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He who knows nothing, loves nothing. But he
who understands also loves, notices, sees.
The more knowledge is involved in a thing,
the greater the love.

Paracelsus



To our parents and to their memory



Preface

Mechanics is the oldest discipline among the fundamental natural sciences. The
name comes from the Greek word ‘‘mechanike’’, which means ‘‘mechanism’’. The
subject of mechanics as a science is the investigation of the motion of bodies and
their equilibrium under the action of applied forces. Depending on the nature of the
bodies, mechanics can be divided into three branches: (a) general mechanics,
dealing with the mechanical behaviour of material points and rigid bodies; (b) fluid
mechanics (or the mechanics of continuous media), which is concerned with ideal
and viscous fluids and (c) mechanics of deformable media, which studies the
deformation of solid bodies under applied external forces.

The knowledge of mechanical motion or displacement of bodies can be
accomplished by a very general procedure based on a system of basic axioms,
called principles. These principles are the core of what is known as Newtonian
mechanics, relativistic mechanics, quantum mechanics and so forth. During the
eighteenth century, after the huge success achieved by the mechanics of Galileo
Galilei (1564–1642) and Isaac Newton (1643–1727), there appeared the tendency
of making mechanics more abstract and general. This tendency leads to what
nowadays is called analytical mechanics. Among the founders of analytical
mechanics are: Pierre-Louis Moreau de Maupertuis (1698–1759), Leonhard Euler
(1707–1783), Jean Baptiste le Rond D’Alembert (1717–1783), Joseph-Louis
Lagrange (1736–1813), Carl Friedrich Gauss (1777–1855) and William Rowan
Hamilton (1805–1865). Analytical mechanics has proved to be a very useful tool
of investigation not only in Newtonian mechanics, but also in other disciplines of
Physics: electrodynamics, quantum field theory, theory of relativity, magnetofluid
dynamics – to mention a few.

Classical mechanics has undergone an important revival during the last few
decades, due to the progress in non-linear dynamics, stochastic processes and
various applications of Noether’s theorem in the study of both discrete and con-
tinuous systems. We recall that there are no exactly linear processes in Nature, but
only approximately. All linear models studied in any science are only approxi-
mations of reality.
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This book is dedicated to the principles and applications of classical mechanics,
written for undergraduate and graduate students in physics and related subjects. Its
main purpose is to make the students familiar with the fundamentals of the theory,
to stimulate them in the use of applications and to contribute to the formation of
their background as specialists.

The first two chapters are dedicated to the basic notions and principles of both
Newtonian and analytical mechanics, as different approaches to the same purpose:
the investigation of mechanical behaviour of both discrete and continuous systems.
A special emphasis is put on the large applicability of analytical formalism in
various branches of physics.

In the third chapter, the Lagrangian formalism is applied to the study of some
classic mechanical systems, as the harmonic oscillator and the gravitational pen-
dulum, as well as to the investigation of some non-mechanical systems, like
electric circuits.

The fourth chapter is concerned with the mechanics of the rigid body. The
derivation of velocity and acceleration distributions in relative motion makes
possible to study the motion of a rigid body about a fixed point. The chapter ends
with some applications, such as the physical pendulum and the symmetrical top,
together with some mechanical–electromagnetic analogies.

The aim of the fifth chapter is to make the reader familiar with the Hamiltonian
formalism. The derivation of the canonical equations is followed by several
applications and extensions in mechanics and electrodynamics. The canonical
transformations, integral invariants and the Hamilton–Jacobi formalism are also
described. They are very useful for students for their further studies of thermo-
dynamics, statistics and quantum theory.

The sixth, final, chapter deals with the mechanics of continuous deformable
media. Here, both the Lagrangian and Hamiltonian formalisms are applied in order
to study some well-known models of continuous media: the elastic medium, the
ideal and viscous fluids. Special attention is paid to the extension of Noether’s
theorem to continuous media and its applications to the fundamental theorems of
ideal fluids.

Since classical mechanics has undergone a considerable evolution during the
last century, the authors have tried to draw the attention of the reader to three main
directions of development of post-classical mechanics: theory of relativity,
quantum mechanics and stochastic processes. These three basic orientations in
post-classical mechanics are very briefly exposed in three addenda, which con-
clude the main substance of the book. At the end of the book, for the convenience
of readers, two appendices are provided, which contain the most frequently used
formulas on vector and tensor algebra, as well as on vector calculus.

The present book is an outcome of the authors’ teaching experience over many
years in different countries and with different students studying diverse fields of
physics and engineering. The authors believe that the presentation and the dis-
tribution of the topics, the various applications in several branches of physics and
the set of more than 100 proposed problems make this book a comprehensive and
useful tool for students, teachers and researchers.
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During the preparation of this book the authors have benefited from discussing
various questions with many of their colleagues and students. It is a pleasure to
express gratitude to all of them and to acknowledge the stimulating discussions
and their useful advice. Our special thanks go to Professor Peter Presnajder for
valuable suggestions and for his considerable help in improving the manuscript.
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Chapter 1
Foundations of Newtonian Mechanics

1.1 Notions, Principles and Fundamental Theorems
of Newtonian Mechanics

In physics, by mechanical motion we mean the change in time of the position of a
body with respect to another body, chosen as a reference. Generally speaking, the
motion of a body does not reduce to its mechanical motion, since the body can be
simultaneously animated by several types of motion (mechanical, chemical, bio-
logical, etc.) depending on its complexity. For the sake of simplicity we shall,
nevertheless, call mechanical motion just motion.

The study of the motion of a body implies the choice of another body, supposed
to be fixed, with respect to which the motion of the first body is considered. The
body chosen as a reference defines, by abstraction, a reference system or reference
frame.

If the position of a body does not change relative to a certain reference frame,
then it is at rest relative to that frame. There are no immobile reference frames in
Nature; nevertheless, the motion of the bodies is conventionally referred to ref-
erence frames considered to be fixed. Any other reference frame which is immobile
with respect to the first is, in its turn, immobile.

The aforementioned considerations show that neither absolute reference frames
(i.e. independent of the motion of bodies) nor absolute rest state can exist.
However, sometimes the expression absolute motion is used when we refer to a
fixed reference frame, in order to distinguish this motion from that relative to a
frame which is mobile with respect to the first, called relative motion.

A body whose dimensions can be neglected when studying its motion is called
point mass or particle. In this case, the mass of the body is supposed to be
concentrated in a geometric point (e.g. the centre of mass). Such an approximation
depends, obviously, upon the concrete conditions of the mechanical model. For
example, a planet moving around the Sun can be considered as a particle, but this
approach is not possible when the motion of the planet around its axis is studied.

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2_1,
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The position of a particle is defined relative to a given reference frame. To do
this, we can chose either Cartesian coordinates x, y, z, spherical coordinates
r, h, u, or cylindrical coordinates q, u, z, etc. Most commonly, the position of a
particle is defined by its radius-vector or position vector r, relative to the origin of
the coordinate frame.

To know the motion of a particle one has to know its coordinates (e.g. Cartesian
coordinates x1 ¼ x; x2 ¼ y; x3 ¼ z) as functions of time

xi ¼ xiðtÞ ði ¼ 1; 2; 3Þ ð1:1:1Þ
or, in vector form,

r ¼ rðtÞ: ð1:1:2Þ

The vector function r(t) must obey certain mathematical requirements, imposed by
the physical phenomenon of the motion. It must be continuous and homogeneous in
time, finite in magnitude, and at least twice differentiable. The last condition is
required due to fact that the differential equations of motion are of the second-order.

When the parameter t varies, the particle describes a curve called trajectory
(Fig. 1.1). In other words, the trajectory is the geometric locus of the successive
positions occupied by the moving particle.

Equations (1.1.1) are called the finite equations of motion. They express the law
of motion of the particle. At the same time, these equations are the parametric
equations of the trajectory of the particle. If the trajectory is known, then the
motion of the particle can be defined by a single scalar equation

s ¼ sðtÞ: ð1:1:3Þ

Here, s is the curve between the origin and the actual position of the particle, at time t.

1.1.1 Velocity. Acceleration

Let P be a particle tracing the trajectory (C) and r(t) the radius-vector of the
particle, at time t, relative to the origin O of the Cartesian reference frame Oxyz.

Fig. 1.1 Geometry of the
trajectory described by a
particle.
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Suppose that at time t0 ¼ t þ Dt, the particle reaches the position P1, defined by the
radius-vector rðt þ DtÞ: Then the ratio

�v ¼ Dr

Dt
; ð1:1:4Þ

where Dr ¼ rðt þ DtÞ � rðtÞ, is a vector collinear with Dr, named average
velocity of the particle on the arc of curve PP1 (averages are customarily denoted
by a bar above the corresponding quantity). If Dt! 0, then P1 ? P and (1.1.4)
yields

v ¼ lim
Dt!0

Dr

Dt
¼ dr

dt
¼ _r; ð1:1:5Þ

which is the instantaneous linear velocity of the particle at time t. The vector
v with the origin in P is tangent to the trajectory (C) and shows the direction of
motion. If s is the unit vector of v, we can write

v ¼ vs; v ¼ jvj: ð1:1:6Þ

The magnitude |v| of the vector v is called the speed of motion. If we denote
dr = r(t ? dt) - r(t) and observe that |dr| = ds, the magnitude of v can be
defined by

v ¼ ds

dt
¼ dr

dt

�
�
�
�

�
�
�
�
¼ _s: ð1:1:7Þ

Suppose now that the particle P is forced to remain on the curve (C) during its
motion. If the curve (C) is moving, then the actual trajectory (C) of the particle and
the arc (C) will not coincide, the velocity v being tangent to the trajectory (C) (Fig.
1.2). If |v| = const., the motion is called uniform; if |v| changes in time, then the
motion is called varied.

Let the velocities corresponding to the positions P, P1 be v and vþ Dv,
respectively. The vector quantity

�a ¼ Dv

Dt
ð1:1:8Þ

Fig. 1.2 The instantaneous
velocity of a particle is
tangent to its trajectory.
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is the average acceleration of the particle in the time interval ½t; t þ Dt�, while

a ¼ lim
Dt!0

Dv

Dt
¼ dv

dt
¼ d2r

dt2
¼ _v ¼ €r ð1:1:9Þ

is the instantaneous acceleration of the particle at the time t. If |a| = const., the
motion is called uniformly varied. The definitions (1.1.5) and (1.1.9) yield the
following units for velocity and acceleration:

½v� ¼ LT�1; ½a� ¼ LT�2: ð1:1:10Þ

1.1.2 Analytical Expressions for Velocity and Acceleration
in Different Coordinate Systems

From this point on, we shall assume that the direction of axes of the Oxyz reference
frame is fixed, and the summation convention (Einstein’s convention) for repeated
indices running from 1 to 3 is used. The summation convention was introduced by
Albert Einstein in 1916, to simplify the formulas which involved sums over
coordinates. According to this notational convention, when an index appears twice
in a product, that index is summed over, without the sum symbol being explicitly
written. If, however, in some expression an index (for example, j) appears twice,
but no sum over it has to be taken, this is customarily mentioned in brackets (‘‘no
summation over j’’). Mostly we shall use Einstein’s convention for coordinate
indices, but at some point when the formulas will become too complicated, we
shall use it also for sums over particle indices (this will be specified when it
occurs). Any exceptions to these rules will be pointed out at the right time.

(a) Orthogonal Cartesian coordinates. If we denote (see Appendix A):

i ¼ u1; j ¼ u2; k ¼ u3; ð1:1:11Þ

then the radius-vector r can be written as

r ¼ xiui: ð1:1:12Þ

The first and second time derivatives of (1.1.12) give

v ¼ _xiui; a ¼ €xiui: ð1:1:13Þ

(b) Spherical coordinates. Let r; h;u be the spherical coordinates of the particle P.
The parametric equations of the trajectory are then:

r ¼ rðtÞ; h ¼ hðtÞ; u ¼ uðtÞ: ð1:1:14Þ

Since dr = ds, if we divide by dt the relation (see Appendix B)

ds ¼ urdrþ uhrdhþ uur sin hdu;
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we obtain

v ¼ _rur þ r _huh þ r sin h _uuu; ð1:1:15Þ

where

ur ¼ i sin h cos uþ j sin h sin uþ k cos h;

uh ¼ i cos h cos uþ j cos h sin u� k sin h;

uu ¼ �i sin uþ j cos u:

ð1:1:16Þ

The acceleration vector is found by taking the time derivative of (1.1.15).
Using (1.1.16) we finally get

a ¼ ð€r� r _h2 � r _u2 sin2 hÞur þ ð2_r _hþ r€h� r _u2 sin h cos uÞuh

þ ð2_r _u sin hþ 2r _h _u cos hþ r€u sin hÞuu: ð1:1:17Þ

(c) Plane polar coordinates. Suppose that the particle P moves in the xy-plane (h ¼ p
2 ).

The position of the particle is then determined by r and u. Taking h ¼ p
2 and

_h ¼ 0 in (1.1.15) and (1.1.17), we arrive at

v ¼ _rur þ r _uuu; ð1:1:18Þ

a ¼ ð€r� r _u2Þur þ ð2_r _uþ r€uÞuu: ð1:1:19Þ

(d) Cylindrical coordinates. Observing that the cylindrical coordinate system is a
combination of the plane polar coordinates q;u and a Cartesian coordinate z,
we have at once:

v ¼ _quq þ q _uuu þ _zk; ð1:1:20Þ

a ¼ ð€q� q _u2Þuq þ ð2 _q _uþ q€uÞuu þ €zk; ð1:1:21Þ

where k is the z-axis unit vector.
(e) Natural coordinates (see Appendix B). If the particle P describes a trajectory

whose equation is known,

r ¼ rðsÞ; ð1:1:22Þ

then the motion of the particle is defined by (1.1.3). The time derivatives of
(1.1.22) yield

v ¼ _r ¼ dr

ds

ds

dt
¼ _ss ¼ vs; ð1:1:23Þ

a ¼ €r ¼ _vsþ v2

q
m ¼ as þ am; ð1:1:24Þ

where s ¼ dr
ds
; q is the radius of curvature and m – the principal normal unit

vector of the curve (C) at the point P.

1.1 Notions, Principles and Fundamental Theorems 5



1.2 Principles of Newtonian Mechanics

Newtonian mechanics is based on some fundamental statements called principles
or laws. These principles were established by the generalization of a large number
of particular experiments. They cannot be demonstrated, but they have not been
contradicted by any known particular experiment. In his famous book ‘‘Mathe-
matical Principles of Natural Philosophy’’ (1687), Isaac Newton gave the fol-
lowing fundamental principles.

1.2.1 The Principle of Inertia (Newton’s First Law)

A body is in a state of rest or performs a uniform motion along a straight line,
unless subjected to an external force.

To give a well-determined content to this principle, one must indicate the
reference frame relative to which the motion of the body is considered. This frame
is called inertial, and the property of a body to be at rest or in uniform straight
motion with respect to such a frame is called inertia. That is why Newton’s first
law is called the principle of inertia. Any reference frame which is at rest or in a
uniform straight motion (translation) with respect to an inertial frame is also an
inertial frame.

Consider an observer in a train carriage that moves straightly and uniformly
relative to the ground. Then, there is no mechanical experiment that the observer
can perform inside the carriage that can show whether the carriage is at rest or in a
straight uniform motion with respect to the Earth. By generalizing this mental
experiment, we arrive at the classical (Galilean) principle of relativity:

No mechanical experiment can be done within an inertial frame, that can put
into evidence either the rest state or the uniform straight motion of that frame.

Let S(Oxyz) and S0ðO0x0y0z0) be two inertial frames and V – the velocity of S0

relative to S (Fig. 1.3). If Dt and Dt0 are the time intervals between two events, as
determined by observers placed in O and O0, respectively, then we shall assume
that Dt ¼ Dt0, i.e. the two observers measure the same duration. If we choose the
same origin of the time interval in S and S0, the two events are recorded

Fig. 1.3 Schematic
representation of two inertial
frames, S and S0.
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simultaneously by the observers. This postulate is called principle of absolute
simultaneity.

Let x, y, z, t, and x0; y0; z0; t0 be the space–time coordinates of a certain event in
S and S0, respectively. Then we can write

r0 ¼ r� Vt; t0 ¼ t: ð1:2:1Þ

If the displacement takes place along the common axis Ox � Ox0, the relations
(1.2.1) yield

x0 ¼ ðx� VtÞ; y0 ¼ y; z0 ¼ z; t0 ¼ t: ð1:2:10Þ

These transformations fulfill the properties of a group, called the Galilei trans-
formations group. The theory of special relativity shows that the Galilei–Newton
group is a limiting case (c??) of a more general group of transformations, the
Lorentz group:

x0 ¼ cðx� VtÞ; y0 ¼ y; z0 ¼ z; t0 ¼ c t � V

c2
x

� �

; ð1:2:2Þ

where c is the speed of light in empty space and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2

c2

q

.

1.2.2 The Law of Force (Newton’s Second Law)

The rate of change of momentum of a body is proportional to the magnitude of the
external force and takes place in the direction of the acting force.

This principle (which is traditionally known as the law of force) introduces two
fundamental notions: mass and force. It is very difficult to give comprehensive,
perfectly logical definitions of these notions. We shall accept as satisfactory the
following definitions:

The mass of a body is a scalar positive quantity, that characterizes the body; it is
a measure of its inertia and gravitational interaction with other bodies.

The force is a measure of the mechanical interaction between a body and other
bodies, characterizing the magnitude and direction of this interaction, and having
the effect of an acceleration, or a deformation.

The product mv is called linear momentum and its variation is called impulse.
The force principle can be then written in the form:

F ¼ d

dt
ðmvÞ: ð1:2:3Þ

In Newtonian mechanics the mass m is a constant quantity, i.e. it does not depend
on the motion. As a result,

F ¼ m
dv

dt
¼ ma; ð1:2:4Þ

which is the fundamental equation of Newtonian mechanics. Equation (1.2.4)
shows that the acceleration of a particle, the second time-derivative of the
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radius-vector, is not an independent quantity, but is given by the force acting on
the particle divided by its mass m.

In classical, non-relativistic mechanics the mass occurs both as an inertial mass
and a gravitational mass. The first appears in the fundamental equation (1.2.4),
while the second is found for instance in the gravitational force formula

FG ¼ mg: ð1:2:5Þ

The experiments done by Loránd Eötvös (1890) and Pieter Zeeman (1907) showed
that the two masses are proportional (even equal, if the unit system is suitably chosen).

Most generally, the force F is a known vector function of time t, position r, and
velocity v, i.e. F = F(r, v, t). The product ma is then a function of the same
variables, being a polar vector.

Observations:

(a) The first two principles can be put in a unique form, as follows:
There is at least one space–time reference frame in which the law F = ma is
valid.
Indeed, if F = 0, one has a = 0 (since m = 0), i.e. the body is either at rest, or
it moves uniformly along a straight line.

(b) The aforementioned considerations lead to an equivalent formulation of the
classical principle of relativity:
The laws of Newtonian mechanics are the same in any inertial frame,
or
The laws of Newtonian mechanics keep their form (are covariant) under the
transformations of the Galilei group (1.2.1).

(c) The second law gives rise to another principle, given by Newton in the fol-
lowing form:
If two forces act on a body simultaneously and in different directions, then the
body describes the diagonal of the parallelogram constructed on the forces in
the same time in which it would describe the sides of the parallelogram under
the separate action of the two forces. This formulation is known as the principle
of the independence of forces, sometimes referred to as Newton’s fourth law.

1.2.3 The Principle of Action and Reaction (Newton’s Third Law)

To any force (action) corresponds an equal and directly opposed reaction. In other
words, the mutual actions of two bodies are equal and directly opposed.

Following this principle, if a body (considered as a particle) A acts on another
body (particle) B with the force FBA, then B acts in its turn on A, with the force

FAB ¼ �FBA: ð1:2:6Þ

Let us interpret, in the light of this postulate, the fundamental equation of
Newtonian mechanics (1.2.4). If F ¼ ma is the force acting on a body, then the

8 1 Foundations of Newtonian Mechanics



body will respond with the force -ma. The force J = -ma is called (somewhat
improperly) force of inertia.

The action and reaction principle lies at the foundation of Newtonian mechanics
of particle systems. It also extends to the electrostatic and gravitational phenomena.

Observation: Let us agree to call free any particle whose motion is in no way
restricted, i.e. it moves according to the law (1.2.4) and it is subject to applied
forces. If the motion of the particle is restricted (e.g. the particle must move on a
curve, or on a surface, or its velocity must obey a certain condition, etc.), we shall
say that the motion is subject to constraints. The constraints appear in (1.2.4) as
constraint forces, and have the character of reaction forces. This means that the
constraints are subject to the principle of action and reaction.

1.3 General Theorems of Newtonian Mechanics

1.3.1 Integration of the Equations of Motion

The fundamental problem of mechanics is to determine the motion of a particle of
given mass, knowing the force acting at any moment on the particle.

Consider a free particle of mass m, subject to the resultant force F, and having
the acceleration a. If the motion is referred to the Cartesian frame Oxyz, the
projection on the axes of the fundamental equation (1.2.4) yields

m€xi ¼ Fi ði ¼ 1; 2; 3Þ; ð1:3:1Þ
which is a system of three second-order differential equations. Assuming that the
existence conditions for solutions are fulfilled, the general integral of the system
(1.3.1) is

xi ¼ xiðt;C1;C2; . . .;C6Þ ði ¼ 1; 2; 3Þ; ð1:3:2Þ

where C1; . . .;C6 are constants of integration. To know the motion of the particle
means to know its coordinates xi (i = 1, 2, 3) as functions of time t. Therefore, it is
necessary to determine the six arbitrary constants C1; . . .;C6. To this end, we
impose as the initial conditions: at the initial time t = t0 (e.g. t0 = 0), the coor-
dinates xi

0 of the particle and the components _x0
i of its velocity are given, i.e.

x0
i ¼ xiðt0;C1; . . .;C6Þ; _x0

i ¼ _xiðt0;C1; . . .;C6Þ: ð1:3:3Þ

The system of six algebraic equations (1.3.3) yields the constants C1; . . .;C6.
Finally, these solutions are introduced in (1.3.2) and this determines the motion of
the particle uniquely.

Example. Let us find the finite equations of motion and the trajectory of a shell of
mass m, thrown at an angle a relative to the horizontal plane and having the initial
velocity v0.

Since the length of the trajectory of the body is supposed to be much longer
than any of its three dimensions, we may consider the shell as a heavy particle, the
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only force acting on it being the force of gravity. This is a simplified model, since
there are many factors contributing to the real motion of the body, like: force of
friction with the air, density of the air, speed and direction of the wind, etc. The
branch of mechanics which takes into account all these aspects is called ballistics.

Newton’s second law (1.2.4) gives

m€r ¼ F:

Next, we use (1.2.5) and project the last equation on the axes of the Cartesian
orthogonal frame Oxyz, the axis z being along the vertical line and pointing
upwards. Then,

€x ¼ 0; €y ¼ 0; €z ¼ �g:

Integrating these equations twice, yields

_x ¼ C1; _y ¼ C2; _z ¼ �gt þ C3;

x ¼ C1t þ C4; y ¼ C2t þ C5; z ¼ � g

2
t2 þ C3t þ C6:

To determine uniquely the motion of the body, we must find the six constants of
integration C1; . . .;C6 (otherwise, there would be ?6 possibilities of motion). To
do this, one must know all six initial conditions. For instance, let us take, at t = 0:

xð0Þ ¼ 0; yð0Þ ¼ 0; zð0Þ ¼ 0;

_xð0Þ ¼ v0x ¼ 0; _yð0Þ ¼ v0y ¼ v0 cos a; _zð0Þ ¼ v0z ¼ v0 sin a;

i.e. at the initial time the shell is at the origin of the frame and its initial velocity
lies in the yz-plane. Then we find:

C1 ¼ C4 ¼ C5 ¼ C6 ¼ 0; C2 ¼ v0 cos a; C3 ¼ v0 sin a;

and the finite equations of motion are

x ¼ 0; y ¼ v0t cos a; z ¼ � g

2
t2 þ v0t sin a:

If the initial velocity is horizontal (a = 0), then

x ¼ 0; y ¼ v0t; z ¼ � g

2
t2;

while in the case of ascending vertical initial velocity,

x ¼ 0; y ¼ 0; z ¼ v0t �
g

2
t2:

The trajectory is found by eliminating the time t from the parametric equations
of motion:

z ¼ y tan a� g

2v2
0 cos2 a

y2:
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This is a parabola with its concavity downwards. The points of intersection with

the horizontal plane are y1 = 0 and y2 ¼ v2
0
g

sin 2a. Taking the derivative of y2 with

respect to a and then equating to zero the result, we conclude that the maximum
horizontal distance reached by the shell, for a given v0, is for a ¼ p

4 .
We can also find the angle a at which the projectile reaches a certain given

point y1; z1. This is obtained by means of the last relation:

tan a ¼ v2
0

gy1
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2g

v0
z1 þ

gy2
1

2v2
0

� �
s" #

:

It is clear that, if

z1 þ
gy2

1

2v2
0

� v0

2g
� 0;

the sought after angle has two values.

1.3.2 First Integrals

In some cases, there exists the possibility of obtaining information about the
motion of mechanical systems without the full integration of the differential
equations of motion. Suppose, for instance, that we are able to find a relation
between the time t, the coordinates xi;with i ¼ 1; 2; 3; of the particle, the com-
ponents _xi of its velocity, and a single constant C, for any initial conditions,
generally written as

f ðr; v; tÞ ¼ C: ð1:3:4Þ
This relation is a first-order differential equation. It is called a first integral of
(1.2.4). The constants that occur in first integrals are determined by means of the
initial conditions. In our case,

fðr0; v0; t0Þ ¼ C: ð1:3:5Þ

Two or more first integrals are called distinct if there is no relation between
them. Since the knowledge of a first integral diminishes by one the number of
unknowns, the maximum number of distinct first integrals of (1.3.1) is six. It
follows then that to know six distinct first integrals of (1.3.1) means to determine
the general integral of the system.

Some first integrals present a special importance, since they express the con-
servation of certain fundamental physical quantities. The determination of first
integrals of mechanical (and, as we shall see, non-mechanical) systems is tightly
related to the general theorems that express the space–time variation of funda-
mental quantities: linear momentum, angular momentum and energy. In the fol-
lowing, we shall prove these theorems for both one-particle and many-particle
mechanical systems.
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1.3.3 General Theorems of One-Particle Mechanics

1.3.3.1 Linear Momentum Theorem

Let us consider, as before, the motion of the particle P of mass m, relative to the
fixed Cartesian orthogonal frame Oxyz. If we denote by

p ¼ mv ð1:3:6Þ

the linear momentum of the particle, then Eq. (1.2.3) reads:

dp

dt
¼ F; ð1:3:7Þ

which says that: The time derivative of the linear momentum of a particle is equal
to the vector resultant of the applied forces. This is the linear momentum theorem.
Note that if F = 0, then

p ¼ const. ð1:3:8Þ

This is a vector first integral, equivalent to three distinct scalar first integrals.

1.3.3.2 Angular Momentum Theorem

By definition, the angular momentum or kinetic momentum of the particle P about
the point O is the cross product

l ¼ r� p ¼ r� ðmvÞ: ð1:3:9Þ

Taking the time derivative of (1.3.9) and observing that v and p are collinear, we
arrive at

dl

dt
¼M; ð1:3:10Þ

where

M¼ r� F ð1:3:11Þ

is the moment of the force F with respect to O, also called the torque about the
point O. Equation (1.3.10) expresses the angular momentum theorem: The time
derivative of the angular momentum of a particle is equal to the moment of the
force applied to it, both momenta being taken about the same point O. If M¼ 0
(i.e. F = 0, or rkF), then (1.3.10) leads to the vector first integral

l ¼ const. ð1:3:12Þ
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1.3.3.3 Areas Theorem

If the moment M of the force F is permanently orthogonal to a fixed axis ðDÞ of
unit vector u, passing through O, then the projection of (1.3.10) on ðDÞ gives
d
dt
ðl � uÞ ¼ M � u ¼ 0, leading to

l � u ¼ lD ¼ C1ðconst.Þ; ð1:3:13Þ

i.e. a first integral. If ðDÞ coincides with the z-axis, then

x _y� y _x ¼ C1

m
¼ C2ðconst.Þ: ð1:3:14Þ

The first integral (1.3.14) allows an interesting geometric interpretation. Let
r(t) and r(t ? dt) be the radius-vector of the particle P at times t and t ? dt,
respectively. Then Fig. 1.4 shows that the differential area dS swept by the radius-
vector r during the time interval dt can be approximated by the area of the triangle
OPP1:

dS ¼ 1
2

r� dr: ð1:3:15Þ

Projecting (1.3.15) on the z-axis and then dividing by dt gives:

dSz

dt
¼ 1

2
ðx _y� y _xÞ: ð1:3:16Þ

The quantity dSz

dt
is called areal velocity. Comparing (1.3.16) and (1.3.14), it

follows that

dSz

dt
¼ C C ¼ C2

2

� �

: ð1:3:17Þ

The first integral (1.3.17) expresses the areas theorem, in projection on the
z-axis: If the moment M of the force F is permanently orthogonal to the z-axis,
then the motion of the particle, in the xy-plane, is performed with constant areal
velocity. In other words, the radius-vector r sweeps equal areas in equal time
intervals (Kepler’s second law).

Fig. 1.4 Area swept by the
radius-vector r during the
time interval dt (see
Eq. (1.3.15)).
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1.3.3.4 Kinetic Energy Theorem

Let us suppose that under the action of the applied resultant force F, the particle P
undergoes an infinitesimal displacement dr. By definition, the scalar product

dW ¼ F � dr ð1:3:18Þ

is the infinitesimal work done by the force F as the particle performs the dis-
placement dr. We may write

dW ¼ m
dv

dt
� vdt ¼ d

1
2
mjvj2

� �

:

The scalar quantity

T ¼ 1
2
mjvj2 ð1:3:19Þ

is the kinetic energy of the particle. It then follows that

dW ¼ dT ; ð1:3:20Þ

which is the differential form of the kinetic energy theorem: The infinitesimal work
of the resultant of forces acting on a particle is equal, at any time, to the differ-
ential of the kinetic energy of the particle. Integrating (1.3.20) between t1 and t2,
corresponding to the velocities v1 and v2 of the particle, we get

W ¼
Z2

1

F � dr ¼
Zv2

v1

d
1
2

mjvj2
� �

¼ 1
2
mðv2

2 � v2
1Þ ¼ T2 � T1; ð1:3:21Þ

i.e. the integral form of the kinetic energy theorem: The work done by the force
F acting on a particle during the time interval ðt1; t2Þ is equal to the change in the
kinetic energy of the particle during the given interval.

1.3.3.5 Energy Conservation Theorem

If there exists a scalar function V(r, t), so that we may write

F ¼ �grad Vðr; tÞ � � oV

ox1
;

oV

ox2
;

oV

ox3

� �

; ð1:3:22Þ

where grad stands for partial derivative with respect to r, we shall say that the
vector field F is a potential field, V(r, t) being the potential function of the field. If
V does not explicitly depend on time, the field F is called conservative, while
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V(r) is the potential energy. The work done by the particle under the action of a
conservative force, when moving between any two positions P1 and P2, is:

W ¼
ZP2

P1

F � dr ¼ �
ZP2

P1

oV

oxi

dxi ¼ �
ZP2

P1

dV ¼ V1 � V2; ð1:3:23Þ

where V1 ¼ VðP1Þ;V2 ¼ VðP2Þ:
We also observe that the infinitesimal work done by a conservative force is an

exact differential. In other words, the circulation of F between P1 and P2 does not
depend on the path; it depends only on the initial and final positions of the particle.
In particular, the circulation of the field F ¼ �grad VðrÞ along a closed curve
is zero:

I

ðCÞ
F � dr ¼ �

I

ðCÞ
dV ¼ 0: ð1:3:24Þ

Comparing (1.3.21) and (1.3.23), we deduce: T1 þ V1 ¼ T2 þ V2 ¼ � � � ¼
Tn þ Vn ¼ � � �, or

T þ V ¼ const.; ð1:3:25Þ

expressing the energy conservation theorem: The total energy of a particle in a
conservative force field is constant.

The relation (1.3.25) is also a first integral, called the energy first integral.

Observation: The definition (1.3.22) does not uniquely determine the function
V(r, t). Indeed, if we take V 0ðr; tÞ ¼ Vðr; tÞ þ const., we arrive at the same force
F. Hence, the choice for the zero level of V is arbitrary.

1.3.4 General Theorems for Systems of Particles

1.3.4.1 Generalities

A number of mutually interacting particles is a system of particles. The system is
continuous if there is a particle in each geometrical point of the region occupied by
the system, or, in other words, if at any point of the region one can define a non-
zero mass density. Otherwise, the system is discrete. The first five chapters of this
book deal with discrete and continuous particle systems having a finite number of
degrees of freedom.

For compactness of writing, from now on we shall represent a sequence of
consecutive positive integers between m and n (m and n being themselves positive
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integers, with m\n) by the notation m; n, meaning m;mþ 1; . . .; n. For example,
the notation i ¼ 1;N means i ¼ 1; 2; . . .;N.

The forces acting on a N-particle system fall, as we know, into two categories:
applied and constraint forces. From another point of view, these forces belong to
the following two classes: internal and external forces. The internal forces act
between the particles of the system and are subject to the action and reaction
principle, i.e. if Pi and Pk are any two particles of the system, then (see (1.2.6))

Fik ¼ �Fki ði; k ¼ 1;NÞ: ð1:3:26Þ

Any force acting on the particles from outside the system is an external force. As
an example, the solar system can be considered as a discrete system of particles;
the internal forces act between the planets and the planets and Sun, while the
external forces come from other celestial bodies.

1.3.4.2 Integration of the Equation of Motion

Consider a system of N free particles and let r1; . . .; rN be their respective radius-

vectors relative to O. Also, let Fi
(e) and

PN
j¼1 Fij be the resultants of external and

internal forces acting on the particle Pi of mass mi. Then the fundamental equation
(1.2.4), written for this particle, is

mi€ri ¼ F
ðeÞ
i þ

XN

j¼1

Fij ði ¼ 1;NÞ; Fii ¼ 0; ð1:3:27Þ

or, in components,

mi€x
a
i ¼ F

ðeÞa
i þ

XN

j¼1

Fa
ij ði ¼ 1;N; a ¼ 1; 3Þ: ð1:3:28Þ

This is a system of 3N second-order differential equations. In general, the forces
Fi

(e) depend on the positions of particles r1; . . .; rN , their velocities v1; . . .; vN , as
well as the time t, while the forces Fij are functions of the relative positions of the
particles. The general integral of (1.3.28) is then

xa
i ¼ xa

i ðt;C1; . . .;C6NÞ ði ¼ 1;N; a ¼ 1; 3Þ: ð1:3:29Þ

The constants C1; . . .;C6N are determined from the initial conditions:

xa
i0 ¼ xa

i ðt0;C1; . . .;C6NÞ; _xa
i0 ¼ _xa

i ðt0;C1; . . .;C6NÞ; ð1:3:30Þ

i.e. from 6N algebraic equations.
The integration of the differential equations (1.3.27) is facilitated, as for the

one-particle mechanics, by some general theorems, which we are going to prove in
the following.
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1.3.4.3 Total Linear Momentum Theorem

If the summation over i ¼ 1;N in (1.3.27) is performed, we obtain

d

dt

XN

i¼1

mivi ¼
XN

i¼1

F
ðeÞ
i þ

XN

i¼1

XN

j¼1

Fij: ð1:3:31Þ

Let

P ¼
XN

i¼1

mivi ð1:3:32Þ

be the total linear momentum and

XN

i¼1

F
ðeÞ
i ¼ FðeÞ ð1:3:33Þ

the resultant of exterior forces. Since, in view of (1.3.26),
P

i

P

j Fij ¼ 0, we may
write

dP

dt
¼ FðeÞ; ð1:3:34Þ

expressing the theorem of total linear momentum: The time derivative of the linear
momentum of a system of particles is equal to the resultant of the exterior forces
acting on the system. Once again we note that if F(e) = 0, we have the first integral
P = const.

1.3.4.4 Total Angular Momentum Theorem

By definition, the axial vector

L ¼
XN

i¼1

ri �mivi ð1:3:35Þ

is the total angular momentum, or the angular momentum of the particle system
about the point O. Taking the time derivative of (1.3.35) and using (1.3.27),
we find

dL

dt
¼
XN

i¼1

ri � F
ðeÞ
i þ

XN

i¼1

XN

j¼1

ri � Fij: ð1:3:36Þ

Due to the action and reaction principle, the last term on the r.h.s. of (1.3.36)
vanishes. Indeed, for any two particles Pi and Pk ði 6¼ kÞ, the vectors rik ¼ ri � rk

and Fik are collinear (rik ¼ kFik; k 6¼ 0Þ; implying
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ri � Fik þ rk � Fki ¼ ðri � rkÞ � Fik ¼ rik � Fik ¼ 0: ð1:3:37Þ

It follows then from (1.3.36) that

dL

dt
¼MðeÞ; ð1:3:38Þ

where

MðeÞ ¼
XN

i¼1

ri � F
ðeÞ
i ð1:3:39Þ

is the resultant moment of exterior forces. Equation (1.3.38) expresses the total
angular momentum theorem: The time derivative of the total angular momentum is
equal to the resultant moment of external forces, both momenta being taken about

the same point O. If MðeÞ ¼ 0, we arrive at the first integral L = const.

1.3.4.5 Theorem of the Total Kinetic Energy

Assume that Fi is the resultant of internal and external forces acting on the particle
Pi of mass mi. The work done by the system is then

dW ¼
XN

i¼1

Fi � dri ¼
XN

i¼1

mi

dvi

dt
� vidt ¼ dT ; ð1:3:40Þ

where

T ¼ 1
2

XN

i¼1

mijvij2 ð1:3:41Þ

is the kinetic energy of the system of particles. On the other hand, since

Fi ¼ F
ðeÞ
i þ

PN
j¼1 Fij, we may write

XN

i¼1

Fi � dri ¼
XN

i¼1

F
ðeÞ
i � dri þ

XN

i¼1

XN

j¼1

Fij � dri ¼ dWðeÞ þ dWðiÞ; ð1:3:42Þ

where dWðeÞ and dWðiÞ are the infinitesimal amounts of work done by the external
and internal forces, respectively. From (1.3.40) and (1.3.42), we obtain the
differential form of the total kinetic energy theorem,

dT ¼ dWðeÞ þ dWðiÞ; ð1:3:43Þ

stating that: The differential of the total kinetic energy is equal to the sum of the
infinitesimal amounts of work done by the external and internal forces.
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If one integrates (1.3.40) over a finite time interval ðt1; t2Þ, corresponding to two
definite positions of the system, then

W ¼
XN

i¼1

Z2

1

Fi � dri ¼
XN

i¼1

Z2

1

d
1
2
mijvij2

� �

¼
XN

i¼1

Ti

" #2

1

; ð1:3:44Þ

which is similar to (1.3.21).
It is interesting to remark that in (1.3.43) both external and internal forces

appear. Let us write dWðiÞ in a form suitable to a direct physical interpretation.
Thus, since

XN

i¼1

XN

j¼1

Fij � dri ¼
XN

i¼1

XN

j¼1

Fji � drj ¼ �
XN

i¼1

XN

j¼1

Fij � drj; ð1:3:45Þ

we can write

dWðiÞ ¼
XN

i¼1

XN

j¼1

Fij � dri ¼
1
2

XN

i¼1

XN

j¼1

Fij � dri �
1
2

XN

i¼1

XN

j¼1

Fij � drj

¼ 1
2

XN

i¼1

XN

j¼1

Fij � drij: ð1:3:46Þ

If the system of particles is a rigid (i.e. non-deformable) body, then |rij|
2 =

const., i.e. rij � drij ¼ 0. Since Fij and rij are collinear, we conclude that Fij and drij

are orthogonal, or, in other words: In a rigid body, the internal forces perform
no work.

1.3.4.6 Theorem of Conservation of the Total Energy

The work done during a finite time interval ðt1; t2Þ by both the internal and external
forces is

W ¼ WðeÞ þWðiÞ ¼
XN

j¼1

Z2

1

F
ðeÞ
j � drj þ

XN

j¼1

XN

k¼1

Z2

1

Fjk � drj: ð1:3:47Þ

If the external forces are conservative, i.e.

F
ðeÞ
j ¼ �gradjVj ðno summation; j ¼ 1;NÞ; ð1:3:48Þ

where gradj stands for partial derivative with respect to rj, then the first term of the
r.h.s. of (1.3.47) reads
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WðeÞ ¼ �
XN

j¼1

Z2

1

gradjV
ðeÞ
j � drj ¼

XN

j¼1

V
ðeÞ
j

" #2

1

: ð1:3:49Þ

Suppose now that the internal forces are also conservative

Fjk ¼ �gradjkV
ðiÞ
jk ðno summation; j; k ¼ 1;NÞ: ð1:3:50Þ

Here, gradjk means partial derivative with respect to rjk, while Vjk is the interaction
potential energy of the particles Pj and Pk. The last term on the r.h.s. of (1.3.47)
then becomes

WðiÞ ¼ � 1
2

XN

j¼1

XN

k¼1

Z2

1

gradjkV
ðiÞ
jk � drjk ¼ �

1
2

XN

j¼1

XN

k¼1

V
ðiÞ
jk

" #2

1

: ð1:3:51Þ

We can define the total potential energy

V ¼
XN

j¼1

V
ðeÞ
j þ

1
2

XN

j¼1

XN

k¼1

V
ðiÞ
jk ; ð1:3:52Þ

and, using (1.3.44), (1.3.47) and (1.3.51), we finally arrive at

E ¼ T þ V ¼ const.; ð1:3:53Þ

which is the law of conservation and transformation of the mechanical energy.

Observation: Our discussion refers to an ideal mechanical model. In fact, no
material system is isolated in the Universe, and mechanical energy can be trans-
formed into other forms of energy: thermal, electrical, etc. and vice versa.

1.3.4.7 Centre of Mass Theorem

Let G be the point defined by the radius-vector

rG ¼
1
M

XN

i¼1

miri; ð1:3:54Þ

where M ¼
PN

i¼1 mi is the total mass. The point G is called centre of mass or
centre of inertia of the system of particles. Taking the second time derivative of
(1.3.54) and using (1.3.34), we get

M€rG ¼ FðeÞ; ð1:3:55Þ
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meaning that: The centre of mass of a system of particles obeys the equation of
motion of a point in which the entire mass of the system would be concentrated,
and such that the resultant of the external forces would act there. This is the centre
of mass theorem. In particular, if F = 0,

M _rG ¼
XN

i¼1

mivi ¼ const:; ð1:3:56Þ

i.e. the centre of mass is either at rest or it moves uniformly in a straight line.

Observation: If the system of particles is continuous, the centre of mass is
determined by

rG ¼
1
M

Z

V

qðrÞrds; ð1:3:57Þ

where ds is the volume element, q ¼ dm
ds is the mass density at any point of the

domain occupied by the system and M = $V q ds is the total mass.

1.3.4.8 König’s Theorems

Now we shall establish two results due to the German mathematician Samuel
König. Let us consider the motion of a system of particles relative to two reference
frames S(Oxyz) and S0ðGx0y0z0Þ, the first being inertial and the latter non-inertial,
but having its origin at the centre of mass G and its axes along fixed directions with
respect to S. Then for any point Pi of the system is satisfied the relation

ri ¼ rG þ r0i: ð1:3:58Þ

Taking the time derivative of (1.3.58), we obtain vi ¼ vG þ v0i, where v0i ¼ dr0i=dt

is the velocity of Pi with respect to G. Using (1.3.54) and (1.3.58), we obtain

XN

i¼1

mir
0
i ¼ 0: ð1:3:59Þ

In view of (1.3.58) and (1.3.59), the angular momentum of the system is
(Fig. 1.5)

L ¼ rG �MvG þ
XN

i¼1

mir
0
i � v0i ¼ LG þ L0; ð1:3:60Þ

known as König’s first theorem: The angular momentum of the system, relative to
O, is equal to the sum of the angular momentum of the centre of mass relative to O
and the angular momenta of the components of the system with respect to G.
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In the same way, we can calculate the kinetic energy:

T ¼ 1
2
MjvGj2 þ

1
2

XN

i¼1

mijv0ij
2 ¼ TG þ T 0; ð1:3:61Þ

which is König’s second theorem: The kinetic energy of the system, relative to O,
is equal to the sum of the centre of mass kinetic energy with respect to O and the
kinetic energy of the components of the system relative to G.

Consequences. Using König’s theorems, we shall write the angular momentum
and kinetic energy theorems relative to the non-inertial frame S0. In view of
(1.3.55) and (1.3.60), we have:

dL

dt
¼ rG � FðeÞ þ dL0

dt
; MðeÞ ¼ rG � FðeÞ þM0ðeÞ:

In this case, (1.3.38) yields

dL0

dt
¼M0; ð1:3:62Þ

i.e. the angular momentum theorem also applies in the case of the motion relative
to the centre of mass.

By virtue of (1.3.43) and (1.3.61), we have:

dWðeÞ ¼
XN

i¼1

F
ðeÞ
i � dri ¼ FðeÞ � drG þ dW 0ðeÞ; ð1:3:63Þ

dWðiÞ ¼
XN

i¼1

XN

j¼1

Fij � dri ¼ dW 0ðiÞ: ð1:3:64Þ

On the other hand, multiplying (1.3.55) by drG ¼ vGdt, we can also write

M
dvG

dt
� vGdt ¼ d

1
2
MjvGj2

� �

¼ FðeÞ � drG; ð1:3:65Þ

Fig. 1.5 Two reference
frames: an inertial one,
S(Oxyz), and a non-inertial
one, S0(Gx0y0z0), with G at the
centre of mass, used to prove
König’s theorems (1.3.60)
and (1.3.61).
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leading to

dT ¼ d T 0 þ 1
2
MjvGj2

� �

¼ dT 0 þ FðeÞ � drG: ð1:3:66Þ

By substituting (1.3.63)–(1.3.66) into (1.3.43), we finally get:

dT 0 ¼ dW 0ðeÞ þ dW 0ðiÞ; ð1:3:67Þ

i.e. the kinetic energy theorem is valid also relative to G.
This analysis leads to the following conclusion: There exists a non-inertial

reference frame S0 relative to which the angular momentum and kinetic energy
theorems keep their form. This frame has fixed axes with respect to S and has its
origin at the centre of mass of the system. Note that, if the axes of S0 are not fixed
relative to S, this statement is no longer valid (see Chap. 4).

1.4 Problems

1. Study the motion of a projectile of mass m, thrown at an angle a relative to the
horizontal plane, supposing that besides the force of gravity G, a friction force
Ff = -gv acts on it.

2. The forces acting on a sky-diver of mass m are the force of gravity and the
force of air resistance, proportional to the squared velocity. Find the diver’s
velocity v as a function of time and the final velocity vf.

3. From the upper point A of a fixed sphere of radius R, a particle P of mass
m begins to move without friction on the surface of the sphere. Find the
distance between the lower point B of the sphere and the point C where the
particle’s trajectory intersects the horizontal plane.

4. A rope is suspended over a massless pulley. At one end of the rope a mass m1

is fastened, while at the other end a monkey of mass m2 begins to climb-up,
according to the law n = n(t) relative to the rope. Find the motion of the
monkey relative to the point O. The initial conditions are: nð0Þ ¼ 2l; zð0Þ ¼ l;
_nð0Þ ¼ 0; _zð0Þ ¼ 0:
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5. A particle M traces the curve given by the equations

x ¼ 4
ffiffiffi

2
p

sin h; y ¼ sin 2h:

(a) Determine the velocity, as well as the tangent and normal components of
the acceleration of the particle with respect to the trajectory.

(b) Assuming that h is the solution of the differential equation

dh
dt
¼ sin h;

with h ¼ h0 ¼ p
2 at t = 0, give the explicit expression for h as a function

of time.
(c) Does the particle describe the entire curve if the time t varies from -?

to +??

6. Determine the plane trajectory of a particle, whose normal and tangent
components of the acceleration are constant during the motion. As initial
condition, take h = h0, at t = 0.

7. A body situated at a height h on an inclined plane of angle a is pushed
downwards with the velocity v0 parallel to the plane. Neglecting the friction,
determine the value of the angle a for which the body would arrive at the
bottom of the plane in minimum time.

8. Study the motion of a charged particle of mass m and charge e, moving in the
constant magnetic field B under the action of the Lorentz force
F = ev 9 B. The initial conditions are:

r ¼ ð0;R; 0Þ; v0 ¼ ðv0x; v0y; v0zÞ:

9. Find the trajectory of an electron of charge e and mass m entering in the
variable homogeneous electric field E ¼ A cos kt, where A and k are con-
stants, with the velocity v0\ E. The force acting on the electron is F = -eE.

10. A particle moves without friction on the surface of a cone of angle 2a at the
top, its velocity and its areal velocity being constant in the plane Ox1x2. Find
the equations of motion of the particle.
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11. A particle of mass m moves on the ellipse x2

a2 þ y2

b2 ¼ 1, its acceleration being
permanently directed along the y-axis. Taking as initial conditions r = (0, b)
and v = (v0, 0) at t = 0, determine the force acting on the particle.

12. A heavy particle moves on a vertical circle. At time t = 0, the particle is
located at one end of the horizontal diameter, its initial velocity being zero.
The velocity of the particle at the lowest point of the circle is also zero.
Determine the coefficient of friction l between the particle and the circle,
knowing that the friction force is F = lN, where N is the component of the
gravitational force normal to the surface and the direction of the friction force
is tangent to the trajectory.

13. Solve the equation of motion of a particle for the force F ¼ � k
x3 , if the

particle is subject to the initial conditions: x(0) = x0 = 0, v(0) = 0.
14. The velocity of a particle is proportional to the (n - 1)th power of its radius

vector, while its areolar velocity is constant. Determine the acceleration of the
particle and its trajectory.

15. The law of universal gravitation, giving the force between a particle of mass
m and an extended object of mass M ¼

R

V
qðr0Þds0 is

F ¼ �Gm

Z

V

qðr0Þðr� r0Þ
jr� r0j3

ds0;

where G is the gravitational constant. Find the gravitational potential energy
uðrÞ of the object of mass m in the field of M and obtain Poisson’s equation
for uðrÞ:

DuðrÞ � 4pGmqðrÞ ¼ 0:
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16. A point of mass m is in the presence of a homogeneous sphere of radius R and
mass M. Find the force of interaction between the particle and the sphere.

17. The ends of a homogeneous heavy rod move without friction on two fixed
planes, defined by angles a and b with respect to the horizontal line. Deter-
mine the angle h between the rod and the horizontal line, at equilibrium.

18. Discuss the elastic collision between two particles of masses m1 and m2 in two
coordinate systems: the laboratory frame (the frame in which one particle is at
rest) and the centre of mass frame.

19. Find the equipotential surfaces of the gravitational field produced by a
straight, finite and homogeneous wire of length 2c and linear density k.

20. Determine the conditions which must be satisfied by the constants
k1; k2; k3; k4, so that the force field of components F1 ¼ k1x1 þ k2x2;F2 ¼
k3x1 þ k4x2 (defined in the Ox1x2-plane) be conservative.

26 1 Foundations of Newtonian Mechanics



Chapter 2
Principles of Analytical Mechanics

2.1 Constraints

As we have already mentioned in Chap. 1, a particle (or a system of particles) is
subject to constraints if its motion is restricted by a constraint force on a certain
surface, or on some curve, etc. The notion of constraint is essential in under-
standing the analytical mechanics formalism, and we shall begin this chapter with
a thorough analysis of this basic concept.

By definition, a constraint is a geometric or kinematic condition that limits the
possibilities of motion of a mechanical system. For example, a body sliding on an
inclined plane cannot leave the plane, or a pebble inside a soccer ball is compelled
to move within a given volume, etc.

2.1.1 One-Particle Systems

Assuming Cartesian coordinates are used, let us begin our investigation with a
single particle. If r is the radius-vector of the particle and v its velocity at time t,
then a relation of the form

fðr; v; tÞ ¼ 0 ð2:1:1Þ

is the mathematical expression for a constraint. One says that the particle is subject
to the constraint (2.1.1).

We can classify the constraints according to three criteria:

(a) A constraint can be expressed either by an equality

f ðx; y; z; tÞ ¼ 0; ð2:1:2Þ

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2_2,
� Springer-Verlag Berlin Heidelberg 2012
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or by an inequality

f ðx; y; zÞ� 0; fðx; y; zÞ� 0: ð2:1:3Þ

The first type of constraint is called bilateral and the second unilateral. For
example, the relation

ðx� atÞ2 þ ðy� btÞ2 þ ðz� ctÞ2 ¼ R2 ð2:1:4Þ

indicates that the particle is permanently on a moving sphere, with its centre at
the point (at, bt, ct), while the inequality

x2 þ y2 þ z2 � R2� 0 ð2:1:5Þ

shows that the motion of the particle is restricted inside a fixed sphere of radius R.
(b) If the time t does not explicitly appear in the equation of the constraint, this is

called a scleronomous or stationary constraint. Such a constraint is, for
instance, (2.1.5). If the constraint is time-dependent, like (2.1.4), it is named a
rheonomous or non-stationary constraint. An example of rheonomous con-
straints is provided by the system

f1ðx; y; z; tÞ ¼ 0; f2ðx; y; z; tÞ ¼ 0; ð2:1:6Þ

meaning that the particle is forced to slide on a moving curve.
(c) A velocity-dependent constraint is called a kinematic or differential constraint,

like

fðx; y; z; _x; _y; _zÞ ¼ 0; ð2:1:7Þ

while a constraint in which the components of the velocity do not appear is
named a geometric or finite constraint. For example, the constraints (2.1.2)–
(2.1.6) are geometric, while (2.1.1) is kinematic. From now on, we shall
consider only those differential constraints which are linear in the velocity
components, as

ai _xi þ b ¼ 0; ð2:1:8Þ

where

ai ¼ aiðr; tÞ; bi ¼ biðr; tÞ ði ¼ 1; 2; 3Þ ð2:1:9Þ

and the summation convention has been used. Taking the total time derivative
of (2.1.2), we have:

of

oxi

_xi þ
of

ot
¼ 0; ð2:1:10Þ

meaning that a geometric constraint can be written as a linear differential
constraint. Obviously, the reciprocal of this statement is not true.

Those differential constraints which can be put in a finite form are called
integrable constraints. The geometric constraints, together with the integrable
constraints, form the class of holonomic constraints. Such constraints are, for
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example, those given by (2.1.2), (2.1.4), (2.1.6). The non-integrable constraints,
together with constraints expressed by inequalities, are said to be non-holonomic
constraints.

As an example of non-integrable constraint, let us consider a coin of radius a,
rolling on a horizontal plane and keeping always a vertical position (Fig. 2.1). If h
is the angle between the x-axis and the normal to the coin, and u is the angle of
rotation of the coin, the velocity of the point C is

v ¼ a _uu; ð2:1:11Þ

which is permanently orthogonal to the axis of the coin. The components of the
velocity are:

vx ¼ a _u cos h; vy ¼ a _u sin h; vz ¼ 0;

or, in differential form,

dx� a cos h du ¼ 0; dy� a sin h du ¼ 0: ð2:1:12Þ
These two equations cannot be integrated, because their left hand sides do not

represent total differentials of some functions. Consequently, they provide an
example of a non-holonomic (vector) constraint.

There are no general methods of solving problems involving non-holonomic
constraints. Each case must be studied separately. Fortunately, most of the prob-
lems arising in mechanics are connected with holonomic constraints.

A constraint can be characterized simultaneously upon all possible criteria. For
instance, the constraint expressed by (2.1.2) is bilateral, scleronomous and geo-
metric, while the constraint (2.1.7) is bilateral, scleronomous and differential.

There is a close relation between the number of constraints and the number of
degrees of freedom of a mechanical system. The minimal number of real inde-
pendent parameters that determine the position of a particle defines the number of
degrees of freedom of that particle. A free particle, i.e. a particle subject only to
applied forces, has three degrees of freedom. If the coordinates of the particle are
connected by a relation of type (2.1.2), the number of its degrees of freedom

Fig. 2.1 The motion of a
coin of radius a, rolling on a
horizontal plane, as an
example of non-integrable
constraint.
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reduces to two. In the same way, the existence of the two constraints (2.1.6)
implies that the particle moves on a curve: the position of the particle is deter-
mined by a single parameter, corresponding to a single degree of freedom. In
general, each geometric bilateral constraint applied to a system reduces its
number of degrees of freedom by one.

Note that the coordinates of a particle cannot simultaneously obey more than
two independent constraints; a third constraint would either keep the particle fixed,
or make its motion known without considering the forces acting on it.

2.1.1.1 The Fundamental Equation of Motion

As we have already mentioned in Chap. 1, the existence of a constraint can be
connected with a reaction or constraint force, which determines the particle to
obey the constraint. If we denote by F and L the resultants of the applied and
constraint forces, respectively, acting on a particle P of mass m, the differential
equation of motion reads:

m€r ¼ Fþ L: ð2:1:13Þ

The fundamental problem of mechanics of a system subject to both applied and
constraint forces is: given F and the initial conditions, consistent with the con-
straints, find the motion of the system and determine the reaction force L. The
constraint force L is a priori unknown, therefore in order to use Eq. (2.1.13) one
must make certain assumptions on it. The following two examples will familiarize
the reader with the methods of solving problems involving constraint forces.

(1) Motion on a curve. First, assume that the curve, considered to be fixed, is
given by its parametric equations:

xi ¼ xiðqÞ ði ¼ 1; 2; 3Þ; ð2:1:14Þ

where q is a real, time-dependent parameter. On the other hand, projecting (2.1.13)
on the axes, we have:

m€xi ¼ Fi þ Li ði ¼ 1; 2; 3Þ; ð2:1:15Þ

where Fx, Fy, Fz are given as functions of r, _r, t or, in view of (2.1.14),

Fi ¼ Fiðq; _q; tÞ ði ¼ 1; 2; 3Þ: ð2:1:16Þ

We have arrived at a system of three second-order differential equations
(2.1.15), with four unknowns, Lx;Ly;Lz; q: To solve the problem, one decom-
poses the constraint force L into two vector components, Ln and Lt (Fig. 2.2).
The component Ln lies in the plane normal to the curve (C) at the point P, while
the component Lt is tangent to the curve and points in the direction of motion
of the particle.
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The component Ln is called the normal reaction and Lt – the force of friction.
If Lt = 0, the particle moves without friction and the curve is perfectly smooth or
ideal. If Ln = 0, the force L is tangent to a perfectly rough curve.

Assuming Lt = 0, since v is always directed along the tangent to the trajectory
(which in our case coincides with the constraint), we can write

v � L ¼ _xLx þ _yLy þ _zLz ¼ 0: ð2:1:17Þ

We are now in possession of four equations (2.1.15) and (2.1.17) for the
unknowns Lx;Ly;Lz; q: Therefore, we are able to determine both q = q(t), i.e. the
motion of the particle on the curve, and the components of the constraint force.

Second, let us suppose that the fixed curve is given in the implicit form

f1ðx; y; zÞ ¼ 0; f2ðx; y; zÞ ¼ 0: ð2:1:18Þ

In this case, the differential equations (2.1.15), together with the frictionlessness
condition (2.1.17) and the constraint equations (2.1.18) form a system of six
equations for six unknowns: x; y; z;Lx;Ly;Lz:

The problem can be solved somewhat differently by decomposing the force
L into two vector components, along the normals to the two surfaces whose
intersection produces the curve (C) (Fig. 2.3). Then we may write

L � Ln ¼ k grad f1 þ l grad f2; ð2:1:19Þ

where k and l are two scalar multipliers. The equation of motion is then

m€xi ¼ Fi þ k
of1

oxi

þ l
of2

oxi

ði ¼ 1; 2; 3Þ: ð2:1:20Þ

Thus, we are left with a system of five equations (2.1.18) and (2.1.20) for the
unknowns x, y, z, k, l. In this way, both the motion of the particle and the con-
straint force are determined.

Fig. 2.2 Decomposition of
the constraint force L into
two vector components, one
normal and one tangent to the
trajectory.
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Observations:

(a) If the component Lt is non-zero but known, it can be included in F:

m€r ¼ Fþ Lt þ Ln ¼ F0 þ Ln ð2:1:21Þ

and one then follows the usual procedure.
(b) An alternative form of the equations of motion for a stationary curve is

obtained by projecting (2.1.13) on the axes of a natural system of coordinates
(see Appendix B):

m _v ¼ Fs;
mv2

q
¼ Fm þ Lm; 0 ¼ Fb þ Lb; ð2:1:22Þ

where the index s shows the tangent to the curve, m – the principal normal and
b – the bi-normal.

(2) Motion on a surface. Here the procedure is similar, though a little more
complicated. Following the same order as in the previous case, let us first suppose
that the surface is given in the parametric form

xi ¼ xiðq1; q2Þ ði ¼ 1; 2; 3Þ: ð2:1:23Þ

Since

_r ¼
X2

a¼1

or

oqa
_qa; €r ¼

X2

a;b¼1

o2r

oqaoqb
_qa _qb þ

X2

a¼1

or

oqa
€qa;

the equation of motion (2.1.13) becomes

m
X2

a;b¼1

o2r

oqaoqb
_qa _qb þ

X2

a¼1

or

oqa
€qa

 !

¼ Fþ L ð2:1:24Þ

or, in components,

m
X2

a;b¼1

o2
xi

oqaoqb
_qa _qb þ

X2

a¼1

oxi

oqa
€qa

 !

¼ Fi þ Li ði ¼ 1; 2; 3Þ: ð2:1:25Þ

Fig. 2.3 Decomposition of
the constraint force L into
two vector components, along
the normals to the two
surfaces whose intersection
produces the curve (C).
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There are five unknowns occurring in (2.1.25): q1; q2;Lx;Ly;Lz: To solve this
problem, one decomposes L into two components, Lt and Ln, the first being
tangent to the surface and showing the direction of motion, and the second along
the normal to the surface. If Lt = 0, then L = Ln. To express this property, we
observe that L is normal to two parametric curves on the surface, i.e.

Li

oxi

oqa
¼ 0 ða ¼ 1; 2Þ: ð2:1:26Þ

We therefore have five equations, (2.1.25) and (2.1.26), for the unknowns
q1; q2;Lx;Ly;Lz:

If the surface is perfectly smooth, the constraint force L can be eliminated by
multiplying (2.1.24) by or

oqc ðc ¼ 1; 2Þ: Then, in view of (2.1.26), we have:

m
or

oqc
�
X2

a;b¼1

o2r

oqaoqb
_qa _qb þ or

oqc
�
X2

a¼1

or

oqa
€qa

 !

¼ Qc ðc ¼ 1; 2Þ; ð2:1:27Þ

where

Qc ¼ F � or

oqc
ðc ¼ 1; 2Þ ð2:1:28Þ

are the covariant components of the applied force F along the tangents of any two
parametric lines of the surface.

The solution of (2.1.27) is

qa ¼ qaðt;C1; . . .;C4Þ ða ¼ 1; 2Þ ð2:1:29Þ

and, if the initial conditions are known, the finite equations of motion can be
determined. The solution (2.1.29) is then introduced into (2.1.23) and thus we
obtain the motion of the particle in the real (physical) space.

Equation (2.1.27) can be set in a more condensed form by using the metric
tensor gab (see (2.6.35)), which is defined by

gab ¼
or

oqa
� or

oqb
ða; b ¼ 1; 2Þ: ð2:1:30Þ

We have:

ogab

oqc
¼ o2r

oqaoqc
� or

oqb
þ or

oqa
� o2r

oqbqc

and, making a cyclic permutation of the indices a, b, c and then combining the
three obtained relations, we get

or

oqc
� o2r

oqaoqb
¼ Cab;c ða;b; c ¼ 1; 2Þ; ð2:1:31Þ
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where the quantities

Cab;c ¼
1
2

ogbc

oqa
þ ogca

oqb
� ogab

oqc

� �

ð2:1:32Þ

are called the Christoffel symbols of the first kind. By virtue of (2.1.31),
Eq. (2.1.27) can be put in the form

m
X2

a¼1

gca€qa þ
X2

a;b¼1

Cab;c _qa _qb

 !

¼ Qc ðc ¼ 1; 2Þ: ð2:1:33Þ

If we multiply this equation by gcr and perform the summation over c, we find

m €qr þ
X2

a;b¼1

Cr
ab _qa _qb

 !

¼ Qr ðr ¼ 1; 2Þ; ð2:1:34Þ

where

Cr
ab ¼

X2

c¼1

gcrCab;c ð2:1:35Þ

are the Christoffel symbols of the second kind and

Qr ¼
X2

c¼1

grcQc ð2:1:36Þ

are the contravariant components of the quantities (2.1.28).
If no applied force F acts on the particle, the kinetic energy theorem implies

that the particle moves on the surface (2.1.23) with constant speed. In this case, the
acceleration vector a is oriented along the principal normal to the trajectory which,
for Lt = 0, coincides with the normal to the surface. The equations of equilibrium
of the particle, written in a geodetic form, are then

€qr þ
X2

a;b¼1

Cr
ab _qa _qb ¼ 0 ðr ¼ 1; 2Þ: ð2:1:37Þ

As an example, let us take q1 ¼ h; q2 ¼ u: Then the metric (see Appendix B)

ds2 ¼ r2dh2 þ r2 sin2 h du2 ðr ¼ const.Þ

yields

g11 ¼ r2; g22 ¼ r2 sin2 h; g12 ¼ 0
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and, together with the condition

X2

a¼1

gabg
ac ¼ dc

b;

we find

g11 ¼ 1
r2
; g22 ¼ 1

r2 sin2 h
; g12 ¼ 0:

We are now able to calculate the Christoffel symbols of the second kind, Cc
ab: The

only non-zero symbols are

C1
22 ¼ �sin h cos u; C2

12 ¼ C2
21 ¼ cot h

and Eqs. (2.1.37) read

€h� sin h cos u _u2 ¼ 0;

€uþ cot h _h _u ¼ 0:

We easily recognize the components of the acceleration vector (1.1.17) along the
parametric lines h;u; taken for r = const.

If, as a second example, we choose q1 ¼ x; q2 ¼ y; we have gab ¼ dab, which
leads to the equation of motion

€x ¼ 0; €y ¼ 0; ð2:1:38Þ

as expected.
If the fixed, ideal surface is given under the implicit form

f ðx; y; zÞ ¼ 0; ð2:1:39Þ

the components of the fundamental equation of motion are

m€xi ¼ Fi þ k
of

oxi

ði ¼ 1; 2; 3Þ: ð2:1:40Þ

The three equations (2.1.40), together with the equation of constraint (2.1.39),
form a system of four equations in the unknowns x, y, z, k. Both the motion and
the constraint forces can then be determined.

2.1.1.2 Static Equilibrium of a Particle

(1) Free particle. A point mass m is in equilibrium relative to a certain frame if the
resultant of the forces acting on it is zero

m€r ¼ F ¼ 0: ð2:1:41Þ
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The equilibrium positions are determined by solving the system of three equations
with three unknowns

m€xi ¼ Fi ¼ 0: ð2:1:42Þ

If, in particular, the solution of the system (2.1.42) is unique, we have only one
position of equilibrium.

Assume that the particle is subject to a conservative force field

F ¼ �grad V ¼ grad U; ð2:1:43Þ

where we denote U(r) = -V(r). We also assume that U(r) is a function of class
C2. The last two relations give

oU

oxi

¼ 0 ði ¼ 1; 2; 3Þ: ð2:1:44Þ

Consequently, in order for the position P0 of the particle to be a position of
equilibrium, it is necessary to have

oU

oxi

� �

P0

¼ 0 ði ¼ 1; 2; 3Þ; ð2:1:45Þ

meaning that in P0 the function U(r) has either an extremum, or an inflection point.
A position P0 of the particle P is a position of stable equilibrium if, setting the

particle in a position P1 close to P0, and giving it a sufficiently small initial
velocity v0, the trajectory of the particle remains in an infinitely small sphere. In
other words, the displacement of the particle from the equilibrium position is
infinitely small. More rigorously, for any e[ 0 there correspond the functions
g1ðeÞ[ 0; g2ðeÞ[ 0; such that, if j ~P0P1j\g1ðeÞ and jv0j\g2ðeÞ; then j ~P0Pj\e
for any t.

The position P0 is a position of maximum (or minimum) for U(P), if there is a
vicinity QP0 of P0 in which UðPÞ�UðP0Þ or UðPÞ�UðP0Þð Þ; for any P 2 QP0 :
When these conditions are fulfilled without the ‘‘equal’’ sign, we have a strict
maximum (minimum).

Using these definitions, we shall now demonstrate the Lagrange–Dirichlet
theorem: If in the position P0 the function U has a strict maximum, then P0 is a
position of stable equilibrium.

The proof begins with the observation that, since U(P0) = max., then
V(P0) = min. But, as we know, the origin of the potential energy V can be arbi-
trarily chosen, so that we can take V(P0) = 0. Consequently, there exists a vicinity
QP0 of P0 (except for P0) for which V(P) [ 0. Let L be the maximum value of
V(P) on the boundary of the domain QP0 and let us choose a vicinity Q0P0

� QP0 of

P0, so that VðPÞ\ L
2 for any P 2 Q0P0

: Suppose that at the initial time the particle

is in P1 2 Q0P0
and has the velocity v1, chosen so as to have 1

2 mjv1j2\ L
2 :

Applying the kinetic energy theorem (1.3.21), we have:
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1
2
mjvj2 � 1

2
mjv1j2 ¼ UðPÞ � UðP1Þ

or, since the system is conservative,

1
2
mjvj2 þ VðPÞ ¼ 1

2
mjv1j2 þ VðP1Þ ¼ const:

Thus, we may write

1
2

mjvj2 þ VðPÞ\ L

2
þ L

2
¼ L:

The quantities T ðPÞ ¼ 1
2 mjvj2 and V(P) are positive, therefore T ðPÞ\L;

VðPÞ\L, showing that the velocity of the particle in position P cannot be greater
than a certain value. Consequently the particle, starting from the position P1, will
never touch the boundary of the domain QP0 : Recalling the definition of stable
equilibrium, the proof is completed.

(2) Particle subject to constraints

(a) Equilibrium on a surface. Assuming again a perfectly smooth (ideal) surface,
in order for a particle to be in equilibrium it must obey the equation

m€r ¼ Fþ Ln ¼ 0: ð2:1:46Þ

In other words, the particle is in equilibrium relative to the surface if the resultant
of the applied forces is directed along the normal to the surface. If the surface is
given in the parametric form (2.1.23), the equations of equilibrium are:

Fx þ k
oðy; zÞ

oðq1; q2Þ ¼ 0; Fy þ k
oðz; xÞ

oðq1; q2Þ ¼ 0; Fz þ k
oðx; yÞ

oðq1; q2Þ ¼ 0; ð2:1:47Þ

where the functional determinants oðy;zÞ
oðq1;q2Þ ;

oðz;xÞ
oðq1;q2Þ ;

oðx;yÞ
oðq1;q2Þ are the direction

parameters of the normal to the surface. The determinant oðy;zÞ
oðq1;q2Þ ; for example,

is calculated by

oðy; zÞ
oðq1; q2Þ ¼

oy

oq1
oy

oq2

oz
oq1

oz
oq2

�
�
�
�
�

�
�
�
�
�
:

If the surface is given under the implicit form (2.1.39), the equations of
equilibrium are

Fi þ k
of

oxi

¼ 0 ði ¼ 1; 2; 3Þ: ð2:1:48Þ

(b) Equilibrium on a curve. Following the same procedure, we first consider the
case where the curve is given under the parametric form as in (2.1.14).
Let x0, y0, z0 be the direction parameters of the tangent to the curve in the point
where the particle is. Then, the constraint force L is normal to the curve if
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x0iLi ¼ 0: ð2:1:49Þ

This condition is identically satisfied by the choice:

Lx ¼ kz0 � ly0; Ly ¼ lx0 � mz0; Lz ¼ my0 � kx0; ð2:1:50Þ

where k, l, m are three arbitrary parameters.
Finally, if the curve is expressed by its implicit equations (2.1.18), in view

of (2.1.20), the equilibrium condition reads:

Fi þ k
of1

oxi

þ l
of2

oxi

¼ 0 ði ¼ 1; 2; 3Þ: ð2:1:51Þ

Example. Let us find the equilibrium position of a heavy particle, sliding without
friction on a fixed circle of radius R, situated in a vertical plane. The circle can be
conceived as given by the intersection of a sphere of radius R and a plane passing
through its centre. Choosing the origin of the coordinate system in the centre of the
sphere and the x-axis along the descendent vertical, the equations of the circle are

f1ðx; y; zÞ � x2 þ y2 þ z2 � R2 ¼ 0; f2ðx; y; zÞ � z ¼ 0: ð2:1:52Þ

The equilibrium positions are obtained by eliminating k and l from (2.1.51).

Multiplying this equation by �ijk
of1
oxj

of2
oxk
; we have:

Fx Fy Fz
of1
ox

of1
oy

of1
oz

of2
ox

of2
oy

of2
oz

�
�
�
�
�
�
�

�
�
�
�
�
�
�

¼ 0: ð2:1:53Þ

But Fx ¼ G ¼ mg; Fy ¼ Fz ¼ 0; therefore (2.1.53) gives y = 0. These results,
when introduced into the first equation of (2.1.52), produce the following two
conditions of equilibrium:

x ¼ �R: ð2:1:54Þ

On the other hand, projecting Eq. (2.1.43) on axes, we have:

U ¼ mgxþ const: ð2:1:55Þ

One observes that U has a maximum for x = R and a minimum for x = -R.
According to the Lagrange–Dirichlet theorem, the position P0(x= ? R, y = 0) is a
position of stable equilibrium, while P1(x = -R, y = 0) is a position of unstable
equilibrium.
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2.1.2 Many-Particle Systems

Let P1; . . .;PN be a system of N particles. At any moment t, the radius-vectors of
the particles r1; . . .; rN and their velocities _r1; . . .; _rN can take arbitrary values. A
relation of the form

f ðr1; . . .; rN ; _r1; . . .; _rN ; tÞ ¼ 0 ð2:1:56Þ

is a constraint which restricts the motion of the particles. The criteria of classi-
fication of constraints for many-particle systems are similar to those encountered
in the case of a single particle. For example, the relations

fkðr1; . . .; rN ; tÞ ¼ 0 ðk ¼ 1; s; s� 3NÞ ð2:1:57Þ

express s bilateral, rheonomous, geometric constraints. They are also holonomic
constraints. The number of constraints cannot exceed 3N; in the case s = 3N, the
N vectors r1; . . .; rN would be completely determined by the constraints.

As for a single particle, we consider only those differential constraints which
are linear in the velocities:

XN

i¼1

gk
i ðr1; . . .; rN ; tÞ � _ri þ gk

0ðr1; . . .; rN ; tÞ ¼ 0 ðk ¼ 1; sÞ: ð2:1:58Þ

It is seen that (2.1.57) can be written in a form similar to (2.1.58). Indeed, taking
its total time derivative, we arrive at

XN

i¼1

ðgradifkÞ � _ri þ
ofk

ot
¼ 0 ðk ¼ 1; sÞ: ð2:1:59Þ

The constraints (2.1.58) can be integrable (holonomic) or non-integrable (non-
holonomic). The non-integrable constraints are also called Pfaffian.

The fundamental equation of motion, written for the particle Pi of mass mi of
the system, is

mi€ri ¼ Fi þ Li ði ¼ 1;NÞ; ð2:1:60Þ

where Li is the resultant of the constraint forces acting on the particle.
Assuming that the holonomic constraints (2.1.57) are ideal, we can generalize

the relation (2.1.40) by multiplying (2.1.57) by kk(t), performing the summation
over k, and introducing the result into (2.1.60):

mi€ri ¼ Fi þ
Xs

k¼1

kkgradifk ði ¼ 1;NÞ: ð2:1:61Þ

Equations (2.1.61), together with the constraints (2.1.57), represent 3N ? s equa-
tions in the unknowns r1; . . .; rN (3N coordinates) and k1; . . .; ks: Equations
(2.1.61) are called the Lagrange equations of the first kind. They are due to the
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Italian-French mathematician Joseph-Louis Lagrange, as are many other results,
concepts and formalisms which we shall encounter further in this book.

Observation: The problems involving static equilibrium of mechanical systems of
particles are discussed in a way similar to that used for a single particle. Notice,
nevertheless, that special care must be taken in the case of interacting particles.

2.2 Elementary Displacements

To determine the equilibrium conditions of a system of N particles subject to
constraints using the method developed in the previous section, one must separately
study the equilibrium of each particle, taking into account that the constraint forces
are a priori unknown. If the number of particles is large, we have many equations
with many unknowns. In this case the aforementioned procedure becomes
complicated.

We shall now give a more general and more useful method for solving both
dynamic and static problems of mechanics. The main difference from the already
known formalism is that the effect of constraints is expressed not by constraint
forces, but rather by elementary displacements associated with these forces.

Assume that our system is subject to s holonomic, scleronomous constraints

fkðr1; . . .; rNÞ ¼ 0 ðk ¼ 1; sÞ: ð2:2:1Þ

Being under the action of applied forces, the particles perform certain displace-
ments which must be consistent with the constraints. Let dri be the infinitesimal
displacement of the particle Pi during the time interval dt, subject to the applied
forces and the initial conditions, and consistent with the constraints. Such a dis-
placement takes place effectively, during the time interval dt, being unique. It is a
real displacement. But, if we only fix the position of the particle at time t, we can
have an infinite number of velocities _r1; . . .; _rN ; consistent with the constraints
(2.2.1). The displacements performed by particles under these conditions are called
possible. The real displacements belong to the multitude of possible displacements,
being the subset that satisfies both the equations of motion and the initial conditions.

Now, let us consider a system of displacements dri ði ¼ 1;NÞ that obey only
one condition: they are consistent with the constraints. These purely geometric
displacements are synchronic, i.e. they are taken at an instant t (dt = 0). These are
usually called virtual displacements.

By differentiating (2.2.1), we get

XN

i¼1

ðgradifkÞ � dri ¼ 0 ðk ¼ 1; sÞ; ð2:2:2Þ

meaning that all the real (or possible) displacements dri lie in the planes tangent to
the surfaces f1 ¼ 0; . . .; fs ¼ 0: Using the definition of virtual displacements dri,
we infer also:
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XN

i¼1

ðgradifkÞ � dri ¼ 0 ðk ¼ 1; sÞ; ð2:2:3Þ

showing that any virtual displacement can become a possible one.
Passing now to the rheonomous constraints, given, for example, by Eq. (2.1.56),

we realize that the possible displacements dri ði ¼ 1;NÞ must obey the relation

XN

i¼1

ðgradifkÞ � dri þ
ofk

ot
dt ¼ 0 ðk ¼ 1; sÞ; ð2:2:4Þ

while the virtual displacements dri satisfy an equation similar to Eq. (2.2.3).
Writing (2.2.4) for two sets of possible displacements dri

0 and dri
00, and then

subtracting the obtained relations, we arrive precisely at Eq. (2.2.3), where

dri ¼ dr0i � dr00i : ð2:2:5Þ

Therefore, any virtual displacement can be considered as the difference
between two possible displacements. For example, consider a spherical balloon
with a fixed centre, taken in the process of inflation (Fig. 2.4). At the moments
t1\t2\t3. . .; the radii of the balloon will be R1\R2\R3. . .: An ant moving on
the balloon, and being at time t1 in the position P, could be at time t2 [ t1 in any
position P0, P00, P000 etc., on the sphere of radius R2 [ R1: The displacements
dr0, dr00, dr000, etc. are possible displacements. Depending on the initial conditions
(the ant is considered a mechanical system), only one of these displacements is
real. Any virtual displacement dr at time t2 lies in the plane tangent to the sphere
of radius R2, and obeys the rule (2.2.5). The virtual displacements are atemporal,
in our example being any displacement on the balloon surface, taken at an instant,
while R is fixed.

Fig. 2.4 Intuitive examples
of real, possible and virtual
displacements.
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2.3 Principle of Virtual Work

A method providing a very efficient way of eliminating the constraint forces
appearing in a mechanical problem is the principle of virtual work. Assume again
that a system of N particles P1; . . .;PN is in static equilibrium and subject to ideal
constraints. If dri is a virtual displacement of the particle Pi, consistent with the
constraints, then, by definition,

dW ¼ Fi � dri ð2:3:1Þ

is the virtual work of the force Fi relative to the displacement dri. In the case of
static equilibrium (€ri ¼ 0), multiplying (2.1.60) by dri and summing for all the
particles of the system, yields:

XN

i¼1

Fi � dri ¼ 0; ð2:3:2Þ

where we have used the property of ideal constraints

XN

i¼1

Li � dri ¼ 0: ð2:3:3Þ

Relation (2.3.2) expresses the principle of virtual work: The necessary and
sufficient condition for static equilibrium of a scleronomous system subject to ideal
constraints is that the virtual work of the applied forces, for virtual displacements
consistent with the constraints, be zero. If the particles were free, the displace-
ments dri would be arbitrary.

Let us now show that from the principle of virtual work all the conditions of
equilibrium discussed in Sect. 2.1 can be derived.

2.3.1 Free Particle

The principle (2.3.2) for one particle is written as

F � dr ¼ 0: ð2:3:4Þ

Since dr is completely arbitrary, it follows that F = 0, in agreement with (2.1.41).

2.3.2 Particle Subject to Constraints

If the constraint is an ideal surface f(x, y, z) = 0, then the condition

grad f � dr ¼ 0 ð2:3:5Þ
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expresses the fact that the particle lies on the surface. Multiplying (2.3.5) by some
scalar k and adding the result to (2.3.4), we fall back on the relation (2.1.48). In the
case of an ideal curve, the condition (2.3.4) must be completed with

grad f1 � dr ¼ 0; grad f2 � dr ¼ 0; ð2:3:6Þ

leading together to (2.1.51).

2.3.3 System of Free Particles

For arbitrary virtual displacements dri, we have

XN

i¼1

Fi � dri ¼ 0; ð2:3:7Þ

yielding the conditions of equilibrium

Fi ¼ 0 ði ¼ 1;NÞ; ð2:3:8Þ

which are also obtained from (2.1.60) for €ri ¼ 0; Li ¼ 0: Notice that, by using the
principle of virtual work, the N relations (2.3.8) are replaced by a single relation
(2.3.7).

2.3.4 System of Particles Subject to Constraints

Assuming that the constraints are given by (2.1.57), we may write:

XN

i¼1

ofk

oxi

dxi þ
ofk

oyi

dyi þ
ofk

ozi

dzi

� �

¼ 0 ðk ¼ 1; sÞ: ð2:3:9Þ

From (2.3.2) we have also

XN

i¼1

ðXidxi þ Yidyi þ ZidziÞ ¼ 0; ð2:3:10Þ

where Xi;Yi;Zi are the components of the force Fi. The displacements dxi; dyi; dzi

are not arbitrary anymore, but they must obey the s relations (2.3.9).
The (s ? 1) equations (2.3.9) and (2.3.10) can be written as a single relation by

using the method of Lagrange multipliers. Let us amplify each of the equations
(2.3.9) by kk, then perform the summation over the index k and add the result to
(2.3.10). We obtain:
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XN

i¼1

Xi þ
Xs

k¼1

kk

ofk

oxi

 !

dxi þ Yi þ
Xs

k¼1

kk

ofk

oyi

 !

dyi þ Zi þ
Xs

k¼1

kk

ofk

ozi

 !

dzi

" #

¼ 0: ð2:3:11Þ

This relation must be satisfied by any dxi; dyi; dzi ði ¼ 1;NÞ: Since these
variations must obey the s linear homogeneous equations (2.3.10), it follows that
3N - s of these displacements can be taken as being independent. Then, in
(2.3.11) are determined kk so that the parentheses which multiply the s dependent
displacements are zero, leading to a number of s equations. Next, we make vanish
the parentheses multiplying the 3N - s independent displacements, and get more
3N - s equations. Finally, we are left with 3N equations:

Xi þ
Xs

k¼1

kk

ofk

oxi

¼ 0; Yi þ
Xs

k¼1

kk

ofk

oyi

¼ 0; Zi þ
Xs

k¼1

kk

ofk

ozi

¼ 0 ði ¼ 1;NÞ:

ð2:3:12Þ

The 3N equations (2.3.12), together with the s equations (2.1.57), form a system
of 3N ? s equations for 3N ? s unknowns: the equilibrium coordinates
xi; yi; zi ði ¼ 1;NÞ and the multipliers k1; . . .; ks.

Observation: The principle of virtual work applies to the study of the equilibrium
conditions of a rigid body as well. Anticipating, we shall use (4.3.10) to write the
velocity vi of a particle Pi of the rigid body, relative to a fixed frame Oxyz:

vi ¼ v0 þ x	 r0i: ð2:3:13Þ

Here, v0 is the velocity of some particle O0 of the body and ri
0 the radius-vector of

Pi relative to O0. If dri
0 is a virtual displacement of Pi, consistent with the rigidity

constraints, we can write:

vi ¼
dri

dt
; v0 ¼

dr0

dt
ð2:3:14Þ

and (2.3.13) becomes

dri ¼ dr0 þ ðx	 r0iÞdt: ð2:3:15Þ

The principle of virtual work (2.3.2) reads then:

XN

i¼1

Fi � dri ¼ dr0 �
XN

i¼1

Fi þ dt x �
XN

i¼1

r0i 	 Fi ¼ 0; ð2:3:16Þ
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being true for completely arbitrary variations dr0 and xdt: Therefore, we obtain:

XN

i¼1

Fi ¼ F ¼ 0;
X

r0i 	 Fi ¼M0 ¼ 0; ð2:3:17Þ

where the torqueM0 is taken relative to O0. But r0i ¼ ri � r0 (see Fig. 2.5), so that

XN

i¼1

r0i 	 Fi ¼
XN

i¼1

ri 	 Fi � r0 	
XN

i¼1

Fi ¼ 0 ð2:3:18Þ

and, using (2.3.17),

M¼
XN

i¼1

ri 	 Fi ¼ 0: ð2:3:19Þ

Since O is arbitrary, we conclude that M can be taken with respect to any point.
Therefore, the equilibrium conditions of a free rigid body are:

F ¼ 0; M¼ 0: ð2:3:20Þ

Note that any point of a free rigid body has two independent virtual vector dis-
placements, dr0 and xdt; equivalent to six components. Consequently, a free rigid
body possesses six degrees of freedom.

The equilibrium conditions for a rigid body subject to constraints are obtained
in a similar way. For instance, if the body has a fixed point, say O0, the reaction
force of the point O0 can be considered as an applied force, and so the body can be
regarded as being free. Hence, in view of (2.3.17),

Lþ
XN

i¼1

Fi ¼ 0;
XN

i¼1

ri 	 Fi ¼ 0: ð2:3:21Þ

Since O0 is fixed relative to O, we have dr0 = 0, and so

dri ¼ ðx	 r0iÞdt; ð2:3:22Þ

i.e. a rigid body with a fixed point has three degrees of freedom.

Fig. 2.5 Choice of the
systems of coordinates to find
the equilibrium conditions of
a free rigid body (2.3.20).
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2.3.5 Application

Using the principle of virtual work, let us find the equilibrium positions of a
particle A of mass m, which can slide without friction on an ellipse of semi-axes
a and b, rotating with constant angular velocity x about its minor axis, directed
along the vertical as shown in Fig. 2.6.

Our particle is subject to two applied forces:

force of gravity: Fg ¼ mg ¼ �mgj; ð2:3:23Þ

centrifugal force: Fcf ¼ mx2r ¼ mx2xi; ð2:3:24Þ

and a constraint force, due to the restriction of moving on the ellipse,

x2

a2
þ y2

b2
¼ 1: ð2:3:25Þ

The principle of virtual work (2.3.2) yields:

F � dr ¼ mx2xdx�mgdy ¼ 0: ð2:3:26Þ

On the other hand, by differentiating (2.3.25), we have:

xdx

a2
þ ydy

b2
¼ 0: ð2:3:27Þ

Eliminating dy between the last two equations, we obtain

x
1
a2
þ x2y

b2g

� �

¼ 0:

This means that either

ðaÞ x ¼ 0;
1
a2
þ x2y

b2g
6¼ 0;

Fig. 2.6 A particle sliding
without friction on a rotating
ellipse.
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or

ðbÞ x 6¼ 0;
1
a2
þ x2y

b2g
¼ 0:

Consequently, these two cases lead to the following possible equilibrium
conditions:

ðaÞ x ¼ 0; y ¼ �b; ð2:3:28Þ

ðbÞ x ¼ �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2g2

a4x4

r

; y ¼ � b2g

a2x2
: ð2:3:29Þ

Obviously, if x ? ?, we have x! �a; y! 0.

2.4 Generalized Coordinates

Consider again a system of N particles P1; . . .;PN ; of radius-vectors r1; . . .; rN

relative to a Cartesian orthogonal frame Oxyz, subject to s holonomic independent
constraints

fkðr1; . . .; rN ; tÞ ¼ 0 ðk ¼ 1; sÞ: ð2:4:1Þ

Due to the existence of the constraints, the 3N coordinates of particles are not
independent, therefore the number of independent coordinates will be

3N � s ¼ n; ð2:4:2Þ

meaning that our system has 3N - s = n degrees of freedom. For instance, a
system of two particles, at a fixed distance one from the other, has 6 - 1 = 5
degrees of freedom.

If the number of particles is large, the presence of constraints makes the
determination of the coordinates xi; yi; zi a difficult task. We shall attach to the
n degrees of freedom a number of n independent variables q1; . . .; qn; called
generalized coordinates or Lagrangian variables. The 3N Cartesian coordinates ri

are then expressed in terms of q1; . . .; qn by

ri ¼ riðq1; . . .; qn; tÞ � riðq; tÞ ði ¼ 1;NÞ: ð2:4:3Þ

The generalized coordinates qj ðj ¼ 1; nÞ satisfy the following properties:

(a) Any independent variation of q1; . . .; qn yields

fk½r1ðq; tÞ; . . .; rNðq; tÞ; t
 � 0: ð2:4:4Þ

(b) Any r1; . . .; rN ; consistent with the constraints (2.4.1), can be obtained from
(2.4.3).
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(c) There also exists the inverse transformation of (2.4.3), namely

qj ¼ qjðr1; . . .; rN ; tÞ ðj ¼ 1; nÞ; ð2:4:5Þ

for r1; . . .; rN satisfying (2.4.1).

Similarly to the Cartesian coordinates, the generalized coordinates are assumed
to be continuous functions of time, at least twice differentiable. On the other hand,
in contrast to the Cartesian coordinates, the generalized coordinates do not nec-
essarily have the dimension of length. We can choose as Lagrangian coordinates
any suitable assembly of geometrical objects, such as: segments of straight lines,
arcs, angles, surfaces, components of angular velocities, etc.

The choice of generalized coordinates is somewhat arbitrary. It is always
possible to find a point transformation

qj ! q0j ¼ q0jðq1; . . .; qn; tÞ ðj ¼ 1; nÞ; ð2:4:6Þ

such that q01; . . .; q0n are a new set of Lagrangian variables.
If the system is not subject to constraints, we can choose as generalized

coordinates the 3N Cartesian coordinates of the particles, but there are also other
possible choices. For instance, the position of a free particle can be defined either
by its Cartesian coordinates x, y, z, its spherical coordinates r; h;u; or its cylin-
drical coordinates q;u; z, etc.

Example. A particle P is constrained to remain on the moving sphere

ðx� atÞ2 þ ðy� btÞ2 þ ðz� ctÞ2 ¼ R2: ð2:4:7Þ

Since n = 2, we can choose q1 ¼ h; q2 ¼ u: At time t, the centre of the sphere is
at the point (at, bt, ct), therefore we can write

x ¼ at þ R sin h cos u; y ¼ bt þ R sin h sin u; z ¼ ct þ R cos h; ð2:4:8Þ

representing the transition from Cartesian to spherical coordinates.

2.4.1 Configuration Space

The set of radius-vectors r1; . . .; rN define the so-called configuration of the system
of particles, in the real space. If we choose q1; . . .; qn as coordinates of a
n-dimensional space Rn, then to each set of values of the variables q1; . . .; qn will
correspond a representative point in this space, known as the configuration space.
In other words, any configuration of a mechanical system can be represented by a
single point in the configuration space Rn. Note that the configuration space does
not generally have an intuitive meaning, as does the Euclidean space used in
Newtonian mechanics; but, as we shall prove, the abstract notions of generalized
coordinates and configuration space are very useful not only in mechanics, but in
other physical disciplines as well.
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As the mechanical system changes its configuration with time, the configuration
point traces a curve in configuration space, called generalized trajectory. This is by
no means any of the real trajectories of particles, but describes the motion of the
whole system. The generalized trajectory can be conceived as a succession of
representative points, each of them corresponding to a certain configuration of the
system. To know the law of motion in the configuration space means to know

qj ¼ qjðtÞ ðj ¼ 1; nÞ: ð2:4:9Þ

These are also the parametric equations of the generalized trajectory. Once (2.4.9)
are known, by means of (2.4.3), the motion of the particles in real space can also
be determined.

2.4.2 Generalized Forces

In view of (2.4.3), a real infinitesimal displacement dri of particle Pi, during the
time interval dt, is

dri ¼
Xn

j¼1

ori

oqj

dqj þ
ori

ot
dt ði ¼ 1;NÞ; ð2:4:10Þ

while a virtual displacement dri satisfies the relation

dri ¼
Xn

j¼1

ori

oqj

dqj ði ¼ 1;NÞ: ð2:4:11Þ

The displacements dqj and dqj in the configuration space are similar to the dis-
placements dri and dri defined in the real space. Thus, by dqj we mean real (or
possible) displacements of the representative point during time dt, while dqj are
virtual displacements, taken at t ¼ const. ði.e. dt ¼ 0Þ: If q1; . . .; qn are indepen-
dent, dq1; . . .; dqn are also independent and can be considered as a set of n com-
pletely arbitrary displacements at an instant.

Let us now write the virtual work dW, done by applied forces F1; . . .;FN on the
particles, in terms of virtual displacements in the configuration space. In view of
(2.4.3), we have:

dW ¼
XN

i¼1

Fi � dri ¼
Xn

j¼1

XN

i¼1

Fi �
ori

oqj

 !

dqj:

If we define the generalized forces by

Qj ¼
XN

i¼1

Fi �
ori

oqj

ðj ¼ 1; nÞ; ð2:4:12Þ
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the work can be written as

dW ¼
XN

i¼1

Fi � dri ¼
Xn

j¼1

Qjdqj: ð2:4:13Þ

Since, in general, the forces Fi are functions of the form

Fi ¼ Fiðr1; . . .; rN ; _r1; . . .; _rN ; tÞ ði ¼ 1;NÞ; ð2:4:14Þ
we conclude that the generalized forces Qj have the following functional
dependence:

Qj ¼ Qjðq1; . . .; qn; _q1; . . .; _qn; tÞ � Qjðq; _q; tÞ ðj ¼ 1; nÞ: ð2:4:15Þ
The quantities

_qj ¼
dqj

dt

are called generalized velocities and are related to the real velocities v1; . . .; vN by

_ri ¼ vi ¼
Xn

j¼1

ori

oqj

_qj þ
ori

ot
ði ¼ 1;NÞ: ð2:4:16Þ

The physical meaning of the generalized forces Qj emerges from the signifi-
cance of their associated generalized coordinates. For example, if the transition
from Cartesian coordinates x, y, z to orthogonal curvilinear coordinates q1; q2; q3

is defined by

xi ¼ xiðq1; q2; q3Þ ði ¼ 1;NÞ; ð2:4:17Þ

then or
oqk

is a vector tangent to the curve qk = variable, while Qk ¼ F � or
oqk

is the

component of F on this direction. In particular, the choice q1 ¼ r; q2 ¼ h; q3 ¼ u
yields (see Appendix B):

Q1 ¼ Qr ¼ F � ur ¼ Fr;

Q2 ¼ Qh ¼ F � ðruhÞ ¼ r Fh;

Q3 ¼ Qu ¼ F � ðr sin h uuÞ ¼ r sin h Fu:

ð2:4:18Þ

The generalized forces do not generally have the dimension of force, but the
product [qQ] has always the dimension of work.

If the forces Fi ði ¼ 1;NÞ derive from a potential (see (1.3.22)):

Fi ¼ �gradiV ði ¼ 1;NÞ; ð2:4:19Þ

then the generalized forces Qj obey a similar equation:

Qj ¼ �
XN

i¼1

oV

ori

� ori

oqj

¼ � oV

oqj

ðj ¼ 1; nÞ; ð2:4:20Þ

where V ¼ Vðq1; . . .; qn; tÞ is the potential in terms of the new variables.
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From (2.4.13) follows that a position of the representative point in the con-
figuration space, at time t, is a position of equilibrium, if

Xn

j¼1

Qj dqj ¼ 0; ð2:4:21Þ

which expresses the principle of virtual work in Rn. If the virtual displacements dqj

are arbitrary and independent, it results in

Qj ¼ 0 ðj ¼ 1; nÞ; ð2:4:22Þ

meaning that: a certain position of a system of particles, subject to holonomic
constraints, is a position of equilibrium, if all the generalized forces corresponding
to that position are zero.

2.4.3 Kinetic Energy in Generalized Coordinates

It is most useful in the development of our formalism to express the kinetic energy
T of the system in terms of the generalized coordinates q1; . . .; qn, and the gen-
eralized velocities _q1; . . .; _qn: In view of (2.4.5), we have:

T ¼ 1
2

XN

i¼1

mi

Xn

j¼1

ori

oqj

_qj þ
ori

ot

� �

�
Xn

k¼1

ori

oqk

_qk þ
ori

ot

� �

:

Set

a ¼ 1
2

XN

i¼1

mi

ori

ot

�
�
�
�

�
�
�
�

2

; aj ¼
XN

i¼1

mi

ori

oqj

� ori

ot
; ajk ¼

1
2

XN

i¼1

ori

oqj

� ori

oqk

;

ð2:4:23Þ

where a; aj; ajk are continuous and differentiable functions of q1; . . .; qn; t. Thus,

T ¼ aþ
Xn

j¼1

aj _qj þ
Xn

j¼1

Xn

k¼1

ajk _qj _qk ¼ T0 þ T1 þ T2; ð2:4:24Þ

where the meaning of T0; T1; T2 is obvious.
If the constraints are scleronomous, the terms T0 and T1 in (2.4.24) vanish and

the kinetic energy T = T2 becomes a homogeneous quadratic form of the gen-
eralized velocities _qj:

T ¼ 1
2

Xn

j¼1

Xn

k¼1

ajk _qj _qk: ð2:4:25Þ
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Keeping in mind the definition of ajk, we see that the quadratic form T2 is
positively defined, T2� 0 (the equality sign is valid only if all _q1; . . .; _qn are zero).
For example, the kinetic energy of a particle of mass m in spherical coordinates is

T ¼ 1
2
mð_r2 þ r2 _h2 þ r2 sin2 h _u2Þ:

We can therefore conclude that, in general, the kinetic energy has the following
functional dependence:

T ¼ T ðq; _q; tÞ: ð2:4:26Þ

2.5 Differential and Integral Principles
in Analytical Mechanics

As Newtonian mechanics is based on the well-known principles of inertia, of force
and of reciprocal interactions, so another formulation of mechanics is constructed
on some fundamental axioms, called principles of analytical mechanics. These
postulates serve to deduce the differential equations of motion in the configuration
space. The principles of analytical mechanics are more general then those of
Newtonian mechanics; they allow not only to obtain the results of Newtonian
mechanics, but also to approach a large variety of non-mechanical problems. As a
matter of fact, the methods provided by analytical mechanics play an important
role in other physical disciplines, such as: theory of elasticity, quantum field
theory, electrodynamics, theory of relativity, etc.

The principles of analytical mechanics can by grouped in two categories:

(a) Differential principles, which give us information about the state of a system,
at different times, and take care of the behaviour of the system under infini-
tesimal variations of general coordinates and velocities in the configuration
space. In general, the differential equations of motion (in both real and con-
figuration spaces) can be considered as mathematical forms of certain differ-
ential principles. Such a principle is, for example, D’Alembert’s principle.

(b) Integral principles, which consider the motion of a system during a finite time
interval. These principles operate with global variations in configuration space.
In this category fall variational principles, that use the methods of variational
calculus, for global displacements along the generalized trajectories. The
Hamilton and the Maupertuis principles belong to this category.

The distinction between these two groups is not absolute. As we shall see
later on, there is an intimate relation between all the principles of analytical
mechanics.
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2.5.1 D’Alembert’s Principle

Consider again a system of N particles P1; . . .;PN ; subject to applied and (holo-
nomic) constraint forces. The Newtonian equation of motion of the particle Pi is
(see (2.1.60)):

mi€ri ¼ Fi þ Li ði ¼ 1;NÞ: ð2:5:1Þ

Let us denote

Ji ¼ �mi€ri ði ¼ 1;NÞ ð2:5:2Þ

and call it the inertial force acting on particle Pi. Then

Fi þ Li þ Ji ¼ 0 ði ¼ 1;NÞ: ð2:5:3Þ

This vector equation expresses one of the forms of D’Alembert’s principle: there is
an equilibrium, at any moment, between the applied, the constraint and the inertial
forces acting on a particle. This is the initial form of the principle, discovered by
Jean-Baptiste le Rond D’Alembert.

In the case of ideal constraints, D’Alembert’s principle can be written in an
alternative form, which is very useful in some applications. To find this expres-
sion, we multiply (2.5.3) by the virtual displacement dri, and then we take the sum
over all particles of the system. Since the virtual work associated with the ideal
constraints is zero, we arrive at

XN

i¼1

ðJi þ FiÞ � dri ¼ 0 ð2:5:4Þ

or, in a slightly different form,

XN

i¼1

ðFi �mi€riÞ � dri ¼ 0; ð2:5:5Þ

meaning that: The sum of the virtual works of applied and inertial forces, acting on
a system subject to ideal constraints, is zero. This form of D’Alembert’s principle
is most useful, because it does not contain the constraint forces anymore. It was
given by Lagrange and is used to deduce the differential equations of motion in
configuration space.

2.5.2 Lagrange Equations for Holonomic Systems

We are now prepared to derive the differential equations of motion of a system of
N particles, subject to ideal and independent constraints, in terms of generalized
coordinates q1; . . .; qn. To this end, we shall express both the variations dri and the
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derivatives €ri occurring in (2.5.5) in the configuration space. The virtual dis-
placements dri can be written as (see (2.4.11)):

dri ¼
Xn

j¼1

ori

oqj

dqj ði ¼ 1;NÞ; ð2:5:6Þ

hence

XN

i¼1

mi€ri � dri ¼
Xn

j¼1

XN

i¼1

mi€ri �
ori

oqj

 !

dqj

¼
Xn

j¼1

d

dt

XN

i¼1

mi _ri �
ori

oqj

 !

�
XN

i¼1

mi _ri �
d

dt

ori

oqj

� �" #

dqj: ð2:5:7Þ

But

d

dt

ori

oqj

� �

¼ o

ot

ori

oqj

� �

þ
Xn

k¼1

o

oqk

ori

oqj

� �

_qk ¼
o

oqj

ori

ot
þ
Xn

k¼1

ori

oqk

_qk

 !

¼ o _ri

oqj

:

ð2:5:8Þ

On the other hand, (2.4.16) yields

o _ri

o _qj

¼ ori

oqj

: ð2:5:9Þ

The substitution of (2.5.8) and (2.5.9) into (2.5.7) gives

XN

i¼1

mi€ri � dri ¼
Xn

j¼1

d

dt

XN

i¼1

mi _ri �
o _ri

o _qj

 !

�
XN

i¼1

mi _ri �
o _ri

oqj

" #

dqj: ð2:5:10Þ

Recalling that

T ¼ 1
2

XN

i¼1

mij _rij2

is the kinetic energy of the system of particles, it is easy to observe that (2.5.10)
becomes

XN

i¼1

mi€ri � dri ¼
Xn

j¼1

d

dt

oT

o _qj

� �

� oT

oqj

� �

dqj: ð2:5:11Þ

The last step is now to introduce (2.4.13) and (2.5.11) into the expression for
D’Alembert’s principle (2.5.5). The result is:
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Xn

j¼1

d

dt

oT

o _qj

� �

� oT

oqj

�Qj

� �

dqj ¼ 0: ð2:5:12Þ

Since the constraints are independent, the virtual displacements dqj are completely
arbitrary. Therefore (2.5.12) holds true only if all the square brackets are zero, i.e.

d

dt

oT

o _qj

� �

� oT

oqj

¼ Qj ðj ¼ 1; nÞ; ð2:5:13Þ

which are called Lagrange equations of the second kind. From now on, we shall
use these equations under the shorter name of Lagrange equations. They represent
a system of n second-order differential equations in the variables qj. The general
integral of (2.5.13),

qj ¼ qjðt;C1; . . .;C2nÞ ðj ¼ 1; nÞ; ð2:5:14Þ

expresses the law of motion in the configuration space Rn. The 2n arbitrary con-
stants C1; . . .;C2n are determined by 2n initial conditions: at time t = t0, we must
know both the generalized coordinates and the generalized velocities,

q0
j ¼ qjðt0;C1; . . .;C2nÞ; _q0

j ¼ _qjðt0;C1; . . .;C2nÞ: ð2:5:15Þ

Once the motion in configuration space is determined, the solution (2.5.14) is
introduced into (2.4.3), giving the motion in real space.

If, in particular, there are no constraints acting on the particles, we can choose
as generalized coordinates the Cartesian coordinates, thus falling on Newton’s
second law discussed in Chap. 1.

