin and long wire, S — the area of its transverse
section, F — the deforming force, Al — the strain (elongation) produced by it and
E — the Young modulus. This relation is in good agreement with the experimental
observation if the force F is uniformly distributed on the surface S, which does not
vary during the deformation. In the case of massive elastic bodies, we must
consider both longitudinal and transversal deformations. In other words, Hooke’s
law (6.5.1) should be generalized so as to include all possible deformations.
Assuming that our model is a homogeneous and isotropic elastic medium, we
delimit a rectangular parallelepiped ABCDA'B'C’'D’ of the body, and choose a
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Fig. 6.7 Normal and tangential tensions in an elastic medium.

Cartesian orthogonal system of coordinates Ox;x,x3 with its origin O at the centre
of the parallelepiped (Fig. 6.7a).

Denote by Ti1, T2z, T33 the normal stresses on the three pairs of faces, oriented
along the axes xi,x, and x3, respectively. Under the action of these tensions, the
parallelepiped is deformed infinitesimally, so that a point P, whose coordinates
before deformation were x;, x, x3, will have after the deformation the coordinates

X} =x; + €x; (no summation; i = 1,2,3).

The medium being homogeneous and isotropic, it follows that all the points will be
shifted similarly, such that the change in relative distance between two arbitrary
points will be:

& =¢ +eé&  (no summation; i = 1,2,3) (6.5.2)
Comparing (6.5.2) with (6.4.15), we identify
e;; = ¢ (no summation; i = 1,2,3). (6.5.3)

If we have only normal tensions (i.e. the stress tensor Tj; is diagonal), the defor-
mations are produced only along the coordinate axes (Fig. 6.7b), meaning that

By virtue of (6.4.4), (6.5.3) and (6.5.4), for a pure deformation we therefore have
dé; . .
T eii = ¢ (no summation; i = 1,2,3). (6.5.5)

Comparing now (6.5.5) with Hooke’s law (6.5.1), we observe that under the action
of normal tension (traction) Tj;, the medium elongates in the i direction by the
relative rate T;;/E, while in the orthogonal directions it contracts by Poisson effect
by the rate O'%. Here, o is a material constant which depends on the nature of the
medium, called coefficient of transverse contraction or Poisson’s ratio. Since, by
hypothesis, the medium is homogeneous and isotropic, we have:
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_Tn T T3

ey =—7—0—F —0—,
E E E

I, T T

e

T53 T T
ep3=—"—0——0—.
E E E
These relations can be written in a compressed form as
_1+o o

——T;; ——=s (no summation
E ii E ( )7

€ji
where we have used the notation

S = T]l + T22 + T33. (656)

Since e; = 0 for i # j, we have also:
—Tl ——Séij. (657)

This relation has been deduced on the assumption that there are only normal
tensions acting on the elastic medium. But the experiment shows that this is true in
general. Indeed, if we had only tangential (shear) tensions Ty, = Tpy, Tr3 =
T3y, T3 = T3 (Fig. 6.7¢), we would get

l+o L
¢ij=—pTij (i #J) (6.5.8)
which proves to be true.
Formula (6.5.7) can be put in a different form, which displays the relation
between the stress tensor T, on the one hand, and the small-strain tensor e;;, on the
other. To this end, we define the volume specific dilation:

Ouj .
0=-e1 +exn+ess :al:dlvll. (659)

Xi

Taking i = j in (6.5.7) and performing the summation, we have:

_1—20

‘="

S.

Introducing this result into (6.5.7), we obtain:

oF

T = ij
! 1—|—aej+(1—|—0')(1—20)

05;;.

Denoting
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oE E

)u:— = —
=20 ve)

(1+0)(1-20) (6:5.10)

we finally arrive at Hooke’s generalized law for homogeneous and isotropic elastic
media:

Tij = 200;; + 2ue;;. (6.5.11)

The coefficients 4 and p are called elastic constants or Lamé coefficients, being
determined by experimental methods. Eliminating o between relations (6.5.10), we
find Young’s modulus E in terms of 4 and

g H2ut34)

6.5.12
A4 ( )

In the case of anisotropic media (crystals), Hooke’s law has a more general
form, namely

Tij = Cijkmeim, (6.5.13)

where Cjj, are the components of a fourth rank tensor, called elasticity tensor or
stiffness tensor. Its components satisfy the following symmetry relations:

Cijkm = Cjikm = Cijmka Cijkm = Ckmij- (6514)

The first group of relations is trivially obtained from the symmetry of the tensors
T;; and ey, and represent the so-called minor symmetries. The latter relation is
obtained from thermodynamical considerations which are beyond the scope of this
book. Here we have 45 4+ 15 = 60 relations, therefore the maximum number of
the independent components of Cyy,, is: 3* — 60 = 21. This result can be also
obtained by speculating the symmetry of the pairs of indices, which suggests to
choose the following mapping of tensor indices (so-called Voigt notation):

1 2 3 4 5 6
11 22 33 23 31 12
The tensor Cjj,, becomes Cyy, with the property

Ciy=Cyr (6.5.15)

Therefore Cy; is a second-rank symmetric tensor, defined on a six-dimensional
space. The number of its independent components is

QECTE

If the anisotropic elastic medium possesses symmetry axes, the number of the
independent components of the elasticity tensor is less than 21. Let a, b, c be the
edges of an elementary cell of a crystal, and «, 8, y the angles at any intersection
point of three edges. A cubic crystal (a=b=c, o = f =7y) is the simplest
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anisotropic case and it has three independent components of Cy;, while a crystal
characterized by a # b # ¢, a # c, « #  # y, oo # y has the maximum number
of components, namely 21.

Using our convention, Hooke’s law (6.5.13) can be written as

T] = C]KEK (I,K = 1,6) (6516)

Comparing (6.5.11) and (6.5.13), we find the components of the tensor C, for a
homogeneous and isotropic elastic medium:

Ciu=Chn=42414+2py
Chr=Cin =4
Ces = Cra12 = 2.

It is seen that the three components of the elasticity tensor C,x are not indepen-
dent, but obey the relation C; = Cy; + Cgg, Which means that only two compo-
nents are distinct (the Lamé coefficients), as we expected.

We give here, as an example, the matrix of the elasticity tensor for a crystal
with cubic symmetry:

Ci Cpp Cpp O 0 0
Cp Ci Cn O 0 0
Cp Cn Cn O 0 0
0 0 0 Ce O 0 (6.5.17)
0 0 0 0 Cg O
0 0 0 0 0 Cg

Observation: If the temperature of the medium varies during the elastic defor-
mation, Hooke’s law (6.5.13) must be corrected by a term expressing the tem-
perature changes, namely:

Tij = Cijimeim — 4i;(T — To), (6.5.18)

where AT = T — Ty is the variation of the temperature and /; are some constants
called coefficients of thermo-elasticity.

6.5.2 Equations of Motion of an Elastic Medium

To obtain the equations of motion of a homogeneous and isotropic elastic medium,
we introduce Ty, given by Hooke’s law (6.5.11) into Cauchy’s equations (6.3.23).
Recalling that the stress tensor Ty is symmetric, these equations read:
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oT;
pa; = pFi +—%  (i,k=1,2,3). (6.5.19)
ka
We have from (6.5.11):
0Ty o0 Oejx
=A—0i+2 .
axk axk bt K axk

But

Oej 1 0 [Ouy N Ou; 1[0 [Ou N 0%u; 1/00 LA
= —_— = - |— _— = — —_— ”i s
6xk 2 6.Xk 6x,~ axk 2 axi 6xk kaaxk 2 6xl~

hence:

0Ty 00 06 , L)
= A ~_ A i| = A A i
Oxy A@xi+u<6xi+ u> (A+'u)ax,<+'u !

which leads to the desired equations of motion:

The relations (6.5.20) form a system of three linear partial differential equa-
tions in the variables u; (i = 1, 2, 3). They were first deduced by Gabriel Lamé.
Let us write these equations in terms of Lagrange variables.

Recalling that our study is performed in the framework of the linear approxi-
mation, we rewrite (6.5.2) in the form:

x; = Xj + 1,{i(r7 t) (l = 1,2,3), (6521)

where this time by x; we mean the coordinates of some particle P at the initial time
to, and by x| the coordinates of the same particle at the time 7. In other words,
X1,X2,x3,¢t are Lagrange variables. Since x; remain fixed while following the
particle in its motion, by virtue of (6.2.3) and (6.2.4), we have:

ox;  Ou;
= 6.5.22
T T o ( )
gy = T (i=1,2,3) (6.5.23)
"ot o T e
The body force F is a function of the form
/ OF
F(r',t) =F(r+u,t) =F(r,7) + gt F(r,1). (6.5.24)
X

The equation of continuity (6.3.10), with the notation adopted in this section, is
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Jp(r',t) = p(r,1).

But
a(xlj) Ou;
=L o]
I 6()(?/') + axi +

If we denote p(r, 7o) by p(r), the equation of continuity yields:

p(r' 1) = p(r). (6.5.25)

Then Lamé’s equations (6.5.20) read:

0%u; 00
L= pF; — 4 uAuy; 5.2
P p,+(i+u)axi+u i, (6.5.26)
or, in vector form,
u
pW:pF+(i+u)grad0+,uAu. (6.5.26")

An alternative form of this equation is obtained if we use the vector relation
Au = grad 0 — curl(curlu).

The result is:

2
p%—; = pF + (1 + 2u)grad 0 — p curl(curl u). (6.5.27)

To integrate Lamé’s equations, one must know both the initial conditions
(the elementary displacements and the velocity fields at the initial time) and the
boundary conditions (e.g. the components of the stress tensor on the surface of the
elastic body).

The equations of elastic equilibrium, called Navier—Cauchy equations, are
obtained from (6.5.26) by taking a = 0:

20
pE + (24 1) 3

i

;=0 (i=1,2,3). (6.5.28)

6.5.3 Plane Waves in Isotropic Elastic Media

Assuming that our elastic medium is large enough, so as to obtain at least several
wave-lengths in any direction of propagation, let us suppose that the elementary
displacement u depends on a single space variable x; and the time 7. u = u(x,?).
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If at the moment of observation the force F has stopped to act upon the medium,
Lamé’s equations (6.5.26) yield:

2

0%u; 00
L= — Au;. S5.2
P3p (l+u)axi+u u; (6.5.29)
We also have:
aul
0 =diva = —
ivu )
62u1 82u2 82u3
Au =——. Aup) = Aus =
" Gx% ’ 12 Gx% ’ 1 Gx%

Thus, the three components of equation (6.5.29) read:

azul 62u1
62u2 62u2
62M3 62u3

We arrive at three partial differential equations of hyperbolic type, similar to the
D’ Alembert homogeneous wave equation:

ok 2 Woat 2

oxz 2 02

If we choose the displacement u so as to have u;# 0, up = 0,u3 =0, the
propagation is described by Eq. (6.5.30). Since the displacement is along the

direction of propagation, we have a longitudinal wave. The speed of this wave is
found by comparing (6.5.33) with (6.5.30):

v = /2 erz”. (6.5.34)

If, on the contrary, we choose u; = 0, uy # 0, us # 0, the propagation is given
by Egs. (6.5.31) and (6.5.32). In this case the direction of displacements is
orthogonal on that of propagation of the oscillation, therefore we have a transverse
wave which propagates with the speed

v = \/g. (6.5.35)

= 0. (6.5.33)
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Observation: The longitudinal oscillations produced in an elastic rod are descri-
bed by Eq. (6.5.30), while the transverse oscillations of a vibrating rope satisfy
equations of the type (6.5.31), or (6.5.32).

6.6 Perfect Fluid

The perfect or ideal fluid is a model of CDM having the property that the tensions
acting on any interior surface, which separates two arbitrary parts of the medium,
are normal to this surface. In other words, there are no forces of friction between
particles. For example, a fluid in a very slow motion is a good approximation for
this model.

Since we have only normal tensions, we can write

T = —pn, (6.6.1)

where p(xy,x2,x3,1) is a scalar called pressure. Here, x1,x2,x3,¢t are Euler
variables. Their use is recommended by the fact that a fluid in motion represents
considerably large displacements of substance (convection). Because in fluid
mechanics we deal only with pressures, the scalar p is positive. Projecting (6.6.1)
on the x;-axis and using Cauchy’s formula (6.3.22), we have:

T, = —pn; = —pnké,-k = n; Ty,
which yields:
T = — poi. (6.6.2)

6.6.1 Equation of Motion of a Perfect Fluid

Utilizing the already known procedure, we introduce T given by (6.6.2) in
Cauchy’s equations (6.3.23). The result is:

F-SP (2123 (6.6.3)

ai et i 1= 5 Ly . 0.
P P ox;

These partial-derivative, non-linear equations were first obtained by Leonhard
Euler. The equation of continuity (6.3.4), together with Euler’s equations (6.6.3),
form a system of four partial-derivative equations with five unknowns:
vy, V2,3, p, p. We need one more equation. Since it cannot be furnished by the
principles of mechanics, we ‘borrow’ from thermodynamics the equation of state

F(p,p,T) =0, (6.6.4)
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where T is the absolute temperature. If 7 = const., the equation of state takes
the form

p=f(p), (6.6.5)
and characterizes barotropic fluids. In this case, we can define the function
dp
P(p) = / — 6.6.6
(») p(p) R

to recast Euler’s equation (6.6.3) in the form:

oP
i =F ——. 6.6.7
a o (6.6.7)

Observations:

(a) Euler’s equation can be written in different forms, required in practical
applications. Thus, if we use the substantial derivative rule (6.2.14), we obtain:

p [2:, + (v V)V] =pF — Vp. (6.6.8)
Since
(V'V)VZ%V(V~V) —vx (Vxv),

Euler’s equation takes the form:

0 1 1
a—:—f—EV(v-v)—vx(va):F—;Vp. (6.6.9)
This last form was given by Hermann von Helmholtz.
(b) To integrate the system of equations (6.3.4), (6.6.3) and (6.6.5), we must know
both the initial conditions (quantities p, p, vy, v2, v3 at the initial time) and the
corresponding boundary conditions.

6.6.2 Particular Types of Motion of an Ildeal Fluid

6.6.2.1 Irrotational Motion

Using a procedure similar to that applied in Sect. 6.4, we shall first define the
velocity of rotation and velocity of deformation tensors. Let P and P’ be any two
infinitely closed points of the medium, and let vp, v}, be the velocities at these
points at the times ¢ and ¢ > t, respectively. The variation of v between these two
points, at time ¢, is
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OV=Vp —Vp = aa—;;éxk, (6.6.10)

where the derivatives %"k are calculated at the point P. Projecting (6.6.10) on axes

and denoting ox; = (PP’), = Xy, we have:

ov; 1 /0v; O 1 /Ov; Oug
=t X = (o — ) X o [t 5 ) X
ou Oxy ) <6xk 6vi) Kt 2 <6xk + ax,») k

=QuXr+e X (i, k=1,2,3). (6.6.11)
Here,
1 /Ov; Ouy
Qu =~ - 6.6.12
T2 <6xk Gxi) ( )

is the velocity of rotation tensor, while the corresponding axial vector
1
Q= Ecurlv (6.6.13)

is known as the vorticity. We therefore can write:
QkiXk = EkiijXk = (Q X X)i' (6614)

The second term in (6.6.11) is

0o (1 oo

where ¢}, is the velocity of deformation tensor and

1
o= Eefchka = const. (6.6.16)

is the velocity of deformation quadric. Then,
vp =vp+ Q x X+ Va,

i.e. the velocity of the fluid, at any point, is a vector sum of three terms: a rigid
velocity of translation, one of rotation and one of deformation, orthogonal to the
quadric (6.6.16).

If

curlv =10 (6.6.17)

at any point of the fluid and at any time, the motion is called irrotational. The
relation (6.6.17) expresses the necessary and sufficient condition for the existence
of a function ¢(r, 1), called velocity potential, such that
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v = grad o(r, 1). (6.6.18)

The streamlines are defined as the lines which are tangent to the velocity at any
point, being determined by the differential equations:

d_dy _de

Ve Uy g

Note that the relation (6.6.18) defines the velocity potential up to a term which is a
function of time only. Indeed, if we take

¢ =+ Ft), (6.6.19)

we obtain the same velocity field v.
We also have (see (6.6.9)):

oy 10 o [op 1 ] oy
“=% Y35 VY "5 {az +3(Ve) } S
or
a = grad y(r, 1), (6.6.20)
where
0 1
W= £+ S(Vo )2 (6.6.21)

is the acceleration potential. One observes that y has, in its turn, the property
(6.6.19) of the velocity potential.

Assume that our fluid is barotropic and that there exists a function V*(r, 1),
such that

F = —grad V¥(r, 1). (6.6.22)

Substituting the last two relations into (6.6.7), we have:

Jp 1
grad 6 5 (grad @) + V* + P| =0,
which yields:
a(P 1 2 *
o +§(V(P) + V' +P=fi(1), (6.6.23)

where fi(?) is a function of time only. Thus, Euler’s equations have been reduced to a
single relation (6.6.23), named the Lagrange—Bernoulli equation, in which the
velocity field v has been replaced by the scalar field ¢(r, ¢). In this case, the motion
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of the fluid is determined by three equations: the Lagrange—Bernoulli equation
(6.6.23), the equation of continuity (6.3.4) and the equation of state (6.6.5).
In view of (6.6.19), we may take

o =0 / file) dr,

in which case the Lagrange—Bernoulli equation (6.6.23) reads:

09 1

~ 3 (Vo' +V* + P=0. (6.6.24)

6.6.2.2 Fundamental Equation of Acoustics

Consider a volume of gas at rest (v = 0). Assuming that at the moment of
observation there are no body forces acting on the medium (F = 0), Euler’s
equation (6.6.8) yields p = py = const., while (6.6.5) leads to p = py = const.

Suppose that in a certain point of the medium appears a small perturbation,
expressed by:

p=po+p, p=po+p (P <po, p <py)

whose velocity of propagation is small enough as to neglect the term %(V{p)z in
(6.6.24). On the other hand, the definition (6.6.6) yields:

P
dp p—po_ P
R
p(p) Po Po
Po

and consequently the Lagrange—Bernoulli equation reduces to

a /
R (6.6.25)
or - po

Due to the equation of continuity (6.3.4), we also have

/ !/

op i op
2 + podiv v = 3 + poAp = 0. (6.6.26)
But
r n o ap ’
potp =ppo+p)=ppo)+ (=) P+
Po

and, since py, = p(po),
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0
P = (6_p) 0. (6.6.27)
p Po

Utilizing these results, let us now take the partial derivative with respect to time
of (6.6.25). The result is:

Po_ 10y _ 1 (N3 _ (0p)
o2 Tppar pe\op) o \op), "

1%
" _p 6.6.28
4 ct o ’ ( )

or

where

0
ap Po

is the speed of sound. In conclusion, in a gaseous medium the small perturbations
propagate as sound waves, Eq. (6.6.28) being the fundamental equation of
acoustics.

6.6.2.3 Stationary Motion. Bernoulli’s Equation

If all particles of an ideal fluid which pass through a certain point follow the same
trajectory, the motion of the fluid is called permanent or stationary. Mathemati-
cally, this is expressed by the fact that all quantities appearing in the equation of
motion do not explicitly depend on time. Supposing that the motion is irrotational,
Euler’s equation (6.6.7) yields

1
EVZ + V*+ P = const., (6.6.30)

called Bernoulli’s equation. If the fluid is incompressible, then P = p/p and
(6.6.30) becomes

%pv2 + pV* + p = const. (6.6.31)
This equation expresses the conservation of mechanical energy per unit volume of
the fluid. The first term in (6.6.31) is the dynamic pressure, the second — the
potential pressure and the third — the static pressure. In other words, along a
streamline, the total pressure is constant. Note that the constant in (6.6.31) keeps
its value at any point of the fluid, while in case when curl v # 0, the constant varies
from one streamline to another.
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Taking the x5-axis along the ascendent vertical, we have V' = gz, and Bernoulli’s
equation reads:

1
§V2 + pgz + p = const. (6.6.32)
The constant in (6.6.32) is determined from the boundary conditions: at z = zy,
P = po and v = vy are known.

6.6.2.4 Plane, Irrotational, Stationary Motion of a Homogeneous,
Incompressible Fluid

Assume a homogeneous and incompressible ideal fluid which moves in such a way
that the velocities of its particles are permanently parallel to a fixed plane, say
Ox1x (Oxy) and do not depend on x;. Then the equation of continuity (6.3.11)
reads:

Ov ov
divv=—"+4+-—"2=0. 6.6.33
vy = % ( )
Since the motion is irrotational, we also have:
ov, Ov,
(curly), = =2 — T _ g, (6.6.34)

i ox 0y
Let now z = x + iy be a complex variable (not to be confused with x;!) and

f(z2) = o(x,y) +iv(x,y) (6.6.35)

be a function of z, where ¢ and y are the real and imaginary parts, respectively. If
the functions ¢ and y, assumed to be of class C?, satisfy the Cauchy—Riemann
conditions:

dp o 0 Y

ax - ay ) a_y - = ax ) (6636)

then f(z) is analytical or holomorphic at the point z.

Comparing (6.6.33) and (6.6.34) with the Cauchy—Riemann conditions (6.6.36),
we realize that v, and —v, can be taken as the real and imaginary parts of the
complex function

W = vy — ivy, (6.6.37)
or, by virtue of (6.6.18),

_Op  .0¢



326 6 Mechanics of Continuous Deformable Media

where ¢(x,y) is the velocity potential. The function w is called the complex
velocity. Applying the Cauchy—Riemann conditions, we also have:

9 d . (oY oy
df_gdxﬂ—fdyw(%dxﬂ_idy) 9% _ ;%

dz dx +idy ox 0y’
which yields:

af _

= (6.6.39)

The function f{(7) is called the complex potential and V(x, y) is the stream function.
The Cauchy—Riemann conditions also yield

O0p 0 Op 0
092y  dpdy _

axax Tayay - (V) (V) =0, (6.6.40)

which says that the two families of curves ¢(x,y) = const., ¥(x,y) = const. are
orthogonal.

Actually, by symmetry arguments, the role of velocity potential can be played
either by ¢(x, y), or by Y(x, y). If we choose ¢ as the velocity potential, then the
curves |y = const. are the streamlines while ¢ = const. are the equipotential lines.
If, on the contrary, one chooses y as the velocity potential, then ¢ = const. are the
streamlines, and ¥ = const. — the equipotential lines.

To illustrate the use of the complex potential method, let us discuss an example.
Assume that the velocity potential is

flz) = cp+iw:Az+§, (6.6.41)

where A and B are two real constants. Separating the real and imaginary parts,
we obtain:

Bx By

= Ax+—— =Ay————. 6.6.42
o=Art Y= Ay 1 ( )
The complex velocity is found from Eq. (6.6.39):
. B
W=y —ivy=A—,
’ z
which yields:
e 2B
ve=A+BE " oy = (6.6.43)
(+y)7 0 (@)

The form of the two last relations suggests the use of polar plane coordinates r, 0,
instead of x, y. In this representation, we find:
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Fig. 6.8 Image of y Equipotential lines
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vy =A +,,_2(Sin2 0 —cos*0), v, = —ZBT.

Let us analyze the streamline

wUﬁ)—<Ar—f>ﬁn0—O

(6.6.44)

(6.6.45)

This equation admits as solutions either 2> = B/A = const. (0 # 0,7), or

0 = 0,7 (r> # B/A). The first solution represents a circle of radius R =

VBJA,

with its centre at the origin of the coordinate axes, and the second solution rep-
resents the x-axis (Fig. 6.8). On the other hand, (6.6.45) shows that far from the
origin (r—c0) we have v, = A, v, = 0, which indicates that the fluid performs a

uniform motion of translation, parallel to the x-axis.

The same relations lead to the conclusion that at the point O both v, and v,
become infinite, while at the points P; (0 = n) and P, (0 = 0) on the circle they
vanish. The points P, and P, are called stagnation points. These considerations
show that the circle of radius R represents the orthogonal cross section of a fixed,

rigid, cylindrical obstacle.
From (6.6.45), we find the magnitude of velocity as

B\’ 4AB
U2 = <A ——2> +—25in2 0,
r r

i.e. the velocity attains its maximum values at the points with 0 = £7.

Observation: From v = V¢ and divv = 0, it follows that

div(grad ) = Ap = 0,

which is the Laplace equation for ¢, i.e. the velocity potential is a harmonic

function.
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6.6.3 Fundamental Conservation Theorems

As we showed in Sect. 6.3, the law of conservation of mass can be expressed either
in a differential form, by the equation of continuity (6.3.4), or in an integral form,
by Eq. (6.3.6). In the following, we shall deduce the equations of variation of
energy, momentum and angular momentum of an ideal fluid, in a form which will
remind us of Eq. (6.3.6).
Let A(r, f) be any tensor quantity. By virtue of (6.3.4), we have:
dA <6A 6A) 0

0
pE—p §+vkaxk —&(pA)Jr—(pAvk). (6.6.46)

axk

6.6.3.1 Energy Conservation Theorem

By definition, the ideal fluid is free of both internal frictions and thermic con-
ductivity, or, in short, there are no dissipative phenomena. From the thermody-
namical point of view, the fact that there is no heat exchange between the system
and the surrounding medium is expressed by the conservation of entropy. This
process is called isentropic. Any reversible transformation of an isolated system is
an isentropic transformation.
If we denote by s the unit mass entropy, then the constancy of entropy is
given by
ds Os
prar +(v-V)s=0. (6.6.47)
The energy of the fluid contained in an elementary volume consists of both
kinetic and internal energies. If ¢ is the internal energy per unit mass, the energy
per unit volume of the fluid is:

-1
E=3 pv* + pe. (6.6.48)

Assume now that the quantity A in (6.6.46) is the zero-rank tensor A = 1v* +&.
Then, we have:

d 1 2 0 'Uz 0 U2
pdl (2 v 8) ot (P 2 ps) Ox [pvk ( 2 ¢ <6 6 9>

On the other hand, the fundamental equation of the thermodynamics of
reversible processes reads:

1
Tds = de + pd(;). (6.6.50)
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Using Euler’s equations (6.6.3) (with F = 0), the equation of continuity (6.3.3),
the thermodynamical equation (6.6.50) and the fact that the process is isentropic
(ds = 0), we can write:

d (1, B dvy de op pdp
pd;<2” +8>_pvkdt+pdt_ Yo tpdr

0 p (dp duel 0
T axk (ka) + P <dt + paxk) - axk ([?Uk)-

A comparison between this relation and (6.6.49) yields

o/1 , 0 v?
2 (zpv +pg) — [pvk (7* w)] (6.651)

where
w=¢ +§ (6.6.52)

is the enthalpy per unit mass. Integrating (6.6.51) on a fixed domain of volume V,
bounded by the surface S, and applying the Green—Gauss formula, we finally

obtain:
O (Lo 4 pe)de = ) ds (6.6.53)
5 | \5pv tpe)de= pue| 5w k- 6.
S

14

The Lh.s. gives the variation of energy in the volume V per unit time, while the
r.h.s. expresses the density flux of this energy which flows through the surface
bounding the domain. The quantity

pv (”22 + w) (6.6.54)

is the vector of energy flux density. Its magnitude is the energy which flows per
unit time through the unit surface, orthogonal to the direction of the velocity.

6.6.3.2 Momentum Conservation Theorem

Assume now that A is the first-rank tensor v;. Then,

dU,‘ 0

0
P = §(Pvi) + aTCk(PUiUk)

On the other hand, Euler’s equations (6.6.8) with F; = 0 read:
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dv; op 0
—=————=——(pdi).
dt Ox; Oxy (Poi)
The last two relations yield:
0 0
—(pv;) = — — T, 6.6.55
& (o) = =5 T ( )
where the quantities
M = pvivg + péu (i,k=1,2,3) (6.6.56)

are the components of a symmetric tensor. Integrating (6.6.55) on a fixed domain
of volume V and applying the Green—Gauss formula, we obtain:

0 -
5/ P,‘ dr = —%H,'k dSk, (6657)
14 N

which is the momentum theorem. Here, P; = pv; and S is the closed surface
bounding the integration volume. The integral on the Lh.s. of (6.6.57) is the
i-component of the fluid momentum, and that in the r.h.s. is the momentum flux
density through the surface S. The tensor II; represents the i-component of the
momentum passing in unit time through a unit area orthogonal to the x-axis.
Equation (6.6.57) can also by written in a vector form:

%/ﬁm:ffguu& (6.6.58)

where P = pv and {[1} = pvv + pwu; is the dyadic representation of the
momentum flux density tensor Il;; (see Appendix A).

6.6.3.3 Angular Momentum Conservation Theorem
Let us choose A=(r x v); in (6.6.46). Applying Euler’s equation (6.6.3) with
F = 0, we have:

dvy op 0
_ X =€ iD— = —€; — = —— (¢ 5 .
pdt (r xv);, = €ux;p dr €ijkX j oxs ox; (€1 kX POu)

Introducing this result into (6.6.46), then making a convenient grouping of the
terms and integrating over a fixed volume V bounded by the surface S, we obtain
the angular momentum theorem:

%/Lﬁ:—fMM& (6.6.59)
|4 S
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where we denoted
Li = €jupx v, (6.6.60)
M = €jpx Iy, (6.6.61)

The 1h.s. of Eq. (6.6.59) represents the time-variation of the i-component of the
angular momentum of the volume of fluid, while the r.h.s. is the i-component of
the flux of angular momentum density through the surface S. In vector form, the
angular momentum theorem reads:

%/ﬂﬁ:—fMﬂwﬁ (6.6.62)

where L = pr x v, {M} =r x {II}.

6.6.3.4 Kelvin’s Velocity Circulation Theorem

Consider an ideal fluid in motion and let C be some closed curve, made out of fluid
particles. We want to show that in the case of isentropic motion the circulation of
the velocity along any closed curve is constant:

%w dl = const. (6.6.63)
c

To prove this, we take the total time-derivative of the circulation:
d dv d
Ejl{wdl—%gdl—i-]{v-a(dl). (6.6.64)
c c C
Since the motion is isentropic (s = const.), by virtue of (6.6.50) and (6.6.52) we

have:

Vw:%Vp (6.6.65)

Assuming that F is conservative,
F = —grad V*(r),

Euler’s equation (6.6.3) reads:

d
d—j = —grad(V* 4+ w). (6.6.66)

Using these results, the first term on the r.h.s. of (6.6.64) vanishes:
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?{— dl = ]{V(V*%—w)-dl:—]{d(v*—&-w):o.

C

Next, we note that the contour element dl can be written as the difference
between the position vectors of its end points, while the operators d and d/dt are
independent. Having this in mind, the second term on the r.h.s. of (6.6.64) is also

Z€1o:
Z{V.%(dl)Z{v.d<g> fvlefd(%,ﬂ) o,

which completes the proof of (6.6.63), since
d%v dl=0 (6.6.67)
o =0. .6.
C

This theorem is known as Kelvin’s velocity circulation theorem. According to it, if
at the time #; a certain number of particles form a closed contour, then the same
particles will form a closed contour at any time f, > f;. As a consequence of
Kelvin’s theorem, if the motion of a fluid is irrotational at a moment of time, it will
remain irrotational.

6.6.3.5 Vorticity Equation

Applying in (6.6.67) the Stokes theorem, we have:

d
E/curlv-dS:O7

or, in view of (6.6.13),

d
S lQ.das=o. 6.
dt/ s =0 (6.6.68)

This shows that the flux of the vorticity € through the open surface S which moves
together with the fluid is constant. A curve tangent in any point and at any time to
Q is a vortex line. The differential equations of the vortex lines are deduced from
the obvious relation  x dr = 0 and can be written as
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According to Kelvin’s circulation theorem, the vortex lines move together with the
fluid particles, as if being ‘frozen’ in the fluid. This result can be obtained also in a
different way. Let us write Eq. (6.6.66) in the form

0 1
6_: —v x (curlv) = —grad(i V[ 4+ V* + w).

Taking the curl of this equation, we arrive at

o
s curl(v x Q), (6.6.69)

called the vorticity equation, which is the differential form of Kelvin’s theorem.
An alternative form of this equation, which is more convenient for our purpose, is

dQ
i (v-V)Q = curl(v x Q),

or, using the formulas from Appendix B,

aQ

E—(Q'V)V—Qdivv.

Multiplying this equation by 1/p and using the equation of continuity, we easily

arrive at
d [Q Q

which is Beltrami’s vorticity diffusion equation.

