
TCP/IP ARCHITECTURE, DESIGN,
AND IMPLEMENTATION

IN LINUX

Sameer Seth
M. Ajaykumar Venkatesulu

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by IEEE Computer Society.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 978-0470-14773-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

v

CONTENTS

Preface xxi

Acknowledgments xxvii

 1 INTRODUCTION 1

1.1 Overview of TCP/IP Stack 2
1.1.1 Moving Down the Stack 3
1.1.2 Moving Up the Stack 5

1.2 Source Code Organization for Linux 2.4.20 5
1.2.1 Source Code Organization for Networking Code 7

1.3 TCP/IP Stack and Kernel Control Paths 7
1.4 Linux Kernel Until Version 2.4 Is Non-preemptible 11

1.4.1 System Call on Linux 14
1.4.2 Adding New System Call 16

1.5 Linux Process and Thread 17
1.5.1 fork() 17
1.5.2 Thread 18
1.5.3 Kernel Threads 19

1.6 Kernel Synchronization Mechanism 22
1.6.1 Semaphore 22
1.6.2 Atomic Operations 23
1.6.3 Spin Lock 23

1.7 Application Interfaces for TCP/IP Programming 24
1.7.1 Server Application 25
1.7.2 Client Application 27
1.7.3 Socket Options 29
1.7.4 Option Values 29

1.8 Shutdown 35
1.8.1 Kernel Shutdown Implementation 36
1.8.2 Send Shutdown 36
1.8.3 Receive Shutdown 36

1.9 I/O 38
1.9.1 read() 38
1.9.2 write() 38

vi CONTENTS

1.9.3 recv() 38
1.9.4 send() 39
1.9.5 select() 39

1.10 TCP State 39
1.10.1 Partial Close 45
1.10.2 tcpdump Output for Partial Close 47

1.11 Summary 48

 2 PROTOCOL FUNDAMENTALS 49

2.1 TCP 50
2.1.1 TCP Header 50

2.2 TCP Options (RFC 1323) 54
2.2.1 mss Option 55
2.2.2 Window-Scaling Option 55
2.2.3 Timestamp Option 56
2.2.4 Selective Acknowledgment Option 57

2.3 TCP Data Flow 58
2.3.1 ACKing of Data Segments 58

2.4 Delayed Acknowledgment 67
2.5 Nagle’s Algorithm (RFC 896) 69
2.6 TCP Sliding Window Protocol 72
2.7 Maximizing TCP Throughput 79
2.8 TCP Timers 82

2.8.1 Retransmission Timer 82
2.8.2 Persistent Timer 83
2.8.3 Keepalive Timer 84
2.8.4 TIME_WAIT Timer 85

2.9 TCP Congestion Control 85
2.10 TCP Performance and Reliability 86

2.10.1 RTTD 86
2.10.2 SACK/DSACK 86
2.10.3 Window Scaling 87

2.11 IP (Internet Protocol) 87
2.11.1 IP Header 88

2.12 Routing 90
2.13 netstat 90
2.14 traceroute 92

2.14.1 traceroute Mechanism 93
2.15 ICMP 93
2.16 ping 95
2.17 ARP/RARP 97
2.18 Summary 99

CONTENTS vii

 3 KERNEL IMPLEMENTATION OF SOCKETS 101

3.1 Socket Layer 102
3.2 VFS and Socket 103
3.3 Protocol Socket Registration 105
3.4 struct inet_protosw 107
3.5 Socket Organization in the Kernel 107
3.6 Socket 108
3.7 inet_create 110

3.7.1 Sock 112
3.8 Flow Diagram for Socket Call 118
3.9 Summary 118

 4 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP 121

4.1 Connection Setup 122
4.1.1 Server Side Setup 122
4.1.2 Server Side Operations 124

4.2 Bind 124
4.2.1 Data Structures Related to Socket BIND 125
4.2.2 Hash Buckets for tcp Bind 125
4.2.3 tcp_ehash 125
4.2.4 tcp_listening_hash 125
4.2.5 tcp_bhash 125
4.2.6 tcp_hashinfo 126
4.2.7 tcp_bind_hashbucket 129
4.2.8 tcp_bind_bucket 129
4.2.9 bind() 130
4.2.10 sys_bind() 130
4.2.11 sockfd_lookup() 130
4.2.12 fget() 131
4.2.13 inet_bind() 131
4.2.14 tcp_v4_get_port() 133
4.2.15 tcp_bind_confl ict() 135

4.3 Listen 137
4.3.1 sys_listen() 138
4.3.2 inet_listen() 139
4.3.3 tcp_listen_start() 139
4.3.4 Listen Flow 142
4.3.5 struct open_request 142
4.3.6 Accept Queue Is Full 147
4.3.7 Established Sockets Linked in tcp_ehash Hash

Table 150

viii CONTENTS

4.3.8 State of the Connection Request when the Three-Way
Handshake Is Still Pending 150

4.3.9 State of the Connection Request when the Three-Way
Handshake Is Completed 151

4.4 Connection Request Handling by Kernel 151
4.4.1 SYN Queue Processing 155
4.4.2 Accept Queue Processing 155
4.4.3 Flow Control for Handling a New Connection Request 156

4.5 Accept 156
4.5.1 inet_accept() 159
4.5.2 Linking of Inode and Socket Data Structures when the

Three-Way Handshake Has Completed and Is
Accepted by Application 161

4.5.3 Linking of VFS and Socket Data Structures in the
Kernel when a New Connection Is Established 162

4.5.4 File Table Entry of a New Accepted Connected
Socket 162

4.5.5 Flow Control for Accepting New Established
Connections 162

4.6 Client Side Setup 163
4.6.1 Client Side Operations 164
4.6.2 Connect 164
4.6.3 tcp_v4_connect() 167
4.6.4 ip_route_connect() 167
4.6.5 Flow Control for Generating a Connection Request 167
4.6.6 tcp_v4_hash_connect() 170
4.6.7 __tcp_v4_check_established() 171
4.6.8 tcp_connect() 174
4.6.9 tcp_transmit_skb() 176

4.7 Summary 178

 5 sk_buff AND PROTOCOL HEADERS 181

5.1 struct sk_buff 182
5.2 struct skb_shared_info 186
5.3 sk_buff and DMA—SKB_FRAG_STRUCT 187

5.3.1 DMA and Fragmented sk_buff Containing Paged Data 188
5.3.2 sk_buff and IP Fragmentation 188
5.3.3 sk_buff and Fragmentation 190

5.4 Routines Operating on sk_buff 190
5.4.1 alloc_skb() 190
5.4.2 skb_reserve() 191
5.4.3 skb_put() 192
5.4.4 skb_push() 194
5.4.5 skb_pull() 195

CONTENTS ix

5.5 sk_buff Builds Protocol Headers as It Traverses Down the
Protocol Layers 196
5.5.1 Tcp Header Is Added to sk_buff 196
5.5.2 Ip Header Is Added to sk_buff 197
5.5.3 Link Layer Header Is Added to sk_buff 198

5.6 sk_buff Extracts Protocol Headers as It Traverses Up the
Protocol Layers When a Packet Arrives 199
5.6.1 sk_buff Is Made to Point to a Datalink Layer Header

Which Will Be Processed by a Dalalink Driver 199
5.6.2 sk_buff Is Made to Point to an ip Layer Header Which

Will Be Processed by an IP Layer 200
5.6.3 sk_buff Is Made to Point to a tcp Layer Header Which

Will Be Processed by a tcp Layer 200
5.7 Summary 202

 6 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS 205

6.1 Packet Traversing Down the TCP/IP Stack 206
6.1.1 Path of Packet Traversal from Socket Layer to Device

for Transmission 207
6.1.2 Kernel Path for TCP Packet Traversing Down the Stack 208

6.2 Routed Packet Ready for Transmission 214
6.3 Kernel Flow for a Packet Moving Down the Stack 214
6.4 Packet Traversing Up the TCP/IP Stack 214

6.4.1 Path of Packet Traversal from Device (Reception)
to Socket Layer 219

6.4.2 Kernel Path for TCP Packet Traversing Up the Stack 219
6.5 Kernel Flow for a Packet Moving Up the Stack 225
6.6 Summary 225

 7 TCP SEND 231

7.1 TCP Segmentation Unit for Sending Data 232
7.1.1 Functioning of Segmentation Unit without Scatter–

Gather Support 232
7.1.2 Segmentation without Scatter–Gather Support 234
7.1.3 1 mss of Data Written over the Socket 235

7.2 Segmentation with Scatter–Gather Technique 235
7.2.1 Segmentation with Scatter–Gather Support 239
7.2.2 Application Writes Y Bytes over the Socket 239
7.2.3 can_coalesce() 239
7.2.4 tcp_copy_to_page() 240
7.2.5 tcp_mark_push() 241
7.2.6 forced_push() 241

x CONTENTS

7.2.7 tcp_push() 242
7.2.8 __tcp_push_pending_frames() 243
7.2.9 tcp_snd_test() 243
7.2.10 tcp_nagle_check() 244
7.2.11 tcp_minshall_ckeck() 245
7.2.12 tcp_write_xmit() 245
7.2.13 update_send_head() 247
7.2.14 tcp_push_one() 247
7.2.15 skb_entail() 248

7.3 Sending OOB Data 249
7.4 Flow for TCP Segmentation Unit and Send Process 250
7.5 Functional Level Flow for Segmentation and Send

Mechanism 250
7.6 Summary 251

 8 TCP RECEIVE 255

8.1 Queuing Mechanism 256
8.1.1 Processing in tcp_rcv_established() 256
8.1.2 tcp_prequeue() 258
8.1.3 Processing of Queues 259
8.1.4 tcp_data_wait() 263
8.1.5 tcp_prequeue_process() 264
8.1.6 lock_sock() 265
8.1.7 __lock_sock() 265
8.1.8 release_sock() 266
8.1.9 __release_sock() 266

8.2 Processing of TCP Data from the Receive Queue 267
8.2.1 cleanup_rbuf() 268
8.2.2 skb_copy_datagram_iovec() 271
8.2.3 Reading Data from Receive Buffer without Paged

Data Area 273
8.2.4 X Bytes Requested from the Application 273
8.2.5 1 mss = n Bytes Requested from the Application 275
8.2.6 n − X Bytes Requested from the Application 275
8.2.7 Consumption of Data from a Paged Buffer 275
8.2.8 n Bytes Requested by the Application 276
8.2.9 One Page of Data Requested by the Application 276

8.3 TCP Urgent Byte Processing 276
8.3.1 Urgent Byte Read as OOB Data 277
8.3.2 tcp_recv_urg() 278
8.3.3 Urgent Mode Processing and Reading an Urgent

Byte as Inline Data 280

CONTENTS xi

8.4 DATA Flow Diagram for Receiving Data over the TCP
Socket 284

8.5 Summary 290

 9 TCP MEMORY MANAGEMENT 291

9.1 Transmit Side TCP Memory Management 291
9.1.1 select_size() 294
9.1.2 tcp_alloc_pskb() 295
9.1.3 alloc_skb() 296
9.1.4 tcp_alloc_page() 297
9.1.5 skb_charge() 298
9.1.6 tcp_mem_schedule() 298
9.1.7 tcp_free_skb() 300
9.1.8 sock_wfree() 300
9.1.9 tcp_write_space() 301
9.1.10 tcp_mem_reclaim() 302
9.1.11 __tcp_mem_reclaim() 302
9.1.12 wait_for_tcp_memory() 303

9.2 Receive Side TCP Memory Management 305
9.2.1 tcp_prune_queue() 308
9.2.2 tcp_clamp_window() 309
9.2.3 tcp_collapse_ofo_queue() 311
9.2.4 tcp_collapse() 312
9.2.5 __skb_queue_purge() 317

9.3 Freeing of Memory Allocated to a Receive Buffer 319
9.4 System-Wide Control Parameters Are Worth Noticing When It

Comes to TCP Memory Management 319
9.5 Summary 321

10 TCP TIMERS 323

10.1 Timers in Linux 324
10.1.1 mod_timer() 324
10.1.2 detach_timer() 325
10.1.3 del_timer() 325
10.1.4 When Are Timer Routines Executed? 326

10.2 TCP Retransmit Timer 326
10.2.1 When Do We Set Retransmit Timer? 327
10.2.2 When Do We Reset or Cancel Retransmit Timers? 327
10.2.3 tcp_enter_loss() 330
10.2.4 tcp_retransmit_skb() 333
10.2.5 tcp_retrans_try_collapse() 334
10.2.6 skb_cloned() 336

xii CONTENTS

10.3 Zero Window Probe Timer 336
10.3.1 When Is the First Time Probe Timer Installed? 337
10.3.2 When Is the Probe Timer Canceled for the Connection? 337
10.3.3 tcp_ack_probe() 338
10.3.4 How Does the Window Probe Timer Work? 338
10.3.5 tcp_probe_timer() 339
10.3.6 tcp_send_probe0() 339
10.3.7 tcp_write_wakeup() 339

10.4 Delay ACK Timer 342
10.4.1 When Is the ACK Scheduled? 344
10.4.2 How and When Is the ACK Segment Sent? 344
10.4.3 Quick ACK Mode 345
10.4.4 __tcp_ack_snd_check() 345
10.4.5 tcp_ack_snd_check() 346
10.4.6 tcp_send_delayed_ack() 347
10.4.7 tcp_delack_timer() 348
10.4.8 tcp_reset_xmit_timer() 349
10.4.9 tcp_write_timer() 351
10.4.10 tcp_clear_xmit_timer() 352

10.5 Keepalive Timer 353
10.5.1 When Is the Keepalive Timer Activated? 353
10.5.2 How Is the Timer Reset? 354
10.5.3 tcp_keepalive_timer() 354

10.6 SYN-ACK Timer 356
10.6.1 When Is the SYN-ACK Timer Activated? 356
10.6.2 When Is the SYN-ACK Timer Stopped? 357
10.6.3 tcp_synack_timer() 357

10.7 TIME_WAIT Timer 361
10.7.1 When Do We Trigger TIME_WAIT Timer? 361
10.7.2 tcp_time_wait() 362
10.7.3 tcp_tw_schedule() 362
10.7.4 Non-recycle Mode 363
10.7.5 Recycle Mode 365
10.7.6 tcp_twkill() 367
10.7.7 tcp_twcal_tick() 370
10.7.8 __tcp_tw_hashdance() 374

10.8 Summary 375

11 TCP CORE PROCESSING 377

11.1 TCP Incoming Segment Processing 378
11.1.1 Prediction Flags 378
11.1.2 Building Prediction Flags 379

CONTENTS xiii

11.1.3 Condition to Enable the Fast Path 380
11.1.4 When to Enable the Slow Path 382
11.1.5 When to Enable the Fast Path 382
11.1.6 Points to Remember about Prediction Flags 383

11.2 Fast Path Processing 384
11.3 Slow Path Processing 386

11.3.1 tcp_sequence() 387
11.3.2 tcp_replace_ts_recent() 387
11.3.3 tcp_event_data_recv() 390
11.3.4 tcp_incr_quickack() 391
11.3.5 tcp_grow_window() 392
11.3.6 __tcp_grow_window() 393
11.3.7 How Do We Calculate Window to Be Advertised? 394
11.3.8 tcp_receive_window() 395
11.3.9 __tcp_select_window() 395
11.3.10 tcp_space() 397
11.3.11 tcp_data_snd_check() 397
11.3.12 __tcp_data_snd_check() 398
11.3.13 tcp_paws_discard() 398

11.4 Processing of Incoming ACK 400
11.4.1 tcp-packets_in_fl ight() 403
11.4.2 tcp_ack_is_dubious() 404
11.4.3 tcp_cong_avoid() 405
11.4.4 tcp_ack_update_window() 406
11.4.5 tcp_may_update_window() 407
11.4.6 tcp_clean_rtx_queue() 408

11.5 Processing of SACK blocks 410
11.5.1 tcp_sacktag_write_queue() 410

11.6 Reordering Length 417
11.7 Processing TCP Urgent Pointer 421

11.7.1 tcp_check_urg() 422
11.8 Processing Data Segments in Slow Path 424

11.8.1 tcp_sack_new_ofo_skb() 433
11.8.2 tcp_sack_maybe_coalesce() 434
11.8.3 tcp_sack_extend() 435
11.8.4 tcp_ofo_queue() 436
11.8.5 tcp_sack_remove() 441

11.9 Overview of Core TCP Processing 442
11.10 Summary 442

xiv CONTENTS

12 TCP STATE PROCESSING 445

12.1 Overview of State Processing 446
12.2 TCP States 448

12.2.1 TCP_CA_CWR 449
12.2.2 Undoing from TCP_CA_CWR 449

12.3 Processing of Duplicate/Partial ACKs in Recovery State 449
12.3.1 tcp_remove_reno_sacks() 450
12.3.2 tcp_try_undo_partial() 451

12.4 Processing of Duplicate/Partial ACKs in Loss State 452
12.4.1 tcp_try_undo_loss() 453
12.4.2 tcp_check_sack_reneging() 455

12.5 Default Processing of TCP States 456
12.5.1 tcp_time_to_recover() 459
12.5.2 tcp_head_timedout() 460
12.5.3 tcp_try_to_open() 461
12.5.4 tcp_update_scoreboard() 462
12.5.5 tcp_xmit_retransmit_queue() 464
12.5.6 tcp_packet_delayed() 466

12.6 Processing of TCP Non-open States when ACKed Beyond
tp → high_seq 467
12.6.1 TCP_CA_Loss 467
12.6.2 TCP_CA_CWR 468
12.6.3 TCP_CA_Disorder 470
12.6.4 tcp_try_undo_dsack() 471
12.6.5 TCP_CA_Recovery 471
12.6.6 tcp_add_reno_sack() 472
12.6.7 tcp_check_reno_reordering() 473
12.6.8 tcp_may_undo() 473
12.6.9 tcp_packet_delayed() 474
12.6.10 tcp_undo_cwr() 475
12.6.11 tcp_mark_head_lost() 475
12.6.12 tcp_sync_left_out() 477

12.7 Summary 477

13 NETLINK SOCKETS 479

13.1 Introduction to Netlink Sockets 479
13.2 Netlink Socket Registration and Initialization at Boot Time 480
13.3 How Is the Kernel Netlink Socket Created? 481
13.4 How Is the User Netlink Socket Created? 482
13.5 Netlink Data Structures 485

13.5.1 nl_table 485
13.5.2 rtnetlink_link 486

CONTENTS xv

13.6 Other Important Data Strutures 488
13.6.1 struct nlmsghdr 488
13.6.2 struct msghdr 489

13.7 Netlink Packet Format 490
13.8 Netlink Socket Example—tc Command for Adding a qdisc 490

13.8.1 tc Command Flow in User Space for Adding a qdisc 490
13.8.2 tc Command in Kernel Space 491
13.8.2.1 sys_sendmsg() 491
13.8.2.2 sock_sendmsg() 492
13.8.2.3 netlink_sendmsg() 492
13.8.2.4 netlink_unicast() 493
13.8.2.5 netlink_data_ready() 494
13.8.2.6 rtnetlink_rcv() 494
13.8.2.7 rtnetlink_rcv_skb() 494
13.8.2.8 rtnetlink_rcv_msg() 495

13.9 Flow Diagram for tc Command in Kernel Space 496
13.10 Summary 496

14 IP ROUTING 499

14.1 Routing 501
14.2 Policy-Based Routing 503
14.3 Multipathing 505
14.4 Record Route Options (RFC 791) and Processing by Linux

Stack 509
14.4.1 Record Routing 510

14.5 Source Routing 510
14.5.1 Strict Record Routing 510
14.5.2 Loose Record Routing 511
14.5.3 SRR Processing Implementation 511

14.6 Linux Kernel Implementation of Routing Table and Caches 517
14.7 Routing Cache Implementation Overview 517

14.7.1 Routing Cache Data Structures 519
14.8 Managing Routing Cache 523

14.8.1 Routing Cache for Local Connections 525
14.8.2 __sk_dst_check() 526
14.8.3 Link Failure and Reporting to Routing Subsystem 527
14.8.4 dst_link_failure() 527
14.8.5 ipv4_link_failure() 527
14.8.6 dst_set_expires() 528
14.8.7 Routing Cache for the Incoming Packets 529
14.8.8 Routing Cache Timer 530
14.8.9 rt_periodic_timer 530

xvi CONTENTS

14.8.10 rt_may_expire() 533
14.8.11 dst_free() 534
14.8.12 __dst_free() 535
14.8.13 dst_destroy() 535
14.8.14 dst_run_gc() 536
14.8.15 Interface down and rt_fl ush_timer 537
14.8.16 rt_cache_fl ush() 538

14.9 Implementation Overview of Forwarding Information Base
(FIB) 540
14.9.1 struct fi b_table 540
14.9.2 struct fn_hash 543
14.9.3 struct fn_zone 543
14.9.4 struct fi b_node 544
14.9.5 struct fi b_info 546
14.9.6 struct fi b_nh 547
14.9.7 struct fi b_rule 548

14.10 Adding New Entry in Routing Table Using ip Command
(RT Netlink Interface) 549
14.10.1 What Happens When the ip Command Is Run

with a Route Option for Adding an Entry in Routing
Table? 550

14.10.2 inet_rtm_newroute() 550
14.10.3 struct rtmsg 551
14.10.4 struct kern_rta 552
14.10.5 fn_hash_insert() 553
14.10.6 fn_new_zone() 554
14.10.7 fi b_create_info() 557
14.10.8 fn_hash_insert() 558

14.11 What Happens When the ip Command Is Run with a Rule
Option for Adding an Entry in the Routing Table? 558
14.11.1 inet_rtm_newrule() 559
14.11.2 FIB Initialization 561

14.12 FIB Traversal Flow Diagram 563
14.12.1 ip_route_output() 563
14.12.2 ip_route_output_key() 564
14.12.3 ip_route_output_slow() 566
14.12.4 ip_dev_fi nd() 576
14.12.5 __in_dev_get() 577
14.12.6 inet_select_addr() 578
14.12.7 ROUTE__SCOPES 580
14.12.8 fi b_lookup() 581

14.13 Summary 589

CONTENTS xvii

15 IP QUALITY OF SERVICE IN LINUX (IP QoS) 591

15.1 Introduction 591
15.2 Basic Components of Linux Traffi c Control 592
15.3 Linux Implementation of pfi fo_fast qdisc 593
15.4 Queueing Discipline Data Structure 596

15.4.1 struct Qdisc 596
15.4.2 struct Qdisc_ops 597
15.4.3 struct Qdisc_class_ops 598
15.4.4 struct cbq_class 599

15.5 tc User Program and Kernel Implementation Details 601
15.5.1 tc_modify_qdisc() 601
15.5.2 qdisc_create() 602
15.5.3 cbq_init() 604
15.5.4 qdisc_graft() 604
15.5.5 dev_graft_qdisc() 605

15.6 The tc Commands for Creating Class Hierarchy for CBQ 605
15.6.1 tc_ctl_tclass() 607
15.6.2 cbq_change_class() 607

15.7 Filters 610
15.7.1 tc_ctl_tfi lter() 611

15.8 u32 Filter Implementation 614
15.8.1 u32_change() 615

15.9 Route Filter Implementation 616
15.9.1 route4_change() 618

15.10 Enqueue 619
15.10.1 cbq_enqueue() 620
15.10.2 cbq_classify() 621
15.10.3 Overview of cbq_enqueue() 621

15.11 Overview of Linux Implementation of CBQ 622
15.12 cbq_dequeue() 622

15.12.1 From net/dev/core.c 626
15.12.2 qdisc_run() 626
15.12.3 qdisc_restart() 626
15.12.4 cbq_dequeue() 627
15.12.5 cbq_dequeue_1() 629
15.12.6 cbq_dequeue_prio() 630

15.13 Summary 633

xviii CONTENTS

16 IP FILTER AND FIREWALL 635

16.1 Netfi lter Hook Framework 636
16.2 Netfi lter Hooks on IP Stack 638

16.2.1 Hooks for Outgoing Packets 638
16.2.2 Hooks for Incoming Packets 639

16.3 Overview of Netfi lter Hooks on Linux TCP-IP Stack 640
16.4 Registration of Netfi lter Hooks 640
16.5 Processing of Netfi lter Hooks 642

16.5.1 nf_hook_slow() 642
16.5.2 nf_iterate() 643
16.5.3 struct nf_hook_ops 644

16.6 Compatibility Framework 644
16.6.1 fw_in() 645

16.7 Ip Chains 647
16.7.1 Filtering with Ipchains 648
16.7.2 Ipchain Chain of Rules 649
16.7.3 struct ip_chain 649
16.7.4 struct ip_fwkernel 650
16.7.5 struct ip_reent 651
16.7.6 struct ip_fw 651
16.7.7 Organization of Tables in Ipchains 652

16.8 How Is the Packet Filtered with Ipchains 653
16.8.1 ip_fw_check() 653
16.8.2 ip_rule_match() 655

16.9 Iptables 655
16.9.1 Registration of Iptables Hooks 657

16.10 Iptables Filter Rules and Target Organization 657
16.10.1 struct ipt_table 658
16.10.2 struct ipt_table_info 658
16.10.3 struct ipt_entry 661
16.10.4 struct ipt_entry_match 662
16.10.5 struct ipt_tcp 663
16.10.6 struct ipt_entry_target 664
16.10.7 struct ipt_standard_target 664

16.11 Organization of Filter Rules and Target for Iptables 664
16.12 Filtering Packets with Iptables 664

16.12.1 ipt_do_table() 664
16.12.2 IPT_MATCH_ITERATE 668

16.13 Summary 668

CONTENTS xix

17 NET SOFTIRQ 671

17.1 Why Net SoftIRQs, and How Do We Raise Them? 672
17.1.1 Transmission 672
17.1.2 Reception 672

17.2 How Are SoftIRQs Are Processed, and When? 675
17.3 Registration of SoftIRQs 678
17.4 Packet Reception and Delayed Processing by Rx SoftIRQ 679
17.5 Processing of Net Rx SoftIRQ 682
17.6 Packet Transmission and SoftIRQ 686
17.7 Summary 696

18 TRANSMISSION AND RECEPTION OF PACKETS 697

18.1 DMA Ring Buffers for Transmission and Reception of Packets 698
18.2 Packet Reception Process 698

18.2.1 Flow of Packet Reception with DMA 698
18.2.2 Reception Ring Buffer 698

18.3 Packet Transmission Process 700
18.3.1 Flow of Packet Transmission with DMA 702
18.3.2 Transmission Ring Buffer 702
18.3.3 Transmission Ring Buffer 703

18.4 Implementation of Reception and Transmission of Packets 704
18.4.1 struct etrax_eth_descr 705
18.4.2 struct etrax_dma_descr 706
18.4.3 Initialization of Device 707
18.4.5 Initialization of DMA Transmit Ring Buffers 707
18.4.6 Initialization of DMA Receive Ring Buffers 709

18.5 Rx Interrupt for Reception of Packets 709
18.5.1 Rx DMA Buffer Initialized 711
18.5.2 e100_rx() 711
18.5.3 Rx Descriptors After Reception of Three Packets in

DMA Buffer Before Rx Interrupt Being Raised 713
18.5.4 Rx Descriptors After First Packet Is Pulled Out of

DMA Buffer and Given to OS in Rx Interrupt
Handler 713

18.6 Transmission of Packets 713
18.6.1 e100_send_packet() 713
18.6.2 Tx DMA Ring Buffer Descriptor After Initialization 717
18.6.3 e100_hardware_send_packet() 717
18.6.4 There Are Two Packets in Device’s DMA Tx Ring

Buffer to Be Transmitted 717
18.6.5 e100tx_interrupt() 720

xx CONTENTS

18.6.6 First Packet from the DMA Queue Is Transmitted and
Second One Is yet to Be Transmitted; After Interrupt Is
Generated, Transmitted Buffer Is Freed 721

18.7 Summary 721

19 lkcd AND DEBUGGING TCP/IP STACK 723

19.1 lkcd Source and Patches 724
19.2 Touching the Socket 724
19.3 Looking into the Receive Socket Buffer 726

19.3.1 Route Information in sk_buff 727
19.4 Peep into Send Socket Buffer 727
19.5 TCP Segmentation Unit 729
19.6 Send Congestion Window and ssthresh 730
19.7 Retransmissions and Route 733
19.8 Peeping into Connection Queues and SYN Queues 733
19.9 Routing and IP Qos lcrash Steps 735

19.9.1 lcrash Steps for Default Queueing Discipline in Linux
(pfi fo_fast) 735

19.10 CBQ (Class-Based) Queueing Discipline lcrash Steps 739
19.11 U32 Filters 739
19.12 Route Filters 743
19.13 FIB Table lcrash Output for Setting Up the Realm Using ip

Command 745
19.14 lcrash Output for Setting Up Route Filter Using tc Command 749
19.15 Netlink Data Structure 755

19.15.1 nl_table 755
19.15.2 rtnetlink_link 755

19.16 Summary 757

20 NEXT EDITION 759

Bibliography 763

Index 765

xxi

 PREFACE

 For more than a decade, Linux has been the most popular choice for server technol-
ogy, embedded systems, or research work in the networking domain. It slowly gained
momentum beginning with the student community and slowly reaching researchers
and the corporate world. Networking, when combined with Linux, gives birth to an
innovative product line, be it in the high - end telecom sector, data centers, or embed-
ded systems, and so on.

 In 1996, I was introduced to Linux while doing my fi rst assignment on TCP/IP
socket programming. At that time, I had a very little knowledge about a server
program using a unique port number to register itself with the system or a client
program using the same port number to communicate with the server. I also had
little knowledge of an IP address that is fed to the client program to identify the
host. I then set myself to learn about how all that was made possible.

 Much information needed to be explored at that time, such as system calls,
protocols, Linux kernel, drivers, and kernel framework that supports the stack, and
so on. Slowly, I explored the Linux kernel and user – land program interaction with
that kernel by writing new system calls and kernel modules.

 This learning process began with the TCP/IP Illustrated, Volume 1 by the honor-
able Richard Stevens. But it continued to be really diffi cult to map the protocol
with the implementation on Linux because there was so little documentation, and
available books provided hardly any information. So, I decided to dive deep into
the jungle of the huge source base to fi nd out how the stack is implemented. Finally,
I got hooked to the socket and VFS layer to understand how socket layer is linked
to the VFS layer. Then slowly I was pointed to the TCP layer and the fi rst routine
that interfaces TCP protocol to send out data. Then the journey of documenting and
experimenting with the TCP/IP stack began. When the documentation had grown
big enough, the idea of making it available to the Linux community emerged. But
writing a book was beyond my strength and it was too much work, requiring a lot
of time and dedication. But I was determined to expose the complex topic to the
Linux community to whatever extent I could even if it demanded many require-
ments. The absence of detailed, leveled documentation or a book that would have
made the subject easier to understand, forced me to think about the topic. The idea
of writing a book was supported when I received acceptance on the subject from
IEEE Computer Society Press and John Wiley & Sons.

 Working on the book along with offi ce work became diffi cult so I searched for
a co - author who would help cover some of the topics. After a long struggle, I con-
vinced M. Ajaykumar Venkatesulu to be my co - author and work on a giant and
most complex routing subsystem and QOS.

xxii PREFACE

 This text tries to cover almost all the aspects of TCP/IP stack and supporting
kernel framework. The idea is to present the topic in a way that dilutes its complex-
ity so that it can be easily understood. To understand TCP/IP implementation on
any OS, we need to understand the kernel frameworks that support the stack. On
Linux, these frameworks include VFS layer, socket framework, protocol layer,
timers, memory management, interrupt handling, softIRQ, kernel threads, kernel
synchronization mechanism, and so on. This is the kernel perspective of the stack.
Apart from this, we also need to know the basics of the communication protocol
and application interfaces (system calls) to open TCP communication sockets and
the client – server program. This knowledge is helpful as a reference for experienced
professionals and for students willing to learn the complex subject and contribute
to the Linux community.

 This book is written for the Linux kernel 2.4.20. The newest kernel version 2.6
does not have much variation as far as the TCP/IP stack is considered. Kernel
version 2.4 is the most widely accepted kernel in the Linux world. Version 2.6 spe-
cifi c changes will be discussed in subsequent revisions of the book.

 AUDIENCE

 The book is targeted for large cross section of audience:
 Researchers at Worldwide Premier Institutes. Researchers who work on various

aspects of the TCP/IP stack fi nd BSD the most suitable networking OS. But BSD
is not a popular choice in the corporate world. So, the next most popular choice of
researchers is the Linux OS and improvement of the TCP/IP stack performance on
this OS. Networking is currently the most popular fi eld for research because of
growing usage and popularity of the Internet. Mostly, researchers prefer an OS with
commercial viability that can run on cheap hardware.

 Academia. Advanced academic degree projects, such as MS, M. Tech., B. Tech.
and PG, are mostly done on Linux because it was the fi rst UNIX - like OS available
with fairly good documentation and stability. In the networking area, students
usually choose Linux over TCP/IP for their project work. The project may require
modifying the router or TCP performance, implementing some new TCP/IP RFC,
network drivers, implementing secured IP layer, or improving scalability factor to
handle network traffi c.

 Corporations. For the most part, the corporate world has widely accepted Linux
as the base OS for networking products. Many companies are developing network
products, such as IP security, QOS (class - based routing), developing routers, band-
width management products, cluster servers and many more, which require modify-
ing the TCP/IP stack or writing a new module altogether that fi ts into Linux TCP/IP
stack somewhere. Linux is not only popular as an open system but is also a major
choice for embedded products or real - time OS. These embedded products are
mostly developed for networking domains such as routers, embedded web servers,
web browsers, and so on.

 Entrepreneurs. New ideas keep popping up which need to be turned into prod-
ucts. With the Internet gaining popularity, many ideas have been born to develop
networking products. Linux is once again the most popular choice for development
among entrepreneurs.

PREFACE xxiii

 The Open Source Community. Because of the growing popularity of Linux and
Internet technologies, many fresh college graduates or even software professionals
want to contribute to Linux networking capabilities. Their goal is to make Linux
more powerful, stable, secure, and full of network capabilities in order to meet cor-
porate requirements in every possible way. Many professionals want to contribute
to Linux networking capabilities but don ’ t fi nd enough time to get acquainted with
its networking stack and the kernel framework.

 Defense Organizations. There is a growing popularity of Linux as network OS
in defense organizations with increasing military adoption of Linux IP security with
some modifi cations for secured military network transactions.

 All these audiences require a thorough knowledge of Linux TCP/IP stack and
kernel framework for networking stacks. To understand TCP, IP, BSD sockets, fi re-
wall, IP security, IP forwarding, router network driver, complete knowledge of how
networking stack implementation and design work is needed. If IP security or fi re-
wall implementation is wanted, then knowledge of how the packet is implemented
in Linux, how and where packet is passed to the IP layer, how the IP processes the
packets and adds headers, and fi nally how the IP passes the packet to the device
driver for fi nal transmission is needed. Similarly, implementation of the QOS or
some modifi cations in the existing implementation is needed, knowledge of Linux
routing table implementation, packet structure, packet scheduling and all related
kernel frame work including network soft IRQs is required. So, anything and every-
thing that requires modifying the Linux network stack or adding a new feature to
the stack, requires complete knowledge of the design and implementation of Linux
TCP/IP stack.

 ORGANIZATION OF THIS BOOK

 This book completely explains TCP/IP protocol, its design, and implementation in
Linux. Basically, the book begins with simple client – server socket programs and
ends with complex design and implementation of TCP/IP protocol in Linux. In
between, we gradually explain the different aspects of socket programming and
major TCP/IP - related algorithms. These are:

 Linux Kernel and TCP/IP Application Interfaces : Chapter 1 covers the Linux
kernel basics and we kick start with kernel interfaces (system calls) to use TCP/IP
protocol stack for communication.

 Protocols: Chapter 2 covers TCP/IP protocols and supporting protocols such as
ARP and ICMP. We cover some of the major RFCs with illustrations to acquaint
the reader with the protocols so that it will be easy to map Linux implementation
on Linux in further chapters.

 Sockets: Chapter 3 explains the implementation of BSD socket implementation
in the Linux kernel. Here we discuss in detail how socket layer is hooked to VFS
layer and how various protocols are hooked to BSD socket.

 Kernel Implementation of Connection Setup: Chapter 4 explains the client –
 server application with the help of the C program. We explain the complete process
of connection setup with the help of tcp dump output in different chapters. We cover
kernel implementation of system calls used by application program to implement
client – server interaction. We see how connections are accepted on the server side

xxiv PREFACE

and at the same time, learn how the server program registers with the kernel to bind
to a specifi c listening port.

 Linux Implementation of Network Packet: Chapter 5 explains sk_buff which
represents network packet on Linux. We explain important routines that manipulate
sk_buff.

 Movement of Packet Across the Layers: Chapter 6 covers the complete TCP/IP
stack framework, showing how the packet is generated and trickles down the
network stack until it is out of the system. Similarly we explain the complete path
taken by a packet received from the device to reach the owning socket, covering
complete kernel framework that implements TCP/IP stack on Linux.

 TCP recv/send: Chapters 7 and 8 address TCP receive/send implementation and
cover all the aspects related to TCP receiving and sending data. We also explain the
TCP segmentation unit when an ICMP error (mss change for the route) is received
by the TCP. There is a small description of how urgent data are processed.

 TCP Socket Timers and Memory Management: The kernel keeps track of
memory consumed by a connection at the socket layer so that a single - socket con-
nection is not able to hog all the system memory because of a misbehaving applica-
tion. We also try to collapse sequential buffers in the receive queue when the
application is not reading enough fast and socket has exhausted its quota. This
aspect of memory management is covered in Chapter 9 . TCP is an event - driven
protocol. TCP implements timers to track loss of data, to send delayed ACKs, to
send out zero window probes, and so on. Chapter 10 addresses all these aspects.

 TCP State Machine: Chapter 11 covers TCP core processing, such as reception
of packets, sending ACKs, sliding window protocol, Nagle ’ s algorithms, scheduling
of delayed ACK ’ s, processing of out - of - order segments, processing SACK, D - SACK,
and so on. The tcp_opt object represents state machine implementation on Linux.
Chapter 12 covers TCP congestion control algorithms implementation.

 Netlink Sockets: User – land applications, such as netstat and iproute, and routing
protocol daemons use special netlink sockets to update/read routes and confi gure
QOS in the kernel. We cover netlink sockets in Chapter 13 .

 IP Layer and Routing Table Implementation: Chapter 14 covers implementa-
tion of routing table (FIB) on Linux. We also explain different aspects associated
with routing, such as multipathing, policy routing, and so on. This chapter also
explains the different kernel control paths that update kernel routing tables and
route cache management.

 IP QOS: IP in today ’ s network is an advanced topic and is used for different
services in the public network. Linux implements QOS very cleanly and we discuss
PFIFO and CBQ queuing discipline implementation in Chapter 15 .

 Netfi lter Framework: Linux provides extensions to the TCP/IP stack by way of
the netfi lter framework. These extensions can be fi rewall, masquerading, IP security,
and so on. Chapter 16 covers netfi lter hooks at different layers in the stack and also
netfi lter implementation.

 SoftIRQ Implementation for Scalability: Network frames are received in
the kernel memory in the interrupt handler code but complete processing of the
packets can ’ t be done in the interrupt handler. Linux associates softIRQ, one each
for reception and transmission of packets for processing of packets. Chapter 17
explains net softIRQ framework with the help of illustrations. This chapter com-
pletely explains the high scalability of Linux on SMP architecture in handling
network traffi c.

PREFACE xxv

 Link Layer and DMA Ring Buffers: Chapter 18 covers link layer(device driver)
processing of packets. Design and working of DMA ring buffer for reception and
transmission are also addressed and are explained with the help of a device driver
and interrupt routines for a real device.

 Debug TCP/IP Stack: Debugging the TCP/IP stack is discussed in Chapter 19 .
The lkcd (linux kernel crash dump) debugger is used to illustrate the debugging
technique, peeking into different kernel data - structures associated with TCP/IP
stack.

 LEVEL OF DISCRIPTION

 As outlined here, we have touched upon critical portions of the implementation that
are required to understand core TCP/IP stack and kernel framework. Each chapter
begins with a chapter outline and ends with a summary that highlights important
points. Source - level explanations with diagrams are provided where ever required.
Important routines are explained line - by - line. Code snippets are provided for all
those routines with line numbers and fi les of code snippet. Sometimes routines are
so big that they are split into different code snippets. Routines that are called from
the main routines are explained in different sections. If the called routine is a couple
of lines long, there is no separate section for those routines. Line number and code -
 snippet number (cs -) are provided with the explanation to assist understanding.
When the routines are very big in size, notifi cation is provided at the beginning of
the section stating, see cs • • . • • , unless mentioned ; this means that where ever line
numbers are mentioned, we need to see the code snippet mentioned at the start of
the section.