Assume now that the applied forces Fi are potential. Then, according to
(2.4.20), the generalized forces Qj are also potentials and we obtain:

d

dt

oT

o _qj

� �

� oT

oqj

� oV

oqj

¼ 0 ðj ¼ 1; nÞ;

where V = V(q, t). Introducing the Lagrangian function or, simply, the
Lagrangian L by

Lðq; _q; tÞ ¼ T ðq; _q; tÞ � Vðq; tÞ; ð2:5:16Þ

we finally arrive at

d

dt

oL

o _qj

� �

� oL

oqj

¼ 0 ðj ¼ 1; nÞ: ð2:5:17Þ

These equations are remarkably useful for several reasons. First, as we have
already mentioned, they do not contain constraint forces. Second, all the
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information regarding the behaviour of the system is contained in a single scalar
function, the Lagrangian. These equations are widely applied in many branches of
physics, as we shall show in our further development of this formalism.

To solve a problem using the Lagrangian technique, one should proceed as
follows:

1. Identify the n degrees of freedom of the system and choose suitable generalized
coordinates qj;

2. Construct either the functions T, Qj, or the Lagrangian L;
3. Impose initial conditions;
4. Integrate the Lagrange equations and then, if necessary, determine the trajec-

tories of the particles;
5. Obtain the constraint forces by means of (2.1.60):

Li ¼ mi€ri � Fi ði ¼ 1;NÞ: ð2:5:18Þ

In particular, if there is no applied force acting on the particles, the
Lagrange equations determine the geodesics of the configuration space Rn. The
already known form of the equation of geodesics (see (2.1.37)) is obtained
recalling that, for scleronomous constraints, the kinetic energy can be written as
(see (2.4.25)):

T ¼ 1
2

Xn

j¼1

Xn

k¼1

ajkðqÞ _qj _qk: ð2:5:19Þ

The Lagrange equations (2.5.13) then yield:

Xn

k¼1

ajk €qk þ
Xn

k¼1

Xn

l¼1

oajk

oql

_qk _ql �
1
2

Xn

k¼1

Xn

l¼1

oakl

oqj

_qk _ql ¼ Qj ðj ¼ 1; nÞ:

Introducing the Christoffel symbols of the first kind,

Ckl;j ¼
1
2

oajk

oql

þ oalj

oqk

� oakl

oqj

� �

; ð2:5:20Þ

we have:

Xn

k¼1

ajk €qk þ
Xn

k¼1

Xn

l¼1

Ckl;j _qk _ql ¼ Qj: ð2:5:21Þ

If Qj = 0, we arrive at the geodetic form of the equilibrium equations in config-
uration space Rn (see (2.1.37)).
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2.5.3 Velocity-Dependent Potential

Let us show that the Lagrange equations (2.5.17) keep their form in the case of a
generalized or velocity-dependent potential Vðq; _q; tÞ, linear in _qj, if Qj can be
taken as

Qj ¼
d

dt

oV

o _qj

� �

� oV

oqj

ðj ¼ 1; nÞ: ð2:5:22Þ

Consider the potential

Vðq; _q; tÞ ¼
Xn

j¼1

aj _qj þ V0 ¼ V1 þ V0; ð2:5:23Þ

where aj ðj ¼ 1; nÞ and V0 are functions of qj and t, and add the quantity

oV

oqj

� d

dt

oV

o _qj

� �

to both sides of (2.5.13). Then it is obvious that, if (2.5.23) is true, we arrive at the
Lagrange equations (2.5.17), where

Lðq; _q; tÞ ¼ T ðq; _q; tÞ � Vðq; _q; tÞ: ð2:5:24Þ

A classic example of generalized potential is offered by the motion of an
electrically charged particle in an external electromagnetic field. It is well known
that the electromagnetic force acting on a particle of mass m and charge e, moving
with velocity v in the field E, B, is:

F ¼ eðEþ v	 BÞ: ð2:5:25Þ

The fields E and B are usually given in terms of the electromagnetic potentials
Aðr; tÞ and /ðr; tÞ as

E ¼ �r/� oA

ot
; B ¼ r	 A: ð2:5:26Þ

Since the particle is free, it has three degrees of freedom. We choose
qi ¼ xi; _qi ¼ _xi ¼ vi ði ¼ 1; 2; 3Þ. Recalling that qi and _qi are independent with
respect to each other, we can write (see Appendix B):

rðv � AÞ ¼ v	 ðr 	 AÞ þ ðv � rÞA: ð2:5:27Þ

We also have:

dA

dt
¼ oA

ot
þ ðv � rÞA: ð2:5:28Þ
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Using (2.5.26)–(2.5.28), we get from (2.5.25):

Fi ¼ e � o/
oxi

� oAi

ot
þ ½v	 ðr 	 AÞ
i

� 	

¼ e � o

oxi

ð/� v � AÞ � d

dt

o

ovi

ðv � AÞ
� �� 	

:

If we define the velocity-dependent potential by

V ¼ eð/� v � AÞ; ð2:5:29Þ

which is of the form (2.5.23), we see that Fi can indeed be derived from (2.5.29).
Therefore, the Lagrangian of our system is

L ¼ 1
2
mjvj2 � e/þ ev � A: ð2:5:30Þ

In this example we started from the equation of motion (2.5.25) and arrived at
the Lagrangian (2.5.30), but usually the problem is posed in an inverse way: given
the Lagrangian, we are supposed to find the differential equations of motion.

Observations:

(a) Systems admitting a simple or a generalized potential are called natural. In
view of the definition (2.5.16), we can write:

L ¼ L0 þ L1 þ L2; ð2:5:31Þ

where

L0 ¼ b; L1 ¼
Xn

j¼1

bj _qj; L2 ¼
Xn

j¼1

Xn

k¼1

bjk _qj _qk:

The coefficients b; bj; bjk are functions of q1; . . .; qn; t: Taking into account
(2.4.24), in the case of a simple potential V(q, t),

L0 ¼ T0 � V ; L1 ¼ T1; L2 ¼ T2; ð2:5:32Þ

while for a generalized potential Vðq; _q; tÞ (see (2.5.22))

L0 ¼ T0 � V ; L1 ¼ T1 � V1; L2 ¼ T2: ð2:5:320Þ

(b) Conservative forces represent a particular case of potential forces, therefore the
Lagrange equations are used in the form (2.5.17), observing that now the
function V is the potential energy of the system.

(c) If the Lagrangian L does not depend on one of the generalized coordinates
q1; . . .; qn; say qk (k fixed), the Lagrange equations (2.5.17) yield:

oL

o _qk

¼ const: ð2:5:33Þ
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Such a generalized coordinate is called cyclic or ignorable, and (2.5.33) is a
first integral of (2.5.17).

(d) Let us add to the Lagrangian a term which is the total time derivative of some
function F(q, t):

L0 ¼ Lðq; _q; tÞ þ d

dt
Fðq; tÞ: ð2:5:34Þ

Introducing (2.5.34) into the Lagrange equations (2.5.17), the terms containing
F give zero, and we obtain the same system of equations for L0. This simple
exercise is left to the reader. In conclusion, the terms having the form of a total
time derivative can be omitted from a Lagrangian. In other words, two
Lagrangian functions which differ from one another by terms being total time
derivatives give the same description of the motion and therefore the two
Lagrangians L and L0 are equivalent.

A Heavy Particle Moving on a Spherical Surface

Let us find the differential equations of motion of a particle of mass m, moving
without friction under the influence of gravity on a fixed spherical surface of radius
l (a spherical pendulum) (Fig. 2.7).

This system has two degrees of freedom. Using spherical coordinates and
choosing q1 ¼ h; q2 ¼ u, we have:

Fig. 2.7 A particle moving
without friction on a fixed
sphere (spherical pendulum).
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T ¼ 1
2
ml2ð _h2 þ sin2 h _u2Þ; V ¼ mgl cos h;

hence

L ¼ 1
2
ml2ð _h2 þ sin2 h _u2Þ �mgl cos h: ð2:5:35Þ

Performing the calculations in (2.5.17), we obtain the equations of motion:

€h� sin h cos h _u2 � g

l
sin h ¼ 0; ð2:5:36Þ

€uþ 2 cot h _h _u ¼ 0: ð2:5:37Þ

These two second-order differential equations are non-linear. If u ¼ const., i.e. if
the motion is performed on a vertical circle of radius l, we are left with a single
equation:

€h� g

l
sin h ¼ €h0 þ g

l
sin h0 ¼ 0; ð2:5:38Þ

which is the differential equation of a plane (or simple) pendulum. The problem of
the mathematical pendulum will be thoroughly discussed in Chap. 3.

2.5.4 Non-potential Forces

Assume that on a system of particles act both potential and non-potential forces. If
we denote by ~Qj ðj ¼ 1; nÞ the generalized non-potential forces, then the
Lagrange equations (2.5.17) take the form

d

dt

oL

o _qj

� �

� oL

oqj

¼ ~Qj ðj ¼ 1; nÞ; ð2:5:39Þ

where, obviously, the Lagrangian L = T - V includes only the potential forces.
The infinitesimal virtual work done by the non-potential forces is

d ~W ¼
XN

i¼1

~Fi � dri ¼
Xn

j¼1

~Qjdqj: ð2:5:40Þ

Let us define the power ~P of non-potential forces:

~P ¼ d ~W

dt
¼
XN

i¼1

~Fi � vi ¼
Xn

j¼1

~Qj _qj; ð2:5:41Þ

and consider two remarkable cases:
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(1) The non-potential forces of negative power (~P\0) are called dissipative
forces. Such a force is, for example, the friction force. If this can be written as

Ff
i ¼ �kvi ði ¼ 1;N; k [ 0Þ; ð2:5:42Þ

then there exists a scalar function T ;

T ¼ 1
2
k
XN

i¼1

jvij2; ð2:5:43Þ

so that

Ff
i ¼ �

oT
ovi

¼ �rvi
T ði ¼ 1;NÞ; ð2:5:44Þ

where rvi
stands for the partial derivative with respect to vi. The function

T is called the Rayleigh dissipation function. It is obvious that Rayleigh’s function
for a scleronomous system is quadratic and homogeneous in the generalized
velocities _qj:

T ¼ 1
2

Xn

j¼1

Xn

k¼1

Cjk _qj _qk: ð2:5:45Þ

The physical significance of T is found by writing the power of the friction forces:

~P ¼
XN

i¼1

Ff
i � vi ¼ �k

XN

i¼1

jvij2 ¼ �2T ; ð2:5:46Þ

i.e. the function T is equal to half of the power dissipated by friction.

The generalized forces ~Qf
j ; associated with the friction forces Fi

f, are:

~Qf
j ¼

XN

i¼1

Ff
i �

ori

oqj

¼ � oT
o _qj

ðj ¼ 1; nÞ: ð2:5:47Þ

Therefore, in our case, the Lagrange equations (2.5.39) become

d

dt

oL

o _qj

� �

� oL

oqj

� oT
o _qj

¼ 0 ðj ¼ 1; nÞ: ð2:5:48Þ

(2) If the power of non-potential forces is zero,

XN

i¼1

~Fi � vi ¼
Xn

j¼1

~Qj _qj ¼ 0; ð2:5:49Þ
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we deal with gyroscopic forces. Remark that, in order for (2.5.49) to be valid, ~Fi

must be written as a cross product of two vectors, where one of them is vi or,
equivalently, ~Qj must have the form

~Qj ¼
Xn

k¼1

hjk _qk ðj ¼ 1; nÞ; ð2:5:50Þ

the coefficients hjk being antisymmetric:

hjk ¼ �hkj: ð2:5:51Þ

As two examples of gyroscopic forces, we give the Lorentz force acting on a
particle of charge e:

FL ¼ eðv	 BÞ; ð2:5:52Þ

and the Coriolis force (see (4.3.7)):

Fi ¼ �2miðx	 viÞ; ð2:5:53Þ

where vi is the relative velocity of the particle mi and x is the instantaneous vector
of rotation.

The definition (2.5.49) shows that the instantaneous rate of the work done by a
scleronomous system subject to gyroscopic forces is zero:

d

dt
ðd ~WÞ ¼

Xn

j¼1

Xn

k¼1

hjk _qj _qk ¼ 0; ð2:5:54Þ

and therefore there exists the energy first integral.
In the next two chapters we shall give special attention to the application of this

formalism on concrete models of dissipative and gyroscopic systems.

Observation: The Lagrange equations for non-holonomic systems are derived and
applied in Chap. 4 (see (4.6.52)).

2.6 Elements of Calculus of Variations

Hamilton’s principle (see Sect. 2.7), which is one of the most important principles
of theoretical physics, belongs to the category of variational principles. For a
better understanding of the formalism implied by the use of this principle, let us
briefly review some elements of variational calculus.

The calculus of variations deals with the study of extremum values of functions
depending on a curve, or on another function, rather than a real number. For the
beginning, let us consider a function f(x) of class at least C2 (i.e. continuous,
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together with its second partial derivatives), and expand it according to Taylor’s
formula, about a fixed value x0:

f ðxÞ ¼ fðx0Þ þ
x� x0

1!
f 0ðx0Þ þ

ðx� x0Þ2

2!
f 00ðx0Þ þ � � � ð2:6:1Þ

The quantity

df ¼ ðx� x0Þf 0ðx0Þ ¼ f 0ðx0Þdx

is called the first variation of f at the point x0. The necessary and sufficient
condition that the function f has a stationary value at x0 is that df = 0, for any
arbitrary variation dx. This yields:

f 0ðx0Þ ¼
of

ox

� �

x¼x0

� of

ox

� �

0

¼ 0; ð2:6:2Þ

which reminds us of the condition of static equilibrium (2.1.45). Going further, we
can define the second variation of f as

d2
f ¼ 1

2
ðx� x0Þ2f 00ðx0Þ: ð2:6:3Þ

If f 00ðx0Þ� 0; we have a local minimum at x0, while if f 00ðx0Þ� 0; x0 is a local
maximum.

Assume now that f is of the form f ðx1; . . .; xnÞ: Then its first variation at
ðx0

1; . . .; x0
nÞ is

df ¼
Xn

j¼1

of

oxj

� �

0

dxj; dxj ¼ xj � x0
j ; ð2:6:4Þ

while the condition that f has a stationary value at ðx0
1; . . .; x0

nÞ; for independent
and arbitrary dxj, reads:

of

oxj

� �

0

¼ 0 ðj ¼ 1; nÞ: ð2:6:5Þ

If the variables x1; . . .; xn must obey s independent constraint equations

gkðx1; . . .; xnÞ ¼ 0 ðk ¼ 1; sÞ; ð2:6:6Þ

where g1; . . .; gs are functions of class C2, the variations dxj are no longer inde-
pendent, but must satisfy the system of s equations

dgk ¼
Xn

j¼1

ogk

oxj

� �

0

dxj ¼ 0 ðk ¼ 1; sÞ: ð2:6:7Þ
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To find the stationary conditions in the presence of constraints, one multiplies
(2.6.7) by some arbitrary Lagrange multipliers kk ðk ¼ 1; sÞ and add the result to
(2.6.4). Thus, we have:

Xn

j¼1

of

oxj

� �

0

þ
Xs

k¼1

kk

ogk

oxj

� �

0

" #

dxj ¼ 0: ð2:6:8Þ

Here the variations dxj are independent, therefore the stationarity condition reads:

of

oxj

� �

0

þ
Xs

k¼1

kk

ogk

oxj

� �

0

¼ 0 ðj ¼ 1; nÞ: ð2:6:9Þ

Let us now consider the definite integral

I½yðxÞ
 ¼
Zx2

x1

f ðx; y; y0Þdx; ð2:6:10Þ

where y = y(x) is a curve in the xy-plane and y0 ¼ dy

dx
: The function f(x, y, y0) is of

class C2 in each of its arguments. The integral (2.6.10) is a functional of y(x),
giving the correspondence between the function f and the number I, associated to
the curve y = y(x).

One of the central problems of the calculus of variations is to find the curve
y = y(x) for which the associated integral (2.6.10) is an extremum in the given
interval x1� x� x2:

Denote by (C) the path y = y(x) that makes the integral (2.6.10) an extremum
and consider a neighbouring curve (C*), given by

y�ðxÞ ¼ yðxÞ þ �gðxÞ; ð2:6:11Þ

where � is a small parameter independent of x, while g(x) is a function of class C1

which satisfies the conditions

gðx1Þ ¼ gðx2Þ ¼ 0: ð2:6:12Þ

Therefore, the two paths (C) and (C*) have the same initial and final points,
P1ðx1; y1Þ and P2ðx2; y2Þ (Fig. 2.8). Varying the parameter e, we obtain a family of
curves C�1;C

�
2; . . .; all of them passing through P1 and P2. The functional associ-

ated to the curve (C*) is

Fig. 2.8 The two paths
(C) and (C*), having the same
initial and final points.
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I½y�ðxÞ
 ¼
Zx2

x1

fðx; y�; y�0Þdx: ð2:6:13Þ

Since

fðx; y�; y�0Þ ¼ f ðx; yþ � g; y0 þ � g0Þ ¼ fðx; y; y0Þ þ � g of

oy
þ � g0 of

oy0
þ � � � ;

the first variation of the integral I is

dI ¼ �
Zx2

x1

g
of

oy
þ g0

of

oy0

� �

dx; ð2:6:14Þ

or, upon integration by parts of the second term and using (2.6.12):

dI ¼ �
Zx2

x1

g
of

oy
� d

dx

of

oy0

� �� �

dx: ð2:6:15Þ

Recalling that g(x) is arbitrary, except for the condition (2.6.12), the necessary and
sufficient condition for a stationary value of I is

of

oy
� d

dx

of

oy0

� �

¼ 0: ð2:6:16Þ

Consequently, among all curves passing through the fixed points P1ðx1; y1Þ and
P2ðx2; y2Þ; the curve which makes the integral I stationary satisfies Eq. (2.6.16).

These considerations can be generalized for functionals of the type

I½y1ðxÞ; . . .; ynðxÞ
 ¼
Zx2

x1

fðx; y1; . . .; yn; y
0
1; . . .; y0nÞdx; ð2:6:17Þ

where yi ¼ yiðxÞ ði ¼ 1; nÞ are n functions of class C2 and y0i ¼
dyi

dx
ði ¼ 1; nÞ: Let

x; y1; . . .; yn be the coordinates of a point in a (n ? 1)-dimensional space Qn+1 and
let P1ðx1; y1

kÞ;P2ðx2; y2
kÞ be two fixed points in Qn+1. Then, if

yi ¼ yiðxÞ ði ¼ 1; nÞ ð2:6:18Þ

are the equations of the curve which makes (2.6.17) an extremum, and

y�i ¼ yiðxÞ þ �giðxÞ ð2:6:19Þ

are the equations of a neighbouring curve passing through the same initial and final
points, then, following a similar procedure, we obtain the condition which yi(x) has
to obey so that the integral (2.6.17) be an extremum, in the form

2.6 Elements of Calculus of Variations 65



of

oyi

� d

dx

of

oy0i

� �

¼ 0 ði ¼ 1; nÞ: ð2:6:20Þ

These equations were first obtained by Leonhard Euler in 1744 and later used by
Lagrange in mechanics. They are usually called the Euler–Lagrange equations.

Before going any further, we shall apply this formalism to some classical
problems of variational calculus.

2.6.1 Shortest Distance Between Two Points in a Plane

Our aim is to minimize the integral

I ¼
Zx2

x1

ds ¼
Zx2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

dx; ð2:6:21Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

is the arc length in the xy-plane. Comparing (2.6.21)

with (2.6.10), we get f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

; and the Euler–Lagrange equation (2.6.16)
yields:

of

oy0
¼ y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p ;

of

oy
¼ 0;

hence

y0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p ¼ C; y0 ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
p ¼ C1;

leading by integration to the equation of a straight line, y ¼ C1xþ C2. The con-
stants C1 and C2 are determined by the condition that the curve must pass through
the points P1ðx1; y1Þ;P2ðx2; y2Þ: Note that our solution produces an extremum for
(2.6.21) and we cannot know the nature of this extremum at the beginning. But the
investigation of the problem, together with our common sense, tells us that the
extremum is a minimum.

Fig. 2.9 Choice of
coordinates for the
brachistochrone problem. The
points P0(0, 0) and P1(x1, y1)
are fixed.
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2.6.2 Brachistochrone Problem

Among all curves lying in a vertical plane and passing through two fixed points,
find the one for which a heavy particle would slide down the curve without friction
in minimum (extremum) time.

This problem was formulated in 1696 by the Swiss mathematician Johann
Bernoulli, being the problem which lead to the calculus of variations. The word
brachistochrone derives from the Greek brachistos (shortest) and chronos (time).

Choosing the coordinates as in Fig. 2.9, with the fixed points P0(0, 0) and
P1ðx1; y1Þ, the time of descent from P0 to P1, on any curve, can be written as

t ¼
ZP1

P0

ds

v
; ð2:6:22Þ

where v is the speed of the particle along the curve. Using the kinetic energy
theorem (1.3.21),

mgx ¼ 1
2

mv2; ð2:6:23Þ

and the relation ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

dx for the path element, we obtain:

t ¼ 1
ffiffiffiffiffi
2g
p

Zx1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02

x

r

dx: ð2:6:24Þ

Next, we apply the Euler–Lagrange equation (2.6.16), where f ¼
ffiffiffiffiffiffiffiffiffiffi
1þy02

x

q

:

Performing simple calculations, we have:

of

oy
¼ 0;

of

oy0
¼ y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1þ y02Þ
p ¼ 1

ffiffiffiffiffi

2a
p ; ð2:6:25Þ

where a is a constant. Separating the variables and integrating, we arrive at

y ¼
Zx

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

2a� x

r

dx: ð2:6:26Þ

Fig. 2.10 Generation of the
cycloid x ¼ að1� cos hÞ.
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To perform the integration, one makes the change of variable
x

2a� x
¼ u2; ð2:6:27Þ

hence

y ¼ �2a

Zu

0

u d
1

1þ u2

� �

¼ �2a
u

1þ u2

� �u

0

� arctan u½ 
u0
� �

:

A new substitution

u ¼ tan
h
2

ð2:6:28Þ

yields finally

y ¼ aðh� sin hÞ; ð2:6:29Þ

while x is found from (2.6.27) and (2.6.28):

x ¼ að1� cos hÞ: ð2:6:30Þ

Equations (2.6.29) and (2.6.30) are the parametric equations of a cycloid,
having the y-axis as basis and the concavity upwards. The constant a is the radius
of the circle that generates the cycloid (Fig. 2.10). In fact, we have shown that the
path of the cycloid insures a stationary value of t, but it is obvious that the
extremum must be a minimum.

2.6.3 Surface of Revolution of Minimum Area

Let P1ðx1; y1Þ and P2ðx2; y2Þ be two fixed points in the xy-plane. Find the curve
y = y(x) passing through P1 and P2 which would generate by revolution about an
axis (say, x) a surface of minimum area.

Examining Fig. 2.11, one observes that upon a revolution about the x-axis,
a geometric volume has appeared, with fixed basis areas S1 and S2. With two
planes orthogonal to the x-axis, we delimit an elementary cylinder, of lateral area

dS ¼ 2py ds ¼ 2py
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

dx:

Fig. 2.11 Surface of
revolution of minimum area.
The points P1ðx1; y1Þ and
P2ðx2; y2Þ are fixed.
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The area generated by the curve passing through P1 and P2 is

S ¼ 2p
Zx2

x1

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

dx: ð2:6:31Þ

To make (2.6.31) a minimum (a maximum would not make any sense), the

integrand f ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

must satisfy the Euler–Lagrange equation (2.6.16).
The easiest way to get the result is to observe that, since f does not explicitly
depend on x, Eq. (2.6.16) admits the first integral

y0
of

oy0
� f ¼ const: ð2:6:32Þ

Since

of

oy0
¼ yy0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p ;

from (2.6.32) we obtain:

yy02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p � y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

¼ C1;

and, separating the variables and integrating,

x ¼ C1

Z
dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � C2
1

p þ C2 ¼ C1 arccosh
y

C1
þ C2;

yielding finally:

y ¼ C1 cosh
x� C2

C1
; ð2:6:33Þ

which is the equation of a catenary (from the Latin catena, meaning chain). This is
the shape, for instance, of a uniform, flexible heavy chain under gravity, when it is
held fix at two points. The constants C1 and C2 are determined from the boundary
conditions.

2.6.4 Geodesics

A geodesic is defined as the shortest distance between two points in a given space.
We have already encountered this notion earlier in this chapter, but only in two
particular cases. We wish now to give a general theory of geodesics, useful not
only in classical mechanics, but also in the general theory of relativity.

First, we must define the metric tensor. Let Em be an Euclidean space with the
Cartesian coordinates y1; . . .; ym, and write the line element in the form
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ds2 ¼
Xm

j¼1

dyjdyj: ð2:6:34Þ

Let now Rn ðn\mÞ be a n-dimensional manifold in Em and let x1; . . .; xn be the
coordinates of a point in Rn: Since yj ¼ yjðx1; . . .; xnÞ, we have:

ds2 ¼
Xm

j¼1

Xn

i;k¼1

oyj

oxi

oyj

oxk
dxidxk

and, with the notation

gikðx1; . . .; xnÞ ¼ gki ¼
Xm

j¼1

oyj

oxi

oyj

oxk
ð2:6:35Þ

for the metric tensor, we arrive at the following form of the metric (squared line
element):

ds2 ¼
Xn

i;k¼1

gikdxidxk: ð2:6:36Þ

If gik ¼ dik, i.e. if the manifold Rn is Euclidean, we fall back on the metric
(2.6.34).

If the metric (2.6.36) is invariant under a general coordinate transformation

x0
i ¼ x0

iðx1; . . .; xnÞ ði ¼ 1; nÞ; ð2:6:37Þ

the manifold Rn is called Riemannian. In our case, the metric tensor gik is
associated with transition from Cartesian to general coordinates, but the
transformation can be performed between two manifolds of the same dimension.
We can also write

ds2 ¼
Xn

i¼1

dxidxi; ð2:6:38Þ

hence

dxi ¼
Xn

k¼1

gikdxk ði ¼ 1; nÞ: ð2:6:39Þ

This can be considered as a system of n linear algebraic equations in the unknown
quantities dx1; . . .; dxn. Solving the system by Cramer’s rule, we get:

dxk ¼
Xn

i¼1

gkidxi ðk ¼ 1; nÞ; ð2:6:40Þ
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where

gki ¼ gik ¼ Gki

g
ð2:6:41Þ

are the contravariant components of the metric tensor, while Gki is the algebraic
complement of the element gki in the determinant

g ¼ detðgkiÞ: ð2:6:42Þ

Since

dxi ¼
Xn

k¼1

gikdxk ¼
Xn

k;l¼1

gikg
kldxl;

we must have

Xn

k¼1

gikg
kl ¼ gl

i ¼ dl
i ði; l ¼ 1; nÞ: ð2:6:43Þ

These elements of tensor calculus are useful in the derivation of the differential
equation of geodesics.

Let xiði ¼ 1; nÞ be the coordinates of a particle in Rn and let

xi ¼ xiðsÞ ði ¼ 1; nÞ ð2:6:44Þ

be the parametric equations of a curve passing through the given points 1 and 2.
The arc length between the two points is

L ¼
Z2

1

ds ¼
Z2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i;k¼1

gik _xi _xk

v
u
u
t ds; _xi ¼ dxi

ds
: ð2:6:45Þ

In order for the curve (2.6.44) to be a geodesic, the function

f ðx; _x; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i;k¼1

gik _xi _xk

v
u
u
t ð2:6:46Þ

must satisfy the Euler–Lagrange equations (2.6.20):

d

ds

of

o _xm

� �

� of

oxm
¼ 0 ðm ¼ 1; nÞ: ð2:6:47Þ
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Evaluating the derivatives, we have successively:

of

o _xm
¼
Xn

k¼1

gmk _xk;

d

ds

of

o _xm

� �

¼
Xn

k¼1

gmk€x
k þ

Xn

i;k¼1

ogmk

oxi
_xi _xk;

of

oxm
¼ 1

2

Xn

i;k¼1

ogik

oxm
_xi _xk;

and (2.6.47) yields:

Xn

k¼1

gmk€x
k þ 1

2

Xn

i;k¼1

ogmk

oxi
þ ogim

oxk
� ogik

oxm

� �

_xi _xk ¼ 0:

If we denote

Cik;m ¼
1
2

ogmk

oxi
þ ogim

oxk
� ogik

oxm

� �

; ð2:6:48Þ

the last equation becomes

Xn

k¼1

gmk€x
k þ

Xn

i;k¼1

Cik;m _xi _xk ¼ 0: ð2:6:49Þ

The quantities (2.6.48) are the Christoffel symbols of the first kind. Multiplying
(2.6.49) by gml, then summing over m and using (2.6.43), we finally arrive at the
differential equation of geodesics in Rn:

€xl þ
Xn

i;k¼1

Cl
ik _xi _xk ¼ 0 ðl ¼ 1; nÞ; ð2:6:50Þ

where

Cl
ik ¼

Xn

m¼1

gmlCik;m ð2:6:51Þ

are the Christoffel symbols of the second kind. It can be shown that the Christoffel
symbols are not tensors (except for linear transformations).

If we take four dimensions, then (2.6.50) are the equations of geodesics in the
Riemannian manifold R4; used in the relativistic theory of gravitation. Here, Cl

ik

determine the intensity of the field, while the components of the metric tensor gik

play the role of potentials of the gravitational field.

Observation: If we denote

/ ¼ 1
2

Xn

i;k¼1

gik _xi _xk; ð2:6:52Þ
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then the equations

d

ds

o/
o _xm

� �

� o/
oxm

¼ 0 ðm ¼ 1; nÞ ð2:6:53Þ

yield the same result (2.6.50). Consequently, the following two variational
equations:

d
Z2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i;k¼1

gik _xi _xk

v
u
u
t ds ¼ 0

and

d
Z2

1

Xn

i;k¼1

gik _xi _xk ds ¼ 0; ð2:6:54Þ

are equivalent.

Geodesics of a Sphere

Let us find the geodesics of a sphere of constant radius R = 1. The sphere can be
imagined as a two-dimensional Riemannian manifold embedded in the three-
dimensional Euclidean space E3. The arc element on the sphere of unit radius is

ds2 ¼ dh2 þ sin2 h du2; ð2:6:55Þ

and thus our variational principle can be put in the form

d
Z

ds ¼ d
Z

ds2

ds2
ds ¼ d

Z

ð _h2 þ sin2 h _u2Þ ds ¼ 0; ð2:6:56Þ

where _h ¼ dh
ds

and _u ¼ du
ds
: Obviously, in our case

f ¼ _h2 þ sin2 h _u2 ¼ 1: ð2:6:57Þ

The geodesic for the variable u is obtained by using the Euler–Lagrange
equations (2.6.20). Performing elementary derivatives, we arrive at:

€uþ 2 cot h _h _u ¼ 0: ð2:6:58Þ

To obtain the explicit equation of the geodesic u ¼ uðhÞ, we must eliminate the
parameter s between the last two equations. First, we observe that (2.6.58) can be
written as

d _uþ 2 _u cot h dh ¼ 0;
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giving by integration

_u ¼ C

sin2 h
; ð2:6:59Þ

where C is a constant. Then, we can write:

_h ¼ dh
ds
¼ dh

du
_u

and, in view of (2.6.57) and (2.6.59),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2

sin2 h

r

¼ dh
du

C

sin2 h
:

Separating the variables, we have:

du ¼ C

sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 h� C2
p dh;

therefore

cosðu� u0Þ ¼
C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
p cot h; ð2:6:60Þ

where u0 is a constant of integration. This is the equation of a plane through the
origin of the coordinate system, which is also the centre of the sphere. Being at the
intersection of this plane with the sphere, the geodesics of our problem are great
circles. To make our result more obvious, let us write (2.6.60) in Cartesian
coordinates. Using the well-known formula for cosðu� u0Þ and the relations of
transformation

x ¼ sin h cos u; y ¼ sin h sin u; z ¼ cos h;

we find the equation of our plane in the normal form:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
p

ðx cos u0 þ y sin u0Þ � Cz ¼ 0: ð2:6:61Þ
The constants u0 and C are determined by the choice of the fixed points.

2.7 Hamilton’s Principle

The purpose of the previous section was to prepare the reader with regard to the
characteristics of the variational principles of mechanics. For a better under-
standing of the importance and usefulness of these principles, we shall begin our
study in real, physical space.

Let us consider a system of N particles, subject to ideal holonomic constraints
of the form (2.1.57), and suppose we know the real motion of the particles during
the time interval ðt1; t2Þ, i.e. we know the functions
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ri ¼ riðtÞ; t1� t� t2 ði ¼ 1;NÞ: ð2:7:1Þ

Let us also consider another law of motion, given by

r�i ¼ r�i ðtÞ; ð2:7:2Þ

which is consistent with the constraints (2.1.57), but does not obey the equations of
motion, expressing, as we already know, a virtual motion of the system. We also
assume that

riðtaÞ ¼ r�i ðtaÞ ða ¼ 1; 2; i ¼ 1;NÞ; ð2:7:3Þ

meaning that both the real and the virtual trajectories pass, at times t1 and t2,
through the same fixed points of the real three-dimensional space. Hence, the
virtual displacements

dri ¼ riðtÞ � r�i ðtÞ ði ¼ 1;NÞ ð2:7:4Þ

represent the variation of the radius-vector of the particle Pi from one point of the
real trajectory (C) to the corresponding point of the varied path (C*) (Fig. 2.12). It
follows that

driðt1Þ ¼ driðt2Þ ¼ 0 ði ¼ 1;NÞ; ð2:7:5Þ

as well as

d

dt
ðdriÞ ¼

d

dt
ðri � r�i Þ ¼ vi � v�i ¼ dvi ði ¼ 1;NÞ: ð2:7:6Þ

Let us now direct our attention to the kinetic energy T*, associated with the
virtual motion. Supposing the trajectory (C*) is infinitely close to (C), we may
write:

T � ’ 1
2

XN

i¼1

miðj _rij2 � 2 _ri � d _riÞ ¼ T �
XN

i¼1

mi _ri � d _ri: ð2:7:7Þ

Using this result, we shall make some transformation in D’Alembert’s principle
(2.5.5), as follows:

Fig. 2.12 Virtual variation
of the radius-vector of a
particle from one point of the
real trajectory (C) to the
corresponding point of the
varied path (C*).
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XN

i¼1

mi€ri � dri ¼
d

dt

XN

i¼1

mi _ri � dri

 !

�
XN

i¼1

mi _ri � d _ri ¼
d

dt

XN

i¼1

mi _ri � dri

 !

� dT ;

ð2:7:8Þ

where dT = T - T* is given by (2.7.7). In view of (2.4.13), we can write:

d

dt

XN

i¼1

mi _ri � dri

 !

¼ dðT þWÞ: ð2:7:9Þ

Integrating with respect to time between the fixed limits t1 and t2 and using (2.7.5),
we obtain:

Z

dðT þWÞdt ¼ 0: ð2:7:10Þ

In the case of potential forces, the virtual potential V* can be calculated in terms
of the real potential V in a similar way:

V� ¼ Vðr�1; . . .; r�N ; tÞ ¼ Vðr1 � dr1; . . .; rN � drN ; tÞ

’ Vðr1; . . .; rN ; tÞ �
XN

i¼1

ðgradiVÞ � dri; ð2:7:11Þ

therefore the virtual work done by the system is:

dW ¼
XN

i¼1

Fi � dri ¼ V � � V ¼ �dV ; ð2:7:12Þ

and relation (2.7.10), with notation (2.5.16), becomes:

Zt2

t1

dL dt ¼ d
Zt2

t1

L dt ¼ 0: ð2:7:13Þ

Fig. 2.13 Virtual
displacement in the
configuration space.
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This relation expresses Hamilton’s principle. Since ri and r�i are not indepen-
dent variables, but must satisfy the same constraint relations, this principle is
usually used in the configuration space. Let qj ¼ qjðtÞ and q�j ¼ q�jðtÞ ðj ¼ 1; nÞ be
the parametric equations of generalized trajectories corresponding to the real
and (one of the) virtual motions, respectively, and define the virtual displacements
dqj by

dqjðtÞ ¼ qjðtÞ � q�jðtÞ ðj ¼ 1; nÞ: ð2:7:14Þ

According to the condition (2.7.5), the generalized trajectories corresponding to
the real and virtual displacements pass through the same points in configuration
space, i.e.

dqjðt1Þ ¼ dqjðt2Þ ¼ 0 ðj ¼ 1; nÞ: ð2:7:15Þ

Except for (2.7.15), the virtual variations dqj are independent and, as pointed out in
Fig. 2.13, they are orthogonal to the t-axis. Therefore, we can write (2.7.13) as

d
Zt2

t1

Lðq; _q; tÞ dt ¼ 0: ð2:7:16Þ

The integral

S ¼
Zt2

t1

Lðq; _q; tÞ dt ð2:7:17Þ

is called the action integral. We are now able to formulate Hamilton’s principle:
Out of all the possible generalized paths passing through two fixed points, cor-
responding to the times t1 and t2, the real motion is performed on that path for
which the action is stationary. Hamilton’s principle is also called the principle of
stationary action. Since, in general, the stationary extremum is a minimum,
sometimes it is named the principle of least action.

The principle was published in 1834 by William Rowan Hamilton. Its discovery
played an important role in the development of various aspects of theoretical
physics and we shall support this statement by many examples.

2.7.1 Euler–Lagrange Equations for the Action Integral

Let us prove that the Lagrange differential equations of motion, for both potential
and non-potential forces, can be derived from Hamilton’s principle. Taking the
first (virtual) variation of the action, we have:

dS ¼
Zt2

t1

Xn

j¼1

oL

oqj

dqj þ
oL

o _qj

d _qj

� �

dt;
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or, if we integrate by parts the second term,

dS ¼
Xn

j¼1

oL

o _qj

dqj

" #t2

t1

�
Zt2

t1

Xn

j¼1

d

dt

oL

o _qj

� �

� oL

oqj

� �

dqj dt:

Using (2.7.15) and the arbitrariness of the variations dqj, we arrive at the Lagrange
equations (2.5.17).

In a similar way, starting from (2.7.10), we can obtain the Lagrange equations
for non-potential systems (2.5.13). Indeed, we may write

Zt2

t1

Xn

j¼1

oT

oqj

dqj þ
oT

o _qj

d _qj þQjdqj

� �

dt ¼ 0

and, after an integration by parts,

Xn

j¼1

oT

o _qj

dqj

" #t2

t1

þ
Zt2

t1

oT

oqj

� d

dt

oT

o _qj

� �

þQj

� �

dqj dt ¼ 0:

Since dqjðt1Þ ¼ dqjðt2Þ ¼ 0; for independent and arbitrary dqj we arrive at
(2.5.13), as expected.

The condition (2.7.10), sometimes called generalized Hamilton’s principle, can
also be used to derive the Lagrange equations in case of existence of a velocity-
dependent potential Vðq; _q; tÞ. To show this, we must prove that there exists a
function L ¼ T � Vðq; _q; tÞ; such that (2.7.10) is equivalent with (2.7.16) if the
condition (2.5.23) is satisfied. Indeed, we have:

Zt2

t1

ðdT þ dWÞ dt ¼
Zt2

t1

dT þ
Xn

j¼1

d

dt

oV

o _qj

� �

� oV

oqj

� �

dqj

( )

dt ¼ 0

and, after integration by parts,

Zt2

t1

dT �
Xn

j¼1

oV

oqj

dqj þ
oV

o _qj

d _qj

� �" #

dt ¼
Zt2

t1

dðT � VÞ dt ¼ d
Zt2

t1

L dt ¼ 0;

which completes the proof.
Finally, let us show that Hamilton’s principle (2.7.16) is a variational principle.

Comparing (2.6.10) with (2.7.17), it appears obvious that the action S is a func-
tional of q1; . . .; qn, while the correspondence

x! t; yiðxÞ ! qjðtÞ; fðy; y0; xÞ ! Lðq; _q; tÞ;
Iðy1; . . .; ynÞ ! Sðq1; . . .; qnÞ
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shows that the Euler–Lagrange equations (2.6.20) are formally identical with the
Lagrange equations for natural systems (2.5.17).

Before closing this section, we wish to emphasize the importance of the vari-
ational principles, Hamilton’s principle being one of them. (Another variational
principle will be discussed in Sect. 2.9; its understanding needs some extra
background, which by then will be given.) Compared with several other formu-
lations of mechanics, this principle offers certain advantages. First, since we deal
with quantities defined with respect to any frame, the principle does not depend on
the choice of coordinates. Second, once a single scalar function, the Lagrangian, is
known, one can obtain both the differential equations of motion and the associated
laws of conservation, in a direct and simple way. Third, the variational principles
can be used for a unitary description of some other systems, like fields. This
extension is possible because the Lagrangian has the dimension of energy and this
quantity can be defined for any type of motion, while not all interactions can be
described by forces. As we shall see later on, the fundamental equations of
electrodynamics (Maxwell’s equations), of the theory of linear elasticity (Lamé’s
equations), of quantum mechanics (Schrödinger equation), etc. can be derived
from Hamilton’s principle.

2.7.2 Criteria for the Construction of Lagrangians

There are several criteria which must be obeyed in constructing the Lagrangian
function used in our formalism. They are:

(a) Superposition principle. If the physical system consists of two (or more) inter-
acting particles, the Lagrangian is composed of three groups of terms: (i) The
Lagrangians of each particle, when the others are absent; (ii) Terms expressing
the interaction between particles; (iii) Terms describing the interaction between
the system and the exterior fields (if there are any).

(b) Invariance principle. The action must be invariant with respect to the appro-
priate group of transformations (e.g. Galilei group in Newtonian mechanics,
Lorentz group in relativistic mechanics).

(c) Correspondence principle. The Lagrangian must be constructed in such a way,
that all results of Newtonian mechanics be obtained by Hamilton’s principle.

(d) Principle of physical symmetry. The choice of the generalized coordinates must
provide a Lagrangian function not only simple, but also useful, i.e. suitable to
the symmetry properties of the system.

2.8 Symmetry Properties and Conservation Theorems

We already know that the motion of a mechanical system can be determined, in
principle, by integrating the Lagrange equations (2.5.17). We say ‘in principle’,
because there are circumstances when this operation is neither useful nor even
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possible. Nevertheless, there exist some cases when it is possible to obtain
information about our system without a full integration of the equations of motion.
This is done by using the first integrals.

2.8.1 First Integrals as Constants of Motion

Consider a system of N particles with n degrees of freedom, subject to holonomic
constraints, and assume that we found a relation of the type:

f ðq1; . . .; qn; _q1; . . .; _qn; tÞ ¼ Cðconst.Þ; ð2:8:1Þ

which is identically satisfied by any solution of the Lagrange equations and for any
initial conditions. Then (2.8.1) is called a first integral of (2.5.17) or a constant of
motion (see Chap. 1, Sect. 1.2)

Suppose we know h distinct first integrals

fsðq; _q; tÞ ¼ Cs ðs ¼ 1; hÞ: ð2:8:2Þ

Then any function

Fðf1; . . .; fhÞ ¼ const. ð2:8:3Þ

is also a constant of motion, but not independent of (2.8.2). Since the general
integral of the Lagrange equations (2.5.17),

qj ¼ qjðt;C1; . . .;C2nÞ ðj ¼ 1; nÞ; ð2:8:4Þ

depends on 2n arbitrary independent constants, it follows that the maximum
number of distinct first integrals is 2n. The constants C1; . . .;C2n are determined
from the initial conditions:

q0
j ¼ qjðt0;C1; . . .;C2nÞ; _q0

j ¼ _qjðt0;C1; . . .;C2nÞ ðj ¼ 1; nÞ: ð2:8:5Þ

The integration of the Lagrange equations is considerably facilitated by the
application of first integrals, because:

(i) Finding a solution of a first-order differential equation is an easier task;
(ii) A first integral offers information on the physical nature of the system, as well

as its symmetry properties;
(iii) In some cases, first integrals express the conservation of fundamental physical

quantities, such as linear and angular momenta, energy, etc.

Consequently, finding the first integrals (if there are any) is a necessary step in
solving a problem by the Lagrangian technique.
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As we have already mentioned in Sect. 2.5, if qk is a cyclic coordinate, then the
quantity oL

o _qk
is a constant of motion. Let us define the quantities

pj ¼
oL

o _qj

ðj ¼ 1; nÞ ð2:8:6Þ

and call them the generalized momenta associated (or conjugated) to the gen-
eralized coordinates qj. The dimensions of pj are given by those of qj: if q is a
distance, then p is a linear momentum; if q is an angle, then p is an angular
momentum, etc. But in any case, we must have:

½pj _qj
 ¼ ½ENERGY
 ¼ ML2T�2: ð2:8:7Þ

Introducing (2.8.6) into the Lagrange equations (2.5.17), we obtain:

_pj ¼
oL

oqj

ðj ¼ 1; nÞ: ð2:8:8Þ

If the coordinate qk is cyclic, then (2.8.8) yields

pk ¼ const.; ð2:8:9Þ

expressing the conservation of the generalized momentum associated with a cyclic
coordinate.

Equation (2.8.9) gives either the conservation of linear momentum, or that of
angular momentum. It is valid not only in mechanics, but also for other physical
systems. For example, since the coordinate xk does not appear in the Lagrangian
(2.5.30) describing the behaviour of a charged particle in an external electro-
magnetic field, the conjugated momentum is conserved:

pk ¼ mvk þ eAk ¼ const. ð2:8:10Þ

Therefore, in solving a concrete problem we should follow the rule: look for cyclic
coordinates, each of them being associated with a first integral. Then, if there are
not any, search for another set of generalized coordinates q0j ðj ¼ 1; nÞ; of which at
least one being cyclic.

A useful example is offered by a particle moving in a central field. When
expressed in Cartesian coordinates, the Lagrangian

L ¼ 1
2
mð _x2 þ _y2Þ � Vðx; yÞ

does not display any cyclic coordinate, but if it is written in terms of polar
coordinates,

L ¼ 1
2
mð_r2 þ r2 _u2Þ � VðrÞ;

it shows the ignorable coordinate u, leading to the first integral

pu ¼ mr2 _u ¼ const. ð2:8:11Þ
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2.8.2 Symmetry Transformations

As we have mentioned, the first integrals are related with the conservation of the
fundamental physical quantities. This fact emerges from the intrinsic properties of
the space–time continuum and expresses the connection between different types of
motion and the conservation of associated quantities.

The study of a large amount of experimental data has led to the conclusion that
the real, physical space is homogeneous (there are no privileged reference frames)
and isotropic (there are no privileged directions), while time passes uniformly
(there are no privileged moments of time). The homogeneity of space results in the
fact that the properties of an isolated mechanical system do not change if all
particles of the system perform infinitesimal translations with the same velocity v,
while the isotropy yields the conservation of the properties of the system if all
particles execute infinitesimal rotations of the same angle, about the same direc-
tion. Finally, the uniformity of time shows that the origin of the time interval can
be arbitrarily chosen, meaning that the properties of the system remain unchanged
at an infinitesimal displacement of the time origin.

An important role in the study of physical systems is played by those
transformations which leave the form of the differential equations of motion
unchanged. These are called symmetry transformations. For example, we can cite
space–time transformations, gauge transformations, etc. In the first category are
included the space displacements (translations, rotations) and time transforma-
tions. The gauge transformations appear when one (or more) physical quantity is
not completely determined by its equation of definition, and we shall familiarize
the readers with them later on in this book.

2.8.3 Noether’s Theorem

As we mentioned earlier in this section, the cyclic coordinates lead to constants of
motion, expressing the symmetry of the Lagrangian with respect to certain space–
time transformations. But not all constants of motion come from evident symmetry
properties of the system, or have a simple form. That is why there appears the
necessity of giving a general method to obtain the first integrals. Such formalism
was provided in 1918 by the German Jewish mathematician Emmy Noether.1

Let us consider a physical system, described by the generalized coordinates qj

and velocities _qj; and assume that the Lagrangian Lðq; _q; tÞ of the system is
known. A transformation of coordinates and time

q0j ¼ q0jðq1; . . .; qn; tÞ; t0 ¼ t0ðq1; . . .; qn; tÞ ð2:8:12Þ

1 Noether, E.: Invariante Variationsprobleme. Nachr. Kgl. Ges. Wiss. Göttingen 2, 235 (1918).
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is a symmetry transformation if it leaves Hamilton’s principle invariant or, in view
of (2.5.34), if

L q0;
dq0

dt0
; t0

� �

dt0 ¼ Lðq; _q; tÞ þ dFðq; tÞ
dt

� �

dt: ð2:8:13Þ

Let us now specify the transformation (2.8.12), namely that it is an infinitesimal
transformation of the form:

q0j ¼ qj þ � gjðq; tÞ ðj ¼ 1; nÞ; t0 ¼ t þ � sðq; tÞ; ð2:8:14Þ

where gj and s are arbitrary functions, while the parameter � is small enough as to
keep only terms linear in it. Since

dt0

dt
¼ 1þ � ds

dt
;

dt

dt0
’ 1� � ds

dt
; ð2:8:15Þ

we have:

dq0

dt0
¼ dq0

dt

dt

dt0
’ _qj þ �

dgj

dt

� �

1� � ds
dt

� �

’ _qj þ �
dgj

dt
� _qj

ds
dt

� �

: ð2:8:16Þ

Introducing (2.8.15) and (2.8.16) into (2.8.13), we arrive at:

L qþ �g; _qþ � dg
dt
� _q

ds
dt

� �

; t þ �s
� �

1þ � ds
dt

� �

¼ Lðq; _q; tÞ þ � d/
dt
;

where we took Fðq; tÞ ¼ �/ðq; tÞ because, obviously, F must be infinitesimal and
linear in �. Using Taylor’s formula for series expansion in the l.h.s. and keeping
only terms linear in �, after some reduction and rearranging of terms we are
left with

� L
ds
dt
þ
Xn

j¼1

gj

oL

oqj

þ
Xn

j¼1

dgj

dt
� _qj

ds
dt

� �
oL

o _qj

þ s
oL

ot
� d/

dt

" #

¼ 0: ð2:8:17Þ

The transformation (2.8.14) is a symmetry transformation if, for a given L, there
exist some functions gj ðj ¼ 1; nÞ and s, so that the l.h.s. of (2.8.17) is a total time
derivative of a function of qj, t. The first integrals of motion are obtained from the
condition of stationary action S, on any path where the equations of motion
(2.5.17) are satisfied. Before applying the action principle, we should mention that
the variations dqj ¼ q0j � qj ðj ¼ 1; nÞ and dt = t0 - t differ from those previ-
ously used by the fact that they perform a transition between two possible tra-
jectories. Therefore, the first variation of the action S reads:

dS ¼ �
Zt2

t1

Xn

j¼1

gj

oL

oqj

þ
Xn

j¼1

dgj

dt
� _qj

ds
dt

� �
oL

o _qj

þ L
ds
dt
þ s

oL

ot
� d/

dt

" #

dt;
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or, recalling that L is a function of qj; _qj; t:

dS ¼ �
Zt2

t1

(

d

dt

Xn

j¼1

gj

oL

o _qj

� s
Xn

j¼1

_qj

oL

o _qj

� L

 !

� /

" #

þ
Xn

j¼1

ðs _qj � gjÞ
d

dt

oL

o _qj

� �

� oL

oqj

� �)

dt: ð2:8:18Þ

The invariance of Hamilton’s principle under the symmetry transformation
(2.8.14) means dS = 0 for any time interval within which the Lagrange equations
are valid. This implies

Xn

j¼1

gj

oL

o _qj

� s
Xn

j¼1

oL

o _qj

_qj � L

 !

� / ¼ C; ð2:8:19Þ

where C is a constant. This equation expresses Noether’s theorem for discrete
systems of particles: To any continuous symmetry transformation (2.8.14), one can
associate a first integral (2.8.19). Noether’s theorem can also be written for
infinitesimal quantities �gj; �s; �/; �C; which is useful in some applications.

We shall now consider some particular cases, which will show the connection
between Noether’s theorem and the general theorems of mechanics discussed in
Chap. 1.

1. Let us consider an isolated system of N particles (V(e) = 0) with n degrees of
freedom and assume that the particle Pi performs an infinitesimal space dis-
placement of the form

r0i ¼ ri þ dri ði ¼ 1;NÞ; t0 ¼ t: ð2:8:20Þ

Since

oL

o _qj

¼ oT

o _qj

¼
XN

i¼1

mi _ri �
o _ri

o _qj

¼
XN

i¼1

mi _ri �
ori

oqj

;

we obtain:

�
Xn

j¼1

gj

oL

o _qj

¼ �
XN

i¼1

Xn

j¼1

mi _ri �
ori

oqj

gj

 !

¼
XN

i¼1

mi _ri � dri: ð2:8:21Þ

Suppose now that our space displacement is a translation, i.e. all particles of the
system perform a straight motion in the same direction with the same velocity.
Then we have

dri � dr ¼ n dr; ð2:8:22Þ

n being the unit vector along the direction of translation. Taking / = 0 in
(2.8.19), we get:
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dr n �
XN

i¼1

mi _ri ¼ const.; ð2:8:23Þ

showing the conservation of total linear momentum in the direction of trans-
lation (Chap. 1, Sect. 1.3)

2. If the infinitesimal space transformation (2.8.20) is a rotation of all the parti-
cles, about the same axis and in the same direction:

dri ¼ dh	 ri ¼ dhs	 ri; ð2:8:24Þ

where s is the unit vector along the axis of rotation and dh is the constant angle
of rotation, then:

�
Xn

j¼1

gj

oL

o _qj

¼
XN

i¼1

mi _ri � ðdh	 riÞ ¼ dhs �
XN

i¼1

miri 	 _ri

and, according to Noether’s theorem (2.8.19),

dh s �
XN

i¼1

miri 	 _ri ¼ const.; ð2:8:25Þ

which is nothing else but the conservation of the total angular momentum
(Chap. 1, Sect. 1.3)

3. A special type of space transformation is that associated with the Newtonian
mechanics principle which states that two inertial frames are equivalent in
describing the motion of a mechanical system. The transition from one frame to
another is given by an infinitesimal Galilean transformation:

r0i ¼ ri þ ðdv0Þt; ð2:8:26Þ

where the infinitesimal constant vector dv0 is the relative velocity of the frames.
Indeed, taking the time derivative of (2.8.26), we have:

v0i ¼ vi þ dv0: ð2:8:27Þ

Choosing

�/ ¼ �dv0 �
XN

i¼1

miri; �C ¼ �
XN

i¼1

mi

 !

r0
G � dv0 ð2:8:28Þ

in (2.8.19) and using (2.8.26), we obtain:

dv0 �
PN

i¼1 miri
PN

i¼1 mi

� r0
G �

PN

i¼1 mivi
PN

i¼1 mi

t

 !

¼ 0;

or

n � ðrG � r0
G � vGtÞ ¼ 0; ð2:8:29Þ
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which is the centre of mass theorem for isolated systems (Chap. 1, Sect. 1.3).
Here, n is the unit vector of dv0, while the meaning of rG and vG is obvious.

4. Let us now consider a pure time transformation and take

s ¼ 1; dqj ¼ 0; / ¼ 0

in (2.8.19). Hence:
Xn

j¼1

oL

o _qj

_qj � L ¼ C: ð2:8:30Þ

To understand the physical significance of this equation of conservation, we
shall first make some comments on the function

H ¼
Xn

j¼1

pj _qj � L; ð2:8:31Þ

where pj is given by (2.8.6). This function is called the Hamiltonian of the
system. Recalling Euler’s theorem for homogeneous functions:

Xn

i¼1

of

oxi

xi ¼ mf ; ð2:8:32Þ

where fðx1; . . .; xnÞ is a homogeneous function of grade m, and using (2.5.31),
we may write:

H ¼
Xn

j¼1

oL1

o _qj

_qj þ
Xn

j¼1

oL2

o _qj

_qj � L ¼ L1 þ 2L2 � ðL0 þ L1 þ L2Þ ¼ L2 � L0

¼ T2 � T0 þ V : ð2:8:33Þ

If the constraints are scleronomous, then T0 ¼ 0; T ¼ T2, and we arrive at

H ¼ T þ V ¼ const.; ð2:8:34Þ

which shows that the Hamiltonian of a conservative system represents the total
energy, being a constant of motion.

The function H is of great importance in analytical mechanics. We shall
encounter it again in Chap. 5 and discuss there its properties more thoroughly.

2.9 Principle of Least Action

This principle was discovered in 1745 by Pierre-Louis Moreau de Maupertuis and
it is the first integral principle of mechanics. Its initial formulation was nebulous
and it was the merit of Euler, Lagrange and Jacobi that the principle acquired its
current form.
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In the discussion of Hamilton’s principle, we used the notion of virtual dis-
placements consistent with the constraints dqj, being performed by the represen-
tative point in the configuration space, when passing from a point P of the real
generalized trajectory (C), to some point P* of an infinitely close trajectory (C*) at
the same time t (synchronic variations):

Pðq; tÞ ! P�ðqþ dq; tÞ: ð2:9:1Þ

Since the boundary points were supposed to be fixed, we also had:

dqjðt1Þ ¼ dqjðt2Þ ¼ 0: ð2:9:2Þ

Summarizing, we can state that d is a linear operator that satisfies the following
conditions:

(i) dqj are arbitrary except for the end points, where dqj = 0;
(ii) dt = 0.

Let us now introduce a new operator D, including the variation of both space
and time variables, defined by:

D ¼ dþ Dt
d

dt
; ð2:9:3Þ

with the properties:

(i) Dqj are arbitrary, except for end points, where Dqj ¼ 0;
(ii) Dt is arbitrary.

As we can see, the asynchronous variations given by D are less restrictive than
those produced by d. Applying D to qj, we have:

Dqj ¼ dqj þ _qjDt; ð2:9:4Þ

expressing the correspondence between two points, one on the real and the
other on the neighbouring path (Fig. 2.14). In the end points dqjðt1Þ 6¼ 0;
dqjðt2Þ 6¼ 0, but

Dqjðt1Þ ¼ Dqjðt2Þ ¼ 0: ð2:9:5Þ

Let us now apply the operator D to some function f ðq; _q; tÞ:

Df ¼ df þ df

dt
Dt ¼

Xn

j¼1

of

oqj

dqj þ
of

o _qj

d _qj

� �

þ
Xn

j¼1

of

oqj

_qj þ
of

o _qj

€qj

� �

Dtþ of

ot
Dt

¼
Xn

j¼1

of

oqj

Dqj þ
of

o _qj

D _qj

� �

þ of

ot
Dt; ð2:9:6Þ

which is the usual differential of f ðq; _q; tÞ: Next, we apply D to the action integral
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S ¼
Zt2

t1

Lðq; _q; tÞ dt; ð2:9:7Þ

where the limits t1 and t2 are now variable. Let A(t) be the primitive function of the
Lagrangian L½qðtÞ; _qðtÞ; t
: It then follows that

DS ¼ D
Zt2

t1

L dt ¼ DAðt2Þ � DAðt1Þ; ð2:9:8Þ

or, in view of (2.9.3),

DS ¼ dAðt2Þ � dAðt1Þ þ _Aðt2ÞDt2 � _Aðt1ÞDt1 ¼ d
Zt2

t1

L dt þ ½LDt
t2t1 : ð2:9:9Þ

On the other hand, the Lagrange equations (2.5.17) allow us to write

dL ¼
Xn

j¼1

oL

oqj

dqj þ
oL

o _qj

d _qj

� �

¼
Xn

j¼1

ð _pjdqj þ pjd _qjÞ

¼ d

dt

Xn

j¼1

pjdqj

 !

¼ d

dt

Xn

j¼1

ðpjDqj � pj _qjDtÞ: ð2:9:10Þ

Therefore, using (2.9.5) and (2.8.31), we obtain:

DS ¼ D
Zt2

t1

L dt ¼
Xn

j¼1

�pj _qj þ L

 !

Dt

" #t2

t1

¼ �½HDt
t2t1 : ð2:9:11Þ

If the system is conservative, then

H ¼ E ¼ T þ V ¼ const.; ð2:9:12Þ

Fig. 2.14 Correspondence
between two points, one on
the real and the other on a
neighbouring path, when both
space and time variations are
considered.
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meaning that on any varied path (C*), the energy has the same value as on the real
path (C). Therefore,

½HDt
t2t1 ¼ HðDt2 � Dt1Þ ¼ HD
Zt2

t1

dt ¼ D
Zt2

t1

H dt: ð2:9:13Þ

Introducing this result into (2.9.11), we arrive at

D
Zt2

t1

Xn

j¼1

pj _qj dt ¼ 0; ð2:9:14Þ

which is one of the forms of the principle of least action: The action taken for a
real generalized trajectory is stationary with respect to any neighbouring isoen-
ergetic path. The quantity

W ¼
Zt2

t1

Xn

j¼1

pj _qjdt ð2:9:15Þ

is called Maupertuisian action.
The principle of least action can be written in different equivalent forms. For

example, recalling that the system is conservative, the kinetic energy T is a qua-
dratic homogeneous form of generalized velocities:

Xn

j¼1

pj _qj ¼
Xn

j¼1

oT

o _qj

_qj ¼ 2T

and (2.9.14) yields:

D
Zt2

t1

2T dt ¼ 0: ð2:9:16Þ

Another form of this principle was given by Carl Jacobi. To write it, let us
extract dt from the kinetic energy formula,

T ¼ 1
2

XN

i¼1

mi

dri

dt

�
�
�
�

�
�
�
�

2

¼ 1
2

XN

i¼1

mi

dsi

dt

� �2

;

and then introduce it into (2.9.16):

D
ZP2

P1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðE� VÞ
XN

i¼1

mi ds2
i

v
u
u
t ¼ 0; ð2:9:17Þ

where P1 and P2 are the positions of the system at the times t1 and t2, in the real
space. If dsi

2 is expressed in terms of qj, then P1 and P2 are end points in
configuration space. For a single particle, (2.9.17) reduces to
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D
ZP2

P1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE� VÞ
p

ds ¼ 0: ð2:9:18Þ

Let us define the n-dimensional manifold Rn by the metric

dr2 ¼ 2ðE� VÞ
XN

i¼1

mi ds2
i : ð2:9:19Þ

Then, as we know,

D
ZP2

P1

dr ¼ 0

defines the geodesic line in Rn; between P1 and P2. If, in particular, Rn is the
configuration space Rn, then the metric is (see (2.4.24)):

dr2 ¼ 2ðE� VÞ
Xn

j¼1

Xn

k¼1

ajkdqjdqk ð2:9:20Þ

and the principle of least action finally acquires the form:

D
ZP2

P1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðE� VÞ
Xn

j¼1

Xn

k¼1

ajkdqjdqk

v
u
u
t ¼ 0: ð2:9:21Þ

Equal-Action Wave Front

Let us first determine the connection between the Hamiltonian (S) and Mau-
pertuisian (W) actions. Assuming again that the system is conservative, we have:

S ¼
Zt2

t1

L dt ¼
Zt2

t1

ðT � VÞ dt ¼
Zt2

t1

ð2T � EÞ dt ¼ W � Eðt2 � t1Þ:

Taking t2 ¼ t; t1 ¼ 0; we arrive at:

Sðq; tÞ ¼ �Et þWðqÞ: ð2:9:22Þ

On the other hand, Hamilton’s principle (2.7.16) and the definition of the
Hamiltonian (2.8.31) yield:

dS

dt
¼ oS

ot
þ
Xn

j¼1

oS

oqj

_qj ¼
Xn

j¼1

pj _qj �H; ð2:9:23Þ
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therefore, in view of (2.9.22),

pj ¼
oS

oqj

ðj ¼ 1; nÞ: ð2:9:24Þ

(This is only a rough deduction of generalized momenta in terms of S, needed in
this application; for more details, see Chap. 5).

Let our conservative system be a single particle and choose qj ¼ xj

ðj ¼ 1; 2; 3Þ. Then

pj ¼
oS

oqj

¼ oW

oqj

¼ ðgrad WÞj ðj ¼ 1; 2; 3Þ ð2:9:25Þ

which, together with the formula of the Hamiltonian,

1
2m
jgrad Wj2 þ V ¼ E;

yields

jgrad Wj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE� VÞ
p

: ð2:9:26Þ

With our choice of coordinates, the configuration space coincides with the real,
three-dimensional space, while the generalized trajectory is just the real path of the
particle. Then the equation

Wðx; y; zÞ ¼ const. ð2:9:27Þ

represents a family of fixed surfaces, while

Sðx; y; z; tÞ ¼ const. ð2:9:28Þ
stands for a family of moving surfaces. For example, if at t = 0 the surfaces S1 and
W1 coincide, after a time interval dt, the surface S1 has passed from W1 to W1 þ
E dt (Fig. 2.15) and so on, similarly to the propagation of a wave front. If ds is the
elementary displacement of the wave front in normal direction, we can write

dW ¼ jgrad Wjds ¼ E dt;

which helps to write the phase velocity of the wave front:

u ¼ E

jgrad Wj ¼
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE� VÞ
p ¼ E

ffiffiffiffiffiffiffiffiffiffi

2mT
p ¼ E

p
; ð2:9:29Þ

where p is the momentum of the particle. In other words, (2.9.29) gives the phase
velocity of propagation of the equal-action wave front.

To study the nature of these waves, one must find certain characteristic quan-
tities, such as frequency and wavelength. These can be obtained by making an
analogy with the propagation of light waves, whose equation is:

Dw� n2

c2

o2w
ot2
¼ 0: ð2:9:30Þ
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Here, n is the index of refraction of the medium. If n = const., the solution of
(2.9.30) is

w ¼ w0ðx; y; zÞeiðk�r�xtÞ; ð2:9:31Þ

where k ¼ nx
c
¼ nk0 is the wave number. Taking k in the positive direction of the

x-axis, we have:

w ¼ w0ðx; y; zÞeiðk0nx�xtÞ: ð2:9:32Þ

If n is no longer a constant, but its variation is smooth, the solution of (2.9.30) is
close to the form

w ¼ w0ðx; y; zÞei½k0Lðx;y;zÞ�xt
: ð2:9:33Þ
The quantity L is called eikonal. If n = const., then L = nx (optical path length).
Introducing (2.9.33) into (2.9.30), evaluating the derivatives and then separating
the real and imaginary parts, we obtain:

w0k
2
0½n2 � jgrad Lj2
 þ Dw0 ¼ 0; ð2:9:34Þ

w0DLþ 2ðgrad w0Þ � ðgrad LÞ ¼ 0: ð2:9:35Þ

Suppose that the wavelength is small compared to the distance on which the
medium displays its non-homogeneity. Then the presence of k0

2 makes the first
term in (2.9.34) much greater than the second, which results in

jgrad Lj ¼ n: ð2:9:36Þ

This is the eikonal equation, fundamental in geometrical optics. The equal-phase
surfaces are given by

fðx; y; z; tÞ ¼ k0Lðx; y; zÞ � xt ¼ const: ð2:9:37Þ

Comparing (2.9.26) with the eikonal equation (2.9.36), we realize that they are

similar: the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE� VÞ
p

plays the role of the refraction index and the

Fig. 2.15 Geometry of fixed
(W = const.) and moving
(W ? E dt = const.)
surfaces, propagating as a
wave front.
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function W that of the eikonal, while the surfaces S = const. are analogous to the
surfaces f = const. Therefore, we can set:

S ¼ af ; W ¼ ak0Lðx; y; zÞ; E ¼ ax; ð2:9:38Þ

where a is an arbitrary constant. Hence:

n ¼ jgrad Lj ¼ 1
ak0
jgrad Wj ¼ c

ax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE� VÞ
p

: ð2:9:39Þ

This analogy shows that the propagation of equal-action waves and light waves
are similar phenomena. In their remarkable papers, Erwin Schrödinger and Louis
de Broglie showed that the relation between wave and geometrical optics is similar
to that between quantum and classical mechanics. If we apply the principle of least
action in the form (2.9.18) and observe that according to (2.9.39) the integrand is
proportional to n, we have:

D
Z

n ds ¼ 0; ð2:9:40Þ
which is nothing else but the well-known Fermat principle of geometrical optics.
Concluding our discussion, we can state that: If applied forces are absent, the
trajectory described by a particle of light (photon) is a geodesic (minimal optical
path).

2.10 Problems

1. Determine the covariant and contravariant components of the metric tensor gik

in spherical coordinates r; h;u:
2. Study the tensor properties of the Christoffel symbols Cik;l and Cl

ik:
3. Determine the shape of the curve traced by a catenary of mass m and length l,

whose fixed ends are at the same height. The distance between ends is a.
4. Find the plane closed curve of given perimeter, which encloses the maximum

area (isoperimetric problem).
5. Study the motion of a heavy particle, constrained to move without friction on

the surface of a cone.
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6. A particle of mass m and velocity v1 passes from a semi-space in which its
potential energy U1 is constant, to a semi-space in which its potential energy
U2 is also constant. Determine the change in the direction of the particle.

7. A particle P of mass m moves without friction on the curve y = f(x) passing
through the origin. Assuming that the curve rotates about the vertical axis Oy
with constant angular velocity x0, find the shape of the curve so that the
particle remains at rest with respect to the curve.

8. Construct the Lagrangian for a system of N charged particles interacting via
Coulomb law, and placed in an external variable electromagnetic field E, B.

9. Find the Lagrangian of a double coplanar pendulum and write the differential
equations of motion. Linearize these equations for small motions.

10. Two masses m1 and m2 are fastened at the ends of an inextensible, flexible
rope, running over a massless pulley (Atwood machine). Determine the law of
motion and the force of constraint.

11. Investigate the motion of a plane pendulum of mass m1 whose point of support
of mass m2 is able to perform one of the following motions:

(a) A displacement on a horizontal straight line;
(b) A displacement on a vertical circle with constant angular velocity x;
(c) Oscillations along a horizontal line according to the law a cos xt;
(d) Oscillations along a vertical line according to the law a sin xt.

12. Determine the equations of motion and the period of small oscillations of the
system shown in the figure.

13. The point of support of a simple pendulum of mass m moves uniformly on a
vertical circle of radius R, with the constant angular velocity x. Construct the
Lagrangian and write the equation of motion.
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14. A system is composed of a particle of mass M and n particles of mass
m. Separate the motion of the centre of mass and reduce the problem to the
motion of n particles.

15. Discuss the one-dimensional motion of a particle of mass m in the field with
potential energy UðxÞ ¼ U0ðe�2ax � e�axÞ (the Morse potential). Here,
U0 [ 0; a[ 0:

16. Assume that a particle of mass m moves in a field whose potential is either
ðaÞU ¼ UðqÞ; or ðbÞU ¼ UðzÞ; where q; u; z are cylindric coordinates. Find
the first integrals of motion in both cases.

17. A particle moves on a helix of equations q ¼ a; z ¼ bu; where a and b are
constants. If the potential energy is

V ¼ 1
2

kðq2 þ z2Þ;

where k is another constant, find the law of motion of the particle and the force
of constraint.

18. Two particles m1 and m2 are connected by a cord passing through a hole in a
horizontal table. The mass m1 moves like a simple pendulum, while the mass
m2 slides without friction on the table. Identify the constraints and write the
equations of motion.

19. Show that the transformation

x0i ¼ xi þ giai sin xt; t0 ¼ t ði ¼ 1; 2; 3Þ;

where aða1; a2; a3Þ is an arbitrary constant vector and x2 = k/m, is a sym-
metry transformation for the Lagrangian

L ¼ m

2
_r2 � 1

2
kr2

(space oscillator) and find the first integral of motion associated with this
transformation.

20. Using the first integral found in the previous problem, as well as some other
first integrals corresponding to the motion described by this Lagrangian,
determine the law of motion and the trajectory associated with the following
initial conditions:

rð0Þ ¼ ðx0; 0; 0Þ; _rð0Þ ¼ ð0; v0; 0Þ:
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Chapter 3
Applications of the Lagrangian
Formalism in the Study of Discrete
Particle Systems

3.1 Central Force Fields

3.1.1 Two-Body Problem

Consider a system of N bodies, supposed to be particles, and assume that they are
subject only to internal forces Fij (gravitational, electrostatic, etc.). The problem of
determining the motion of each body in the presence of the other N - 1 is known
as the problem of the N bodies. The difficulty of solving such a problem is
obviously dependent on the number of the bodies involved. The simplest case
(N = 2) is found in classical systems, like Sun–Earth, or nucleus–electron, and is
called the two-body problem.

Let us consider an isolated system of two particles of masses m1 and m2 and let
r1, r2 be their radius-vectors relative to the origin of coordinates. The Lagrangian
of the system is

L ¼ T ð _r1; _r2Þ � Vðr1 � r2; _r1 � _r2Þ:

If we denote by rG the radius-vector of the centre of mass, by r01; r02 the radius
vectors of particles relative to G and by r the difference r ¼ r2 � r1 ¼ r02 � r01; in
view of (1.3.59), we have:

m1r01 þm2r02 ¼ 0; r0a ¼ ra � rG ða ¼ 1; 2Þ:

Hence,

r01 ¼ �
m2

M
r; r02 ¼

m1

M
r; ð3:1:1Þ

where M ¼ m1 þm2. Using König’s theorem (1.3.61), the Lagrangian becomes:

L ¼ 1
2

Mjvgj2 þ
1
2
lj _rj2 � Vðr; _rÞ; ð3:1:2Þ
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with the notation

l ¼ m1m2

m1 þm2
¼ m1m2

M
ð3:1:3Þ

for the reduced mass of the system.
Since the components of rG are cyclic variables, we have

PG ¼ MvG ¼ const.;

meaning that the centre of mass moves independently of the motion of particles,
being completely determined by the initial conditions. Consequently, we can
choose the origin of coordinates in the centre of mass and the Lagrangian
becomes:

L ¼ 1
2
lj _rj2 � Vðr; _rÞ: ð3:1:4Þ

Therefore, the motion of the system of two particles can be studied as a motion of
a fictitious particle of mass l and radius-vector r, in an external force field of
potential V. If we can write (see (2.5.23))

Fðr; _rÞ ¼ d

dt

oV

o _r

� �

� oV

or
;

where it is assumed that V depends linearly on the velocity _r; then the particle with
reduced mass l obeys the equation of motion

l€r ¼ Fðr; _rÞ: ð3:1:5Þ

If one of the particles, say m2, is much more massive than the other, m2 � m1;
then

l ¼ m1

1þ m1
m2

’ m1

and the centre of mass almost coincides with the particle m2. In this case, the
problem can be studied as motion of the lighter particle in the field of the more
massive one, which is assumed to be fixed.

A particularly interesting case is that in which the interaction potential between
particles does not depend on their relative velocity and depends only on the
relative distance r ¼ jrj between the particles, i.e. V = V(r). Then

F ¼ FðrÞ ¼ fðrÞ r
r
; ð3:1:6Þ

with

fðrÞ ¼ � dV

dr
: ð3:1:7Þ
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The field produced by such a force is called central force field. If V(r) increases
with r in some region, meaning dV

dr
[ 0; or f(r) \ 0, the force points to the centre

of the field, being a force of attraction in that region. In the opposite case, the force
is repulsive.

3.1.2 General Properties of Motion in Central Field

Observing that M¼ r� F ¼ 0; the angular momentum theorem (1.3.10) yields

l ¼ mr� _r ¼ C ðconst.Þ: ð3:1:8Þ

Taking the scalar product of this equation and r; we obtain:

r � C ¼ xCx þ yCy þ zCz ¼ 0: ð3:1:9Þ

This is the normal form of the equation of a plane passing through the points
P(x, y, z) and O. Consequently, a particle subject to a central force describes a
plane trajectory.

Let the plane of motion be the x1x2-plane (we re-label the Cartesian coordinates
x, y and z by x1; x2 and x3, respectively). Due to the spherical symmetry of our
problem, it is convenient to choose q1 ¼ r; q2 ¼ u as generalized coordinates.
Written in these coordinates, the Lagrangian of the system is

L ¼ 1
2
mð_r2 þ r2 _u2Þ � VðrÞ: ð3:1:10Þ

Since u is a cyclic coordinate, the associated generalized momentum is a constant
of motion:

pu ¼
oL

o _u
¼ mr2 _u ¼ C1: ð3:1:11Þ

The physical significance of (3.1.11) is found by projecting Eq. (3.1.8) on the
x3 = z-axis:

lz ¼ m½rur � ð_rur þ r _uuuÞ� � k ¼ mr2 _u ¼ Cz: ð3:1:12Þ

Comparing the last two relations, we conclude that C1 ¼ Cz ¼ C, meaning the
conservation of angular momentum, in projection on the axis of rotation (z).

Another first integral is obtained from the fact that the system is conservative.
Indeed, the Lagrangian (3.1.10) does not explicitly depend on time, therefore the
total energy E is constant:

E ¼ 1
2
mð_r2 þ r2 _u2Þ þ VðrÞ: ð3:1:13Þ

The elimination of _u between (3.1.11) and (3.1.13) yields a relation between the
total energy of the particle and the variable r:
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E ¼ 1
2

m_r2 þ Veff ðrÞ; ð3:1:14Þ

where the quantity

Veff ðrÞ ¼ VðrÞ þ C2

2mr2
ð3:1:15Þ

is called effective potential. It can be considered as giving rise to an effective force:

feff ðrÞ ¼ �
dVeff

dr
¼ fðrÞ þ C2

mr3
¼ fðrÞ þ

mv2
u

r
: ð3:1:16Þ

The second term on the r.h.s. of (3.1.16) is a centrifugal force and therefore the

term C2

2mr2 in (3.1.15) is called centrifugal potential. This term becomes important
near the origin.

The existence of the two first integrals (3.1.11) and (3.1.13) makes possible the
derivation of the finite equations of motion by a straightforward integration.
Indeed, (3.1.14) leads to

t ¼ �
ffiffiffiffiffiffi
m

2

r Z
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� Veff ðrÞ
p þ const.; ð3:1:17Þ

which determines r = r(t). Introducing now r(t) into (3.1.11), we obtain the other
coordinate, u ¼ uðtÞ:

u ¼ C

m

Z
dt

½rðtÞ�2
þ const. ð3:1:18Þ

The explicit equation of the trajectory, u ¼ uðrÞ; is obtained by eliminating the
variable t between the last two equations:

u ¼ �
Z

C

r2

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE� Veff ðrÞÞ
p þ const. ð3:1:19Þ

If we denote 1
r
¼ u; the last equation takes the form:

u ¼ �
Z

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE
C2 � 2mV

C2 � u2
q þ const. ð3:1:20Þ

All constants which appear in our calculations, including C and E, are determined
from the initial conditions.

Although we have already found the finite equations of motion and of trajectory
as well, there are several good reasons to derive the differential equation of tra-
jectory. Thus, observing that
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_r ¼ dr

du
_u ¼ C

mr2

dr

du
¼ � C

m

d

du
1
r

� �

;

we obtain from (3.1.14):

E ¼ C2

2mr2

1
r2

dr

du

� �2

þ1

" #

þ VðrÞ; ð3:1:21Þ

or, in terms of u,

E ¼ C2

2m

du

du

� �2

þu2

" #

þ V
1
u

� �

; ð3:1:22Þ

which is Binet’s equation. If V(r) is known, this equation can be integrated by
separation of variables.

Binet’s equation receives an alternative form by using the differential equations
of motion. Thus, the Lagrange equation (2.5.17) for the variable r gives:

m€r�mr _u2 ¼ fðrÞ: ð3:1:23Þ

But

€r ¼ � C2

m2r2

d2

du2

1
r

� �

;

hence

� C2

mr2

d2

du2

1
r

� �

þ 1
r

� �

¼ fðrÞ; ð3:1:24Þ

or

�C2

m
u2 d2u

du2
þ u

� �

¼ f
1
u

� �

: ð3:1:25Þ

Binet’s equation can also be used to determine the potential energy V(r) or the
force f(r), if the trajectory r ¼ rðuÞ is known.

3.1.3 Discussion of Trajectories

The formulas obtained in the previous section permit the determination of both the
trajectory and the law of motion, if the potential energy V(r) is known. Never-
theless, certain general characteristics of trajectories can be found without
knowing the analytical structure of this function.
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Since _r; t; u are real quantities, it follows from (3.1.14), (3.1.17) and (3.1.19)
that one must have Veff ðrÞ	E. This relation determines the domain of variation of
r, for given values of E and C. The boundary of this domain is provided by the
equality

Veff ðrÞ ¼ E: ð3:1:26Þ

According to (3.1.14), on the boundary the radial component of velocity vanishes
ð_r ¼ 0Þ; but _u 6¼ 0; if C 6¼ 0: Consequently, the condition _r ¼ 0 determines a
turning point of the trajectory: the function r(t) changes its sense of variation, i.e. _r
changes its sign. According to (3.1.11), _u does not change its sign, therefore u is a
monotonic function of time. This means that in (3.1.17)–(3.1.19) the limits must be
chosen as to correspond to a monotonic interval of variation of r, while the sign
must be suitably taken.

There are maximum and minimum values of r among the roots of (3.1.26), say
rM and rm, respectively. The relation Veff ðrÞ	E will therefore determine the
domain of variation of r:

0	 rm	 r	 rM : ð3:1:27Þ

The roots of Eq. (3.1.26) can be determined graphically, as being given by the
intersection points of the curve V ¼ Veff ðrÞ with the straight line V = E (Fig. 3.1).
As one can see, the number of roots depends on the structure of V(r), as well as on
the values of the constants C and E.

3.1.3.1 Bound Orbits

If rM is finite, we have bound trajectories. In this case, assuming rm [ 0, the
motion takes place within the circular crown (annulus) determined by the con-
centric circles of radii rm and rM (Fig. 3.2). The turning points for which r = rm

are called pericentres, while those corresponding to r = rM are called apocentres.
If the centre of force is the Earth, they are known as perigee and apogee, while
around the Sun, the trajectory of each planet has a perihelion and an aphelion.

Fig. 3.1 Graphical
representation of an arbitrary
potential energy V as a
function of the distance r.
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The trajectory is symmetric about any turning point. Indeed, if we choose the
coordinate axes so as to have u ¼ 0 in a turning point, then according to (3.1.19)
near this point we have two pairs of symmetrical positions, ðr;uÞ and ðr;�uÞ,
given by

u ¼ �
Zr

r0

C

r2

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE� Veff Þ
p ;

where r0 is rm for a pericentre, and rM for an apocentre. The angle at centre
between a pericentre and the next apocentre is

U ¼
ZrM

rm

C

r2

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE� Veff Þ
p ; ð3:1:28Þ

and, in view of the aforementioned discussion, the angle between two consecutive
pericentres (apocentres) is Du ¼ 2U.

A bound orbit could be closed or open. To be closed, an orbit must satisfy the
relation:

Du ¼ 2U ¼ 2p
n0

n
ðn; n0 integer numbersÞ; ð3:1:29Þ

i.e. after n revolutions about the centre, the radius-vector sweeps a multiple n0 of
2p radians. If this condition is not fulfilled, the orbit is open, which means that the
orbit never passes twice through a given point. There exist only two types of
central fields for which all bound orbits are also closed, namely those characterized
by the potentials:

VðrÞ ¼ a r2; a [ 0; ð3:1:30Þ

VðrÞ ¼ k

r
; k\0: ð3:1:31Þ

This statement expresses Bertrand’s theorem and will be proved in Sect. 3.1.4.

Fig. 3.2 Bound trajectories
of a planet. The circles of
radii rm and rM are
concentric.
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The effective potential Veff has a minimum in a point of the annulus
rm	 r	 rM , given by:

dVeff ðrÞ
dr

� �

r¼r

¼ 0 ! rm	 r	 rM : ð3:1:32Þ

If rm ¼ rM ¼ rc; the trajectory degenerates in a circle of radius rc, and we have:

dVeff

dr

� �

r¼rc

¼ 0; ð3:1:33Þ

meaning that rc corresponds to that value of r for which Veff ¼ ðVeff Þmin; and is
realized when the energy E equals ðVeff Þmin:

3.1.3.2 Unbound Orbits

If the domain of variation of r is given by r
 rmin; the particles may go to infinity.
It then follows that:

E
 lim
r!1

Veff ðrÞ ¼ lim
r!1

VðrÞ ¼ V1:

The limit V? is finite and one usually chooses V? = 0, so that the ‘‘escape to
infinity’’ condition is

E
 0:

The physical interpretation of this condition is simple: at infinity the interaction
between the particle and the centre of force ceases, V? = 0, and the particle is left
with kinetic energy only: E = T [ 0. Note that the symmetry of the orbit with
respect to the straight line passing through the centre of force and pericentre
remains valid. A particle describing an unbound trajectory passes only once
through pericentre.

3.1.3.3 Falling on the Centre of Force

If rm = 0, the particle passes through (or stops at) the centre of force. Assuming
C 6¼ 0 ðC ¼ 0 would correspond to a motion along a straight line), the centrifugal
term in V prevents the particle from falling on the centre, even if the force is
attractive. The condition of passing through the centre of force is Veff 	E; which
can be written as

r2VðrÞ þ C2

2m
	Er2:

For r to take the value rm = 0, one must have
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lim
r!1
½r2VðrÞ� 	 � C2

2m
;

i.e. near the origin the potential must decrease at least as

�Ar�2; A[
C2

2m
; ð3:1:34Þ

or

�Ar�n; A [ 0; n [ 2: ð3:1:35Þ

3.1.4 Bertrand’s Theorem

Let us prove that the only central fields having the property that all bound orbits
are also closed, are those given by (3.1.30) and (3.1.31) (Bertrand’s theorem).

The proof is based both on condition (3.1.29) and on the fact that there is a
bound and closed orbit for which Veff(r) admits a minimum. Such an orbit is the
circular orbit of radius r given by condition (3.1.32). In other words, for a given
central field, we can have a circular orbit if the angular momentum of the particle
has a value that satisfies (3.1.33), while the kinetic energy fulfills the condition
(3.1.26),

E ¼ Veff ðrÞ ¼ VðrÞ þ C2

2mr2 ; ð3:1:36Þ

where, according to (3.1.32), Veff ðrÞ is the value of Veff corresponding to the
considered minimum. We also have:

V 0eff ðrÞ ¼ 0; ð3:1:37Þ

V 00eff ðrÞ[ 0: ð3:1:38Þ

Let us now consider an orbit corresponding to an energy E, close to the circular
shape, and demand that this orbit is also closed. It is essential that the condition
(3.1.38) be fulfilled, because in case of a maximum, the circular orbit would not be
stable, the orbit would be unbound, and the problem would become meaningless.

The angle at centre between two consecutive turning points of the almost
circular orbit, in view of (3.1.28), is:

U ¼ C
ffiffiffiffi
m
p

Zum

uM

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E� 2VðuÞ
p : ð3:1:39Þ
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Here, um ¼ 1
rm
; uM ¼ 1

rM
; VðuÞ ¼ Veff ð 1

u
Þ:We also have E! Eþ �, with �

E
� 1:

Expanding VðuÞ according to Taylor’s formula about u ¼ 1
r
, we have:

VðuÞ ¼ VðuÞ þ V0ðuÞðu� uÞ þ 1
2
V00ðuÞðu� uÞ2 þ � � � ;

or, in view of (3.1.36) and (3.1.37),

VðuÞ ¼ Eþ 1
2
V00ðuÞðu� uÞ2 þ � � �

With this approximation, (3.1.39) becomes:

U ¼ C
ffiffiffiffi
m
p

Zum

uM

½2�� V00ðuÞðu� uÞ2��
1
2 du

¼ C
ffiffiffiffi
m
p ½V00ðuÞ��

1
2 arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V00ðuÞ
2�

r

ðu� uÞ
" #um

uM

;

where um;M ¼ u� ½ 2�
V00ðuÞ �

1
2 in the new variables. It then results that

U ¼ C½mV00ðuÞ��
1
2 : ð3:1:40Þ

Using the condition (3.1.33), we obtain:

mV00ðuÞ
C2

¼ a2 [ 0; ð3:1:41Þ

where a is a rational number, so as to have

U ¼ p
a
: ð3:1:42Þ

These considerations are valid for almost circular orbits. But it is clear that,
once the potential V(r) is found, by varying the pair of quantities (E, C), we can
pass from one circular orbit to another by a continuous variation of r: This means
that the discrete parameter a must be the same, for any circular orbit, i.e. for any
r ¼ 1

u
: Under these circumstances, Eq. (3.1.41) serves to determine the potential

V(r). In view of (3.1.15), we then have:

r
d2V

dr2
¼ ða2 � 3Þ dV

dr
;

with the solution:

VðrÞ ¼ Ara2�2: ð3:1:43Þ

Since a ¼
ffiffiffi

2
p

is not a rational number, we can take a2 6¼ 2:
Let us first discuss the case a2 [ 2. This leads to Veff ? ? for r ? 0. But

E
Veff , meaning that E also becomes infinite, and therefore rm = 0 is a turning
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point of infinite energy. In view of (3.1.43), the function VðuÞ can be written as
follows:

VðuÞ ¼ C2

2m
u2 þ Au2�a2

: ð3:1:44Þ

Introducing (3.1.44) into (3.1.39), and taking into account the fact that now
E ¼ VðumÞ, we have:

U ¼ C
ffiffiffiffi
m
p

Zum

uM

C2

m
ðu2

m � u2Þ þ 2Aðu2�a2

m � u2�a2Þ
� �� 1

2

du:

Making the substitution u = umx, we obtain:

U ¼
Z1

uM
um

1� x2 þ 2mA

C2
u2�a2

m ð1� x2�a2Þ
� �� 1

2

dx:

In the limit E!1, i.e. um !1, this integral reduces to

lim
E!1

U ¼
Z1

0

ð1� x2Þ�
1
2 dx ¼ p

2
: ð3:1:45Þ

Comparing this relation with (3.1.42), we obtain a = 2, and (3.1.43) leads to
(3.1.30). Here, the constant a must be positive, otherwise we would have only
unbound orbits.

Let us finally discuss the case 0 \ a2 \ 2. One can see that the effective potential
tends to zero by negative values, when r??. The point rM ¼ 1ðuM ¼ 0Þ is
therefore a turning point of zero energy. There exists also another turning point of
zero energy, given by Veff ðrmÞ ¼ 0, or

C2

2m
þ Au�a2

m ¼ 0: ð3:1:46Þ

Relation (3.1.39) yields:

U ¼ C
ffiffiffiffi
m
p

Zum

0

�C2

m
u2 � 2Au2�a2

� �� 1
2

du;

or, in view of (3.1.46),

U ¼
Zum

0

ðua2

m u2�a2 � u2Þ�
1
2 du:
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The integral is worked out by the substitution u ¼ umx
2
a2 , which gives:

U ¼ 2
a2

Z1

0

ð1� x2Þ�
1
2 dx ¼ p

a2
: ð3:1:47Þ

Comparing (3.1.47) with (3.1.42), we obtain a = 1, therefore (3.1.43) yields
(3.1.31).

In conclusion, we have shown that only the fields having a potential of the form
(3.1.30) or (3.1.31) can produce closed orbits. The proof of the theorem is
complete.

3.2 Kepler’s Problem

In this section we shall study the central field with potential energy of the type

VðrÞ ¼ k

r
: ð3:2:1Þ

In this category fall the gravitational (k \ 0) and Coulombian ðk\0; k [ 0Þ fields.
The structure of orbits corresponding to this potential can be qualitatively analyzed
by drawing the graphic of the function

Veff ðrÞ ¼
k

r
þ C2

2mr2
: ð3:2:2Þ

If the force is one of attraction (k \ 0) (Fig. 3.3), we distinguish the following
types of orbits.

For E ¼ ðVeff Þmin ¼ Veff ðrÞ; we have a circular orbit of radius

r ¼ C2

mjkj ; ð3:2:3Þ

Fig. 3.3 Graphical
representation of V as a
function of r for an attractive
force (k \ 0).
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which is obtained from (3.1.32). For the energy E1, with ðVeff Þmin\E1\0; we
have bound orbits in the annulus defined by rm and rM. These curves are also
closed, and we shall show that they are ellipses. For another energy E2
 0; the
orbits are unbound, the pericentre being given, say, by r0m.

If the force is repulsive (k [ 0) (Fig. 3.4), we have only unbound orbits, with
the pericentre r00m, for any E [ 0.

3.2.1 Determination of Trajectories

Choosing the x1-axis to pass through the pericentre (u ¼ 0 corresponds to r = rm),
we obtain from (3.1.19):

u ¼
Zr

rm

C2

r2
2m E� k

r
� C2

2mr2

� �� �� 1
2

dr; ð3:2:4Þ

or, if we pass to the new variable u ¼ 1
r

(see (3.1.20)),

u ¼
Zum

u

2m

C2
ðE� kuÞ � u2

� �� 1
2

du ¼
Zum

u

2mE

C2
þ m2k2

C4
� uþ mk

C2

� �2
" #� 1

2

du:

ð3:2:5Þ

If E ¼ Eð\0Þ, which is possible only for k \ 0, one obtains a circular orbit.
Indeed, using (3.1.14) and (3.2.3) to write

_r2 ¼ � k

C
þ C

mr2

� �

;

we get the solution _r ¼ 0; that is

Fig. 3.4 Graphical
representation of V as a
function of r for a repulsive
force (k [ 0).
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r ¼ r ¼ � C2

mk
¼ C2

mjkj :

Therefore, we shall assume

E [ E ¼ �mk2

2C2
: ð3:2:6Þ

Using condition (3.2.6), we integrate (3.2.5) and obtain:

u ¼ arccos
1
r
þ mk

C2

� �
2mE

C2
þ m2k2

C4

� �� 1
2

( )

;

which yields

1
r
¼ 1

p
� k

jkj þ � cos u

� �

: ð3:2:7Þ

This is the equation of a conic, having one focus in the centre of force O. Here,

p ¼ C2

mjkj ð3:2:8Þ

is the parameter of the conic and

� ¼ 1þ 2EC2

mk2

� � 1
2

ð3:2:9Þ

is its eccentricity.
One can also write the equation of the conic in Cartesian coordinates. To do

this, we observe that our choice of axes yields

cos u ¼ x1

r
¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1 þ x2

2

p ;

hence Eq. (3.2.7) leads to:

x2
1 þ x2

2 � ð�x1 � pÞ2 ¼ 0: ð3:2:10Þ

If E \ 0, which is possible only if k \ 0, we have a bound orbit. In this case
�\1; and (3.2.10) yields:

ð1� �2Þx2
1 þ x2

2 þ 2p�x1 ¼ p2;

or

x1 þ p�
1��2

� �
2

p

1��2

� �2 þ x2
2

pffiffiffiffiffiffiffiffi
1��2
p
	 
2 ¼ 1; ð3:2:11Þ
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which is the equation of an ellipse of semi-axes (see Fig. 3.5)

a ¼ p

1� �2
¼ jkj

2jEj ¼
k

2E
; ð3:2:12Þ

b ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mjEj
p ; ð3:2:13Þ

while the focal distance (distance from the centre to a focus) is

c ¼ p�

1� �2
¼ �a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

: ð3:2:14Þ

The distances from the centre to the pericentre and apocentre are, respectively:

rm ¼ a� c ¼ ð1� �Þa ¼ p

1þ � ; rM ¼ aþ c ¼ ð1þ �Þa ¼ p

1� � : ð3:2:15Þ

It is interesting to note that the semi-major axis of the ellipse, a, depends only on
the mechanical energy of the particle, being equal to rmþrM

2 :

If E [ 0, the trajectory is unbound, irrespective of the sign of k, while �[ 1:
Thus, Eq. (3.2.10) reads:

ð�2 � 1Þx2
1 � x2

2 � 2p�x1 ¼ �p2;

or

x1 � p�
�2�1

� �2

p

�2�1

� �2 � x2
2

pffiffiffiffiffiffiffiffi
�2�1
p
	 
2 ¼ 1; ð3:2:16Þ

which is the equation of a hyperbola, of semi-axes:

a ¼ p

�2 � 1
¼ jkj

2E
; ð3:2:17Þ

b ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1
p ¼ C

ffiffiffiffiffiffiffiffiffiffi

2mE
p ð3:2:18Þ

Fig. 3.5 Graphical
representation in the
Ox1x2-plane of a closed
elliptic orbit.
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and having the focal distance

c ¼ p�

�2 � 1
¼ �a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

: ð3:2:19Þ

The angle made by the asymptote with the x1-axis is given by

b

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1
p

¼ 2CE

jkj :

As shown in Figs. 3.6 and 3.7, if k \ 0, the particle moves along the branch of the
hyperbola which surrounds the centre of force, while for k [ 0, it moves on the
other branch. The distance to pericentre is calculated by putting u ¼ 0 in (3.2.7):

rm ¼
p

�þ 1
¼ að�� 1Þ\c ðk\0Þ; ð3:2:20Þ

rm ¼
p

�� 1
¼ að�þ 1Þ[ c ðk [ 0Þ: ð3:2:21Þ

Fig. 3.6 Graphical
representation in the
Ox1x2-plane of an unbound
orbit for k \ 0.

Fig. 3.7 Graphical
representation in the
Ox1x2-plane of an unbound
orbit for k [ 0.
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It is seen that, during the motion of the particle on the trajectory, the value rm is
reached only once.

If E = 0, which is possible only if k \ 0, we have unbound orbits, the particle
being at rest at infinity. Then (3.2.9) yields � ¼ 1 and (3.2.10) reads

x2
2 ¼ �2p x1 �

p

2

	 


; ð3:2:22Þ

which is a parabola. The distance to pericentre is

rm ¼
p

2
¼ C2

2mjkj ; ð3:2:23Þ

while the points of intersection of the parabola with the x2-axis are
x2 = ± p (Fig. 3.8).

Summarizing, we conclude that the type of orbit is completely determined by the
possible values of mechanical energy, which directly determine the eccentricity:

(a) E \ 0 ? �\1: ellipse;
(b) E [ 0 ? �[ 1: hyperbola;
(c) E = 0 ? � ¼ 1: parabola;

(d) E ¼ E ¼ � mk2

2C2 ! � ¼ 0: circle.

Cases (a), (c) and (d) can be realized only for attractive forces, while (b) is possible
for both attractive and repulsive potentials.

3.2.2 Law of Motion

To determine the finite equations of motion, i.e. r ¼ rðtÞ; u ¼ uðtÞ; we assume
that at t = 0 the particle passes through the centre. Then the integral (3.1.17)
yields:

t ¼
Zr

rm

2E

m
r2 � 2k

m
r� C2

m2

� �� 1
2

rdr: ð3:2:24Þ

Fig. 3.8 Graphical
representation in the
Ox1x2-plane of an unbound
orbit for k \ 0 and E = 0.
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We shall calculate this integral for the situations (a), (b) and (c) presented above.

(a) E \ 0 (k \ 0). Relations (3.2.12)–(3.2.14) yield:

k ¼ 2aE; C2 ¼ 2mjEjb2 ¼ 2mjEja2ð1� �2Þ;

and, in view of (3.2.15),

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
m

2jEj

r Zr

ð1��Þa

½a2�2 � ða� rÞ2��
1
2 dr:

With the substitution

r ¼ að1� � cos nÞ; ð3:2:25Þ

the result of integration is:

t ¼

ffiffiffiffiffiffiffiffiffiffi

ma3

jkj

s

ðn� � sin nÞ: ð3:2:26Þ

The last two relations give r, t in terms of the parameter n, while u can be

obtained from (3.2.7). If we put jkj
ma3

	 
 1
2¼ m in (3.2.26), we obtain:

n� � sin n ¼ mt; ð3:2:27Þ

known as Kepler’s equation.
The parameter n has a simple geometric interpretation. Assume that the

semi-major axis a of the ellipse is taken along the x1-axis, one of the foci being
at O and the centre at C (Fig. 3.9). Consider a point P on the ellipse, corre-
sponding to a value u of the polar angle, and draw a perpendicular at P on x1.
Let P0, P00 be the intersection points of this perpendicular with the x1-axis and

with the circle of radius a and centre at C, respectively. If we denote n ¼
dP 00CO; then

Fig. 3.9 Geometrical
representation of the real
anomaly u and the eccentric
anomaly n.
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a cos n ¼ cþ r cos u: ð3:2:28Þ

Using now (3.2.7), we arrive at (3.2.25), which means that the parameter n

identifies with the angle dP 00CO. In astronomy, n is known as the eccentric
anomaly, while u is called the real anomaly.

Relation (3.2.28) shows that a complete revolution of the particle on the
ellipse corresponds to a variation of 2p of n. The period of revolution, s,
results from (3.2.27):

ms ¼ 2p;

yielding

s2

a3
¼ 4p2m

jkj ;

which is Kepler’s third law.
The Cartesian coordinates of the particle are:

x1 ¼ r cos u ¼ aðcos n� �Þ; ð3:2:29Þ

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2
1

q

¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

sin n:

(b) E [ 0. From the relations (3.2.17)–(3.2.19), we obtain:

jkj ¼ 2aE; C2 ¼ 2mb2E ¼ 2ma2Eð�2 � 1Þ;

while (3.2.20) and (3.2.21) can be written under a unified form

rm ¼ a �þ k

jkj

� �

:

Thus, the integral (3.2.24) reads:

t ¼
ffiffiffiffiffiffiffiffi
m

2E

r Zr

rm

r� k

jkj a
� �2

�a2�2

" #� 1
2

rdr:

Making the substitution

r ¼ a � cosh nþ k

jkj

� �

; ð3:2:30Þ

the integration is easily performed and we obtain:

t ¼
ffiffiffiffiffiffiffiffi
m

2E

r

a � sinh nþ k

jkj n
� �

;

or
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t ¼

ffiffiffiffiffiffiffiffiffiffi

ma3

jkj

s

� sinh nþ k

jkj n
� �

: ð3:2:31Þ

This time, the parameter n can take all values from -? to +? and does not
have a simple geometric interpretation anymore. Passing to Cartesian coor-
dinates, we have:

x1 ¼ a �þ k

jkj cosh n

� �

;

x2 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1
p

sinh n:

ð3:2:32Þ

(c) E ¼ 0 ðk\0Þ: In view of (3.2.23), the relation (3.2.24) reads:

t ¼
ffiffiffiffiffiffiffiffiffi
m

2jkj

r Zr

p

2

r� p

2

	 
� 1
2
r dr;

which can be solved easily. The result is:

t ¼
ffiffiffiffiffiffiffiffiffi
m

2jkj

r
2
3

r� p

2

	 
 3
2þp r� p

2

	 
 1
2

� �

: ð3:2:33Þ

Using now (3.2.7), with � ¼ 1; k\0; g ¼ tan u
2 ; we have:

r ¼ p

2
ð1þ g2Þ: ð3:2:34Þ

Introducing (3.2.34) into (3.2.33), we obtain:

t ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffi

mp3

jkj

s

g 1þ g2

3

� �

: ð3:2:35Þ

Finally, the Cartesian coordinates of the particle are given by:

x1 ¼
p

2
ð1� g2Þ;

x2 ¼ pg:
ð3:2:36Þ

3.2.3 Runge–Lenz Vector

We wish to show that the field characterized by VðrÞ ¼ k
r

admits a third first
integral. In view of (3.1.6) and (3.1.7), Newton’s fundamental equation reads:
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€r ¼ k

m

r

r3
: ð3:2:37Þ

Using this formula, let us calculate the cross product €r� l; where l is the angular
momentum of the particle:

€r� l ¼ k
rðr � _rÞ

r3
� k

_r

r
:

But r � _r ¼ r_r; therefore

€r� l ¼ �kr
d

dt

1
r

� �

� k
_r

r
¼ � d

dt
k

r

r

	 


:

On the other hand, since _l ¼ 0; we may write:

€r� l ¼ d

dt
ð _r� lÞ:

The last two relations give

d

dt
_r� lþ k

r

r

	 


¼ 0;

which shows that the vector quantity

R ¼ _r� lþ k
r

r
ð3:2:38Þ

is a first integral. It is called the Runge–Lenz vector.
The magnitude of R is calculated observing that

j _r� lj2 ¼ 2l2

m
E� k

r

� �

and

r � ð _r� lÞ ¼ l � ðr� _rÞ ¼ 1
m

l2: ð3:2:39Þ

Therefore, recalling that in our case l = C (const.), we have:

jRj2 ¼ 2EC2

m
þ k2;

or, if we use the notation (3.2.9),

jRj ¼ jkj�: ð3:2:40Þ
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Since R � l ¼ 0, the vector R passes through O and lies in the plane of motion.
If we direct the x1-axis along R; the angle between r and R is the polar angle u.
Then, in view of (3.2.39), we have:

r � R ¼ rjRj cos u ¼ C2

m
þ kr;

or, if we use (3.2.40),

rðjkj� cos u� kÞ ¼ C2

m
:

If we now introduce the notation (3.2.8), we obtain the equation of a conic in the
form given by (3.2.7). This shows that the Runge–Lenz vector is oriented from the
centre of force to the pericentre, irrespective of the sign of k.

3.2.4 Artificial Satellites of the Earth. Cosmic Velocities

Assuming the Earth as an isotropic sphere of radius R, the potential energy of a
body in the gravitational field of the Earth is given by (3.2.1), with the parameter
k = -c mmE, where mE is the mass of the Earth and c – the gravitational constant.
If we neglect the rotation of the Earth about its axis, we have:

mg ¼ �c
mmE

R2
;

which yields k = -mgR2, and thus

VðrÞ ¼ �mgR2

r
: ð3:2:41Þ

Consider an artificial satellite of mass m, which takes off from the leading
rocket at a height h relative to the Earth’s surface (point P, Fig. 3.10). The velocity
of the satellite with respect to the Earth is v0, while the angle between v0 and the
vertical in P is a.