To extract the physical significance of this equation, let ® be an arbitrary vector
field, and let T", T be two field lines, taken in such a way that all particles lying on
I" at time ¢, lie on I at time ¢ + dt. Also, let 5l be an arbitrary infinitesimal vector
on I', and 61’ the infinitesimal vector, made up by the same particles, but on the
line I'". In order to be conserved during the motion of the fluid, the lines of the field
® must satisfy the relation

d
! —_— = —
o' — 4l ; (o) dr.

On the other hand, if v = v4 and v/ = vy are the velocities of displacement of the
points A and B (Fig. 6.9), we can write:

ol =0l +vpdr —vadrt
d
:5I+E(I‘A+5l)dl—VAdl‘

=0l+[v+ (01-V)v+--]dt —vdt
~ ol + [(d1- V)v] dt.
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Fig. 6.9 Physical
interpretation of Beltrami’s
diffusion equation.

The last two relations yield:
d
—(ol) = (a1 V)v. (6.6.71)
dt

Now, by comparing (6.6.71) with (6.6.70), we conclude that the lines of the field

Q/p are conserved.

Observation: Beltrami’s equation (6.6.70) has been deduced for an isentropic
flow. If this condition is eliminated, this equation is written in a general form:

d [Q Q 1
—|(—|=(—-V]v+——curla, (6.6.72)
dr \ p p 2p

where a is the acceleration vector. The derivation of this equation is straightfor-

ward and it is left to the reader. (Sometimes the vorticity is defined as Q = curl v,
which leads to the disappearance of the denominator 2’ in (6.6.72).)

6.6.3.6 Clebsch’s Theorem

Clebsch’s theorem states that: If the vector field A is given, then it is always
possible to find three scalar functions o, f3, y, depending on coordinates and time,
such that

A =—-Va+ pVy. (6.6.73)
To prove the theorem, let us consider
B = curl A, (6.6.74)
which yields
divB = 0. (6.6.75)

By integrating the differential equations of the solenoidal field B,
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—=Z=, (6.6.76)

we find two families of mobile surfaces,

fl(xayaz7t) :Oa f2(xayazat) :07 (6677)

which by intersection produce the lines of the field B. Then, Eq. (6.6.75) admits as
a solution

B=g(fi, 2,t)VixVfa (6.6.78)
Indeed, we have:
divB=3gV - (VfixVfH)+(VfixVf) Vg
=(VAixVf)- <a—gi1 +a—gi2> =0.

0fi 0/
Let 8 and y be two other functions, so that:
ﬁ:ﬁ(flaf27t)a V:V(fl,fz,l‘)- (6679)

Then, we have:
VfixVf=JVxVy,
where

J = a(flafZ)

o(B,7)

is the Jacobian of the transformation (6.6.79). If we choose f# and y so as to have
J = 1/g, relation (6.6.78) becomes:

B=curlA=VfxVy=V x(fVy),
or
curl(A — fVy) =0,

which yields (6.6.73). This theorem was proved by Alfred Clebsch, and (6.6.73)
expresses a Clebsch transformation. It is shown to be very useful in fluid
mechanics and magnetofluid dynamics. The scalar functions o, f§, y are called
Clebsch potentials. As in the case of the electrodynamic potentials, they are
determined only up to a gauge transformation, meaning that for a given field A,
they are not unique. Let of, ', 7’ be another set of potentials, so that

A=-Vd+ VY. (6.6.80)
The transformations (6.6.73) and (6.6.80) yield
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BVy — BVy+ VF =0, (6.6.81)

where F = o — o/. Equation (6.6.81) can be taken as a system of three algebraic
equations with two unknown functions, 8 and f’. The solutions are non-trivial if
the determinant

0,7, F)

0(x,y,2)
is zero. It follows that F is a function of y, 7 and, possibly, of time: F =
Fi(y,y,t). Thus, (6.6.81) gives:
_OF,
=%

B g =- o =o— F. (6.6.82)

oy
Consequently, we obtain:

OF;
oy’

A=-V(e—F)—-—Vy =-Va+pVy=A,
meaning that (6.6.82) is a suitable gauge transformation. Incidentally, this method
was encountered while studying the canonical transformations, the generating
function being Fi(y,y,t). Similar formulas are obtained for the generating func-
tions Fs(B,7, 1), F3(y,p,t), F4(B,B,t). The reader is encouraged to deduce
them.

Application. Using Clebsch’s representation (6.6.73), the velocity field v can be
written as

v=—Voa+ fVy, (6.6.83)

which means that the vorticity Q is
1 1
Q= Ecurlv = EVB x Vy, (6.6.834)

showing that the vortex lines lie at the intersection of the surfaces § = const.,
y = const. (Fig. 6.10).

Assuming that the motion is isentropic, we introduce (6.6.83) into Euler’s
equation:

ov 1 2 *
3 VX curlv = —grad<§|v| +V +w>.

The result is:

0 0
B, 0

B 1, » N Oa oy
3 /—a—tVﬁ—vx(VﬁxVy)— V(2v|+V +w 6t+ﬁ6t)'

Denoting
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Fig. 6.10 Vortex lines lie at
the intersection of the
surfaces ff = const., y = const.,
where f§ and y are the Clebsch
potentials.

——

o)

1, » Oa 0y

Y=- v - -

5 v["+ V' +w 5 B o

and writting explicitly the double cross product, we have:

op 9y dp dy

P . v [ 22 . =2vyy-— L =-VVY. .6.

(6t+v Vﬂ)Vy (6t+v Vy)Vﬁ dtVy dtvﬁ v (6.6.85)
The vector equation (6.6.85) may be regarded as a system of three linear

algebraic equations in the variables df/dt and dy/dt. To have non-trivial solutions,

the determinant

(¥, B,7)/0(x,y,2)

must vanish, which means that ¥ must be a function of the form: ¥ = W(f, 7, 1).
A solution of (6.6.84) is then
dy d¥ dp d¥
L I_-_— 6.6.86
dt dp’ dt dy ( )
As we can see, Egs. (6.6.86) are similar to Hamilton’s canonical equations
(5.1.21). Here, the variables y and f§ play the role of generalized coordinate and
generalized momentum, respectively, while W(f, 7, ) stands for the Hamiltonian
per unit mass.
If the motion is stationary, the partial derivatives with respect to time of all
quantities are zero, and we have

a Pl T

which expresses the conservation law

1
Evz + V* + w = const.,

i.e. Bernoulli’s equation (6.6.30).
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6.6.4 Magnetodynamics of Ideal Fluids

Consider an ideal, charged fluid, which undergoes isentropic motion in an external
electromagnetic field E, B. As a result of the motion, in the conducting fluid
appear induction currents. The magnetic fields of these currents will interact, in
their turn, with the external field. Consequently, the charged particles are subject
both to mechanical and electromagnetic forces. To describe the processes which
take place in such a system, we have to use the equations of an ideal fluid, together
with Maxwell’s equations and Ohm’s law. Neglecting the displacement and
convection currents as compared with the conduction currents, Maxwell’s system
of equations reads:

0B
curlE = 3 divB =0, (6.6.87)
o o P
curl B=y,j, divE =—, (6.6.88)
€0

while the differential form of Ohm’s law is:
j=/(E+vxB). (6.6.89)

In these formulas, p° is the electric charge density and A — the electric conduc-
tivity. It is assumed that u ~ u,, € >~ €y, where u and € are the permeability and the
permittivity of the medium, respectively.
Using Maxwell’s equations and Ohm’s law, we can eliminate the field E and
obtain a single vector equation for B:
oB

1 1
— = —curlE = curl(v x B) — —curlj = curl(v x B) — —curl curl B,
ot A Allg

or, by utilizing the results derived in Appendix B,

0B
i curl(v x B) 4 v,,AB, (6.6.90)

called induction equation. The quantity
1
Vm =7 [Vm] = L2T71, (6691)
Aty

is known as the magnetic viscosity.
If the electric conductivity of the medium is very high (A— c0), then v,,—0 and
(6.6.90) reduces to

66_]? = curl(v x B), (6.6.92)

which is similar to the vorticity equation (6.6.69). We also have:
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p° = edivE = —¢ydiv(v x B).

The equation of motion of the magnetofluid is obtained by considering the force
of interaction between the magnetic field B and the currents j (Lorentz force):

1
F, =ne(vxB)=jxB=—(curl B) x B.
Ho

Denoting by F’ the body forces which are not of magnetic nature, the equation of
motion then reads:

d
p?‘t’:j X B —Vp+ pF'. (6.6.93)
The complete system of equations describing the behaviour of an ideal, infinitely
conducting fluid, performing isentropic motion in an external electromagnetic
field, is therefore:

oB
divB = 0, E:curl(VxB), p=p(p),

d d 0
p=ixB-Vp, =0 L

= % +div(pv) =0. (6.6.94)

Observation: Following a procedure similar to that leading to Beltrami’s equation

(6.6.70), one obtains
d (B B
—|—=(—"V)vw
dt <p) (p >V

Thus, if the electric conductivity is very high, the lines of the magnetic field are
‘frozen’ in the magnetofluid.

6.7 Viscous Fluid

In the study of the ideal fluid, as a model of CDM, we assumed that the stress
tensor Tj, reduces to a single component p — the pressure. This model is a good
approximation to the real flows in the case of slow motions, but if the velocity
becomes high, the friction between the fluid particles cannot be neglected any-
more. The existence of the interior friction is mathematically expressed by the
appearance of non-diagonal components of the stress tensor. The resistance
encountered by particles due to their mutual friction is called viscosity, while the
fluids having this property are termed viscous or real.

A viscous fluid keeps its properties within certain pressure and temperature
limits. Melted bitumen, for example, has properties of a viscous fluid, but as the
temperature goes down, it becomes a plastic medium, and finally a rigid body.
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Consider a viscous fluid at rest. In this state, the stress tensor has only diagonal
(normal) components, as for the ideal fluids:
Tix = —poik-
If the fluid is put into motion, there appear both normal and tangent tensions, i.e.

T = —pdu + T}, (6.7.1)

where T}, is the viscous stress tensor. The experimental data show that the tensions
occurring in a viscous fluid depend on both the velocity of deformation ¢/,

0 = % =divv, (6.7.2)
Xi

and the velocity of deformation tensor €,

(o o
=7\ o + . (6.7.3)

axk
We assume that, in the case of homogeneous and isotropic viscous fluids, the
relation between 7T}, and e}, has the form:
T, =206y + 21l ey,
where the quantities 2 > 0,4/ > 0 are called dynamic coefficients of viscosity.
Their dimension is [A', /] = ML™'T~'. Using (6.7.1), we then obtain:
Tix = —(p - )j@l)éik + 2//6‘;]{. (674)

The fluids obeying Eq. (6.7.4) are called perfectly viscous or Newtonian.

The equations of motion of a viscous fluid are found by an already known
procedure. Introducing the tensor T; given by (6.7.4) into Cauchy’s equations
(6.3.23), we have:

0 o0’ oe’
pai:pﬂ+<_7p+;b,7>5ik+2ﬂ/ elk~

Oxy Oxy, Oxy
But
Oef, 1 0 [Ov Oy 1 /00
- = — | — A il
6xk 26xk <axl~ + ka) 2 <ax,- A
therefore
o op / / ot/ /
pa; = pF; o, + X+ ) o + W Av;, (6.7.5)

or, in vector form,

pa=pF —Vp+ (A + /)grad 0 + i/ Av. (6.7.6)
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These are the equations of motion of our model of viscous fluid, called Navier—
Stokes equations. They represent a system of non-linear, second-order partial
differential equations.

If the homogeneous viscous fluid is incompressible (divv = 0), the last equa-
tion reduces to

pa = pF —Vp+ /Ay, (6.7.7)

which shows that in such a fluid the viscosity is determined by a single coefficient y'.
The quantity

V=", []=LT" (6.7.8)

is called the kinematic coefficient of viscosity. Comparing (6.7.8) with (6.6.91), we
see that the coefficients V' and v,, have the same dimension. If the viscosity is
absent (/' =y’ = 0), then the Navier-Stokes equations (6.7.6) yield Euler equa-
tions (6.6.3), as expected.

In order to determine the motion of the fluid, the Navier—Stokes equations
(6.7.6) and the equation of continuity must be completed with one more equation.
As we have shown, in the case of ideal fluids, this is the equation of conservation
of entropy (6.6.47). Since viscous fluids are characterized by irreversible processes
of dissipation of energy, the aforementioned equation is not valid any more. To
obtain the corresponding equation for viscous fluids we shall proceed as follows.

The fact that the time-variation of the energy density of an ideal fluid is equal to
the divergence of the energy flow which passes through the boundary of the
domain occupied by the fluid, mathematically expressed by Eq. (6.6.51), is also
valid for viscous fluids. Nevertheless, in this last case, two more terms must be
added to the quantity pvi(v?/2 + w), which is related to the displacements of the
fluid. These two terms are due to viscosity, (—v; T}, ), and to heat transfer, (—y g—XTk),
where y is the thermo-conductivity coefficient. The equation of conservation of
energy is then:

0 [ pv? 0 v? , oT
&(T'Fp(‘}) ——a—)%lipvk<3+w>—viTik_)(a_xk . (6.7.9)

Let us deduce this equation in a more rigorous way. Writing the Navier—Stokes
equations (6.7.5) in the compressed form

dv; op 0T}

pE‘ Ox;  Oxy

and observing that, in view of (6.3.3) and (6.6.50),

ds_T@ pdp_Tds_B%

dt— dt ' prdr dt pox
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we obtain:

d (v dv,  de 0 ds oT},
= — — T—+ v, —=. 6.7.10
dt( +8) PPk dt e dt 6xk (pve) +p dt v Oxy ( )

Then Egs. (6.6.49) and (6.7.10) yield:
0 v? 0 v? ds pV;
— — — T} T——T,—
m(p +p> axk[pv/<(2+u)) v14+p dr ik ox
or, after some rearrangements of terms,
E p_v2+ I3 ——i v U2+w — T, or
a\ 2 TP T T P2 ™

n ds _ oy 0 ([ aT
T dt *oxe  Oxi axk

We therefore obtain Eq. (6.7.9) if

ds _ ,ml o [ or

The last equation is equivalent to (6.7.9). It is called the general equation of
heat propagation (pTdS is the heat gained by the unit volume of fluid per unit
time). If the viscosity and the heat conduction are absent (T}, = 0, y = 0), we fall
back on the equation of conservation of entropy for a perfect fluid (6.6.47), as
expected.

Application. Let us determine the distribution of velocities in a viscous,
incompressible fluid, contained between two infinite, coaxial cylinders, of radii R;
and R, > R;, which perform a uniform motion of rotation about their common
axis, with the angular velocities w; and w,, respectively. Choosing a cylindric
system of coordinates (in which the radial coordinate is denoted by r, since p
denotes the mass density in this chapter), with the z-axis along the cylinders’ axis,
by symmetry criteria we have: v, = v, =0, v, = v(r), p = p(r). The accelera-
tion is constant and directed along the r-coordinate. Projecting Eq. (6.7.7) on
cylindric coordinates, we obtain:

2 1d
v__9a (6.7.12)
r o dr
dPv ldv v
—+————==0. 6.7.13
dr? + rdr r? ( )

Equation (6.7.13) admits solutions of type r”". Introducing this solution into the
equation, we obtain n = %1, therefore v is
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B
v=Ar+-—. (6.7.14)
r

The constants A and B are determined by the condition that, on the surfaces of
cylinders in contact with the fluid, the fluid velocity is equal to that of cylinders:
Vg, = W1 Ry, vg, = wyR,. The result is:

_ o1R} — R3S (0 —w))RIRS 1

=. (6.7.15)
R} — R; RI—R} r

If w; = w, = w, we have v = wr, i.e. the fluid rotates together with the cylinders,
like a rigid system. If the exterior cylinder is taken away (R, = 0o, @, = 0), we
.  R?
obtain v = —-*.
Using Cauchy’s formula (6.3.22) and the relation (6.7.1), we are able to
determine the stress exerted on a solid surface which is in contact with a viscous
fluid. Thus, we have:

Ti =Ty = —pn; + nkT,lk (6716)

The first term represents the normal tension, while the second — the force of
friction per unit area, due to viscosity. If the fluid is incompressible (our case),

Eq. (6.7.4) yields:
Ovy  Ov;
T, =i — - ).
ik = H (axi + 6xk)

We are interested in finding the tangent tension Tr’(p corresponding to the interior

cylinder, namely:

v v Wy — W 5
T”,‘P|”:R1 = 'u/ (5_;) ‘r:Rl = _2'ul RZ _ R2 R2'
1 2

The problem of motion of a viscous fluid between two coaxial rotating cylin-
ders lies at the basis of the hydrodynamical theory of lubrication.

Observation: To facilitate the study of different particular cases of motion of a
viscous fluid, one defines the dimensionless ratio

Re = (6.7.17)

7 )
called Reynolds’ number, where [ is the length of the macroscopic inhomogeneity
in the fluid, v — the fluid velocity and V' — the kinematic coefficient of viscosity.
The value of Reynolds’ number indicates the type of flow. For example, in a pipe
of a circular section and smooth walls, for Re < Re, where Re€ is the critical value
of Re (Re® = Dv/v' ~ 2,400, where D is the diameter of the pipe) the fluid flow is
laminar. In such a flow the streamlines do not intersect each other. If Re > Re°, the
flow is turbulent, being characterized by a non-regular variation in space and time
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of the velocity. The turbulent flow usually occurs at high velocities of the fluid and
for large dimensions of the leading pipes. The ideal fluids are characterized by
Re— oo (VV — 0).

6.8 Lagrangian Formalism

The principles and methods used in the study of systems with a finite number of
degrees of freedom are also valid in the mechanics of CDM. Since these systems
are characterized by an infinite number of degrees of freedom, the number of the
differential equations of motion should be infinite. In fact, these equations are
similar to the Lagrange equations and their number is finite. We shall start by
obtaining the Euler-Lagrange equations for continuous systems.

6.8.1 Euler-Lagrange Equations for Continuous Systems

Consider the functional

0 0
J(p) = /L[xl,..,xn;q)(xl,..,x,,),a—z,..,af dxi ...dx,, (6.8.1)

Dy

defined on the bounded domain D, of a n-dimensional space R,, where L is a
continuous and differentiable function, admitting as many partial derivatives as
necessary, and ¢ is a function of class C*. Assuming that the values of ¢ on the
closed hypersurface S,,_; which bounds the domain D, are given, we want to
determine the function ¢ for which J(¢) attains an extremum.

Suppose that ¢(xy, .., x,) realizes the stationary value of J(¢). In this case, for
any infinitesimal variation ¢ + d¢, where d¢ = en(xy, .., x,), with

n(xla -~7xrz)|s,H - O, (682)

the first variation 6J(¢) of the integral (6.8.1) must be zero. Since
Rl1) on\ 1) on oL
L(x Lo+ +ea—>—£<x,(pa>+ena Zax,aq), .

where we used the notation ¢ ; = 0¢/0x;, the first variation of J(¢) is

0J(p) = ¢ / ( Zaa;’ aif) (6.8.3)

D,

with dQ = dxdx,. . .dx,.
Integrating by parts the second term in (6.8.3), we have:
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But
dQ =dx;...dxy...dx, = dxdS; (no summation), (6.8.5)

where dS; = dx,...dxy_1dxy41 .. .dx, is the element of hypersurface orthogonal
to dx;. Using the Green—Gauss theorem and the boundary condition (6.8.2), we see
that the first integral on the r.h.s. of (6.8.4) vanishes:

oL
Q=
[ 3 rig o= | 50
Thus, the first variation of J(¢) is:
L =0 (oL
i3 ()

Since the function # is arbitrary (up to the condition (6.8.2)), the necessary and
sufficient condition for a stationary value of J(¢) is

L 0 [
— =) — =0. (6.8.6)
Op ;6)6,- (640’,-)
Assuming now that £ is a function of & variables ¢(")(x), ..., ") (x), let us
consider the functional
@] = / Llx, " (x), q)f;)]dxl. ..dx, (s=1,h). (6.8.7)

Using a similar procedure as for a single variable ¢, the stationarity condition for

the functional J[p®®)] yields the following system of second-order partial
differential equations:

oL L) oL

called the Euler—Lagrange equations of the continuous system.
In order to use these equations in CDM mechanics, we choose

X] =X, Xp=Yy, X3=12, X4=1. (6.8.9)
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With this choice, the functional (6.8.7) becomes:

15}
Jo®] = / / / / Ll vzt 0 (6, 3,200, 0o ) dxdydzdi (s = T7)
1

(6.8.10)

and the Euler-Lagrange equations read:

oc o (oc o oc
— =) =] = =T,h 8.11
500 " 3x (&,ﬁ?) 5 (&,ﬁﬁ) 0 (s=1,h), (6.8.11)

’

where the summation convention has been used for the index i = 1, 2, 3.
Comparing (6.8.10) with the action integral (2.7.17), we realize the equivalence
between them if we choose

L= /dedydz = /Edr. (6.8.12)

Vv Vv

Therefore the function £ stands for the Lagrangian per unit volume, i.e. the
Lagrangian density.
With this notation, Hamilton’s principle (2.7.16) reads:

n
5//£drdt:0, (6.8.13)
Vv

and can be used as a fundamental postulate in the study of holonomic CDM, while
the Euler-Lagrange equations (6.8.11) are the equations of motion of these
systems.

Comparing Eqs. (6.8.8) with the Lagrange equations for systems with a finite
number of degrees of freedom (2.5.17), we realize that they are different in certain
respects. In case of CDM the role of generalized coordinates is played by the
functions @), called dependent variables or variational parameters, while
X1, .., X, play the role of independent variables. Our choice (6.8.9) shows that both
the space coordinates x, y, z and the time ¢ are now taken as independent
parameters, while @) are selected from the physical variables which characterize
a given system. In view of these considerations, Eqs. (6.8.8) can be regarded as an
infinite chain of Lagrange-type differential equations, each of them being obtained
by a successive fixation of space variables x, y, z. Since L is a Lagrangian density,
all quantities appearing in it must be represented by their densities, such as: mass
density p, entropy density s, current density j, etc.

Equations (6.8.8) are particularly useful in the analytical formalism of CDM,
because they can be applied not only to the study of condensed media (solid, fluid),
but also in the derivation of fundamental equations governing the fields.


http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ254
http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ253
http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ138

6.8 Lagrangian Formalism 347

Observation: The Euler-Lagrange equations (6.8.8) do not change their form if
instead of £ we choose

L, 0, 07 = L(x, )+ Z—Fk (6.8.14)

provided that the integration domain D,, remains unchanged and the field variables

¢ take fixed values on the boundary S,_; of D,. To prove this, we integrate the
last relation on D,, and, using the generalized Green—Gauss theorem, we obtain:

F n
/E’dQ /£d§2+/ @dg /ﬁdQ+ / > Fids,.
D, s k=1

Applying now the operator J to this relation, we have:

" 2L [3F, aFk
!/ . .
5/£d9f5/£d§2+ / E:Ej{axiax 5 — 500" }dSk.
S,

i=1 k=1

n n n—1

But, by hypothesis, on the boundary S,_; we have dx; = 0, 5¢®) = 0, therefore

5/£’dQ:5/£dQ,
D, D,

which means that the condition of stationarity for J[p*)],

3] =6 / £dQ =0,

DVl

does not change upon the transformation (6.8.14). As a results, the Euler—Lagrange
equations (6.8.8) do not change their form. In other words, two Lagrangian den-
sities which differ from one another by a divergence term are equivalent.

6.8.2 Applications

6.8.2.1 Lamé’s Equations

As a first example, let us obtain by means of the Lagrangian formalism the
equations of motion of an isotropic and homogeneous elastic medium (6.5.26),
within the frame of the linear approximation.

Recalling that in the study of an elastic medium the Lagrange variables are
usually used, the velocity and acceleration fields are:
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du ov d%u
=_— =— == 6.8.15
Vo YTa T ( )
where u is the field of infinitesimal displacements. Since the displacements are
small, the mass density p can be taken as a constant (see (6.5.25)).
Denoting by 7 and V the kinetic and the potential energy densities of the elastic
medium, the Lagrangian density is £L =7 — V.
Writing the kinetic energy density 7 is an easy matter. By means of (6.8.15),
we obtain:
>
= 5 Pligtis, (6.8.16)

1 1

T =—pov: =—
2PV T 3f

a_u
ot

where u;, stands for Ou; /0t and the summation convention has been used.

The potential energy density is formed by two parts: (a) the potential energy
density of deformation V;; (b) the potential energy density of the external body
forces V. Let us deduce these quantities in a form suitable for an action principle.

(a) Consider an elastic body which, under the action of both body forces FAm and
superficial forces TAS, is brought to a deformed state. If we neglect the heat
transformations, we can assume that the energy of deformation equals the sum
of works done by body and superficial forces. Supposing that the displacement
vector u performs an elementary variation ou compatible with the constraints,
the variation of the deformation energy V; is:

5V1:/5V1d‘c:/F~5upd‘E+/T'éudS.

Vv Vv N

Using Cauchy’s formula (6.3.22) and the Green—Gauss theorem, we obtain:

/5V| dr:/l’iéuipdr+/i(7}k5ui)dr
ka
v v

v
oT; Ou;
:/ pF; + ik 5uidr+/7}k5 el dr.
6xk 6xk
14 4

Since the deformation is static, from (6.3.23), we have:

(6.8.17)

0T

E .
p + 6xk

0,

therefore (see (6.4.5))

. Ou; .
oV = Tyd (au > = T (dwix + dei).

Xk
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But as the stress tensor is symmetric and the rotation tensor is antisymmetric,
the product Tj;dw;; is zero. Using (6.5.13) and (6.5.14), we then obtain:

1
oV = Tideix = Cigjmejmoeix = Cimixeix0€jm = = Cixjm0(€ixejm)-

2

If the components of the elasticity tensor Cy;, are constants, we find:

1 1
Vi = ECikjmeikejm =3 Tieix.

Recalling that the medium is isotropic, the components of the tensor Tj; are
related to e; by Hooke’s law (6.5.11), and finally we find the deformation

energy density in the form:

1 1
V= 5 (A00i + 2uei ey = 5192 + peireik.

(6.8.18)

(b) If on the elastic medium acts a conservative and homogeneous force field (for
example, the gravitational field), the potential energy V, of the body forces F is

sz/Vzdr:—/Fiuipd‘c,
1% Vv

which yields:
Vo = —pFu;.

In view of (6.8.18) and (6.8.19), the potential energy density V is:

1,
V=V+V, = sz + peixeir — pFiu;.
Now, we are able to write the Lagrangian density:
1 1, .,
L=T-V= o PHialtis — Eﬂg — peixeix + pFiu;.
But
au,- 6uk

2
0" = ejje = ——=— = Ui Uik,
Ox; Oxy

1 auk+6ui auk+6ui 1 +1
€ik€ik = 4 6x,» axk ax,» axk - zuk,lukﬂ Zulmuuh

and the Lagrangian density finally acquires the form:

(6.8.19)

(6.8.20)
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1 1 1 1
L(x,u,uy) = 5 Ptz — Eﬂnui,iuk,k T kMg o M il + pFu;. (6.8.21)
Once the Lagrangian density is known, the next step is to use the Euler—
Lagrange equations (6.8.11). Observing that in our case the variational parameters
@) are the components u ; (j=1,2,3) of the elementary displacement u, the
Euler—Lagrange equations read:

oL 0 oL 0 /oL
du;j  Oxy o = m=1,2,3). 8.22
uj  0x, (6u,-,m) o <au,-_,> 0 (jim=123) (6.8.22)
We obtain, successively:
oL
— = pF;0;; = pF;
auj p 151./ p J»

oL 1 1 .
3 = — = (0 0imUi i + OkjOxmlti;) — UOkjOimur; — = H(OkjOimltik + OijOkmUi,;)
l/lj,m 2 2

= =200, — (Ujm + ),

0 oL 00
LIE ST I

axm 6uj,m 0 j
oL
Ouj, = Puiadij = P o

S(2LN_
ot 614‘,3, = Pl

Introducing these results into (6.8.22), we are led to:

o0 o%u,; ,
PEj+ ()5 —+ by —pt =0 (j=1,2,3),
J

which are indeed Lamé’s equations (6.5.26).

6.8.2.2 Euler’s Equations

Consider an ideal, compressible fluid, which performs an isentropic motion in an
external potential field.'

! Herivel, J.W.: The derivation of the equation of motion of an ideal fluid by Hamilton’s
principle. Proc. Camb. Phil. Soc. 51, 344 (1955).
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Hereafter we shall denote by V*(r,t), s(r,¢) and &(r,¢) the potential of the
exterior field (e.g. the gravitational field), the entropy and the internal energy,
taken per unit mass, respectively. Then the kinetic energy density is % p\v|2, where
v(r, ) is the velocity field, while the potential energy density is composed of two
terms, pe and pV*, corresponding to the internal and external forces, respectively.
Nevertheless, the expression

1
Lo = Epvz —ple+ V") (6.8.23)

cannot be used as a Lagrangian density, because it contains only some of the
physical variables which define the system. In turn, this is due to the fact that we
did not take into consideration the constraints acting on the fluid, which in our case
are the equation of continuity (6.3.4) and the equation of conservation of entropy
(6.6.47).

A suitable Lagrangian density is constructed by using the method of Lagrangian
multipliers. To this end, we amplify the constraint Eqs. (6.3.4) and (6.6.47) by the
multipliers o(r, f) and fS(r, t), respectively, and add the result to (6.8.23). This
yields:

L= 1pv2 —p(e+V)—u Fer V- (pv)] — Pp <6s +v- Vs). (6.8.24)
2 ot ot

It is more convenient for our purpose to use the Lagrangian density in a slightly
modified form. Taking advantage of the property (6.8.14), we shall add to (6.8.24)
the divergence

0
— (apv;) (j=T1,4
axj (OCPUJ) (.] ) )7

where we choose x| =x, Xy =y, 3 =2, X4 =1, U] = Uy, V) = Vy, V3 =1V, V4 = L.
Since

op 0 Oa
—oc(a—i—v-Vp—i-pV-v) +V- (ocpv)—i-&(ocp) —p(a—&—vVac),
we finally obtain:
1 0 0
L= E'DVZ —ple+ V") +p(6—(:+v . Voc) - ﬁp(a—j—kv . Vs). (6.8.25)

Choosing s, p, vx, vy, v, as the variational parameters (p(i),i =1,2,3,4,5,in
(6.8.11), we then have:

(i) @V = 5. The corresponding Euler—Lagrange equation is

oL 0 [oL 0 (oL
S (n)-ala)-o (6.8.26)
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Using the fundamental equation of the thermodynamics of equilibrium pro-
cesses (6.6.50),

1
Tds = de(p,s) + pd(;),

we find:

oL _0L0: OL _ _pon.  OE_
as _oeos P b, PP %, T

—Bp-

Introducing these results into (6.8.26) and using the equation of continuity,
after simplifying by p # 0 we arrive at:

op B
S AV VE=T. (6.8.27)

(i) ¢® = p. We have

o o (o) (o),
Op 0x; \Op, or\op,)

Performing the derivatives:

oL 1, W P Ou
&—EV (S+V) p+at+v VOC7
oL oL
= O, _— = O7
0p, op,
we obtain:
1, ~ D O B
7V (e+V") p+ oY Va =0, (6.8.28)

which is a Bernoulli-type equation.
(i) @B*3) = (k= 1,2,3). In this case, we have three equations:

0L B (oL _DdfoL)
Ovr  Ox; \Owg, 0t \ Qv N
Since
oL _ L e b
6vk = Pl p axk p ka ’

oL oL

6vk7,- ’ avk,,
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we arrive at:
v=—Voa+ Vs, (6.8.29)

which is a Clebsch transformation. Therefore, the functions o(r,7), p(r,?)
and s play the role of Clebsch potentials.

The last step is now to eliminate the multipliers « and f from Egs. (6.8.27)—

(6.8.29). To do this, we shall first replace Voo = — v + Vs into (6.8.28):
1 0
—S V= V) —§+a—°t‘+ﬁv-vs —0.

Applying to this equation the operator gradient, we have:
p .1 p
—vxcurlv— (V-V)v——ZVp— TVs —=VV' ——Vp+-—5Vp
p P p
0
+§(/3Vs —V)+ pV(v-Vs)+ (v-Vs)V =0.