 In the explanation if we encounter some concept that is already explained in
some other section, a cross reference to that section is provided, as see Section • • .
 • • . Cross references are provided because the subject is interrelated, for example
while explaining queuing of incoming TCP packet, we refer to sockets receive
buffer. If we have exhausted the receive socket buffer, we need to call routines to
collapse receive queue to make space for the new TCP data segment. For this we
may need to refer to a section from the TCP memory management chapter. We have
explained major data structures with signifi cance separately. Where ever that has
not been done, fi elds of those data - structures are explained as and when they appear
in the routines.

 Examples and illustrations are provided where ever it is required to make
subject easier to understand. For example, diagrams to link various kernel data
structures are drawn to illustrate connection requests in the SYN queue. Then we
illustrate shifting of connection requests from SYN queue to accept queue when a
three - way handshake is over with the help of diagrams. All these illustrations assist
in visualizing the complex data structures and scenarios.

 S ameer S eth
 Bangalore, India
 September 2008

xxvii

 ACKNOWLEDGMENTS

 For me, this is the heaviest section of the book that carries the most weight. First of
all, I ’ m very thankful to my family for being so supportive and patient when I was
working on the title, with little time left for them. My wife, Sumam, provided selfl ess
support to the work right from day one. She provided me with confi dence to convert
my hard work into a book on the day she provided me with the list of publishers.
When submitting my book proposal, only 20% of the work was done and that too
was not organized.

 I thank my co - author, M. Ajaykumar Venkatesulu, who agreed to join hands
with me at the much - needed hour. His commitment eased the load on my shoulders
and he worked very hard with all dedication to make this possible. He had a really
tough time setting up QOS on Linux, with a couple of Linux boxes, and modifying
the kernel for his illustrations.

 I ’ d like to thank the very fi rst person at the IEEE Computer Society with whom
I interfaced, Deborah Plummer, who worked on the proposal until it was fi nished.
She helped me in many ways to understand the publication process and was very
patient all through, clarifying my doubts. IEEE Staffers, Janet Wilson and Dante
David, were so nice and prompt throughout the review process. Even a small com-
munication gap caused serious concerns because this was the fi rst time I was working
on such a big project. But Janet and Dante were patient and always prompt in their
replies to make sure that all my concerns were addressed. I was introduced to Lisa
Van Horn from Wiley much later, when the book had entered the production phase.
It is a great experience working with her because she spent time educating me at
every point. At times I would be very irritating to her by asking silly doubts but she
tackled them all with grace. She has worked very hard editing the book because
there were grammatical corrections in almost every line. Through the production
process, she was very helpful, cooperative, and prompt in the same way.

 There are a few names without which this book would look incomplete. I thank
Richard McDougall, the respectable author of Solaris Internals, for time spent edu-
cating me on the publication process. His inputs helped me achieve the most from
my hard work. The respectable senior engineer from SGI and owner of the dwarf
extract utility for lkcd, Cliff Wickman, is owed thanks for without him this book
would have looked quite dry. He provided a tool to generate a kernel - type database
(kerntypes) because the basic lkcd utility does not come with all the stubs for kernel
data - structures in kerntypes. Without this tool, the debug chapter would not have
been possible. He not only provided the tool but also helped get the kernel - type
database built for the kernel 2.4 when the tool was compatible only with kernel 2.6.

S. S.

xxviii ACKNOWLEDGMENTS

 Writing or co - authoring a book was never even in my wildest dreams. The oppor-
tunity came by chance and then it became my choice. God has been kind enough
to give me such an amazing opportunity. I have a couple of people to thank with
whom my words fall short. First of all I would like to thank the author of the book
who had faith in me that I could write on this subject. He gave me a lot of trust
when he gave me an opportunity to work on this book. It was solely his brainchild
which he shared with me selfl essly. He gave me guidance whenever I faced any dif-
fi culty in any subject matter. His valuable suggestions and most importantly his
inspirations have made it possible for me to fi nish this assignment.

 I thank my family for all their support: My father who stood beside me through
all the odds and evens of life so that I could concentrate on this project; my newly
wedded wife, Priyanka, who never complained when I had less or sometimes no
time left for her; and lastly, my brother - in - law Balaji who has been a great source
of inspiration in my life.

 Last but not least, I thank Deborah Plummer, Janet Wilson, and Dante David
from IEEE for being so cooperative and nice.

 The book is not a result of any inspiration but the need of the day. When you
have the strong desire to achieve something, then the whole of creation conspires
to accomplish your goal.

 M. A. V.

1

1

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 INTRODUCTION

 Internetworking with Linux has been the most popular choice of developers. Not
only in the server world where Linux has made its mark but also in the small embed-
ded network OS market, Linux is the most popular choice. All this requires an
understanding of the TCP/IP code base. Some products require implementation of
fi rewall, and others require implementation of IPSec. There are products that
require modifi cations in the TCP connection code for load balancing in a clustered
environment. Some products require improving scalability on SMP machines. Most
talked about is the embedded world, where networking is most popular. Real - time
embedded products have very specifi c requirements and need huge modifi cations
to the stack as far as buffer management is concerned or for performance reasons.
All these require a complete understanding of stack implementation and the sup-
porting framework.

 As mentioned above, some of the embedded networking products require a
minimum of the code to be complied because of the memory requirements. This
requirement involves knowledge of source code organization in the Linux source
distribution. Once we know how the code is distributed, it becomes easier to fi nd
out the relevant code in which we are interested.

 Mostly all the networking application work on very basic client – server
technology. The server is listening on a well - known port for connection requests
while the client is sending out connection request to the server. Many complex
arrangements are made for security reasons or sometimes for load balancing to the
client – server technology. But the basic implementation is a simple client – server
program in which the client and server talk to each other. For example, telnet or

2 INTRODUCTION

ftp services are accessed through the inet program which hides all the details of
services. There are many tunable parameters available to tune your TCP/IP con-
nections. These can be used to best tune the connection without disturbing overall
system wide tuning.

 Most of the network applications are written to exchange data. Once a connec-
tion is established, either (a) the client sends data to the server or (b) data fl ow in
the opposite direction or may fl ow in both directions. There are different ways to
send and receive data over the connection. These different techniques may differ
in the way that application blocks once the socket connection either receive or send
data.

 In the entire book we discuss only TCP and no other transport protocol. So,
we need to understand the TCP connection process. TCP is a connection - oriented
protocol that has a set process for initializing connections, and similarly it has a set
process for closing connection cleanly. TCP maintains state for the connection
because of handshakes during connection initiation and closure processes. We need
to understand the TCP states to completely understand the TCP connection
process.

 In this chapter we will present an overview of how the TCP/IP protocol stack
is implemented on Linux. We need to understand the Linux operating system,
including the process, the threads, the system call, and the kernel synchronization
mechanism. All these topics are covered though not in great detail. We also need
to understand the application programming interface that uses a TCP/IP protocol
stack for data transmission, which is discussed. We discuss socket options with
kernel implementation. Finally, we discuss the TCP state, which covers a three - way
handshake for opening connection and a four - way handshake for connection
closure.

 1.1 OVERVIEW OF TCP / IP STACK

 Let ’ s see how the TCP/IP stack is implemented on Linux. First we just need to
understand the network buffer that represents the packet on Linux. sk_buff repre-
sents the packet structure on Linux (see Fig. 1.1). sk_buff carries all the required
information related to the packet along with a pointer to the route for the packet.
 head , data , tail , and end point to the start of the data block, actual start of data, end

 Figure 1.1. Network buffer, sk_buff .

sk_buff

len

head

Head room

Tail room

Data
block

data
tail
end

skb_shared_infe

OVERVIEW OF TCP/IP STACK 3

of data, and end of data block, respectively. skb_shared_info object is attached at
the end of the sk_buff header which keeps additional information about paged data
area. The actual packet is contained in the data block and is manipulated by data
 & tail pointers. This buffer is used everywhere in the networking code as well as
network drivers. Details are discussed in Chapter 5 .

 Now we will have a look at how the stack is implemented in Linux. We will fi rst
start with down - the - stack processing of the packet from the socket layer to the
driver layer and then move up the stack. We will take an example of sending TCP
data down the stack. In general, more or less the same stack is used for other trans-
port protocols also, but we will restrict our discussion to TCP only.

 1.1.1 Moving Down the Stack

 When an application wants to write data over the TCP socket, the kernel reaches
the socket through VFS (see Fig. 1.2). inode for the fi le of the type socket contains
a socket object, which is the starting point for the networking stack (see Section 3.2
for more details). The socket object has a pointer to a set of operations specifi c to
the socket type pointed to by fi eld ops . Object proto_ops has a pointer to socket -
 specifi c operations. In our case, the socket is of type INET, so send systemcall ends
up calling inet_sendmsg() inside kernel via VFS. The next step is to call a protocol -
 specifi c send routine because there may be different protocols registered
under INET socket (see Section 3.1). In our case, transport later is TCP, so
 inet_sendmsg() calls a protocol - specifi c send operation. The protocol - specifi c
socket is represented by a sock object pointed to by the sk fi eld of the socket object.
A protocol - specifi c set of operation is maintained by a proto object pointed to
by prot fi eld of sock object. inet_sendmsg() calls a protocol - specifi c send routine,
which is tcp_sendmsg() .

 In tcp_sendmsg() , user data are given to a TCP segmentation unit. The segmen-
tation unit breaks big chunks of user data into small blocks and copies each small
block to sk_buff . These sk_buffs are copied to the socket ’ s send buffer, and then
the TCP state machine is consulted to transmit data from socket send buffer. If the
TCP state machine does not allow sending new data because of any reasons, we
return. In such a case, data will be transmitted later by a TCP machine on some
event which is discussed in Section 11.3.11 .

 If the TCP state machine is able to transmit sk_buff , it sends a segment to the
IP layer for further processing. In the case of TCP, sk Æ tp Æ af_specifi c Æ queue_xmit
is called, which points to ip_queue_xmit() . This routine builds an IP header and
takes an IP datagram through the fi rewall policy. If the policy allows, an IP layer
checks if NAT/Masquerading needs to be applied to the outgoing packet. If so, a
packet is processed and is fi nally given to the device for fi nal transmission by a call
to dev_queue_xmit() . Device refers to a network interface, which is represented by
 net_device object. At this point, the Linux stack implements QOS. Queuing disci-
plines are implemented at the device level.

 Packet (sk_buff) is queued to the device according to their priority levels and
queuing discipline. Next is to dequeue the packet from the device queue, which is
done just after queuing sk_buff . The queued packet may be transmitted here,
depending on the bandwidth for the packet ’ s priority. If so, the link layer header is
prepended to the packet, and the device - specifi c hard transmit routine is called to
transmit the frame. If we are unable to transmit the frame, the packet is requeued

4 INTRODUCTION

 Figure 1.2. TCP packet moving down the protocol stack.

on the device queue and Tx softIRQ is raised on the CPU adding device to the
CPU ’ s transmit queue. Later on when the TX interrupt is processed, frames are
dequeued from the device queue and transmitted.

 1.1.2 Moving Up the Stack

 Refer to Fig. 1.3 for the fl ow of packet up the stack. We start with the reception of
packets at the network interface. Interrupt is generated once the packet is com-
pletely DMAed on driver ’ s Rx ring buffer (for details see Section 18.5). In the
interrupt handler, we just remove the frame from the ring buffer and queue it on
CPU ’ s input queue. By CPU I we mean the CPU that is interrupted. It is clear at
this point that there is per CPU input queue. Once the packet is queued on the
CPU ’ s input queue, Rx NET softIRQ is raised for the CPU by call to netif_rx() .
Once again, softIRQ ’ s are raised and processed per CPU.

 Later when Rx softIRQ is processed, packets are de - queued from CPU ’ s receive
queue and processed one - by - one. The packet is processed completely until its des-
tination here, which means that the TCP data packet is processed until the TCP
data segment is queued on the socket ’ s receive queue. Let ’ s see how is this process-
ing done at various protocol layers.

 netif_receive_skb() is called to process each packet in Rx softIRQ. The fi rst step
is to determine the Internet protocol family to which a packet belongs. This is also
known as packet protocol switching. We send the packet to the raw socket in case
any raw socket is opened for the device. Once the protocol family is identifi ed,
which in our case is IP, we call the protocol handler routine. For IP, this is the
 ip_rcv() routine. ip_rcv() tries to de - NAT or de - masquerade the packet at this point,
if required. The routing decisions are made on the packet. If it needs to be delivered
locally, the packet is passed through fi rewall policies confi gured for the locally
acceptable IP packets. If everything is OK, ip_local_deliver_fi nish() is called to fi nd
the next protocol layer for the packet.

 ip_local_deliver_fi nish() implements INET protocol switching code. Once we
identify the INET protocol, its handler is called to further process the IP datagram.
The IP datagram may belong to ICMP, UDP, and TCP.

 Since our discussion is limited to TCP, the protocol handler is tcp_v4_rcv() .
The very fi rst job of the TCP handler is to fi nd out socket for the TCP packet. This
may be a new open request for the listening socket or may be another packet
for the established socket. So here, various hash tables are looked into. If the
packet belongs to the established socket, the TCP engine processes the TCP
segment. If the TCP segment contains in - sequence data, it is queued on the socket ’ s
receive queue. If there are any data to be sent, they is sent along with the the ACK
for the data arrived here. Finally, when application issues read over the TCP socket,
the kernel processes the request by providing data from the socket ’ s receive
queue.

 The Linux stack maps to the OSI networking model (see Fig. 1.4).

 1.2 SOURCE CODE ORGANIZATION FOR L INUX 2.4.20

 Figure 1.5 shows the kernel source tree.

SOURCE CODE ORGANIZATION FOR LINUX 2.4.20 5

6 INTRODUCTION

 Figure 1.3. TCP packet moving up the stack.

Socket layer receive queue

Application reads data from receive queue

Packet received

Interrupt handler
removes packet from
DMA ring buffer

netif_rx(), Rx Soft IRQ

netif_receive_skb(), Protocol switch

ip_rcv(), IP layer processing.

tcp_v4_rcv(), TCP entry point

protocol specific processing

socket
sk

socket

sock sock sock

sk_buff
sk_buff

sk_buff

sk_buff
sk_buff

sk_buff

sk_buff
sk_buff

sk_buff

receive_queue receive_queue receive_queue

sk

socket
sk

sock

next
pprev

sock

next

pprev

sock

next
pprev

sock

next
pprev

sock

next
pprev

sock

next
pprev

ip_local_deliver_finish(),
INET protocol switcher

 1.2.1 Source Code Organization for Networking Code

 Figure 1.6 shows the kernel networking source tree.

 1.3 TCP / IP STACK AND KERNEL CONTROL PATHS

 In this section we will see how TCP data are being processed by the Linux kernel.
In totality, we will see different kernel control paths and processor context that are
involved in packet processing through the kernel. When the process writes data
over the TCP socket, it issues write/send system calls (see Fig. 1.7). The system call
takes the process from the user land to the kernel, and now the kernel executes on
behalf of the process as shown by the solid gray line. Let ’ s determine the different
points in the kernel where the kernel thread sending TCP data on behalf of the
process preempts itself.

 Kernel Control Path 1. In this kernel control path, the kernel thread processes
TCP data through the complete TCP/IP stack and returns only after transmitting
data from the physical interface.

 Kernel Control Path 2. This kernel control path processes data through TCP/IP
stack but fails to transmit data because the device lock could not be obtained. In

 Figure 1.4. Linux network stack and OSI model.

Application
browser

Application
browser

Presentation
HTTP

Presentation
HTTP

Physical layer Physical layer

Session = socket layer
inet_sendmsg()

Session = socket layer
socket receive buffer

Link = hard transmit
dev_quene_xmit()

Link = driver
interrupt processing

Network = IP
ip_quene_xmit()

Network = IP
ip_rcv()

transport =TCP
tcp_sendmsg()

transport =TCP
tcp_v4_rcv()

TCP/IP STACK AND KERNEL CONTROL PATHS 7

8 INTRODUCTION

 Figure 1.5. Kernel source tree.

linux_2.4.20

kernel

fs

net

ipc

drivers

All driver code goes here. Some
of these drivers can be complied
as part of kernel and others as
modules. Keeping minimum of

drivers as part of kernel makes it
much smaller in size.

Core kernel generic code goes here,
core kernel contains scheduler, process
management module support, timers,
signal, softIRQ, resource management

etc.,

Filesystem related code goes here.
This directory contains generic VFS
code, incode, devfs, pipe, file locks,

etc are covered in this directory.
File system specific code is contained
here which can be directly complied

in the kernal or as module.

Network specific code goes here.
Protocol specific files are ipv4, ipv6,
bluetooth, appletalk... socket.c has

generic socket code, sched contains code
specific to IP TOS and generic packet
scheduling, netlink contains netlink

socket source files.

Inter process communication code
goes here. These are shared mem,

semaphore, message queues.

mm

init

include

arch

Kernel main program that
initializes operating system.

Kernel memory management source
is contained in this directory.

Swap, paging, memory mapping,
memory locking, high memory etc.,

Contains header files.
Architecture specific header files

can be found in architecture specific
sub directory. Generic header files are

within sub-directories linux, asm-generic,
math-emu, net, pcmcia,scsi,video.

Architecture specific source files
i386, ia64, alpha, arm, sparc...
kernel, math-emu, mm, boot.

 Figure 1.6. Kernel networking source tree.

Contains core networking code.
This code contains files that provides core
framework to the networking sub-system.

These files are sock.c, skbuff.c, rtnetlink.c,
netifilter.c, neighbour.c, filter.c. dst.c,

datagram.c, dev.c.

socket c

core

ipv4

ipv6

net

netlink

packet

sched

unix

ethemet

Ipv4 specific source files.
This covers entire protocol suite for

Ipv4. Socket, TCP, timer, congestion, TCP
input and output processing UDP, IP,
routing forwarding, input & output

processing FIB framework, Raw
sockets, ARP, ICMP.

Raw sockets specific generic code.

Unix socket specific code.

Generic code for ethernet protocol.

Packet scheduler code. This contains
code specific to IP TOS, IP classifiers.

Different algorithms are provided
to implement TOS and these are fifo

cbq, thb, sfq etc.,

Netlink sockets specific code.

Ipv6 specific code,
socket, TCP, UDP(minimal).

IP input & output processing, FIB,
multicast, forwarding, fragmentation

RAW, ICMP.

Contains routines socket specific
VFS operations socket sub-system.

TCP/IP STACK AND KERNEL CONTROL PATHS 9

10 INTRODUCTION

this case, the kernel thread returns after raising Tx softIRQ. SoftIRQ processing is
deferred to some later point of time which will transmit data queued up on the
device. See Section 17.1 for details on softIRQ processing.

 Kernel Control Path 3. This kernel control path processes data through the
TCP layer but is not able to take it further because the QOS policy is not allowing
further transmission of data. It may happen that either someone else is processing
the queue on which packet is queued or the quota for queue is over. In the later
case, a timer is installed which will process the queue later.

 Kernel Control Path 4. This kernel control path processes data through the
TCP layer but cannot proceed any further and returns from here. The reason may
be that the TCP state machine or congestion algorithm does not allow further
transmission of data. These data will be processed later by the TCP state machine
on generation of some TCP event.

 Kernel Control Path 5. This kernel control path may execute in interrupt
context or kernel context. Kernel context may come from softIRQ daemon, which
runs as kernel thread and has no user context. Kernel context may also come from
kernel thread corresponding to user process which enables softIRQ on the CPU by
call to spin_unlock_bh() . See Section 17.6 for more detail. This kernel control path
processes all the data queued by control path 2.

 Kernel Control Path 6. This kernel control path executes as a high - priority
tasklet that is part of softIRQ. This may also be executed in interrupt context or
kernel context as discussed above. This processes data queued by control path 3.

 Kernel Control Path 7. This kernel control path executes as softIRQ when
incoming TCP packet is being processed. When a packet is received, it is processed

 Figure 1.7 Packet transmission via different kernel control paths.

by Rx softIRQ. When a TCP packet is processed in softIRQ, it may generate an
event causing transmission of pending data in the send queue. This kernel control
path transmits data that are queued by control path 4.

 On the reception side, the packet is processed in two steps (see Fig. 1.8). An
interrupt handler plucks received a packet from the DMA ring buffer and queues
it on the CPU - specifi c input queue and raises Rx softIRQ. Rx softIRQ is processed
at some later point of time in interrupt context or by softIRQ daemon. The TCP
data packet is processed completely by Rx softIRQ until it is queued on the socket ’ s
receive queue or is eaten up by the application. The TCP ACK packet is processed
by a TCP state machine, and softIRQ returns only after action is taken on the events
generated by the incoming ACK.

 1.4 L INUX KERNEL UNTIL VERSION 2.4 IS NON - PREEMPTIBLE

 Let ’ s defi ne the term preemptive fi rst and then we will move ahead with its effect
on the Linux kernel. Preemption in general means that the current execution
context can be forced to give away CPU for some other execution context under
certain conditions. Now we will say that what is so great about it is that it is hap-
pening on any multitasking OS. On a multitasking OS, many user land processes
run on the CPU one at a time. These processes are assigned quota and continue to
occupy CPU until they have exhausted their quota. Once the quota for the currently
running process is over, it is replaced by some other runnable process on the CPU
even if the former was already executing by the kernel scheduler. So, we can say
that the process was preempted here. Very true, the user land process is preempted
to fairly give other processes a chance to run on the CPU. We are not discussing
scheduling with respect to real - time processes and are discussing only normal prior-
ity processes that are scheduled based on a round - robin scheduling policy. This way
kernel preempts the user land process.

 What we would like to know in this section is very different from what has been
discussed so far. We want to know how a kernel can be preemptive. Let ’ s suppose

 Figure 1.8. Packet reception and different kernel control paths.

LINUX KERNEL UNTIL VERSION 2.4 IS NON-PREEMPTIBLE 11

12 INTRODUCTION

that some kernel control path is being executed on the CPU and it is looping into
infi nite loop by mistake. Can a kernel preempt itself to get out of the infi nite loop
and give a CPU to some other runnable process. (Note: I ’ m taking an example of
infi nite loop inside the kernel just to explain the term preemption, but the intent
here is very different. Normally, a kernel code does not end up in this situation).
Kernel control path gives away CPU to other burnable process by calling scheduler.
We must fi rst know what event causes a running process to preempt. This is done
by the timer interrupt which is raised on the CPU at some defi nite time interval and
is nonmaskable. This interrupt does all the necessary calculation determine the
duration of the current execution context on the CPU. If it has expired its quota, it
sets a ‘ scheduling needed ’ fl ag for the process. While returning from the interrupt,
this fl ag is checked but only if we were interrupted in the user mode (which essen-
tially means that the CPU was executing user land code when the timer interrupt
occurred).

 Control is passed to an assembly code at line 256 in cs 1.1 when we are return-
ing from the interrupt. Line 257 fi rst gets the pointer to a current process (kernel
thread corresponding to the user land process) in ebx%. At line 259, we get EFLAGS
for the current process from the stack pointer (%esp) and save this to eax%. At
line 260, we get a code segment byte from the stack pointer and save it as a byte in
eax%. At line 261, we check if the execution mode was within the kernel or user
land at the time when the CPU was interrupted. This can be verifi ed from the code
segment that is copied to eax% at line 260. If the CPU was executing in the kernel,
we jump to restore_all at line 263. restore_all will switch to the execution context
within the kernel by loading register values saved at the stack and will start execut-
ing from where it was interrupted. If we were interrupted in the user land, control
is passed to ret_from_sys_call. re_from_sys_call does lots of checks; for example, if
there is a pending signal for the current process, reschedule is needed, and so on,
and takes appropriate action. If the current process has not consumed its time slice,
it will continue to execute in the user land; otherwise, some other runnable process
will be given the CPU.

 cs 1.1. Return from interrupt.

 As shown in Fig. 1.9a , we switch to kernel mode to handle interrupts. We
have shown timer interrupt in particular, but it may also happen that some
other interrupt may also cause the current user process to give away CPU to some
other process. For example, network interrupt may cause some process to wake
up that is waiting for data over the connection. Since I/O intensive processes
always have a higher priority over the CPU intensive processes, network interrupt
carrying data may cause current process to give CPU to the process waiting for I/O
over this connection. In the case where the current process has not consumed its
time slice, it will continue to run on the CPU in case it has not received any kill
signal.

 Figure 1.9b shows that when a timer interrupt happens with CPU executing in
the kernel, control is passed to the interrupted kernel path that was being executed
at the time of interrupt. This allows the kernel to complete its execution before it
can return to the user space. This design makes sure that the kernel will continue
to run unless it kernel gives away CPU (by calling schedule()). Nothing can force
kernel to give way CPU for any thing else other than interrupts/exceptions. The
simple reason for this is data consistency, and this causes the Linux kernel to be
non - preemptible. For example, if by mistake any buggy driver causes a kernel to
execute an infi nite loop, the single CPU system will be frozen forever.

 In short, the Linux kernel 2.4 and below are not designed for real - time require-
ments as there may be huge latencies introduced because of a non - preemptive

 Figure 1.9a. Interrupt happened while executing in the user space.

LINUX KERNEL UNTIL VERSION 2.4 IS NON-PREEMPTIBLE 13

14 INTRODUCTION

kernel. An attempt is made to make Linux kernel 2.6 onwards preemptible, though
not completely. We will see this in the next revision of the book.

 1.4.1 System Call on L inux

 In this section we will learn implementation of system call on Linux system running
on Intel X86 architecture. Any Unix system implements a system call so that user -
 level application programs can request kernel services. Let ’ s take the simple example
of an open system call. When an application wants to open a fi le for read and write,
the very fi rst step is to issue an open system call. Just like regular fi les, Pipe, fi fo,
socket, device, and so on, are also treated as special fi les on the Unix systems and
will use an open system call for further I/O.

 Why do we need kernel services to open a fi le? This is required because fi le -
 system - specifi c information is maintained in the kernel. File - system - specifi c data
structures are maintained in the kernel and is accessed only in the processor privi-
leged mode; the reason for this is consistency and uninterrupted execution. Every
care is taken inside the kernel to maintain data consistency by very careful program-
ming where an execution of code can be made uninterrupted by blocking maskable
interrupts. Also, kernel is non - preemptive. So we are assured that even if the kernel
is interrupted by some high - priority interrupt, the processor returns its control to
the point in the kernel where it left. The kernel control path can itself give away

 Figure 1.9b. Interrupt happened while executing in the kernel space.

CPU, and no one can force it to preempt. One of the most important reasons for a
fi le system to be inside the kernel is that it is not an independent subsystem. The
fi le system code has to interact with other subsystems such as virtual memory,
network, device controllers, paging, and scheduling; all these subsystems cannot
afford to run in the user land because of the reason mentioned above.

 So, for execution of the system, a call takes place inside the kernel (see Fig.
 1.10). The processor has to switch from user mode to privileged mode to access
kernel code and data structure. This is done by software interrupt 0x80, which is
generated by the open library routine. The system call number is loaded in eax , and
arguments are loaded on ebx , ecx , edx , registers. The processor determines kernel
stack for the process from by loading ss and eps registers. The user context is saved
on the stack by the processor control unit. Once this is done, control is passed to
the system call handler.

 The system call handler looks into the system call table sys_call_table , which
indexes system call handling routine vectors based on system call number. Control

 Figure 1.10. System call implementation on Linux.

LINUX KERNEL UNTIL VERSION 2.4 IS NON-PREEMPTIBLE 15

16 INTRODUCTION

is passed to the system - call - specifi c routine; and after execution of system call, the
return value is stored in eax .

 1.4.2 Adding New System Call

 Let ’ s see how we can we add a new system call to the system. To add a new system
call, a new number is associated with the system call, and the system - call - specifi c
handler should register with the system. System call numbers are listed in include/
asm - i386/unistd.h fi le as macro __NR_ sys , where sys is the name of the system call
(see Fig. 1.11). In this fi le we need to add one more line for the new system call.

 The next step is to write system call routine in appropriate fi le in the available
in kernel source tree. For example if the system call is specifi c to scheduling, it
should be added to kernel/sys.c . Conventionally, the name of the routine should
start with sys_. Once a system call number and system - call - specifi c routine are
added to a kernel source, we need to add the system call routine to the system call
table by using macro SYMBOL_NAME(). A new line should be added to fi le arch/
i386/kernel/entry.S (see Fig. 1.12). The line for the new system call should be added
exactly to the sys_call_table at the line number matching the system call number.
So, it is always better that a system call number for the new system call should be
the next available number, and the entry for this system call should come at the end
of the sys_call_table table. The kernel is compiled and a new kernel is placed in the
correct location.

 How do we access the new system call from application program. So, we can
use syscall() or syscall * () system calls to invoke our system call. To syscall(), we

 Figure 1.11 . System - call - associated number.

 Figure 1.12. System call table in the kernel.

need to pass the system call number corresponding to the new system call registered.
If we use syscall() interface, we can ’ t pass any arguments to our system call. If our
system call takes one argument, we can use syscall1(), for two arguments we can
use syscall2(), and so on; we can pass four arguments using these interfaces.

 Let ’ s see how syscall1 is implemented (see Fig. 1.13). This is implemented as a
macro in /usr/include/asm/unistd.h . It can take one argument arg1. The macro breaks
into an inline assembly code that generates software interrupt int 0x80 at line 293.
Line 294 indicates that the result needs to be stored in eax% . There are two inputs:
eax% contains a system call number that is combined as (__NR_##name) at line
294, and ebx% contains the value of the fi rst argument for the systemcall.

 1.5 L INUX PROCESS AND THREAD

 Each user land process has an associated task_struct object associated with it in the
kernel. The process has two modes, user and kernel . The user land context is dif-
ferent from the kernel context, where each one has different code, data, and stack
segment registers. Each process has user mode and kernel mode stack. The kernel
mode stack is an 8 K memory block, which has task_struct object at the end of the
stack (see Fig. 1.14). The application runs in user mode and uses a user mode stack
until it makes a system call when it switches from user mode to kernel mode where
it starts using kernel mode. See Section 1.4.1 for more details.

 Each process has a unique process ID by which it is identifi ed in the system.
 task_struct object contains the entire information about the process, including hard-
ware context. Some of this process - specifi c information is fi le system information,
fi le table, signal handling, memory management, and so on. Each process has a
kernel level thread associated with it which is seen by the scheduler as scheduling
entity. This thread is represented by task_struct object. The kernel maintains a
doubly linked link list of task_object corresponding to all runable processes in the
system.

 1.5.1 fork ()

 New processes can be created by calling fork() . It inherits all the property of the
parent process and shares VM, open fi les, and so on. Initially, user stacks for child
and parent are shared; but as the stack grows for the child, it gets its own copy of

 Figure 1.13. Implementation of syscall1.

LINUX PROCESS AND THREAD 17

18 INTRODUCTION

the stack via a COW (copy - on - write) mechanism. Child created by fork has separate
 task_struct object and different kernel mode stack. Fork internally uses a clone to
create a new process. The exec * () family of system calls is used to replace an exist-
ing process with a new process.

 1.5.2 Thread

 A thread on Linux can be user level or kernel level. User level threads are ones
that are scheduled in the user land by libraries. The kernel has no idea about these
threads, and there is only one kernel thread for all the threads which corresponds
to the process which has created these threads. Kernel level threads are much like
Linux processes. These are also called lightweight processes (LWPs). Each thread
created by the process has a corresponding kernel level thread and is treated as a
scheduling identity by the kernel (see Fig. 1.15). Each thread is scheduled irrespec-
tive of every other thread for the process. So, there is much better control as far as
a blocking system call is concerned. The only thing that differentiates it from a
normal process is its lightweight.

 Threads share virtual memory, signals, and open fi les with its parent. But each
of them has separate process IDs. A clone system call can be used to create LWPs
for the process. Clone fl ags to create LWPs are

 • CLONE_VM
 • CLONE_FS
 • CLONE_FILES
 • CLONE_SIGHAND
 • CLONE_THREAD

 The pthread library creates kernel threads for the process. LWPs created by
using a clone systemcall with the above fl ags have separate process IDs. The option

 Figure 1.14. Kernel mode stack for the process.

 m of ps command can show all the threads corresponding to the process. In one
example, I creates a program to spawn kernel level threads using pthread_create() .
The ps command is used to display all the threads for the process as shown in
Fig. 1.16 .

 1.5.3 Kernel Threads

 In this section we will discuss the threads that are created inside the kernel and not
by user land processes. Kernel threads are the same as the one created by the user
land applications in the way they both use a clone kernel interface and both have
a separate kernel mode stack. Kernel threads are created by making a call to
 kernel_thread() . Kernel threads have no user context because they are not associ-
ated with any user process. A kernel thread executes in a user kernel address space
and does not have an address space of its own, unlike a user process. A kernel
thread is not interrupted by any one once it starts executing. It can yield CPU by
itself by going to sleep. These threads are very much visible using a ps command
and can be recognized by the name because they start with a k — for example, ksoft-
irqd , kfl ushd , and so on. These threads either wake up on expiry of the timer by

 Figure 1.15. Process, LWPs, and kernel thread.

LINUX PROCESS AND THREAD 19

20 INTRODUCTION

themselves or are woken up by some other thread inside the kernel and are sched-
uled by the kernel as usual.

 Let ’ s take an example of ksoftirqd kernel thread to illustrate kernel
threads. Soft IRQ are also processed by kernel daemons in case there is a lot to
be processed by softIRQs; this is mostly true in the case of network packet
processing. Softirq daemons are created per CPU in routine spwan_ksoftirqd() (see
cs 1.2).

 kernel_thread() is called in a loop 402 – 410 to create one kernel thread per CPU.
The routine that needs to be executed as a kernel thread is passed as a fi rst argu-
ment to kernel_thread() ; that is, ksoftirqd and second argument is CPU ID. Let ’ s
see why we pass CPU ID when we are creating a kernel thread. The name of the
kernel thread is stored in current → comm. Since softirq daemons are per CPU, the
name of each daemon contains a CPU number (see cs 1.3 , line 375). This name of

 Figure 1.16. ps output showing process and associated threads (LWPs) created using a clone

interface.

 cs 1.2. spwan_ksoftirqd() .

kernel softirq daemon appears with the name ksoftirqd_CPU0 on running ps
command as shown in Fig. 1.17 .

 softIRQ daemon is awakened by using interface wakeup_softirqd() . This routine
gets access to softIRQ thread for the CPU by calling ksoftirqd_task() at line 55.
 ksoftirqd_task() is a macro that accesses thread information from CPU - specifi c
structure by using another macro __IRQ_STAT (see cs 1.4).

 Once ksoftirqd_task() gets softIRQ thread for the CPU, it checks if it is not
already in running state (cs 1.5 , line 57). If not already scheduled, it is woken up by
a call to wake_up_process() at line 58. This routine changes the state to TASK_
RUNNING and puts the thread on the kernel run queue.

 cs 1.3. ksoftirqd() .

 Figure 1.17. ps output shows kernel thread as ksoftirqd_CPU0 .

FS
IS

LTD
0

PID
4

PPID
1

PGID
1

SID
1

CLS
-

PRI
5

ADDR
-

SZ
0

WCHAN
ksofti

TTY
?

TIME
00:00:00

CMD
 ksoftirqd_CPUO

 cs 1.4. ksoftirqd_task() .

 cs 1.5. wakeup_softiqd() .

LINUX PROCESS AND THREAD 21

22 INTRODUCTION

 1.6 KERNEL SYNCHRONIZATION MECHANISM

 The Linux kernel implements many synchronization mechanisms that are applic-
able in different situations on different kernel control paths. Some of these synchro-
nization mechanisms are

 • Semaphore
 • Atomic operations
 • Disabling interrupts locally or globally
 • Spin locks

 The above synchronization mechanisms work on different principles, but the
aim is to synchronize access to kernel global data structures across different kernel
control paths and also across CPUs. Different kernel control paths are discussed in
Section 1.3 , but let us summarize here:

 • Kernel path executing system call on behalf of process
 • Kernel path executing interrupt routine
 • Kernel path executing softIRQ.

 Let ’ s see what synchronization mechanism could be best used for different
kernel control paths. Spin lock is the most commonly used synchronization mecha-
nism in different fl avors. We will discuss this in more detail in shortly. Let ’ s see how
semaphore is implemented, and let ’ s discuss its usage.

 1.6.1 Semaphore

 A semaphore is used to synchronize access to global data structure in an asynchro-
nous way. When many kernel control paths want to acquire a kernel resource, only
one gets the lock and the rest are put to sleep until the lock is released by the one
that is acquired. down() and up() are the two routines that manipulate semaphores.
When the kernel control path wants to acquire a semaphore, it calls down() . If we
are the fi rst one to acquire semaphore, we change the state of the semaphore and
get access to the shared resource. If somebody has already acquired the semaphore,
the caller has to wait on a semaphore wait queue until it is woken up by the control
path that has acquired it. up() routine is called by the kernel control path to release
the semaphore, and it also wakes up all the processes waiting on a semaphore wait
queue.

 The best example that explains the usage of a semaphore is page fault. Process
address space may be shared by many threads (LWPs) or a child process. It may
happen that page fault occurs while executing for the code area or stack area. In
this case, a page fault handling routine takes a semaphore for its kernel address
space (current → mm → mmap_sem). Then it starts to fi nd the cause of fault and tries
to get the missing page and map it to the process page table. In the meantime, some
other thread which is sharing the address space of the process which is already in
the process of fi nding page for the faulting address also faults. In this case, the
thread that has faulted later will go to sleep on mm → mmap_sem and will be woken
up once the page fault handler returns for the process that faulted fi rst.

 1.6.2 Atomic Operations

 This is mainly used to synchronously access a memory region when two or more
kernel control paths are trying to access them simultaneously. There are instructions
that may require us to test and modify a bit atomically (without being interrupted
by interrupts) on the CPU. On SMP machines, such instructions appear to be non-
atomic as both the CPU ’ s read the same value in a given memory location in two
simultaneous read cycles. If the 0 value in the memory location means acquire the
lock, both will acquire the lock and will wait for the big blast. On an SMP machine,
these instructions should be preceded by lock instruction to lock the memory bus
by any CPU until atomic instruction is executed completely.

 1.6.3 Spin Lock

 The third and most commonly used synchronization technique used everywhere
inside the kernel is spin locks . It is used to synchronize data access when kernel
control paths on two or more CPUs try to access the same memory region simulta-
neously. It differs from a semaphore in the way that the semaphore freezes the
process that wants to acquire the semaphore when it is already acquired. Spin lock,
on the other hand, does not put the process to sleep that wants to acquire the spin
lock when it is already acquired. Instead, it executes a tight loop spinning around
the lock each time atomically testing the lock, also called busy - wait loop. If it fi nds
that the lock is released, it tries to acquire it atomically. Spin lock makes use of
atomic instructions. Whichever CPU succeeds in acquiring the lock fi rst gets it, and
others continue to move in a tight loop and this continues.

 Spin locks have an edge over semaphores because we save a lot of time in
context switching when the process trying to acquire a lock is put to sleep by the
semaphore. Critical section in the kernel is refereed to code that modifi es/accesses
global data - structures accessed from a different kernel control path. Critical sec-
tions should be protected by locks. Locks held for a longer time cause other kernel
control paths to paths to wait for a longer time causing a performance hit. A critical
section of the kernel code is executed for a much shorter period of time. If the time
required in context switching is much more than the time spent in executing a criti-
cal region, semaphores penalize the performance extensively. In such cases, waiting
on a busy loop to acquire the lock gives a much better performance. Not only this,
there are other reasons to use spin lock on SMP machine instead of semaphores for
serialized access of global data. For example, data that are shared between a kernel
control path and an interrupt cannot be protected by a semaphore because it could
freeze the system by calling a schedule in interrupt routine (hypothetical case). In
the same way, a spin lock cannot be used for serialized access of data shared
between interrupt and kernel control path on a single CPU machine. This would
cause the machine to freeze because the tight loop in the interrupt routine would
never let us come out of it when a spin lock is already acquired by the other kernel
control path. For this reason, we acquire a spin lock with local interrupts disabled
when data are shared between kernel control path and the interrupt routine. This
doesn ’ t stop interrupts from occurring on other CPUs, which is OK because they
will wait in a tight loop until we release the lock. Maskable interrupts are disabled
locally by using the macro local_irq_disable() and are enabled by using
 local_irq_enable() .

KERNEL SYNCHRONIZATION MECHANISM 23

24 INTRODUCTION

 A spin lock can also be used to serialize data shared between the kernel control
path, softIRQ also. In such cases, two macros can be used to disable and enable
soft IRQ; these are local_bh_disable and local_bh_enable , respectively. Check
Section 17.2 for details.

 Different fl avors of spin_locks are shown in Figs. 1.18 and 1.19 . In some cases
we need to store EFLAGS for the CPU before disabling interrupts locally to restore
it once we enable interrupts once again as interrupts are handled in nested fashion.
Nested interrupt handling means that an interrupt is raised when another low -
priority interrupt is already being handled on the CPU. We do this because we are
not sure whether interrupts were enabled at the time we disabled them. This means
that IRQs may already have been disabled by an upper layer before we are going
to disable them.

 In such cases, spin_lock_irqsave() and spin_unlock_irqrestore() are used to
serialize data access between kernel control path and interrupt. spin_lock_irq() and
 spin_unlock_irq() are used simply when we want to serialize access of data shared
between kernel and interrupt. spin_lock_bh() and spin_unlock_bh are used to seri-
alize access of data shared between kernel and softIRQ.