In this application we shall use our previous results. In order to have a closed
orbit, the following conditions must be fulfilled: k\0; E\0. Since

E ¼ mv2
0

2
� mgR2

Rþ h
; ð3:2:42Þ

the condition E \ 0 produces:

v2
0\

2gR2

Rþ h
: ð3:2:43Þ
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On the other hand, we must consider the fact that the satellite should not intersect
the Earth’s surface, therefore according to (3.2.15), a� c
R. Since c ¼ �a,
we have

�	 1� R

a
: ð3:2:44Þ

This condition is fulfilled if a
R; which, in view of (3.2.12) and (3.2.42), leads to
the inequality

v2
0

gR

 R� h

Rþ h
; ð3:2:45Þ

or, using (3.2.9),

C2

m2gR2

 2 R� jEj

mg

� �

:

From (3.2.42), observing that l ¼ mv0ðRþ hÞ sin a, we get:

v2
0

gR

hð2Rþ hÞ
R2

sin2 a� cos2 a

� �


 2h

Rþ h
: ð3:2:46Þ

In order to solve simultaneously the inequalities (3.2.43), (3.2.45) and (3.2.46), we
introduce the notations:

vI �
ffiffiffiffiffiffi

gR
p

’ 7; 906 m=s; ð3:2:47Þ

X � v0

vI

cos a; Y � v0

vI

sin a; ð3:2:48a; bÞ

n ¼ h

R
; ð3:2:49Þ

Fig. 3.10 Geometrical
representation of the
trajectory of an artificial
satellite of the Earth.
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leading to the new form of the three inequalities:

X2 þ Y2\
2

nþ 1
; ð3:2:50Þ

X2 þ Y2
 1� n

1þ n
; ð3:2:51Þ

�X2 þ nðnþ 2ÞY2
 2n

nþ 1
: ð3:2:52Þ

Consider the O0xy-plane, where to each point is attached a pair of variables
(X, Y). Then all three inequalities are simultaneously satisfied if the point (X, Y) is

inside both the annulus determined by the circles of radii ð 1�n
1þn
Þ

1
2 and ð 2

1þn
Þ

1
2 (the

domain marked by vertical lines in Fig. 3.11) and the hyperbola

� X2

2n
nþ1

þ Y2

2
ðnþ1Þðnþ2Þ

¼ 1; ð3:2:53Þ

(the region indicated by horizontal lines). Consequently, the inequalities are
simultaneously satisfied by the points in the netted domain.

Let Y 0; Y 00 be the points of intersection of the hyperbola (3.2.53) and of the

circle of radius ð 1�n
1þn
Þ

1
2 with the O0y-axis. Then:

Y 0 ¼ 2
ðnþ 1Þðnþ 2Þ

� � 1
2

; Y 00 ¼ 1� n

1þ n

� � 1
2

:

Since Y0[ Y00, the condition (3.2.51) (or (3.2.45)) is always satisfied. The

hyperbola always intersects the circle of radius ð 2
nþ1 Þ

1
2 in the points

ðX1; Y1Þ; ð�X1; Y1Þ; with

X1 ¼
ffiffiffiffiffiffi

2n
p

nþ 1
; Y1 ¼

ffiffiffi

2
p

nþ 1
; ð3:2:54Þ

Fig. 3.11 Geometrical
representation of the conditions
that a launched object must
obey, in order to become an
artificial satellite of the Earth.
The three inequalities (3.2.50),
(3.2.51) and (3.2.52) are
simultaneously satisfied if the
point (X, Y) is in the netted
domain.
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meaning that the netted domain exists always, i.e. for any h (any n) it is possible to
choose v0 and a in such a way that the launched object become an artificial satellite
of the Earth.

Assume that the launching takes place near the Earth’s surface. In this case,
since h � R, we can take n & 0 in (3.2.52) and obtain X & 0, or a ’ p

2 , meaning
that the launching has to be done parallel to the Earth’s surface. Taking X 

0; n 
 0 in (3.2.50) and (3.2.51), we obtain 1	 Y 	

ffiffiffi

2
p

; or

vI 	 v0	 vII ;

where vII ¼
ffiffiffi

2
p

vI 
 11; 180 m=s: The velocities vI and vII are called the first and,
respectively, the second cosmic velocity. It is obvious that vI and vII represent the
minimum and the maximum speeds of launching a body from the Earth’s surface,
in order to become a satellite. If v0 [ vII , the object either leaves the gravitational
field, or falls back on the Earth. From (3.2.54) we can also obtain the possible
interval of variation of the angle a, for given h and v0:

p
2
� a0	 a	 p

2
þ a0;

where a0 ¼ arctan
ffiffiffi
n
p

:

3.3 Classical Theory of Collisions Between Particles

3.3.1 Collisions Between Two Particles

Consider two particles in motion, which initially are far away from each other, so
that each of them can be considered free. If the distance between particles becomes
small enough, they begin to interact and, if certain conditions are fulfilled, they
collide. The collision is called elastic if it does not produce any change in the
internal state of the particles, and inelastic, if such a change happens. In the case
that the particles remain glued together after the interaction, the collision is termed
completely inelastic.

Our system of two particles of masses m1 and m2 is supposed to be isolated,
therefore the total momentum is conserved:

m1v1 þm2v2 ¼ m1v01 þm2v02; ð3:3:1aÞ

or

p1 þ p2 ¼ p01 þ p02; ð3:3:1bÞ

where unprimed and primed letters stand for velocities and momenta before and
after collision, respectively. Introducing the relative velocities:

v ¼ v2 � v1; v0 ¼ v02 � v01; ð3:3:2Þ
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and the velocity of the centre of mass:

V ¼ m1v1 þm2v2

M
¼ p1 þ p2

M
; M ¼ m1 þm2; ð3:3:3Þ

we can write the velocities of the particles before and after collision as

v1 ¼ V� m2

M
v; v2 ¼ Vþ m1

M
v; ð3:3:4Þ

v01 ¼ V� m2

M
v0; v02 ¼ Vþ m1

M
v0: ð3:3:5Þ

If the collision is elastic, the field of interaction between particles is conser-
vative, while the interaction potential Vint(r) must vanish at infinity:

lim
r!1

VintðrÞ ¼ 0:

In this case, the total kinetic energy is conserved:

T ¼ 1
2
MV 2 þ 1

2
lv2 ¼ 1

2
MV 2 þ 1

2
lv0

2
; l ¼ m1m2

m1 þm2
;

which leads to the conservation of the magnitude of the relative velocity:

jvj ¼ jv0j: ð3:3:6Þ

Using the fact that the centre of mass moves uniformly in a straight line, let us
consider an inertial reference system with respect to which the centre of mass is at
rest. Such a frame is called the centre of mass system (CMS). We choose the origin
of CMS in the centre of mass. Denoting by a star each vector defined with respect
to CMS, in this frame we have

p�1 ¼ m1v�1 ¼ m1ðv1 � VÞ ¼ �lv; p�2 ¼ m2v�2 ¼ m2ðv2 � VÞ ¼ lv;

which yields:

p�1 þ p�2 ¼ p0
�
1 þ p0

�
2 ¼ 0: ð3:3:7Þ

This relation can be taken as definition of the centre of mass. In view of (3.3.6),
we remark that

jp�1j ¼ jp�2j ¼ jp0
�
1j ¼ jp0

�
2j: ð3:3:8Þ

The relation between momenta relative to CMS is represented graphically in
Fig. 3.12. Before collision, the momenta of the two particles, equal in magnitude
but opposite in direction, lie on a straight line. This property survives after col-
lision, but the momenta are directed along a different straight line. The angle hCM

between these two lines is called scattering angle.
Usually, one of the particles is considered to be the ‘target’, being at rest

relative to the experimental device. Such a reference system is termed laboratory
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system (LS). If we choose particle 2 as being at rest, then LS is defined by the
condition

v2L ¼ 0:

In the following, to simplify the notation, we shall use the letter L to specify the
vectors defined relative to LS, and remove the star in case of the vectors defined
with respect to CMS. The velocity of CMS relative to LS is then

V ¼ m1v1L

M
: ð3:3:9Þ

Let us find the relations of transition between the two systems. Since v2 ¼
v2L � V ¼ �V; it follows that:

V ¼ �v2 ¼ �
p2

m2
¼ p1

m1
; ð3:3:10Þ

hence

p1L ¼ m1v1L ¼ MV ¼ M

m2
p1 ¼ 1þ m1

m2

� �

p1: ð3:3:11Þ

After collision, the particle 1 has the momentum:

p01L ¼ m1v01L ¼ m1ðv01 þ VÞ ¼ p01 þ
m1

m2
p1; ð3:3:12Þ

while the momentum of particle 2 (the ‘target’) is:

p02L ¼ p1L � p01L ¼ p1 � p01: ð3:3:13Þ

Relations (3.3.11)–(3.3.13) have a simple geometric interpretation. We can

distinguish three cases: m1
m2

[ 1;¼1; \1. In Fig. 3.13 the vector OB~ stands for p1,

OC~ stands for p01 and hCM ¼ dBOC: The vector AO~ (collinear with OB~ ) is m1
m2

p1;

therefore AB~ is p1L given by (3.3.11). From (3.3.12), AC~ ¼ OC~ þ AO~ is p01L,

while, in agreement with (3.3.13), CB~ ¼ OB~ �OC~ is p02L. If we denote by hL the

Fig. 3.12 Relation between
momenta relative to the
centre of mass reference
system in a collision of two
particles.
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angle between p01L and p1L (scattering angle in LS) and by h2L the angle between
p02L and p1L (scattering angle of the target particle), in all three cases we have

h2L ¼
1
2
ðp� hCMÞ: ð3:3:14Þ

Let us now find the relation between the scattering angles hL and hCM.
Examining Fig. 3.13, we can write:

tan hL ¼
jAC~ j sin hL

jAC~ j cos hL

¼ jOC~ j sin hCM

jAO~ j þ jOC~ j cos hCM

:

But jOC~ j ¼ jp01j ¼ jp1j and jAO~ j ¼ m1
m2
jp1j; hence:

tan hL ¼
m2 sin hCM

m1 þm2 cos hCM

: ð3:3:15Þ

We shall now analyze various cases, depending on the value of the ratio m1
m2

. If

m1 [ m2, the point A is outside the circle of radius jp1j (Fig. 3.13a). In this case,

hL takes values in the interval [0, h Lmax], where hLmax is the angle dC0AO; while
hCM takes values in the interval [0,p]. Note that

sin hLmax ¼
jp01j

m1
m2
jp1j
¼ m2

m1
; ð3:3:16Þ

which implies hLmax	 p
2 :

If m1 ¼ m2 (Fig. 3.13b), the point A is on the circle of radius jp1j, therefore
hL ¼ hCM

2 , i.e. hCM 2 0; p
2

� �

: In view of (3.3.14), we obtain

hL þ h2L ¼
p
2
;

which means that, after collision, the two particles move in LS along orthogonal
directions.

Finally, if m1\m2 (Fig. 3.13c), the point A is inside the circle, and the intervals
of variation of hL and hCM are the same.

Fig. 3.13 Various possibilities of scattering between two particles, in terms of the ratio m1=m2:
(a) m1 [m2, (b) m1 ¼ m2, (c) m1\m2.
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We realize that by means of the equations of conservation of momentum and
energy, we can determine only the magnitude of momenta in CMS. To find the
scattering angle (either hCM or hL), we must know both the law of interaction
between particles and their mutual position. This means that we have to find the
law of motion during collision and we shall discuss this matter in the next section.
Nevertheless, in some particular cases we can obtain some information from the
aforementioned formalism. For example, as we have shown, if m1 [ m2, the angle
hL is limited by hLmax (see (3.3.16)), which means that, if m1 � m2, we have
hLmax& 0, leading to hL& 0, i.e., the particle does not change its initial direction
after collision. If m1\m2, hL, as well as hCM, can take the value p. For
hL ¼ hCM ¼ p, Fig. 3.13c shows that p01 ¼ �p1, and the relations (3.3.12),
(3.3.13) yield:

p01L ¼ p1
m1

m2
� 1

� �

; p02L ¼ 2p1:

The kinetic energy of the ‘target’ after collision, measured in LS, is

T 02L ¼
1

2m2
jp02Lj2 ¼

1
m2
jp1j2ð1� cos hCMÞ

and, for hCM = p, in view of (3.3.11),

ðT 02LÞmax ¼
2

m2
jp1j2

2m2

m2
jp1Lj2 ¼

4l
M

T1L: ð3:3:17Þ

Therefore, in case of the ‘backwards scattering’ (hL ¼ hCM ¼ p), the energy
obtained by the target particle after collision is always smaller than the initial kinetic
energy of the incident particle, which is equal to the total initial energy. One can
verify that this is the largest energy of the target particle after collision (if hL varies
from 0 to 2p). If m1 � m2, we have hL 
 hCM , but this time hL is not limited (like in
case m1 � m2), because the target particle remains at rest in LS, while the motion of
the particle 1 depends on the law of interaction and the initial conditions.

3.3.2 Effective Scattering Cross Section

In physical applications we have to deal with the scattering of a large number of
particles by a centre of force (Fig. 3.14), rather than with the deviation of a single
particle. The incident beam is formed by independent, free particles, having the
same mass m1 and the same velocity v1: Coming close to the centre of force, also
called the centre of scattering, all particles are subject to the same law of inter-
action given by the potential V = V(r). After scattering, the particles are consid-
ered free again, but having different velocities and moving in different directions.
We shall analyze here only elastic scattering. Assuming that at infinity the non-
interaction condition is given by limr!1 VðrÞ ¼ 0 and recalling that T1 ¼ E
 0,
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this means that in the process of collision the mechanical energy of the particles is
positive (E [ 0).

To describe the scattering, let us take the origin of coordinates O at the centre
and the x3-axis parallel to v1. We call impact parameter b of a particle of the beam
the distance between the centre of scattering O and the initial direction of motion
of the incident particle (Fig. 3.14). Since the central force is conservative, the
energy of each particle remains constant:

E ¼ T1 ¼
m1v

2
1

2
: ð3:3:18Þ

On the other hand, the plane of the trajectory of each particle is determined by its
conserving angular momentum. Since l ¼ m1vr?; where r\ is the projection of r
on v; with r\ = b at infinity, we can write the angular momentum in terms of the
impact parameter:

l ¼ m1v1b: ð3:3:19Þ

The trajectories of the particles are symmetrical relative to a line drawn from the
centre O to the pericentre P (Fig. 3.15). The scattering angle h is the angle made
by the two asymptotes to the orbit, being the same for all particles having an
identical b.

In the theory of particle scattering, an important quantity is the effective scat-
tering cross section dr, defined as the ratio

dr ¼ dN

N0
;

where dN is the number of particles scattered per unit time within the solid angle
dX and N0 is the number of particles passing in unit time and in normal direction a
unit area of the beam cross section. Observing that the scattering angle is a
monotonically decreasing function of b, the particles having the impact parameter
in the interval (b, b ? db) will be deflected at angles in the interval (h, h ? dh).

Fig. 3.14 Schematic representation of a scattering.
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These particles pass in the normal direction through the area b db dU; where U is
the polar angle of rotation about the x3-axis. Thus,

dN ¼ N0b db dU:

Due to the axial symmetry, none of the quantities involved depend on U; therefore
we may consider particles passing through the annulus formed by the circles of
radii b; bþ db, and which, after scattering, lie in a conic shell (Fig. 3.16), i.e.

dN ¼ 2pN0b db:

Denoting by dX ¼ 2p sin hdh the solid angle defined by the directions ðh; hþ dhÞ,
we have:

dN ¼ N0
b

sin h
db

dh


















dX;

where the choice of the absolute value of the derivative db
dh is determined by the

fact that it is usually negative, while dN is positive by definition.

Fig. 3.15 Trajectory of a scattered particle in a repulsive potential V, and the scattering angle h.

Fig. 3.16 Geometrical
representation of scattering,
in terms of the impact
parameter b, for a repulsive
centre.
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Solving the equations of motion and using (3.3.18)–(3.3.19), we obtain
h = h(E, b), or conversely, we can calculate b as a function of h; E; which makes
possible the determination of the differential cross section:

dr ¼ 1
2 sin h

db2

dh


















dX ¼ 1

2
db2

dðcos hÞ


















dX: ð3:3:20Þ

This relation shows that the function b(h) contains all the information regarding
the behaviour of the scattering centre.

Note that 2umax þ h ¼ p if the centre is repulsive (Fig. 3.15), while
2umax � h ¼ p in the opposite case (Fig. 3.17). These two relations can be written
in a condensed form:

h ¼ jp� 2umaxj:

Using (3.1.19), we have:

h ¼ p� 2
Z1

rm

Cr2f2m1½E� Veff ðrÞ�g�
1
2 dr



























;

or, in view of (3.1.12), (3.3.18) and (3.3.19):

h ¼ p� 2b

Z1

rm

1
r2

1� VðrÞ
E
� b2

r2

� �� 1
2

dr



























: ð3:3:21Þ

The value of rm depends in general on b, and this gives rise to a complicated
relation h = h(b), sometimes impossible to invert.

Our theory is based on a model involving the motion of a beam of particles in
an external central field. But we can also conceive this process as a number of
collisions between pairs of particle, one particle of each pair being the ‘target’.
Each of these systems, in view of the theory developed in Sect. 3.1, can be
considered as a ‘particle in a central field’, which means that all our formulas
remain valid in CMS, if instead of the mass m1 of the incident particle we put the
reduced mass l of the pair.

Recall that the differential cross section dr, being defined as a ratio of numbers
of particles, is independent on the reference frame, therefore it does not change
when passing from CMS to LS. But the solid angle changes, so that the cross
section per unit of solid angle is:

dr ¼ dr
dX

� �

dX ¼ dr
dX

� �

L

dXL:

Since the axial symmetry is manifest also in LS, we have

dXL ¼ 2p sin hLdhL ¼ �2pdðcos hLÞ;
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which can also be written as

dXL ¼ 2p sin hdh
dðcos hLÞ
dðcos hÞ


















¼ dðcos hLÞ

dðcos hÞ


















dX:

For the incident particles, in view of (3.3.15), we have:

dr
dX
¼

1þ m1
m2

cos h

1þ 2 m1
m2

cos hþ m2
1

m2
2

h i 3
2

dr
dX

� �

1L

; ð3:3:22Þ

where m2 is the mass of the target particles and ðdr=dXÞ1L is the differential cross
section of the incident particles. If h2L is the angle between the directions of the
incident particles and the target after collision, using (3.3.14) we obtain:

dr
dX
¼ 1

4j sin h
2 j

dr
dX

� �

2L

¼ 1
4j cos h2Lj

dr
dX

� �

2L

; ð3:3:23Þ

where ðdr=dXÞ2L is the differential cross section of the target particles.

3.3.3 Scattering on a Spherical Potential Well

By ‘spherical potential well’ we mean a central field with the potential

VðrÞ ¼ 0; r [ R;

VðrÞ ¼ �V0; r	R;

where V0 is a constant. On each portion of its trajectory, the particle is free. Its
velocities outside and inside the well are v1 and v; respectively, both being con-
stant. Since the field is central and conservative, both energy and angular
momentum are conserved:

E ¼ m1v
2
1

2
¼ m1v

2

2
� V0 [ 0; l ¼ m1v1b ¼ m1vrm;

where rm ¼ OP (Fig. 3.18). From these relations we get

Fig. 3.17 Geometrical
representation of scattering,
in terms of the impact
parameter b, for an attractive
centre.
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b ¼ v

v1
rm ¼ nrm; ð3:3:24Þ

with

n � v

v1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ V0

E

r

[ 1; ð3:3:25Þ

known as the refraction index of the potential well. Using Fig. 3.18, we find

rm ¼ R cos b ¼ R cos
p
2
þ h

2
� a

� �

;

or, after some trigonometric calculations,

rm ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � b2
p

sin
h
2
þ b cos

h
2
:

Introducing this relation into (3.3.24), we obtain:

b2 ¼
n2 sin2 h

2

n2 � 2n cos h
2 þ 1

R2 ð3:3:26Þ

and formula (3.3.20) yields:

dr
dX
¼
ðn cos h

2 � 1Þðcos h
2 � nÞ

cos h
2 ðn2 � 2n cos h

2 þ 1Þ2
n2R2

4
: ð3:3:27Þ

The impact parameter b varies from 0 to R (for b [ R, the particles pass without
deviation), while the scattering angle takes values from 0 to hmax, given by

hmax ¼ 2 arccos
1
n
:

Integrating over the solid angle 2hmax, which contains all scattered particles, we
arrive at the total effective cross section:

Fig. 3.18 Scattering on a spherical potential well.
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r ¼ 2p
Zhmax

0

dr
dX

sin h dh ¼ 2pn2R2
Z1

1
n

ðnz� 1Þðn� zÞ
ðn2 � 2nzþ 1Þ2

dz:

The result of integration is p R2, as expected.

3.3.4 Rutherford’s Formula

The scattering of electrically charged particles in the Coulomb field of the targets
is a process which served as a model in the well-known experiment of Ernest
Rutherford, leading to the discovery of the atomic nucleus. Since the particles
involved in this type of interaction are elementary, a correct treatment of the
problem can be performed only by using the quantum mechanical formalism.
Nevertheless, some useful results are deduced within the classical approach.

Let us consider the scattering of a beam of particles of mass m1 and charge q1

on the target formed by particles of mass m2 and charge q2. Assuming that the
potential is of the type (3.2.1), with

k ¼ q1q2

4p�0
; ð3:3:28Þ

we shall determine the scattering angle h in CMS. The field being Coulombian, the
relation between umax and h can be written as

umax ¼
p
2
� k

jkj
h
2
;

thus accounting for both the attraction and repulsion forces. Since
umax ¼ limr!1 uðrÞ, Eq. (3.2.7) yields:

sin
h
2
¼ 1
�
:

On the other hand, setting l ¼ lv0b and Eþ lv2
0

2 in (3.2.9), we have:

�2 ¼ 1þ lv2
0b

k

� �2

;

hence

b2 ¼ k2

l2v4
0

cot2 h
2
:

Introducing this relation into (3.3.20), we arrive at Rutherford’s formula:
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dr
dX
¼ k

2lv2
0

� �2 1

sin4 h
2

: ð3:3:29Þ

The effective cross section for the incident particles in LS, dr
dX

� �

1L
; is obtained

by substituting h by hL in (3.3.22) and (3.3.29), and by using (3.3.15), which leads
to a very complicated relation. Much simpler is the expression for the effective
cross section of the ‘targets’. Since 2h2L = p - h, we get from (3.3.23) and
(3.3.29):

dr
dX

� �

2L

¼ k

lv2
0

� �2

j cos h2Lj�3: ð3:3:30Þ

A simple, but approximate formula can also be found for the cross section of
incident particles if m1 � m2. In this case, l 
 m1; hL 
 h, therefore

dr
dX

� �

1L

’ k

4E1

� �2

sin
h1L

2

� ��4

; ð3:3:31Þ

where E1 ¼ m1
v2

0
2 
 l

v2
0

2 is the energy of the incident particles.

In the case m1 ¼ m2 ¼ 2l, since h1L ¼ h
2 ¼ hL; h2L ¼ p

2 � h
2 ¼ p

2 � hL; both

cross sections dr
dX

� �

1L
and dr

dX

� �

2L
are easily calculated. In this case, after scat-

tering we cannot make any more distinction between incident and target particles.
Then, we can define the differential cross section as

dr ¼ dr
dX

� �

1L

dX1L þ
dr
dX

� �

2L

dX2L

� �

h1L¼hL; h2L¼ p
2�hL

;

hence

dr
dX

� �

L

¼ k

E1

� �2 1

sin4 hL

þ 1
cos4 hL

� �

cos hL:

The Coulomb field is characterized by an infinite total effective cross section:

r ¼
Z

4p

dr
dX

dX;

as a result of its infinite radius of action.

3.4 Periodical Motion of a Particle Under the Influence
of Gravity

A particle constrained to move on a curve or a surface, subject to the force of
gravity and performing periodical motions about a fixed point, is a mathematical
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pendulum. We shall discuss three classic models: simple, cycloidal and spherical
pendulums.

3.4.1 Simple Pendulum

The simple or plane pendulum is a system formed by a heavy particle, moving
without friction on a vertical circle. Let R be the radius of the circle, the motion

being performed in the x1x2-plane, with Ox1
~ k G (Fig. 3.19). The (holonomic)

constraints are:

x2
1 þ x2

2 ¼ R2; x3 ¼ 0;

therefore the system has one degree of freedom. Such a model is realized by a
particle P of mass m, fastened at one end to a massless rigid rod, the other end
being suspended in a fixed point O. If the rod is replaced by a non-extensible but
flexible wire, the constraint becomes non-holonomic: x2

1 þ x2
2	R2:

The most convenient choice for the generalized coordinate is the angle h
between OP and the x1-axis. Since x1 ¼ r cos h; x2 ¼ r sin h, the kinetic and
potential energies are:

T ¼ m

2
R2 _h2; V ¼ �mgR cos h

and the Lagrangian reads:

L ¼ m

2
r2 _h2 þmgR cos h: ð3:4:1Þ

The differential equation of motion is obtained by using the Lagrange equations
(2.5.17):

Fig. 3.19 Simple (plane)
pendulum. The system has
one degree of freedom.
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€hþ g

R
sin h ¼ 0: ð3:4:2Þ

This is a non-linear differential equation, which yields h = h(t). In the fol-
lowing, we shall determine the exact solution of (3.4.2). To this end, we use the
first integral of motion expressing the conservation of mechanical energy:

E ¼ m

2
R2 _h2 �mgR cos h ¼ const.

The constant is determined by the initial conditions: hð0Þ ¼ h0; _hð0Þ ¼ 0. Then,
E ¼ �mgR cos h0 and we obtain:

_h ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g

R
ðcos h� cos h0Þ

r

: ð3:4:3Þ

Since _h is a real quantity, we must have jhj 	 h0: This means that at the

beginning of the motion h decreases, i.e. _h\0 (which corresponds to the minus
sign in (3.4.3)), varying from zero at h (0) = h0 to its minimum value at h = 0,
then increases to zero, while h decreases from zero to -h0. Next, the motion
repeats itself, but in the opposite sense: the angle h increases from -h0 to 0, while
_h[ 0 (the plus sign in (3.4.3)) and increases from 0 to its maximum value, etc.
The turning points of the trajectory are, therefore, h = ±h0. The motion repeats
itself periodically, with the angular amplitude h0. It is obvious that in each of the
intervals ðh0; 0Þ; ð0;�h0Þ; ð�h0; 0Þ; ð0; h0Þ the motion is similar, which means
that the period of the pendulum is

s ¼ 4
Z0

h0

1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g

R
ðcos h� cos h0Þ

q dh:

Using the substitution (note that u does not have the meaning of an extra degree of
freedom besides h!)

sin
h
2
¼ sin

h0

2
sin u ¼ k sin u

one obtains:

s ¼ 4

ffiffiffiffiffi

R

g

s
Z

p
2

0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2 h0
2 sin2 u

q du: ð3:4:4Þ

We have arrived at an integral of the form

Fðu0; kÞ ¼
Zu0

0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 u
p du; ð3:4:5Þ
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which is an elliptic integral of the first kind. The function u is the amplitude
and k is the modulus of the integral. The integral KðkÞ ¼ Fð p

2 ; kÞ is termed
complete elliptic integral of the first kind. Tables of elliptic integrals can be found
in special mathematical publications. Using our notation, we can write the period
of motion as

s ¼ 4

ffiffiffiffiffi

R

g

s

F
p
2
; k

	 


¼ 4

ffiffiffiffiffi

R

g

s

KðkÞ: ð3:4:6Þ

Excluding the singular value h0 = p, we may take |k| \ 1. Then we can perform a
series expansion of the integrand in (3.4.5):

ð1� k2 sin2 uÞ�
1
2 ¼ 1þ 1

2
k2 sin2 uþ 1 � 3

2 � 4 k4 sin4 uþ � � �

¼
X1

n¼0

1 � 3 � 5. . .ð2n� 1Þ
2 � 4 � 6. . .2n

k2n sin2n u:
ð3:4:7Þ

This series is absolutely and uniformly convergent for |k| \ 1 in the interval
(0, p), which means that we can integrate it term by term. To do this, we shall
deduce an auxiliary formula, first obtained by the English mathematician John
Wallis. Let us denote

A2n ¼
Z

p
2

0

sin2n udu; ð3:4:8Þ

where n is an integer. We can write

A2n ¼
Z

p
2

0

sin2n�2 uð1� cos2 uÞdu ¼ A2n�2 �
Z

p
2

0

sin2n�2 u cos2 udu;

or, if we integrate by parts,

A2n ¼ A2n�2 �
1

2n� 1

Z
p
2

0

sin2n udu:

In view of (3.4.8), we can write the following recurrence relation:

2nA2n ¼ ð2n� 1ÞA2n�2: ð3:4:9Þ

Giving to n all values from 0 to n and then taking the product of the obtained
relations, we find

A2n ¼
1 � 3 � 5. . .ð2n� 1Þ

2 � 4 � 6. . .2n
A0;
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or

Z
p
2

0

sin2n udu ¼ 1 � 3 � 5. . .ð2n� 1Þ
2 � 4 � 6. . .2n

p
2
¼ ð2n� 1Þ!!

2nn!

p
2
; ð3:4:10Þ

which is Wallis’ formula. Using this result in (3.4.6), we obtain finally the period
of the pendulum as

s ¼ 2p

ffiffiffiffiffi

R

g

s

X1

n¼0

ð2n� 1Þ!!
2nn!

� �2

sin2n h0

2
: ð3:4:11Þ

This result is exact (we have not made any approximation). If h0\ p
2 , we can

expand in series sin h0
2 and obtain

s ¼ 2p

ffiffiffiffiffi

R

g

s

1þ 1
16

h2
0 þ

11
3072

h4
0 þ � � �

� �

: ð3:4:12Þ

For small amplitudes (h0 \ 4�), the terms containing h2
0; h4

0, etc. are negligible
with respect to 1, and we arrive at the well-known approximative formula

s ¼ 2p

ffiffiffiffiffi

R

g

s

;

which says that the small oscillations of pendulum are tautochronous (from the
Greek tauto (the same) and chronos (time)). This property is used in the con-
struction of astronomical clocks (h0 = 1�300).

Let us now calculate the force of constraint. The tangent and normal projections
of the equation L ¼ m€r�G are:

Lt ¼ mR€hþmg sin h; Ln ¼ �mR _h2 �mg cos h:

In agreement with (3.4.2), we have Lt = 0, as expected. Using (3.4.3), we find

Ln ¼ mgð2 cos h0 � 3 cos hÞ: ð3:4:13Þ

If h0\ p
2 , then for any h the vector L points towards the centre O. In this case, the

constraint remains holonomic if the rigid rod is replaced by an inextensible, but
flexible wire, whose initial length is R.

3.4.2 Cycloidal Pendulum

A heavy particle moving without friction on a vertical cycloid with the concavity
upwards is a cycloidal pendulum (Fig. 3.20). The parametric equations of a cycloid
are (see (2.6.29), (2.6.30)):
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x1 ¼ aðhþ sin hÞ; x2 ¼ að1� cos hÞ; x3 ¼ 0 ð3:4:14Þ

and we have again a system with one degree of freedom. Taking h as generalized
coordinate, the Lagrangian reads:

L ¼ ma2ð1þ cos hÞ _h2 þmga cos h; ð3:4:15Þ

leading to the equation of motion:

2ð1þ cos hÞ€h� sin h _h2 þ g

a
sin h ¼ 0;

or

d2

dt2
sin

h
2

� �

þ g

4a
sin

h
2
¼ 0:

Taking h(0) = h0 and _hð0Þ ¼ 0 as initial conditions, the last equation yields the
solution

sin
h
2
¼ sin

h0

2
cos

ffiffiffiffiffiffiffi
g

4a

r

t

� �

: ð3:4:16Þ

Consequently, the motion is periodical, with the period 4p
ffiffiffiffi
a
g

q

: The same result is

obtained using the energy first integral.
The time needed for the particle to move from P0 to O ðh ¼ 0Þ is

t1 ¼ p
ffiffiffiffiffi
a

g

r

; ð3:4:17Þ

i.e. the periodical motion on a cycloid is tautochronous, for any angle h.

3.4.3 Spherical Pendulum

By spherical pendulum we mean a heavy particle moving without friction on a
fixed sphere. Such a system can be obtained by suppressing the constraint which

Fig. 3.20 Cycloidal
pendulum. The system has
one degree of freedom.
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determines the simple pendulum to move in a plane. Choosing the coordinate

system Ox1x2x3, with the origin at the centre of the sphere, and Ox3
~ k G

(Fig. 3.21a), we have a single constraint,

x2
1 þ x2

2 þ x2
3 ¼ R2; ð3:4:18Þ

which means that the system possesses two degrees of freedom. Taking the polar
and azimuthal angles h;u as generalized coordinates, the Lagrangian reads:

L ¼ m

2
R2ð _h2 þ sin2 h _u2Þ þmgR cos h: ð3:4:19Þ

As we already know, since u is cyclic, pu ¼ l3 is a first integral of motion:

pu ¼ mR2 sin2 h _u ¼ l3 ¼ const. ð3:4:20Þ

Another first integral is furnished by the conservation of the total energy:

E ¼ mR2

2
_h2 þ l23

2mR2 sin2 h
�mgR cos h: ð3:4:21Þ

Defining the effective potential

Veff ðhÞ ¼
l23

2mR2 sin2 h
�mgR cos h; ð3:4:22Þ

the relation (3.4.21) yields:

_h2 ¼ 2
mR2

½E� Veff ðhÞ�: ð3:4:23Þ

During its motion, the particle will reach only those values of h which correspond
to E
Veff ðhÞ. The limit values of h can be obtained as the intersection points of
the curve V = Veff(h) with the straight line V = E, in the plane of variables (h, V).

Fig. 3.21 Spherical pendulum. The system has two degrees of freedom.
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Since Veff jh¼0 ¼ Veff jh¼p ¼ 1; the pendulum never passes through the two poles
of the sphere. These points are equilibrium positions of the particle: stable equi-
librium for h = 0 and unstable for h = p. If _u ¼ 0; then l3 = 0, which yields
u ¼ const.; and we arrive at the particular case of the simple pendulum. Therefore,
in the following we shall assume _uð0Þ 6¼ 0; l3 6¼ 0:

Introducing the new variable u ¼ cos h and using the last two equations, we
obtain

_u2 ¼ PðuÞ; ð3:4:24Þ

where P(u) is a polynomial of third degree in u:

PðuÞ ¼ 2E

mR2
þ 2g

R
u

� �

ð1� u2Þ � l3

mR2

� �2

: ð3:4:25Þ

The motion is possible for those values of u, for which PðuÞ
 0. The law of
motion for the variable h is obtained from (3.4.24) as an implicit function:

t ¼ �
Zu

u0

½PðuÞ��
1
2 du;

where the sign is chosen as to produce a monotonically increasing time. The
trajectory is found by using (3.4.20):

u� u0 ¼
l3

mR2

Zu

u0

du

�ð1� u2Þ
ffiffiffiffiffiffiffiffiffiffi

PðuÞ
p :

To analyze the roots of the polynomial P(u), let us first observe that we must

have P(u0) [ 0, where u0 ¼ cos hð0Þ 2 ð�1; 1Þ. Since Pð�1Þ ¼ � l3
mR2

� �2
\0; it

results that P(u) has two roots in the interval (-1, +1), say u1 and u2 (u1\u2).
Observing that limu!�1 PðuÞ ¼ �1; there is a third real root u3 [ (-?, -1),
which does not have a physical meaning.

Since u0 2 ½u1; u2�, during the motion we must have u 2 ½u1; u2�, meaning that
the trajectory is between the parallel circles h1; h2, with h1 [ h2 (see Fig. 3.21b).
In view of (3.4.25), we can write:

u1u2 þ u1u3 þ u2u3 ¼ �1;

or

u3ðu1 þ u2Þ ¼ �1� u1u2:

Since ju1u2j\1; while u3 \ 0, we must have

u1 þ u2 [ 0:
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This means that at least u2 [ 0, i.e. h2\ p
2 , which shows that the trajectory of the

pendulum cannot be situated only in the upper hemisphere (Fig. 3.21b).
We conclude that h is a periodical function, with values between h1 and h2,

corresponding to _h ¼ 0. If the initial conditions are such that E ¼ ðVeff Þmin, then
P(u) has a double root u1 ¼ u2 in the interval (-1, ?1). In this case, the condition
PðuÞ
 0 yields P(u) = 0, which is the constant value u1 for u and, since
u0 2 ½u1; u2�, it follows that u = u0 all the time. Therefore the particle describes a
horizontal circular trajectory, defined by h = h0. During this motion, the radius
vector OP generates a cone of angle 2h0, for which reason the system is called a
conic pendulum. If the energy E is not much different from ðVeff Þmin, the trajectory
is close to the circular shape. This shows that the trajectory corresponding to the

horizontal circle h = h0, with dVeff

dh

h i

h¼h0

¼ 0; is stable.

3.5 Motion of a Particle Subject to an Elastic Force

In this section we shall discuss the motion of a particle under the influence of the
attractive central force field

F ¼ �kr; ð3:5:1Þ

corresponding to the potential energy (see (3.1.30))

VðrÞ ¼ 1
2
kr2; ð3:5:2Þ

where k is positive.

3.5.1 Harmonic Linear Oscillator

A harmonic linear oscillator is a particle of mass m, constrained to move along a
straight line, subject to an elastic force, periodically passing through a fixed point
of the straight line. Taking this point as the origin and choosing as generalized
coordinate the oriented distance x from O to the particle, we have:

F ¼ �kx; V ¼ 1
2
kx2: ð3:5:3Þ

Writing the Lagrangian

L ¼ 1
2

m _x2 � 1
2
kx2 ð3:5:4Þ

and using the Lagrange equations (2.5.17), we arrive at the equation of motion:
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€xþ x2x ¼ 0; ð3:5:5Þ

where

x ¼
ffiffiffiffiffiffi

k

m

r

: ð3:5:6Þ

The two linearly independent solutions of Eq. (3.5.5) can be written in the
condensed form

xðtÞ ¼ a cosðxt þ uÞ; ð3:5:7Þ

showing that the particle performs harmonic oscillations about the equilibrium
position O. The deviation x from the equilibrium position O is called elongation,
a is the amplitude of oscillation, while x is the circular (or angular) frequency of
the periodical motion. The argument of the cosine is the phase of the motion, u
being the initial phase. The constants a and u are determined from the initial
conditions: assuming xð0Þ ¼ x0; _xð0Þ ¼ v0, we have:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
0 þ

v2
0

x2

r

; tan u ¼ � v0

xx0
:

Sometimes it is more convenient to use the complex solution of (3.5.5),

~xðtÞ ¼ Ae�iðxtþuÞ;

instead of the real solution (3.5.7). Here, the constant A is complex and u is real.
Our model is conservative, consequently we have the energy first integral:

E ¼ 1
2

m _x2 þ 1
2
kx2 ¼ const.

The linear harmonic oscillator is a very simple model, but it can be applied in
the study of various physical systems. The reader is acquainted with the theory of
damped and forced oscillations from the courses on general physics. Here, we shall
discuss only some applications, especially useful in physical chemistry.

3.5.2 Space Oscillator

A space oscillator is a mechanical system with three degrees of freedom, formed
by a particle subject to an elastic central force (3.5.1). As we already know, the
trajectory lies in a plane. Assuming the origin of coordinates at the centre of force
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and Ox3 k l; the motion will take place in the plane Ox1x2. Therefore, it is con-
venient to choose r;u as generalized coordinates.

In order to determine the trajectory, we shall use (3.1.19), where the effective
potential energy Veff is:

Veff ¼
k

2
r2 þ l2

2mr2
¼ mx2

2
r2 þ l2

2mr2
:

If we take the x1-axis to pass through the pericentre, then

u ¼ � 1
2

Z
1
r2

1
r2m

m2

l4
ðE2 � l2x2Þ � u2 � mE

l2

� �2
" #� 1

2

du2; ð3:5:8Þ

where rm is the solution of the equation E - Veff = 0, i.e.

r2
m ¼

1
mx2

E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 � l2x2
ph i

: ð3:5:9Þ

Since E2 � l2x2
 0; the quantity rm
2 is always positive. It is easy to verify that

ðVeff Þmin ¼ lx:
Working out the integral (3.5.8), we obtain:

2uþ p ¼ arccos
1
r2 � mE

l2

m
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 � l2x2
p ;

or

1
r2
¼ mE

l2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2x2

E2
cos2 u

r !

; ð3:5:10Þ

which represents an ellipse of semi-axes

a ¼ Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 � l2x2
p

mx2

 ! 1
2

; b ¼ E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 � l2x2
p

mx2

 ! 1
2

: ð3:5:11Þ

The same result is obtained in Cartesian coordinates, using the Lagrangian

L ¼ m

2
ð _x2

1 þ _x2
2Þ �

mx2

2
ðx2

1 þ x2
2Þ:

Then the Lagrange equations lead to two independent equations

€x1 þ x2x1 ¼ 0; €x2 þ x2x2 ¼ 0; ð3:5:12Þ

which have solutions of the form (3.5.7).
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3.5.3 Non-linear Oscillations

In all cases previously analyzed we had to deal, from the mathematical point of
view, with second-order linear differential equations, whose general form is:

€xþ aðtÞ _xþ bðtÞx ¼ cðtÞ: ð3:5:13Þ

The systems described by such equations perform linear motions. But there are
cases when the behaviour of one-dimensional oscillating systems is described by
equations of the type

€xþ f ðx; _x; tÞ ¼ 0; ð3:5:14Þ

where f ðx; _x; tÞ is a non-linear function of the variables x; _x; t, i.e. it contains
terms like: x2; x _x; xt, etc. The oscillations performed by such systems are called
non-linear.

If the displacements from the equilibrium positions are not small enough, the
formulas (3.5.1) and (3.5.2) are not valid anymore, because they do not approxi-
mate well enough the physical reality. In this case, the Lagrangian must contain
terms of higher order, producing non-linear differential equations of the type
(3.5.14). As a matter of fact, most physical systems are described by non-linear
differential equations and the linear approximation appears as a particular case,
corresponding to small oscillations.

There are no general methods of integration of non-linear differential equations,
but there exist special techniques, like the method of successive approximations, or
the expansion in Fourier series, etc. These problems are studied by non-linear
mechanics.

As an example, let us consider the free motion of a plane pendulum. Here, for
small angles, the non-linear equation (3.4.2) becomes:

€hþ g

R
h ¼ 0;

similar to (3.5.5), where we assumed sin h 
 h: If we take into consideration the
second term in the series expansion of sin h, the corresponding equation is:

€hþ g

R
h� g

6R
h3 ¼ 0; ð3:5:15Þ

which is a non-linear equation with constant coefficients. It is not our purpose to
find a solution of this equation, but, at least, we can find the Lagrangian leading to
(3.5.15). Indeed, expanding in series the potential energy about h = 0, we have:

VðhÞ ¼ �mgR cos h ’ �mgR 1� h2

2
þ h4

24

� �

:

The Lagrangian of the system is:
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L ¼ 1
2
mR2 _h2 þmgR 1� h2

2
þ h4

24

� �

: ð3:5:16Þ

It is easy to prove that the Lagrange equations, for the Lagrangian (3.5.16), lead to
(3.5.15). The problem is solved in a similar way if the motion takes place in a
resistant medium.

We conclude that in most physical problems, the higher we go with the
approximation, the closer to the reality becomes the result, implying a more
complicated mathematical formalism.

3.6 Small Oscillations About a Position of Stable Equilibrium

In the case of systems with many degrees of freedom, the Lagrange equations are
very complicated, appearing as non-linear coupled equations, and their exact
integration is not possible. In the following, we shall give a method of approxi-
mating the solution, with many applications in different branches of physics.

Consider a conservative system of N particles, subject to (at most) scleron-
omous constraints. A configuration fr0

i ; i ¼ 1;Ng is an equilibrium configuration
at the time t0 = 0, if at any t
 0 are satisfied the conditions:

riðtÞ ¼ rið0Þ ¼ r0
i ; _riðtÞ ¼ _rið0Þ ¼ 0 ði ¼ 1;NÞ:

In our case, these conditions are fulfilled if

ðFi þ LiÞr0
1;...;r

0
N
¼ 0 ði ¼ 1;NÞ: ð3:6:1Þ

Let us now pass to the generalized coordinates q1; ::; qn: Denoting by q0 : fq0
j ; j ¼

1; ng the coordinates corresponding to the equilibrium position and using (2.1.61),
(2.4.12), the generalized forces Q0

j ¼ Qjðq0Þ associated to this position are

Q0
j ¼

XN

i¼1

Fi �
ori

oqj

" #

q¼q0

¼ �
XN

i¼1

Xs

k¼1

kk½gradifkðr1; ::; rNÞ� �
ori

oqj

" #

q¼q0

:

But

XN

i¼1

½gradifkðr1; ::; rNÞ� �
ori

oqj

¼ ofk

oqj

¼ 0 ðk ¼ 1; s; j ¼ 1; nÞ;

therefore Qj(q
0) = 0. Since the system is supposed to be conservative, there exists

a function V(q) with the property

Qjðq0Þ ¼ � oV

oqj

� �

q¼q0

¼ 0 ðj ¼ 1; nÞ: ð3:6:2Þ
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In other words, the equilibrium configuration corresponds to a minimum of the
potential energy. According to the Lagrange–Dirichlet theorem (see Chap. 2), the
equilibrium is stable if this extremum is a strict (absolute) minimum. Indeed, in
case of a maximum, say V(q0) = E0, if we furnish to the system an energy a little
larger than E0, then the bigger the distance from the equilibrium position, the
bigger is the difference E - V = T, which means that the equilibrium is unstable.

Let us introduce as new generalized coordinates

nj ¼ qj � q0
j ðj ¼ 1; nÞ; ð3:6:3Þ

to express the small deviations from the equilibrium position. These new coor-
dinates are considered small, to allow us to retain only terms quadratic in n in any
calculation. Expanding V(q) by Taylor’s formula, we have:

VðqÞ ¼ V0 þ
Xn

j¼1

oV

oqj

� �

0

ðqj � q0
jÞ þ

1
2

Xn

j¼1

Xn

k¼1

o2
V

oqjoqk

� �

0

ðqj � q0
jÞðqk � q0

kÞ

þ � � � ; ð3:6:4Þ
where the subscript ‘zero’ means that the derivatives are calculated at the equi-
librium configuration. The first term in (3.6.4) is an additive constant which can be
taken zero, while the second term vanishes by virtue of (3.6.2). Denoting

Vjk ¼
o2

V

oqjoqk

� �

0

¼ Vkj; ð3:6:5Þ

we obtain the first approximation for the potential energy as

V ¼ 1
2

Xn

j¼1

Xn

k¼1

Vjknjnk: ð3:6:6Þ

If the configuration fqj; j ¼ 1; ng is of stable equilibrium, then according to the
Lagrange–Dirichlet theorem, the form (3.6.6) is positive definite. From (2.4.25),
the kinetic energy is:

T ¼ 1
2

Xn

j¼1

Xn

k¼1

ajkðqÞ _qj _qk ¼
1
2

Xn

j¼1

Xn

k¼1

ajkðqÞ _nj
_nk: ð3:6:7Þ

But

ajkðqÞ ¼ ðajkÞ0 þ
Xn

l¼1

oajk

oql

� �

0

ðql � q0
l Þ þ � � � ; ð3:6:8Þ

therefore, using our convention,

ajkðqÞ ’ ðajkÞ0 ¼ ajk ¼ akj; ð3:6:9Þ

and the kinetic energy reads:
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T ¼ 1
2

Xn

j¼1

Xn

k¼1

ajk
_nj

_nk: ð3:6:10Þ

3.6.1 Equations of Motion. Normal Coordinates

The Lagrangian of the system is

L ¼ 1
2

Xn

j¼1

Xn

k¼1

ðajk
_nj

_nk � Vjk nj nkÞ ð3:6:11Þ

and the Lagrange equations yield

Xn

k¼1

ðajk
€nk þ Vjk nkÞ ¼ 0 ðj ¼ 1; nÞ: ð3:6:12Þ

This is a system of n coupled linear differential equations. Let us show that, if the
variables are suitably chosen, the solution of the problem reduces to the integration
of n equations of the form (3.5.5). To this end, we shall look for solutions of the
form

Aeixt;

the coordinate nj being the real part of this complex quantity. Introducing this
solution into (3.6.12), we obtain the linear, homogeneous, algebraic system of
equations

Xn

k¼1

ðVjk � x2ajkÞAk ¼ 0 ðj ¼ 1; nÞ: ð3:6:13Þ

This system has non-trivial solutions for the amplitudes Ak only if

det ðVjk � x2ajkÞ ¼ 0; ð3:6:14Þ

which is an equation of degree n in x2, called the characteristic equation. Its roots
are real and positive (see Appendix A). This property follows immediately if one
multiplies (3.6.13) by the complex conjugated A�j and sums over j, which yields

x2 ¼
Pn

j¼1

Pn
k¼1 Vjk Aj A�k

Pn
j¼1

Pn
k¼1 ajk Aj A�k

;

where both the numerator and denominator are real and positive. In general, we
have n distinct solutions x2

s ðs ¼ 1; nÞ; if two or more solutions are equal, we have
a degeneracy. The corresponding frequencies are called normal frequencies. To
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each normal frequency corresponds a solution of Eq. (3.6.12); thus, the general
solution is:

nj ¼
Xn

s¼1

cs
jRefjAsjeiðxstþusÞg ¼

Xn

s¼1

Refas
j eiðxstþusÞg; ð3:6:15Þ

where the constants cs
j; as

j are real. Considering the particular complex solutions

~nj ¼ as
je

iðxstþusÞ;

the characteristic system of equations becomes:

x2
s

Xn

k¼1

ajk as
k ¼

Xn

k¼1

Vjk as
k ðno summation over s; s; j ¼ 1; nÞ: ð3:6:16Þ

Since these equations are homogeneous, only some of the amplitudes aj
s are

determined. In the non-degenerate case, the matrix V̂ � x2â is of order n - 1,
which means that, for each s, we can express n - 1 amplitudes as functions of an
arbitrary one, say an

s . All together, we have n undetermined amplitudes and
n initial phases, us; i.e. 2n constants which are determined from the initial
conditions. The situation is similar to that encountered in the degenerate case.
Suppose, for example, that x1 ¼ x2 ¼ � � � ¼ xm; i.e. x1 is a multiple root of order
m, the rest of the roots being distinct. In this case, the rank of the matrix V̂ � x2

s â

is (n - m), and so m amplitudes Aj
(1) remain undetermined. For each s ¼ mþ 1;

mþ 2; . . .; n there remains an undetermined amplitude, which means (n - m)
amplitudes. The total number of arbitrary amplitudes is, again, n, and together with
the initial phases, there are 2n arbitrary constants.

The choice of generalized coordinates is, to a great extent, arbitrary, which
allows us to represent the system by a system of harmonic oscillators, each of them
being associated with a degree of freedom. In other words, with each normal
frequency one associates a generalized coordinate, which varies periodically with
time, with the respective frequency. These coordinates are called normal. To make
an appropriate choice for normal coordinates, let us first write a few useful
relations.

Multiplying (3.6.16) by ar
j ðr 6¼ s; r ¼ 1; nÞ and performing summation over j,

we obtain:

x2
s

Xn

j¼1

Xn

k¼1

ajk ar
j as

k ¼
Xn

j¼1

Xn

k¼1

Vjk ar
j as

k:

Interchanging now r and s in the last relation, then subtracting the result from the
original expression, we have:
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ðx2
s � x2

r Þ
Xn

j¼1

Xn

k¼1

ajk ar
j as

j ¼ 0: ð3:6:17Þ

In the non-degenerated case, for r 6¼ s we have xr 6¼ xs; therefore the double sum
in (3.6.17) must be zero. If r = s, the double sum cannot be zero (this would mean
that all the amplitudes aj

s would be zero), so we can choose the amplitudes
such that

Xn

j¼1

Xn

k¼1

ajk as
j as

k ¼ 1 ðno summation over s; s ¼ 1; nÞ: ð3:6:18Þ

These relations represent n supplementary conditions which yield the n ampli-
tudes, remained undetermined after solving (3.6.16). All these conditions can be
written in the compact form

Xn

j¼1

Xn

k¼1

ajk ar
j as

k ¼ drs ðr; s ¼ 1; nÞ: ð3:6:19Þ

We shall now define the normal coordinates as the following linear combina-
tions of nj:

gs ¼ Re
Xn

j¼1

Xn

k¼1

ajk as
k nj ðs ¼ 1; nÞ: ð3:6:20Þ

In view of (3.6.15) and (3.6.18), we obtain:

gs ¼ RefeiðxstþusÞg ¼ cosðxst þ usÞ ðs ¼ 1; nÞ; ð3:6:21Þ

which, for any s, satisfies equations of the form:

€gs þ x2
sgs ¼ 0 ðs ¼ 1; nÞ: ð3:6:22Þ

Using (3.6.5) and (3.6.12), we can write the coordinates nj as functions of the
normal coordinates:

nj ¼ as
j gs ðj ¼ 1; nÞ: ð3:6:23Þ

Conversely, the definition (3.6.21) of normal coordinates can be obtained by
inverting the linear system (3.6.23).

Let us show, finally, that the use of the linear transformations (3.6.23) in the
kinetic energy T, the potential energy V and the Lagrangian L, turns these func-
tions into diagonal forms (sums of squared quantities). Indeed,

T ¼ 1
2

Xn

j¼1

Xn

k¼1

ajkðar
j _grÞðas

k _gsÞ;
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which, in view of (3.6.19), becomes:

T ¼ 1
2

Xn

s¼1

_g2
s : ð3:6:24Þ

Similarly, from (3.6.6) and (3.6.16), using (3.6.23), we arrive at

V ¼ 1
2

Xn

s¼1

x2
sg

2
s ; ð3:6:25Þ

therefore

L ¼ 1
2

Xn

s¼1

ð _g2
s � x2

sg
2
s Þ ð3:6:26Þ

is the Lagrangian of n independent harmonic oscillators, of unit mass and normal
frequencies.

To summarize, the importance of this formalism is that once the functions
V ; T ; L are determined, we are able to find a linear transformation leading to a set
of new generalized parameters – the normal coordinates. Written in terms of these
coordinates, the Lagrangian becomes diagonal and provides Lagrange equations of
the type (3.6.22), which are easy to integrate.

Observation: The condition (3.6.18) is not indispensable. If it is not imposed, then
each parenthesis in the expression for the Lagrangian (3.6.26) will be amplified by
a constant, which obviously does not modify the equations of motion.

3.6.2 Small Oscillations of Molecules

The formalism developed in the previous section can be applied in the analysis of
small oscillations of coupled pendulums or elastic rods, but more interesting and
useful is the study of molecule vibrations. For example, the investigation of
small oscillations in a one-dimensional crystal provides important information
concerning the thermodynamical properties of a solid body.

Assuming the molecule to be formed of N atoms, we should first note that not
all the motions corresponding to the 3N degrees of freedom have the meaning of
oscillations about the equilibrium configuration. Indeed, there can be a translation
and/or a rotation of the whole molecule, each of these motions possessing three
degrees of freedom, meaning that only 3N - 6 degrees of freedom are left for
oscillations. A special situation is encountered in a linear molecule: in the state of
equilibrium, all atoms are disposed along a straight line. Here, we have only two
degrees of freedom for rotation, therefore we are left with 3N - 5 degrees of
freedom for oscillation.
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If we are interested only in molecule oscillations, it is convenient to eliminate
the motions of rotation and translation. To remove the rotation, we shall demand
that the centre of mass be at rest, which means that the study is done in CMS.
Denoting by r0

i ði ¼ 1;NÞ the radius-vectors of the atoms at equilibrium and by
ni ði ¼ 1;NÞ the radius-vector of the atom i relative to its equilibrium position, in
view of (1.3.54), we have:

XN

i¼1

mir
0
i ¼

XN

i¼1

miðr0
i þ niÞ;

or

XN

i¼1

mini ¼ 0: ð3:6:27Þ

To eliminate the rotation, we impose the condition that the total angular
momentum vanish:

0 ¼
XN

i¼1

miðr0
i þ niÞ � _ni ’

XN

i¼1

miðr0
i � _niÞ;

where the small term
PN

i¼1 mini � _ni has been neglected. Integrating with respect
to time the last relation, we obtain

XN

i¼1

mir
0
i � ni ¼ 0: ð3:6:28Þ

Here, the integration constant was taken to be zero, because all ni vanish at
equilibrium.

Let us discuss, as an example, the symmetrical linear triatomic molecule, which
happens to be the situation in the molecule CO2. There are two degrees of free-
dom, i.e. two normal oscillations along the molecule (N - 1, in general). For non-
longitudinal displacements, we have two degrees of freedom (2N - 4, in general),
but only one normal oscillation (N - 2), because due to symmetry reasons, the
oscillations taking place in two planes mutually orthogonal and passing through
the molecule must be identical.

We shall deal first with the longitudinal motion. Assuming the x-axis along the
molecule (Fig. 3.22a), let x1; x2 be the coordinates of the two atoms of mass m,
while x3 defines the position of the centre of mass M. If xi

0 (i = 1, 2, 3) are the
coordinates of the stable equilibrium position, to study the small oscillations it is
convenient to define as generalized coordinates

ni ¼ xi � x0
i ði ¼ 1; 2; 3Þ:

The kinetic energy is then
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T ¼ 1
2
½mð _n2

1 þ _n2
2Þ þM _n2

3�; ð3:6:29Þ

while the potential energy, considering only the interaction of the atoms of mass
m with the central atom of mass M, is of the form:

V ¼ Vðx2 � x3; x3 � x1Þ:

In the approximation of small oscillations, we have

V ¼ 1
2
½aðn2 � n3Þ2 þ 2bðn2 � n3Þðn3 � n1Þ þ cðn3 � n1Þ2�;

where

a ¼ o2
Vðu; vÞ
ou2

� �

u0;v0

; b ¼ o2
Vðu; vÞ
ouov

� �

u0;v0

; c ¼ o2
Vðu; vÞ
ov2

� �

u0;v0

;

with u0 ¼ x0
2 � x0

3; v0 ¼ x0
3 � x0

1. The molecule is symmetrical, therefore the
interchange of the atoms 1 and 2 does not modify its structure. Consequently,
under the interchange, the potential energy V remains the same, which leads to
c = a, hence:

V ¼ 1
2
fa½ðn2 � n3Þ2 þ ðn3 � n1Þ2� þ 2bðn2 � n3Þðn3 � n1Þg: ð3:6:30Þ

Then the condition (3.6.27), which eliminates the translation, becomes

n3 ¼ �
m

M
ðn1 þ n2Þ;

and serves to eliminate n3 from (3.6.29) and (3.6.30):

T ¼ 1
2
½mð _n2

1 þ _n2
2Þ þ

m2

M
ð _n1 þ _n2Þ2�;

V ¼ 1
2

�
a

M2
½ðM2 þ 2m2 þ 2mMÞðn2

1 þ n2
2Þ þ 4mðmþMÞn1n2

� 2b

M2
½ðM2 þ 2m2 þ 2mMÞn1n2 þmðmþMÞðn2

1 þ n2
2Þ�
�

:

It is easily seen that these two expressions can be diagonalized by the change of
variable n1 ¼ Aga þ Bgs; n2 ¼ Aga � Bgs. Imposing that the kinetic energy has
the form (3.6.24) in the new coordinates, we obtain n1; n2 in terms of the normal
coordinates ga; gs:

n1 ¼
1
ffiffiffiffiffiffiffi

2m
p gs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

2mþM

r

ga

" #

; n2 ¼
1
ffiffiffiffiffiffiffi

2m
p �gs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

2mþM

r

ga

" #

:

The kinetic and potential energies will be thus given by
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T ¼ 1
2
ð _g2

s þ _g2
aÞ ð3:6:31Þ

and

V ¼ 1
2

aþ b

m
g2

s þ
ða� bÞð2mþMÞ

mM
g2

a

� �

:

The normal frequencies are then:

xs ¼
aþ b

m

� � 1
2

; ð3:6:32Þ

xa ¼
ða� bÞð2mþMÞ

mM

� � 1
2

: ð3:6:33Þ

If ga = 0, we have n2 ¼ �n1; n3 ¼ 0, meaning that xs corresponds to a sym-
metrical oscillation (Fig. 3.22b). On the other hand, if we take gs = 0, we arrive at
n2 ¼ n1; n3 ¼ � 2m

M
n1 (Fig. 3.22c). There can occur an accidental degeneracy, for

ma = (m ? M)b, in which case both the symmetrical and antisymmetrical oscil-
lations have the same frequency.

In order to investigate the transverse displacements, we shall also consider the
oscillations perpendicular to the x-axis, in the xy-plane. Since in the equilibrium
configuration the atoms are on the x-axis, the generalized coordinates suitable to
our investigation are y1; y2; y3. The conditions (3.6.27) and (3.6.28) then yield

y3 ¼ �
2m

M
y1; y2 ¼ y1;

hence

T ¼ 1
2

2mð2mþMÞ
M

_y2
1; ð3:6:34Þ

Fig. 3.22 Various
possibilities of small
oscillations of molecules.
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V ¼ 1
2

ky2
1: ð3:6:35Þ

Introducing the normal coordinate

gy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mð2mþMÞ
M

r

y1;

we obtain:

T ¼ 1
2

_g2
y; ð3:6:36Þ

V ¼ 1
2

Mk

2mð2mþMÞ

� � 1
2

g2
y; ð3:6:37Þ

corresponding to the normal frequency

xy ¼
Mk

2mð2mþMÞ

� � 1
2

ð3:6:38Þ

and to the transverse oscillation shown in Fig. 3.22d. This oscillation, as we
already know, is degenerated, because a transverse oscillation, having the same
frequency xz ¼ xy; will also appear in the xz-plane.

3.7 Analogy Between Mechanical and Electric Systems

3.7.1 Kirchhoff’s Rule Relative to the Loops
of an Electric Circuit

The study of alternating current circuits displayed an analogy between these
systems and mechanical systems of particles. This analogy was identified in the
19th century by James Clerk Maxwell and allows the application of the Lagrangian
formalism in the study of electric circuits. In the following, we shall consider the
case of alternating current circuits in steady state.

Consider a circuit composed of many branches, each of them having loops and
junction points, and assume that there are resistors, capacitors, coils and electro-
motive forces on each branch of every loop. Let Ik ¼ _qk be an arbitrary current,
having the same magnitude in each point of the loop k. By q we denote the electric
charge. If /i is the magnetic flux generated by the current Ik, which passes through
the neighbouring loop i, then the quantities /i and Ik are related by

ui ¼ MikIk ¼ Mik _qk ðno summationÞ; ð3:7:1Þ
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where Mik is the mutual inductance between the loops i and k. For i ¼ k;Mii ¼ Li

is the self-inductance of the loop i. If the circuit is composed of n loops, one must
perform summation over k:

ui ¼
Xn

k¼1

MikIk ¼
Xn

k¼1

Mik _qk: ð3:7:2Þ

The magnetic energy of the circuit is:

Wmag ¼
1
2

Xn

i¼1

Xn

k¼1

Mik _qi _qk: ð3:7:3Þ

In a similar way, we can find the electric energy of the circuit. Let Vi be the
electric potential of the conductor i and qk the electric charge distributed on
conductor k and producing the potential Vi. The relation between Vi and qk is

Vi ¼ Sikqk ðno summationÞ; ð3:7:4Þ

where the coefficient Sik is called elastance and represents the reciprocal of the
influence coefficients Cik: Sik ¼ C�1

ik . For i ¼ k;Cii ¼ Ci are called capacitance
coefficients. If the potential Vi is produced by all n conductors of the circuit, then

Vi ¼
Xn

k¼1

Sik qk: ð3:7:5Þ

The electric energy of the circuit is then:

Wel ¼
1
2

Xn

i¼1

Xn

k¼1

Sik qi qk: ð3:7:6Þ

According to Ohm’s law, for the loop i we can write:

Ui ¼
Xn

k¼1

RikIk ¼
Xn

k¼1

Rik _qk; ð3:7:7Þ

where Rik are some constant coefficients, with the significance of electrical resis-
tance, common for both loops i and k. For i = k, Rii ¼ Ri is the self-resistance
of the loop i.

We also assume that the loop i has voltage generators, the total electromotive
force produced by them being EiðtÞ:

The analysis of the relations (3.7.1)–(3.7.7) suggests the following correspon-
dence between electric and mechanical quantities:
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Generalized coordinate q(t) ? Electric charge q(t)
Generalized velocity _qðtÞ ? Electric current I(t)
External periodical force F ? Electromotive force EðtÞ
Mass m ? Inductance L
Elastic constant k ? Elastance S
Damping force constant r ? Electric resistance R
Kinetic energy T ? Magnetic energy Wmag

Potential energy V ? Electric energy Wel

According to this analogy, our electric circuit can be conceived as an oscillating
system with n degrees of freedom, subject to two potential forces and a non-
potential, dissipative force. The potential energy of the system is:

V ¼ 1
2

Xn

i¼1

Xn

k¼1

Sikqiqk �
Xn

i¼1

qiEi; ð3:7:8Þ

while the Rayleigh dissipation function (see (2.5.45)) is:

T ¼ 1
2

Xn

i¼1

Xn

k¼1

Rik _qi _qk: ð3:7:9Þ

Using the Lagrange equations in the form (2.5.48), with the Lagrangian

L ¼ 1
2

Xn

i¼1

Xn

k¼1

ðMik _qi _qk � SikqiqkÞ þ
Xn

i¼1

qiEiðtÞ; ð3:7:10Þ

we arrive at
Xn

k¼1

ðMik€qk þ Rik _qk þ SikqkÞ ¼ EiðtÞ ði ¼ 1; nÞ; ð3:7:11Þ

which is nothing else but Kirchhoff’s rule relative to the loop i of the circuit. An
equivalent form of this rule is:

Xn

k¼1

Mik

dIk

dt
þ RikIk þ Sik

Z

Ikdt

� �

¼ EiðtÞ ði ¼ 1; nÞ: ð3:7:12Þ

Each model of oscillating mechanical system has a correspondent model among
the alternating current circuits. Let us discuss two simple examples.

3.7.1.1 LC Series Circuit. Free Oscillations

Consider the circuit shown in Fig. 3.23, where C is the capacitance of the capacitor
and L is the inductance of the coil. If the capacitor is charged by some method and
then discharged through the coil, the instantaneous electric charge q(t) on the
capacitor, according to Kirchhoff’s rule (3.7.11), is the solution of the equation
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€qþ x2
0q ¼ 0; ð3:7:13Þ

where we made the notation

x2
0 ¼

1
LC

: ð3:7:14Þ

The solution of (3.7.13) is

q ¼ A cos x0t þ B sin x0t: ð3:7:15Þ

The constants A and B are determined from the initial conditions: qð0Þ ¼ q0;
Ið0Þ ¼ I0 ¼ _qð0Þ ¼ 0; and the solution reads:

q ¼ q0 cos x0t: ð3:7:16Þ

We conclude that the discharge of the capacitor through the coil is a periodical
phenomenon, with the period T ¼ 2p

ffiffiffiffiffiffiffi

LC
p

(Thomson’s formula).

3.7.1.2 RLC Series Circuit. Forced Oscillations

Assume the circuit shown in Fig. 3.24, where U ¼ U0 sin xt, and let us determine
the instantaneous value of the current passing through the circuit. In view of
Kirchhoff’s rule (3.7.12), we have:

L
dI

dt
þ RI þ 1

C

Z

I dt ¼ U0 sin xt;

or, by taking the derivative with respect to time,

d2I

dt2
þ R

L

dI

dt
þ 1

LC
I ¼ U0x

L
cos xt: ð3:7:17Þ

This equation is similar to that obtained in the study of a mechanical oscillator,
subject to both friction and external (periodical) forces. The steady-state part of the
solution is

Fig. 3.23 LC series circuit.
Free oscillations.
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I ¼ U0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXL �XCÞ2 þ R2
q cosðxt þ bÞ; ð3:7:18Þ

where XL = xL is the reactive inductance, XC = (xC)-1 is the reactive capaci-
tance and

b ¼ arctan
R

XL �XC

:

Since

cosðxt þ bÞ ¼ �sin xt þ b� p
2

	 


¼ �sin xt � arctan
XL �XC

R

� �

;

by choosing the minus sign in (3.7.18), we obtain the solution

I ¼ U0

jZj sinðx t � uÞ; ð3:7:19Þ

where

jZj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXL �XCÞ2 þ R2

q

ð3:7:20Þ

is the magnitude of the impedance of the circuit and

u ¼ arctan
XL �XC

R
ð3:7:21Þ

is the phase angle between U and I. In particular, for a given R, the current is
maximum for XL ¼ XC (resonance), and we arrive again at Thomson’s formula
(3.7.14), as expected.

3.7.2 Kirchhoff’s Rule Relative to the Junction Points
of an Electric Circuit

Let us consider a junction point of an electric circuit, as the intersection point of
n branches, and let Ii be the current which enters the junction point on the branch i.

Fig. 3.24 RLC series circuit.
Forced oscillations.
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If all n branches are subject to the same voltage U(t), then the experimental data
furnish the following analogies:

Generalized coordinate q(t) ? Electric voltage U(t)
Generalized velocity _qðtÞ ? dUðtÞ

dt

External force F ? dIðtÞ
dt

Mass m ? Capacitance C
Spring constant k ? Reciprocal of inductance, L ¼ 1

L

Damping force constant r ? Conductance k
Kinetic energy T ? 1

2

Pn
i¼1

Pn
k¼1 Cik

_Ui
_Uk

Potential energy V ? 1
2

Pn
i¼1

Pn
k¼1 LikUiUk

Rayleigh function T ? 1
2

Pn
i¼1

Pn
k¼1 kik

_Ui
_Uk:

The Lagrangian of the system is then

L ¼ 1
2

Xn

i¼1

Xn

k¼1

ðCik
_Ui

_Uk � LikUiUkÞ þ
Xn

i¼1

Ui

dIi

dt
; ð3:7:22Þ

and, using the Lagrange equations (2.5.48), we arrive at:

Xn

k¼1

ðCik
€Uk þ kik

_Uk þ LikUkÞ ¼
dIi

dt
ði ¼ 1; nÞ: ð3:7:23Þ

Integrating with respect to t, we finally find

Xn

k¼1

Cik
_Uk þ kikUk þ Lik

Z

Ukdt

� �

¼ IiðtÞ ði ¼ 1; nÞ; ð3:7:24Þ

which is Kirchhoff’s rule relative to the junction point i of the circuit. Here is an
example.

3.7.2.1 RLC Parallel Circuit. Forced Oscillations

From Fig. 3.25 we notice that all component elements R; L; C of the circuit are
subject to the same voltage U(t). Using Kirchhoff’s rule (3.7.23), we can write

C€U þ 1
R

_U þ 1
L

U ¼ I0x cos xt;

where we assumed that the time variation law of I is: I ¼ I0 sin xt: We can rewrite
the latter formula as

€U þ 1
RC

_U þ 1
LC

U ¼ I0x
C

cos xt:
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The steady-state part of the solution of this equation is

U ¼ I0

jZj sinðxt � uÞ; ð3:7:25Þ

where

jZj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
xL
� xC

� �2

þ 1
R2

s

; ð3:7:26Þ

and

u ¼ arctan R
1

Lx
� xC

� �

: ð3:7:27Þ

If XL [ XC, the current I leads the voltage U in phase by u, while if XL\XC, the
current lags the voltage in phase by u.

The reader is advised to choose some other examples of electric circuits and
obtain by means of the Lagrangian formalism all the main formulas encountered in
the general course of electricity and magnetism.

3.8 Problems

1. Determine the explicit equation of the trajectory (3.2.7), as well as the
eccentricity (3.2.9) for the choice of the potential energy (3.1.31), by using
Binet’s formula (3.1.24) and the initial conditions: rð0Þ ¼ r0;uð0Þ ¼ u0;
_rð0Þ ¼ _r0; _uð0Þ ¼ _u0:

2. Show that there is no central field with a straight line as the trajectory.
3. A particle P of mass m is at the distance r0 from the centre of force C in a field

of potential energy UðrÞ ¼ 1
3 kr3. Its velocity v0 makes an angle a ¼ � p

2 with
respect to the straight line PC. Find the magnitude v0 of the velocity for which
the trajectory is a circle.

Fig. 3.25 RLC parallel
circuit. Forced oscillations.
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4. The velocity of a particle moving in a central field is v ¼ a
rn , where r is the

distance from the centre of force. Assuming that the angular momentum l is
given, determine the trajectory of the particle and the law of force.

5. A particle moves in a central field whose potential energy is
UðrÞ ¼ � k

r2 ðk [ 0Þ. Find the trajectory of the particle if its total energy is zero.
6. A particle of mass m situated in a central field U(r), having energy E and

angular momentum l, moves on a closed orbit. Determine the displacement
dðDuÞ of the orbit perihelion, as well as the variation ds of the radial oscil-
lations, if there is a small variation dU(r) in the field potential.

7. Show that the transformation

r0 ¼ rþ �½m � ðr� _rÞ þ r� ðm � _rÞ�; t0 ¼ t;

where m is any fixed vector, is a symmetry transformation of the Lagrangian

L ¼ 1
2
mj _rj2 � k

r
;

and find the corresponding first integral of the motion.
8. Show that the trajectory of a spherical pendulum performing small oscillations

about its position of stable equilibrium is an ellipse.
9. Consider a linear, homogeneous and neutral medium (gas), and let N be the

number of electrons per unit volume, each atom having an electron of mass
m and charge -e, the electron being elastically connected with its nucleus.
Assume that each electron is subject to: (a) an elastic force Fe ¼ �mx2

0r; (b) a
damping force Fd ¼ �mc _r; (c) a Lorentz force FL ¼ �eðEþ v� BÞ ’ �eE:
If in the medium propagates an electromagnetic plane wave, given by

E ¼ E0e
iðkx�xtÞ; B ¼ B0e

iðkx�xtÞ;

using the model of the damped oscillator with an electric driving force, find
the dispersion equation n = n(x) of this physical model.

10. A particle of mass m moving in the vertical direction is subject to gravitational
force and friction force, the latter being proportional to the speed of particle.
Find the law of motion of the particle and determine the approximate solution
containing terms up to t3.

11. The point of support of mass m of a plane pendulum of mass M is able to move
on a straight horizontal line, which lies in the vertical plane of motion. Find
the finite equation of motion.
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12. Determine the effective cross section of scattering of particles from a sphere
of radius R. It is assumed that Vðr\RÞ ¼ 1; Vðr[RÞ ¼ 0.

13. Find the small oscillations of a coplanar double pendulum.
14. Determine the effective cross section of the spherical ‘gap’ of potential

U ¼ �U0 ðU0 [ 0Þ; 0	 r	R

0; r [ 0

�

15. Show that the cross section of scattering produced by a central force f ¼
k=r3 ðk [ 0Þ is

rðhÞ ¼ p2k

2E

ðp� hÞ
h2ð2p� hÞ2 sin h

;

where E is the energy of a particle.
16. Two fixed points A and B act on a particle P of mass m with the elastic

forces f1 and f2. (The elastic constant k is the same for both forces.)
Determine the initial conditions under which the trajectory is a circle passing
through A and B.

17. Determine the self oscillations of a linear chain of N identical particles,
coupled by identical strings of elastic constant k.

18. A pendulum is formed by a bead P of mass m situated at one end of a massless
rigid rod of length l, the other end being suspended in a point M of mass
m. The point M can slide without friction along a horizontal rod, having two
springs of elastic constant k, as shown in the figure. The distance AB is 2l0,
where l0 is the length of one spring at rest. Determine the frequencies of the
small oscillations of the system.

19. Investigate the oscillations of the system corresponding to the Lagrangian

L ¼ 1
2
ð _x2

1 þ _x2
2Þ �

1
2
ðx2

1x
2
1 þ x2

2x
2
2Þ þ jx1x2;

where x1; x2 and j are constants.
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20. The radial electric field between two homogeneous coaxial cylinders of radii
R1 and R2ð[R1Þ, maintained at potentials U1 and U2, is

E ¼ 1
r

U1 � U2

log R2
R1

:

Find the differential equation of the trajectory of a charged particle introduced
between these electrodes. It is assumed that the initial velocity lies in a plane
orthogonal to the common axis of the cylinders.
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Chapter 4
Rigid Body Mechanics

4.1 General Considerations

By rigid or non-deformable body we mean a continuous or discrete system of
particles, with the property that the distance between any two particles does not
change during the motion. Under normal conditions, within certain pressure and
temperature limits, bodies made out of metal, glass, stone, etc. can be considered
rigid.

Let Pi and Pk be any two particles of the system and ri; rk their radius-vectors
relative to the origin of the frame S(Oxyz) (Fig. 4.1). The rigidity condition is then
expressed as

jri � rkj ¼ jrikj ¼ const. ð4:1:1Þ

The number of degrees of freedom of a rigid body is six. To prove this, we
observe that the position of the body relative to O is fixed by the position of any
three non-collinear particles. If these particles were free, then their positions would
be determined by nine independent parameters. But, since the coordinates of the
particles are related by three constraints of the form (4.1.1), the number of
independent parameters reduces to six. It is obvious that the number of degrees of
freedom of a rigid body subject to external constraints (e.g. a body with a fixed
point, or having a fixed axis, etc.) is smaller.

As a convenient choice of the generalized coordinates associated with the six
degrees of freedom of a rigid body, one usually takes a certain point O0 of the body
and defines the Cartesian orthogonal frame S0ðO0x0y0z0Þ; invariably related to the
body (body coordinates) (Fig. 4.2). The position of the body is then determined by
three coordinates of O0 (translation coordinates) and three more coordinates that
define the motion of the body about O0; i.e. the orientation of the axes
O0x0;O0y0;O0z0; relative to Ox, Oy, Oz (rotation coordinates). Let us analyze the
motion of rotation (see also Appendix A).

If r is the radius-vector of some point P of the rigid body relative to O and if we
assume that O � O0; since rðx; y; zÞ � rðx0; y0; z0Þ; we can write

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2_4,
� Springer-Verlag Berlin Heidelberg 2012
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x0iu
0
i ¼ xiui ði ¼ 1; 2; 3Þ; ð4:1:2Þ

where ui and u0i ði ¼ 1; 2; 3Þ are orthonormal vectors in S and S0; and the relation
(1.1.12) and the summation convention have been used. Taking the scalar product
of (4.1.2) with u0k and observing that x0idik ¼ x0k; we have:

x0k ¼ akixi ði; k ¼ 1; 2; 3Þ; ð4:1:3Þ

where aki ¼ u0k � ui is the cosine of the angle between the axes O0x0k and Oxi.
Since the distance between any two particles of the rigid body must be invariant

ðx0ix0i ¼ xixiÞ; we deduce that the coefficients aik satisfy the orthogonality condition

aikail ¼ dkl ði; k; l ¼ 1; 2; 3Þ: ð4:1:4Þ

The linear transformation (4.1.3), in which the coefficients aik obey the condition
(4.1.4), is called an orthogonal transformation. Since the nine direction cosines aik

are related by the six relations (4.1.4), there are three independent coefficients aik.
They can be chosen as generalized coordinates.

Fig. 4.2 Translation and
rotation degrees of freedom
of a rigid body.

Fig. 4.1 A rigid body in a
system of coordinates.
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The coefficients aik can be regarded as elements of the transformation matrix
A = (aik):

A ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

0

@

1

A:

The matrix A is the operator carrying out the transition x! x0: If, in particular, the
trajectories described by the particles of the rigid body are parallel to a steady
plane, for example Oxy, then (4.1.3) will give a rotation about an axis passing
through O and orthogonal to the plane. In this case, the four direction cosines
aik ði; k ¼ 1; 2Þ will be subject to the three orthogonality conditions (4.1.4), and
thus only a single independent parameter remains. Let this be the angle a between
O0x0 and Ox. The transformation matrix is then

A ¼
cos a sin a 0
� sin a cos a 0

0 0 1

0

@

1

A: ð4:1:5Þ

The relation (4.1.3) can also be written in matrix form:

x0 ¼ Ax; ð4:1:6Þ

where x0 and x are one-column matrices. For more details, see Appendix A.

4.2 Distribution of Velocities and Accelerations in a Rigid Body

To study the motion of a free rigid body, it is necessary to know the velocity and
acceleration fields associated to its six degrees of freedom. In this respect, we shall
analyze the general case of the so-called relative motion of the particle which, in
particular, will lead us to the distribution of the velocities and accelerations of the
particles of a rigid body. The influence of the inertia forces on the motion of the
bodies at the surface of the Earth will be also considered in this chapter.

Let us consider the motion of a particle P with respect to two reference frames,
S (Oxyz) and S0ðO0x0y0z0Þ. The frame S is supposed to be fixed (inertial) and S0 is
non-inertial relative to S (Fig. 4.3). As an example, we can consider the motion of
a car on the Earth’s surface, the Earth being, in its turn, in motion with respect to
the Sun.

In order to distinguish the motion of the particle P relative to the two frames,
we shall call absolute its motion with respect to S and relative – the one with
respect to S0: If the particle P is fixed with respect to S0; then the motion of S0

relative to S is named transport motion. Such a motion of the particle is called
composite motion. In the Universe, any motion can be studied as a composite
motion.
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From Fig. 4.3, we have

r ¼ r0 þ r0: ð4:2:1Þ

In view of the principle of absolute simultaneity (see Chap. 1), the time derivative
of (4.2.1) gives:

v ¼ _r ¼ _r0 þ _r0; ð4:2:2Þ

where v is the velocity of the particle relative to S, called absolute velocity. Using
the summation convention, we can write r0 ¼ x0ku0k ðk ¼ 1; 2; 3Þ: Thus, keeping in
mind that u0k vary in time, we have:

_r0 ¼ _x0ku0k þ x0k _u0k ¼ vr þ x0k _u0k; ð4:2:3Þ

where vr ¼ _x0ku0k is the relative velocity, i.e. the velocity of P with respect to S0.
To understand the significance of the term x0k _u0k in (4.2.3), let x0k ðk ¼ 1; 2; 3Þ be

the components of the vectors _u0k in the orthonormal basis u0k; namely

_u0k ¼ x0ksu
0
s: ð4:2:4Þ

The basis u0k being orthonormal, by taking the time derivative of the orthogonality
condition u0k � u0s ¼ dks and using (4.2.4), we find:

x0ks þ x0sk ¼ 0; ð4:2:5Þ

which means that the coefficients x0ks are the components of a second-order
antisymmetric tensor. Let x be the axial vector associated with this tensor, and
having the components (see Appendix A):

x0ks ¼ �ksix0i ði; k; s ¼ 1; 2; 3Þ: ð4:2:6Þ

Fig. 4.3 Choice of the
coordinate systems in order to
obtain the distribution of
velocities and accelerations in
a rigid body.
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Substituting (4.2.6) into (4.2.4), we get:

_u0k ¼ x0ið�iks u0sÞ ¼ ðx0i u0iÞ � u0k;

i.e.

_u0k ¼ x� u0k ðk ¼ 1; 2; 3Þ; ð4:2:7Þ

called Poisson’s formula. Using (4.2.2), (4.2.3) and (4.2.7), we find the absolute
velocity of the particle:

v ¼ v0 þ vr þ x� r0; ð4:2:8Þ

where v0 ¼ _r0 is the velocity of the origin O0:
The absolute acceleration is found by taking the time derivative of (4.2.8):

a ¼ _v0 þ €x0k u0k þ _x0k _u0k þ _x� r0 þ x� _r0

or, using (4.2.3) and (4.2.7),

a ¼ a0 þ ar þ _x� r0 þ x� ðx� r0Þ þ 2x� vr: ð4:2:9Þ
Here, a0 ¼ _v0 is the acceleration of O0 and ar ¼ €x0k u0k – the acceleration of the
point P with respect to O0; called relative acceleration. The term x� ðx� r0Þ is
named centripetal acceleration and the term 2x� vr is the Coriolis acceleration.

Suppose now that P is a certain point of a rigid body R, invariably related to the
frame S0: In other words, the rigid body identifies with the frame S0: In this case, it
is obvious that vr ¼ 0; ar ¼ 0; while the formulas (4.2.8) and (4.2.9) become:

vtr ¼ v0 þ x� r0; ð4:2:10Þ

atr ¼ a0 þ _x� r0 þ x� ðx� r0Þ; ð4:2:11Þ
where vtr and atr denote the transport velocity and transport acceleration,
respectively. We may also write:

v ¼ vr þ vtr; ð4:2:12Þ

a ¼ ar þ atr þ ac: ð4:2:13Þ

If the origins O and O0 of the two reference frames coincide (i.e. there is no
translation motion), then r0 ¼ 0; v0 ¼ 0; a0 ¼ 0; and we are left with

v ¼ x� r; ð4:2:14Þ

a ¼ _x� rþ x� ðx� rÞ: ð4:2:15Þ

Physical Significance of the Vector x

We know so far that x is an axial vector, associated with the antisymmetric tensor
x0sk, its components having been introduced as coefficients of the linear expansion
(4.2.4). In order to find the physical significance of this vector, let us consider a
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rigid body moving around a fixed axis. It is obvious that such a system possesses
one degree of freedom. There is no loss of generality if we take O � O0 and
Oz � Oz0 as the fixed axis (Fig. 4.4).

With this choice, (4.2.7) leads to _k ¼ x� k ¼ 0; which says that x is collinear
to the axis of rotation: x ¼ xk: On the other hand, (4.2.14) leads to the conclusion
that the velocity v of any point P of the body is orthogonal to the plane defined by
vectors x and r and has the magnitude

jvj ¼ jx� rj ¼ xr sin a ¼ x R: ð4:2:16Þ

But, in view of (1.1.18),

jvj ¼ _uR: ð4:2:17Þ

The last two relations give then x ¼ _u; i.e. the vector xðtÞ is directed along the
axis of rotation and its magnitude is equal to the angular velocity _u: It is called
instantaneous vector of rotation.

4.3 Inertial Forces

Let us again consider the two reference frames S and S0; S being inertial and S0

non-inertial relative to S. As we know, the fundamental equation of motion written
for a particle of mass m is

ma ¼ F: ð4:3:1Þ
By using the Lagrangian formalism developed in the previous chapters, we wish
now to find the form of the equation of motion of the same particle, relative to the
non-inertial frame S0: To this end, we shall use the fact that the Lagrange equations
do not change their form when the reference frame changes, provided that the

Fig. 4.4 Physical
significance of the vector x:
it is directed along the axis
of rotation and its magnitude
is equal to the angular
velocity _u.
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Lagrangian in the new frame is suitably chosen. Supposing that a conservative
force field acts on the particle, the Lagrangian in the frame S is given by

L ¼ 1
2

mjvj2 � VðrÞ; ð4:3:2Þ

where v is the velocity of the particle with respect to S and VðrÞ is its potential
energy.

In order to write the equation of motion of the particle in S0; it is necessary to
express the Lagrangian L as a function of the coordinates x0i ði ¼ 1; 2; 3Þ of the
point and the components _x0i of its velocity relative to S0: Using (4.2.8), we obtain:

L ¼ 1
2

m½jvrj2 þ jx� r0j2 þ 2vr � ðx� r0Þ þ jv0j2 þ 2v0 � vr

þ 2v0 � ðx� r0Þ� � Vðr0Þ: ð4:3:3Þ

The last three terms in the square bracket can be written as follows:

jv0j2þ 2v0:vrþ 2v0 � ðx� r0Þ ¼ 2v0 � v� jv0j2 ¼ v0 �
d

dt
ð2r� r0Þ ¼ v0 �

d

dt
ðr0þ 2r0Þ

¼ d

dt
½v0 � ð2r0 þ r0Þ�� 2a0 � r0 � a0 � r0�

Since the Lagrangian L is defined up to a term which is the total derivative with
respect to time of any scalar function of generalized coordinates qj and time t, we
may omit the total time derivative in the last relation. In its turn, the term a0 � r0 is
a function of time only, i.e. it can be written as a total time derivative, meaning
that it also can be omitted. Thus, we can finally write the Lagrangian in the form:

L ¼ 1
2

m jvrj2 þ
1
2

mjx� r0j2 þmvr � ðx� r0Þ �ma0 � r0 � Vðr0Þ: ð4:3:4Þ

In order to obtain the equation of motion of the particle relative to the frame S0,
it is convenient to write the Lagrangian as

L ¼ 1
2

m _x0i _x
0
i þ

1
2

mðx0kx0kÞðx0ix0iÞ �
1
2

mðx0ix0iÞðx0kx0kÞ þm�ijk _x0i x
0
j x0k

�ma00ix
0
i � Vðx0kÞ; ð4:3:5Þ

where x0i; _x0i;x
0
i; a
0
0i are the components of r0; vr;x; a0 in the frame S0: Then we

have, successively:
oL

o _x0s
¼ m _x0s þm�sjk x0jx

0
k;

d

dt

oL

o _x0s

� �

¼ m€x0s þm�sjk _x0j x0k þm�sjk x0j _x0k;

oL

ox0s
¼ mðx0kx0kÞx0s �mðx0ix0iÞx0s þm�sij _x0i x

0
j �ma00s �

oV

ox0s
:
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Next, we use the Lagrange equations (2.5.17) and take x0s as generalized
coordinates:

d

dt

oL

o _x0s

� �

� oL

ox0s
¼ 0 ðs ¼ 1; 2; 3Þ;

arriving at the second-order differential equation

m€x0s þmð _x� r0Þs þma00s þm½x� ðx� r0Þ�s þ 2mðx� vrÞs þ
oV

ox0s
¼ 0;

which is the x0s-component of the vector equation

mar ¼ F�ma0 �m _x� r0 �mx� ðx� r0Þ � 2mx� vr: ð4:3:6Þ

Taking into account (4.2.11) and introducing the notations

Ftr ¼ �matr; Fc ¼ �mac; ð4:3:7Þ

the equation of motion of the particle with respect to the non-inertial frame S0

reads:

mar ¼ Fþ Ftr þ Fc: ð4:3:8Þ

It then follows that in the frame S0 Newton’s fundamental equation does not keep
its form, as we expected. There are two more forces, in addition to the applied
force F. The force F is customarily called real or actual, while the forces Ftr and Fc

are known as inertial, or apparent, or, still, complementary. They have a fictitious
character, in the sense that they cannot give rise to, transmit, or maintain the
motion. They occur only during the motion and because of the motion of the
non-inertial frame S0:

One observes that if a0 ¼ 0; x ¼ 0; i.e. if S0 is, in its turn, an inertial frame,
then Eq. (4.3.8) acquires the form (4.3.1), as it has to happen by virtue of the
principle of classical relativity.

4.3.1 Action of the Coriolis Force on the Motion
of Bodies at the Surface of the Earth

Let the origin O of the frame S be at the centre of the Earth and have its axes fixed (e.g.
pointing towards three fixed stars). Rigorously speaking, such a frame is non-inertial,
since the Earth performs a non-uniform motion around the Sun. However, for a short
time interval, the trajectory of the point O can be considered as being straight and its
motion uniform. Under these assumptions, the frame S can be considered inertial.

Next, we shall take the origin O0 of the non-inertial frame S0 at a fixed point on
the surface of the Earth, its axes being chosen as follows: O0z0 along the ascending
vertical, O0y0 tangent to the parallel going through O0 and pointing West, and O0x0

tangent to the meridian through O0 and pointing North (Fig. 4.5).
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In order to study the motion of a body (considered as a particle) at the surface of
the Earth, we shall use the Lagrangian (4.3.4). Observing that the point O0

describes a circle of radius R cos h; we may write:

a0 ¼ �Rx2t cos h

¼ �Rx2ðk0 cos h� i0 sin hÞ cos h; ð4:3:9Þ

where t is the unit vector of the radius of the parallel circle passing through O0 and
pointing outwards. Since x is small in magnitude ðx ’ 7:27� 10�5 s�1Þ; we may
neglect the terms in x2 which occur in (4.3.4). On the other hand, since we deal
with quantities determined in S0 only, we shall temporarily omit the index ‘prime’.
(This convention is valid only in this application).

The only applied force acting on the particle is its gravity, so that the
Lagrangian is:

L ¼ 1
2

mjvrj2 þmvr � ðx� rÞ þmg � r; ð4:3:10Þ

where we took into account that the components of g are (0, 0, -g), which leads to
the relation -mgz = mg � r.

If we choose xi and vi as generalized coordinates and generalized velocities,
respectively, and recall that x is a constant vector, the Lagrange equations (see
Chap. 2) lead to the differential equations of motion of the particle:

m€xi ¼ mgi � 2m�ijk xj _xk;

equivalent to the vector equation

m€r ¼ mg� 2mx� v: ð4:3:11Þ

This equation tells us that the motion of a body at the surface of the Earth is
affected by the Coriolis force, orthogonal to both the pole axis and the direction of
motion of the body.

Fig. 4.5 Action of the
Coriolis force on the motion
of the bodies at the surface of
the Earth.
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4.3.2 Foucault’s Pendulum

In view of the above considerations and using the Lagrangian formalism, we wish
now to analyze the classical case of the Foucault pendulum. Roughly speaking, this
is a spherical pendulum, subject to both the gravitational and Coriolis forces. Let us
assume that the pendulum P is suspended in the point Q, situated above the point
P, and let l be the distance PQ, as measured on the vertical line passing through
P. The equations of motion are then obtained from the Lagrangian (see (4.3.10))

L ¼ 1
2
mjvj2 þmx � ðr� vÞ �mgz; ð4:3:12Þ

where z = 0 corresponds to the vertical position of the pendulum. If the oscilla-
tions are small enough, the coordinate z can be deduced with the help of the

constraint x2 þ y2 þ ðz� lÞ2 ¼ l2: Since z2 � x2 þ y2; we can write

z ¼ 1
2l
ðx2 þ y2Þ: ð4:3:13Þ

In the same way, taking into account that jxj is small, we neglect the terms in
which products of the type xiz or xi _z ði ¼ 1; 2; 3Þ occur in the mixed product
x � ðr� vÞ: Then

x � ðr� vÞ ¼ xzðx _y� y _xÞ

and the Lagrangian (4.3.12) becomes:

L ¼ 1
2
mð _x2 þ _y2Þ � mg

2l
ðx2 þ y2Þ þmxzðx _y� y _xÞ: ð4:3:14Þ

Instead of the Cartesian coordinates x, y, it is more convenient to use the polar
coordinates r;u of the projection P 0 of the point P on the O0xy plane. Since
x ¼ r cos u; y ¼ r sin u; we find:

L ¼ 1
2
mð_r2 þ r2 _u2Þ � mg

2l
r2 þmxzr

2 _u: ð4:3:15Þ

This form is particularly convenient, because it displays the cyclic coordinate u;
associated with the first integral

pu ¼
oL

o _u
¼ mr2 _uþmr2xz ¼ C;

or

r2 _uþ r2xz ¼ C1; ð4:3:16Þ

where C and C1 ¼ C
m

are constants.
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The physical system being conservative, we also have the energy first integral

E ¼ 1
2
mð_r2 þ r2 _u2Þ þ mg

2l
r2 ¼ h1ðconst.Þ;

or

_r2 þ r2 _u2 ¼ h� g

l
r2 h ¼ 2h1

m

� �

: ð4:3:17Þ

In order to understand the physical significance of (4.3.16) and (4.3.17), let us
make a clockwise rotation of the O0xyz frame about the O0z axis, of angle
xzt, arriving at the frame O0x1y1z: (Remember that we have omitted the index
‘prime’ of the coordinates in this application). In the frame O0x1y1 the polar
coordinates of P 0 are r1, a, where a ¼ uþ xzt (Fig. 4.6). The new Cartesian
coordinates x1; y1 are then found via the matrix relation:

x1

y1

� �

¼ cos xzt sin xzt

� sin xzt cos xzt

� �

x

y

� �

: ð4:3:18Þ

Therefore, x1 ¼ x cos xzt þ y sin xzt; y1 ¼ �x sin xzt þ y cos xzt; leading to
r2

1 ¼ r2: Since in the two first integrals (4.3.16) and (4.3.17) occurs only the
second power of r, we shall keep the former notation r. Then the first integral
(4.3.16) becomes:

r2 _a ¼ C1; ð4:3:19Þ

which is the projection on the O0z-axis of the areas theorem. Introducing u ¼
a� xzt into (4.3.17) and neglecting the terms in x2, one finds:

_r2 þ C2
1

r2
þ g

l
r2 ¼ h2; h2 ¼ hþ 2C1xz: ð4:3:20Þ

Recalling the results obtained in the study of the central force problem, we
observe that the trajectory of the spherical pendulum is an ellipse, its centre being

Fig. 4.6 Rotation of the
coordinate axes of the
Foucault pendulum.
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at O0 and its axes uniformly rotating clockwise about the point O0; in the
O0xy-plane, with the angular velocity xz ¼ x sin h: If we choose the initial con-
ditions as:

rð0Þ ¼ r0; uð0Þ ¼ u0;

_rð0Þ ¼ 0; _uð0Þ ¼ 0;

i.e. the pendulum is pulled out of its equilibrium position and then allowed to
move freely, we have jv0j ¼ r0xz; meaning that its initial velocity v0 (relative to
O0) is orthogonal to r0. It follows from (4.3.19) that C1 ¼ r2

0xz; which leads
to h2 ¼ r2

0ðx2
0 þ x2

zÞ; where x2
0 ¼

g

l
: We have:

_r2 ¼ x2
0ðr2

0 � r2Þ þ r2
0x

2
z �

C2
1

r2
: ð4:3:21Þ

The turning points of the trajectory are given by the roots of the equation _r2 ¼ 0; i.e.

r4 � 1þ
x2

z

x2
0

� �

r2
0r

2 þ
x2

z

x2
0

r4
0 ¼ 0: ð4:3:22Þ

The solutions to the biquadratic equation (4.3.22) are: rI ¼ r0; rII ¼ r0
xz

x0
;

meaning that the ends of the ellipse axes describe two circles of diameters 2a and
2b, where a = r0 is the major semi-axis and b ¼ r0

xz

x0
is the minor semi-axis.

The trajectory of the particle is then situated between the two circles. One observes
that a depends on the initial conditions only, while b varies with the latitude of the
location of the experiment on Earth. Since x is small, the ratio

b

a
¼ xz

x0
¼ x

ffiffiffiffiffi

l

g

s

cos h

is also very small, meaning that the ellipse is very flattened and may practically be
identified with a straight line. In particular, if we take _u ¼ 0; then _a ¼ xz; and
(4.3.20) gives:

€rþ x2
1r ¼ 0 ðx2

1 ¼ x2
0 þ x2

zÞ; ð4:3:23Þ

i.e. the pendulum behaves like a harmonic oscillator. The oscillation plane O0x1z

rotates with the angular velocity xz about O0z; in the direction East-South-West-
North. (In the Southern hemisphere, the direction of rotation is opposite.) The

time of a complete oscillation is s1 ¼ 2p
x1
¼ 2p

ffiffiffiffi
l
g

q

; while the period of the

revolution about O0 is s2 ¼ 2p
xz
¼ 2p

x sin h : For example, if h = 45�, s2 = 1.414 days

¼ 33 h 50 min:
This effect was discovered and studied by the French physicist Jean Bernard

Léon Foucault. His most famous experiment was done in 1851, with a
pendulum having m ¼ 28 kg; l ¼ 67 m; under the cupola of the Paris Panthéon

174 4 Rigid Body Mechanics



ðh ¼ 48�50 minÞ: He found s2 ¼ 32 h; in good agreement with the theoretical
prediction.

Figure 4.7 shows the Foucault pendulum trajectory corresponding to our initial
conditions. Different initial conditions give different trajectories.

Observation: An observer located in an inertial frame (e.g. the Sun) would see the
pendulum oscillating in a plane, the Earth being in rotation relative to this plane.
The Foucault pendulum shows, then, the motion of rotation of the Earth, without
any other astronomical observations.

4.4 Euler’s Angles

As we have seen in Sect. 4.1, the position of a free rigid body is fully determined if
one knows the position – relative to S – of a certain point O0 of the body and the
angles between the two frames S and S0; as well. Here it is assumed that S is fixed in
space, while S0 is fixed to the body. Since the definition of O0 is an easy matter, in the
following we shall consider the motion of the body about this point.

From the practical point of view, the choice of three direction cosines as inde-
pendent parameters is not convenient. One has to look, then, for other solutions.
The most efficient method was devised by Leonhard Euler. He defined a system of
three angular parameters, attached to a group of three successive rotations about
three conveniently chosen directions. In this way, the transition from S(Oxyz) to
S0ðO0x0y0z0Þ is realized. There are three successive steps in the transition, as follows:

(a) A direct (i.e. counterclockwise) rotation of angle u; in the xy-plane about the
Oz-axis, until the new axis Op (Fig. 4.8a) is orthogonal to Oz0: (The orien-
tation of S0 relative to S is given!) Thus, we go from the frame S, of unit
vectors i, j, k, to the frame Opqz, of unit vectors t1; t2; k (Fig. 4.8b). The
transformation relations are:

t1 ¼ i cos uþ j sin u;

t2 ¼ �i sin uþ j cos u;

k ¼ k:

ð4:4:1Þ

Fig. 4.7 A trajectory of the
Foucault pendulum.
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The Op axis is known as the line of nodes and u – as the precession angle,
varying from 0 to 2p.

(b) A direct rotation of angle h, in the Oqz-plane, about the line of nodes Op, until
Oz coincides with Oz0; i.e. the transition from Opqz to Oprz0; of unit vectors
t1; t3; k0: The transformation formulas are:

t1 ¼ t1;

t3 ¼ t2 cos hþ k sin h;

k0 ¼ �t2 sin hþ k cos h:

ð4:4:2Þ

The angle h is called angle of nutation and takes values from 0 to p:
(c) A direct rotation of angle w, in the Opr plane, about the Oz0-axis, until Op

coincides with Ox0: If i0; j0; k0 are the unit vectors of S0; then the transition
from Oprz0 to Ox0y0z0 is given by:

i0 ¼ t1 cos wþ t3 sin w;

j0 ¼ �t1 sin wþ t3 cos w;

k0 ¼ k0:

ð4:4:3Þ

The angle w is the angle of self-rotation and takes values from 0 to 2p:

The angles u; h;w are called Euler’s angles. Their names will be justified later
in this chapter.

Let us write the direction cosines aik in terms of Euler’s angles. To this end, we
define the column matrices:

T1 ¼
t1

t2

k

0

@

1

A; T2 ¼
t1

t3

k0

0

@

1

A; T3 ¼
i0

j0

k0

0

@

1

A; T ¼
i
j
k

0

@

1

A: ð4:4:4Þ

The transformation formulas (4.4.1)–(4.4.3) can be then written in the matrix form

Fig. 4.8 Geometrical representation of the Euler angles: u, h and w.
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T1 ¼ DT; T2 ¼ CT1; T3 ¼ BT2;

where D, C, B are the three transformation matrices:

D ¼
cos u sin u 0

� sin u cos u 0

0 0 1

0

B
@

1

C
A; C ¼

1 0 0

0 cos h sin h

0 � sin h cos h

0

B
@

1

C
A;

B ¼
cos w sin w 0

� sin w cos w 0

0 0 1

0

B
@

1

C
A: ð4:4:5Þ

The transition from the coordinates xi to x0i ði ¼ 1; 2; 3Þ is given by the matrix
relation x0 ¼ Ax; where A = BCD. Any element aik of the matrix A is calculated
according to the rule

aik ¼ ðBCDÞik ¼ bil clm dmk: ð4:4:6Þ

Performing the necessary calculations, we obtain the transformation matrix A in
terms of the Euler angles:

A¼ðaikÞ

¼
coswcosu�coshsinusinw coswsinuþcoshcosusinw sinhsinw
�sinwcosu�coshsinucosw �sinwsinuþcoshcosucosw sinhcosw

sinhsinu �sinhcosu cosh

0

@

1

A:

ð4:4:7Þ

4.5 Motion of a Rigid Body About a Fixed Point

In this section we shall use Latin indices ði; j; k; . . .Þ to indicate the number of
particles and Greek indices ða; b; c; . . .Þ for the vector components and gen-
eralized coordinates. The summation convention over repeated (Greek) indices
running from 1 to 3 will also be used.

As we already know (see Sect. 4.1), a free rigid body has six degrees of freedom:
three of them associated with the three Cartesian coordinates of a certain point of
the rigid body, describing its translation, and three independent angular parameters
(e.g. Euler’s angles) which define the rotation about this point. If the origin O0 of the
frame S0 is chosen in the centre of mass G of the body, then according to (4.2.10)
both angular momentum and kinetic energy will each be composed of two terms:
one term containing only the Cartesian coordinates of the centre of mass and the
other written only in terms of angular coordinates, describing the rotation. This
decomposition also occurs when we deal with the potential energy. For instance, the
potential energy of the electric dipole placed in a uniform field depends only on its
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orientation, while the gravitational potential energy of a body depends only on the
coordinates of its centre of mass. Going further, we may say that the Lagrangian of
such a mechanical system has the same property. As a result, the translation and
rotation motions can be studied independently of each other.

In view of these considerations, in the following we shall analyze the motion of
a rigid body about a fixed point, chosen so that O � O0 � G: At the end of this
section, we shall give the method used when both translation and rotation motions
are taken into consideration.

In order to present the dynamical approach to the motion of the rigid body about
a fixed point, we shall first introduce some elements which are necessary for the
derivation of the equations of motion.

4.5.1 Kinematic Preliminaries

Since the fixed point coincides with the common origin of the two frames, O � O0

(Fig. 4.9), the instantaneous velocity of a certain point P of the rigid body is (see
(4.3.14)) v ¼ x� r; which means that at any moment the body is engaged in a
motion of rotation about an axis passing through O. This axis is oriented along the
vector x and it is called instantaneous axis of rotation. All particles of the rigid
body situated on this axis have zero velocity (r ¼ kx; so that v ¼ kx� x ¼ 0).

We observe that the instantaneous vector x can be written as the resultant of
three vectors, each of them corresponding to successive rotations about Oz, Op
and Oz0: Therefore, using the definition of Euler’s angles, we have:

x ¼ _ukþ _ht1 þ _wk0: ð4:5:1Þ

In order to find the components xx0 ;xy0 ;xz0 of x on the axes of the mobile frame
S0; we successively multiply (4.5.1) by i0; j0; k0: In view of (4.4.1)–(4.4.3), we get:

Fig. 4.9 Rigid body with a
fixed point.
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xx0 ¼ x0x ¼ x01 ¼ _u sin h sin wþ _h cos w;

xy0 ¼ x0y ¼ x02 ¼ _u sin h cos w� _h sin w;

xz0 ¼ x0z ¼ x03 ¼ _u cos hþ _w:

ð4:5:2Þ

The components of the vector x on the axes of the frame S are obtained in the
same manner, multiplying (4.5.1) by i, j, k:

xx ¼ x1 ¼ _h cos uþ _w sin h sin u;

xy ¼ x2 ¼ _h sin u� _w sin h cos u;

xz ¼ x3 ¼ _uþ _w cos h:

ð4:5:3Þ

4.5.2 Angular Momentum

In view of (1.3.35), the angular momentum L of the rigid body relative to
O0 � O is:

L ¼
XN

i¼1

mi ðri � viÞ ¼
XN

i¼1

mi ½ri � ðx� riÞ�; ð4:5:4Þ

where ri and vi are the radius-vector and the velocity of the particle Pi of the mass
mi of the body relative to the fixed point.