But, by virtue of (6.6.47) and (6.8.27),

d d
—vxcurlv— TVs +6—/:vs+ iAY (a—‘;> +BV(V-Vs) + (v Vs)Vp

= —vxcurl(fVs) —TVs — (v-VS)Vs+ TVs+ (v-Vs)Vf
=—-vXx (VfxVs)—(v-VB)Vs+ (v-Vs)V =0,

therefore we obtain Euler’s equation (6.6.8):

d 1 1
N v Vv= VYV —-Vp=F—-Vp.
ot p p

Observation: Before going further, we wish to make some remarks on the con-
straints used to construct the Lagrangian density (6.8.25). From the hydrodynamic
point of view, there are motions consistent with the dynamic equations which are
not included in this principle. Indeed, if the specific entropy is homogeneous in
space, Eq. (6.8.29) leads to v = —grad o, meaning that in this case the motion is
restricted to irrotational flows. To remove this difficulty, an additional vector
constraint was introduced” expressing the conservation of the identity of particles,
in the form dX/dt = 0. Later, it was shown® that a single component of X and,
consequently, a single equation of this type is enough to avoid the aforementioned
restriction. This component is one of the Lagrangian coordinates of the particle,

% Lin, C.C.: Liquid Helium. In: Proceedings of the International School of Physics, Course XXI.
Academic, New York (1963).

3 Selinger, R.L., Whitham, G.B.: Proc. Roy. Soc. A 305, 1 (1968).
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even if the description of the motion is Eulerian. We wanted to emphasize this
point in order to draw attention to the fact that our description is not very general.

6.8.2.3 Maxwell’s Equations

As we have mentioned earlier, the Euler—Lagrange equations (6.8.8) are also
useful in field theory. As an example, in the following we shall deduce the fun-
damental system of equations describing electromagnetic phenomena in a homo-
geneous and isotropic medium.

Let the electromagnetic field be defined by the vectors E, B, while the field
sources are given by the conduction current density j and by the electric charge
density p°. Then Maxwell’s equations are:

curlE = 3 divB =0, (6.8.30)
B OE

cul —=j+e—, div(eE) = p°. (6.8.31)
Ho ot

Here we separated the source-free equations (6.8.30) from the source equations
(6.8.31). We assumed again that € >~ €y, u =~ p,, where € and u are the permittivity
and the permeability of the medium, respectively.

The Lagrangian density of the system formed by the electromagnetic field and
the sources is composed of two terms:

L= Lo+ Lin,
where
Lo—1 IE|? I\BF (6.8.32)
0 = 260 2,[10 .0.

is the Lagrangian density of the electromagnetic field when sources are absent, and
Ling=—p‘¢p+Jj-A (6.8.33)

is the Lagrangian density which expresses the interaction between sources and the
field. The first was derived by Joseph Larmor, while the second is obtained from
the Lagrangian of interaction (see (2.5.29)) per unit volume. Writing the
electromagnetic field E, B in terms of the vector and scalar potentials A, ¢ (see
(2.5.26)), we obtain the following Lagrangian density:

S|
2u

0A

_v¢_5

IV x AP —pdp+j-A. (6.8.34)

1
;C:EE()

Taking as variational parameters Ay (k = 1,2,3) and ¢, we have successively:


http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ150
http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ147
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(i) @1?3) = A;. The Euler-Lagrange equations read:
oL 0 oL 0 [/ oL
———=—) —=(=—— ] =0. 6.8.35
aAk axi (aAk’i) ot (aAkJ) ( )
Since
Em —qﬁ,m — Amﬁly Bm = EmsjAj.s; (6836)
we derive:
o _
aAk - .]k7
oL oL OB 1 1
i m:__Bm mv'é'éiv :__imBm:
6Ak,,~ 0B, aAk,,- o (6 $J@ ki ) Uo Cik
0 oL 1 1
— = ——€igmBmi = — (curl B),,
ox; (aAk,i> Ho o S Mo( e
oL oL OE,,

= = Em _5m = —6kE )
0Ar, 0En0Ap, ° (=0m) = —€o Ei

o oLy _ Ok
a\oA,) ~ o

Introducing these results into (6.8.35), we obtain:

OE;

1
— 1B), = j
” (curl B), = ji + €0 3

which is the k-component of Maxwell’s equation (6.8.31);.
(ii) ¥ = ¢. We obtain a single equation:

oc o (oc\ ofoc
%0 o <6¢7i> - (Ww) =0. (6.8.37)

Performing the derivatives, we have:

oL

_ e

@ =—p,
oL L OE,
a¢7i - E ad)’i - 6OEWL(_éz'm) = —€ Ei7

O (oL _ _. £,
axi a¢,,‘ = —€y L,
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oL _
09,

With these results, Eq. (6.8.37) becomes:

0.

eEi; = p°,
i.e. Eq. (6.831),.

Observation: The variational problem can be put in a different way: given
Maxwell’s source equations (6.8.31), find a Lagrangian density leading to the
relations (6.8.36) between the field and the potentials. To do this, we use the
expression

L= %EO|E|2 —2LMO|B|2 — p(eodivE — p) + A - <Ml0cur113 - 60%—1;3—j>,
where A(r, 7) and ¢(r, ) are Lagrange multipliers. This time, the role of varia-
tional parameters is played by the field components E;, B; (i = 1,2,3), while
Maxwell’s source equations are used as four constraints acting on the field.
Choosing @123 = E;, ¢*>% = B; we find (6.8.36), and the source-free Max-
well’s equations follow immediately. The calculation is left to the reader.

6.8.2.4 Schrodinger’s Equation

As a last application of the Lagrangian formalism, let us find a suitable Lagrangian
density leading to the well-known Schrddinger’s equation for the wave associated
to a microparticle, which is fundamental in quantum mechanics.
Denoting by 1 the wave function and by " its complex conjugate, we shall use
the following Lagrangian density:
hz * * h * *
L=V YT+ Vi + = (0, — ). (6.8.38)
m 2i
The Lagrangian density must be a real function, that is why the functions ¥/, ", as
well as their derivatives i ;, xp,*,., Y., ¥, appear only in suitably chosen products.
Applying the Euler-Lagrange equations, we have:

oL I oL n?

Wj: —2—1.‘% ) ZﬂVl//,

o _
ot

which yield indeed Schrédinger’s equation:

n
V —
R
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7? 1oy
—— A+ V) =—-—
< = )W i or’
which can be written also as
Hy = Ey, (6.8.39)
where H = —%A + V is the Hamiltonian operator and E = —?% is the energy

operator. In a similar way, performing the derivatives with respect to /, ¥ ;, ¥,
we obtain Schrodinger’s equation for "

Hy* = E"y*.

6.9 Hamiltonian Formalism
6.9.1 Hamilton’s Canonical Equations for Continuous Systems

By analogy with Hamilton’s function (5.1.20),
n
H(qapvt) = ijqj - L(q7Q7t)a
j=1

where ¢, ..,q, are the generalized coordinates, ¢, ..,q, — the generalized veloc-
ities, py,.., p, — the generalized momenta, and L — the Lagrangian, we define the
Hamiltonian density (i.e. the Hamiltonian per unit volume) H by

H= Z n(s)qoff) - E, (691)

s=1
where L is the Lagrangian density, q)’(,‘“) are the partial derivatives with respect to
time of the variational parameters ¢*), and 7, stand for the momentum densities
conjugated with ¢®):
oL
agl)

(6.9.2)

(s)

If we choose x; = x, x; =y, x3 = z, x4 = t, the functional dependence of the
Lagrangian density £ will be:

L =L, 1,090, 0,00, 00 (i1=1,2,3 s=T1,h), (6.9.3)

(s)

i

where ¢/ = 0¢) /0x;. In this case, we have:
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H = Hx;, 1, 0" (x;,1), (pfis),n(S)] (i=1,2,3; s=1,h). (6.9.4)

The Hamiltonian of a continuous system will be then:

H= /H[xi,z,(p“),(pf,?),n(s)]dr. (6.9.5)

Recalling that ¢*) are continuous and derivable functions of the independent
variables x, y, z, t, let us perform an arbitrary variation § H of H for some fixed
values of x, y, z (0x; =0). Using the expression (6.9.5) and the summation
convention for the index i = 1, 2, 3, we obtain:

OH = /5Hdr
|4
/ 6H5r+zh:—aH 56 (X)+Zh:—aH 5 <S>+zh: M ro | a
— i ; i .
0t s=1 aq)(S) ’ s=1 a(P(j) (P"l s=1 aﬁ(s) © !
14 = s=E =
(6.9.6)

The variation 0H can also be written in an alternative form. Using (6.9.1) and
(6.9.3), we find:

h h
E N 2 : s s oL
\%4

s=1

v
h
_ Z(% PE +6_£<S> P +a_fs)5¢f;>>] dr. (6.9.7)
s=1 ¢ a(Pt a(PA,i
But
h h
/Z 6£ /i 5(p(s> d‘c—/z:i 6_[(:) S dr.
§= 16 a s=1 a v s=1 axi a(plS
(6.9.8)

The first integral on the r.h.s can be transformed into a surface integral on the
boundary S of the domain of volume V. Since q)(s) have fixed values on S, we

obtain
0 (&L . L
— ZW&" dr = Zwéq) ) ds; = 0. (6.9.9)
7 Xi \ =1 anﬁi S s=1 a(p,i

Introducing these results in (6.9.7) and performing some reduction of terms, by
means of the Euler—Lagrange equations (6.8.8), we arrive at:
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h h
6£ oL 0 oL
OH = / oWom, = o - [———(—) p
{2-1: ! ; 90 0x; \og!
h

A

/[Z((p, Om(y) 5(p ) —aa—fét] dt. (6.9.10)

s=1

A similar integration by parts can be done in (6.9.6), yielding:
h
0 0
5H:/{ H (3 +Z < H)]éqo(x)}dr.
c— On @(p
v U

(6.9.11)
Equating the coefficients of the same arbitrary variations 5¢), om(s) and ot in
(6.9.10) and (6.9.11), we obtain the following system of equations:

(S) _ aH
(p,l - aTL'(S) I
6.9.12
_ OH o [ OH 12,3 s =TT ( )
TC(S)J - - aq)(s) + a(p( 5) (l = s = )
as well as the identity:
oH oL
— = 6.9.13
ot ot (6.9.13)

The system of 2h partial derivative equations (6.9.12) is analogous to Hamil-
ton’s system of canonical equations (5.1.21), while the identity (6.9.13) is the local
analogue of (5.1.22).

Equations (6.9.12) can be written in a symmetric form using the notion of
functional derivative. To this end, we shall calculate the partial derivative of

L = [, Ldr with respect to ') (x;) (j =1,4) for x; = x, x, = y, x3 = z fixed.
Let us consider the family of functions ¢(*) (x;,€), where € is a parameter chosen in
such a way that

Y (xj,6)ls = 0 (x;,0) = o (x;), (6.9.14)

where S is the closed surface bounding the domain of volume V. Consider the

derivative:
dL /Xh:[aﬁ ot or gl .
T.
|0} e afl;‘) de
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By condition (6.9.14), the surface integral vanishes, hence:

dL / "toc o [ or )| 0"
—=> - d. 6.9.15
de ) o [@q)(‘v) ox; (a@fiv)>‘| Oc ( )

The choice of ¢®)(x},€) tells us that they are equal to ¢*)(x;) everywhere,
except for a vicinity Q (determined by ¢) of the fixed point x, y, z. The same
property holds for d¢®) /de. In the limit Q — 0, we can write

lim dL/de  dL oL 0 oL (i
= = —_—— —_— l
0—0 aqo(s)/ae 5QD(X) ago(s> ox; aw(lf)

=T1,4). (6.9.16)

This expression is called the functional derivative or variational derivative of the
Lagrangian L with respect to the field variables ¢*). Using this definition, the
Euler-Lagrange equations (6.8.8) become:

oL

Observing that H does not depend on Oy /0x;, the functional derivatives of the
Hamiltonian H with respect to 7, and ") are:

OH OH O0H OH 6<6H

= = - — i =1,2,3 6.9.18
57_%) an(‘y)’ S ) Ox; aq)_(;)> (J ,2,3), ( )

allowing us to write equations (6.9.12) in a symmetric form:

() oH oH 6.9
= = - — . . . 19
57’[(5) y o M)t 590(s> ( )

The functional derivative serves, among other things, to define the Poisson
bracket for continuous systems. To this end, let us consider the integral
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=/f[x,-,t, o, % mylde (i=1,2,3), (6.9.20)

where the density F of F is a function of the independent variables x;, #, of the

variational parameters ¢*) and their derivatives with respect to space coordinates,
and of the momentum densities 7(5). Assuming that the integration domain is fixed

and that the variables ¢, 7() satisfy the system of canonical equations (6.9.19),
we first take the total derivative with respect to time of (6.9.20):

dF OF [ OF (y OF (K OF
—=[|= : : dr. 6.9.21
dt / [ ot + Z (aqo(g) Py + aq)(ly) (p,n + an@) T(s),t T ( 9 )

v s=1

But

h h
af (S (S) 6 af (S)
/Z /6 ( 20 " dr_/;fﬁ_xi 2p ) 01 T
Vv vy 5= )

Using the Green—Gauss theorem, the first integral on the r.h.s. transforms into the

surface integral
6]—' s
74 > ol as.
s=1 a

which vanishes due to the boundary conditions. Using the definition of the func-
tional derivative in the expression (6.9.21), we obtain:

dF O0F [ OF ()  OF
dr /[at +Z<5(p .t +5TC(S) n(x)’t) 4,

or, by virtue of the canonical equations (6.9.19),

dF 0F OH O0F OH
— drt. 6.9.22
dt / /Z[ 571(s)5</)<“)} ‘ (6.922)

The expression

h
0F 6H OF O0H
F,H —/ [ }dr 6.9.23
{ } Z 57‘[(5) 57‘[(5) 5@(5) ( )

is the definition of the Poisson bracket of the functions F' and H for continuous
systems. With this notation, we can write the time derivative of a global obser-
vable F of the continuous system as
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dF oF
— = — F,H}. 9.24
Vv

This relation is useful in the study of first integrals of canonical equations (6.9.19),
in a way similar to that found for the systems with a finite number of degrees of
freedom. The Poisson brackets (6.9.23) are widely applied in field theory.

6.9.2 Applications

6.9.2.1 Lamé’s Equations

Let us consider again the problem of determining the fundamental equations of the
linear theory of elasticity (6.5.20), but this time using the Hamiltonian formalism.
The reader will follow more easily the calculation if we rewrite the Lagrangian
density (6.8.21):

1 1 1 1
L= Epu,-’,u,;’t — iﬂ,ui’iuk,k = 5 Mkt = 5 Hitk itk + pFiu;. (6.9.25)

Recalling that the variational parameters are u;, the momentum densities (6.9.2)
are:

oL
T = aui’t = PUiz, (6926)
and the Hamiltonian density (6.9.1) is:
H= £ = L pu s+ 5 g+ 5 i1 F
= Tl — 2puz,tuz,t 2 Ui il k Zﬂuk,lukﬂ Zluuk,tut,k priu;.
(6.9.27)

In this form, the Hamiltonian density is not yet suitable for the use of canonical
equations (6.9.12), because our general formalism demands H to be expressed in
terms of momentum densities 75, and not of (p(f ), Using (6.9.26), we recast H in
the form:

1 1 1 1
H= Zni”i + E;bui,iuk,k + i,uuk‘iuk,i + Eﬂuk,iui,k — pFu;. (6.9.28)

We have:

oH
e _oF.8::i = —pF-
auj P 1511 P Jo
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1
By = §)~(5ij5imuk,k + O jOkmiti ;) + [0k jOimUr,;

1
+ Eﬂ(aijékmuk,i + O j0imttix) = 200 jm + (W jm + U ;)

and the canonical equations (6.9.12) yield:
A 1
= ;”.iv
mj; = (A+ w0 ;+ pAu;+ pFj,
leading straightforwardly to Lamé’s equations (6.5.20):
pujy=pF;+ (A+p)0 ; + pAu;. (6.9.29)

As we have shown, the longitudinal oscillations produced in an elastic rod are
described by a second-order partial differential equation of type (6.5.30). Denoting
x1 =x, uy = u(x,t) (up = uz = 0), this equation reads:

Kuyo —pun=0 (K=72+2p). (6.9.30)

Let us now apply the formalism presented above to the case of an elastic rod.
First, we observe that Eq. (6.9.30) is obtained by using the Lagrangian density

1 1 1 1
EZEPM?,*E)L”,ZX*#”,ZX :EpuifEK uzx (6.9.31)

The momentum density m associated with u is given by (6.9.26):
T=p u,t )
and thus the Hamiltonian density reads:

1 2 1 2
H=— —Ku~_. 6.9.32
TRRELCE (69.32)

We shall prove that, if F occurring in (6.9.24) is chosen as
F =muy = pu iy, (6.9.33)

then its space integral F is a constant of motion. Since F does not explicitly
depend on time, we have

Iy [(2E3 P,
d Y o ou o Om du t
4

The variational derivatives appearing under the integral are:
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U x,

SF_ 0 (0F\_  oF_0F_
ou  Ox Ou = om om

OH 0 (O0H OoH O0H 1
= —Ku,, ~_ T A_— T,
’ om  Om  p

S0~ " ax\au,

therefore

0 [1 1 1 1
F.H}= | —(zKu* ——n*)di= ¢ (s Ku> ——n° : 9.34
{F,H} /6x<2 u’, 2pn>d‘t 7[(2 u’, 2pn>de (6.9.34)
v s

But u varies only in the x-direction, consequently we have u = const. in any point
of the cross section whose surface element is dS, = dydz, which means that the
integral (6.9.34) vanishes. The fact that F = fv 7u . dt is a constant of motion is
therefore expressed by the relation

{F,H} =0. (6.9.35)

6.9.2.2 Telegrapher’s Equations

These equations are concerned with the transmission lines (telephone, telegraph,
etc.) and describe space and time variation of some characteristic quantities
(electric current, voltage) as well as of some electric constants (capacitance C,
inductance L). Here by ‘constants’ we mean those quantities which do not depend
on current intensity and voltage.

Even if in a transmission line the electric constants are distributed along the
line, we may assume that an elementary segment dx of the line is equivalent to a
circuit with concentrated constants, formed by a coil and a resistor, as shown in
Fig. 6.11, with the electric resistance and the inductance per unit length of the line,
denoted by R and L, respectively. The capacitance between the two conductors is
represented by the shunt capacitor C, while the conductance G of the dielectric
separating the signal wire from the return wire is represented by a shunt resistor
with the resistance 1/G. If we denote by i(x, ) the electric current intensity on a
line and by u(x, f) the voltage between two lines at point x and at time ¢, according
to Kirchhoff’s rules (see Sect. 3.7), we have:

0 d
—du = P (Lidx)+ Ridx, —di= P (Cudx)+ G udx, (6.9.36)

which can also be written as

ou 0, . : 0 0
_a_&(Ll)—’_Rl’ —a_a(Cu)—i—Gu. (6.9.37)
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(-]

Fig. 6.11 Transmission line
modeled by a circuit of dx
concentrated constants

R,L,C,G, used to obtain the

—c G
telegrapher’s equations.
L R
o I

These equations are called felegrapher’s equations. If there are no losses
(R =0, G =0), these equations read:

ou o, . % 0
— = (L)~ == (Cu). (6.9.38)

Let us first show that this system of equations can be derived by using the
following Lagrangian density:

1 1
L=3L i* - 5C u’. (6.9.39)
Observing that our Lagrangian density is similar in form with the Lagrangian
density of the electromagnetic field (6.8.32), we shall express the quantities i and
u in terms of the electric charge g(x, f), chosen as a potential:
dq 1 0q
| = — =——=—. 6.9.40
T YT Cox (6.9:40)

The Lagrangian density is then:

1. (3g\* 1 [0q\°
L==L|=)—=—=|=] - 6.9.41
ot (&) = (6941
Using (6.9.41), the Euler-Lagrange equations (6.8.11) yield a D’Alembert-type
homogeneous wave equation:

1
qxx — gq,n =0, (6.9.42)

where ¢ = 1/ VLC is the speed of propagation of the waves (electrical impulse). In
the ideal case of perfect conductors forming a coaxial transmission line, with
vacuum in between the conductors, this speed is the speed of light in empty space.
Equation (6.9.38); is then found by substituting (6.9.40) into (6.9.42), while
(6.9.38), is obtained by taking the partial derivative of (6.9.40); with respect to x,
then of (6.9.40), with respect to ¢, and finally adding the results.

Let us now apply the Hamiltonian formalism. According to the definition
(6.9.2), choosing ¢ = g, we have:

=— =1
T aq’t q:,
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(recall that L is the inductance on the line, and not the Lagrangian!) which yields
the following Hamiltonian density:

1 1 1 1
H=nqg,— L= qu—ELq +2C =37 +%2

As a final step, we apply the canonical equations (6.9.12) and obtain:

oH =n oH 1
q: = a =7 T, = ax (aq’)) E q xx- (6.9.43)

If we now take the partial derivative with respect to time of (6.9.43); and introduce
the result into (6.9.43),, we find again equation (6.9.42), and therefore
Egs. (6.9.38) as well.

6.9.2.3 Equation of Motion of an Ideal Magnetofluid

Using the same formalism, let us deduce the equation of motion of an ideal one-
component magnetofluid, undergoing isentropic motion in an external electro-
magnetic field (6.6.93), assuming that the non-electromagnetic (gravitational) field
is also taken into consideration. The Lagrangian density of our problem should be
formed by three terms: a term Lg corresponding to the fluid, a term £{" corre-
sponding to the electromagnetic field, and a term L;,, expressing the interaction

between them: £ = Eg + ﬁ(‘;m + Liy;. In this formulation, the usual electromag-
netic potentials A, ¢ are chosen as variational parameters.

But this choice is not unique. As an alternative approach to the variational
formalism of our problem, we shall use a different representation of the electro-
magnetic field, which makes possible the simplification the Lagrangian density
and, consequently, the solution of this application.

Since our model implies the existence of conduction, convection and dis-
placement current densities, Maxwell’s source equations read (see (6.6.88)):

1 OE
—curl B =j+ pv+e—

. & @divE=p". (6.9.44)
0

These equations can be written in a symmetric form, similar to that of the source-
free equations (6.6.87), by using the Lagrangian density

1 1 1
£/:§€0|E|2*ﬂ|B|2+P (E+VXsz)
0
oB .
—M- | curlE+ ) " Y divB, (6.9.45)

where the source-free Maxwell’s equations (6.6.87) and Ohm’s law (6.6.89) have
been used as equations of constraint, while P(r, #), M(r, ¢) and ¥(r, f) are
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Lagrange multipliers. If we choose as variational parameters E;, B; (i = 1,2,3),
the Euler-Lagrange equations (6.8.11) yield:

E:Eio(curlM—P), B:u()(gradl//—i—va—kaa—l\:[). (6.9.46)
These relations define the electromagnetic field E, B in terms of the generalized
antipotentials M,  (historically, the ‘antipotential’ designated the magnetic
scalar potential). The appearance of the terms P and P x v generalizes the usual
antipotentials, defined in the case j =0, p°=0. Taking the divergence of
(6.9.46), and the curl of (6.9.46),, we find the source Maxwell’s equation in the
symmetric form

curl <1B —Px V> = % (eoE +P), div(eE+P)=0. (6.9.47)
Ho

The vector field P is called the ‘polarization’. Comparing (6.9.47) with (6.9.44),
we can write

oP
j=vdivP + curl(P x v) + a p° = —divP, (6.9.48)

which satisfy identically the equation of continuity

e

op
ot
Like the usual electromagnetic potentials, the antipotentials M, i/ can be

related by a Lorenz-type condition. Introducing (6.9.46) into Maxwell’s source-
free equations (6.6.87), we have:

+div(j + pv) = 0. (6.9.49)

O*M oW 0
AM—eo,uoatz:V<V-M+eouoat) +€0ﬂ0&(PXV) -V xP.

In order that M satisfies the homogeneous D’ Alembert wave equation, the fol-
lowing two conditions must be fulfilled:

divM + eo,uo% =0, (6.9.50)

0
ooz, (P x v) = curl P. (6.9.51)

Relation (6.9.50) is the Lorenz condition for the antipotentials and we shall use it
as a constraint in the Lagrangian density.

* Calkin, M.G.: An action principle for magnetohydrodynamics. Can. J. Phys. 41, 2241 (1963).
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The advantage of this representation is that the Lagrangian density of the
electromagnetic field (6.8.32), in which E; B are given in terms of M, , includes
the interaction between field and particles. This is possible because the interaction
between the electromagnetic field and the point sources has been replaced by an
interaction between the electromagnetic and the ‘polarization’ fields. Starting from
the Lagrangian density (6.8.25), we postulate the Lagrangian density for our
model, in terms of antipotentials:

1o 1 5 1 W\ 2
= B--qEl—— (V- M -
,C 2,[10 | | 3 60‘ ‘ 260 (V + 6(),[10 al

ot

Os
o +v- Voc) — PBp (5 +v- Vs), (6.9.52)

1 K
3P o+ 4
where E and B are given by (6.9.46). Before going further, we need to define the
explicit relation between velocity and the ‘polarization’ fields. Using Euler—
Lagrange equations (6.8.11) with ¢*) = v; (i = 1,2,3) as variational parameters,
we have:

oL oL _,
6v,~ﬂk - 6v,~1, -
OL 0L OBy
= aa i i — pps;i =0.
6v,~ aBk 61},« vt pe, ﬁps’
Since
oL 1
aBk 1o ks
0B 0
avl‘{ = a [#o(lﬁk + €k jm Pjvm + Mk,t)] = ,uoekjméiij = ,U()EkjiPp

we finally find:
vi=—o;+fs;— %ijm By Py, (6.9.53)
or, equivalently,
V= —VoH—ﬂVs—%B x P,

which is a generalized Clebsch transformation.’
According to (6.9.2), the momentum densities my,, Tp,, Ty, Ty, Ts, associated
with the field variables M;, P;, ¥, a, s, are:

5 Merches, L.: Variational principle in magnetohydrodynamics. Phys. Fluids 12 (10), 2225 (1969).
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oL oL oL
TCM! an,t 7 nP] apj‘t ’ v alrb,z ,U()( b + eouosz) O’
T = o X —PBp- (6.9.54)

= a =p, Ty= at =
Using (6.9.1), we can now write the Hamiltonian density H:

6

(s 1
H=" myp" —L=B;Mj, — uo(M;;+ eoptolh ), + %(Mj,j + eontg¥y )’

s=1

1 1 1 .
+ poy — Bps; — 2 BiBit BB =5 pvjvit+ ple+V") = plos +vjo ;)
0

+Bp(s;+vjs ;)

The form of the Hamiltonian density can be simplified if we observe that, using the
cyclicity of the mixed product and by virtue of (6.9.53), we can write:
1

= BiBi+ vi(pv; + parj — Bps,;) — B ;.
0
Introducing this result into H, we obtain the Hamiltonian density in terms of the
field variables, and their partial derivatives with respect to coordinates and time:
1 1

1 2 2
H= 2703;31 t5eEEj— By + %0 (M iMyi — eop (V)]

1
+§pvjvj+p(8+v*). (6.9.55)
In order to apply the Hamiltonian technique, it is necessary to express H in
terms of the field variables M;, P;, Y, o, s and their conjugate momentum den-
sities 7wy, Tp;, Ty, Ty, 7. Using (6.9.54), we get the Hamiltonian density in the
final form:

1 1
H = s—nmmnum; + 5 (€mMnx — Pj)(€uiMis — Pj) — g

2 2ep
1 1 1 1
_ —26#0 Ty (MJJ - 60#0‘#,[) + Enu % TC—%TESSJ — n—aejkman Pm
1 1
: (_“’j T T n_eﬂ"”MlPi) + M2t (T, ) + V. (6.9.56)

Utilizing the calculation after formula (6.8.29) and applying the canonical equa-
tions (6.9.12), we obtain the following system:
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T[Mj,t = *EjkmEm,lﬁ
1

M, = T Y ;= €jim Pivm,
0

npr = 0= E;~+ €jtmVkTny

m?

P, =0,
Ty = —Tym;t)
1
Y, = —m(Mj.,j — €tV ),
Moy = —(M0))

1 1
o = —Evjvj— Uja’j+8+v+7r_1p’

T = —Tmy — (m0)),,
Sp = —Vjs .

Rearranging these equations and using the vector notation, we have:

63:fo E, V-B=0,
ot
E+vxB=0,

oM
B:#0<V‘P+PXV+E)7

0
V'M"‘G()luoa_lfzo,

d
v Vs=0,
ot

op
E‘FV'(/)V)—O,
oP

a0

op

E‘FV'Vﬁ:T,
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I, » y p Oo

E\v| -V —8—E+5+V-VO(—O.
Thus, we have found the source-free Maxwell’s equations (6.6.87), Ohm’s law for
infinite conductivity, the field B in terms of the antipotentials M, i, the Lorenz
condition (6.9.50), the equation of conservation of entropy (6.6.94)s, the equation
of continuity (6.6.94)¢, as well as Eqgs. (6.8.27) and (6.8.28), which we also
obtained in the case of uncharged fluids.

Recalling that our final purpose is to obtain the equation of motion, the next

step consists in eliminating the Lagrange multipliers from the equations:

1
v+Voc—,BVs+;B><P:O,

1 d
§\v|2—e—v*—§+£+v-va:o, (6.9.57)
op
— . =T.
6t+v \i

Extracting Va from (6.9.57); and introducing this expression into (6.9.57),, then
taking the gradient of the result, we have:

0 1 2 « P 1
V(ﬁV~Vs)+&(Va)—§V|V| V<6+V +p+pv (B><P)>7

or, by using again (6.9.57), to express Va,
0 ov 0 /1 1 2
— BxP)—= .
at( <p X ) 2V|V| + V(Bv-Vs)
1
= v(e+v* +24 2y, (B x P)).
pop

Utilizing the vector formula (B.39) and the fundamental equation of thermody-
namics (6.6.50), we obtain:

@+(V~V)v:fvv*fle+g leP +vx |VX leP
ot 0 ot \p 0

1
+ V(—v- (B x P)) (6.9.58)
o
If a, b, ¢ are any three vector fields, it is not difficult to prove the following

vector identity:

ax[Vx(bxe)]+bx[Vx(exa)+ex|[Vx(axb)]
=(xc)V-a+(cxa)V-b+(axb)V-c+ V(c:-(axb)). (6.9.59)
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Multiplying this relation by i and performing some simple calculations, we
arrive at

V(%o(axb)) —(c-(axb))V%—i— [Vx (ﬁaxb)] X ¢
- [V(%) x(axb)} ><c+(a><b)%v-c
:%[Vx(axc)+CV~a]><b+%a><[V><(bxc)+cV-b].

If in this expression we puta = P, b = B, ¢ = v and replace the term %V -V
by means of the equation of continuity, we obtain:

V(%V~(P><B)> +vX {Vx (%BXPH +%(%P><B)
+vx {(PXB)XV(;)} - {V(;) x(PxB)} XV

10 1 1
:;a(PxBH—;[Vx(va)—&—Vv-P] XB+EPX [Vx(Bxv)+vV- B,

or, after some reduction of terms,

o em) oo (Tmer)] <2 (ren)

1|oP 1 B
= [Z—t—ka(va)—kvv-P} ><B+;P>< Fa—t—ka(va)—kvV-B .

o

In view of Maxwell’s equation (6.6.94),, the induction equation for infinite con-
ductivity (6.6.94),, and the relation (6.9.48), the r.h.s. of the last equation reduces
to % j x B. Introducing this result into (6.9.58), we finally arrive at:

0
p[a—jﬂv-vﬂ X B—VppF,

which is the expected equation of motion (6.6.93).

Observation: Assume that, apart from the Lorenz condition (6.9.50), the gen-
eralized antipotentials satisfy the boundary conditions M|g = 0, Y|, = 0, where
S is the closed surface which bounds the volume V of the magnetofluid. Integrating
the Hamiltonian density (6.9.55) over V, we obtain the total Hamiltonian. By
volume integration, the term B - Vi gives:

/B-Vlﬁdr:V/V-(x//B)dr—V/x//V-Bdr.

Vv
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The first integral on the r.h.s. can be transformed in a surface integral by virtue of
the Green—Gauss theorem and it vanishes because of our assumption on the
potentials:

V/v-(x//B)df:Z{xpB-dszo,

while the second integral is also zero in view of Maxwell’s equation divB = 0. It
then follows that

1 1 1
H= /de = /<— IB|* + = eo|E|* + = p|v|* + pe + v*) dt,  (6.9.60)
21 2 2
|4 |4

which is the total energy of the system contained in the volume V. This result is
one more proof that our formalism is a useful tool of investigation in a boundary
physical discipline which, in this case, is magnetofluid dynamics.