 Similarly, we have the same fl avors of spin locks for reader and writer locks,
which we won ’ t discuss here in much detail. Read spin lock allows multiple readers
to get access to the shared data, whereas writer lock exclusively allows only a single
writer to access the resource. When writer lock is acquired, no one including the
reader is allowed access to the resource.

 1.7 APPLICATION INTERFACES FOR TCP / IP PROGRAMMING

 In this section we will see various interfaces that are provided to the user applica-
tion to write a client – server program. All networking applications are based on
client – server technology other than multicasting and broadcasting applications.
There may be variants to the outlook of these applications, but basically the under-
lying functionality remains the same. Normally, a server is a program that provides

 Figure 1.18. Interface to acquire spin lock.

 Figure 1.19. Interface to release spin lock.

a known service to the client program. The example is telnet, FTP, http, and so on.
Client and server are in some kind of understanding with each other for all such
services. But there is one thing in common in all the programs: client – server tech-
nology. In all the cases, a server has established its identity, which is known to the
client. The client sends out a request to the server for the service, which in turn
offers its services once they are connected to each other. We fi rst discuss simple
server application and then client application and see how they use TCP protocol
over IP to communicate with each other.

 1.7.1 Server Application

 A server program has to provide its identity to the client programs by way of listen-
ing on a specifi c port. Port is a unique number that identifi es a connection or specifi c
services on a given host. When we say identifying specifi c connection on specifi c
port it means that the server application needs to register its service with the kernel
by way of port number. When we request a kernel to register our service, a unique
port number is provided by server application to the kernel to associate its services
with this number.

 This port number should be known to the client application so that it can send
its request to the host machine running this service. Let ’ s see what all interfaces are
providing to hook its services with specifi c port number and register its service with
the kernel.

 We want to start service using TCP transport protocol (see Fig. 1.20). The fi rst
step is to make a socket() system call at line 25. The socket is a framework to com-
municate with the network protocol within the kernel. This call opens a socket in
the kernel. The arguments to the socket call are AF_INET and SOCK_STREAM.
This means that we want to open an internet family socket of type STREAM refer-
ring to TCP. The socket initializes INET socket - specifi c data structures and also
TCP protocol - specifi c data structures and a set of operations. It links the socket
with the VFS, which is then associated with the fi le descriptor and returned to the
application. Now using this fi le descriptor, the server can request to kernel any
operation on the socket.

 The next step is to bind the socket with a specifi c port number by making the
 bind() system call at line 33. This is the way we are requesting a kernel to allocate
a specifi c port number to its service. Here comes the concept of socket address
whose C equivalent is sockaddr_in . This has two fi elds: port number and IP address.
If the host machine has more than one interface, an application can request a kernel
to bind the socket with a given interface or with all the available interfaces. This
means that application may want to accept connection requests from only one
interface or from all the available interfaces. In the former case, the sin_addr fi eld
of the socket address is initialized to the specifi c IP address and the same fi eld needs
to be initialized to INADDR_ANY in the latter case, line 31. Since this is INET
address family, the sin_family fi eld of the socket address is initialized to AF_INET.
The port number to which we want to glue the services is initialized at line 32. The
socket address is now ready for registration as object sockaddr_in .

 The socket address is passed to bind() call. If the return value is less than zero,
the socket could not be bound to the given port number because there may be any
reason, including the fact that a port number may already be allocated to some
other services. Otherwise, we got the port number that was requested.

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING 25

26 INTRODUCTION

 Figure 1.20. Server program.

 Next is to request the kernel to start the accepting the connection, which is done
by making a call to listen() at line 37. A listen call will actually start the services for
the server application. Now the kernel will start accepting connection a request for
the socket. A second argument to listen() call is to accept a queue length for the
listening socket. All the established connections for the socket sit in this queue to
be accepted. Connection requests can come faster than they can be accepted by the
application. For this reason we need a queuing mechanism to buffer a pending con-
nection on the busy server.

 The fi nal step is a call to accept() systemcall at line 40. accept() call is made in
an infi nite loop. This call blocks until a new connection is available from the accept
queue. As soon as a new connection is available, application is awakened and new
connection is returned to the application associated with the fi le descriptor associ-
ated with the new socket connection.

 The returned value of the accept call is associated with a new connection and
can be used for communication between two ends. This opens a new channel
between the two ends and is differentiated from all other connections for the same
service using a remote port and an IP address. For each connection, a remote port
number or a remote IP address will be unique.

 Our serve program forks a new process for the newly accepted connection by
a call to fork() at line 43. fork() syscall returns with value zero in the child process.
In the parent process, it returns childs PID. This way we start services in the child
thread in while loop 47 – 61. We are blocked to read data over the socket by a call
to read() at line 53. Once it has read data over the socket, it writes received data
back to the sender at line 56 by a call to write() . A child thread closes a listening
socket at line 48 because additional reference was held on the listening socket when
we were waiting on accept in parent. Parent thread closes a new socket at line 62.
In the next section we will see what the client program does.

 1.7.2 Client Application

 A client program has to be sure of the server it needs to contact. To contact the
server, it has to know two things about the server:

 • Port number of the server at which it is listening
 • IP address of the host machine where this server is running

 Refer to Fig. 1.21 for a client program. The socket address consisting of these
two information C equivalent of socket address is struct sockaddr_in , as discussed
in Section 4.2 . First we make socket() call at line 27 to open TCP socket. sin_addr
fi eld is initialized to the IP address of the server and sin_port fi eld is initialized to
port number of the listening server at lines 39 and 42, respectively. Next we make
a call to connect() at line 43, to which we pass the socket address of the server. We
pass the socket descriptor to the connect() on which the connection is to be estab-
lished. The kernel fi nds route for the destination (server) and then initializes the
connection process. Once the connection is established, the connect returns.

 Once connect() returns, we are ready to communicate with the server using read
 & write calls using a socket descriptor. In the while loop 47 – 56, we are reading one
line from the standard input (keyboard) at line 49 and writing it over the socket by
a call to write at line 51. Just after writing data over the socket, we are waiting to

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING 27

28 INTRODUCTION

 Figure 1.21. Client program.

read data over the socket by a call to read at line 54. Data received are printed at
line 59. The server returns whatever it has read over the socket, which is read by
the client and displayed at standard output. This makes an echo server.

 1.7.3 Socket Options

 Sockets can be tuned as per the requirements by an applications. This facility can
save us from tuning the entire system where different applications have different
requirements. For example, telnet connection requires setting a KEEP_ALIVE
timer for the TCP connection between telnet server and client. This facility is
required because telnet connection can be open for months without any activity.
With KEEP_ALIVE socket option, the server can probe client to fi nd out if it is
alive. On the other hand, FTP doesn ’ t need this option.

 setsockopt () . There are many socket options that can be used to tune different
TCP connections. s etsockopt() is an interface that is provided to the application to
set socket options for a given connection without disturbing global settings (see Fig.
 1.22). Arguments to the system call are as follows:

 s : This is the socket descriptor as returned by the socket.
 optname : This is the name of the socket option that needs to be tuned.
 optval : This is the value of the socket option to be set.
 optlen : This is the length of the optional value that is passed to the kernel to

mark the end of option length. The reason is that optlen is a pointer to
void.

 getsockopt () . getsockopt() is an interface provided to get the value of socket
option (see Fig. 1.23). The arguments are the same as they are for setsockopt() , with
the difference being that they are used to fetch the value of the socket options.

 1.7.4 Option Values

 SO _ DEBUG . This turns on debugging at various protocol layers. This may be
useful when we want to track allocation of buffers, traversal of packets on the stack,
behavor of TCP algorithms, and so on. If the socket debug option is enabled, the
 SOCK_DEBUG macro prints messages on reception of bogus ACK for the byte
that is not yet sent (line 1908, cs 1.6).

 Figure 1.22. setsockopt() .

 Figure 1.23. getsockopt() .

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING 29

30 INTRODUCTION

 The SOCK_DEBUG macro uses the kernel printk() interface to write debug
messages. These messages can be seen through dmsg command or from fi le /var/
log/messages . We can see that SOCK_DEBUG fi rst checks if debug option is on for
the socket (sk → debug) at line 468 (cs 1.7). sk → debug is set by the application using
 setsockopt() interface.

 SO _ BROADCAST . This enables sending of broadcast messages, if this is sup-
ported by the protocol. Broadcast is not supported by TCP. Only UDP and raw
socket support broadcast. In udp_sendmsg() , if the route is of type broadcast
(RTCF_BROADCAST), it can send broadcast messages only if socket option
enables (sk → broadcast) is set (line 525, cs 1.8).

 cs 1.6. tcp_ack() .

 cs 1.7. SOCK_DEBUG() .

 cs 1.8. udp_sendmsg() .

 SO _ REUSEADDR . Whenever any server application wants to bind to a port
which is already in use by some other application on the same machine, this option
may allow us to use the same port number under certain conditions. This option
sets the reuse fi eld of the sock object.

 tcp_v4_get_port() is called inside the kernel through a bind path when
application wants to bind to a specifi c port. We traverse through the bind hash list;
and if we fi nd port already occupied and sk → reuse is set more than 1 (line 250, cs
 1.9), we can directly use the port. Otherwise, if the value of sk → reuse is set to 1
(line 252, cs 1.9), it has to go through some additional checks before getting the
port.

 SO _ KEEPALIVE . This option enables a heartbeat mechanism for TCP connec-
tion. An application like telnet may be active for months, where one end never
knows about the other end when connections are ideal. It may happen that the one
end has gone down, in which case the other end will never know. Half - connection
will unnecessarily be open, thereby occupying resources. This option keeps sending
messages to the other end once connection is idle for some time. In return, the
sending end expects acknowledgment. If acknowledgments are not received, the
connection is closed after a certain number of retries.

 When the option is enabled, tcp_set_keepalive() is called to set the keepalive
timer for TCP, and sk → keepopen is set to 1. tcp_set_keepalive() resets the keepalive
timer in case it is not already set; this is done by calling tcp_reset_keepalive_timer()
(see cs 1.10 , line 568).

 SO _ LINGER . The linger option is to enable a TCP socket to provide enough
time to send unsent data in the send queue when a socket is closed by an applica-
tion. We provide a timeout value with this option so that the kernel hangs on for
this much time before closing the socket. In this time, the TCP gets enough time to
fl ush all the data to the receiver. If timeout is not provided, the kernel waits until
all the data are fl ushed out.

 This option sets sk → linger to 1, and sk → lingertime is set to a timeout value
provided by user application. When an application issues a close() syscall an INET
socket, inet_release() is called. If a linger option is set, a linger timeout value is taken

 cs 1.9. tcp_v4_get_port() .

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING 31

32 INTRODUCTION

from sk → lingertime (cs 1.11 , line 463). Finally, a protocol - specifi c close routine is
called with a linger timeout value at line 465 (see cs 1.11).

 In tcp_close() , we check the timeout value passed as an argument to the routine.
If set, the kernel puts the process to sleep before by calling add_wait_queue() at
line 1978 (see cs 1.12). By the time we request a timeout, all data would have been
fl ushed. Once we have performed the timeout, the socket is closed.

 SO _ OOBINLINE . This option is related to a TCP urgent byte. If the option is
set, the TCP urgent byte is received inline; otherwise, it is received on different
channel as out - of - band data. The option sets sk → urginline to 1. sk → urginline is
discussed in much detail in Section 8.3.2 .

 SO _ SNDBUF . This option sets send buffer size for the socket, sk → sndbuf . This
value puts a limit on the total amount of memory allocated for the send buffer. In

 cs 1.10. tcp_set_keepalive() .

 cs 1.11. inet_release() .

case the segments get acknowledged, they stay in the send buffer and account for
the send buffer consumption.

 tcp_memory_free() is called when application data are written over the TCP
socket to check if we have enough space in the send buffer for application data. If
this returns TRUE, we can queue new data to socket ’ s send buffer, otherwise not
(see cs 1.13).

 SO _ RCVBUF . The option is the same as SO_SNDBUF with the difference that
this option sets an upper limit on the receive buffer, sk → rcvbuf . In tcp_data_queue() ,
we check if allocated memory for receive socket buffer is more than socket send
buffer limit at line 2571 (cs 1.14). If the condition is true, we try to squeeze some
memory from the receive queue by calling tcp_prune_queue() at line 2573.

 SO _ DONTROUTE . This option is mainly used by RAW sockets or UDP sockets
and sets sk → localroute to 1. If this option is enabled, the normal routing policy is
disabled for the outgoing packet. The packet will be routed only if the destination
is directly connected to the network.

 SO _ RCVTIMEO . This sets the timeout value for the socket that specifi es the
maximum amount of time the process should be blocked for an incoming event such
as the following:

 • Accept blocked for new connection on listening socket.
 • Read is blocked to receive data on the connected socket.

 cs 1.12. tcp_close() .

 cs 1.13. tcp_memory_free() .

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING 33

34 INTRODUCTION

 sock_rcvtimeo() returns a value of timeout for blocking sockets, (see cs 1.15).
 tcp_recvmsg() calls sock_rcvtimeo() at line 1488 (cs 1.16) to get a timeout value

for the socket. Once requested data are not available, tcp_data_wait() is called at
line 1639 (cs 1.16) with a timeout value returned by sock_rcvtimeo() . This puts the
process to sleep until timeout occurs or until data are received, whichever happens
fi rst.

 SO _ SNDTIMEO . This option is similar to SO_RCVTIMEO except that this sets
a timeout for receiving events on the socket. This sets a value of sk → sndtimeo .

 cs 1.14. tcp_data_queue() .

 cs 1.15. sock_revtimeo() .

 cs 1.16. tcp_recvmsg() .

 sock_sendtimeo() returns a timeout value as sk → sndtimeo for blocking sockets
(see cs 1.17).

 tcp_sendmsg() calculates records timeout value at line 1025 (cs 1.18) by
call to sock_sndtimeo() . If it fails to allocate memory for copying new data into
a network buffer (line 1068, cs 1.18), it has to wait for memory by calling wait_
for_tcp_memory() until it times out or memory is available, whichever happens
fi rst.

 1.8 SHUTDOWN

 The client – server program may be sending and receiving data from both the ends
because TCP is a fully duplex stream protocol. It may happen that one end doesn ’ t
want to send or receive any more data because it is already done. In such a case, it
will close that end of the socket. If any activity happens on that end further, the
socket will throw an error saying that operation is not permitted. The shutdown()
function shall cause all or part of a full - duplex connection on the socket to be shut
down.

 The shutdown() function takes the following arguments (Fig. 1.24).

 cs 1.17. sock_sndtimeo() .

 cs 1.18. tcp_sendmsg() .

SHUTDOWN 35

36 INTRODUCTION

 socket . This is a fi le descriptor associated with the socket.

 how . This specifi es what action needs to be taken. The values are as follows:

 SHUT _ RD . This disables reading of any more data over the socket. TCP
may be accepting data, but the application is not allowed to read data over
the socket.

 SHUT _ WR . This disables writing of data over the socket. When application
wants to send data over the socket after write side is shut down, the socket
throws an error to the application, indicating that a pipe is broken.

 SHUT _ RDWR . This disables further send and receive operations.

 1.8.1 Kernel Shutdown Implementation

 Let ’ s see how shutdown is implemented in the kernel. sk → shutdown fl ags shutdown
events. There are two fl ags here:

 • SEND_SHUTDOWN , set to disable send events.
 • RCV_SHUTDOWN , set to disable receive events.

 1.8.2 Send Shutdown

 When an application wants to send a message after the send side of the socket
is shut down, tcp_sendmsg() handles the situation. sk → shutdown has SEND_
SHUTDOWN bit set for the socket in this case. An error is initialized to E_PIPE
at line 1042, cs 1.19 . At line 1043 we check the shutdown fl ag. If the SEND_SHUT-
DOWN bit is set, we go to error handling at line 1202. It is rare that any data are
copied to the application buffer. I mean that it is rare that shutdown is called from
application when the kernel is in the process of reading data from the socket buffer.
So, we move to error handling at line 1205. Here we do some cleanup operation
and then return error number which is set to E_PIPE.

 1.8.3 Receive Shutdown

 When an application wants to receive data over a TCP socket, a kernel calls tcp_
recvmsg() . Error number is initialized to ENOTCONN . We read data in do - while
loop 1502 – 1703, cs 1.20 . In the process, we check if a shutdown bit is set for the
socket at line 1568. If so, we break. We do a cleanup operation and then return the
value of copied, which may be a positive value if there was any data copied from a
receive buffer or 0 if there was nothing copied from the receive buffer. It doesn ’ t
return an E_PIPE error instead 0. Zero return value to the application means that
nothing was there to be read from the socket.

 Figure 1.24. shutdown() .

int shutdown(int socket, int how);

 cs 1.19. tcp_sendmsg() .

 cs 1.20. tcp_recvmsg() .

SHUTDOWN 37

38 INTRODUCTION

 1.9 I / O

 In this section we discuss different system calls on Unix systems that deal with I/O.
Our discussion will be more focused on the feature that system call adds to I/O
activities. These system calls can be used to receive or send normal - or high - priority
data over the socket.

 1.9.1 read ()

 This is the simplest system call to read data over the socket. We specify a
socket descriptor as a fi rst argument, address of the location where data should
go as a second argument, and number of bytes to be read in the buffer as a
third argument (see Fig. 1.25). The system call can a block or return immediately,
depending on whether the socket is blocking or nonblocking. By default, it is block-
ing. If the socket is blocking, read blocks in case its request is not satisfi ed
completely.

 1.9.2 write ()

 This is simplest system call to send data over the socket (see Fig. 1.26). Arguments
are same as that for the read; the difference is that instead of reading, this will write
data. The blocking and non - blocking nature is the same as that for read.

 1.9.3 recv ()

 This system call would receive data over the socket with some added control (Fig.
 1.27). The fi rst three arguments are the same as that for read, with an additional
fourth argument as control fl ags . With the additional fl ag, we can just peek for the
data or can receive TCP urgent data as out - of - band data. In the latter case, the
process will never block even if the socket is blocking.

 Figure 1.25. read() .

 Figure 1.26. write() .

 Figure 1.27. recv() .

 1.9.4 send ()

 This system call would send data over the socket with some added control (Fig.
 1.28). This is the same as recv, with the difference being that this is used for sending
data instead of receiving data. The fl ags argument has the same meaning as it is for
recv.

 1.9.5 select ()

 The select system call offers more features with added complexity (Fig. 1.29). The
added feature is to do I/O multiplexing demultiplexing. With the system calls dis-
cussed so far, we can do I/O only on a single socket descriptor or fi le descriptor.
With select, we can block on multiple events for different descriptors. The events
are read, write, and exception. For each event, we have pointer to fd_set object. We
can mark the bit corresponding to the fi le/socket descriptor in fd_set object. We do
this by using macro FD_SET() . We pass pointers to fd_set for each event to select.
The fi rst argument to select is a maximum fi le descriptor number that will be one
more than the highest number received as the fi le/socket descriptor for the process.
We can also provide a timeout value as the fi fth argument. Once select returns, the
return value indicates the number of events that has occurred. We need to check
each event by using macro FD_ISSET on each descriptor to check which event has
occurred. For example, if there are data to be read on the socket and we want this
event to be notifi ed, select returns with bit set for read event. FD_ISSET() for readfs
event will return 1 for the descriptor that received data.

 1.10 TCP STATE

 TCP is a state - oriented protocol. Each TCP session maintains a state of its own.
The state of the TCP connection is a kind of marker for the protocol which decides
the behavior of the protocol at any given point of time. Each state will have a pre -
 decided set of rules that need to be followed strictly. Specifi c events can change the

 Figure 1.28. send() .

 Figure 1.29. select() .

TCP STATE 39

40 INTRODUCTION

state of the protocol, which in turn changes the next course of action. Any diversion
from the current course of action may lead to major failures caused from breaking
protocol. As we see later in the discussion, there is a way in which a connection
needs to be established initially between two TCP peers. If the protocol is not
followed as expected, the two ends keep on exchanging the connection - specifi c
packets forever, thereby causing a lot of damage to the system as well as to network
resources.

 Let ’ s see what these TCP states are. We divide the discussion into three differ-
ent categories, depending on the stage of the TCP connection:

 1. Connection initiation (active and passive)
 2. Established connection
 3. Connection closure (active and passive)

 Connection initiation (three - way handshake) is illustrated in Fig. 1.30 . We have
already discussed the client - server program in Section 1.7 . We take the same
example and see what happens when a client is trying to send a connection request
to the server.

 On a time - line diagram, the connection initiation would be as shown in Fig.
 1.31 . Connection initiation is started by the client, which invokes connect system
call. So, a client sends SYN packet to the server at time 10:07:35.210908 . The server
responds to the connection request by ACKing (acknowledging) the SYN. Finally,
the client acknowledges the SYN/ACK by sending the fi nal ACK. From Fig. 1.30 ,

 Figure 1.30. TCP three - way handshake.

 Figure 1.31. Time - line diagram for

three - way handshake.

SYN

Client

10:07:35.210908

SYN/ACK

ACK

10:07:35.210974

10:07:35.211186

Server

it is worth noting that some information is exchanged between the peers in initial
SYN and SYN/ACK packets. The information contains TCP options. Please refer
to Section 2.2 for detailed information about protocol headers. Let ’ s see how the
client and server side TCP state changes with each event.

 Figure 1.32 shows the transition of TCP states at client and server when some
event triggers. First look at client side states:

 • Initially, the client ’ s TCP is in a CLOSED state when it sends out SYN packet
to the server. This SYN packet is a connection request to the server from
client. Here the client is supposed to be doing active open.

 • After the client has sent out the SYN packet (connection request), its state
changes from CLOSED to SYN_SENT.

 • Now the client waits for the server to send ACK for the SYN sent. Once the
client receives ACK for the connection request, its TCP state changes from
SYN_SENT to ESTABLISHED.

 Handling error at client end. If the client receives an RST (reset) packet in reply
for the initial SYN sent, its state changes to CLOSED.

 Let ’ s look at the server side TCP state transition:

 • At the server side, we have a listening socket. So, the initial TCP state at the
server side is LISTENING.

 • The server receives connection request for the LISTENING socket — that is,
the fi rst SYN packet from the client. The server sends out an SYN/ACK
packet in response to the client ’ s connection request. The server side TCP
state doesn ’ t change because the connection request is still pending to be
completed until the server receives the fi nal ACK from the client. This

 Figure 1.32. TCP states during three - way handshake.

SYN

Client

10:07:35.210908

CLOSED
LISTENING

SYN_SENT

SYN_RCVD
ESTABLISHED

ESTABLISHED

SYN/ACK

ACK

10:07:35.210974

10:07:35.211186

Server

TCP STATE 41

42 INTRODUCTION

connection request remains open until the fi nal ACK is received from the
client and is queued in the SYN queue for the listening socket. No new socket
is created at this point in time.

 • The fi nal ACK is received from the client. So the three - way handshake is
completed here. A new socket is created for the connection request, which is
in the SYN_RECV state. Before any event occurs, the socket is further pro-
cessed and its state is changed to ESTABLISHED because both sides have
agreed completely for this connection and negotiation is completed between
client and server.

 Once the connection is in an established state, both ends can exchange data
until one of the ends decides to close the connection. Let ’ s see what happens when
one of the ends does an active close. The client is 192.168.1.4 and the server is
moksha. The client sends 100 bytes of data to the server and then does an active
close to the connection. Figure 1.33 shows the tcpdump output of the life cycle of
the TCP connection.

 We have already discussed three - way handshake, so we won ’ t discuss packets
1, 2, and 3. Packet 4 is 100 bytes of data from a client which is ACKed (acknowl-
edged) by a server in packet 5. Thereafter, the client closes the connection and
hence sends FIN packet (packet 6) with 1 byte of data. The server acknowledges
byte 101 in packet 7 and then sends out an FIN packet with 1 byte (packet 8).
Finally, the client that did the active close gets a fi nal FIN with ACK from the server.
The client sends the fi nal ACK to the server. Now we see how the state of TCP
connection changes with each event during close.

 Let ’ s see how the state transition happens at the two ends of the TCP connec-
tions. We take the same example where the client is writing data to the server; and
after the write of 100 bytes is over, the client closes the connection (Fig. 1.34).
From Fig. 1.35 we can see that once the client does an active close, it sends out a
FIN segment to the other end and its state changes from ESTABLISHED to FIN_
WAIT1. So, the FIN_WAIT1 state indicates that FIN still needs to be acknowl-
edged. At the server side, FIN is received so it knows that that the client wants to
close the connection in a normal way. On reception of FIN for the connection,
the state of server side TCP changes from ESTABLISHED to CLOSE_WAIT. In
response to the FIN received, the server can do two things here:

 Figure 1.33. Complete life cycle of TCP connection.

1 09:46:52.920305 192.168.1.4.33002 > moksha.5000:S 2135112431:2135112431(0) win 49640

<mss 1460,nop,wscale 0,nop,nop,sock OK> (DF)

2 09:46:52.920364 moksha.5000 > 192.168.1.4.33002:S 4191973139:4191973139(0) ack 213511243 2 win 5840

< mss 1460,nop,sock OK,nop,wscale 0> (DF)

3 09:46:52.920556 192.168.1.4.33002 > moksha.5000: ack 1 win 49640 (DF)

4 09:46:52.920774 192.168.1.4.33002 > moksha.5000: P 1:101(100) ack 1 win 49640(DF)

5 09:46:52.920802 moksha.5000 > 192.168.1.4.33002: ack 101 win 5840(DF)

6 09:46:52.920840 192.168.1.4.33002 > moksha.5000: F 101:101(0) ack 1 win 49640(DF)

7 09:46:52.956438 moksha.5000 > 192.168.1.4.33002: ack 102 win 5840(DF)

8 09:46:52.768805 moksha.5000 > 192.168.1.4.33002: F 1:1(0) ack 102 win 5840(DF)

9 09:46:52.769001 192.168.1.4.33002 > moksha.5000: ack 2 win 49640(DF)

 Figure 1.34. Four - way connection closure process.

FIN

Client (active close)

09:46:52.920840

09:46:52.956438

09:47:32.768805

09:47:32.768805

CLOSED
CLOSED

LAST_ACK

FIN_WAIT1

FIN_WAIT2

TIME_WAIT

CLOSE_WAIT

ESTABLISHED
ESTABLISHED

FIN/ACK

ACK

ACK

Server (passive close)

 Figure 1.35. TIME_WAIT2 state is skipped as ACK is piggybacked with FIN segment.

FIN

Client (active close)

CLOSED
CLOSED

LAST_ACK

FIN_WAIT1

TIME_WAIT

CLOSE_WAIT

ESTABLISHED
ESTABLISHED

FIN/ACK

ACK

Server (passive close)

 1. It sends out ACK in reply to the FIN received from the client & send out
FIN segment as another packet (Fig. 1.34).

 2. It sends out FIN with ACK (Fig. 1.35).

 In the former case, the state of the server side TCP doesn ’ t change after it has sent
out ACK. But the client is actually waiting to receive a FIN segment from the server.

TCP STATE 43

44 INTRODUCTION

The client receives ACK from the server in response to its FIN. This event changes
the client side TCP state from FIN_WAIT1 to FIN_WAIT2. So, the FIN_WAIT2
state indicates that FIN has been acknowledged but is waiting for the FIN segment
from the peer. In the latter case, the FIN_WAIT2 state is skipped at the side that
has done an active close. Finally, the server sends out a FIN segment to the client
so that the server side TCP state changes from CLOSE_WAIT to LAST_ACK,
which means that now the server is waiting for the fi nal ACK from the client that
would be acknowledgment for the server side of FIN. On reception of FIN from
the server, the client sends out a fi nal ACK to the server and the server goes to the
TIME_WAIT state. The server receives the fi nal ACK form the client and goes to
the CLOSED state. Now when does the client close the connection that is in the
TIME_WAIT state?

 TIME _ WAIT . The TCP side that has done an active close goes to the TIME_
WAIT state fi nally before going to the CLOSED state. It remains in the TIME_
WAIT state for some defi nite time which we discuss later before it goes to the
CLOSED state. It is primarily because this side of the TCP connection is the last
to send out the ACK segment to the peer. After sending out the fi nal ACK, it has
to wait to make sure that the fi nal ACK is received by the peer. It might happen
that the fi nal ACK is lost and the peer retransmits the FIN once again, thinking
that its FIN is lost because it has not received the fi nal ACK. So, someone has to
be there at the active close end to respond to such retransmissions. If the TIME_
WAIT state does not exist and the active close end does not bother to wait any
longer for the fi nal ACK segment status, it might mess up the closing process
because a response to the retransmitted fi nal FIN from the passive close end will
be an RST segment.

 This is one of the reasons that we need to have the TIME_WAIT state for the
TCP that did the active close.

 Other reasons are more obvious which might happen rarely but nevertheless
cannot be ignored. Suppose the server does an active close and does not go into the
TIME_WAIT state. In the meantime, the client crashes and reboots. Immediately
after reboot, the client tries to connect to the server using the same port number
that it used for the previous connection. It gets the connection. The two ends start
communicating with each other. The sequence number used by the client in the
current connection overlaps with the previous connection by coincidence. If there
is some TCP segment from the previous connection held with some router and it
reaches the server (delayed segment), that this is surely to cause a mess up with the
data integration. If we wait here in the TIME_WAIT state, the server refuses the
connection request from the client because it fi nds a TCP connection for the qua-
druplet (local IP, local port, remote IP, and remote port) which is in the TIME_
WAIT state. Make sure that no connection is established with the client using a
port number for which the TCP connection exists in the TIME_WAIT state, thus
avoiding any unforeseen disaster.

 Consider another case where a client does an active close and does not go into
the TIME_WAIT state. In this case, it might reuse the same port as used by the
previous connection to connect to the server. This may again cause the same
problem. This problem may be curbed if the client has entered the TIME_WAIT
state. Some of the implementations may allow reuse of the port that is already in
use by a TCP that has entered TIME_WAIT state by deciding on the sequence

number for the new connection. Here we need to make sure that the new connec-
tion gets the sequence that will never overlap with the sequence number from the
previous connection. So, in case the new sequence number obtained is overlapping
with the previous connection that has gone into the TIME_WAIT state, we add a
number to the current selected sequence number that makes it greater than the
maximum sequence used by the previous connection and reuse the port (RFC 1185).
This makes the connection unique, and delayed segment if any from the previous
connection can be taken care of. Please refer to Section 4.6.7 for implementation
of the logic in Linux.

 Now we should be wondering for how long the connection should go into the
TIME_WAIT state? RFC 793 states some of the fi xed values for the TIME_WAIT
state duration. Any fi xed values for this may cause overestimating or underestimat-
ing the values. For example, if we are in a local subnet and we go into the TIME_
WAIT state for a fi xed duration of 1 minute, this causes an unnecessary wait period
because any delayed segment from the last connection will not get held up for so
long. On the other hand, if we keep the TIME_WAIT duration on the lower side
(few seconds), and the destinations are many routers away (say internet), we might
end up waiting for the disaster to happen. So, we need to decide upon TIME_WAIT
duration dynamically for each connection, depending on how many routers a packet
has to pass to reach to the destination. This is decided by the number of hops. So,
 msl (maximum segment lifetime) is the correct parameter to decide upon the
TIME_WAIT duration. msl is the maximum lifetime of the segment in the internet
after which it should be discarded. So, this is updated at equal intervals and aver-
aged out each time because for the same destination, routes may differ at different
times. The msl for the packet is a function of the hops fi eld in the IP header. For
more details refer to Section 2.11 .

 1.10.1 Partial Close

 Until now we have seen the case where data fl ow is in one direction and the end
that is sending data initiates the close when it has sent all the required data. Now
we will look at the case where the connected TCP ends are sending data whereby
each end can notify its peer that the data transfer is over from their side. This means
that application can do partial close from its end when it thinks that it is done with
sending all the data it had and we will see how the other end is notifi ed in such
case.

 We take an example where both client and server are sending data to each
other. The TCP end that is done fi rst with sending all its data will close the write
end of the socket. It means that it won ’ t send any more data to its peer. At the same
time it can still continue to receive data from its peer until the peer closes its write
side. We take client and server programs that will use shutdown.

 A client issues a connect to the server; and after getting connected, it enters a
loop where it issues three writes of 1024 block of data over the TCP connection to
the server and then does a partial close to close its write end. At the same time it
continues to receive data from the server until the server is done. Finally, the client
doesn ’ t issue any close on the socket. The client does close the write end of its side
by issuing shutdown() with the SHUT_WR option.

 The server accepts the connection request from the client by issuing accept()
and gets a new socket for this connection. It then enters a loop for fi ve iterations

TCP STATE 45

46 INTRODUCTION

of data transfer. At each iteration it reads data; and if the read returns 0, it knows
that the client will send no more data. So, it doesn ’ t issue any additional reads. At
the same time it continues to send data in a block of 1024 bytes. After issuing 5
writes of 1024 bytes each, the server issues a close from its side, which is an indica-
tion for the client that the server is done with sending data. After this close, both
ends are done and fi nally the sockets at both client and sever close the connection
fully.

 Let ’ s study the whole phenomenon of data transfer and TCP signaling with the
help of the tcpdump output when the client and the server are transacting data.
Figure 1.37 is the tcpdump output for the entire transaction until both the ends are
fi nally closed. The client is 192.168.1.4 and the server is moksha. The fi rst three
packets are nothing but a three - way handshake when the connection is initiated.
Packets 4 and 5 are a fi rst write of 1024 bytes issued by client and acknowledgment
for this write from server. Packets 6 and 7 are a repeat of packets 4 and 5; but this
time, write is issued from the server side, and this write is acknowledged by the
client. This continues to happen from both the ends until the client and server have
issued three writes and received acknowledgment for all the writes (until packet
12). Packet 13 can be seen as a client sending FIN to the server. This means that
after the third write is over, the client has closed its write end by issuing shutdown.
This shutdown generates FIN from the client ’ s side TCP. Packets 14 and 15, each
consisting of a 1024 - byte block, are writes issued by the server. After these two
writes, the server decides to close the connection. So, FIN is combined with the fi nal
TCP data segment; that ’ s why FIN appears in packet 15. The client acknowledges
the FIN segment, and the connection is closed at both ends.

 Let ’ s map the transaction to the time - line diagram (Fig. 1.36).

 Figure 1.36. Time - line diagram for client that issues shutdown on write.

FIN

Client (active close)

11:00:21.629451

11:00:21.630857

11:00:21.630925

11:00:21.632744

shutdown

CLOSED

CLOSED

LAST_ACK

FIN_WAIT1

FIN_WAIT2

TIME_WAIT

CLOSE_WAIT

ESTABLISHED ESTABLISHED

FIN/ACK 4097:5121(1024) ack 3074

FIN 3073:3073(0) ack 3073

ACK ack 5122

ACK 307 3:4097(1024) ack 3074

Server (passive close)

Write 1024 Bytes

Write 1024 Bytes,
dose

 1.10.2 tcpdump Output for Partial Close

16. 11:00:21.632744 192.168.1.4.34289 > moksha.5000: ack 5122 win 49640 (DF)

15. 11:00:21.630925 moksha.5000 > 192.168.1.4.34289:FP 4097:5121(1024) ack 3074 win 14336 (DF)

14. 11:00:21.630857 moksha.5000 > 192.168.1.4.34289: P 3073:4097(1024) ack 3074 win 14336 (DF)

13. 11:00:21.629451 192.168.1.4.34289 > moksha.5000: F 3073:3073(0) ack 3073 win 49640 (DF)

12. 11:00:21.628420 moksha.5000 > 192.168.1.4.34289: P 2049:3073(1024) ack 3073 win 14336 (DF)

11. 11:00:21.627284 192.168.1.4.34289 > moksha.5000: P 2049:3073(1024) ack win 49640 (DF)

10. 11:00:21.626389 192.168.1.4.34289 > moksha.5000: ack 2049 win 49640 (DF)

9. 11:00:21.625390 moksha.5000 > 192.168.1.4.34289: P 1025:2049(1024) ack 2049 win 11264 (DF)

8. 11:00:21.625369 192.168.4.34289 > moksha.5000: P 1025:2049(1024) ack 1025 win 49640 (DF)

7. 11:00:21.624478 192.168.1.4.34289 > moksha.5000: ack 1025 win 49640 (DF)

5. 11:00:21.623414 moksha.5000 > 192.168.1.4.34289: ack 1025 win 8192 (DF)

6. 11:00:21.623443 moksha.5000 > 192.168.1.4.34289: P 1:1025(1024) ack 1025 win 8192 (DF)

4. 11:00:21.623359 192.168.1.4.34289 > moksha.5000: P 1:1025(1024) ack 1 win 49640 (DF)

3. 11:00:21.622448 192.168.1.4.34289 > moksha.5000: ack 1 win 49640 (DF)

2. 11:00:21.622255 moksha.5000 > 192.168.1.4.34289: S 1884652429:1884652429(0) ack 960507179 win 5840
< mss 1460, nop, nop, sack OK, nop, wscale 0 > (DF)

1. 11:00:21.622198 192.168.1.434289 > moksha.5000: S 960507178:960507178(0) win 49640<mss1460, nop,
wscale 0, nop, nop, sack OK > (DF)

 Figure 1.37. tcpdump output to illustrate TCP shutdown process.

TCP STATE 47

48 INTRODUCTION

 1.11 SUMMARY

 When an application sends out TCP data, the application ’ s associated kernel thread
may return after transmitting data completely. TCP data may be queued at different
levels such as socket ’ s send queue, device queue (TOS), and CPU output queue.
This data are transmitted asynchronously by kernel timers or Tx softIRQ.

 TCP data are processed in two steps: The packet is queued to CPU ’ s input
queue and is processed completely later on by Rx softIRQ. SoftIRQ may execute
in interrupt context or may also be executed by a kernel thread.

 A network - specifi c kernel code can be found under net directory of the kernel
source tree. An IPv4 - specifi c code can be found under ipv4 subdirectory of net . A
packet - scheduling - specifi c code can be found under sched subdirectory of net
directory.

 Linux kernel 2.4 and below are non - preemptive kernels; as a result, they are
not suitable for real - time applications that require low latencies and timeliness for
execution.

 A system call is implemented by raising soft interrupt int 0x80 . This interrupt
switches from user to kernel mode and switches processor privilege to super - user
mode where kernel code and data structure can be accessed on behalf of applica-
tion. A kernel searches sys_call_table to execute systemcall. sys_call_table maps a
system call number to systemcall callback routines.

 Each Linux process has a kernel thread and kernel mode stack. A processor
switches to kernel mode stack when the process enters a kernel via systemcall. The
kernel thread is a scheduling entity for the kernel. The pthread library on Linux
creates an LWP for the process. These LWPs share resources with the parent
process including process address space. All the lightweight processes (LWP) as
scheduling entities inside the kernel.

 Threads created in the kernel cannot be preempted unless they yield on their
own. Kernel threads can be seen with ps command and usually start with the letter
k, like kfl ushd .

 Linux implements atomic operations, semaphores, and spin locks as a synchro-
nization mechanism. Spin locks are the most extensively used synchronization
mechanism to synchronize data access between two CPUs, kernel control path and
softIRQs, kernels, and interrupts and have a performance edge over semaphores.

 Applications communicate over the TCP/IP protocol by way of client – server
technique. These programs use a socket interface to open connection and commu-
nicate over the socket using different I/O interfaces provided to the application
programs.

 TCP is a connection - oriented protocol that maintains state. To start a connec-
tion, TCP completes a three - way handshake and attains an established state. TCP
closes connection cleanly by way of a four - way handshake. It maintains state at each
step of connection initiation and connection closure stages and defi nes action for
each state.

49

2

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 PROTOCOL FUNDAMENTALS

 The TCP/IP protocol suite works on an OSI networking model. Each layer has its
own functionality defi ned very clearly. TCP is a transport layer protocol, and IP is
a network layer. TCP manages connection and data integrity, whereas IP is respon-
sible for delivery of data to the correct destination. The link layer manages the
transmission and reception of frames by converting digital data into signals and
converting signals into digital data. The physical medium actually carries all the data
and control signals in the form of voltage or waves.

 Irrespective of physical medium or the link layer, TCP and IP core functionality
remain unchanged even though TCP may tweak around with congestion algorithms
for wireless mediums. TCP functionality can be divided into two parts: connection
management and reliable data transfer. TCP connection management is discussed
in detail in Section 4.4 . TCP is a heavyweight protocol that requires acknowledg-
ment of each byte it has transmitted for reliability. This may overload the network
in case a huge number of small packets are generated. Then there are situations
where loads of data need to be transmitted with maximum throughput utilizing
maximum network bandwidth. There may be situations where packets get lost
because of network congestion. In all these different situations, TCP is adaptive
and alert and takes corrective action to minimize losses and maximize throughput.
TCP also uses extensions to normal protocol for enhanced performance and
reliability.