Using the convention adopted in the beginning of this section, the projection of
(4.5.4) on the axes of the frame S0 yields:

L0a ¼
XN

i¼1

mi jrij2ðx � u0aÞ � ðri � xÞðri � u0aÞ
h i

¼
XN

i¼1

mi jrij2x0a � ðx0ibx0bÞx0ia
h i

¼ x0b
XN

i¼1

miðx0icx0icdab � x0iax
0
ibÞ ða; b; c ¼ 1; 2; 3Þ;

where x0ia are the components of r0i on the axes of S0: If we denote

I0ab ¼
XN

i¼1

miðx0ic x0ic dab � x0ia x0ibÞ; ð4:5:5Þ

we can write:

L0a ¼ I0ab x0b ða; b ¼ 1; 2; 3Þ: ð4:5:6Þ

The components L0a of the angular momentum on the axes of the frame S0 are
therefore obtained by means of a linear transformation. The quantities (4.5.5) are
the components of a tensor, called the inertia tensor. From (4.5.5) it follows that
the inertia tensor is symmetric. Its diagonal components I011; I

0
22; I

0
33; e.g.
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I011 ¼
XN

i¼1

mi ðjrij2 � x0
2
i Þ ¼

XN

i¼1

mi ðy02i þ z0
2
i Þ etc.; ð4:5:7Þ

are the axial moments of inertia, while the non-diagonal components I012; I023;
I031; e.g.

I012 ¼ I021 ¼ �
XN

i¼1

mix
0
iy
0
i etc.; ð4:5:8Þ

are the centrifugal momenta or inertia products.

Observation: Although the inertia tensor I0ab was defined relative to the centre of
mass O, sometimes it can be found in a more convenient way by first calculating
its components with respect to some other point. For instance, let us now choose a
reference frame ~S; invariable with respect to S0 and with the origin at ~O; defined
by the radius-vector RðX0; Y 0;Z0Þ relative to O0: In order to determine the rela-
tionship between the components of the tensor Iab, given in the two frames ~S and
S0; we denote ~ri ¼ ri � R: Then,

~Iab ¼
XN

i¼1

mið~xic~xicdab � ~xia~xibÞ

¼
XN

i¼1

mi ðx0ic �X0cÞðx0ic �X0cÞdab � ðx0ia �X0aÞðx0ib �X0bÞ
h i

:

But, in view of (1.3.54), since O0 � G; we have:

XN

i¼1

mix
0
ic ¼ 0;

consequently

~Iab ¼ I0ab þMðR2dab �X0aX
0
bÞ; ð4:5:9Þ

where M is the mass of the body. If ~Iab is known, we can immediately determine I0ab:

4.5.3 Kinetic Energy

Using (4.2.14), we find the kinetic energy:

T ¼ 1
2

XN

i¼1

mijvij2 ¼
1
2

XN

i¼1

mivi � ðx� riÞ ¼
1
2

x �
XN

i¼1

miri � vi;

or, by virtue of (4.5.4) and (4.5.6),
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T ¼ 1
2

x � L ¼ 1
2
I0abx

0
ax
0
b: ð4:5:10Þ

The tensor I0ab being given by (4.5.5), we can also write:

T ¼ 1
2

XN

i¼1

mi jrij2x2 � ðr0i � xÞ
2

h i

;

or, if s is the unit vector of x,

T ¼ 1
2
Ix2; ð4:5:11Þ

where

I ¼
XN

i¼1

mi jrij2 � ðri � sÞ2
h i

ð4:5:12Þ

is a scalar, called the moment of inertia of the rigid body relative to the axis of

rotation. As one can see (Fig. 4.10), d2
i ¼ r2

i � ðri � sÞ2; i.e.

I ¼
XN

i¼1

mid
2
i : ð4:5:13Þ

Comparing (4.5.6) and (4.5.10), we obtain

L0a ¼
oT

ox0a
ða ¼ 1; 2; 3Þ: ð4:5:14Þ

Fig. 4.10 Auxiliary
construction used to
determine the specific
quantities associated with a
rigid body: the kinetic energy
and the ellipsoid of inertia.
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4.5.4 Ellipsoid of Inertia

The moment of inertia (4.5.12) can be expressed in a form leading to a remarkable
and useful geometrical interpretation. If s0a ða ¼ 1; 2; 3Þ are the direction cosines of
s relative to S0; we may write s ¼ s0au0a; such that

jsj2 ¼ 1 ¼ s0as
0
bu0a � u0b ¼ s0as

0
bdab;

leading to

I ¼
XN

i¼1

miðjrij2s0as0bdab � s0as
0
bx
0
iax
0
ibÞ ¼ I0abs

0
as
0
b: ð4:5:15Þ

We take now a point M on the axis of rotation, given by

OM~ ¼ s
ffiffiffi

I
p :

If X0a ða ¼ 1; 2; 3Þ are the components of OM~ on the axes of S0; then (4.5.15)
leads to

I0abX
0
aX
0
b ¼ 1: ð4:5:16Þ

This formula tells us that the geometric locus of the point M, when the direction of
the axis of rotation varies in time, is a quadric surface with its centre in O0: Since
I0[ 0; the segment OM is always finite; in other words, the quadric surface does
not have points at infinity. This means that our quadric is an ellipsoid, called
ellipsoid of inertia. If the coordinate axes coincide with the symmetry axes of the
ellipsoid of inertia, then its equation has the canonical form:

I011X
0
1

2 þ I022X
0
2

2 þ I033X
0
3

2 ¼ 1:

The axes of the ellipsoid of inertia are called principal axes of inertia, while its
symmetry planes are the principal planes of inertia. Relative to these axes, the
products of inertia I0ab ða 6¼ bÞ are zero, i.e. the inertia tensor is diagonal. If the
point O0 coincides with the centre of mass of the body (our case), the ellipsoid of
inertia is called central ellipsoid of inertia and its axes – central principal axes of
inertia.

Observation: In some cases, it is convenient to write the tensor of inertia in a
dyadic form (see Appendix A). This form is useful because it allows us to utilize
the usual vector operations. In view of (4.5.5), we define the dyadic vector {I} by

fIg ¼
XN

i¼1

miðjrij2f1g � ririÞ;

where f1g ¼ u0i u0i is the dyadic unit vector. Then,
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fIg � x ¼
XN

i¼1

mi jrij2x� ðri � xÞri

h i

¼ L;

T ¼ 1
2

x � L ¼ 1
2
x � fIg � x ¼ 1

2
x2s � fIg � s:

Since

s � fIg � s ¼ s �
XN

i¼1

jrij2s� ðri � sÞri

h i

¼
XN

i¼1

mi½jrij2 � ðri � sÞ2� ¼ I;

we finally obtain

T ¼ 1
2
Ix2:

4.5.5 Euler’s Equations of Motion

First, we notice that the coordinates x0iaði ¼ 1;N; a ¼ 1; 3Þ of the particles of the
rigid body relative to S0 do not change in time, meaning that the components I0ab of

the inertia tensor are also constant. Second, we recall that x is a function of time
only: x ¼ xðtÞ: In order to derive the differential equations of motion of the rigid
body having one point fixed, we shall use the Lagrange equations (2.5.13):

d

dt

oT

o _qc

� �

� oT

oqc
¼ Qc ðc ¼ 1; 2; 3Þ; ð4:5:17Þ

where the role of general coordinates is played by Euler’s angles: q1 ¼ h; q2 ¼
u; q3 ¼ w: Such a choice is dictated by the fact that the unit vectors t1; k; k0 (in
this order!) form a clockwise orthogonal frame. By virtue of (4.5.10), we can
write:

oT

o _qc
¼ 1

2
I0gbx

0
g

ox0b
o _qc
þ 1

2
I0gb

ox0g
o _qc

x0b ¼ I0gbx
0
b

ox0g
o _qc

;

d

dt

oT

o _qc

� �

¼ I0gb _x0b
ox0g
o _qc
þ I0gbx

0
b

d

dt

ox0g
o _qc

� �

;

oT

oqc
¼ I0gbx

0
b

ox0g
oqc

and Eqs. (4.5.17) lead to:

I0gb _x0b
ox0g
o _qc
þ I0gbx

0
b

d

dt

ox0g
o _qc

� �

�
ox0g
oqc

� �

¼ Qc; ð4:5:18Þ
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where Qc are the components of the generalized force along the directions h;u;w:
Using the definition (2.4.12), we obtain:

Qc ¼
XN

i¼1

Fi �
ori

oqc
¼
XN

i¼1

F 0ia
ox0ia
oqc
¼
XN

i¼1

F 0ia
o _x0ia
o _qc

:

But

_x0ia ¼ ðx� riÞa ¼ �abc x0b x0ic;

such that

Qc ¼
XN

i¼1

�abnF
0
iax
0
in

ox0b
o _qc

: ð4:5:19Þ

On the other hand, the componentsM0
b ðb ¼ 1; 2; 3Þ of the resultant moment of

exterior forces relative to S0 are, by definition,

M0
b ¼

XN

i¼1

ðri � FiÞb ¼
XN

i¼1

�bna x0in F 0ia: ð4:5:20Þ

Comparing the relations (4.5.19) and (4.5.20), we arrive at

Qc ¼M0
b

ox0b
o _qc

: ð4:5:21Þ

Before going further, we must remember that in (4.5.21) Qc are the components
Qh; Qu; Qw; while M0

b stands for Mx0 ; My0 ; Mz0 :

It can be proved that the vector x defined by (4.5.1) satisfies the identity

d

dt

ox

o _qc

� �

¼ u0b
ox0b
oqc

: ð4:5:22Þ

If we denote

t1 ¼ s1; k ¼ s2; k0 ¼ s3;

then we may write x ¼ _qasa and (4.5.22) leads to

dsc

dt
¼ u0b

ox0b
oqc

: ð4:5:23Þ

Since u0b ðb ¼ 1; 2; 3Þ do not depend on _qc; from (4.2.7) and (4.5.23) we obtain:

u0b
d

dt

ox0b
o _qc

� �

þ x� u0b
ox0b
o _qc
¼ u0b

ox0b
oqc

;
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or, in projection on the axes of the frame S0;

d

dt

ox0g
o _qc

� �

�
ox0g
oqc
¼ �gna x0a

ox0n
o _qc

: ð4:5:24Þ

Replacing the square bracket in (4.5.18) by the r.h.s. of (4.5.24) and using (4.5.21),
we arrive at

I0gb _x0b þ �gna x0n x0b I0ab �M0
g

� � ox0g
o _qc
¼ 0; ð4:5:25Þ

where the summation indices have been conveniently changed. It is easy to
show that

det
ox0b
o _qc

� �

¼ sin h 6¼ 0 ð0\h\pÞ;

meaning that the system of homogeneous linear equations (4.5.25), in which the
number of equations equals the number of unknowns (i.e. the brackets) admits
only the trivial solution, which is expressed as

I0gb _x0b þ �gna x0n x0b I0ab ¼M0
g ða; b; g; n ¼ 1; 2; 3Þ: ð4:5:26Þ

These are the equations of motion of the rigid body, called Euler’s equations.
Equations (4.5.2), together with (4.5.26), form a system of six first-order dif-

ferential equations, with six unknowns x01;x
0
2;x

0
3; h;u;w, leading to the expres-

sions for Euler’s angles as functions of time. The general integral of the system
(4.5.26) depends on six arbitrary constants, which are determined from the initial
conditions: at the initial time t = 0, the values of the variables are fixed to
x01ð0Þ;x02ð0Þ;x03ð0Þ; hð0Þ;uð0Þ;wð0Þ:

Using (4.5.2), we can obtain the components Qc of the generalized force in
terms of Euler’s angles:

Qh ¼M0
x cos w�M0

y sin w;

Qu ¼M0
x sin h sin wþM0

y sin h cos wþM0
z cos h;

Qw ¼M0
z:

ð4:5:27Þ

We remind the reader that M0
x;M0

y;M0
z mean, in fact, Mx0 ;My0 ;Mz0 :

If, in particular, the axes of the frame S0 coincide with the symmetry axes of the
ellipsoid of inertia, then the angular momentum, the kinetic energy and Euler’s
equations are given respectively by:

L ¼
X3

a¼1

I0ax
0
au0a; ð4:5:28Þ
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T ¼ 1
2

X3

a¼1

I0ax
0
a

2
; ð4:5:29Þ

I01 _x01 � ðI02 � I03Þx02x03 ¼M0
1;

I02 _x02 � ðI03 � I01Þx03x01 ¼M0
2;

I03 _x03 � ðI01 � I02Þx01x02 ¼M0
3;

ð4:5:30Þ

where the following notations have been used:

I011 ¼ I01; I022 ¼ I02; I033 ¼ I03: ð4:5:31Þ

If no torque is applied to the rigid body, or if F is permanently directed towards
the fixed point O0; then Euler’s equations (4.5.26) reduce to

I0gb _x0b þ �gna x0n x0b I0ab ¼ 0:

Euler’s equations do not change their form if all quantities are expressed in the
inertial frame S, i.e.

Iab _xb þ �abc xb xg Icg ¼Ma; ð4:5:32Þ

where the components Iab of the inertia tensor are functions of time. To prove this
statement, let us apply the angular momentum theorem (1.3.38). Since the unit
vectors ua of the frame S are constant, we have:

dLa

dt
¼Ma:

On the other hand, since La ¼ Iabxb; where

Iab ¼
XN

i¼1

miðxic xic dab � xia xibÞ;

we may write:

_La ¼ _Iabxb þ Iab _xb:

But (see Appendix A)

Iab ¼ aha anb I0hn;

therefore

_Iab ¼ ð _aha anb þ aha _anbÞI0hn ¼ ð _aha anb ahc ang þ aha _anb ahc angÞIcg

¼ _aha ahc Icb þ _anb ang Iag:

On the other hand, since

u0a ¼ aab ub;
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we have:

_u0a ¼ _aab ub ¼ _aab acb u0c:

A comparison of the last relation with (4.2.4) yields:

x0ac ¼ _aab acb

and, in view of (4.2.6),

_Iab ¼ xca Icb þ xgb Iag ¼ �can xn Icb þ �gbn xn Iag;

from which we obtain:

_La ¼ �can xb xn Icb þ Iab _xb;

which completes the proof.

Observations:

(a) A rigid body whose principal moments of inertia are all different ðI01 6¼ I02 6¼
I03; I01 6¼ I03Þ is called asymmetrical top. If any two principal moments of
inertia coincide (e.g. I01 ¼ I02 6¼ I03), we have a symmetrical top. In the case
I01 ¼ I02 ¼ I03 we deal with a spherical top.

The determination of the principal moments and principal axes of inertia is
facilitated if the rigid body has planes or axes of symmetry. If there is a plane
of symmetry, then the centre of mass and two principal axes of inertia lie in
this plane, the third being orthogonal to the symmetry plane. For instance, if a
discrete system of N particles is distributed in the plane O0x0y0, we have:

I01¼
XN

i¼1

mi y
0
i

2
; I02¼

XN

i¼1

mi x
0
i

2
; I03¼

XN

i¼1

miðx0i
2þy0i

2Þ¼ I01þ I02: ð4:5:33Þ

If the rigid body possesses an axis of symmetry, this coincides with one of the
principal axes of inertia and the centre of mass lies on it. If, in particular, the
system of particles is distributed along a straight line (say, the O0z0-axis), then

I01 ¼ I02 ¼
XN

i¼1

mi z
0
i

2
; I03 ¼ 0: ð4:5:34Þ

Such a system is called rotator and has only two degrees of freedom.
(b) If the rigid body is subject to potential forces only, then Euler’s equations

(4.5.26) can be obtained by means of the Lagrange equations in the form
(2.5.17). In this case,

L ¼ T � V ¼ 1
2
I0ab x0a x0b � Vðh;u;wÞ: ð4:5:35Þ
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(c) If we consider the general motion of a rigid body relative to the frame S, i.e.
both translation and rotation are considered, then the Lagrangian will be
composed of two parts:

L ¼ Ltrans þ Lrot:

The kinetic energy can be calculated by using (4.3.10), with v0 ¼ vG:

T ¼ 1
2
MjvGj2 þ

1
2
I0ab x0a x0b ð4:5:36Þ

and we finally can write

L ¼ 1
2

MjvGj2 þ
1
2
I0ab x0a x0b � VðxG; yG; zG; h; u; wÞ: ð4:5:37Þ

We mention, once again, that this analysis is valid only if the origin O0 of the
reference frame S0; rigidly fixed to the body, is chosen in its centre of mass.

4.6 Applications

The purpose of this section is to study, by use of the analytical mechanics for-
malism and the theory developed in this chapter, both some classical applications
and several extensions of this formalism to non-mechanical systems. This will be
done by virtue of the analogies that can be identified between mechanical models
and other physical representations.

4.6.1 Physical Pendulum

A rigid body able to oscillate about a fixed horizontal axis, which does not pass
through the centre of mass, is a physical pendulum, or a compound pendulum
(Fig. 4.11). Since the only applied force acting on the body is the force of gravity,
the projection of the equation Mg ¼ �grad V on the axes of the frame S gives by
integration the potential energy of the pendulum:

V ¼ Mglð1� cos hÞ:

Here, l ¼ OG; M is the mass of the body, while the integration constant is
determined from the condition: V = 0, for x = l.

The instantaneous vector of rotation x is directed along the fixed axis and has

the magnitude jxj ¼ xz ¼ _h: In view of (4.5.11), the kinetic energy is T ¼ 1
2 I _h2;

thus, the Lagrangian of the physical pendulum reads:

L ¼ 1
2
I _h2 �Mglð1� cos hÞ: ð4:6:1Þ

Let h be the generalized coordinate associated to the only degree of freedom of
the body. Therefore we have a single equation of motion,
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I€hþMgl sin h ¼ 0; ð4:6:2Þ
formally identical with the equation of a simple pendulum. For small amplitudes
ðsin h ’ hÞ; the period of oscillation is

s ¼ 2p

ffiffiffiffiffiffiffiffiffiffi

I

Mgl

s

: ð4:6:3Þ

The physical pendulum is used in determining the acceleration of gravity, in the
calculation of the moments of inertia of a rigid body, etc.

4.6.2 Symmetrical Top

Keeping the index ‘prime’ associated with the quantities in the frame S0; let
the symmetrical top be such that I01 ¼ I02 6¼ I03: In the following, we shall study the
motion of the symmetrical top in two different cases: the force-free motion and the
motion in the gravitational field of the Earth.

4.6.2.1 Force-Free Motion

The equations of motion of the rigid body are in this case Euler’s equations
(4.5.30), in which M0

a ¼ 0: Since I01 ¼ I02; the last equation gives xz = const.,
while the first two equations yield:

_x01 ¼ �X0x0z; _x02 ¼ X0x01; ð4:6:4Þ
where

X0 ¼ I03 � I01
I01

x03: ð4:6:5Þ

Fig. 4.11 Physical
pendulum.
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Then we can write

_x ¼ X� x: ð4:6:6Þ

From (4.6.5), Xð0; 0;X0Þ is a constant vector, directed along the symmetry axis
Oz0 of the top, while (4.6.6) means that the vector x performs a uniform rotation
about the Oz0-axis, with the angular velocity X0: The convention O � O0 � G has
been adopted also in this application.

Since Oz0 is a symmetry axis, it is also a principal axis of inertia. The other two
principal axes of inertia Ox0 and Oy0 can be arbitrarily chosen, because the section
of the ellipsoid of inertia by a plane orthogonal to the axis Oz0 is a circle. Since
M0

a ¼ 0; we observe that the angular momentum L is a constant vector. If we
choose Ox0 orthogonal to the plane determined by L and Oz0; it results that L01 �
Lx0 ¼ 0; and from (4.5.28) it follows that x01 ¼ 0: In other words, the vectors x;L
and the axis Oz0 are coplanar. This shows that the velocity vi of a certain particle Pi

of the symmetry axis is orthogonal to this plane ðvi ¼ x� riÞ; meaning that the z0-
axis performs a uniform rotation about L. This motion is called regular precession.

Our result acquires a more suggestive interpretation if we make use of Euler’s
angles. Let the axis Oz of the fixed frame be directed along L ¼ const.; the Oz0

axis along the top axis (as above), and the Ox0-axis along the line of nodes, i.e.
w = 0 (Fig. 4.12). The components of the vector x in S0 are then given by (4.5.2):

x01 ¼ _h; x02 ¼ _u sin h; x03 ¼ _u cos hþ _w: ð4:6:7Þ

The angular momentum is in the Oy0z0-plane, so that

L01 ¼ 0; L02 ¼ L sin h; L03 ¼ L cos h; ð4:6:8Þ

where L = Lz. In view of (4.5.28), we also have:

L01 ¼ I01x
0
1 ¼ I01

_h; L02 ¼ I02x
0
2 ¼ I01 _u sin h;

L03 ¼ I03x
0
3 ¼ I03ð _u cos hþ _wÞ:

ð4:6:9Þ

A comparison between (4.6.8) and (4.6.9) gives:

_h ¼ 0; _u ¼ L

I01
; x03 ¼ _u cos hþ _w ¼ L cos h

I03
: ð4:6:10Þ

The first relation shows that the angle h between the directions of the top axis
and the angular momentum is constant; the second, that the precession angular
velocity _u of the top axis about Oz is also constant; the third relation defines the
angular velocity of the top about its axis of symmetry, which is constant as well.

The same result is obtained by integrating Euler’s equations (4.5.30). In this
respect, we see that the system (4.6.4) admits the solutions

x01 ¼ A sin X0t; x02 ¼ A cos X0t;

meaning that the solutions of Euler’s equations are:
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x01 ¼ A sin X0t ¼ _u sin h sin w;

x02 ¼ A cos X0t ¼ _u sin h cos w;

x03 ¼ _u cos hþ _w ¼ const.;

leading to the already known result:

A ¼ _u sin h ¼ const.; w ¼ X0t: ð4:6:11Þ

Observation: The geometric locus of the instantaneous axes of rotation with
respect to S0 is a cone with its top at O, called polhodic cone; the geometric locus
of the instantaneous axes of rotation relative to S is also a cone with the top at the
same point, named herpolhodic cone. It can be shown that the two cones are
tangent, and the polhodic cone is rolling without slipping over the herpolhodic
cone (Fig. 4.12).

4.6.2.2 Motion in the Gravitational Field

Suppose that the fixed point of the top is on its axis of symmetry. We choose the
origins O and O0 in the fixed point, and the axis Oz0 directed along the symmetry
axis of the top. As one can see, in this case the centre of mass and the fixed point
do not coincide anymore (Fig. 4.13). Then, if the principal moments of inertia
~I1;~I2;~I3 relative to a frame fixed with respect to the rigid and having its origin in
G are known, from (4.5.9) we obtain:

I01 ¼ I02 ¼ ~I1 þMl2; I03 ¼ ~I3; ð4:6:12Þ

where M is the mass of the top and l is the distance between the fixed point O and
the centre of mass G.

The kinetic energy of the moving top is found by means of (4.5.29):

T ¼ 1
2

X3

a¼1

I0ax
0
a

2 ¼ 1
2
I01ðx01

2 þ x02
2Þ þ 1

2
I03x

0
3

2
;

Fig. 4.12 Symmetrical top.
Herpolhodic and polhodic
cones.
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or, in view of (4.5.2),

T ¼ 1
2

I01ð _u2 sin2 hþ _h2Þ þ 1
2
I03ð _u cos hþ _wÞ2: ð4:6:13Þ

The potential energy of the body situated in the terrestrial gravitational field is

V ¼ Mgl cos h:

The Lagrangian is then:

L ¼ 1
2
I01ð _u2 sin2 hþ _h2Þ þ 1

2
I03ð _u cos hþ _wÞ2 �Mgl cos h: ð4:6:14Þ

The two cyclic coordinates u;w lead to the following first integrals:

pu ¼
oL

o _u
¼ ðI01 sin2 hþ I03 cos2 hÞ _uþ I03

_w cos h ¼ C1; ð4:6:15Þ

pw ¼
oL

o _w
¼ I03ð _u cos hþ _wÞ ¼ I03x

0
3 ¼ C2: ð4:6:16Þ

Since the physical system is conservative, there also exists the energy first integral:

1
2

I01ð _u2 sin2 hþ _h2Þ þ 1
2
I03ð _u cos hþ _wÞ2 þMgl cos h ¼ E: ð4:6:17Þ

The constants C1;C2;E are determined from the initial conditions.
The existence of first integrals whose number is equal to that of the degrees of

freedom, allows us to derive the finite equations of motion (in our case, Euler’s
angles as functions of time) by quadratures. The cyclic variables u;w can be
eliminated from (4.6.17), with the help of (4.6.15) and (4.6.16). Then we obtain
_u; _w as functions of h:

_u ¼ C1 � C2 cos h

I01 sin2 h
; _w ¼ C2

I03
� C1 � C2 cos h

I01 sin2 h
cos h ð4:6:18Þ

and (4.6.17) becomes:

Fig. 4.13 Motion of the
symmetrical top in the
gravitational field.

192 4 Rigid Body Mechanics



E ¼ 1
2
I01

_h2 þ 1
2

C2
2

I03
þ 1

2I01 sin2 h
ðC1 � C2 cos hÞ2 þMgl cos h: ð4:6:19Þ

Introducing the notation

E� 1
2

C2
2

I03
¼ E1 ¼ const.; ð4:6:20Þ

1

2I01 sin2 h
ðC1 � C2 cos hÞ2 þMgl cos h ¼ Veff ðhÞ; ð4:6:21Þ

we have:

E1 ¼
1
2
I01

_h2 þ Veff ðhÞ; ð4:6:22Þ

or, by integration,

Z t

t0

dt ¼
Zh

h0

dh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
I01
½E1 � Veff ðhÞ�

q : ð4:6:23Þ

This equation gives h = h(t). Introducing then h(t) into (4.6.18), we find u ¼ uðtÞ
and w = w(t). This means that the problem of the motion of the rigid body –
at least in principle – is determined. But the study of the potential energy Veff (h)
and the resolution of the elliptic integral (4.6.23) encounter great difficulties, since
Veff (h) depends on two parameters, C1 and C2, whose values are not a priori
known. In the following, we shall give a brief account of the problem, considering
only the most interesting cases.

First, we see that the integral on the r.h.s. of (4.6.23) acquires a more conve-
nient form by the substitution u ¼ cos h: Second, let us denote

a ¼ 2E1

I01
; b ¼ 2Mgl

I01
ð4:6:24Þ

and choose the constants a, b given by

C1 ¼ I01b; C2 ¼ I01a; ð4:6:25Þ

instead of C1;C2: Then, (4.6.23) becomes:

t � t0 ¼
ZuðtÞ

uðt0Þ

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� u2Þða� buÞ � ðb� auÞ2
q ¼

ZuðtÞ

uðt0Þ

du
ffiffiffiffiffiffiffiffiffiffi

f ðuÞ
p ; ð4:6:26Þ

where f (u) is the polynomial under the square root.
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The polynomial f (u) is of third degree in u, meaning that the integral occurring
in (4.6.26) is an elliptic integral. We shall use, however, a method to solve the
problem without resorting to elliptic functions. Let us write

_u2 ¼ fðuÞ ¼ ð1� u2Þða� buÞ � ðb� auÞ2: ð4:6:27Þ

In order that Eq. (4.6.27) has a real solution, it is necessary that f ðuÞ	 0: This
condition must also be fulfilled by u0 ¼ uðt0Þ; i.e. we must have f ðu0Þ	 0: Let us
analyze the two cases, f (u0) [ 0 and f (u0) = 0.

(a) f (u0) [ 0. Let u in (4.6.27) vary in time. We find:

fð�1Þ\0; f ð�1Þ\0; f ðþ1Þ\0; fðþ1Þ[ 0:

Since u0 ¼ cos h0 takes values in the interval (-1, +1), the polynomial
f (u) changes its sign in the intervals

ð�1; u0Þ; ðu0;þ1Þ; ðþ1;þ1Þ:

The three real roots of f(u) will then be situated in these intervals:

u1 2 ð�1;u0Þ; u2 2 ðu0;þ1Þ; u3 2 ðþ1;þ1Þ:

Since the root u3 does not make sense, we shall leave it out. The graphic
representation of the case (a) is given in Fig. 4.14.

(b) f (u0) = 0. In this case, we have u0 ¼ u1 ¼ u2; the solutions u = +1 and
u = -1 giving the vertical position of the top. It follows, then, that u ¼ cos h
is permanently within the interval ðu1; u2Þ; i.e. the inclination limit angles of
the axis of the top with respect to the vertical line are h1 ¼ arccos u1 and
h2 ¼ arccos u2: These two limit angles determine two circles on a sphere
with the centre in the fixed point, so that the trajectory described by the
intersection point of the top axis and the sphere lies between the two circles.
One observes that

_u2 ¼ fðuÞ ¼ _h2 sin h;

meaning that _h ¼ 0 on the two circles, which correspond to the turning points.
In order to determine the shape of the curve described by the point produced
by the intersection of the top axis and the sphere with its centre in O, let us
calculate the tangent of the angle a made by this curve and the meridian circle
defined on the sphere by the plane u ¼ const. Thus, we have (see Appendix B)

dsh ¼ r dh; dsu ¼ r sin h du;

consequently (see Fig. 4.15),

tan a ¼ du
dh

sin h:

But
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du
dh
¼ du

du

du

dh
¼ � du

du
sin h:

On the other hand, in view of (4.6.18), (4.6.25) and (4.6.27), we can write

du
du
¼ _u

_u
¼ b� au


ð1� u2Þ ½f ðuÞ�
1
2

;

leading to

tan a ¼ b� au


 ½f ðuÞ�
1
2

: ð4:6:28Þ

Let u0 be the root of the equation b - au = 0. Then, depending on the initial
conditions, one of the following situations can occur:

(1) u0 is outside the interval ½u1; u2�;
(2) u0 is inside this interval ðu1; u2Þ;
(3) u0 coincides with either u1, or u2.

In the first case, if we write (4.6.18)1 in the form

_u ¼ b� au

1� u2
;

we realize that _u does not change its sign, meaning that the axis of the top
performs a precession motion about the vertical line passing through O. If _u ¼ 0;
the precession is monotonic. When u reaches the values u1 or u2, in view of
(4.6.28), tan a = ?, i.e. the curve u ¼ uðhÞ on the sphere is tangent to the
parallel circles h ¼ h1; h ¼ h2: The axis of the top performs a periodic motion of

Fig. 4.14 Graphical
representation of the case (a)
fðu0Þ[ 0.

Fig. 4.15 Parameters
describing the case (b)
fðu0Þ ¼ 0.
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lifting and descending. This motion is done on the background of the precession
motion and it is called nutation (Fig. 4.16a).

In the second case, the curve u ¼ uðhÞ is also tangent to the parallel circles
h ¼ h1; h ¼ h2; but _u changes its sign for u ¼ u0; meaning that the directions of
the precession on the circles h ¼ h1; h ¼ h2 are opposite (Fig. 4.16b).

Let us, finally, analyze the third case. Putting b ¼ au0 in (4.6.27), we have:

f ðuÞ ¼ ð1� u2Þða� buÞ � a2ðu0 � uÞ2 ð4:6:29Þ

and, since either u0 ¼ u1; or u0 ¼ u2; it follows that

f ðu0Þ ¼ ð1� u02Þða� bu0Þ ¼ 0:

This leads to a ¼ bu0, and (4.6.29) takes the form:

f ðuÞ ¼ ðu0 � uÞ½bð1� u2Þ � a2ðu0 � uÞ�: ð4:6:30Þ

Writing (4.6.30) for the two roots u1 and u2, we have:

fðu1Þ ¼ ðu0 � u1Þ½bð1� u2
1Þ � a2ðu0 � u1Þ� ¼ 0;

fðu2Þ ¼ ðu0 � u2Þ½bð1� u2
2Þ � a2ðu0 � u2Þ� ¼ 0:

As we can see, if in one of these equations the parenthesis vanishes, in the other
the bracket becomes zero. Since 1 - u2 [ 0, it results that either u0[ u1; or
u0[ u2: But u0[ u2 does not have any sense, so that the only remaining possi-
bility is u0[ u1: This inequality is satisfied only by u0 ¼ u2; i.e. u0 may coincide
only with the biggest of the two roots u1; u2:

At the same time, (4.6.28) leads to tan a = 0, for u ¼ u0 ¼ u2; which means
that the angle a, made by the curve u ¼ uðhÞ at the intersection points with the
parallel circle h = h2, is zero. Since _u does not change its sign in the interval
ðu1; u2Þ; we conclude that these points are turning points (Fig. 4.16c).

Fig. 4.16 Geometrical representation of nutation for various conditions.
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In order to explain the motion of nutation, let us take as initial conditions:

hð0Þ ¼ h0 6¼ 0; p; _hð0Þ ¼ 0; _uð0Þ ¼ 0: ð4:6:31Þ

The relations (4.6.16), (4.6.19) and (4.6.20) then lead to

ðE1Þt¼0 ¼ E� 1
2
I03x

0
3

2
� �

t¼0

¼ Mgl cos h0 ¼ const. ð4:6:32Þ

In the light of this result, let us now give a physical interpretation of the equation
of conservation (4.6.17). It shows that, if at the initial moment t = 0, the quantity
E1 satisfies Eq. (4.6.32), then the potential energy must diminish with the growth

of _u; _h: The angle h0 is then precisely the minimum value h2 of h, i.e. the top
always begins its motion with a falling tendency. The axis of self-rotation inclines
until h reaches its maximum value h1, then the top gradually recovers, the angle h
diminishes up to its minimum value h2, and the motion repeats itself in this
manner, periodically. As we have already mentioned, the nutation is interwoven
with the motion of precession.

4.6.3 Fast Top. The Gyroscope

A symmetrical top with a fixed point on its axis of symmetry, having a rapid
motion of rotation about this axis, is called gyroscope. The initial conditions
(4.6.18) and (4.6.31) yield

b� au0 ¼ 0: ð4:6:33Þ

Similarly, the relation (4.6.19) with the notations (4.6.20), (4.6.24) and (4.6.25)
leads to

a� bu0 ¼ 0: ð4:6:34Þ

By substituting b and a given by (4.6.33) and (4.6.34), respectively, into (4.6.27),
we find that

fðuÞ ¼ ðu0 � uÞ½bð1� u2Þ � a2ðu0 � uÞ�: ð4:6:35Þ

We recall that u0 is the root of the equation b - au = 0, so that (4.6.33) gives
u0 ¼ u0: For u = u1 and u = u2, we have f(u) = 0, i.e. u0 equals either u1, or u2.
Since u0 ¼ u0; the only possibility is u0 ¼ u2 (the case (3) above). Then u may
vary between the limits u1 and u2 ¼ u0:

If u = u1, (4.6.35) yields:

u0 � u1 ¼
b
a2
ð1� u2Þ[ 0:

Since 1 - u2 [ 0, we can write
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0\u0 � u1\
b
a2
: ð4:6:36Þ

Suppose now that the angular velocity of the top about its axis is very high.

In this case, b
a2 ! 0 and (4.6.36) shows that the domain of variation of u is very

small. Then u ^ u0, the two parallel circles h = h1 and h = h2 coincide, and the
top seems to move without nutation. From (4.6.18)1 and (4.6.36), we obtain:

_u ¼ aðu0 � uÞ
1� u2

\
b
jaj

u0 � u1

1� u2
: ð4:6:37Þ

Since |a| is large and the difference u0 � u1 is very small, it follows that the motion
of precession is very slow. The formula (4.6.37) also shows that _u and a have the
same sign, i.e. the motions of precession and spinning about the top axis have the
same sense.

Observation: This analysis justifies the names given to Euler’s angles: h – angle
of nutation, u – angle of precession and w – angle of self-rotation.

4.6.4 Motion of a Rigid Body Relative to a Non-inertial Frame.
The Gyrocompass

Consider a rigid body moving with respect to a non-inertial frame S0ðO0x0y0z0Þ;
which in its turn moves relative to an inertial frame S(Oxyz). Let S00ðO00x00y00z00Þ be
the orthogonal frame invariably related to the body, x – the instantaneous vector
of rotation of the body about its own axis and X – the instantaneous vector of
rotation of S0 relative to S. If O00 � G and we take into account the notations used
in Fig. 4.17, we can write:

r0i ¼ rG þ r00i : ð4:6:38Þ
In order to study the motion of the body relative to S0; we must first find the

form the Lagrangian. To this end, we shall take advantage of the formula (4.3.4),
furnishing the Lagrangian Li of a certain particle Pi of the body with respect to the
non-inertial frame S0:

Li ¼
1
2
mijvrj2 þ

1
2

mijx� r0ij
2 þmivr � ðx� r0iÞ � Vi: ð4:6:39Þ

Here, the term �mir
0
i � a0 has been included in the potential energy Vi, because

a0 can always be considered as due to a uniform gravitational field acting on the
body, while vr ¼ vG þ x� r0i is the velocity of Pi relative to O0: In view of
(1.3.58) and (4.6.39), the Lagrangian separates into two groups of terms, one
corresponding to the motion of the centre of mass and the other giving the
rotation about it:
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L ¼
XN

i¼1

Li ¼ TG þ
1
2
MðjrGj2dab � xGa xGbÞXa Xb

þX � LG þ Trot þ
1
2
IabXaXb þX � Lrot � V ; ð4:6:40Þ

where

Iab ¼
XN

i¼1

miðx00ic x00ic dab � x00ia x00ibÞ;

Lrot ¼
XN

i¼1

mir
00
i � ðx� r00i Þ;

Trot ¼
1
2
Iab xa xb;

while V depends both on the centre of mass coordinates and on the parameters
describing the motion about this point (Euler’s angles). If a point belonging to the
body, e.g. its centre of mass is fixed, then the Lagrangian associated with the
motion about G is:

L ¼ Trot þ
1
2
Iab Xa Xb þ x � Lrot � V ; ð4:6:41Þ

where the quantities Trot; Iab; and Lrot are defined relative to the fixed point. The
second term in (4.6.41) is called centrifugal term and the third – Coriolis term.
Since the Lagrangian (4.6.41) is invariant under rotations, it will keep its form
relative to the frames S and S0:

The aforementioned analysis represents the theoretical basis of the construction
of the gyrocompass. This is a very rapidly rotating gyroscope, its symmetry axis

Fig. 4.17 Choice of the
coordinate systems in order to
study the motion of a rigid
body relative to a non-inertial
frame.
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lying permanently in the horizontal plane. Without reducing the generality of the
problem, we presume that the origins of the frames S; S0; S00 coincide with the fixed
point. Next, we take the frame S invariable with respect to the Earth, with its x-axis
pointing North and its y-axis pointing West. The x0-axis is taken along the gyro-
scope axis, while Euler’s angles u; h are chosen as shown in Fig. 4.18. Since the
x0-axis remains permanently in the horizontal plane, we have w = 0.

It is more convenient to express all quantities relative to the frame S0 (e.g. the
ship, or the airplane where the gyrocompass is installed). In this frame, the vector

x ¼ _ukþ _hi0 has the components:

x01 ¼ _h; x02 ¼ 0; x03 ¼ _u: ð4:6:42Þ

Since Ox0 is a principal axis of inertia, we have I02 ¼ I03 6¼ I01: The angular
momentum and the kinetic energy of the gyroscope are given by (4.5.28) and
(4.5.29), respectively:

L01 ¼ I01
_h; L02 ¼ 0; L03 ¼ I03 _u; ð4:6:43Þ

T ¼ 1
2

I01
_h2 þ 1

2
I02 _u2: ð4:6:44Þ

Let c be the angle between the z-axis and the instantaneous vector of rotation X
of the Earth (Fig. 4.18). Then,

X01 ¼ X0 sin c cos u; X02 ¼ �X0 sin c sin u; X03 ¼ X0 cos c;

such that

Fig. 4.18 The gyrocompass.
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I0ab X0a X0b ¼ I02 X02 cos2 cþ X02 sin2 cðI01 cos2 uþ I02 sin2 uÞ;
X � Lrot ¼ I01

_h X0 sin c cos uþ I02 _u X0 cos c:

Therefore, the corresponding Lagrangian is

L ¼ 1
2
I01

_h2 þ 1
2
I02 _u2 þ 1

2
X02 sin2 cðI01 cos2 uþ I02 sin2 uÞ

þ I02 X02 cos2 cþ I01
_hX0 sin c cos uþ I02 _uX0 cos c; ð4:6:45Þ

where the constant potential energy has been omitted.
We observe that the generalized coordinate h is cyclic, so that we have the first

integral

ph ¼
oL

o _h
¼ I01ð _hþ X0 sin c cos uÞ ¼ C1: ð4:6:46Þ

Another first integral follows from the fact that the energy is conserved, since
the Lagrangian L does not depend explicitly on time. In view of (2.8.30), we may
write:

pa _qa � L ¼ oL

o _h
_hþ oL

o _u
_u� L

¼ 1
2

I01
_h2 þ 1

2
I02 _u2 � 1

2
X02 sin2 cðI01 cos2 uþ I02 sin2 uÞ � I02X

02 cos2 c ¼ C2:

ð4:6:47Þ

Using these two first integrals, let us write the differential equation of motion

corresponding to the variable u: To this end, we eliminate _h from (4.6.46) and
(4.6.47) and then take the time derivative of the result:

I02 €uþ C1X
0 sin c sin u� I02X

02 sin2 c sin u cos u ¼ 0;

where _u 6¼ 0 has been simplified. If we neglect the term in X02 (recall that
X0 ’ 7:27� 10�5 s�1), we finally obtain:

€uþ C1X
0 sin c
I02

sin u ¼ 0: ð4:6:48Þ

This non-linear second-order differential equation is similar to the equation of a
simple pendulum. Consequently, if C1 [ 0 and the gyroscope is initially oriented
to show North, this is a position of stable equilibrium. Once directed towards
North ðu ¼ 0Þ; the gyroscope axis tends to remain in this direction. Such a system
is called gyroscopic compass or gyrocompass.
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4.6.5 Motion of Rigid Bodies in Contact

Let us consider a moving rigid body, constrained to remain permanently in contact
with another rigid body. In this case, there occurs a constraint force in each of the
contact points. This force can be decomposed into two vector components: the
normal reaction and the force of friction. The first is normal to the contact surface,
while the second lies in the plane tangent to this surface.

The relative displacement of the two rigid bodies can be performed either by
sliding, or by rolling. If the contact surfaces are perfectly smooth, we are dealing
with a pure sliding, while in the case of perfectly rough surfaces, the displacement
is a pure rolling. In practice, there is a mixture of these two cases.

The constraints imposed by the contact between bodies are, in general, non-
holonomic, and can be expressed by relations of the form (see (2.1.58)):

XN

i¼1

ga
i ðr1; . . .; rN ; tÞ � _ri þ ga

0ðr1; . . .; rN ; tÞ ¼ 0 ða ¼ 1; sÞ:

Since ri ¼ ri ðq; tÞ and _ri ¼
Pn

a¼1
ori

oqa
_qa þ ori

ot
; we can write:

Xn

a¼1

ba
a _qa þ ba

0 ¼ 0; ð4:6:49Þ

where

ba
a ¼

XN

i¼1

ga
i �

ori

oqa
; ba

0 ¼ ga
0 þ

XN

i¼1

ga
i �

ori

ot
:

The elementary displacements dqa must be compatible with the constraints
(4.6.49), i.e. they must satisfy the relations

Xn

a¼1

ba
adqa ¼ 0: ð4:6:50Þ

On the other hand, by D’Alembert’s principle (see Sect. 2.5), we have:

Xn

a¼1

d

dt

oT

o _qa

� �

� oT

oqa
�Qa

� �

dqa ¼ 0: ð4:6:51Þ

In order to derive the equations of motion, we multiply (4.6.50) by the arbitrary
parameters ka (Lagrange multipliers) and subtract the result from (4.6.51).
We obtain:

d

dt

oT

o _qa

� �

� oT

oqa
¼ Qa þ

Xs

a¼1

kab
a
a ða ¼ 1; nÞ; ð4:6:52Þ
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the infinitesimal displacements dqa being now arbitrary. Equations (4.6.52) are
called Lagrange equations with multipliers. These equations, together with the
equations of non-holonomic constraints (4.6.49), form a system of n ? s equations
with n ? s unknowns q1; . . .; qn; k1; . . .; ks:

Let us analyze, as an example, the case of a homogeneous sphere of radius R,
rolling (with pivoting) on a horizontal plane. If vG is the velocity of the centre of
the sphere and x is the instantaneous vector of rotation, then the constraint is
expressed by the condition that the velocity of the contact point P is zero, i.e. (see
(4.2.10)):

vG þ x� RI ¼ vG þ x�GP~ ¼ 0: ð4:6:53Þ
Let the xy-plane of the fixed frame S(Oxyz) be the horizontal plane, the z-axis
being oriented along the ascending vertical, while the frame S0ðGx0y0z0Þ – as
usual – is invariably related to the sphere. In this case, the point G will always lie
in the plane z = R. Projecting the equation (4.6.53) on the axes of the frame S and
using (4.5.3), we arrive at:

_xG � Rð _h sin u� _w sin h cos uÞ ¼ 0;

_yG þ Rð _h cos uþ _w sin h sin uÞ ¼ 0:
ð4:6:54Þ

Thus, the generalized coordinates xG; yG; h;u;w satisfy two non-integrable con-
straints. This means that we have a non-holonomic, scleronomous system, with
three degrees of freedom.

To solve the problem, we shall make use of the Lagrange equations with
multipliers (4.6.52). Since

I01 ¼ I02 ¼ I03 ¼ I0 ¼ 2
5

MR2

and recalling (4.5.36), the kinetic energy of the body is:

T ¼ 1
2

Mð _x2
G þ _y2

GÞ þ
1
2

I0ð _h2 þ _u2 þ _w2 þ 2 _u _w cos hÞ:

Using (4.6.52), we obtain the following system of equations:

M€xG ¼ k1;

M€yG ¼ k2;

I0ð€hþ _u _w sin hÞ ¼ Rðk2 cos u� k1 sin uÞ;
_uþ _w cos h ¼ const.;

I0
d

dt
ð _wþ _u cos hÞ ¼ Rðk1 cos uþ k2 sin uÞ sin h:

ð4:6:55Þ

In addition to these equations, we have the energy first integral:

1
2
MR2ð _h2 þ _w2 sin2 hÞ þ 1

2
I0ð _h2 þ _u2 þ _w2 þ 2 _u _w cos hÞ ¼ const.;
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where we have used (4.6.54) and took V = 0, because of the position of the centre
of mass.

Another first integral is obtained from the remaining equations by eliminating
the unknown parameters k1; k2: To this end, one introduces (4.6.54) into
(4.6.55)1,2, the result is substituted into (4.6.55)3 and then one eliminates u
between the obtained equation and (4.6.55)4. Consequently,

_w sin2 h ¼ C1 þ C2 cos h;

where C1 and C2 are two constants. Since we have obtained three first integrals,
our problem has been reduced to quadratures.

If the axis of rotation of the rolling sphere does not change its direction, then the
constraint (4.6.53) becomes holonomic. This is the case, for instance, of a
homogeneous cylinder, rolling without sliding on an inclined plane (Fig. 4.19).
At the point of contact between the plane and the circle of transversal section with
its centre in G, we have R = -Rk, such that:

vG ¼ Rx� k; jvGj ¼ _s ¼ Rjx� kj ¼ Rx ¼ R _h:

If we choose sð0Þ ¼ 0; hð0Þ ¼ 0; we find s = Rh. A survey of the forces acting
on the cylinder (see Fig. 4.19) leads to the Lagrangian:

L ¼ 1
2
ðIG þMR2Þ _h2 þ RMgh sin a;

where IG is the moment of inertia of the cylinder relative to its axis. Then the
Lagrange equations (2.5.17) yield:

€h� 2g

3R
sin a ¼ 0:

This equation, together with the initial conditions, determine uniquely the motion
of the cylinder.

Fig. 4.19 A homogeneous
cylinder rolling without
sliding on an inclined plane.
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4.6.6 Mechanical–Electromagnetic Analogies

4.6.6.1 Larmor Precession

Let us consider a system of charged particles (electrons), performing a finite
motion in a central electric field, created by a fixed point charge. We also assume
that the whole system is in an external, constant, homogeneous magnetic field B.
An atom placed in a magnetic field can be considered as such a system: the
electrons are point charges, moving in the central field of the nucleus. In the
following, we suppose that all particles of the system have the same charge e and
the same mass m.

In order to study the action of the magnetic field on the particles, we first write
the Lagrangian of the system relative to a frame having the origin in the centre
of the electric field (nucleus) and performing a rotation about an axis passing
through the fixed centre. The rotation is considered relative to a fixed frame with
the same origin. Then (4.3.4) yields:

L ¼ m

2

XN

i¼1

jvij2 þ
m

2

XN

i¼1

jx� rij2 þm
XN

i¼1

vi � ðx� riÞ � V ; ð4:6:56Þ

where vi is the velocity of the particle Pi relative to the mobile frame and V is the
potential energy of the system of particles.

On the other hand, the Lagrangian of a system of N charged particles, moving in
the electric field produced by the nucleus and the magnetic field B (see (2.5.30)), is:

L ¼ m

2

XN

i¼1

jvij2 þ e
XN

i¼1

vi � A� e/;

where A is the vector potential of the field B, while the potential / can include a
term proportional to

P

ij e2=rij: If B is constant and homogeneous, it is easy to prove

that the equation B ¼ curl A has the solution A ¼ 1
2 B� r: Then, we may write:

L ¼ m

2

XN

i¼1

jvij2 þ
e

2

XN

i¼1

vi � ðB� riÞ � e/: ð4:6:57Þ

We observe that the two Lagrangians (4.6.56) and (4.6.57) are equivalent if we set

x ¼ e

2m
B ð4:6:58Þ

and if the second term in the r.h.s. of (4.6.56) can be neglected. The second
condition is fulfilled if B is weak (B2^ 0), while the first shows that the motion of
the system of particles relative to the frame rotating with the angular velocity
x ¼ � eB

2m
does not differ from the motion of the system relative to the fixed frame,

when B is absent.
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We then conclude that a weak homogeneous and constant magnetic field
B gives rise to a motion of rotation of the system of charged particles about the
direction of the field (precession), with the angular velocity jxLj ¼ eB

2m
: This is

known as Larmor’s theorem, while the corresponding angular velocity xL is
usually referred to as the Larmor frequency.

Larmor’s theorem is still valid if there are rigid connections among the particles
of the system. Let l be the resultant of magnetic moments of the closed currents
produced by the charges and L be the angular momentum of the rigid system
relative to one of its points, considered to be fixed (e.g. the centre of mass). As it is
well known from the general courses on electricity and magnetism, the resultant
moment of the magnetic forces acting on the particles of the rigid body is

M¼ l� B;

while l and L are related by

l ¼ e

2m
L:

Then the angular momentum theorem (1.3.35) yields:

dL

dt
¼ l� B ¼ � eB

2m
� L ¼ xL � L: ð4:6:59Þ

This result shows that the vector of constant magnitude L performs a uniform
motion of precession about B (Larmor’s precession), just like in the case of the
symmetrical top, with angular velocity xL. The same motion is performed by
the vector l ¼ kL; where k ¼ e

2m
: The sense of precession depends on the sign of

the electrical charge of the particles.

4.6.6.2 Gyroscopic Forces

If we compare the Lagrangian (4.3.4) of a particle of mass m moving relative to the
non-inertial frame S0:

L ¼ 1
2

mjvrj2 þ
1
2

mjx� r0j2 þmvr � ðx� r0Þ �ma0 � r0 � V ;

with the Lagrangian of a charged particle subject to an electromagnetic force
(2.5.30):

L ¼ 1
2
mjvj2 � e/þ ev � A;

as well as the equations obtained by the use of these two Lagrangian functions, we
can see some remarkable similarities.
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First, both the Coriolis force Fc ¼ 2mvr � x and the Lorentz force
F = ev 9 B are gyroscopic forces. Since we are dealing with a motion in a non-
inertial frame, we shall keep the notation v instead of vr and r instead of r0:

Second, each of the two Lagrangians contains two velocity-dependent terms.
The remaining terms are only position-dependent.

Third, if we assume that the field B is constant and homogeneous, then
A ¼ 1

2 B� r. This means that the terms mv � ðx� rÞ; belonging to the first
Lagrangian, and ev�A, which occurs in the second, are equivalent if we make the
correspondence m$ e and choose

A0 ¼ 1
2
x� r; ð4:6:60Þ

meaning that

x ¼ curl A0: ð4:6:61Þ

This analogy leads to the following Lagrangian of the particle, relative to the non-
inertial frame:

L ¼ 1
2
mjvj2 �m/0 þ 2mv � A0 � VðxiÞ; ð4:6:62Þ

where A0 is defined by (4.6.60) and /0 by

/0 ¼ r � a0 �
1
2
jx� rj2: ð4:6:63Þ

Note that the potentials A0 and /0 are functions of the coordinates xi and the time t,
while V(xi) yields the potential force (the force of gravity in our case). Also note
that the quantities _r ¼ v and €r ¼ a are relative to the non-inertial frame S0:

The equation of motion is obtained by applying the Lagrange equations (2.5.17).
Performing calculations similar to those leading to (4.3.6), we arrive at:

m€rþ 2mA0 þm grad /0 � 2m gradðv � A0Þ þ grad V ¼ 0;

or, if we make some rearrangements of the terms and use the results of Appendix B,

m€r ¼ mðE0 þ v� B0Þ þ F; ð4:6:64Þ

where E0 and B0 are given by:

E0 ¼ �grad /0 � o

ot
ð2A0Þ; ð4:6:65Þ

B0 ¼ curl ð2A0Þ: ð4:6:66Þ

Equation (4.6.64) shows that the terms E0 and v� B0 have the units of acceleration.
It also tells us that the particle moves in an applied (F) and an inertial fields of force,
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the latter being defined by means of the potentials A0;/0, as can be seen from the
definitions (4.6.65) and (4.6.66).

If the frame S0 becomes inertial and F is absent, then a0 ¼ 0; x ¼ 0; and
equation (4.6.64) reduces to €r ¼ 0; as expected. We reach the same result if the
charged particle is neither accelerated by the electric field E, nor engaged in a
motion of rotation about the magnetic field B.

This analogy can be further developed. For instance, remark that E0 and B0 obey
the well-known source-free Maxwell equations:

curl E0 ¼ � oB0

ot
; div B0 ¼ 0: ð4:6:67Þ

In conclusion, the study of a heavy non-charged particle in a non-inertial frame
can be accomplished by using the same Lagrangian formalism as for a charged
particle, moving in a velocity-dependent field of force, the generalized potential
being given by

V ¼ mð/0 � 2v � A0Þ: ð4:6:68Þ

4.7 Problems

1. Determine the principal moments of inertia of the following homogeneous
rigid objects:

(a) A sphere of radius R;
(b) A circular cylinder of radius R and height h;
(c) A circular cone of base radius R and height h;
(d) A rectangular parallelepiped of sides a, b, c;
(e) An ellipsoid of semi-axes a, b, c.

2. Making an abstraction for the oscillation and vibration motions, determine the
principal moments of inertia of the following molecules, considered as rigid
systems:

(a) A diatomic molecule AB;
(b) A triatomic molecule A2B, with the atoms disposed as an isosceles

triangle;
(c) A tetratomic molecule A3B, with the atoms disposed as a tetrahedron, the

basis being an equilateral triangle.

3. Assuming that the Earth is a homogeneous sphere of radius R, uniformly
rotating about the Poles-axis, determine the acceleration of gravity g at some
point on the Earth in terms of the angular velocity x and the radius R.
For which latitude k does the deviation from the geocentric vertical attain its
maximum?
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4. A heavy particle of mass m falls without initial velocity from the height h [ 0.
Using the successive approximation method, determine the influence of the
Coriolis force on the falling particle.

5. Determine the deviation of the plane of motion of a body thrown from the
surface of the Earth with the initial velocity v0.

6. Show that the trajectory of a particle constrained to move in a horizontal plane
(but otherwise free) is always deviated to the right in the Northern hemisphere
and to the left in the Southern hemisphere (Baer’s rule).

7. Check the validity of the relations (4.5.2) and (4.5.3), expressing the com-
ponents of the vector x on the axes of the frames S and S0:

8. A homogeneous disk of mass M and radius R can rotate about its centre. Study
the motion of the disk, assuming that at time t = 0 the angular velocity of the
disk is x0, while the angle between the instantaneous axis of rotation and the
normal to the disk is a.

9. A homogeneous sphere of mass M and radius R rolls without sliding on an
inclined plane of angle a. Using the Lagrange equations with multipliers,
determine the law of motion. The initial velocity is assumed to be zero.

10. Find the kinetic energy of a cylinder of radius R rolling on a plane. One
assumes that the principal axis of inertia is parallel to the axis of the cylinder.
The moment of inertia relative to this axis is I, while the moment between the
two axes is a.

11. Find the kinetic energy of a homogeneous cylinder of radius a, rolling within
a cylinder of radius R.

12. Determine the kinetic energy of a homogeneous cone rolling on a plane.
13. Using Euler’s equations, show that the torque of constraint for a body rotating

about one of its principal axes is zero.
14. A thin rod AB of mass M and length l is pinned at one end to a rotating shaft.

Find the equilibrium value of the angle a, for a given constant angular
velocity x of rotation of the shaft.

15. Find Euler’s angles as functions of time, for the free rotation of a symmetrical
top.

16. Under which conditions does a rigid body with axial symmetry behave like a
symmetric top? Apply the result to a homogeneous cylinder.

17. The mass density of a rigid ellipsoid of semi-axes a; b; c ða 6¼ b 6¼ cÞ varies
according to
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qðx1; x2; x3Þ ¼ q0 1þ a
x2

3

c2

� �

;

where q0 and a are two constants. Prove that a can be chosen in such a way
that the rigid body behaves like a symmetric top.

18. Determine the condition under which the rotation of the symmetric top about a
vertical axis is stable.

19. Study the motion of a symmetric top for which the kinetic energy of self-
rotation is bigger than the gravitation energy (rapid top).

20. A right homogeneous cylinder of mass M, radius R and height h rotates about
a vertical axis z passing through its centre of mass G, with a constant angular
velocity x. If the angle a between the vertical axis and the cylinder’s axis
of symmetry is also constant, find the lateral pressure at the two bearings
A and B.
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Chapter 5
Hamiltonian Formalism

5.1 Hamilton’s Canonical Equations

The previous three chapters have been primarily concerned with the use of the
Lagrangian formalism in the study of various mechanical problems. Assuming
again that our field of investigation concerns only natural systems (i.e. systems
possessing either a simple, or a generalized potential), we remind the reader that
the Lagrangian approach to mechanical systems with a finite number of degrees of
freedom consists of the definition of the Lagrangian L, as a scalar function of the
generalized coordinates qj ðj ¼ 1; nÞ, generalized velocities _qj ðj ¼ 1; nÞ and the
time t:

Lðq; _q; tÞ ¼ T ðq; _q; tÞ � Vðq; _q; tÞ; ð5:1:1Þ

and the integration of the Lagrange equations:

d

dt

oL

o _qj

� �

� oL

oqj

¼ 0 ðj ¼ 1; nÞ; ð5:1:2Þ

which means the determination of qj as functions of the time:

qj ¼ qjðtÞ ðj ¼ 1; nÞ:

These are the finite equations of motion of the system in the configuration space
and, at the same time, the parametric equations of the generalized trajectory
described by the representative point. The two sets of variables qj and _qj com-
pletely determine, at any time, the position and the velocity of the system in the
configuration space.

As it has been shown, the definition (2.8.6) of the generalized momenta,

pj ¼
oL

o _qj

ðj ¼ 1; nÞ; ð5:1:3Þ
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leads to a slightly different form of the Lagrange equations:

_pj ¼
oL

oqj

ðj ¼ 1; nÞ: ð5:1:4Þ

On the other hand, the theory of differential equations shows that a system of
n second-order differential equations with n variables of the type (5.1.2) can be put
in a normal form, i.e. it can be expressed relative to the derivatives of the highest
order €qj:

€qj ¼ gjðq; _q; tÞ ðj ¼ 1; nÞ; ð5:1:5Þ

if the Hessian determinant is non-zero, that is, in our case,

o2
L

o _qjo _qk

�
�
�
�

�
�
�
�
¼ opk

o _qj

�
�
�
�

�
�
�
�
6¼ 0: ð5:1:6Þ

Recalling the meaning of the functions T and V, we conclude that, in our case,
this condition is fulfilled. Equation (5.1.3) can be solved with respect to _qj:

_qj ¼ hjðq;p; tÞ ðj ¼ 1; nÞ; ð5:1:7Þ

and then (5.1.4) takes the form:

_pj ¼
o

oqj

Lðq1; . . .; qn; h1; . . .; hn; tÞ
�
�
�
�
h1;...;hn¼const:

ðj ¼ 1; nÞ: ð5:1:8Þ

The system of n second-order differential equations (5.1.5), written in normal
form, is equivalent to the system of 2n first-order differential equations (5.1.7) and
(5.1.8), which are not yet in normal form. Let us show that these 2n equations can
be written in a symmetric form, customarily called canonical. To do this, we pass
from the set of independent variables ðqj; _qjÞ to the set ðqj;pjÞ, j ¼ 1; n. In this
new representation, our system is completely determined by n generalized coor-
dinates qj and n generalized momenta pj. This implies the substitution of the
Lagrangian function Lðq; _q; tÞ by another characteristic function, in which qj and pj

appear as independent variables.
The mathematical procedure that gives the transition from the old set ðqj; _qjÞ to

the new set ðqj;pjÞ is called Legendre transformation. To illustrate the method, let
us write the total differential of a two-variable function f(x, y):

df ¼ of

ox
dxþ of

oy
dy ¼ udxþ wdy: ð5:1:9Þ

Here,

u ¼ of

ox

� �

y

; w ¼ of

oy

� �

x

ð5:1:10Þ
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and the subscripts show which variable is kept constant at the derivation.
We realize that, if (x, y) are chosen as independent parameters, then ðu;wÞ are
obtained by taking the partial derivatives of the function f with respect to the
independent variables.

If, instead of y, we take w as an independent variable,

ðx; yÞ ! ðx;wÞ;

then, obviously, the characteristic function will be different. To find it, we subtract
d(yw) from both sides of (5.1.9). The result is:

dg ¼ u dx� y dw; ð5:1:11Þ
where the new characteristic function g(x, w) is defined by

g ¼ f � yw: ð5:1:12Þ

Then, (5.1.11) yields:

u ¼ og
ox

� �

w

; y ¼ � og
ow

� �

x

: ð5:1:13Þ

The Legendre transformation is widely used in thermodynamics. To show how
it works, let us write the fundamental thermodynamic equation for reversible
processes:

dU ¼ T dS � p dV ; ð5:1:14Þ
where U(S, V) is the internal energy, T – the absolute temperature, S – the entropy,
p – the pressure and V – the volume. If we subtract d(TS) from both sides of
(5.1.14), the result is

dF ¼ �S dT � p dV ; ð5:1:15Þ

where the state function F,

F ¼ U � TS; ð5:1:16Þ

was defined by Hermann von Helmholtz and has the meaning of free energy. Now
the new independent variables are (T, V), while S and p are given by:

S ¼ � oF

oT

� �

V

; p ¼ � oF

oV

� �

T

: ð5:1:17Þ

Going back to our formalism, we first notice that the change of the independent
variables ðq; _qÞ ! ðq;pÞ does not affect the variable t, which remains the same in
both representations. Differentiating (5.1.1), we may write:

dL¼
Xn

j¼1

oL

oqj

dqjþ
oL

o _qj

d _qj

� �

þ oL

ot
dt¼

Xn

j¼1

ð _pj dqjþpj d _qjÞþ
oL

ot
dt; ð5:1:18Þ
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where (5.1.3) and (5.1.4) have been used. Now, if we subtract the quantity
d
Pn

j¼1 pj _qj from both sides, we get:

�dH ¼
Xn

j¼1

ð _pj dqj � _qj dpjÞ þ
oL

ot
dt; ð5:1:19Þ

where

Hðq;p; tÞ ¼
Xn

j¼1

pj _qj � Lðq; _q; tÞj _qj¼hjðq;p;tÞ ð5:1:20Þ

and the velocities _qj have to be replaced according to (5.1.7). The function
H(p, q, t) is the already known Hamiltonian function or, as it is usually called, the
Hamiltonian. Equation (5.1.19) shows that the independent variables are now
ðqj;pjÞ. Thus,

_qj ¼
oH

opj

� �

q

; _pj ¼ �
oH

oqj

� �

p

ðj ¼ 1; nÞ; ð5:1:21Þ

oL

ot
¼ � oH

ot
: ð5:1:22Þ

The system of 2n first-order differential equations (5.1.21) is equivalent to the
system of n second-order differential equations (5.1.2). By integration, one obtains
the set of independent variables ðqj;pjÞ as functions of time and 2n arbitrary
constants. In order to uniquely determine the motion of the system in the space
defined by the variables ðqj;pjÞ, one must know 2n independent initial conditions,
e.g. qjð0Þ; pjð0Þ ðj ¼ 1; nÞ: Remark that Eqs. (5.1.21) are written in a normal and
symmetric form. They were established by William Rowan Hamilton and are
known as Hamilton’s canonical equations. The function H, as well as the
canonical equations, play a fundamental role in analytical mechanics, with many
applications in physics, chemistry, mathematics, etc.

The independent variables ðqj;pjÞ are called canonical variables, or conjugate
variables. Each generalized momentum pk (k fixed) is canonically conjugated to a
generalized coordinate qk. The variables q1; . . .; qn;p1; . . .;pn can be considered as
the coordinates of a generalized or representative point in a 2n dimensional space,
introduced by the American physicist Josiah Willard Gibbs and called the phase
space. In this space, any solution qjðtÞ;pjðtÞ of the canonical equations (5.1.21) is
represented by a generalized curve, which is the generalized trajectory of the
representative point.

Before going further, we wish to deduce Hamilton’s equations in a different
way. To this end, we remember that the Lagrange equations (5.1.2) can be derived
by means of Hamilton’s principle,

d
Zt2

t1

Lðq; _q; tÞ dt ¼ 0: ð5:1:23Þ
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The equivalence between Lagrange’s and Hamilton’s systems of equations
gives us the idea that the canonical equations can also be obtained using Hamil-
ton’s principle. Indeed, by substituting (5.1.20) into (5.1.23) and performing the
variation indicated by the operator d, we have:

Zt2

t1

Xn

j¼1

pjd _qj þ _qjdpj �
oH

oqj

dqj �
oH

opj

dpj

� �

dt ¼ 0; ð5:1:24Þ

where we used the fact that the virtual displacements dqj; dpj in the phase space
are taken at t = const. (dt = 0). Integrating the first term on the l.h.s. of (5.1.24)
by parts, we obtain:

Zt2

t1

Xn

j¼1

pj d _qj ¼
Xn

j¼1

pjdqj

�
�
�
�
�

t2

t1

�
Zt2

t1

Xn

j¼1

_pjdqj dt;

or, since ðdqjÞt1 ¼ ðdqjÞt2 ¼ 0;

Zt2

t1

Xn

j¼1

_qj �
oH

opj

� �

dpj � _pj þ
oH

oqj

� �

dqj

� �

dt ¼ 0: ð5:1:25Þ

For arbitrary and independent dqj; dpj, this equality holds true if and only if
each of the 2n parentheses is zero. As a result, we obtain again Hamilton’s
equations (5.1.21).

Observations:

(a) If one of the n generalized coordinates q1; :::; qn, say qk (k fixed), does not
explicitly appear in the Lagrangian L, i.e. if qk is cyclic, then it remains cyclic
in the new representation. Indeed, (5.1.21)2 yields

pk ¼ const:; ð5:1:26Þ

showing that the general momentum theorem holds true. If all the generalized
coordinates are cyclic:

p1 ¼ C1; . . .;pn ¼ Cn;

the Hamiltonian H becomes a function of time only,

H ¼ HðC1; . . .;Cn; tÞ;

and so the cyclic coordinates are obtained by quadratures:

qj ¼
Z

oH

opj

dt þ q0
j ðj ¼ 1; nÞ; ð5:1:27Þ

where the integration constants qj
0 are determined from the initial conditions.
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(b) The relation

f ðq1; . . .; qn;p1; . . .;pn; tÞ ¼ const: ð5:1:28Þ

is a first integral of Hamilton’s equations (5.1.21) if f is a constant for any
solution of these equations. The first integrals are also called constants of
motion. For example, the relation (5.1.26) is a first integral. If the Hamiltonian
does not explicitly depend on the time, then

Hðq1; . . .; qn;p1; . . .;pnÞ ¼ const: ð5:1:29Þ
is also a first integral, since

dH

dt
¼
Xn

j¼1

oH

oqj

_qj þ
oH

opj

_pj

� �

¼
Xn

j¼1

oH

oqj

oH

opj

� oH

opj

oH

oqj

� �

� 0:

In view of (5.1.22), we also have:

dH

dt
¼ oH

ot
¼ � oL

ot
: ð5:1:30Þ

To know h cyclic coordinates means to know h distinct first integrals of the
canonical equations (5.1.21). If we are able to find 2n distinct first integrals of
Hamilton’s equations, then the system is integrated.

(c) We recall (see Chap. 2, Sect. 2.8) that the Hamiltonian of a natural scleron-
omous system represents its total energy. If the time t does not explicitly occur
in the potential function V, then (5.1.29) reads:

H ¼ T þ V ¼ const:; ð5:1:31Þ

i.e. the energy first integral. This result also holds true for the case of a
generalized potential.

The Hamiltonian for rheonomous systems is given by (2.8.33):

H ¼ T2 � T0 þ V ¼ T þ V � ðT1 þ 2T0Þ; ð5:1:32Þ

meaning that in this case the function H is not identical to the total energy. If
the time t does not explicitly appear in (5.1.32), H is a first integral, without
being the total energy. It is also possible for H to be the total energy, without
being a constant of the motion. Finally, there are cases with H being neither a
first integral, nor the total energy.

In the examples to follow, we shall show how to find the Hamiltonian and how to
determine the differential equations of motion by means of the Hamiltonian formalism.

5.1.1 Motion of a Particle in a Plane

Consider a particle of mass m, moving without friction in the plane z = 0, subject
to the conservative force F = -grad V. Choosing q1 ¼ x; q2 ¼ y, we can write:
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H ¼ T þ V ¼ 1
2
ð _x2 þ _y2Þ þ Vðx; yÞ ¼ const: ð5:1:33Þ

In order to make the use of the Hamiltonian formalism possible, it is necessary
to express H as a function of the generalized coordinates x, y and the generalized
momenta px;py. To this end, we use (5.1.3):

px ¼
oL

o _x
¼ m _x; py ¼

oL

o _y
¼ m _y; ð5:1:34Þ

such that

H ¼ 1
2m
ðp2

x þ p2
yÞ þ Vðx; yÞ: ð5:1:35Þ

According to the canonical equations (5.1.21), we have:

_x ¼ px

m
; _y ¼ py

m
; _px ¼ �

oV

ox
; _py ¼ �

oV

oy
; ð5:1:36Þ

or, finally,

m€x ¼ � oV

ox
¼ Fx; m€y ¼ � oV

oy
¼ Fy; ð5:1:37Þ

which are projections on the x- and y-axis of the vector equation

m€r ¼ �grad V ¼ F: ð5:1:38Þ

Sometimes, as we already know, it is more convenient to choose the polar
coordinates q1 ¼ r; q2 ¼ u. Then,

H ¼ 1
2
mð_r2 þ r2 _u2Þ þ Vðr;uÞ: ð5:1:39Þ

Since

pr ¼
oL

o_r
¼ oT

o_r
¼ m_r; pu ¼

oL

o _u
¼ oT

o _u
¼ mr2 _u; ð5:1:40Þ

the Hamiltonian reads:

H ¼ 1
2m

p2
r þ

1
r2

p2
u

� �

þ Vðr;uÞ: ð5:1:41Þ

The canonical equations (5.1.21) yield then:

_r ¼ oH

opr

¼ pr

m
; _u ¼ oH

opu
¼ pu

mr2
; ð5:1:42Þ

_pr ¼ �
oH

or
¼ pu

mr3
� oV

or
; _pu ¼ �

oH

ou
¼ � oV

ou
; ð5:1:43Þ
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leading to the expected equations of motion:

mð€r� r _u2Þ ¼ � oV

or
¼ Fr; mð2_r _uþ r€uÞ ¼ � 1

r

oV

ou
¼ Fu: ð5:1:44Þ

If V is independent of u (cyclic variable), the associated generalized momen-
tum is the area first integral:

pu ¼ mr2 _u ¼ const: ð5:1:45Þ

5.1.2 Motion of a Particle Relative to a Non-inertial Frame

The Lagrangian corresponding to a particle moving with respect to a non-inertial
frame is (see (4.3.4)):

L ¼ 1
2
mjvrj2 þ

1
2
mjx� r0j2 þmvr � ðx� r0Þ �mr0 � a0 � V ; ð5:1:46Þ

where r0 ¼ x0ku0k is the radius-vector of the particle relative to the non-inertial
frame and vr ¼ _x0ku0k is its relative velocity. To shorten the calculation, we take r0

as a vector generalized coordinate. The vector generalized momentum

p0 ¼ oL

ovr

¼ mvr þmx� r0 ð5:1:47Þ

is then introduced into (5.1.20), yielding:

H ¼ p0 � vr � L ¼ 1
2

mjvrj2 �
1
2

mjx� r0j2 þmr0 � a0 þ V : ð5:1:48Þ

If the origin of the non-inertial frame has the acceleration a0 ¼ g, meaning that
V is not connected with the gravitational force, we have:

H ¼ 1
2m
jp0j2 � p0 � ðx� r0Þ þmr0 � a0 þ V : ð5:1:49Þ

From (5.1.21), we obtain:

vr ¼
oH

op0
¼ 1

m
p0 � x� r0; ð5:1:50Þ

_p0 ¼ � oH

or0
¼ �x� p0 �ma0 �

oV

or0
: ð5:1:51Þ

Equations (5.1.50) and (5.1.51) yield the expected equation of motion of the
particle relative to an accelerated frame:

mar ¼ F�ma0 �m _x� r�mx� ðx� r0Þ � 2mx� vr ¼ Fþ Ftr þ Fc;

ð5:1:52Þ
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where

ar ¼ €x0ku0k; F ¼ � oV

or0
: ð5:1:53Þ

5.1.3 Motion of a Charged Particle in an Electromagnetic Field

Let us choose q1 ¼ x; q2 ¼ y; q3 ¼ z as generalized coordinates. The Lagrangian
associated to a particle of mass m and charge e, moving in the electromagnetic
field E;B is (see (2.5.30)):

L ¼ 1
2

mvjvj � e/þ evjAj: ð5:1:54Þ

The generalized momenta

pj ¼
oL

ovj

¼ mvj þ eAj ðj ¼ 1; 2; 3Þ ð5:1:55Þ

are then introduced in the Hamiltonian, which reads:

H ¼ pjvj � L ¼ 1
2

mvjvj þ e/; ð5:1:56Þ

or, in terms of xj;pj,

H ¼ 1
2m
ðpj � eAjÞðpj � eAjÞ þ e/: ð5:1:57Þ

Hamilton’s canonical equations (5.1.21) yield:

_xk ¼ vk ¼
oH

opk

¼ 1
m
ðpj � eAjÞdjk ¼

1
m
ðpk � eAkÞ; ð5:1:58Þ

_pk ¼ �
oH

oxk

¼ e

m
ðpj � eAjÞ

oAj

oxk

� e
o/
oxk

: ð5:1:59Þ

The total time derivative of Ak(x, y, z, t) is:

_Ak ¼
oAk

ot
þ vj

oAk

oxj

; ð5:1:60Þ

consequently,

m _vk ¼ m€xk ¼ �e
o/
oxk

� e
oAk

ot
þ evj

oAj

oxk

� oAk

oxj

� �

: ð5:1:61Þ
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Since
oAj

oxk

� oAk

oxj

¼ �kjmðcurl AÞm;

we notice that

vj

oAj

oxk

� oAk

oxj

� �

¼ �kjmvjðcurl AÞm ¼ ðv� curl AÞk

and finally

m€xk ¼ eðEþ v� BÞk; ð5:1:62Þ

which is the xk-component of the equation of motion.
An interesting and useful special case concerns a stationary electromagnetic

field with axial symmetry, characterized by

E ¼ �grad /; B ¼ curl A;

where the potentials A;/ do not depend explicitly on time. Let us choose a
cylindrical system of coordinates q;u; z, direct the z-axis along the symmetry axis
and assume that Aq ¼ 0; Au 6¼ 0; Az ¼ 0: Since by definition Bu ¼ 0, the non-
zero components of B are:

Bq ¼ �
oAu

oz
; Bz ¼

1
q

o

oq
ðqAuÞ:

Noting that A and / do not depend on u, we may write the Hamiltonian as

H ¼ 1
2m

p2
q þ

1
q2
½pu � eqAuðq; zÞ�2 þ p2

z

� �

þ e/ðq; zÞ: ð5:1:63Þ

Hamilton’s equations for the conjugate variables u and pu are:

_u ¼ oH

opu
¼ 1

mq2
ðpu � eqAuÞ; _pu ¼ �

oH

ou
¼ 0;

and lead to the first integral

pu ¼ mq2 _uþ eqAu ¼ const: ð5:1:64Þ

Since H does not explicitly depend on time, we also have the energy first integral:

E ¼ 1
2

mð _q2 þ q2 _u2 þ _z2Þ þ e/ ¼ const: ð5:1:65Þ

The differential equations of motion for q and z are obtained either by using the
canonical equations, or directly from (5.1.62):

mð€q� q _u2Þ ¼ eEq þ e _qBz; ð5:1:66Þ

m€z ¼ eEz � eq _uBq: ð5:1:67Þ
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Assume now that E ¼ 0, while B is constant and homogeneous. Then (see
Chap. 4, Sect. 4.6.6):

Au ¼
1
2
ðB� rÞu ¼

1
2
qBz;

and the first integral (5.1.64) reads:

mq2 _uþ 1
2

eq2Bz ¼ Cðconst:Þ; ð5:1:68Þ

known as Busch’s relation. If at the time t = 0 the particle is at the origin O of the
coordinate system, where Bz ¼ 0; vu ¼ 0, then C = 0, and the last relation yields:

_u ¼ � eBz

2m
; ð5:1:69Þ

meaning that the particle performs a motion of precession about the z-axis
(Fig. 5.1).

This effect is applied in the construction of magnetic focusing devices, called
magnetic lenses. The substitution of (5.1.69) into (5.1.66) leads to the second order
differential equation

€qþ eBz

2m

� �2

q ¼ 0: ð5:1:70Þ

Assume that the particles move close to the z-axis and that the magnetic field
acts only on a small portion of the path of the beam (paraxial beam). Then the
components of the velocity along q and u are negligible in comparison with the
component along z. If _z ¼ v ¼ const:, we have:

€q ¼ _z2 d2q
dz2
¼ v2 d2q

dz2

and (5.1.70) yields:

d2q
dz2
þ eBz

2mv

� �2

q ¼ 0: ð5:1:71Þ

Since d2q
dz2 \0, the magnetic lens is converging, independent of the sign of the

charged particles.

Fig. 5.1 A magnetic lens.
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The electric lens is based on a similar focusing principle. Both electric and
magnetic lenses are used in electronic microscopy, television devices, etc.

5.1.4 Energy of a Magnetic Dipole in an External Field

Let us consider a charged particle describing a circular trajectory in the constant and
homogeneous magnetic field B. This is a closed circuit, equivalent to a magnetic
dipole. Recall that for such a field the equation B ¼ curl A admits the solution

A ¼ 1
2

B� r: ð5:1:72Þ

Substitute this relation into the Hamiltonian (5.1.57) and assume that B is weak
enough so that we can neglect its second power. Thus,

H ¼ 1
2m
jpj2 þ e/� e

2
v � ðB� rÞ ¼ H0 þH 0; ð5:1:73Þ

where H0 is the energy of the dipole when B is absent and H 0 is the supplementary
energy of the dipole due to the existence of B:

H0 ¼
1

2m
jpj2 þ e/; H 0 ¼ � e

2
v � ðB� rÞ: ð5:1:74Þ

The area DS swept by the radius-vector of the particle during the time Dt is:

DS ¼ 1
2

r� Dr;

and the areal velocity reads:
DS

Dt
¼ 1

2
r� v;

such that

H 0 ¼ �eB � DS

Dt
¼ �B � e

Dt
DS

	 


¼ �B � ðIDSÞ:

But l ¼ IDS is the magnetic moment of the dipole and we arrive at the expected
result:

H 0 ¼ �l � B: ð5:1:75Þ

5.2 Routh’s Equations

The Lagrangian and Hamiltonian methods are distinct from each other by the
choice of the independent variables: the generalized coordinates and velocities
ðqj; _qjÞ ðj ¼ 1; nÞ in the Lagrangian approach and the canonical variables ðqj;pjÞ
in the Hamiltonian formulation.
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In some circumstances, as in that of cyclic coordinates, it is convenient to
choose as the set of independent variables a mixture of Lagrangian and Hamil-
tonian parameters. Such a method was given by the English mechanicist Edward
John Routh.

Assume a dynamic system with n degrees of freedom, defined by two sets of
independent variables: the Lagrangian variables ðqj; _qjÞ; j ¼ 1; s; and the Hamil-
tonian variables ðqa;paÞ; a ¼ sþ 1; n. The variables

qj; _qj; qa;pa; t ð5:2:1Þ
are called Routhian variables. The transition from the Lagrangian set ðqj; _qj; tÞ;
j ¼ 1; n; to the Routhian variables (5.2.1) is performed by a Legendre transfor-
mation. For infinitesimal and arbitrary variations of the parameters, we have:

dLðq1; . . .; qs; qsþ1; . . .; qn; _q1; . . .; _qs; _qsþ1; . . .; _qn; tÞ

¼
Xs

j¼1

oL

oqj

dqj þ
Xn

a¼sþ1

oL

oqa
dqa þ

Xs

j¼1

oL

o _qj

d _qj þ
Xn

a¼sþ1

oL

o _qa
d _qa þ

oL

ot
dt:

Subtracting the quantity d
Pn

a¼sþ1
oL
o _qa

_qa

	 


from both sides, we obtain:

dR ¼ �
Xs

j¼1

oL

oqj

dqj �
Xs

j¼1

oL

o _qj

d _qj þ
Xn

a¼sþ1

_qadpa �
Xn

a¼sþ1

_padqa �
oL

ot
dt;

ð5:2:2Þ
where

Rðq1; . . .; qs; _q1; . . .; _qs; qsþ1; . . .; qn;psþ1; . . .;pn; tÞ ¼
Xn

a¼sþ1

pa _qa � L ð5:2:3Þ

is Routh’s function, or, simply the Routhian. Equation (5.2.2) yields, on the one hand,

oL

oqj

¼ � oR

oqj

;
oL

o _qj

¼ � oR

o _qj

;

or, by means of the Lagrange equations (5.1.2),

d

dt

oR

o _qj

� �

� oR

oqj

¼ 0 ðj ¼ 1; sÞ: ð5:2:4Þ

On the other hand, we have:

_qa ¼
oR

opa
; _pa ¼ �

oR

oqa
ða ¼ sþ 1; nÞ; ð5:2:5Þ

as well as

oR

ot
¼ � oL

ot
: ð5:2:6Þ
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We conclude that the characteristic function R generates simultaneously two
sets of equations: s second-order Lagrange-type differential equations (5.2.4) and
2(n - s) first-order Hamilton-type differential equations (5.2.5). In the first set
R plays the role of the Lagrangian, while in the second it stands for the Hamil-
tonian. The equations (5.2.4) and (5.2.5) are called Routh’s equations.

Combining (5.2.6) with (5.1.22), we obtain:

oL

ot
¼ � oH

ot
¼ � oR

ot
; ð5:2:7Þ

meaning that if one of the three functions L, H, R does not explicitly depend on
time, neither do the other two.

The definition (5.2.3) of R shows that if a coordinate qk (k fixed) is absent from
L, it will likewise not occur in the Routhian. Suppose that all the (n - s) variables
qa ða ¼ sþ 1; nÞ are cyclic. Then (5.1.4) gives (n - s) first integrals:

pa ¼ ha ða ¼ sþ 1; nÞ; ð5:2:8Þ

where ha are some arbitrary constants, such that

R ¼ Rðq1; . . .; qs; _q1; . . .; _qs; hsþ1; . . .; hn; tÞ: ð5:2:9Þ

This means that the Lagrange-type equations (5.2.4) will be expressed in the non-
cyclic coordinates q1; . . .; qs. Integrating these equations, we obtain the non-cyclic
coordinates qj ¼ qjðtÞ and the associated velocities _qj ¼ _qjðtÞ. These quantities
are then introduced into R and, by means of (5.2.5)1, the cyclic coordinates are
found by quadratures:

qa ¼
Z

oR

oha
dt þ q0

a ða ¼ sþ 1; nÞ; ð5:2:10Þ

where oR
oha

are functions of time only. The constants qa
0 are determined from the

initial conditions. In this way, the existence of the (n - s) cyclic variables reduces
the number of Lagrange equations from n to s \ n.

Application. Let us study, using the Routhian formalism, the motion of a
particle subject to a central force. The already known Lagrangian

L ¼ 1
2

mð_r2 þ r2 _u2Þ � VðrÞ ð5:2:11Þ

displays the cyclic coordinate u, such that

pu ¼
oL

o _u
¼ mr2 _u ¼ huðconst:Þ: ð5:2:12Þ

The Routh function is then

R ¼ pu _u� L ¼ 1
2
mr2 _u2 � 1

2
m_r2 þ VðrÞ

or, in view of (5.2.12),
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Rðr; _r; huÞ ¼
h2

u

2mr2
� 1

2
m_r2 þ VðrÞ: ð5:2:13Þ

The non-cyclic coordinate r is obtained by integrating

d

dt

oR

o_r

� �

� oR

or
¼ 0;

which, by means of (5.2.13), becomes:

m€r�
h2

u

mr3
¼ � oV

or
¼ F : ð5:2:14Þ

The solution r = r(t) of this equation is then introduced into (5.2.10) to determine
the cyclic coordinate u:

u ¼
Z

oR

ohu
dt þ u0 ¼

hu

m

Z
dt

½rðtÞ�2
þ u0: ð5:2:15Þ

The last step is the substitution in (5.2.15) of r(t) by its value earlier determined.
As one can see, the variable u ¼ uðtÞ has been found by a quadrature.

5.3 Poisson Brackets

A mathematical device, which proved to be very useful in the analytical study of
mechanical and non-mechanical systems, is the so-called Poisson bracket for-
malism. Let f(q, p, t) and g(q, p, t) be any two functions of the canonical variables
q1; . . .; qn;p1; . . .;pn and of the time t. The functions are supposed to be contin-
uous and differentiable with respect to the variables. The expression

ff ; gg ¼
Xn

j¼1

of

oqj

og

opj

� of

opj

og

oqj

� �

ð5:3:1Þ

is called the Poisson bracket of f and g.
By means of this abbreviation and of the canonical equations (5.1.21), we can

write the total time derivative of any function f(q, p, t) as

df

dt
¼ of

ot
þ
Xn

j¼1

of

oqj

_qj þ
of

opj

_pj

� �

¼ of

ot
þ
Xn

j¼1

of

oqj

oH

opj

� of

opj

oH

oqj

� �

;

or

df

dt
¼ of

ot
þ ff ;Hg: ð5:3:2Þ
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Then, the relation

of

ot
þ ff ;Hg ¼ 0 ð5:3:3Þ

expresses the necessary and sufficient condition that f(q, p, t) = const. be a first
integral of Hamilton’s equations (5.1.21). Indeed, since f = const. is a first integral
of (5.1.21), it satisfies (5.3.3). Reciprocally, the function f deduced from (5.3.3) is
a first integral of the canonical equations, because the characteristic system
associated with (5.3.3) is the canonical system. If f does not explicitly depend on
time, (5.3.3) reduces to:

ff ;Hg ¼ 0: ð5:3:4Þ

The following properties result immediately from the definition (5.3.1) of the
Poisson bracket:

1�. {C, f} = 0, C = const.;
2�. {f, Cg} = C{f, g};
3�. {f, g} = -{g, f};
4�. {f, -g} = -{f, g};
5�. ff1 þ f2; gg ¼ ff1; gg þ ff2; gg;
6�. ff1f2; gg ¼ f1ff2; gg þ ff1; ggf2;
7�. Dff ; gg ¼ fDf ; gg þ ff ;Dgg; where D is any scalar or vector differential

operator, like o
ot
; o

ox
;r, etc.;

8�. fqi; qjg ¼ fpi;pjg ¼ 0;
9�. fqi;pkg ¼ dik;

10�. {f, {g, h}} ? {h, {f, g}} ? {g, {h, f}} = 0 (Jacobi’s identity);

11�. f ; gðy1; . . .; ynÞf g ¼
Pn

i¼1
og
oyi
ff ; yig:

Property 3� shows the antisymmetry of the Poisson bracket and 5� its linearity
relative to both functions. Property 7� is called the Leibniz rule. The brackets
given by 8� and 9� are known as the fundamental Poisson brackets. Any pair of
conjugate variables qk;pk (k fixed) obeys the relation

fqk;pkg ¼ 1:

The proof of each property is very easy, except for Jacobi’s identity 10�. To
verify its validity, let us calculate:

ff ; fg; hgg � fg; ff ; hgg ¼ f ;
Xn

j¼1

og

oqj

oh

opj

� og

opj

oh

oqj

� �( )

� g;
Xn

j¼1

of

oqj

oh

opj

� of

opj

oh

oqj

� �( )

or, in view of property 6�,
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ff ; fg; hgg � fg; ff ; hgg

¼
Xn

j¼1

oh

opj

f ;
og

oqj

� �

þ of

oqj

; g

� �� �

�
Xn

j¼1

oh

oqj

f ;
og

opj

� �

þ of

opj

; g

� �� �

þ
Xn

j¼1

og

oqj

f ;
oh

opj

� �

� og

opj

f ;
oh

oqj

� �

� of

oqj

g;
oh

opj

� �

þ of

opj

g;
oh

oqj

� �� �

:

The third sum vanishes and, using the property 7�, we finally arrive at:

ff ; fg; hgg � fg; ff ; hgg ¼ �
Xn

j¼1

oh

oqj

o

opj

ff ; gg � oh

opj

o

oqj

ff ; gg
� �

¼ �fh; ff ; ggg;

which completes the proof.
Poisson’s Theorem. If f(q, p, t) = const. and g(q, p, t) = const. are two first

integrals of Hamilton’s equations, then {f, g} = const. is also a first integral of the
same system.

To prove the theorem, we first note that, by hypothesis,

of

ot
þ ff ;Hg ¼ 0;

og

ot
þ fg;Hg ¼ 0: ð5:3:5Þ

We now write Jacobi’s identity for f, g, H:

ff ; fg;Hgg þ fH; ff ; ggg þ fg; fH; fgg ¼ 0

which, by (5.3.5), becomes:

of

ot
; g

� �

þ f ;
og

ot

� �

þ fff ; gg;Hg ¼ 0;

or, in view of property 7�:

o

ot
ff ; gg þ fff ; gg;Hg ¼ 0;

and thus Poisson’s theorem is proved.
The procedure indicated by Poisson’s theorem does not always lead to a new

(i.e. independent) first integral. Indeed, the number of the independent first inte-
grals is limited by the number of canonical equations. Besides, the Poisson bracket
of, say, f and g, can be either a linear combination of these functions, or even zero;
in both situations Poisson’s theorem will not lead to any independent first integral.

Observations:

(a) If the Hamiltonian H does not explicitly depend on time, H = H(q, p), then by
(5.3.2), we have:
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dH

dt
¼ fH;Hg ¼ 0:

By taking the partial derivative with respect to time of (5.3.3), we also obtain:

o

ot

of

ot

� �

þ of

ot
;H

� �

¼ 0;

meaning that, if f(q, p, t) is a first integral of Hamilton’s equations, then so is of
ot

.
(b) Using definition (5.3.1), we can give another form of the canonical equations

(5.1.21). To this end, we calculate the Poisson brackets {qj, H} and {pj, H}:

fqj;Hg ¼
Xn

k¼1

oqj

oqk

oH

opk

� oqj

opk

oH

oqk

� �

¼ oH

opk

djk ¼
oH

opj

;

fpj;Hg ¼
Xn

k¼1

opj

oqk

oH

opk

� opj

opk

oH

oqk

� �

¼ � oH

oqk

djk ¼ �
oH

oqj

;

leading to Hamilton’s equations (5.1.21) in the new form:

_qj ¼ fqj;Hg; _pj ¼ fpj;Hg: ð5:3:6Þ

5.3.1 Poisson Brackets for Angular Momentum

1. Assume the choice:

x1 ¼ x; x2 ¼ y; x3 ¼ z; p1 ¼ px; p2 ¼ py; p3 ¼ pz: ð5:3:7Þ

Let us show that, if li and lj are any two components of the angular momentum of a
particle,

l ¼ r� p; li ¼ �ijkxjpk; ð5:3:8Þ

then

fli; ljg ¼ �ijklk; ð5:3:9Þ

where the summation convention has been used.
To prove (5.3.9), we use (5.3.8) and the definition (5.3.1):

fli; ljg ¼
oli

oxk

olj

opk

� oli

opk

olj

oxk

¼ �ism�juvðdskdvkxupm � dmkdukxspvÞ;

which, after some index manipulation, leads to

fli; ljg ¼ ðdmjdiu � dmudijÞðxupm � xmpuÞ:
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Performing the summation over u and v, we obtain:

fli; ljg ¼ xipj � xjpi: ð5:3:10Þ

The antisymmetric tensor Lij ¼ xipj � xjpi can be uniquely associated with the
axial vector lk (see Appendix A), such that

lk ¼
1
2
�kijLij; Lij ¼ �ijklk; ð5:3:11Þ

which yields (5.3.9). The cyclic permutation of indices leads to three relations for
the three components of the angular momentum l. The significance of (5.3.9) is
that, in view of the fundamental brackets 8� and 9�, no two components of the
angular momentum can simultaneously play the role of conjugate momenta in a
given system of reference. This relation also shows that, if l1 ¼ const:; l2 ¼ const:
are two first integrals of the canonical equations, then there exists a third first
integral l3 = const., i.e. only two out of the three components are independent.

Let us now apply the theory to the isotropic oscillator, considered as a con-
servative system. The Hamiltonian

H ¼ 1
2m

pipi þ
1
2

kxixi ð5:3:12Þ

and the canonical equations (5.1.21) yield:

_xj ¼
1
m

pj; _pj ¼ �kxj ðj ¼ 1; 2; 3Þ: ð5:3:13Þ

Three first integrals (two of them independent) are:

li ¼ const: ði ¼ 1; 2; 3Þ: ð5:3:14Þ

Another first integral can be deduced from (5.3.12), by any choice of the index j,
say j = 1:

1
m

p2
1 þ kx2

1 ¼ E1: ð5:3:15Þ

The Poisson bracket of l3 and E1 gives:

fl3;E1g ¼ 2kx1x2 þ
2
m

p1p2 ¼ a2: ð5:3:16Þ

The independent first integrals are then: H; l2; l3; E1; a2: Poisson’s theorem
cannot furnish any new independent constant of motion. Otherwise, all the six
coordinates and momenta would be equal to some constants and the integration of
the canonical system would reduce to an algebraic exercise.

Nevertheless, a time-dependent sixth integral can be obtained from the
equations of motion (5.3.13):

x0x1 cos x0t �
1
m

p1 sin x0t ¼ a1 x2
0 ¼

k

m

� �

:
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Since we have already found six independent first integrals, it can be proved easily
that neither Poisson’s theorem, nor any other method can furnish any more
independent constants of motion.

2. Let us now show that, if l2 is the squared angular momentum of a particle,
then

fli; l2g ¼ 0: ð5:3:17Þ

In view of property 6� and Eq. (5.3.9), we have:

fli; l2g ¼ fli; ljljg ¼ 2ljfli; ljg ¼ 2�ijkljlk ¼ 0;

since �ijk is antisymmetric and the product ljlk is symmetric in the summation
indices j and k. We conclude that l2 and any component of l can be simultaneously
chosen as conjugate momenta.

3. If xi is an arbitrary Cartesian coordinate and li is an arbitrary component of
the angular momentum, then

fxi; ljg ¼ �ijkxk: ð5:3:18Þ

This relation is verified if one makes use of the properties 6�, 8� and 9�:

fxi; ljg ¼ �jmsfxi; xmpsg ¼ �jmsxmdis ¼ �ijmxm:

In a similar way it can be proven that

fpi; ljg ¼ �ijkpk: ð5:3:19Þ

4. A useful Poisson bracket is that of the Hamiltonian of a particle of mass m,
subject to a conservative force F = -grad V(x, y, z), with any component li of its
angular momentum. Let us prove that

fli;Hg ¼ ðr� FÞi ¼Mi; ð5:3:20Þ

where

H ¼ 1
2m

pjpj þ Vðx; y; zÞ: ð5:3:21Þ

Indeed,

fli;Hg ¼
1

2m
fli;pjpjg þ fli;Vg ¼

1
m

pjfli;pjg þ
oli

oxk

oV

opk

� oli

opk

oV

oxk

;

or, using (5.3.8) and (5.3.19),

fli;Hg ¼ ��iskxs

oV

oxk

¼ ðr� FÞi;
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which proves (5.3.20). If the force F is central, then

fli;Hg ¼ 0; ð5:3:22Þ
i.e. in this case li and H can be simultaneously regarded as conjugate momenta.
The relation (5.3.22) also shows that, if li is time-independent, then li is a first
integral of the canonical equations (areas theorem).

The result is the same if the particle carries the electric charge e and moves in
the static electromagnetic field E, B. In such a case,

H ¼ 1
2m
ðpj � eAjÞðpj � eAjÞ þ e/; ð5:3:23Þ

li ¼ �ijkxjðpk � eAkÞ; ð5:3:24Þ
and the Poisson bracket reads:

fli;Hg ¼ �ijkxjðpk � eAkÞ;
1

2m
ðpj � eAjÞðpj � eAjÞ þ e/

� �

¼ 1
m

�iskðpk � eAkÞ � e�ijkxj

oAk

oxs

� �

ðps � eAsÞ

� �ijsxj �
e

m
ðpk � eAkÞ

oAk

oxs

þ e
o/
oxs

� �

¼ �ijsxj �e
o/
oxs

þ evk

oAk

oxs

� oAs

oxk

� �� �

:

Thus, by (5.1.61) and (5.1.62), the relation (5.3.20) follows immediately.

5.3.2 Poisson Brackets and Commutators

In all the aforementioned examples the physical quantities occurring in the Poisson
brackets had the property of commutativity, meaning that for any two quantities
A and B, the relation

AB ¼ BA ð5:3:25Þ

is valid. In other words, in classical (non-quantum) mechanics we do not care
about the order of the factors in a product. But, if Â and B̂ are two operators
associated with the physical quantities A and B then, in general, the two opera-
tors are non-commutative, i.e.

ÂB̂ 6¼ B̂Â: ð5:3:26Þ

This property lies at the basis of quantum mechanics, where to each physical
quantity we associate a linear Hermitian operator. If we apply (5.3.26) to some
function f, then

ÂðB̂ f Þ 6¼ B̂ðÂ fÞ; ð5:3:27Þ
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which means that the order of action of the two operators is not arbitrary. The
difference

ÂB̂� B̂Â ¼ ½Â; B̂� ð5:3:28Þ

is called commutator. Therefore, if ½Â; B̂� ¼ 0, we say that the two operators
commute and if ½Â; B̂� 6¼ 0, the operators do not commute. In the language of
quantum mechanics, the commutativity of any two operators expresses the fact
that the associated physical quantities can simultaneously be measured with
arbitrary accuracy; if the operators do not commute, the simultaneous measure-
ment of the associated physical quantities cannot be made more precise than a
certain minimal value, given by Heisenberg’s uncertainty principle.

In the Hamiltonian formulation of quantum mechanics, the Poisson brackets are
replaced by commutators of operators, and in the following we shall establish the
correlation between the Poisson bracket of any two physical quantities and the
commutator of their associated operators. To this end, we assume that properties
2�–7� are valid, except for the arbitrary order of the operators appearing in
property 6�. Let us denote by fÂ; B̂g the quantum analog of the Poisson bracket of
the two operators. In view of 6�, for any three operators Â; B̂; Ĉ we can write

fÂ; B̂Ĉg ¼ B̂fÂ; Ĉg þ fÂ; B̂gĈ; ð5:3:29Þ
as well as

fÂB̂; Ĉg ¼ ÂfB̂; Ĉg þ fÂ; ĈgB̂: ð5:3:30Þ

In the same way, for any four operators Â; B̂; Ĉ; D̂ we have, on the one hand:

fÂB̂; ĈD̂g ¼ ÂfB̂; ĈD̂g þ fÂ; ĈD̂gB̂
¼ ÂĈfB̂; D̂g þ ÂfB̂; ĈgD̂þ ĈfÂ; D̂gB̂þ fÂ; ĈgD̂B̂;

and on the other hand:

fÂB̂; ĈD̂g ¼ ĈfÂB̂; D̂g þ fÂB̂; ĈgD̂
¼ ĈÂfB̂; D̂g þ ĈfÂ; D̂gB̂þ ÂfB̂; ĈgD̂þ fÂ; ĈgB̂D̂:

The last two relations yield, by subtracting one from the other:

fÂ; Ĉg
½Â; Ĉ�

¼ fD̂; B̂g
½D̂; B̂�

;

meaning that for any pair of operators f̂ ; ĝ we may write:

ff̂ ; ĝg ¼ C½f̂ ; ĝ�; ð5:3:31Þ
where C is a constant. In quantum mechanics, it is shown that the operator û
corresponding to an observable physical quantity has to be Hermitian: ûy ¼ û:
This property is satisfied if we take C* = -C. The units of C follow from the
definition of the Poisson bracket:
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½C� ¼ ðEnergy� TimeÞ�1:

All these conditions are fulfilled by the choice

C ¼ � i

�h
�h ¼ h

2p

� �

; ð5:3:32Þ

where h is the Planck constant. Thus, finally we can write:

ff̂ ; ĝg ¼ 1
i�h
½f̂ ; ĝ�: ð5:3:33Þ

Using property 9�, let us write (5.3.33) for the operators x̂i and p̂j, associated
with the conjugate variables xi and pj, respectively:

fx̂i; p̂jg ¼ �
i

�h
½x̂i; p̂j� ¼ dij;

or

½x̂i; p̂j� ¼ i�hdij ði; j ¼ 1; 2; 3Þ; ð5:3:34Þ

which is the well-known Heisenberg commutation relation. It is clear that (5.3.34)
is satisfied by the choice

x̂i ¼ xi; p̂j ¼
�h

i

o

oxj

ði; j ¼ 1; 2; 3Þ: ð5:3:35Þ

Here, x̂ is the coordinate operator and p̂ is the momentum operator. They play an
important role in quantum mechanics.

Let us now transpose in the quantum language some results obtained in this
section. By (5.3.2) and (5.3.33), the operator Â associated with a certain physical
quantity A obeys the relation:

dÂ

dt
¼ oÂ

ot
þ 1

i�h
½Â; Ĥ�; ð5:3:36Þ

where the Hamiltonian operator is defined by

Ĥ ¼ 1
2m

p̂jp̂j þ V̂ðxÞ ð5:3:37Þ

or, using the representation (5.3.35),

Ĥ ¼ � �h2

2m
Dþ V̂ðxÞ; ð5:3:38Þ

where D ¼ o2

oxjoxj
is the Laplacian operator. Applying the operator Ĥ to the state

function w associated with the microparticle, we find the Schrödinger equation for
non-stationary states:

� �h2

2m
Dþ V

� �

w ¼ Êw; Ê ¼ � �h

i

o

ot
: ð5:3:39Þ
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The commutation relations for the operators associated with the components of
the angular momentum are obtained in the same way, from the corresponding
Poisson brackets:

½̂li; l̂j� ¼ i�h�ijk̂lk; ð5:3:40Þ

½̂li; l̂2� ¼ 0: ð5:3:41Þ

5.3.3 Lagrange Brackets

Let uðq;p; tÞ and w(q, p, t) be two arbitrary functions, continuous and derivable
with respect to all arguments. Their Poisson bracket is:

fu;wg ¼
Xn

j¼1

ou
oqj

ow
opj

� ou
opj

ow
oqj

� �

: ð5:3:42Þ

As we can see, the r.h.s. is a sum of n functional determinants (Wronskians),

oðu;wÞ
oðqk;pkÞ

¼
ou
oqk

ou
opk

ow
oqk

ow
opk

�
�
�
�
�

�
�
�
�
�

ðk fixedÞ; ð5:3:43Þ

and we may write:

fu;wg ¼
Xn

j¼1

oðu;wÞ
oðqj;pjÞ

¼ oðu;wÞ
oðq1;p1Þ

þ � � � þ oðu;wÞ
oðqn;pnÞ

: ð5:3:44Þ

If the Wronskians do not vanish,

oðu;wÞ
oðqj;pjÞ

6¼ 0; ð5:3:45Þ

then the transformation ðu;wÞ ! ðq;pÞ is locally reversible and we have:

qj ¼ qjðu;wÞ; pj ¼ pjðu;wÞ: ð5:3:46Þ

Let us now introduce the notation

ðu;wÞ ¼
Xn

j¼1

oqj

ou
opj

ow
� oqj

ow
opj

ou

� �

; ð5:3:47Þ

called the Lagrange bracket of the two functions, u and w.
The Lagrange brackets obey properties similar to 1�–11�. For example, the

choice u! qk; w! ps ðk; s ¼ 1; nÞ yields:

ðqk;psÞ ¼ �ðps; qkÞ ¼ dks: ð5:3:48Þ
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Similarly,

ðqk; qsÞ ¼ ðpk;psÞ ¼ 0: ð5:3:49Þ

The brackets (5.3.48) and (5.3.49) are the fundamental Lagrange brackets. Since

ðu;wÞ ¼
Xn

k¼1

oðqk;pkÞ
oðu;wÞ ; ð5:3:50Þ

we have:

ðu;wÞfu;wg ¼
Xn

j¼1

Xn

k¼1

oðqk;pkÞ
oðu;wÞ �

oðu;wÞ
oðqj;pjÞ

¼
Xn

j¼1

Xn

k¼1

oðqk;pkÞ
oðqj;pjÞ

¼
Xn

j¼1

Xn

k¼1

djk ¼ n: ð5:3:51Þ

Let us now prove that, if

ua ¼ uaðq;p; tÞ ða ¼ 1; 2nÞ ð5:3:52Þ

are 2n independent and invertible functions, then

X2n

a¼1

ðua;ujÞfua;ukg ¼ djk ðj; k ¼ 1; nÞ: ð5:3:53Þ

From the definitions (5.3.1) and (5.3.47), we have:

X2n

a¼1

ðua;ujÞfua;ukg ¼
X2n

a¼1

Xn

s¼1

oqs

oua

ops

ouj

� oqs

ouj

ops

oua

 !