6.10 Noether’s Theorem for Continuous Systems
6.10.1 Hamilton’s Principle and the Equations of Motion

In Chap. 2 we have seen that there is an intimate connection between the sym-
metry properties of a mechanical system and the equations of conservation of its
characteristic physical quantities, such as momentum, angular momentum and
energy. We have also proved that these equations of conservation follow from a
general theorem due to Emmy Noether, which gives a method of derivation of the
equations of conservation from Hamilton’s principle. Since Hamilton’s principle
can be used to obtain the equations of motion of both discrete and continuous
systems, it follows that practically the entire field of Physics falls under the
incidence of Noether’s theorem.

In this section we give a compressed proof of Noether’s theorem for continuous
systems.® Maintaining the notations used in the last two sections, we recall that by
¥ (x) (s = 1,h) we denoted the C*-class dependent functions or field variables
o :{oW, .., 0"}, while x : {x1,..,x,} stand for the independent variables.

As we know, the differential equation of motion can be derived from Hamil-
ton’s principle

S Hill, E.L.: Hamilton’s principle and the conservation theorems of mathematical physics. Rev.
Mod. Phys. 23, 253 (1951).
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0J (@) =0, (6.10.1)
where
(o) =Tl o] = [ Lix,0.0.)d0 (6.102)
D,
Here, ¢ , : {QD(;?, ey q)(;) }, while the integral is extended over an arbitrary domain
Q of the n-dimensional closed manifold D, of coordinates xi, ..., x,.

Let us consider an infinitesimal transformation of coordinates:
X, =xp+0xx (k=1,n). (6.10.3)

This will produce an elementary variation of the fields and their derivatives of
the form:

o' () = 0 (x) + 59 (x), (6.10.4)

o () = o (x) + 60 (x) (k=T,m; s =T, h). (6.10.5)

The relation

0J = /Ex o, ) dY — / X, 0,0,)dQ, (6.10.6)
D,

where D!, is the image of the domain of integration by the transformation (6.10.3),
is called the functional variation of the integral 7, if between the ‘volume’ ele-
ments dQ and dQ)' there exists a point-to-point correspondence, which means

dQ = 7 dQ. (6.10.7)

In view of (6.10.3), we have:

J=1+ i(5xk) (6.10.8)
Oxk
Because of the occurrence of so many indices, in this section we shall use the
summation convention for all repeated indices. Utilizing the Taylor series
expansion in the first integral on the r.h.s. of relation (6.10.6) and keeping only the
terms linear in dx, d¢, ¢ ,, we obtain:

oJ = /

Here we cannot perform an integration by parts, as we have usually done in the
previous sections, because the relations (6.10.4) and (6.10.5) express the

oL oL
5xk 6 ™ — Oxx + )

: oL . s
o\ +—500% | A (6.10.9)
0p,
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connection between the field variables and their transformed values at different
points. Nevertheless, this can be done by introducing some new variations, J, )

and 540?,‘?, defined by
o () = oV (') + 0.1 ('), (6.10.10)
o} () = o () + 8,05 (v). (6.10.11)

Since

5*§D(S)(x/) _ 5*q)(s)(x+ ox) = 5*(/)( (x) + oxp — 0 (5(p*(s)) +

Ouxy

we may neglect the products of infinitesimal variations (dx;)(5¢,)), so that
3.0 () = .09 (x), (6.10.12)

and, consequently,
S.0Y) = o (8,0, (6.10.13)
’ Oxy

Comparing (6.10.10) and (6.10.11) with (6.10.4) and (6.10.5), we have also:
S = 5,0 + QDE;)éxl, (6.10.14)
30} = 0.0} + o) ox. (6.10.15)

Let us now define the operator

D 0 (s)

0 sy O
— =4 —+ . 6.10.16
Dx;  Oxy Pk dp) P GQDFIS) ( )

With this notation, the integral (6.10.9) reads:

0J = /

Observing that

oL
a(/)(-s)

oL (s)

(Loxi) + (3*(p(s) + Wé*(/’,k dQ.
6(07,(

oL
a0}

oL (s) D
= 500 = =
dpl) P Dx;,

(s)

LA U )

y

we obtain:
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D 0
8J = / — | Loxg —&-—45*(/7(‘?) + [‘C](s‘>5*(P(S) dqQ, (6.10.17)
J ka a([)(é) ’

k

where the expression

oL D oL
[ﬁhs =S T (—Y> (6.10.18)
) a(p( ) Dx;, aw(k)

’

is called the Lagrangian derivative of £ with respect to *). Going back to the
initial variations d¢), we finally obtain for 4.7 the following relation:

D oL oL .,
57:/ (200 — 50 o+ 5000
J XK 0p, aqu‘(

k
+[L] (59" — <pf;§>6xk)} dQ, (6.10.19)

where Jy; is the Kronecker symbol.

The calculation carried out so far was formal. Let us now assume that the
function £ is the Lagrangian density of a physical continuous system. In order to
apply Hamilton’s principle, we make the following two assumptions:

(a) The integration domain D,, is fixed (dx; = 0 in D,);
(b) The field variables take fixed values on the hypersurface S,_; which bounds
the domain (5(/’@‘&4 =0).

Applying the Green—Gauss theorem to (6.10.19), we arrive at

0T = / (L], 00") dQ. (6.10.20)
D,

According to Hamilton’s principle, this integral vanishes for infinitesimal arbitrary

variations 3¢, subject to the aforementioned boundary conditions. Thus, we
obtain:

oL D (oL

which are the differential equations of motion of the system. If the operator D/Dx;,
reduces to O/0x, these equations lead to the Euler-Lagrange equations in the form
(6.8.8).

Observation: Let us show that the form of Egs. (6.10.21) does not change upon a
divergence transformation:
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DOy

L =L+—
+ka’

(6.10.22)

where O (x1, .., Xy, (p“), o (p<h)) are n arbitrary functions of class C?. Indeed, we
have:

0 DO, _ 0 @ (m) 00y
300 \Dxe ) ~ 990 |~ P 3

_ 0 (00 oy 0 (00y) _ D (36
~ o \op®) T P 3pm 30 ) T D \agt )

0 (D@,)_ 0 (@(m) 6®,~)_5 5 00, _6®k
7 (5n) =2 (4 ag) = i =20

O

yielding:

which completes the proof.

6.10.2 Symmetry Transformations

As we have already learned in Chap. 2, by symmetry transformations we mean a

class of transformations of variables which leaves unchanged the form of the

equations of motion. From the physical point of view, this means that by such a

transformation one passes from one possible motion of the system to another one.
Consider the transformation

X — x.(x), (6.10.23)

li
ol — @) [x, p(x)]. (6.10.24)

In order that this transformation represents a symmetry transformation, we must
have, on the one hand, the invariance of the functional 7, i.e.

L'(xX 0 0)dY = L(x,9,¢,)dQ,
and on the other, by virtue of the property (6.10.22),

DO
L' ¢) =L, ¢, 0)+ e £
X

The last two relations define the class of symmetry transformations.
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The most important type of symmetry transformations in the study of conser-
vation theorems is that obtained by an iteration of a succession of infinitesimal
transformations. Assume, then, the infinitesimal transformations:

Xk — X = X + Oxg, (6.10.25)
o) — o (x') = o) (x) + 0¥ (x), (6.10.26)
o) — o () = o (x) + 50§ (). (6.10.27)

Under this transformation, the quantities ®; will transform as
O — O,(x,¢) = Or(X, @) + IO(X, ¢). (6.10.28)

Since the variations dx;, 0@ are infinitesimal, we may keep only the linear terms
in the series expansion:

00(x', ') = 0O(x + dx, @ + d¢p) ~ IO(x, p).

Going now back to the infinitesimal transformation (6.10.25)—(6.10.27), we
realize that in order to be a symmetry transformation we must have:

L'(x+0x, o+ 99, ¢, +0¢,)dQ = L(x,0,¢,)dQ, (6.10.29)
L(x+0x, ¢ +00, ¢, +00,)dQ = L(x+0x, ¢+ 59, ¢+ ¢,) dY
D
— (9 Q. .10.
+ e (000)d (6.10.30)

Comparing the last two relations, we get:
Lo+ 0%, 0400, 0. +00.) = | L, 0,0.) — 2 600)| (1- -2 (ox))
y @ ?y G x Px)= y @y D x Dx; k ax]' il |

or, by keeping only the terms linear in 9,

0 0 g O 0 D
Oxp =— + 3 —— + 5(/)(,‘() TJr—(éxk)} L= ™

00y;). (6.10.31
axk a(p(v) ) a(,Dk 6Xk ( k) ( )

Xk

If, for a given £, we can find the functions 0@y so as to satisfy (6.10.31), then
(6.10.25)—(6.10.27) is a symmetry transformation. In particular, if the square
bracket in the l.h.s. of (6.10.31) is identically zero and the Jacobian of the trans-
formation equals one, one says that L is form-invariant.

Let us now integrate (6.10.31) over a fixed and bounded (but otherwise arbi-
trary) domain D,,. The result is:
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D
— Q=
8T + / - (60,)dQ =0,

D,

or, in view of (6.10.19),

[io

D,

(c(sk, - Lf) (pf;)> ox; + a—f) 3o + 60,
aq),k a(/’,k

+[L] o [00") — <pf,‘§)5xk]} dQ = 0. (6.10.32)

Since this equality holds for any domain of integration, if the equations of motion
[£](5) = 0 are satisfied, it follows that

D

—_— =0. (6.10.33)
Dx;,

(ﬁékl - 6_[(13) @fﬁ) ox; + 6_/?;) 5" + 60
00 90

We conclude that with the infinitesimal symmetry transformation (6.10.25)—
(6.10.27) one can associate the equation of conservation (6.10.33). This is a par-
ticular case of Noether’s theorem: any invariance with respect to a continuous
transformation leads to an equation of conservation. An application of this the-
orem in the mechanics of discrete systems has been described in Chap. 2.

If the operator D/Dx; reduces to 0/0x;, and one chooses x;, x, x3 as the space
coordinates and x4 = ¢ as the time, then the equation of conservation (6.10.33) can
be written as

a'\
5, VG =0, (6.10.34)

y=|L— a—i)q;@ 5t — a—fs)(ar V) + a—fs)(sq)@ +00', (6.10.35)
op, Rl 0

it N

d
o 0r- V)(p“)} SO}

50" + 50.
(Vo) T

o(Vel)
(6.10.36)

We observe that Eq. (6.10.34) is very similar in form with an equation of
continuity, written for the densities y and G. Integrating over a fixed domain of

volume V of the three-dimensional physical space and utilizing the Green—Gauss
theorem, we obtain:

0
a/ydr = —%G -dS. (6.10.37)
\% S
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Let us now apply Noether’s theorem in order to derive the fundamental theo-
rems which govern the motion of an ideal fluid, obtained in a different way in Sect.
6.6. Choosing again (6.8.24) as a suitable Lagrangian density (with V* = 0):

1 0
£:§p|v|2—ps—a[a—f+v-(pv)} ﬁp( +v- Vs) (6.10.38)

we shall deduce the equations of transformation and conservation associated with
the space—time symmetry transformations.

6.10.3 Energy Conservation Theorem

We require that the action principle 6.7 = 0 with £ given by (6.10.38) must be
invariant with respect to an infinitesimal displacement of the time origin:

t—t{ =140, or=0, dp¥ =0, 60 =0, (6.10.39)

where 7 is an infinitesimal constant (which obviously has the dimension of time).
In this case, the relations (6.10.35) and (6.10.36) reduce to

0

YW =[L- L()(p, o, (6.10.40)
a@,t
a,a

G == oW 6.10.41

where the superscript (7) indicates the type of symmetry transformation. Using
(6.8.28) and (6.8.29), we have:

op os) . 1
,,(f) — - i — | = 2 .
P = (LZJracatJrﬁpat)()t [2p|v| +pe+V (ocpv)},

op 6s ov 0 Oa
(0 — et = .
G (cxv 3 + ﬁpv 6t> ot = [Gt (apv) — pv 5 Pov(v Vs)} ot

= B -nm (2 v w) o

Introducing these last two relations into (6.10.37) and simplifying by the arbitrary
constant ¢, we arrive at the energy conservation equation (6.6.53):

0 | S
at < plv|? +ps) dt = y{<§p|v| +pw>v~dS.
S
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6.10.4 Momentum Conservation Theorem

The action principle is required to be invariant also with respect to an infinitesimal
displacement of the origin of the coordinate system:

r—r =r+ or, ot=0, 5q)<s> =0, 0O =0, (6.10.42)

where Jr is an infinitesimal constant vector oriented along the displacement. Then
(6.10.35) yields

oL . :
") = —aﬁ) (or - V)@ = adr - Vp + Bpor - Vs = [pv + V(ap)] - or,
oy

v

while (6.10.36) leads to

G = £or — aiﬁ (or - v)q,(s)

o(Vel)
e 2 Oux O Os
= |3pIVF = pe oo =5, (ap) = oV - (pv) — ﬂp(5+v'vs)}5r
+oavor-Vp+ fpvor-Vs+ ap(or - V)v.
Since
1 2 Oa
FPV = petpg =p—pv-Va,
av or - Vp + fpvor - Vs = vor - V(ap) + pvv - dr,
vor - V(ap) — p(v- Va)or — o(v - Vp)or
=vor-V(ap) —v-V(ap)or = V(ap) x (v x or),
we obtain:

0
G") = por + pvv - or — 5r& (op) + V(ap) x (v x Ir)

+ ap(or - V)v —apdr V - v.
The divergence of the last three terms in G is zero. Indeed,
V- [V(ap) x (v x dr) + ap(dr - V)V —apdrV -v]
=—V(ap) -V x (vxor)+V-[ap(dr - V)v] =V - (aporV -v)
=[V(ap)-or]V-v—V(ap)-[(or-V)V]+ V- [op(or - V)v] — V- (0porV -v)
=apV [V x (vxor)]=0.
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Using these results in (6.10.37), denoting I1; = pv;vx + pou, P = pv;, and
dropping the infinitesimal vector constant dr, we obtain:

o [ -

— | Pidt = — ¢ My dSy,

az/ ! j{ koK
|4 S

which is the momentum conservation theorem (6.6.57).

6.10.5 Angular Momentum Conservation Theorem

The action principle must be invariant with respect to the infinitesimal rotation of
the coordinate axes:

ror=r+rxdl, 6t=0, o =0 0=0, (6.10.43)

where the infinitesimal vector constant 66 is oriented along the axis of rotation, its
magnitude being equal to the angle of rotation. Denoting by the superscript (0) the
type of symmetry transformation and proceeding in the same manner as above, we
have:

0 = _a_i)(r x 80) - Vol
0,
=o(r x 60) - Vp + fp(r x 80) - Vs = [pv + V(ap)] - (r x 50),

oL .
0) — = . (5)
G\ = Lr x 00 a (p<s>)(r><50) Vo
Os

1 ) O O
= 3o = g 5~ 500 =5 0w~ o (5 +v- 9 ) [ (o
+av(r x 00) - Vp + fpv(r x 60) - Vs + av(r x 60) - Vp
0
= pr x 60 —r x 60— (0p) + V(op) X [v x (r X 60)]

ot
—ap(r X 00)V - v+ pvv- (r x 60) + ap(r x 60) - Vv.

Introducing these results into (6.10.34), we have:

0

AR (r x 00) + V- [pv(v- (r x 060)) + pr x 56] = 0,
or, in projection on the x;-axis,

0 0
5([)6,']‘1{1),‘)61‘50/() + a—x[ (peijkvilejé()k + peljkxjé()k) =0.
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Observing that ¢ = €; x9; and dropping the infinitesimal constant 60,, we obtain:

0 0

5, (Peiixjvi) + 5 lewi(pxjvive + px;oi)] = 0.

I
Using the notation
zk = PE€kjiX Vi,
M = eji(pxjvivi + px;oi)

and integrating over the volume V, we arrive at the angular momentum conser-

vation theorem (6.6.59):
0 / Lidt = — f{ My dS,
o kat = ki A
1% s

6.10.6 Centre of Mass Theorem

Let us resume the discussion carried out in Sect. 2.8 on Galilean transformations,
but this time for the case of continuous systems. Starting from the postulate that
two inertial frames are equivalent in describing the motion of a mechanical system,
let us study the invariance of the action principle relative to the infinitesimal
Galilean transformation

r—r=r+dvt, 6t=0, 06p" £0, O #0, (6.10.44)

where the infinitesimal constant vector dvy represents the relative velocity of the
two frames. Since ot = 0, we have # = ¢, and consequently d/dt = d/df'. Taking
the time-derivative of (6.10.44), we then obtain:

vV = v+ dvy. (6.10.45)
Using again the condition d/dt = d/dt’, we can write also:

d 3

— V== v 6.10.46

o +v-V o7 +v ( )
The frames S and §' are inertial, therefore w; = w] (i = 1,2,3). Since r =1/, we

conclude that V = V' and (6.10.46) yields:

o 0

a = a_l‘/ + 5V0 . V’. (61047)
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On the other hand we observe that, for s and f invariants relative to the
transformation (6.10.44), the velocity field v remains unchanged with respect to
the transformation

of =o—r-dvp,
because, according to the Clebsch transformation (6.8.29), we have:
V—v=-V( —a)=V(r dvy) = ovp.

In this application we shall use the Lagrangian density in the equivalent form
(6.8.25). Denoting by the superscript (g) the type of transformation, we obtain:

oL : oL
y(é’) =-—0 (or - V)(p(é) + —
a(P,z a(P,t

= —por - Vo + fpdr - —pr - vy + 600
= pv-dr — pr- vy + 601,

S + 60"

as well as

oL

G = Lor———
" a(Vel)

(or - V)o' + 5o 400

(Vo)
1 2 O Os
= [§p|v| —p8+p<E+V~VOC> — [)’p(a—&—v-Vs)}ér—pv(érVa)
+ Bpv(dr - Vs) — pv(r - dvp) + 6O
= por + pv(v - or) — pv(r - ovy) + 00.

Utilizing (6.10.34), we obtain the differential form of the equation of conservation
associated with the symmetry transformation (6.10.44):

0. -~ 0
oy [(P;t — px;)ovy; + 56)(’)] + T {[(pvivk + pou)t — px;vE)ovg; + 0Ok} =0
k

(k=1,2,3). (6.10.48)

Keeping in mind that dr = 0vyt, the last step is achieved by introducing these

expressions into (6.10.37). Assuming that 00 =0, 4@ =0 and dropping the
infinitesimal constant dvy, we arrive at the centre of mass theorem in the form

0 -
5/(& t—px;)dt = — j{[(pvivk + poix)t — px;vi] dSk. (6.10.49)
v S

If in (6.10.48) we choose the infinitesimal functions 30" and O such that

d o d
—(00Y) + —(60y) = — 5

- i ik )t — px;vx]ovo;,
o o ” [(pvivi + pdix)t — px;vr]ovo
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then the centre of mass theorem reads:

/(P,-t — px;) dt = const.,
4

or in the equivalent, but more intuitive form,

Py v PdT

=1 P, — Mx® = const. (6.10.50)
Here, P, = f v Pv; dt are the momentum components and xiG are the coordinates of
the centre of mass of the fluid contained in the domain of volume V. We therefore
conclude that the centre of mass of the continuous system moves uniformly in a
straight line.

6.11 Problems

1. The velocity field in a fluid, expressed in Euler variables, is:
vy =kxp, vy =kx;, v3=0 (k = COHSt.)

(pure sliding). Find the velocity of deformation tensor, the velocity vortex
vector, the density variation, the displacement vector and the deformation
tensor.

2. Show that in an equilibrium state, if the body forces are absent, the com-
ponents u; of the elastic displacement are biharmonic functions, i.e.
V4M,‘ =0.

3. A bead of radius R has been introduced in an incompressible perfect fluid.
Study the potential flow of the fluid around the bead.

4. Determine the potential motion of a fluid moving inside a dihedral angle.

5. Determine the equation of motion of a sphere performing a motion of
vibration in a perfect fluid, as well that of a sphere put into motion by a
vibrating fluid.

6. Determine the motion of a fluid in the vicinity of the critical point.

7. Given the complex potential in the form

fz) =(2=3)In(z* + 1) —i—%,

find the flow rate of an incompressible ideal fluid flowing through the circle
Izl = 2, as well as the velocity circulation on the circle.

8. Find the shape of an incompressible fluid in the gravitational field, situated in
a cylinder uniformly rotating about its axis.

9. Study the potential flow of an incompressible perfect fluid, contained in an
ellipsoidal container uniformly rotating about its principal axis. Find the total
angular momentum of the fluid in the container.
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10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.
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Consider the harmonic functions ¢;(x1,x2,x3) (i = 1,2,3) and (x1, x2, x3).
Find the conditions under which the formulas

2 2\ 0 2 2, 2, .2

U =@+ —a )a (r* = x7+ x5 + x5, a = const.),
1

where u; are elementary displacements, determine a solution of Lamé’s
homogeneous equations.
From an incompressible fluid filling up the whole space is instantly removed a
spherical volume of radius a. After how long time does the spherical cavity
disappear?
A sphere immersed in an incompressible fluid dilates according to the law
R = R(?). Determine the pressure of the fluid on the surface of the sphere.
Determine the shape of a jet of fluid through an infinitely long opening per-
formed in a plane wall.
Determine the motion of a fluid between two cylindrical pipes of radii R, and
Rz( >R )
Solve the same problem for two elliptic-shaped pipes.
Once again, solve the same problem for a pipe whose cross section is a
triangle with equal sides.
Determine the motion of a fluid filling up the space between two concentric
spheres of radii R, and R,(<R;), rotating about two different diameters, the

angular velocities being ®; and w,. (The Reynolds numbers satisfy the

2 2
property: w‘TR‘ < 1,@ < 1).

Determine the velocity of a spherical drop of fluid of viscosity 7', moving
under the action of gravity in a fluid of viscosity #.

A film of viscous fluid is bounded by two parallel solid planes. If one of the
planes performs oscillations (parallel to itself), determine the force of friction
acting on the other plane.

A plane discus of large radius R performs small oscillations about its axis, the
angle of rotation being 0 = 0 sin wt. Determine the moment of the forces of
friction acting on the discus.



Addenda

Post-Classical Mechanics

In the following three addenda we very briefly present as some examples three
different directions, into which the classical mechanics, as described in the
previous chapters, has evolved. These addenda are intended for those readers who
are interested to get acquainted with the new subjects and learn the basic ideas
used nowadays in modern physics, where the classical mechanics though standing
as their foundation, is valid only in specific situations and in certain
approximations. For further study of these subjects an appropriate literature
is given.
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Addendum I
Special Theory of Relativity

When the speed of a particle or an object, such as a proton, electron or a nucleus,
approaches the speed of light (the so-called relativistic particle), the usual
classical mechanics is no more valid. Instead one has the relativistic mechanics,
which is based on the special theory of relativity. In this theory, the speed of light
denoted by c, is always constant (actually, it is an invariant) — when one goes from
one moving system of reference to another, it does not change. The addition of
velocities is not the same as in the usual (nonrelativistic) classical mechanics. All
the basic quantities, such as the Lagrangian or the action and the corresponding
equations of motion derived from it, are covariant under the so-called Lorentz
transformations, while in the (nonrelativistic) classical mechanics those quantities
are covariant under the Galilean transformations. What is the most drastic is that
space—time becomes a four-dimensional manifold, in which the space and time are
tightly connected and time is no more an absolute, universal concept but changes
when we go from one system of reference to another. The usual classical
mechanics is obtained as a limit when the velocities of the particles are small as
compared to the speed of light. Here, the speed of light c is the new fundamental
parameter which enters the special theory of relativity.

1.1 Introduction

We recall the importance of inertial frames of reference in the classical mechanics
and the validity of Galilei’s principle of relativity, which states that the laws of
mechanics are the same in all inertial frames. This means that the oscillations of a
pendulum, for instance, in an inertial frame, are produced in similar manner in any
other frame moving at constant velocity with respect to it. A consequence of the
principle of relativity of Galilei and the notions of absolute time and space were
Galilei’s transformations. The equations of mechanics, as that of the motion of a
planet around the Sun under the action of Newton’s gravitational force, do not
change in form, i.e. they are said to be covariant under such transformations. From
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this it results that if an object moves with velocity V with regard to an inertial
frame, and this frame in turn with velocity V with regard to another inertial frame,
the velocity of the object with regard to this second frame satisfies the law of
addition of velocities V' = V + V', that is, the principle of relativity of Galilei leads
to the additivity of the velocities when the motions are considered as referred to
several inertial frames. On the other hand, when electromagnetic phenomena are
concerned, the principle of relativity of Galilei is not valid. In particular, it is not
satisfied by the light propagation (in general, for electromagnetic waves the
Maxwell equations and the electromagnetic wave equation are not covariant under
Galilean transformations). The existence of an absolute frame of reference was
admitted, that of the luminiferous cether in which the electromagnetic waves would
move at the speed of 300,000 km/s and it was expected that the light would have
different velocities if measured in a frame at rest or in motion with regard to the
@ther, and also it would yield a different result if the velocity of light were
measured moving in the sense of the Earth rotation or along a perpendicular
direction. Experiments to verify these hypotheses were performed at the end of the
nineteenth century, the most famous of them being the so-called Michelson—
Morley experiment, performed by Albert Abraham Michelson and Edward
Williams Morley in the year 1887, but leading to negative results: the effect due to
the supposed difference of velocities of light along and perpendicular to the Earth
rotation direction did not appear. In summary, the scientific community was facing
the following facts:

1. Newtonian mechanics and the principle of relativity of Galilei were valid
(verified in mechanical experiments and in astronomic observations);

2. The laws that govern electromagnetic phenomena, described by the Maxwell
equations, were also valid, and verified experimentally. But these equations did
not satisfied the Galilean relativity principle and it was expected from that
reason that the speed of light would be different for an observer at rest, as
compared with the value measured by an observer in motion;

3. The experiments carried out in order to measure such difference of velocities
gave negative answers, as if the velocity of light were the same for both
observers.

Apparently the statements 1, 2, and 3 could not be all valid simultaneously in
the theoretical framework of that time and Albert Einstein proposed to solve this
contradiction in 1905, by formulating two principles or basic postulates:

1. The speed of the light emitted by a source is the same for all observers,
whatever would be their state of motion.

2. The laws of physics (including the electromagnetic phenomena) are valid in all
inertial frames.

Thus, Einstein generalized the principle of relativity of Galilei to all physical
phenomena, including the electromagnetic ones, and demonstrated that assuming
the validity of his two postulates, all the previously mentioned contradictions
would disappear. The essential differences between the consequences of the
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principles of relativity of Einstein and Galilei had enormous transcendence: not
only the controversial luminiferous @ther was not necessary, but there were no
reasons to suppose its existence. The validity of his postulates implied also the
disappearance of the absolute space and absolute time of Newtonian mechanics as
independent entities: space and time formed now a joint entity, being intimately
related among themselves; the space—time and the fundamental laws of physics
could be written as mathematical expressions in a four-dimensional space,
nowadays called the Minkowski space. Einstein created a new mechanics such
that, when the velocities of the particles are small compared with the velocity of
light, it coincides with the Newtonian mechanics, but differs greatly from it for
velocities near to that of light.

1.2 Lorentz Transformations

We have already seen in Chap. 1 that a frame of reference is determined by a
system of three coordinate axes to fix the position of the objects with regard to
them, and a clock in order to measure the time at which the events occur. In
classical mechanics, a unique clock serves for all frames of reference. In relativ-
istic mechanics, each frame requires its own clock. The clocks of several frames of
reference match in different manner. Suppose we are given a frame of reference
S and we consider two events: the departure of a light signal from a point A and the
arrival of that signal to another point B. The coordinates of the first event in such a
reference frame would be (by including the time as a fourth coordinate):

X1, Y1,21, 11
and those of the second event:
X2, Y2, 22, b2.
Since the signal propagates with the velocity of light, we have
Ar = cAt, (L.1)

where the distance between A and B is:

Ar = \/(xz —x) )+ (- ) (L2)
and the interval of time between the two events is:
At =1, — 1. (1.3)
Then, according to (I.1), the coordinates of the events satisfy:

(22 — X1)2 + (2 — y1)2 + (22 — Zl)2 —c* (- tl)z =0. (1.4)
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If now the events are studied in another frame of reference S’ moving with
velocity V with respect to S, in this new frame the two events will have the
coordinates:

XpYant and x5, y5,25,1,
and they should again satisfy the equation
(¥ = X))+ (0 = 2))? + (2 —2) = (1 — 1)) =0 (L5)

Let us assume that S" moves parallel to the x-axis. The relations (I.4) and (1.5)
will be satisfied by the coordinates of the events in the frames S and §' if they are
related by a linear transformation — a so-called Lorentz transformation (or
FitzGerald—Lorentz transformation):

, x—=Vt

X = —,
V1=V
/
=Y
1.6

o (16)

) t— Yx

V1=Vv2/c2

These are the transformations which replace those of Galilei in Einstein’s relativity
(Fig. I.1). The initial formulation was proposed by George Francis FitzGerald in
1889, and developed by Hendrik Lorentz in 1892, in an attempt of interpreting the
Michelson—Morley experiment as a contraction of all bodies along their direction
of motion.

If X\, y,,2},8,,x5,¥,,25,8, are substituted by their transformed in terms of
X1,Y1,21,t,22, Y2, 22, t2 according to (1.6), the expression (I.5) is converted into

0 o’

’

r4 Zz

Fig. I.1 Two inertial reference frames S and S’ oriented so that their axes x,x’ coincide. The
frame S’ moves with respect to S with a constant velocity V.
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(I.4). This means that the expression (I.4) is invariant with respect to the
transformations (1.6) that, as we see, depend on the velocity V. For small velocities
compared to that of the light, (I.6) turns into the Galilean transformations:

X =x—-W,
/

y =Y

7 =z,

! =t.

The Lorentz transformations are a consequence of the constancy of the speed of
light for all the inertial frames and of the linearity of the coordinate
transformations. If two events that we shall call 1 and 2 are not related by the
departure and arrival of a light signal, then their coordinates would not satisfy the
equality (I.1) and we can have one of the two possibilities:

either 57, >0, or s7,<0, (1.7)

where 52, = [(x2 — x1)° + (32 — y1)> + (22 — 21)* = 2(t2 — 1)?] is named space—
time interval. If the interval between the two events observed from the frame S’ is
calculated, its value is the same as the one calculated from the frame S. By
applying the Lorentz transformations to the coordinates of the events 1 and 2 one
can check that the space—time interval does not change. The interval between two
events is the same in all inertial frames. It is relativistically invariant.

If 53, <0, which means s2,/Af* = v> — ¢? <0, the interval between the two
events is called fimelike and the two events can be causally connected; they can be
related to each other by means of a signal traveling at lower velocity v than that of
the light. In particular, it is always possible to find a reference frame in which both
events occur at the same point of space. As an example, let us suppose that a
traveler throws some object through a window of a train and, five seconds later,
throws another object through the same window. For an external observer the two
events occurred at different points of space and at different times. For the traveler,
both events occurred at the same point of space, but at different times.

If s3, > 0, the interval between the events 1 and 2 is called spacelike. In this
case, the two events cannot be related causally, since the spatial distance between
the two points at which they occur is greater than the product of the velocity of
light by the difference of time between them:

(2 —x1)>+ 2=y +(—2) >t —n) (1.8)

When the interval between two events is spacelike, it is always possible to find a
frame of reference in which the two events occur at the same instant of time,
although at different space points. The interval between two events in space—time
is a generalization of the distance between two points in ordinary space.