 IP, on the other hand, carries TCP data over the internet. IP has many function-
alities such as routing, sending back error message to the originator, packet encryp-
tion decreption, NAT, masquerading, and so on. Routing is the most basic

50 PROTOCOL FUNDAMENTALS

functionality that IP offers. There are thousands of routers that make up the inter-
net. Routing information is maintained by each router and is updated regularly
with the help of routing daemons implementing routing protocols. IP also needs to
take care of the erroneous situations such as packets never reaching the destination
and living in the internet forever. The frame size that can be transmitted over a link
is limited by the physical capability of the medium and is called MTU. This limit
may vary over the internet. Packets bigger than the MTU for the link are frag-
mented by IP which are reassembled at the fi nal destination. Errors are inevitable
is such a vast internet, and ICMP is widely used in the internet to report common
errors.

 In this chapter we learn all about TCP/IP protocols in much detail.

 2.1 TCP

 TCP is a connection - oriented communication protocol. It maintains the state of the
connection at any given point of time. The behavior of TCP protocol changes with
change in the state. There is a well - defi ned set of actions for each TCP state which
is followed to maintain the integrity of the connection between the two ends. The
connection is initiated by exchanging a set of messages between the two ends, and
the same way connection is closed. We learn more about it in the later chapters.
TCP is considered as a reliable protocol because it keeps account of each byte of
sent data received by the other end. Any loss of data is detected and is dealt with
care by TCP. Since TCP is a connection - oriented protocol, each end needs to take
care of the other end to better understand each other ’ s problem. Any shortage of
resources in terms of memory/CPU at one end is communicated to the other end
so that the other end takes corrective action to slowdown the rate of data transac-
tion. This avoids the duplication of efforts and unnecessary network traffi c. For
doing this, TCP implements the sliding - window algorithm, which we will study in
this chapter. TCP not only sends/receives data reliably but also works out the best
way to avoid any duplication of efforts because of loss of data. So, it works in con-
junction with the network layer to fi nd out the network traffi c situation. Depending
on the traffi c conditions, TCP makes a decision on whether to send data in smaller
or bigger chunks. This is known as the congestion control mechanism. Without this
provision, TCP would end up increasing network congestion in the case of heavy
network traffi c and at the same time reduce the throughput when network has high
bandwidth to accommodate high data transfer rate. There are many algorithms
designed for congestion control which we discover in this chapter. All this makes
TCP a more reliable, more stable, and more controlled protocol to be used most
extensively in the internet technology.

 2.1.1 TCP Header

 The TCP segment contains a TCP header and the TCP data (payload). The header
contains protocol control information, connection - specifi c information and fi eld to
validate integrity of the TCP header. Normally, the TCP header is 20 bytes long (Fig.
 2.1), but there are TCP options in the header which makes TCP header length vari-
able. We will discuss fi elds of the TCP header in the fi rst 20 bytes, and then we will
discuss TCP options.

TCP 51

 Figure 2.1. TCP header.

52 PROTOCOL FUNDAMENTALS

 Port Numbers. TCP connection is identifi ed by a quadruplet — that is, destina-
tion IP, destination port, source port, and source port. The fi rst two fi elds of the TCP
header contain source port (0 – 15 bits) and destination port (16 – 31 bits) numbers,
each of 16 bits. These port numbers uniquely identify sockets at each TCP - connected
end.

 Sequence Number. This is a 32 - bit (32 – 63) fi eld in the TCP header. Sequence
number indicates the offset of the fi rst byte in the byte stream that the sending TCP
intends to send in the current TCP segment to the receiving TCP. This doesn ’ t refl ect
the number of bytes transmitted by the sending TCP. The sequence number in the
header fi eld is an offset from the initial sequence number selected for a given con-
nection. So, offset is the actual indication of the number of bytes already transmitted
by the sending TCP +1. The initial sequence number, ISN, is generated at each end
of the connecting TCP ends. The ISN is unique for a given connection. The primary
reason to keep it unique for a given connection is to avoid any misunderstanding
any delayed TCP segment from the previous connection as part of the new connec-
tion that is reincarnated of the previous connection. Please refer to Section 2.8.4
(TCP close) for more details. SYN and FIN segments are considered to carry one
byte. This fi eld gets rolled over after reaching 2 32 − 1. Sequence number helps in
maintaining TCP data integrity and identifying the retransmissions that will be dis-
cussed later in this chapter.

 Acknowledgment Number. This is a 32 - bit (64 – 95) fi eld in the TCP header.
TCP is a reliable protocol, so it needs to keep track of each byte transmitted/
received. Acknowledgment number helps TCP doing this. The receiving TCP
acknowledges the last byte in the stream of bytes received from the sender. Suppose
the sender sends n bytes of data with the sequence number s . On reception of this
TCP segment, TCP acknowledges with acknowledgment number n + s + 1, which
means that it has received n bytes of data and now it is waiting for the n + 1 byte.
Out - of - sequence TCP segments are not acknowledged until the gap is fi lled. For
example, if the sending TCP sends out three TCP segments of 10, 20, and 30 bytes
of data in the same sequence and all the segments reach the destination except for
a segment with 20 bytes of data which is lost, the receiver TCP acknowledges only
10 bytes of data. Because of this, the sending TCP will eventually come to know that
one of the segments is lost and thus it will retransmit those segments. At the same
time, duplicate TCP segments are also not acknowledged. We will take the same
example to explain the phenomenon. If, because of some reason, the segment with
20 bytes is not lost but is stuck at some router on its way to the destination and is
released after the sender has already retransmitted this segment and receiver has
acknowledged all the three segments, the segment is either discarded or is replied
back with latest acknowledgment number.

 Header Length. This is 4 - bit fi eld in the TCP header. TCP header is normally
20 bytes without any TCP options. With the TCP options in place we never know
the exact length of the TCP header. For the same reason we have the fi eld. The fi eld
indicates the number of words that comprise of TCP header. So, the maximum TCP
header length that we can have is restricted to 60 bytes.

TCP 53

 Unused Field. A 6 - bit fi eld (100 – 105) is still unused and is saved for future
use.

 TCP Flags. This is a 6 - bit fi eld in the TCP header. Each bit in this fi eld repre-
sents a TCP fl ag. These fl ags are in the order URG|ACK|PSH|RST|SYN|FIN.

 URG : This indicates that there is an urgent pointer set and we need to check
urgent pointer fi eld to fi nd the address of the urgent pointer.

 ACK : This indicates that this TCP segment is acknowledgment by the sender.
If this fi eld is set, we check the acknowledgment number fi eld of the TCP
header. Except for the fi rst SYN segment, all the TCP segments have this
fi eld set because we are losing nothing by doing this.

 PSH : This indicates that the sender wants these data to be consumed on priority
basis.

 RST : This indicates that the sender wants to close the connection without any
formal handshake. This bit is set by the TCP when it wants to inform the
other end that the TCP segment is no more valid. For example, if the host
receives a connection request for which it doesn ’ t have any listening socket,
it generates an RST TCP segment in response.

 SYN : This indicates that the TCP segment is being exchanged between the two
ends trying to synchronize at the time of connection initiation.

 FIN : This indicates that one of the TCP wants to close the connection.

 Window Size. This is a 16 - bit fi eld in the TCP header. TCP detects resource
crunch of its peer with the help of this fi eld and acts accordingly. The fi eld indicates
the receive buffer size available at any point of time. The receive buffer is consumed
when data are received and is vacated as these data are processed and are consumed
by the application. If the application is not able to consume the data from the receive
buffer as fast as it is received, the receive buffer gets full and eventually the window
size also reduces to 0. When the sender gets this information, it stops sending any
more data until further notice of window size is advertised by the receiving end.
Each TCP peer declares its window size at the time of synchronisation (connection
initiation). We take this up in Section 2.6 (sliding window).

 Checksum. This is a 16 - bit (128 – 143) fi eld in the TCP header. This is the fi eld
used by the receiver to verify that the TCP segment it has received is exactly the
one sent by the valid sender. This covers the TCP header and the payload. This way
we make sure that the correct TCP segment is being received. This is calculated with
the following algorithm: Take TCP header + payload as a stream of a 16 - bit word.
Sum up all 16 - bit words and take 1 ’ s complement of this number. This is the fi nal
TCP checksum. At the receiving end, the same thing is repeated. The fi nal value
obtained at the receiving end should be all 1 ’ s in 16 - bit number 2 16 − 1.

 Urgent Pointer. This is a 16 - bit (144 – 159) fi eld in the TCP header. This is the
offset from the sequence number in the current TCP segment where the urgent data
reside and need to be processed at the earliest. This fi eld is set only if the URG fl ag
is set in the TCP header. This is discussed in Section 11.7 .

54 PROTOCOL FUNDAMENTALS

 2.2 TCP OPTIONS (RFC 1323)

 At the time when TCP was fi rst designed, future requirements were not very well
defi ned. So, TCP was designed in a very fl exible way by introducing options in addi-
tion to the basic functionality in order to keep the basic functionality untouched
when additions are made to it. Basic TCP works fi ne with fi rst 20 bytes of informa-
tion provided in the TCP header. There are continuous efforts to enhance the per-
formance and reliability of TCP with time. RFC 1323 and 793 provide specifi cations
and need for the TCP options in detail. In this section we will cover only the descrip-
tion of the TCP options, and details will be covered in the later sections. Extended
TCP header with options would be more than 20 bytes and less than 60 bytes as
shown in Fig. 2.2 . Four - bit length fi eld in the TCP header indicates the total length
of the TCP header. So, if the value of the fi eld is greater than 20, it means we need
to check for additional TCP options.

 There is a standard format for TCP optional header to properly identify the
options. The basic format of the TCP options header contains three fi elds (Fig.
 2.3):

 • Kind
 • Length
 • Value

 Kind: This fi eld identifi es the TCP option. Each option is assigned a specifi c
number.

 Length: This indicates the length of the TCP optional header.
 Value: This contains the actual TCP option value.

 There are two special formats for TCP options:

 • End of Option List. This is a 1 - byte fi eld with value 0. It indicates that there
are no more options.

kind = 0

 Figure 2.2. TCP header with options.

 Figure 2.3. TCP option format.

 • No Operation. This is a 1 - byte fi eld with value 1. It indicates that there is no
option here. It is used to pad the fi elds for memory alignment purposes.

kind = 1

 2.2.1 mss Option

 Maximum segment size (mss) is a mere refl ection of maximum size of the TCP
payload that can be accepted by the remote host. mss is a function of the maximum
transmission unit (MTU), which is a property of the link layer. So, TCP has to work
in coordination with the IP layer to arrive at this value. It is the IP layer which fi nds
out the lowest MTU for the internet path (MTU discovery, RFC 1191). RFC 793
specifi es that standards to arrive at the send and receive mss for TCP. The mss option
is always exchanged with the TCP SYN segment at the time of connection initializa-
tion. The idea of exchanging mss information is to improve the performance of TCP.
In the case where sending TCP can send more than the receiving end can accept,
the IP datagram will be fragmented at the IP layer. Each fragment is now transmit-
ted with the header overhead consuming the bandwidth. If any of the fragment is
not received or lost, the entire TCP segment needs to be retransmitted hitting the
throughput. On the other hand, if the sender TCP is generating smaller TCP seg-
ments with default mss (536 bytes) where it is capable of sending bigger segments
and the other end is also capable of receiving bigger TCP segments, TCP will be
operating at lower throughput and hence low performance. Format for the mss
option is shown in Fig. 2.4 .

 2.2.2 Window - Scaling Option

 RFC 1323 provides specifi cation for the Window scaling option. Window size is
exchanged between connected TCP peers at the time of synchronization. It indicates
the receive buffer size of the receiving TCP end. The window size in the TCP header
is a 16 - bit fi eld. Any TCP can advertise a maximum of 2 16 bytes (i.e., 65,536), even
though it has more resources. In Section 2.7 we will study how window size plays
role in deciding throughput of the TCP. In short, lower window sizes will restrict
TCP throughput to lower value with high rtt and high bandwidth networks. With
the window - scaling option, TCP can advertise window sizes as high as 30 bits in size.
The format for the option is shown in Fig. 2.5 . It is a 3 - byte header identifi ed by
kind with value 3. The value in the window - scaling header is a shift count by which
the actual window size in the TCP header should be left shifted to get the fi nal
window size. For example, if the shift count is 2 and the actual window size from
the TCP header is 2 16 , the fi nal window size will be calculated as

 Figure 2.4. mss option format.

TCP OPTIONS (RFC 1323) 55

56 PROTOCOL FUNDAMENTALS

 Final window size = <<() () >> −()()2 2 2 16 216 16

 which makes the new window size as 2 18 . Now that the window size cannot exceed
2 31 , the value of the shift count in the window - scaling option should not exceed
14.

 2.2.3 Timestamp Option

 TCP needs to accommodate more changes with fast changing network speeds to
maintain high performance and reliability as well. Timestamp option is used for both
improving the reliability and performance. RFC 1323 provides specifi cation for the
timestamp TCP options. TCP uses this option to average out rtt for the entire life
cycle of the TCP connection. At the same time, this option is used to implement the
PAWS algorithm for reliability. PAWS stands for protection against wrapped sequence
numbers . TCP data corruption may occur if the delayed TCP segment is confused
with the in - sequence segment when the sequence number has wrapped in the case
of high speed of networks. The timestamp option is helpful in detecting such delayed
TCP segments. Figure 2.6 shows the format of the timestamp optional header.

 The timestamp option is identifi ed by kind as 8, and the total length of the
timestamp option is 10. There are two timestamp fi elds, each of size 4 bytes. The TS
value contains the sender TCP ’ s timestamp, and the TS echo reply contains the value
of the sender ’ s timestamp (TS value fi eld) copied by the receiver in the ACK
segment.

 The timestamp option is agreed upon at the time of connection initialization.
The fi rst SYN packet must contain this option, if the connection initiator wants
timestamp option. SYN/ACK should contain this option if:

 1. It has received the timestamp option in the SYN segment and it supports the
timestamp option.

 2. It has not received any timestamp option from the connection initiator but
it wants the timestamp option to be active for the connection.

 The calculation is simple: The sender sends out its timestamp in the TS value fi eld,
and the receiver copies this value in the TS echo reply fi eld while ACKing this
segment. The original sender calculates tss by taking the difference of the current
timestamp and the timestamp in the TS echo reply fi eld of the ACK segment.

 Figure 2.5. Window scaling option format.

 Figure 2.6. Timestamp option format.

 2.2.4 Selective Acknowledgment Option

 Receiver TCP acknowledges every in - sequence data segment in a normal way as
explained in Section 2.3.1 . There is a provision in the TCP to identify any out - of -
 sequence data segment (RFC 793). On reception of any out - of - sequence data, the
receiving TCP gets an indication of a lost segment probably due to the network
congestion. In that case, it acknowledges the last in - sequence segment arrived. On
reception of such a sender, the TCP gets an indication of data loss and it knows that
data segments beyond acknowledged sequence number are lost; then it retransmits
the entire data from the sequence number identifi er in the acknowledgment fi eld
of the receiver, even though unacknowledged data segments are queued up at the
receivers end. This causes a drop in the TCP ’ s performance because it has to retrans-
mit entire data beyond the last acknowledged sequence number. RFC 1072 specifi es
standards to selectively acknowledge the lost data with selective acknowledgment
TCP option. The option supplements the existing acknowledgment fi eld in the TCP
header. If the receiver fi nds a hole in the received TCP segments, it sends the last
in - sequence TCP segment received in the acknowledgment fi eld in the TCP header
and then sends the fi rst offset of the fi rst byte received as out - of - sequence TCP data
segment with length of the data segment received as TCP - selective acknowledgment
option. So, sender TCP knows which data segment is lost and it retransmits only
those segments. For example, receiver TCP received in - sequence data segments until
sequence number X and then received the next data segment starting at sequence
number X + n of length m bytes. So, there is a hole of n bytes in the stream of data
received starting from sequence number X . This is reported to the sender by the
way of selective acknowledgment option. The receiver sends ACK for last in -
 sequence data X + 1, and in the selective acknowledgment header it sends X + n
with block length of m . So, the sender knows that it has to retransmit the blocks of
data of length m bytes that start from sequence number X + n . The selective acknowl-
edgment TCP option should be exchanged at the time of connection synchroniza-
tion (in SYN packets). If either of the peers doesn ’ t support this option, the
SACK - permit option is discarded for the connection. The SACK - permit option has
a format shown in Fig. 2.7 .

 Once both the sides agree for the selective acknowledgment option, the receiv-
ing TCP can send SACK whenever it receives out - of - sequence data in the format
shown in Fig. 2.8 . The kind for the SACK option is 5 and its length is variable, which
means it can hold information about more than one hole in the stream of bytes
received. There are two fi elds for each SACK block that will have information about
one out - of - sequence segment.

 Figure 2.7. SACK option type 8 length.

 Figure 2.8. SACK option format.

TCP OPTIONS (RFC 1323) 57

58 PROTOCOL FUNDAMENTALS

 Start Sequence: This is the start sequence number of the contiguous blocks of
data segment received (SACK block).

 End Sequence: This is the end sequence of the contiguous block of data segment
received (SACK block).

 There may be many such TCP SACK blocks selectively acknowledging noncontigu-
ous data blocks, with each block having in - sequence data. For a better understand-
ing of the SACK option, lets take small example where sender TCP has sent 12 data
segments each of length 1 k. Figure 2.9 shows the queuing of the segments at the
receiving end with some of the intermittent segments missing.

 s1, s2, s3, and s4 are the only segments that have arrived in sequence. After
segments s5 and s6 are missing, then we have segments s7 and s8 contiguous seg-
ments; later on, we have s9, s10, and s11 segments missing so that we have segment
12. With this scenario we have SACK enabled, and the receiver will send the TCP
segment with the SACK header option as shown in Fig. 2.10 . L and R are the left
and right end of the SACK blocks. l and r are the left and right edge of each
segment.

 This way the sender will come to know about the missing TCP segments and
will retransmit blocks s5, s6, s9, s10, and s11. If the SACK option was not there, the
sender would probably retransmit all the TCP segments starting from s5 through
s12.

 2.3 TCP DATA FLOW

 TCP is a reliable transport protocol whose main functionality is to make sure that
the data integrity is maintained and also that it is sending data to the correct recipi-
ent. There are different algorithms that TCP uses in different situations to ensure
high throughput, but data integrity is maintained by one basic algorithm. A very
basic algorithm used by TCP to ensure data integrity is acknowledgment for every
Byte of data . In this section we will discuss (a) the acknowledgment scheme used
by the TCP and (b) other algorithms used for improved effi ciency. Discussion is
based on the assumption that there is no data loss and network congestion.

 2.3.1 ACK ing of Data Segments

 The sender TCP expects acknowledgment for each byte of data it has sent to the
receiving TCP. Even the SYN/FIN TCP segments carry one byte of data. The TCP

 Figure 2.9. Segments received out - of - order.

 Figure 2.10. SACK block generated for out - of - order segments in the example.

header has two fi elds — sequence number and acknowledgment number — which are
used by the acknowledgment scheme to maintain data integrity. The TCP treats user
data as a stream of bytes and associates a number with each data byte, known as
 sequence number . By stream of Bytes , we mean that no matter how and in what
format user application writes data over the TCP socket, the TCP arranges them in
the stream of bytes in the same sequence as they were written by the user applica-
tion. For example, an application sends 10 bytes of data in three consecutive writes
of 4 bytes, 2 bytes, and 4 bytes, respectively, as shown in Fig. 2.11 . Each byte is rep-
resented as w x b y where x represents write number and y represents the order
number of each byte in which they are written by the application on each write.
After three writes by the application, the TCP write buffer will have all these data
as a stream of 10 bytes as shown in Fig. 2.12 . These bytes may be transmitted by the
TCP as blocks of contiguous bytes, which means that this stream of bytes can be
transmitted as blocks of 2 bytes, 3 bytes, 2 bytes, and 3 bytes, respectively, as shown
in Fig. 2.13 .

 Thus, the application may have written a 4 - byte integer or a 2 - byte short or a
character, but it makes no difference for the TCP. Ultimately, all the user data are
arranged as a stream of bytes and are transmitted by the TCP in the same order in
which they are arranged in the stream of bytes but in different chunks. The TCP
makes sure that each and every byte of data in the stream of bytes reaches the peer
in the same sequence as they are arranged at its end. If an application is writing an
integer or a short, it should not forget to convert them into network byte order
because byte ordering matters here. So also the other side of the TCP socket must
read those integers after converting them into the host byte order. Essentially, the
TCP has two buffers: send buffer and receive buffer. Data written by an application
is fi rst copied to the TCP send buffer, and then the TCP makes a decision on how
to transmit that data. Similarly, data received by the TCP are copied to the receive

 Figure 2.11. Representation of data in

host - byte order.

 Figure 2.12. Data organized in TCP stream of bytes.

TCP DATA FLOW 59

60 PROTOCOL FUNDAMENTALS

buffer, and the application reads data in whatever chunks of bytes from TCP ’ s
receive buffer. Figure 2.14a shows how data written by user application are buffered
into TCP send buffer before transmitting it. The segmentation unit then takes some
bytes from the send buffer, and then it generates TCP segments and sends them to
the next layer for processing. The length of each segment depends on different
parameters which we discuss later. The TCP data are received in a similar way. TCP
segments are received by the lower layers and then sent to the TCP segmentation
unit, which will extract payload from the segments and place it in the TCP ’ s receive
buffer. Now it is up to the application to read the data from TCP ’ s receive buffer
as a different block of data (see Fig. 2.14b). So, essentially there is TCP send and
receive buffer per connection.

 Thus, we have learned how a TCP treats user data as a stream of bytes. Now
we will see how a TCP sequence number is associated with each byte in the stream
of bytes to be transmitted. At the time of connection initialization, each TCP end

 Figure 2.13. Transmission of data from TCP

stream of bytes.

 Figure 2.14a. TCP segmentation UNIT.

gets the sequence number called the initial sequence number. The very fi rst byte
(sent as a SYN TCP segment) is associated with the Initial sequence number. In
Fig. 2.15 , we can see an association between the sequence number and the stream
of user data bytes. Since the SYN segment is always considered to carry one byte
of data (different from user data), the fi rst byte of the user data is associated with
the sequence number ISN (initial sequence number) + 1. According to this associa-
tion, the n th byte of the user data is associated with the sequence number ISN + n + 1
as shown in Fig. 2.15 . We will see this phenomenon with the help of client – server
program. The client parikrama sends a connection request to the server moksha
and waits to read data from the server. The server sends 8 bytes of data in one
chunk and then closes the connection. tcpdump output is captured to study the
sequence number associated with the user data and acknowledgments. Figure 2.16
shows tcpdump output of data transaction. tcpdump uses the S option to print abso-
lute sequence numbers rather than relative sequence numbers. So, the sequence
number output format will be fi rst_byte:last_byte(number_of_bytes) , where fi rst_byte
is the sequence number associated with the byte in the stream of bytes which the
sender intends to send, last_byte is the sequence number associated with the last
byte in the sequence of bytes that sender intends to send (excluding last_byte), and

 Figure 2.14b. TCP assembly unit.

 Figure 2.15. TCP sequence number association with stream of bytes.

TCP DATA FLOW 61

62 PROTOCOL FUNDAMENTALS

 number_of_bytes is the number of bytes of user data that the sender intends to send
in the current TCP segment. The fi rst three packets are three - way handshake
synchronization packets exchanged between client and server at the time of con-
nection initialization. In the fi rst packet, the client sends a SYN segment with ISN
as 2020749023 and 0 bytes of user data, as is obvious from the format 2020749023:2
020749023(0). In the second packet, the server responds with an acknowledgment
to the client ’ s SYN segment with its ISN as 738652172 (0 bytes user data) and its
acknowledgment number as 2020749024 (ACK 2020749024). Even though the client
sent 0 bytes of user data, the server responds with acknowledgment of clients
ISN + 1. Acknowledgment number, as explained earlier, is the next byte in the
stream of bytes that receiver is expecting, which means that the SYN segment is
supposed to carry one byte of data and is well agreed upon between the two con-
nected TCP ends. Similarly, the third packet from the client acknowledges the
server ’ s SYN segment with acknowledgment number 738652173.

 In the fourth packet, we can see that the server sends out the fi rst eight bytes
of user data where the fi rst byte is associated with sequence number 738652173 and
not 738652172 (ISN for the server). So the client acknowledges 8 bytes of user data
in the fi fth packet with acknowledgment number 738652181, which means that the

 Figure 2.16. Sequence of packets exchanged when TCP sends 8 bytes of data over the

connection.

client is expecting the 9th byte associated with sequence number 738652181. The
sixth packet is a FIN segment from the server because it has no more data to send
to the client. Once again we can see that sequence number is 1+ sequence number
associated with the last byte of the user data (738652180) with 0 bytes of user data.
738652181 is the acknowledgment number from the client in packet 5, which the
server sends in the FIN segment, which means that the client is expecting a byte
associated with sequence number 738652180. If the server doesn ’ t send a FIN
segment with sequence number 738652180, the client would consider this as a bogus
packet and reject it because it is expecting a byte with sequence number 738652181.
So, now it is self - explanatory why the FIN segment is considered to carry one byte
of data. The acknowledgment number is the same as it was in the last segment from
the server because the client has not sent any data. The seventh packet from the
client is an acknowledgment for the FIN segment from the server with acknowledg-
ment number as 738652182, which means that the client is expecting the next byte
with sequence number 738652181 from the server. The eighth packet is the FIN
segment from the client to the server when it closes the connection from its side.
We can see that the client ’ s sequence number is 2020749024, which is ISN + 1; this
is acknowledgment from the server to the client so far and 0 bytes of user data
(2020749024:2020749024(0)). At the same time, it acknowledges the byte associated
with sequence number 738652182 because the server has not sent any data after the
FIN segment. The fi nal and ninth packet is an acknowledgment for the FIN segment
from the client to the server with acknowledgment 2020749025. This means that the
server has received the byte associated with sequence number 2020749024 and is
expecting the next byte associated with sequence number 2020749025, indicating
that the FIN segment from the client to the server is considered to contain one byte
of data.

 From the above discussion, we have seen how the sequence number is associ-
ated with the user data (stream of bytes for TCP) with the relationship between the
TCP sequence numbers and the acknowledgment numbers. We have also learned
that there is an acknowledgment for each byte of data sent to maintain data integrity
at each TCP connected ends. We will view the acknowledgment scheme from a
different angle to have better insight into it. We will see how TCP data are buffered
at the receiving and the sending TCP ends with the help of the same example and
how sequence number and acknowledgment numbers are advanced when data are
sent or received (see Figs. 2.17a – 17i).

 1. Client has sent the SYN segment to the server:

 Figure 2.17a. SYN sent by client.

TCP DATA FLOW 63

64 PROTOCOL FUNDAMENTALS

 Figure 2.17b. SYN ACK ’ ed by server.

 Figure 2.17c. SYN ACK ’ ed by client.

 Figure 2.17d. 8 - bytes transmitted by server.

 2. Server ACKs client ’ s SYN with the SYN segment:

 3. Client acknowledges server ’ s SYN segment:

 4. Server sends 8 bytes of user data:

 Figure 2.17e. 8 - bytes ACK ’ ed

by the client.

 Figure 2.17f. FIN sent by

the server.

 5. Client acknowledges 8 bytes of data from the server:

 6. Server sends the FIN segment because it is over with sending data and is
closing its end:

 7. Client ACK ’ s the FIN segment from the server and one additional byte
associated with the FIN segment:

 Figure 2.17g. FIN

ACK ’ ed by the client.

TCP DATA FLOW 65

66 PROTOCOL FUNDAMENTALS

 Figure 2.17h. Client send ’ s FIN.

 Figure 2.17i. Server ACK ’ s fi nal FIN.

 8. Client sends the FIN segment when it closes its end:

 9. Server acknowledges the FIN segment from the client:

 We have seen the sequence number – ACKnowledgment scheme used by the
TCP to ensure data integrity. In short, every byte is associated with a sequence
number. Even SYN/FIN segments are supposed to carry one byte of data that is
not mixed up with the user data. Every segment sent needs acknowledgment from
the receiver, with an acknowledgment number indicating the sequence number
associated with the byte in the stream - of - bytes which the receiver wants to receive
next. This model ensures complete data integrity between the sender and the
receiver TCP ends. The TCP sends the next block of data (data segment) only when
it receives ACK for the last data segment. Each segment contains an ACK fi eld set
other than the fi rst SYN segment because it has nothing to ACK.

 This was the very basic TCP functionality. Until now, we have considered only
one end sending data to the receiver. We will see in the next section how TCP can
enhance its performance when both ends are sending data.

 2.4 DELAYED ACKNOWLEDGMENT

 Until now, we have seen a very basic ACKing scheme that TCP implements to
maintain data integrity. Now let ’ s look at the case where we need to maintain data
integrity along with the improved effi ciency. Here we will consider data fl ow in both
the directions. The best example would be an interactive TCP session where each
byte of data typed needs to be echoed like telnet, rlogin, and so on. If we use the
same ACKing scheme as discussed for such interactive sessions, let ’ s see what
happens.

 Figure 2.18 shows the condition where character ‘ e ’ is typed at the command
line telnet client. The TCP segment is generated to transmit character ‘ e ’ to the
server. Segment 2 is acknowledgment from server for reception of character ‘ e ’ .
Segment 3 carries character ‘ e ’ , which is an echo of the last byte sent by the client.
Segment 4 is an acknowledgment for segment 3. So, we see that there is an acknowl-
edgment for every data segment that TCP receives. With this kind of acknowledg-
ment scheme, we know that we are ensuring data integrity but at the same time we
also know that for each byte of data typed in at the client, we are generating four
segments. Each segment carries at least 50 bytes of header (20 bytes TCP, 20 bytes
IP, 10 bytes MAC). So, there is overhead of network traffi c and resource utilization
associated with each segment at each TCP end. If we can reduce the number of
segments generated for each byte typed in by the telnet client, we can make the
TCP work more effi ciently. The TCP makes this possible by introducing the delayed
acknowledgment scheme. With this scheme, the TCP waits for some time to acknowl-
edge the received data segment so that it can send some data along with the
acknowledgment if any data are available by that time. Let ’ s look at the same
example when delayed acknowledgment is implemented by TCP. The TCP registers
a delayed acknowledgment timer with the system after it receives any data segment
from the other end. By registering timer, I mean to say that every OS implements
timer interrupts that are generated after every fi xed time interval (mainly imple-
mented for time - slicing the runable processes). There is a list of tasks that need to

 Figure 2.18. Four TCP segments generated to echo a

character.

DELAYED ACKNOWLEDGMENT 67

68 PROTOCOL FUNDAMENTALS

be performed by the system when this timer interrupt comes. So, we register our
task with the timer interrupt and we specify the delay in multiples of time interval
at which the timer interrupt occurs. Every time a timer interrupt occurs, it checks
every registered task if its time has expired. So, all those tasks are executed whose
time has expired. Thus, the delayed acknowledgment timer is registered such that
it is performed whenever the next timer interrupt comes. So, the acknowledgment
timer may expire any time between 0 and t time units, where t is the time interval
at which the timer interrupt comes. In short, delayed acknowledgment can be gener-
ated anytime between 0 and t time units after it is registered. Suppose that t is
200 ms; the TCP can generate acknowledgment for the received data segment any
time between 0 and 200 ms with the delayed acknowledgment in action.

 Now we must be thinking as to why we need this delayed acknowledgment
scheme as we are delaying the ACK which slows down the entire process. But it is
the other way around. With the delayed acknowledgment, the TCP tries to send
the data ready to be sent along with the ACK for the last data segment received.
In our example, the TCP receives data and puts it in the receive buffer. Telnet
application reads the data and writes it back to the TCP ’ s send buffer (see Fig. 2.19).
This happens very fast, in case the server is not heavily loaded. So, by the time the
server ’ s delayed acknowledgment timer expires, the echoed data is there in the
TCP ’ s send buffer. Like this, the ACK is piggybacked along with the data to be
sent. Here, we can see that the echo of character ‘ e ’ generates only three segments,
which is less by 1. To continue with this, we can see that the client has generated a
data segment for character ‘ c ’ after sending ACK for the data segment 2, which
means that client side TCP did not have any data in its send buffer by the time the
delayed acknowledgment timer expired. This may be because there was no input
from the keyboard by the time the timer expired. This scheme works fi ne as long
as we limit ourselves to high - speed networks such as LAN. We are sending out data
when they are available. It is just that we are delaying ACK for any data received
so that we can piggyback the ACK along with any data to be sent. If any data are
available even when there is time for TCP ’ s delayed ACK timer to expire, we send
it. So, essentially this scheme will generate a large amount of segments carrying one
byte of data in the interactive sessions such as telnet, rlogin, and so on. In the case
of WANs or slow networks, a large number of data segments carrying small payloads

 Figure 2.19. Delayed ACK is piggybacked with data

segment.

might cause problems of network congestion. For this reason, we slightly
refi ne the scheme for slow WANs, which we discuss in the next section.

 2.5 NAGLE ’ S ALGORITHM (RFC 896)

 A delayed acknowledgment scheme helps in reducing the number of small packets
by piggybacking the ACKs along with the data to be sent in the same direction,
delaying the acknowledgments. This scheme still doesn ’ t prevent a large number of
segments to be generated carrying one byte of payload in the case of interactive
sessions. This would surely cause problems in slow networks. To overcome this issue,
Nagle ’ s algorithm was introduced; it says that no data would be sent out until we
have an unacknowledged data, which means that all the data that need to be sent
out are collected until the time we receive an ACK for the last sent data. So, all the
data are now sent out in one data segment. This makes the entire process self -
clocking. In the slow networks where the ACKs are received after a long delays,
we collect a lot of data and send them all in one segment. On the other hand, in
fast networks we receive ACKs very fast and hence we can send large number of
packets with smaller payloads very fast. This algorithm is self - adjusting in the sense
that it adjusts itself according to the network conditions and automates the data
transfer rates. From Fig. 2.20 we can see that when ACK for data segment is
received, we have collected three characters and hence send all of them in one data
segment. With Nagle ’ s algorithm in action, we still have delayed ACK timer appli-
cable. Consider a case where ACK is received for the last data segment in Fig. 2.21
and there are no data to be sent out. So, the client waits for some data input before
it acknowledges the echoed data (segment 2).

 At the client ’ s end, there was no data to be sent when the delayed ACK timer
expired, which generated ACK segment (segment 3). We then send the next char-
acter ‘ c ’ because TCP sends out data (segment 4) when they are there in the send
buffer because there is no unacknowledged data. We receive acknowledgment for
segment 4 (character ‘ c ’) in segment 5. We send out characters ‘ h ’ and ‘ o ’ together
in segment 6 which are collected in the TCP ’ s send buffer by the time the ACK for
character ‘ c ’ is received in segment 5 following Nagle ’ s algorithm.

 We will compare the behavior of TCP with Nagle ’ s algorithm in place over LAN
and WAN. Tcpdump output shown in Fig(2.22) is taken from the telnet session over

 Figure 2.20. Fewer number of small segments generated with

Nagle ’ s algorithm.

NAGLE’S ALGORITHM (RFC 896) 69

70 PROTOCOL FUNDAMENTALS

LAN(moksha = client, parikrama = server). We are doing nothing but typing some
characters at the telnet prompt which are echoed back from the server. We can see
that TCP is following Nagle ’ s algorithm completely because data are sent only when
we get back ACK for unacknowledged data. We can see one more thing here that
delayed acknowledgment timer expiring at the client end. Segments 3, 6, 9, 12, and
19 are simply ACKs from the client moksha to the server parikrama because the
delayed acknowledgment timer has expired before any data are available to be sent
(there is no input from the keyboard when the delayed acknowledgment timer
expired). Let ’ s look at Fig. 2.22 , which shows the tcpdump output taken from telnet
session over WAN. The telnet client and the server are 9 hops apart.

 We see here how Nagle ’ s algorithms work effectively with slow networks. The
tcpdump data are collected at the server, and we can see an average RTT of 350 ms
(see Fig. 2.23). We type in a character at the telnet client, and packet 1 is generated.
Packet 2 is an ACK for 1 and also contains an echo of character contained in
segment 1. Then we proceed with the subsequent characters until segment 5, which
is an ACK for character echoed by the server in segment 4, is generated. Most prob-
ably segment 5 is generated because of the delayed acknowledgment timer. Segment
5 doesn ’ t contain any data, which means that no data were available by the time
the delayed ACK timer expired. We proceed once again by typing in a character
and generating a packet for each character (segments 6, 7, 8, and 9) probably
because only one character is typed in by the time the ACK for the last unacknowl-
edged byte appears. But here onwards we increased our typing speed and see that
instead of 1, we are sending 2, 3, 5, and 7 characters in segments 10, 12, 14, and 16,
respectively. So, by the time our ACK are received, we have collected more data to
be transmitted and we transmit them as one segment instead of generating one
segment per character. So Nagle ’ s algorithm is helpful in slow networks where we

 Figure 2.21. Packets exchanged on slow WAN with Nagle ’ s

algorithm enabled.

 Figure 2.22. TCP dump output for telnet session on slow WAN.

 Figure 2.23. TCP dump output for telnet session on slow WAN.

NAGLE’S ALGORITHM (RFC 896) 71

72 PROTOCOL FUNDAMENTALS

are automatically controlling the traffi c depending on the network characteristics.
In this example, we didn ’ t get to see the network characteristics changing like con-
gestion because RTT is more or less the same. But have tried to explain how a large
number of small segments containing one character can be avoided with the help
of Nagle ’ s algorithm.

 2.6 TCP SLIDING WINDOW PROTOCOL

 As of now, we have seen the TCP algorithms associated with the interactive sessions
such as telnet and rlogin in fast and slow networks. We were concerned with a small
amount of data transfer per segment in our discussions until now. Let ’ s see how a
TCP behaves when an application wants to send bigger chunks of data. When an
application is sending bulk data, TCP has to take into account some additional TCP
header fi elds to decide upon the data transmission rate. We will see how ACKs are
generated in a different way and how TCP controls data transmission rates in our
current discussion in the case of bulk data transfer. We introduce here one more
TCP parameter, window size , which is a part of the TCP header, and see how it
helps the sender TCP to understand the receiver ’ s resource constraints based on
which sender controls the data transmission rate. If we just recall from the previous
discussion regarding window size, we know that it is the indication of resource avail-
able at the receiver TCP end. First we will see how window size and TCP ’ s receive
buffer are associated and then move along with the actual discussion.

 Consider a situation where bulk data are fl owing in one direction in a high -
 speed network. Now from Figs. 2.14a and 2.14b we know that when application
writes data over TCP socket it is not directly transmitted to the receiver. The TCP
fi rst copies the data to the send buffer for various reasons — for example, waiting for
an ACK (Nagle ’ s algorithm). In the same way, receiver TCP gets data from the TCP
segments and puts it in its receive buffer. Further application reads the data from
TCP ’ s receive buffer when it has chance. If we don ’ t have send and receive TCP
buffer arrangements, there are great chances of a TCP connection hogging resources
such as memory, CPU, and network bandwidth starving other connections from
using the resources. With the TCP buffers in place, it is clear that the sender can
send data in two cases (given that other conditions are favorable for data transmission) —

 1. There are data ready to be sent in sender TCP ’ s send buffer.
 2. There is space in the receiver ’ s TCP receive buffer.

 As discussed earlier, receiver TCP puts data in its receive buffer before applica-
tion can read it. Once an application has read data from TCP ’ s receive buffer, space
is created to accommodate more data. In short, at any given point in time, receiver
TCP can receive maximum data bytes restricted to the space in its receive buffer.
On the other hand, space in the receiver buffer is created only when the application
reads the data from the receive buffer. If the receiver ’ s receive buffer is full, no
more data will be accepted from the sender, and the sender has to wait until the
space is available in the receiver ’ s receive buffer. The question is, How does the
sender know about the availability of space in the receiver ’ s receive buffer?
The TCP exchanges this information using TCP ’ s header fi eld window size . Each
TCP segment carries this information irrespective of whether it is a data segment

or not. Let ’ s look at this example with the help of an example where the server is
sending bulk data in a chunk of 1 kB to the client continuously. Client application
is programmed not to read any data sent by the server. This is done deliberately to
explain the concept of the TCP ’ s window size and also the fl ow control imposed by
the TCP ’ s window size. As we have already learned, the application writes data
over a TCP socket that goes into the TCP ’ s send buffer. The TCP reads the data
from the send buffer and sends it in small segments. At the other end, the TCP gets
these data segments, extracts data from the segments, and puts them in the receiv-
er ’ s TCP receive buffer. Finally, an application reads in data from the TCP ’ s receive
buffer and makes space for more data to be stored in the TCP ’ s receive buffer. We
will see how the receiver TCP ’ s receive buffer information is passed on to the sender
TCP and then how the sender TCP reacts to the changing receiver buffer size.