:
Xn

m¼1

oua

oqm

ouk

opm

� oua

opm

ouk

oqm

� �" #

:

But

X2n

a¼1

oqs

oua

oua

oqm

¼
X2n

a¼1

ops

oua

oua

opm

¼ dsm;

X2n

a¼1

oqs

oua

oua

opm

¼
X2n

a¼1

ops

oua

oua

oqm

¼ 0;

and thus, finally,

X2n

a¼1

ðua;ujÞfua;ukg ¼
Xn

s¼1

Xn

m¼1

ouk

opm

ops

ouj

dsm þ
ouk

oqm

oqs

ouj

dsm

 !

¼ ouk

ouj

¼ djk:

As an immediate application of (5.3.53), we shall obtain the fundamental
Poisson brackets, starting from the Lagrange fundamental brackets. To this end,
we split the sum into two groups of terms:
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X2n

a¼1

ðua;ujÞfua;ukg ¼
Xn

i¼1

ðui;ujÞfui;ukg þ
X2n

i¼nþ1

ðui;ujÞfui;ukg:

Now we choose ui ¼ qi in the first sum on the r.h.s. and unþi ¼ pi in the second.
Then, for uj ¼ qj;uk ¼ pk; we find:

Xn

i¼1

ðqi; qjÞfqi;pkg þ
Xn

i¼1

ðpi; qjÞfpi;pkg ¼ 0;

or, by (5.3.48) and (5.3.49),

fpi;pkg ¼ 0:

Using the same procedure, an appropriate choice of uj;uk yields the rest of the
fundamental Poisson brackets:

fqj; qkg ¼ 0; fqj;pkg ¼ djk:

5.4 Canonical Transformations

As we have seen, the choice of generalized coordinates within the analytical
formalism is not unique, but it should be made appropriately, so that to obtain the
maximum information about the physical system in the simplest possible way. For
example, the coordinates r;u are more useful than x, y in the study of central force
problems.

In the three-dimensional space, the transition from the Cartesian coordinates xi

(i = 1, 2, 3) to, for example, the curvilinear orthogonal coordinates qj (j = 1, 2, 3)
is given by:

xi ¼ xiðq1; q2; q3Þ ði ¼ 1; 2; 3Þ: ð5:4:1Þ

This transformation can be generalized in the configuration space. Here, the position
of the representative point can be determined by any appropriate choice of Lagrangian
variables. Let qj and Qj (j ¼ 1; n) be two such sets of variables. The relations

Qj ¼ Qjðq1; . . .; qn; tÞ ðj ¼ 1; nÞ; ð5:4:2Þ

where it is assumed that the variable t appears explicitly, represent a point
transformation in the configuration space. If the Jacobian of the transformation
(5.4.2) is non-zero, we also have the inverse transformation,

qk ¼ qkðQ1; . . .;Qn; tÞ ðk ¼ 1; nÞ: ð5:4:3Þ

Passing now to the Hamiltonian formalism, we first recall that the generalized
coordinates and the generalized momenta are independent variables. This means
that in the phase space the most general transformation is
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Qj ¼ Qjðq;p; tÞ; Pj ¼ Pjðq;p; tÞ ðj ¼ 1; nÞ; ð5:4:4Þ

where, as before, we have left out the indices inside the parentheses. This is,
obviously, a point transformation in the 2n-dimensional phase space. We also
assume that the transformation (5.4.4) is locally invertible, i.e.

oðQ;PÞ
oðq;pÞ ¼

oðQ1; . . .;Qn;P1; . . .;PnÞ
oðq1; . . .; qn;p1; . . .;pnÞ

6¼ 0: ð5:4:5Þ

If the system of canonical equations (5.1.21) keep their form under the trans-
formation (5.4.4), that is if the new variables Qj;Pj obey

_Qj ¼
oH
oPj

; _Pj ¼ �
oH
oQj

ðj ¼ 1; nÞ; ð5:4:6Þ

where

H ¼ HðQ1; . . .;Qn;P1; . . .;Pn; tÞ ð5:4:7Þ

is the Hamiltonian of the system in the new representation, the transformation
(5.4.4) preserving the form of Hamiltonian equation of motion is called canonical.
In mathematics, such a transformation is called contact transformation, whereas
the concept of canonical or symplectic transformation refers to the case when none
of the physical quantities explicitly depends on the time t, i.e., there is no explicit
t-dependence in (5.4.2)–(5.4.4) and similarly H = H(q, p) and H ¼ HðQ;PÞ are
time-independent. However, the contact geometry is related but different from the
symplectic one.

Since not all the transformations of the form (5.4.4) have this property, let us
find the condition of canonicity. To this end, we use Hamilton’s principle (5.1.23)
in the form:

d
Zt2

t1

Xn

j¼1

pj dqj �Hðq;p; tÞ dt

" #

¼ 0: ð5:4:8Þ

The reader is already acquainted (see Sect. 5.1) with the fact that the canonical
equations can be derived by means of Hamilton’s principle. In order that the new
variables Qj; Pj also satisfy the canonical equations, they must verify Hamilton’s
principle:

d
Zt2

t1

Xn

j¼1

Pj dQj �HðQ;P; tÞ dt

" #

¼ 0: ð5:4:9Þ

The equations deriving from (5.4.8) and (5.4.9) must describe the same motion, so
that we must have
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Zt2

t1

Xn

j¼1

pj dqj �H dt

 !

¼ c

Zt2

t1

Xn

j¼1

Pj dQj �H dt

 !

; ð5:4:10Þ

where the constant c is called the valence of the canonical transformation. If
c = 1, the transformation is univalent. Here and hereafter we shall deal with
univalent canonical transformations only.

The integrands in (5.4.10) can differ only by a total differential of some scalar
function F, because

d
Zt2

t1

dF ¼ dFðt2Þ � dFðt1Þ ¼ 0:

Consequently, we obtain:

Xn

j¼1

pjdqj �Hdt ¼
Xn

j¼1

PjdQj �Hdt þ dF ; ð5:4:11Þ

known as the canonicity condition.
The function F is called the generating function of the canonical transformation

(5.4.4). As one can see, it is a function of 2n ? 1 independent variables:
q1; :::; qn;Q1; :::;Qn; t. Let us name it F1(q, Q, t). Then,

dF1 ¼
Xn

j¼1

oF1

oqj

dqj þ
oF1

oQj

dQj

� �

þ oF1

ot
dt; ð5:4:12Þ

and, in view of (5.4.11),

pj ¼
oF1

oqj

; Pj ¼ �
oF1

oQj

; H ¼ H þ oF1

ot
ðj ¼ 1; nÞ: ð5:4:13Þ

Equations (5.4.13)1 give Qj in terms of q1; . . .; qn;p1; . . .;pn; t, i.e. the first set
(5.4.4)1 of the canonical transformations. These are then introduced into (5.4.13)2,
which gives the second set (5.4.4)2 of the canonical transformations. Finally,
(5.4.13)3 expresses the connection between the two Hamiltonians, H and H.

The generating function F makes possible the transition from the old variables
qj;pj to the new variables Qj;Pj. It must depend on n old variables (either qj or
pj), n new variables (either Qj or Pj) and, of course, on the time t. Thus, besides our
previous case, there are still three other possibilities:

F2ðq;PÞ; F3ðp;QÞ; F4ðp;PÞ:

The transition from qj;Qj to qj;Pj, as independent variables, is performed by

means of a Legendre transformation. Adding the quantity d
Pn

j¼1 PjQj

	 


to both

sides of (5.4.11), we find
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Xn

j¼1

pjdqj �Hdt ¼ �
Xn

j¼1

QjdPj �Hdt þ dF2; ð5:4:14Þ

where

F2ðq;P; tÞ ¼ F1ðq;Q; tÞ þ
Xn

j¼1

PjQj ð5:4:15Þ

is the new generating function. Following the procedure given in the previous case,
we obtain:

pj ¼
oF2

oqj

; Qj ¼
oF2

oPj

; H ¼ H þ oF2

ot
ðj ¼ 1; nÞ: ð5:4:16Þ

Another possible Legendre transformation is realized by subtracting

d
Pn

j¼1 pjqj

	 


from both sides of (5.4.11). The result is:

�
Xn

j¼1

qjdpj �Hdt ¼
Xn

j¼1

PjdQj �Hdt þ dF3; ð5:4:17Þ

with

F3ðp;Q; tÞ ¼ F1ðq;Q; tÞ �
Xn

j¼1

pjqj: ð5:4:18Þ

The transformation equations are:

qj ¼ �
oF3

opj

; Pj ¼ �
oF3

oQj

; H ¼ H þ oF3

ot
: ð5:4:19Þ

The last possible choice is the transition from qj;Qj to pj;Pj as independent
variables. This is done by a double Legendre transformation. Adding
d
Pn

j¼1ðPjQj � pjqjÞ to both sides of (5.4.11), we arrive at:

�
Xn

j¼1

qjdpj �H dt ¼ �
Xn

j¼1

QjdPj �Hdt þ dF4; ð5:4:20Þ

where we have denoted

F4ðp;P; tÞ ¼ F1ðq;Q; tÞ þ
Xn

j¼1

ðPjQj � pjqjÞ: ð5:4:21Þ

The corresponding equations of transformation are:

qj ¼ �
oF4

opj

; Qj ¼
oF4

oPj

; H ¼ H þ oF4

ot
: ð5:4:22Þ
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Observations:

(a) The differential equation (5.4.11) expresses the necessary and sufficient con-
dition of canonicity. The first part of this assertion has already been proved. To
prove the sufficiency, we must show that, if (5.4.13) and the canonical
equations (5.1.21) written for qj;pj are satisfied, then the canonical equations
in terms of Qj;Pj are also valid. The total time derivative of (5.4.13)1 yields:

_pj ¼
o2

F1

otoqj

þ
Xn

k¼1

o2
F1

oqkoqj

_qk þ
Xn

k¼1

o2
F1

oQkoqj

_Qk

¼ o

oqj

ðH �HÞ þ
Xn

k¼1

opk

oqj

_qk �
Xn

k¼1

oPk

oqj

_Qk: ð5:4:23Þ

But, in view of (5.4.13),

HðQ;P; tÞ ¼ H½Q;Pðq;Q; tÞ; t�; Hðq;p; tÞ ¼ H½q;pðq;Q; tÞ; t�;

and thus

o

oqj

ðH �HÞ ¼
Xn

k¼1

oH
oPk

oPk

oqj

� oH

opk

opk

oqj

� �

� oH

oqj

: ð5:4:24Þ

Substituting (5.4.24) into (5.4.23) and taking into account (5.1.21), we arrive at

Xn

k¼1

_Qk �
oH
oPk

� �
oPk

oqj

¼ 0 ðj ¼ 1; nÞ: ð5:4:25Þ

If
oPk

oqj

6¼ 0; ð5:4:26Þ

then we obtain the first set of canonical equations (5.4.6). The second set is
deduced in a similar way, by taking the total time derivative of (5.4.13)2 and
following the same procedure. This last step is left to the reader as an exercise.

(b) Irrespective of the type of the generating function F, the new Hamiltonian
HðQ;P; tÞ is obtained from the old one H(q, p, t) by adding the partial
derivative with respect to time of the function F. If the generating function
does not explicitly depend on time, then

H ¼ H: ð5:4:27Þ

In this case we have a completely canonical transformation.
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5.4.1 Extensions and Applications

The choice of the set of independent variables is indicated by the characteristics of
the problem. The following examples will give the reader a better idea of the
utility of canonical transformations.

1. Consider the generating function

F ¼ F2 ¼
Xn

j¼1

qjPj: ð5:4:28Þ

Then the transformation equations (5.4.16) yield:

pj ¼ Pj; Qj ¼ qj; H ¼ H ðj ¼ 1; nÞ; ð5:4:29Þ

meaning that (5.4.28) generates an identity transformation. Reciprocally, it can be
shown that any identity transformation is canonical.

Now, if instead we choose

F ¼ F2 ¼ �
Xn

j¼1

qjPj; ð5:4:30Þ

then

pj ¼ �Pj; Qj ¼ �qj; H ¼ H; ð5:4:31Þ

hence any inversion in the phase space is a canonical transformation.
2. Consider the completely canonical transformation

Qj ¼ Qjðq;pÞ; Pj ¼ Pjðq;pÞ ðj ¼ 1; nÞ: ð5:4:32Þ

Since in this case H ¼ H , Eq. (5.4.11) reads:

Xn

j¼1

pjdqj ¼
Xn

j¼1

PjdQj þ dFðq;QÞ; ð5:4:33Þ

or, in view of (5.4.32),

Xn

j¼1

pjdqj ¼
Xn

j¼1

Xn

k¼1

Pj

oQj

oqk

dqk þ
oQj

opk

dpk

� �

þ
Xn

j¼1

oF

oqj

dqj þ
oF

opj

dpj

� �

;

which yields:

pj ¼
oF

oqj

þ
Xn

k¼1

Pk

oQk

oqj

; 0 ¼ oF

opj

þ
Xn

k¼1

Pk

oQk

opj

ðj ¼ 1; nÞ: ð5:4:34Þ
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Next, take partial derivative of (5.4.34)1 with respect to ps, then change the index
j to s in (5.4.34)2 and take its partial derivative with respect to qj and finally
subtract one equation from the other, obtaining

Xn

k¼1

oQk

oqj

oPk

ops

� oQk

ops

oPk

oqj

� �

¼ ðqj;psÞ ¼ djs; ð5:4:35Þ

i.e. one of the fundamental Lagrange brackets. Suitable derivatives of (5.4.33) give
the remaining fundamental Lagrange brackets:

ðqj; qsÞ ¼ 0; ðpj;psÞ ¼ 0: ð5:4:36Þ

This analysis shows that the transformation (5.4.32) is canonical, if the
Lagrange fundamental brackets hold true. If this transformation is invertible, a
similar procedure leads to the Lagrange brackets in the new variables:

ðQm;PkÞ ¼ dkm; ðQm;QkÞ ¼ 0; ðPm;PkÞ ¼ 0: ð5:4:37Þ

3. Let us now show that the Poisson bracket of any two functions of the
canonical variables is invariant under the canonical transformation (5.4.4), i.e.

fu;wgQ;P ¼ fu;wgq;p: ð5:4:38Þ

We begin by proving the invariance of the fundamental Poisson brackets:

fqj;pkgQ;P ¼ fqj;pkgq;p; fqj; qkgQ;P ¼ fqj; qkgq;p;
fpj;pkgQ;P ¼ fpj;pkgq;p: ð5:4:39Þ

Taking the partial derivative of (5.4.13)1 and (5.4.13)2 relative to Qs and qj,
respectively, and choosing suitably the indices, we have:

opj

oQs

¼ o2
F

oqjoQs

;
oPs

oqj

¼ � o2
F

oQsoqj

;

and thus

opj

oQs

¼ � oPs

oqj

ðj; s ¼ 1; nÞ: ð5:4:40Þ

Similarly, by means of (5.4.16), (5.4.19) and (5.4.22), we obtain:

opj

oPs

¼ oQs

oqj

;
oqj

oQs

¼ oPs

opj

;
oqj

oPs

¼ � oQs

opj

ðj; s ¼ 1; nÞ: ð5:4:41Þ

On the other hand, the Poisson bracket of qj and pk in the new variables Qj, Pj, is:

fqj;pkgQ;P ¼
Xn

s¼1

oqj

oQs

opk

oPs

� oqj

oPs

opk

oQs

� �

ðj; k ¼ 1; nÞ; ð5:4:42Þ
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or, using (5.4.40) and (5.4.41),

fqj;pkgQ;P ¼
Xn

s¼1

oqj

oQs

oQs

oqk

þ oqj

oPs

oPs

oqk

� �

¼ oqj

oqk

¼ djk ¼ ðqj;pkÞq;p:

Also,

fqj; qkgQ;P ¼
Xn

s¼1

oqj

oQs

oqk

oPs

� oqj

oPs

oqk

oQs

� �

¼ �
Xn

s¼1

oqj

oQs

oQs

opk

þ oqj

oPs

oPs

opk

� �

¼ � oqj

opk

¼ 0 ¼ fqj; qkgq;p;

as well as

fpj;pkgQ;P ¼ 0 ¼ fpj;pkgq;p;

which completes the first part of our proof.
Now, going back to the Poisson bracket of u and w, we have:

fu;wgQ;P ¼
Xn

k¼1

ou
oQk

ow
oPk

� ou
oPk

ow
oQk

� �

¼
Xn

k¼1

ou
oQk

ow
oqj

oqj

oPk

þ ow
opj

opj

oPk

� �

� ou
oPk

ow
oqj

oqj

oQk

þ ow
opj

opj

oQk

� �� �

;

which becomes, after some manipulation,

fu;wgQ;P ¼
Xn

j¼1

ow
oqj

fu; qjgQ;P þ
Xn

j¼1

ow
opj

fu;pjgQ;P : ð5:4:43Þ

Apply now this relation to the brackets fqj;ugQ;P and fpj;ugQ;P . Since

fqj;ugQ;P ¼
Xn

k¼1

ou
oqk

fqj;qkgQ;Pþ
Xn

k¼1

ou
opk

fqj;pkgQ;P ¼
Xn

k¼1

ou
opk

djk¼
ou
opj

;

fpj;ugQ;P ¼
Xn

k¼1

ou
oqk

fpj;qkgQ;Pþ
Xn

k¼1

ou
opk

fpj;pkgQ;P ¼�
Xn

k¼1

ou
oqk

djk¼�
ou
oqj

;

equation (5.4.43) simplifies to

fu;wgQ;P ¼
Xn

j¼1

ou
oqj

ow
opj

� ou
opj

ow
oqj

� �

¼ fu;wgq;p;

which completes the proof of (5.4.38).
This property enables us to show that the successive application of two

canonical transformations is also a canonical transformation. Let us assume that
the first transformation is given by (5.4.4), while the second is

Q0j ¼ Q0jðQ;P; tÞ; P 0j ¼ P 0jðQ;P; tÞ ðj ¼ 1; nÞ: ð5:4:44Þ
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The transformation (5.4.4) is canonical if, according to (5.4.38),

fQ0j;P 0kgq;p ¼ fQ0j;P 0kgQ;P ; ð5:4:45Þ

while (5.4.44) is canonical if it satisfies the fundamental Poisson bracket,

fQ0j;P 0kgQ;P ¼ djk: ð5:4:46Þ

The last two relations then yield

fQ0j;P 0kgq;p ¼ djk: ð5:4:47Þ

In a similar way we find:

fQ0j;Q0kgq;p ¼ 0; fP 0j;P 0kgq;p ¼ 0: ð5:4:48Þ

The relations (5.4.47) and (5.4.48) give the proof of the aforementioned property.
Combining this result with the existence of the identity and inverse transforma-
tions as canonical transformations, eqs. (5.4.28)–(5.4.31), we conclude that the
class of canonical transformations has a group structure.

Using a similar procedure, it is not difficult to prove that the Lagrange bracket
ðu;wÞ is also invariant with respect to the canonical transformation (5.4.4):

ðu;wÞQ;P ¼ ðu;wÞq;p: ð5:4:49Þ

This proof is left to the reader.
4. Let us show that the absolute value of the Jacobian of any canonical trans-

formation is equal to one. We first observe that the Jacobian

J ¼ oðQj;PkÞ
oðqs;pmÞ

ðj; k; s;m ¼ 1; nÞ ð5:4:50Þ

is a 2n 9 2n determinant:

J ¼

oQj

oqs
:: ::

oQj

opm

: :
: :

oPk

oqs
:: :: oPk

opm

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

: ð5:4:51Þ

Using (5.4.40) and (5.4.41) in (5.4.51), we have:

J ¼

ops

oPj
:: ::� oqm

oPj

: :
: :

� ops

oQk
:: :: oqm

oQk

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

¼ oðqm;psÞ
oðQk;PjÞ

¼ J�1; ð5:4:52Þ

and thus J2 = 1 and |J| = 1.
5. In some applications, the generating function F is given and we are supposed

to find the associated transformation and show whether it is canonical. In other
cases, the transformation is given and we have to show whether it is canonical and
find the generating function.
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Let us consider an example in which the generating function is

F � F2ðq;PÞ ¼ qP þ 1
6

P3

m2g
; ð5:4:53Þ

where m is the mass and q is the vertical coordinate of a freely falling particle in
the constant gravitational field specified by the acceleration of gravity g. Since in
our case the independent variables are q and P, using (5.4.16) we obtain:

p ¼ oF2

oq
¼ P; Q ¼ oF2

oP
¼ qþ 1

2
P2

m2g
: ð5:4:54Þ

It is very easy to show that this transformation is canonical. Indeed, calculating the
Jacobian, which in our case coincides with the Poisson bracket {Q, P}, we have:

fQ;Pg ¼ oQ

oq

oP

op
� oP

oq

oQ

op
¼ 1:

Since the generating function does not explicitly depend on time, the Hamiltonian
of our application is found by using (5.4.16)3 and (5.4.54):

H ¼ H ¼ p2

2m
þmgq ¼ mgQ: ð5:4:55Þ

Hamilton’s canonical equations (5.4.6) then yield:

_Q ¼ oH
oP
¼ 0; _P ¼ � oH

oQ
¼ �mg;

which, by integration, give:

Q ¼ C1; P ¼ �mgt þ C2;

where C1; C2 are constants. Therefore the expected solution of the problem,
written in the variables q, p, is:

q ¼ Q� P2

2m2g
¼ � 1

2
gt2 þ C3t þ C4; p ¼ P ¼ �mgt þ C2; ð5:4:56Þ

with C3 ¼ C2=m;C4 ¼ C1 � C2
2=2m2g. The integration constants C1 and C2 are

determined from the initial conditions.
The reader is advised to solve the same problem using the remaining possible

forms of the generating function: F1ðq;QÞ;F3ðp;QÞ;F4ðp;PÞ. Are all these
functions consistent with the theory?

6. Consider now the following generating function:

F � F1 ¼
1
2

mx0q
2 cot Q; ð5:4:57Þ

where m and x0 are two constants. Then, using (5.4.13), we find the variables p, P,
and H as functions of the independent variables q, Q:
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p ¼ oF1

oq
¼ mx0q cot Q; ð5:4:58Þ

P ¼ � oF1

oQ
¼ mx0

2 sin2 Q
q2; ð5:4:59Þ

H ¼ H: ð5:4:60Þ
The desired transformation is then:

q ¼ 2P

mx0

� � 1
2

sin Q; p ¼ ð2mx0PÞ
1
2 cos Q; ð5:4:61Þ

or, conversely,

Q ¼ arctan
mx0q

p
; P ¼ 1

2mx0
p2 þ 1

2
mx0q

2: ð5:4:62Þ

Since

fQ;Pg ¼ oQ

oq

oP

op
� oQ

op

oP

oq
¼ J ¼ 1; ð5:4:63Þ

the transformation (5.4.61) is canonical.
Assume now that m and x0 are the mass and the angular frequency of a

harmonic oscillator. In this case,

H ¼ H ¼ p2

2m
þ 1

2
mx0q

2

and, according to (5.4.61),

H ¼ x0P: ð5:4:64Þ

The coordinate Q is cyclic, which means that we have the first integral

P ¼ const:; ð5:4:65Þ

while the canonical equations (5.4.6) give:

Q ¼ x0t þ b; ð5:4:66Þ

where b is a constant of integration. Using (5.4.61) and (5.4.66), we arrive at

q ¼ 2P

mx0

� � 1
2

sinðx0t þ bÞ ¼ A sinðx0t þ bÞ:

The constants A and b are determined from the initial conditions.
7. Suppose, this time, that the transformation

Q ¼
ffiffiffiffiffi

2q
p

et cos p; P ¼
ffiffiffiffiffi

2q
p

e�t sin p ð5:4:67Þ
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is given and we have to show that it is canonical and to find the generating
function. To show the first part of the problem, we can either prove that the
absolute value of the Jacobian is one, as above, or use the canonicity condition
(5.4.11), which yields:

pdq� P dQ ¼ ðp� sin p cos pÞdqþ 2q sin2 p dp; ð5:4:68Þ

or, after a convenient grouping of terms,

p dq� P dQ ¼ dðqp� q sin p cos pÞ;
and consequently

F ¼ qðp� sin p cos pÞ; ð5:4:69Þ

The last step is to express F in terms of q (or p) and Q (or P). Using (5.4.67), we
obtain the generating function in the form:

Fðq;Q; tÞ ¼ q cos�1 Q e�t

ffiffiffiffiffi
2q
p � 1

2
Q e�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2q�Q2 e�2t
p

: ð5:4:70Þ

Note that we arrived at the result (5.4.68) by a straightforward calculation, but
in general one uses mathematical formalism to prove that a differential expression
is an exact differential. In our case, in view of (5.4.68), we must have

o

oq
ð2q sin2 pÞ ¼ o

op
ðp� sin p cos pÞ;

which is true. Since

oF

oq
¼ p� sin p cos p;

oF

op
¼ 2q sin2 p;

by integration we obviously obtain the same result (5.4.69).

5.4.2 Mechanical–Thermodynamical Analogy.
Thermodynamic Potentials

In some applications, like in the study of the motion of a fluid, the parameters
characterizing the thermodynamical behaviour of the system must also be taken
into account. Since the principles of mechanics do not provide the equations
describing thermodynamical processes, we ‘borrow’ from thermodynamics the
equation of state, usually written in the form:

f ðp;V ; T Þ ¼ 0: ð5:4:71Þ

Here, p is the pressure, V – the volume and T – the absolute temperature of the
system. The principles of thermodynamics connect these three parameters and two
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other thermodynamic functions, the entropy S and the internal energy U, by the
relation

T dS� dU þ p dV ; ð5:4:72Þ
where the equality corresponds to the equilibrium processes. Assuming that we are
concerned only with equilibrium transformations, let us compare

T dS ¼ dU þ p dV ð5:4:73Þ

with (5.4.1)1, written for a complete canonical transformation:
Xn

j¼1

pjdqj ¼
Xn

j¼1

PjdQj þ dFðq;QÞ: ð5:4:74Þ

It is obvious that (5.4.73) expresses the canonical transformation of the variables
S, T to the parameters V, p, the generating function being U(S, V). Since S, V are
independent variables, the functions p, T are given by (5.4.13):

T ¼ oU

oS

� �

V

; p ¼ � oU

oV

� �

S

: ð5:4:75Þ

Here, the volume V plays the role of a generalized coordinate conjugated to the
pressure p, while the entropy S is a generalized coordinate conjugate to the tem-
perature T. Then, p and T are generalized momenta, while the phase space reduces
to two dimensions: T, S in the old variables and p, V in the new ones. This gives
the possibility of graphic representations of the thermodynamic transformations.

The function U(S, V) is called thermodynamic potential. The name shows that
T and p are expressed in terms of U by (5.4.75), very much like a force F is
obtained from a given potential energy.

The choice of U(S, V) as a thermodynamic potential is not useful, because the
independent variable S cannot be directly determined. Then, for practical reasons,
instead of U are used some other thermodynamic potentials: the enthalpy H, the
Helmholtz free energy F and Gibbs’ free energy (sometimes called free enthaply)
G. The transition from U to the new characteristic functions is realized by some
appropriate Legendre transformations. A comparative table for the canonical
variables and the generating functions is given below:

T ¼ T ðS;VÞ; p ¼ pðS;VÞ; F1ðS;VÞ ¼ UðS;VÞ;
T ¼ T ðS;pÞ; V ¼ VðS;pÞ; F2ðS;pÞ ¼ HðS;pÞ ¼ U þ pV ;

S ¼ SðT ;VÞ; p ¼ pðT ;VÞ; F3ðT ;VÞ ¼ FðT ;VÞ ¼ U � TS;

p ¼ pðT ; SÞ; V ¼ VðT ; SÞ; F4ðT ; SÞ ¼ GðT ; SÞ ¼ U þ pV � TS:

ð5:4:76Þ

The choice of one or another of the potentials U, H, F, G depends on the
physical problem at hand. In their turn, these functions can be taken as indepen-
dent variables, leading to new sets of generating functions. Nonetheless, not all the
state functions obtained this way have a practical utility.
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The use of the Legendre transformation method yields:

dH ¼ T dS þ V dp; dF ¼ �S dT � p dV ; dG ¼ �S dT þ V dp; ð5:4:77Þ

as well as:

T ¼ oH

oS

� �

p

; V ¼ oH

op

� �

S

;

S ¼ � oF

oT

� �

V

; p ¼ oF

oV

� �

T

;

S ¼ � oG

oT

� �

p

; V ¼ oG

op

� �

T

:

ð5:4:78Þ

By means of (5.4.76) and (5.4.78), we find:

U ¼ F � T
oF

oT

� �

V

;

H ¼ G� T
oG

oT

� �

p

;

ð5:4:79Þ

which are the well-known Gibbs–Helmholtz relations.

5.5 Infinitesimal Canonical Transformations

We call infinitesimal canonical transformation any canonical transformation that
differs infinitesimally from the identity transformation (5.4.29).

In the previous section, we assumed that the transition from the set qj;pj of
canonical variables to the set Qj;Pj is performed by a finite canonical transfor-
mation. Since the canonical transformations have group structure then, supposing
that the generating function of the canonical transformation (5.4.4) is continuous
and derivable, any finite canonical transformation can be regarded as a succession
of infinitesimal canonical transformations. The fundamental property of an infin-
itesimal canonical transformation is that it can be expressed in an explicit form.
This gives rise, in turn, to an intimate connection between some infinitesimal
canonical transformations and the symmetry properties of mechanical systems.

Recall that

F2ðq;PÞ ¼
Xn

j¼1

qjPj

is the generating function of the identity transformation
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Qj ¼ qj; Pj ¼ pj ðj ¼ 1; nÞ:
If the canonical variables Qj;Pj differ from qj;pj by some arbitrary infinitesimal
variations dqj; dpj, then

Qj ¼ qj þ dqj; Pj ¼ pj þ dpj ðj ¼ 1; nÞ ð5:5:1Þ

is an infinitesimal canonical transformation. Its generating function is

F 02 ¼
Xn

j¼1

qjPj þ eWðq;PÞ; ð5:5:2Þ

where W is an arbitrary function of qj;Pj and e is an infinitesimal parameter,
independent of the canonical variables. Using (5.4.16) we obtain

pj ¼
oF 02
oqj

¼ Pj þ e
oWðq;PÞ

oqj

; Qj ¼
oF 02
oPj

¼ qj þ e
oWðq;PÞ

oPj

;

H ¼ H þ e
oWðq;PÞ

ot
; ð5:5:3Þ

and the infinitesimal variations in (5.5.1) become:

Qj � qj ¼ dqj ¼ e
oWðq;PÞ

oPj

; Pj � pj ¼ dpj ¼ �e
oWðq;PÞ

oqj

ðj ¼ 1; nÞ:

ð5:5:4Þ
Since Pj is only slightly different from pj, we can take W(q, p) instead of
W(q, P) and oW

opj
instead of oW

oPj
: Thus,

dqj ¼ e
oW

opj

; dpj ¼ �e
oW

oqj

ðj ¼ 1; nÞ: ð5:5:5Þ

Here, W(q, p) plays the role of the generating function of the infinitesimal
canonical transformation, while dqj; dpj stand for the canonical variables.

Let f(q, p, t) be any function of the canonical variables. Its variation df due to
the infinitesimal transformation (5.5.1) can be written using (5.5.5) in terms of
Poisson brackets as

df ¼ eff ;Wg: ð5:5:6Þ
For dqj; dpj and dH, this yields:

dqj ¼ efqj;Wg; dpj ¼ efpj;Wg; dH ¼ efH;Wg: ð5:5:7Þ

As we already know, if W(q, p) is a constant of motion, the Poisson bracket
{H, W} vanishes. As a result, the first integrals of motion are the infinitesimal
generators of the canonical transformations that leave the Hamiltonian invariant.
This conclusion implies a connection between the symmetry properties and the
constants of motion.

Let us exemplify this property in the case of an isolated and constraint-free
system of N particles.
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5.5.1 Total Momentum as Generator of Translations

The infinitesimal generator of the spatial translations, along a direction of unit
vector s, is the projection of the total momentum on that direction:

W ¼ s �
XN

i¼1

pi: ð5:5:8Þ

Then, by (5.5.7):

dxia ¼ efxia;Wg ¼ e
XN

j¼1

X3

b¼1

sbfxia;pjbg ¼ eðsbdabÞi ¼ eðsaÞi;

dpia ¼ efpia;Wg ¼ e
XN

j¼1

X3

b¼1

sbfpia;pjbg ¼ 0;

or, in vector form,

dri ¼ ðdaÞsi; dpi ¼ 0; ð5:5:9Þ
where da = e.

The Hamiltonian of the system,

H ¼ 1
2

XN

i¼1

1
m i

p2
i þ V ; ð5:5:10Þ

is invariant under the transformation (5.5.9). Thus W given by (5.5.8) is a constant

for any s, which shows the conservation of the total momentum P ¼
PN

i¼1 pi (see
Chap. 1 and Chap. 2).

5.5.2 Total Angular Momentum as Generator of Rotations

The infinitesimal generator of the spatial rotations of angle dh about an axis of unit
vector s is the projection of the total angular momentum on that direction:

W ¼ s � L ¼ s �
XN

i¼1

ri � pi: ð5:5:11Þ

Following the same procedure as in the previous case, we have:

dxia ¼ e xia;
XN

j¼1

X3

b;c;g¼1

�bcgsbxjcpjg

( )

¼ e
X3

b;c¼1

�abcsbxic;

dpia ¼ e pia;
XN

j¼1

X3

b;c;g¼1

�bcgsbxjcpjg

( )

¼ e
X3

b;c¼1

�abcsbpic;

or, in vector form,

dri ¼ dh� ri; dpi ¼ dh� pi; ð5:5:12Þ
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where dh ¼ sdh and dh ¼ e: Since the Hamiltonian (5.5.10) is invariant under the
transformation (5.5.12), the quantity (5.5.11) is a first integral of motion and shows

the conservation of the total angular momentum L ¼
PN

i¼1 ri � pi (see Chap. 1
and Chap. 2).

5.5.3 Hamiltonian as Generator of Time-Evolution

Let us now show that the time-evolution of the canonical variables is a succession
of infinitesimal canonical transformations, with the Hamiltonian as the generator
of the transformation. Suppose that at the time t0 we have

q0
j ¼ qjðt0Þ; p0

j ¼ pjðt0Þ ðj ¼ 1; nÞ;

while at the time t = t0 + dt,

qjðtÞ ¼ qjðq0;p0; tÞ; pjðtÞ ¼ pjðq0;p0; tÞ ðj ¼ 1; nÞ:
Using the canonical equations (5.1.21), we obtain:

qj ¼ q0
j þ _qjdt ¼ q0

j þ
oHðq0;p0; t0Þ

op0
j

dt; ð5:5:13Þ

pj ¼ p0
j þ _pjdt ¼ p0

j �
oHðq0;p0; t0Þ

oq0
j

dt; ð5:5:14Þ

as well as

Hðq;p; tÞ ¼ H½qðt0 þ dtÞ;pðt0 þ dtÞ; t0 þ dt�

¼ Hðq0;p0; t0Þ þ
oH

ot
þ fH;Hg

� �

0

dt;

or

Hðq;p; tÞ ¼ Hðq0;p0; t0Þ þ
oHðq0;p0; t0Þ

ot0
dt: ð5:5:15Þ

In general, any mechanical quantity f obeys the rule:

f ½qðt0 þ dtÞ;pðt0 þ dtÞ; t0 þ dt� ¼ f ðq0;p0; t0Þ þ
of

ot
þ ff ;Hg

� �

0

dt: ð5:5:16Þ

If f does not depend explicitly on time, then

f ½qðt0 þ dtÞ;pðt0 þ dtÞ� ¼ f ðq0;p0Þ þ ff ;Hg0dt: ð5:5:17Þ
Compare now (5.5.13)–(5.5.15) with (5.5.3). This shows that H is the infinitesimal
generator of the transformation of parameter dt ¼ e. If we take

dt ¼ t � t0

n
ðn!1Þ

and use the group property of the canonical transformations, then
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qjðtÞ ¼ qjðq0;p0; tÞ; pjðtÞ ¼ ðq0;p0; tÞ ðj ¼ 1; nÞ ð5:5:18Þ

is a canonical transformation. The proof is therefore complete.

5.6 Integral Invariants

We have emphasized, in various approaches, the importance of the invariance
properties of mechanical systems. The invariance is expressed either as a principle
(e.g. Hamilton’s principle), as a theorem (e.g. Noether’s theorem), or in other ways
still to be encountered. In each case, the invariance leads to important results, some
of them being fundamental in physics.

The development of analytical mechanics shows that the study of canonical
equations necessarily leads to some integral expressions which are invariant with
respect to certain transformations. Henri Poincaré called these expressions inte-
gral invariants. This notion finds many applications both in physics and in many
other branches of science.

Let us consider the system of 2n first-order differential equations

_xs ¼ Xsðx1; :::; x2n; tÞ ¼ Xsðx; tÞ ðs ¼ 1; 2nÞ; ð5:6:1Þ

where X1; :::;X2n are 2n functions, derivable in a certain domain D. Equations
(5.6.1) are the equations of motion of a point in the 2n-dimensional space R2n.
If we take as initial conditions xsðt0Þ ¼ x0

s ðs ¼ 1; 2nÞ, then the general solution of
(5.6.1) is:

xs ¼ xsðx0; tÞ ðs ¼ 1; 2nÞ: ð5:6:2Þ

Suppose that all the points which obey (5.6.1) at time t0 are in a p-dimensional
(p \ 2n) manifold V0

p � R2n: If the Jacobian of the transformation (5.6.2) satisfies
the condition

J ¼ oðxÞ
oðx0Þ 6¼ 0; ð5:6:3Þ

then to any initial point P0 2 V0
p , it will correspond at the time t [ t0 a single point

P of a manifold Vp � R2n ðp ¼ 1; 2nÞ: In other words, this correspondence con-
serves the dimension of any manifold Vp (p \ 2n), i.e. the set of points which at
the time t0 form a p-dimensional manifold, will form, at time t [ t0, a manifold of
the same dimension.

In general, if Vp (p \ 2n) is a p-dimensional manifold in R2n and dsp
h

(h = 1, ..., m) is one of the m = C2n
p components of the ‘volume element’ that can

be formed in R2n (for example, ds1
p ¼ dx1dx2:::dxp), then
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Ip ¼
Z

Vp

Xm

k¼1

fkðx; tÞ dsk
p ð5:6:4Þ

is an integral invariant of p-order of the system (5.6.1), if the integral is inde-
pendent of time, i.e.

dIp

dt
¼ 0 ð5:6:5Þ

or, equivalently,

Z

V0
p

Xm

k¼1

fkðx0; t0Þ dðsk
pÞ0 ¼

Z

Vp

Xm

k¼1

fkðx; tÞ dsk
p: ð5:6:6Þ

Here, dðsk
pÞ0 is the volume element of the manifold Vp

0.
The integral invariants are of the first order, second order, etc., as p takes the

values 1,2... If Vp is an open manifold, the integral invariant is called absolute; if
Vp is a closed manifold, we are dealing with a relative integral invariant. It can be
shown that a relative integral invariant of order p is equivalent to an absolute
integral invariant of order p ? 1. For example, by using the generalized Stokes’
theorem (see Appendix B), we can see that

I

C

X2n

k¼1

fk dxk ¼
Z

S

X2n

k;m¼1
k\m

ofk

oxm

� ofm

oxk

� �

dxmdxk; ð5:6:7Þ

where the surface S of arbitrary shape is bounded by the closed curve C.
Let us consider the absolute invariant integral of order 2n:

I 2n ¼
Z

V2n

fðx; tÞ ds; ð5:6:8Þ

where ds ¼ dx1:::dx2n, and find the condition which must be obeyed by the
function f, so that (5.6.8) is an integral invariant, i.e.

dI2n

dt
¼ d

dt

Z

V2n

f ðx; tÞ ds ¼ 0: ð5:6:9Þ

To perform the derivative in (5.6.9), recall that our domain is moving, i.e. ds
changes in time. Making use of (5.6.2), we have:

dI 2n

dt
¼
Z

V 0
2n

dJ

dt
f ½xðx0; tÞ� þ J

df

dt

� �

ds0; ð5:6:10Þ

where J is the Jacobian of the transformation (5.6.2) and
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ds0 ¼ dx0
1. . . dx0

2n

is the volume element of the manifold V2n
0 . The total time derivative of the

Jacobian is performed by the usual rule:

dJ

dt
¼
X2n

i¼1

oðx1; . . .; xi�1;Xi; xiþ1; . . .; x2nÞ
oðx0

1; x
0
2; . . .; x0

2nÞ
; ð5:6:11Þ

where (5.6.1) has also been used. But

oXi

ox0
k

¼
X2n

j¼1

oXi

oxj

oxj

ox0
k

ði; k ¼ 1; 2nÞ;

and thus the only non-zero determinants in (5.6.11) are those obtained for i = j, i.e.

oðxiÞ
oðx0

kÞ
oXi

oxi

¼ J
oXi

oxi

(no summation);

therefore

dJ

dt
¼ J

X2n

i¼1

oXi

oxi

; ð5:6:12Þ

known as Euler’s theorem. Introducing this expression into (5.6.10), we obtain:

dI 2n

dt
¼
Z

V 0
2n

J
df

dt
þ fJ

X2n

i¼1

oXi

oxi

 !

ds0 ¼
Z

V2n

df

dt
þ f

X2n

i¼1

oXi

oxi

 !

ds:

Since the domain of integration V2n is arbitrary, the function f must satisfy the
following condition of continuity:

df

dt
þ f

X2n

i¼1

oXi

oxi

¼ 0: ð5:6:13Þ

5.6.1 Integral Invariants of the Canonical Equations

Let us assume that R2n is the phase space and that the 2n first-order differential
equations (5.6.1) are precisely the canonical equations (5.1.21). Then, any integral
invariant of the type (5.6.4) is associated with the system of canonical equations
or, equivalently, with the canonical transformation (5.5.18). Consequently, if one
finds some integral which proves to be invariant with respect to a canonical
transformation, then this integral is an integral invariant of the canonical
equations.

We can construct the following absolute integral invariant:

I 2n ¼
Z

V2n

Xm

k¼1

dsk
n;
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where m ¼ Cp
n ðp	 nÞ;V2n is a 2n-dimensional manifold in the phase space and

dsk
n ¼

Yk

i¼1

dqai
dpai

:

Here, a1; . . .; ak are k numbers out of 1, ..., n, taken in an arbitrary order. The
relation between I2l and the relative integral invariant I2l-1 is:

I2l�1 ¼ I 2l: ð5:6:130Þ

The integral invariants in which the Hamiltonian H does not occur are called
universal.

In the following, we shall discuss two cases: l = 1 and l = n.

5.6.2 The Relative Universal Invariant of Mechanics

In the case l = 1, formula (5.6.130) gives:

I1 ¼
I

C

Xn

j¼1

pj dqj ¼
Z

S

Xn

j¼1

dpj dqj ¼ I 2:

Here, C is a one-dimensional closed manifold, while S is a two-dimensional open
manifold. We wish to prove that I1 is indeed an invariant, associated with the
transformations (5.5.18). In view of (5.6.6), the condition of invariance can be
written as Z

S

Xn

j¼1

dpjdqj ¼
Z

S0

Xn

j¼1

dp0
jdq0

j : ð5:6:14Þ

To prove this identity, let us express q0
j ;p

0
j as functions of two parameters v1; v2:

q0
j ¼ q0

jðv1; v2Þ; p0
j ¼ p0

jðv1; v2Þ: ð5:6:15Þ

Using the definition of the Lagrange bracket, we can write:
Z

S

Xn

j¼1

dpjdqj ¼
Z

R

Xn

j¼1

oðqj;pjÞ
oðv1; v2Þ

dv1dv2 ¼
Z

R

ðv1; v2Þdv1dv2;

Z

S0

Xn

j¼1

dp0
jdq0

j ¼
Z

R

Xn

j¼1

oðq0
j ;p

0
jÞ

oðv1; v2Þ
dv1dv2 ¼

Z

R

ðv1; v2Þ0dv1dv2;

where R is the integration domain in the plane of the variables v1; v2 and the
subscript ‘zero’ shows that the Lagrange bracket is calculated in terms of the
canonical variables q0

j ;p
0
j . On the other hand,

oðqj;pjÞ
oðv1; v2Þ

¼
Xn

k;l¼1

oðqj;pjÞ
oðq0

k; q
0
l Þ

oðq0
k; q

0
l Þ

oðv1; v2Þ

�

þ oðqj;pjÞ
oðq0

k;p
0
l Þ

oðq0
k;p

0
l Þ

oðv1; v2Þ
þ oðqj;pjÞ

oðp0
k;p

0
l Þ

oðp0
k;p

0
l Þ

oðv1; v2Þ

�

;
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or, if the summation over j is performed,

ðv1; v2Þ ¼
Xn

k;l¼1

oðq0
k; q

0
l Þ

oðv1; v2Þ
ðq0

k; q
0
l Þ þ

oðq0
k;p

0
l Þ

oðv1; v2Þ
ðq0

k;p
0
l Þ þ

oðp0
k;p

0
l Þ

oðv1; v2Þ
ðp0

k;p
0
l Þ

� �

:

If we remember that the Lagrange bracket is invariant with respect to any
canonical transformation, we are left with

ðv1; v2Þ ¼
Xn

k;l¼1

oðq0
k;p

0
l Þ

oðv1; v2Þ
dkl ¼ ðv1; v2Þ0; ð5:6:16Þ

and (5.6.14) follows immediately. We conclude that I1ð¼ I 2Þ is an integral
invariant associated with the transformation (5.5.18).

The contour C occurring in the definition of the integral invariant I1 is com-
posed by a set of representative points in the phase space, determined at the same
time t. The integral invariant I1 was introduced by Henri Poincaré and it is called
the relative universal invariant of mechanics. Later, Eli Cartan gave a general-
ization of this invariant for closed paths considered at different times. In particular,
the quantity:

I ¼
I

C

Xn

j¼1

pjdqj �Hdt

 !

ð5:6:17Þ

is the Poincaré–Cartan integral invariant.
A suggestive explanation of the conditions related to the path of integration is

given by the following geometric interpretation. Let us define the state space, or
the extended phase space R2n+1. Each point of this space corresponds to a state of
the system. When referring to the invariant I1, the paths C0 and C lie in the
hyperplanes t0 = const. and t = const., respectively. In contrast, the closed contour
C for the Poincaré–Cartan invariant I has no connection with any hyperplane t =
const. If the integration path in (5.6.17) corresponds to simultaneous states, then
along the integration path we have dt = 0 and we get back the invariant I1.

The importance of the Poincaré–Cartan integral invariant (5.6.17) is that
through it one can reformulate the fundamental postulate of mechanics: The
motion of a mechanical system is described by the system of 2n first-order dif-
ferential equations

_qj ¼ Ajðq;p; tÞ; _pj ¼ Bjðq;p; tÞ ðj ¼ 1; nÞ; ð5:6:18Þ

with the initial conditions qjðt0Þ ¼ q0
j ;pjðt0Þ ¼ p0

jðj ¼ 1; nÞ; if the system (5.6.18)
admits the integral (5.6.17) as a relative integral invariant.

Indeed, in order that (5.6.17) be an integral invariant, the following conditions
must be fulfilled:
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Aj ¼
oH

opj

; Bj ¼ �
oH

oqj

ðj ¼ 1; nÞ; ð5:6:19Þ

which leads to the canonical equations (5.1.21).
To justify this statement, let C0 and C be two neighbouring closed paths, C

being the image of C0 in the state space. The one-to-one correspondence between
C and C0 shows that the generalized trajectories connecting the points on C with
the points on C0 do not intersect with each other, giving rise to a tube-like geo-
metric volume (Fig. 5.2). The variation of (5.6.17), when passing from C0 to C, is:

dI ¼
I

C

Xn

j¼1

dpjdqj þ
Xn

j¼1

pjdðdqjÞ � dH dt �HdðdtÞ
" #

:

The operators d and d are independent; consequently,

dðdqjÞ ¼ dðdqjÞ; dðdtÞ ¼ dðdtÞ;
and thus, integrating by parts and expanding dH, we obtain:

dI ¼
I

C

Xn

j¼1

dqj �
oH

opj

dt

� �

dpj �
Xn

j¼1

dpj þ
oH

oqj

dt

� �

dqj þ dH � oH

ot
dt

� �

dt

" #

:

The integral I is an invariant if dI = 0. Then, for arbitrary variations dqj; dpj; dt we
find the canonical equations (5.1.21), as well as the property (5.1.30) of the
Hamiltonian.

5.6.3 Liouville’s Theorem

In the case l = n, the integral invariant is:

I2n ¼
Z

V2n

dq1 . . . dqndp1. . .dpn ð5:6:20Þ

Fig. 5.2 The extended phase
space (state space).
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and expresses the fact that the ‘‘volume’’ of any portion of the phase space remains
invariant under the transformation (5.5.18). The proof of the invariance of (5.6.20)
is simple. Let us write

dq1 . . . dqndp1 . . . dpn ¼
oðq;pÞ

oðq0;p0Þ
dq0

1 . . . dq0
ndp0

1 . . . dp0
n:

But the transformation (5.5.18) is canonical, meaning that J = 1, which proves the
invariance of I 2n.

If by V2n
0 we mean a vicinity of the representative point P0, at the time t0, and by

V2n the vicinity of the point P, reached by the system at the time t [ t0, we have
arrived at an important theorem: The ‘‘volume’’ of any vicinity of the represen-
tative point does not change in time. This is Liouville’s theorem.

Liouville’s theorem is fundamental in statistical physics, where it was intro-
duced in connection with the notion of statistical ensemble. Let us imagine a large
number of replicas of a system, which are macroscopically identical, but micro-
scopically distinct. Assume, for instance, that our system consists of N identical
molecules, enclosed in a container. These molecules are characterized by
qjðt0Þ;pjðt0Þ, at the time t0, and by qjðtÞ;pjðtÞ at the time t. To each of these sets is
associated a point in the phase space. Let dN be the number of particles which, at
the time t, have their generalized coordinates in the infinitesimal interval
ðqj; qj þ dqjÞ, and their generalized momenta in the interval ðpj;pj þ dpjÞ. Then
we can write

dN ¼ fðq;p; tÞdq1 . . . dqndp1 . . . dpn: ð5:6:21Þ

Here, f(q, p, t) is the distribution function, which expresses the probability of
finding the set of N particles in a cell of the phase space, whose ‘volume’ is

ds ¼ dq1 . . . dqndp1 . . . dpn:

Assuming that there are no collisions between particles, the number of particles
which, at time t + dt, are in the same cell of the phase space, is:

dN0 ¼ f ðqþ dq;pþ dp; t þ dtÞdq1 . . . dqndp1 . . . dpn:

The variation dN of the number of particles in the elementary volume ds is

dN ¼ dN0 � dN ¼ ½f ðqþ dq;pþ dp; t þ dtÞ � f ðq;p; tÞ�dq1. . .dqndp1. . .dpn:

If in the Taylor series expansion for dN we keep only those terms which are linear
in dqj; dpj; dt, we get:

dN 

Xn

j¼1

of

oqj

_qj þ
Xn

j¼1

of

opj

_pj þ
of

ot

" #

dsdt: ð5:6:22Þ

Since, by hypothesis, the collisions are absent, dN = 0, and (5.6.22) yields
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df

dt
¼ 0; ð5:6:23Þ

as a consequence of Liouville’s theorem. This shows that the distribution function
f(q, p, t) is a first integral of the canonical equations.

The phase space may be imagined as a 2n-dimensional fluid. Indeed, the
position at time t of a certain molecule of the fluid is given by (5.6.2):

xi ¼ xiðx0
1; x

0
2; x

0
3; tÞ ði ¼ 1; 2; 3Þ;

where xi
0 and xi are the Cartesian coordinates of the molecule at times t0 and t,

respectively. This hydrodynamic model can be compared with the phase space, the
only difference being the number of coordinates that determine the position of the
representative point. This 2n-dimensional fluid is called the phase fluid.

The Hamiltonian of a conservative system is a constant of motion:

Hðq1; . . .; qn;p1; . . .;pnÞ ¼ E ¼ const: ð5:6:24Þ
This relation leads to an interesting geometric interpretation. In the phase space
R2n, (5.6.24) represents a hypersurface, which is any s-dimensional manifold with
2 \ s \ 2n. Thus, if at the time t0 the state of the system lies on some energetic
hypersurface, at any time t[ t0 it will lie on the same hypersurface. This analogy
also shows that the phase fluid associated with the canonical equations behaves
like an incompressible fluid. This property is easily proved by integrating the
divergence-free condition

X2n

i¼1

oXi

oxi

¼ 0 ð5:6:25Þ

over some 2n-dimensional manifold of R2n and then applying the Green–Gauss
generalized formula:

Z

V2n

X2n

i¼1

oXi

oxi

ds ¼
Z

V2n�1

X2n

i¼1

XidSi ¼ 0; ð5:6:26Þ

where

ds ¼ dx1 . . . dx2n ¼ dSi dxi ðno summationÞ; ð5:6:27Þ

with

dSi ¼ dx1 . . . dxi�1dxiþ1 . . . dx2n; ð5:6:28Þ

while V2n-1 is the boundary of V2n. If we take x1; . . .; xn as the generalized
coordinates q1; . . .; qn, and xnþ1; . . .; x2n as the generalized momenta p1; . . .;pn,
then, in view of (5.1.21) and (5.6.1),

X2n

j¼1

oXi

oxi

!
Xn

j¼1

o _qj

oqj

þ o _pj

opj

� �

� 0: ð5:6:29Þ

Thus, Eq. (5.6.26), in hydrodynamic notation (see Chap. 6), reads:
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Z

V2n

div v ds ¼
Z

V2n�1

v � dS ¼ 0; ð5:6:30Þ

meaning that the flux of the phase fluid passing through a closed hypersurface of
the phase space is zero. This is a different way of expressing the incompressibility
of the phase fluid. It also represents another formulation of Liouville’s theorem.

5.6.4 Pfaff Forms

Let us consider the differential expression

xðdÞ ¼
Xn

i¼1

Xidxi; ð5:6:31Þ

where Xi ¼ Xiðx1; . . .; xnÞ are n functions defined in some domain of the
n-dimensional space Rn. The expression (5.6.31) is called a Pfaff form. We notice
that the integrand of a first-order integral invariant is a Pfaff form.

Consider now the Pfaff form x(d), associated with the variation performed by
the operator d, independent of the operator d:

xðdÞ ¼
Xn

i¼1

Xidxi: ð5:6:32Þ

The difference

Dx ¼ dxðdÞ � dxðdÞ ð5:6:33Þ
is known as the bilinear covariant associated with the form x. Since the operators
d and d commute, we can write:

Dx ¼
Xn

i;k¼1

Tkidxkdxi: ð5:6:34Þ

Here,

Tki ¼
oXi

oxk

� oXk

oxi

ð5:6:35Þ

is a the second-order antisymmetric tensor (if Xi are the components of a
n-dimensional vector). If x is a total differential, then Stokes’ theorem implies

Dx ¼ 0: ð5:6:36Þ

By using this property, it is not difficult to show that two Pfaff forms which differ
from one another by a total differential of some twice-differentiable function
Fðx1; . . .; xnÞ have the same bilinear covariant. Indeed, since d(dF) = d(dF), the
two forms

xðdÞ ¼
Xn

i¼1

Xidxi;
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x0ðdÞ ¼ xðdÞ þ dFðx1; . . .; xnÞ
give

Dx ¼ Dx0:

If we denote

xk ¼
Xn

i¼1

oXi

oxk

� oXk

oxi

� �

dxi ðk ¼ 1; nÞ; ð5:6:37Þ

the expression (5.6.34) reads:

Dx ¼
Xn

k¼1

xkdxk: ð5:6:38Þ

For arbitrary and independent variations dxk, we have Dx ¼ 0 if

xk ¼ 0 ðk ¼ 1; nÞ: ð5:6:39Þ

The n equations (5.6.39) form a system associated with the Pfaff form (or contact
1-form) x.

Let us show that the canonical equations (5.1.21) can be considered as a system
associated with the Pfaff form

xðdÞ ¼
Xn

i¼1

pidqi �Hdt; ð5:6:40Þ

which is nothing else but the integrand of the Cartan–Poincaré integral invariant
(5.6.17). Using the definition (5.6.33), we can write:

Dx ¼
Xn

i¼1

½dpidqi þ pidðdqiÞ � dH dt �HdðdtÞ

� dpidqi � pi dðdqiÞ þ dHdt þH dðdtÞ�:
But the operators d and d commute, such that

Dx ¼
Xn

i¼1

dqi �
oH

opi

dt

� �

dpi � dpi þ
oH

oqi

dt

� �

dqi

� �

þ dH � oH

ot
dt

� �

dt:

Therefore the condition Dx ¼ 0, for arbitrary and independent dqj; dpj; dt, leads
indeed to the canonical equations (5.1.21). Reciprocally, if qj and pj are canonical
variables, the bilinear covariant of the corresponding Pfaff form is zero.

As a final example, let us consider the transformation (5.4.4):

qj ¼ qjðQ;P; tÞ; pj ¼ pjðQ;P; tÞ ðj ¼ 1; nÞ: ð5:6:41Þ

Since, as we have already proven, the canonical equations written for qj;pj form a
system associated with the Pfaff form (5.6.40), the transformation (5.6.41)
is canonical if Hamilton’s equations written for Qj;Pj are associated with the
Pfaff form
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X ¼
Xn

i¼1

PidQi �Hdt: ð5:6:42Þ

But the two forms x and X have the same bilinear covariant, namely zero, and
thus they can differ from one another only by a total differential of some function
F(q, Q, t), i.e.

Xn

j¼1

pjdqj �H dt ¼
Xn

j¼1

PjdQj �Hdt þ dFðq;Q; tÞ;

which is precisely the canonicity condition (5.4.11).

5.6.5 Quantum Mechanical Harmonic Oscillator

The quantum theory of the atom was initially based on the Bohr–Sommerfeld
quantization rule:

Ji ¼
I

pidqi ¼ nih ðno summationÞ; ð5:6:43Þ

where the index i takes as many values, as there are degrees of freedom in the
system, ni are positive integers and h is the Planck constant. Since the units of the
product pq are

½p� q� ¼ Energy� Time;

the integral (5.6.43) is called the action modulus. One also observes that Ji is a
relative, first-order integral invariant.

Let us use the rule (5.6.43) to derive some essential properties of the one-
dimensional quantum harmonic oscillator. The system possesses a single degree of
freedom, and so the phase space reduces to a phase plane (p, q). Since the system is
conservative, the total energy is constant:

E ¼ T þ V ¼ p2

2m
þ 1

2
kq2 ¼ const:

Alternatively, dividing by E we get:

q2

2E
k

þ p2

2mE
¼ 1: ð5:6:44Þ

This shows that the trajectory in the phase plane is an ellipse, with its centre at the
origin of the coordinate system, the semi-axes a and b being given by

a ¼
ffiffiffiffiffiffiffiffi

2E

k

r

; b ¼
ffiffiffiffiffiffiffiffiffiffi

2mE
p

: ð5:6:45Þ
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The condition (5.6.43), corresponding to a single degree of freedom, reads:
I

pdq ¼ 2pn�h: ð5:6:46Þ

This integral is nothing else but the ellipse area in the phase plane:

pab ¼ p

ffiffiffiffiffiffiffiffi

2E

k

r
ffiffiffiffiffiffiffiffiffiffi

2mE
p

;

leading by the quantization condition (5.6.46) to

En ¼ n hm0 ¼ n�hx0: ð5:6:47Þ
Here, x0 is the angular frequency associated with the periodic motion of q.

The relation (5.6.47) shows that the quantum harmonic oscillator can exist only
in certain energy states. Further developments in quantum mechanics showed that
a better description is provided by the relation

En ¼ nþ 1
2

� �

hm0: ð5:6:48Þ

Going back to Eq. (5.6.44), one can see that to each quantized value of the
energy E corresponds an ellipse. Then the energy hypersurfaces (5.6.24) are here
reduced to some closed curves, being also current lines of the two-dimensional
phasic fluid. The relation p ¼ m _q shows that, if p[0, then q increases with time,
and thus we find the sense of the representative point on the trajectory (Fig. 5.3).

The state space has three dimensions, associated with q, p, t. The trajectory of
the representative point is a cylindrical helix, any cross section obtained by a plane
t = const. being an ellipse (Fig. 5.4), corresponding to the energy E = const. of the
harmonic oscillator.

Fig. 5.3 Energetic
representation of a quantum
harmonic oscillator in the
phase space.

Fig. 5.4 Trajectory in the
state space of the
representative point
associated to the harmonic
oscillator.
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5.7 Hamilton–Jacobi Formalism

5.7.1 Hamilton–Jacobi Equation

The canonical transformations studied in Sect. 5.4 are particularly useful in the
derivation of the canonical equations (5.4.6) in terms of the new variables
Qj;Pj ðj ¼ 1; nÞ in the simplest possible form, i.e.:

_Qj ¼ 0; _Pj ¼ 0 ðj ¼ 1; nÞ; ð5:7:1Þ

which can be integrated immediately, to yield

Qj ¼ bj; Pj ¼ aj ðj ¼ 1; nÞ; ð5:7:2Þ

where aj; bj are 2n constants of integration. Equations (5.4.6) yield (5.7.1) if the
Hamiltonian H does not depend on Qj and Pj, or if it is a constant. Since only the
derivatives of H occur in the canonical equations, we may take H ¼ 0. Let us then
find the canonical transformation leading to H ¼ 0.

If we choose qj;Pj as independent variables, the transformation formulas are
given by (5.4.16):

pj ¼
oF2

oqj

; Qj ¼ bj ¼
oF2

oPj

;
oF2

ot
þH q1; . . .;qn;

oF2

oq1
; . . .;

oF2

oqn

; t

� �

¼ 0 ðj ¼ 1;nÞ:

ð5:7:3Þ

Denoting

F2ðq1; . . .; qn;P1; . . .;Pn; tÞ ¼ F2ðq1; . . .; qn; a1; . . .; an; tÞ ¼ Sðq; tÞ; ð5:7:4Þ

equations (5.7.3) become:

pj ¼
oS

oqj

; bj ¼
oS

oaj

ðj ¼ 1; nÞ; ð5:7:5Þ

oS

ot
þH q1; . . .; qn;

oS

oq1
; . . .;

oS

oqn

; t

� �

¼ 0: ð5:7:6Þ

The first-order partial differential equation (5.7.6) is called the Hamilton–
Jacobi equation, while S(q, t) is Hamilton’s principal function. If we are able to
integrate the Hamilton–Jacobi equation, then, by substituting the solution
S(q, t) into (5.7.5)2, we find:

qj ¼ qjða1; . . .; an; b1; . . .; bn; tÞ ðj ¼ 1; nÞ;

i.e. the generalized coordinates as functions of time and 2n constants of integra-
tion, which are determined from the initial conditions. This means that the inte-
gration of the canonical equations, on the one hand, and of the Hamilton–Jacobi
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equation, on the other, are equivalent. Let us more thoroughly investigate the
solution of the Hamilton–Jacobi equation.

Jacobi’s Theorem. If S(q, a, t) is any complete solution of the Hamilton–
Jacobi equation (5.7.6), then the general solution of the canonical equations is
provided by (5.7.5).

Before proving the theorem, we remind the reader that a complete solution or
complete integral of a first-order partial differential equation is a solution of this
equation which contains as many independent arbitrary constants as there are
independent variables. In particular, if we choose t as an independent parameter,
then a complete solution of the Hamilton–Jacobi equation should contain n ? 1
independent constants. But, since only the partial derivatives of S appear in Eq.
(5.7.6), one of the constants a1; . . .; anþ1, say an+1, is purely additive and disap-
pears upon differentiation. Therefore, the most general form of a complete integral
of the Hamilton–Jacobi equation is

Sðq1; . . .; qn; a1; . . .; an; tÞ þ const. ð5:7:7Þ

The independent constants a1; . . .; an are called essential.
To prove the theorem, we start by taking the total time derivative of (5.7.5)2:

d

dt

oS

oaj

� �

¼ o

ot
þ
Xn

k¼1

_qk

o

oqk

 !

oS

oaj

¼ o2
S

otoaj

þ
Xn

k¼1

_qk

o2
S

oqkoaj

¼ 0

and also the partial derivative with respect to aj of the Hamilton–Jacobi equation:

o2
S

oajot
þ
Xn

k¼1

oH

oð oS
oqk
Þ

oð oS
oqk
Þ

oaj

¼ o2
S

oajot
þ
Xn

k¼1

oH

opk

o2
S

oqkoaj

¼ 0:

Subtracting these two equations one from the other, we find that

Xn

k¼1

_qk �
oH

opk

� �
o2

S

oqkoaj

¼ 0: ð5:7:8Þ

Assuming that

o2
S

oajoqk

�
�
�
�

�
�
�
�
6¼ 0; ð5:7:9Þ

we obtain:

_qk ¼
oH

opk

ðk ¼ 1; nÞ; ð5:7:10Þ

which is the first group of Hamilton’s equations.
Next, we take the total time derivative of (5.7.5)1 and the partial derivative with

respect to qk of the Hamilton–Jacobi equation (5.7.6):
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d

dt

oS

oqj

� �

¼ o2
S

oqjot
þ
Xn

k¼1

_qk

o2
S

oqjoqk

¼ _pj;

o2
S

oqjot
þ oH

oqj

þ
Xn

k¼1

oH

oð oS
oqk
Þ

oð oS
oqk
Þ

oqj

¼ o2
S

oqjot
þ oH

oqj

þ
Xn

k¼1

oH

opk

o2
S

oqjoqk

¼ 0:

Using (5.7.10) and assuming that

o2
S

oqjoqk

�
�
�
�

�
�
�
�
6¼ 0 ð5:7:11Þ

we obtain:

_pj ¼ �
oH

oqj

ðj ¼ 1; nÞ; ð5:7:12Þ

i.e. the second set of Hamilton’s equations.

Observation: Let us consider the action integral (2.7.17), taken on the generalized
trajectory, and assume that only one of the two end-points is fixed:

Sðq; _q; tÞ ¼
Z t

t0

Lðq; _q; tÞdt: ð5:7:13Þ

Take now the variation of the action for all possible neighbouring trajectories:

dS ¼
Xn

j¼1

oL

oqj

dqj

� �t

t0

þ
Z t

t0

Xn

j¼1

oL

oqj

� d

dt

oL

o _qj

� �� �

dqjdt:

Since on any of these trajectories the Lagrange equations are satisfied, the second
term above vanishes and we arrive at

dS ¼
Xn

j¼1

oL

o _qj

dqj ¼
Xn

j¼1

pjdqj; ð5:7:14Þ

which yields:

pj ¼
oS

oqj

ðj ¼ 1; nÞ: ð5:7:15Þ

On the other hand, the total time derivative of S is

dS

dt
¼ oS

ot
þ
Xn

j¼1

oS

oqj

_qj;
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from which, using (5.7.15), follows

� oS

ot
¼
Xn

j¼1

pj _qj � L ¼ Hðq;p; tÞ: ð5:7:16Þ

We can also write

dS ¼
Xn

j¼1

oS

oqj

dqj þ
oS

ot
dt ¼

Xn

j¼1

pjdqj �H dt;

which shows that the action S satisfies the canonicity condition required for the
generating function. For this reason, we used the same letter, S, to denote the
generating function of the canonical transformation (5.7.1). We also have

S ¼
Z

Ldt þ const.; ð5:7:17Þ

showing that Hamilton’s principal function differs from the indefinite time integral
of L by at most a constant.

5.7.2 Methods for Solving the Hamilton–Jacobi Equation

We should mention from the very beginning that there are no general methods of
finding a complete integral of the Hamilton–Jacobi equation. However, in some
particular cases, a complete integral can be determined by separation of variables.

5.7.2.1 Separation of Time

If the Hamiltonian H does not explicitly depend on time, we look for a solution of
the Hamilton–Jacobi equation of the form:

Sðq; a; tÞ ¼ Wðq; aÞ þ S1ða; tÞ: ð5:7:18Þ

Then, (5.7.6) becomes:

oS1ða; tÞ
ot

þH q;
oWðq; aÞ

oq

� �

¼ 0: ð5:7:19Þ

Since the first term depends only on the time variable and the second only on the
independent variables qj, Eq. (5.7.19) is satisfied only if the first term equals a
constant E and the second one equals -E. Thus,

oS1

ot
¼ �E; ð5:7:20Þ

and, by integration,

S1ða; tÞ ¼ �Et; ð5:7:21Þ

where the additive constant has been omitted. We have also
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H q1; . . .; qn;
oW

oq1
; . . .;

oW

oqn

� �

¼ E; ð5:7:22Þ

called the abbreviated (or restricted) Hamilton–Jacobi equation. Since the Ham-
iltonian H does not explicitly depend on time, the constant E is usually the total
energy of the system.

As one can see, the function W depends essentially on the constant E, which
cannot be independent of the other constants a1; . . .; an. But the number of the
independent constants must be n and it is customary to choose an = E. Then the
complete integral (5.7.18) reads:

Sðq1; . . .; qn; a1; . . .; an; tÞ ¼ �Et þWðq1; . . .; qn; a1; . . .; an�1;EÞ; ð5:7:23Þ

while Eqs. (5.7.5) yield:

oW

oak

¼ bk ðk ¼ 1; n� 1Þ; ð5:7:24Þ

oW

oE
� t ¼ �t1ðconst.Þ; ð5:7:25Þ

oW

oqj

¼ pj ðj ¼ 1; nÞ: ð5:7:26Þ

The n - 1 equations (5.7.24) determine the generalized trajectory in the con-
figuration space, Eq. (5.7.25) gives the law of motion, i.e. the generalized coor-
dinates as functions of time, while (5.7.26) define the generalized momenta. The
constant t1 has the units of time and only one sign is chosen.

5.7.2.2 Separation of Variables

The Hamilton–Jacobi formalism is useful when the variables are separable,
meaning that S can be written as a sum of n functions, each function depending
only on a single variable. In this case, the Hamilton–Jacobi equation leads to
n first-order differential equations in each variable. There are also situations in
which only part of the variables are separable.

A particular case of separable variables are the cyclic ones. Assume that the
variable qn is cyclic and look for the solution S of the form

Sðq1; . . .; qn; a1; . . .; an; tÞ ¼ S0ðq1; . . .qn�1; a1; . . .; an; tÞ þ a0qn: ð5:7:27Þ

The generalized momenta are:

pk ¼
oS0

oqk

ðk ¼ 1; n� 1Þ;

pn ¼ a0;

ð5:7:28Þ
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and the Hamilton–Jacobi equation reads:

oS0

ot
þH q1; . . .; qn�1;

oS0

oq1
; . . .;

oS0

oqn�1
; a0; t

� �

¼ 0: ð5:7:29Þ

The constant a0 must depend on the essential constants a1; . . .; an, so that the most
convenient choice is a0 ¼ an. Consequently, (5.7.5)2 leads to:

oS0

oak

¼ bk ðk ¼ 1; n� 1Þ;

oS0

oan

þ qn ¼ bn:

ð5:7:30Þ

If there are several cyclic variables, say qa ða ¼ r; nÞ, the generalized complete
integral is

Sðq1; . . .; qn; a1; . . .; an; tÞ ¼ S0ðq1; . . .; qr�1; a1; . . .; an; tÞ þ
Xn

a¼r

aaqa: ð5:7:31Þ

Example. Let us illustrate the separation of variables in the case of a particle
moving in a conservative force field F = -grad V, admitting that V ¼ Vðr; hÞ
(cylindrical symmetry). The corresponding Hamiltonian is:

H ¼ 1
2m

p2
r þ

1
r2

p2
h þ

1

r2 sin2 h
p2

u

� �

þ Vðr; hÞ: ð5:7:32Þ

The variable u is automatically separated due to its cyclicity, and the other two
variables, r and h, can be separated if the potential is of the form:

Vðr; hÞ ¼ uðrÞ þ 1
r2

vðhÞ: ð5:7:33Þ

The Hamilton–Jacobi equation reads:

oS

ot
þ 1

2m
p2

r þ
1
r2

p2
h þ

1

r2 sin2 h
p2

u

� �

þ uðrÞ þ 1
r2

vðhÞ ¼ 0: ð5:7:34Þ

Since the Hamiltonian does not depend explicitly on time, we can take

S ¼ �Et þWðr; h;uÞ;

which leads to

1
2m

oW

or

� �2

þuðrÞ þ 1
2mr2

oW

oh

� �2

þ 1
r2

vðhÞ þ 1

2mr2 sin2 h

oW

ou

� �2

¼ E:

ð5:7:35Þ

Since the variable u is cyclic, we choose

Wðr; h;uÞ ¼ upu þ RðrÞ þHðhÞ: ð5:7:36Þ
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This leads to the separation of variables in (5.7.35). Following the usual procedure,
we find:

1
2m

dR

dr

� �2

þuðrÞ þ a

2mr2
¼ E;

dH
dh

� �2

þ2mvðhÞ þ
p2

u

sin2 h
¼ a;

where a is a constant. The solutions R(r) and HðhÞ of these equations, when
introduced into W, deliver the complete integral:

S ¼ �Et þWðr; h;u; a;E;puÞ; ð5:7:37Þ

where

Wðr; h;u; a;E;puÞ ¼ upu þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mE� 2muðrÞ � a

r2

r

dr

þ
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� 2mvðhÞ �
p2

u

sin2 h

s

dh: ð5:7:38Þ

With this solution, Eqs. (5.7.24) and (5.7.25) give, respectively, the trajectory and
the equation of motion. The explicit form of u(r) and v(h) depend on the concrete
conditions of the problem.

5.7.2.3 Separation of Pair-Variables

Suppose that the variables qn and pn ¼ oS
oqn

appear in the Hamilton–Jacobi equa-

tion only as the combination

fn qn;
oS

oqn

� �

: ð5:7:39Þ

In this case, the Hamilton–Jacobi equation reads:

oS

ot
þH q1; . . .; qn�1;

oS

oq1
; . . .;

oS

oqn�1
; fn qn;

oS

oqn

� �

; t

� �

¼ 0: ð5:7:40Þ

We look for a complete integral of the form

S ¼ S0ðq1; . . .; qn�1; tÞ þ SnðqnÞ; ð5:7:41Þ

which leads us to

oS0

ot
þH q1; . . .; qn�1;

oS0

oq1
; . . .;

oS0

oqn�1
; fn qn;

oSn

oqn

� �

; t

� �

¼ 0: ð5:7:42Þ

5.7 Hamilton–Jacobi Formalism 271



This equation becomes an identity with respect to qn if Sn satisfies the differential
equation

fn qn;
oSn

oqn

� �

¼ anðconst.Þ; ð5:7:43Þ

so that

oS0

ot
þH q1; . . .; qn�1;

oS0

oq1
; . . .;

oS0

oqn�1
; an; t

� �

¼ 0; ð5:7:44Þ

which is a equation with n partial derivatives of S0. The function Sn can be found
by reversing (5.7.43):

oSn

oqn

¼ Fnðqn; anÞ

and integrating the result:

Sn ¼
Z

Fnðqn; anÞdqn: ð5:7:45Þ

If this procedure can be continued further, then we may, for example, have:

Sðq1; . . .; qn; a1; . . .; an; tÞ ¼ S0ðq1; . . .; qr�1; a1; . . .; an; tÞ þ
Xn

k¼r

Z

Fkðqk; akÞdqk:

ð5:7:46Þ

If all the variables q1; . . .; qn; t can be separated, the form of a complete integral of
the Hamilton–Jacobi equation is:

Sðq1; . . .; qn; a1; . . .; an; tÞ ¼ �Eða1; . . .; anÞt þ
Xn

k¼1

Skðqk; akÞ: ð5:7:47Þ

Each one of the functions Fk ðk ¼ 1; nÞ are obtained by inverting equations of
the form

fk qk;
oSk

oqk

� �

¼ ak: ð5:7:48Þ

The dependence of the energy E upon a1; . . .; an is obtained by introducing
W ¼

P

k Sk into the abbreviated Hamilton–Jacobi equation (5.7.22). We notice
that the separation of the cyclic variables can be discussed as a particular case
of this procedure. Indeed, for a cyclic variable, say qa, we have oSa

oqa
¼ fa, then

by taking fa ¼ aa and integrating the result, we arrive at Sa ¼ aaqa (no
summation).
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5.7.3 Applications

5.7.3.1 Free Particle

Let us study, in the Hamilton–Jacobi formalism, the motion of a free particle of
mass m. Since no force acts on the particle and pi ¼ oS

oqi
by (5.7.5), the Hamilton–

Jacobi equation is

oS

ot
þ 1

2m
ðgrad SÞ2 ¼ 0: ð5:7:49Þ

The Hamiltonian does not explicitly depend on time and all the variables x, y, z are
cyclic, therefore a completely separated solution is

S ¼ �Et þ a � r: ð5:7:50Þ

In order for (5.7.50) to be a solution of (5.7.49), we must have

E ¼ 1
2m

a2;

consequently

S ¼ � a2

2m
t þ a � r: ð5:7:51Þ

Next, using (5.7.5), we get:

b ¼ r� 1
m

at;

which is the law of motion

r ¼ 1
m

at þ b; ð5:7:52Þ

as well as the first integral:

p ¼ grad S ¼ aðconst.Þ: ð5:7:53Þ

If we do not wish to separate the variables in the Hamilton–Jacobi equation
(5.7.49), we can take as a complete integral

S ¼ m

2t
ðr� aÞ2: ð5:7:54Þ

Again using (5.7.5), we arrive at a similar result:

r ¼ � 1
m

bt þ a; ð5:7:55Þ

p ¼ grad S ¼ �b: ð5:7:56Þ
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5.7.3.2 Linear Harmonic Oscillator

Since the system possesses one degree of freedom and the Hamiltonian is time-
independent, we search for a complete integral of the form

S ¼ Wðx;EÞ � Et: ð5:7:57Þ

The abbreviated Hamilton–Jacobi equation,

1
2m

dW

dx

� �2

þ 1
2
mx2

0x
2 ¼ E; ð5:7:58Þ

has the solution

Wðx;EÞ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mE�m2x2
0x

2
q

dx:

The integration is performed via the substitution x ¼
ffiffiffiffiffiffiffiffiffi

2E
mx2

0

q

sin u, so that

Wðx;EÞ ¼ E

x0
uþ 1

2
sin 2u

� �

;

and (5.7.57) finally reads:

S ¼ x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mE�m2x2
0x

2
q

þ E

x0
arcsin

ffiffiffiffiffiffiffiffi
m

2E

r

x0x

� �

� Et:

Using (5.7.5), we obtain:

t1 ¼
oS

oE
¼ �t þ 1

x0
arcsin

ffiffiffiffiffiffiffiffi
m

2E

r

x0x

� �

;

p ¼ oS

ox
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2mE�m2x2
0x

2Þ
q

and, finally, with the substitution t1x0 ¼ uðconst.Þ:

x ¼ 1
x0

ffiffiffiffiffiffiffiffi

2E

m

r

sinðx0t þ uÞ;

p ¼
ffiffiffiffiffiffiffiffiffiffi

2mE
p

cosðx0t þ uÞ;
which is the expected result.

5.7.3.3 Newtonian Central Force

As we know (see Chap. 3), the trajectory of a particle subject to such a force lies in
a plane. Let us choose q1 ¼ r; q2 ¼ u as the Lagrangian parameters. Since
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FðrÞ ¼ � k

r2
¼ �ðgrad VÞr ¼ �

dV

dr
;

by integrating from r to ?, with V(?) = 0, we have:

V ¼ � k

r
:

The Hamiltonian is then:

H ¼ 1
2m

p2
r þ

1
r2

p2
u

� �

� k

r
: ð5:7:59Þ

The cyclic variable u is associated with the first integral

pu ¼ mr2 _u ¼ const. ð5:7:60Þ
The Hamilton–Jacobi equation,

oS

ot
þ 1

2m

oS

or

� �2

þ 1
r2

oS

ou

� �2
" #

� k

r
¼ 0; ð5:7:61Þ

is a particular case of (5.7.34), with h ¼ p
2 ;ph ¼ 0; vðhÞ ¼ 0; uðrÞ ¼ � k

r
: Then,

we can take

S ¼ �Et þ upu þ RðrÞ

and so we get

1
2m

dR

dr

� �2

þ 1
r2

p2
u

" #

� k

r
¼ E: ð5:7:62Þ

Recalling that pu ¼ const., we can recast (5.7.62) in the form:

r2 dR

dr

� �2

�2mEr2 � 2mkr ¼ �p2
u ¼ �2cðconst.Þ

and then integrate, to find a complete integral of (5.7.62) with the expression

Wðr;u;E; cÞ ¼
ffiffiffiffiffi

2c
p

uþ
Z

1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mEr2 þ 2mkr� 2c
p

dr: ð5:7:63Þ

The trajectory is given by (5.7.24):

oW

oc
¼ c1ðconst.Þ;

which, upon differentiation, yields:

u� u0 ¼
Z ffiffiffiffiffi

2c
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mEr2 þ 2mkr� 2c
p dr; c1

ffiffiffiffiffi

2c
p

¼ u0ðconst.Þ: ð5:7:64Þ
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The integral is easily worked out by using the following substitution:

x ¼
ffiffiffiffiffi
2c
p

r
; p ¼ 2mk

ffiffiffiffiffi
2c
p ; q ¼ 2mE; ð5:7:65Þ

which gives:

u� u0 ¼ arccos
x� p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qþ p2

4

q ¼ arccos

1
r
� mkffiffiffiffi

2c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mE
c þ m2k2

4c2

q

Using the notation

mk

2c
¼ 1

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mE

c
þ m2k2

4c2

s

¼ e

p
;

we finally arrive at the previously established result,

1
r
¼ 1

p
½1þ e cosðu� u0Þ�; ð5:7:66Þ

which says that, when subject to a Newtonian central force field, the particle
describes a conic.

5.7.3.4 Symmetrical Top

As a final example, using the Hamilton–Jacobi formalism, let us find the finite
equation of motion (4.6.26) of the symmetrical top. To this end, we use the
Lagrangian (4.6.14):

L ¼ 1
2

I01ð _u2 sin2 hþ _h2Þ þ 1
2
I03ð _u cos hþ _wÞ2 �Mgl cos h:

Since the variables u;w are cyclic, the associated conjugate momenta pu; pw are
first integrals and if we choose q1 ¼ u; q2 ¼ h; q3 ¼ w, we find:

pu ¼ ðI01 sin2 hþ I03 cos2 hÞ _uþ I03
_w cos h ¼ C1;

ph ¼ I01
_h;

pw ¼ I03ð _u cos hþ _wÞ ¼ C2:

The Hamilton–Jacobi equation then reads:

oS

ot
þ 1

2
p2

h

I01
þ

p2
w

I03
þ 1

I01

ðpu � pw cos hÞ2

sin2 h

" #

þMgl cos h ¼ 0: ð5:7:67Þ

Since H does not depend explicitly on t;u; or w, we can take

S ¼ �Et þWðu; h;wÞ ¼ �Et þ C1uþ C2wþHðhÞ: ð5:7:68Þ
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The substitution of (5.7.68) into (5.7.67) leads to an equation with h as single
variable:

1
2

1
I01

dH
dh

� �2

þC2
2

I03
þ 1

I01

ðC1 � C2 cos hÞ2

sin2 h

" #

þMgl cos h ¼ E;

which can be integrated to give

HðhÞ ¼
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I01 sin2 hðE� A�Mgl cos hÞ � ðC1 � C2 cos hÞ2
q

sin h
dh;

where A ¼ C2
2

2I03
. Therefore, a complete integral of the equation (5.7.67) is:

Wðu;h;w;C1;C2;EÞ¼C1uþC2w

þ
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I01 sin2 hðE�A�MglcoshÞ�ðC1�C2 coshÞ2
q

sinh
dh:

Following the general procedure, the finite equation of motion for the coordinate h
is found by applying (5.7.25):

t � t1 ¼ �
R

I01 sin h dh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I01 sin2 hðE� A�Mgl cos hÞ � ðC1 � C2 cos hÞ2
q :

With the change of variable cos h ¼ u and the notations (see (4.6.24))

a ¼ 2ðE� AÞ
I01

¼ 2E1

I01
; b ¼ 2Mgl

I01
; C1 ¼ I01b; C2 ¼ I01a;

we arrive at:

t � t1 ¼
Z

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� u2Þða� buÞ � ðb� auÞ2
q ;

which is precisely Eq. (4.6.26).

Conclusion. The Hamilton–Jacobi formalism provides an ingenious and efficient
method of integrating the canonical system of equations. This formalism consists
in the determination of a complete integral of a single first-order partial derivative
equation. This procedure is most useful when the possibility of the separation of
variables exists.
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5.7.4 Action–Angle Variables

In many physical problems we deal with systems performing a periodic motion. A
useful procedure of studying these problems derives from the Hamilton–Jacobi
formalism and consists in using some new canonical variables: Ja – action variables
and wa – angle variables, instead of the constant canonical parameters (5.7.2).

5.7.4.1 Systems with One Degree of Freedom

To make the procedure as clear as possible, let us first consider a conservative
system with one degree of freedom. Then we can write

Hðq;pÞ ¼ E; ð5:7:69Þ

which is the implicit equation of a curve in the phase plane and represents the
generalized trajectory corresponding to the evolution of the given system pos-
sessing the constant energy E.

The properties of the periodical motion are given by the type of the generalized
trajectory. We can speak about two types of periodical motion:

1. If the generalized trajectory is a closed curve, the motion is called vibration.
(In most books on mechanics the term libration is used instead; but, since the
linear harmonic oscillator falls into this category, the word ‘vibration’ would be
more appropriate for a physicist.) In this case, q oscillates between two constant
values, both q and p being periodical functions of time with the same period
(Fig. 5.5a).

2. If by solving Eq. (5.7.69) we obtain

p ¼ pðq;EÞ ð5:7:70Þ

as a periodical function of q with period q0, i.e. p(q + kq0, E) = p(q, E), with
k integer, the periodical motion is termed as rotation or, sometimes, revolution.
In this case the coordinate q can take any value (Fig. 5.5b). A very simple
example for such a system is a rigid body rotating about a fixed axis, the
generalized coordinate q being the angle of rotation.

It is important to note that a certain system can perform, in certain conditions,
either vibration or rotation motions. For example, let us consider again the case of
the simple pendulum discussed in Chap. 3, Sect. 3.4. Using the Lagrangian (3.4.1),
we can construct the Hamiltonian and (5.7.69) yields:

1
2mR2

p2 �mgR cos h ¼ E;

where p is the momentum conjugated to the coordinate h. The equation of the
generalized trajectory in the phase plane (h, p) is then

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mR2ðEþmgR cos hÞ
p

: ð5:7:71Þ
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If E \ mgR, the pendulum performs periodical motions as the angle h varies
between -h0 and h0, where h0 is defined by

cos h0 ¼ �
E

mgR
: ð5:7:72Þ

In this case we have a vibration-type motion, the generalized trajectories in the
phase plane (h, p) being the closed curves (1) as shown in Fig. 5.5c. But if E [
mgR, there are no limitations for the angle h, and the pendulum rotates around the
suspension point. The corresponding generalized trajectories are the curves (3) in
Fig. 5.5c. A special situation appears in the limit case E = mgR, marked on
Fig. 5.5c by the curves (2) or (20). These curves correspond to the situation when
the pendulum reaches the positions with h = ±p (in general h = (2k + 1)p), where
p = 0, therefore these are positions of unstable equilibrium. A small perturbation
can remove the pendulum from such a position, and the representative point may
trace out either curve (2), or curve (20).

We define the action variable by

J ¼
I

p dq; ð5:7:73Þ

Fig. 5.5 Geometrical representations of the action variable in the phase space under various
conditions.
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where the integral is taken over a complete cycle of variation of q. It represents
either the area of the closed curve of Fig. 5.5a (vibration), or the shadowed area of
Fig. 5.5b corresponding to a period of motion (rotation). It is obvious that J has the
dimension of angular momentum (or of action integral). In view of (5.7.70),
we have:

J ¼ JðEÞ; ð5:7:74Þ
or, if we invert the functional dependence,

E ¼ EðJÞ: ð5:7:75Þ

The complete integral corresponding to the Hamiltonian (5.7.69) is S(q, E) (with a
single essential constant E), therefore by means of (5.7.75) we can write:

S ¼ Sðq; JÞ: ð5:7:76Þ

The canonical coordinate w associated with J is called the angle variable, being
defined by

w ¼ oS
oJ
; ð5:7:77Þ

while the new Hamiltonian, in view of (5.7.69) and (5.7.75), is:

H ¼ HðJÞ: ð5:7:78Þ

Since the coordinate w is conjugated to an angular momentum, its dimension is
that of an angle.

With this choice, the canonical equations yield:

_J ¼ 0; _w ¼ oH
oJ
¼ mðJÞ; ð5:7:79Þ

meaning that J is a constant (which is already known from (5.7.74)) and, conse-
quently, m is also a constant (depending on J). Integrating (5.7.79)2, we obtain:

w ¼ mt þ u: ð5:7:80Þ

To find the significance of the constant m, let us determine the variation of the
angle variable w when q performs a complete cycle of variation (either vibration or
rotation). We have

Dw ¼
I

ow

oq
dq;

or, using (5.7.77) and the definition oS
oq
¼ p,

Dw ¼
I

o2S
oqoJ

dq ¼
I

op

oJ
dq ¼ d

dJ

I

p dq ¼ 1: ð5:7:81Þ

If we denote by s the period corresponding to a complete cycle, from (5.7.80) and
(5.7.81) we obtain Dw ¼ ms ¼ 1, hence:
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m ¼ 1
s
: ð5:7:82Þ

This result means that m is the frequency of the periodical variation of q. It then
follows that we can determine the period of the motion if we know the dependence
of the Hamiltonian on the variable J, without solving the equations of motion.
Inverting relation (5.7.76) and using (5.7.80), we can obtain the time-dependence
of the coordinate q. If the coordinate q is cyclic, the corresponding momentum p is
conserved, p = const. The representative point then traces a straight line in the
(q, p)-plane. This can be regarded as a limiting case of rotation (see Fig. 5.5c,
curve 3) with arbitrary period. Since w is an angle variable, it is natural to choose
its period as 2p. Consequently, for cyclic coordinates, the corresponding action
variable is always J = 2pp.

Example. Let us now apply the aforementioned formalism to the motion of
vibration of a simple pendulum. Using (5.7.71), the action variable J reads:

J ¼ �2
Z�h0

h0

½2mR2ðEþmgR cos hÞ�
1
2 dh ¼ 4

Zh0

0

½2mR2ðEþmgR cos hÞ�
1
2 dh:

By virtue of (5.7.69), we can write (5.7.79)2 in the form

mðJÞ ¼ oH
oJ
¼ oJ

oE

� ��1

:

Then, according to (5.7.82), the period can be written as

s ¼ dJ

dE
;

or, after the derivative is performed,

s ¼ 4
Zh0

0

2g

R
ðcos h� cos h0Þ�

1
2 dh;

which is an already known formula (see Chap. 3, Sect. 3.4). In the case of small
oscillations, using the Hamiltonian

H ¼ 1
2mR2

p2 þ 1
2
mgR2h ¼ E;

we easily obtain

J ¼ 2pE

ffiffiffiffiffi

R

g

s

; ð5:7:83Þ

yielding the well-known relation

s ¼ 2p

ffiffiffiffiffi

R

g

s

: ð5:7:84Þ
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5.7.4.2 Systems with Many Degrees of Freedom

Next, we shall generalize this formalism for conservative systems with many
degrees of freedom. Assuming that the variables are completely separable, a
complete integral W of the abbreviated Hamilton–Jacobi equation can be written as

Wðq; aÞ ¼
Xn

j¼1

Sjðqj; aÞ ða � a1; . . .; anÞ ð5:7:85Þ

and Eqs. (5.7.5)1 give:

pj ¼
oSjðqj; aÞ

oqj

ðj ¼ 1; n; no summationÞ;

or

pj ¼ pjðqj; aÞ ðj ¼ 1; nÞ: ð5:7:86Þ

For a given index j, this is the equation of a curve in the phase plane ðqj; pjÞ.
Therefore we can introduce the action–angle variables only if, for any j, these
curves are either closed (vibration), or correspond to some periodical functions of
qj (rotation).

Thus, the action variables Jj are defined by

Jj ¼
I

pj dqj ¼
I

oSjðqj; aÞ
oqj

dqj ðno summationÞ: ð5:7:87Þ

These integrals are calculated for a complete cycle of variation of qj and can be
considered as the increase of the generating functions Sj during this cycle. The last
relation yields

Jj ¼ JjðaÞ ðj ¼ 1; nÞ; ð5:7:88Þ

or, by inverting the functional dependence,

aj ¼ ajðJÞ ðj ¼ 1; nÞ; ð5:7:89Þ

which is possible because the Jacobian q(J)/q(a) is always non-zero. Here, by J we
mean the set of variables J1; . . .; Jn.

Now, we can write:

Sj qj; aðJÞ
� 


¼ Sðqj; JÞ; ð5:7:90Þ

as well as Sða; JÞ ¼
Pn

j¼1 Sj: Using again (5.7.5), we obtain the canonical
transformation from the set of variables (q, p) to the set (J, w):

wj ¼
oS
oJj

; pj ¼
oS
oqj

¼ oSj

oqj

ðj ¼ 1; nÞ: ð5:7:91Þ
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The first n relations (5.7.91) define the angle variables wj. In order to define the
new Hamiltonian, we recall that the system is conservative and, therefore, we can
write H(q, p) = E(a). In view of (5.7.89), this yields:

H ¼ HðJÞ;

which shows that H does not depend on the new canonical variables w.
The canonical equations, written in terms of the new variables J and w, are:

_Jj ¼
oH
owj

¼ 0; _wj ¼
oH
oJj

¼ mjðJÞ ðj ¼ 1; nÞ; ð5:7:92Þ

and, by integration,

Jj ¼ const.; wj ¼ mjt þ uj ðj ¼ 1; nÞ: ð5:7:93Þ

Let us now show that the quantities mj have the significance of frequencies of
the motion. One first observes that, according to the definition (5.7.91), the vari-
ables wj depend on coordinates q. To realize the meaning of this dependence, we
shall calculate the variation of wj while one coordinate – say qk – performs a cycle
of variation, the other ones being fixed. Obviously, during the variation all Jj

remain unchanged. Denoting this variation by Dkwj, we have:

Dkwj ¼
I

owj

oqk

dqk ¼
I

o2S
oqkoJj

dqk ¼
o

oJj

I
oS
oqk

dqk ¼
oJk

oJj

¼ djk:

ð5:7:94Þ

This relation shows that wk is a monotonic periodical function of the coordinates
qk ðk 6¼ jÞ (it increases by 1 after each complete cycle). But this fact does not
allow us to conclude on the behaviour of mj, as we did in problems with one degree
of freedom, because all the coordinates change during the motion.

Using Eqs. (5.7.91), we can write the canonical transformations (q, p) ? (J, w)
and their inverse as well:

qj ¼ qjðJ;wÞ; pj ¼ pjðJ;wÞ ðj ¼ 1; nÞ: ð5:7:95Þ
According to (5.7.94), in the case of vibration, we have:

qjðJ;wþmÞ ¼ qjðJ;wÞ; ð5:7:96Þ

where w + m means the set ðw1 þm1; . . .;wn þmnÞ, with mk integers ðk ¼ 1; nÞ. In
the case of rotation, we have:

qjðJ;wþmÞ ¼ qjðJ;wÞ þ q0
jnj;

where qj
0 are the periods of the functions (5.7.95). One observes that the quantities

q0j ¼ qj � q0
jwj satisfy the relations (5.7.96), which means that we can use in the

case of rotation, for the quantities qj
0, the formalism developed for vibration.
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Assume that the frequencies mj are commensurable, that is there exist integers
mj and mk so that

mj

mj

¼ mk

mk

; ð5:7:97Þ

for any j; k ¼ 1; n. Therefore, after a time interval

s ¼ mj

mj

¼ mk

mk

ð5:7:98Þ

all coordinates qj recover their values:

qjðt þ sÞ ¼ qjðtÞ; ð5:7:99Þ

meaning that the real motion is periodical with period s. Indeed, using (5.7.93) and
(5.7.98), we have:

wjðt þ sÞ ¼ wjðtÞ þmj ðj ¼ 1; nÞ ð5:7:100Þ
and (5.7.96) leads to the above statement. It can be shown that, starting from
(5.7.99), we arrive at the condition of commensurable frequencies (5.7.97).

If condition (5.7.97) is satisfied for any j, k, and hence (5.7.99) is fulfilled for
any j, we call the system completely degenerated and the real motion is a truly
periodical motion. Even in this situation, the frequencies mj cannot be identified
with the individual frequencies of the motion. Indeed, if (5.7.99) are satisfied for
any j, the only thing we can say is that there exist the quantities sj ðj ¼ 1; nÞ so
that the conditions (5.7.98) can be written as

s ¼ mjsj ¼ mksk:

In this case sj is the shortest time interval for which the relation qjðt þ sÞ ¼ qjðtÞ
holds true, for any j and t, i.e. sj is the period of qj(t) only.

If relation (5.7.100) holds true only for certain values of j, the system is called
simply degenerated. If the frequencies are not commensurable for any pair mj; mk,
the system is said to be periodically conditioned. In this case the system does not
come back to its initial state, and the generalized trajectory in the configuration
space fills up a certain domain in this space. The action–angle formalism proves to
be a powerful tool in such cases, since it provides all the frequencies of the
individual motions, without the complete solutions being known.

Example. Let us discuss the Kepler problem within the frame of the action–angle
formalism. The problem is described by the Hamiltonian (5.7.32) with the
potential (5.7.33), in which u(r) = -|k|/r, v(h) = 0. We denote pu ¼ l3; a ¼ l2,
where l is the magnitude of the angular momentum. The complete integral cor-
responding to our problem is then (see (5.7.38)):

S ¼ �Et þ ul3 þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mEþ 2m
jkj
r
� l2

r2

r

drþ
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � l23

sin2 h

s

dh;
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leading to the action variables:

Ju ¼
I

oSu

ou
du ¼

I

l3 du; ð5:7:101Þ

Jh ¼
I

oSh

oh
dh ¼

I

l2 � l23

sin2 h

� � 1
2

dh; ð5:7:102Þ

Jr ¼
I

oSr

or
dr ¼

I

2mEþ 2mjkj
r
� l2

r2

� � 1
2

dr: ð5:7:103Þ

The first integral yields:

Ju ¼ 2pl3; ð5:7:104Þ

as we expected, since u is a cyclic variable.
In a cycle, the variable h increases from -h0 to h0, then decreases from h0 to

-h0, where

h0 ¼ arcsin
l3

l
;

therefore

Jh ¼ 4
Zh0

0

l2 � l23

sin2 h

� � 1
2

dh:

The integral is easily worked out with the substitution

sin h ¼
1þ l23

l2
x2

1þ x2

" # 1
2

;

which gives:

Jh ¼ 4l 1� l23
l2

� �Z1

0

ð1þ x2Þ 1þ l23
l2

x2

� �� ��1

dx;

and finally:

Jh ¼ 2pðl� l3Þ: ð5:7:105Þ

The motion is periodical only for E\0. In this case, r varies cyclically from rm

to rM and back to rm, where rm and rM are the roots of the equation
2mEr2 þ 2mjkjr� l2 ¼ 0. Then, the integral (5.7.103) can be written as
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Jr ¼ 2
ZrM

rm

½2mEr2 þ 2mjkjr� l2�
1
2 dr:

Using the substitution

½2mEðr� rmÞðr� rMÞ�
1
2 ¼ yðr� rMÞ;

we finally obtain:

Jr ¼ pjkj
ffiffiffiffiffiffiffiffi

2m

jEj

s

� 2pl: ð5:7:106Þ

Relations (5.7.104) and (5.7.105) yield Jh þ Ju ¼ 2pl and therefore (5.7.106)
leads to

H � E ¼ �2p2mk2ðJr þ Jh þ JuÞ�2: ð5:7:107Þ

In view of (5.7.92), the frequencies are:

mr ¼ mh ¼ mu ¼ 4p2mk2ðJr þ Jh þ JuÞ�3; ð5:7:108Þ

which means that the system is completely degenerated. The motion is periodical,
with the period s ¼ 1

mr
¼ 1

mh
¼ 1

mu
, that can be expressed, using (5.7.107), as

s ¼ pjkj
ffiffiffiffiffiffiffiffiffiffiffiffi

m

2jEj3
r

;

which is nothing else but Kepler’s third law (see Chap. 3, Sect. 3.2.2).

Observation: Since the integrals (5.7.101) and (5.7.102) do not depend on V(r),
the relation 2pl ¼ Jh þ Ju holds true for any central field. Consequently, by
integrating (5.7.103) for any given V(r) we obtain E as a function of Jr and l,
which means that E depends on Jh and Ju only through the sum Jh þ Ju.
Consequently, the frequencies mh and mu are always equal. This simple degen-
eracy of the motion in a central field is a consequence of the fact that the motion
takes place in a plane, orthogonal to the angular momentum l, and thus the
variations of the angles h and u are related (a variation of 2p in u corresponds
to a variation of 4|h0| in h).
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5.7.5 Adiabatic Invariants

Consider a mechanical system whose Hamiltonian depends on some real param-
eter k: H = H(q, p, k). This parameter can be internal (i.e. characterizes the
system itself) or external (e.g. defines the external field in which the system is
placed). We shall also assume that the problem of motion of the system can be
solved by using the action–angle variables for all fixed values of k and that there is
no relation of type (5.7.97) (the system is not degenerated).

If k depends on time, the system is not conservative and, therefore, the action
variables Jj are not constant. Nevertheless, it can be shown that, if k varies slowly
in time, that is if

s _k� k;

where s is the period of the motion, then the action variables Jj still remain
unchanged. Such quantities are called adiabatic invariants.

The adiabatic invariants have been originally defined by Paul Ehrenfest in
connection with the earliest research on quantum theory of the atom. For example,
the Bohr–Sommerfeld quantization rules were postulated precisely for the adia-
batic invariants Jj. During the recent years, the study of adiabatic invariants has
been resumed, in connection with their use in plasma physics, thermonuclear
processes, particle accelerators, etc.

To simplify the discussion, we consider a system with only one degree of
freedom, for which we rewrite (5.7.69) and (5.7.70) as follows:

Hðq;p; kÞ ¼ E; ð5:7:109Þ

and

p ¼ pðq;E; kÞ; ð5:7:110Þ

with the parameter k varying slowly in time. Introducing (5.7.110) into (5.7.73), it
results that J depends on time through k. To determine the time variation of J over
a period of motion, we first calculate its derivative with respect to time:

dJ

dt
¼
I

op

oE

dE

dt
þ op

ok
_k

� �

dq; ð5:7:111Þ

and then take the average for one period of motion. By virtue of (5.7.109), we have:

dE

dt
¼ oH

ot
¼ oH

ok
_k: ð5:7:112Þ

By averaging this relation and assuming that during the time interval s; _k is
practically constant, we obtain:
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dE

dt
¼ _k

oH

ok
¼ 1

s
_k
Zs

0

oH

ok
dt: ð5:7:113Þ

The dependence of the rate of change of the energy on the time variation of k is

taken into account in (5.7.113) through the factor _k, therefore oH
ok under the

integral can be considered only as a function of the varying q and p, for fixed k.
Using the canonical equation _q ¼ oH=op, we can replace the integration with
respect to time by one with respect to the coordinate q. Since

dt ¼ oH

op

� ��1

dq and s ¼
Zs

0

dt;

we have:

dE

dt
¼ _k

H
oH
ok

oH
op

	 
�1
dq

H
oH
op

	 
�1
dq

; ð5:7:114Þ

with the integrals taken for fixed k. Consequently, we regard k and E as constant
independent parameters in (5.7.109) and (5.7.110). Thus, H depends on k
explicitly, and implicitly through p, therefore the derivative with respect to k of
(5.7.109) is:

oH

ok
þ oH

op

op

ok
¼ 0:

This relation serves to obtain

oH

ok
oH

op

� ��1

¼ � op

ok
:

Since, according to (5.7.109) and (5.7.110), we also have:

oH

op

� ��1

¼ op

oE
;

introducing the last two relations into (5.7.114), we arrive at

dE

dt
¼ � _k

H
op
ok dq

H
op
oE

dq
:

As neither _k, nor dE
dt

depend on q, the last relation can be written as
I

op

oE
_Eþ op

ok
_k

� �

dq ¼ 0:
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Comparing now this equation with (5.7.111), we finally obtain:

dJ

dt
¼ 0;

where J ¼
H

pdq, meaning that in this approximation the action variable J remains
unchanged during the variation of the parameter k. Therefore, J is an adiabatic
invariant.