If s2, = 0, the two events are related by a light signal (since we obtain v*> = ¢?)
and the interval is called lightlike.
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1.3 Addition of Velocities

The impossibility of exceeding the speed of light is a consequence of Einstein’s
postulates. This is easily derived from the law of summation of velocities in
relativistic mechanics. By taking the relations (1.6),
/ \%Y4 { vV 2,/
po Ve /e (19)
V1=V2/c? V1=V2/c?
and after differentiating them with respect to (x', '), let us divide the first equation
by the second. We obtain:

v+ V

S Trvje (110)

Ux

where v, = % represents the velocity of a particle with respect to the rest frame S,

. ! . .
while v/, = % represents the same velocity, but measured from the moving frame

S'. For V < ¢, one can take the denominator equal to unity and get approximately
vy UL+, (I.11)

i.e. the law of composition of velocities of classical mechanics. But from (I.10), if
the particle moves with respect to S’ at large speeds, for instance, v, = ¢/2, and
the frame §’, in turn, moves with respect to S also at the same velocity V = ¢/2, it
would result:
c/24+c/2 4
==t~ e_ - .12

T x4 50 (112)
which is smaller than ¢. Even by taking v/, = ¢, V = ¢, it would not be possible to
exceed the speed of light:

c+c

= = = I.l
1+ ¢2/c? (113)

Ux

In other words, although S’ would move with respect to S with the speed of light,
and the particle moves with respect to S’ also with the speed of light, its speed with
respect to S would be precisely the speed of light. We see that it is not possible, by
means of the relativistic law of composition of velocities, to exceed the velocity of
light ¢, by summing velocities that are smaller than or equal to c.

1.4 Relativistic Four-Vectors

One of the most interesting geometrical consequences of the Lorentz
transformations is that the simultaneous transformations of the space and time
coordinates are geometrically equivalent to a rotation in a four-dimensional space,
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the space—time, which is called the Minkowski space. Hermann Minkowski
elaborated on Henri Poincaré’s observation that in Einstein’s theory of relativity
the time could be treated as a fourth dimension.

In two-dimensional Euclidean space, a vector a has the components (a;,a;) in a
frame of coordinates (x,y). In another frame of coordinates (x',y’) forming an
angle ¢ with the first, it will have the coordinates (a},d}):

ail =a c?s¢+a2 sin ¢, (L14)
ay = a; sin ¢ + a, cos ¢,
and the relation a’l2 + a’22 =a} + a3 = a> = &? is satisfied.
In the theory of the relativity, to change the description of an interval between
two events from a frame of reference S to another S, means to change an interval
of components (x; — x1,y2 — y1,22 — 21,1, — ;) to another one of components
(xh — X\, 05 — ¥\, 2b — 2}, 1, — #}) by means of a transformation similar to (I.14).
To do it, let us take T = ict, ¢ — i¢p and choose the angle ¢ such that

1
CosSih = —— ,
V1=V2/c? 115
L iV/e (L15)
sinip = ———.
V1- V22
Then,
Xy — x1 = (xy —x})cosih + (5 — 7)) sinih,
Y
N=M=Y—)n (L16)

2—21=2,— 2

T — 11 = —(x) — X)) sini¢p + (7, — 7)) cosi¢.
The transformations for x, — xy,#, — #; in (I.16) are similar to those in (1.6). The
difference lies in the imaginary character of the variable T = ict and in the fact that
sini¢, cosi¢ are not actually trigonometric, but hyperbolic functions, defined as
sini¢p = i sinh ¢, cosi¢h = cosh ¢p. Then we may write the equation

cos’i¢p +sin®ih = 1 (L.17)
in an equivalent form, in terms of the hyperbolic functions, as
cosh? ¢ — sinh® ¢ = 1.

We recall the definitions: cosh ¢ = (e? + e~ ?)/2,sinh ¢ = (e? — e~?)/2. But the
transformations (I.16), which represent another way of writing the Lorentz
transformation (1.6), as
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1
s o
sinh g = —V1°

V1=Vv2/c?’

leave invariant the interval s, and are to be viewed as a rotation by an imaginary
angle in Minkowski space. Due to this, one can state that two events in space—time
determine a vector whose components are the differences between their
coordinates [x, — x1,y> — ¥1,22 — 21,¢(t2 — 11)]. All the physical quantities in
the theory of relativity must be scalars, vectors, tensors, etc., under Lorentz
transformations. This means new relations between quantities apparently
independent in non-relativistic physics, in similar form as the new relations of
dependence between space and time, which were not present in the mechanics of
Galilei and Newton.

L.5 Energy and Momentum

The momentum of a free particle of mass m moving with a velocity v is defined in
the special theory of relativity as

mv
= 7’ I. 19
P= s 72 (1.19)
and its energy as
2
o — (1.20)
V1—=v?/c?
The two quantities form a four-vector (px, py, pz,i£) whose modulus is
E2
= o= —m?c?, (L.21)

from which we obtain:

E = c\/p? + m?c%. (1.22)

For low velocities v < ¢, we have /1 —v?/c? &~ 1, and from the expressions
(I.19) and (I1.20) we get the nonrelativistic momentum p = mv and the energy

E = mc* + mv?/2, (1.23)
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that is, the term mc? plus the expression for the kinetic energy of Newtonian
mechanics. For v = 0, we obtain the expression

E = mc?, (L.24)

which relates the mass of a body at rest with its energy content. This expression is
probably the most popular consequence of the theory of the relativity. The largest
amount of energy that a body is able to produce (for example, when transforming
completely into radiation) is equal to the product of its mass by the square of the
speed of light. This relation explains the production of enormous amounts of
energy in nuclear fission processes (division of an atomic nucleus), in which a
certain excess of the initial mass of the nucleus when compared to the sum of the
masses of the final nuclei is totally converted into radiation energy.

From the above short description of the main ideas leading to the special theory
of relativity, the reader can now realize that, while the usual (nonrelativistic)
mechanics is based on Galilei’s principle of relativity, its generalization to the so-
called relativistic mechanics (and, in general, to any relativistic theory) is based on
Einstein’s principle of relativity. Thus, if a theory is invariant under the group of
Galilei transformations, its relativistic version should be invariant under the group
of Lorentz transformations. In particular, in relativistic mechanics the theory is
described by a Lagrangian or action which are invariant under the Lorentz
transformations and the corresponding equations of motion are covariant under
those transformations. For readers interested in further study of the subject, we
mention a partial list of literature, in which additional references can be found.
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Addendum 1II
Quantum Theory and the Atom

While for macroscopic systems specified by their action being large with respect to
some basic quantity called the Planck constant, classical mechanics is an accurate
theory, for atomic and still smaller, subatomic systems, classical mechanics is no
more applicable. Instead, a new theory, called quantum mechanics, formulated in
its final form during the years 1925-1926, was developed, in which many of our
usual, everyday-life intuitions have to be altered. For instance, we can no more tell
along which trajectory a certain particle such as an electron moves. Newton’s
equations of motion are no more valid and instead one has to use the so-called
Schrodinger equation, according to which only with some probability one can
predict the events. In such a theory the new fundamental parameter which enters is
the Planck constant, introduced by Max Planck in 1900, in his successful attempt
to explain the law of the black body radiation. The description of such systems can
be achieved by using operators associated with the observables (canonical
formalism), or, equivalently, by using the so-called Feynman path integral
approach. The predictions of classical mechanics are obtained in the limit when
the action S of the system becomes much larger than the Planck constant, i.e. when
the system is no more a microscopic, but a macroscopic one

11.1 Introduction

The 20th century commenced with modifications of the established physical ideas
of the previous centuries, by the drastic changes in the concepts of space and time
introduced with the formulation of special relativity. But also other new deep
modifications of the ideas of classical physics were required for understanding the
microscopic world. The investigations of the black body radiation and the photo-
electric effect opened a way for understanding the quantum nature of the atomic
world, which started to be revealed by studying the emission and absorption of the
electromagnetic radiation.

The light, whose wave nature was demonstrated with no doubt in a large
number of experiments, in some new phenomena appeared as if having a
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corpuscular structure. The situation turned still more paradoxical when it became
evident that the particles composing the atomic structure, as the electrons, showed
manifestly wave properties.

Later it became clear that it was not possible to determine simultaneously the
momentum and position of an atomic particle, as the electron. Thus it was
necessary to invent a new mechanics, called quantum mechanics.

I1.2 Motion of a Particle

Classically, the motion of a particle is described by giving its position and its
velocity (or its momentum) and, in principle, one can know at each instant where
the particle is and towards where it is moving. For a particle of the atomic world
this is not possible. Different experiments on interference phenomena with
electrons brought Werner Heisenberg to his famous uncertainty relation.

This relation can be expressed as follows: if Ax is the uncertainty (understood
as standard deviation) in the position along x and Ap, is the uncertainty in the
momentum, then the relation AxAp,>h/2, where % is the reduced Planck
constant, i.e. h/2mw, is valid.

The phenomenon of interference of electrons shows that it has wave properties.
In fact, in order to describe a particle in quantum mechanics, a wave function

W (x, 1) is introduced. The square of the modulus of the wave function, |¥|* (¥ in
general is a complex function), gives the probability density of localizing a particle
at the point x and at the time ¢. The following sections will be devoted to a brief
historical review about the atom and quantum mechanics.

I1.3 Evolution of the Concept of Atom

Democritus of Abdera (470-380 BCE), the Greek philosopher, suggested the
hypothesis that the Universe consists of empty space and an enormous number of
indivisible particles, and that by joining and separating them we get the creation
and disappearance of bodies.

Approximately a century later, another Greek philosopher, Epicurus (341-270
BCE), named atoms these particles. In the 18th century, Daniel Bernoulli was the
first who attempted to construct a theory of gases based on the atomic structure
model and using the calculus of probabilities. At the beginning of the 19th century,
John Dalton introduced again the hypothesis of the atomic structure, and Amedeo
Avogadro was the first to clearly distinguish between atoms and molecules (which
are composed of atoms). Starting from the middle of nineteenth century, the kinetic
theory of gases was developed by James Prescott Joule, Rudolf Clausius and James
Clerk Maxwell, and subsequently by Ludwig Boltzmann, who based it on his
statistical interpretation of the second law of thermodynamics. In 1881, Hermann
von Helmholtz, as a result of the analysis of the works done by Michael Faraday on
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electrolysis, suggested the atomic nature of electricity and later, in 1891, George
Johnstone Stoney proposed the term electron for the unit of electric charge.

In 1897, Joseph John Thomson, as a consequence of his experimental studies
with cathode rays, stated again the atomic nature of electricity, and he also used
the term electrons for the electric corpuscles.

Later, Thomson proposed a model of the atom named later plum pudding, since
he supposed the atoms as positively charged lumps in which the electrons were
embedded like the plums in a pudding. The electrons were supposed to oscillate
around their mean positions when emitting or absorbing radiation.

I1.4 Rutherford’s Experiment

In 1884, the Swiss mathematician Johann Balmer published the result of his
investigations on the hydrogen spectrum. From the spectroscopic measurements of
Anders Angstrom, it was known that when the radiation emitted by this gas is studied
(for example, by producing electric arch sparks inside a bubble containing it), the
spectrum is formed by a series of lines beginning in the visible zone and ending in the
ultraviolet. Balmer gave an empirical formula for the frequencies of the different lines:

v:cR<%—%>, n=23,4,5,... (I.1)
where R is the Rydberg constant with the value 1.09677 x 10° cm~! and c is the
speed of light.

In 1911, Ernest Rutherford bombarded a thin sheet of gold with o particles (which
have positive charge, being helium nuclei) and he concluded that the atoms are
formed by a small massive positively-charged nucleus around which the electrons
moved similarly to a planetary system, the nucleus playing the role of the Sun, and the
electrons moving around it as the planets (see Sect. 3.3.4 for more details).

Rutherford counted the o particles scattered at different angles in his
experiment. He found that most of the o particles passed almost without being
deflected, but a very small number of them were deflected at very large angles.
Rutherford concluded that the “plum pudding” model could not be correct, since if
it had been, the large deflection angles could not be explained. Instead, he
proposed the planetary model for the atom. The smallness of the positively
charged nucleus accounted for the small number of strongly repelled o« particles.
This was the first experiment on the scattering of particles reported in physics.

I1.5 Bohr’s Atom

At this point a contradiction appeared with the electromagnetic theory. The
planetary model suggested that the electrons moved around the nucleus on
elliptical orbits. But in such a case, the electrons would be accelerated
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continuously and, according to the laws of electrodynamics, an accelerated charge
should emit radiation, leading to a continuous loss of energy and the electron
would fall finally unto the nucleus. This emission of energy would give a
continuous spectrum.

However, the spectroscopists had shown that the atoms do not emit energy with
a continuous spectrum, but discretely in the form of spectral lines.

It was Niels Bohr who found a way to resolve the crisis with the suggestion of
using the quantum ideas introduced earlier by Planck and Einstein. Thus, Bohr
proposed two fundamental postulates:

1. Of all the electron orbits, only those are permissible, for which the angular
momentum of the electron is an integer multiple of h and no energy is radiated
while the electron remains on any one of these permissible orbits. These orbits
are called stationary;

2. Whenever radiation energy is emitted or absorbed by an atom, this energy is
emitted or absorbed in quanta which are integer multiples of 2nhv(= hw),
where v is the frequency of the radiation, and the energy of the atom is changed
by this amount.

In other words, if E;, E; are respectively the initial and the final energies of the
atom emitting radiation, the following relation is satisfied:

E,‘ — Ef = 27mhv. (HZ)

A simple calculation leads to the expression (where m is the electron’s mass

and e — its charge) for the energy of the electron in the hydrogen atom:
2m’m et 1

with n =1, 2, 3,... We observe that the constant coefficient in (II.3) multiplied
and divided by ¢? results in mc?o? /2, where mc? is the rest energy of the electron
according to Addendum 1, and the dimensionless constant o = ¢*/4nfic ~ 1/137
denotes the so-called fine structure constant, characterizing the electromagnetic
interactions in the atom. After substituting (I.3) into (I.2), we get for the
frequency v the expression

2m’me* [ 1 1

1

Here, n s = 2 for the Balmer series (n; is greater than n ), while for ny = 1,3,4,5,
we have respectively the Lyman, Paschen, Brackett and Pfund series. The Balmer
series lies in the visible and near the ultraviolet region. The Lyman series is in the
ultraviolet, whereas the last three are in the infrared region. The number

me4

Ryl 109740 cm™! (IL5)
eCc
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corresponds to the value of the Rydberg constant R for the hydrogen atom. The
reader may compare it with (IL.1), and observe that the value predicted by Bohr’s
theory agrees very well with the experimental results.

The distinct spectral series result from the jumps of the electron from diverse
excited states to a final fixed state. For instance, Balmer series is produced from the
jumps of the electron from the initial levels n; = 3,4, 5, ..., to the final level ny= 2.

Bohr’s postulates led to a suitable model to explain the spectra of the hydrogen
atom, but finally they were substituted by a more complete quantum theory.

There is some historical analogy between the role of Bohr’s quantum mechanics
for the atom and the Newtonian mechanics with regard to the planetary motion. We
know that at first by starting from the results of the observation, some empirical
laws were formulated (the Kepler laws) and later Newton constructed the theory:
the second law of motion and the gravitational interaction law. This time there was
also an experimental result (discrete character of the emission spectra) and
empirical laws (the Balmer series), and then a physical theory was formulated
(based on Bohr’s postulates), from which the empirical laws could be deduced.

The Newtonian mechanics and the theory of gravitation remained valid during
more than two centuries, until their status as the limiting cases of more general
theories — Einstein’s relativistic mechanics and theory of gravitation — was
demonstrated.

Bohr’s quantum postulates, however, became obsolete in a very short time. The
theory was unsatisfactory for describing more complicated atomic systems, as for
instance the helium atom. It ignored the electron spin and the Pauli exclusion
principle and it contradicted the uncertainty principle since it assumed classical
orbits where position and momentum could be known simultaneously. Thus, in
only some twelve years, Bohr’s theory was substituted by the new quantum
mechanics due to Erwin Schrodinger, Werner Heisenberg, Max Born, Paul Adrien
Maurice Dirac, Pascual Jordan and others, and Bohr himself had the privilege of
not only following this evolution of the quantum theory, but also of strongly
participating in its development.

I1.6 Schrodinger Equation: Quantum Mechanics

We owe to Louis de Broglie the idea that if the radiation has dual behaviour, as
waves and particles, the atomic particles like electrons, should manifest also wave
properties. That is, if the relation between energy and frequency,

B 2nch

E =2nh
nhv V.

(IL6)

holds for a wave, there must also exist a relation between the momentum and the
wavelength of a particle, as:

p="". (IL.7)
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This was a mere speculation by de Broglie in 1923-1924, based on Einstein’s idea
of the photon, but it was confirmed experimentally by Clinton Davisson and Lester
Germer in 1927, while studying the phenomenon of diffraction of electrons on
crystals.

It can be argued that de Broglie’s hypothesis gives rise to Bohr’s stationary
states, since for the electrons having stable orbits around the nucleus, it is
necessary that the closed orbit contains an integer number of wavelengths,
otherwise the waves would interfere and cancel. Then, if r is the radius of the orbit,
we should have

2nr = nA. (11.8)
But
a= (1.9)
mv
leading to
rmv = nh, (I.10)

which is Bohr’s first postulate. But Bohr’s theory, developed subsequently, among
others by Arnold Sommerfeld, could not account for new atomic phenomena.

Around 1925, Heisenberg initiated the matrix mechanics, which he developed
together with Jordan and Born. Matrix mechanics differed from the Bohr model
but gave, however, results compatible with the experiment. In 1926, Schrédinger
made a crucial step with his famous equation that was the beginning of the new
quantum mechanics.

The fundamental assumptions made by Schrodinger which led him to his final
equation can be outlined as follows: there exists an analogy between the basic
equations of classical mechanics and those of geometrical optics (we recall the
analogy between the Hamilton’s principle of least action and Fermat’s principle in
optics). Then, if the atomic particles have wave properties, they should be
governed by a wave mechanics, that must bear with regard to classical mechanics a
similar relation that wave optics has with regard to geometrical optics.

In essence, the mathematical way to derive the Schrodinger equation is the
following:

(a) Write down the classical expression for the energy of the studied system, with

the kinetic energy in terms of momentum:

1
S+ Pl P+ U = E, (IL11)

where p?/2m,U(r) and E are the kinetic, potential and total energies,
respectively. As an example, for the electron in the hydrogen atom U(r) = —e*/r.
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(b) The classical quantities are substituted by operators, according to the
following rules:

Px — Dx =

(I1.12)

0
—ih—
! ox’
. .. 0
Py — Py = _lhgya
. .. 0
pe = be = =il

. 0
E— H=ih—.
- Mo
(c) A differential equation is built for the wave function, using the substitutions
(I1.12) in (II.11) and applying the obtained operator identity to ‘V:

A N o ov
— =+ =+ — VY =ih—. 11.13
{ 2m <6x2 * 0y? * 6x2) * U(r)] o ( )

(d) In general, (II.13) is solved by imposing some simple conditions: ¥ is periodic
in time (as any wave motion), vanishes at infinity and is also normalized,
JW*Wd’x =1, where W* is the complex conjugate of V. For the hydrogen
atom, it leads as an immediate consequence to Bohr’s postulates and to the
energy of the stationary states:

me* 1

E,= — —.
2h% n?

(I1.14)

But even more, it follows that the angular momentum is also quantized, that is
the inclination of the orbit of the electron can take only some discrete set of
values, depending on the value of n.

The Schrodinger equation (II.13) is the basic equation in quantum mechanics,
the analog of the Newton equation in classical mechanics.

II.7 Wave Function

Schrédinger interpreted W(x, y, z, 1) as a wave field and from it one could assume
that the particles such as an electron would be something like a wavepacket,
similar to the pulse of radiation. But this idea was not a convincing one, among
other reasons because the wavepacket would be dispersed and disappear in a very
short time. However, frequently the term wavepacket is used when referring to the
particle-wave function system.
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Max Born was the first to interpret the wave function as a quantity associated to
the probability of localization of the particle. That is, if W* is the complex

conjugate of the wave function, the square of the modulus of ¥, that is ¥*¥ =

|‘I’|2 describes the probability density of finding the particle in a given point. We
wrote previously the uncertainty relations between position and momentum as

AxAp>h/2. (I1.15)

The relation (I1.15) is typical of a wave motion, due to the correspondence p = hk.
For instance, the wavefunction of a free particle with momentum p and energy E,
moving along the x axis, is ¥ = Ae!(P¥+E)/h,

In quantum mechanics, observable quantities are associated to quantum
mechanical operators. A quantum measurement of one of these observables leads
to the knowledge of one of the eigenvalues of these operators. Two quantities
q and p can be known simultaneously if the corresponding quantum operators
¢ and p commute, i.e.

4, p) = 4p — pg = 0. (I1.16)

But if [¢, p] # 0, it is not possible to know the values of g and p simultaneously.
For instance, if g is the position x and p — the momentum p,, the two
corresponding operators would be the position operator § = x and the momentum

operator p, = —ih%. Applied to a function of the coordinates f(x), one can
verify that:

4. pIf = ihf. (IL.17)

Thus, since x and p, do not commute, the corresponding position and momentum
cannot be simultaneously measured accurately.

In quantum mechanics, the expectation values of quantities such as x or » (with
r being, e.g., the distance of the electron from proton in a hydrogen atom) on given
quantum states are defined as

(x) = / WX dx, (I.18)
and

(ry = / VY dx, (I.19)
respectively. Here, ¥ is the wave function, which is obtained as the solution of the
Schrodinger equation (II.13) for the system under study (e.g. the hydrogen atom)

with a given potential U(r). Similarly, the expectation values of other quantum
mechanical operators, for instance of the momentum operator p, are obtained as:

(p) = / YPY dPx = / ¥ (—ik%)‘l’d%. (I1.20)
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It can be shown that these expectation values satisfy the classical equation of
motion (the so-called Ehrenfest theorem).

We hope that from this short addendum the reader has grasped some of the

main ideas and facts, which have caused the classical mechanics, so successful in
our ordinary macroscopic world, to evolve into quantum mechanics. For further
reading and study of the subject, an arbitrarily chosen partial list of books from a
vast literature, is given below.
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(1965)
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(1986)
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Addendum III
Stochastic Processes
and the Langevin Equation

Finally, let us very briefly mention also about the basics of the so-called stochastic
processes and the Langevin equations. In the usual classical mechanics we have
been dealing with in this book until now, the Hamiltonian or the Lagrangian and
the dynamics of a system of particles have been given by a set of potentials or by
certain (so-called deterministic) forces corresponding to them. Thus all the
predictions obtained from the equations of motion are certain — deterministic.
However, there exist systems in which the forces acting on the particles cannot be
known exactly, due to the complexity of the systems, and these are called
indeterministic. In such cases, the Newton equations of motion also become
indeterministic and are replaced by the so-called Langevin equations of motion.

The motion of a Brownian particle in a medium with temperature 7 can be
considered as a prototype example of a stochastic process. In this case, the forces
acting on the Brownian particle are random ones and as a consequence the
corresponding Newton equation of motion is replaced by the stochastic Langevin
equation of motion, the probability distribution of which satisfies the so-called
diffusion equation.

The solution of the diffusion equation, which describes the motion of a
Brownian particle with no forces acting on it, except the stochastic forces coming
from the medium with temperature 7', can be given in terms of Wiener’s path
integral, developed by Norbert Wiener already in the early 1920s, before the birth
of quantum mechanics. By Wiener path integrals can be represented also the
solutions for other more general cases, where additional deterministic forces are
also present. The fundamental parameter in this case, which characterizes such
stochastic processes, is the temperature 7 of the medium, describing the intensity
of the stochastic forces. In the limit of T going to zero, the stochastic equations of
motion turn to the usual deterministic equations of classical mechanics, described
in this book until now. Let us mention that quantum mechanics can also be
described equivalently using the so-called Feynman path integral, developed by
Richard Feynman in 1948. For a partial selection of literature, in which long lists
of references on quantum mechanics, stochastic processes and other related fields
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described by path integral, are given, the reader can consult the monographs listed
below.

Literature

1. Feynman, R.P., Hibbs, A.: Quantum Mechanics and Path Integrals. McGraw Hill, New York
(1965)

2. Chaichian, M., Nelipa, N.F.: Introduction to Gauge Field Theories. Springer-Verlag, Berlin
Heidelberg (1984)

3. Chaichian, M., Demichev, A.: Path Integrals in Physics, vols. I and II. Institute of Physics
Publishing, Bristol and Philadelphia (2001)

4. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural
Sciences. Springer-Verlag, Berlin Heidelberg (2004)



Appendix A
Elements of Vector and Tensor Algebra

A.1 Orthogonal Transformations

The position in space of a point P relative to a given reference frame can be
determined by its Cartesian coordinates (x;,x;,x3) with respect to a system of
orthogonal axes, having its origin at some point O. This is a Cartesian system of
coordinates S(Ox;x,x3) (Fig. A.1). Since the choice of both the origin O and the
direction of the axes is arbitrary, it is necessary to define the law of transformation
of the coordinates of the point P, when passing to another coordinate system
§'(O'x|x4yx}). 1t is obvious that the coordinates x; (i =1,2,3) of the point P
relative to S’ are functions of the coordinates x; (i = 1,2,3) of the same point
relative to S:

xi = filxr,x2,x3) (i =1,2,3).

In order that x;=const. be the equation of a plane relative to S, this
transformation has to be linear:

X=apxj+ X (i=1,2,3), (A1)

where X; are the coordinates of O’ relative to S. Here, the summation convention
for repeated indices running from 1 to 3 has been used. If the origin O’ is
displaced, but the axes of §’ remain parallel to the axes of S, we have aij = 6y,
where 6;; is the Kronecker delta symbol, while if the axes of S’ are only rotated
about the fixed origin O’ relative to the axes of S, we have X; = 0. The first case
corresponds to a translation of axes and the second to a rotation.

The distance between any two points P; and P, must be independent of the
reference frame, therefore it must be invariant with respect to the transformation
(A1), ie.

(6 —x) (o —xf) = (! —xP) (' = xP), (A2)

1 1

where the indices 1 and 2 correspond to the two points P; and P,. Using (A.1), we
obtain the orthogonality condition:
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Fig. A.1 Cartesian system of 1Yo
coordinates.
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Fig. A.2 Vector distance X,
between two arbitrary points
P, and P-.
A,
aijaikzéjk (j7k:17273)7 (A3)

which means that out of nine parameters a;;, only three are independent.

The linear transformation (A.1) which satisfies the condition (A.3) is called a
non-homogeneous orthogonal transformation of coordinates. If X; = 0, we have a
homogeneous orthogonal transformation.

Multiplying (A.1) by a; and performing summation over the index 7, in view of
(A.3) we obtain the inverse transformation:

Xi :Clji)C;"‘X; (l = 1,2,3), (All)
where X, = —a;; X ; are the coordinates of O relative to . Introducing (A.1") into
(A.2), we obtain

ajiag = O (J,k=1,2,3). (A.4)

This last relation is a consequence of (A.3) and therefore does not imply any
supplementary condition on the coefficients a;;.
The parameters g;; stand for the elements of a matrix (a;;), called the

transformation matrix A. If we also define the one-column matrices x,x’, X, X’
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having as elements x;,x}, X;, X} (i = 1,2,3), then the relations (A.1) and (A.1)
become:

X =Ax+X, x=AX+X, (A5)
where X’ = —A”X. Relations (A.3) and (A.4) also yield
ATA=AAT =1, (A.6)

in which T is the unit matrix (I;; = ;;). From (A.6) it results that A~' = A7 i.e.in
the case of orthogonal transformations the inverse and the transpose of a matrix are
identical. We also have

det(ATA) = (det AT)(det A) = (det A)> =det] =1,
hence:
detA = +1. (A7)

Transformations with det A = +1 are called proper transformations (proper
rotations or, simply, rotations), while those with detA = —1 are said to be
improper transformations. In each of these two categories there is an important
particular transformation, namely the identity transformation (proper
transformation):
xi=x (i=1,2,3) (A.8)

2

and the space inversion (improper transformation):

xi=-x; (i=1,2,3). (A9)

1

In view of these definitions, the translations and rotations of the axes (Fig. A.3)
belong to the proper transformations, while the mirror reflection (Fig. A.4) is an
improper transformation. For example, the matrix of the transformation which
gives the mirror reflection presented in Fig. A.4 is

-1 0 0

A= 0 1 0

0 0 1
The set of orthogonal transformations form a group, called the group of non-
homogeneous orthogonal transformations. To prove this, we must show that it

satisfies the axioms of the group, i.e. it is closed, associative, contains an identity
element and contains an inverse of each of its elements. Let

xp=ayx;j+Xi, x{ =bypx;+X; (i=12,3)

be two successive orthogonal transformations from S to S and then from §' to S”.
It is obvious that
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Fig. A.3 Proper A
transformations: translation S’ S
and rotation of axes. A
S S
(a) (b)

Fig. A.4 Improper
transformation: mirror
reflection.

A

x;':bijajkkarbinjJrX; :c,-kkarX;' (i: 1,2,3),
where
Cik = b,'jajk, X;/ = binj + Xi

By virtue of (A.6), it follows that the matrix C=BAis orthogonal:

CCT = BAATBT = BBT =1,
which shows that the transformation from S to S” is also orthogonal.

The identity element is the identity transformation, while the inverse element is
the inverse transformation (A.1) which, in view of (A.4), belongs to the group.
Consequently, all axioms are satisfied.

Some of the most important groups in physics are:

O@3): the group of rotations, which is formed by the set of the homogeneous
orthogonal transformations, x; = a;;x;. This group is isomorphic to the
group of 3 x 3 real and orthogonal matrices.

SO(@3): the special orthogonal group or the group of proper rotations, which is
composed of the subset of the homogeneous proper orthogonal

transformations: x; = a;;x;, with det A=1.
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T(3): the group of translations, x; = x; + X;, which is a commutative or Abelian
group, meaning that the result of two successive translations does not
depend on their order.

The set of improper orthogonal transformations does not have the group
property, because it does not contain the identity element.

Adding to these properties the fact that A is a continuous function of the
elements a;;, it results that any transformation belonging to SO(3) can be obtained
by a continuous rotation (a succession of homogeneous proper orthogonal trans-
formations, which are infinitesimally different from the identity transformation).
We also note that by no continuous rotation can we superpose two coordinate
systems which are obtained one from the other by an improper transformation.

A coordinate system (x1, X2, x3) is right-handed if a right screw directed along
the x3-axis produces through a rotation of angle 7/2 the superposition of x; and x,
axes. A left-handed coordinate system is obtained from a right-handed one by a
space inversion. It results that any right-handed coordinate system can be obtained
from another right-handed coordinate system by a proper rotation and/or a
translation, i.e. by a transformation which belongs to the group of non-
homogeneous proper orthogonal transformations given as the semi-direct
product SO(3)x T(3), which is the group of isometries of the three-dimensional
Euclidean space.

A.2 Scalars, Vectors and Tensors

A.2.1 Algebraic Definition of Tensor Quantities

In the definition of tensor quantities we shall use orthonormal transformations with
Cartesian coordinates.

A scalar is a quantity characterized by a real number which remains unchanged
upon any transformation of the coordinate system. A scalar whose algebraic form
is the same in all coordinate systems is called an invariant.

A vector v is a quantity characterized by an ordered system of three real
numbers {vy,v2,v3}, called its components, which under an orthogonal
transformation transforms according to the rule

U; = ai;v; (l = 172,3), (AlO)

where v} are the components of the vector in the new coordinate system, while a;;
are the elements of the transformation matrix.

In general, a n-th rank tensor in the Euclidean space E3 is a quantity with 3"
components f,;, ;, (i1,i2,...,i, = 1,2,3) which transforms according to

/ f— . . . . . . PR .
livig..iy = Qivji @iz jo- - Qi ju Lji oo (A.11)

under orthogonal transformations.
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Note that scalars and vectors can be discussed within the frame of this general
definition as Oth and first rank tensors, respectively. Nevertheless, we shall discuss
them separately, in order to emphasize some useful particular properties.

A n-th order pseudo-tensor in E; is a quantity having 3" components
i (1502, . iy = 1,2,3) which transform according to the rule

*/

17 = (det A)a j ai,j,. . .a;,jt (A.12)

o
Jie-Jn
under orthogonal transformations. In other words, under a proper orthogonal
transformation pseudo-tensors transform like tensors, while under an improper
transformation appears a change of sign. A pseudo-vector is also called an axial
vector, while an ordinary vector is called a polar vector. For example, under an
inversion of axes x§ = —X;, a vector v transforms according to v§ = —v; (as
examples can serve the position vector r or the linear momentum p), while a
pseudo-vector obeys the rule vV = v} (i =1,2,3) (an example is the angular
momentum, L =r X p).

A.2.2 General Properties of Tensors

We shall use a boldface letter to denote a tensor of specified rank, for example t
stands for all its 3" components {t;, ;. , i1,...,in = 1,2,3}.