 Network activity for bulk data transfer from server to client is captured using
tcpdump. The captured data are shown in Figs. 2.24a and 2.24b . Packet ’ s 1 – 3 are the
initial SYN segments exchanged between client and server as part of the TCP con-
nection initiation handshake. The client sends mss as a TCP option (1460) and also
the initial window size (5840). Similarly, segment 2 is again a SYN segment from
the server with mss (1316) TCP option and the initial window size (5216). Window
size advertised by the client in the SYN segment is nothing but the size of its receive
buffer (5840 bytes) and similarly for the server. We will concentrate only on the
client ’ s window size because it is at the receiving end and the server is only sending
data and not receiving any data from the client.

 Server application writes 1024 bytes of data at a time, but we can see that TCP
is generating a TCP data segment of 1304 bytes. This is because it waits until we
have data equal to maximum segment size from the application in its send buffer.
Server side TCP has an mss from the client which is less than its own mss , but still
the TCP data segment is never found to have data more than 1304 bytes (< 1316,
client ’ s mss) in the entire session. This is because the IP would have found out some
intermediate router whose MTU (maximum transmission unit) is such that an mss
of 1304 comes into picture. So, we can see that the server can send 5840 bytes of
data without receiving any acknowledgment from the receiver at this point in time.
The server keeps on sending data segments of 1304 bytes and receives acknowledg-
ment for each data segment. We can see that the client is advertising increased
window size each time with the reception of data, and this seems to be slightly con-
fusing. When the client has advertised its window as 5840, how can it advertise
window size 7842 after the reception of 1304 bytes of data which remains in its
receive buffer (because the application is not reading data). This is because TCP
can receive data more than the initially advertised window size. But by advertising
small window size initially, it is imposing control on the rate of data fl ow from the
sender. When the receiving TCP senses no congestion in the network, it gradually
increases the window size until it fi nally reaches the actual window size. Actually,
this is congestion control mechanism. The client continues to increase its window
size until the client has sent 19,560 bytes of data (packet 32). At this point in time,
the client ’ s window size has increased to 45,640. It means that the client has 19,560
bytes of data in its receive buffer and still it can receive 45,640 bytes of data, which
means that total receive buffer size of the client is 45,640 + 19,560 = 65,201 bytes.
Thereafter (packet no. ≥ 34) we can see the window size decreasing on reception of
each data segment. The decrease in window size is exactly equal to the number of
bytes received. This is because client application is not reading any data from TCP ’ s

TCP SLIDING WINDOW PROTOCOL 73

74 PROTOCOL FUNDAMENTALS

 Figure 2.24a. TCP dump output for bulk data transfer (application not reading data from socket

buffer).

 Figure 2.24b. Receive buffer is full, zero - window is advertised (segment 82).

receive buffer. The client continues to accept data until it has space in its receive
buffer. We can see the client ’ s window size diminishing as follows: 15,648 (seg 65),
11,736 (seg 69), 9128 (seg 72), 6520 (seg 75), 2608 (seg 79), and 0 (seg 82). Segment
82 is an ACK from the client for reception of 65,200th byte with window size of 0.
After this we can see that the server is not able to send any data to the client because
the window size advertised by the client is 0, which means that there is no space in
the client ’ s receive buffer. The server cannot send anymore data until the client
advertises a positive window size.

 So, we have seen from the above example how sender TCP uses window size
information from the other end (receiver TCP) to adjust its data transmission rate.

TCP SLIDING WINDOW PROTOCOL 75

76 PROTOCOL FUNDAMENTALS

Let ’ s now see the TCP sliding window protocol in completeness. Window size is the
indication of the available space in the receiver TCP ’ s receive buffer to the sender
TCP. Sender TCP can always send data equal to the last advertised window size by
the receiver TCP. The ACK for the reception of the data segment from the receiver
TCP will have a new window size, and the sender will use this new value of window
size to transmit more data. We will learn that it is not only the window size but also
the acknowledged sequence number from the receiver that will fi nally decide the
rate at which the sender can transmit data.

 The sliding window protocol is demonstrated in Fig. 2.25 . We will learn how the
window slides when data are transmitted by the sender TCP and it receives acknowl-
edgment for the sent data. Each block represents 1 Kbyte of data. We consider here
that the receiver TCP has provided maximum receive buffer size because window
size and sender TCP is transmitting 1 Kbyte of data per segment. Gray - colored
blocks shows the window size at any given point in time. The sender TCP maps the
receiver ’ s window size to a stream of bytes ready to be sent in its send buffer as
shown in Fig. 2.25a . In Fig. 2.25a the window size advertised by the receiver is
12 Kbytes, which means that the receiver TCP ’ s receive buffer is 12 Kbytes long. The
arrow always points to fi rst unacknowledged byte in the senders stream of bytes.
We take the absolute byte number with respect to the ISN (initial sequence number)
to map each byte. So, the fi rst byte is mapped to ISN + 1. From Fig. 2.25a it is clear
that at this point in time the sender TCP has not sent any data and the send window
starts from ISN + 1. We know that sender TCP can send 12 Kbytes of data at this
point of time. Let ’ s see what happens when sender TCP transmits the fi rst segment.
Figure 2.25b shows that gray blocks cover only the 11 - Kbyte portion of the send
buffer. The left end of the send window is shifted by 1 Kbyte toward the right, which
means that after sending the fi rst segment, sender TCP can only send 11 Kbytes of
data. The arrow still points to ISN + 1 because the sent data are still unacknowl-
edged. Next we receive acknowledgment for the fi rst data segment. The receiver
sends an acknowledgment for the fi rst data segment with a window size of 12 K,
which means that the application at the receiver ’ s end has read all 1 Kbyte of data

 Figure 2.25a. No data is sent (window = 12 k).

 Figure 2.25b. 1 k data is sent none ACK ’ ed (window = 11 k).

from the receiver ’ s buffer before it sends the acknowledgment. So, the right end of
the send window is shifted by 1 Kbyte toward the right (Fig. 2.25c). Once again the
sender knows that it can send 12 Kbytes of data and the sender sends next three
consecutive data segments; the situation is shown in Fig. 2.25d . Next, the sender
receives acknowledgment for the second and third data segments sent a the window
size of 11 K (see Fig. 2.25e), which means that the sender still can send 11 Kbytes of
data. But this time the right end of the window is shifted toward the right by 2 Kbyte
because the fourth data segment is still unacknowledged. The arrow is now pointing
to ISN + 1 + 3 K. Next, the sender transmits another consecutive fi fth and sixth data
segments. The left end of the window is shifted to the right by 2 Kbyte (see Fig.
 2.25f). Finally, the sender receives acknowledgment for fourth, fi fth, and sixth data
segments with window size of 12 K. At this point in time, we have no unacknowl-
edged data, so the right end of the window is shifted by 3 Kbyte towards the right
while the left end remains unchanged with the arrow now pointing to ISN + 1 + 6 K
(see Fig. 2.25g).

 Let ’ s see, in different situations, how the left and right ends of the window move
in different situations. Window size may increase or decrease in different situation.

 Figure 2.25c. All (1 k) data is ACK ’ ed (window = 12 k).

 Figure 2.25d. 4 k data is rent, only 1 k ACK ’ ed (window = 9 k).

 Figure 2.25e. 4 k data Sent, only 5 k ACK ’ ed (window = 11 k).

 Figure 2.25f. 6 k data Sent, only 3 k ACK ’ ed (window = 9 k).

 Figure 2.25g. All 6 k data ACK ’ ed (window = 12 k).

TCP SLIDING WINDOW PROTOCOL 77

78 PROTOCOL FUNDAMENTALS

The window size may increase because the right end of the window moves toward
the right side while the left end remains intact. There is no chance that the left end
moves toward the left because the position of the left end is pointing to the location
in the stream of bytes, which is either acknowledged or unacknowledged. If left end
moves toward the left, it means that the TCP is by some means deleting the existing
data, which is highly impossible.

 The TCP send window can increase because the right side of the send window
can move toward the right while the left end remains intact. This may happen
because the receiver TCP can increase the receive buffer size at any point in time
because of two reasons. First, application can increase the receive buffer size at any
point of time using socket options. Second, the application has read some data from
TCP ’ s receive buffer which has created some space in the receiver TCP ’ s receive
buffer to accommodate more data. So, the receiver TCP advertises its increased
window size whenever it so happens.

 Figure 2.26a shows the situation where the receiver TCP ’ s receive buffer is full
because the application is not able to read data. The receive buffer is seen to be
12 Kbytes long (each block shown is 1 Kbyte long). Furthermore, application is
scheduled and starts reading data. It reads 2 Kbyte of data so that it creates 2 Kbyte
of space in the receive buffer (see Fig. 2.26b). When this space is created, TCP
advertises a new window size to the sender. This is just an example, but there are
RFC defi ned to decide the condition when the new window size should be
advertised.

 Let ’ s consider a case for decreasing window sizes. The window size may decrease
in a normal way when the rate at which data transmission is greater than the rate
at which data is read by the application. In such cases the receiver TCP ’ s receive
buffer keeps fi lling and available space in the receive buffer goes down. In such
cases the right end of the sender ’ s window will remain intact but the left end will
keep moving toward the right.

 As shown in Fig. 2.27a , the receiver TCP has received two segments each of
1 Kbyte but application has not read the data. So, the window size advertised at this
point of time is 10 Kbytes along with the ACK. Figure 2.27b shows that two more
data segments each of 1 Kbyte have arrived and the data are collected in the receive
buffer. So, total space occupied by the data in the receive buffer is 4 Kbyte, which
application has not read yet. Thus, the TCP advertises window size of 8 Kbyte along

 Figure 2.26a. Receive buffer is full.

 Figure 2.26b. Application needs 2 k bytes from socket receive buffer.

with the ACK. Another way that the sender ’ s window size decreases is that the left
end remains intact and the right end moves toward the left. This may happen in the
case where the receiving TCP shrinks its receive buffer because of scarcity of the
available resources.

 2.7 MAXIMIZING TCP THROUGHPUT

 Until now we discussed the effect of window size on the bulk data transfer, and we
have seen that the TCP ’ s throughput depends on (a) the rate at which the applica-
tion sends data, (b) the receiver ’ s window size, and (c) the rate at which the applica-
tion reads data from the receiver TCP ’ s receive buffer. We have not considered the
network characteristics on TCP ’ s throughput. We will introduce two more parame-
ters that will have an effect on the TCP ’ s throughput. These parameters are band-
width offered by the physical layer and the rtt (round trip time).

 Life is not that easy when it comes to packets traveling over the internet. We
never know what path the TCP segment is taking, and this is not under our control.
We may reach the router, which is heavily loaded where the queue is full and there
is no space for the new packet which might result in dropping the packet. On the
other hand, it may so happen that we may reach the network, which is operating at
a very high speeds. In short, the packet might pass through high - speed or low - speed
network segments, which is not predictable in advance to the TCP before it injects
the next packet in the network. With the existing sliding window protocol scheme
which we just covered in our previous section, we know that once the sender has
knowledge of the receiver ’ s window size, it will start transmitting data without caring
for acknowledgments for those segments until it knows that the window size of the
receiver ’ s window size is a positive nonzero number. All this occurs without the
knowledge of the network characteristics. If the receiver ’ s window size is too big
but the network is slow, the sender continues to transmit data segments that might
get lost on the way leading to retransmissions of lost segments and hence might
introduce performance issues. Keeping this in mind, some modifi cations are made
to the existing sliding window protocol which would impose restriction on the rate
at which data should be transmitted from the sender TCP initially. This restriction
is gradually relaxed with the reception of acknowledgments for the transmitted

 Figure 2.27a. 2 k data in socket receive buffer.

 Figure 2.27b. 4 k data in socket receive buffer.

MAXIMIZING TCP THROUGHPUT 79

80 PROTOCOL FUNDAMENTALS

segments. This way the sender TCP takes the defensive side initially and gradually
reaches the data transmission rates that would utilize full network capacity. A self -
 clocking mechanism is introduced which says that the rate at which data are to be
transmitted should depend on the rate at which acknowledgments are received. The
rate at which acknowledgment for a segment is received makes a sender guess the
network characteristics or the processing speed of the receiver. The slowest node in
the path of the packet decides the speed at which it travels. It may be some inter-
mediate router, network speeds, or the processing speed of the receiver. But for the
sender it does not matter which is the slowest. The time taken to receive an acknowl-
edgment for a segment is known as round - trip time or rtt.

 This algorithm is implemented by introducing a new parameter at the sender
side, namely, the congestion window. The congestion window is initialized to 1 mss
(maximum segment size) received from the receiver when the connection is initial-
ized. The sender at any point in time can send data which is minimum of the conges-
tion window and the window size advertised by the receiver. The sender sends fi rst
a TCP data segment of size 1 mss. Once it receives acknowledgment for this segment,
it increases the congestion window by 1 mss. So, the congestion window size at the
sender now becomes 2 mss. When it receives acknowledgment for the subsequent
segments, the congestion window is incremented by 1 mss. This way the sender
increases its congestion window size exponentially as follows: Initially, the sender
can send only 1 mss byte of data. After reception of acknowledgment for the fi rst
segment, it increases its congestion window by 2 mss. On reception of acknowledg-
ment for these two segments (second and third segments), it increases the conges-
tion window size to 4 mss. It can now send 4 mss bytes of data. It can now send four
segments, each carrying 1 mss bytes of data. On reception of acknowledgment for
these four segments, it can increase its congestion window size to 8 mss. So, the
congestion window is increasing exponentially as 1, 2, 4, 8, 16, … times until it satu-
rates the network. Let ’ s see how it actually happens with the help of an example.

 In Fig. 2.28a – e , we illustrate the relation between send congestion window,
window advertised by the sender, and segments acknowledged. When the connec-
tion is just established, we can see that the congestion window is 1 mss and the
receiver window is 12 mss as shown in Fig. 2.28a . So, one segment s1 is transmitted;
and until it is acknowledged, the situation will remain the same as shown in Fig.
 2.28a . Once s1 is acknowledged, the congestion window is incremented by 1 but the
receiver ’ s window remains unchanged. So, we can transmit two more segments as
shown in Fig. 2.28b . s2 and s3 are transmitted and the situation remains unchanged

 Figure 2.28a. Congestion window when no data is sent.

 Figure 2.28b. Congestion window when 1 segment is ACK ’ ed.

 Figure 2.28c. Congestion window incremented to four when three segments are ACK ’ ed.

 Figure 2.28d. Congestion window incremented to fi ve after four segments are ACK ’ ed.

 Figure 2.28e. Congestion window is more than the send window (saturation point).

until they are acknowledged. Figure 2.28c shows the situation where both segments
are acknowledged and the congestion window is incremented to 4. Segments are
transmitted when the congestion window allows them. For example, when acknowl-
edgment for s2 is received, congestion window is incremented by 1 and becomes 3,
which means that we can send two more segments at that point in time since s3 is
still unacknowledged. Figure 2.28c is the snapshot at the time when s2 and s3 are

MAXIMIZING TCP THROUGHPUT 81

82 PROTOCOL FUNDAMENTALS

acknowledged; and by the time the acknowledgment for s3 arrives, s4 and s5 may
have been transmitted.

 In this way, when the acknowledgment for s4 has arrived, the congestion window
is incremented to 5, which means that segments s5 – s9 can be transmitted, whereas
the send window advertised allows segments up to s16 to be transmitted as shown
in Fig. 2.28d . We keep on transmitting segments until we receive acknowledgment
for s12. The congestion window is incremented to 13 in this situation whereas the
send window advertised by the receiver is still 12 as shown in Fig. 2.28e . In this situ-
ation, we can transmit only 12 segments because the receiver ’ s buffer has taken over
the congestion window here and transmission is limited by the receiver ’ s buffer size
at this stage. This way initially the congestion window limits the transmission rate
because in this period we are accessing a network congestion state whereas the
receiver ’ s window allows a higher transmission rate. Slowly we realize that the
network has high capacity and allows a higher transmission rate. But the receiver ’ s
window becomes the limitation because we can ’ t transmit more than a receiver can
accommodate because this violates the sliding window protocol. This initial stage of
slowly incrementing congestion with reception of acknowledgment is called the
slow - start phase.

 2.8 TCP TIMERS

 A TCP generates asynchronous events, which is the reason we need timers to detect
the faults. For example, we send out data and wait for data to be acknowledged.
This is an asynchronous event. In the similar way, we may wait for the receiver to
open a window, which is again an asynchronous event. There are many other events
that are generated by a TCP. For all these we need timers to detect timeouts. We
don ’ t discuss these timers much in detail here because they are discussed in Chapter
 10 .

 2.8.1 Retransmission Timer

 Whenever a TCP sends out data, it needs to make sure that the data have reached
the receiver properly. For that it has to set a timer for the fi rst data segment that is
transmitted. Once the ACK is received for the data, this timer is reset for the next
data segment that was transmitted. The timer would expire after an interval that is
decided by the round - trip time RTT for the route. RTT is the time taken by a data
segment to be acknowledged, which is calculated using the TCP timestamp option.
If the timer expires, we can expect loss of all the segments in the last window trans-
mitted and we start transmitting segments one - by - one from the last window. In this
case we enter the loss state and slowdown rate of data transmission as we can sense
network congestion. Sometimes the RTT changes due to change in route or change
in transmission medium; in this case, packets may get delayed and timeout may
occur spuriously (check RFC 3522). RFC 2988 specifi es how effective RTO calcula-
tion can be done.

 Just to illustrate the retransmit timeout example, tcpdump output is taken from
a connection that was made to experience timeout in Fig. 2.29 . The receiver (pari-
krama) was unplugged from the network and the sender (moksha) continued to
send data. We have skipped the three - way handshake from the output. It is clear

that segment 1 containing 1448 bytes of TCP payload is transmitted with sequence
space [1013601, 1015049]. Segment 2 containing 1448 bytes is transmitted with
sequence space [1015049, 1016497]. Segment 3 is retransmission of segment 1 since
this segment is not yet acknowledged and retransmit timer expired (check the
sequence space of segment 3). In the same way, segments 4, 5, 6, and 7 are retrans-
missions of segment 1, which is not acknowledged. If we look at the time stamp of
retransmissions, it is more or less exponentially increasing. The time interval for
retransmissions are 219,920, 440,012, 879,989, 1,760,014, and 3,519,988 ms, respec-
tively. This does not go exactly with an exponential increment of RTO because
timers are high - priority tasklets and are executed when timer interrupt occurs.
Timer interrupt happens at fi xed frequency. So, the timer boundaries won ’ t match
exactly with the RTOs.

 2.8.2 Persistent Timer

 The TCP has its own fl ow control mechanism which is controlled by the buffer size
at the receiving end. The sender TCP gets an idea of the amount of data to be
transmitted from the window size advertised by the receiver. At the receiving end
the data gets queued on the receive buffer, until it is consumed by the application.
If the sender is sending data at a much faster rate than it can be read by the applica-
tion, data will keep on queuing on the receiving TCP ’ s receive socket buffer. It may
also happen that there is no space left out in the receiving TCP ’ s socket buffer. At
this point in time, the receiving TCP advertises a zero window. When the sender
gets zero window indication, it applies fl ow control on data and stops sending any
more data until the receiver opens a window.

 In this situation, whenever the application reads data from the receiving TCP ’ s
socket buffer, it generates space in the receive buffer for more data. In this process,
the receiving TCP sends an ACK with a nonzero window. There is a probability that
this ACK gets lost and the sender never gets the window open indication. In this
case there would be a deadlock between the two TCP ends because the receiver
thinks that it has already sent a window open segment and the receiver will send
data whenever it has something, whereas the sender is waiting for a window open
advertisement from the receiver, which it never gets.

 To tackle this situation, the sender TCP sends out a zero - window probe that is
exponentially backed off by way of the persistent timer. This timer sends out the
next sequence number with no data. Linux sends out one sequence number smaller
than what it has transmitted last. This timer is explained with the help of an example.
The sender TCP sends out data in a chunk of 1448 bytes (mss for the connection).

 Figure 2.29. Retransmission of TCP segments for TCP dump output.

TCP TIMERS 83

84 PROTOCOL FUNDAMENTALS

The application at the receiving end does not issue any read on the socket. So, all
the data gets queued on the receiving TCP ’ s socket buffer. tcpdump output is taken
for this connection as shown in Fig. 2.30 . Stage comes when the receiver ’ s buffer is
full; it advertises zero window (packet 2). Packet 3 is the fi rst zero - window probe,
and the sequence number it sends is not shown in the output. The fi rst probe is
immediately acknowledged by the receiver (i.e., packet 4). The next probe is sent
after 500 ms as packet 5. Subsequent probes are sent at an interval of 1000 ms
(packet 7), 2000 ms (packet 9), 4000 ms (packet 11), 8000 ms (packet 13), and
16,000 ms (packet 15), respectively. This shows that the window probe timer fi res
with timeout value exponentially backed off.

 2.8.3 Keepalive Timer

 There are many situations where the connection is alive for ages without either
ends communicating. For example, there may be a telnet session open for many
days without a client issuing any command to the server. In this situation, how will
either end know that the connection at the other end is alive because the connection
at one end may remain open even when the other end has crashed or rebooted?
The server sends out the fi rst pure ACK segment after the connection is in an idle
state for a certain fi xed time. This is implemented with the help of keepalive
timer.

 Once the connection is in an idle state, a timer is fi red and a pure ACK segment
is sent out to the peer. If we get a response for the ACK, the other end is still alive
and in this case we rest the keepalive timer to fi re after a connection is found in an
idle state for a certain duration. In case the we don ’ t get a response for the ACK
segment sent by the keepalive timer, the timer is reset with timeout exponentially
increased. This continues until we have exhausted maximum re - tries. There are dif-
ferent system - wide confi gurables related to the timer that can be tuned to get the
most optimum results.

 Socket option SO_KEEPALIVE can be used to enable keepalive timer for the
connection. This can be tried as an exercise.

 Figure 2.30. Zero - window probe timer for TCP dump output.

 2.8.4 TIME _ WAIT Timer

 When the TCP does an active close on the socket, it does a four - way hand shake to
cleanly close the connection. It sends the FIN and receives ACK for the FIN. Then
the peer (doing passive close) sends a FIN segment that is acknowledged by this
end. Once a fi nal FIN is acknowledged by the TCP doing active close, it remains in
the TIME_WAIT state to deal with the following situations:

 • The fi nal ACK may get lost.
 • There may be reincarnation of the connection in case the peer crashes and

reboots very fast.

 The socket remains in this situation until the TIME_WAIT period has elapsed
which is usually 2 * MSL (maximum segment lifetime). Each implementation has its
own way of calculating the MSL value. As soon as the socket enters the TIME_
WAIT state, the TCP sets the TIME_WAIT timer for the socket that expires after
given time and fi nally closes the socket. Until then, the connection remains locked
from both ends, meaning that the tuple source/destination IP address and port
numbers are locked for this duration. Both TCP ends can ’ t use these port numbers
for a new connection until the timer expires and the socket is removed from the
TIME_WAIT state.

 2.9 TCP CONGESTION CONTROL

 The TCP is a reliable protocol that keeps track of data that have reached the other
end with the help of acknowledgment for every byte of data received by the peer.
The TCP can sense network congestion by way of retransmit timer timing out and
reception of duplicate acknowledgments. There are different ways of handling these
situations. If the retransmit timer expires, it is an indication of complete loss of data
transmitted in the last window because a timer is set when the fi rst data segment
from the last window is transmitted (given that we have not timed out spuriously).
In this case we need to transmit all the data from the last window and we start with
retransmitting the fi rst segment in the retransmit timer. If we receive duplicate
acknowledgments, it is an indication that some packet is lost and we transmit a lost
segment (given that there is no reordering of segments in the network). This is also
called an early detection of loss, and the corrective action is fast retransmit and fast
recovery. There are two TCP congestion state variables:

 1. Congestion window
 2. Slow - start threshold

 When the TCP enters the loss state, we revert to slow start where the congestion
window is initialized to 1 and slow - start threshold is initialized to half of the conges-
tion window or 2 (whichever is greater). In the slow start phase, the rate of data
transmission depends on the rate at which acknowledgments are received. We con-
tinue to send out lost segments at an exponentially increasing rate starting with one
segment. This continues until the congestion window reaches the slow - start thresh-
old. Thereafter, congestion avoidance takes over. In the congestion avoidance phase,

TCP CONGESTION CONTROL 85

86 PROTOCOL FUNDAMENTALS

the congestion window is incremented per RTT and does not depend on the rate
at which acknowledgments arrive. We do this because it is the last congestion
window that got us into a loss state by saturating the network. Considering that we
were doing a slow start at the time we entered the loss state, the congestion avoid-
ance should take over from the window prior to one that caused loss of data (half
of the congestion window that got us into loss state). That is the reason we set the
slow - start threshold to half of the congestion window at the time we encountered
loss.

 In case we detect loss because of reception of three duplicate ACKs, initialize
the slow - start threshold to half of the congestion window at that point in time and
initialize the congestion window to slow - start threshold plus 3 (for three duplicate
ACKs). The reason is that we know that data are still fl owing between the two ends
and it is just that one segment is lost. So, we don ’ t touch the transmission rate, but
the rate at which congestion window is incremented further will be function of RTT
(linear with respect to RTT). This will help control the rate of data transmission
further. Specifi cation is provided in RFC 2581 and RFC 2001.

 2.10 TCP PERFORMANCE AND RELIABILITY

 Extensions to the TCP is introduced to give it better reliability and for high perfor-
mance. At the time when the TCP was in the development phase, the internet was
not all that powerful. But room was left for any extensions required for the TCP in
the future, depending on the requirement. These extensions are implemented with
the help of options in TCP header. These are already discussed in Section 2.2 ; in this
section we will see how they enhance TCP features.

 2.10.1 RTTD

 rtt (round - trip time) is one of the very critical parameters that decides the perfor-
mance of TCP. Sending TCP needs an acknowledgment for each byte of data trans-
mitted. If it doesn ’ t get an acknowledgment for the sent TCP within a specifi c time,
it needs to retransmit that segment, assuming that the segment is lost. The time to
retransmit the TCP segment is based on rtt. If rtt is underestimated for slow net-
works, we may end up retransmitting TCP segments even when the original TCP
segment or its ACK is on the fl ight. This is wastage of bandwidth and additional
overhead of generating a packet and transmitting it. Moreover, entering into a
congestion state involves lowering of data transmission. If we are falsely entering
into a loss state, TCP throughput is hampered severely, whereas if the rtt is over
estimated for high - speed networks, we end up retransmitting TCP segments after a
long delay even if the data are lost, resulting in slow recovery form losses, thus
hitting the performance.

 2.10.2 SACK / DSACK

 SACK is selective acknowledgment and DSACK is duplicate SACK. SACK gives
useful information in the case of reordering or loss of one or more segments.
Without SACK enabled, we get to know that segments have reached out - of - order
with the help of duplicate acknowledgments. But this information is incomplete to

predict the network congestion state. We don ’ t know which TCP segments have
reached the other end. This is important information as far as reordering of
segments is concerned. Based on reordering length, we start fast retransmit fast
recovery on the connection. By default, reordering length is three. With SACK
information available we can exactly calculate reordering length from the lowest
and highest sequence spaces that have been selectively acknowledged (FACK).
Based on this information, we can avoid false retransmissions by starting the fast
retransmit and fast recovery phase. With the SACK information available, we know
exactly what to retransmit in the fast retransmit and fast recovery phase. Because
we already know which segments have reached the other end safely, we transmit
only the holes. DSACK is just an extension of SACK where DSACK is generated
when both the original and retransmission reach the receiver. This gives us an indi-
cation that we have falsely entered into the fast retransmission and fast recovery
phase because the packet got delayed in the network or because of excessive reor-
dering. With the DSACK options available, we may be able to detect false entry
into the congestion state and may recover fast.

 2.10.3 Window Scaling

 The receiving TCP advertises window size, which is the size of the receive buffer;
this is limited to a 16 - bit value in the TCP header. The sender transmits at the rate
which is determined by two factors: congestion window and the receiver ’ s buffer
space. A 16 - bit window becomes a bottleneck for TCP throughput in two cases:

 1. With high - speed networks and Long Fat Networks where bandwidth is huge,
we can transmit data at the speed of few gigabytes per second.

 2. The receiver has a huge buffer space for the incoming data.

 In the above two cases, even though network capacity is too much and resources
available with the receiver is too high, the sender can ’ t do much because the window
advertised by the receiver is limited.

 A new extension to the TCP allows the receiver to increase the limit on the
allowable window. This way the sender can have the maximum advantage of the
above two conditions and transmit data at a maximum rate improving TCP
throughput.

 2.11 IP (INTERNET PROTOCOL)

 This protocol carries the entire Internet traffi c. IP is a stateless and connectionless
protocol, which means that neither end maintains any state for the IP datagram sent
and received. The IP datagram may take any path to reach the destination. The IP
datagram hops from router to router to reach its fi nal destination. Each router will
have entry for the next hop for the IP datagram. The datagram is queued on the
routers outgoing interface queue in case there is traffi c for the link. It may also
happen that the router crashes or the queue for the outgoing interface is full. In
both the cases, the packets are dropped.

 Other than IP carrying internet traffi c, it has many roles to play such as routing,
quality of service, congestion reporting using an IP ECN fl ag, and soon. In this

IP (INTERNET PROTOCOL) 87

88 PROTOCOL FUNDAMENTALS

section we will have a brief overview of the protocol with some examples illustrating
routing table, network interface, and traceroute .

 2.11.1 IP Header

 The IP header has fi xed as well as optional fi elds. The fi xed header is 20 bytes long
and the rest is optional (see Fig. 2.31). Later in the discussion, we will determine the
total header length. We will discuss these fi elds one by one.

 ver . This is a 4 - bit fi eld indicating the version of IP. As of now we have only
two versions, 4 and 6.

 hlen . This is a 4 - bit fi eld indicating the header length of IP datagram including
IP options. The number in the fi eld is the count of 32 - bit words that make an IP
header. For example, if the length of the IP header is 20 bytes, this fi eld will have
value of 5. This limits the length of the IP header to 15 32 - bit words, that is, 60
bytes.

 TOS . This is an 8 - bit fi eld indicating the class to which an IP datagram belongs.
There are different type of applications using internet resources. Each application
has different requirements as far as network resource usage is concerned. Some
applications require reliability more than speed, whereas others would like to mini-
mize delay. All this is controlled per packet and queuing discipline at each router.
In the internet IP packet hop from router to router. Depending on the packet type,
router needs to queue the packet in such a way that the required target is achieved.
Each packet should contain information about the queuing discipline based on
which router will queue it on different queues. This information is available in TOS
fi eld of the IP header and details are mentioned in RFC 1349.

 total len . This is a 16 - bit fi eld and indicates total length of the IP datagram in
bytes. This is required for may reasons like data integrity and marks the end of the
IP datagram. If the total length is included in the IP checksum, we are sure what
we have received is complete. Because the packets are fragmented by any interme-
diate router, this fi eld is also modifi ed and so also IP checksum. The Ethernet frame

 Figure 2.31. IPV4 header format.

has a lower limit on the size. If the length of an IP datagram falls below this
minimum frame length, the Ethernet will pad the frame to make minimum frame
length. If we don ’ t have this fi eld, the IP payload will be misinterpreted because of
extended padding.

 ID . This is a 16 - bit fi eld that uniquely identifi es a packet on the destination
host. The ID fi eld has a role to play in fragmentation and reassembly. When IP
datagram is fragmented, this fi eld uniquely identifi es each fragment.

 fl g . This is a 3 - bit fl ag fi eld in the IP header. As of now, these fl ags are used
mostly for fragmentation and reassembly units.

 • The zeroth bit is not yet used.
 • The fi rst bit indicates whether the packet should be fragmented. If set, the IP

datagram won ’ t be fragmented by any router.
 • The second bit indicates whether we have more fragments for the IP data-

gram. When an IP datagram is fragmented by any intermediate router, this
bit is set for all the fragments except for the last fragment.

 frag offset . This is a 13 - bit fi eld and is used by the fragmentation and assembly
unit to mark the offset in the original IP datagram for the fragment. With the help
of this fi eld, the assembling unit places all the fragments in order.

 TTL . This is an 8 - bit fi eld keeping time - to - live information. time - to - live is a
maximum number of hops (routers) that a packet is supposed to take before
it should be dropped. This fi eld is decremented by 1 by each router. We never
know what route a packet takes. It may happen that the broken route causes a
packet to hop in a loop. In such cases, this fi eld avoids the packet to hang out in the
internet forever. The maximum number of hops that an IP datagram can have is
254.

 prot . This is an 8 - bit fi eld indicating protocol number. As such, an IP datagram
is just a traffi c carrier over the internet. It may carry TCP, UDP, ICMP, and IGMP
data. At the receiving end, this fi eld is used to multiplex packet to the next protocol
layer.

 checksum . This is a 16 - bit fi eld containing checksum for the IP header including
optional fi eld. This checksum is calculated as follows:

 • Dividing the entire IP header as 16 - bit words.
 • Sum up these 16 - bit words.
 • Calculate the 16 - bit 2 ’ s complement of the sum.

 At the receiving end, the entire IP header is once again divided as 16 - bit words and
summed up. The result of the sum should have all the bits set. If not, the IP header
is considered corrupted. Since the IP header is modifi ed at each hop as the TTL
fi eld is modifi ed, the IP checksum is recalculated. RFC 1071 illustrates better ways
to calculate the IP checksum.

IP (INTERNET PROTOCOL) 89

90 PROTOCOL FUNDAMENTALS

 src addr . This is a 32 - bit fi eld containing an IP address of the generator of the
IP datagram. This fi eld is modifi ed by masquerading/NAT software when a packet
from a private network is forwarded to the internet by the gateway.

 dst addr . This is a 32 - bit fi eld containing an IP address of the host for which
packet is destined. Once again this fi eld is modifi ed by the gateway when packet
coming from public network is destined for the host in the private network
(de - masquerading/de - NAT).

 2.12 ROUTING

 An IP datagram reaches its destination by hopping through a series of routers
in the internet, which means that each router needs to have information about the
next hop router and the outgoing interface for the packet. Each router maintains
a table of all the possible routes through all the available links. This table is
called routing table. A route can be added manually by using a route command.
In the complex internet, a router may go down and come up and there is
nothing certain. So, having static routing entries will not help much. Thus, there is
a provision for modifying a routing table dynamically. This can be done by routing
daemons that implement various routing protocols. The neighboring routers may
broadcast their routing tables to all others in the domain or the router may query
a routing table from the neighboring routers. Whichever way it is, routing informa-
tion is made available to the routers and then the best route for a given destination
is added to the routing table. The following routing protocols are most widely
used:

 • Routing Information Protocol (RIP)
 • Open Shortest Path First (OSPF)
 • Border Gateway Protocol (BGP)

 The Routing decision is done in three steps:

 • Compare the IP address of the packet with the destination fi eld of the routing
table. If an entry exists in the routing table, we use that route.

 • If the fi rst test fails, we compare the subnet ID of the packet with the destina-
tion fi eld using a subnet fi eld in the routing entry. If the subnet ID matches,
we use this route.

 • If both tests fail, we simply use the default route for the packet for the routing
decision.

 2.13 netstat

 On Unix systems, the netstat command is used to display a kernel routing table.
Figure 2.32 shows the kernel routing table from netstat command. The output of the

netstat command is taken on Linux, where we have default static kernel routing
entries. It shows three entries:

 • 192.168.1 network, line 26
 • Loopback 127.0.0.1, line 27
 • Default gateway, line 28

 We will see how we can differentiate between three types of routes from the route
fl ag. Following are the routing fl ags as shown in the netstat output:

 U Indicates route is ‘ up ’ .
 G Route is to a gateway.
 H Route is to a host and not a network.
 M Table entry is modifi ed by ICMP redirect message.
 D Route was created dynamically or by ICMP redirect.

 There are three rows for each routing table entry in the netstat output. There is
much more associated with each routing entry, but seven main entries are displayed
here. The fi rst entry at line 26 is for subnet 192.168.1.0, which means that any packet
destined for subnet 192.168.1.0 should use interface eth0. Only subnet ID will be
compared for this entry, which can be obtained by ANDing IP address with the
 Genmask entry (255.255.255.0). If the subnet ID of the packet matches the Destina-
tion entry (192.168.1.0), why do we say that we need to compare the subnet ID of
the packet for this entry? The reason is that the routing fl ag is set to U. U means
that the route is up and nothing more.

 The next entry is for a loopback entry (127.0.0.1), which is a special case. Any
packet that is destined for 127.0.0.1 is sent to a loopback interface (lo). Here only
subnet ID is compared because the U fl ag is set for the route. The third entry is for
a default route. Destination and Genmask are set to all 0 ’ s here because it is a default
route and will unconditionally route any packet that comes to this stage. We can see
that Gateway is set to 192.168.1.1, meaning that packets should be sent to this
machine for the next routing decision using eth0 as an outgoing interface. We can
also see that the fl ag is set to UG , meaning that the route is UP and G indicates
that the route for gateway. When the G fl ag is set, the packets need to be sent to
the gateway machine for routing decisions. So, the destination hardware address
in the link layer header is set to that of the router instead of the hardware address
of the destination IP.

 Figure 2.32. Netstat output for host pointing to default Gateway.

netstat 91

92 PROTOCOL FUNDAMENTALS

 2.14 traceroute

 In this section we will see how packets hop in the internet to reach a fi nal destina-
tion. We will use a network utility traceroute to see how a packet is traversing
through the internet. We will discuss the mechanism used by traceroute in the
next section. traceroute reports three round trip times for each router. I have an
internet connection at home connected through a DSL router with IP address
192.168.1.1.

 The First line of traceroute output shows that a route is being traced for
 mail.yahoo.com with IP address 209.191.92.114 (see Fig. 2.33). The maximum number
of hops for this destination is set to 30. Every line shows three round trip times
from each router. We can see that as we are moving away from the host machine
toward a destination, rtt is incrementing. Everything is ok until we reach the 19th
entry. We can see that each time three different routers are being reported. This
happens because the 19th hop packet ends up at three different routers. This may
happen because the routing table at the 18th hop may have an updated entry at
three different times. Once again we can see something different at line 23, which
is three stars. This means that the traceroute has timed out and didn ’ t get a response

 Figure 2.33. Traceroute output.

from the router. The router may not respond or the response is blocked by a
router.

 2.14.1 traceroute Mechanism

 traceroute uses the ttl (time - to - live) fi eld of IP to get this wonder done. In Section
 2.11.1 we discussed that there is maximum number of hops that an IP datagram can
take before being dropped, which is decided by a ttl fi eld. traceroute starts with ttl
value of 1 and increments this value by 1 for each hop. This fi eld is decremented by
one at each router and if the value reduces to zero, the router sends back a ‘ time
exceeded in transit ’ ICMP message to the originator of the IP datagram.

 We collected tcpdump of the traceroute program discussed in Section 2.14 (see
Fig. 2.34). First line shows that a UDP packet destined for login.mud.yahoo.com of
length 40 bytes with ttl set to 1 is transmitted. The second line is the return of ICMP
message from the very fi rst router (DSL router). Similarly, lines 3 – 6 are repeated.
Similarly, for the next hop the ttl fi eld is set to 2 at line 7. We get an ICMP message
from the second router ABTS - KK - Dynamic - 001.96.167.122.airtelbroadband.in. We
need not mention that the same thing is repeated until we get to the fi nal
destination.

 2.15 ICMP

 ICMP stands for as internet control messages protocol. This is a general - purpose
protocol carrying control messages. These control messages can be an error message
from a router, such as ‘ network unreachable ’ or ‘ fragmentation not allowed, ’ or
TCP/UDP error messages such as ‘ port unreachable ’ and many other messages.
There are numerous utilities like ping that also use ICMP.

 An IP datagram carries an ICMP message. Whenever an ICMP message is
generated to report some error, an IP header is built for the return path of the IP
datagram from the IP datagram. An ICMP header is added to this IP datagram, and
this datagram is transmitted. Figure 2.35a shows an ICMP message that contains 20
bytes of IP header built from the original IP datagram that caused ICMP message
generation followed by ICMP message. The ICMP message format is shown in Fig.
 2.35b . It has three fi elds:

 type . this is 8 - bit number which classifi es the ICMP messages.
 code . this is 8 - bit number which differentiates ICMP messages in each class.
 checksum . this is a 16 - bit fi eld that covers ICMP message. Algorithm is same

as discussed in Section 2.11.1 .

 Type and code are specifi ed in RFC 792.
 The contents of an ICMP message in a data fi eld varies with type and code fi eld.

For example, when an ICMP error message is generated for a TCP/UDP port that
is unreachable, the data fi eld contains 8 bytes from the IP datagram payload that
generated an ICMP message. So, the originator fi nds out that the TCP/UDP socket
for which the ICMP message is generated as the fi rst 8 bytes includes destination
and source port numbers for these two protocols.

ICMP 93

94 PROTOCOL FUNDAMENTALS

 Figure 2.34. TCP dump ouput for traceroute .

 Figure 2.35a. ICMP packet.