For oscillatory motion, the adiabatic invariant J ¼
H

pdq represents the area of
the surface bounded by the closed generalized trajectory in phase space. In the case
of a one-dimensional oscillator, for example, as we know (see (5.6.45)), the path in

the phase plane q, p is an ellipse with semi-axes a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E=mx2
p

; b ¼
ffiffiffiffiffiffiffiffiffiffi

2mE
p

which has the area

pab ¼ 2p
E

x
;

and thus J = 2pE/x is an adiabatic invariant. In other words, if the parameters of
the linear oscillator vary slowly, the energy and the frequency are proportional.

We also mention, as another example, the case of the simple pendulum. Here
we can take as the slowly varying parameter either its length l, or the gravitational
acceleration g. In view of (5.7.83) and (5.7.84) it then results that the ratio of the
energy E to the frequency m ¼

ffiffiffiffi
g

l

p

is practically constant.
As a final remark, it should be mentioned that one must also know the physical

conditions which have to be fulfilled in order to have an adiabatic invariance.
Indeed, we may vary very slowly but periodically the length of the simple pen-
dulum, such that the period of the variation of the parameter is n/2 times (n inte-
ger) bigger than the period of oscillation of the pendulum. Then we can reach the
so-called phenomenon of parametric resonance, in which the amplitude (and,
consequently, the energy) increases rapidly with time, although the frequency
performs a slow variation.

5.8 Problems

1. Determine the Hamiltonian of the double coplanar pendulum and write the
equations of motion.

2. Determine the motion of a charged particle of mass m and charge e, moving in
the static electromagnetic field (E, B). The angle between E and B is arbitrary
and the initial velocity v0 of the particle is orthogonal to the plane determined
by the (E, B) field.

3. A heavy bead of mass m slides without friction in a straight pipe, which rotates
at a constant angular velocity x in a vertical plane about one of its points,
considered fixed. Find the finite equation of motion.

4. A homogeneous straight rod moves in a vertical plane, with its ends sliding
without friction on two perpendicular walls, one on the horizontal plane, and
the other on the vertical. Using the Hamiltonian formalism, determine the
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trajectory of some point P of the rod. Also, find the motion of P if its mass is
m and the mass of the rod can be neglected.

5. Write the differential equations of motion of a spherical pendulum of mass m,
sliding without friction on a fixed sphere of radius R.

6. The point of support P of a simple pendulum of mass m and length l moves
horizontally according to the law YðtÞ ¼ A sin xt. Find the law of motion in
the following two frames:

(a) The reference frame is fixed, with the origin at O;
(b) The origin of the frame is at the point P.

7. A particle of mass m is subjected to a central force. Compare the Hamiltonian
H of the particle relative to an inertial (say, fixed) frame S, with the Hamil-
tonian H0 relative to a frame S0, rotating about the centre of force at a constant
angular velocity x. Write the canonical equations in both representations.

8. Construct the Hamiltonian of a dipole whose opposite charges have masses m1

and m2, and which is located in the homogeneous electric field E.
9. Using the Routhian formalism, obtain the integrals of motion of a spherical

pendulum of mass m and length l.
10. Find the Poisson bracket fu; lig, where u is any function, spherically sym-

metric about the origin, and depending on the coordinates and momentum of a
particle, while li (i = 1, 2, 3) is any one of the three components of its angular
momentum.

11. Show that {f, Lz} = k 9 f, where f is a vector function of r and p, while k is
the unit vector of the z-axis.

12. Use the Poisson bracket, the Lagrange bracket and the bilinear covariant
methods to show that the transformation

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e�2q � p2
p

; P ¼ cos�1ðpeqÞ

is canonical.
13. Prove that the transformation

Q ¼ log
sin p

q
; P ¼ q cot p

is canonical and find all possible versions of the generating function.
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14. Show that under the transformation

Qj ¼ qje
�bt; Pj ¼ pje

�ct ðj ¼ 1; nÞ
the system

_qj ¼
oH

opj

þ bqj; _pj ¼ �
oH

oqj

þ cpi

becomes canonical and find the corresponding Hamiltonian HðQ;P; tÞ.
15. Show that the transformation

Q1 ¼ q1 � v0t; P1 ¼ p1 � v0;

Q2 ¼
ffiffiffiffiffiffiffiffi

2p2

p

e�t sin q2; P2 ¼
ffiffiffiffiffiffiffiffi

2p2

p

et cos q2

is canonical. If the Hamiltonian in the original variables is H ¼ 1
2 ðp2

1þ
p2

2 þ q2
1Þ, find the generating function F2(q, P, t), the new Hamiltonian

HðQ;P; tÞ and the canonical equations in terms of Q1;Q2;P1;P2:
16. The Lagrangian associated with a damped linear harmonic oscillator subject to

the forces F1 ¼ �kx; F2 ¼ �r _x is

L ¼ e
rt
m

1
2

m _x2 � 1
2
kx2

� �

:

Using the Hamilton–Jacobi formalism, find the integral of motion.
17. Determine the values of a and b, so that the transformation

Q ¼ ð2qÞa cosb p; P ¼ ð2qÞa sinb q

is canonical and find the generating function associated to this transformation.
18. Show that the line integral

I ¼
Z

c

Xn

j¼1

qjdpj

is a relative integral invariant associated with the canonical system.
19. Find the conditions which must be satisfied by the functions Ajðq;pÞ;

Bjðq;pÞ ðj ¼ 1; nÞ, in order that

I ¼
I
Xn

j¼1

ðAjdqj þ BjdpjÞ

be an integral invariant of Hamilton’s canonical equations.
20. A particle moves without friction on a fixed sphere of radius R. Using the

Hamilton–Jacobi formalism, determine the trajectory of the particle and find
the finite equation of motion. The initial conditions are:

hð0Þ ¼ uð0Þ ¼ 0; _u ¼ 0; _hð0Þ ¼ v0

R
:
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Chapter 6
Mechanics of Continuous Deformable
Media

6.1 General Considerations

By a continuous medium we mean a material body which fills a certain spatial
domain in such a way that there is a mass point of the medium in each geometric
point of the domain. But, since the substance possesses a granular structure, this
definition has to be more accurate.

Consider a portion of our medium, of mass Dm and volume Ds, and assume that
the number of molecules contained in this volume is DN: In order that the medium
satisfies the property of continuity, there must exist the limit

q ¼ lim
Ds!0

Dm

Ds
; ð6:1:1Þ

meaning that no matter how small the volume Ds is, it must contain a sufficiently
big number of particles. Since this division is limited by the atomic structure of the
medium, to give a physical sense to the definition (6.1.1) we introduce the notion
of physically small infinity. So, by a physically infinitely small volume we mean an
elementary volume, small by comparison with macroscopic volume inhomoge-
neities, but big enough so as to contain a large number of molecules. The number
DN of molecules contained in a physically infinitely small volume produces a
physically infinitely small particle. From now on, in the study of continuous
deformable media, by particle we shall mean a physically infinitely small particle.
Thus, formula (6.1.1) defines the mass density at some point P of the medium, with
the aforementioned restrictions regarding the limit.

In general, the mass density q is a non-negative continuous function of position
and time:

q ¼ qðr; tÞ; ð6:1:2Þ

where r is the radius-vector of the particle of mass Dm: In other words, the mass
density is a scalar field.
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A continuous medium can be either at rest or in motion relative to an arbitrary
reference frame. If the distance between any two points of the medium does not
change during the motion, the medium is a rigid body (see Chap. 4), while in the
opposite case we have a deformable medium. This chapter is concerned with the
mechanical study of continuous deformable media (CDM).

A deformable medium can be in either a solid or a fluid state. A solid medium
can have either elastic or inelastic properties, while a fluid can be either com-

pressible
�

oq
ot
6¼ 0
�

or incompressible
�

oq
ot
¼ 0
�

. A special type of continuous
deformable medium is the plasma, which is a mixture of neutral and excited
atoms, ions, electrons and photons.

A macroscopic volume of a continuous medium contains a big (practically,
infinite) number of molecules. To describe the motion of each molecule, one must
characterize it by a finite number of Lagrangian parameters. It then results that a
continuous deformable medium has a huge, practically infinite number of degrees
of freedom. As we shall see, this gives rise to a special analytical treatment of the
motion of such media.

6.2 Kinematics of Continuous Deformable Media

6.2.1 Lagrange’s Method

Consider a portion of a continuous deformable medium (CDM) which, at time t0,
occupies the domain D0ðt0Þ, of volume V0 in the physical, Euclidean space E3.
Due to the motion, the form and the volume of the domain occupied by the
medium vary. Let V be the volume of the domain D(t) occupied by the medium at
time t [ t0 (Fig. 6.1).

According to Lagrange, to know the motion of the medium means to follow and
determine the motion of each particle. Consider a particle which, at the time t0, is
at the point P0ðx0

1; x
0
2; x

0
3Þ and at the time t [ t0 is at the point Pðx1; x2; x3Þ: Since

the position of the particle depends both on the time t and its initial position, we
can write:

xi ¼ xiðx0
1; x

0
2; x

0
3; tÞ ði ¼ 1; 2; 3Þ; ð6:2:1Þ

or, in vector form,

r ¼ rðr0; tÞ; ð6:2:10Þ

where r and r0 are the position vectors of the points P and P0, respectively. The
quantities x0

1; x
0
2; x

0
3; t are called Lagrange variables. Equations (6.2.1) define the

law of motion of the particle P which, at the time t0, was at the point P0. In order to
find the motion of the medium, we must find the equation of motion of each
particle.
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Assume that the vector function r is continuous with respect to the Lagrange
variables and at least twice differentiable, and that there is a one-to-one corre-
spondence between the domains D0 and D, i.e.

J ¼ oðx1; x2; x3Þ
oðx0

1; x
0
2; x

0
3Þ
6¼ 0; ð6:2:2Þ

where J is the Jacobian of the transformation (6.2.1).
The trajectory of the particle is given by Eqs. (6.2.1), where the initial position

r0 of the particle is fixed, while the time t varies. Using (6.2.10), we can write the
velocity of the particle as

v ¼ or

ot
ðx0

1; x
0
2; x

0
3; tÞ; ð6:2:3Þ

while its acceleration is

a ¼ o2r

ot2
ðx0

1; x
0
2; x

0
3; tÞ: ð6:2:4Þ

6.2.2 Euler’s Method

Suppose that, instead of following the particles in motion, we choose a fixed point
Pðx1; x2; x3Þ and look for the characteristic quantities (velocity, acceleration) at
this point. For example, an observer fixed with respect to the banks of a river
determines the velocity of the water at his observation point.

If we use (6.2.1) to express x0
1; x0

2; x0
3 in terms of x1; x2; x3, and then introduce

them in (6.2.3), we obtain the velocity field at the time t:

Fig. 6.1 Evolution in time of
a domain occupied by a
continuous deformable
medium.
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v ¼ vðx1; x2; x3; tÞ: ð6:2:5Þ

The quantities x1; x2; x3; t are called Euler variables.
Once the velocity field is known, the parametric equations of the particles of the

medium are determined by integrating the system of first-order differential
equations

dxi

dt
¼ viðx1; x2; x3; tÞ ði ¼ 1; 2; 3Þ: ð6:2:6Þ

The general integral of the system (6.2.6) is

xi ¼ xiðC1;C2;C3; tÞ; ð6:2:7Þ

where the integration constants C1;C2;C3 are determined from the initial
conditions,

x0
i ¼ xiðC1;C2;C3; t0Þ: ð6:2:8Þ

Therefore, the expressions (6.2.7) become:

xi ¼ xiðx0
1; x0

2; x0
3; tÞ;

which are precisely Eqs. (6.2.1).
The acceleration field in Euler variables is determined by calculating the

derivative

a ¼ d

dt
vðx1; x2; x3; tÞ; ð6:2:9Þ

which yields

a ¼ aðx1; x2; x3; tÞ: ð6:2:10Þ

Trajectories and Streamlines

By eliminating the time t between the three parametric equations of the trajectory
(6.2.1), we obtain two equations in xi; x0

i ði ¼ 1; 2; 3Þ, i.e. a family of curves
depending on three parameters, x0

1; x0
2; x0

3: Each trajectory is tangent to the
velocity in each point and at any moment. The differential equations of trajectories
can also be written as

dx1

v1ðr; tÞ
¼ dx2

v2ðr; tÞ
¼ dx3

v3ðr; tÞ
: ð6:2:11Þ

The same system of equations is obtained by projecting on axes the obvious vector
relation

296 6 Mechanics of Continuous Deformable Media



v� dr ¼ 0:

If in Eqs. (6.2.11) we take a fixed value for the time t, we obtain a family of curves
tangent to the velocity at that moment. These curves are called streamlines (or
current lines).

Substantial and Local Derivatives

Let fðx1; x2; x3; tÞ be a function defined on the domain D�E3 for t0� t� t1, and
let us calculate its derivative with respect to time in two cases:

(a) If xi ði ¼ 1; 2; 3Þ are the coordinates of a moving particle of the medium, then

df

dt
¼ of

ot
þ _xj

of

oxj

¼ of

ot
þ ðv � rÞf ð6:2:12Þ

is called substantial or total derivative of the function f.
(b) If xi (i = 1, 2, 3) are the coordinates of a fixed point, we have

df

dt
¼ of

ot
; ð6:2:13Þ

which is the space or local derivative.

As an example, the substantial acceleration dv
dt

and the local acceleration ov
ot

are
related by:

dv

dt
¼ ov

ot
þ ðv � rÞv: ð6:2:14Þ

Observation: In the case of small displacements and deformations, the difference
between the Euler and the Lagrange variables disappears. The first are mostly used
in fluid mechanics and the latter – in the theory of elasticity.

6.3 Dynamics of Continuous Media

6.3.1 Equation of Continuity

Consider a continuous deformable medium in motion and delimit an arbitrary
portion of the medium which, at the time t0, occupies the domain D0ðt0Þ and at the
time t [ t0 – the domain D(t). The mass of the medium contained in the domain is

m ¼
Z

V

qðr; tÞds: ð6:3:1Þ
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If there are no mass transformations during the motion, this mass conserves. The
conservation of mass is expressed by the equation of continuity.

This equation is easily obtained by means of the theory of integral invariants
developed in Sect. 5.6. The mass expressed by (6.3.1) is an integral invariant of the
transformation

xi ¼ xiðr0; tÞ ði ¼ 1; 2; 3Þ ð6:3:2Þ

if the mass density q satisfies the equation

dq
dt
þ q div v ¼ 0: ð6:3:3Þ

Using (6.2.12), this can also be written as

oq
ot
þ q div vþ v � grad q ¼ 0;

and finally

oq
ot
þ divðqvÞ ¼ 0: ð6:3:4Þ

This is the equation of continuity in the form given by Euler. It is a first-order
partial differential equation which connects the velocity field v(r, t) and the density
field q(r, t). Using the convention of summation, we can also write it as

oq
ot
þ o

oxi

ðqviÞ ¼ 0: ð6:3:5Þ

To give a more suggestive physical interpretation of the equation of continuity
(6.3.4), let us integrate it over an arbitrary, fixed volume V, inside the medium:

Z

V

oq
ot

ds ¼ �
Z

V

divðqvÞds;

or, in view of the Green–Gauss theorem (see Appendix B),

o

ot

Z

V

q ds ¼ �
I

S

qv � dS; ð6:3:6Þ

where dS is an oriented element of the surface S which bounds the volume V. The
particles of the medium can enter and leave the volume V through the boundary
surface S. The l.h.s. clearly represents the rate of variation of the mass within the
volume V. To emphasize the physical significance of the r.h.s. of Eq. (6.3.6), let
v be the velocity of a particle passing through S during the time interval dt. The
mass dm of the particle is proportional to the volume of an infinitesimal cylinder,
of base dS and generatrix vdt (Fig. 6.2):
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dm ¼ qðv � dSdtÞ:

The quantity qv � dS is then the mass which flows in unit time through the surface
element dS. Choosing the outward normal, this quantity is positive if the mass
leaves the volume V (v � n [ 0), and negative if the mass enters the volume
(v � n \ 0). Consequently, the quantity

H

V
qv � dS represents the total mass which

leaves or enters the volume V per unit time. The vector quantity qv is termed mass
current density. Its direction coincides with that of v, while its magnitude
represents the mass passing in unit time a unit area orthogonal to v.

An alternative form of the equation of continuity was given by Jean-Baptiste le
Rond D’Alembert. Using again the theory of integral invariants (see (5.6.6)), the
invariance of the mass contained in the volume V can be written as

Z

V0

qðx0
1; x

0
2; x

0
3; t0Þds0 ¼

Z

V

qðx1; x2; x3; tÞds: ð6:3:7Þ

But, in view of (6.2.1),

ds ¼ dx1dx2dx3 ¼
oðx1; x2; x3Þ
oðx0

1; x
0
2; x

0
3Þ

dx0
1dx0

2dx0
3 ¼ Jds0;

leading to
Z

V0

ðq0 � JqÞds0 ¼ 0; ð6:3:8Þ

where we denoted

q0 ¼ qðr0; t0Þ; q ¼ qðr; tÞ: ð6:3:9Þ

Since the integration volume V0 is arbitrary, relation (6.3.8) yields D’Alembert’s
version of the equation of continuity:

Jq ¼ q0: ð6:3:10Þ

It is easy to prove that Eqs. (6.3.6) and (6.3.10) are equivalent. Indeed, taking
the total time-derivative of (6.3.10) and using formula (5.6.12), we obtain:

Fig. 6.2 Intuitive
representation of the
conservation of mass in the
mechanics of continuous
deformable media.
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J
dq
dt
þ qJ div v ¼ 0;

leading straightforwardly to (6.3.6) after simplification by J 6¼ 0:
The equation of continuity expresses fundamental conservation laws of physics,

for example conservation of mass in mechanics, conservation of charge in elec-
trodynamics, or conservation of probability in quantum mechanics, etc.

Observation: If the medium is incompressible and homogeneous, then
q(r, t) = const., and the equation of continuity (6.3.4) reduces to

div v ¼ 0; ð6:3:11Þ

which means that, in this case, the velocity field is solenoidal (or source-free).

6.3.2 Forces Acting upon a Continuous Deformable Medium

Unlike the case of rigid systems, the action of a force upon a continuous
deformable medium depends on whether the particle on which it acts lies on the
boundary of the body, or in its volume. Consider a portion of the medium in
motion, which at the time t occupies the volume V(t), bounded by the surface S(t).
The forces acting on it fall into two categories:

(a) Body forces, which act on three-dimensional particles of the domain con-
taining the medium. These forces are proportional to the mass Dm of the
particle contained in the volume Ds: Denoting by F the specific body force
(force acting on unit mass), the body forces can be written as FDm (Fig. 6.3).
In general, the vector quantity F is a function of the position of the particle, its
velocity and the time: F = F(r, v, t) (see Chap. 1).

(b) Superficial forces, acting on the particles which form the boundary surface of
the medium. These forces are proportional to the area DS of the surface element,

Fig. 6.3 Interior forces
acting on the particles of a
continuous deformable
medium.
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and we shall denote them by T D S, where the force T acting on unit area is
known as the stress or tension. In general, T is a function of the position of the
surface element, its orientation and time: T = T(r, n, t), where n is the unit
vector of the outward normal to DS: Let T = |T|. If T � n = -T, the stress is a
pressure; if T � n = T, the stress is a traction; finally, if T � n = 0, we have a
shear stress. In practice, we usually find mixtures of these particular cases.
In the study of fluid media, superficial forces occur as pressures, while in the
case of solid deformable media we meet all possible kinds of tensions.

Both body and superficial forces can be grouped, in their turn, into two classes:

(a) Body (superficial) exterior forces, coming from bodies outside our medium,
(b) Body (superficial) interior forces, due to the mutual interactions of the particles

of the medium. According to the action and reaction principle, any pair of these
forces are equal and directly opposed to each other. Consider, for example, two
portions of the medium, which at the time t occupy the domains D1 and D2,
being in contact through the surface S (Fig. 6.4). Then, one must have:

Tðr; n; tÞ ¼ �Tðr;�n; tÞ: ð6:3:12Þ

6.3.3 General Theorems

By definition, the linear momentum of a CDM, which occupies the domain D(t) of
volume V, bounded by the surface S, is

P ¼
Z

V

v dm ¼
Z

V

qv ds; ð6:3:13Þ

while the angular momentum of this system, relative to the origin O of a Cartesian
system of coordinates, is

Fig. 6.4 The internal forces
obey the action and reaction
principle.
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L ¼
Z

V

r� v dm ¼
Z

V

qr� v ds: ð6:3:14Þ

In continuous media mechanics, the theorems of variation of linear and angular
momentum, proven for discrete mechanical systems, remain valid. This can be
shown straightforwardly by taking the continuum limit of (1.3.34) and (1.3.38).
Here we omit the proof.

Including both body and superficial forces, we shall write the linear momentum
theorem as

d

dt

Z

V

qv ds ¼
Z

V

qF dsþ
I

S

T dS; ð6:3:15Þ

while the angular momentum theorem becomes:

d

dt

Z

V

qr� v ds ¼
Z

V

qr� F dsþ
I

S

r� T dS: ð6:3:16Þ

Here all momenta are taken with respect to the same point, the origin O.
In a similar way, one can define the kinetic energy:

T ¼ 1
2

Z

V

qv2ds ð6:3:17Þ

and the radius-vector of the centre of mass:

rG ¼
1
M

Z

V

qr ds; M ¼
Z

V

q ds: ð6:3:18Þ

Using these definitions, the reader can easily prove that in continuous mechanics
the centre of mass theorem (1.3.55) and König’s theorems (1.3.60), (1.3.61)
remain valid.

6.3.4 Equations of Motion of a CDM. Cauchy Stress Tensor

Let us choose an arbitrary point P of our CDM and construct the Cartesian
orthogonal frame Px1x2x3: A plane defined by the normal vector n intersects the
axes at the points P1, P2 and P3, forming the elementary tetrahedron PP1P2P3

shown in Fig. 6.5, in which

PPi ¼ �li ði ¼ 1; 2; 3Þ; ð6:3:19Þ
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where � [ 0 is a small parameter (�2 � 0). This is known as Cauchy’s
tetrahedron.

Let dS be the area of the basis P1P2P3 and denote by n1; n2; n3 the direction
cosines of the normal to dS. Then the surfaces of the orthogonal faces of the
tetrahedron, which are the projections of the oblique face on the corresponding
planes of coordinates, can be expressed as

dSi ¼ ðn dSÞi ¼ nidS ði ¼ 1; 2; 3Þ: ð6:3:20Þ

Also, let T be the average stress on dS and Ti the average stress on dSi

(i = 1, 2, 3). Then Tj; Tij are the components of T and Ti, respectively, on the
axes of the Cartesian frame.

With our sign convention (see Fig. 6.5), D’Alembert’s principle (2.5.3) for the
forces acting on Cauchy’s tetrahedron reads:

a dm� F dmþ T dS � Ti dSi ¼ 0; ð6:3:21Þ

where the summation convention has been used and F represents the body forces
acting on the tetrahedron. Since the tetrahedron is infinitesimally small, we can
assume that the tensions on the four faces are actually applied all at the point P. If
dm is the mass of the elementary tetrahedron and ds its volume, we have:

ða� FÞ dm ¼ ða� FÞq ds ¼ 1
6
ða� FÞq�3l1l2l3:

Since this expression is proportional to �3, it can be neglected with respect to the
rest of the terms in (6.3.21), and we are left with

T dS ¼ Ti dSi;

or, in view of (6.3.20),

T ¼ niTi or Tk ¼ niTik ði; k ¼ 1; 2; 3Þ: ð6:3:22Þ

Fig. 6.5 Cauchy’s
tetrahedron. Sign convention:
the tension is positive if it
acts on a surface whose
normal points in the positive
direction of the axes of
coordinates and negative
otherwise.
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This is Cauchy’s formula. The quantities Tik define a second-rank tensor, called the
stress tensor. Its diagonal elements T11; T22; T33 are the normal stresses and the
non-diagonal elements T12; T23; T31 are the tangent or shear stresses.

Cauchy’s formula (6.3.22) shows that, if the stresses at P along three orthogonal
directions are known, then we can determine the stress at P relative to any
direction n.

To deduce the equations of motion of our CDM, we shall apply the momentum
theorem (6.3.15). Using Euler’s theorem (5.6.12), and the equation of continuity
(6.3.4) and the definition of the substantial derivative (6.2.12), we have:

d

dt

Z

V

qv ds ¼ d

dt

Z

V0

qvJ ds0 ¼
Z

V0

J
d

dt
ðqvÞ þ qvJ div v

� �

ds0

¼
Z

V

d

dt
ðqvÞ þ qv div v

� �

ds ¼
Z

V

q
dv

dt
ds ¼

Z

V

qa ds:

Therefore, the linear momentum theorem taken for a finite domain D of volume
V and boundary S, reads:

Z

V

qða� FÞ ds ¼
I

S

T dS:

Recalling that n is the unit vector of the outward normal to dS and using Cauchy’s
formula (6.3.22) and the Green–Gauss theorem, the r.h.s. of the above equation
becomes:

I

S

T dS ¼
I

S

nkTk dS ¼
I

S

Tk dSk ¼
Z

V

oTk

oxk

ds;

hence
Z

V

qða� FÞ � oTk

oxk

� �

ds ¼ 0:

Since the integration volume is arbitrary, we obtain

qa ¼ qFþ oTk

oxk

or qai ¼ qFi þ
oTki

oxk

ði ¼ 1; 2; 3Þ: ð6:3:23Þ

These are the equations of motion the CDM. They have been first deduced by
Augustin-Louis Cauchy. Because the model of CDM is not specified, it is said that
this is the non-definite form of the equations of motion. Using the derivation rule
(6.2.14), we can recast Cauchy’s equations in the form:
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q
ovi

ot
þ vk

ovi

ovk

� �

¼ qFi þ
oTki

oxk

: ð6:3:24Þ

Let us now show that the stress tensor Tki is symmetric. To this end, we shall
apply the angular momentum theorem (6.3.16) to the domain D(t), bounded by the
surface S(t):

Z

V

qr� ða� FÞ ds ¼
I

S

r� T dS;

or, in components,
Z

V

q�ijkxjðak � FkÞ ds ¼
I

S

�ijkxjTk dS:

Using Cauchy’s formula and the Green–Gauss theorem, we obtain:
I

S

�ijkxjTk dS ¼
Z

S

�ijkxjTlk dSl

¼
Z

V

�ijk
o

oxl

ðxjTlkÞ ds ¼
Z

V

�ijk djlTlk þ xj

oTlk

oxl

� �

ds

and with this result, the expression for the angular momentum theorem can be put
in the form:

Z

V

�ijkxj qðak � FkÞ �
oTlk

oxl

� �

ds ¼
Z

V

�ijkTjk ds:

But, according to (6.3.23), the l.h.s. is identically zero. Then, since V is arbitrary,
we have:

�ijkTjk ¼ 0:

Since the pseudo-tensor �ijk is antisymmetric in the summation indices j and k and
the product is zero, it follows that the stress tensor Tjk has to be symmetric:

Tjk ¼ Tkj: ð6:3:25Þ

The equations of motion (6.3.23), together with the equation of continuity
(6.3.4), represent a system of four partial differential equations with ten unknowns:
the density q, the components vi (i = 1, 2, 3) of the velocity and the six inde-
pendent components of the stress tensor Tik (i, k = 1, 2, 3). Since the principles of
mechanics do not furnish any other equation connecting these variables, in order to
determine the motion of the medium one must know some supplementary data,
like: the radius-vectors and the velocity fields at the initial time, the constraint
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forces, the relations between the applied forces and the resulting deformations, etc.
A part of these data is determined experimentally. In this way, one defines certain
models of CDM, like: the elastic medium, the perfect fluid, the viscous fluid, etc.
We shall present some of these models, but we must first introduce some new
concepts, necessary in the study of any CDM.

6.4 Deformation of a Continuous Deformable Medium About
a Point. Linear Approximation

6.4.1 Rotation Tensor and Small-Strain Tensor

Consider a particle of a CDM which, at the time t, occupies the position P, and let
D(t) be a vicinity of the point P. Assume that during the time interval dt the
particle has moved from P to P 0, while the vicinity D(t) of P has become the
vicinity D(t ? dt) of P 0: Our purpose is to study the deformation of the domain
D during the motion, i.e. how the relative distances between its points change.

Take another particle at the point P1 of D(t) and let P 01 be its image at time
t ? dt (Fig. 6.6). If we denote by u = dr the infinitesimal displacement vector
~PP 0 and by v the velocity of the point P, we can write:

dr ¼ u ¼ v dt: ð6:4:1Þ

Our continuous medium is deformable, which means that the elementary dis-
placement is a function of the coordinates of P: u ¼ uðx1; x2; x3Þ: The distance
between the points P and P1 at the time t is given by the vector n. At t + dt, the
distance between P0 and P1

0
will be n0. From Fig. 6.6, the variations of u and n

during the motion are:

du ¼ ~P1P
0
1 � ~PP 0 ¼ u1 � u; dn ¼ ~P 0P 01 � ~PP1 ¼ n0 � n: ð6:4:2Þ

But nþ u1 � n0 � u ¼ 0; therefore

dn ¼ du: ð6:4:3Þ

Fig. 6.6 Deformation of a
continuous deformable
medium about a point.
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Assuming that the displacement-gradient matrix oui

oxk
has infinitesimal elements, we

can write:

du ¼ u1ðrÞ � uðrÞ ¼ uðrþ nÞ � uðrÞ ¼ uðrÞ þ nk

ou

oxk

þ � � � � uðrÞ ’ nk

ou

oxk

;

and with this linearization, formula (6.4.3) becomes:

dn ¼ ou

oxk

nk or dni ¼
oui

oxk

nk ði ¼ 1; 2; 3Þ: ð6:4:4Þ

In the case of orthogonal coordinates, the quantities oui

oxk
are the components of a

second-rank Cartesian tensor. Denoting Aki ¼ oui

oxk
, we have:

dni ¼ Akink: ð6:4:40Þ

We know (see Appendix A) that any second-rank Cartesian tensor Aki can be
written as the sum of an antisymmetric and a symmetric tensor:

Aki ¼
1
2
ðAki � AikÞ þ

1
2
ðAki þ AikÞ

¼ xki þ eki: ð6:4:5Þ

The antisymmetric tensor

xki ¼
1
2
ðAki � AikÞ ¼

1
2

oui

oxk

� ouk

oxi

� �

ð6:4:6Þ

is called the rotation tensor, while the symmetric tensor

eki ¼
1
2
ðAki þ AikÞ ¼

1
2

oui

oxk

þ ouk

oxi

� �

ð6:4:7Þ

is called the small-strain tensor. Let us find their physical significance.
Beginning with xki, let x be the axial vector associated with it:

xki ¼ �kijxj: ð6:4:8Þ

Therefore, if we ignore the second term in (6.4.5), we find:

dni ¼ �ijkxjnk ¼ ðx� nÞi; ð6:4:9Þ

which corresponds to a rigid rotation about a fixed axis. Examining the defining
relation (6.4.6), we notice that the rotation vector x is given by

x ¼ 1
2

curl u: ð6:4:10Þ

From (6.4.2) and (6.4.9), we obtain:
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n0 ¼ nþ dn ¼ nþ x� n; ð6:4:11Þ

meaning that, when its components are very small, the antisymmetric tensor xki

produces an infinitesimal rigid rotation, without deformation (see Sect. 4.3).
Passing now to the small-strain tensor eik, it is seen that if we omit the first term

in (6.4.5), we can write:

dni ¼ ekink ¼
o

oni

1
2

ekjnknj

� �

: ð6:4:12Þ

Consider the quadric

1
2
ekjnknj ¼ const. ð6:4:13Þ

Since this quadric is invariant with respect to an orthogonal transformation, we can
choose the coordinate system with its origin at P, and having the axes along the
axes of the quadric. In this case, the quadric (6.4.13) can be written in the
canonical form:

e11n
0
1

2 þ e22n
0
2

2 þ e33n
0
3

2 ¼ const. ð6:4:14Þ

This formula expresses the fact that the elementary deformations

dn1 ¼ e11n1; dn2 ¼ e22n2; dn3 ¼ e33n3 ð6:4:15Þ

are performed along the axes of the quadric (6.4.13). The quadric (6.4.13) is the
deformation quadric and its axes are the principal axes of deformation.

If we take the value 1 for the constant in (6.4.13), then we may encounter one of
the following situations. If all quantities e11; e22; e33 are positive, our quadric is an
ellipsoid and the deformation is a dilation. In particular, if e11 ¼ e22 ¼ e33, the
ellipsoid becomes a sphere. If e11; e22; e33 have different signs, the quadric is a
hyperboloid and the deformation can be either a contraction, or a shear stress.
When the elements of the rotation matrix are zero, we have a pure deformation or
a pure strain.

Concluding our discussion, during the motion of a CDM we can have both
rigid-body motion, i.e. translations and rotations, and pure deformations, produced
by the mutual displacements of the particles of the medium. In view of (6.4.4) and
(6.4.11), we thus can write

n0 ¼ nþ x� nþrb; ð6:4:16Þ

where

b ¼ 1
2

ekjnknj:
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6.4.2 Saint-Venant Compatibility Conditions

If the strain distribution in a CDM is known, then the displacement functions
uiðx1; x2; x3Þ can be found by solving the differential equations which, by virtue
of the definition (6.4.7), represent the six independent components of the sym-
metric tensor eik:

e11 ¼
ou1

ox1
; e22 ¼

ou2

ox2
; e33 ¼

ou3

ox3
;

e12 ¼
1
2

ou2

ox1
þ ou1

ox2

� �

; e23 ¼
1
2

ou3

ox2
þ ou2

ox3

� �

; e31 ¼
1
2

ou1

ox3
þ ou3

ox1

� �

:

ð6:4:17Þ

The system of six differential equations (6.4.17) in general overdetermines the
three unknowns u1, u2 and u3. However, due to the continuity of the displacement
field in a CDM, there exists a functional dependence between the quantities eij.
These extra conditions remove the overdetermination, rendering the system
(6.4.17) integrable. Indeed, taking suitable derivatives in (6.4.17), we arrive at the
following system of six second-order partial differential equations:

o2
e11

ox2
2

þ o2
e22

ox2
1

¼ 2
o2

e12

ox1ox2
;

o2
e22

ox2
3

þ o2
e33

ox2
2

¼ 2
o2

e23

ox2ox3
;

o2
e33

ox2
1

þ o2
e11

ox2
3

¼ 2
o2

e31

ox3ox1
;

o2
e11

ox2ox3
¼ o

ox1

oe31

ox2
þ oe12

ox3
� oe23

ox1

� �

; ð6:4:18Þ

o2
e22

ox3ox1
¼ o

ox2

oe12

ox3
þ oe23

ox1
� oe31

ox2

� �

;

o2
e33

ox1ox2
¼ o

ox3

oe23

ox1
þ oe31

ox2
� oe12

ox3

� �

:

These equations were first obtained by Barré de Saint-Venant and they represent
compatibility conditions. They can also be written in the condensed form

�ijk�mpq

o2
ekp

oxjoxq

¼ 0: ð6:4:180Þ
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The role of the conditions (6.4.18) is to ensure the compatibility of the defor-
mations with the displacements. This can be intuitively seen by dividing the
undeformed CDM into small volumes, which are then strained. The CDM can be
re-composed after the deformation only if the strains of the individual small
volumes are compatible with each other, what is ensured by Eqs. (6.4.18).

6.4.3 Finite-Strain Tensor

Let xi and x0i (i = 1, 2, 3) be the coordinates of a particle before and after
deformation, respectively. Assuming that the displacement u(r) is finite, we
can write

x0i ¼ xi þ uiðrÞ; ð6:4:19Þ

which, by differentiation, yields:

dx0i ¼ dxi þ
oui

oxk

dxk:

If ds2 and ds02 are the squared distances between any two points before and after
deformation, using the last relation we find:

dx0idx0i ¼ dxi þ
oui

oxj

dxj

� �

dxi þ
oui

oxk

dxk

� �

¼ dxidxi þ
ouk

oxj

þ ouj

oxk

þ oui

oxj

oui

oxk

� �

dxjdxk;

or

ds02 � ds2 ¼ 2Ejkdxjdxk;

where

Ejk ¼
1
2

ouk

oxj

þ ouj

oxk

þ oui

oxj

oui

oxk

� �

ð6:4:20Þ

are the components of a second-order symmetric tensor, which is the finite-strain
tensor, expressing the change in the squared length of the vector dr upon the
deformation.

On the other hand, since

ds02 ¼ dx0idx0i ¼
ox0i
oxj

ox0i
oxk

dxjdxk ¼ gjkdxjdxk;
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where gik is the metric tensor of the transformation x0i ¼ x0iðx1; x2; x3Þ, we can also
write:

ds02 � ds2 ¼ ðgjk � djkÞdxjdxk;

leading to the general expression for the finite-strain tensor:

Ejk ¼
1
2
ðgjk � djkÞ:

Equations (6.4.20) show that the finite-strain tensor contains only linear and
quadratic terms in the displacement-gradient components. This is an exact result
and not a second-order approximation. If the deformations uj are small enough so
as to neglect the product oui

oxj

oui

oxk
with respect to the rest of the terms in (6.4.20), then

Ejk! ejk, which has been defined earlier for the linear theory of deformations.
Noting that our study will be done within the framework of this linear approxi-
mation, we shall next discuss some of the basic models of CDM, like the elastic
medium, the perfect fluid, and the viscous fluid.

6.5 Elastic Medium

6.5.1 Hooke’s Generalized Law

By an elastic medium we mean a body which recovers its initial form and position
when the deforming force stops its action.

The connection between applied forces and the deformations produced by them
has been for a long time the object of experimental studies, leading to the so-called
stress-strain relations or constitutive equations. In 1678, Robert Hooke revealed
his discovery of the proportionality between forces and deformations (ut tensio, sic
vis), and gave the law of elasticity:

Dl

l0
¼ 1

E

F

S
: ð6:5:1Þ

Here, l0 is the initial length of a thin and long wire, S – the area of its transverse
section, F – the deforming force, Dl – the strain (elongation) produced by it and
E – the Young modulus. This relation is in good agreement with the experimental
observation if the force F is uniformly distributed on the surface S, which does not
vary during the deformation. In the case of massive elastic bodies, we must
consider both longitudinal and transversal deformations. In other words, Hooke’s
law (6.5.1) should be generalized so as to include all possible deformations.

Assuming that our model is a homogeneous and isotropic elastic medium, we
delimit a rectangular parallelepiped ABCDA0B0C0D0 of the body, and choose a
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Cartesian orthogonal system of coordinates Ox1x2x3 with its origin O at the centre
of the parallelepiped (Fig. 6.7a).

Denote by T11; T22; T33 the normal stresses on the three pairs of faces, oriented
along the axes x1; x2 and x3, respectively. Under the action of these tensions, the
parallelepiped is deformed infinitesimally, so that a point P, whose coordinates
before deformation were x1; x2; x3, will have after the deformation the coordinates

x0i ¼ xi þ �ixi ðno summation; i ¼ 1; 2; 3Þ:

The medium being homogeneous and isotropic, it follows that all the points will be
shifted similarly, such that the change in relative distance between two arbitrary
points will be:

n0i ¼ ni þ �ini ðno summation; i ¼ 1; 2; 3Þ ð6:5:2Þ

Comparing (6.5.2) with (6.4.15), we identify

eii ¼ �i ðno summation; i ¼ 1; 2; 3Þ: ð6:5:3Þ

If we have only normal tensions (i.e. the stress tensor Tik is diagonal), the defor-
mations are produced only along the coordinate axes (Fig. 6.7b), meaning that

eij ¼ 0 ði 6¼ jÞ: ð6:5:4Þ

By virtue of (6.4.4), (6.5.3) and (6.5.4), for a pure deformation we therefore have

dni

ni

¼ eii ¼ �i ðno summation; i ¼ 1; 2; 3Þ: ð6:5:5Þ

Comparing now (6.5.5) with Hooke’s law (6.5.1), we observe that under the action
of normal tension (traction) Tii, the medium elongates in the i direction by the
relative rate Tii/E, while in the orthogonal directions it contracts by Poisson effect
by the rate r Tii

E
: Here, r is a material constant which depends on the nature of the

medium, called coefficient of transverse contraction or Poisson’s ratio. Since, by
hypothesis, the medium is homogeneous and isotropic, we have:

Fig. 6.7 Normal and tangential tensions in an elastic medium.
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e11 ¼
T11

E
� r

T22

E
� r

T33

E
;

e22 ¼
T22

E
� r

T11

E
� r

T33

E
;

e33 ¼
T33

E
� r

T11

E
� r

T22

E
:

These relations can be written in a compressed form as

eii ¼
1þ r

E
Tii �

r
E

s ðno summationÞ;

where we have used the notation

s ¼ T11 þ T22 þ T33: ð6:5:6Þ

Since eij = 0 for i 6¼ j, we have also:

eij ¼
1þ r

E
Tij �

r
E

sdij: ð6:5:7Þ

This relation has been deduced on the assumption that there are only normal
tensions acting on the elastic medium. But the experiment shows that this is true in
general. Indeed, if we had only tangential (shear) tensions T12 ¼ T21; T23 ¼
T32; T31 ¼ T13 (Fig. 6.7c), we would get

eij ¼
1þ r

E
Tij ði 6¼ jÞ ð6:5:8Þ

which proves to be true.
Formula (6.5.7) can be put in a different form, which displays the relation

between the stress tensor Tij, on the one hand, and the small-strain tensor eij, on the
other. To this end, we define the volume specific dilation:

h ¼ e11 þ e22 þ e33 ¼
oui

oxi

¼ div u: ð6:5:9Þ

Taking i = j in (6.5.7) and performing the summation, we have:

h ¼ 1� 2r
E

s:

Introducing this result into (6.5.7), we obtain:

Tij ¼
E

1þ r
eij þ

rE

ð1þ rÞð1� 2rÞ hdij:

Denoting
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k ¼ rE

ð1þ rÞð1� 2rÞ ; l ¼ E

2ð1þ rÞ ; ð6:5:10Þ

we finally arrive at Hooke’s generalized law for homogeneous and isotropic elastic
media:

Tij ¼ khdij þ 2leij: ð6:5:11Þ

The coefficients k and l are called elastic constants or Lamé coefficients, being
determined by experimental methods. Eliminating r between relations (6.5.10), we
find Young’s modulus E in terms of k and l:

E ¼ lð2lþ 3kÞ
kþ l

: ð6:5:12Þ

In the case of anisotropic media (crystals), Hooke’s law has a more general
form, namely

Tij ¼ Cijkmekm; ð6:5:13Þ

where Cijkm are the components of a fourth rank tensor, called elasticity tensor or
stiffness tensor. Its components satisfy the following symmetry relations:

Cijkm ¼ Cjikm ¼ Cijmk; Cijkm ¼ Ckmij: ð6:5:14Þ

The first group of relations is trivially obtained from the symmetry of the tensors
Tij and ekm, and represent the so-called minor symmetries. The latter relation is
obtained from thermodynamical considerations which are beyond the scope of this
book. Here we have 45 ? 15 = 60 relations, therefore the maximum number of
the independent components of Cijkm is: 34 - 60 = 21. This result can be also
obtained by speculating the symmetry of the pairs of indices, which suggests to
choose the following mapping of tensor indices (so-called Voigt notation):

1 2 3 4 5 6
11 22 33 23 31 12

The tensor Cijkm becomes CIJ, with the property

CIJ ¼ CJI: ð6:5:15Þ

Therefore CIJ is a second-rank symmetric tensor, defined on a six-dimensional
space. The number of its independent components is

6
2

� �

¼ 6ð6þ 1Þ
2

¼ 21:

If the anisotropic elastic medium possesses symmetry axes, the number of the
independent components of the elasticity tensor is less than 21. Let a; b; c be the
edges of an elementary cell of a crystal, and a; b; c the angles at any intersection
point of three edges. A cubic crystal (a ¼ b ¼ c; a ¼ b ¼ c) is the simplest

314 6 Mechanics of Continuous Deformable Media



anisotropic case and it has three independent components of CIJ, while a crystal
characterized by a 6¼ b 6¼ c; a 6¼ c; a 6¼ b 6¼ c; a 6¼ c has the maximum number
of components, namely 21.

Using our convention, Hooke’s law (6.5.13) can be written as

TI ¼ CIKeK ðI;K ¼ 1; 6Þ: ð6:5:16Þ

Comparing (6.5.11) and (6.5.13), we find the components of the tensor Cijkm for a
homogeneous and isotropic elastic medium:

C11 � C1111 ¼ kþ 2l;

C12 � C1122 ¼ k;

C66 � C1212 ¼ 2l:

It is seen that the three components of the elasticity tensor CJK are not indepen-
dent, but obey the relation C11 ¼ C12 þ C66, which means that only two compo-
nents are distinct (the Lamé coefficients), as we expected.

We give here, as an example, the matrix of the elasticity tensor for a crystal
with cubic symmetry:

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C66 0 0
0 0 0 0 C66 0
0 0 0 0 0 C66

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð6:5:17Þ

Observation: If the temperature of the medium varies during the elastic defor-
mation, Hooke’s law (6.5.13) must be corrected by a term expressing the tem-
perature changes, namely:

Tij ¼ Cijkmekm � kijðT � T0Þ; ð6:5:18Þ

where DT ¼ T � T0 is the variation of the temperature and kij are some constants
called coefficients of thermo-elasticity.

6.5.2 Equations of Motion of an Elastic Medium

To obtain the equations of motion of a homogeneous and isotropic elastic medium,
we introduce Tik given by Hooke’s law (6.5.11) into Cauchy’s equations (6.3.23).
Recalling that the stress tensor Tik is symmetric, these equations read:
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qai ¼ qFi þ
oTik

oxk

ði; k ¼ 1; 2; 3Þ: ð6:5:19Þ

We have from (6.5.11):

oTik

oxk

¼ k
oh
oxk

dik þ 2l
oeik

oxk

:

But

oeik

oxk

¼ 1
2

o

oxk

ouk

oxi

þ oui

oxk

� �

¼ 1
2

o

oxi

ouk

oxk

� �

þ o2
ui

oxkoxk

� �

¼ 1
2

oh
oxi

þ Dui

� �

;

hence:

oTik

oxk

¼ k
oh
oxi

þ l
oh
oxi

þ Dui

� �

¼ ðkþ lÞ oh
oxi

þ lDui;

which leads to the desired equations of motion:

qai ¼ qFi þ ðkþ lÞ oh
oxi

þ lDui ði ¼ 1; 2; 3Þ: ð6:5:20Þ

The relations (6.5.20) form a system of three linear partial differential equa-
tions in the variables ui (i = 1, 2, 3). They were first deduced by Gabriel Lamé.
Let us write these equations in terms of Lagrange variables.

Recalling that our study is performed in the framework of the linear approxi-
mation, we rewrite (6.5.2) in the form:

x0i ¼ xi þ uiðr; tÞ ði ¼ 1; 2; 3Þ; ð6:5:21Þ

where this time by xi we mean the coordinates of some particle P at the initial time
t0, and by x0i the coordinates of the same particle at the time t. In other words,
x1; x2; x3; t are Lagrange variables. Since xi remain fixed while following the
particle in its motion, by virtue of (6.2.3) and (6.2.4), we have:

vi ¼
ox0i
ot
¼ oui

ot
; ð6:5:22Þ

ai ¼
ovi

ot
¼ o2

ui

ot2
ði ¼ 1; 2; 3Þ: ð6:5:23Þ

The body force F is a function of the form

Fðr0; tÞ ¼ Fðrþ u; tÞ ¼ Fðr; tÞ þ uj

oF

oxj

þ � � � ’ Fðr; tÞ: ð6:5:24Þ

The equation of continuity (6.3.10), with the notation adopted in this section, is
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Jqðr0; tÞ ¼ qðr; t0Þ:

But

J ¼
oðx0jÞ
oðxjÞ

¼ 1þ oui

oxi

þ � � � ’ 1:

If we denote q(r, t0) by q(r), the equation of continuity yields:

qðr0; tÞ ’ qðrÞ: ð6:5:25Þ

Then Lamé’s equations (6.5.20) read:

q
o2

ui

ot2
¼ qFi þ ðkþ lÞ oh

oxi

þ l D ui; ð6:5:26Þ

or, in vector form,

q
o2u

ot2
¼ qFþ ðkþ lÞgrad hþ l D u: ð6:5:260Þ

An alternative form of this equation is obtained if we use the vector relation

Du ¼ grad h� curlðcurl uÞ:

The result is:

q
o2u

ot2
¼ qFþ ðkþ 2lÞgrad h� l curlðcurl uÞ: ð6:5:27Þ

To integrate Lamé’s equations, one must know both the initial conditions
(the elementary displacements and the velocity fields at the initial time) and the
boundary conditions (e.g. the components of the stress tensor on the surface of the
elastic body).

The equations of elastic equilibrium, called Navier–Cauchy equations, are
obtained from (6.5.26) by taking a = 0:

qFi þ ðkþ lÞ oh
oxi

þ lDui ¼ 0 ði ¼ 1; 2; 3Þ: ð6:5:28Þ

6.5.3 Plane Waves in Isotropic Elastic Media

Assuming that our elastic medium is large enough, so as to obtain at least several
wave-lengths in any direction of propagation, let us suppose that the elementary
displacement u depends on a single space variable x1 and the time t: u = u(x1,t).
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If at the moment of observation the force F has stopped to act upon the medium,
Lamé’s equations (6.5.26) yield:

q
o2

ui

ot2
¼ ðkþ lÞ oh

oxi

þ l Dui: ð6:5:29Þ

We also have:

h ¼ div u ¼ ou1

ox1
;

Du1 ¼
o2

u1

ox2
1

; Du2 ¼
o2

u2

ox2
1

; Du3 ¼
o2

u3

ox2
1

:

Thus, the three components of equation (6.5.29) read:

ðkþ 2lÞ o
2
u1

ox2
1

� q
o2

u1

ot2
¼ 0; ð6:5:30Þ

l
o2

u2

ox2
1

� q
o2

u2

ot2
¼ 0; ð6:5:31Þ

l
o2

u3

ox2
1

� q
o2

u3

ot2
¼ 0: ð6:5:32Þ

We arrive at three partial differential equations of hyperbolic type, similar to the
D’Alembert homogeneous wave equation:

o2W
ox2
� 1

v2

o2W
ot2
¼ 0: ð6:5:33Þ

If we choose the displacement u so as to have u1 6¼ 0; u2 ¼ 0; u3 ¼ 0, the
propagation is described by Eq. (6.5.30). Since the displacement is along the
direction of propagation, we have a longitudinal wave. The speed of this wave is
found by comparing (6.5.33) with (6.5.30):

vl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ 2l
q

s

: ð6:5:34Þ

If, on the contrary, we choose u1 ¼ 0; u2 6¼ 0; u3 6¼ 0, the propagation is given
by Eqs. (6.5.31) and (6.5.32). In this case the direction of displacements is
orthogonal on that of propagation of the oscillation, therefore we have a transverse
wave which propagates with the speed

vt ¼
ffiffiffi
l
q

r

: ð6:5:35Þ
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Observation: The longitudinal oscillations produced in an elastic rod are descri-
bed by Eq. (6.5.30), while the transverse oscillations of a vibrating rope satisfy
equations of the type (6.5.31), or (6.5.32).

6.6 Perfect Fluid

The perfect or ideal fluid is a model of CDM having the property that the tensions
acting on any interior surface, which separates two arbitrary parts of the medium,
are normal to this surface. In other words, there are no forces of friction between
particles. For example, a fluid in a very slow motion is a good approximation for
this model.

Since we have only normal tensions, we can write

T ¼ �pn; ð6:6:1Þ

where pðx1; x2; x3; tÞ is a scalar called pressure. Here, x1; x2; x3; t are Euler
variables. Their use is recommended by the fact that a fluid in motion represents
considerably large displacements of substance (convection). Because in fluid
mechanics we deal only with pressures, the scalar p is positive. Projecting (6.6.1)
on the xi-axis and using Cauchy’s formula (6.3.22), we have:

Ti ¼ �pni ¼ �pnkdik ¼ nkTik;

which yields:

Tik ¼ �pdik: ð6:6:2Þ

6.6.1 Equation of Motion of a Perfect Fluid

Utilizing the already known procedure, we introduce Tik given by (6.6.2) in
Cauchy’s equations (6.3.23). The result is:

qai ¼ qFi �
op

oxi

ði ¼ 1; 2; 3Þ: ð6:6:3Þ

These partial-derivative, non-linear equations were first obtained by Leonhard
Euler. The equation of continuity (6.3.4), together with Euler’s equations (6.6.3),
form a system of four partial-derivative equations with five unknowns:
v1; v2; v3;p; q: We need one more equation. Since it cannot be furnished by the
principles of mechanics, we ‘borrow’ from thermodynamics the equation of state

Fðp; q; T Þ ¼ 0; ð6:6:4Þ
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where T is the absolute temperature. If T = const., the equation of state takes
the form

q ¼ fðpÞ; ð6:6:5Þ

and characterizes barotropic fluids. In this case, we can define the function

PðpÞ ¼
Z

dp

qðpÞ ð6:6:6Þ

to recast Euler’s equation (6.6.3) in the form:

ai ¼ Fi �
oP

oxi

: ð6:6:7Þ

Observations:

(a) Euler’s equation can be written in different forms, required in practical
applications. Thus, if we use the substantial derivative rule (6.2.14), we obtain:

q
ov

ot
þ ðv � rÞv

� �

¼ qF�rp: ð6:6:8Þ

Since

ðv � rÞv ¼ 1
2
rðv � vÞ � v� ðr � vÞ;

Euler’s equation takes the form:

ov

ot
þ 1

2
rðv � vÞ � v� ðr � vÞ ¼ F� 1

q
rp: ð6:6:9Þ

This last form was given by Hermann von Helmholtz.
(b) To integrate the system of equations (6.3.4), (6.6.3) and (6.6.5), we must know

both the initial conditions (quantities q;p; v1; v2; v3 at the initial time) and the
corresponding boundary conditions.

6.6.2 Particular Types of Motion of an Ideal Fluid

6.6.2.1 Irrotational Motion

Using a procedure similar to that applied in Sect. 6.4, we shall first define the
velocity of rotation and velocity of deformation tensors. Let P and P0 be any two
infinitely closed points of the medium, and let vP ; v0P 0 be the velocities at these
points at the times t and t0[ t, respectively. The variation of v between these two
points, at time t, is
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dv ¼ vP 0 � vP ¼
ov

oxk

dxk; ð6:6:10Þ

where the derivatives ov
oxk

are calculated at the point P. Projecting (6.6.10) on axes

and denoting dxk ¼ ðPP 0Þk ¼ Xk, we have:

dvi ¼
ovi

oxk

Xk ¼
1
2

ovi

oxk

� ovk

ovi

� �

Xk þ
1
2

ovi

oxk

þ ovk

oxi

� �

Xk

¼ XkiXk þ e0kiXk ði; k ¼ 1; 2; 3Þ: ð6:6:11Þ

Here,

Xki ¼
1
2

ovi

oxk

� ovk

oxi

� �

ð6:6:12Þ

is the velocity of rotation tensor, while the corresponding axial vector

X ¼ 1
2

curl v ð6:6:13Þ

is known as the vorticity. We therefore can write:

XkiXk ¼ �kijXjXk ¼ ðX� XÞi: ð6:6:14Þ

The second term in (6.6.11) is

e0kiXk ¼
o

oXi

1
2

e0kjXkXj

� �

¼ oa
oXi

; ð6:6:15Þ

where e0ki is the velocity of deformation tensor and

a ¼ 1
2
e0kjXkXj ¼ const. ð6:6:16Þ

is the velocity of deformation quadric. Then,

vP0 ¼ vP þX� Xþra;

i.e. the velocity of the fluid, at any point, is a vector sum of three terms: a rigid
velocity of translation, one of rotation and one of deformation, orthogonal to the
quadric (6.6.16).

If

curl v ¼ 0 ð6:6:17Þ

at any point of the fluid and at any time, the motion is called irrotational. The
relation (6.6.17) expresses the necessary and sufficient condition for the existence
of a function uðr; tÞ, called velocity potential, such that
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v ¼ grad uðr; tÞ: ð6:6:18Þ

The streamlines are defined as the lines which are tangent to the velocity at any
point, being determined by the differential equations:

dx

vx

¼ dy

vy

¼ dz

vz

:

Note that the relation (6.6.18) defines the velocity potential up to a term which is a
function of time only. Indeed, if we take

u0 ¼ uþ FðtÞ; ð6:6:19Þ

we obtain the same velocity field v.
We also have (see (6.6.9)):

ai ¼
ovi

ot
þ 1

2
o

oxi

ðv � vÞ ¼ o

oxi

ou
ot
þ 1

2
ðr/Þ2

� �

¼ ow
oxi

;

or

a ¼ grad wðr; tÞ; ð6:6:20Þ

where

w ¼ ou
ot
þ 1

2
ðruÞ2 ð6:6:21Þ

is the acceleration potential. One observes that w has, in its turn, the property
(6.6.19) of the velocity potential.

Assume that our fluid is barotropic and that there exists a function V*(r, t),
such that

F ¼ �grad V	ðr; tÞ: ð6:6:22Þ

Substituting the last two relations into (6.6.7), we have:

grad
ou
ot
þ 1

2
ðgrad uÞ2 þ V	 þ P

� �

¼ 0;

which yields:

ou
ot
þ 1

2
ðruÞ2 þ V	 þ P ¼ f1ðtÞ; ð6:6:23Þ

where f1(t) is a function of time only. Thus, Euler’s equations have been reduced to a
single relation (6.6.23), named the Lagrange–Bernoulli equation, in which the
velocity field v has been replaced by the scalar field uðr; tÞ: In this case, the motion
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of the fluid is determined by three equations: the Lagrange–Bernoulli equation
(6.6.23), the equation of continuity (6.3.4) and the equation of state (6.6.5).

In view of (6.6.19), we may take

u0 ¼ u�
Z

f1ðtÞ dt;

in which case the Lagrange–Bernoulli equation (6.6.23) reads:

ou0

ot
þ 1

2
ðru0Þ2 þ V 	 þ P ¼ 0: ð6:6:24Þ

6.6.2.2 Fundamental Equation of Acoustics

Consider a volume of gas at rest (v = 0). Assuming that at the moment of
observation there are no body forces acting on the medium (F = 0), Euler’s
equation (6.6.8) yields p = p0 = const., while (6.6.5) leads to q = q0 = const.

Suppose that in a certain point of the medium appears a small perturbation,
expressed by:

p ¼ p0 þ p0; q ¼ q0 þ q0 ðp0 
 p0; q0 
 q0Þ;

whose velocity of propagation is small enough as to neglect the term 1
2 ðruÞ2 in

(6.6.24). On the other hand, the definition (6.6.6) yields:

PðpÞ ¼
Zp

p0

dp

qðpÞ ’
p� p0

q0
¼ p0

q0
;

and consequently the Lagrange–Bernoulli equation reduces to

ou
ot
þ p0

q0
¼ 0: ð6:6:25Þ

Due to the equation of continuity (6.3.4), we also have

oq0

ot
þ q0div v ¼ oq0

ot
þ q0Du ¼ 0: ð6:6:26Þ

But

q0 þ q0 ¼ qðp0 þ p0Þ ¼ qðp0Þ þ
oq
op

� �

p0

p0 þ � � �

and, since q0 ¼ qðp0Þ,
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p0 ¼ op

oq

� �

q0

q0: ð6:6:27Þ

Utilizing these results, let us now take the partial derivative with respect to time
of (6.6.25). The result is:

o2u
ot2
¼ � 1

q0

op0

ot
¼ � 1

q0

op0

oq0

� �
oq0

ot
¼ op

oq

� �

q0

Du;

or

Du� 1
c2

0

o2u
ot2
¼ 0; ð6:6:28Þ

where

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

op

oq

� �

q0

s

ð6:6:29Þ

is the speed of sound. In conclusion, in a gaseous medium the small perturbations
propagate as sound waves, Eq. (6.6.28) being the fundamental equation of
acoustics.

6.6.2.3 Stationary Motion. Bernoulli’s Equation

If all particles of an ideal fluid which pass through a certain point follow the same
trajectory, the motion of the fluid is called permanent or stationary. Mathemati-
cally, this is expressed by the fact that all quantities appearing in the equation of
motion do not explicitly depend on time. Supposing that the motion is irrotational,
Euler’s equation (6.6.7) yields

1
2

v2 þ V	 þ P ¼ const.; ð6:6:30Þ

called Bernoulli’s equation. If the fluid is incompressible, then P = p/q and
(6.6.30) becomes

1
2
qv2 þ qV	 þ p ¼ const. ð6:6:31Þ

This equation expresses the conservation of mechanical energy per unit volume of
the fluid. The first term in (6.6.31) is the dynamic pressure, the second – the
potential pressure and the third – the static pressure. In other words, along a
streamline, the total pressure is constant. Note that the constant in (6.6.31) keeps
its value at any point of the fluid, while in case when curl v 6¼ 0, the constant varies
from one streamline to another.
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Taking the x3-axis along the ascendent vertical, we have V* = gz, and Bernoulli’s
equation reads:

1
2

v2 þ qgzþ p ¼ const. ð6:6:32Þ

The constant in (6.6.32) is determined from the boundary conditions: at z = z0,
p = p0 and v ¼ v0 are known.

6.6.2.4 Plane, Irrotational, Stationary Motion of a Homogeneous,
Incompressible Fluid

Assume a homogeneous and incompressible ideal fluid which moves in such a way
that the velocities of its particles are permanently parallel to a fixed plane, say
Ox1x2 ðOxyÞ and do not depend on x3. Then the equation of continuity (6.3.11)
reads:

div v ¼ ovx

ox
þ ovy

oy
¼ 0: ð6:6:33Þ

Since the motion is irrotational, we also have:

ðcurl vÞz ¼
ovy

ox
� ovx

oy
¼ 0: ð6:6:34Þ

Let now z = x ? iy be a complex variable (not to be confused with x3!) and

fðzÞ ¼ uðx; yÞ þ iwðx; yÞ ð6:6:35Þ

be a function of z, where u and w are the real and imaginary parts, respectively. If
the functions u and w, assumed to be of class C2, satisfy the Cauchy–Riemann
conditions:

ou
ox
¼ ow

oy
;

ou
oy
¼ � ow

ox
; ð6:6:36Þ

then f(z) is analytical or holomorphic at the point z.
Comparing (6.6.33) and (6.6.34) with the Cauchy–Riemann conditions (6.6.36),

we realize that vx and �vy can be taken as the real and imaginary parts of the
complex function

w ¼ vx � ivy; ð6:6:37Þ

or, by virtue of (6.6.18),

w ¼ ou
ox
� i

ou
oy
; ð6:6:38Þ
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where uðx; yÞ is the velocity potential. The function w is called the complex
velocity. Applying the Cauchy–Riemann conditions, we also have:

df

dz
¼

ou
ox

dxþ ou
oy

dyþ i
ow
ox

dxþ ow
oy

dy

	 


dxþ idy
¼ ou

ox
� i

ou
oy
;

which yields:

df

dz
¼ w: ð6:6:39Þ

The function f(z) is called the complex potential and wðx; yÞ is the stream function.
The Cauchy–Riemann conditions also yield

ou
ox

ow
ox
þ ou

oy

ow
oy
¼ ðruÞ � ðrwÞ ¼ 0; ð6:6:40Þ

which says that the two families of curves uðx; yÞ ¼ const.; wðx; yÞ ¼ const. are
orthogonal.

Actually, by symmetry arguments, the role of velocity potential can be played
either by uðx; yÞ, or by w(x, y). If we choose u as the velocity potential, then the
curves w ¼ const. are the streamlines while u = const. are the equipotential lines.
If, on the contrary, one chooses w as the velocity potential, then u ¼ const. are the
streamlines, and w = const. – the equipotential lines.

To illustrate the use of the complex potential method, let us discuss an example.
Assume that the velocity potential is

f ðzÞ ¼ uþ iw ¼ Azþ B

z
; ð6:6:41Þ

where A and B are two real constants. Separating the real and imaginary parts,
we obtain:

u ¼ Axþ Bx

x2 þ y2
; w ¼ Ay� By

x2 þ y2
: ð6:6:42Þ

The complex velocity is found from Eq. (6.6.39):

w ¼ vx � ivy ¼ A� B

z2
;

which yields:

vx ¼ Aþ B
y2 � x2

ðx2 þ y2Þ2
; vy ¼ �

2Bxy

ðx2 þ y2Þ2
: ð6:6:43Þ

The form of the two last relations suggests the use of polar plane coordinates r, h,
instead of x, y. In this representation, we find:
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u ¼ Arþ B

r

� �

cos h; w ¼ Ar� B

r

� �

sin h; ð6:6:44Þ

vx ¼ Aþ B

r2
ðsin2 h� cos2 hÞ; vy ¼ �2B

sin h cos h
r2

: ð6:6:45Þ

Let us analyze the streamline

wðr; hÞ ¼ Ar� B

r

� �

sin h ¼ 0:

This equation admits as solutions either r2 ¼ B=A ¼ const. ðh 6¼ 0; pÞ, or

h ¼ 0; p ðr2 6¼ B=AÞ: The first solution represents a circle of radius R ¼
ffiffiffiffiffiffiffiffiffiffi

B=A
p

;

with its centre at the origin of the coordinate axes, and the second solution rep-
resents the x-axis (Fig. 6.8). On the other hand, (6.6.45) shows that far from the
origin (r??) we have vx ¼ A; vy ¼ 0, which indicates that the fluid performs a
uniform motion of translation, parallel to the x-axis.

The same relations lead to the conclusion that at the point O both vx and vy

become infinite, while at the points P1 (h = p) and P2 (h = 0) on the circle they
vanish. The points P1 and P2 are called stagnation points. These considerations
show that the circle of radius R represents the orthogonal cross section of a fixed,
rigid, cylindrical obstacle.

From (6.6.45), we find the magnitude of velocity as

v2 ¼ A� B

r2

� �2

þ 4AB

r2
sin2 h;

i.e. the velocity attains its maximum values at the points with h ¼ � p
2 :

Observation: From v ¼ ru and div v ¼ 0, it follows that

divðgrad uÞ ¼ Du ¼ 0;

which is the Laplace equation for u, i.e. the velocity potential is a harmonic
function.

Fig. 6.8 Image of
streamlines and equipotential
lines around a fixed, rigid and
cylindrical obstacle.
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6.6.3 Fundamental Conservation Theorems

As we showed in Sect. 6.3, the law of conservation of mass can be expressed either
in a differential form, by the equation of continuity (6.3.4), or in an integral form,
by Eq. (6.3.6). In the following, we shall deduce the equations of variation of
energy, momentum and angular momentum of an ideal fluid, in a form which will
remind us of Eq. (6.3.6).

Let A(r, t) be any tensor quantity. By virtue of (6.3.4), we have:

q
dA

dt
¼ q

oA

ot
þ vk

oA

oxk

� �

¼ o

ot
ðq AÞ þ o

oxk

ðqA vkÞ: ð6:6:46Þ

6.6.3.1 Energy Conservation Theorem

By definition, the ideal fluid is free of both internal frictions and thermic con-
ductivity, or, in short, there are no dissipative phenomena. From the thermody-
namical point of view, the fact that there is no heat exchange between the system
and the surrounding medium is expressed by the conservation of entropy. This
process is called isentropic. Any reversible transformation of an isolated system is
an isentropic transformation.

If we denote by s the unit mass entropy, then the constancy of entropy is
given by

ds

dt
¼ os

ot
þ ðv � rÞs ¼ 0: ð6:6:47Þ

The energy of the fluid contained in an elementary volume consists of both
kinetic and internal energies. If e is the internal energy per unit mass, the energy
per unit volume of the fluid is:

~E ¼ 1
2
qv2 þ qe: ð6:6:48Þ

Assume now that the quantity A in (6.6.46) is the zero-rank tensor A ¼ 1
2 v2 þ e.

Then, we have:

q
d

dt

1
2
v2 þ e

� �

¼ o

ot
q

v2

2
þ qe

� �

þ o

oxk

qvk

v2

2
þ e

� �� �

: ð6:6:49Þ

On the other hand, the fundamental equation of the thermodynamics of
reversible processes reads:

T ds ¼ deþ p d
1
q

� �

: ð6:6:50Þ

328 6 Mechanics of Continuous Deformable Media



Using Euler’s equations (6.6.3) (with F = 0), the equation of continuity (6.3.3),
the thermodynamical equation (6.6.50) and the fact that the process is isentropic
(ds = 0), we can write:

q
d

dt

1
2
v2 þ e

� �

¼ qvk

dvk

dt
þ q

de
dt
¼ �vk

op

oxk

þ p

q
dq
dt

¼ � o

oxk

ðpvkÞ þ
p

q
dq
dt
þ q

ovk

oxk

� �

¼ � o

oxk

ðpvkÞ:

A comparison between this relation and (6.6.49) yields

o

ot

1
2
qv2 þ qe

� �

¼ � o

oxk

qvk

v2

2
þ w

� �� �

; ð6:6:51Þ

where

w ¼ eþ p

q
ð6:6:52Þ

is the enthalpy per unit mass. Integrating (6.6.51) on a fixed domain of volume V,
bounded by the surface S, and applying the Green–Gauss formula, we finally
obtain:

o

ot

Z

V

1
2

qv2 þ qe

� �

ds ¼ �
I

S

qvk

v2

2
þ w

� �

dSk: ð6:6:53Þ

The l.h.s. gives the variation of energy in the volume V per unit time, while the
r.h.s. expresses the density flux of this energy which flows through the surface
bounding the domain. The quantity

qv
v2

2
þ w

� �

ð6:6:54Þ

is the vector of energy flux density. Its magnitude is the energy which flows per
unit time through the unit surface, orthogonal to the direction of the velocity.

6.6.3.2 Momentum Conservation Theorem

Assume now that A is the first-rank tensor vi. Then,

q
dvi

dt
¼ o

ot
ðqviÞ þ

o

oxk

ðqvivkÞ:

On the other hand, Euler’s equations (6.6.8) with Fi = 0 read:
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q
dvi

dt
¼ � op

oxi

¼ � o

oxk

ðpdikÞ:

The last two relations yield:

o

ot
ðqviÞ ¼ �

o

oxk

Pik; ð6:6:55Þ

where the quantities

Pik ¼ qvivk þ pdik ði; k ¼ 1; 2; 3Þ ð6:6:56Þ

are the components of a symmetric tensor. Integrating (6.6.55) on a fixed domain
of volume V and applying the Green–Gauss formula, we obtain:

o

ot

Z

V

~Pi ds ¼ �
I

S

Pik dSk; ð6:6:57Þ

which is the momentum theorem. Here, ~Pi ¼ qvi and S is the closed surface
bounding the integration volume. The integral on the l.h.s. of (6.6.57) is the
i-component of the fluid momentum, and that in the r.h.s. is the momentum flux
density through the surface S. The tensor Pik represents the i-component of the
momentum passing in unit time through a unit area orthogonal to the xk-axis.
Equation (6.6.57) can also by written in a vector form:

o

ot

Z

V

~P ds ¼ �
I

fPg � dS; ð6:6:58Þ

where ~P ¼ qv and fPg ¼ qvvþ pukuk is the dyadic representation of the
momentum flux density tensor Pik (see Appendix A).

6.6.3.3 Angular Momentum Conservation Theorem

Let us choose A:(r 9 v)i in (6.6.46). Applying Euler’s equation (6.6.3) with
F = 0, we have:

q
d

dt
ðr� vÞi ¼ �ijkxjq

dvk

dt
¼ ��ijkxj

op

oxk

¼ � o

oxl

ð�ijkxjpdklÞ:

Introducing this result into (6.6.46), then making a convenient grouping of the
terms and integrating over a fixed volume V bounded by the surface S, we obtain
the angular momentum theorem:

o

ot

Z

V

~Li ds ¼ �
I

S

Mil dSl; ð6:6:59Þ
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where we denoted

~Li ¼ �ijkqxjvk; ð6:6:60Þ

Mil ¼ �ijkxjPkl: ð6:6:61Þ

The l.h.s. of Eq. (6.6.59) represents the time-variation of the i-component of the
angular momentum of the volume of fluid, while the r.h.s. is the i-component of
the flux of angular momentum density through the surface S. In vector form, the
angular momentum theorem reads:

o

ot

Z

V

~L ds ¼ �
I

S

fMg � dS; ð6:6:62Þ

where ~L ¼ qr� v; fMg ¼ r� fPg:

6.6.3.4 Kelvin’s Velocity Circulation Theorem

Consider an ideal fluid in motion and let C be some closed curve, made out of fluid
particles. We want to show that in the case of isentropic motion the circulation of
the velocity along any closed curve is constant:

I

C

v � dl ¼ const. ð6:6:63Þ

To prove this, we take the total time-derivative of the circulation:

d

dt

I

C

v � dl ¼
I

C

dv

dt
� dlþ

I

C

v � d
dt
ðdlÞ: ð6:6:64Þ

Since the motion is isentropic (s = const.), by virtue of (6.6.50) and (6.6.52) we
have:

rw ¼ 1
q
rp: ð6:6:65Þ

Assuming that F is conservative,

F ¼ �grad V	ðrÞ;

Euler’s equation (6.6.3) reads:

dv

dt
¼ �gradðV	 þwÞ: ð6:6:66Þ

Using these results, the first term on the r.h.s. of (6.6.64) vanishes:
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I

C

dv

dt
� dl ¼ �

I

C

rðV	 þ wÞ � dl ¼ �
I

C

dðV	 þwÞ ¼ 0:

Next, we note that the contour element dl can be written as the difference
between the position vectors of its end points, while the operators d and d/dt are
independent. Having this in mind, the second term on the r.h.s. of (6.6.64) is also
zero:

I

C

v � d
dt
ðdlÞ ¼

I

C

v � d dl

dt

� �

¼
I

C

v � dv ¼
I

C

d
1
2

v2

� �

¼ 0;

which completes the proof of (6.6.63), since

d

dt

I

C

v � dl ¼ 0: ð6:6:67Þ

This theorem is known as Kelvin’s velocity circulation theorem. According to it, if
at the time t1 a certain number of particles form a closed contour, then the same
particles will form a closed contour at any time t2 [ t1: As a consequence of
Kelvin’s theorem, if the motion of a fluid is irrotational at a moment of time, it will
remain irrotational.

6.6.3.5 Vorticity Equation

Applying in (6.6.67) the Stokes theorem, we have:

d

dt

Z

S

curl v � dS ¼ 0;

or, in view of (6.6.13),

d

dt

Z

S

X � dS ¼ 0: ð6:6:68Þ

This shows that the flux of the vorticity X through the open surface S which moves
together with the fluid is constant. A curve tangent in any point and at any time to
X is a vortex line. The differential equations of the vortex lines are deduced from
the obvious relation X� dr ¼ 0 and can be written as

dx

Xx

¼ dy

Xy

¼ dz

Xz

:
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According to Kelvin’s circulation theorem, the vortex lines move together with the
fluid particles, as if being ‘frozen’ in the fluid. This result can be obtained also in a
different way. Let us write Eq. (6.6.66) in the form

ov

ot
� v� ðcurl vÞ ¼ �grad

1
2
jvj2 þ V	 þ w

� �

:

Taking the curl of this equation, we arrive at

oX
ot
¼ curlðv�XÞ; ð6:6:69Þ

called the vorticity equation, which is the differential form of Kelvin’s theorem.
An alternative form of this equation, which is more convenient for our purpose, is

dX
dt
� ðv � rÞX ¼ curlðv�XÞ;

or, using the formulas from Appendix B,

dX
dt
¼ ðX � rÞv�X div v:

Multiplying this equation by 1/q and using the equation of continuity, we easily
arrive at

d

dt

X
q

� �

¼ X
q
� r

� �

v; ð6:6:70Þ

which is Beltrami’s vorticity diffusion equation.
To extract the physical significance of this equation, let U be an arbitrary vector

field, and let C; C0 be two field lines, taken in such a way that all particles lying on
C at time t, lie on C0 at time t ? dt. Also, let dl be an arbitrary infinitesimal vector
on C, and dl0 the infinitesimal vector, made up by the same particles, but on the
line C0: In order to be conserved during the motion of the fluid, the lines of the field
U must satisfy the relation

dl0 � dl ¼ d

dt
ðdlÞ dt:

On the other hand, if v = vA and v0 ¼ vB are the velocities of displacement of the
points A and B (Fig. 6.9), we can write:

dl0 ¼ dlþ vB dt � vA dt

¼ dlþ d

dt
ðrA þ dlÞ dt � vA dt

¼ dlþ ½vþ ðdl � rÞvþ � � �� dt � v dt

’ dlþ ½ðdl � rÞv� dt:

6.6 Perfect Fluid 333



The last two relations yield:

d

dt
ðdlÞ ¼ ðdl � rÞv: ð6:6:71Þ

Now, by comparing (6.6.71) with (6.6.70), we conclude that the lines of the field
X=q are conserved.

Observation: Beltrami’s equation (6.6.70) has been deduced for an isentropic
flow. If this condition is eliminated, this equation is written in a general form:

d

dt

X
q

� �

¼ X
q
� r

� �

vþ 1
2q

curl a; ð6:6:72Þ

where a is the acceleration vector. The derivation of this equation is straightfor-
ward and it is left to the reader. (Sometimes the vorticity is defined as X ¼ curl v;
which leads to the disappearance of the denominator ‘2’ in (6.6.72).)

6.6.3.6 Clebsch’s Theorem

Clebsch’s theorem states that: If the vector field A is given, then it is always
possible to find three scalar functions a; b; c, depending on coordinates and time,
such that

A ¼ �raþ brc: ð6:6:73Þ

To prove the theorem, let us consider

B ¼ curl A; ð6:6:74Þ

which yields

div B ¼ 0: ð6:6:75Þ

By integrating the differential equations of the solenoidal field B,

Fig. 6.9 Physical
interpretation of Beltrami’s
diffusion equation.
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dx

Bx

¼ dy

By

¼ dz

Bz

; ð6:6:76Þ

we find two families of mobile surfaces,

f1ðx; y; z; tÞ ¼ 0; f2ðx; y; z; tÞ ¼ 0; ð6:6:77Þ

which by intersection produce the lines of the field B. Then, Eq. (6.6.75) admits as
a solution

B ¼ gðf1; f2; tÞrf1 �rf2: ð6:6:78Þ

Indeed, we have:

div B ¼ gr � ðrf1 �rf2Þ þ ðrf1 �rf2Þ � rg

¼ ðrf1 �rf2Þ �
og

of1
rf1 þ

og

of2
rf2

� �

¼ 0:

Let b and c be two other functions, so that:

b ¼ bðf1; f2; tÞ; c ¼ cðf1; f2; tÞ: ð6:6:79Þ

Then, we have:

rf1 �rf2 ¼ Jrb�rc;

where

J ¼ oðf1; f2Þ
oðb; cÞ

is the Jacobian of the transformation (6.6.79). If we choose b and c so as to have
J = 1/g, relation (6.6.78) becomes:

B ¼ curl A ¼ rb�rc ¼ r� ðbrcÞ;

or

curlðA� brcÞ ¼ 0;

which yields (6.6.73). This theorem was proved by Alfred Clebsch, and (6.6.73)
expresses a Clebsch transformation. It is shown to be very useful in fluid
mechanics and magnetofluid dynamics. The scalar functions a; b; c are called
Clebsch potentials. As in the case of the electrodynamic potentials, they are
determined only up to a gauge transformation, meaning that for a given field A,
they are not unique. Let a0; b0; c0 be another set of potentials, so that

A ¼ �ra0 þ b0rc0: ð6:6:80Þ

The transformations (6.6.73) and (6.6.80) yield
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b0rc0 � brcþrF ¼ 0; ð6:6:81Þ

where F ¼ a� a0: Equation (6.6.81) can be taken as a system of three algebraic
equations with two unknown functions, b and b0: The solutions are non-trivial if
the determinant

oðc; c0;FÞ
oðx; y; zÞ

is zero. It follows that F is a function of c; c0 and, possibly, of time: F ¼
F1ðc; c0; tÞ: Thus, (6.6.81) gives:

b ¼ oF1

oc
; b0 ¼ � oF1

oc0
a0 ¼ a� F1: ð6:6:82Þ

Consequently, we obtain:

A ¼ �rða� F1Þ �
oF1

oc0
rc0 ¼ �raþ brc ¼ A;

meaning that (6.6.82) is a suitable gauge transformation. Incidentally, this method
was encountered while studying the canonical transformations, the generating
function being F1ðc; c0; tÞ. Similar formulas are obtained for the generating func-
tions F2ðb; c0; tÞ; F3ðc; b0; tÞ; F4ðb; b0; tÞ. The reader is encouraged to deduce
them.

Application. Using Clebsch’s representation (6.6.73), the velocity field v can be
written as

v ¼ �raþ brc; ð6:6:83Þ

which means that the vorticity X is

X ¼ 1
2

curl v ¼ 1
2
rb�rc; ð6:6:84Þ

showing that the vortex lines lie at the intersection of the surfaces b = const.,
c = const. (Fig. 6.10).

Assuming that the motion is isentropic, we introduce (6.6.83) into Euler’s
equation:

ov

ot
� v� curl v ¼ �grad

1
2
jvj2 þ V	 þ w

� �

:

The result is:

ob
ot
rc� oc

ot
rb� v� ðrb�rcÞ ¼ �r 1

2
jvj2 þ V	 þ w� oa

ot
þ b

oc
ot

� �

:

Denoting

336 6 Mechanics of Continuous Deformable Media



W ¼ 1
2
jvj2 þ V	 þ w� oa

ot
þ b

oc
ot

and writting explicitly the double cross product, we have:

ob
ot
þ v � rb

� �

rc� oc
ot
þ v � rc

� �

rb ¼ db
dt
rc� dc

dt
rb ¼ �rW: ð6:6:85Þ

The vector equation (6.6.85) may be regarded as a system of three linear
algebraic equations in the variables db/dt and dc/dt. To have non-trivial solutions,
the determinant

oðW; b; cÞ=oðx; y; zÞ

must vanish, which means that W must be a function of the form: W ¼ Wðb; c; tÞ:
A solution of (6.6.84) is then

dc
dt
¼ dW

db
;

db
dt
¼ � dW

dc
: ð6:6:86Þ

As we can see, Eqs. (6.6.86) are similar to Hamilton’s canonical equations
(5.1.21). Here, the variables c and b play the role of generalized coordinate and
generalized momentum, respectively, while Wðb; c; tÞ stands for the Hamiltonian
per unit mass.

If the motion is stationary, the partial derivatives with respect to time of all
quantities are zero, and we have

dW
dt
¼ _b

oW
ob
þ _c

oW
oc
¼ 0;

which expresses the conservation law

1
2
v2 þ V	 þw ¼ const.;

i.e. Bernoulli’s equation (6.6.30).

Fig. 6.10 Vortex lines lie at
the intersection of the
surfaces b = const., c = const.,
where b and c are the Clebsch
potentials.
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6.6.4 Magnetodynamics of Ideal Fluids

Consider an ideal, charged fluid, which undergoes isentropic motion in an external
electromagnetic field E; B. As a result of the motion, in the conducting fluid
appear induction currents. The magnetic fields of these currents will interact, in
their turn, with the external field. Consequently, the charged particles are subject
both to mechanical and electromagnetic forces. To describe the processes which
take place in such a system, we have to use the equations of an ideal fluid, together
with Maxwell’s equations and Ohm’s law. Neglecting the displacement and
convection currents as compared with the conduction currents, Maxwell’s system
of equations reads:

curl E ¼ � oB

ot
; div B ¼ 0; ð6:6:87Þ

curl B ¼ l0j; div E ¼ qe

�0
; ð6:6:88Þ

while the differential form of Ohm’s law is:

j ¼ kðEþ v� BÞ: ð6:6:89Þ

In these formulas, qe is the electric charge density and k – the electric conduc-
tivity. It is assumed that l ’ l0; � ’ �0, where l and � are the permeability and the
permittivity of the medium, respectively.

Using Maxwell’s equations and Ohm’s law, we can eliminate the field E and
obtain a single vector equation for B:

oB

ot
¼ �curl E ¼ curlðv� BÞ � 1

k
curl j ¼ curlðv� BÞ � 1

kl0
curl curl B;

or, by utilizing the results derived in Appendix B,

oB

ot
¼ curlðv� BÞ þ mmDB; ð6:6:90Þ

called induction equation. The quantity

mm ¼
1

kl0
; ½mm� ¼ L2T�1; ð6:6:91Þ

is known as the magnetic viscosity.
If the electric conductivity of the medium is very high (k??), then mm?0 and

(6.6.90) reduces to

oB

ot
¼ curlðv� BÞ; ð6:6:92Þ

which is similar to the vorticity equation (6.6.69). We also have:
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qe ¼ �0 div E ¼ ��0 divðv� BÞ:

The equation of motion of the magnetofluid is obtained by considering the force
of interaction between the magnetic field B and the currents j (Lorentz force):

FL ¼ neðv� BÞ ¼ j� B ¼ 1
l0
ðcurl BÞ � B:

Denoting by F0 the body forces which are not of magnetic nature, the equation of
motion then reads:

q
dv

dt
¼ j� B�rpþ qF0: ð6:6:93Þ

The complete system of equations describing the behaviour of an ideal, infinitely
conducting fluid, performing isentropic motion in an external electromagnetic
field, is therefore:

div B ¼ 0;
oB

ot
¼ curlðv� BÞ; p ¼ pðqÞ;

q
dv

dt
¼ j� B�rp;

ds

dt
¼ 0;

oq
ot
þ divðqvÞ ¼ 0: ð6:6:94Þ

Observation: Following a procedure similar to that leading to Beltrami’s equation
(6.6.70), one obtains

d

dt

B

q

� �

¼ B

q
� r

� �

v:

Thus, if the electric conductivity is very high, the lines of the magnetic field are
‘frozen’ in the magnetofluid.

6.7 Viscous Fluid

In the study of the ideal fluid, as a model of CDM, we assumed that the stress
tensor Tik reduces to a single component p – the pressure. This model is a good
approximation to the real flows in the case of slow motions, but if the velocity
becomes high, the friction between the fluid particles cannot be neglected any-
more. The existence of the interior friction is mathematically expressed by the
appearance of non-diagonal components of the stress tensor. The resistance
encountered by particles due to their mutual friction is called viscosity, while the
fluids having this property are termed viscous or real.

A viscous fluid keeps its properties within certain pressure and temperature
limits. Melted bitumen, for example, has properties of a viscous fluid, but as the
temperature goes down, it becomes a plastic medium, and finally a rigid body.
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Consider a viscous fluid at rest. In this state, the stress tensor has only diagonal
(normal) components, as for the ideal fluids:

Tik ¼ �pdik:

If the fluid is put into motion, there appear both normal and tangent tensions, i.e.

Tik ¼ �pdik þ T 0ik; ð6:7:1Þ

where T 0ik is the viscous stress tensor. The experimental data show that the tensions
occurring in a viscous fluid depend on both the velocity of deformation h0,

h0 ¼ ovi

oxi

¼ div v; ð6:7:2Þ

and the velocity of deformation tensor e0ik,

e0ik ¼
1
2

ovk

oxi

þ ovi

oxk

� �

: ð6:7:3Þ

We assume that, in the case of homogeneous and isotropic viscous fluids, the
relation between T 0ik and e0ik has the form:

T 0ik ¼ k0h0dik þ 2l0e0ik;

where the quantities k0[ 0; l0[ 0 are called dynamic coefficients of viscosity.
Their dimension is ½k0; l0� ¼ ML�1T�1. Using (6.7.1), we then obtain:

Tik ¼ �ðp� k0h0Þdik þ 2l0e0ik: ð6:7:4Þ

The fluids obeying Eq. (6.7.4) are called perfectly viscous or Newtonian.
The equations of motion of a viscous fluid are found by an already known

procedure. Introducing the tensor Tik given by (6.7.4) into Cauchy’s equations
(6.3.23), we have:

qai ¼ qFi þ � op

oxk

þ k0
oh0

oxk

� �

dik þ 2l0
oe0ik
oxk

:

But

oe0ik
oxk

¼ 1
2

o

oxk

ovk

oxi

þ ovi

oxk

� �

¼ 1
2

oh0

oxi

þ Dvi

� �

;

therefore

qai ¼ qFi �
op

oxi

þ ðk0 þ l0Þ oh0

oxi

þ l0Dvi; ð6:7:5Þ

or, in vector form,

qa ¼ qF�rpþ ðk0 þ l0Þgrad h0 þ l0Dv: ð6:7:6Þ
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These are the equations of motion of our model of viscous fluid, called Navier–
Stokes equations. They represent a system of non-linear, second-order partial
differential equations.

If the homogeneous viscous fluid is incompressible ðdiv v ¼ 0Þ, the last equa-
tion reduces to

qa ¼ qF�rpþ l0Dv; ð6:7:7Þ

which shows that in such a fluid the viscosity is determined by a single coefficient l0.
The quantity

m0 ¼ l0

q
; ½m0� ¼ L2T�1 ð6:7:8Þ

is called the kinematic coefficient of viscosity. Comparing (6.7.8) with (6.6.91), we
see that the coefficients m0 and mm have the same dimension. If the viscosity is
absent ðk0 ¼ l0 ¼ 0Þ, then the Navier–Stokes equations (6.7.6) yield Euler equa-
tions (6.6.3), as expected.

In order to determine the motion of the fluid, the Navier–Stokes equations
(6.7.6) and the equation of continuity must be completed with one more equation.
As we have shown, in the case of ideal fluids, this is the equation of conservation
of entropy (6.6.47). Since viscous fluids are characterized by irreversible processes
of dissipation of energy, the aforementioned equation is not valid any more. To
obtain the corresponding equation for viscous fluids we shall proceed as follows.

The fact that the time-variation of the energy density of an ideal fluid is equal to
the divergence of the energy flow which passes through the boundary of the
domain occupied by the fluid, mathematically expressed by Eq. (6.6.51), is also
valid for viscous fluids. Nevertheless, in this last case, two more terms must be
added to the quantity qvkðv2=2þwÞ; which is related to the displacements of the
fluid. These two terms are due to viscosity, ð�viT

0
ikÞ, and to heat transfer, ð�v oT

oxk
Þ;

where v is the thermo-conductivity coefficient. The equation of conservation of
energy is then:

o

ot

qv2

2
þ qe

� �

¼ � o

oxk

qvk

v2

2
þ w

� �

� viT
0
ik � v

oT

oxk

� �

: ð6:7:9Þ

Let us deduce this equation in a more rigorous way. Writing the Navier–Stokes
equations (6.7.5) in the compressed form

q
dvi

dt
¼ � op

oxi

þ oT 0ik
oxk

and observing that, in view of (6.3.3) and (6.6.50),

de
dt
¼ T

ds

dt
þ p

q2

dq
dt
¼ T

ds

dt
� p

q
ovk

oxk

;
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we obtain:

q
d

dt

v2

2
þ e

� �

¼ qvk

dvk

dt
þ q

de
dt
¼ � o

oxk

ðpvkÞ þ qT
ds

dt
þ vi

oT 0ik
oxk

: ð6:7:10Þ

Then Eqs. (6.6.49) and (6.7.10) yield:

o

ot
q

v2

2
þ qe

� �

¼ � o

oxk

qvk

v2

2
þ w

� �

� viT
0
ik

� �

þ qT
ds

dt
� T 0ik

pvi

oxk

;

or, after some rearrangements of terms,

o

ot

qv2

2
þ qe

� �

¼ � o

oxk

qvk

v2

2
þw

� �

� viT
0
ik � v

oT

oxk

� �

þ qT
ds

dt
� T 0ik

ovi

oxk

� o

oxk

v
oT

oxk

� �

:

We therefore obtain Eq. (6.7.9) if

qT
ds

dt
¼ T 0ik

ovi

oxk

þ o

oxk

v
oT

oxk

� �

: ð6:7:11Þ

The last equation is equivalent to (6.7.9). It is called the general equation of
heat propagation (qT ds

dt
is the heat gained by the unit volume of fluid per unit

time). If the viscosity and the heat conduction are absent ðT 0ik ¼ 0; v ¼ 0Þ, we fall
back on the equation of conservation of entropy for a perfect fluid (6.6.47), as
expected.

Application. Let us determine the distribution of velocities in a viscous,
incompressible fluid, contained between two infinite, coaxial cylinders, of radii R1

and R2 [ R1, which perform a uniform motion of rotation about their common
axis, with the angular velocities x1 and x2, respectively. Choosing a cylindric
system of coordinates (in which the radial coordinate is denoted by r, since q
denotes the mass density in this chapter), with the z-axis along the cylinders’ axis,
by symmetry criteria we have: vr ¼ vz ¼ 0; vu ¼ vðrÞ; p ¼ pðrÞ. The accelera-
tion is constant and directed along the r-coordinate. Projecting Eq. (6.7.7) on
cylindric coordinates, we obtain:

v2

r
¼ 1

q
dp

dr
; ð6:7:12Þ

d2v

dr2
þ 1

r

dv

dr
� v

r2
¼ 0: ð6:7:13Þ

Equation (6.7.13) admits solutions of type rn. Introducing this solution into the
equation, we obtain n = ±1, therefore v is
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v ¼ Arþ B

r
: ð6:7:14Þ

The constants A and B are determined by the condition that, on the surfaces of
cylinders in contact with the fluid, the fluid velocity is equal to that of cylinders:
vR1 ¼ x1R1; vR2 ¼ x2R2. The result is:

v ¼ x1R
2
1 � x2R

2
2

R2
1 � R2

2

rþ ðx2 � x1ÞR2
1R

2
2

R2
1 � R2

2

1
r
: ð6:7:15Þ

If x1 ¼ x2 ¼ x, we have v = xr, i.e. the fluid rotates together with the cylinders,
like a rigid system. If the exterior cylinder is taken away ðR2 ¼ 1; x2 ¼ 0Þ, we

obtain v ¼ x1R
2
1

r
:

Using Cauchy’s formula (6.3.22) and the relation (6.7.1), we are able to
determine the stress exerted on a solid surface which is in contact with a viscous
fluid. Thus, we have:

Ti ¼ nkTik ¼ �pni þ nkT
0
ik: ð6:7:16Þ

The first term represents the normal tension, while the second – the force of
friction per unit area, due to viscosity. If the fluid is incompressible (our case),
Eq. (6.7.4) yields:

T 0ik ¼ l0
ovk

oxi

þ ovi

oxk

� �

:

We are interested in finding the tangent tension T 0ru corresponding to the interior
cylinder, namely:

T 0rujr¼R1
¼ l0

ov

or
� v

r

� �

jr¼R1
¼ �2l0

x2 � x1

R2
1 � R2

2

R2
2:

The problem of motion of a viscous fluid between two coaxial rotating cylin-
ders lies at the basis of the hydrodynamical theory of lubrication.

Observation: To facilitate the study of different particular cases of motion of a
viscous fluid, one defines the dimensionless ratio

Re ¼ lv

m0
; ð6:7:17Þ

called Reynolds’ number, where l is the length of the macroscopic inhomogeneity
in the fluid, v – the fluid velocity and m0 – the kinematic coefficient of viscosity.
The value of Reynolds’ number indicates the type of flow. For example, in a pipe
of a circular section and smooth walls, for Re\Rec, where Rec is the critical value
of Re ðRec ¼ Dv=m0 ’ 2; 400, where D is the diameter of the pipe) the fluid flow is
laminar. In such a flow the streamlines do not intersect each other. If Re [ Rec, the
flow is turbulent, being characterized by a non-regular variation in space and time
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of the velocity. The turbulent flow usually occurs at high velocities of the fluid and
for large dimensions of the leading pipes. The ideal fluids are characterized by
Re!1 ðm0 ! 0Þ.

6.8 Lagrangian Formalism

The principles and methods used in the study of systems with a finite number of
degrees of freedom are also valid in the mechanics of CDM. Since these systems
are characterized by an infinite number of degrees of freedom, the number of the
differential equations of motion should be infinite. In fact, these equations are
similar to the Lagrange equations and their number is finite. We shall start by
obtaining the Euler–Lagrange equations for continuous systems.

6.8.1 Euler–Lagrange Equations for Continuous Systems

Consider the functional

JðuÞ ¼
Z

Dn

L x1; ::; xn; uðx1; ::; xnÞ;
ou
ox1

; ::;
ou
oxn

� �

dx1 . . . dxn; ð6:8:1Þ

defined on the bounded domain Dn of a n-dimensional space Rn, where L is a
continuous and differentiable function, admitting as many partial derivatives as
necessary, and u is a function of class C2. Assuming that the values of u on the
closed hypersurface Sn-1 which bounds the domain Dn are given, we want to
determine the function u for which JðuÞ attains an extremum.

Suppose that uðx1; ::; xnÞ realizes the stationary value of JðuÞ. In this case, for
any infinitesimal variation uþ du, where du ¼ �gðx1; ::; xnÞ, with

gðx1; ::; xnÞjSn�1
¼ 0; ð6:8:2Þ

the first variation dJðuÞ of the integral (6.8.1) must be zero. Since

L x;uþ �g; ou
ox
þ � og

ox

� �

¼ L x;u;
ou
ox

� �

þ �g oL
ou
þ �
Xn

i¼1

og
oxi

oL
ou;i

þ � � � ;

where we used the notation u;i ¼ ou=oxi; the first variation of JðuÞ is:

dJðuÞ ¼ �
Z

Dn

g
oL
ou
þ
Xn

i¼1

og
oxi

oL
ou;i

 !

dX; ð6:8:3Þ

with dX ¼ dx1dx2. . .dxn.
Integrating by parts the second term in (6.8.3), we have:
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Z

Dn

Xn

i¼1

og
oxi

oL
ou;i

dX ¼
Z

Dn

Xn

i¼1

o

oxi

g
oL
ou;i

 !

dX �
Z

Dn

g
Xn

i¼1

o

oxi

oL
ou;i

 !

dX:

ð6:8:4Þ

But

dX ¼ dx1. . . dxk. . . dxn ¼ dxkdSk ðno summationÞ; ð6:8:5Þ

where dSk ¼ dx1. . .dxk�1dxkþ1 . . . dxn is the element of hypersurface orthogonal
to dxk. Using the Green–Gauss theorem and the boundary condition (6.8.2), we see
that the first integral on the r.h.s. of (6.8.4) vanishes:

Z

Dn

Xn

i¼1

o

oxi

g
oL
ou;i

 !

dX ¼
Z

Sn�1

Xn

i¼1

g
oL
ou;i

dSi ¼ 0:

Thus, the first variation of JðuÞ is:

dJðuÞ ¼ �
Z

Dn

g
oL
ou
�
Xn

i¼1

o

oxi

oL
ou;i

 !" #

dX:

Since the function g is arbitrary (up to the condition (6.8.2)), the necessary and
sufficient condition for a stationary value of JðuÞ is

oL
ou
�
Xn

i¼1

o

oxi

oL
ou;i

 !

¼ 0: ð6:8:6Þ

Assuming now that L is a function of h variables uð1ÞðxÞ; . . .;uðhÞðxÞ, let us
consider the functional

J½uðsÞ� ¼
Z

Dn

L½x;uðsÞðxÞ;uðsÞ;x � dx1. . . dxn ðs ¼ 1; hÞ: ð6:8:7Þ

Using a similar procedure as for a single variable u; the stationarity condition for
the functional J½uðsÞ� yields the following system of second-order partial
differential equations:

oL
ouðsÞ

�
Xn

i¼1

o

oxi

oL
ouðsÞ;i

 !

¼ 0 ðs ¼ 1;hÞ; ð6:8:8Þ

called the Euler–Lagrange equations of the continuous system.
In order to use these equations in CDM mechanics, we choose

x1 ¼ x; x2 ¼ y; x3 ¼ z; x4 ¼ t: ð6:8:9Þ
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With this choice, the functional (6.8.7) becomes:

J½uðsÞ� ¼
Zt2

t1

Z Z Z

L½x; y; z; t;uðsÞðx; y; z; tÞ;uðsÞ;x ; . . .;uðsÞ;t � dx dydz dt ðs ¼ 1;hÞ

ð6:8:10Þ

and the Euler–Lagrange equations read:

oL
ouðsÞ

� o

oxi

oL
ouðsÞ;i

 !

� o

ot

oL
ouðsÞ;t

 !

¼ 0 ðs ¼ 1; hÞ; ð6:8:11Þ

where the summation convention has been used for the index i = 1, 2, 3.
Comparing (6.8.10) with the action integral (2.7.17), we realize the equivalence

between them if we choose

L ¼
Z

V

L dx dy dz ¼
Z

V

L ds: ð6:8:12Þ

Therefore the function L stands for the Lagrangian per unit volume, i.e. the
Lagrangian density.

With this notation, Hamilton’s principle (2.7.16) reads:

d
Zt2

t1

Z

V

L dsdt ¼ 0; ð6:8:13Þ

and can be used as a fundamental postulate in the study of holonomic CDM, while
the Euler–Lagrange equations (6.8.11) are the equations of motion of these
systems.

Comparing Eqs. (6.8.8) with the Lagrange equations for systems with a finite
number of degrees of freedom (2.5.17), we realize that they are different in certain
respects. In case of CDM the role of generalized coordinates is played by the
functions uðsÞ; called dependent variables or variational parameters, while
x1; ::; xn play the role of independent variables. Our choice (6.8.9) shows that both
the space coordinates x; y; z and the time t are now taken as independent
parameters, while uðsÞ are selected from the physical variables which characterize
a given system. In view of these considerations, Eqs. (6.8.8) can be regarded as an
infinite chain of Lagrange-type differential equations, each of them being obtained
by a successive fixation of space variables x; y; z. Since L is a Lagrangian density,
all quantities appearing in it must be represented by their densities, such as: mass
density q, entropy density s, current density j, etc.

Equations (6.8.8) are particularly useful in the analytical formalism of CDM,
because they can be applied not only to the study of condensed media (solid, fluid),
but also in the derivation of fundamental equations governing the fields.

346 6 Mechanics of Continuous Deformable Media

http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ254
http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ253
http://dx.doi.org/10.1007/978-3-642-17234-2_2#Equ138


Observation: The Euler–Lagrange equations (6.8.8) do not change their form if
instead of L we choose

L0ðx;uðsÞ;uðsÞ;i Þ ¼ Lðx;uðsÞ;u
ðsÞ
;i Þ þ

Xn

k¼1

o

oxk

Fkðx;uðsÞÞ; ð6:8:14Þ

provided that the integration domain Dn remains unchanged and the field variables
uðsÞ take fixed values on the boundary Sn-1 of Dn. To prove this, we integrate the
last relation on Dn and, using the generalized Green–Gauss theorem, we obtain:

Z

Dn

L0 dX ¼
Z

Dn

L dXþ
Z

Dn

Xn

k¼1

oFk

oxk

dX ¼
Z

Dn

L dXþ
Z

Sn�1

Xn

k¼1

Fk dSk:

Applying now the operator d to this relation, we have:

d
Z

Dn

L0 dX ¼ d
Z

Dn

L dXþ
Z

Sn�1

Xn

i¼1

Xn

k¼1

oFk

oxi

dxi þ
oFk

ouðsÞ
duðsÞ

� �

dSk:

But, by hypothesis, on the boundary Sn-1 we have dxi ¼ 0; duðsÞ ¼ 0, therefore

d
Z

Dn

L0 dX ¼ d
Z

Dn

L dX;

which means that the condition of stationarity for J½uðsÞ�;

dJ½uðsÞ� ¼ d
Z

Dn

L dX ¼ 0;

does not change upon the transformation (6.8.14). As a results, the Euler–Lagrange
equations (6.8.8) do not change their form. In other words, two Lagrangian den-
sities which differ from one another by a divergence term are equivalent.

6.8.2 Applications

6.8.2.1 Lamé’s Equations

As a first example, let us obtain by means of the Lagrangian formalism the
equations of motion of an isotropic and homogeneous elastic medium (6.5.26),
within the frame of the linear approximation.

Recalling that in the study of an elastic medium the Lagrange variables are
usually used, the velocity and acceleration fields are:
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v ¼ ou

ot
; a ¼ ov

ot
¼ o2u

ot2
; ð6:8:15Þ

where u is the field of infinitesimal displacements. Since the displacements are
small, the mass density q can be taken as a constant (see (6.5.25)).

Denoting by T and V the kinetic and the potential energy densities of the elastic
medium, the Lagrangian density is L ¼ T � V:

Writing the kinetic energy density T is an easy matter. By means of (6.8.15),
we obtain:

T ¼ 1
2
qv2 ¼ 1

2
q

ou

ot

�
�
�
�

�
�
�
�

2

¼ 1
2

qui;tui;t; ð6:8:16Þ

where ui,t stands for oui=ot and the summation convention has been used.
The potential energy density is formed by two parts: (a) the potential energy

density of deformation V1; (b) the potential energy density of the external body
forces V2: Let us deduce these quantities in a form suitable for an action principle.