Two tensors t!!) and t®) of the same order are equal if all their components in
some coordinate system are equal:

d =P i i = 1,2,3. (A.13)

Using (A.11) or (A.12) it is easily seen that this property is intrinsic, i.e. it remains
valid in any coordinate system obtained by an orthogonal transformation.

A null tensor (pseudo-tensor) has all its components equal to zero. From (A.11)
and (A.12) it results that a null tensor (pseudo-tensor) is an invariant.

A tensor is termed symmetric or antisymmetric relative to a pair of indices, say
i, and iy, if by their interchange we obtain:

Uiy dpeidgondny = Liy gy s (A.14)

and, respectively,
iy cipeigecin = ~liyocigocipoiy - (A.15)

The properties of symmetry and antisymmetry are intrinsic. A tensor which is
symmetric (antisymmetric) relative to all indices of its components is called
completely symmetric (completely antisymmetric).

Linear operations with tensors. The sum (difference) of two tensors makes
sense only if the tensors are of the same rank. The result of summation
(subtraction) is a tensor whose components are equal to the sum (difference) of the
corresponding components of the two tensors.
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Multiplying a tensor by a scalar, we obtain a tensor of the same rank whose
components are the components of the initial tensor multiplied by that scalar.
Let us consider two tensors, t of rank m and t of rank n. The quantity

Ty inin = livecinBinsrcimrn (15 e e orimin = 1,2,3) (A.16)

is a m + n-rank tensor, with 3™*" components, called the tensor product of the
given tensors. Indeed, in view of (A.11), we have:

T, =t . T

eelmtn Heelm U1 --Imtn

= ailjl o 'aim.j/rxaim+ljm+l o 'ai/rx+rxj/11+rx Tj]~<-.inx+n N

In a similar way, using (A.11) and (A.12) it can be shown that the tensor product
between a tensor and a pseudo-tensor is a pseudo-tensor whose rank equals the
sum of ranks of tensor and pseudo-tensor, while the tensor product of two pseudo-
tensors is a tensor whose rank is equal to the sum of ranks of the two pseudo-
tensors.

By a contraction of a tensor relative to a pair of indices we mean the operation
of equalizing the two indices and then performing the summation over the
common value. By a contraction, the rank of a tensor reduces by two. For example,
performing a contraction over the indices (i,,_1,,) of the tensor #;, ; , one obtains:

3
E iy cinaii = Liy.iy_aiis
i1

which is a tensor quantity with 3"~2 components. By virtue of (A.11) and (A.4),
under an orthogonal transformation, we have:

liy.iy ol = Ajiy- - 'aJrszlanaJnfllaJnltj[...j,,,zj,,,]j,,
- ajlll' . 'aJanlanéJuf]]ntj[...jn,zj,,,lj“ - a]]ll . 'ajn7211172tj|“.j,,,zj,lj“’
or
ip.dpnil — all]l' . 'aln—z.ln—z J1eJn=2]]>

which is the law of transformation of a rank (n — 2) tensor. The operation of
contraction can be performed or repeated relative to any pair of indices.

A special role is played by the Kronecker delta and Levi-Civita symbols.

The second-rank tensor f;; = d;;, where ¢;; is the Kronecker symbol, is an
invariant under an orthogonal transformation. Indeed, using (A.4), we have:

f; = @ity = andjdn = ai@jx = dij.

Note that, except for the null tensor, the Kronecker tensor is the only second-rank
invariant tensor.

Let us now show that the tensor quantity having its components defined by the
Levi-Civita symbol
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+1, if i, j and k are an even permutation of 1,2, and 3
€jx = —1, 1if i, jand k are an odd permutation of 1,2, and 3
0, if any of the indices are equal

is an invariant pseudo-tensor of the third rank, called the Levi-Civita pseudo-
tensor. To do this, we first observe that the determinant of an arbitrary 3 x 3
matrix can be written as

dCtA = eijkAliAZjA3k7 (A17)
which yields:
€imn det A = €;jx Asi Ay jAp. (A.18)

The last two relations can be easily proved by a straightforward calculation.
Assume that the Levi-Civita pseudo-tensor is defined in some coordinate
system by £ = €;jk (i, j,k =1,2,3). Then, we have

tl*jlk = (det A)Ai[Ajm Akn €lmn
or, in view of (A.18),
ti*;k = (detA)zeUk = €ijk,

which shows that the Levi-Civita pseudo-tensor is an invariant.

It can be proven that there are neither invariant tensors of odd rank, nor
invariant pseudo-tensors of even rank. Any even rank invariant tensor can be
written as a linear combination with scalar coefficients (numbers) of tensor
products of the Kronecker tensor by itself. For example, the fourth rank invariant
tensor #;j; has three distinct terms, as follows:

tijw = C10;j0k + C20ix0 ji + C30i10 j, (A.19)

where C, C,, C3 are some numbers. In particular, since the tensor product of two
Levi-Civita pseudo-tensors is a sixth rank tensor, it can be shown that

5il 5im 5in
€i jk€lmn — det 5jl 5jm 5jn . (AZO)
O Owm  Okn

The reader can prove this relation by setting first i = 1, j =2, k =3 and then
making a generalization for any i, j, k= 1,2,3. After some contractions, we
obtain two useful relations:

€ijk€imk = 010 jm — im0 1, (A.21)
€ jk€ljk = 20i1. (A.22)
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A.2.3 Vectors

Consider the oriented segment of a straight line P, P, whose projections on axes
are xl.2 - xi1 (i =1,2,3) (Fig. A.2). Passing to another coordinate system, by virtue

of (A.1), we obtain:

P —x =ay (x5 —xh) (i=1,2,3), (A.23)
which is similar to (A.10). Consequently, we can define a vector as a quantity
which transforms as the difference of coordinates under an orthogonal
transformation. In our case, we have a correspondence between a (free) vector
and the set of oriented segments parallel to P; P, which justifies the notation v for

the set of three real numbers that characterize the vector v: {vi,v2,v3}. In
particular, the vector quantity 6P, known as radius-vector or position vector of the
point P, is the vector denoted by r, of components x;, x5, x3, i.e. r: {x1,x2,x3}.
Two vectors A and B are equal (A = B) if their components are equal, A; =
B; (i =1,2,3). It results from (A.10) that this property is intrinsic.
The multiplication of a vector A: {A;, A;, A3} by a scalar o is a vector B,
denoted by a A, of components aA; (i = 1,2,3):

B; = oc/A; =o0ajA;=a;;(0 A;) = a;;B;.

The vector B is parallel (o > 0) or antiparallel (x<0) to A. In particular, —A =
(=1)A is the opposite of A.

The sum of two vectors A: {A, Ay, A3} and B: {By, B;, B3} is a vector C,
denoted by A + B, of components A; + B; (i = 1,2,3). Indeed, by virtue of
(A.10), we have:

Ci = A+ B, = a;jAj + a;;B; = ai;(A; + Bj) = a;;C;.

The difference between the vectors A and B is defined as the sum of A and the
opposite of B,i.e. A—B =A + (—B).

The null vector, denoted by 0, is the vector with all components equal to zero. It
is obvious that the sum of a vector with its opposite equals the null vector.

It is easy to verify that all these definitions are geometrically equivalent to the
parallelogram rule.

The properties of summation and multiplication by scalars show that the set of
all vectors form a linear space, namely the three-dimensional linear space L.

The non-zero vectors Ay,...,A, are linearly independent if the equality
Ay + -+ a,A, =0 is satisfied if and only if all scalars «, ..., 0, are zero.
If not, they are linearly dependent.

A system of three linearly independent vectors, say A, Ay, Aj, forms a basis
in L3, because the maximum number of linearly independent vectors is equal to
the dimension of the space, which is three. In order to form a basis, it is necessary
and sufficient that the three vectors are not coplanar. Any vector B of the space L3
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can be written as a linear combination of the basis vectors. Indeed, the non-zero
vectors Ay, A,, Aj and B are linearly dependent, meaning that in the equality

O([A,' +ﬁB =0

we can choose f§ # 0, which yields

(e

If the three vectors are orthogonal to each other, they form an orthogonal basis. An
orthogonal basis of unit vectors is termed as an orthonormal basis.

Most frequently is used the orthonormal basis {u;,up,us}, where w; (i =
1,2,3) are unit vectors of the orthogonal coordinate system Oxjx,xs, i.e. the
vectors whose components are (u;) = 0;j. With the aforementioned definitions,
for any vector A we can write the expansion:

A= Al‘l.li. (A24)
If we denote by u; the unit vectors of the coordinate system O'x|x,x%, obtained
from Oxyz by an orthogonal transformation, we have:

u; = () u; = a;u;. (A.25)

Scalar product. Being given the vectors A: {A;, A2, A3} and B: {By, By, B3},
it is easy to verify that the quantity A;B; is invariant under an orthogonal
transformation. It is called the scalar product or inner product of the two vectors
A and B. Denoting by A - B the scalar product, we have:

A-B=A;B, (A.26)

In view of the invariance of the inner product, a suitable choice of axes
(x; along A and x5 orthogonal to the plane defined by the vectors A and B), yields
the well-known formula of the scalar product:

A-B = ABcos o, (A.27)

where ¢ € [0,27] is the angle between the two vectors and A and B are their
magnitudes. In particular, for the orthogonal unit vectors we obtain

u-u; = (Sij. (AZS)
The scalar product has the following properties:

(@) A-B =B - A (commutative law of multiplication);
(b) (A+B)-C=A-C+B-C (distributive law);
(¢) (xA) - (fB) = affA - B (o, f§ scalars);

(d) A-A =|A>>0; the equality sign appears only for A = 0.
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The magnitude or length of a vector A is defined by means of the scalar
product as

A=Al =VA- A= AA,. (A.29)

Cross product. The cross product of any two polar vectors A and B, in a right-
handed coordinate system, is the pseudo-vector

Cz* = ﬁjjkAjBk~ (A30)

It can be conventionally represented by an oriented segment using notation A x B,
where

AxB= C:Flli = El‘jkAjBklli, (A31)
or
ug 115} u3

AxB= A1 A2 A3.
B, By B

To find the geometric significance of the cross product, we shall use the same
choice of axes as for the scalar product. The only non-zero component is then
C; = AB, = ABsin ¢, and the magnitude is

|A x B| = ABsin . (A.32)
Thus, the magnitude of the cross product A x B is given by the area of the
parallelogram determined by the two vectors, while its direction is determined by
the right-hand screw rule: if A turns unto B around the uz-axis, then a right-hand
screw will advance in the direction of A x B. If A and B are parallel (or

antiparallel), the cross product is zero.
The cross product of the unit vectors of coordinate axes is

u; X 0 = €y, (A.33)
while the cross product of a vector A by a unit vector u; reads
A X u; = € Apu;. (A.34)
The cross product has the following properties:

(a) A xB = —B x A (antisymmetry or anticommutative law of multiplication);
(b) (A+B) x C=A x C+ B x C (distributive law);
(©) (xA) x (fB) = affA x B, for any scalars o, f5.

The mixed product of three polar vectors A, B, C is the pseudo-scalar

Al Ay Az
A- (B X C) = eijkAiBjCk = Bl BQ B3 . (A35)
Ci G Cs
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In view of (A.26) and (A.31), the magnitude of the mixed product is the volume
of the parallelepiped formed by the three vectors. Using the definitions of scalar
and cross products, we obtain:

A-BxC)=B-(CxA)=C-(A xB)
=-B-(AxC)=—-A-(CxB)=-C-(BxA). (A.36)
If the three vectors are coplanar, the mixed product is zero.
The double cross product of the three vectors A, B, C is a vector defined as
AxBxC),=(A-C)B;—(A-B)C; (i=1,2,3),
or

Ax(BxC)=(A-C)B—(A-B)C. (A37)

A.2.4 Second-Rank Tensors

Let V be the set of all vectors of E3. Then, given the vector v € ) and the second-
rank tensor t, the quantity

w; = 1;;v; (l =1,2, 3) (A38)
is also a vector. Obviously, the following statement is also true: if v, w € V), then

the nine-component quantity #; (i, j = 1,2, 3) is a second-rank tensor. The matrix
form of (A.38) is

w = tv, (A.39)

called right scalar product between the tensor and the vector. In a similar way we
can define the left scalar product by

w; = tﬁvj (l = 1,2, 3), (A40)
whose matrix form is

, (A41)

where t is the transposed matrix associated with the tensor.
These considerations show that a second-rank tensor defines a linear application

of V onto itself, i.e. t is a linear operator on V. In particular, if we take v = u; and
observe that (uy); = dy;, we obtain:

T; = tivug (l = 1,2,3). (A42)

These quantities are the vector components of the tensor t.
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The algebraic operations involving tensors are considerably simplified by
introducing the notion of dyadic. We call dyadic product or Kronecker product of
an Euclidean space E3 by itself a space denoted by E3 ® E3, defined in such a way
that a pair of vectors A, B € E3 is associated with one and only one element of
E3; ® E5, denoted by AB and having the following properties:

1°. (A1 + A2)B = A;B + A;B, A(B, + B,) = AB, + AB;,
2°. («A)B = A(aB) = «AB, where « is a scalar. It results that E3 ® E3 is a vector

space of 3 x 3 =9 dimensions. If in E3 we have an orthonormal basis u;
(i =1,2,3), then in E3 ® E3 we have the basis uw;u;, and we can write

AB = (Aw;)(Bju)) = A; Bju;u;.

The quantity AB is called a dyadic vector, or simply a dyadic. One can define the
following operations:
(a) C-(AB) = (C- A)B (semiscalar left product);

(AB) - C = A(B - C) (semiscalar right product);
(b) C x (AB) = (C x A)B (semicross left product);

(AB) x C = A(B x C) (semicross right product);
(¢) (AB) - (CD) = (B - C)AD (inner product of two dyadics).

By virtue of (A.42), a second-rank tensor can be associated with the dyadic
{t} =u,T;, = Ljuu; (A43)

of E3 ® Ej3. In particular, the Kronecker tensor J;; is associated with the dyadic

{l} = u;u; (A44)

called the dyadic unit vector.
The use of dyadics has the advantage of employing the usual vector operations.
For example, in view of (a), (b) and (A.42), we have:

A-{t}=A-(uT) = (A w)T; = AT, (A.45)
A x {t} = (A X lli)Tl‘ = EijkAkujTia (A46)
A- {t} -B = (AIT,> . (Bkllk) = A’tUBJ (A47>

The dyadic unit vector has the following properties:
A-{1}={1}-A=A, (A.48)
{r}- {1} = {1} -{s} = {z}. (A-49)

Any second-rank tensor can be expressed as the sum of a symmetric and an
antisymmetric part:

lij = Sij + Aij,

where
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1 1
Sij= 5+ 1), Aij= 5 (6= 15)-

Since the properties of symmetry and antisymmetry are intrinsic, the quantities S;;
and A;; are tensors.
If t is a second-rank tensor and v, w € V), we can define the bilinear form

L(v,w) = v(tw) = v;t; jw;. (A.50)

It is seen that L(v, w) is a linear function in each of its arguments and, in view of
(A.38), it has scalar values. If t is symmetric, then L(v,w) = L(w,v). If w =v,
we obtain a quadratic form:

L(v) = L(v,v) = v (tv) = t;jv;v;. (A.51)

If by v we mean the position vector r of a point in E3, then equation L(r) = C,
where C is a constant, defines a quadric with its centre of symmetry in O,

associated with the second-rank tensor t. Since a quadratic form is an invariant
under an orthogonal transformation, the associated quadric does not depend on the
choice of the coordinate axes.

If in (A.18) we set A = 7 and use the tensor properties of ¢; , we arrive at the
conclusion that the determinant of the coefficients of the quadric (A.51),

D= det(f) = det(tij),

is an invariant under orthogonal transformations. Another invariant of a second-
rank tensor is the sum of its diagonal elements, called trace or spur:

Trt = t;. (A.52)
Observing that x;x; = const. defines a quadric (sphere), the expression

(tij — /15,'}'))6[)6}' = const.

is also a quadric, attached to the tensor 7;; = t;; — AJ;;, for any scalar 1. This
means that D, = det(;;) must be an invariant for any A, and consequently the
coefficient of each power of 4 in the polynomial

D,=-24UP—-A.+D

must be an invariant. The quantities D = det t, U = Tr t and

A = tiity + t1133 + totsz — tioty — Hial3) — I3t (A.53)

are called the principal invariants of the tensor t.

Consider now the second-rank symmetric tensor f;; (i, j = 1,2,3) and let us
find out if there exist unit vectors f € V' and scalars 4, so that the vector defined by
(A.38), with v =1, is equal to 1 f, i.e.
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if = I, (A.54)

or
tijfj =1 fl (l =1,2, 3) (ASS)

The homogeneous system of equations (A.55) has a non-trivial solution if and
only if the determinant of the matrix of coefficients, which is precisely D, is zero.
The equation D, = 0 is called the characteristic equation, and the three roots of

this equation are the proper values or eigenvalues of the tensor t. The invariance of
D, leads to the invariance of the proper values, which means that they are
intrinsic.

Since t is symmetric, all three roots of the characteristic equations are real.
Indeed, if they were complex, then the vectors f should be also complex and then,
by virtue of hypothesis of non-trivial solutions, we obtain from (A.55):

= (i ) A
which yields ;; = ¢, A" = A. Therefore, we can consider only real unit vectors f.
Those vectors f which satisfy (A.54) are called the proper vectors of the

symmetric tensor t. It can be shown that (A.54) admits three proper vectors f; (k =
1,2,3) which are (or can be made) orthonormal:

£ f =04 (k1=123). (A.56)

Let Af; and 4/f; be two pairs of proper value — proper vector which satisfy
(A.54). Then (A.54) yields (tf}) - f; = A (f; - f;) (no summation over k). Replacing
k by [ and subtracting, we obtain:

G — ) (£ - £)) = 0.

This shows that (A.56) can be satisfied if, for k = [, we have A, # A;. But if there is
a double root, say 1; = A, # A3, then in general f; - f, £ 0. It can be shown that
the vector

g = af; + onf

is also a proper vector, corresponding to the proper value 1; = 4.
The relation (A.56) shows that the matrix ’R, of components R;; = (f;) = fijis

orthogonal, and therefore it defines an orthogonal transformation leading to a new
coordinate system. Denoting by u; the new unit vectors, from (A.25) we obtain:

/_ p—
lli = fijuj —fl‘,

which means that the axes of the new coordinate system are determined by the
proper vectors f;. In the new frame, the components of the tensor t transform
according to
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t; = fufita = 2jfufix = 2;0ij.

(Note that there is no summation over j in the last relation.) This shows that the
matrix associated with the tensor t in the basis {f1,£2,f3} is diagonal, i.e. the only
non-zero components lie on the principal diagonal, being equal to the proper
values of the tensor. Thus, by a rotation of matrix 7A2 we brought the tensor to the
diagonal form. The axes defined by the unit vectors f; are called the principal axes
of the tensor t. In this frame the quadratic form (A.51) reduces to a sum of squared
quantities, while the quadric L(r) = C is brought to the canonical form:

3
> it =cC. (A.57)
i=1

This means that the principal axes of the symmetric tensor t are also symmetry
axes of the associated quadric.

As for second-rank antisymmetric tensors, from the definition #;; = —¢; it
results that such a tensor has only three distinct components, leading to a pseudo-
vector v* of components v} = ty3, v; = 31, V3 = t12. In a compact form, this can
be written as

1
U;F = EEijktjk (l = 1,2,3). (ASS)
The pseudo-vector v* whose components are given by (A.58) is the dual pseudo-
vector associated with the antisymmetric tensor t. Using (A.21), we can also write

lij = €ijk UZ, (A59)

which shows that any antisymmetric tensor of the second rank can be associated
with a pseudo-vector. Thus, the relations (A.58) and (A.59) are equivalent.
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B.1 Fundamental Notions

B.1.1 Vector Functions on E;

Let ¢ be a variable parameter. If to any value of 7 corresponds a value of a vector A,
we say that A(¢) is a vector function of t.

Let #; be a value of . Then, if with any given infinitesimal ¢ we can associate a
positive number 1., so that |t — #;| <7, yields |A(f) — A(f1)| <e, we say that A(r)
is a continuous vector function of t.

B.1.2 Derivative of a Vector Function

Let P be a point mass (particle) and r() — its radius-vector relative to an arbitrary
point O. When ¢ varies, the arrow of the vector describes a curve C, called the
hodograph of the function r(z). To some variation Ar of ¢ will correspond a
displacement of the particle from P to Py, i.e. a variation Ar = r(¢ + At) — r(¢t) of
the function r(7). The ratio Ar/At is a vector collinear with Ar. The limit

Ar  dr

. /
a0 (B.1)
is called the derivative of the vector function r(#) with respect to ¢ at the point P.
The vector dr/dt is tangent to the curve C at the point P. If the parameter 7 is the
time, the derivative is denoted by r.

By definition, the differential of r(t) is dr = r'(¢) dt, where r'(¢) denotes the
derivative of r(¢) and dt is an arbitrary elementary variation of ¢. If r is a function

of n variables 7y, .. .,t,, its differential is
or
dr = —dt; B.2
6t,- b ( )
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where the symbol 0/0; stands for the partial derivative with respect to #; and the
summation convention over index i = 1,n has been used.

The differentiation of vector functions is performed according to the same rules
as for the scalar functions, but taking into account the properties of the vector
algebra.

Application. Let R(z) be a vector of constant modulus, with its origin at O,
whose arrow traces the circle of radius R lying in the xy-plane (Fig. B.1). If u, is
the unit vector of R and ¢ is the time, we can write

dR _ du,
dt —  dr’

We denote the unit vectors of the x-, y- and z-axis by 1, j and K, respectively. Since
u, =icos @ + jsin ¢, we have:
du,
dt

@(—isin ¢ + jcos @)
. s . - T .
= olicos(o+3) +isin(o+ 7 )| = u,
where
u icos( +n)+'s'n( +n>
= —_ 1 —_
¢ ® 3 J ® )

is the unit vector obtained by a counterclockwise rotation of angle /2 of u, about
its origin. Thus,

dR
— = Rou,,

RI_ R (B.3)
dr = Q. .

@

B.1.3 Integral of a Vector Function

The definition of the integral of a vector function is analogous to that of a scalar
function. Let A(t) be a vector function of the parameter T in the interval [fo, ?].
Dividing this interval in partial intervals by a partition tp = 70 <1, <... <1, =1,
let us take the sum:

ZA(%i)[Ti —tia], T €[tio1, Tl
i=1

If, for any choice of points, there exists a limit of this sum for n — oo and max
[t; — Ti—1] — 0, the same for any division of the interval [y, ], then this limit is
denoted

t

/ A(7) dt = a(t) — alty), (B.4)

)
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being called the infegral of the vector function A(t) between the limits 7y and ¢.
The function a(t) is the primitive of A(z).
In mechanics, most frequently are encountered the following special integrals:

(a) The line integral [.A(r)-ds= ffA(r(t)) -r'(t) dt along a curve C,
parametrized bijectively by r : [a,b] — C, such that r(a) and r(b) represent
the end-points of C and ds is a vector element of C. This integral is called the
circulation of the vector A on the curve C between a and b. If C is a closed
curve, the circulation is denoted fc A - ds.

(b) The surface integral f A -dS, where A is a vector with its origin on the
surface S and dS is a vector surface element. This integral is called the flux of
the vector A through the surface S. Since a surface is parametrized by two
variables, the surface integral is basically a double integral. If the surface is
closed, one uses the notation fSA - dS.

(c) The volume integral f v A dt, where V is the volume of a domain D of Ej3, dt
is a volume element, while A has its origin somewhere in D.

B.1.4 Scalar and Vector Fields

If in a domain D C E3 with any point P € D one can associate a value of a scalar
o(P), we say that on D is defined a scalar field. For example, such a field exists
around a radiator: in each point of the surrounding space can be defined a scalar
called the temperature.

If with any point P € D one can associate a vector quantity A(P), then on D we
have defined a vector field. Such a field is, for example, the electric field strength E.
The velocities of molecules of a moving fluid represent also a vector field.

A scalar field ¢ or a vector field A are called non-stationary if ¢ or A depends
explicitly on time. If not, the field is termed stationary.

B.2 Applications

B.2.1 The Serret-Frenet Frame

Assume that the trajectory of a particle P is a skew-regular curve C. Let Pj be a
fixed point on the curve and denote by s the arc length PyP, called the curve
abscissa of P (Fig. B.2). Then, if r is the radius-vector of P relative to the origin of
the Cartesian orthogonal frame Oxx;x3, the parametric equations of the curve C
are x; = x;(s) (i = 1,2,3) or, in vector form,

r =r(s). (B.5)
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Fig. B.1 A vector R(?) of 2 Y
constant modulus, whose
arrow traces a circle of
radius R.

R()

u,

Fig. B.2 The Serret-Frenet
reference frame.

x

Since |dr| = ds, the quantity dr/ds is a unit vector t oriented along the tangent to
the curve C at the point P:

dr
5= (B.6)

When the point P describes the curve C, the direction of 7 varies, which means
that 7 is a function of s. The elementary arc ds depends, in its turn, on the angle d0
between the tangents at P and P’ (Fig. B.2). Therefore

dt d0dr 1

ds  dsdo p" (B.7)
where v is the unit vector and df/ds = 1/p > 0 is the magnitude of dz/ds. The
unit vector v is orthogonal to 7 at the point P and defines the principal normal to
the curve C at P. The scalar p is the radius of curvature and 1/p is the curvature
of the curve at the point P. The plane determined by the unit vectors t and v is
called the osculating plane at the point P.

One can define a third unit vector f = 7 X v, known as the unit bi-normal to the
curve C at the point P. The plane determined by v and f is called the normal plane
to the curve at P. The orthogonal right-handed system of unit vectors t,v and f is
called the Serret—Frenet trihedral system.
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Let us express the variation with respect to s of the unit vectors f and v. Since
BB =1, we have

ap

2=,

b ds

i.e. the vectors B and df/ds are orthogonal. In other words, the vectors df/ds,
v and 7 are coplanar and, recalling the results of Appendix A, Sect. A.2.3, we can write:

d

d—f = At + pv. (B.8)
On the other hand, taking the derivative with respect to s of the relation - f = 0,

we have:

dap dt
- — -— =0.
! ds b ds
In view of (B.7), we obtain:
dp
2P0
! ds
and (B.8) yields A = 0. Setting u = —1/T, we arrive at
dp 1
2y B.
ds Tv (B.9)

The scalar quantity T is the torsion of the curve C at the point P, while 1/T is
the radius of torsion. The torsion indicates the deviation of a curve from the plane
shape. Indeed, if C is a plane curve the direction of the unit vector f will remain
unchanged, therefore dff/ds = 0, consequently 1/T =0 (i.e. T = c0).

To justify the choice of the minus sign in (B.9), let us obtain this formula in a
different way. We observe that when P moves on the curve, the angle o between
the unit bi-normal and some reference direction varies according to

dp _ d»dp

= — —. B.1
ds ds do ( 0)

Suppose that o is described by a positive (counterclockwise) rotation of the trihedral
system about 7. In this case, the quantity do/ds = 1/T > 0 is the radius of torsion at
P, while dB/da = —v (see (B.7)). Thus, we fall back on the relation (B.9).
Taking the derivative with respect to s of v = f x t and using (B.7) and (B.9),
we have:
dv dt dp

1 1
g—ﬁXa—‘rEXT—;va_?vxf,

and finally,

—=——1+_p. (B.11)
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The relations (B.7), (B.9) and (B.11) are known as the Serret—Frenet formulas.
The reader is advised to check the validity of the following relations, giving the
curvature and the torsion of a curve, as an application of the Serret—Frenet
formulas:

1 d2X1 d2x2 dZX3 %

o \ds? + ds? ds? )’ (B.12)
1 ,dr [(d’r dr
77 F(ﬁxﬁ> (B.13)

The Serret-Frenet trihedral system, also called the natural system of
coordinates, can be attached to any point of the trajectory of a particle, in order
to study the elements which characterize its motion: velocity, acceleration, etc.
This makes it a particularly useful instrument in mechanics.

B.2.2 Differential Vector Operators in Cartesian Coordinates

B.2.2.1 Gradient

Consider a scalar function ¢(x,x2,x3) of class C?, defined on some domain
D C E;. Using the aforementioned definition, it results that we have in D a

stationary scalar field. One observes that the differential dg = %dx,- is the scalar
product of the vectors dr = u;dx; and A = u;(0¢/0x;). The vector field A is called

the gradient of the scalar function ¢ and is written grad ¢. Therefore

dp = grad ¢ - dr. (B.14)

It is seen that the vector field A = grad ¢ has been obtained by applying the
differential operator

V=u— (B.15)

to the scalar function ¢(x;, x2,x3). This vector operator is called del or nabla. It
was introduced by Hamilton. Therefore, we can write
v d Op (B.16)
=gradp =u; —. .
¢ = grad @ ox;
The vector field A = grad ¢(x1,x7, x3) is called a conservative field. Such a field
is, for example, the electrostatic field strength E = —grad ¢, where ¢(xy, x2,x3) is
the electrostatic scalar potential.
Equipotential surfaces. Consider the fixed surface

¢@(x1,x2,x3) = C(const.). (B.17)
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Then, from (B.14) we have V¢ - dr = 0. Since dr lies in the plane tangent to the
surface (B.17), it follows that at any point of this surface the vector V¢ is directed
along the normal to the surface. Each value of the constant C gives another
surface. These surfaces are called equipotential surfaces. In other words, given the
scalar field ¢(x;,x2,x3), the geometric locus of the points having the property
V¢ - dr = 0 is an equipotential surface.

Field lines. Consider the stationary vector field A(x, x,x3) and a curve C
given by its parametric equations x; = x;(s) (i = 1,2,3). If the field A is tangent
to the curve C at any point, then the curve C is a line of the field A. The differential
equations of the field lines are obtained from the obvious relation A x ds = 0,
where ds is a vector element of the field line. In projection on axes, this yields

dxl - dX2 - dX3

—_— =" =— B.18
Ay Ay Az (B.18)
Directional derivative. The component of grad ¢ along the x;-axis is
Op % op .
de), = — | W= 0= =1,2,3). B.19
o) = (gl ) w= o= 0 (=123 ®19

Partial derivatives of ¢ with respect to x; are denoted also by 0;¢ or ¢ ;.

Let us project the vector grad ¢ on some direction defined by the unit vector w.
We can write dr = wdr = wds, where ds is the magnitude of the elementary
displacement vector ds. Dividing (B.14) by ds, we then obtain the directional
derivative of ¢

do
(grad @) - w = (grad @), = Tu (B.20)
w
If, in particular, w coincides with the unit vector n of the normal to the surface
(B.17), chosen as positive, then
do
radp) - n= — >0 B.21
(grad ) 220, (B.21)
which shows that the gradient is oriented along the normal at the equipotential
surface at any point and its direction indicates the maximum rate of variation of the
function ¢.

B.2.2.2 Divergence
Taking into account the properties of the vector operator V, let us apply it on an
arbitrary vector field A by taking the scalar product

, d 0Ar  0A;
divA=V- A= <“fa_)c,-) C(Aguy) = 51-,(%’“ =5 (B.22)
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Fig. B.3 Vector
representation of a surface
element.

If A is a polar vector, the expression (B.22) is a scalar called the divergence of A.
One also uses the notation 0; A; or A;;. A vector field with the property

divA =0 (B.23)

is called source-free or solenoidal. The lines of such a field are closed curves. This
property characterizes, for example, the magnetic induction B.

B.2.2.3 Curl

Let us apply again the operator V on a vector A field, but this time by taking the
cross product V x A. The expression

oA
curl A =V x A = we;jy —— (B.24)
an

is called the curl of the vector A. The x,-component of the curl A is
(curlA), = (uy - ;)€ ) Ax,j = €A j- (B.25)
A vector field A which satisfies the relation
curlA =0 (B.26)

is called irrotational or vorticity-free. The electrostatic field strength E possesses
this property.

B.2.3 Fundamental Theorems

B.2.3.1 Green—Gauss Theorem

Let S be a bounded surface and A a vector field with its origin on S (Fig. B.3). By
definition, the flux of A through the surface S is the quantity

(D:/A~dS:/A-ndS, (B.27)
S N
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Fig. B.4 An open surface S
S bordered by a closed n
contour I'. A is a vector field
with its origin on I'.
/i
A
r

where dS is an oriented element of the surface S. If S is a closed surface and n is
the unit vector of the outward normal, chosen as positive, it can be shown that

7{A~ds :/divAdr, (B.28)
N \%4

where dt is an element of the volume V bounded by the surface S. This formula
expresses the Green—Gauss theorem: the flux of the vector field A through the
closed surface S is equal to the integral over the volume V bounded by S of the
divergence of the vector A.