 2.16 ping

 ping is a general network utility that is used to check the network connectivity of
any host. It uses echo ICMP messages for request and reply. The ICMP echo
message format is shown in Fig. 2.36 .

 type is set to 8 for an ICMP echo request and 0 for an ICMP echo response.
 code is set to 0.
 checksum is computed as mentioned in Section 2.11.1 .
 identifi er is 16 - bit fi eld that identifi es each echo reply uniquely. We may run

many ping programs in parallel, in which case a reply for each ICMP request is
identifi ed by this fi eld.

 sequence number is incremented for each ICMP echo request; on reception of
ICMP, an echo reply sequence number is checked. If they match with the current
sequence number, timestamp is used to calculate rtt.

 Figure 2.37 shows typical output of the ping program. We send 56 bytes of ICMP
data to parikrama . Each line of output is displayed once we get a reply for the ICMP
echo request. Each ICMP echo reply is 64 bytes of length, and each line of output
shows sequence number (icmp_seq), ttl is set to 255 (infi nite life time), and time is
rtt calculated from timestamp echoed in ICMP reply. At the end of the output is the
total statistics for the ICMP echo program. It shows that packets were transmitted
and received, there was no packet loss, total time spent is 5055 ms, and fi nally rtt
observed as minimum, maximum, average, and mean deviation over the entire ping
program is printed.

 Figure 2.38 shows snoop output of the ping program. Moksha is pinging pari-
krama and ID is unique for each ICMP packet (i.e., 950). The sequence number for
which snoop output is shown is 4. The fi rst ICMP echo request is sent with type 8,
and fi nally we get a response for the ICMP request with type 0. Code is 0 for both
request and reply. An ICMP message is encapsulated in the IP datagram with a
protocol fi eld of IP datagram set to 1.

 Figure 2.35b. ICMP message format.

 Figure 2.36. ICMP header format for echo request - reply message.

ping 95

96 PROTOCOL FUNDAMENTALS

 Figure 2.37. TCP dump output for output of ping program.

 Figure 2.38. Snoop output for ping request.

 2.17 ARP / RARP

 ARP is an address resolution protocol that is designed for link layer addressing.
RFC 2176 defi nes specifi cs about the protocol in detail. In this section we will discuss
specifi cally about Ethernet technology and IP. In an IP over an Ethernet link, there
are one or more IP addresses associated with one Ethernet network interface. Each
Ethernet interface has a specifi c address.

 In the Ethernet network, when we need to send a packet to a specifi c host whose
IP address is known, ARP is generated to know the hardware address associated
with the IP. ARP is hardware broadcast to the network and is replied by the host
whose IP address matches the IP address in the ARP packet. An ARP packet is
encapsulated in the link layer frame and is then broadcast, which means that the
destination hardware address of ARP frame should be set to all f . The destination
protocol address in the ARP header is set to a known IP address.

 RARP is the reverse of ARP, where we want to know the IP address corre-
sponding to the Ethernet address. In this case, a destination hardware address in
the ARP header is set to a known hardware address. The RARP server replies the
query. The RARP may be generated by a host to know its own IP address and is
mostly used by network booting clients. Note that the RARP server should be
within the same subnet as the requesting host because the RARP request is a
broadcast that doesn ’ t go over the router.

 The packet format for ARP and RARP is shown in Fig. 2.39 .

 hardware type . This is a 16 - bit fi eld that indicates the link layer identity for
which ARP/RARP is generated. For Ethernet, this fi eld is set to 1. For
RARP, this fi eld is set to 0x8035.

 protocol type . This is a 16 - bit value that is the identity for the network layer
protocol that is associated with the hardware address. For IP, this value is
0x0800.

 hardware addr len . This is an 8 - bit fi eld containing the length of the hardware
address. For Ethernet, the hardware address length is 6 bytes.

 proto addr len . This is an 8 - bit fi eld that contains the length of the protocol
address associated with the hardware. In the case of Ipv4, this value is 4
bytes.

 Figure 2.39. ARP header format.

ARP/RARP 97

98 PROTOCOL FUNDAMENTALS

 operation code . This is a 16 - bit value that indicates the operation to be per-
formed on the ARP packet. Since the same packet format is used for request
and replies, this fi eld identifi es whether this is an ARP request or reply. For
an ARP request and replies the values are 1 and 2, respectively. For an RARP
request and replies the values are 3 and 4, respectively.

 sender hardware addr . This is the hardware address of the originator of the
request/response. This will be 6 bytes long in the case of the Ethernet.

 sender protocol addr . This is the address of the protocol address of the sender.
This will be 4 bytes long in the case of Ipv4.

 destination hardware addr . This is the hardware address of the destination host.
This will be 6 bytes long in the case of the Ethernet. Thus will be set to the
hardware address of the host for which IP is not known in the case of RARP.
This fi eld is fi lled by the replier of the ARP request.

 destination protocol addr . This is the protocol address associated with the des-
tination hardware address. In the case of ARP, this fi eld is set to the protocol
address (IPv4 address) for which the hardware address is not known. This
fi eld is fi lled by the replier of the RARP request.

 Fig. 2.40 shows a snoop output of ARP request. The destination address in the
Ethernet header is set to all f ’ s. The Ethernet type in the Ethernet header is set to
0x806, which is ARP. The ARP header HARDWARE type is set to 1, which is
Ethernet. The protocol for which ARP is generated is set to 0x0800 for IP. The hard-
ware address length is 6 bytes (Ethernet address), and protocol address length is set
to 4 bytes (IP address). Opcode is 1, which is an ARP request. The last four lines are
the hardware address and the IP address of the sender; the target hardware address
is null because this needs to be found out for target protocol address 192.168.1.8.

 Figure 2.40. Snoop output for ARP request.

 2.18 SUMMARY

 TCP is a connection - oriented stream protocol. It makes sure that every byte sent is
received at the other end by means of an ACKing mechanism.

 TCP implements Nagle ’ s algorithm for small packets.
 A delayed acknowledgment scheme reduces load on the network by piggyback-

ing data along with the ACK segment.
 The TCP sliding window protocol is implemented for bulk data transfer. It takes

an advertised window and a congestion window in consideration for rate of data
transmission at any point in time.

 TCP extensions like SACK, timestamp, mss, and window scaling provide
enhanced performance as well as reliability.

 TCP congestion control algorithms use two TCP state variables to control the
rate of data transmission: send congestion window (cwnd) and slow - start threshold
(ssthresh).

 The IP is a stateless protocol that carries most of the internet traffi c.
 An IP datagram is routed through the internet by hopping one router at a

time.
 Every router maintains a routing table that keeps all the information about the

next route for a given destination.
 The netstat command is used to display a kernel routing table.
 traceroute is a powerful utility to trace the route that a packet is taking to reach

a destination.
 The internet uses ICMP messages to report errors.
 ARP/RARP are protocols designed to resolve a hardware address from a pro-

tocol address and vice versa.

SUMMARY 99

101

3

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 KERNEL IMPLEMENTATION OF SOCKETS

 Linux supports different communication protocols that fi t into the OSI model. The
BSD socket is an interface to different protocol families. The BSD - compatible
sockets have a uniform socket interface between the user process and the network
protocol stacks in the kernel. The BSD socket is a framework to the different fami-
lies of socket that Linux supports. The BSD socket concept is very similar to the
VFS (virtual fi le system) layer, which is just a framework that provides a common
interface to various different fi le systems/pipe/devices/sockets to the user without
user knowing how things are organized inside the kernel. This way different proto-
col families are supported by Linux, and their services are accessable to the user
using a common socket interface. For example, the protocol modules are grouped
into protocol families such as PF_INET, PF_IPX, PF_PACKET and socket types
such as SOCK_STREAM or SOCK_DGRAM, as shown in Fig. 3.1 .

 There are some standards laid out by the BSD socket framework which need
to be followed by each protocol family. These standards are nothing but a set of
functions such as create, bind, listen, accept, connect, read, write, ioctl, setsockopts,
getsockopts, and so on, and are data - structure - specifi c to the protocol family/type.
Each protocol family and their types need to register with the kernel BSD socket
framework to provide its service to the user.

 The socket() systemcall is the common interface to the BSD socket. User appli-
cation lets the BSD socket framework know which protocol family/type/protocol it
is interested in by way of passing arguments to the socket() systemcall. These param-
eters will be used by the BSD socket layer to set up the appropriate protocol stack,
which suits user requirement, inside the kernel without the user knowing how it is
happening. In this chapter we get to know about the BSD socket interface, the VFS
layer, and how sockets of different protocol families are plugged into the BSD

102 KERNEL IMPLEMENTATION OF SOCKETS

socket within the kernel. The discussion will be based mainly on PF_INET (specifi c
to ipv4) protocol family sockets here. Various important functions and data struc-
tures related to the PF_INET protocol family are explained.

 3.1 SOCKET LAYER

 The BSD socket is associated with sock structure, which contains fi elds specifi c to
the protocol family and type. Fields in the sock data structure point to protocol -

 Figure 3.1. Socket architecture.

VFS AND SOCKET 103

 family - specifi c data. These are a protocol - specifi c set of functions (struct inet_
protosw contains the set of functions), control fl ags, and pointers to data containing
protocol - specifi c information. There are some standard interfaces provided to the
user to set up the protocol stack and initialize the connection for the client/server.

 The socket() systemcall just identifi es the set of functions for each protocol
family and type and accordingly initializes the socket and sock data structures.
There are set of functions that need to be called to set up the complete stack for
the given protocol family and initialize the connection. These functions are bind(),
listen(), accept(), connect() , and so on. These functions are very specifi c to the pro-
tocol family and type. These functions are registered at system initialization time
using sock_register() function.

 3.2 VFS AND SOCKET

 Let ’ s examine the kernel data structures and functions related to the socket layer.
 sys_socket() is the function called in the kernel when user application makes a call
to socket() systemcall. The arguments to the socket() systemcall (to sys_socket()) is
protocol, family, and type. These arguments passed to socket() systemcall is used
by the socket framework to decide the protocol stack to setup. sys_socket() does
nothing more than calling sock_create() to initialize the socket and sock structure
for the protocol family and links the socket with the VFS by calling
 sock_map_fd() .

 For association of VFS and socket, refer to Fig. 3.2 . Each process has a fi le table
that can be accessed from an fd fi eld of object fi les_struct. fd is a double pointer of
type fi le . Each open fi le for the process has an associated fi le object linked with fi le
descriptor. fi le objects are indexed into a fi le table with an associated fi le descriptor.

 Figure 3.2. Socket accessed through process fi le table.

104 KERNEL IMPLEMENTATION OF SOCKETS

The fi les fi eld of task_struct objects for the process is a pointer to an object of type
 fi les_struct . The f_dentry fi eld of fi le object is a pointer to a dentry object. The d_
inode fi eld of dentry object is a pointer to an inode object associated with the fi le.
An inode object is a common for any fi le type. A socket is also considered as a
special kind of fi le that is identifi ed by an i_sock fi eld of inode object. u is union for
all types of fi le supported by VFS subsystem. A socket object can be accessed from
a socket_i fi eld of union u .

 From here our job is very easy because socket - and protocol - specifi c informa-
tion is available once we have access to a socket object. A socket has a pointer to
a sock object that has a pointer to a protocol - specifi c set of operations pointed to
by a prot fi eld.

 sock_create() fi nds the create() function specifi c to the protocol family and calls
it to initialize the sock structure associated with the BSD socket. net_families[] is
the array of type struct net_proto_family that is indexed by a protocol family. This
structure contains two main fi elds:

 int family
 int (* create)(struct socket * sock, int protocol)

 The ‘ family ’ fi eld contains the protocol family, and the ‘ create ’ fi eld is a function
pointer that points to the socket create function specifi c to the protocol. net_fami-
lies[] contains net_proto_family data for the registered protocol family. The sock_
register() function gets the registration of net_proto_family done for the protocol
family as shown in cs 3.1 . For the INET family, the inet_family_ops is registered.

 From now onward, everything will be very much specifi c to the protocol family.
So, I ’ ll take the PF_INET socket type to explain the socket layer everywhere until
it is mentioned. Thus, sock_create() fi nds the entry of the PF_INET protocol family

 cs 3.1. sock_register() .

in net_families[] . If net_families[family] is not NULL, call the ‘ create ’ function
specifi c to this protocol family net_families[family] → create (sock, protocol). We
need to allocate a new socket structure and set its ‘ sock → type ’ fi eld to the protocol
family type ‘ type ’ passed as an argument to the socket() systemcall. For PF_INET
protocol family, the ‘ create ’ function pointer is pointing to inet_create() . This func-
tion initializes the sock structure, which keeps information very specifi c to the IP
protocol.

 3.3 PROTOCOL SOCKET REGISTRATION

 We fi rst need to fi nd out the element in list head array inetsw[SOCK_MAX] con-
taining entry for sock → type (initialized in sys_socket()). inetsw is the array initial-
ized at the time of system initialization and is indexed by socket type.
 inet_register_protosw() is the function called to register inet sockets. There is a static
array of type inet_protosw (Fig. 3.3) inetsw_array[] which contains information
about all the inet socket types as shown in Fig. 3.5 . The Inetsw[] array is populated
at the system initialization time reading information for inet sockets from inetsw_
array[] (see cs 3.2). So, fi nally all the inet socket types that are registered with the
system have their entries in inetsw[] , which can be done by calling inet_register_
protosw() (see cs 3.3). The following code samples in cs 3.2 and cs 3.3 show the
registration of sockets.

 (Here we check if we want to register the already registered socket type. In the case where
a socket is already registered, we can ’ t override the entry if the socket is marked as per-
manent answer → fl ags is set to INET_PROTOSW_PERMANENT. In the case where
this fl ag is not set, we can have multiple entries for the same socket type and only the
one which is at the beginning of the list will be considered for this socket type, which

 Figure 3.3. struct inet_protosw .

PROTOCOL SOCKET REGISTRATION 105

106 KERNEL IMPLEMENTATION OF SOCKETS

 cs 3.2. inet_init() .

 cs 3.3. inet_register_protosw() .

means that the overriding entry will be in effect until this entry is removed so that the
original behavior of the socket comes into effect.)

 One thing worth noting here is that so far there is only one protocol per socket
type at the system initialization time. Since all the entries in inetsw_array[] have a
fl ag set to INET_PROTOSW_PERMANENT , we cannot override the behavior of
any of the inet sockets in the current implementation.

 We have seen how the inet_protosw structure for each socket type is registered
with the system and they can be accessed while opening a socket by the socket layer.
Let ’ s see how the sock structure is initialized using the information in the inetsw[]
array element for this socket type and how sock is linked to socket structure.

 3.4 struct inet _ protosw

 list : This is a pointer to the next node in the list.
 type : This is the socket type and is a key to search entry for a given socket and

type in inetsw[] array.
 protocol : This is again a key to fi nd an entry for the socket type in the inetsw[]

array. This is an L4 protocol number (L4 → Transport layer protocol).
 prot : This is a pointer to struct proto. This structure contains a set of functions

that are very specifi c to the IP protocol (like TCP/UDP). These functions
are close(), connect(), accept(), bind(), setsockopts(), getsockopts(), recvmsg(),
sendmsg() , and so on. For example, tcp_prot corresponds to SOCK_STREAM
and udp_prot corresponds to SOCK_DGRAM . This way we are interfacing
an IP protocol block with the socket layer with the help of struct proto, which
will be discussed later.

 ops : This is a pointer to the structure of type ‘ proto_ops ’ . This structure con-
tains a set of functions very specifi c to a protocol family. This structure con-
tains a similar set of functions as ‘ struct proto ’ but it operates at the socket
level. For example, inet_stream_ops corresponds to SOCK_STREAM and
 inet_dgram_ops corresponds to SOCK_DGRAM . The sequence goes like
this: Once any socket - related systemcall is made, fi rst it has to make a cor-
responding function call from a ‘ proto_ops ’ structure, and the then corre-
sponding IP - protocol - specifi c function is called from a ‘ proto ’ structure.

 3.5 SOCKET ORGANIZATION IN THE KERNEL

 As shown in Fig 3.4 . when user application makes a systemcall on socket, kernel
fi rst invokes a corresponding function from socket - layer - specifi c operations for the
protocol family from sock → ops , and subsequently it calls a corresponding function
from IP - protocol - specifi c operations from sk → prot . There may always not be one -
 to - one correspondence for each systemcall between sock → ops and sk → prot . For
example, there is no corresponding tcp_listen()/tcp_bind() when there is inet_listen()/
inet_bind() . This is because bind and listen is managed by a BSD socket layer and
is not very specifi c to the IP protocol layer. The inet_protosw structures initialized
for different socket TYPE for PF_INET family are shown in Fig. 3.5 .

SOCKET ORGANIZATION IN THE KERNEL 107

108 KERNEL IMPLEMENTATION OF SOCKETS

 Figure 3.4. Accessing a protocol - specifi c socket through a BSD socket.

 At this point in time, we are in inet_create() , where we are able to fi nd out the
appropriate entry for protocol type in the inetsw[] array. The structure inet_protosw
contains all the information for a specifi c IP protocol. For ease of further socket
operations, we won ’ t always refer to the net_protosw entry in inetsw; instead we
store all this information in the sock and socket structure for the current socket.
Now we go about initializing the sock structure fi elds for this IP protocol under
consideration.

 3.6 SOCKET

 We will be discussing the fi elds of the socket structure every now and then. So, they
are brought together here, as shown in Fig. 3.6 .

 state : This fl ied describes the connection status of the socket.

 There are fi ve states for the BSD socket :

 SS_FREE (sock is not yet allocated)
 SS_UNCONNECTED (sock is allocated but is not yet connected)
 SS_CONNECTING (sock is in the process of connecting)
 SS_CONNECTED (already connected to sock)
 SS_DISCONNECTING (in the process of disconnecting)

 Figure 3.5. Inet protocol family base.

 fl ags : These fl ags refl ect the resource status for a given socket and is associated
with the receive and send buffer (space availability).

 These fl ags are :

 SOCK _ ASYNC _ NOSPACE . This is the set when there is no space available to
write data on the socket because the send buffer is full. This is also used with
asynchronous operations.

 SOCK _ ASYNC _ WAITDATA . This is set when the recv buffer is full for a
given socket and there is no space to accommodate anymore data in the
receive queue. This is used with asynchronous operations.

SOCKET 109

110 KERNEL IMPLEMENTATION OF SOCKETS

 SOCK _ NOSPACE . This fl ag is set when there is no space available to write
data over the socket synchronously; sendbuf is full here.

 ops : This is the pointer to the proto_ops structure containing the set of func-
tions specifi c to protocol family as explained earlier.

 inode : This is the pointer to the inode associated with this socket. Hook to
VFS.

 fasync _ list : This is the pointer to ‘ struct fasync_struct, ’ which is a list of all those
async threads waiting for resources to be available on the socket. Basically,
threads wait for send and recv buffers to make space available for the new
data.

 fi le : This is the back pointer to the fi le structure associated with the socket.
Figure 3.2 explains the link between socket and VFS.

 sk : This is a pointer to the sock struct associated with the BSD socket very
specifi c to the IP protocol. We will be discussing the sock structure very
shortly.

 wait : This is the pointer to the wait ‘ Q ’ for any asynchronous threads waiting
for some event on the socket.

 type : This is the number that is associated with the IP protocol. This was
explained earlier.

 3.7 inet _ create (see cs 3.4)

 Initialize the BSD socket state to indicate that it is still unconnected (sock → state =
 SS_UNCONNECTED). BSD socket (on Linux represented by struct socket,
Fig. 3.6) maintains its own state which corresponds to the actual state of the con-
nection and will be discussed later.

 Figure 3.6. struct socket, representing the BSD socket on Linux.

 cs 3.4. inet_create() .

inet_create 111

112 KERNEL IMPLEMENTATION OF SOCKETS

 3.7.1 Sock

 Memory for ‘ sk ’ (sock structure) is allocated initially and then the fi elds are initial-
ized. We discuss some of the main fi elds of sock structure which are initialized here
and will carry the discussion of sock structure further.

 ops : The fi eld of socket structure ‘ sock ’ is initialized to ‘ ops ’ fi eld of ‘ answer ’ .
As discussed earlier, this contains a set of functions that are specifi c to the
 PF_INET protocol family.

 prot : The fi eld of sock structure ‘ sk ’ is initialized to IP - protocol - specifi c opera-
tions from answer → prot as discussed earlier.

 reuse : This fi eld is initialized to 1, in the case where the fl ag fi eld of inet_protosw
for this IP protocol is set to INET_PROTOSW_REUSE . This fi eld indicates
whether the local port associated with the socket can be shared in certain
conditions. These conditions are mentioned in include/net/tcp.h fi le .

 num : If sock → type is set to SOCK_RAW , we initialize num fi eld to protocol
number (which is nothing but the protocol fi eld in inet_protosw ; in the case
of SOCK_RAW , this is set to IPPROTO_IP).

 destruct : This fi eld contains the pointer to the function inet_sock_destruct() ,
which is called for cleanup operations on the socket when it is destroyed.

 family : This is the protocol family associated with the socket. For the inet
family, it is initialized to PF_INET .

 protocol : This is the IP protocol number associated with the socket. This is
passed as an argument to the inet_create() . The fi eld also corresponds to the
protocol fi eld of the inet_protosw structure for this IP protocol type.

 backlog _ recv : This fi eld is initialized to the ‘ backlog_recv ’ function from the
 ‘ prot ’ fi eld of this sock structure initialized earlier, depending on the IP pro-
tocol type. At this point in time, it looks like this function processes the
backlog list of the socket; let ’ s see later.

 sport : Source port for this socket. This fi le is initialized to ‘ num ’ in the case
where ‘ num ’ is already initialized (only in case or raw sockets). Finally it is
linked to the protocol hash chain sk → prot → hash() .

 protinfo : This is a fi eld that contains information specifi c to the protocol. Some
of these fi elds are initialized here, which will be discussed later.

 Discuss the other fi elds in the sock structure. Also discuss sock_init_data() and
 sk → prot → init() , though not in detail.

 sock_init_data() initializes the rest of the fi elds of sock structure associated with
the IP protocol. We will get to know the signifi cance of these fi elds shortly.

 Let ’ s see what fi elds sock_init_data() initializes.
 Initialize the queues for sock structure: receive_queue, write_queue , and error_

queue . These are queue heads of type sk_buff_head (Fig. 3.7), called skb_queue_
head_init() . This function will initialize prev & next fi eld to point to queue head,
initialize qlen to 0, and initialize the spinlock for the queue.

 prev & next : These fi elds point to the previous and next elements of the queue
(of type sk_buff).

 qlen : This fi eld indicates the number of elements in the queue.

 lock : This is a spinlock lock to protect the members of sk_buff_head . We need
to hold the lock before inserting/deleting the node from the queue and
updating the ‘ qlen ’ fi eld.

 Now let ’ s look at what receive_queue, write_queue, and error_quque point
to.

 receive _ queue : This fi eld points to the queue of incoming packets (received
packets sk_buff).

 write _ queue : This fi eld points to the queue of the outgoing packets (packets to
be sent out).

 error _ queue : This fi eld is rarely used to point to the queue of defective
packets.

 Call init_timer() to initialize ‘ timer ’ fi eld (of type timer_list) of sock structure.
This fi eld points to timer_list , which contains a list of timers to be fi red at different
times specifi c to this socket.

 allocation : This fi eld contains the policy using which memory for sk_buff for
this socket needs to be allocated. For this case, this fi eld is initialized to
 GFP_KERNEL .

 rcvbuf : This fi elds contains the number indicating a maximum limit for the
receive buffer at any point in time. This is initialized to sysctl_rmem_default
and can be changed using setsockopts() . This value is checked whenever we
are want to allocate memory for an incoming packet. If the limit has been
reached, a new buffer is not allocated until the receive_queue is consumed.
This restricts the socket from consuming the entire system memory when the
packets are fl ooding in for a given socket.

 sndbuf : Same as recvbuf , but it is used to limit the send buffer size. The value
is initialized to sysctl_wmem_default , which can be changed using
 setsockopts() .

 state : This is the state of the socket for a protocol — in this case the socket state
for the TCP connection. This is initialized to TCP_CLOSE since there is no
connection on this socket at this point in time. The rest of the states for TCP
socket are shown in Fig. 3.8 .

 Figure 3.7. sk_buff list head .

inet_create 113

114 KERNEL IMPLEMENTATION OF SOCKETS

 These states of TCP socket defi ne the stages in which the current TCP connec-
tion is involved. Some of the states are clients and the others are servers. It will be
discussed later when we explain the connection initiation and closure.

 sock : This fi eld points to the socket stucture for this sock structure.

 If there is a BSD socket associated with this sock structure, we also initialize
the following fi elds:

 type : This is same as the type of fi eld for the BSD socket structure initialized
earlier (IP protocol type).

 sleep : This is the same as the wait queue fi eld (sock → wait) of the BSD socket
structure for this sock.

 sk : This is a pointer to the sock structure for the BSD socket structure corre-
sponding to this sock, which is just initialized in inet_create() .

 dst _ lock : This is the lock to protect the destination cache (sk → dst_cache of type
dst_entry) for this socket. It is initialized here.

 callback _ lock : This is the lock to protect (socket, sleep, dfead fi eld of sock
structure, and sk fi eld of the associated BSD socket structure). It is initialized
here. Basically, these fi elds are used to attach/detach an IP protocol socket
with the process context. So, using the lock we can synchronize the attach-
ment/detachment of the IP protocol socket with the process (socket struc-
ture). If the socket structure is delinked with the sock structure and vice
versa, the process context is lost for further protocol communicationn from
and to the process but the IP protocol is still alive.

 state _ change : This is a callback function which is initialised to sock_def_wakeup .
This function is called whenever some event occurs on the IP protocol socket
which changes the state of the socket.

 Figure 3.8. TCP state.

 data _ ready : This is a callback function called whenever data are available on
the socket. This function wakes up all the processes waiting for the data on
sockets wait ‘ Q ’ sk → sleep & also sends appropriate signals to the processes
waiting on the async list of the parent BSD socket (sk → sock → fasync_list).

 write _ space : This is the callback function called when somehow write space is
available on the socket, which means that space is available on the write ‘ Q ’ .
This function pointer is initialized to sock_def_write_space . This callback
function should wake up all the processes waiting on the socket ’ s wait ‘ Q ’
for the space to be available on the send ‘ Q ’ and also sends appropriate
signals to the processes waiting on the async list of the parent BSD socket
(sk → sock → fasync_list).

 error _ report : This is a function pointer to the callback function that is called
whenever some error is reported on the socket to report the socket state to
all the processes waiting on sockets wait ‘ Q ’ (sleep) and sends appropriate
signal to all the processes in the parent socket ’ s ‘ fasync_list ’ list. This is
initialized to the sock_def_error_report .

 destruct : This is a function pointer to the callback function whenever socket is
being destroyed. This is initialized to sock_def_destruct. Finally, this can
point to a protocol - specifi c destruct function (inet_sock_destruct() in case
 PF_INET protocol family).

 peercred : This structure is used to identify the ownership of the socket. This
fi eld is mainly used in the case of UNIX domain sockets. In general the fi elds
of peercred structure are initialized to 0, 1, and – 1; but in the case of UNIX
domain sockets, the fi elds of peercred structure are initialized to current →
 pid, current → euid , and current → egid .

 rcvlowat : This fi eld is just an indication that the receive buffer has reached the
low water mark. This helps in making decisions when to process the receive
queue and stuff. The rest will be explained later.

 rcvtimeo : This fi eld keeps the value of the maximum timeout for any blocking
event on the IP protocol socket. It may be a timeout value when we are
blocked to receiving TCP data or when we are blocked to accept TCP con-
nections. Initialized to MAX_SCHEDULE_TIMEOUT .

 sndtimeo : The same as rcvtimeo, but in the opposite direction. It may be a
timeout value when we are blocked to send TCP data (waiting for memory
to be available for sending data when send ‘ Q ’ is full and there is no memory
available to accommodate more send data) or when we are blocked to make
TCP connections (client is waiting for acknowledgment of connect request).
Initialized to MAX_SCHEDULE_TIMEOUT .

 The rest of the fi elds of the sock structure are initialized at later - stage connec-
tion setup steps. We will discuss them as they come.

 Finally, sk → prot → init is called to initialize some more fi elds of sock structure
and also protocol - specifi c fi elds. In the case of TCP, this is tcp_v4_init_sock() . We
will discuss this function in detail here; the sock structure contains transport -
protocol - specifi c information in the fi eld tp_pinfo (Fig. 3.9).

 Get an IP - protocol - specifi c information fi eld from a sock structure (in case of
 PF_INET, SOCK_STREAMS , it will be sk → tp_pinfo.af_tcp). We initialize some of
the fi elds of tcp_opt structure for this socket. Initialize ‘ out_of_order_queue ’ (tp →
 out_of_order) member for the tcp_opt . This is the queue of sk_buff containing out -

inet_create 115

116 KERNEL IMPLEMENTATION OF SOCKETS

 of - segment data for the tcp connection. Initialize tcp timers for the socket, call
 tcp_init_xmit_timers() . Let ’ s see what it does. There are a minimum of three events
associated with any TCP connection for which a timer needs to be fi red:

 • Retransmit event.
 • Delayed acknowledgment (in case we are waiting for any data to be sent to

the other end). This timer will be fi red at a specifi ed time after a packet is
received from the other end.

 • Keep event alive. (This timer is fi red if the KEEPALIVE option is set for the
socket. This end of the connection will keep on sending probe packets to the
other end when the connection is idle for some time. The timer that does the
probe is fi red.)

 tp → retransmit_timer.function is initialized to tcp_write_timer() .
 tp → delack_timer.function is initialized to tcp_delack_timer() .
 tp → timer.function is initialized to tcp_keepalive_timer() .

 The data fi eld for all the timers (struct timer_list) is initialized to a pointer to
sock for this socket.

 tp → pending and tp → ack.pending are initialized to 0.
 tp → pending indiates that one of the timers is pending.
 tp → ack.pending fi eld indicates the state of ACK packet. There are three states

for the ACK packet:
 TCP_ACK_SCHED = ack is scheduled.
 TCP_ACK_TIMER = timeout for delayed ack timer is scheduled.
 TCP_ACK_PUSHED = ack is forced in emergency case.

 Call tcp_prequeue_init() to initialize fi elds of the ucopy member of the tcp_opt
structure . (Discussed in Chapter 8)

 Figure 3.9. Union for transport layer specifi cs.

 Initialize retransmit timeout (tp → rto) for the TCP socket to
 TCP_TIMEOUT_INIT .

 Initialize fi elds related to (mean deviation) rtt measurement in tcp_opt
structure (tp → mdev) to TCP_TIMEOUT_INIT .

 Initialize fi elds of tcp_opt structure related to congestion control and slow start
algorithms. Some of these fi elds are:

 tp → snd_cwnd = 2 (sending congestion window size)
 tp → snd_ssthresh = 0x7fffffff (slow start threshold; this should be half of conges-

tion window size but not less than two segments)
 tp → snd_cwnd_clamp = ~0 (upper limit for congestion window, tp →

 snd_cwnd)
 tp → mss_cache = 536 (cached effective maximum segment size for he

connection).
 tp → reordering = sysctl_tcp_reordering (3). This fi eld is used in detecting false

retransmits. This value indicates maximum number of duplicate ‘ ACKS ’
received before fast retransmit can start.

 sk → state is set to TCP_CLOSE as there is still no connection open for this
socket.

 sk → write_space is set to tcp_write_space() . This is a callback function used by
TCP to wake up the processes waiting for write space to be available on the
send queue, when ‘ ACKS ’ are received and they can free the sk_buffs on
the send queue.

 sk → use_write_queue . This fi eld indicates that someone needs to write to the
queue. More will be explained later.

 tp → af_specifi c is initialized to ipv4_specifi c containing set of functions specifi c
to TCP. Will discuss more about it later.

 sk → sndbuf is initialized to sysctl_tcp_wmem[1] (16K). This is the maximum
memory that can be allocated for the send buffer at any point of time, and
this value can be changed by setsockopts() .

 sk → rcvbuf is initialized to sysctl_tcp_rmem[1] (87,380 bytes). This is the
maximum memory that can be allocated for the receive buffer at any point
of time, and this value can be changed by setsockopts() .

 tcp_sockets_allocated increment this global variable by 1. This variable
keeps the count of the number of sockets open in the system at any point in
time.

 End of tcp_v4_init_sock() .
 End of inet_create()

 Until now, we have seen that various fi elds of structures socket, sock, and tcp_
opt are initialized in inet_create() . We have an IP - protocol - specifi c set of operation
set for the PF_INET socket and have also initialized some of the protocol - specifi c
fi elds in sock structure and tcp_opt structure. We will now see the steps involved
at the server and client end to set up a TCP connection. Thereafter, we move to a
discussion on bind(), listen() , and accept() systemcalls on the server side and

inet_create 117

118 KERNEL IMPLEMENTATION OF SOCKETS

 connect() on the client side. For PF_INET sockets, this will be inet_bind(), inet_
listen(), inet_accept() , and inet_connect() functions inside the kernel.

 3.8 FLOW DIAGRAM FOR SOCKET CALL

 Figure 3.10 shows fl ow of control for socket implementation in the kernel. We have
shown major routines called by sys - socket().

 3.9 SUMMARY

 There are two levels of socket abstraction. At the top is the BSD socket layer
defi ned as struct socket and then protocol - specifi c socket defi ned as struct sock .

 sock_register() is an interface to register BSD sockets for different net families.
For INET family, inet_family_ops of type net_proto_family is registered.

 net_families is a global array to indexed on net family number. Net family
sockets are registered with this table.

 Figure 3.10. Flow for socket system call.

 inet_register_protosw() is an interface to register protocols supported by the
INET family. These protocols are TCP, UDP, and RAW.

 inetsw_array is a global table that registers the INET family protocols, object
of type inet_protosw .

 inet_stream_ops is set of operations for INET stream BSD socket, and tcp_prot
is a protocol - specifi c set of operations TCP socket.

 Init routine for inet family type registered using sock_register() initialises BSD
socket and also protocol specifi c socket when application makes socket() call. We
pass to socket() , protocol family as well as protocol type e.g., to create TCP socket
net family is PF_INET and type is SOCK_STREAM.

 A socket is accessed by application using descriptors the same way that fi les are
accessed. Socket() call creates a socket and links it with VFS. The inode for the
socket has a socket object embedded in it, and the socket object also has a back-
pointer to the inode it belongs to. An entry is created in a processes fi le table for
the socket ’ s inode.

SUMMARY 119

121

4

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 KERNEL IMPLEMENTATION OF
 TCP CONNECTION SETUP

 TCP connection involves a client and server side setup for the two ends to commu-
nicate. In Chapter 2 we have seen how we make two ends communicate over TCP
using a client – server model. So, just to recapitulate, the client has to make two sys-
temcalls, socket() and connect() , to connect to the server. The server has to make
arrangements to create a listening socket so that the client can generate request to
connect to this socket. To make such an arrangement, the server has to make four
systemcalls: socket() , bind() , listen() , and accept() . We also saw the signifi cance of
each systemcall. From an application point of view, it is all very simple but in this
chapter we will see what these systemcalls do inside the kernel. In this chapter, we
will study the implementation of each systemcall in the kernel. This covers the major
data structures associated with the TCP connection in the Linux kernel.

 In Chapter 3 , we saw what happens when we make a socket systemcall. We
pass protocol family and type to socket() , and this does all the initial setup that
involves initializing BSD and protocol socket operations. This involves initializing
 socket and sock structures. Now we need to do the rest of the work on the socket,
which is already initialized by a call to socket() for client and server in different
ways.

 In this chapter we will study the details of the kernel data structures associated
with TCP connection setup on both client and server side. The chapter covers the
details of port allocation by the server when we call bind() . This also details how
the confl icts are resolved when the server generates a request for specifi c port allo-
cation. We will study the SYN queue design where the open connection request for
the listening socket fi rst sits until the connection is completely established (three -

122 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 way handshake is over). We will also see how the open connection request is moved
from the SYN queue to the accept queue when the TCP connection is established.
Finally, we will see how the established connections are taken off the accept queue
by making accept() call. Similarly, we will see how the client generates a connection
request to the server (sends SYN segment to the listening server). In this chapter
we will not cover the IP and link layer details (which will be discussed in later
chapters) but will surely cover everything that is associated with the client – server
connection setup in the kernel.

 4.1 CONNECTION SETUP

 Before two ends start communicating using TCP/IP protocol stack, each end needs
to do some initial setup which requires the following:

 • Asking the kernel to allocate some resources to setup this connection.
 • Informing the kernel regarding existence of this connection.

 Until now we have been discussing some initial setup inside the kernel to initialize
BSD socket & IP - protocol - specifi c data structures. This initial setup is done when
user application invokes socket() systemcall. This is the very fi rst step involved to
setup socket connection on both the server and client side. As discussed before,
socket() systemcall requires arguments that are used to identify the protocol family
and IP protocol type so that kernel can initialize a set of operations and data struc-
tures corresponding to the protocol. Finally, the kernel returns a fi le descriptor
associated with the socket to the user application. This fi le descriptor is used further
to identify this BSD socket by the kernel when application sends further requests
to the kernel to do some more initialization for the connection. The initial setup
done inside the kernel (linking of various kernel and socket data structures) after
issuing socket() systemcall from the user application is shown in Chapter 3 . All the
TCP client and server discussions make use of ‘ C ’ programs and are defi ned in
Chapter 2 , unless specifi ed.

 4.1.1 Server Side Setup

 Server application has to seek a series of kernel services to let the kernel apprise
the existence of the socket. This is done with the help of invoking systemcalls from
the application in the same sequence (see Fig. 4.1):

 • Socket
 • Bind
 • Listen
 • Accept

 We have already seen how the socket() systemcall acts inside the kernel to initialize
socket and sock data structures and a socket/protocol - specifi c set of operations
based on the protocol - family - type argument passed to the systemcall. After this
systemcall returns to the application, only socket - specifi c data structures are initial-

CONNECTION SETUP 123

 Figure 4.1. Sequence of systemcalls to be issued by server application.

ized. The server needs to do something more than this because it has not yet regis-
tered its identity with the system.

 A server application is recognized on the system based on the port number
(sometimes IP address also) associated with the server. So the server application
by some means needs to request the kernel that it needs to associate itself with
specifi c port (IP address in some cases). Application does this by invoking bind()
systemcall. After bind() returns to the application, we are still not ready as a server.
We have just gotten ourselves registered with the kernel but can ’ t serve any client
request. At this point in time, we need to do some basic confi guration for the socket,
which means that we need to tell the kernel how many connection requests a kernel
should keep in the backlog queue for this socket if the server is not able to handle
that many requests at any given point in time. This is done by invoking listen() sys-
temcall. After listen() returns to the server application, we are still not ready to
serve any client request because the server application still needs to request the
kernel that now kernel should start accepting the client request. For this server
invokes accept() systemcall. By doing this, kernel initializes some socket - and
protocol - specifi c data structures and actually registers the services of the application
with the system. accept() systemcall blocks forever until it gets a request for a new
connection from the client. Once the connection request is received, accept() sys-
temcall returns with a new fi le descriptor associated with the new connection. The

124 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

server uses the fi le descriptor returned by accept() systemcall to communicate
with the client. We will now see what the kernel does when we invoke these
systemcalls.

 4.1.2 Server Side Operations

 Figure 4.1 shows the sequence of systemcalls to implement TCP server program. If
also provides short description on functionality provided by each systemcall.

 4.2 BIND

 As discussed before, socket() systemcall only creates space for the socket in the
kernel. This socket still has no identity and is capable of nothing at this point in
time. bind() systemcall creates an identity for the socket and is the next step
to create the server application. Each open socket needs to be identifi ed uniquely
in the system. For that we have concept of socket address. Bind() takes this
socket address as one of its argument and kernel associates this address with the
socket. ‘ C ’ structure that represents this socket address is ‘ struct sockaddr ’ (see Fig.
 4.2).

 sa _ family : This stores the protocol family number associated with the socket
that we have already discussed earlier.

 sa _ data []: This array contains data very specifi c to the protocol. In the case of
the PF_INET protocol family, this array contains {port number, IP address
(struct in_addr)}.

 Since we have been discussing mainly the IP protocol, the ‘ C ’ structure that repre-
sents the socket address for IP protocol (PF_INET family) is ‘ struct sockaddr_in ’
(see Fig. 4.3). A socket address is defi ned by a combination of three things:

 sin _ family : This is an address family (PF_INET for IP protocol).
 sin _ port : This is a 16 - bit number that is used to distinguish between sockets for

same protocol family.
 sin _ addr : This is a 32 - bit number that represents an IP address. In the case of

server application, this is generally set to INADDR_ANY , which means that
if the server has many interfaces (physical/virtual), it can accept connections
from any of those. Server applications can restrict connections from any

 Figure 4.2. ‘ C ’ structure representing socket address.

specifi c interface by specifying an IP address corresponding to that interface
in the sockaddr_in structure while binding the socket. This way the kernel
allows a single port number to be used by different server applications
accepting connections from mutually exclusive interfaces (having different
IP addresses).