(a) Consider an elastic body which, under the action of both body forces FDm and
superficial forces TDS, is brought to a deformed state. If we neglect the heat
transformations, we can assume that the energy of deformation equals the sum
of works done by body and superficial forces. Supposing that the displacement
vector u performs an elementary variation du compatible with the constraints,
the variation of the deformation energy V1 is:

dV1 ¼
Z

V

dV1 ds ¼
Z

V

F � duq dsþ
Z

S

T � du dS:

Using Cauchy’s formula (6.3.22) and the Green–Gauss theorem, we obtain:
Z

V

dV1 ds ¼
Z

V

Fiduiq dsþ
Z

V

o

oxk

ðTikduiÞ ds

¼
Z

V

qFi þ
oTik

oxk

� �

dui dsþ
Z

V

Tikd
oui

oxk

� �

ds:
ð6:8:17Þ

Since the deformation is static, from (6.3.23), we have:

qFi þ
oTik

oxk

¼ 0;

therefore (see (6.4.5))

dV1 ¼ Tikd
oui

oxk

� �

¼ Tik dxik þ deikð Þ:
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But as the stress tensor is symmetric and the rotation tensor is antisymmetric,
the product Tikdxik is zero. Using (6.5.13) and (6.5.14), we then obtain:

dV1 ¼ Tikdeik ¼ Cikjmejmdeik ¼ Cjmikeikdejm ¼
1
2
CikjmdðeikejmÞ:

If the components of the elasticity tensor Cikjm are constants, we find:

V1 ¼
1
2
Cikjmeikejm ¼

1
2
Tikeik:

Recalling that the medium is isotropic, the components of the tensor Tik are
related to eik by Hooke’s law (6.5.11), and finally we find the deformation
energy density in the form:

V1 ¼
1
2
ðkhdik þ 2leikÞeik ¼

1
2

kh2 þ leikeik: ð6:8:18Þ

(b) If on the elastic medium acts a conservative and homogeneous force field (for
example, the gravitational field), the potential energy V2 of the body forces F is

V2 ¼
Z

V

V2 ds ¼ �
Z

V

Fiuiq ds;

which yields:

V2 ¼ �qFiui: ð6:8:19Þ

In view of (6.8.18) and (6.8.19), the potential energy density V is:

V ¼ V1 þ V2 ¼
1
2
kh2 þ leikeik � qFiui: ð6:8:20Þ

Now, we are able to write the Lagrangian density:

L ¼ T � V ¼ 1
2
qui;tui;t �

1
2

kh2 � leikeik þ qFiui:

But

h2 ¼ eiiekk ¼
oui

oxi

ouk

oxk

¼ ui;iuk;k;

eikeik ¼
1
4

ouk

oxi

þ oui

oxk

� �
ouk

oxi

þ oui

oxk

� �

¼ 1
2
uk;iuk;i þ

1
2
uk;iui;k;

and the Lagrangian density finally acquires the form:
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Lðx; u; u;xÞ ¼
1
2

qui;tui;t �
1
2
kui;iuk;k �

1
2
luk;iui;k �

1
2
luk;iuk;i þ qFiui: ð6:8:21Þ

Once the Lagrangian density is known, the next step is to use the Euler–
Lagrange equations (6.8.11). Observing that in our case the variational parameters
uðsÞ are the components uj ðj ¼ 1; 2; 3Þ of the elementary displacement u, the
Euler–Lagrange equations read:

oL
ouj

� o

oxm

oL
ouj;m

� �

� o

ot

oL
ouj;t

� �

¼ 0 ðj;m ¼ 1; 2; 3Þ: ð6:8:22Þ

We obtain, successively:

oL
ouj

¼ qFidij ¼ qFj;

oL
ouj;m

¼ � 1
2

kðdijdimuk;k þ dkjdkmui;iÞ � ldkjdimuk;i �
1
2
lðdkjdimui;k þ dijdkmuk;iÞ

¼ �khdjm � lðuj;m þ um;jÞ;

o

oxm

oL
ouj;m

� �

¼ �ðkþ lÞ oh
oxj

� lDuj;

oL
ouj;t

¼ qui;tdij ¼ quj;t;

o

ot

oL
ouj;t

� �

¼ quj;tt:

Introducing these results into (6.8.22), we are led to:

qFj þ ðkþ lÞ oh
oxj

þ lDuj � q
o2

uj

ot2
¼ 0 ðj ¼ 1; 2; 3Þ;

which are indeed Lamé’s equations (6.5.26).

6.8.2.2 Euler’s Equations

Consider an ideal, compressible fluid, which performs an isentropic motion in an
external potential field.1

1 Herivel, J.W.: The derivation of the equation of motion of an ideal fluid by Hamilton’s
principle. Proc. Camb. Phil. Soc. 51, 344 (1955).
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Hereafter we shall denote by V	ðr; tÞ; sðr; tÞ and eðr; tÞ the potential of the
exterior field (e.g. the gravitational field), the entropy and the internal energy,

taken per unit mass, respectively. Then the kinetic energy density is 1
2 qjvj2; where

v(r, t) is the velocity field, while the potential energy density is composed of two
terms, qe and qV	; corresponding to the internal and external forces, respectively.
Nevertheless, the expression

L0 ¼
1
2
qv2 � qðeþ V	Þ ð6:8:23Þ

cannot be used as a Lagrangian density, because it contains only some of the
physical variables which define the system. In turn, this is due to the fact that we
did not take into consideration the constraints acting on the fluid, which in our case
are the equation of continuity (6.3.4) and the equation of conservation of entropy
(6.6.47).

A suitable Lagrangian density is constructed by using the method of Lagrangian
multipliers. To this end, we amplify the constraint Eqs. (6.3.4) and (6.6.47) by the
multipliers a(r, t) and b(r, t), respectively, and add the result to (6.8.23). This
yields:

L ¼ 1
2
qv2 � qðeþ V	Þ � a

oq
ot
þr � ðqvÞ

� �

� bq
os

ot
þ v � rs

� �

: ð6:8:24Þ

It is more convenient for our purpose to use the Lagrangian density in a slightly
modified form. Taking advantage of the property (6.8.14), we shall add to (6.8.24)
the divergence

o

oxj

ðaqvjÞ ðj ¼ 1; 4Þ;

where we choose x1 ¼ x; x2 ¼ y; x3 ¼ z; x4 ¼ t; v1 ¼ vx; v2 ¼ vy; v3 ¼ vz; v4 ¼ 1.
Since

�a
oq
ot
þ v � rqþ qr � v

� �

þr � ðaqvÞ þ o

ot
ðaqÞ ¼ q

oa
ot
þ v � ra

� �

;

we finally obtain:

L ¼ 1
2

qv2 � qðeþ V	Þ þ q
oa
ot
þ v � ra

� �

� bq
os

ot
þ v � rs

� �

: ð6:8:25Þ

Choosing s; q; vx; vy; vz as the variational parameters uðiÞ; i ¼ 1; 2; 3; 4; 5; in
(6.8.11), we then have:

(i) uð1Þ ¼ s: The corresponding Euler–Lagrange equation is

oL
os
� o

oxi

oL
os;i

� �

� o

ot

oL
os;t

� �

¼ 0: ð6:8:26Þ
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Using the fundamental equation of the thermodynamics of equilibrium pro-
cesses (6.6.50),

T ds ¼ deðq; sÞ þ pd
1
q

� �

;

we find:

oL
os
¼ oL

oe
oe
os
¼ �qT ;

oL
os;i
¼ �bqvi;

oL
os;t
¼ �bq:

Introducing these results into (6.8.26) and using the equation of continuity,
after simplifying by q 6¼ 0 we arrive at:

ob
ot
þ v � rb ¼ T : ð6:8:27Þ

(ii) uð2Þ ¼ q: We have

oL
oq
� o

oxi

oL
oq;i

 !

� o

ot

oL
oq;t

 !

¼ 0:

Performing the derivatives:

oL
oq
¼ 1

2
v2 � ðeþ V	Þ � p

q
þ oa

ot
þ v � ra;

oL
oq;i
¼ 0;

oL
oq;t
¼ 0;

we obtain:

1
2

v2 � ðeþ V	Þ � p

q
þ oa

ot
þ v � ra ¼ 0; ð6:8:28Þ

which is a Bernoulli-type equation.
(iii) uð3;4;5Þ ¼ vk ðk ¼ 1; 2; 3Þ: In this case, we have three equations:

oL
ovk

� o

oxi

oL
ovk;i

� �

� o

ot

oL
ovk;t

� �

¼ 0:

Since

oL
ovk

¼ qvk þ q
oa
oxk

� bq
os

oxk

;

oL
ovk;i

¼ 0;
oL
ovk;t

¼ 0;
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we arrive at:

v ¼ �raþ brs; ð6:8:29Þ

which is a Clebsch transformation. Therefore, the functions aðr; tÞ; bðr; tÞ
and s play the role of Clebsch potentials.

The last step is now to eliminate the multipliers a and b from Eqs. (6.8.27)–
(6.8.29). To do this, we shall first replace ra = - v ? brs into (6.8.28):

� 1
2
jvj2 � ðeþ V	Þ � p

q
þ oa

ot
þ bv � rs ¼ 0:

Applying to this equation the operator gradient, we have:

� v� curl v� ðv � rÞv� p

q2
rq� Trs�rV	 � 1

q
rpþ p

q2
rq

þ o

ot
ðbrs� vÞ þ brðv � rsÞ þ ðv � rsÞrb ¼ 0:

But, by virtue of (6.6.47) and (6.8.27),

� v� curl v� Trsþ ob
ot
rsþ br os

ot

� �

þ brðv � rsÞ þ ðv � rsÞrb

¼ �v� curlðbrsÞ � Trs� ðv � rbÞrsþ Trsþ ðv � rsÞrb

¼ �v� ðrb�rsÞ � ðv � rbÞrsþ ðv � rsÞrb ¼ 0;

therefore we obtain Euler’s equation (6.6.8):

ov

ot
þ ðv � rÞv ¼ �rV	 � 1

q
rp ¼ F� 1

q
rp:

Observation: Before going further, we wish to make some remarks on the con-
straints used to construct the Lagrangian density (6.8.25). From the hydrodynamic
point of view, there are motions consistent with the dynamic equations which are
not included in this principle. Indeed, if the specific entropy is homogeneous in
space, Eq. (6.8.29) leads to v ¼ �grad a, meaning that in this case the motion is
restricted to irrotational flows. To remove this difficulty, an additional vector
constraint was introduced2 expressing the conservation of the identity of particles,
in the form dX/dt = 0. Later, it was shown3 that a single component of X and,
consequently, a single equation of this type is enough to avoid the aforementioned
restriction. This component is one of the Lagrangian coordinates of the particle,

2 Lin, C.C.: Liquid Helium. In: Proceedings of the International School of Physics, Course XXI.
Academic, New York (1963).
3 Selinger, R.L., Whitham, G.B.: Proc. Roy. Soc. A 305, 1 (1968).
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even if the description of the motion is Eulerian. We wanted to emphasize this
point in order to draw attention to the fact that our description is not very general.

6.8.2.3 Maxwell’s Equations

As we have mentioned earlier, the Euler–Lagrange equations (6.8.8) are also
useful in field theory. As an example, in the following we shall deduce the fun-
damental system of equations describing electromagnetic phenomena in a homo-
geneous and isotropic medium.

Let the electromagnetic field be defined by the vectors E, B, while the field
sources are given by the conduction current density j and by the electric charge
density qe. Then Maxwell’s equations are:

curl E ¼ � oB

ot
; div B ¼ 0; ð6:8:30Þ

curl
B

l0
¼ jþ �0

oE

ot
; divð�0EÞ ¼ qe: ð6:8:31Þ

Here we separated the source-free equations (6.8.30) from the source equations
(6.8.31). We assumed again that � ’ �0; l ’ l0, where � and l are the permittivity
and the permeability of the medium, respectively.

The Lagrangian density of the system formed by the electromagnetic field and
the sources is composed of two terms:

L ¼ L0 þ Lint;

where

L0 ¼
1
2
�0jEj2 �

1
2l0
jBj2 ð6:8:32Þ

is the Lagrangian density of the electromagnetic field when sources are absent, and

Lint ¼ �qe/þ j � A ð6:8:33Þ

is the Lagrangian density which expresses the interaction between sources and the
field. The first was derived by Joseph Larmor, while the second is obtained from
the Lagrangian of interaction (see (2.5.29)) per unit volume. Writing the
electromagnetic field E; B in terms of the vector and scalar potentials A; / (see
(2.5.26)), we obtain the following Lagrangian density:

L ¼ 1
2
�0 �r/� oA

ot

�
�
�
�

�
�
�
�

2

� 1
2l0
jr � Aj2 � qe/þ j � A: ð6:8:34Þ

Taking as variational parameters Ak ðk ¼ 1; 2; 3Þ and /, we have successively:
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(i) uð1;2;3Þ ¼ Ak. The Euler–Lagrange equations read:

oL
oAk

� o

oxi

oL
oAk;i

� �

� o

ot

oL
oAk;t

� �

¼ 0: ð6:8:35Þ

Since

Em ¼ �/;m � Am;t; Bm ¼ �msjAj;s; ð6:8:36Þ

we derive:

oL
oAk

¼ jk;

oL
oAk;i

¼ oL
oBm

oBm

oAk;i
¼ � 1

l0
Bmð�msjdjkdisÞ ¼ �

1
l0
�ikmBm;

o

oxi

oL
oAk;i

� �

¼ � 1
l0
�ikmBm;i ¼

1
l0
ðcurl BÞk;

oL
oAk;t

¼ oL
oEm

oEm

oAk;t
¼ �0Emð�dmkÞ ¼ ��0Ek;

o

ot

oL
oAk;t

� �

¼ ��0
oEk

ot
:

Introducing these results into (6.8.35), we obtain:

1
l0
ðcurl BÞk ¼ jk þ �0

oEk

ot
;

which is the k-component of Maxwell’s equation (6.8.31)1.
(ii) uð4Þ ¼ /. We obtain a single equation:

oL
o/
� o

oxi

oL
o/;i

 !

� o

ot

oL
o/;t

 !

¼ 0: ð6:8:37Þ

Performing the derivatives, we have:

oL
o/
¼ �qe;

oL
o/;i

¼ oL
oEm

oEm

o/;i

¼ �0Emð�dimÞ ¼ ��0 Ei;

o

oxi

oL
o/;i

 !

¼ ��0 Ei;i
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oL
o/;t

¼ 0:

With these results, Eq. (6.8.37) becomes:

�0Ei;i ¼ qe;

i.e. Eq. (6.8.31)2.

Observation: The variational problem can be put in a different way: given
Maxwell’s source equations (6.8.31), find a Lagrangian density leading to the
relations (6.8.36) between the field and the potentials. To do this, we use the
expression

L ¼ 1
2
�0jEj2 �

1
2l0
jBj2 � /ð�0 div E� qeÞ þ A � 1

l0
curl B� �0

oE

ot
� j

� �

;

where A(r, t) and /(r, t) are Lagrange multipliers. This time, the role of varia-
tional parameters is played by the field components Ei;Bi ði ¼ 1; 2; 3Þ, while
Maxwell’s source equations are used as four constraints acting on the field.
Choosing uð1;2;3Þ ¼ Ei; uð4;5;6Þ ¼ Bi; we find (6.8.36), and the source-free Max-
well’s equations follow immediately. The calculation is left to the reader.

6.8.2.4 Schrödinger’s Equation

As a last application of the Lagrangian formalism, let us find a suitable Lagrangian
density leading to the well-known Schrödinger’s equation for the wave associated
to a microparticle, which is fundamental in quantum mechanics.

Denoting by w the wave function and by w* its complex conjugate, we shall use
the following Lagrangian density:

L ¼ �h2

2m
rw � rw	 þ Vww	 þ �h

2i
ðw	w;t � ww	;tÞ: ð6:8:38Þ

The Lagrangian density must be a real function, that is why the functions w; w	, as
well as their derivatives w;i; w	;i; w;t; w	;t appear only in suitably chosen products.

Applying the Euler–Lagrange equations, we have:

oL
ow	
¼ Vwþ �h

2i
w;t;

oL
ow	;t
¼ � �h

2i
w;

oL
oðrwÞ ¼

�h2

2m
rw;

which yield indeed Schrödinger’s equation:
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� �h2

2m
Dþ V

� �

w ¼ � �h

i

ow
ot
;

which can be written also as

Ĥw ¼ Êw; ð6:8:39Þ

where Ĥ ¼ � �h2

2m
Dþ V is the Hamiltonian operator and Ê ¼ � �h

i
o
ot

is the energy
operator. In a similar way, performing the derivatives with respect to w; w;i; w;t,
we obtain Schrödinger’s equation for w*:

Ĥw	 ¼ Ê	w	:

6.9 Hamiltonian Formalism

6.9.1 Hamilton’s Canonical Equations for Continuous Systems

By analogy with Hamilton’s function (5.1.20),

Hðq;p; tÞ ¼
Xn

j¼1

pj _qj � Lðq; _q; tÞ;

where q1; ::; qn are the generalized coordinates, _q1; ::; _qn – the generalized veloc-
ities, p1; ::;pn – the generalized momenta, and L – the Lagrangian, we define the
Hamiltonian density (i.e. the Hamiltonian per unit volume) H by

H ¼
Xh

s¼1

pðsÞu
ðsÞ
;t � L; ð6:9:1Þ

where L is the Lagrangian density, uðsÞ;t are the partial derivatives with respect to

time of the variational parameters uðsÞ, and p(s) stand for the momentum densities
conjugated with uðsÞ:

pðsÞ ¼
oL

ouðsÞ;t
: ð6:9:2Þ

If we choose x1 ¼ x; x2 ¼ y; x3 ¼ z; x4 ¼ t, the functional dependence of the
Lagrangian density L will be:

L ¼ L½xi; t;u
ðsÞðxi; tÞ;uðsÞ;i ;u

ðsÞ
;t � ði ¼ 1; 2; 3; s ¼ 1; hÞ; ð6:9:3Þ

where uðsÞ;i ¼ ouðsÞ=oxi. In this case, we have:
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H ¼ H½xi; t;u
ðsÞðxi; tÞ;uðsÞ;i ; pðsÞ� ði ¼ 1; 2; 3; s ¼ 1; hÞ: ð6:9:4Þ

The Hamiltonian of a continuous system will be then:

H ¼
Z

V

H½xi; t;u
ðsÞ;uðsÞ;i ; pðsÞ� ds: ð6:9:5Þ

Recalling that uðsÞ are continuous and derivable functions of the independent
variables x; y; z; t, let us perform an arbitrary variation dH of H for some fixed
values of x; y; z ðdxi ¼ 0Þ. Using the expression (6.9.5) and the summation
convention for the index i = 1, 2, 3, we obtain:

dH ¼
Z

V

dH ds

¼
Z

V

oH
ot

dt þ
Xh

s¼1

oH
ouðsÞ

duðsÞ þ
Xh

s¼1

oH
ouðsÞ;i

duðsÞ;i þ
Xh

s¼1

oH
opðsÞ

dpðsÞ

" #

ds:

ð6:9:6Þ

The variation dH can also be written in an alternative form. Using (6.9.1) and
(6.9.3), we find:

dH ¼
Z

V

d
Xh

s¼1

pðsÞu
ðsÞ
;t � L

 !

ds ¼
Z

V

Xh

s¼1

pðsÞduðsÞ;t þ uðsÞ;t dpðsÞ
	 


� oL
ot

dt

"

�
Xh

s¼1

oL
ouðsÞ

duðsÞ þ oL
ouðsÞ;t

duðsÞ;t þ
oL

ouðsÞ;i
duðsÞ;i

 !#

ds: ð6:9:7Þ

But

Z

V

Xh

s¼1

oL
ouðsÞ;i

duðsÞ;i ds ¼
Z

V

o

oxi

Xh

s¼1

oL
ouðsÞ;i

duðsÞ
 !

ds�
Z

V

Xh

s¼1

o

oxi

oL
ouðsÞ;i

 !

duðsÞ ds:

ð6:9:8Þ

The first integral on the r.h.s can be transformed into a surface integral on the
boundary S of the domain of volume V. Since uðsÞ have fixed values on S, we
obtain

Z

V

o

oxi

Xh

s¼1

oL
ouðsÞ;i

duðsÞ
 !

ds ¼
I

S

Xh

s¼1

oL
ouðsÞ;i

duðsÞ dSi ¼ 0: ð6:9:9Þ

Introducing these results in (6.9.7) and performing some reduction of terms, by
means of the Euler–Lagrange equations (6.8.8), we arrive at:
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dH ¼
Z

V

Xh

s¼1

uðsÞ;t dpðsÞ �
oL
ot

dt �
Xh

s¼1

oL
ouðsÞ

� o

oxi

oL
ouðsÞ;i

 !" #

duðsÞ
( )

ds

¼
Z

V

Xh

s¼1

uðsÞ;t dpðsÞ � pðsÞ;tduðsÞ
	 


� oL
ot

dt

" #

ds: ð6:9:10Þ

A similar integration by parts can be done in (6.9.6), yielding:

dH ¼
Z

V

Xh

s¼1

oH
opðsÞ

dpðsÞ þ
oH
ot

dt þ
Xh

s¼1

oH
ouðsÞ

� o

oxi

oH
ouðsÞ;i

 !" #

duðsÞ
( )

ds:

ð6:9:11Þ

Equating the coefficients of the same arbitrary variations duðsÞ; dpðsÞ and dt in
(6.9.10) and (6.9.11), we obtain the following system of equations:

uðsÞ;t ¼
oH
opðsÞ

;

pðsÞ;t ¼ �
oH

ouðsÞ
þ o

oxi

oH
ouðsÞ;i

 !

ði ¼ 1; 2; 3; s ¼ 1; hÞ;
ð6:9:12Þ

as well as the identity:

oH
ot
¼ � oL

ot
: ð6:9:13Þ

The system of 2h partial derivative equations (6.9.12) is analogous to Hamil-
ton’s system of canonical equations (5.1.21), while the identity (6.9.13) is the local
analogue of (5.1.22).

Equations (6.9.12) can be written in a symmetric form using the notion of
functional derivative. To this end, we shall calculate the partial derivative of
L ¼

R

V
L ds with respect to uðsÞðxjÞ ðj ¼ 1; 4Þ for x1 ¼ x; x2 ¼ y; x3 ¼ z fixed.

Let us consider the family of functions uðsÞðxj; �Þ; where � is a parameter chosen in
such a way that

uðsÞðxj; �ÞjS ¼ uðsÞðxj; 0Þ � uðsÞðxjÞ; ð6:9:14Þ

where S is the closed surface bounding the domain of volume V. Consider the
derivative:

dL

d�
¼
Z

V

Xh

s¼1

oL
ouðsÞ

ouðsÞ

o�
þ oL

ouðsÞ;i

ouðsÞ;i
o�

" #

ds:
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But

Z

V

Xh

s¼1

oL
ouðsÞ;i

ouðsÞ;i
o�

ds ¼
Z

V

Xh

s¼1

oL
ouðsÞ;i

o

oxi

ouðsÞ

o�

� �

ds

¼
Z

V

Xh

s¼1

o

oxi

oL
ouðsÞ;i

ouðsÞ

o�

 !

ds�
Z

V

Xh

s¼1

o

oxi

oL
ouðsÞ;i

 !

ouðsÞ

o�
ds

¼
I

S

Xh

s¼1

oL
ouðsÞ;i

ouðsÞ

o�
dSi �

Z

V

Xh

s¼1

o

oxi

oL
ouðsÞ;i

 !

ouðsÞ

o�
ds:

By condition (6.9.14), the surface integral vanishes, hence:

dL

d�
¼
Z

V

Xh

s¼1

oL
ouðsÞ

� o

oxi

oL
ouðsÞ;i

 !" #

ouðsÞ

o�
ds: ð6:9:15Þ

The choice of uðsÞðxj; �Þ tells us that they are equal to uðsÞðxjÞ everywhere,
except for a vicinity Q (determined by �) of the fixed point x; y; z. The same
property holds for ouðsÞ=o�. In the limit Q ? 0, we can write

lim
Q!0

dL=d�

ouðsÞ=o�
� dL

duðsÞ
¼ oL

ouðsÞ
� o

oxi

oL
ouðsÞ;i

 !

ði ¼ 1; 4Þ: ð6:9:16Þ

This expression is called the functional derivative or variational derivative of the
Lagrangian L with respect to the field variables uðsÞ. Using this definition, the
Euler–Lagrange equations (6.8.8) become:

dL

duðsÞ
¼ 0: ð6:9:17Þ

Observing thatH does not depend on opðsÞ=oxi, the functional derivatives of the

Hamiltonian H with respect to p(s) and uðsÞ are:

dH

dpðsÞ
¼ oH

opðsÞ
;

dH

duðsÞ
¼ oH

ouðsÞ
� o

oxj

oH
ouðsÞ;j

 !

ðj ¼ 1; 2; 3Þ; ð6:9:18Þ

allowing us to write equations (6.9.12) in a symmetric form:

uðsÞ;t ¼
dH

dpðsÞ
; pðsÞ;t ¼ �

dH

duðsÞ
: ð6:9:19Þ

The functional derivative serves, among other things, to define the Poisson
bracket for continuous systems. To this end, let us consider the integral
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F ¼
Z

V

F½xi; t;u
ðsÞ;uðsÞ;i ; pðsÞ� ds ði ¼ 1; 2; 3Þ; ð6:9:20Þ

where the density F of F is a function of the independent variables xi, t, of the
variational parameters uðsÞ and their derivatives with respect to space coordinates,
and of the momentum densities p(s). Assuming that the integration domain is fixed
and that the variables uðsÞ; pðsÞ satisfy the system of canonical equations (6.9.19),
we first take the total derivative with respect to time of (6.9.20):

dF

dt
¼
Z

V

oF
ot
þ
Xh

s¼1

oF
ouðsÞ

uðsÞ;t þ
oF

ouðsÞ;i
uðsÞ;it þ

oF
opðsÞ

pðsÞ;t

 !" #

ds: ð6:9:21Þ

But

Z

V

Xh

s¼1

oF
ouðsÞ;i

uðsÞ;it ds ¼
Z

V

o

oxi

Xh

s¼1

oF
ouðsÞ;i

uðsÞ;t

 !

ds�
Z

V

Xh

s¼1

o

oxi

oF
ouðsÞ;i

 !

uðsÞ;t ds:

Using the Green–Gauss theorem, the first integral on the r.h.s. transforms into the
surface integral

I

S

Xh

s¼1

oF
ouðsÞ;i

uðsÞ;t dSi;

which vanishes due to the boundary conditions. Using the definition of the func-
tional derivative in the expression (6.9.21), we obtain:

dF

dt
¼
Z

V

oF
ot
þ
Xh

s¼1

dF

duðsÞ
uðsÞ;t þ

dF

dpðsÞ
pðsÞ;t

� �" #

ds;

or, by virtue of the canonical equations (6.9.19),

dF

dt
¼
Z

V

oF
ot

dsþ
Z

V

Xh

s¼1

dF

duðsÞ
dH

dpðsÞ
� dF

dpðsÞ

dH

duðsÞ

� �

ds: ð6:9:22Þ

The expression

fF ;Hg ¼
Z

V

Xh

s¼1

dF

duðsÞ
dH

dpðsÞ
� dF

dpðsÞ

dH

duðsÞ

� �

ds ð6:9:23Þ

is the definition of the Poisson bracket of the functions F and H for continuous
systems. With this notation, we can write the time derivative of a global obser-
vable F of the continuous system as
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dF

dt
¼
Z

V

oF
ot

dsþ fF ;Hg: ð6:9:24Þ

This relation is useful in the study of first integrals of canonical equations (6.9.19),
in a way similar to that found for the systems with a finite number of degrees of
freedom. The Poisson brackets (6.9.23) are widely applied in field theory.

6.9.2 Applications

6.9.2.1 Lamé’s Equations

Let us consider again the problem of determining the fundamental equations of the
linear theory of elasticity (6.5.20), but this time using the Hamiltonian formalism.
The reader will follow more easily the calculation if we rewrite the Lagrangian
density (6.8.21):

L ¼ 1
2

qui;tui;t �
1
2
kui;iuk;k �

1
2
luk;iuk;i �

1
2
luk;iui;k þ qFiui: ð6:9:25Þ

Recalling that the variational parameters are ui, the momentum densities (6.9.2)
are:

pi ¼
oL
oui;t

¼ qui;t; ð6:9:26Þ

and the Hamiltonian density (6.9.1) is:

H ¼ piui;t � L ¼
1
2

qui;tui;t þ
1
2
kui;iuk;k þ

1
2

luk;iuk;i þ
1
2
luk;iui;k � qFiui:

ð6:9:27Þ

In this form, the Hamiltonian density is not yet suitable for the use of canonical
equations (6.9.12), because our general formalism demands H to be expressed in

terms of momentum densities p(s), and not of uðsÞ;t . Using (6.9.26), we recast H in
the form:

H ¼ 1
2q

pipi þ
1
2
kui;iuk;k þ

1
2

luk;iuk;i þ
1
2
luk;iui;k � qFiui: ð6:9:28Þ

We have:

oH
ouj

¼ �qFidij ¼ �qFj;
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oH
ouj;m

¼ 1
2
kðdijdimuk;k þ dkjdkmui;iÞ þ ldkjdimuk;i

þ 1
2
lðdijdkmuk;i þ dkjdimui;kÞ ¼ khdjm þ lðuj;m þ um;jÞ;

and the canonical equations (6.9.12) yield:

uj;t ¼
1
q

pj;

pj;t ¼ ðkþ lÞh;j þ lDuj þ qFj;

leading straightforwardly to Lamé’s equations (6.5.20):

quj;tt ¼ qFj þ ðkþ lÞh;j þ lDuj: ð6:9:29Þ

As we have shown, the longitudinal oscillations produced in an elastic rod are
described by a second-order partial differential equation of type (6.5.30). Denoting
x1 ¼ x; u1 ¼ uðx; tÞ ðu2 ¼ u3 ¼ 0Þ, this equation reads:

Ku;xx � qu;tt ¼ 0 ðK ¼ kþ 2lÞ: ð6:9:30Þ

Let us now apply the formalism presented above to the case of an elastic rod.
First, we observe that Eq. (6.9.30) is obtained by using the Lagrangian density

L ¼ 1
2

qu2
;t �

1
2
ku2

;x � lu2
;x ¼

1
2
qu2

;t �
1
2
K u2

;x: ð6:9:31Þ

The momentum density p associated with u is given by (6.9.26):

p ¼ qu;t;

and thus the Hamiltonian density reads:

H ¼ 1
2q

p2 þ 1
2
Ku2

;x: ð6:9:32Þ

We shall prove that, if F occurring in (6.9.24) is chosen as

F ¼ pu;x ¼ qu;tu;x; ð6:9:33Þ

then its space integral F is a constant of motion. Since F does not explicitly
depend on time, we have

dF

dt
¼ fF ;Hg ¼

Z

V

dF

du

dH

dp
� dF

dp
dH

du

� �

ds:

The variational derivatives appearing under the integral are:
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dF

du
¼ � o

ox

oF
ou;x

� �

¼ �p;x;
dF

dp
¼ oF

op
¼ u;x;

dH

du
¼ � o

ox

oH
ou;x

� �

¼ �K u;xx;
dH

dp
¼ oH

op
¼ 1

q
p;

therefore

fF ;Hg ¼
Z

V

o

ox

1
2
Ku2

;x �
1

2q
p2

� �

ds ¼
I

S

1
2
Ku2

;x �
1

2q
p2

� �

dSx: ð6:9:34Þ

But u varies only in the x-direction, consequently we have u = const. in any point
of the cross section whose surface element is dSx ¼ dy dz, which means that the
integral (6.9.34) vanishes. The fact that F ¼

R

V
pu;x ds is a constant of motion is

therefore expressed by the relation

fF ;Hg ¼ 0: ð6:9:35Þ

6.9.2.2 Telegrapher’s Equations

These equations are concerned with the transmission lines (telephone, telegraph,
etc.) and describe space and time variation of some characteristic quantities
(electric current, voltage) as well as of some electric constants (capacitance C,
inductance L). Here by ‘constants’ we mean those quantities which do not depend
on current intensity and voltage.

Even if in a transmission line the electric constants are distributed along the
line, we may assume that an elementary segment dx of the line is equivalent to a
circuit with concentrated constants, formed by a coil and a resistor, as shown in
Fig. 6.11, with the electric resistance and the inductance per unit length of the line,
denoted by R and L, respectively. The capacitance between the two conductors is
represented by the shunt capacitor C, while the conductance G of the dielectric
separating the signal wire from the return wire is represented by a shunt resistor
with the resistance 1=G. If we denote by i(x, t) the electric current intensity on a
line and by u(x, t) the voltage between two lines at point x and at time t, according
to Kirchhoff’s rules (see Sect. 3.7), we have:

�du ¼ o

ot
ðL i dxÞ þ R i dx; �di ¼ o

ot
ðC udxÞ þG u dx; ð6:9:36Þ

which can also be written as

� ou

ox
¼ o

ot
ðL iÞ þ Ri; � oi

ox
¼ o

ot
ðC uÞ þG u: ð6:9:37Þ
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These equations are called telegrapher’s equations. If there are no losses
ðR ¼ 0; G ¼ 0Þ, these equations read:

� ou

ox
¼ o

ot
ðLiÞ; � oi

ox
¼ o

ot
ðC uÞ: ð6:9:38Þ

Let us first show that this system of equations can be derived by using the
following Lagrangian density:

L ¼ 1
2
L i2 � 1

2
C u2: ð6:9:39Þ

Observing that our Lagrangian density is similar in form with the Lagrangian
density of the electromagnetic field (6.8.32), we shall express the quantities i and
u in terms of the electric charge q(x, t), chosen as a potential:

i ¼ oq

ot
; u ¼ � 1

C

oq

ox
: ð6:9:40Þ

The Lagrangian density is then:

L ¼ 1
2
L

oq

ot

� �2

� 1
2C

oq

ox

� �2

: ð6:9:41Þ

Using (6.9.41), the Euler–Lagrange equations (6.8.11) yield a D’Alembert-type
homogeneous wave equation:

q;xx �
1
c2

q;tt ¼ 0; ð6:9:42Þ

where c ¼ 1=
ffiffiffiffiffiffiffi

LC
p

is the speed of propagation of the waves (electrical impulse). In
the ideal case of perfect conductors forming a coaxial transmission line, with
vacuum in between the conductors, this speed is the speed of light in empty space.
Equation (6.9.38)1 is then found by substituting (6.9.40) into (6.9.42), while
(6.9.38)2 is obtained by taking the partial derivative of (6.9.40)1 with respect to x,
then of (6.9.40)2 with respect to t, and finally adding the results.

Let us now apply the Hamiltonian formalism. According to the definition
(6.9.2), choosing u ¼ q, we have:

p ¼ oL
oq;t
¼ L q;t;

Fig. 6.11 Transmission line
modeled by a circuit of
concentrated constants
R,L,C,G, used to obtain the
telegrapher’s equations.
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(recall that L is the inductance on the line, and not the Lagrangian!) which yields
the following Hamiltonian density:

H ¼ p q;t � L ¼ L q2
;t �

1
2
L q2

;t þ
1

2C
q2
;x ¼

1
2L

p2 þ 1
2C

q2
;x:

As a final step, we apply the canonical equations (6.9.12) and obtain:

q;t ¼
oH
op
¼ p

L
; p;t ¼

o

ox

oH
oq;x

� �

¼ 1
C

q;xx: ð6:9:43Þ

If we now take the partial derivative with respect to time of (6.9.43)1 and introduce
the result into (6.9.43)2, we find again equation (6.9.42), and therefore
Eqs. (6.9.38) as well.

6.9.2.3 Equation of Motion of an Ideal Magnetofluid

Using the same formalism, let us deduce the equation of motion of an ideal one-
component magnetofluid, undergoing isentropic motion in an external electro-
magnetic field (6.6.93), assuming that the non-electromagnetic (gravitational) field
is also taken into consideration. The Lagrangian density of our problem should be

formed by three terms: a term Lf
0 corresponding to the fluid, a term Lem

0 corre-
sponding to the electromagnetic field, and a term Lint expressing the interaction

between them: L ¼ Lf
0 þ Lem

0 þ Lint: In this formulation, the usual electromag-
netic potentials A; / are chosen as variational parameters.

But this choice is not unique. As an alternative approach to the variational
formalism of our problem, we shall use a different representation of the electro-
magnetic field, which makes possible the simplification the Lagrangian density
and, consequently, the solution of this application.

Since our model implies the existence of conduction, convection and dis-
placement current densities, Maxwell’s source equations read (see (6.6.88)):

1
l0

curl B ¼ jþ qevþ �0
oE

ot
; �0 div E ¼ qe: ð6:9:44Þ

These equations can be written in a symmetric form, similar to that of the source-
free equations (6.6.87), by using the Lagrangian density

L0 ¼ 1
2
�0jEj2 �

1
2l0
jBj2 þ P � Eþ v� B� 1

k
j

� �

�M � curl Eþ oB

ot

� �

� w div B; ð6:9:45Þ

where the source-free Maxwell’s equations (6.6.87) and Ohm’s law (6.6.89) have
been used as equations of constraint, while Pðr; tÞ; Mðr; tÞ and w(r, t) are
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Lagrange multipliers. If we choose as variational parameters Ei;Bi ði ¼ 1; 2; 3Þ,
the Euler–Lagrange equations (6.8.11) yield:

E ¼ 1
�0
ðcurl M� PÞ; B ¼ l0 grad wþ P� vþ oM

ot

� �

: ð6:9:46Þ

These relations define the electromagnetic field E; B in terms of the generalized
antipotentials M; w (historically, the ‘antipotential’ designated the magnetic
scalar potential). The appearance of the terms P and P 9 v generalizes the usual
antipotentials, defined in the case j ¼ 0; qe ¼ 0. Taking the divergence of
(6.9.46)1 and the curl of (6.9.46)2, we find the source Maxwell’s equation in the
symmetric form4

curl
1
l0

B� P� v

� �

¼ o

ot
ð�0Eþ PÞ; divð�0Eþ PÞ ¼ 0: ð6:9:47Þ

The vector field P is called the ‘polarization’. Comparing (6.9.47) with (6.9.44),
we can write

j ¼ v div Pþ curlðP� vÞ þ oP

ot
; qe ¼ �div P; ð6:9:48Þ

which satisfy identically the equation of continuity

oqe

ot
þ divðjþ qevÞ ¼ 0: ð6:9:49Þ

Like the usual electromagnetic potentials, the antipotentials M; w can be
related by a Lorenz-type condition. Introducing (6.9.46) into Maxwell’s source-
free equations (6.6.87), we have:

DM� �0l0
o2M

ot2
¼ r r �Mþ �0l0

ow
ot

� �

þ �0l0
o

ot
ðP� vÞ � r � P:

In order that M satisfies the homogeneous D’Alembert wave equation, the fol-
lowing two conditions must be fulfilled:

div Mþ �0l0
ow
ot
¼ 0; ð6:9:50Þ

�0l0
o

ot
ðP� vÞ ¼ curl P: ð6:9:51Þ

Relation (6.9.50) is the Lorenz condition for the antipotentials and we shall use it
as a constraint in the Lagrangian density.

4 Calkin, M.G.: An action principle for magnetohydrodynamics. Can. J. Phys. 41, 2241 (1963).
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The advantage of this representation is that the Lagrangian density of the
electromagnetic field (6.8.32), in which E; B are given in terms of M; w, includes
the interaction between field and particles. This is possible because the interaction
between the electromagnetic field and the point sources has been replaced by an
interaction between the electromagnetic and the ‘polarization’ fields. Starting from
the Lagrangian density (6.8.25), we postulate the Lagrangian density for our
model, in terms of antipotentials:

L ¼ 1
2l0
jBj2 � 1

2
�0jEj2 �

1
2�0

r �Mþ �0l0
ow
ot

� �2

þ 1
2
qjvj2 � qðeþ V	Þ þ q

oa
ot
þ v � ra

� �

� bq
os

ot
þ v � rs

� �

; ð6:9:52Þ

where E and B are given by (6.9.46). Before going further, we need to define the
explicit relation between velocity and the ‘polarization’ fields. Using Euler–
Lagrange equations (6.8.11) with uðsÞ � vi ði ¼ 1; 2; 3Þ as variational parameters,
we have:

oL
ovi;k

¼ 0;
oL
ovi;t
¼ 0;

oL
ovi

¼ oL
oBk

oBk

ovi

þ qvi þ qa;i � bqs;i ¼ 0:

Since

oL
oBk

¼ 1
l0

Bk;

oBk

ovi

¼ o

ovi

½l0ðw;k þ �kjmPjvm þMk;tÞ� ¼ l0�kjmdimPj ¼ l0�kjiPj;

we finally find:

vj ¼ �a;j þ bs;j �
1
q
�jkmBkPm; ð6:9:53Þ

or, equivalently,

v ¼ �raþ brs� 1
q

B� P;

which is a generalized Clebsch transformation.5

According to (6.9.2), the momentum densities pMj
; pPj

; pw; pa; ps, associated
with the field variables Mj; Pj; w; a; s, are:

5 Merches, I.: Variational principle in magnetohydrodynamics. Phys. Fluids 12 (10), 2225 (1969).
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pMj
¼ oL

oMj;t
¼ Bj; pPj

¼ oL
oPj;t

¼ 0; pw ¼
oL
ow;t

¼ �l0ðMi;i þ �0l0w;tÞ ¼ 0;

pa ¼
oL
oa;t
¼ q; ps ¼

oL
os;t
¼ �bq: ð6:9:54Þ

Using (6.9.1), we can now write the Hamiltonian density H:

H¼
X6

s¼1

pðsÞ _uðsÞ � L ¼ BjMj;t � l0ðMj;j þ �0l0w;tÞw;t þ
1

2�0
ðMj;j þ �0l0w;tÞ

2

þ qa;t � bqs;t �
1

2l0
BjBj þ

1
2
�0EjEj �

1
2
qvjvj þ qðeþV	Þ � qða;t þ vja;jÞ

þ bqðs;t þ vjs;jÞ:

The form of the Hamiltonian density can be simplified if we observe that, using the
cyclicity of the mixed product and by virtue of (6.9.53), we can write:

BjMj;t ¼ Bj

1
l0

Bj � ðP� vÞj � w;j

� �

¼ 1
l0

BjBj þ vjðqvj þ qa;j � bqs;jÞ � Bjw;j:

Introducing this result into H, we obtain the Hamiltonian density in terms of the
field variables, and their partial derivatives with respect to coordinates and time:

H ¼ 1
2l0

BjBj þ
1
2
�0EjEj � Bjw;j þ

1
2�0
½Mj;jMk;k � �0l

2
0ðw;tÞ

2�

þ 1
2
qvjvj þ qðeþ V	Þ: ð6:9:55Þ

In order to apply the Hamiltonian technique, it is necessary to express H in
terms of the field variables Mj; Pj; w; a; s and their conjugate momentum den-
sities pMj

; pPj
; pw; pa; ps: Using (6.9.54), we get the Hamiltonian density in the

final form:

H ¼ 1
2l0

pMj
pMj
þ 1

2�0
ð�jkmMm;k � PjÞð�jliMi;l � PjÞ � pMj

w;j

� 1
2�l0

pwðMj;j � �0l0w;tÞ þ
1
2
pa �a;j �

1
pa

pss;j �
1
pa
�jkmpMk

Pm

� �

� �a;j �
1
pa

pss;j �
1
pa
�jlipMl

Pi

� �

þ paeðpa; sÞ þ paV: ð6:9:56Þ

Utilizing the calculation after formula (6.8.29) and applying the canonical equa-
tions (6.9.12), we obtain the following system:
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pMj ;t ¼ ��jkmEm;k;

Mj;t ¼
1
l0

pMj
� w;j � �jkmPkvm;

pPj ;t ¼ 0 ¼ Ej þ �jkmvkpMm
;

Pj;t ¼ 0;

pw;t ¼ �pMj ;t;

w;t ¼ �
1

2�0l0
ðMj;j � �0l0w;tÞ;

pa;t ¼ �ðpavjÞ;j;

a;t ¼ �
1
2
vjvj � vja;j þ eþ V þ 1

pa
p;

ps;t ¼ �Tpa � ðpsvjÞ;t;

s;t ¼ �vjs;j:

Rearranging these equations and using the vector notation, we have:

oB

ot
¼ �r� E; r � B ¼ 0;

Eþ v� B ¼ 0;

B ¼ l0 rwþ P� vþ oM

ot

� �

;

r �Mþ �0l0
ow
ot
¼ 0;

os

ot
þ v � rs ¼ 0;

oq
ot
þr � ðqvÞ ¼ 0;

oP

ot
¼ 0;

ob
ot
þ v � rb ¼ T ;
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1
2
jvj2 � V	 � e� p

q
þ oa

ot
þ v � ra ¼ 0:

Thus, we have found the source-free Maxwell’s equations (6.6.87), Ohm’s law for
infinite conductivity, the field B in terms of the antipotentials M; w, the Lorenz
condition (6.9.50), the equation of conservation of entropy (6.6.94)5, the equation
of continuity (6.6.94)6, as well as Eqs. (6.8.27) and (6.8.28), which we also
obtained in the case of uncharged fluids.

Recalling that our final purpose is to obtain the equation of motion, the next
step consists in eliminating the Lagrange multipliers from the equations:

vþra� brsþ 1
q

B� P ¼ 0;

1
2
jvj2 � �� V	 � p

q
þ oa

ot
þ v � ra ¼ 0; ð6:9:57Þ

ob
ot
þ v � rb ¼ T :

Extracting ra from (6.9.57)1 and introducing this expression into (6.9.57)2, then
taking the gradient of the result, we have:

rðbv � rsÞ þ o

ot
ðraÞ � 1

2
rjvj2 ¼ r eþ V	 þ p

q
þ 1

q
v � ðB� PÞ

� �

;

or, by using again (6.9.57)1 to express ra,

o

ot
ðbrsÞ � ov

ot
� o

ot

1
q

B� P

� �

� 1
2
rjvj2 þrðbv � rsÞ

¼ r eþ V	 þ p

q
þ 1

q
v � ðB� PÞ

� �

:

Utilizing the vector formula (B.39) and the fundamental equation of thermody-
namics (6.6.50), we obtain:

ov

ot
þ ðv � rÞv ¼ �rV	 � 1

q
rpþ o

ot

1
q

B� P

� �

þ v� r� 1
q

B� P

� �� �

þr 1
q

v � ðB� PÞ
� �

: ð6:9:58Þ

If a; b; c are any three vector fields, it is not difficult to prove the following
vector identity:

a� ½r � ðb� cÞ� þ b� ½r � ðc� aÞ� þ c� ½r � ða� bÞ�
¼ ðb� cÞr � aþ ðc� aÞr � bþ ða� bÞr � cþrðc � ða� bÞÞ: ð6:9:59Þ
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Multiplying this relation by 1
q and performing some simple calculations, we

arrive at

r 1
q

c � ða� bÞ
� �

� ðc � ða� bÞÞr 1
q
þ r� 1

q
a� b

� �� �

� c

� r 1
q

� �

� ða� bÞ
� �

� cþ ða� bÞ 1
q
r � c

¼ 1
q
½r � ða� cÞ þ cr � a� � bþ 1

q
a� ½r � ðb� cÞ þ cr � b�:

If in this expression we put a = P, b = B, c = v and replace the term 1
qr � v

by means of the equation of continuity, we obtain:

r 1
q

v � ðP�BÞ
� �

þv� r� 1
q

B�P

� �� �

þ o

ot

1
q

P�B

� �

þv� ðP�BÞ�r 1
q

� �� �

� r 1
q

� �

�ðP�BÞ
� �

�v

¼ 1
q

o

ot
ðP�BÞþ 1

q
½r�ðP�vÞþvr�P��Bþ 1

q
P�½r�ðB�vÞþvr�B�;

or, after some reduction of terms,

r 1
q

v � ðP� BÞ
� �

þ v� r� 1
q

B� P

� �� �

þ o

ot

1
q

P� B

� �

¼ 1
q

oP

ot
þr� ðP� vÞ þ vr � P

� �

� Bþ 1
q

P� oB

ot
þr� ðB� vÞ þ vr � B

� �

:

In view of Maxwell’s equation (6.6.94)1, the induction equation for infinite con-
ductivity (6.6.94)2, and the relation (6.9.48)1, the r.h.s. of the last equation reduces
to 1

q j� B: Introducing this result into (6.9.58), we finally arrive at:

q
ov

ot
þ ðv � rÞv

� �

¼ j� B�rpþ qF0;

which is the expected equation of motion (6.6.93).

Observation: Assume that, apart from the Lorenz condition (6.9.50), the gen-
eralized antipotentials satisfy the boundary conditions MjS ¼ 0; wjS ¼ 0, where
S is the closed surface which bounds the volume V of the magnetofluid. Integrating
the Hamiltonian density (6.9.55) over V, we obtain the total Hamiltonian. By
volume integration, the term B � rw gives:

Z

V

B � rw ds ¼
Z

V

r � ðwBÞ ds�
Z

V

wr � B ds:
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The first integral on the r.h.s. can be transformed in a surface integral by virtue of
the Green–Gauss theorem and it vanishes because of our assumption on the
potentials:

Z

V

r � ðwBÞ ds ¼
I

S

wB � dS ¼ 0;

while the second integral is also zero in view of Maxwell’s equation div B ¼ 0. It
then follows that

H ¼
Z

V

H ds ¼
Z

V

1
2l0
jBj2 þ 1

2
�0jEj2 þ

1
2
qjvj2 þ qeþ V	

� �

ds; ð6:9:60Þ

which is the total energy of the system contained in the volume V. This result is
one more proof that our formalism is a useful tool of investigation in a boundary
physical discipline which, in this case, is magnetofluid dynamics.

6.10 Noether’s Theorem for Continuous Systems

6.10.1 Hamilton’s Principle and the Equations of Motion

In Chap. 2 we have seen that there is an intimate connection between the sym-
metry properties of a mechanical system and the equations of conservation of its
characteristic physical quantities, such as momentum, angular momentum and
energy. We have also proved that these equations of conservation follow from a
general theorem due to Emmy Noether, which gives a method of derivation of the
equations of conservation from Hamilton’s principle. Since Hamilton’s principle
can be used to obtain the equations of motion of both discrete and continuous
systems, it follows that practically the entire field of Physics falls under the
incidence of Noether’s theorem.

In this section we give a compressed proof of Noether’s theorem for continuous
systems.6 Maintaining the notations used in the last two sections, we recall that by
uðsÞðxÞ ðs ¼ 1; hÞ we denoted the C2-class dependent functions or field variables
u : fuð1Þ; ::;uðhÞg, while x : fx1; ::; xng stand for the independent variables.

As we know, the differential equation of motion can be derived from Hamil-
ton’s principle

6 Hill, E.L.: Hamilton’s principle and the conservation theorems of mathematical physics. Rev.
Mod. Phys. 23, 253 (1951).
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dJ ðuÞ ¼ 0; ð6:10:1Þ

where

J ðuÞ � J ½uð1Þ; ::;uðhÞ� ¼
Z

Dn

Lðx;u;u;xÞ dX: ð6:10:2Þ

Here, u;x : fuðsÞ;x1 ; . . .;uðsÞ;xn
g, while the integral is extended over an arbitrary domain

X of the n-dimensional closed manifold Dn of coordinates x1; . . .; xn.
Let us consider an infinitesimal transformation of coordinates:

x0k ¼ xk þ dxk ðk ¼ 1; nÞ: ð6:10:3Þ

This will produce an elementary variation of the fields and their derivatives of
the form:

uðsÞ
0
ðx0Þ ¼ uðsÞðxÞ þ duðsÞðxÞ; ð6:10:4Þ

uðsÞ
0

;k ðx0Þ ¼ uðsÞ;k ðxÞ þ duðsÞ;k ðxÞ k ¼ 1; n; s ¼ 1; h
� �

: ð6:10:5Þ

The relation

dJ ¼
Z

D0n

Lðx0;u0;u0;xÞ dX0 �
Z

Dn

Lðx;u;u;xÞ dX; ð6:10:6Þ

where D0n is the image of the domain of integration by the transformation (6.10.3),
is called the functional variation of the integral J ; if between the ‘volume’ ele-
ments dX and dX0 there exists a point-to-point correspondence, which means

dX0 ¼ J dX: ð6:10:7Þ

In view of (6.10.3), we have:

J ¼ 1þ o

oxk

ðdxkÞ: ð6:10:8Þ

Because of the occurrence of so many indices, in this section we shall use the
summation convention for all repeated indices. Utilizing the Taylor series
expansion in the first integral on the r.h.s. of relation (6.10.6) and keeping only the
terms linear in dx; du; du;x, we obtain:

dJ ¼
Z

Dn

L o

oxk

ðdxkÞ þ
oL
oxk

dxk þ
oL

ouðsÞ
duðsÞ þ oL

ouðsÞ;k
duðsÞ;k

" #

dX: ð6:10:9Þ

Here we cannot perform an integration by parts, as we have usually done in the
previous sections, because the relations (6.10.4) and (6.10.5) express the
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connection between the field variables and their transformed values at different
points. Nevertheless, this can be done by introducing some new variations, d	uðsÞ

and d	u
ðsÞ
;k , defined by

uðsÞ
0
ðx0Þ ¼ uðsÞðx0Þ þ d	u

ðsÞðx0Þ; ð6:10:10Þ

uðsÞ
0

;k ðx0Þ ¼ uðsÞ;k ðx0Þ þ d	u
ðsÞ
;k ðx0Þ: ð6:10:11Þ

Since

d	u
ðsÞðx0Þ ¼ d	u

ðsÞðxþ dxÞ ¼ d	u
ðsÞðxÞ þ dxk

o

oxk

ðdu	
ðsÞÞ þ � � �

we may neglect the products of infinitesimal variations ðdxkÞðdu	ðsÞÞ, so that

d	u
ðsÞðx0Þ ¼ d	u

ðsÞðxÞ; ð6:10:12Þ

and, consequently,

d	u
ðsÞ
;k ¼

o

oxk

ðd	uðsÞÞ: ð6:10:13Þ

Comparing (6.10.10) and (6.10.11) with (6.10.4) and (6.10.5), we have also:

duðsÞ ¼ d	u
ðsÞ þ uðsÞ;l dxl; ð6:10:14Þ

duðsÞ;k ¼ d	u
ðsÞ
;k þ uðsÞ;kl dxl: ð6:10:15Þ

Let us now define the operator

D

Dxk

¼ o

oxk

þ uðsÞ;k
o

ouðsÞ
þ uðsÞ;kl

o

ouðsÞ;l
: ð6:10:16Þ

With this notation, the integral (6.10.9) reads:

dJ ¼
Z

Dn

D

Dxk

ðLdxkÞ þ
oL

ouðsÞ
d	u

ðsÞ þ oL
ouðsÞ;k

d	u
ðsÞ
;k

" #

dX:

Observing that

oL
ouðsÞ

d	u
ðsÞ
;k ¼

D

Dxk

oL
ouðsÞ;k

d	u
ðsÞ

" #

� D

Dxk

oL
ouðsÞ;k

 !

d	u
ðsÞ;

we obtain:
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dJ ¼
Z

Dn

D

Dxk

Ldxk þ
oL

ouðsÞ;k
d	u

ðsÞ

 !

þ ½L�ðsÞd	uðsÞ
( )

dX; ð6:10:17Þ

where the expression

½L�ðsÞ ¼
oL

ouðsÞ
� D

Dxk

oL
ouðsÞ;k

 !

ð6:10:18Þ

is called the Lagrangian derivative of L with respect to uðsÞ: Going back to the
initial variations duðsÞ; we finally obtain for dJ the following relation:

dJ ¼
Z

Dn

D

Dxk

Ldkl �
oL

ouðsÞ;k
uðsÞ;l

 !

dxl þ
oL

ouðsÞ;k
duðsÞ

" #(

þ ½L�ðsÞðduðsÞ � uðsÞ;k dxkÞ
�

dX; ð6:10:19Þ

where dkl is the Kronecker symbol.
The calculation carried out so far was formal. Let us now assume that the

function L is the Lagrangian density of a physical continuous system. In order to
apply Hamilton’s principle, we make the following two assumptions:

(a) The integration domain Dn is fixed (dxk = 0 in Dn);
(b) The field variables take fixed values on the hypersurface Sn-1 which bounds

the domain (duðsÞjSn�1
¼ 0).

Applying the Green–Gauss theorem to (6.10.19), we arrive at

dJ ¼
Z

Dn

½L�ðsÞduðsÞ dX: ð6:10:20Þ

According to Hamilton’s principle, this integral vanishes for infinitesimal arbitrary
variations duðsÞ, subject to the aforementioned boundary conditions. Thus, we
obtain:

½L�ðsÞ ¼
oL

ouðsÞ
� D

Dxk

oL
ouðsÞ;k

 !

¼ 0; ð6:10:21Þ

which are the differential equations of motion of the system. If the operator D/Dxk

reduces to o=oxk, these equations lead to the Euler–Lagrange equations in the form
(6.8.8).

Observation: Let us show that the form of Eqs. (6.10.21) does not change upon a
divergence transformation:
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L0 ¼ L þDHk

Dxk

; ð6:10:22Þ

where Hkðx1; ::; xn;uð1Þ; ::;uðhÞÞ are n arbitrary functions of class C2. Indeed, we
have:

o

ouðsÞ
DHk

Dxk

� �

¼ o

ouðsÞ
oHk

oxk

þ uðmÞ;k

oHk

ouðmÞ

� �

¼ o

oxk

oHk

ouðsÞ

� �

þ uðmÞ;k

o

ouðmÞ
oHk

ouðsÞ

� �

¼ D

Dxk

oHk

ouðsÞ

� �

;

o

ouðsÞ;k

DHi

Dxi

� �

¼ o

ouðsÞ;k
uðmÞ;i

oHi

ouðmÞ

� �

¼ dsmdik

oHi

ouðmÞ
¼ oHk

ouðsÞ
;

yielding:

DHk

Dxk

� �

ðsÞ
¼ 0;

which completes the proof.

6.10.2 Symmetry Transformations

As we have already learned in Chap. 2, by symmetry transformations we mean a
class of transformations of variables which leaves unchanged the form of the
equations of motion. From the physical point of view, this means that by such a
transformation one passes from one possible motion of the system to another one.

Consider the transformation

xk ! x0kðxÞ; ð6:10:23Þ

uðsÞ ! uðsÞ
0½x;uðxÞ�: ð6:10:24Þ

In order that this transformation represents a symmetry transformation, we must
have, on the one hand, the invariance of the functional J ; i.e.

L0ðx0;u0;u0;xÞ dX0 ¼ Lðx;u;u;xÞ dX;

and on the other, by virtue of the property (6.10.22),

L0ðx0;u0;u0;xÞ ¼ Lðx0;u0;u0;xÞ þ
DHk

Dxk

:

The last two relations define the class of symmetry transformations.
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The most important type of symmetry transformations in the study of conser-
vation theorems is that obtained by an iteration of a succession of infinitesimal
transformations. Assume, then, the infinitesimal transformations:

xk ! x0k ¼ xk þ dxk; ð6:10:25Þ

uðsÞ ! uðsÞ
0
ðx0Þ ¼ uðsÞðxÞ þ duðsÞðxÞ; ð6:10:26Þ

uðsÞ;k ! uðsÞ
0

;k ðx0Þ ¼ uðsÞ;k ðxÞ þ duðsÞ;k ðxÞ: ð6:10:27Þ

Under this transformation, the quantities Hk will transform as

Hk ! H0kðx0;u0Þ ¼ Hkðx0;u0Þ þ dHkðx0;u0Þ: ð6:10:28Þ

Since the variations dxk; duðsÞ are infinitesimal, we may keep only the linear terms
in the series expansion:

dHðx0;u0Þ ¼ dHðxþ dx; uþ duÞ ’ dHðx;uÞ:

Going now back to the infinitesimal transformation (6.10.25)–(6.10.27), we
realize that in order to be a symmetry transformation we must have:

L0ðxþ dx; uþ du; u;x þ du;xÞ dX0 ¼ Lðx;u;u;xÞ dX; ð6:10:29Þ

L0ðxþ dx; uþ du; u;x þ du;xÞ dX0 ¼ Lðxþ dx; uþ du; u;x þ du;xÞ dX0

þ D

Dxk

ðdHkÞ dX0: ð6:10:30Þ

Comparing the last two relations, we get:

Lðxþ dx; uþ du; u;x þ du;xÞ ¼ Lðx;u;u;xÞ �
D

Dxk

ðdHkÞ
� �

1� o

oxj

ðdxjÞ
� �

;

or, by keeping only the terms linear in d,

dxk

o

oxk

þ duðsÞ
o

ouðsÞ
þ duðsÞ;k

o

ouðsÞ;k
þ o

oxk

ðdxkÞ
" #

L ¼ � D

Dxk

ðdHkÞ: ð6:10:31Þ

If, for a given L, we can find the functions dHk so as to satisfy (6.10.31), then
(6.10.25)–(6.10.27) is a symmetry transformation. In particular, if the square
bracket in the l.h.s. of (6.10.31) is identically zero and the Jacobian of the trans-
formation equals one, one says that L is form-invariant.

Let us now integrate (6.10.31) over a fixed and bounded (but otherwise arbi-
trary) domain Dn. The result is:
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dJ þ
Z

Dn

D

Dxk

ðdHkÞ dX ¼ 0;

or, in view of (6.10.19),

Z

Dn

D

Dxk

Ldkl �
oL

ouðsÞ;k
uðsÞ;l

 !

dxl þ
oL

ouðsÞ;k
duðsÞ þ dHk

" #(

þ½L�ðsÞ½duðsÞ � uðsÞ;k dxk�
)

dX ¼ 0: ð6:10:32Þ

Since this equality holds for any domain of integration, if the equations of motion
½L�ðsÞ ¼ 0 are satisfied, it follows that

D

Dxk

Ldkl �
oL

ouðsÞ;k
uðsÞ;l

 !

dxl þ
oL

ouðsÞ;k
duðsÞ þ dHk

" #

¼ 0: ð6:10:33Þ

We conclude that with the infinitesimal symmetry transformation (6.10.25)–
(6.10.27) one can associate the equation of conservation (6.10.33). This is a par-
ticular case of Noether’s theorem: any invariance with respect to a continuous
transformation leads to an equation of conservation. An application of this the-
orem in the mechanics of discrete systems has been described in Chap. 2.

If the operator D/Dxk reduces to o=oxk, and one chooses x1; x2; x3 as the space
coordinates and x4 ¼ t as the time, then the equation of conservation (6.10.33) can
be written as

oc
ot
þ div G ¼ 0; ð6:10:34Þ

where

c ¼ L� oL
ouðsÞ;t

uðsÞ;t

 !

dt � oL
ouðsÞ;t

ðdr � rÞuðsÞ þ oL
ouðsÞ;t

duðsÞ þ dHt; ð6:10:35Þ

G ¼ Ldr� oL
oðruðsÞÞ ðdr � rÞuðsÞ

� �

� oL
oðruðsÞÞu

ðsÞ
;t dt þ oL

oðruðsÞÞ duðsÞ þ dH:

ð6:10:36Þ

We observe that Eq. (6.10.34) is very similar in form with an equation of
continuity, written for the densities c and G. Integrating over a fixed domain of
volume V of the three-dimensional physical space and utilizing the Green–Gauss
theorem, we obtain:

o

ot

Z

V

c ds ¼ �
I

S

G � dS: ð6:10:37Þ
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Let us now apply Noether’s theorem in order to derive the fundamental theo-
rems which govern the motion of an ideal fluid, obtained in a different way in Sect.
6.6. Choosing again (6.8.24) as a suitable Lagrangian density (with V	 ¼ 0):

L ¼ 1
2

qjvj2 � qe� a
oq
ot
þr � ðqvÞ

� �

� bq
os

ot
þ v � rs

� �

; ð6:10:38Þ

we shall deduce the equations of transformation and conservation associated with
the space–time symmetry transformations.

6.10.3 Energy Conservation Theorem

We require that the action principle dJ ¼ 0 with L given by (6.10.38) must be
invariant with respect to an infinitesimal displacement of the time origin:

t! t0 ¼ t þ dt; dr ¼ 0; duðsÞ ¼ 0; dH ¼ 0; ð6:10:39Þ

where dt is an infinitesimal constant (which obviously has the dimension of time).
In this case, the relations (6.10.35) and (6.10.36) reduce to

cðtÞ ¼ L � oL
ouðsÞ;t

uðsÞ;t

 !

dt; ð6:10:40Þ

GðtÞ ¼ � oL
oðruðsÞÞu

ðsÞ
;t dt; ð6:10:41Þ

where the superscript (t) indicates the type of symmetry transformation. Using
(6.8.28) and (6.8.29), we have:

cðtÞ ¼ L þ a
oq
ot
þ bq

os

ot

� �

dt ¼ � 1
2

qjvj2 þ qeþr � ðaqvÞ
� �

;

GðtÞ ¼ av
oq
ot
þ bqv

os

ot
þ aq

ov

ot

� �

dt ¼ o

ot
ðaqvÞ � qv

oa
ot
� bqvðv � rsÞ

� �

dt

¼ o

ot
ðaqvÞ � qv

1
2
jvj2 þ w

� �� �

dt:

Introducing these last two relations into (6.10.37) and simplifying by the arbitrary
constant dt, we arrive at the energy conservation equation (6.6.53):

o

ot

Z

V

1
2

qjvj2 þ qe

� �

ds ¼ �
I

S

1
2
qjvj2 þ qw

� �

v � dS:
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6.10.4 Momentum Conservation Theorem

The action principle is required to be invariant also with respect to an infinitesimal
displacement of the origin of the coordinate system:

r! r0 ¼ rþ dr; dt ¼ 0; duðsÞ ¼ 0; dH ¼ 0; ð6:10:42Þ

where dr is an infinitesimal constant vector oriented along the displacement. Then
(6.10.35) yields

cðrÞ ¼ � oL
ouðsÞ;t

ðdr � rÞuðsÞ ¼ adr � rqþ bqdr � rs ¼ ½qvþrðaqÞ� � dr;

while (6.10.36) leads to

GðrÞ ¼ Ldr� oL
oðruðsÞÞ ðdr � rÞuðsÞ

¼ 1
2
qjvj2 � qeþ q

oa
ot
� o

ot
ðaqÞ � ar � ðqvÞ � bq

os

ot
þ v � rs

� �� �

dr

þ av dr � rqþ bqv dr � rsþ aqðdr � rÞv:

Since

1
2
qjvj2 � qeþ q

oa
ot
¼ p� qv � ra;

av dr � rqþ bqvdr � rs ¼ vdr � rðaqÞ þ qvv � dr;

vdr � rðaqÞ � qðv � raÞdr� aðv � rqÞdr

¼ vdr � rðaqÞ � v � rðaqÞdr ¼ rðaqÞ � ðv� drÞ;

we obtain:

GðrÞ ¼ pdrþ qvv � dr� dr
o

ot
ðaqÞ þ rðaqÞ � ðv� drÞ

þ aqðdr � rÞv� aqdr r � v:

The divergence of the last three terms in G(r) is zero. Indeed,

r � ½rðaqÞ � ðv� drÞ þ aqðdr � rÞv� aqdrr � v�
¼ �rðaqÞ � r� ðv� drÞ þr � ½aqðdr � rÞv� �r � ðaqdrr � vÞ
¼ ½rðaqÞ � dr�r � v�rðaqÞ � ½ðdr � rÞv� þr � ½aqðdr � rÞv� �r � ðaqdrr � vÞ
¼ aqr � ½r� ðv� drÞ� ¼ 0:

6.10 Noether’s Theorem for Continuous Systems 381



Using these results in (6.10.37), denoting Pik ¼ qvivk þ pdik; ~Pi ¼ qvi, and
dropping the infinitesimal vector constant dr, we obtain:

o

ot

Z

V

~Pi ds ¼ �
I

S

Pik dSk;

which is the momentum conservation theorem (6.6.57).

6.10.5 Angular Momentum Conservation Theorem

The action principle must be invariant with respect to the infinitesimal rotation of
the coordinate axes:

r! r0 ¼ rþ r� dh; dt ¼ 0; duðsÞ ¼ 0; dH ¼ 0; ð6:10:43Þ

where the infinitesimal vector constant dh is oriented along the axis of rotation, its
magnitude being equal to the angle of rotation. Denoting by the superscript (h) the
type of symmetry transformation and proceeding in the same manner as above, we
have:

cðhÞ ¼ � oL
ouðsÞ;t

ðr� dhÞ � ruðsÞ

¼ aðr� dhÞ � rqþ bqðr� dhÞ � rs ¼ ½qvþrðaqÞ� � ðr� dhÞ;

GðhÞ ¼ Lr� dh� oL
oðruðsÞÞ ðr� dhÞ � ruðsÞ

¼ 1
2
qjvj2 � qeþ q

oa
ot
� o

ot
ðaqÞ � ar � ðqvÞ � bq

os

ot
þ v � rs

� �� �

ðr� dhÞ

þ avðr� dhÞ � rqþ bqvðr� dhÞ � rsþ avðr� dhÞ � rq

¼ pr� dh� r� dh
o

ot
ðaqÞ þ rðaqÞ � ½v� ðr� dhÞ�

� aqðr� dhÞr � vþ qv v � ðr� dhÞ þ aqðr� dhÞ � rv:

Introducing these results into (6.10.34), we have:

o

ot
qv � ðr� dhÞ þ r � ½qvðv � ðr� dhÞÞ þ pr� dh� ¼ 0;

or, in projection on the xi-axis,

o

ot
ðq�ijkvixjdhkÞ þ

o

oxl

ðq�ijkvivlxjdhk þ p�ljkxjdhkÞ ¼ 0:
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Observing that �ljk ¼ �ijkdil and dropping the infinitesimal constant dhk, we obtain:

o

ot
ðq�kijxjviÞ þ

o

oxl

½�kjiðqxjvivl þ pxjdilÞ� ¼ 0:

Using the notation

~Lk ¼ q�kjixjvi;

Mkl ¼ �kjiðqxjvivl þ pxjdilÞ

and integrating over the volume V, we arrive at the angular momentum conser-
vation theorem (6.6.59):

o

ot

Z

V

~Lk ds ¼ �
I

S

Mkl dSl:

6.10.6 Centre of Mass Theorem

Let us resume the discussion carried out in Sect. 2.8 on Galilean transformations,
but this time for the case of continuous systems. Starting from the postulate that
two inertial frames are equivalent in describing the motion of a mechanical system,
let us study the invariance of the action principle relative to the infinitesimal
Galilean transformation

r! r0 ¼ rþ dv0 t; dt ¼ 0; duðsÞ 6¼ 0; dH 6¼ 0; ð6:10:44Þ

where the infinitesimal constant vector dv0 represents the relative velocity of the
two frames. Since dt = 0, we have t0 ¼ t, and consequently d=dt ¼ d=dt0. Taking
the time-derivative of (6.10.44), we then obtain:

v0 ¼ vþ dv0: ð6:10:45Þ

Using again the condition d=dt ¼ d=dt0, we can write also:

o

ot
þ v � r ¼ o

ot0
þ v0 � r0: ð6:10:46Þ

The frames S and S0 are inertial, therefore ui ¼ u0i ði ¼ 1; 2; 3Þ. Since r ¼ r0, we
conclude that r ¼ r0 and (6.10.46) yields:

o

ot
¼ o

ot0
þ dv0 � r0: ð6:10:47Þ
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On the other hand we observe that, for s and b invariants relative to the
transformation (6.10.44), the velocity field v remains unchanged with respect to
the transformation

a0 ¼ a� r � dv0;

because, according to the Clebsch transformation (6.8.29), we have:

v0 � v ¼ �rða0 � aÞ ¼ rðr � dv0Þ ¼ dv0:

In this application we shall use the Lagrangian density in the equivalent form
(6.8.25). Denoting by the superscript (g) the type of transformation, we obtain:

cðgÞ ¼ � oL
ouðsÞ;t

ðdr � rÞuðsÞ þ oL
ouðsÞ;t

duðsÞ þ dHðtÞ

¼ �qdr � raþ bqdr � �qr � dv0 þ dHðtÞ

¼ qv � dr� qr � dv0 þ dHðtÞ;

as well as

GðgÞ ¼ Ldr� oL
oðruðsÞÞ ðdr � rÞuðsÞ þ oL

oðruðsÞÞ duðsÞ þ dH

¼ 1
2

qjvj2 � qeþ q
oa
ot
þ v � ra

� �

� bq
os

ot
þ v � rs

� �� �

dr� qvðdr � raÞ

þ bqvðdr � rsÞ � qvðr � dv0Þ þ dH

¼ pdrþ qvðv � drÞ � qvðr � dv0Þ þ dH:

Utilizing (6.10.34), we obtain the differential form of the equation of conservation
associated with the symmetry transformation (6.10.44):

o

ot
½ð~Pit � qxiÞdv0i þ dHðtÞ� þ o

oxk

f½ðqvivk þ pdikÞt � qxivk�dv0i þ dHkg ¼ 0

ðk ¼ 1; 2; 3Þ: ð6:10:48Þ

Keeping in mind that dr ¼ dv0t, the last step is achieved by introducing these

expressions into (6.10.37). Assuming that dHðgÞ ¼ 0; dH ¼ 0 and dropping the
infinitesimal constant dv0, we arrive at the centre of mass theorem in the form

o

ot

Z

V

ð~Pi t � qxiÞ ds ¼ �
I

S

½ðqvivk þ pdikÞt � qxivk� dSk: ð6:10:49Þ

If in (6.10.48) we choose the infinitesimal functions dHðtÞ and dH such that

o

ot
ðdHðtÞÞ þ o

oxk

ðdHkÞ ¼ �
o

oxk

½ðqvivk þ pdikÞt � qxivk�dv0i;
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then the centre of mass theorem reads:
Z

V

ð~Pit � qxiÞ ds ¼ const.;

or in the equivalent, but more intuitive form,

t Pi �M

R

V
qxi ds

M
¼ t Pi �MxG

i ¼ const. ð6:10:50Þ

Here, Pi ¼
R

V
qvi ds are the momentum components and xi

G are the coordinates of
the centre of mass of the fluid contained in the domain of volume V. We therefore
conclude that the centre of mass of the continuous system moves uniformly in a
straight line.

6.11 Problems

1. The velocity field in a fluid, expressed in Euler variables, is:

v1 ¼ kx2; v2 ¼ kx1; v3 ¼ 0 ðk ¼ const.Þ

(pure sliding). Find the velocity of deformation tensor, the velocity vortex
vector, the density variation, the displacement vector and the deformation
tensor.

2. Show that in an equilibrium state, if the body forces are absent, the com-
ponents ui of the elastic displacement are biharmonic functions, i.e.
r4ui = 0.

3. A bead of radius R has been introduced in an incompressible perfect fluid.
Study the potential flow of the fluid around the bead.

4. Determine the potential motion of a fluid moving inside a dihedral angle.
5. Determine the equation of motion of a sphere performing a motion of

vibration in a perfect fluid, as well that of a sphere put into motion by a
vibrating fluid.

6. Determine the motion of a fluid in the vicinity of the critical point.
7. Given the complex potential in the form

fðzÞ ¼ ð2� 3iÞ lnðz2 þ 1Þ þ 2
z
;

find the flow rate of an incompressible ideal fluid flowing through the circle
|z| = 2, as well as the velocity circulation on the circle.

8. Find the shape of an incompressible fluid in the gravitational field, situated in
a cylinder uniformly rotating about its axis.

9. Study the potential flow of an incompressible perfect fluid, contained in an
ellipsoidal container uniformly rotating about its principal axis. Find the total
angular momentum of the fluid in the container.

6.10 Noether’s Theorem for Continuous Systems 385



10. Consider the harmonic functions uiðx1; x2; x3Þ ði ¼ 1; 2; 3Þ and wðx1; x2; x3Þ.
Find the conditions under which the formulas

ui ¼ ui þ ðr2 � a2Þ ow
oxi

ðr2 ¼ x2
1 þ x2

2 þ x2
3; a ¼ const.Þ;

where ui are elementary displacements, determine a solution of Lamé’s
homogeneous equations.

11. From an incompressible fluid filling up the whole space is instantly removed a
spherical volume of radius a. After how long time does the spherical cavity
disappear?

12. A sphere immersed in an incompressible fluid dilates according to the law
R = R(t). Determine the pressure of the fluid on the surface of the sphere.

13. Determine the shape of a jet of fluid through an infinitely long opening per-
formed in a plane wall.

14. Determine the motion of a fluid between two cylindrical pipes of radii R1 and
R2ð[R1Þ.

15. Solve the same problem for two elliptic-shaped pipes.
16. Once again, solve the same problem for a pipe whose cross section is a

triangle with equal sides.
17. Determine the motion of a fluid filling up the space between two concentric

spheres of radii R1 and R2ð\R1Þ, rotating about two different diameters, the
angular velocities being x1 and x2. (The Reynolds numbers satisfy the

property: x1R
2
1

m 
 1; x2R
2
2

m 
 1Þ.
18. Determine the velocity of a spherical drop of fluid of viscosity g0, moving

under the action of gravity in a fluid of viscosity g.
19. A film of viscous fluid is bounded by two parallel solid planes. If one of the

planes performs oscillations (parallel to itself), determine the force of friction
acting on the other plane.

20. A plane discus of large radius R performs small oscillations about its axis, the
angle of rotation being h ¼ h0 sin xt. Determine the moment of the forces of
friction acting on the discus.
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Addenda

Post-Classical Mechanics

In the following three addenda we very briefly present as some examples three
different directions, into which the classical mechanics, as described in the
previous chapters, has evolved. These addenda are intended for those readers who
are interested to get acquainted with the new subjects and learn the basic ideas
used nowadays in modern physics, where the classical mechanics though standing
as their foundation, is valid only in specific situations and in certain
approximations. For further study of these subjects an appropriate literature
is given.

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2,
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Addendum I
Special Theory of Relativity

When the speed of a particle or an object, such as a proton, electron or a nucleus,
approaches the speed of light (the so-called relativistic particle), the usual
classical mechanics is no more valid. Instead one has the relativistic mechanics,
which is based on the special theory of relativity. In this theory, the speed of light
denoted by c, is always constant (actually, it is an invariant) – when one goes from
one moving system of reference to another, it does not change. The addition of
velocities is not the same as in the usual (nonrelativistic) classical mechanics. All
the basic quantities, such as the Lagrangian or the action and the corresponding
equations of motion derived from it, are covariant under the so-called Lorentz
transformations, while in the (nonrelativistic) classical mechanics those quantities
are covariant under the Galilean transformations. What is the most drastic is that
space–time becomes a four-dimensional manifold, in which the space and time are
tightly connected and time is no more an absolute, universal concept but changes
when we go from one system of reference to another. The usual classical
mechanics is obtained as a limit when the velocities of the particles are small as
compared to the speed of light. Here, the speed of light c is the new fundamental
parameter which enters the special theory of relativity.

I.1 Introduction

We recall the importance of inertial frames of reference in the classical mechanics
and the validity of Galilei’s principle of relativity, which states that the laws of
mechanics are the same in all inertial frames. This means that the oscillations of a
pendulum, for instance, in an inertial frame, are produced in similar manner in any
other frame moving at constant velocity with respect to it. A consequence of the
principle of relativity of Galilei and the notions of absolute time and space were
Galilei’s transformations. The equations of mechanics, as that of the motion of a
planet around the Sun under the action of Newton’s gravitational force, do not
change in form, i.e. they are said to be covariant under such transformations. From

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2,
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this it results that if an object moves with velocity V with regard to an inertial
frame, and this frame in turn with velocity V with regard to another inertial frame,
the velocity of the object with regard to this second frame satisfies the law of
addition of velocities V00 = V + V0, that is, the principle of relativity of Galilei leads
to the additivity of the velocities when the motions are considered as referred to
several inertial frames. On the other hand, when electromagnetic phenomena are
concerned, the principle of relativity of Galilei is not valid. In particular, it is not
satisfied by the light propagation (in general, for electromagnetic waves the
Maxwell equations and the electromagnetic wave equation are not covariant under
Galilean transformations). The existence of an absolute frame of reference was
admitted, that of the luminiferous æther in which the electromagnetic waves would
move at the speed of 300,000 km/s and it was expected that the light would have
different velocities if measured in a frame at rest or in motion with regard to the
æther, and also it would yield a different result if the velocity of light were
measured moving in the sense of the Earth rotation or along a perpendicular
direction. Experiments to verify these hypotheses were performed at the end of the
nineteenth century, the most famous of them being the so-called Michelson–
Morley experiment, performed by Albert Abraham Michelson and Edward
Williams Morley in the year 1887, but leading to negative results: the effect due to
the supposed difference of velocities of light along and perpendicular to the Earth
rotation direction did not appear. In summary, the scientific community was facing
the following facts:

1. Newtonian mechanics and the principle of relativity of Galilei were valid
(verified in mechanical experiments and in astronomic observations);

2. The laws that govern electromagnetic phenomena, described by the Maxwell
equations, were also valid, and verified experimentally. But these equations did
not satisfied the Galilean relativity principle and it was expected from that
reason that the speed of light would be different for an observer at rest, as
compared with the value measured by an observer in motion;

3. The experiments carried out in order to measure such difference of velocities
gave negative answers, as if the velocity of light were the same for both
observers.

Apparently the statements 1, 2, and 3 could not be all valid simultaneously in
the theoretical framework of that time and Albert Einstein proposed to solve this
contradiction in 1905, by formulating two principles or basic postulates:

1. The speed of the light emitted by a source is the same for all observers,
whatever would be their state of motion.

2. The laws of physics (including the electromagnetic phenomena) are valid in all
inertial frames.

Thus, Einstein generalized the principle of relativity of Galilei to all physical
phenomena, including the electromagnetic ones, and demonstrated that assuming
the validity of his two postulates, all the previously mentioned contradictions
would disappear. The essential differences between the consequences of the
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principles of relativity of Einstein and Galilei had enormous transcendence: not
only the controversial luminiferous æther was not necessary, but there were no
reasons to suppose its existence. The validity of his postulates implied also the
disappearance of the absolute space and absolute time of Newtonian mechanics as
independent entities: space and time formed now a joint entity, being intimately
related among themselves; the space–time and the fundamental laws of physics
could be written as mathematical expressions in a four-dimensional space,
nowadays called the Minkowski space. Einstein created a new mechanics such
that, when the velocities of the particles are small compared with the velocity of
light, it coincides with the Newtonian mechanics, but differs greatly from it for
velocities near to that of light.

I.2 Lorentz Transformations

We have already seen in Chap. 1 that a frame of reference is determined by a
system of three coordinate axes to fix the position of the objects with regard to
them, and a clock in order to measure the time at which the events occur. In
classical mechanics, a unique clock serves for all frames of reference. In relativ-
istic mechanics, each frame requires its own clock. The clocks of several frames of
reference match in different manner. Suppose we are given a frame of reference
S and we consider two events: the departure of a light signal from a point A and the
arrival of that signal to another point B. The coordinates of the first event in such a
reference frame would be (by including the time as a fourth coordinate):

x1; y1; z1; t1

and those of the second event:

x2; y2; z2; t2:

Since the signal propagates with the velocity of light, we have

Dr ¼ cDt; ðI:1Þ

where the distance between A and B is:

Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2
q

ðI:2Þ

and the interval of time between the two events is:

Dt ¼ t2 � t1: ðI:3Þ

Then, according to (I.1), the coordinates of the events satisfy:

ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2 � c2 ðt2 � t1Þ2 ¼ 0: ðI:4Þ
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If now the events are studied in another frame of reference S0 moving with
velocity V with respect to S, in this new frame the two events will have the
coordinates:

x01; y
0
1; z
0
1; t
0
1 and x02; y

0
2; z
0
2; t
0
2;

and they should again satisfy the equation

ðx02 � x01Þ
2 þ ðy02 � y01Þ

2 þ ðz02 � z01Þ
2 � c2ðt02 � t01Þ

2 ¼ 0: ðI:5Þ

Let us assume that S0 moves parallel to the x-axis. The relations (I.4) and (I.5)
will be satisfied by the coordinates of the events in the frames S and S0 if they are
related by a linear transformation – a so-called Lorentz transformation (or
FitzGerald–Lorentz transformation):

x0 ¼ x� Vt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2=c2
p ;

y0 ¼ y;

z0 ¼ z;

t0 ¼
t � V

c2 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2=c2
p :

ðI:6Þ

These are the transformations which replace those of Galilei in Einstein’s relativity
(Fig. I.1). The initial formulation was proposed by George Francis FitzGerald in
1889, and developed by Hendrik Lorentz in 1892, in an attempt of interpreting the
Michelson–Morley experiment as a contraction of all bodies along their direction
of motion.

If x01; y
0
1; z
0
1; t
0
1; x
0
2; y
0
2; z
0
2; t
0
2 are substituted by their transformed in terms of

x1; y1; z1; t1; z2; y2; z2; t2 according to (I.6), the expression (I.5) is converted into

Fig. I.1 Two inertial reference frames S and S0 oriented so that their axes x; x0 coincide. The
frame S0 moves with respect to S with a constant velocity V .
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(I.4). This means that the expression (I.4) is invariant with respect to the
transformations (I.6) that, as we see, depend on the velocity V : For small velocities
compared to that of the light, (I.6) turns into the Galilean transformations:

x0 ¼ x� Vt;

y0 ¼ y;

z0 ¼ z;

t0 ¼ t:

The Lorentz transformations are a consequence of the constancy of the speed of
light for all the inertial frames and of the linearity of the coordinate
transformations. If two events that we shall call 1 and 2 are not related by the
departure and arrival of a light signal, then their coordinates would not satisfy the
equality (I.1) and we can have one of the two possibilities:

either s2
12 [ 0; or s2

12\0; ðI:7Þ

where s2
12 ¼ ½ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2 � c2ðt2 � t1Þ2� is named space–

time interval. If the interval between the two events observed from the frame S0 is
calculated, its value is the same as the one calculated from the frame S: By
applying the Lorentz transformations to the coordinates of the events 1 and 2 one
can check that the space–time interval does not change. The interval between two
events is the same in all inertial frames. It is relativistically invariant.

If s2
12\0; which means s2

12=Dt2 � v2 � c2\0; the interval between the two
events is called timelike and the two events can be causally connected; they can be
related to each other by means of a signal traveling at lower velocity v than that of
the light. In particular, it is always possible to find a reference frame in which both
events occur at the same point of space. As an example, let us suppose that a
traveler throws some object through a window of a train and, five seconds later,
throws another object through the same window. For an external observer the two
events occurred at different points of space and at different times. For the traveler,
both events occurred at the same point of space, but at different times.

If s2
12 [ 0, the interval between the events 1 and 2 is called spacelike. In this

case, the two events cannot be related causally, since the spatial distance between
the two points at which they occur is greater than the product of the velocity of
light by the difference of time between them:

ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2 [ c2ðt2 � t1Þ2: ðI:8Þ

When the interval between two events is spacelike, it is always possible to find a
frame of reference in which the two events occur at the same instant of time,
although at different space points. The interval between two events in space–time
is a generalization of the distance between two points in ordinary space.

If s2
12 ¼ 0, the two events are related by a light signal (since we obtain v2 ¼ c2)

and the interval is called lightlike.
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I.3 Addition of Velocities

The impossibility of exceeding the speed of light is a consequence of Einstein’s
postulates. This is easily derived from the law of summation of velocities in
relativistic mechanics. By taking the relations (I.6),

x ¼ x0 þ Vt0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2=c2
p ; t ¼ t0 þ ðV=c2Þx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2=c2
p ; ðI:9Þ

and after differentiating them with respect to ðx0; t0Þ; let us divide the first equation
by the second. We obtain:

vx ¼
v0x þ V

1þ Vv0x=c
2
; ðI:10Þ

where vx ¼ dx
dt

represents the velocity of a particle with respect to the rest frame S;

while v0x ¼ dx0

dt0 represents the same velocity, but measured from the moving frame
S0: For V � c; one can take the denominator equal to unity and get approximately

vx � v0x þ V ; ðI:11Þ

i.e. the law of composition of velocities of classical mechanics. But from (I.10), if
the particle moves with respect to S0 at large speeds, for instance, v0x ¼ c=2; and
the frame S0; in turn, moves with respect to S also at the same velocity V ¼ c=2; it
would result:

vx ¼
c=2þ c=2
1þ 1=4

¼ 4
5
c; ðI:12Þ

which is smaller than c. Even by taking v0x ¼ c;V ¼ c; it would not be possible to
exceed the speed of light:

vx ¼
cþ c

1þ c2=c2
¼ c: ðI:13Þ

In other words, although S0 would move with respect to S with the speed of light,
and the particle moves with respect to S0 also with the speed of light, its speed with
respect to S would be precisely the speed of light. We see that it is not possible, by
means of the relativistic law of composition of velocities, to exceed the velocity of
light c; by summing velocities that are smaller than or equal to c:

I.4 Relativistic Four-Vectors

One of the most interesting geometrical consequences of the Lorentz
transformations is that the simultaneous transformations of the space and time
coordinates are geometrically equivalent to a rotation in a four-dimensional space,
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the space–time, which is called the Minkowski space. Hermann Minkowski
elaborated on Henri Poincaré’s observation that in Einstein’s theory of relativity
the time could be treated as a fourth dimension.

In two-dimensional Euclidean space, a vector a has the components ða1; a2Þ in a
frame of coordinates ðx; yÞ: In another frame of coordinates ðx0; y0Þ forming an
angle / with the first, it will have the coordinates ða01; a02Þ:

a01 ¼ a1 cos /þ a2 sin /;

a02 ¼ a1 sin /þ a2 cos /;
ðI:14Þ

and the relation a01
2 þ a02

2 ¼ a2
1 þ a2

2 ¼ a2 � a2 is satisfied.
In the theory of the relativity, to change the description of an interval between

two events from a frame of reference S to another S0; means to change an interval
of components ðx2 � x1; y2 � y1; z2 � z1; t2 � t1Þ to another one of components
ðx02 � x01; y

0
2 � y01; z

0
2 � z01; t

0
2 � t01Þ by means of a transformation similar to (I.14).

To do it, let us take s ¼ ict;/! i/ and choose the angle / such that

cos i/ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2=c2
p ;

sin i/ ¼ iV=c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2=c2
p :

ðI:15Þ

Then,

x2 � x1 ¼ ðx02 � x01Þ cos i/þ ðs02 � s01Þ sin i/;

y2 � y1 ¼ y02 � y01;

z2 � z1 ¼ z02 � z01;

s2 � s1 ¼ �ðx02 � x01Þ sin i/þ ðs02 � s01Þ cos i/:

ðI:16Þ

The transformations for x2 � x1; t2 � t1 in (I.16) are similar to those in (I.6). The
difference lies in the imaginary character of the variable s ¼ ict and in the fact that
sin i/; cos i/ are not actually trigonometric, but hyperbolic functions, defined as
sin i/ ¼ i sinh /; cos i/ ¼ cosh /: Then we may write the equation

cos2 i/þ sin2 i/ ¼ 1 ðI:17Þ

in an equivalent form, in terms of the hyperbolic functions, as

cosh2 /� sinh2 / ¼ 1:

We recall the definitions: cosh / ¼ ðe/ þ e�/Þ=2; sinh / ¼ ðe/ � e�/Þ=2: But the
transformations (I.16), which represent another way of writing the Lorentz
transformation (I.6), as
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cosh / ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2=c2
p ;

sinh / ¼ V=c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2=c2
p ;

ðI:18Þ

leave invariant the interval s12 and are to be viewed as a rotation by an imaginary
angle in Minkowski space. Due to this, one can state that two events in space–time
determine a vector whose components are the differences between their
coordinates ½x2 � x1; y2 � y1; z2 � z1; cðt2 � t1Þ�: All the physical quantities in
the theory of relativity must be scalars, vectors, tensors, etc., under Lorentz
transformations. This means new relations between quantities apparently
independent in non-relativistic physics, in similar form as the new relations of
dependence between space and time, which were not present in the mechanics of
Galilei and Newton.

I.5 Energy and Momentum

The momentum of a free particle of mass m moving with a velocity v is defined in
the special theory of relativity as

p ¼ m v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p ; ðI:19Þ

and its energy as

E ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p : ðI:20Þ

The two quantities form a four-vector ðpx;py;pz; i
E
c
Þ whose modulus is

p2 � E2

c2
¼ �m2c2; ðI:21Þ

from which we obtain:

E ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2c2
p

: ðI:22Þ

For low velocities v� c, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

� 1; and from the expressions
(I.19) and (I.20) we get the nonrelativistic momentum p ¼ mv and the energy

E ¼ mc2 þmv2=2; ðI:23Þ
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that is, the term mc2 plus the expression for the kinetic energy of Newtonian
mechanics. For v ¼ 0; we obtain the expression

E ¼ mc2; ðI:24Þ

which relates the mass of a body at rest with its energy content. This expression is
probably the most popular consequence of the theory of the relativity. The largest
amount of energy that a body is able to produce (for example, when transforming
completely into radiation) is equal to the product of its mass by the square of the
speed of light. This relation explains the production of enormous amounts of
energy in nuclear fission processes (division of an atomic nucleus), in which a
certain excess of the initial mass of the nucleus when compared to the sum of the
masses of the final nuclei is totally converted into radiation energy.

From the above short description of the main ideas leading to the special theory
of relativity, the reader can now realize that, while the usual (nonrelativistic)
mechanics is based on Galilei’s principle of relativity, its generalization to the so-
called relativistic mechanics (and, in general, to any relativistic theory) is based on
Einstein’s principle of relativity. Thus, if a theory is invariant under the group of
Galilei transformations, its relativistic version should be invariant under the group
of Lorentz transformations. In particular, in relativistic mechanics the theory is
described by a Lagrangian or action which are invariant under the Lorentz
transformations and the corresponding equations of motion are covariant under
those transformations. For readers interested in further study of the subject, we
mention a partial list of literature, in which additional references can be found.
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Addendum II
Quantum Theory and the Atom

While for macroscopic systems specified by their action being large with respect to
some basic quantity called the Planck constant, classical mechanics is an accurate
theory, for atomic and still smaller, subatomic systems, classical mechanics is no
more applicable. Instead, a new theory, called quantum mechanics, formulated in
its final form during the years 1925–1926, was developed, in which many of our
usual, everyday-life intuitions have to be altered. For instance, we can no more tell
along which trajectory a certain particle such as an electron moves. Newton’s
equations of motion are no more valid and instead one has to use the so-called
Schrödinger equation, according to which only with some probability one can
predict the events. In such a theory the new fundamental parameter which enters is
the Planck constant, introduced by Max Planck in 1900, in his successful attempt
to explain the law of the black body radiation. The description of such systems can
be achieved by using operators associated with the observables (canonical
formalism), or, equivalently, by using the so-called Feynman path integral
approach. The predictions of classical mechanics are obtained in the limit when
the action S of the system becomes much larger than the Planck constant, i.e. when
the system is no more a microscopic, but a macroscopic one

II.1 Introduction

The 20th century commenced with modifications of the established physical ideas
of the previous centuries, by the drastic changes in the concepts of space and time
introduced with the formulation of special relativity. But also other new deep
modifications of the ideas of classical physics were required for understanding the
microscopic world. The investigations of the black body radiation and the photo-
electric effect opened a way for understanding the quantum nature of the atomic
world, which started to be revealed by studying the emission and absorption of the
electromagnetic radiation.

The light, whose wave nature was demonstrated with no doubt in a large
number of experiments, in some new phenomena appeared as if having a

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2,
� Springer-Verlag Berlin Heidelberg 2012

399



corpuscular structure. The situation turned still more paradoxical when it became
evident that the particles composing the atomic structure, as the electrons, showed
manifestly wave properties.

Later it became clear that it was not possible to determine simultaneously the
momentum and position of an atomic particle, as the electron. Thus it was
necessary to invent a new mechanics, called quantum mechanics.

II.2 Motion of a Particle

Classically, the motion of a particle is described by giving its position and its
velocity (or its momentum) and, in principle, one can know at each instant where
the particle is and towards where it is moving. For a particle of the atomic world
this is not possible. Different experiments on interference phenomena with
electrons brought Werner Heisenberg to his famous uncertainty relation.

This relation can be expressed as follows: if Dx is the uncertainty (understood
as standard deviation) in the position along x and Dpx is the uncertainty in the
momentum, then the relation DxDpx� �h=2; where �h is the reduced Planck
constant, i.e. h=2p, is valid.

The phenomenon of interference of electrons shows that it has wave properties.
In fact, in order to describe a particle in quantum mechanics, a wave function

Wðx; tÞ is introduced. The square of the modulus of the wave function, jWj2 (W in
general is a complex function), gives the probability density of localizing a particle
at the point x and at the time t: The following sections will be devoted to a brief
historical review about the atom and quantum mechanics.

II.3 Evolution of the Concept of Atom

Democritus of Abdera (470–380 BCE), the Greek philosopher, suggested the
hypothesis that the Universe consists of empty space and an enormous number of
indivisible particles, and that by joining and separating them we get the creation
and disappearance of bodies.

Approximately a century later, another Greek philosopher, Epicurus (341–270
BCE), named atoms these particles. In the 18th century, Daniel Bernoulli was the
first who attempted to construct a theory of gases based on the atomic structure
model and using the calculus of probabilities. At the beginning of the 19th century,
John Dalton introduced again the hypothesis of the atomic structure, and Amedeo
Avogadro was the first to clearly distinguish between atoms and molecules (which
are composed of atoms). Starting from the middle of nineteenth century, the kinetic
theory of gases was developed by James Prescott Joule, Rudolf Clausius and James
Clerk Maxwell, and subsequently by Ludwig Boltzmann, who based it on his
statistical interpretation of the second law of thermodynamics. In 1881, Hermann
von Helmholtz, as a result of the analysis of the works done by Michael Faraday on
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electrolysis, suggested the atomic nature of electricity and later, in 1891, George
Johnstone Stoney proposed the term electron for the unit of electric charge.

In 1897, Joseph John Thomson, as a consequence of his experimental studies
with cathode rays, stated again the atomic nature of electricity, and he also used
the term electrons for the electric corpuscles.

Later, Thomson proposed a model of the atom named later plum pudding, since
he supposed the atoms as positively charged lumps in which the electrons were
embedded like the plums in a pudding. The electrons were supposed to oscillate
around their mean positions when emitting or absorbing radiation.

II.4 Rutherford’s Experiment

In 1884, the Swiss mathematician Johann Balmer published the result of his
investigations on the hydrogen spectrum. From the spectroscopic measurements of
Anders Ångström, it was known that when the radiation emitted by this gas is studied
(for example, by producing electric arch sparks inside a bubble containing it), the
spectrum is formed by a series of lines beginning in the visible zone and ending in the
ultraviolet. Balmer gave an empirical formula for the frequencies of the different lines:

m ¼ cR
1
22
� 1

n2

� �

; n ¼ 3, 4, 5, . . . ðII:1Þ

where R is the Rydberg constant with the value 1:09677� 105 cm�1 and c is the
speed of light.

In 1911, Ernest Rutherford bombarded a thin sheet of gold with a particles (which
have positive charge, being helium nuclei) and he concluded that the atoms are
formed by a small massive positively-charged nucleus around which the electrons
moved similarly to a planetary system, the nucleus playing the role of the Sun, and the
electrons moving around it as the planets (see Sect. 3.3.4 for more details).

Rutherford counted the a particles scattered at different angles in his
experiment. He found that most of the a particles passed almost without being
deflected, but a very small number of them were deflected at very large angles.
Rutherford concluded that the ‘‘plum pudding’’ model could not be correct, since if
it had been, the large deflection angles could not be explained. Instead, he
proposed the planetary model for the atom. The smallness of the positively
charged nucleus accounted for the small number of strongly repelled a particles.
This was the first experiment on the scattering of particles reported in physics.

II.5 Bohr’s Atom

At this point a contradiction appeared with the electromagnetic theory. The
planetary model suggested that the electrons moved around the nucleus on
elliptical orbits. But in such a case, the electrons would be accelerated
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continuously and, according to the laws of electrodynamics, an accelerated charge
should emit radiation, leading to a continuous loss of energy and the electron
would fall finally unto the nucleus. This emission of energy would give a
continuous spectrum.

However, the spectroscopists had shown that the atoms do not emit energy with
a continuous spectrum, but discretely in the form of spectral lines.

It was Niels Bohr who found a way to resolve the crisis with the suggestion of
using the quantum ideas introduced earlier by Planck and Einstein. Thus, Bohr
proposed two fundamental postulates:

1. Of all the electron orbits, only those are permissible, for which the angular
momentum of the electron is an integer multiple of �h and no energy is radiated
while the electron remains on any one of these permissible orbits. These orbits
are called stationary;

2. Whenever radiation energy is emitted or absorbed by an atom, this energy is
emitted or absorbed in quanta which are integer multiples of 2p�hmð¼ �hxÞ,
where m is the frequency of the radiation, and the energy of the atom is changed
by this amount.

In other words, if Ei;Ef are respectively the initial and the final energies of the
atom emitting radiation, the following relation is satisfied:

Ei � Ef ¼ 2p�hm: ðII:2Þ

A simple calculation leads to the expression (where m is the electron’s mass
and e – its charge) for the energy of the electron in the hydrogen atom:

En ¼ �
2p2m e4

h2

1
n2
; ðII:3Þ

with n ¼ 1; 2; 3; ::: We observe that the constant coefficient in (II.3) multiplied
and divided by c2 results in mc2a2=2; where mc2 is the rest energy of the electron
according to Addendum I, and the dimensionless constant a ¼ e2=4p�h c ’ 1=137
denotes the so-called fine structure constant, characterizing the electromagnetic
interactions in the atom. After substituting (II.3) into (II.2), we get for the
frequency m the expression

m ¼ 2p2me4

h3

1

n2
f

� 1

n2
i

 !

: ðII:4Þ

Here, nf ¼ 2 for the Balmer series (ni is greater than nf ), while for nf ¼ 1; 3; 4; 5;
we have respectively the Lyman, Paschen, Brackett and Pfund series. The Balmer
series lies in the visible and near the ultraviolet region. The Lyman series is in the
ultraviolet, whereas the last three are in the infrared region. The number

me4

4p2c �h3 ¼ 109740 cm�1 ðII:5Þ
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corresponds to the value of the Rydberg constant R for the hydrogen atom. The
reader may compare it with (II.1), and observe that the value predicted by Bohr’s
theory agrees very well with the experimental results.

The distinct spectral series result from the jumps of the electron from diverse
excited states to a final fixed state. For instance, Balmer series is produced from the
jumps of the electron from the initial levels ni = 3, 4, 5, …, to the final level nf = 2.

Bohr’s postulates led to a suitable model to explain the spectra of the hydrogen
atom, but finally they were substituted by a more complete quantum theory.

There is some historical analogy between the role of Bohr’s quantum mechanics
for the atom and the Newtonian mechanics with regard to the planetary motion. We
know that at first by starting from the results of the observation, some empirical
laws were formulated (the Kepler laws) and later Newton constructed the theory:
the second law of motion and the gravitational interaction law. This time there was
also an experimental result (discrete character of the emission spectra) and
empirical laws (the Balmer series), and then a physical theory was formulated
(based on Bohr’s postulates), from which the empirical laws could be deduced.

The Newtonian mechanics and the theory of gravitation remained valid during
more than two centuries, until their status as the limiting cases of more general
theories – Einstein’s relativistic mechanics and theory of gravitation – was
demonstrated.

Bohr’s quantum postulates, however, became obsolete in a very short time. The
theory was unsatisfactory for describing more complicated atomic systems, as for
instance the helium atom. It ignored the electron spin and the Pauli exclusion
principle and it contradicted the uncertainty principle since it assumed classical
orbits where position and momentum could be known simultaneously. Thus, in
only some twelve years, Bohr’s theory was substituted by the new quantum
mechanics due to Erwin Schrödinger, Werner Heisenberg, Max Born, Paul Adrien
Maurice Dirac, Pascual Jordan and others, and Bohr himself had the privilege of
not only following this evolution of the quantum theory, but also of strongly
participating in its development.

II.6 Schrödinger Equation: Quantum Mechanics

We owe to Louis de Broglie the idea that if the radiation has dual behaviour, as
waves and particles, the atomic particles like electrons, should manifest also wave
properties. That is, if the relation between energy and frequency,

E ¼ 2p�hm ¼ 2p c �h

k
; ðII:6Þ

holds for a wave, there must also exist a relation between the momentum and the
wavelength of a particle, as:

p ¼ 2p�h

k
: ðII:7Þ
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This was a mere speculation by de Broglie in 1923–1924, based on Einstein’s idea
of the photon, but it was confirmed experimentally by Clinton Davisson and Lester
Germer in 1927, while studying the phenomenon of diffraction of electrons on
crystals.

It can be argued that de Broglie’s hypothesis gives rise to Bohr’s stationary
states, since for the electrons having stable orbits around the nucleus, it is
necessary that the closed orbit contains an integer number of wavelengths,
otherwise the waves would interfere and cancel. Then, if r is the radius of the orbit,
we should have

2pr ¼ nk: ðII:8Þ

But

k ¼ 2p�h

mv
; ðII:9Þ

leading to

rmv ¼ n�h; ðII:10Þ

which is Bohr’s first postulate. But Bohr’s theory, developed subsequently, among
others by Arnold Sommerfeld, could not account for new atomic phenomena.

Around 1925, Heisenberg initiated the matrix mechanics, which he developed
together with Jordan and Born. Matrix mechanics differed from the Bohr model
but gave, however, results compatible with the experiment. In 1926, Schrödinger
made a crucial step with his famous equation that was the beginning of the new
quantum mechanics.

The fundamental assumptions made by Schrödinger which led him to his final
equation can be outlined as follows: there exists an analogy between the basic
equations of classical mechanics and those of geometrical optics (we recall the
analogy between the Hamilton’s principle of least action and Fermat’s principle in
optics). Then, if the atomic particles have wave properties, they should be
governed by a wave mechanics, that must bear with regard to classical mechanics a
similar relation that wave optics has with regard to geometrical optics.