Let us contract the surface S so that the volume V becomes smaller and smaller.
At the limit, the formula (B.28) yields:

1
divA = lim — %A-ds. (B.29)
At—0 AT K
This relation can be considered as the definition formula of divergence at a point.
If divA > 0, at that point there is a positive source, while if div A <0, there is a

negative source at that point.

B.2.3.2 Stokes’ Theorem

Consider an open surface S bordered by the closed contour I" and let A be a vector
field with its origin on I'. In this case, choosing a sense of integration, we can
define fr A - ds as being the circulation of A along the contour I' (Fig. B.4). The
positive sense of the normal unit vector is given by the right-screw rule. It can be
shown that

]{A-ds:/curlAdS, (B.30)
r s

where dS is a vector element of the surface S. Relation (B.30) is known as Stokes’
theorem: the circulation of the vector A along the closed path I is equal to the flux
of curl A through the open surface S which is bounded by the contour. In
particular, if A is a conservative field A = grad ¢(x;, x2,x3), we have:
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?{A~ds:fa—q)dxi:fd<pzo. (B.31)
r r Ox; r

Using the already known procedure, let us contract the surface element dS until it
becomes so small that curl A has no significant variation within it. At the limit, we
can write:

n- curl A = lim 1 %A-ds, (B.32)
As—0 AS Jr
which can serve as the definition of curl A.
Relations (B.29) and (B.32) are useful, because they stand for the definition of
the divergence and curl of a vector, independently of the coordinate system.
Therefore, these definitions are intrinsic.

Observation: Both the Green—Gauss and Stokes’ theorems can be generalized in a
space with n dimensions, S,. Starting with formula (B.28), if we assume that
A; (i = 1,n) are n derivable functions of xi, .., x, in some domain D of volume V
in S,, and extend the summation over the index i from 1 to n, we obtain:

]f ZA dx; = /Z ax, (B.33)

Sp—1
where S,_; is the closed hypersurface which bounds the volume V of the
manifold S, .
In a similar way, we can extend the Stokes’ theorem (B.30) to n dimensions. Using
the analytic formulas of the vectors and the results derived in Appendix A, we have:

" aAk 1 aAk aA
%A»d»: i dsi = - ;i d
P /ij Ox; g 2/(6)6] axk)ejk S
r s s

But € j; dS; = dxdx; and so, extending the summation for all indices from 1 to n,

we have:
1 1 "~ (0A;  0A;
j{ZA,-ds,- =3 / Z (E - a—)q()dxjdxk, (B.34)
r = S Jik=1

where I' is a generalized closed contour in S, and S — an open hypersurface
bounded by I

B.2.4 Useful Formulas

The operator nabla is sometimes applied to products of two or more functions. In
some other cases we meet repeated operations. In the following, we shall give
some useful vector identities, frequently encountered in mechanical applications.

1. The gradient of a product of two scalar functions, ¢is. Taking into account the
properties of the operator nabla, with the observation that we first consider its
differential character and then its vector behaviour, we have:
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grad(py) = V(oY) = oVY + Vo = ¢ grad  +  grad ¢. (B.35)
2. The divergence of the product pA:
div(pA) =V - (pA) = oV -A+A -V =@divA + A - grad ¢. (B.36)

3. The curl of the same product:
curl(pA) =V x (pA) = oV x A+ (Vo) x A
= ¢ curl A + (grad ¢) X A. (B.37)

4. The divergence of the cross product A x B:
le(A X B) =V- (A X B) = 6,(A X B)t = e,-jkai(A_,-Bk)
= Bk(Ek[jaiAj) — A_,-(eﬁkéin) =B (V X A) —A- (V X B) (B38)
=B -curlA — A -curl B.

5. The gradient of the scalar product A - B. We first observe that a component of
the gradient reads

6J(A . B) = Gj(AkBk) = AkajBk + BijAk.

Next, let us multiply the relation (curl B)S = €m0 By, by €jx and perform the
summation over the indices / and m:

esji(curl B) = (010mk — OOm ;)01 B = 0;Br — OiBj.
Using this result, we have:
0;(A - B) = €us[Ax(curl B), + By(curl A),| + (Axdx)B; + (Bidi) A,
or, in vector form,
grad(A-B) = A x curl B+ B x curlA + (A- V)B+ (B- V)A. (B.39)
6. The curl of the cross product A x B:
curl(A x B) = V x (A x B) = w;¢;x0;(A x B), = W€k j€m0;jA; By,
= ;0110 jm — Oim0j1)(A10;By + Bn0;A;)
=w;(A;0, B — Bi0OjA; + B0 A; — Aj01B;),
or
curl(A x B) = AdivB —BdivA+ (B-V)A— (A-V)B. (B.40)

Consider now some repeated operations with nabla.
7. The divergence of a curl:

div(curlA) =V - (V x A) =0, (B.41)

because the determinant has two identical lines.
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. The curl of a gradient:

curl(grad @) =V x (Vo) =0, (B.42)

for V and V¢ are collinear.

. The divergence of a gradient:

div(grad @) = V- (Vo) = V?¢ = Ao, (B.43)
where the operator
62
Vi=A= B.44
©x,-6xi ( )
is the Laplacian. The equation
Ap =0 (B.45)

is called the Laplace equation. The solutions of these equation are termed as
harmonic functions.
The curl of a curl:
curl(curl A) =V x (V x A) = V(V -A) — V?A
= grad(divA) — AA. (B.46)

If r is the position vector of a particle relative to the origin of the frame
Ox1x,x3, we have:

gradrzzzu,, |gradr| =1, divr =3,
r

1

curlr = 0, A<;>:0 (r #0). (B.47)

Given the scalar field ¢(r) and the vector field A(r), where r = |r|, it is easy to
prove that
ro 1 / 1 /
gradp(r) = -¢', divA(r) = —-(r-A"), curlA(r)=-rx A/ (B.48)
r r r

where ¢’ = do/dr, A’ = dA/dr. The proof of the identities (B.47) and (B.48)
is left to the reader.

B.3 Orthogonal Curvilinear Coordinates

B.3.1 Generalities

Let r be the position vector of a point P and xy, x, x3 — its Cartesian coordinates.
Assume that x;,x»,x3 are functions of class C' of three independent real
parameters g1, g2, q3:
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Fig. B.5 Orthogonal
curvilinear coordinates.

xi = xi(q1, @2, q3) (i=1,2,3). (B.49)

We also assume that between the two representations there is a point-to-point
correspondence, which means that to a given set (¢) corresponds a single set (x) and
the other way round. Therefore, the transformation (B.49) is (locally) reversible if
j= Q) (B.50)
9(q1,92,93)

where J is the Jacobian of the transformation (B.49). If we give fixed values to two of
the parameters ¢; (j = 1,2,3), say ¢, and g3, we obtain the coordinate line ¢; =
variable. Similarly we can obtain the lines go = variable and g3 = variable. This
shows that through any point in space pass three coordinate lines (Fig. B.5). The
parameters g, g2, g3 are called the general or curvilinear coordinates of the point P.
Let e; = % be a vector tangent to the coordinate line g; = variable. In this

case, the condition (B.50) expresses the fact that the system of vectors ey, e;, e3 are
linearly independent, i.e. they form a basis. Indeed,

or < or or

el'(e2Xe3):aiq]. @X@

)70

If at each point of the domain D@ defined by the set of all possible values of
the parameters (g) the vectors ej, e, e; form a right-handed orthogonal trihedral
system, the coordinate lines ¢q;,g>,q3 form a system of orthogonal curvilinear
coordinates. In the following, we shall refer to such coordinates only.

B.3.2 Line, Surface and Volume Elements in Orthogonal
Curvilinear Coordinates

Suppose that the point P describes some curve C. An elementary displacement of
the point P, by virtue of (B.49), is:
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0
ds = dr = — dg; = eidq;. (B.51)
0q;
Let u; be the unit vector of ;. Then we have, on the one hand, u; - uy = d;, and on
the other,

e = |ejlu, = ‘gr u; = h;u;  (no summation). (B.52)
qi
The quantities
or o\ o\ [ox\’
hi=|—|= B.53
0q; \/(@qz) +<6qi * 0q; (B.53)

are called Lamé’s coefficients.
The line element then reads:

ds = hidqi u;. (B54)

To obtain the surface element we shall use the obvious relation
1
dS,- = Eei_,-kds_,- X dSk (l = 1,2,3). (BSS)

Performing summation over repeated indices, we arrive at
dS = (h2h3dq2dQ3)ll] + (h3]’l1dQ3dql)ll2 + (h]hquldqz)ll3. (B56)

The volume element is obtained by taking the mixed product of line elements,
dt = ds; - (ds; x ds3). Using (B.54), we immediately find:

dt = h1h2h3dqldQQdQ3. <B57>

B.3.3 Differential Vector Operators in Orthogonal
Curvilinear Coordinates

Consider a scalar field W(x,x2,x3), where xi,xp,x3 are given in terms of

41,92, 43 (see (B.49)).
By virtue of (B.16) and (B.54), the gradient of ¥ reads

1 0¥

d¥ = — —
& h; 0q;

If in (B.58) we choose ¥ = ¢, we have gradg; = u;/h; (no summation) and thus
we may write:
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curl(grad ¢;) = curl (ﬂ) =0.
Performing the calculation according to (B.37), we find:

1
curlu; = h—grad hjxu; (nosummation). (B.59)
J

The divergence of a vector field A(xy,x;,x3), in view of (B.36), is
div A = diV(A,'ll,') = Al‘ div W+ grad A,‘, <B60>
or, by use of (B.38) and (B.59),
. 1 .
divuy, = Ee,-jkdw(uj X uy) = 3 €k (ug - curlu; — u; - curluy)

! L oy, (u; X uy) L O (uy X uy)
= e — Dy (uy xu) — — oy (u, .
27\ hjhs 0g, U hihs Og, ’

Since u; - (u; X W) = €% and €; kg = 20;5, we have:

. 1 /1 0h; 1 Ohy
divey, = — ——]—i———). B.61
hi (hj Oqi  hi Og; (B.61)
We also obtain
1 0A; 1 04

u,-gradA; =, ~ukh—k - h— o0

Introducing these results into (B.60), we are led to

1 90
divA = h,h—]hk a—qi(A,-hjhk) (i, j, k = cyclic permutations of 1,2,3), (B.62)

or, if the summation is performed,

1 0 0 0
divA = — | — (A hhh —(Asrh3h —(Aszhhy)]|. B.
v hihahs {691( e 3)+at]2( 2 ])+6613( . 2)] (B.63)

Suppose now that A = grad¥. Then divA = AY and (B.63) yields the
expression for the Laplacian:

1 0 ([ hyhs a‘P) 0 (h3h1 61P> 0 (hlhz @‘P)}
AW — () C (B ET )y (B
hihahs {6q1< hy 0qy 0g> \ hy Oq» 0g3 \ h3 Oq3

(B.64)
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Fig. B.6 Spherical Az
coordinates.
u,
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P
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X
The curl of the field A is obtained according to (B.37) and (B.59):
curl A = curl(A;u;) = A; curlu; + grad A; x w;
= éiahiu X u; + iaAiu X W
i og " R dge T
But u; X u; = ¢4,u,, hence
A; Oh; 1 0A;
1A = egi | —— — 5 B.65
o o <hihk 0qx * hi Oqx >u‘ ( )
If the summation is performed, we finally arrive at:
1 0 0
1A= — | — (A3zh;) — — (Ash
cur T [aqz( 3h3) 6q3( 2 2)]“1
1 0 0
—— | =—(A1hy) — — (Ash
* h3hy [6‘]3( ) a611( ’ 3)}12
1 0 0
—— | =—(Axhy) — — (A1h . B.66
* hih, [6611( 2h2) a%( : 1)}13 (B.66)

B.3.4 Examples of Orthogonal Curvilinear Coordinates

B.3.4.1 Spherical Coordinates

Let Ox;x;x3 be a Cartesian orthogonal system of coordinates. The position in
space of a point (particle) P can be defined by: the distance |r| = OP, the angle 0
(latitude) between Ox; and r and the angle ¢ (longitude) between Ox; and the
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Fig. B.7 Cylindrical z
coordinates. ky
U,
U,
z
9 y
p
? —
X

projection OP' of r on the Oxixy-plane (Fig. B.6). The parameters r, 6, ¢ are
called the spherical coordinates of the point P. The coordinate lines g; = r, g, =
0,q3 = ¢ lie at the intersection of the surfaces r = A;,0 = 4, ¢ = 13, which are
orthogonal to each other. The surfaces r = A; are concentric spheres with the
centre at O; the surfaces 0 = 1, are right circular cones with their common top at
O; finally, the surfaces ¢ = A3 are semi-meridian planes of the spheres r = 1,. The
variation intervals of the spherical coordinates are: 0<r<oo;0<6<m;
0<p<2m.
The components of r on the axes Ox;, Ox;, Ox3 are

x1 =r sinfcos ¢,
X, = r sin 0 sin @,
x3 =rcosfb. (B.67)
By virtue of (B.53), the Lamé coefficients are:
/’l1 = 1, /’l2 =r, h3 =r sin 0. (B68)

If we denote the unit vectors of the three mutually orthogonal directions by u, =
uj,uy = U, U, = u3, according to the formulas deduced in Sect. B.3.3, we have:

ds =wu,dr+ugrdl+u,r sinlde, (B.69)
dS =u,r* sin0 db do+ugr sin0drdo+u,rdrdo, (B.70)
dt = r*sin 0 dr dO de. (B.71)

In particular, if 6 = n/2, the point P lies in the plane Ox;x;. Its coordinates are
then r, ¢ and they are called plane polar coordinates.

Using the formulas obtained in Sect. B.3.4, we can write the gradient, the
divergence, the Laplacian and the curl in spherical coordinates:

oY 1 0¥ 1 ¥

AW = w4 — g+ —— =,
g u+r60u9 rsinoa(puq)

= (B.72)
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. 1 0 . o, . 0
divA = and {a(rz sinf A,) + @(r sinf Ag) + @(rAq,)}, (B.73)

1(0[,0¥ 1 [0 /. oY 1 o*Y
AY = r—z{a(r E) +—sm9{@ (SlllH@) +ﬁa—¢2:|}, (B74)

1 0 . 0Ay
curl A = e {@(Aq, sin ) — W}ur

1 [6A, 0

dp or

. 1[0
r sin 0 (rAg sin 9)]‘10 + - {5(”1“0) - W}uw (B.75)

B.3.4.2 Cylindrical Coordinates

The position in space of the point P can be also defined by its cylindrical
coordinates: the magnitude p of the projection of r on the plane Oxx;, the angle
@ between Ox; and p, and the Cartesian coordinate z. The coordinate lines lie at
the intersection of the surfaces: p = Ay (cylinders of revolution about z-axis),
|¢| = 22 (planes which contain the z-axis) and z = A3 (planes parallel to Ox;x;).
The relations between the Cartesian and the cylindrical coordinates are given by

X| = p cos @,
Xy = p sin @, (B.76)
X3 = Z.

The Lamé coefficients are then

/’11 = 1, I’lz = p, h3 =1. (B77)

If we denote by u, = u;,u, = up, Kk = u3 the unit vectors of the three orthogonal
directions, we have:

ds=u,dp +u,pde +kdz, (B.78)
dS =, pdodz +u,dpdz +kpdpdo, (B.79)
dt = pdpdo dz. (B.80)

Finally, the relations deduced in Sect. B.3.4 yield:
oY 1 o¥ oY

dy = —— “ ST, + =k, B.81

gra apuﬂ+pa(puﬂ+ aZ ( )
1[0 0A 0

divA = — | —(pA —2 4+ —(pA B.82

1v p ap (p P) + a(p + az (p Z) ) ( )
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170
AY = —| —
p{@p(

curlA = | —
(p Op

oA
+(—“’+

op

104, 04,

2 2
1 0°Y 6‘1’]’ (B.83)

p 0¢? tp 0z2

u, + 04, _ 4 u
4 az ap ¢

Ay — 1%>k. (B.84)

p O
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A
Abbreviated Hamilton—Jacobi equation, 269,
272, 274, 282
Absolute
absolute acceleration, 167
absolute integral invariant, 254
absolute motion, 1, 165
absolute reference frame, 1, 390
absolute time and space, 389-391
absolute velocity, 166
principle of absolute simultaneity, 7
Acceleration
absolute acceleration, 167
acceleration potential, 322
average acceleration, 4
centripetal acceleration, 167
Coriolis acceleration, 167
instantaneous acceleration, 4
relative acceleration, 167
transport acceleration, 167
Acoustics
fundamental equation of acoustics, 323
Action
action integral, 77, 346
action modulus, 263
action variable, 278
equal-action wave front, 90-93
Hamiltonian action, 90
Maupertuisian action, 89, 90
principle of action and reaction, 8
principle of least action, 86
stationary action, 83
Action—angle variables, 278-286
Adiabatic invariants, 287-289
Ather, 390-391
Amplitude
amplitude of integral, 135

amplitude of oscillation, 134, 141, 289
Analytical mechanics, ix—x, 1
principles of analytical mechanics, 27-93
Angle
action—angle variables, 278-286
angle of nutation, 176, 198
angle of precession, 176, 198
angle of self-rotation, 176, 198
angle variable, 278, 280
Euler’s angles, 175-177, 190, 198, 200
imaginary angle, 396
polar angle, 114, 118, 127
scattering angle, 122, 124, 126, 131
Angular momentum, 11, 21, 81, 179
angular momentum and Bohr’s
quantization rule, 402
angular momentum conservation, 85, 126,
330, 382
angular momentum theorem, 12, 17
Poisson bracket of angular momentum,
228-231
Angular velocity, 168, 190
Anomaly
eccentric anomaly, 114-115
real anomaly, 114-115
Antipotentials, 367-368, 371-372
Antisymmetric tensor, 416, 423
and associated axial vector, 166, 229,
426
Aphelion, 102
Apocentre, 102-103, 111
Apogee, 102
Apparent force (see force of inertia)
Arbitrary displacements, 49
Areal velocity, 13, 222
Areas theorem, 13, 173, 231
Artificial satellite, 118-121
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A (cont.)
Asymmetrical top, 187
Asynchronous variations, 87
Attraction force, 99, 108, 131
Attractive potential, 108, 113, 129, 140
Average

average acceleration, 4

average stress, 303

average velocity, 3
Axial

axial moments of inertia, 180

axial symmetry, 127, 220

axial vector, 166, 168, 321, 416
Axis

axis of symmetry, 187, 190, 197

instantaneous axis of rotation, 178

B
Ballistics, 10
Balmer series (see spectrum of hydrogen
atom)
Barotropic fluid, 320, 322
Basis vector, 420
Beam, 126, 128, 131
deflected beam, 126, 401
incident beam, 125
paraxial beam, 221
Beltrami’s vorticity diffusion equation,
333-334, 339
Bernoulli
Bernoulli’s equation, 324-325, 337, 352
Lagrange—Bernoulli equation, 322-323
Bertrand’s theorem, 103, 105-108
Bilinear covariant, 261-263
Binet’s equation, 101
Bi-normal, 32, 430, 431
Body forces, 300, 303, 316, 348
specific body forces, 300
Bohr’s postulates, 402—403, 405
Bohr-Sommerfeld quantization condition,
263, 287
Bound orbit, 102-104, 109, 110
closed, 103, 105
open, 103
Brachistochrone, 6667
Brackets
Lagrange brackets, 234-236
Poisson brackets, 225-234, 360
Brackett series (see spectrum of hydrogen
atom)
Brownian motion, 409
Busch’s relation, 221

Subject Index

C
Calculus of variations, 62-74
Canonical
canonical transformations, 236-249
generating function for, 238-249
group structure, 244
infinitesimal, 249-253
invariance of Poisson and Lagrange
brackets, 242-244
valence of, 238
canonical variables, 214, 278

Hamilton’s canonical equations, 211-222,

360
Canonicity condition, 237-238, 240
Capacitance, 154, 155, 157, 158, 364
Cartan
Poincaré—Cartan integral invariant, 257,
262
Cartesian
orthogonal Cartesian coordinates, 2, 411
Catenary, 70
Cauchy
Cauchy equations, 304
Cauchy stress tensor, 302-306
Cauchy’s formula, 303-304
Cauchy’s tetrahedron, 303
Navier—Cauchy equations, 317
Cauchy—Riemann conditions of analyticity,
325-326
CDM (see continuous deformable medium)
Central force field, 97-108
Centre
centre of force, 102, 104, 125, 141
falling on, 104-105
centre of scattering, 125, 126
Centre of mass (CM), 20
system of reference (CMS), 122
Centrifugal
centrifugal force, 46, 100
centrifugal momenta, 180
centrifugal potential, 100, 104
Centripetal acceleration, 167
Characteristic
characteristic equation, 146, 425
characteristic function, 212-213, 224,
248
Christoffel symbols
of the first kind, 34, 56, 72
of the second kind, 34, 72
Circular orbit, 105-106, 108, 109
Circulation
circulation as integral operator, 15, 429,
435
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Kelvin’s velocity circulation theorem,
331-333
Clebsch
Clebsch potentials, 335, 337, 353
Clebsch theorem, 334-337
Clebsch transformation, 335, 353, 368
CMS (see centre of mass system of reference)
Coefficient
coefficient of thermo-conductivity, 341
coefficient of thermo-elasticity, 315
coefficient of transverse contraction
(Poisson’s ratio), 312
dynamic coefficient of viscosity, 340
kinematic coefficient of viscosity, 341, 343
Collision
elastic collision, 121, 125
inelastic collision, 121
Commensurable frequencies, 284
Commutation relation, 234
Heisenberg’s commutation relations, 233
Commutator of operators, 231-234
Compatibility conditions (Saint-Venant),
309-310
Complementary force (see force of inertia)
Complex
complex potential, 326
complex velocity, 326
Composite motion, 165
Compressible medium, 294, 350
Condition
“escape to infinity” condition, 104
canonicity condition, 237-238, 240
initial conditions, 9
Lorenz condition, 367, 371, 372
orthogonality condition, 164, 411
Saint-Venant compatibility conditions,
309-310
Cone, 140, 443
herpolhodic cone, 191
polhodic cone, 191
Configuration, 49
equilibrium configuration, 144-145, 149
Configuration space, 48-49, 236
generalized trajectory in, 49
Conic
conic pendulum, 140
eccentricity of a conic, 110, 113
equation of a conic, 110, 118, 276
Conjugate
conjugate momenta, 81, 214
conjugate momentum density, 357
conjugate variables, 214, 233
Conservation
conservation of entropy, 328
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angular momentum conservation
for discrete particle systems, 12, 17, 85
for continuous systems, 302, 330-331,
382-383
linear momentum conservation
for discrete particle systems, 12, 17, 85
for continuous systems, 302, 329-330,
381
total energy conservation, 14-15,
328-329, 380
Conservation laws, 300, 337
and continuous symmetry transformations,
82-86, 373-380
and first integrals, 80-81
Conservative field, 14, 432, 435
and total energy, 15
Constant
fine structure constant, 402
gravitational constant, 118
Planck constant, 233, 263, 399, 400
Rydberg constant, 401, 403
Constants of motion, 80, 81, 216, 250
Constitutive equations (see stress-strain
relations)
Constraint
bilateral constraint, 28, 30
constraint force components, 31-32
normal reaction, 31
force of friction, 31
constraint forces, 9, 16, 27, 30
constraints and degrees of freedom, 29-30
criteria of classification of constraints,
27-28
geometric (finite) constraint, 28
integrable (holonomic) constraint, 28
kinematic (differential) constraint, 28
non-integrable (non-holonomic) constraint,
29
particle subject to constraints, 37-38,
42-43
Pfaffian constraints, 39
rheonomous (non-stationary) constraint,
28, 41, 216
rigidity constraints, 44
scleronomous (stationary) constraint,
28, 40, 42
unilateral constraint, 28
Continuity equation (see equation of
continuity)
Continuous
continuous symmetry transformations
and conservation laws, 82—-86,
373-380
continuous system of particles, 294
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C (cont.)
Continuous deformable medium (CDM),
293-385
Euler variables, 296
Euler’s kinematical method, 295-296
Lagrange variables, 294, 297, 316, 347
Lagrange’s kinematical method, 294-295
Contraction, 308
coefficient of transverse contraction, 312
relativistic contraction of length, 392
tensor contraction, 417
Contravariant components, 34, 71
Convention
Einstein’s summation convention, 4
sign convention for stresses, 303
Coordinate operator, 233
Coordinates
cyclic coordinates, 59, 81
cylindrical coordinates, 2, 5, 443, 444
generalized coordinates, 47-52, 346
ignorable coordinates (see cyclic
coordinates)
natural coordinates, 5, 432
normal coordinates, 146—-149
and normal frequencies, 147
orthogonal Cartesian coordinates, 2, 4, 412
plane polar coordinates, 5, 443
spherical coordinates, 2, 4, 442-443
system of coordinates, 4
left-handed, 415
right-handed, 415
Correspondence principle, 79
Cosmic velocities, 121
Coulomb field, 108, 131, 132
Coupled equations, 144, 146
Covariant
bilinear covariant, 261-263
covariant components of applied
force, 33
covariant equations, 389, 397
covariant laws, 8
Cross product of vectors, 421
Cross section
differential cross section, 128
effective cross section, 125-129
total cross section, 130-131
Current lines (see streamlines)
Curvature, 432
radius of curvature, 5, 430
Curve
brachistochrone, 66—67
catenary, 69
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geodesic, 56, 69-74, 93
ideal (perfectly smooth) curve, 31
perfectly rough curve, 31
stationary curve, 32
Curvilinear (general) coordinates
expression for gradient, divergence,
Laplacian, curl, 440442
expression for line, surface and volume
elements, 439-440
Cyclic coordinate, 59
conservation of momentum associated to a
cyclic coordinate, 81
Cycloidal pendulum, 136-137
Cycloid, 68
Cylindrical coordinates, 2, 5, 443, 444
expression for differential operators,
444-445
expression for line, surface and volume
elements, 444
Cylindrical symmetry, 270

D
D’Alembert’s principle, 52, 53
Davisson—Germer experiment, 404
De Broglie’s hypothesis, 403—404
Deflected beam, 126, 401
Deformation (strain), 7, 297, 306-311
contraction, 308
deformation quadric, 308
dilation, 308
linear theory of deformations, 306-308
velocity of deformation quadric, 321
velocity of deformation tensor, 321, 340
Degeneracy, 146, 286
Degenerate system, 284
Degree(s) of freedom, 15
constraints and degrees of freedom, 29
rotation degrees of freedom, 164
translation degrees of freedom, 164
Density
energy flux density, 329
Hamiltonian density, 357
Lagrangian density, 346
mass current density, 299
mass density, 15, 21, 293, 298
momentum density, 357
Derivative
directional derivative, 433
functional (variational) derivative,
359-360
Lagrangian derivative, 376
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space (local) derivative, 297
substantial (total) derivative, 311
Determinant
determinant of a second-rank tensor,
424-425
functional (Wronskian) determinant, 37,
234
Hessian determinant, 212
Jacobian determinant, 244
Deterministic forces, 409
Differential
differential constraint (see kinematic
constraint)
differential cross section, 128
differential equations of motion, 2, 11,
30, 52, 133, 373, 376
differential principles, 52
Differential operators
curl, 434, 435-436, 442, 444, 445
divergence, 433436, 441, 444
gradient, 432-433, 440, 443
Laplacian, 233, 438, 441, 444
Diffusion equation, 409
Beltrami’s vorticity diffusion equation,
333-334
Dilation, 308
volume specific dilation, 313
Dipole
electric dipole, 177
magnetic dipole, 222
Directional derivative, 433
Displacement(s)
arbitrary displacements, 49
atemporal displacement, 41
displacement consistent with the
constraints, 30, 40, 42, 44
displacement of atoms in molecules
longitudinal, 150
transverse, 152
elementary displacements, 40—41
independent displacements, 44, 45, 63
possible displacement, 40—41
real displacement, 40
synchronic displacements, 40, 87
virtual displacement, 40-42
Displacement-gradient matrix, 307, 311
Dissipation, 341
Rayleigh dissipation function, 61, 155
Dissipative forces
dissipative forces as non-potential forces,
61, 62, 155
power of dissipative forces, 60
Distribution function, 259-260
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Double cross product of vectors, 422
Dual

dual behaviour of radiation, 403

dual pseudo-vector, 426
Dyadic

dyadic product, 423

dyadic vector, 182-183, 330, 423
Dynamic

dynamic pressure, 324

dynamic coefficient of viscosity, 340

E
Eccentric anomaly, 114-115
Eccentricity of a conic, 110, 113
Effective
effective force, 100
effective potential, 100
effective scattering cross section, 125
Ehrenfest theorem, 407
Eigenvalues, 406, 425
Eikonal, 92-93
Einstein’s summation convention, 4
Elastance, 154, 155
Elastic
elastic collision (scattering), 121, 125
elastic constant, 155, 314
elastic force, 140-144
elastic medium, 311-319
Elasticity
elasticity (stiffness) tensor, 314
law of elasticity (Hooke’s law), 311
linear theory of elasticity, 79, 297, 362
Electric
electric charge, 153, 155, 231, 338, 354,
365, 401
electric circuit, 153-159
electric conductivity, 338, 339
electric dipole, 177
electric field, 205
electric lens, 222
Electromagnetic
electromagnetic antipotentials, 367-368,
371-372
electromagnetic field, 354, 367
Lagrangian density, 354, 365, 368
electromagnetic force, 57, 206, 338
electromagnetic potentials, 57, 366, 367
mechanical-electromagnetic analogies,
205-208
Elementary displacements, 40—41
Ellipse, 46, 109, 113, 115, 173, 264
Ellipsoid of inertia, 181, 182-183, 190
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E (cont.)
canonical form, 182
central ellipsoid of inertia, 182
principal axes of the ellipsoid of inertia,
182, 185
Elongation, 141, 311
Energy
electrical energy, 20
energy conservation, 14—15
energy first integral, 15, 216
energy flux density, 329
energy operator, 357
free energy (Gibbs), 248
free energy (Helmholtz), 213, 248
internal energy, 213, 248, 328, 351
law of conservation and transformation of
mechanical energy, 20
potential energy, 15
thermal energy, 20
Ensemble
statistical ensemble, 259
Entropy
conservation of entropy, 328
entropy as thermodynamical parameter,
213, 248
Equal-action wave front, 90-93
Equation(s) of motion
differential equation of motion, 2, 9
finite equation of motion, 2
fundamental equation of motion, 30
Equilibrium, 35
equilibrium and extremum of potential
energy, 36
equilibrium conditions, 36
for one particle, 36
for rigid body, 4445
geodetic form, 34
equilibrium configuration, 144, 145, 149,
152
equilibrium on a curve, 37
equilibrium on a surface, 37
equilibrium position of pendulum, 139
stable equilibrium, 36
Lagrange-Dirichlet theorem of
absolute stability, 36-37
static equilibrium, 35
and principle of virtual work, 42
unstable equilibrium, 38, 139, 145, 279
Equipotential
equipotential lines, 326-327
equipotential surfaces, 432433
“Escape to infinity” condition, 104
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Essential constants (in Hamilton—Jacobi
formalism), 266
Euclidean space, 48, 69, 73, 294, 395, 415,
423
Euler variables for a CDM, 296
Euler’s angles, 175-177
angle of nutation, 176, 198
angle of self-rotation, 176, 198
precession angle, 176, 198
Euler’s equations
equations of motion of an ideal fluid, 319
equations of motion of a rigid body, 185
Euler’s theorem, 86, 255
Euler-Lagrange equations, 66
for continuous systems, 344-347
for discrete systems of particles, 77-79
Expectation value of operator, 406407
Experiment
Davisson—Germer experiment, 404
Michelson—Morley experiment, 390, 392
Rutherford’s experiment, 131, 401
Extended phase space (see state space)
Extremum
extremum of potential energy, 36
extremum problem, 62, 344