 4.2.1 Data Structures Related to Socket BIND

 tcp_hashinfo
 tcp_bind_hashbucket
 tcp_bind_bucket

 4.2.2 Hash Buckets for tcp Bind

 • tcp_ehash = tcp_hashinfo.__tcp_ehash (Fig. 4.4)
 • tcp_bhash = tcp_hashinfo.__tcp_bhash (Fig. 4.5)
 • tcp_listening_hash = tcp_hashinfo.__tcp_listening_hash (Fig. 4.6)

 4.2.3 tcp _ ehash

 Figure 4.4 illustrates snapshot of hash table for sockets in established state. First
half of the hash table is reserved for established sockets and rest for sockets in
TIME_WAIT State. This hash table is discussed later in the chapter.

 4.2.4 tcp _ listening _ hash

 Figure 4.5 illustrates snapshot of hash table hashing all the sockets in TCP_LISTEN
STATE in the system. Listen hash table is discussed later in the chapter.

 4.2.5 tcp _ bhash

 Figure 4.6 illustrates snapshot of hash table hashing sockets based on the post to
which they are bound bind hash table is discussed later in the chapter.

 Figure 4.3. Socket address for IP.

BIND 125

126 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 Figure 4.4. System - wide hash chain for sockets having states > = TCP_ESTABLISHED & & <

TCP_CLOSE.

 4.2.6 tcp _ hashinfo

 This structure manages the tcp bind hash bucket. The members of tcp_hashinfo are
as follows:

 struct tcp _ ehash _ bucket * __ tcp _ ehash : This is a list of all the sockets with com-
plete identity. With a complete identity, it means that the socket state should
be

 1. > = TCP_ESTABLISHED
 2. < TCP_CLOSE

 The fi rst half of the table is for sockets not in TIME_WAIT , and the second
half is for TIME_WAIT sockets only within the socket state boundary mentioned
above. The collision hash chain is linked by next and pprev fi elds of sock
structure.

 struct tcp _ bind _ hashbucket * __ tcp _ bhash : This is the hash bucket that hashes
entities containing information about all the port numbers that are already
in use. The elements in the hash table are hashed based on the local port
number.

 int __ tcp _ ehash _ size : This is the size of the tcp_ehash table.
 int __ tcp _ bhash _ size : This is the size of the tcp_bhash table.
 struct sock * __ tcp _ listening _ hash [TCP _ LHTABLE _ SIZE]: This is hash table

containing all the sockets in TCP_LISTEN state. Sockets are hashed in the
table based on local port number. The collision hash chain is linked by next
and pprev fi elds of sock structure.

 Figure 4.5. System - wide hash chain for all listening sockets having states == TCP_LISTEN.

BIND 127

128 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 Figure 4.6. System - wide hash table that links all the sockets which are bound tot one or the

other port.

 rwlock _ t __ tcp _ lhash _ lock : This lock protects __tcp_lhash_users and also the
 __tcp_ehash table.

 atomic _ t __ tcp _ lhash _ users : This variable is used to synchronize the readers/
writers of __tcp_listening_hash . This member is incremented every time the
process wants to acquire reader/writer lock for the tcp_listen_hash list. This

is decremented when we release the lock; and if the value comes down to 0,
we wake up all the processes waiting to acquire the lock.

 wait _ queue _ head _ t __ tcp _ lhash _ wait : This is a wait Queue for the readers/
writers of __tcp_listening_hash .

 spinlock _ t __ tcp _ portalloc _ lock : This is lock used to synchronize access of
global variable tcp_port_rover and tcp_bhash hash table. This lock should be
held when we are requesting a local port to bind a socket.

 4.2.7 tcp _ bind _ hashbucket (See Figure 4.6)

 This describes the hash bucket and consists of two members:

 spinlock _ t lock : This is a lock to protect the collision hash chain chain .
 tcp _ bind _ bucket * chain : This is the element of the collision hash chain for the

bind hash bucket.

 4.2.8 tcp _ bind _ bucket

 This structure keeps information about the port number usage by sockets and the
way the port number is being used. The information is useful enough to tell the new
binding socket whether it can bind itself to a particular port number that is already
in use. The data structure also keeps track of all the socket ’ s that are associated with
this port number.

 unsigned short port : This is the port number associated with tcp_bind_bucket .
Whenever a socket wants to bind itself to some port which is not in use, we
allocate a new tcp_bind_bucket structure, assign the port number in question
to port , and hash it in the tcp_bind_hashbucket .

 signed short fastreuse : This is the fl ag that indicates whether the port number
that is already in use can be reused by a new socket. Whenever a new socket
requests to allocate a port number to it, we check if the port number is
already in use by some other socket. So, we check tcp_bind_hashbucket for
the entry associated with a port number. Now if we have requested to bind
the socket with the port number for which hash entry exists, we check for
the fastreuse fl ag. If this fl ag is set, we are sure that we can bind the socket
with the associated port number and add the socket to the owner ’ s list. In
short, if the fastreuse fl ag is set, we have all the sockets in the owners list,
which are as follows:
 1. These sockets are bound to the same TCP port but on different network

interfaces. We can have server applications listening on the same post but
different IP address confi gured on different interfaces.

 2. Or all the sockets have a reuse fl ag set and are not listening sockets, which
means that for all the sockets in the owners list the following conditions
should be met:

 sk → reuse & & sk → state != TCP_LISTEN

 3. Or all the sockets are bound to the same port using same interface, but
the recv_saddr for all the sockets is different.

BIND 129

130 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 struct tcp _ bind _ bucket * next : This is the next node in the tcp - hash - bucket col-
lision chain, for which associated port numbers hash to the same values.

 struct sock * owners : This is the list of the sockets that are using same port
number. These are linked by the following members of the sock structure:

 1. sk → bind_next
 2. sk → bind_pprev
 3. sk → prev

 struct tcp_bind_bucket * * pprev: This is the address of the location that contains
address of current tcp_bind_bucket node.

 4.2.9 bind ()

 Systemcall accepts three arguments returned by socket() systemcall:

 socket descriptor (fi le descriptor)
 socket address (struct sockaddr_in)
 address length

 Since socket() systemcall has already associated the fi le descriptor with the socket,
this descriptor will be used by the application further to identify this socket. When
bind() systemcall is invoked, the kernel calls the sys_bind() function. Let ’ s see what
this function does.

 4.2.10 sys _ bind ()

 sys_bind() is the function called inside the kernel with three arguments
(Fig. 4.7).

 fd : This is the socket fi le descriptor returned by socket call.
 umyaddr : This is the socket address to which we want to bind the socket.
 addrlen : This is the socket address length.

 First, we do a lookup for the socket associated with the socket descriptor. This socket
descriptor is nothing but the fi le descriptor, and it links a socket with the VFS as
shown in Fig. 4.2 . So, we call sockfd_lookup() with the socket descriptor.

 4.2.11 sockfd _ lookup ()

 First the kernel needs to get the fi le structure from the current process ’ s fi le table.
We call fget() to do this.

 Figure 4.7. Entry point for bind sys call in the kernel.

 4.2.12 fget ()

 Get hold of fi les member for the current process (current → fi les). Now the fi le
descriptor (socket descriptor here) is indexed into the fd array, member of the
fi les_struct structure, for the current process. Before accessing an element of the
array fd (current → fi les → fd[fd]) corresponding to the socket descriptor, we need to
make sure that the socket descriptor is well below the maximum number allocated
to the fi le descriptor; until now, we did it by calling fcheck() :

 if (fd < fi le → max_fds)

 If the above condition is true, we return the fi le structure corresponding to the
socket descriptor from the fi le table:

 current → fi les → fd[fd].

 Now, increment the reference count (fi le → f_count) of the fi le structure returned by
 fcheck() . Return the fi le structure.

 End of fget (). Get hold of the inode associated with the socket descriptor,
 fi le → f_dentry → d_inode . Now we need to check if the inode represents a socket. This
can be confi rmed if inode → i_sock is set. If the above is true, get the socket structure
associated with this inode, call socki_lookup(). socki_lookup() returns socket struc-
ture, which is part of the union u of the inode structure

 inode → u.socket_i .

 Return socket structure (inode → u.socket_i) .

 End of sockfd _ lookup (). Once we get the socket associated with the socket
descriptor from s ockfd_lookup() , we copy - in the socket address from user space to
kernel space and fi nally call the bind function specifi c to the protocol family: sock →
 ops → bind() . In the case of PF_INET protocol family, this function corresponds to
 inet_bind() .

 4.2.13 inet_ bind ()

 This internally calls a bind function specifi c to IP protocol with fd replaced with
corresponding socket . This is protocol - specifi c:

 sock → sk → prot → bind() .

 As we have already seen in our earlier discussion for SOCK_STREAM , sock → sk →
 prot is initialized to tcp_prot . We don ’ t have any bind function specifi c to SOCK_
STREAM (in tcp_prot) . So we move ahead with some sanity check on the socket
address passed as an argument to the function. Then we need to check the IP address
type in the socket address. To get the IP address type (to which application has
requested to bind the socket), we call inet_addr_type() . Based on that, we see how

BIND 131

132 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

decisions are made. sysctl_ip_nonlocal_bind is a control parameter that controls the
 ‘ binding behavior ’ of the sockets. If the control parameter is set, it means that we can
bind our socket to any IP address, which includes nonlocal types also.

 Nonlocal IP addresses are those that are external. This means that it can be a
gateway address or a direct route. Any interface that gets IP addresses dynamically,
is directly connected to the gateways of different networks, and acts as gateway for
the host is considered as a nonlocal IP. For example, PPP, PLIP, SLIP, and so on,
interfaces get IP addresses that are nonlocal because they get an IP addresses
dynamically only when the link between the two ends is up and the IP address
assigned to the interface belongs to the network between the two ends. In the case
where sysctl_ip_nonlocal_bind is not set, we can allow the socket to bind to only
those IP addresses that fall in the following categories:

 INADDR_ANY = address to accept any incoming message
 RTN_LOCAL = accept locally
 RTN_MULTICAST = multicast route.
 RTN_BROADCAST = accept locally as broadcast and send as broadcast.

 Now we are left with one class of IP address to which a socket is not allowed
bind if sysctl_ip_nonlocal_bind is not set. This is RTN_UNICAST indicating that
the IP is a gateway or a direct route. Once we have checked the validity of the IP
address to which socket needs to be bound, we go ahead with some more checks.
Get the port number from the socket address (addr → sin_port). Here we check if
the port number requested is reserved for privileged applications. Ports 0 – 1023 are
reserved for applications running as a super - user. The following conditions does the
check:

 snum < PROT_SOCK & & !capable(CAP_NET_BIND_SERVICE)

 Now the nonprivileged application can also have permissions to avail some of
the super - user facilities. We can check this capability of the current process by
calling capable() and passing capability number to it. The process structure has a
capability - related fi eld, current → cap_effective, which keeps information about the
capabilities that a current process possesses. We are capable of binding the socket
to the privileged port. So, we move ahead with some more sanity checks. We check
if we are binding the same socket once again. The following check does the same:

 (sk → state != TCP_CLOSE) || (sk → num != 0)

 Until now, the socket state is unchanged because we don ’ t have any activity on it
(we see this in later discussions when the socket state changes from TCP_CLOSE
to something else). If the socket state shows that it is in any state, it means that we
have already bound the socket before and are trying to bind it once again (by
mistake). At this point of time, sk → num is set to a value greater than 0 only in case
of SOCK_RAW . We are discussing SOCK_STREAM , for which we have not yet
allocated sk → num . So if the value is set, we have entered the wrong code path. Now
we assign values to source address for this socket. There are two fi elds in sock struc-
ture associated with the source address. These are:

 sk → rcv_saddr
 sk → saddr
 sk → rcv_saddr . This is a source address used by hash lookups, and sk → saddr is

used to transmit (source address for IP headers). These are initialized to an
IP address specifi ed in socket address (addr → sin_addr.s_addr). In the case
where the socket ’ s IP address is of type multicast or broadcast, we set sk →
 saddr to 0 (which means that the sending device address is used in such
cases).

 The next step is to fi nd out whether we are allowed to bind to specifi ed port
(address already being used by another socket). Call get_port() specifi c to the pro-
tocol sk → prot → get_port() . This is tcp_v4_get_port() from tcp_prot (set of protocol
operations specifi c to SOCK_STREAM).

 1. > = TCP_ESTABLISHED
 2. < TCP_CLOSE

 4.2.14 tcp_ v 4_ get _ port ()

 Arguments passed to this function is sock structure associated with the socket and
the port number to which a socket needs to be bound. If the port number specifi ed
is 0 in the socket address, we are asking the kernel to fi nd a free port number and
allocate it to the socket. Here we need to select a free local port within the range
specifi ed by sysctl_local_port_range[2] (1024 – 4999). This range can be changed by
using sysctl. tcp_portalloc_lock is a global lock that serializes the port allocation. So,
we need to hold the lock here before accessing any of these global variables associ-
ated with port allocation. These are

 cp_port_rover
 tcp_bhash
 tcp _ port _ rover : This is another variable that keeps the last port number allo-

cated to the socket.
 tcp _ bhash : This is a global hash bucket containing information about all the

allocated port numbers and related information. This is a macro that accesses
 __tcp_bhash member of global variable tcp_hashinfo (of type struct tcp_
hashinfo), tcp_hashinfo.__tcp_bhash .

 Starting from tcp_port_rover , we check for all the available free ports within
the max local port value stored in sysctl_local_port_range[1] .

 rover = tcp_port_rover;

 We access the hash chain head corresponding to each port number from tcp_bhash
hash table (see cs 4.1).

 Before accessing the collision hash chain, we need to hold the chain lock
(head → lock).

 spin_lock(& head → lock);

BIND 133

134 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 Now we traverse each element of the collision hash chain using the next member
of the chain element (struct tcp_bind_bucket). For each element we try to match the
current port number with the port number corresponding to the hash chain
element.

 if (tb → port == rover)

 If we fi nd that none of the elements (tb) corresponds to the selected port number
(rover) in the current hash collision chain, we move on to the next port number
(++ rover) and start over again. Otherwise, we get out of the loop and release the
global lock tcp_portalloc_lock . We are here because of two reasons:

 1. Either we have exhausted the entire port numbers (all are in use)
 2. Or we have found one unused port number.

 In the former case we return the error, whereas in the latter case we need to create
an entry in the hash table tcp_bhash for the new port number allocation. Here we
store the allocated port number in the global variable tcp_port_rover and initialize
 tb (element of the collision hash list) to NULL because we need to create a new
entry later.

 In the case where the application has specifi ed the port number to which it
wants to bind the socket, we get hold of the collision hash - chain element corre-
sponding to the port number from the tcp_bhash[] hash table. We traverse through
each element of the collision hash chain and try to match each element ’ s port
number with the port number in question. If we are able to fi nd the matching entry,
we know that the port is already in use. Nevertheless, we don ’ t give up here because
if we are able to satisfy certain conditions, we can reuse the ports. If we are here,
we know that

 1. either we have gotten an available free port number
 2. or gotten the requested port number which is not in use
 3. or gotten the requested port number which is already in use.

 For cases 1 and 2, we need to create a new hash entry in the tcp_bhash table. We
allocate new struct tcp_bind_hashbucket , initialize all the fi elds of the allocated
structure. We link the current hash - chain element to the head of the list using next
and pprev members of the tcp_bind_bucket structure. Now we need to initialize the
 fastreuse member of the the element. We have already discussed this fl ag in detail,
and now we see how to initialize. In the following case, we set this fl ag (tb →
 fastreuse):

 1. reuse fl ag is set for the current socket (sk → reuse == 1)
 2. and current socket is not in listen state (sk → state != TCP_LISTEN)

 cs 4.1. tcp_v4_get_port() .

 Otherwise, this fl ag remains 0. This means that the socket can only be allowed to be
reused if the owning socket allows it to be reused (sk → reuse == 1) and it is not in
the listening state (sk → state != TCP_LISTTEN).

 We have not yet updated the owners fi eld of the new element and so also the
 num fi eld of the socket (associate the port number with the socket). For this we call
 tcp_bind_hash (). This function links the current socket with the owner ’ s fi eld of the
hash bucket element with the help of the sk → bind_pprev and sk → bind_next fi elds.
For case 3, we have already found tb corresponding to the port number which is
requested by the application, in which case we have reached here with tb != NULL .
In this case we need to make some checks before proceeding further. We need to
check whether

 1. the current socket allows sharing of port number
 2. the current socket qualifi es for binding to the port already in use.

 The former can be verifi ed by checking the reuse fi eld of the socket (sk → reuse). If
this is set to 1, we are sure that it is passed. For the latter case, we need to check
two things:

 1. tb → fastreuse for tb found from the tcp collision - hash chain.
 2. state of the current socket (sk → state).

 If tb → fastreuse is set to 1, it means that all the sockets (in the tb → owners list) still
allow some others to use it for binding. sk → state for the current socket should not
be set to TCP_LISTEN , which means that the current socket is not in the listening
state.

 If case 3 passes, we go ahead and bind the port with the current socket and link
the socket with the tcp bind hash bucket, we call tcp_bind_hash() . In case we fail,
we still have a chance to bind the socket with the port already in use. We can still
bind this socket to the given port if tcp_bind_confl ict() fi nds it appropriate.

 4.2.15 tcp _ bind _ confl ict ()

 This function traverses through the entire list of sockets in the tb → owners and do
the following checks:

 sk2 = tb → owners

 1. First we check whether the current owner socket is bound to a different
interface (IP address) from the interface to which new socket wants to bind
(see cs 4.2). If this they are different, we move on to the next socket (sk2 =
sk2 → bind_next) in the list and repeat the same step.

 2. If the above condition passes, we check whether the current owning socket
is a listening socket (see cs 4.3). If it is not so, we move on to the next socket
(sk2 = sk2 → bind_next) in the owner ’ s list and start over from the step 1.

 3. If the above condition passes, we check whether the IP address to which new
socket wants to bind to is different from the IP address to which the current
owning socket is bound on the same physical interface and also the two IP

BIND 135

136 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

addresses are not INADDR_ANY (see cs 4.4). If the condition is true, we
come out of the loop. Otherwise, we move on to the next owning socket (sk2
= sk2 → bind_next) and start over all again from step 1.

 If we have come out of the loop, it may be because of the two reasons:

 1. We have exhausted all the owning sockets (sk2 == NULL)
 2. We have found at least one owning socket that is bound to (sk → state ==

TCP_LISTEN) the same port number, IP address (sk → rcv_saddr), and
interface to which the new socket wants to bind.

 In the former case, there won ’ t be any confl icts and we can bind the new socket to
the requested port number and thus we link the new socket in the owner ’ s list; call
 tcp_bind_hash() . In the latter case, we have confl icts because of which we cannot
bind the socket to the requested port.

 We return from tcp_bind_confl ict() with the indication that we can reuse the
port number because the confl icts are resolved. Now we need to modify the fastreuse
fl ag for the bind hash bucket (tb → fastreuse). If the current socket doesn ’ t allow us
to reuse the port (sk → reuse == 0) and tb → fastreuse is nonzero (possible values are
 − 1 or 1), we reset tb → fastreuse , which means that neither the listening nor the con-
necting socket can use this port number. We carry out all the activities in the func-
tion with local bottom - half disabled, because some new connection request may
also access the tcp bind hash table as we will see later.

 cs 4.2. tcp_bind_confl ict() .

 cs 4.3. tcp_bind_confi lict() .

 cs 4.4. tcp_bind_confi lict() .

 End of tcp _ v 4_ get _ port (). We return to inet_bind() with the error code. If
we check that the error has occurred, we return with the error code EADDRI-
NUSE . If we have come until this point, it means that the socket is successfully
bound to the requested port. We need to update certain fi elds of the socket
structure.

 3. If the new socket is not binding to INADDR_ANY (sk → rcv_saddr != NULL),
we need to set SOCK_BINDADDR_LOCK bit of sk → userlocks fl ag. This
indicates that that we are bound to a specifi c IP address and are not receiving
connections from any IP address.

 • If the new socket has gotten the valid port number to bind to without any
confl icts, we set the SOCK_BINDPORT_LOCK of sk → userlocks fl ag.

 • We update the source port of the socket (sk → sport) of the socket with the
requested port number. sk → sport = htons(sk → num), sk → num is assigned
value in the function tcp_bind_hash() called from tcp_v4_get_port() →
 inet_bind() .

 • As of now we don ’ t know the destination port (sk → dport) and IP address
(sk → daddr), which is known only when we get a request for new connection
for this bound socket. So we initialize them to 0.

 • Initialize sk → dst_cache to NULL . This fi eld is related to the destination route
cache and we will discuss it later.

 End of inet _ bind (). If this passes, we are successful in getting the requested
port number which is already in use; otherwise we fail. The complete fl ow of bind()
is shown in Fig. 4.8 .

 4.3 LISTEN

 Here we need to tell the kernel that we are willing to accept the connections. At
the same time we need to confi gure the socket as to how many socket connections
the kernel should keep in the backlog queue before it starts rejecting the new con-
nection request. The backlog queue for listening sockets may fi ll up for two
reasons:

 • In case the kernel is not able to process the request.
 • In case the application has not invoked accept() systemcall.

 Once the backlog queue is full for the socket, the kernel rejects/drops the request.
In the latter case, it sends a message to the client with error code
 ECONNREFUSED .

 listen() systemcall accepts two arguments:

 1. Socket descriptor (ret urned by socket() systemcall).
 2. Number and length of the backlog queue.

 Let ’ s see what happens inside tke kernel when we invoke listen() systemcall.

LISTEN 137

138 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 4.3.1 sys _ listen ()

 sys_listen() is called inside the kernel with the following arguments (Fig. 4.9):

 fd : This is the socket fi le descriptor on which listen operates.
 backlog : This is the length of the backlog queue to handle accepted connection

requests for the listening socket.

 First we try to get the sock entry corresponding to the socket descriptor, sockfd_
lookup() . This function was explained earlier. Do some sanity check for length of
the backlog queue (should not be more than SOMAXCONN). We are now ready

 Figure 4.8. Code fl ow for bind process.

 Figure 4.9. Kernel interface for listen systemcall.

to put this socket to listening state for which we need to initialize some of the
members of the sock structure and protocol - specifi c data structures, which informs
the kernel that we are willing to accept the connections and have confi gured the
connection backlog queue. We call the protocol - specifi c listen function fi nally. This
is sock → ops → listen() . For the PF_INET protocol family, sock → ops is set to inet_
stream_ops . So, we are calling listen() function from inet_stream_ops , inet_listen() .

 4.3.2 inet _ listen ()

 We carry out some sanity checks here like the socket should be in close or listen
state, TCP_CLOSE or TCP_LISTEN. In the latter case, we should be allowed only
to adjust the connection backlog Queue length (sk → max_ack_backlog). Otherwise
we do something more to put the socket to listening state. In the case where the
socket is currently in TCP_CLOSE state, we call tcp_listen_start() .

 4.3.3 tcp _ listen _ start ()

 Here we initialize some of the fi elds of following structures:

 a. sock
 b. tcp_opt
 c. tcp_listen_opts

 sk → max _ ack _ backlog : This is the maximum length of the connection backlog
queue. This is initialized to 0.

 sk → ack _ backlog : This indicates the number of connection requests currently
in the connection backlog queue. This value is incremented whenever a new
connection is accepted. A check is made with sk → max_ack_backlog before
the new connection is accepted. Initialize accept queue for the socket, (see
cs 4.5).

 An open connection backlog Queue or accept Queue is maintained by tcp_opt
structure sk → tp_pinfo.af_tcp , with the help of two different members accept_queue
and accept_queue_tail . Queue points to struct open_request which we discuss little
later. Allocate space for struct tcp_listen_opt and initialize the members.

 Initialize syn queue access lock, (see cs 4.6). This lock protects sockets SYN
QUEUE which contains list of connection requests.

 cs 4.5. tcp_listen_start() .

 cs 4.6. tcp_listen_start() .

LISTEN 139

140 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 SYN QUEUE . Precisely speaking, this is the new request created by the kernel
when the SYN packet arrives for the listening socket. This list is maintained by
socket ’ s sk → tp_pinfo.af_tcp → listen_opt member of type struct tcp_listen_opt . Let ’ s
discuss tcp_listen_opt structure.

 max _ qlen _ log . This keeps the number that indicates the maximum number of
SYN connection requests for a listening socket. Whenever, the kernel receives a
SYN packet for a listening socket, the qlen fi eld is checked against the max_queue_
len fi eld of this structure. If the former is greater than the latter, we drop the current
connection request. Otherwise we increment qlen by 1 and add this open connection
request to the SYN queue hash table.

 qlen . This is the counter that keeps track of the number of open connection
requests in the SYN queue. This fi eld is incremented whenever we add a new con-
nection request to the listening sockets SYN queue.

 qlen_young. This is the counter that keeps track of the number of number of
open connection requests in the SYN queue, which are still young. The fi eld is
incremented by 1, whenever a new open connection request is added to the SYN
queue. It is decremented by 1, whenever TCP needs to retransmit the SYN/ACK
packet for any of the open connection requests in the SYN queue because it has
not received the ACK for the SYN/ACK packet already sent for any reason. Basi-
cally, the policy is to still drop any new connection request based on the young
connection requests in the following case:

 • SYN queue can accommodate more open connection requests in the SYN
queue (tcp_synq_is_full() == 0), and

 • Accept queue is full (tcp_acceptq_is_full() != 0) and SYN queue still contains
more than one young connection request (tcp_synq_young() > 1).

 syn _ table . This is the SYN queue hash table that hashes all the open connec-
tion requests (of type struct open_requests) for the listening socket. These requests
are hashed based on destination port and destination IP (client ’ s port and IP which
generated the connection request). The SYN queue hash collision chain for syn_
table is linked by dl_next fi eld of open_request struct. Call tcp_delack_init() .

 Now we need to set the max_queue_len for the tcp_listen_opt structure just
allocated for this listening socket. This value is set based on the global variable
 sysctl_max_syn_backlog (which is system confi gurable and is initialized to 256 for

 Figure 4.10. Structure used by listening socket.

machines > = 256 MB). The value of the fi eld should not exceed log 2 of the value
stored in global variable sysctl_max_syn_backlog (see cs 4.7).

 Initialize listen_opt member of socket ’ s sk → tp_pinfo.af_tcp with the tcp_listen_
opts structure just allocated and initialized with the SYNQ lock just initialized tp →
 syn_wait_lock .

 We have already made all the required changes to the socket to get it to the
listen state. We are still not in the listen hash table, tcp_listening_hash , because we
are still not in the TCP_LISTEN state. We set the socket state to TCP_LISTEN
state (see cs 4.8).

 Now we need to check if we are still eligible to use the same port to which we
earlier bound this socket. There is a window between the bind() and listen() calls
form an application when two threads can race to bind two sockets to the same
port. After both the threads are bound to the same port (both the sockets are in
the bind hash list, tcp_bhash), one of the sockets makes the socket port not reusable
(resets sk → reuse for itself) and gets into the TCP_LISTEN state. The other thread
now enters the listen() systemcall and gets into this part of the code. So, once again
it needs to make sure whether it can use the same port that it requested earlier. So,
it checks this by calling sk → prot → get_port() (tcp_v4_get_port()), which returns 0
if still this socket can use the same port (sk → num) to which it was bound. If we
can ’ t use the port, return 1. Otherwise if that is the case, we set sport for the socket
(sk → sport) and hash this socket to the listen hash table sk → prot → hash(). This
function points to tcp_v4_hash() in the case of TCP (see cs 4.9). tcp_v4_hash()
hashes the socket to the listen hash table, tcp_listening_hash (Fig. 4.5), with the local
bottom half - disabled. The socket is linked in the listen hash collision chain using

 cs 4.7. tcp_listen_start() .

 cs 4.8. tcp_listen_start() .

 cs 4.9. tcp_listen_start() .

LISTEN 141

142 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 sk → next and sk → pprev pointers. The hash function, tcp_sk_listen_hashfn() , uses
 sk → num to calculate the hash value.

 END of tcp _ listen _ start (). we return from tcp_listen_start() , either with error
code set or successfully putting the socket in the listening state. In the case where
the socket is successfully put to the listening state, we need to set max_ack_backlog
fi eld of the socket to the value passed as an argument to the listen() (see cs 4.10).

 END of inet _ listen (). The complete fl ow of listen() is shown in Fig. 4.11 .

 4.3.4 Listen Flow

 Figure 4.11 shows fl ow of control for listen implementation of TCP/INET socket in
the kernel. Here we show maps routines that are called from sys_listen() for details,
see Section 4.3.3 .

 4.3.5 struct open _ request

 The structure keeps account of all the open connection requests which are not yet
accepted by the application (see Fig. 4.12). There is one open_request for each
connection request for a listening socket. When the connection request arrives, a
new structure is allocated and various fi elds of this structure are initialized. Most
of the fi elds are initialized from tcp and ip header fi elds of the SYN connection
request and are very specifi c to the connection. These are explained ahead. The
structure is hashed in the listening sockets syn Queue sk → tp_pinfo.af_tcp → listen_
opt → syn_table according to the port number of the connection requester (see Fig.
 4.17). The SYN/ACK packet is sent to the connection originator (client). When the
fi nal ACK is received for the SYN/ACK packet associated with this connection
request, a new socket is created which is marked to be in the TCP_ESTABLISHED
state because a three - way handshake is over for this connection. Most of the fi elds
of the new socket are duplicated from the parent socket except for the fi elds that
are very specifi c to the connection. Now the open_request node is moved from Syn
queue to the listening sockets (parent) accept queue (see Fig. 4.18). Since the new
connection is not yet accepted, it remains in the accept queue and no I/O occurs
over the connection from our end. Now let us discuss struct open_request.

 dl _ next : This is the pointer to the next link in the SYN queue collision hash
table for the listening socket.

 rcv _ isn : This is the initial sequence number taken from the SYN packet received
as connection request.

 snt _ isn : This is the initial sequence number calculated at the listening socket
end. This is calculated each time a new connection request is received. The

 cs 4.10. inet_listen() .

value is sent in SYN/ACK reply as part of the TCP header ’ s sequence
number fi eld.

 rmt _ port : This is the port number of the other end of the TCP connection,
which has generated the connection request. The value is taken from the
TCP header of the SYN packet received as connection request.

 mss : This is the maximum segment size used for the TCP connection. The value
is taken from either the TCP mss options (of SYN packet received) or the
 tcp_opt structure (tp → user_mss), whichever is smaller.

 retrans : This fi eld is incremented whenever the SYN/ACK packet is retransmit-
ted for the received SYN connection request. It keeps track of the number

 Figure 4.11. Code fl ow for the listen process.

LISTEN 143

144 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

of retries attempted to get ACK for the SYN/ACK packets sent. When
maximum attempts are tried, the connection request is dropped.

 snd _ wscale : This 4 - bit fi eld is the window scaling value received from the
sender. It is taken from TCP options for the SYN packet received as a con-
nection request. Stored in tp → snd_wscale . All this if window scaling option
is set in TCP header options.

 rcv _ wscale : This 4 - bit fi eld is the window scaling value to be sent to the other
end of the TCP connection, which has generated the connection request. This
is done only if the window scaling option is set in TCP header options.

 wscale _ ok : This 1 - bit fi eld is set if the window scale option is set for the SYN
TCP header (packet received as a connection request).

 tstamp _ ok : This 1 - bit fi eld is set if the timestamp option is set for the SYN TCP
header (packet received as a connection request).

 Figure 4.12. Linux representation of open connection request.

 sack _ ok : This 1 - bit fi eld is set if the SYN bit is set in the TCP header for the
packet received as a connection request.

 ecn _ ok : This 1 - bit fi eld is set if the ECN option is set for the SYN TCP header
(packet received as a connection request) and our side of the TCP is confi g-
ured to use this option.

 acked : This 1 - bit fi eld is set if the SYN/ACK packet is sent for the received
connection request SYN packet.

 rcv _ wnd : This is the receive window size offered fi rst time in the SYN/ACK
packet.

 ts _ recent : This is set to the timestamp received in the SYN connection request
packet, in the case where the timestamp option is set in the TCP header
option.

 expires : This is the timeout value for the TCP when it should attempt retrans-
mit if it doesn ’ t receive any ACK for the SYN/ACK sent to the connection
originator.

 sk : This is the pointer to the newly created socket for the new connection
request (struct open_request is created for this socket). The fi eld is initialized
to NULL when open_request is created for the new connection request and
the request is in the syn queue. When the new socket is created and the
open_request is transferred to the accpet queue, the fi led is initialized to the
newly created socket.

 af : This is a union of two pointers for IPv4/v6 - specifi c information. In the case
of Ipv4, this is a pointer to struct tcp_v4_open_req . There are three fi elds for
this structure.

 loc _ addr : This is the IP address for which connection request has arrived. It is
taken from the destination IP address (fi eld) of the IP header for the packet
received as a connection request.

 rmt _ addr : This is the IP address of the originator of the connection request. It
is taken from the source (IP address) fi eld of the IP header for the packet
received as a connection request.

 opt : This is the IP header options obtained from the IP header of the SYN
connection request packet.

 This way we have seen that when the listen() systemcall returns to the application,
the socket is in a TCP_LISTEN state and all required settings are done by the kernel
to accept connections for this listening socket, though still not fully functional. For
doing this, the kernel has to associate and initialize tcp_listen_opt and open_request
structures with the socket. Since this is a listening socket and is recognized as accept-
ing connection requests by the kernel, any new connection for this socket is queued
up in the syn queue (sk → tp_pinfo.af_tcp → listen_opt → syn_table) until a three - way
hand shake is not completed as shown in Fig. 4.17 . Once the TCP three - way hand-
shake is over, we remove the open_request node from the syn queue and place it
in the socket ’ s accept queue (sk → tp_pinfo.af_tcp → accept_queue) as shown in Fig.
 4.18 . All the open requests in the accept queue are associated with a new socket
(req → sk != NULL) and are in a TCP_ESTABLISHED state. The socket associated
with the open requests in the accept queue are detached from the parent socket
and inherit most of the properties of the parent except for the one ’ s very specifi c

LISTEN 145

146 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

to the connection. TCP - related information (sk → tp_pinfo.af_tcp, tcp_opts) is also
initialized for this socket, with most of the fi elds inherited from the parent socket
except for the new connection - specifi c fi eld. Since this is not a listening socket, the
listen - specifi c fi eld of the tcp_opt structure for the new socket (sk → tp_pinfo.af_
tcp → listen_opt) is set to NULL and at the same time accept queue (sk → tp_pinfo.
af_tcp → accept_queue) is also intialized to NULL. The new socket is hashed in the
tcp_ehash table. At the same time the new socket is associated with the owner ’ s list
of the bind hash bucket that is hashed according to the port number(sk → num).
There will be many such entries in the owner ’ s list of the tcp - bind - hash bucket, but
a socket for a specifi c connection is identifi ed by a quadruplet (dst IP, dst port, local
IP, local port). This way, a child socket gets its separate identity and can operate as
a separate communication channel irrespective of its parent socket. Let ’ s see how
this new socket in the TCP_ESTABLISHED state, associated with the open request
that is still in the accept queue, is not fully functional. We know that the all the initial
handshakes for the TCP connection are done between the client and the server, and
the client here knows that it has reached the correct destination and a communica-
tion channel is set up between the two peers.

 We see the behavior of the server side socket toward the new connection
request when it arrives for the socket that is not completely accepting the connec-
tions. Here we see how the connection requests are accepted when

 • The socket is bound to a port but is not yet in a ‘ listening ’ state.
 • The socket is in a ‘ listening ’ state but are not yet accepted.

 We explain this with the help of ‘ tcpdump ’ output for the connection requests
initiated by the client for the server that is not yet completely accepting the con-
nections. We use same client and server application program examples defi ned in
Chapter 2 .

 • The socket is bound to a port but is not yet in a ‘ listening ’ state : This means
that the server application has invoked bind() but has not yet invoked listen()
systemcall (see Fig. 4.13a). tcpdump for the above setup is shown in Fig. 4.13b .
Client (192.168.1.3) sends a connection request to the server (SYN packet #
3). The server side TCP replies with an RST packet (#4).

 • The socket is in a ‘ listening ’ state but is not yet accepting the connection : This
means that the server application has invoked bind() , l isten() but has not yet
invoked accept() systemcall as shown in Fig. 4.14a . Let ’ s see how server side
TCP responds to this connection request. To study this, a small experiment
was conducted where a client tries to connect to the server that has done listen
on the socket but has not yet invoked accept() . From the tcpdump output (see
Fig. 4.14b) for this connection request, we can see that the three - way hand-
shake takes place between the two ends, packets 1, 2, and 3. The client writes
data over the socket in blocks of 50 k at a time. The client side TCP splits these
data in small chunks of 1460 bytes (limited by MTU), packets 4 and 7. The
server acknowledges those and the client keeps on sending data until the
server acknowledges the last sent data (packet 73, 73,360 bytes) with the
window size of 0 (packet 74). The client gets an indication that it doesn ’ t need
to send anymore data to the server until the server advertises nonzero positive
window size.

 Figure 4.13a. Client initiated connection request for a nonlistening socket.

 Figure 4.13b. Client – server interaction for Fig. 4.13a .

 Figure 4.14a. Client generates connection request for nonaccepting listening sockets.

 This indicates that the serve side receive buffer has gotten full and that it cannot
accommodate any more data. All this is happening because there is no one to
consume the data in the server ’ s receive buffer. The only way these data are con-
sumed is when it is read by an application. Since the server application has not yet
accepted the connection fully by issuing accept(), the client can get connected to
the server and do very limited one - way data transfer from client to server. But this
study tells that the even though the connection request is in the accept queue in the
established state, the TCP connection is fully functional between the two ends, but
the absence of read/write at the server end makes this socket connection a very
limited one - way channel from client to server.

 4.3.6 Accept Queue Is Full

 When there is no space in the accept queue to accommodate the new connection
request, we can still accommodate the request in the SYN queue which has no

LISTEN 147

148 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

limitation on the queue length because of the conditions (see cs 4.11) that need to
be satisfi ed in tcp_v4_conn_request() . Even if the accept queue is full, we can accept
the new connection request and queue it in the SYN queue, in case there are no
young connections not yet ACKed (see cs 4.12).

 tcp_synq_young() gets the value of sk → tp_pinfo.af_tcp.listen_opt → qlen_young ,
which indicates the number of requests in the SYN queue that are not yet ACKed.
If there is congestion, this would be more than 1, otherwise no problem. We can still
have an entry for a new connection request in the SYN queue even if the SYN
queue and accept queues are full. Now the SYN queue keeps on growing because
the accept queue is full; and when the ACK for any new connection request in the
SYN queue is received, we cannot unlink this request from the SYN queue and link

 Figure 4.14b. One - way communication from client → server is possible for nonaccepting listen-

ing sockets.

it with the accept queue. In such cases, tcp_v4_syn_recv_sock() returns NULL to
 tcp_check_req(). tcp_check_req() fi nds that the return value is NULL, and it sets
 req → acked to 1 and returns NULL. Nothing happens now. It is the job of the SYN/
ACK timer to take care of all such open requests in the SYN queue of the listening
socket which cannot be processed further at this point of time. The SYN/ACK timer
is implemented as tcp_synack_timer() . It is fi red after some time interval and checks
if any connection request is old enough to be removed from the SYN queue (see
cs 4.13).

 From cs 4.13 (line #515) it is clear that SYN/ACK is sent to the peer by calling
 req → class → rtx_syn_ack() , untill we have exhausted the max_retries number of
tries. Since we have already received ACK for the given connection request, req →
 acked is always set. By default, max_retries is initialized by the sysctl_tcp_synack_
retries control parameter which is set to TCP_SYNACK_RETRIES (5). So, the
server sends 5 SYN/ACK to the peer (connection initiater) before it removes the
connection request from the SYN queue.

 The tcpdump output in Fig. 4.15 shows how the server generates SYN/ACK
packets for a connection request which cannot be accommodated in the accept
queue. This was all about the role of listen() systemcall. We have seen how the
connection request is generated and new sockets are created for the connection
requests and associated with the same. There are various queues for connection
requests depending on the state of the three - way handshake. We have also seen the
behavior of TCP at the stage when the listen() is called, but the established socket
is not yet accepted by the server application. We now move on to accept() system-
call, which is the last step to complete the server application. We have not yet dis-
cussed the way connections requests are dealt by TCP at the functional level inside
the kernel. We will discuss it later.

 We need to explain TCP socket multiplexing. This explains how sockets are
fi nally identifi ed by the TCP subsystem when a packet is received by the TCP layer.

 cs 4.11. tcp_v4_conn_request() .

 cs 4.12. tcp_v4_conn_request() .

LISTEN 149

150 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 __tcp_v4_lookup_established() does a lookup for all the established socket connec-
tions in the tcp_ehash table. The Quadruplet destination port, destination address,
local port, and local address are used to identify the socket for each packet (Fig.
 4.16).

 4.3.7 Established Sockets Linked in tcp_ehash hash Table

 Figure 4.16 , illustrates the snapshot of tcp_ehash table which hashes system wide
sockets in TCP_ESTABLISHED and TIME_WAIT state.