In essence, the mathematical way to derive the Schrödinger equation is the
following:

(a) Write down the classical expression for the energy of the studied system, with
the kinetic energy in terms of momentum:

1
2m
½p2

x þ p2
y þ p2

z � þ UðrÞ ¼ E; ðII:11Þ

where p2=2m;UðrÞ and E are the kinetic, potential and total energies,
respectively. As an example, for the electron in the hydrogen atom U(r) = -e2/r.
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(b) The classical quantities are substituted by operators, according to the
following rules:

px ! p̂x ¼ �i�h
o

ox
;

py ! p̂y ¼ �i�h
o

oy
;

pz ! p̂z ¼ �i�h
o

oz
;

E! Ĥ ¼ i�h
o

ot
:

ðII:12Þ

(c) A differential equation is built for the wave function, using the substitutions
(II.12) in (II.11) and applying the obtained operator identity to W:

� �h2

2m

o2

ox2
þ o2

oy2
þ o2

ox2

� �

þ UðrÞ
� �

W ¼ i�h
oW
ot
: ðII:13Þ

(d) In general, (II.13) is solved by imposing some simple conditions: W is periodic
in time (as any wave motion), vanishes at infinity and is also normalized,
R

W	W d3x ¼ 1; where W	 is the complex conjugate of W. For the hydrogen
atom, it leads as an immediate consequence to Bohr’s postulates and to the
energy of the stationary states:

En ¼
me4

2�h2

1
n2
: ðII:14Þ

But even more, it follows that the angular momentum is also quantized, that is
the inclination of the orbit of the electron can take only some discrete set of
values, depending on the value of n:

The Schrödinger equation (II.13) is the basic equation in quantum mechanics,
the analog of the Newton equation in classical mechanics.

II.7 Wave Function

Schrödinger interpreted Wðx; y; z; tÞ as a wave field and from it one could assume
that the particles such as an electron would be something like a wavepacket,
similar to the pulse of radiation. But this idea was not a convincing one, among
other reasons because the wavepacket would be dispersed and disappear in a very
short time. However, frequently the term wavepacket is used when referring to the
particle–wave function system.
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Max Born was the first to interpret the wave function as a quantity associated to
the probability of localization of the particle. That is, if W	 is the complex

conjugate of the wave function, the square of the modulus of W; that is W	W ¼
jWj2 describes the probability density of finding the particle in a given point. We
wrote previously the uncertainty relations between position and momentum as

DxDp� �h=2: ðII:15Þ

The relation (II.15) is typical of a wave motion, due to the correspondence p ¼ �hk:
For instance, the wavefunction of a free particle with momentum p and energy E;

moving along the x axis, is W ¼ AeiðpxþEtÞ=�h:
In quantum mechanics, observable quantities are associated to quantum

mechanical operators. A quantum measurement of one of these observables leads
to the knowledge of one of the eigenvalues of these operators. Two quantities
q and p can be known simultaneously if the corresponding quantum operators
q̂ and p̂ commute, i.e.

½q̂; p̂� ¼ q̂p̂� p̂q̂ ¼ 0: ðII:16Þ

But if ½q̂; p̂� 6¼ 0, it is not possible to know the values of q and p simultaneously.
For instance, if q is the position x and p – the momentum px, the two
corresponding operators would be the position operator q̂ ¼ x and the momentum
operator p̂x ¼ �i�h o

ox
: Applied to a function of the coordinates fðxÞ; one can

verify that:

½q̂; p̂�f ¼ i�hf : ðII:17Þ

Thus, since x and p̂x do not commute, the corresponding position and momentum
cannot be simultaneously measured accurately.

In quantum mechanics, the expectation values of quantities such as x or r (with
r being, e.g., the distance of the electron from proton in a hydrogen atom) on given
quantum states are defined as

hxi ¼
Z

W	xW d3x; ðII:18Þ

and

hri ¼
Z

W	rW d3x; ðII:19Þ

respectively. Here, W is the wave function, which is obtained as the solution of the
Schrödinger equation (II.13) for the system under study (e.g. the hydrogen atom)
with a given potential UðrÞ: Similarly, the expectation values of other quantum
mechanical operators, for instance of the momentum operator p; are obtained as:

hp̂i ¼
Z

W	p̂W d3x ¼
Z

W	 �i�h
o

or

� �

W d3x: ðII:20Þ
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It can be shown that these expectation values satisfy the classical equation of
motion (the so-called Ehrenfest theorem).

We hope that from this short addendum the reader has grasped some of the
main ideas and facts, which have caused the classical mechanics, so successful in
our ordinary macroscopic world, to evolve into quantum mechanics. For further
reading and study of the subject, an arbitrarily chosen partial list of books from a
vast literature, is given below.

Literature

1. Bohm, D.: Quantum Theory. Prentice Hall Publications, New York (1951)
2. Chaichian, M., Hagedorn, R.: Symmetries in Quantum Mechanics: From Angular Momentum

to Supersymmetry. Institute of Physics Press, Bristol (1998)
3. Davidov, A.S.: Quantum Mechanics. Pergamon Press, Oxford (1965)
4. Dicke, R.H., Wittke, J.P.: Introduction to Quantum Mechanics. Addison Wesley, Reading,

Mass (1965)
5. Feynman, R.P.: The Feynman Lectures on Physics, vol. 3. Addison Wesley, Reading, Mass

(1965)
6. Gasiorowicz, S.: Quantum Physics. Wiley, New York (2003)
7. Landau, L.D., Lifschitz, E.M.: Quantum Mechanics. Non-Relativistic Theory. Pergamon

Press, London (1981)
8. Rae, A.M.: Quantum Physics: Illusion or Reality? Cambridge University Press, Cambridge

(1986)
9. Messiah, A.: Quantum Mechanics. Dover Publications, New York (1999)
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Addendum III
Stochastic Processes
and the Langevin Equation

Finally, let us very briefly mention also about the basics of the so-called stochastic
processes and the Langevin equations. In the usual classical mechanics we have
been dealing with in this book until now, the Hamiltonian or the Lagrangian and
the dynamics of a system of particles have been given by a set of potentials or by
certain (so-called deterministic) forces corresponding to them. Thus all the
predictions obtained from the equations of motion are certain – deterministic.
However, there exist systems in which the forces acting on the particles cannot be
known exactly, due to the complexity of the systems, and these are called
indeterministic. In such cases, the Newton equations of motion also become
indeterministic and are replaced by the so-called Langevin equations of motion.

The motion of a Brownian particle in a medium with temperature T can be
considered as a prototype example of a stochastic process. In this case, the forces
acting on the Brownian particle are random ones and as a consequence the
corresponding Newton equation of motion is replaced by the stochastic Langevin
equation of motion, the probability distribution of which satisfies the so-called
diffusion equation.

The solution of the diffusion equation, which describes the motion of a
Brownian particle with no forces acting on it, except the stochastic forces coming
from the medium with temperature T ; can be given in terms of Wiener’s path
integral, developed by Norbert Wiener already in the early 1920s, before the birth
of quantum mechanics. By Wiener path integrals can be represented also the
solutions for other more general cases, where additional deterministic forces are
also present. The fundamental parameter in this case, which characterizes such
stochastic processes, is the temperature T of the medium, describing the intensity
of the stochastic forces. In the limit of T going to zero, the stochastic equations of
motion turn to the usual deterministic equations of classical mechanics, described
in this book until now. Let us mention that quantum mechanics can also be
described equivalently using the so-called Feynman path integral, developed by
Richard Feynman in 1948. For a partial selection of literature, in which long lists
of references on quantum mechanics, stochastic processes and other related fields

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2,
� Springer-Verlag Berlin Heidelberg 2012
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described by path integral, are given, the reader can consult the monographs listed
below.

Literature

1. Feynman, R.P., Hibbs, A.: Quantum Mechanics and Path Integrals. McGraw Hill, New York
(1965)

2. Chaichian, M., Nelipa, N.F.: Introduction to Gauge Field Theories. Springer-Verlag, Berlin
Heidelberg (1984)

3. Chaichian, M., Demichev, A.: Path Integrals in Physics, vols. I and II. Institute of Physics
Publishing, Bristol and Philadelphia (2001)

4. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural
Sciences. Springer-Verlag, Berlin Heidelberg (2004)
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Appendix A
Elements of Vector and Tensor Algebra

A.1 Orthogonal Transformations

The position in space of a point P relative to a given reference frame can be
determined by its Cartesian coordinates ðx1; x2; x3Þ with respect to a system of
orthogonal axes, having its origin at some point O. This is a Cartesian system of
coordinates SðOx1x2x3Þ (Fig. A.1). Since the choice of both the origin O and the
direction of the axes is arbitrary, it is necessary to define the law of transformation
of the coordinates of the point P; when passing to another coordinate system
S0ðO0x01x02x03Þ: It is obvious that the coordinates xi ði ¼ 1; 2; 3Þ of the point P

relative to S0 are functions of the coordinates x0i ði ¼ 1; 2; 3Þ of the same point
relative to S:

x0i ¼ fiðx1; x2; x3Þ ði ¼ 1; 2; 3Þ:

In order that x0i ¼ const. be the equation of a plane relative to S; this
transformation has to be linear:

x0i ¼ aijxj þXi ði ¼ 1; 2; 3Þ; ðA:1Þ

where Xi are the coordinates of O0 relative to S: Here, the summation convention
for repeated indices running from 1 to 3 has been used. If the origin O0 is
displaced, but the axes of S0 remain parallel to the axes of S; we have aij ¼ dij;

where dij is the Kronecker delta symbol, while if the axes of S0 are only rotated
about the fixed origin O0 relative to the axes of S; we have Xi ¼ 0: The first case
corresponds to a translation of axes and the second to a rotation.

The distance between any two points P1 and P2 must be independent of the
reference frame, therefore it must be invariant with respect to the transformation
(A.1), i.e.

ðx1
i � x2

i Þðx1
i � x2

i Þ ¼ ðx01i � x02i Þðx01i � x02i Þ; ðA:2Þ

where the indices 1 and 2 correspond to the two points P1 and P2: Using (A.1), we
obtain the orthogonality condition:

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2,
� Springer-Verlag Berlin Heidelberg 2012
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aijaik ¼ djk ðj; k ¼ 1; 2; 3Þ; ðA:3Þ

which means that out of nine parameters aij; only three are independent.
The linear transformation (A.1) which satisfies the condition (A.3) is called a

non-homogeneous orthogonal transformation of coordinates. If Xi ¼ 0; we have a
homogeneous orthogonal transformation.

Multiplying (A.1) by aik and performing summation over the index i; in view of
(A.3) we obtain the inverse transformation:

xi ¼ ajix
0
j þX0i ði ¼ 1; 2; 3Þ; ðA:10Þ

where X0i ¼ �ajiXj are the coordinates of O relative to S0: Introducing (A.10) into
(A.2), we obtain

ajiaki ¼ djk ðj; k ¼ 1; 2; 3Þ: ðA:4Þ

This last relation is a consequence of (A.3) and therefore does not imply any
supplementary condition on the coefficients aij:

The parameters aij stand for the elements of a matrix ðaijÞ; called the

transformation matrix Â: If we also define the one-column matrices x; x0;X;X0

Fig. A.1 Cartesian system of
coordinates.

Fig. A.2 Vector distance
between two arbitrary points
P1 and P2.
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having as elements xi; x
0
i;Xi;X

0
i ði ¼ 1; 2; 3Þ; then the relations (A.1) and (A.1)

become:

x0 ¼ Âxþ X; x ¼ ÂT x0 þ X0; ðA:5Þ

where X0 ¼ �ÂT X: Relations (A.3) and (A.4) also yield

ÂT Â ¼ ÂÂT ¼ Î; ðA:6Þ

in which Î is the unit matrix ðIij ¼ dijÞ: From (A.6) it results that Â�1 ¼ ÂT ; i.e. in
the case of orthogonal transformations the inverse and the transpose of a matrix are
identical. We also have

detðÂT ÂÞ ¼ ðdet ÂT Þðdet ÂÞ ¼ ðdet ÂÞ2 ¼ det Î ¼ 1;

hence:

det Â ¼ 
1: ðA:7Þ

Transformations with det Â ¼ þ1 are called proper transformations (proper
rotations or, simply, rotations), while those with det Â ¼ �1 are said to be
improper transformations. In each of these two categories there is an important
particular transformation, namely the identity transformation (proper
transformation):

x0i ¼ xi ði ¼ 1; 2; 3Þ ðA:8Þ

and the space inversion (improper transformation):

x0i ¼ �xi ði ¼ 1; 2; 3Þ: ðA:9Þ

In view of these definitions, the translations and rotations of the axes (Fig. A.3)
belong to the proper transformations, while the mirror reflection (Fig. A.4) is an
improper transformation. For example, the matrix of the transformation which
gives the mirror reflection presented in Fig. A.4 is

A ¼
�1 0 0
0 1 0
0 0 1

0

@

1

A:

The set of orthogonal transformations form a group, called the group of non-
homogeneous orthogonal transformations. To prove this, we must show that it
satisfies the axioms of the group, i.e. it is closed, associative, contains an identity
element and contains an inverse of each of its elements. Let

x0i ¼ aijxj þXi; x00i ¼ bijx
0
j þX0i ði ¼ 1; 2; 3Þ

be two successive orthogonal transformations from S to S0 and then from S0 to S00:
It is obvious that
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x00i ¼ bijajkxk þ bijXj þX0i ¼ cikxk þX00i ði ¼ 1; 2; 3Þ;

where

cik ¼ bijajk; X00i ¼ bijXj þX0i:

By virtue of (A.6), it follows that the matrix Ĉ ¼ B̂Â is orthogonal:

ĈĈT ¼ B̂ÂÂT B̂T ¼ B̂B̂T ¼ Î;

which shows that the transformation from S to S00 is also orthogonal.
The identity element is the identity transformation, while the inverse element is

the inverse transformation (A.1) which, in view of (A.4), belongs to the group.
Consequently, all axioms are satisfied.

Some of the most important groups in physics are:

O(3): the group of rotations, which is formed by the set of the homogeneous
orthogonal transformations, x0i ¼ aijxj: This group is isomorphic to the
group of 3� 3 real and orthogonal matrices.

SO(3): the special orthogonal group or the group of proper rotations, which is
composed of the subset of the homogeneous proper orthogonal
transformations: x0i ¼ aijxj; with det Â ¼ 1:

Fig. A.4 Improper
transformation: mirror
reflection.

Fig. A.3 Proper
transformations: translation
and rotation of axes.
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T(3): the group of translations, x0i ¼ xi þXi; which is a commutative or Abelian
group, meaning that the result of two successive translations does not
depend on their order.

The set of improper orthogonal transformations does not have the group
property, because it does not contain the identity element.

Adding to these properties the fact that Â is a continuous function of the
elements aij; it results that any transformation belonging to SO(3) can be obtained
by a continuous rotation (a succession of homogeneous proper orthogonal trans-
formations, which are infinitesimally different from the identity transformation).
We also note that by no continuous rotation can we superpose two coordinate
systems which are obtained one from the other by an improper transformation.

A coordinate system ðx1; x2; x3Þ is right-handed if a right screw directed along
the x3-axis produces through a rotation of angle p=2 the superposition of x1 and x2

axes. A left-handed coordinate system is obtained from a right-handed one by a
space inversion. It results that any right-handed coordinate system can be obtained
from another right-handed coordinate system by a proper rotation and/or a
translation, i.e. by a transformation which belongs to the group of non-
homogeneous proper orthogonal transformations given as the semi-direct
product SOð3ÞnT ð3Þ; which is the group of isometries of the three-dimensional
Euclidean space.

A.2 Scalars, Vectors and Tensors

A.2.1 Algebraic Definition of Tensor Quantities

In the definition of tensor quantities we shall use orthonormal transformations with
Cartesian coordinates.

A scalar is a quantity characterized by a real number which remains unchanged
upon any transformation of the coordinate system. A scalar whose algebraic form
is the same in all coordinate systems is called an invariant.

A vector v is a quantity characterized by an ordered system of three real
numbers v1; v2; v3gf ; called its components, which under an orthogonal
transformation transforms according to the rule

v0i ¼ aijvj ði ¼ 1; 2; 3Þ; ðA:10Þ

where v0i are the components of the vector in the new coordinate system, while aij

are the elements of the transformation matrix.
In general, a n-th rank tensor in the Euclidean space E3 is a quantity with 3n

components ti1i2:::inði1; i2; . . .; in ¼ 1; 2; 3Þ which transforms according to

t0i1i2...in
¼ ai1j1ai2j2 . . .ainjn

tj1j2...jn
ðA:11Þ

under orthogonal transformations.
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Note that scalars and vectors can be discussed within the frame of this general
definition as 0th and first rank tensors, respectively. Nevertheless, we shall discuss
them separately, in order to emphasize some useful particular properties.

A n-th order pseudo-tensor in E3 is a quantity having 3n components
t	i1i2...in

ði1; i2; . . .; in ¼ 1; 2; 3Þ which transform according to the rule

t	0i1i2:::in
¼ ðdet ÂÞai1j1ai2j2 . . .ainjn

t	j1...jn
ðA:12Þ

under orthogonal transformations. In other words, under a proper orthogonal
transformation pseudo-tensors transform like tensors, while under an improper
transformation appears a change of sign. A pseudo-vector is also called an axial
vector, while an ordinary vector is called a polar vector. For example, under an
inversion of axes x0i ¼ �xi, a vector v transforms according to v0i ¼ �vi (as
examples can serve the position vector r or the linear momentum p), while a
pseudo-vector obeys the rule v	0 ¼ v	i ði ¼ 1; 2; 3Þ (an example is the angular
momentum, L ¼ r� p).

A.2.2 General Properties of Tensors

We shall use a boldface letter to denote a tensor of specified rank, for example t
stands for all its 3n components fti1...in ; i1; . . .; in ¼ 1; 2; 3g:

Two tensors tð1Þ and tð2Þ of the same order are equal if all their components in
some coordinate system are equal:

t
ð1Þ
i1...in
¼ t
ð2Þ
i1...in

; i1; i2; . . .; in ¼ 1; 2; 3: ðA:13Þ

Using (A.11) or (A.12) it is easily seen that this property is intrinsic, i.e. it remains
valid in any coordinate system obtained by an orthogonal transformation.

A null tensor (pseudo-tensor) has all its components equal to zero. From (A.11)
and (A.12) it results that a null tensor (pseudo-tensor) is an invariant.

A tensor is termed symmetric or antisymmetric relative to a pair of indices, say
ir and is; if by their interchange we obtain:

ti1...ir...is...in ¼ ti1...is...ir...in ; ðA:14Þ

and, respectively,

ti1...ir...is...in ¼ �ti1...is...ir...in : ðA:15Þ

The properties of symmetry and antisymmetry are intrinsic. A tensor which is
symmetric (antisymmetric) relative to all indices of its components is called
completely symmetric (completely antisymmetric).

Linear operations with tensors. The sum (difference) of two tensors makes
sense only if the tensors are of the same rank. The result of summation
(subtraction) is a tensor whose components are equal to the sum (difference) of the
corresponding components of the two tensors.
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Multiplying a tensor by a scalar, we obtain a tensor of the same rank whose
components are the components of the initial tensor multiplied by that scalar.

Let us consider two tensors, t of rank m and ~t of rank n: The quantity

Ti1...imþn
¼ ti1...im

~timþ1...imþn
ði1; . . .; imþn ¼ 1; 2; 3Þ ðA:16Þ

is a mþ n-rank tensor, with 3mþn components, called the tensor product of the
given tensors. Indeed, in view of (A.11), we have:

T 0i1...imþn
¼ t0i1:::im

~t0imþ1...imþn

¼ ai1j1 . . .aimjm
aimþ1jmþ1 . . .aimþnjmþn

Tj1...jmþn
:

In a similar way, using (A.11) and (A.12) it can be shown that the tensor product
between a tensor and a pseudo-tensor is a pseudo-tensor whose rank equals the
sum of ranks of tensor and pseudo-tensor, while the tensor product of two pseudo-
tensors is a tensor whose rank is equal to the sum of ranks of the two pseudo-
tensors.

By a contraction of a tensor relative to a pair of indices we mean the operation
of equalizing the two indices and then performing the summation over the
common value. By a contraction, the rank of a tensor reduces by two. For example,
performing a contraction over the indices ðin�1; inÞ of the tensor ti1...in ; one obtains:

X3

i¼1

ti1...in�2ii ¼ ti1...in�2ii;

which is a tensor quantity with 3n�2 components. By virtue of (A.11) and (A.4),
under an orthogonal transformation, we have:

ti1...in�2ii ¼ aj1i1 . . .ajn�2in�2ajn�1iajnit
0
j1...jn�2jn�1jn

¼ aj1i1 . . .ajn�2in�2djn�1jn
t0j1...jn�2jn�1jn

¼ aj1i1 . . .ajn�2in�2 t
0
j1...jn�2jnjn

;

or

t0i1...in�2ii
¼ ai1j1 . . .ain�2jn�2 tj1...jn�2jj;

which is the law of transformation of a rank ðn� 2Þ tensor. The operation of
contraction can be performed or repeated relative to any pair of indices.

A special role is played by the Kronecker delta and Levi-Civita symbols.
The second-rank tensor tij ¼ dij; where dij is the Kronecker symbol, is an

invariant under an orthogonal transformation. Indeed, using (A.4), we have:

t0ij ¼ aikajltkl ¼ aikajldkl ¼ aikajk ¼ dij:

Note that, except for the null tensor, the Kronecker tensor is the only second-rank
invariant tensor.

Let us now show that the tensor quantity having its components defined by the
Levi-Civita symbol
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�ijk ¼
þ1; if i; j and k are an even permutation of 1; 2; and 3
�1; if i; j and k are an odd permutation of 1; 2; and 3
0; if any of the indices are equal

8

<

:

is an invariant pseudo-tensor of the third rank, called the Levi-Civita pseudo-
tensor. To do this, we first observe that the determinant of an arbitrary 3� 3
matrix can be written as

det Â ¼ �ijkA1iA2jA3k; ðA:17Þ

which yields:

�lmn det Â ¼ �ijkAliAmjAnk: ðA:18Þ

The last two relations can be easily proved by a straightforward calculation.
Assume that the Levi-Civita pseudo-tensor is defined in some coordinate

system by t	ijk ¼ �ijk ði; j; k ¼ 1; 2; 3Þ: Then, we have

t	0ijk ¼ ðdet ÂÞAilAjmAkn�lmn;

or, in view of (A.18),

t	0ijk ¼ ðdet ÂÞ2�ijk ¼ �ijk;

which shows that the Levi-Civita pseudo-tensor is an invariant.
It can be proven that there are neither invariant tensors of odd rank, nor

invariant pseudo-tensors of even rank. Any even rank invariant tensor can be
written as a linear combination with scalar coefficients (numbers) of tensor
products of the Kronecker tensor by itself. For example, the fourth rank invariant
tensor tijkl has three distinct terms, as follows:

tijkl ¼ C1dijdkl þ C2dikdjl þ C3dildjk; ðA:19Þ

where C1;C2;C3 are some numbers. In particular, since the tensor product of two
Levi-Civita pseudo-tensors is a sixth rank tensor, it can be shown that

�ijk�lmn ¼ det
dil dim din

djl djm djn

dkl dkm dkn

0

@

1

A: ðA:20Þ

The reader can prove this relation by setting first i ¼ 1; j ¼ 2; k ¼ 3 and then
making a generalization for any i; j; k ¼ 1; 2; 3: After some contractions, we
obtain two useful relations:

�ijk�lmk ¼ dildjm � dimdjl; ðA:21Þ

�ijk�ljk ¼ 2dil: ðA:22Þ
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A.2.3 Vectors

Consider the oriented segment of a straight line P1P2~ whose projections on axes
are x2

i � x1
i ði ¼ 1; 2; 3Þ (Fig. A.2). Passing to another coordinate system, by virtue

of (A.1), we obtain:

x02i � x01i ¼ aij ðx2
j � x1

jÞ ði ¼ 1; 2; 3Þ; ðA:23Þ

which is similar to (A.10). Consequently, we can define a vector as a quantity
which transforms as the difference of coordinates under an orthogonal
transformation. In our case, we have a correspondence between a (free) vector
and the set of oriented segments parallel to P1P2; which justifies the notation v for
the set of three real numbers that characterize the vector v: fv1; v2; v3g: In

particular, the vector quantity OP~ ; known as radius-vector or position vector of the
point P; is the vector denoted by r, of components x1; x2; x3; i.e. r: fx1; x2; x3g:

Two vectors A and B are equal (A = B) if their components are equal, Ai ¼
Bi ði ¼ 1; 2; 3Þ: It results from (A.10) that this property is intrinsic.

The multiplication of a vector A: fA1;A2;A3g by a scalar a is a vector B;
denoted by a A; of components aAi ði ¼ 1; 2; 3Þ:

B0i ¼ a0A0i ¼ a aijAj ¼ aijða AjÞ ¼ aijBj:

The vector B is parallel ða[ 0Þ or antiparallel ða\0Þ to A: In particular, �A ¼
ð�1ÞA is the opposite of A:

The sum of two vectors A: fA1;A2;A3g and B: fB1;B2;B3g is a vector C;
denoted by Aþ B, of components Ai þ Bi ði ¼ 1; 2; 3Þ: Indeed, by virtue of
(A.10), we have:

C0i ¼ A0i þ B0i ¼ aijAj þ aijBj ¼ aijðAj þ BjÞ ¼ aijCj:

The difference between the vectors A and B is defined as the sum of A and the
opposite of B; i.e. A� B ¼ Aþ ð�BÞ:

The null vector, denoted by 0; is the vector with all components equal to zero. It
is obvious that the sum of a vector with its opposite equals the null vector.

It is easy to verify that all these definitions are geometrically equivalent to the
parallelogram rule.

The properties of summation and multiplication by scalars show that the set of
all vectors form a linear space, namely the three-dimensional linear space L3:

The non-zero vectors A1; . . .;An are linearly independent if the equality
a1A1 þ � � � þ anAn ¼ 0 is satisfied if and only if all scalars a1; . . .; an are zero.
If not, they are linearly dependent.

A system of three linearly independent vectors, say A1; A2; A3; forms a basis
in L3; because the maximum number of linearly independent vectors is equal to
the dimension of the space, which is three. In order to form a basis, it is necessary
and sufficient that the three vectors are not coplanar. Any vector B of the space L3



can be written as a linear combination of the basis vectors. Indeed, the non-zero
vectors A1; A2; A3 and B are linearly dependent, meaning that in the equality

aiAi þ bB ¼ 0

we can choose b 6¼ 0; which yields

B ¼ � ai

b

� �

Ai:

If the three vectors are orthogonal to each other, they form an orthogonal basis. An
orthogonal basis of unit vectors is termed as an orthonormal basis.

Most frequently is used the orthonormal basis fu1; u2; u3g; where ui ði ¼
1; 2; 3Þ are unit vectors of the orthogonal coordinate system Ox1x2x3, i.e. the
vectors whose components are ðuiÞj ¼ dij. With the aforementioned definitions,
for any vector A we can write the expansion:

A ¼ Aiui: ðA:24Þ

If we denote by u0i the unit vectors of the coordinate system O0x01x
0
2x
0
3; obtained

from Oxyz by an orthogonal transformation, we have:

u0i ¼ ðu0iÞjuj ¼ aijuj: ðA:25Þ

Scalar product. Being given the vectors A: fA1;A2;A3g and B: fB1;B2;B3g;
it is easy to verify that the quantity AiBi is invariant under an orthogonal
transformation. It is called the scalar product or inner product of the two vectors
A and B: Denoting by A � B the scalar product, we have:

A � B ¼ AiBi: ðA:26Þ

In view of the invariance of the inner product, a suitable choice of axes
(x1 along A and x3 orthogonal to the plane defined by the vectors A and B), yields
the well-known formula of the scalar product:

A � B ¼ AB cos u; ðA:27Þ

where u 2 ½0; 2p� is the angle between the two vectors and A and B are their
magnitudes. In particular, for the orthogonal unit vectors we obtain

ui � uj ¼ dij: ðA:28Þ

The scalar product has the following properties:

(a) A � B ¼ B � A (commutative law of multiplication);
(b) ðAþ BÞ � C ¼ A � Cþ B � C (distributive law);
(c) ðaAÞ � ðbBÞ ¼ abA � B ða; b scalars);

(d) A � A ¼ jAj2� 0; the equality sign appears only for A ¼ 0:
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The magnitude or length of a vector A is defined by means of the scalar
product as

A ¼ jAj ¼
ffiffiffiffiffiffiffiffiffiffiffi

A � A
p

¼
ffiffiffiffiffiffiffiffiffiffi

AiAi

p

: ðA:29Þ

Cross product. The cross product of any two polar vectors A and B; in a right-
handed coordinate system, is the pseudo-vector

C	i ¼ �ijkAjBk: ðA:30Þ

It can be conventionally represented by an oriented segment using notation A� B;
where

A� B ¼ C	i ui ¼ �ijkAjBkui; ðA:31Þ

or

A� B ¼
u1 u2 u3

A1 A2 A3

B1 B2 B3

�
�
�
�
�
�

�
�
�
�
�
�

:

To find the geometric significance of the cross product, we shall use the same
choice of axes as for the scalar product. The only non-zero component is then
C	3 ¼ AB2 ¼ AB sin u; and the magnitude is

jA� Bj ¼ AB sin u: ðA:32Þ

Thus, the magnitude of the cross product A� B is given by the area of the
parallelogram determined by the two vectors, while its direction is determined by
the right-hand screw rule: if A turns unto B around the u3-axis, then a right-hand
screw will advance in the direction of A� B: If A and B are parallel (or
antiparallel), the cross product is zero.

The cross product of the unit vectors of coordinate axes is

ui � uj ¼ �ijkuk; ðA:33Þ

while the cross product of a vector A by a unit vector ui reads

A� ui ¼ �ijkAkuj: ðA:34Þ

The cross product has the following properties:

(a) A� B ¼ �B� A (antisymmetry or anticommutative law of multiplication);
(b) ðAþ BÞ � C ¼ A� Cþ B� C (distributive law);
(c) ðaAÞ � ðbBÞ ¼ abA� B, for any scalars a; b:

The mixed product of three polar vectors A; B; C is the pseudo-scalar

A � ðB� CÞ ¼ �ijkAiBjCk ¼
A1 A2 A3

B1 B2 B3

C1 C2 C3

�
�
�
�
�
�

�
�
�
�
�
�

: ðA:35Þ
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In view of (A.26) and (A.31), the magnitude of the mixed product is the volume
of the parallelepiped formed by the three vectors. Using the definitions of scalar
and cross products, we obtain:

A � ðB� CÞ ¼ B � ðC� AÞ ¼ C � ðA� BÞ
¼ �B � ðA� CÞ ¼ �A � ðC� BÞ ¼ �C � ðB� AÞ: ðA:36Þ

If the three vectors are coplanar, the mixed product is zero.
The double cross product of the three vectors A; B; C is a vector defined as

½A� ðB� CÞ�i ¼ ðA � CÞBi � ðA � BÞCi ði ¼ 1; 2; 3Þ;

or

A� ðB� CÞ ¼ ðA � CÞB� ðA � BÞC: ðA:37Þ

A.2.4 Second-Rank Tensors

Let V be the set of all vectors of E3: Then, given the vector v 2 V and the second-
rank tensor t̂; the quantity

wi ¼ tijvj ði ¼ 1; 2; 3Þ ðA:38Þ

is also a vector. Obviously, the following statement is also true: if v; w 2 V; then
the nine-component quantity tij ði; j ¼ 1; 2; 3Þ is a second-rank tensor. The matrix
form of (A.38) is

w ¼ t̂v; ðA:39Þ

called right scalar product between the tensor and the vector. In a similar way we
can define the left scalar product by

w0i ¼ tjivj ði ¼ 1; 2; 3Þ; ðA:40Þ

whose matrix form is

w0 ¼ t̂T v; ðA:41Þ

where t̂T is the transposed matrix associated with the tensor.
These considerations show that a second-rank tensor defines a linear application

of V onto itself, i.e. t̂ is a linear operator on V: In particular, if we take v ¼ uk and
observe that ðukÞj ¼ dkj; we obtain:

Ti ¼ tikuk ði ¼ 1; 2; 3Þ: ðA:42Þ

These quantities are the vector components of the tensor t̂:

422 Appendix A: Elements of Vector and Tensor Algebra



The algebraic operations involving tensors are considerably simplified by
introducing the notion of dyadic. We call dyadic product or Kronecker product of
an Euclidean space E3 by itself a space denoted by E3 � E3; defined in such a way
that a pair of vectors A; B 2 E3 is associated with one and only one element of
E3 � E3; denoted by AB and having the following properties:

1
: ðA1 þ A2ÞB ¼ A1Bþ A2B; AðB1 þ B2Þ ¼ AB1 þ AB2;
2
: ðaAÞB ¼ AðaBÞ ¼ aAB; where a is a scalar. It results that E3 � E3 is a vector

space of 3� 3 ¼ 9 dimensions. If in E3 we have an orthonormal basis ui

ði ¼ 1; 2; 3Þ; then in E3 � E3 we have the basis uiuj; and we can write

AB ¼ ðAiuiÞðBjujÞ ¼ AiBjuiuj:

The quantity AB is called a dyadic vector, or simply a dyadic. One can define the
following operations:

(a) C � ðABÞ ¼ ðC � AÞB (semiscalar left product);
ðABÞ � C ¼ AðB � CÞ (semiscalar right product);

(b) C� ðABÞ ¼ ðC� AÞB (semicross left product);
ðABÞ � C ¼ AðB� CÞ (semicross right product);

(c) ðABÞ � ðCDÞ ¼ ðB � CÞAD (inner product of two dyadics).

By virtue of (A.42), a second-rank tensor can be associated with the dyadic

ftg ¼ uiTi ¼ tijuiuj ðA:43Þ

of E3 � E3: In particular, the Kronecker tensor dij is associated with the dyadic

f1g ¼ uiui ðA:44Þ

called the dyadic unit vector.
The use of dyadics has the advantage of employing the usual vector operations.

For example, in view of (a), (b) and (A.42), we have:

A � ftg ¼ A � ðuiTiÞ ¼ ðA � uiÞTi ¼ AiTi; ðA:45Þ

A� ftg ¼ ðA� uiÞTi ¼ �ijkAkujTi; ðA:46Þ

A � ftg � B ¼ ðAiTiÞ � ðBkukÞ ¼ AitijBj: ðA:47Þ

The dyadic unit vector has the following properties:

A � f1g ¼ f1g � A ¼ A; ðA:48Þ

ftg � f1g ¼ f1g � ftg ¼ ftg: ðA:49Þ

Any second-rank tensor can be expressed as the sum of a symmetric and an
antisymmetric part:

tij ¼ Sij þ Aij;

where
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Sij ¼
1
2
ðtij þ tjiÞ ; Aij ¼

1
2
ðtij � tjiÞ:

Since the properties of symmetry and antisymmetry are intrinsic, the quantities Sij

and Aij are tensors.
If t̂ is a second-rank tensor and v; w 2 V; we can define the bilinear form

Lðv;wÞ � vð̂twÞ ¼ vitijwj: ðA:50Þ

It is seen that Lðv;wÞ is a linear function in each of its arguments and, in view of
(A.38), it has scalar values. If t̂ is symmetric, then Lðv;wÞ ¼ Lðw; vÞ: If w ¼ v;
we obtain a quadratic form:

LðvÞ � Lðv; vÞ ¼ v � ð̂tvÞ ¼ tijvivj: ðA:51Þ

If by v we mean the position vector r of a point in E3; then equation LðrÞ ¼ C;
where C is a constant, defines a quadric with its centre of symmetry in O;

associated with the second-rank tensor t̂: Since a quadratic form is an invariant
under an orthogonal transformation, the associated quadric does not depend on the
choice of the coordinate axes.

If in (A.18) we set Â ¼ t̂ and use the tensor properties of �ijk; we arrive at the
conclusion that the determinant of the coefficients of the quadric (A.51),

D ¼ detð̂tÞ ¼ detðtijÞ;

is an invariant under orthogonal transformations. Another invariant of a second-
rank tensor is the sum of its diagonal elements, called trace or spur:

Tr t̂ ¼ tii: ðA:52Þ

Observing that xixi ¼ const. defines a quadric (sphere), the expression

ðtij � kdijÞxixj ¼ const.

is also a quadric, attached to the tensor ~tij ¼ tij � kdij; for any scalar k: This
means that Dk ¼ detð~tijÞ must be an invariant for any k; and consequently the
coefficient of each power of k in the polynomial

Dk ¼ �k3 þ Uk2 � DkþD

must be an invariant. The quantities D ¼ det t̂; U ¼ Tr t̂ and

D ¼ t11t22 þ t11t33 þ t22t33 � t12t21 � t13t31 � t23t32 ðA:53Þ

are called the principal invariants of the tensor t̂:
Consider now the second-rank symmetric tensor tij ði; j ¼ 1; 2; 3Þ and let us

find out if there exist unit vectors f 2 V and scalars k; so that the vector defined by
(A.38), with v ¼ f; is equal to k f; i.e.
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t̂f ¼ kf; ðA:54Þ

or

tijfj ¼ k fi ði ¼ 1; 2; 3Þ: ðA:55Þ

The homogeneous system of equations (A.55) has a non-trivial solution if and
only if the determinant of the matrix of coefficients, which is precisely Dk; is zero.
The equation Dk ¼ 0 is called the characteristic equation, and the three roots of
this equation are the proper values or eigenvalues of the tensor t̂: The invariance of
Dk leads to the invariance of the proper values, which means that they are
intrinsic.

Since t̂ is symmetric, all three roots of the characteristic equations are real.
Indeed, if they were complex, then the vectors f should be also complex and then,
by virtue of hypothesis of non-trivial solutions, we obtain from (A.55):

k ¼ ðtijfjf
	
i Þðfkf

	
k Þ
�1;

which yields tij ¼ tji; k	 ¼ k: Therefore, we can consider only real unit vectors f:

Those vectors f which satisfy (A.54) are called the proper vectors of the
symmetric tensor t̂: It can be shown that (A.54) admits three proper vectors fk ðk ¼
1; 2; 3Þ which are (or can be made) orthonormal:

fk � f l ¼ dkl ðk; l ¼ 1; 2; 3Þ: ðA:56Þ

Let kkfk and klf l be two pairs of proper value – proper vector which satisfy
(A.54). Then (A.54) yields ð̂tfkÞ � f l ¼ kkðfk � f lÞ (no summation over k). Replacing
k by l and subtracting, we obtain:

ðkk � klÞðfk � f lÞ ¼ 0:

This shows that (A.56) can be satisfied if, for k 6¼ l; we have kk 6¼ kl: But if there is
a double root, say k1 ¼ k2 6¼ k3; then in general f1 � f2 6¼ 0: It can be shown that
the vector

g ¼ a1f1 þ a2f2

is also a proper vector, corresponding to the proper value k1 ¼ k2:

The relation (A.56) shows that the matrix R̂; of componentsRij ¼ ðfiÞj ¼ fij is
orthogonal, and therefore it defines an orthogonal transformation leading to a new
coordinate system. Denoting by u0i the new unit vectors, from (A.25) we obtain:

u0i ¼ fijuj ¼ fi;

which means that the axes of the new coordinate system are determined by the
proper vectors fi: In the new frame, the components of the tensor t̂ transform
according to
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t0ij ¼ fikfjltkl ¼ kjfikfjk ¼ kjdij:

(Note that there is no summation over j in the last relation.) This shows that the
matrix associated with the tensor t̂ in the basis ff1; f2; f3g is diagonal, i.e. the only
non-zero components lie on the principal diagonal, being equal to the proper

values of the tensor. Thus, by a rotation of matrix R̂, we brought the tensor to the
diagonal form. The axes defined by the unit vectors fi are called the principal axes
of the tensor t̂: In this frame the quadratic form (A.51) reduces to a sum of squared
quantities, while the quadric LðrÞ ¼ C is brought to the canonical form:

X3

i¼1

kix
2
i ¼ C: ðA:57Þ

This means that the principal axes of the symmetric tensor t̂ are also symmetry
axes of the associated quadric.

As for second-rank antisymmetric tensors, from the definition tij ¼ �tji it
results that such a tensor has only three distinct components, leading to a pseudo-
vector v	 of components v	1 ¼ t23; v	2 ¼ t31; v	3 ¼ t12: In a compact form, this can
be written as

v	i ¼
1
2
�ijktjk ði ¼ 1; 2; 3Þ: ðA:58Þ

The pseudo-vector v	 whose components are given by (A.58) is the dual pseudo-
vector associated with the antisymmetric tensor t̂: Using (A.21), we can also write

tij ¼ �ijk v	k; ðA:59Þ

which shows that any antisymmetric tensor of the second rank can be associated
with a pseudo-vector. Thus, the relations (A.58) and (A.59) are equivalent.
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Appendix B
Elements of Vector and Tensor Analysis

B.1 Fundamental Notions

B.1.1 Vector Functions on E3

Let t be a variable parameter. If to any value of t corresponds a value of a vector A;
we say that AðtÞ is a vector function of t:

Let t1 be a value of t: Then, if with any given infinitesimal � we can associate a
positive number g�; so that jt � t1j\g� yields jAðtÞ � Aðt1Þj\�; we say that AðtÞ
is a continuous vector function of t:

B.1.2 Derivative of a Vector Function

Let P be a point mass (particle) and rðtÞ – its radius-vector relative to an arbitrary
point O: When t varies, the arrow of the vector describes a curve C; called the
hodograph of the function rðtÞ: To some variation Dt of t will correspond a
displacement of the particle from P to P1; i.e. a variation Dr ¼ rðt þ DtÞ � rðtÞ of
the function rðtÞ: The ratio Dr=Dt is a vector collinear with Dr: The limit

lim
Dt!0

Dr

Dt
¼ dr

dt
¼ r0ðtÞ ðB:1Þ

is called the derivative of the vector function rðtÞ with respect to t at the point P:
The vector dr=dt is tangent to the curve C at the point P: If the parameter t is the
time, the derivative is denoted by _r:

By definition, the differential of rðtÞ is dr ¼ r0ðtÞ dt; where r0ðtÞ denotes the
derivative of rðtÞ and dt is an arbitrary elementary variation of t: If r is a function
of n variables t1; . . .; tn; its differential is

dr ¼ or

oti
dti; ðB:2Þ

M. Chaichian et al., Mechanics, DOI: 10.1007/978-3-642-17234-2,
� Springer-Verlag Berlin Heidelberg 2012
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where the symbol o=oti stands for the partial derivative with respect to ti and the
summation convention over index i ¼ 1; n has been used.

The differentiation of vector functions is performed according to the same rules
as for the scalar functions, but taking into account the properties of the vector
algebra.

Application. Let RðtÞ be a vector of constant modulus, with its origin at O;
whose arrow traces the circle of radius R lying in the xy-plane (Fig. B.1). If ur is
the unit vector of R and t is the time, we can write

dR

dt
¼ R

dur

dt
:

We denote the unit vectors of the x-, y- and z-axis by i, j and k, respectively. Since
ur ¼ i cos uþ j sin u; we have:

dur

dt
¼ _uð�i sin uþ j cos uÞ

¼ _u i cos uþ p
2

� 	

þ j sin uþ p
2

� 	h i

¼ _uuu;

where

uu ¼ i cos uþ p
2

� 	

þ j sin uþ p
2

� 	

is the unit vector obtained by a counterclockwise rotation of angle p=2 of ur about
its origin. Thus,

dR

dt
¼ R _uuu;

dR

dt

�
�
�
�

�
�
�
�
¼ R _u: ðB:3Þ

B.1.3 Integral of a Vector Function

The definition of the integral of a vector function is analogous to that of a scalar
function. Let AðsÞ be a vector function of the parameter s in the interval ½t0; t�:
Dividing this interval in partial intervals by a partition t0 ¼ s0� s1� . . .� sn ¼ t;
let us take the sum:

Xn

i¼1

Að~siÞ½si � si�1�; ~si 2 ½si�1; si�:

If, for any choice of points, there exists a limit of this sum for n!1 and max
½si � si�1� ! 0; the same for any division of the interval ½t0; t�; then this limit is
denoted

Z t

t0

AðsÞ ds ¼ aðtÞ � aðt0Þ; ðB:4Þ
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being called the integral of the vector function AðsÞ between the limits t0 and t:
The function aðsÞ is the primitive of AðsÞ:

In mechanics, most frequently are encountered the following special integrals:

(a) The line integral
R

C
AðrÞ � ds ¼

R b

a
AðrðtÞÞ � r0ðtÞ dt along a curve C;

parametrized bijectively by r : ½a; b� ! C, such that rðaÞ and rðbÞ represent
the end-points of C and ds is a vector element of C: This integral is called the
circulation of the vector A on the curve C between a and b: If C is a closed
curve, the circulation is denoted

H

C
A � ds:

(b) The surface integral
R

S
A � dS; where A is a vector with its origin on the

surface S and dS is a vector surface element. This integral is called the flux of
the vector A through the surface S. Since a surface is parametrized by two
variables, the surface integral is basically a double integral. If the surface is
closed, one uses the notation

H

S
A � dS:

(c) The volume integral
R

V
A ds; where V is the volume of a domain D of E3; ds

is a volume element, while A has its origin somewhere in D.

B.1.4 Scalar and Vector Fields

If in a domain D � E3 with any point P 2 D one can associate a value of a scalar
uðPÞ; we say that on D is defined a scalar field. For example, such a field exists
around a radiator: in each point of the surrounding space can be defined a scalar
called the temperature.

If with any point P 2 D one can associate a vector quantity AðPÞ; then on D we
have defined a vector field. Such a field is, for example, the electric field strength E:
The velocities of molecules of a moving fluid represent also a vector field.

A scalar field u or a vector field A are called non-stationary if u or A depends
explicitly on time. If not, the field is termed stationary.

B.2 Applications

B.2.1 The Serret–Frenet Frame

Assume that the trajectory of a particle P is a skew-regular curve C. Let P0 be a
fixed point on the curve and denote by s the arc length P0P; called the curve
abscissa of P (Fig. B.2). Then, if r is the radius-vector of P relative to the origin of
the Cartesian orthogonal frame Ox1x2x3, the parametric equations of the curve C

are xi ¼ xiðsÞ ði ¼ 1; 2; 3Þ or, in vector form,

r ¼ rðsÞ: ðB:5Þ

Appendix B: Elements of Vector and Tensor Analysis 429



Since jdrj ¼ ds; the quantity dr=ds is a unit vector s oriented along the tangent to
the curve C at the point P:

dr

ds
¼ s: ðB:6Þ

When the point P describes the curve C; the direction of s varies, which means
that s is a function of s: The elementary arc ds depends, in its turn, on the angle dh
between the tangents at P and P 0 (Fig. B.2). Therefore

ds

ds
¼ dh

ds

ds

dh
¼ 1

q
m; ðB:7Þ

where m is the unit vector and dh=ds ¼ 1=q [ 0 is the magnitude of ds=ds: The
unit vector m is orthogonal to s at the point P and defines the principal normal to
the curve C at P: The scalar q is the radius of curvature and 1=q is the curvature
of the curve at the point P: The plane determined by the unit vectors s and m is
called the osculating plane at the point P:

One can define a third unit vector b ¼ s� m; known as the unit bi-normal to the
curve C at the point P: The plane determined by m and b is called the normal plane
to the curve at P: The orthogonal right-handed system of unit vectors s; m and b is
called the Serret–Frenet trihedral system.

Fig. B.1 A vector R(t) of
constant modulus, whose
arrow traces a circle of
radius R.

Fig. B.2 The Serret–Frenet
reference frame.
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Let us express the variation with respect to s of the unit vectors b and m: Since
b � b ¼ 1; we have

b � db

ds
¼ 0;

i.e. the vectors b and db=ds are orthogonal. In other words, the vectors db=ds;
m and s are coplanar and, recalling the results of Appendix A, Sect. A.2.3, we can write:

db

ds
¼ ksþ lm: ðB:8Þ

On the other hand, taking the derivative with respect to s of the relation s � b ¼ 0;
we have:

s � db

ds
þ b � ds

ds
¼ 0:

In view of (B.7), we obtain:

s � db

ds
¼ 0

and (B.8) yields k ¼ 0: Setting l ¼ �1=T ; we arrive at

db

ds
¼ � 1

T
m: ðB:9Þ

The scalar quantity T is the torsion of the curve C at the point P; while 1=T is
the radius of torsion. The torsion indicates the deviation of a curve from the plane
shape. Indeed, if C is a plane curve the direction of the unit vector b will remain
unchanged, therefore db=ds ¼ 0, consequently 1=T ¼ 0 ði.e. T ¼ 1Þ:

To justify the choice of the minus sign in (B.9), let us obtain this formula in a
different way. We observe that when P moves on the curve, the angle a between
the unit bi-normal and some reference direction varies according to

db

ds
¼ da

ds

db

da
: ðB:10Þ

Suppose that a is described by a positive (counterclockwise) rotation of the trihedral
system about s: In this case, the quantity da=ds ¼ 1=T [ 0 is the radius of torsion at
P; while db=da ¼ �m (see (B.7)). Thus, we fall back on the relation (B.9).

Taking the derivative with respect to s of m ¼ b� s and using (B.7) and (B.9),
we have:

dm

ds
¼ b� ds

ds
þ db

ds
� s ¼ 1

q
b� m � 1

T
m � s;

and finally,

dm

ds
¼ � 1

q
sþ 1

T
b: ðB:11Þ
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The relations (B.7), (B.9) and (B.11) are known as the Serret–Frenet formulas.
The reader is advised to check the validity of the following relations, giving the
curvature and the torsion of a curve, as an application of the Serret–Frenet
formulas:

1
q
¼ d2x1

ds2
þ d2x2

ds2
þ d2x3

ds2

� � 1
2

; ðB:12Þ

1
T
¼ q2 dr

ds
� d2r

ds2
� d3r

ds3

� �

: ðB:13Þ

The Serret–Frenet trihedral system, also called the natural system of
coordinates, can be attached to any point of the trajectory of a particle, in order
to study the elements which characterize its motion: velocity, acceleration, etc.
This makes it a particularly useful instrument in mechanics.

B.2.2 Differential Vector Operators in Cartesian Coordinates

B.2.2.1 Gradient

Consider a scalar function uðx1; x2; x3Þ of class C2; defined on some domain
D � E3: Using the aforementioned definition, it results that we have in D a

stationary scalar field. One observes that the differential du ¼ ou
oxi

dxi is the scalar

product of the vectors dr ¼ uidxi and A ¼ uiðou=oxiÞ: The vector field A is called
the gradient of the scalar function u and is written grad u: Therefore

du ¼ grad u � dr: ðB:14Þ

It is seen that the vector field A ¼ grad u has been obtained by applying the
differential operator

r ¼ ui

o

oxi

ðB:15Þ

to the scalar function uðx1; x2; x3Þ: This vector operator is called del or nabla. It
was introduced by Hamilton. Therefore, we can write

ru ¼ grad u ¼ ui

ou
oxi

: ðB:16Þ

The vector field A ¼ grad uðx1; x2; x3Þ is called a conservative field. Such a field
is, for example, the electrostatic field strength E ¼ �grad /; where /ðx1; x2; x3Þ is
the electrostatic scalar potential.

Equipotential surfaces. Consider the fixed surface

uðx1; x2; x3Þ ¼ Cðconst.Þ: ðB:17Þ
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Then, from (B.14) we have ru � dr ¼ 0: Since dr lies in the plane tangent to the
surface (B.17), it follows that at any point of this surface the vector ru is directed
along the normal to the surface. Each value of the constant C gives another
surface. These surfaces are called equipotential surfaces. In other words, given the
scalar field uðx1; x2; x3Þ; the geometric locus of the points having the property
ru � dr ¼ 0 is an equipotential surface.

Field lines. Consider the stationary vector field Aðx1; x2; x3Þ and a curve C

given by its parametric equations xi ¼ xiðsÞ ði ¼ 1; 2; 3Þ: If the field A is tangent
to the curve C at any point, then the curve C is a line of the field A: The differential
equations of the field lines are obtained from the obvious relation A� ds ¼ 0;
where ds is a vector element of the field line. In projection on axes, this yields

dx1

A1
¼ dx2

A2
¼ dx3

A3
: ðB:18Þ

Directional derivative. The component of grad u along the xi-axis is

ðgrad uÞi ¼ uk

ou
oxk

� �

� ui ¼
ou
oxk

dik ¼
ou
oxi

ði ¼ 1; 2; 3Þ: ðB:19Þ

Partial derivatives of u with respect to xi are denoted also by oiu or u;i:

Let us project the vector grad u on some direction defined by the unit vector w:
We can write dr ¼ wdr ¼ wds; where ds is the magnitude of the elementary
displacement vector ds: Dividing (B.14) by ds; we then obtain the directional
derivative of u

ðgrad uÞ � w ¼ ðgrad uÞw ¼
du
dw

: ðB:20Þ

If, in particular, w coincides with the unit vector n of the normal to the surface
(B.17), chosen as positive, then

ðgrad uÞ � n ¼ du
dn
� 0; ðB:21Þ

which shows that the gradient is oriented along the normal at the equipotential
surface at any point and its direction indicates the maximum rate of variation of the
function u:

B.2.2.2 Divergence

Taking into account the properties of the vector operator r; let us apply it on an
arbitrary vector field A by taking the scalar product

div A ¼ r � A ¼ ui

o

oxi

� �

� ðAkukÞ ¼ dik

oAk

oxi

¼ oAi

oxi

: ðB:22Þ
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If A is a polar vector, the expression (B.22) is a scalar called the divergence of A:
One also uses the notation oiAi or Ai;i: A vector field with the property

div A ¼ 0 ðB:23Þ

is called source-free or solenoidal. The lines of such a field are closed curves. This
property characterizes, for example, the magnetic induction B:

B.2.2.3 Curl

Let us apply again the operator r on a vector A field, but this time by taking the
cross product r� A: The expression

curl A ¼ r� A ¼ ui�ijk
oAk

oxj

ðB:24Þ

is called the curl of the vector A: The xs-component of the curl A is

ðcurl AÞs ¼ ðus � uiÞ�ijkAk;j ¼ �sjkAk;j: ðB:25Þ

A vector field A which satisfies the relation

curl A ¼ 0 ðB:26Þ

is called irrotational or vorticity-free. The electrostatic field strength E possesses
this property.

B.2.3 Fundamental Theorems

B.2.3.1 Green–Gauss Theorem

Let S be a bounded surface and A a vector field with its origin on S (Fig. B.3). By
definition, the flux of A through the surface S is the quantity

U ¼
Z

S

A � dS ¼
Z

S

A � n dS; ðB:27Þ
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where dS is an oriented element of the surface S: If S is a closed surface and n is
the unit vector of the outward normal, chosen as positive, it can be shown that

I

S

A � dS ¼
Z

V

div A ds; ðB:28Þ

where ds is an element of the volume V bounded by the surface S: This formula
expresses the Green–Gauss theorem: the flux of the vector field A through the
closed surface S is equal to the integral over the volume V bounded by S of the
divergence of the vector A:

Let us contract the surface S so that the volume V becomes smaller and smaller.
At the limit, the formula (B.28) yields:

div A ¼ lim
Ds!0

1
Ds

I

S

A � dS: ðB:29Þ

This relation can be considered as the definition formula of divergence at a point.
If div A [ 0; at that point there is a positive source, while if div A\0; there is a
negative source at that point.

B.2.3.2 Stokes’ Theorem

Consider an open surface S bordered by the closed contour C and let A be a vector
field with its origin on C: In this case, choosing a sense of integration, we can
define

H

C A � ds as being the circulation of A along the contour C (Fig. B.4). The
positive sense of the normal unit vector is given by the right-screw rule. It can be
shown that

I

C
A � ds ¼

Z

S

curl A � dS; ðB:30Þ

where dS is a vector element of the surface S: Relation (B.30) is known as Stokes’
theorem: the circulation of the vector A along the closed path C is equal to the flux
of curl A through the open surface S which is bounded by the contour. In
particular, if A is a conservative field A ¼ grad uðx1; x2; x3Þ; we have:

Fig. B.4 An open surface
S bordered by a closed
contour C. A is a vector field
with its origin on C.
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I

C
A � ds ¼

I

C

ou
oxi

dxi ¼
I

C
du ¼ 0: ðB:31Þ

Using the already known procedure, let us contract the surface element dS until it
becomes so small that curl A has no significant variation within it. At the limit, we
can write:

n � curl A ¼ lim
DS!0

1
DS

I

C
A � ds; ðB:32Þ

which can serve as the definition of curl A:
Relations (B.29) and (B.32) are useful, because they stand for the definition of

the divergence and curl of a vector, independently of the coordinate system.
Therefore, these definitions are intrinsic.

Observation: Both the Green–Gauss and Stokes’ theorems can be generalized in a
space with n dimensions, Sn: Starting with formula (B.28), if we assume that
Ai ði ¼ 1; nÞ are n derivable functions of x1; ::; xn in some domain D of volume V

in Sn; and extend the summation over the index i from 1 to n; we obtain:
I

Sn�1

Xn

i¼1

Ai dxi ¼
Z

V

Xn

i¼1

oAi

oxi

dX; ðB:33Þ

where Sn�1 is the closed hypersurface which bounds the volume V of the
manifold Sn:

In a similar way, we can extend the Stokes’ theorem (B.30) to n dimensions. Using
the analytic formulas of the vectors and the results derived in Appendix A, we have:

I

C

Ai dsi ¼
Z

S

�ijk
oAk

oxj

dSi ¼
1
2

Z

S

oAk

oxj

� oAj

oxk

� �

�jki dSi:

But �jki dSi ¼ dxj dxk and so, extending the summation for all indices from 1 to n;

we have:
I

C

Xn

i¼1

Ai dsi ¼
1
2

Z

S

Xn

j;k¼1

oAk

oxj

� oAj

oxk

� �

dxj dxk; ðB:34Þ

where C is a generalized closed contour in Sn and S – an open hypersurface
bounded by C:

B.2.4 Useful Formulas

The operator nabla is sometimes applied to products of two or more functions. In
some other cases we meet repeated operations. In the following, we shall give
some useful vector identities, frequently encountered in mechanical applications.

1. The gradient of a product of two scalar functions, uw: Taking into account the
properties of the operator nabla, with the observation that we first consider its
differential character and then its vector behaviour, we have:
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gradðuwÞ ¼ rðuwÞ ¼ urwþ wru ¼ u grad wþ w grad u: ðB:35Þ

2. The divergence of the product uA:

divðuAÞ ¼ r � ðuAÞ ¼ ur � Aþ A � ru ¼ u div Aþ A � grad u: ðB:36Þ

3. The curl of the same product:

curlðuAÞ ¼ r � ðuAÞ ¼ ur� Aþ ðruÞ � A

¼ u curl Aþ ðgrad uÞ � A: ðB:37Þ

4. The divergence of the cross product A� B:

divðA� BÞ ¼ r � ðA� BÞ ¼ oiðA� BÞi ¼ �ijkoiðAjBkÞ
¼ Bkð�kijoiAjÞ � Ajð�jikoiBkÞ ¼ B � ðr � AÞ � A � ðr � BÞ
¼ B � curl A� A � curl B:

ðB:38Þ

5. The gradient of the scalar product A � B: We first observe that a component of
the gradient reads

ojðA � BÞ ¼ ojðAkBkÞ ¼ AkojBk þ BkojAk:

Next, let us multiply the relation ðcurl BÞs ¼ �slmolBm by �sjk and perform the
summation over the indices l and m:

�sjkðcurl BÞs ¼ ðdljdmk � dlkdmjÞolBm ¼ ojBk � okBj:

Using this result, we have:

ojðA � BÞ ¼ �jks Akðcurl BÞs þ Bkðcurl AÞs

 �

þ ðAkokÞBj þ ðBkokÞAj;

or, in vector form,

gradðA � BÞ ¼ A� curl Bþ B� curl Aþ ðA � rÞBþ ðB � rÞA: ðB:39Þ

6. The curl of the cross product A� B:

curlðA� BÞ ¼ r � ðA� BÞ ¼ ui�ijkojðA� BÞk ¼ ui�kij�klmojAlBm

¼ uiðdildjm � dimdjlÞðAlojBm þ BmojAlÞ

¼ ui AiomBm � BiolAl þ BmomAi � AlolBið Þ;

or

curlðA� BÞ ¼ A div B� B div Aþ ðB � rÞA� ðA � rÞB: ðB:40Þ

Consider now some repeated operations with nabla.
7. The divergence of a curl:

divðcurl AÞ ¼ r � ðr � AÞ ¼ 0; ðB:41Þ

because the determinant has two identical lines.
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8. The curl of a gradient:

curlðgrad uÞ ¼ r � ðruÞ ¼ 0; ðB:42Þ

for r and ru are collinear.
9. The divergence of a gradient:

divðgrad uÞ ¼ r � ðruÞ ¼ r2u ¼ Du; ðB:43Þ

where the operator

r2 ¼ D ¼ o2

oxioxi

ðB:44Þ

is the Laplacian. The equation

Du ¼ 0 ðB:45Þ

is called the Laplace equation. The solutions of these equation are termed as
harmonic functions.

10. The curl of a curl:

curlðcurl AÞ ¼ r � ðr � AÞ ¼ rðr � AÞ � r2A

¼ gradðdiv AÞ � DA: ðB:46Þ

11. If r is the position vector of a particle relative to the origin of the frame
Ox1x2x3; we have:

grad r ¼ r

r
¼ ur; jgrad rj ¼ 1; div r ¼ 3;

curl r ¼ 0; D
1
r

� �

¼ 0 ðr 6¼ 0Þ:
ðB:47Þ

12. Given the scalar field uðrÞ and the vector field AðrÞ; where r ¼ jrj; it is easy to
prove that

grad uðrÞ ¼ r

r
u0; div AðrÞ ¼ 1

r
ðr � A0Þ; curl AðrÞ ¼ 1

r
r� A0; ðB:48Þ

where u0 ¼ du=dr; A0 ¼ dA=dr: The proof of the identities (B.47) and (B.48)
is left to the reader.

B.3 Orthogonal Curvilinear Coordinates

B.3.1 Generalities

Let r be the position vector of a point P and x1; x2; x3 – its Cartesian coordinates.
Assume that x1; x2; x3 are functions of class C1 of three independent real
parameters q1; q2; q3:
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xi ¼ xiðq1; q2; q3Þ ði ¼ 1; 2; 3Þ: ðB:49Þ

We also assume that between the two representations there is a point-to-point
correspondence, which means that to a given set ðqÞ corresponds a single set ðxÞ and
the other way round. Therefore, the transformation (B.49) is (locally) reversible if

J ¼ oðx1; x2; x3Þ
oðq1; q2; q3Þ

6¼ 0; ðB:50Þ

where J is the Jacobian of the transformation (B.49). If we give fixed values to two of
the parameters qj ðj ¼ 1; 2; 3Þ; say q2 and q3; we obtain the coordinate line q1 ¼
variable: Similarly we can obtain the lines q2 ¼ variable and q3 ¼ variable: This
shows that through any point in space pass three coordinate lines (Fig. B.5). The
parameters q1; q2; q3 are called the general or curvilinear coordinates of the point P:

Let ei ¼ or
oqi

be a vector tangent to the coordinate line qi ¼ variable: In this

case, the condition (B.50) expresses the fact that the system of vectors e1; e2; e3 are
linearly independent, i.e. they form a basis. Indeed,

e1 � ðe2 � e3Þ ¼
or

oq1
:

or

oq2
� or

oq3

� �

¼ J 6¼ 0:

If at each point of the domain DðqÞ defined by the set of all possible values of
the parameters ðqÞ the vectors e1; e2; e3 form a right-handed orthogonal trihedral
system, the coordinate lines q1; q2; q3 form a system of orthogonal curvilinear
coordinates. In the following, we shall refer to such coordinates only.

B.3.2 Line, Surface and Volume Elements in Orthogonal
Curvilinear Coordinates

Suppose that the point P describes some curve C: An elementary displacement of
the point P; by virtue of (B.49), is:

Fig. B.5 Orthogonal
curvilinear coordinates.
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ds � dr ¼ or

oqi

dqi ¼ eidqi: ðB:51Þ

Let ui be the unit vector of ei: Then we have, on the one hand, ui � uk ¼ dik; and on
the other,

ei ¼ jeijui ¼
or

oqi

�
�
�
�

�
�
�
�
ui ¼ hiui ðno summationÞ: ðB:52Þ

The quantities

hi ¼
or

oqi

�
�
�
�

�
�
�
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ox1

oqi

� �2

þ ox2

oqi

� �2

þ ox3

oqi

� �2
s

ðB:53Þ

are called Lamé’s coefficients.
The line element then reads:

ds ¼ hidqi ui: ðB:54Þ

To obtain the surface element we shall use the obvious relation

dSi ¼
1
2
�ijkdsj � dsk ði ¼ 1; 2; 3Þ: ðB:55Þ

Performing summation over repeated indices, we arrive at

dS ¼ ðh2h3dq2dq3Þu1 þ ðh3h1dq3dq1Þu2 þ ðh1h2dq1dq2Þu3: ðB:56Þ

The volume element is obtained by taking the mixed product of line elements,
ds ¼ ds1 � ðds2 � ds3Þ: Using (B.54), we immediately find:

ds ¼ h1h2h3dq1dq2dq3: ðB:57Þ

B.3.3 Differential Vector Operators in Orthogonal
Curvilinear Coordinates

Consider a scalar field Wðx1; x2; x3Þ; where x1; x2; x3 are given in terms of
q1; q2; q3 (see (B.49)).

By virtue of (B.16) and (B.54), the gradient of W reads

grad W ¼ 1
hi

oW
oqi

ui: ðB:58Þ

If in (B.58) we choose W � qj; we have grad qj ¼ uj=hj (no summation) and thus
we may write:
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curlðgrad qjÞ ¼ curl
uj

hj

� �

¼ 0:

Performing the calculation according to (B.37), we find:

curl uj ¼
1
hj

grad hj � uj ðno summationÞ: ðB:59Þ

The divergence of a vector field Aðx1; x2; x3Þ; in view of (B.36), is

div A ¼ divðAiuiÞ ¼ Ai div ui þ ui � grad Ai; ðB:60Þ

or, by use of (B.38) and (B.59),

div ui ¼
1
2
�ijkdivðuj � ukÞ ¼

1
2
�ijk uk � curl uj � uj � curl uk

� 


¼ 1
2
�ijk

1
hjhs

ohj

oqs

uk � us � uj

� 


� 1
hkhs

ohk

oqs

uj � us � ukð Þ
� �

:

Since us � ðuj � ukÞ ¼ �sjk and �ijk�sjk ¼ 2dis; we have:

div ui ¼
1
hi

1
hj

ohj

oqi

þ 1
hk

ohk

oqi

� �

: ðB:61Þ

We also obtain

ui � grad Ai ¼ ui � uk

1
hk

oAi

oqk

¼ 1
hi

oAi

oqi

:

Introducing these results into (B.60), we are led to

div A ¼ 1
hihjhk

o

oqi

ðAihjhkÞ ði; j; k ¼ cyclic permutations of 1; 2; 3Þ; ðB:62Þ

or, if the summation is performed,

div A ¼ 1
h1h2h3

o

oq1
ðA1h2h3Þ þ

o

oq2
ðA2h3h1Þ þ

o

oq3
ðA3h1h2Þ

� �

: ðB:63Þ

Suppose now that A ¼ grad W. Then div A ¼ DW and (B.63) yields the
expression for the Laplacian:

DW ¼ 1
h1h2h3

o

oq1

h2h3

h1

oW
oq1

� �

þ o

oq2

h3h1

h2

oW
oq2

� �

þ o

oq3

h1h2

h3

oW
oq3

� �� �

:

ðB:64Þ
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The curl of the field A is obtained according to (B.37) and (B.59):

curl A ¼ curlðAiuiÞ ¼ Ai curl ui þ grad Ai � ui

¼ Ai

hi

1
hk

ohi

oqk

uk � ui þ
1
hk

oAi

oqk

uk � ui:

But uk � ui ¼ �kisus; hence

curl A ¼ �ski
Ai

hihk

ohi

oqk

þ 1
hk

oAi

oqk

� �

us: ðB:65Þ

If the summation is performed, we finally arrive at:

curl A ¼ 1
h2h3

o

oq2
ðA3h3Þ �

o

oq3
ðA2h2Þ

� �

u1

þ 1
h3h1

o

oq3
ðA1h1Þ �

o

oq1
ðA3h3Þ

� �

u2

þ 1
h1h2

o

oq1
ðA2h2Þ �

o

oq2
ðA1h1Þ

� �

u3: ðB:66Þ

B.3.4 Examples of Orthogonal Curvilinear Coordinates

B.3.4.1 Spherical Coordinates

Let Ox1x2x3 be a Cartesian orthogonal system of coordinates. The position in
space of a point (particle) P can be defined by: the distance jrj ¼ OP; the angle h
(latitude) between Ox3 and r and the angle u (longitude) between Ox1 and the

Fig. B.6 Spherical
coordinates.
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projection OP 0~ of r on the Ox1x2-plane (Fig. B.6). The parameters r; h;u are
called the spherical coordinates of the point P. The coordinate lines q1 ¼ r; q2 ¼
h; q3 ¼ u lie at the intersection of the surfaces r ¼ k1; h ¼ k2;u ¼ k3; which are
orthogonal to each other. The surfaces r ¼ k1 are concentric spheres with the
centre at O; the surfaces h ¼ k2 are right circular cones with their common top at
O; finally, the surfaces u ¼ k3 are semi-meridian planes of the spheres r ¼ k1: The
variation intervals of the spherical coordinates are: 0� r\1; 0� h� p;
0�u\2p:

The components of r on the axes Ox1;Ox2;Ox3 are

x1 ¼ r sin h cos u;

x2 ¼ r sin h sin u;

x3 ¼ r cos h: ðB:67Þ

By virtue of (B.53), the Lamé coefficients are:

h1 ¼ 1; h2 ¼ r; h3 ¼ r sin h: ðB:68Þ

If we denote the unit vectors of the three mutually orthogonal directions by ur ¼
u1; uh ¼ u2; uu ¼ u3; according to the formulas deduced in Sect. B.3.3, we have:

ds ¼ ur drþ uh r dhþ uu r sin h du; ðB:69Þ

dS ¼ ur r2 sin h dh duþ uh r sin h dr duþ uu r dr dh; ðB:70Þ

ds ¼ r2 sin h dr dh du: ðB:71Þ

In particular, if h ¼ p=2; the point P lies in the plane Ox1x2: Its coordinates are
then r;u and they are called plane polar coordinates.

Using the formulas obtained in Sect. B.3.4, we can write the gradient, the
divergence, the Laplacian and the curl in spherical coordinates:

grad W ¼ oW
or

ur þ
1
r

oW
oh

uh þ
1

r sin h
oW
ou

uu; ðB:72Þ

Fig. B.7 Cylindrical
coordinates.
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div A ¼ 1
r2 sin h

o

or
ðr2 sin hArÞ þ

o

oh
ðr sin hAhÞ þ

o

ou
ðrAuÞ

� �

; ðB:73Þ

DW ¼ 1
r2

o

or
r2 oW

or

� �

þ 1
sin h

o

oh
sin h

oW
oh

� �

þ 1
sin h

o2W
ou2

� �� �

; ðB:74Þ

curl A ¼ 1
r sin h

o

oh
ðAu sin hÞ � oAh

ou

� �

ur

þ 1
r sin h

oAr

ou
� o

or
ðr Au sin hÞ

� �

uh þ
1
r

o

or
ðr AhÞ �

oAr

oh

� �

uu: ðB:75Þ

B.3.4.2 Cylindrical Coordinates

The position in space of the point P can be also defined by its cylindrical
coordinates: the magnitude q of the projection of r on the plane Ox1x2; the angle
u between Ox1 and q, and the Cartesian coordinate z. The coordinate lines lie at
the intersection of the surfaces: q ¼ k1 (cylinders of revolution about z-axis),
juj ¼ k2 (planes which contain the z-axis) and z ¼ k3 (planes parallel to Ox1x2).
The relations between the Cartesian and the cylindrical coordinates are given by

x1 ¼ q cos u;

x2 ¼ q sin u;

x3 ¼ z:

ðB:76Þ

The Lamé coefficients are then

h1 ¼ 1; h2 ¼ q; h3 ¼ 1: ðB:77Þ

If we denote by uq ¼ u1; uu ¼ u2; k ¼ u3 the unit vectors of the three orthogonal
directions, we have:

ds ¼ uq dqþ uu q duþ k dz; ðB:78Þ

dS ¼ uq qdudzþ uu dq dzþ k q dq du; ðB:79Þ

ds ¼ q dq du dz: ðB:80Þ

Finally, the relations deduced in Sect. B.3.4 yield:

grad W ¼ oW
oq

uq þ
1
q

oW
ou

uu þ
oW
oz

k; ðB:81Þ

div A ¼ 1
q

o

oq
ðqAqÞ þ

oAu

ou
þ o

oz
ðq AzÞ

� �

; ðB:82Þ
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D W ¼ 1
q

o

oq
q

oW
oq

� �

þ 1
q

o2W
ou2

þ q
o2W
oz2

� �

; ðB:83Þ

curl A ¼ 1
q

oAz

ou
� oAu

oz

� �

uq þ
oAq

oz
� oAz

oq

� �

uu

þ oAu

oq
þ 1

q
Au �

1
q

oAq

ou

� �

k: ðB:84Þ
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angle of self-rotation, 176, 198
precession angle, 176, 198

Euler’s equations
equations of motion of an ideal fluid, 319
equations of motion of a rigid body, 185

Euler’s theorem, 86, 255
Euler–Lagrange equations, 66

for continuous systems, 344–347
for discrete systems of particles, 77–79

Expectation value of operator, 406–407
Experiment

Davisson–Germer experiment, 404
Michelson–Morley experiment, 390, 392
Rutherford’s experiment, 131, 401

Extended phase space (see state space)
Extremum

extremum of potential energy, 36
extremum problem, 62, 344

F
Fast top, 197
Fermat’s principle, 93, 404
Feynman path integral, 406
Field

central force field, 97–108
conservative field, 432, 435
Coulomb field, 108, 131, 132
electric field, 205, 429
electromagnetic field, 354, 367
gravitational field, 72, 118, 191
irrotational (vorticity-free) field, 434
magnetic field, 205, 338
potential field, 14
solenoidal (source-free) field, 300, 434

Fine structure constant, 402
Finite

finite constraint (see geometric constraint)
finite equations of motion, 2

Finite-strain tensor, 310–311
First integral(s)

distinct first integrals, 11
energy first integral, 15, 216
first integrals and conservation laws,

80–81

456 Subject Index



first integrals as constants of motion, 80,
216

FitzGerald–Lorentz transformations
(see Lorentz transformations)

Flow
laminar flow, 343
turbulent flow, 343

Fluid
barotropic fluid, 320, 322
ideal (perfect) fluid, 319–339
irrotational motion of fluid, 320–323
magnetodynamics of ideal fluid, 338–339
perfectly viscous (Newtonian) fluid, 340
phase fluid, 260
stationary motion of fluid, 324–327
viscous fluid, 339–344

Flux
angular momentum flux density, 331
energy flux density, 329
flux of a vector, 435
flux of phase fluid, 261
flux of vorticity, 333
magnetic flux, 153
momentum flux density, 330

Force
apparent force (see force of inertia)
attraction force, 99, 108, 131
body forces, 300, 303, 316, 348
central force field, 97–108
centre of force, 102, 104–105, 125, 141
centrifugal force, 46, 100
complementary force (see force of inertia)
conservative force field, 14
constraint force, 9, 16, 27, 30
deterministic forces, 409
effective force, 100
elastic force, 140–144
external force, 16
force of gravity, 59, 69, 132–140, 172, 189
force(s) of friction (see constraint

forces)
force of inertia, 53, 168–175
generalized force, 49–51
gyroscopic force, 62
internal force, 16, 301
non-potential force, 60–62, 77, 78
principle of independence of forces, 8
reaction force, 8

as constraint force, 30–31, 202
repulsion force, 131
stochastic forces, 409
superficial forces, 300–301

Foucault pendulum, 172–175

Four-dimensional space, 389, 391, 394
Four-vector, 394–396
Frame

centre of mass frame (CMS), 23
frame of reference, 1
inertial frame, 6
laboratory frame, 122
non-inertial frame, 21, 23, 168–175

Free
free energy (Helmholtz), 213, 248
free enthalpy (see Gibbs’ free energy)
free particle, 29

Frequency
angular frequency, 141
normal frequencies, 146

and normal coordinates, 147
Larmor frequency, 206
commensurable frequencies, 284

Friction
force(s) of friction, 31, 61, 319, 339

Function
characteristic function, 212–213, 224, 248
distribution function, 259–260
generating function for

canonical transformations, 238–249
Hamilton’s principal function, 266
harmonic function, 327, 438
potential function, 14
stream function, 326
wave function, 356, 400, 405–407

Functional derivative, 359–360
Fundamental equation

fundamental equation of acoustics,
323–324

fundamental equation of linear theory of
elasticity, 362

fundamental equation of motion, 30
fundamental equation of Newtonian

mechanics, 7
fundamental equation of thermodynamics,

213, 248, 328
Fundamental problem of mechanics, 9

G
Galilei

Galilei (Galilean) transformations, 7, 389,
390, 393, 397

infinitesimal, 85
Galilei group of transformations, 7, 8, 79
Galilei’s principle of relativity, 6, 389, 390,

397
Gauge transformations, 82, 335
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G (cont.)
Gauss

Green–Gauss theorem, 434–435
General integral of motion, 9
General theory of relativity, 69
Generalized

generalized coordinates, 47–52
arbitrary choice of, 48
kinetic energy in, 51

generalized forces, 49–51
generalized Hamilton’s principle, 78
generalized momenta, 81
generalized potential (see velocity-

dependent potential)
generalized trajectory in configuration

space, 49
generalized velocities, 50

Generating function for canonical
transformation, 238–249

Generator
generator of infinitesimal canonical

transformation, 250
generator of rotations, 251
generator of time-evolution, 252
generator of translations, 251

Geodesic, 34, 56, 69–73
geodesics of a sphere, 73

Geometric constraint, 28
Geometrical optics, 92, 93, 404
Gibbs’ free energy, 248
Gibbs–Helmholtz relations, 249
Gradient, 432

in cylindrical coordinates, 444
in orthogonal curvilinear coordinates, 440
in spherical coordinates, 443

Gravitational
gravitational constant, 118
gravitational field, 72, 118, 191
gravitational force, 8
gravitational mass, 8

Gravity
motion under the influence of gravity,

132–140
law of universal gravity, 25

Green–Gauss theorem, 434–435
Group

Galilei transformations group, 7, 79
group of proper rotations, 414
group of rotations, 414
group of translations, 415
Lorentz group, 7, 79, 392
orthogonal group, 413
special orthogonal group, 414

Gyrocompass, 198–201
Gyroscope, 197–198, 199
Gyroscopic forces, 62

H
Hamilton’s canonical equations, 211–222, 360
Hamilton’s principal function, 266
Hamilton’s principle, 74–77

generalized Hamilton’s principle, 78
Hamilton’s principle as variational

principle, 78–79
Hamiltonian, 86, 214

Hamiltonian action, 90
Hamiltonian as generator of

time-evolution, 252
Hamiltonian density, 357
Hamiltonian of conservative systems and

total energy, 86
Hamiltonian operator, 233, 357

Hamiltonian formalism
for continuous systems, 357–373
for discrete systems of particles, 211–289

Hamiltonian variables (see canonical
variables)

Hamilton–Jacobi
Hamilton–Jacobi equation, 265–268

abbreviated (restricted), 269
methods for solving, 268–272

Hamilton–Jacobi formalism, 265–289
action–angle variables, 278–286
for free particle, 273
for linear harmonic oscillator, 274
for Newtonian central force field,

274–276
for symmetrical top, 276–277

Harmonic function (see Laplace equation)
Harmonic linear oscillator

classical harmonic oscillator, 140–141
quantum mechanical harmonic oscillator,

263–264
Heat propagation

general equation of heat propagation, 342
Heisenberg

Heisenberg’s commutation relation, 233
Heisenberg’s uncertainty principle, 232,

400, 403, 406
Helmholtz

Gibbs–Helmholtz relations, 249
Helmholtz free energy, 213, 248

Herpolhodic cone, 191
Hodograph, 427
Holonomic
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holonomic constraint, 28
Lagrange equations for holonomic systems,

53–56
Hooke’s generalized law, 311–315
Hyperbola, 111, 112, 113, 120

I
Ideal

ideal curve, 31
ideal fluid, 319–339

Euler’s equations, 319, 350
magnetodynamics, 338–339

ideal mechanical model, 20
ideal surface, 35, 37, 42

Identity transformation, 241, 249, 413, 414,
415

Ignorable coordinates (see cyclic coordinates)
Imaginary angle, 396
Immobile reference frame, 1
Impact parameter, 126
Impedance, 157
Improper transformation, 413
Impulse, 7
Incident beam, 125
Incompressible fluid, 260, 294, 325–327, 341
Independence of forces

principle of independence of forces, 8
Index of refraction, 92, 130
Inductance, 155, 364

mutual inductance, 154
reactive inductance, 157
self-inductance, 154

Induction
induction currents, 338
induction equation, 338, 372

Inertia
centre of inertia (see centre of mass)
inertia products, 180
inertia tensor, 179
moment of inertia, 181
principal axes of inertia, 182
principal planes of inertia, 182
principle of inertia (Newton’s first law),

6–7
Inertial

inertial force, 168–175
inertial frame, 6
inertial mass, 8

Infinitesimal
generator of transformation, 250
work, 14

Instantaneous
instantaneous acceleration, 4

instantaneous axis of rotation, 178
instantaneous linear velocity, 3
instantaneous vector of rotation, 168

Integrable constraint (see holonomic
constraint)

Integral
action integral, 77, 346
elliptic integral, 135
first integral(s), 11, 80
general integral of motion, 9
integral invariants, 253–264

of the canonical equations, 255–256
Poincaré–Cartan, 257
relative, 254, 257

integral principles of analytical
mechanics, 52

line integral, 429
surface integral, 429
volume integral, 429

Internal
internal energy, 213, 248, 328, 351
internal force, 16, 301

Interval
lightlike interval, 393
spacelike interval, 393
space–time interval, 393

invariant, 395
timelike interval, 393

Invariance principle, 79
Invariant

adiabatic invariant, 287–289
integral invariant, 253–264
principal invariants of a second-rank

tensor, 424
relativistic invariant, 393

Inverse transformation, 48, 236, 244, 412, 414
Irrotational

irrotational field (see vorticity-free field)
irrotational motion of fluid, 320–323

Isentropic process, 328
Isoenergetic paths, 89
Isoperimetric problem, 93
Isotropic oscillator, 229
Isotropy of space, 82

J
Jacobi

Hamilton–Jacobi equation, 265–268
Hamilton–Jacobi formalism, 265–289
Jacobi identity for Poisson brackets, 226
Jacobi’s formulation of principle of least

action, 89
Jacobi’s theorem, 266
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K
Kelvin’s velocity circulation theorem,

331–332
Kepler’s equation, 114
Kepler’s laws, 13, 115
Kepler’s problem, 108–121
Kinematic

kinematic coefficient of viscosity, 341
kinematic constraint, 28

Kinetic energy
expression in generalized coordinates, 51
total kinetic energy, 18

Kinetic energy theorem, 14
Kirchhoff’s rules, 153–158
König’s theorems, 21–23
Kronecker

Kronecker product (see dyadic product)
Kronecker symbol, 411, 417

L
Laboratory frame (LS), 122
Lagrange multipliers, 44, 64, 356, 371
Lagrange brackets, 234–236

fundamental Lagrange brackets, 235
invariance under canonical

transformations, 244
Lagrange equations, 39

for holonomic systems, 53–56
of the first kind, 39
of the second kind, 55
with multipliers, 203

Lagrange–Bernoulli equation, 322
Lagrange–Dirichlet theorem of absolute

stability, 36
Lagrange variables for CDM, 294, 297,

347
Lagrangian, 55

equivalent Lagrangians, 59
Lagrangian density, 346
Lagrangian derivative, 376
Lagrangian function, 55
Lagrangian variables, 55

Lagrangian formalism
for continuous systems, 344–357
for discrete systems of particles, 97–159

Lamé
Lamé coefficients

for curvilinear coordinates, 440
in linear elasticity, 314

Lamé’s equations, 316, 347, 362
Laminar flow, 343
Langevin equation, 409
Laplace equation, 327, 438

Larmor
Larmor frequency, 206
Larmor precession, 205
Larmor’s theorem, 206

Law
Hooke’s generalized law, 311–315
Kepler’s laws, 13, 115
law of conservation and transformation of

mechanical energy, 20
law of motion (see equation of motion)
law of universal gravity, 25
laws of Newtonian mechanics (see

Principles of Newtonian mechanics)
Legendre transformation, 212, 213, 223, 238
Levi-Civita symbol, 417
Libration, 278
Light

speed of light, 7, 389, 390, 393
propagation of light waves, 91, 93

Lightlike interval, 393
Line of nodes, 176
Linear

linear momentum, 7
conservation, 85, 329, 381
theorem, 12, 17

linear theory of deformations, 306
Liouville’s theorem, 258–261
Local (space) derivative, 297
Longitudinal wave, 318
Lorentz transformations, 7, 79, 389, 391–393,

397
Lorenz condition (gauge fixing), 367
LS (see laboratory frame)
Lyman series (see spectrum of hydrogen atom)

M
Magnetic

magnetic dipole, 222
magnetic field, 205, 338
magnetic lens, 221
magnetic viscosity, 338

Magnetodynamics of ideal fluids, 338–339
Magnetofluid, 339, 366
Mass

centre of mass, 20
gravitational mass, 8
inertial mass, 8
mass current density, 299
mass density, 15, 21, 293, 298
point mass, 1
reduced mass, 98
rest mass, 397

Mathematical pendulum, 132
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Matrix
displacement-gradient matrix, 307, 311
transformation matrix, 165, 412

Maupertuis’ principle, 52, 86
Maupertuisian action, 89, 90
Maxwell’s equations, 338, 354–356, 390
Mechanical–electromagnetic analogies,

205–208
Mechanics

fundamental problem of mechanics, 9
Heisenberg’s matrix mechanics, 404
Newtonian mechanics, 1–23
quantum mechanics, 79, 231–233, 264,

399–407
wave mechanics, 404

Medium
anisotropic medium, 314, 315
compressible medium, 294
continuous deformable medium (CDM),

293–385
incompressible medium, 294, 300,

325–327, 341
isotropic medium, 311, 314, 317, 340,

354
Metric tensor, 33, 69, 70, 311

contravariant components of, 71
covariant components of, 70
metric tensor components as gravitational

potentials, 72
Michelson–Morley experiment, 390, 392
Minimal optical path, 93
Minkowski space, 391, 395, 396
Mixed product of vectors, 421–422
Modulus

action modulus, 263
modulus of integral, 135
modulus of wave function, 400
Young modulus, 311, 314

Moment of inertia, 181, 182
axial moment of inertia, 180

Momentum
angular momentum, 11, 21, 81, 179

conservation of, 85, 126, 330, 382
centrifugal momentum, 180
generalized momentum, 81
linear momentum, 7

conservation of, 85, 329, 381
momentum density, 357
momentum operator, 233, 406

Monotonic precession, 195
Morse potential, 95
Motion

Brownian motion, 409
composite motion, 165

equation(s) of motion, 2, 9, 30
general integral of motion, 9
irrotational motion of fluid, 320–323
law of motion (see equation of motion)
periodical motion, 132–153, 278–289
relative motion, 1, 165
transport motion, 165
uniform motion, 6
uniformly varied motion, 4
varied motion, 3
virtual motion, 75

Multipliers
Lagrange equations with, 203
Lagrange multipliers, 44, 64, 356, 371

N
Nabla symbol, 432
Natural

natural coordinates, 5
natural system of coordinates (see

Serret-Frenet frame)
natural systems, 58, 211

Navier–Stokes equation, 341
Newtonian

Newtonian fluid (perfectly viscous), 340
Newtonian mechanics, 1–23

principles, 6–9
general theorems, 9–23

Nodes
line of nodes, 176

Noether’s theorem
for continuous systems, 373–385
for discrete systems of particles, 82–86

Non-holonomic constraint, 29
Non-inertial frame, 21, 23, 168–175
Non-integrable constraint (see non-holonomic

constraint)
Non-linear

non-linear differential equation, 134, 143,
144, 319

non-linear mechanics, 143
non-linear oscillations, 143–144

Non-potential forces, 60–62
dissipative forces, 61
gyroscopic forces, 62
power of, 60

Non-stationary constraint (see rheonomous
constraint)

Normal
normal coordinates, 146–149
normal frequencies, 147
normal reaction force, 31, 202
normal stress (tension), 301, 304, 312
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N (cont.)
pressure, 301
traction, 301

principal normal, 5, 32, 430
Nutation, 196–197

angle of nutation, 176, 198

O
Ohm’s law, 154, 338, 366, 371
Operator

coordinate operator, 233
energy operator, 357
expectation values of operators,

406–407
Hamiltonian operator, 233, 357
momentum operator, 233, 406

Optical path, 92, 93
Optics

geometrical optics, 92, 93, 404
wave optics, 93, 404

Orbit
bound orbit, 102–104
circular orbit, 105
stable orbit, 404
unbound orbit, 104

Orthogonal
orthogonal basis, 420
orthogonal Cartesian coordinates, 4, 412
orthogonal transformations, 411–415

homogeneous, 412, 414
non-homogeneous, 412

special orthogonal group, 414
Orthonormal basis, 420
Oscillations

forced oscillations, 141, 156–157
non-linear oscillations, 143–144
small oscillations, 144–153

of molecules, 149–153
tautochronous oscillations, 136

Oscillator
harmonic linear oscillator, 140–141, 274
isotropic oscillator, 229
quantum mechanical harmonic oscillator,

263–264
space oscillator, 141–142

Osculating plane, 430

P
Parabola, 11, 113
Parameter

impact parameter, 126
variational parameters, 346, 350, 366

Parametric
parametric equations of trajectory, 2
parametric resonance, 289

Paraxial beam, 221
Particle

a particles, 401
electrically charged particle, 219–22
fictitious particle, 98
free particle, 29
particle subject to constraints, 37–38,

42–43
Paschen series (see spectrum of hydrogen

atom)
Path

isoenergetic path, 89
optical path, 92, 93

Path integral
Feynman path integral, 399, 409
Wiener path integral, 409

Pendulum
conic pendulum, 140
cycloidal pendulum, 136–137
Foucault pendulum, 172–175
mathematical pendulum, 132
physical pendulum, 188–189
plane pendulum (see simple pendulum)
simple pendulum, 133–136
spherical pendulum, 137–140

Perfect fluid, 319–339
magnetodynamics, 338–339
Euler’s equations, 319, 350

Pericentre, 102, 103
Perigee, 102
Perihelion, 102
Periodical motion

and action–angle variables, 278–286
and adiabatic invariance, 287–289
under the influence of elastic force,

140–144
under the influence of gravity, 132–140

Periodically conditioned system, 284
Pfaff forms, 261–263
Pfaffian constraints, 39
Pfund series (see spectrum of hydrogen atom)
Phase

extended phase space (see state space)
flux of phase fluid, 261
phase fluid, 260
phase space, 214

Physical pendulum, 188–189
Planck constant, 233, 263, 399, 400
Plane

osculating plane, 430
plane pendulum (see simple pendulum)
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plane polar coordinates, 5, 443
plane trajectory, 99

Planetary model of atom, 401
Plasma, 287, 294
Poincaré–Cartan integral invariant, 257
Point

point mass, 1
representative point in configuration

space, 48
stagnation points, 327
turning point for periodical motion, 102

Poisson
Poisson effect, 312
Poisson’s differential equation, 25
Poisson’s formula, 167
Poisson’s ratio (see coefficient of

transverse contraction)
Poisson’s theorem, 227

Poisson brackets, 225–236
fundamental Poisson brackets, 226
invariance under canonical

transformations, 242–244
Jacobi’s identity for, 226
Poisson brackets and commutators,

231–234
Poisson brackets for angular momentum,

228–231
Poisson brackets of the Hamiltonian, 228,

230
properties of, 226

Polar
plane polar coordinates, 5, 443
polar angle, 114, 118, 127
polar vector, 8, 416

Polhodic cone, 191
Postulates, 52

Bohr’s postulates (hydrogen atom), 402
Einstein’s postulates (special relativity),

390
Potential

acceleration potential, 322
attractive potential, 108, 113, 129, 140
centrifugal potential, 100, 104
Clebsch potential, 335, 337, 353
effective potential, 100
generalized potential (see velocity-

dependent potential)
Morse potential, 95
potential energy, 15
potential field, 14
potential function, 14
potential pressure, 324
repulsive potential, 113, 127
spherical potential well, 129

thermodynamic potential, 247–249
velocity potential, 321
velocity-dependent potential, 57–59

Precession
Larmor precession, 205–206
monotonic precession, 195
regular precession, 190

Pressure
dynamic pressure, 324
potential pressure, 324
pressure as normal stress (tension), 301,

319
pressure as thermodynamical parameter,

213, 248
static pressure, 324

Principal
Hamilton’s principal function, 266
principal axes of inertia, 182
principal normal, 5, 32, 430
principal planes of inertia, 182

Principle
correspondence principle, 79
D’Alembert’s principle, 52, 53
differential principles, 52
Fermat’s principle, 93, 404
Galilei’s principle of relativity, 6, 389, 390,

397
generalized Hamilton’s principle, 78
Hamilton’s principle, 74–79
Heisenberg’s uncertainty principle, 232,

400, 403, 406
integral principles, 52
invariance principle, 79
Maupertuis’ principle, 86
principle of absolute simultaneity, 7
principle of action and reaction, 8
principle of independence of forces, 8
principle of inertia, 6
principle of least action, 86
principle of physical symmetry, 79
principle of virtual work, 42
principles of analytical mechanics,

27–93
principles of Newtonian mechanics, 6–9
superposition principle, 79
variational principles, 52, 62, 79

Probabilistic interpretation of wave
function, 406

Product
cross product, 421
double cross product, 422
dyadic (Kronecker) product, 423
inner product (see scalar product)
mixed product, 421–422
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P (cont.)
products of inertia, 180
scalar product, 420
semi-direct product of groups, 415

Proper
proper transformation, 413
proper values of a second-rank tensor,

425
proper vectors, 425

Pseudo-tensor, 417, 418
Pseudo-vector, 426

Q
Quadratic form, 51, 424, 426
Quadric

deformation quadric, 308
ellipsoid of inertia quadric, 182
velocity of deformation quadric, 321

Quantization condition
Bohr–Sommerfeld quantization condition,

263, 287
Quantum mechanical harmonic oscillator,

263–264
Quantum mechanics, 79, 231–233, 264,

399–407

R
Radius of curvature, 5, 430
Radius-vector, 2
Rayleigh dissipation function, 61, 155
Reaction

force of reaction, 8, 30–31, 202
normal reaction, 31, 202
principle of action and reaction, 8

Reactive
reactive capacitance, 157
reactive inductance, 157

Reduced mass, 98
Refraction

index of refraction, 92, 130
Regular precession, 190
Relative

relative motion, 1
relative universal invariant of mechanics,

256–258
Relativity

Galilei’s principle of relativity, 6, 389, 390,
397

special theory of relativity, 389–397
Repulsive potential, 113, 127
Resonance, 157

parametric resonance, 289

Restricted Hamilton–Jacobi equation, 269,
272, 274, 282

Reynold’s number, 343
Rheonomous constraint, 28
Riemannian manifold, 70, 73
Rigid body, 19, 44, 45, 163–208
Rigidity constraints, 163
Rolling, 202
Rotation

instantaneous axis of rotation, 178
instantaneous vector of rotation, 168
rotation coordinates, 163
rotation degrees of freedom, 164
rotation tensor, 306–308
symmetry of rotation, 82
velocity of rotation tensor, 321

Rotator, 187
Routh’s equations, 222–225
Routhian variables, 223
Runge–Lenz vector, 116–118
Rutherford

Rutherford’s experiment, 131, 401
Rutherford’s formula, 131

Rydberg constant, 401, 403

S
Saint-Venant compatibility conditions,

309–310
Satellite, 118
Scalar, 396, 415

magnetic scalar potential, 367
scalar potential, 354, 432
scalar product, 420

Scattering, 121–132
backwards scattering, 125
differential scattering cross section, 128
effective scattering cross section, 125–129
elastic scattering, 121, 122, 125
inelastic scattering, 121
scattering angle, 122, 124, 126, 131
scattering centre, 125, 126

Schrödinger’s equation, 79, 356–357, 399,
403–405

Scleronomous constraint, 28, 40, 42
Serret–Frenet frame, 429–432
Shear stress, 301, 304, 308, 313
Simple pendulum, 133–136
Simultaneity

principle of absolute simultaneity, 7
Sliding, 202
Small-strain tensor, 306–308
Smooth

(perfectly) smooth curve, 31
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(perfectly) smooth surface, 33, 37
Solenoidal (source-free) field, 300, 434
Sound

speed of sound, 324
Space

Euclidean space, 48, 69, 73, 294, 395, 415,
423

four-dimensional space, 389, 391, 394
Minkowski space, 391, 395, 396
space derivative (see local derivative)
space homogeneity and translational

invariance, 82
space inversion, 413, 415
space isotropy and rotational

invariance, 82
space oscillator, 141–142
space transformations, 85
state space, 257–258

Spacelike interval, 393
Space–time, 389, 395

space–time interval, 393
Special theory of relativity, 389–397
Spectrum of hydrogen atom, 402
Speed

speed of light, 7, 389
invariance in special relativity, 390

speed of sound, 324
Sphere

geodesics of a sphere, 73–74
Spherical

motion on a spherical surface, 59–60
spherical coordinates, 2, 4, 442–444

expression for differential operators,
443–444

expression for line, surface and
volume elements, 443

spherical pendulum, 137–140
spherical potential well, 129
spherical symmetry, 99
spherical top, 187

Spur (see trace)
Stable

stable equilibrium, 36
Lagrange–Dirichlet theorem of

absolute stability, 36–37
stable orbit, 404

Stagnation points, 327
State

state function
in quantum mechanics, 233
in thermodynamics, 213, 248

state of a quantum mechanical system,
403–406

state space, 257–258

Static
static equilibrium, 35
static pressure, 324

Stationary
stationary action, 77, 89

principle of, 77
stationary constraint (see scleronomous

constraint)
stationary curve, 32
stationary field, 220
stationary motion of fluid, 324–327
stationary value in calculus

of variations, 63
Statistical ensemble, 259
Stiffness tensor (see elasticity tensor)
Stochastic processes, 409–410
Stokes

Navier–Stokes equation, 341
Stokes’ theorem, 435–436

Strain, 308, 311
finite-strain tensor, 310–311
small-strain tensor, 306–308
stress-strain relations, 311

Stream function, 326
Streamlines, 296–297, 322, 326–327
Stress

Cauchy stress tensor, 302–306
normal stress, 301, 304, 312

pressure, 301
traction, 301

tangential (shear) stress, 301, 304, 308,
312, 313

viscous stress tensor, 340
Stress-strain relations, 311
Substantial (total) derivative, 311
Summation convention, 4
Superficial forces, 300–301
Superposition principle, 79
Surface

equipotential surfaces, 432–433
ideal surface, 35, 37, 42
perfectly smooth surface, 33, 37
surface integral, 429
surface of revolution of minimum area,

68–69
Symbol

Kronecker symbol, 411, 417
Levi-Civita symbol, 417
nabla symbol, 432

Symmetric tensor, 424–426
Symmetrical top, 189–191
Symmetry, 79–86

axial (cylindrical) symmetry, 127, 220,
270

Subject Index 465



S (cont.)
continuous symmetry and conservation

laws, 82–86
symmetry transformations, 377–380

Symplectic transformations (see canonical
transformations)

Synchronic displacements, 40, 87
System

natural system, 58, 211
periodically conditioned system, 284

System (frame) of reference
centre of mass system (CMS), 122
laboratory system (LS), 122

T
Tangent (shear) stress, 301, 304, 308, 313
Target, 122
Tautochronous oscillations, 136
Telegrapher’s equations, 364–366
Tensor

antisymmetric tensor, 166, 229, 416, 423,
426

Cauchy stress tensor, 302–306
eigenvalues of a second-rank tensor, 425
elasticity (stiffness) tensor, 314
finite-strain tensor, 310–311
general properties of tensors, 411–445
inertia tensor, 179
metric tensor, 33, 69, 70, 72, 311
pseudo-tensor, 417, 418
rotation tensor, 306–308
small-strain tensor, 306–308
symmetric tensor, 424–426
tensor contraction, 417
vector components of a tensor, 422
velocity of deformation tensor, 321, 340
velocity of rotation tensor, 321

Theorem
areas theorem, 13, 173, 231
Bertrand’s theorem, 103, 105–108
Clebsch’s theorem, 334–337
Ehrenfest theorem, 407
Green–Gauss theorem, 434–435
Jacobi’s theorem, 266
Kelvin’s velocity circulation theorem,

331–332
König’s theorems, 21–23
Lagrange–Dirichlet theorem, 36
Larmor’s theorem, 206
Liouville’s theorem, 258–261
Noether’s theorem, 82–86, 373–385
Poisson’s theorem, 227
Stokes’ theorem, 435–436

total angular momentum theorem, 17
total kinetic energy theorem, 18
total linear momentum theorem, 17

Theory of relativity
special theory of relativity, 389–397
general theory of relativity, 69

Thermo-conductivity coefficient, 341
Thermodynamic potentials, 247–249
Thermodynamics, 213

fundamental equation of thermodynamics,
213, 248, 328

Thermo-elasticity coefficient, 315
Timelike interval, 393
Top

asymmetrical top, 187
fast top, 197
spherical top, 187
symmetrical top, 189–191

Torsion, 431, 432
Total derivative (see substantial derivative)
Trace (of a second-rank tensor), 424
Trajectory

generalized trajectory in configuration
space, 49

parametric equations of trajectory, 2
plane trajectory, 99
virtual trajectories, 75

Transformation
canonical transformations, 236–249

infinitesimal, 249–253
generating functions for, 238–249

Clebsch transformation, 335, 353, 368
Galilei transformations, 7, 8, 79, 85, 389,

390, 393, 397
identity transformation, 241, 249,

413–415
improper transformation, 413
inverse transformation, 48, 236, 244, 412,

414
Legendre transformation, 212, 213, 223,

238
Lorentz transformations, 7, 79, 389,

391–393, 397
orthogonal transformations, 411–415

homogeneous, 412, 414
non-homogeneous, 412

proper transformation, 413
transformation matrix, 165, 412

Translation, 6, 84
group of translations, 415
total momentum as generator of

translations, 251
translation coordinates, 163
translation degrees of freedom, 164

466 Subject Index



translation symmetry, 82
translation transformation, 413, 414

Transport
transport acceleration, 167
transport motion, 165
transport velocity, 167

Transverse
coefficient of transverse contraction, 312
transverse oscillation, 153, 319
transverse wave, 318

Trihedral system (see Serret–Frenet frame)
Turbulent flow, 343–344
Turning points, 102, 134, 174, 194

apocentre, 102
pericentre, 102

Two-body problem, 97–99

U
Uncertainty principle of Heisenberg, 232, 400,

403, 406
Uniform motion, 6
Universal invariant, 256

relative universal invariant of mechanics,
256–258

Unstable equilibrium, 38, 139, 145, 279

V
Valence of a canonical transformation, 238
Variables

action–angle variables, 278–286
canonical variables, 214, 278
conjugate variables (see canonical

variables)
Euler variables for CDM, 296, 297
Lagrange variables for CDM, 294, 297,

347
Lagrangian variables, 55
Routhian variables, 223

Variational
variational calculus (see calculus of

variations)
variational derivative (see functional

derivative)
variational parameters, 346, 350, 366
variational principles, 52, 62, 79

Variations
asynchronous variations, 87
calculus of variations, 62–74

Varied
uniformly varied motion, 4
varied motion, 3

Vector
axial vector, 166, 168, 321, 416
dyadic vector, 182–183, 330, 423
four-vector, 394–396
instantaneous vector of rotation, 168
polar vector, 8, 416
position vector (see radius-vector)
proper vectors, 425
pseudo-vector, 426
radius-vector, 2
Runge–Lenz vector, 116–118
vector components of a tensor, 422

Velocity
addition of velocities in special

relativity, 394
areal velocity, 13, 222
average velocity, 3
cosmic velocities, 121
generalized velocities, 50
instantaneous linear velocity, 3
transport velocity, 167
velocity circulation

Kelvin’s theorem, 331–332
velocity of deformation

tensor, 321, 340
velocity of rotation tensor, 321
velocity potential, 321
velocity-dependent potential, 57–59

Vibration
molecule vibration, 149
vibration in action–angle variables,

278–284
Virtual

virtual displacements, 40–42
virtual motion, 75
virtual trajectories, 75
virtual work, 42, 49, 51, 53

infinitesimal, 60, 76
principle of, 42–47

Viscosity, 339
dynamic coefficient of viscosity, 340
kinematic coefficient of viscosity, 341
magnetic viscosity, 338

Viscous
perfectly viscous fluid, 340
viscous fluid, 339–344
viscous stress tensor, 340

Voigt notation, 314
Volume

volume integral, 429
volume specific dilation, 313

Vortex line, 332
and Clebsch potentials, 336–337
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V (cont.)
Vorticity, 321

Beltrami’s vorticity diffusion
equation, 333

vorticity equation, 332–334
vorticity in terms of Clebsch potentials,

336
vorticity-free field, 434

W
Wallis’ formula, 135
Wave

electromagnetic waves, 390
equal-action wave front, 90–93
longitudinal wave, 318
plane waves, 160

in isotropic elastic media, 317–319
propagation of light waves, 91, 93
sound waves, 324
speed of wave, 318
transverse wave, 318

wave associated to a microparticle, 356
de Broglie’s hypothesis, 403–404

wave equation, 318, 365, 367
wave function, 356, 400, 405–407

probabilistic interpretation of, 406
wave mechanics, 404
wave number, 92
wave optics, 93, 404

Wavelength, 91, 92, 403, 404
Wavepacket, 405
Well

potential well, 129
Wiener path integral, 409
Work, 14

infinitesimal work, 14
principle of virtual work, 42–47
virtual work, 42, 49, 51, 53
work and total kinetic energy theorem, 18

Y
Young modulus, 311, 314
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