F
Fast top, 197
Fermat’s principle, 93, 404
Feynman path integral, 406
Field
central force field, 97-108
conservative field, 432, 435
Coulomb field, 108, 131, 132
electric field, 205, 429
electromagnetic field, 354, 367
gravitational field, 72, 118, 191
irrotational (vorticity-free) field, 434
magnetic field, 205, 338
potential field, 14
solenoidal (source-free) field, 300, 434
Fine structure constant, 402
Finite
finite constraint (see geometric constraint)
finite equations of motion, 2
Finite-strain tensor, 310-311
First integral(s)
distinct first integrals, 11
energy first integral, 15, 216
first integrals and conservation laws,
80-81
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first integrals as constants of motion, 80,
216
FitzGerald—Lorentz transformations
(see Lorentz transformations)
Flow
laminar flow, 343
turbulent flow, 343
Fluid
barotropic fluid, 320, 322
ideal (perfect) fluid, 319-339
irrotational motion of fluid, 320-323
magnetodynamics of ideal fluid, 338-339
perfectly viscous (Newtonian) fluid, 340
phase fluid, 260
stationary motion of fluid, 324-327
viscous fluid, 339-344
Flux
angular momentum flux density, 331
energy flux density, 329
flux of a vector, 435
flux of phase fluid, 261
flux of vorticity, 333
magnetic flux, 153
momentum flux density, 330
Force
apparent force (see force of inertia)
attraction force, 99, 108, 131
body forces, 300, 303, 316, 348
central force field, 97-108
centre of force, 102, 104-105, 125, 141
centrifugal force, 46, 100
complementary force (see force of inertia)
conservative force field, 14
constraint force, 9, 16, 27, 30
deterministic forces, 409
effective force, 100
elastic force, 140144
external force, 16
force of gravity, 59, 69, 132-140, 172, 189
force(s) of friction (see constraint
forces)
force of inertia, 53, 168-175
generalized force, 49-51
gyroscopic force, 62
internal force, 16, 301
non-potential force, 60-62, 77, 78
principle of independence of forces, 8
reaction force, 8
as constraint force, 30-31, 202
repulsion force, 131
stochastic forces, 409
superficial forces, 300-301
Foucault pendulum, 172-175
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Four-dimensional space, 389, 391, 394
Four-vector, 394-396
Frame
centre of mass frame (CMS), 23
frame of reference, 1
inertial frame, 6
laboratory frame, 122
non-inertial frame, 21, 23, 168-175
Free
free energy (Helmholtz), 213, 248
free enthalpy (see Gibbs’ free energy)
free particle, 29
Frequency
angular frequency, 141
normal frequencies, 146
and normal coordinates, 147
Larmor frequency, 206
commensurable frequencies, 284
Friction
force(s) of friction, 31, 61, 319, 339
Function
characteristic function, 212-213, 224, 248
distribution function, 259-260
generating function for
canonical transformations, 238-249
Hamilton’s principal function, 266
harmonic function, 327, 438
potential function, 14
stream function, 326
wave function, 356, 400, 405-407
Functional derivative, 359-360
Fundamental equation
fundamental equation of acoustics,
323-324
fundamental equation of linear theory of
elasticity, 362
fundamental equation of motion, 30
fundamental equation of Newtonian
mechanics, 7
fundamental equation of thermodynamics,
213, 248, 328
Fundamental problem of mechanics, 9

G
Galilei
Galilei (Galilean) transformations, 7, 389,
390, 393, 397
infinitesimal, 85
Galilei group of transformations, 7, 8, 79
Galilei’s principle of relativity, 6, 389, 390,
397
Gauge transformations, 82, 335
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G (cont.)
Gauss
Green—Gauss theorem, 434-435
General integral of motion, 9
General theory of relativity, 69
Generalized
generalized coordinates, 47-52
arbitrary choice of, 48
kinetic energy in, 51
generalized forces, 49-51
generalized Hamilton’s principle, 78
generalized momenta, 81
generalized potential (see velocity-
dependent potential)
generalized trajectory in configuration
space, 49
generalized velocities, 50
Generating function for canonical
transformation, 238-249
Generator
generator of infinitesimal canonical
transformation, 250
generator of rotations, 251
generator of time-evolution, 252
generator of translations, 251
Geodesic, 34, 56, 69-73
geodesics of a sphere, 73
Geometric constraint, 28
Geometrical optics, 92, 93, 404
Gibbs’ free energy, 248
Gibbs—Helmholtz relations, 249
Gradient, 432
in cylindrical coordinates, 444
in orthogonal curvilinear coordinates, 440
in spherical coordinates, 443
Gravitational
gravitational constant, 118
gravitational field, 72, 118, 191
gravitational force, 8
gravitational mass, 8
Gravity
motion under the influence of gravity,
132-140
law of universal gravity, 25
Green—Gauss theorem, 434-435
Group
Galilei transformations group, 7, 79
group of proper rotations, 414
group of rotations, 414
group of translations, 415
Lorentz group, 7, 79, 392
orthogonal group, 413
special orthogonal group, 414
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Gyrocompass, 198-201
Gyroscope, 197-198, 199
Gyroscopic forces, 62

H
Hamilton’s canonical equations, 211-222, 360
Hamilton’s principal function, 266
Hamilton’s principle, 74-77
generalized Hamilton’s principle, 78
Hamilton’s principle as variational
principle, 78-79
Hamiltonian, 86, 214
Hamiltonian action, 90
Hamiltonian as generator of
time-evolution, 252
Hamiltonian density, 357
Hamiltonian of conservative systems and
total energy, 86
Hamiltonian operator, 233, 357
Hamiltonian formalism
for continuous systems, 357-373
for discrete systems of particles, 211-289
Hamiltonian variables (see canonical
variables)
Hamilton—Jacobi
Hamilton—Jacobi equation, 265-268
abbreviated (restricted), 269
methods for solving, 268-272
Hamilton—Jacobi formalism, 265-289
action—angle variables, 278-286
for free particle, 273
for linear harmonic oscillator, 274
for Newtonian central force field,
274-276
for symmetrical top, 276-277
Harmonic function (see Laplace equation)
Harmonic linear oscillator
classical harmonic oscillator, 140-141
quantum mechanical harmonic oscillator,
263-264
Heat propagation
general equation of heat propagation, 342
Heisenberg
Heisenberg’s commutation relation, 233
Heisenberg’s uncertainty principle, 232,
400, 403, 406
Helmholtz
Gibbs—Helmbholtz relations, 249
Helmholtz free energy, 213, 248
Herpolhodic cone, 191
Hodograph, 427
Holonomic
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holonomic constraint, 28
Lagrange equations for holonomic systems,
53-56
Hooke’s generalized law, 311-315
Hyperbola, 111, 112, 113, 120

I
Ideal
ideal curve, 31
ideal fluid, 319-339
Euler’s equations, 319, 350
magnetodynamics, 338-339
ideal mechanical model, 20
ideal surface, 35, 37, 42
Identity transformation, 241, 249, 413, 414,
415
Ignorable coordinates (see cyclic coordinates)
Imaginary angle, 396
Immobile reference frame, 1
Impact parameter, 126
Impedance, 157
Improper transformation, 413
Impulse, 7
Incident beam, 125
Incompressible fluid, 260, 294, 325-327, 341
Independence of forces
principle of independence of forces, 8
Index of refraction, 92, 130
Inductance, 155, 364
mutual inductance, 154
reactive inductance, 157
self-inductance, 154
Induction
induction currents, 338
induction equation, 338, 372
Inertia
centre of inertia (see centre of mass)
inertia products, 180
inertia tensor, 179
moment of inertia, 181
principal axes of inertia, 182
principal planes of inertia, 182
principle of inertia (Newton’s first law),
6-7
Inertial
inertial force, 168-175
inertial frame, 6
inertial mass, 8
Infinitesimal
generator of transformation, 250
work, 14
Instantaneous
instantaneous acceleration, 4
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instantaneous axis of rotation, 178
instantaneous linear velocity, 3
instantaneous vector of rotation, 168
Integrable constraint (see holonomic
constraint)
Integral
action integral, 77, 346
elliptic integral, 135
first integral(s), 11, 80
general integral of motion, 9
integral invariants, 253-264
of the canonical equations, 255-256
Poincaré—Cartan, 257
relative, 254, 257
integral principles of analytical
mechanics, 52
line integral, 429
surface integral, 429
volume integral, 429
Internal
internal energy, 213, 248, 328, 351
internal force, 16, 301
Interval
lightlike interval, 393
spacelike interval, 393
space—time interval, 393
invariant, 395
timelike interval, 393
Invariance principle, 79
Invariant
adiabatic invariant, 287-289
integral invariant, 253-264
principal invariants of a second-rank
tensor, 424
relativistic invariant, 393
Inverse transformation, 48, 236, 244, 412, 414
Irrotational
irrotational field (see vorticity-free field)
irrotational motion of fluid, 320-323
Isentropic process, 328
Isoenergetic paths, 89
Isoperimetric problem, 93
Isotropic oscillator, 229
Isotropy of space, 82

J

Jacobi
Hamilton—Jacobi equation, 265-268
Hamilton—Jacobi formalism, 265-289
Jacobi identity for Poisson brackets, 226
Jacobi’s formulation of principle of least

action, 89

Jacobi’s theorem, 266
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K
Kelvin’s velocity circulation theorem,
331-332

Kepler’s equation, 114

Kepler’s laws, 13, 115

Kepler’s problem, 108-121

Kinematic
kinematic coefficient of viscosity, 341
kinematic constraint, 28

Kinetic energy
expression in generalized coordinates, 51
total kinetic energy, 18

Kinetic energy theorem, 14

Kirchhoff’s rules, 153-158

Konig’s theorems, 21-23

Kronecker
Kronecker product (see dyadic product)
Kronecker symbol, 411, 417

L
Laboratory frame (LS), 122
Lagrange multipliers, 44, 64, 356, 371
Lagrange brackets, 234-236
fundamental Lagrange brackets, 235
invariance under canonical
transformations, 244
Lagrange equations, 39
for holonomic systems, 53-56
of the first kind, 39
of the second kind, 55
with multipliers, 203
Lagrange—Bernoulli equation, 322
Lagrange-Dirichlet theorem of absolute
stability, 36
Lagrange variables for CDM, 294, 297,
347
Lagrangian, 55
equivalent Lagrangians, 59
Lagrangian density, 346
Lagrangian derivative, 376
Lagrangian function, 55
Lagrangian variables, 55
Lagrangian formalism
for continuous systems, 344-357
for discrete systems of particles, 97-159
Lamé
Lamé coefficients
for curvilinear coordinates, 440
in linear elasticity, 314
Lamé’s equations, 316, 347, 362
Laminar flow, 343
Langevin equation, 409
Laplace equation, 327, 438
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Larmor
Larmor frequency, 206
Larmor precession, 205
Larmor’s theorem, 206
Law
Hooke’s generalized law, 311-315
Kepler’s laws, 13, 115
law of conservation and transformation of
mechanical energy, 20
law of motion (see equation of motion)
law of universal gravity, 25
laws of Newtonian mechanics (see
Principles of Newtonian mechanics)
Legendre transformation, 212, 213, 223, 238
Levi-Civita symbol, 417
Libration, 278
Light
speed of light, 7, 389, 390, 393
propagation of light waves, 91, 93
Lightlike interval, 393
Line of nodes, 176
Linear
linear momentum, 7
conservation, 85, 329, 381
theorem, 12, 17
linear theory of deformations, 306
Liouville’s theorem, 258-261
Local (space) derivative, 297
Longitudinal wave, 318
Lorentz transformations, 7, 79, 389, 391-393,
397
Lorenz condition (gauge fixing), 367
LS (see laboratory frame)
Lyman series (see spectrum of hydrogen atom)

M
Magnetic
magnetic dipole, 222
magnetic field, 205, 338
magnetic lens, 221
magnetic viscosity, 338
Magnetodynamics of ideal fluids, 338-339
Magnetofluid, 339, 366
Mass
centre of mass, 20
gravitational mass, 8
inertial mass, 8
mass current density, 299
mass density, 15, 21, 293, 298
point mass, 1
reduced mass, 98
rest mass, 397
Mathematical pendulum, 132
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Matrix
displacement-gradient matrix, 307, 311
transformation matrix, 165, 412
Maupertuis’ principle, 52, 86
Maupertuisian action, 89, 90
Maxwell’s equations, 338, 354-356, 390
Mechanical—electromagnetic analogies,
205-208
Mechanics
fundamental problem of mechanics, 9
Heisenberg’s matrix mechanics, 404
Newtonian mechanics, 1-23
quantum mechanics, 79, 231-233, 264,
399-407
wave mechanics, 404
Medium
anisotropic medium, 314, 315
compressible medium, 294
continuous deformable medium (CDM),

293-385

incompressible medium, 294, 300,
325-327, 341

isotropic medium, 311, 314, 317, 340,
354

Metric tensor, 33, 69, 70, 311
contravariant components of, 71
covariant components of, 70
metric tensor components as gravitational

potentials, 72

Michelson—-Morley experiment, 390, 392

Minimal optical path, 93

Minkowski space, 391, 395, 396

Mixed product of vectors, 421-422

Modulus
action modulus, 263
modulus of integral, 135
modulus of wave function, 400
Young modulus, 311, 314

Moment of inertia, 181, 182
axial moment of inertia, 180

Momentum
angular momentum, 11, 21, 81, 179

conservation of, 85, 126, 330, 382
centrifugal momentum, 180
generalized momentum, 81
linear momentum, 7

conservation of, 85, 329, 381
momentum density, 357
momentum operator, 233, 406

Monotonic precession, 195

Morse potential, 95

Motion
Brownian motion, 409
composite motion, 165
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equation(s) of motion, 2, 9, 30
general integral of motion, 9
irrotational motion of fluid, 320-323
law of motion (see equation of motion)
periodical motion, 132—153, 278-289
relative motion, 1, 165
transport motion, 165
uniform motion, 6
uniformly varied motion, 4
varied motion, 3
virtual motion, 75

Multipliers
Lagrange equations with, 203
Lagrange multipliers, 44, 64, 356, 371

N
Nabla symbol, 432
Natural
natural coordinates, 5
natural system of coordinates (see
Serret-Frenet frame)
natural systems, 58, 211
Navier—Stokes equation, 341
Newtonian
Newtonian fluid (perfectly viscous), 340
Newtonian mechanics, 1-23
principles, 6-9
general theorems, 9-23
Nodes
line of nodes, 176
Noether’s theorem
for continuous systems, 373-385
for discrete systems of particles, 82—-86
Non-holonomic constraint, 29
Non-inertial frame, 21, 23, 168-175
Non-integrable constraint (see non-holonomic
constraint)
Non-linear
non-linear differential equation, 134, 143,
144, 319
non-linear mechanics, 143
non-linear oscillations, 143-144
Non-potential forces, 60—-62
dissipative forces, 61
gyroscopic forces, 62
power of, 60
Non-stationary constraint (see rheonomous
constraint)
Normal
normal coordinates, 146—-149
normal frequencies, 147
normal reaction force, 31, 202
normal stress (tension), 301, 304, 312
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N (cont.)
pressure, 301
traction, 301
principal normal, 5, 32, 430
Nutation, 196-197
angle of nutation, 176, 198

(0}
Ohm’s law, 154, 338, 366, 371
Operator
coordinate operator, 233
energy operator, 357
expectation values of operators,
406-407
Hamiltonian operator, 233, 357
momentum operator, 233, 406
Optical path, 92, 93
Optics
geometrical optics, 92, 93, 404
wave optics, 93, 404
Orbit
bound orbit, 102-104
circular orbit, 105
stable orbit, 404
unbound orbit, 104
Orthogonal
orthogonal basis, 420
orthogonal Cartesian coordinates, 4, 412
orthogonal transformations, 411-415
homogeneous, 412, 414
non-homogeneous, 412
special orthogonal group, 414
Orthonormal basis, 420
Oscillations
forced oscillations, 141, 156-157
non-linear oscillations, 143—-144
small oscillations, 144—153
of molecules, 149-153
tautochronous oscillations, 136
Oscillator
harmonic linear oscillator, 140-141, 274
isotropic oscillator, 229
quantum mechanical harmonic oscillator,
263-264
space oscillator, 141-142
Osculating plane, 430

P
Parabola, 11, 113
Parameter
impact parameter, 126
variational parameters, 346, 350, 366

Subject Index

Parametric
parametric equations of trajectory, 2
parametric resonance, 289
Paraxial beam, 221
Particle
o particles, 401
electrically charged particle, 219-22
fictitious particle, 98
free particle, 29
particle subject to constraints, 37-38,
42-43
Paschen series (see spectrum of hydrogen
atom)
Path
isoenergetic path, 89
optical path, 92, 93
Path integral
Feynman path integral, 399, 409
Wiener path integral, 409
Pendulum
conic pendulum, 140
cycloidal pendulum, 136-137
Foucault pendulum, 172-175
mathematical pendulum, 132
physical pendulum, 188-189
plane pendulum (see simple pendulum)
simple pendulum, 133-136
spherical pendulum, 137-140
Perfect fluid, 319-339
magnetodynamics, 338-339
Euler’s equations, 319, 350
Pericentre, 102, 103
Perigee, 102
Perihelion, 102
Periodical motion
and action—angle variables, 278-286
and adiabatic invariance, 287-289
under the influence of elastic force,
140-144
under the influence of gravity, 132—-140
Periodically conditioned system, 284
Pfaff forms, 261-263
Pfaffian constraints, 39
Pfund series (see spectrum of hydrogen atom)
Phase
extended phase space (see state space)
flux of phase fluid, 261
phase fluid, 260
phase space, 214
Physical pendulum, 188-189
Planck constant, 233, 263, 399, 400
Plane
osculating plane, 430
plane pendulum (see simple pendulum)



Subject Index

plane polar coordinates, 5, 443
plane trajectory, 99
Planetary model of atom, 401
Plasma, 287, 294
Poincaré—Cartan integral invariant, 257
Point
point mass, 1
representative point in configuration
space, 48
stagnation points, 327
turning point for periodical motion, 102
Poisson
Poisson effect, 312
Poisson’s differential equation, 25
Poisson’s formula, 167
Poisson’s ratio (see coefficient of
transverse contraction)
Poisson’s theorem, 227
Poisson brackets, 225-236
fundamental Poisson brackets, 226
invariance under canonical
transformations, 242-244
Jacobi’s identity for, 226
Poisson brackets and commutators,
231-234
Poisson brackets for angular momentum,
228-231
Poisson brackets of the Hamiltonian, 228,
230
properties of, 226
Polar
plane polar coordinates, 5, 443
polar angle, 114, 118, 127
polar vector, 8, 416
Polhodic cone, 191
Postulates, 52
Bohr’s postulates (hydrogen atom), 402
Einstein’s postulates (special relativity),
390
Potential
acceleration potential, 322
attractive potential, 108, 113, 129, 140
centrifugal potential, 100, 104
Clebsch potential, 335, 337, 353
effective potential, 100
generalized potential (see velocity-
dependent potential)
Morse potential, 95
potential energy, 15
potential field, 14
potential function, 14
potential pressure, 324
repulsive potential, 113, 127
spherical potential well, 129
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thermodynamic potential, 247-249
velocity potential, 321
velocity-dependent potential, 57-59
Precession
Larmor precession, 205-206
monotonic precession, 195
regular precession, 190
Pressure
dynamic pressure, 324
potential pressure, 324
pressure as normal stress (tension), 301,
319
pressure as thermodynamical parameter,
213, 248
static pressure, 324
Principal
Hamilton’s principal function, 266
principal axes of inertia, 182
principal normal, 5, 32, 430
principal planes of inertia, 182
Principle
correspondence principle, 79
D’Alembert’s principle, 52, 53
differential principles, 52
Fermat’s principle, 93, 404
Galilei’s principle of relativity, 6, 389, 390,
397
generalized Hamilton’s principle, 78
Hamilton’s principle, 74-79
Heisenberg’s uncertainty principle, 232,
400, 403, 406
integral principles, 52
invariance principle, 79
Maupertuis’ principle, 86
principle of absolute simultaneity, 7
principle of action and reaction, 8
principle of independence of forces, 8
principle of inertia, 6
principle of least action, 86
principle of physical symmetry, 79
principle of virtual work, 42
principles of analytical mechanics,
27-93
principles of Newtonian mechanics, 6-9
superposition principle, 79
variational principles, 52, 62, 79
Probabilistic interpretation of wave
function, 406
Product
cross product, 421
double cross product, 422
dyadic (Kronecker) product, 423
inner product (see scalar product)
mixed product, 421-422
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P (cont.)

products of inertia, 180

scalar product, 420

semi-direct product of groups, 415
Proper

proper transformation, 413

proper values of a second-rank tensor,

425

proper vectors, 425
Pseudo-tensor, 417, 418
Pseudo-vector, 426

Q
Quadratic form, 51, 424, 426
Quadric
deformation quadric, 308
ellipsoid of inertia quadric, 182
velocity of deformation quadric, 321
Quantization condition
Bohr-Sommerfeld quantization condition,
263, 287
Quantum mechanical harmonic oscillator,
263-264
Quantum mechanics, 79, 231-233, 264,
399407

R
Radius of curvature, 5, 430
Radius-vector, 2
Rayleigh dissipation function, 61, 155
Reaction

force of reaction, 8, 30-31, 202

normal reaction, 31, 202

principle of action and reaction, 8
Reactive

reactive capacitance, 157

reactive inductance, 157
Reduced mass, 98
Refraction

index of refraction, 92, 130
Regular precession, 190
Relative

relative motion, 1

relative universal invariant of mechanics,

256-258

Relativity

Galilei’s principle of relativity, 6, 389, 390,

397

special theory of relativity, 389-397
Repulsive potential, 113, 127
Resonance, 157

parametric resonance, 289

Subject Index

Restricted Hamilton—Jacobi equation, 269,
272, 274, 282
Reynold’s number, 343
Rheonomous constraint, 28
Riemannian manifold, 70, 73
Rigid body, 19, 44, 45, 163-208
Rigidity constraints, 163
Rolling, 202
Rotation
instantaneous axis of rotation, 178
instantaneous vector of rotation, 168
rotation coordinates, 163
rotation degrees of freedom, 164
rotation tensor, 306-308
symmetry of rotation, 82
velocity of rotation tensor, 321
Rotator, 187
Routh’s equations, 222-225
Routhian variables, 223
Runge-Lenz vector, 116-118
Rutherford
Rutherford’s experiment, 131, 401
Rutherford’s formula, 131
Rydberg constant, 401, 403

S
Saint-Venant compatibility conditions,
309-310
Satellite, 118
Scalar, 396, 415
magnetic scalar potential, 367
scalar potential, 354, 432
scalar product, 420
Scattering, 121-132
backwards scattering, 125
differential scattering cross section, 128
effective scattering cross section, 125-129
elastic scattering, 121, 122, 125
inelastic scattering, 121
scattering angle, 122, 124, 126, 131
scattering centre, 125, 126
Schrodinger’s equation, 79, 356-357, 399,
403405
Scleronomous constraint, 28, 40, 42
Serret-Frenet frame, 429-432
Shear stress, 301, 304, 308, 313
Simple pendulum, 133-136
Simultaneity
principle of absolute simultaneity, 7
Sliding, 202
Small-strain tensor, 306-308
Smooth
(perfectly) smooth curve, 31
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(perfectly) smooth surface, 33, 37
Solenoidal (source-free) field, 300, 434
Sound

speed of sound, 324
Space

Euclidean space, 48, 69, 73, 294, 395, 415,

423

four-dimensional space, 389, 391, 394

Minkowski space, 391, 395, 396

space derivative (see local derivative)

space homogeneity and translational
invariance, 82

space inversion, 413, 415

space isotropy and rotational
invariance, 82

space oscillator, 141-142

space transformations, 85

state space, 257-258
Spacelike interval, 393
Space-time, 389, 395

space—time interval, 393
Special theory of relativity, 389-397
Spectrum of hydrogen atom, 402
Speed

speed of light, 7, 389

invariance in special relativity, 390

speed of sound, 324
Sphere

geodesics of a sphere, 73-74
Spherical

motion on a spherical surface, 59-60

spherical coordinates, 2, 4, 442-444

expression for differential operators,
443-444

expression for line, surface and
volume elements, 443

spherical pendulum, 137-140

spherical potential well, 129

spherical symmetry, 99

spherical top, 187
Spur (see trace)

Stable
stable equilibrium, 36
Lagrange-Dirichlet theorem of
absolute stability, 36-37

stable orbit, 404
Stagnation points, 327
State

state function

in quantum mechanics, 233
in thermodynamics, 213, 248
state of a quantum mechanical system,
403-406
state space, 257-258
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Static
static equilibrium, 35
static pressure, 324
Stationary
stationary action, 77, 89
principle of, 77
stationary constraint (see scleronomous
constraint)
stationary curve, 32
stationary field, 220
stationary motion of fluid, 324-327
stationary value in calculus
of variations, 63
Statistical ensemble, 259
Stiffness tensor (see elasticity tensor)
Stochastic processes, 409—410
Stokes
Navier—Stokes equation, 341
Stokes’ theorem, 435-436
Strain, 308, 311
finite-strain tensor, 310-311
small-strain tensor, 306-308
stress-strain relations, 311
Stream function, 326
Streamlines, 296297, 322, 326-327
Stress
Cauchy stress tensor, 302-306
normal stress, 301, 304, 312
pressure, 301
traction, 301
tangential (shear) stress, 301, 304, 308,
312, 313
viscous stress tensor, 340
Stress-strain relations, 311
Substantial (total) derivative, 311
Summation convention, 4
Superficial forces, 300-301
Superposition principle, 79
Surface
equipotential surfaces, 432-433
ideal surface, 35, 37, 42
perfectly smooth surface, 33, 37
surface integral, 429
surface of revolution of minimum area,
68-69
Symbol
Kronecker symbol, 411, 417
Levi-Civita symbol, 417
nabla symbol, 432
Symmetric tensor, 424-426
Symmetrical top, 189-191
Symmetry, 79-86
axial (cylindrical) symmetry, 127, 220,
270
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S (cont.)
continuous symmetry and conservation
laws, 82-86
symmetry transformations, 377-380
Symplectic transformations (see canonical
transformations)
Synchronic displacements, 40, 87
System
natural system, 58, 211
periodically conditioned system, 284
System (frame) of reference
centre of mass system (CMS), 122
laboratory system (LS), 122

T
Tangent (shear) stress, 301, 304, 308, 313
Target, 122

Tautochronous oscillations, 136
Telegrapher’s equations, 364-366
Tensor
antisymmetric tensor, 166, 229, 416, 423,
426
Cauchy stress tensor, 302-306
eigenvalues of a second-rank tensor, 425
elasticity (stiffness) tensor, 314
finite-strain tensor, 310-311
general properties of tensors, 411445
inertia tensor, 179
metric tensor, 33, 69, 70, 72, 311
pseudo-tensor, 417, 418
rotation tensor, 306-308
small-strain tensor, 306-308
symmetric tensor, 424-426
tensor contraction, 417
vector components of a tensor, 422
velocity of deformation tensor, 321, 340
velocity of rotation tensor, 321
Theorem
areas theorem, 13, 173, 231
Bertrand’s theorem, 103, 105-108
Clebsch’s theorem, 334-337
Ehrenfest theorem, 407
Green—Gauss theorem, 434-435
Jacobi’s theorem, 266
Kelvin’s velocity circulation theorem,
331-332
Konig’s theorems, 21-23
Lagrange-Dirichlet theorem, 36
Larmor’s theorem, 206
Liouville’s theorem, 258-261
Noether’s theorem, 82—-86, 373-385
Poisson’s theorem, 227
Stokes’ theorem, 435-436

Subject Index

total angular momentum theorem, 17
total kinetic energy theorem, 18
total linear momentum theorem, 17
Theory of relativity
special theory of relativity, 389-397
general theory of relativity, 69
Thermo-conductivity coefficient, 341
Thermodynamic potentials, 247-249
Thermodynamics, 213
fundamental equation of thermodynamics,
213, 248, 328
Thermo-elasticity coefficient, 315
Timelike interval, 393
Top
asymmetrical top, 187
fast top, 197
spherical top, 187
symmetrical top, 189-191
Torsion, 431, 432
Total derivative (see substantial derivative)
Trace (of a second-rank tensor), 424
Trajectory
generalized trajectory in configuration
space, 49
parametric equations of trajectory, 2
plane trajectory, 99
virtual trajectories, 75
Transformation
canonical transformations, 236-249
infinitesimal, 249-253
generating functions for, 238-249
Clebsch transformation, 335, 353, 368
Galilei transformations, 7, 8, 79, 85, 389,
390, 393, 397
identity transformation, 241, 249,
413-415
improper transformation, 413
inverse transformation, 48, 236, 244, 412,

414

Legendre transformation, 212, 213, 223,
238

Lorentz transformations, 7, 79, 389,
391-393, 397

orthogonal transformations, 411-415
homogeneous, 412, 414
non-homogeneous, 412

proper transformation, 413

transformation matrix, 165, 412

Translation, 6, 84
group of translations, 415
total momentum as generator of
translations, 251
translation coordinates, 163
translation degrees of freedom, 164
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translation symmetry, 82
translation transformation, 413, 414
Transport
transport acceleration, 167
transport motion, 165
transport velocity, 167
Transverse
coefficient of transverse contraction, 312
transverse oscillation, 153, 319
transverse wave, 318
Trihedral system (see Serret—Frenet frame)
Turbulent flow, 343-344
Turning points, 102, 134, 174, 194
apocentre, 102
pericentre, 102
Two-body problem, 97-99

U

Uncertainty principle of Heisenberg, 232, 400,
403, 406

Uniform motion, 6

Universal invariant, 256

relative universal invariant of mechanics,

256-258

Unstable equilibrium, 38, 139, 145, 279

\%
Valence of a canonical transformation, 238
Variables
action—angle variables, 278-286
canonical variables, 214, 278
conjugate variables (see canonical
variables)
Euler variables for CDM, 296, 297
Lagrange variables for CDM, 294, 297,
347
Lagrangian variables, 55
Routhian variables, 223
Variational
variational calculus (see calculus of
variations)
variational derivative (see functional
derivative)
variational parameters, 346, 350, 366
variational principles, 52, 62, 79
Variations
asynchronous variations, 87
calculus of variations, 62-74
Varied
uniformly varied motion, 4
varied motion, 3
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Vector
axial vector, 166, 168, 321, 416
dyadic vector, 182—-183, 330, 423
four-vector, 394-396
instantaneous vector of rotation, 168
polar vector, 8, 416
position vector (see radius-vector)
proper vectors, 425
pseudo-vector, 426
radius-vector, 2
Runge-Lenz vector, 116-118
vector components of a tensor, 422
Velocity
addition of velocities in special
relativity, 394
areal velocity, 13, 222
average velocity, 3
cosmic velocities, 121
generalized velocities, 50
instantaneous linear velocity, 3
transport velocity, 167
velocity circulation
Kelvin’s theorem, 331-332
velocity of deformation
tensor, 321, 340
velocity of rotation tensor, 321
velocity potential, 321
velocity-dependent potential, 57-59
Vibration
molecule vibration, 149
vibration in action—angle variables,
278-284
Virtual
virtual displacements, 40-42
virtual motion, 75
virtual trajectories, 75
virtual work, 42, 49, 51, 53
infinitesimal, 60, 76
principle of, 42-47
Viscosity, 339
dynamic coefficient of viscosity, 340
kinematic coefficient of viscosity, 341
magnetic viscosity, 338
Viscous
perfectly viscous fluid, 340
viscous fluid, 339-344
viscous stress tensor, 340
Voigt notation, 314
Volume
volume integral, 429
volume specific dilation, 313
Vortex line, 332
and Clebsch potentials, 336-337
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V (cont.)
Vorticity, 321
Beltrami’s vorticity diffusion
equation, 333
vorticity equation, 332-334
vorticity in terms of Clebsch potentials,
336
vorticity-free field, 434

w

Wallis’ formula, 135

Wave
electromagnetic waves, 390
equal-action wave front, 90-93
longitudinal wave, 318
plane waves, 160

in isotropic elastic media, 317-319

propagation of light waves, 91, 93
sound waves, 324
speed of wave, 318
transverse wave, 318

Subject Index

wave associated to a microparticle, 356
de Broglie’s hypothesis, 403-404
wave equation, 318, 365, 367
wave function, 356, 400, 405-407
probabilistic interpretation of, 406
wave mechanics, 404
wave number, 92
wave optics, 93, 404
Wavelength, 91, 92, 403, 404
Wavepacket, 405
Well
potential well, 129
Wiener path integral, 409
Work, 14
infinitesimal work, 14
principle of virtual work, 42-47
virtual work, 42, 49, 51, 53
work and total kinetic energy theorem, 18

Y
Young modulus, 311, 314
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