 4.3.8 State of the Connection Request when the Three - Way
Handshake Is Still Pending

 Figure 4.17 illustrates snap shot of a listening socket. It shows how accept queue
and SYN queue are implemented for the listening socket. Open requests in SYN
queue (Syn_table) in the SYN - RECU state are discussed in Section 4.4 .

 cs 4.13. tcp_synack_timer() .

 4.3.9 State of the Connection Request when the Three - Way
Handshake Is Completed

 Figure 4.18 shows a snapshot of listening sockets SYN queue and accept queue when
three - way handshake is completed for open requests. Req. 1 is moved from SYN
queue to accept queue when three way hand shake is completed for open request
req. 1. (Compare with Fig. 4.17 ; see in Section 4.4).

 4.4. CONNECTION REQUEST HANDLING BY KERNEL

 Here we discuss how the connection requests for the listening sockets are handled
by the kernel. We only discuss the functional details and not the TCP - protocol -

 Figure 4.15. Server sends out 5 SYN/ACK segments before it assumes that the connection -

 request should be dropped.

CONNECTION REQUEST HANDLING BY KERNEL 151

152 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 specifi c details. Any connection request is handled by the kernel in two steps
because of the nature of the TCP protocol.

 • SYN Queue Processing: In fi rst step, the connection request is received by
the kernel which is put in the SYN queue of the listening socket. The kernel
sends SYN/ACK for this connection request and waits for ACK to last SYN/
ACK for the connection in the SYN queue.

 • Accept Queue Processing: In the second step, once the ACK for the SYN/
ACK is received by the kernel for the connection in the SYN queue, a new
socket is created for the connection request and the connection request is
removed from the SYN queue of the listening socket. The connection request
is put into the accept queue for the listening socket.

 Let ’ s see how the fi rst SYN packet for the connection request is handled by the
kernel. Refer to function tcp_v4_conn_request(). tcp_v4_rcv() is the interfacing
function that processes the packets for TCP. sk - buff represents a packet on Linux
which is passed to the routine for TCP Processing. sk_buff contains header and data
information for the packet. We discuss more about it later, but for now we should
stick with the fact that sk_buff represents the IP packet. Pull down the TCP/IP
header from sk_buff and extract four fi elds from the header: destination port, des-
tination IP, source port, source IP. This quadruplet is required to identify the socket
for the packet, if any. Now we call __tcp_v4_lookup() to identify the socket. This
function looks into the various hash tables for the socket. The hash tables that are

 Figure 4.16. System - wide hash list for established sockets.

searched are tcp_ehash and tcp_listening_hash in the same order by calling functions
 __tcp_v4_lookup_established() and tcp_v4_lookup_listener() , respectively. As we
have already discussed, these two hash tables are in Section 4.2.2 , so we move ahead.
Assuming that we already have a listening socket for this (application has invoked
 listen() successfully), we fi nd the listening socket in the tcp_listening_hash table. We
move on to the tcp_v4_do_rcv() for further processing of the connection request.

 Figure 4.17. Open connection request waiting in SYNQ until the three - way handshake is

over.

CONNECTION REQUEST HANDLING BY KERNEL 153

154 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 Figure 4.18. Connection request converted into established socket and placed in to accept

queue after the three - way handshake is over.

Here we do some sanity checks on the TCP header and fi rst check the socket state.
Since we are concerned with the listening socket, we enter into the block to process
the socket with the TCP_LISTEN state. We call tcp_v4_hnd_req() for further pro-
cessing. tcp_v4_hnd_req() looks for any connection connection request in the SYN
queue of the listening socket (sk → tp_pinfo.af_tcp → listen_opt → syn_table). If the
connection request is found, we create a new socket for this connection and return
the pointer to the new socket in case this is not a duplicate SYN packet and is proper

SYN/ACK for the connection request identifi ed. Otherwise, if any connection
request for this SYN packet is not found in the SYN queue, we search the tcp_ehash
table (see Fig. 4.16) for any possibility of established socket for the current connec-
tion request. This is done because the packet may be a duplicate of the original
connection request that is already in the established state now. If nothing is found,
we return the same socket pointer that was identifi ed for the packet. From here we
can separate the two steps discussed above.

 4.4.1 SYN Queue Processing

 If this is the original SYN packet (connection request), tcp_v4_hnd_req() returns
socket pointer which was identifi ed. So we move on to further process the connec-
tion request and call tcp_rcv_state_process() . This does various sanity checks on the
TCP headers; and if it fi nds that things are OK and we are processing a listening
socket, we call a connection request function specifi c to the protocol, tp → af_
specifi c → conn_request() , for further processing. This function is part of ‘ struct tcp_
func ’ registered with tp → af_specifi c at the time of socket() call for the TCP protocol
in tcp_v4_init_sock() to ipv4_specifi c . This function tp → af_specifi c → conn_request()
in our case points to tcp_v4_conn_request(). tcp_v4_conn_request() checks if the
SYN queue is full for the listening socket by calling tcp_synq_is_full() . If it is full,
it drops the request and returns error; otherwise, it goes ahead and checks the accept
queue for the listening socket by calling tcp_acceptq_is_full (). If the accept queue
is full, we can still accept the new connection, in case we don ’ t have a large number
of connection requests for which the fi nal SYN is not yet received for the SYN/ACK
it last sent because of which TCP is fi ring SYN/AC retransmissions for the listening
socket. We check the SYN/ACK retransmissions by calling tcp_synq_young() . If
everything is OK, we go ahead and create an open connection request for the new
request, initialize open_request structure for the new open request, send SYN/ACK
response for the connection request, and add the new connection request in SYN
queue of the listening socket by calling tcp_v4_synq_add() . Now we are waiting in
the SYN queue of the listening socket for the fi nal ACK to complete the TCP con-
nection process and return to tcp_v4_do_rcv() .

 4.4.2 Accept Queue Processing

 Let ’ s consider a situation where we have already queued up a connection request
in the SYN queue and already transmitted a SYN/ACK response for this connection
request. We are waiting to get the fi nal ACK for the connection request. We receive
the fi nal ACK for the connection request and we enter the same code path tcp_v4_
rcv() → tcp_v4_do_rcv() → tcp_v4_hnd_req() . In this case we have a connection
request queued up in the SYN queue of the listening socket. So we move on to
fi nally process the connection request for which the fi nal ACK is received call tcp_
check_req(). tcp_check_req() does a lot of sanity checks on the packet headers
received because we don ’ t know the fl ags set in the TCP header until now. If we
get the retransmitted SYN packet for the same connection, we once again generate
the SYN/ACK packet. We also make checks for any malicious third - party involve-
ment as the originator of the packet. So, we do window size comparison from the
original packet and current packet; if there is a great difference, we drop the request
but send the ACK. If the sequence number for the ACK received is not 1 more

CONNECTION REQUEST HANDLING BY KERNEL 155

156 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

than the sequence number of the fi rst SYN packet, just mark an indication to the
calling function that the RST needs to be sent. Similarly, make checks on the TCP
header fl ags. If they are not ACK but are RST or SYN, we make a decision appro-
priately. Finally, we have passed all the tests and the ACK is proper, so we need to
process the connection request further. We call the syn_rcv_sock() function specifi c
to the protocol. As mentioned earlier, this function is part of ‘ struct tcp_func ’ reg-
istered with tp → af_specifi c at the time of socket() call for the TCP protocol in tcp_
v4_init_sock() to ipv4_specifi c . This function tp → af_specifi c → syn_rcv_sock() in our
case points to tcp_v4_syn_recv_sock(). tcp_v4_syn_recv_sock() creates a new socket
for the connection request as the three - way handshake is over and both the ends
of the connection have verifi ed their identities. The new socket is created only if
accept queue is not full. Status f the accept queue is checked by calling tcp_acceptq_
is_full() . In case the accept queue is full, we still have the connection request in the
SYN Queue so that later when the fi nal ACK is once again received for this con-
nection and the accept Queue is not full we can accept the connection. If the accept
queue for the socket is not full we go ahead with initialising the new socket. Most
of properties are inherited to the socket from the listening socket and rest of the
fi elds specifi c to the connection are initialised from the tcp/ip header. We call _tcp_
v4_hash() to hash the newly created socket on tcp_ehash table (see Fig. 4.4). So we
return to tcp_check_req() where the connection request is unlinked from the SYN
queue and is added to listening accept queue. New socket just created is in TCP_
SYN_RECV state. We return from with new socket pointer form tcp_v4_hnd_req ()
to tcp_v4_do_rcv() . Form tcp_v4_do_rcv() we call tcp_child_process() to do some
more processing on the newly created socket. tcp_child_process() calls tcp_rcv_
state_process() in case we have no user for the socket (child → lock.users == 0). In
 tcp_rcv_state_process() we once again do some sanity checks on the TCP fl ags and
initialise TCP options for socket ’ s tcp_opt structure (sk → tp_pinfo.af_tcp) extracted
from TCP header options fi eld by calling tcp_fast_parse_options() .

 Finally change the state of the socket to TCP_ESTABLISHED state. We queue
the sk_buff to sockets receive queue by calling tcp_data_queue() so that process can
be notifi ed of the reception of the data. Finally we return to the tcp_child_process() .
We did the entire processing for the socket with the socket lock held and bottom
half disabled as bottom half may change the state of the process while processing.
Complete fl ow of the connection request handling by kernel is shown in Fig. 4.19 .

 4.4.3 Flow Control for Handling a New Connection Request

 Figures 4.19a and 4.19b show fl ow control for TCP connection request handling
implementation in the kernel. Here we show major routines that implement con-
nection handling which is discussed in Sections 4.4.1 and 4.4.2 .

 4.5 ACCEPT

 As we have already learned from our previous discussion, listen() systemcall makes
the TCP socket accept connections, but the socket is not yet fully functional. The
listening socket accepts connections and puts it in the accept queue once the three -
 way handshake is completed between the two ends of TCP. The sockets in the
accept queue are in the established state. Now the server application has to pick up

 Figure 4.19a. Code fl ow for handling a connection.

ACCEPT 157

158 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

the established connection requests in the accept queue one - by - one and provide a
unique identity to each socket so that the socket can start communication with its
peer as an independent channel. The sock structure for each connection request is
associated with the BSD socket and is mapped in the fi le table of the process. Doing
this application invokes accept() systemcall. accept is issued from the server applica-
tion to start accepting an open connection request from the accept queue, Figure
 4.1 . accept() systemcall returns to the application with a new socket descriptor that
is used by the server to communicate with the peer or the originator of the connec-
tion. Here we discuss what happens inside the kernel when an application invokes
 accept() systemcall. sys_accept() is called inside the kernel with the following
arguments:

 Figure 4.19b. Code fl ow for handing a connection request.

 Kernel interface for accept.

 fd : fi le descriptor of the listening socket.
 upeer : socket address (s truct sockaddr *) of the remote end of the connection

which needs to be fi lled by the kernel and send back to the application.

 upeer _ addrlen : address length of the socket address.
 sys _ accept (). This identifi es the bsd socket associated with the parent socket

(listening socket) using the socket fi le descriptor (fd) passed as an argument
to the accept() by calling sock fd_lookup() . Let ’ s see how fd_lookup() works:
It gets a struct fi les_structure table for the current process, which maintains
the account of all the open fi les for the current process; this is current → fi les .
max_fds fi eld of the fi le table, f iles → max_fds , indicates the maximum number
allocated as a fi le descriptor to the current process ’ s open fi les at any point
of time. It makes a sanity check on the listener socket fi le descriptor to make
sure that it doesn ’ t exceed fi les → max_fds . If fd is well below fi les → max_fds ,
we get the fi le structure, which is fd ’ th element of the fi le array fd, fi les →
 fd[fd] , which is the fi le structure for the listener socket fi le descriptor in
question here. The process fi le table, current → fi les , is accessed with fi le table
lock (current → fi les → fi le_lock) acquired. The BSD socket associated with the
socket fi le descriptor can be obtained from the fi le structure just gotten from
the inode associated with the fi le structure, fi le → f_dentry → d_inode . We also
need to make sure that the inode is associated with the socket. This can be
done by checking i_sock fi eld of the inode, inode → i_sock . If the fi eld is set,
the inode represents socket . Now socket is part of the this inode and can
gotten from inode → u.socket_i . Links between fi le, inode, and socket are
shown in Fig. 4.21 .

 So. we return to sys_socket() and we have the gotten the socket structure associ-
ated with the listening socket. We need to create a new socket for the new connec-
tion request and associate the socket with the VFS in the similar way as it was done
for the listening socket (see Fig. 4.20). Allocate new socket structure for the new
connection by calling sock_alloc() . This function allocates a new socket inode and
initializes inode and socket fi elds associated with the socket inode with default
values as shown in cs 4.14 .

 The socki_lookup() function returns the socket fi elds associated with the inode,
inode → u.socket_i. This inode is marked to be associated with no device NO_DEV;
i_sock fi eld of the inode is also set to represent a socket inode . The socket ’ s inode
is made to point to the inode, and the socket state is set to SS_UNCONNECTED
as the socket is in the process of being connected. The new socket should inherit
some of the properties of the parent (listening) socket. So the type and ops fi elds
are duplicated from the parent socket to the new socket. Call the inet - specifi c accept
(sock → ops → accept), inet_accept(), which puts up the connection request in the
parent sockets accept queue and associates it with the new socket just created in
the following way.

 4.5.1 inet _ accept ()

 This calls a protocol - specifi c accept function (sk → prot → accept), tcp_accept() . Let ’ s
see what tcp_accept() does. It holds the socket lock and does the entire operation;
before returning, it releases the lock. It checks for the state of the parent (listening)
socket. It should be in the TCP_LISTEN state. If not so, it returns with error.
Now get hold of the tcp_opt structure for the parent socket, sk → tp_pinfo.af_tcp .
This structure keeps a pointer to the accept queue (pending connection request
queue; see Fig. 4.18). Check if there is any pending connection request in the accept

ACCEPT 159

160 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

queue, tp → accept_queue . If tp → accept_queue is NULL, there is no pending connec-
tion request. So we need to wait on parent sockets wait - queue(sk → sleep) by calling
 wait_for_connect () until we have at least one new connection request in the accept
queue, or we timeout if the socket is blocking; otherwise we return. If we are here,
we have at least one pending connection request in the accept queue so we process
it. Access fi rst element from the queue, tp → accept_queue. Remove the request from
the accept queue and decrement the counter of the parent socket, which indicates
the number of pending connection requests in the accept queue, sk → ack_backlog .
Get the connection sock structure from the connection request structure, req → sk ,
and free the connection request structure (struct open_request req). The new tcp
socket should not be in the syn receive state (sk → state != TCP_SYN_RECV).
Return the new tcp socket to inet_accept() . We are back in inet_accept() with either
error or pointer to a new socket. If error is encountered, we return the same; oth-
erwise we further process the new tcp socket and associate the TCP socket with the
BSD socket. Hold lock on the new TCP socket and associate the new TCP and BSD
sockets by calling sock_graft() (see cs 4.15). It initializes the sleep fi eld of the TCP

 cs 4.14. sock_alloc() .

socket with the wait fi eld of the BSD socket, which means that the wait queue for
both the BSD and TCP sockets is the same for a connection. Initialize the sk fi eld
of the BSD socket to point to the TCP socket and initialize the socket fi eld of the
TCP socket to point to the BSD socket, as shown in cs 4.15 . In the process, we hold
the bottom half lock during the entire process because the socket structure is acces-
sible from the bottom half.

 Change the state of the BSD socket to connected, newsock → state =
SS_CONNECTED .

 4.5.2 Linking of Inode and Socket Data Structures when the Three -
 Way Handshake Has Completed and Is Accepted by Application

 Return to sys_socket() with pointer to the new BSD socket in the connected
state.

 Untill now we have linked socket inode, BSD socket, and TCP socket as shown
in Fig. 4.20 . Now we need to associate fi le structure with the socket inode and index
it into the process fi le table, current → fi les → fd[] . We call s ock_map_fd() to get this
done. The function fi rst fi nds out the unused fi le descriptor by the process by calling

 cs 4.15. sock_graft().

 Figure 4.20. New socket is created (but not linked in process fi le table) for the connection that

has just a completed three - way handshake.

ACCEPT 161

162 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 get_unused_fd() . This makes use of three fi elds of the current → fi les fi le table open_
fds, max_fdset, and next_fd , where open_fds is the bitmap for the fi le descriptors
which are allocated, max_fdset is the maximum number that can be allocated as fi le
descriptors at any point in time, and next_fd is the next number that is to be allo-
cated as fi le descriptor, and this fi eld is incremented by 1 whenever a new fi le
descriptor is allocated. The logic is to start searching from the next_fd bit in the
memory region starting from the address pointed by open_fds and fi nd the bit
number which is not set. That bit number is the next fd to be allocated. The bit is
then set. This fd is returned by get_unused_fd() . We return to s ock_map_fd() with
the allocated fi le descriptor fd. Now we need to allocate the fi le structure and link
it with the socket inode. This is done by calling sock_map_fd() . The function allo-
cates fi le structure and dentry structure, initializes fi elds of the fi le and dentry
structures, links dentry structure with the fi le and socket inode, and returns fi le
structure, as shown in cs 4.16 .

 We have done most of the work until here by linking the socket with the VFS.
The last step is to index the fi le structure for the socket inode in the process fi le
table, current → fi les → fd[] , at fd ’ th element. This is done by calling fd_install() . This
function is passed the fd & fi le structure just allocated, and it does the indexing of
the fi le in the process fi le table:

 current → fi les → fd[fd] = fi le;

 The fi le table lock, current → fi les → fi le_lock , was held while doing this. sock_
map_fd() returns with the fi le descriptor allocated to sys_accept() , and sys_accept()
returns from kernel to user application which had invoked accept() systemcall with
the fd for the new connection. After return from accept() , we have the process fi le
table as shown in Fig. 4.22 . So, server application can use the new fd returned by
 accept() to communicate with the client and things continue like this.

 4.5.3 Linking of VFS and Socket Data Structures in the Kernel
when a New Connection is Established

 Figure 4.21 illustrates snapshot of the kernel data - structures that link socket layer
with VFS. New socket is linked with VFS only when application has accepted the
socket connection.

 Flow control for accept() is shown in Fig. 4.23 .

 4.5.4 File Table Entry of a New Accepted Connected Socket

 Figure 4.22 shows snap shot of the process fi le table when a new socket connection
is accepted by the application. Since socket is considered as a special fi le by unix, it
can be accessed using socket descriptor in the same way regular fi les are accessed.
This is possible because socket is also linked to process fi le table.

 4.5.5 Flow Control for Accepting New Established Connections

 Figure 4.23 show fl ow of control for TCP/INET accept implementation in the
kernel. It shows major routines called from sys - accpt().

 4.6 CLIENT SIDE SETUP

 At the client end we need to do a little work to get connected to the server (see
Fig. 4.24). The client should only have information about the server ’ s IP and the
service port number to get connected to the server. The client can do this by invok-
ing the following systemcalls in sequence:

 Socket
 Connect

 cs 4.16. sock_map_fd().

CLIENT SIDE SETUP 163

164 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 Figure 4.21. Connection is accepted by the listening socket from the accept queue and is linked

to process fi le table.

 We have seen how a socket systemcall works in our earlier discussions. We pass on
port number and IP address information about the server as an argument to the
connect systemcall. By default, connect() is blocking. So if the connection is estab-
lished with the server successfully, connect() returns with proper error code and we
can use the fi le descriptor returned by socket() systemcall to communicate with the
server. In the clients case, the kernel doesn ’ t need an application to specify any port
number for client application. Instead, the kernel assigns any unprivileged free port
to the client by which the client socket will be recognized by the system. In our
further discussions we see how all this happens inside the kernel. First we discuss
the server and client steps involved for connection setup and then explain in detail
the arrangements done by the kernel at each step of connection setup.

 4.6.1 Client Side Operations

 Figure 4.24 shows sequence of systemcalls to implement client program. It also
describes functionality of each system call in short.

 4.6.2 Connect

 We need not worry about the socket systemcall here because it has already been
discussed. We look at how connect works. connect() systemcall is invoked from the
application and is called within the kernel as sys_connect() . Connect has to do a lot
of work before it sends out a connection request to the server.

 sys_connect() accepts three arguments:

 Kernel interface for connect.

 fd : This is the socket fi le descriptor returned by the socket call.
 umyaddr : This is the socket address to which we want to bind the socket.
 addrlen : This is the socket address length.

 Figure 4.22. Linking of various data structures when a connection request is accepted by a lis-

tening socket.

 sys _ connect () . This fi rst fi nds out the socket associated with the socket fi le
descriptor fd by calling sockfd_lookup() . This function was explained earlier in
Section 4.2.11 . Once we have a socket from sockfd_lookup() , we need to copy the
socket address from user space to kernel space by calling move_addr_to_kernel() .
We now call a connect function specifi c to the inet address family, sock → ops →
 connect() . This is inet_stream_connect() .

CLIENT SIDE SETUP 165

 Figure 4.23. Code fl ow for accept process.

 Figure 4.24. Client side sequence of systemcall made to generate a connection request.

 inet _ stream _ connect (). It does some sanity check on the address family of the
socket address. If things are OK, we move ahead and check the state of the socket
(sock → state). Any state other than SS_UNCONNECTED is unacceptable for
processing. Socket states SS_CONNECTED or SS_CONNECTING means that
connect is called twice on the socket. If the socket state is SS_CONNECTED , we
make some more checks on the state of the TCP specifi c socket associated with
the BSD socket (sock → sk → state). It should not be TCP_CLOSE . We call TCP -
 specifi c connect now, pointed to by sk → prot → connect() . This function is
 tcp_v4_connect() .

 4.6.3 tcp _ v 4_ connect ()

 This fi rst gets the pointer to the TCP - specifi c data structure (tcp_opt) associated
with the socket (sk → tp_pinfo.af_tcp). Do some sanity checks on the socket address
family and the address length. One of the many things that the connect needs to do
is to defi ne the route and get the available port for the connecting socket. We will
see how this is done.

 Getting Route Information. We get the routing information from two
parameters:

 1. Source address
 2. Next hop address

 The default next hop is set to the destination address provided in the socket address.
If the ip_options structure (sk → protinfo.af_inet.opt) is initialized for the socket and
 srr fi eld of this structure is set, the next hop is taken from sk → protinfo.af_inet.opt →
 faddr . We call ip_route_connect() to get the route for the destination address. The
function returns routing information in the struct rtable .

 4.6.4 ip _ route _ connect ()

 This fi lls in the ‘ struct rtable ’ for the destination route, depending on the source
address and the interface being used for the destination. It calls ip_route_output() ,
which calls ip_route_output_key(). ip_route_output() initializes ‘ struct rt_key ’ for the
routing table search. It fi nally passes the key to.

 4.6.5 Flow Control for Generating a Connection Request

 Figures 4.25a and 4.25b show the fl ow of control for INET/TCP connect implemen-
tation in the kernel and major routines called from sys_connect.

 ip_route_output_key(). struct rt_key has four fi elds: destination IP, source IP, TOI
(type of service), and outgoing interface number. All routing entries for the system
are hashed in the global table rt_hash_table[] . This is an array of ‘ struct rt_hash_
bucket ’ (see Fig. 4.26).

 The member chain of ‘ struct rt_hash_bucket ’ points to the hash collision chain,
and lock is the lock to protect the hash collision chain chain . If we fi nd the entry
for a given destination in the routing hash bucket, we use that or else we try to

CLIENT SIDE SETUP 167

168 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 Figure 4.25a. Code fl ow for connect process.

make a new entry for the routing hash bucket by calling ip_route_output_slow() .
We return to tcp_v4_connect() .

 End of ip _ route _ connect () . If ip_route_connect() returns < 0, it means that
we could not get a route for the destination and hence we return from here. We

 Figure 4.25b. Code fl ow for connect process (continued).

 Figure 4.26. Routing table hash bucket.

CLIENT SIDE SETUP 169

170 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

have gotten the routing entry for the destination, and we still need to do some sanity
checks on the routing fl ag. If the routing fl ag (rt → rt_fl ags) is set to RTCF_MULTI-
CAST or RTCF_BROADCAST , we return error, which means that our destination
is multicast or broadcast and we want to connect only to such unicast addresses. We
now update the sockets destination cache fi eld (sk → dst_cache) with the value
obtained from the routing table entry (rt → u.dst). Initialize some of the fi elds of the
sock structure. Initislize source address (sk → saddr) to rt → rt_src in case the source
address is not set. Initialize destination address (sk → daddr) to either the address
passed in the socket address or from the routing table entry just found (rt → rt_dst).
Initialize the destination port (sk → dport) to the port number in the socket address
(usin → sin_port). Initialize some of the fi elds of the tcp_opt structure for the socket
(sk → tp_pinfo.af_tcp). Set the socket state to TCP_SYN_SENT . We have not yet
allocated the local port for the socket, so call tcp_v4_hash_connect() to allocate the
free port for the socket and associate the socket with the appropriate hash list.

 4.6.6 tcp _ v 4_ hash _ connect ()

 This functions more or less like tcp_v4_get_port() , which is called to bind a socket
to a specifi c port when bind() systemcall is invoked. A couple of things change
here:

 1. We are not requesting for a particular port number.
 2. We have different view for reusage of port numbers.

 If sk → num is not set, it means that we are looking for any available free port that
can be used or reused. sk → num is not set.

 Most of the time connect() is called without sk → num set, which means that we
are not looking for any specifi c port but instead any available port to which the
connecting socket can bind. So, we need to search the tcp - bind - hash bucket list for
each port number starting from tcp_port_rover , which keeps the last port allocated
to anyone on the system. The logic to traverse the tcp - bind - hash bucket is the same
as discussed in Section 4.2.14 : tcp_v4_get_port() .

 We get hold of a hash bucket for each port number and traverse through the
hash chain until we get hold of the available port number. While traversing through
the collision chain of tcp - bind - hash bucket for each port, we make the following
checks, if the matching port number is found (tb → port == rover):

 1. tb → fastreuse > = 0 .
 2. Check the established hash, tcp_ehash , table for any matching quadruplet

(source IP, destination IP, source port, destination port).

 If a matching port number is not found (tb → port != rover) , we move on to the
next element in the hash collision chain. We repeat this until we have traversed the
entire list. If we don ’ t fi nd any entry with matching port number, we come out of
the collision chain travers loop and create a new bucket for this port number by
calling tcp_bucket_create() , and we set fastreuse fl ag (tb - fastreuse) to − 1 and come
out of the main loop. We are able to fi nd the hash bucket with a matching port
number.

 We go to the next port number in case we fi nd condition 1 satisfi ed. This way
we are ensuring that we are not allocating any port number to the connecting socket,
which is already in use by the listening socket whether or not the listening socket
wants to share the port number. If the only connecting socket is already using the
port number, it would set the tb → fastreuse to − 1. If condition 1 fails, we can still
consider the reuse of the port number, if one or more connecting sockets are
associated with it. If condition 1 is false, we move ahead to check whether we are
qualifi ed to reuse this port number to check condition 2. For that we call
 __tcp_v4_check_established() .

 4.6.7 __ tcp _ v 4_ check _ established ()

 This function is called with the local bottom half disabled, because the bottom
halves may get scheduled on different CPU and modify the tcp_ehash table. We
fi rst get the hash number from the combination of sk → rcv_saddr, sk → daddr, sk →
 dport , and selected local ports by calling tcp_hashfn() . Sockets are hashed in the
 tcp_ehash table using the above quadruplet where source IP is sk → rcv_addr and
not the sk → saddr . We try to fi nd the hash bucket from the hash number obtained
(see cs 4.17). First try to search all the sockets in TIME_WAIT state. This is the
second half of the tcp_ehash table and can be accessed as shown in cs 4.18 .

 We actually need to check each socket in the chain pointed to by skp and fi nd
out any possibility of reusing the port. The fi rst check is to match the quadruplet
and the interface used by the two sockets. For doing this, we call use macro TCP_
IPV4_MATCH(). If they match, TCP_IPV4_MATCH() returns TRUE and we
move ahead to check if still we can reuse the port. The next step is to check the
timestamp when the FIN was received from the peer. We consider the case, only if
the FIN segment reception time is more than 1 second old (we need to justify this).
We know that the socket that does an active close (sends fi rst FIN) gets into the
TIME_WAIT state after receiving FIN from the other end and after it has sent the
fi nal ACK. Please refer to Section 2.8.4 for TIME_WAIT state. If we have already
received the FIN from the peer, tw → ts_recent_stamp is set to the system time at the
time when FIN tcp segment was received. If timestamp is more than 1 seconds old,
we can consider the socket to use the port number. Otherwise we return with failure
code. Suppose we pass here, we need to initialize the sequence number which is
such that it should never overlap with the sequence number from the last connection
(see cs 4.19). The reason for this is that the reception of any packet hanging in the
net from the last connection should not cause any damage to the new connection

 cs 4.17. __tcp_v4_check_established() .

 cs 4.18. __tcp_v4_check_established() .

CLIENT SIDE SETUP 171

172 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

(like data integration problem or resetting of connection). Now we break from the
loop and go ahead with other initializations.

 Considering that we could not get the requested port number after completely
searching TIME_WAIT socket list, we search tcp_ehash table for all the sockets in
TCP_ESTABLISHED state using the port in question. We traverse through the list
of sockets in the chain (head → chain), where head is pointer to tcp_ehash bucket.
Once again, in each iteration we compare the quadruplet and the interfaces which
are associated with the sockets by calling TCP_IPV4_MATCH() . If the function
returns FALSE, we are not eligible to use the port number and hence return.

 If we get here, the socket is qualifi ed to use the port number. Hence we need
to initialize some of the socket fi elds and also need to do some cleanup stuff. We
obtained the port, so initialize the socket fi elds (see cs 4.20).

 Add the socket to the head of the tcp_ehash table (see cs 4.21).
 If we obtained the hash bucket from TIME_WAIT socket list, we need to

cleanup time - wait related links (see cs 4.22). Now remove the TIME_WAIT socket
from the TIME_WAIT bucket, and fi nally remove this socket from the tcp_ehash
and tcp_bhash tables (see cs 4.23). We have obtained the requested port and done,
so return from __tcp_v4_check_established() .

 cs 4.19. __tcp_v4_check_established() .

 cs 4.20. __tcp_v4_check_established() .

 cs 4.21. __tcp_v4_check_established() .

 cs 4.22. __tcp_v4_check_established() .

 We need to explain the relation between sock and tcp_tw_bucket structures.
Also explain the linking of TIME_WAIT sockets (sk → next_death and sk → pprev_
death). We return to tcp_v4_hash_connect() . If we obtain the port for the socket,
we come out of the main loop; otherwise we iterate the loop once again with next
port number.

 We have come out of the loop, which means that either we obtained the avail-
able free port number or shared port number. We carry out searching process with
lock for the hash bucket held and bottom half disabled. We need to link the socket
to the hash bucket owners ’ list (see cs 4.24).

 We need to assign the selected port number to the socket (sk → sport) and hash
the socket in the tcp_ehash table in case the new hash bucket is created; otherwise
this fi eld is assigned value in __tcp_v4_check_established() (see cs 4.25). Condition
cs 4.26 should be true if new hash bucket is allocated for the socket, because this is
the only socket in the owners ’ list of the hash bucket, and we return from here.

 Let ’ s see the case where the port number was specifi ed (sk → num != 0) get the
pointer to the hash bucket for the port number (see cs 4.27). Hold the lock for the
tcp hash bucket (head → lock) and now check if the socket is the alone socket in the
hash bucket pointed to by sk - prev (see cs 4.28).

 cs 4.23. __tcp_v4_check_established() .

 cs 4.24. tcp_v4_hash_connect() .

 cs 4.25. tcp_v4_hash_connect() .

 cs 4.26. tcp_v4_hash_connect() .

 cs 4.27. tcp_v4_hash_connect() .

CLIENT SIDE SETUP 173

174 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 If that is the case, we can safely allocate the port to us and then return. Now
we wonder how sk → prev has the tcp_ehash_bucket allocated to it. This is possible
because the application has already set the sk → num by calling setsockopts() if it
wants the connecting socket to bind to a specifi c port. We just need to call __tcp_
v4_hash() to associate the socket with the ehash_list table. If we are not able to
satisfy the above condition, we need to walk through the tcp_ehash table to resolve
any confl icts for the port sharing __tcp_v4_check_established() . If we get the
requested port number, then __tcp_v4_check_established() returns success, which is
returned to tcp_v4_connect() .

 END OF tcp_v4_hash_connect()

 We return to tcp_v4_connect() with either success or failure. If we fail to get the
port number, then we return; otherwise we continue with connecting process. Until
now we got the route to destination, and obtained the local port number, and we
have initialized remote address, remote port, local address, and local address fi elds
of the socket. We have already initialized most of the fi elds of the socket and tcp_
opts for the socket with default values. The rest of the fi elds will be initialized when
we a receive a response from the peer. We need to get the initial sequence for our
end of the TCP connection; call secure_tcp_sequence_number() . The function calcu-
lates sequence number based on quadruplet, system time, and some random number.
Linux implementation follows RFC 793 as close as possible for system time issues.
Get the packet ID counter based on the initial sequence number and the jiffi es (see
cs 4.29).

 Now since the initial setup is done, we need to generate a SYN packet and give
it to the IP layer for further processing. We call tcp_connect() for doing this.

 4.6.8 tcp _ connect ()

 The fi rst step is to do some more initializations of some of the fi elds of tcp_opt very
specifi c to TCP protocol. These fi elds are related to mss, window size, mtu, and so
on; for this we call tcp_connect_init() . The function also clears up retransmission -
 related fi elds in tcp_opt structure. Now we allocate the sk_buff structure (cs 4.30),
which represents a packet on Linux (please refer to Chapter 5 for sk_buff).

 Make room to store tcp header, i.e. Adjust the buffer data pointer to point to
the location where the TCP header should go (see cs 4.31). Initialize the cb fi eld of
 sk_buff (see cs 4.32). This fi eld can contain any private data to be used by different

 cs 4.28. tcp_v4_hash_connect() .

 cs 4.29. tcp_v4_hash_connect() .

protocol layers. TCP keeps per packet control information here and is known as a
control buffer for TCP. The control buffer is represented by struct tcp_skb_cb . The
control buffer is provided with the following information:

 • TCP fl ag is set to TCPCB_FLAG_SYN
 • Sequence number
 • Timestamp
 • ACKing information

 We are also intializing tcp_opt fi elds related to sequence number such as snd_nxt,
pushed_seq and retrans_stamp . Our job is done, and we will queue the sk_buff at
the head of the socket ’ s write queue (see cs 4.33). Keep account of memory usage
of the socket as a result of the sk_buff queuing (see cs 4.34). sk → wmem_queued
keeps account of how much memory is allocated for the write queue, and skb →
 truesize is the memory allocated for the sk_buff and the memory block allocated
for sk_buff data. sk → forward_alloc keeps check on the total memory usage by

 cs 4.30. tcp_connect() .

 cs 4.31. tcp_connect() .

 cs 4.32. tcp_connect() .

 cs 4.33. tcp_connect() .

CLIENT SIDE SETUP 175

176 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

socket. So, we update both here in tcp_charge_skb() (see cs 4.35). We need to trans-
mit this sk_buff for further processing; call tcp_transmit_skb() . We don ’ t pass the
sk_buff just allocated to the function, but we pass just the clone of it. By clone it
means that the new sk_buff structure is allocated and not the sk_buff data part. So,
we have a new sk_buff structure that has a copy of the original sk_buff except for
the data that is shared between the two. The new sk_buff is not owned by the
socket.

 4.6.9 tcp _ transmit _ skb ()

 This function is used to transmit the packets passed to it. sk_buff to be processed
by the function don ’ t have headers initialized, so it is the primary job of the functon
to build the TCP header before transmitting it to the next layer for processing. First
we want to know what TCP options are supported by protocol and gather that
information from system control global variables sys_ctl * . Accordingly, we increase
the TCP header size to accommodate each option. Once we have the fi nal TCP
header size, we can adjust the sk_buff data pointer to point to the position where
the TCP header should start. Finally, get the pointer to the data location (see cs
 4.36). skb → h.th is the header fi eld for the packet which points to transport layer
(TCP in our case) header. Build header from information provided in sock, tcp_
skb_cb (control buffer) and tcp_opt structures. Associate sk_buff with the socket
and modify the memory usage for the socket (see cs 4.37). We use functions specifi c
to the inet family to build checksum and transmit the packet (sk_buff) for further

 cs 4.34. tcp_connect() .

 cs 4.35. tcp_charge_skb() .

 cs 4.36. tcp_transmit_skb() .

 cs 4.37. tcp_transmit_skb() .

processing by the next protocol layer (IP). These functions are registered by the
socket. tcp_opt ’ s fi eld af_specifi c points to set of functions specifi c to ipv4/tcp and
are pointing to i pv4_specifi c . So we call tp → af_specifi c → send_check pointed to by
 tcp_v4_send_check() is called to compute TCP checksum and fi nally tp → af_
specifi c → queue_xmit pointed to by ip_queue_xmit() is called to transmit the packet
to IP layer for further process the packet. We wait here until we return from ip_
queue_xmit(). tcp_transmit_skb() returns with the error code set.

 END OF tcp_transmit_skb()

 We are back to tcp_connect() and now set SYN retransmit timer for retransmitting
SYN if SYN/ACK is not received (see cs 4.38).

 Return from tcp_connect()
 END OF tcp_connect()

 We are back to tcp_v4_connect() from where we just return with the error code
set.

 END OF tcp_v4_connect()

 We are back to inet_stream_connect() , and here we set the socket state to connecting
in case we get a success error code (see cs 4.39). Now we wait until we time out or
we get the connection (three - way handshake is over) (see cs 4.40). inet_wait_for_
connect() makes the process sleep in socket ’ s wait queue (sk → sleep) in INTER-
RUPTABLE state (which means process can be aborted anytime while waiting for
connect to get over). The process goes to sleep until

 1. it is woken up by the soft IRQ on reception of SYN/ACK packet for the
SYN,

 2. timeout occurs, or
 3. we receive ICMP error message.

 If we don ’ t encounter any error, inet_wait_for_connect() returns TRUE. If no signal
is received by the current process, we receive some response from the peer. At this
point in time, we are either connected or we received an error message about con-
nection not established. We check this from the sock state (see cs 4.41).

 cs 4.38. tcp_connect() .

 cs 4.39. inet_stream_connect() .

CLIENT SIDE SETUP 177

178 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

 If we get connected, the socket state is set to SS_CONNECTED , and we return
from here.

 END OF inet_stream_connect()

 We are back to sys_connect() . We return from here to the user application which
invoked connect() systemcall with the error code set.

 END OF sys_connect()

 Figures 4.25a and 4.25b explain the complete fl ow for connect().

 4.7 SUMMARY

 Protocol - specifi c operation on the socket is accessed from prot fi eld of the sock
object. For the INET stream protocol, this is fi eld is initialized to tcp_prot .

 The tcp_hashinfo object has pointers to different hash tables for bind, estab-
lished, and listening sockets.

 tcp_bhash is an object of type tcp_bind_hashbucket pointing to bind hash table.
This table is hashed based on the port number sockets are bound to them. The hash
function takes post number as input to identity hash bucket for the socket in the
table.

 ehash is object of type tcp_ehash_bucket points to established hash table. Hashed
on the destination and source port/IP.

 tcp_listening_hash is a hash table of sock objects hashing all the listening sockets.
Hashed on the listening port number.

 cs 4.40. inet_stream_connect() .

 cs 4.41. inet_stream_connect().

 tcp_bind_confl ict() checks for any confl icts related to allocation of port.
 tcp_port_rover stores the last allocated port number.
 tcp_listen_opt is an object that keeps information about all connection requests

for a listening socket.
 syn_table fi eld of tcp_listen_opt object of type open_request . This hashes in all

the connection requests for the listening socket.
 Once a three - way handshake is over, the connection request is moved from

listeners SYN queue to accept queue, tp → accept_queue .
 sock and tcp_opt objects are initialized for the new connection in the accept

queue.
 Once an application accepts a connection request in the accept queue, a BSD

socket is created for the new connection and is associated with VFS.
 __tcp_v4_lookup_established() searches for established connections in the ehash

table.
 tcp_v4_lookup_listener() searches for listening sockets in the tcp_listening_hash

hash table.

SUMMARY 179

181

5

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 sk _ buff AND PROTOCOL HEADERS

 sk_buff is the network buffer that represents the network packet on Linux TCP/IP
stack. sk_buff has three components: sk_buff, and linear - data buffer, and paged -
 data(struct skb_shared_info). When sk_buff is requested, we pass it the length of
the linear data area. There are fi elds in the sk_buff which are pointers to transport
layer, network layer, and link layer headers. Before passing on the sk_buff (network
packet) to next protocol layer for processing, we make the data fi eld of sk_buff to
the start of next protocol layer header. The next protocol layer maps the data buffer
pointed to by data fi eld of sk_buff to the protocol header structure for that layer
and accesses that protocol header. In the same way we construct the protocol
headers for the outgoing packet. In this chapter we will see how protocol headers
are built for the outgoing packets and extracted from the incoming packets.

 We study various fi elds of sk_buff structure and functions manipulating head,
tail, end, data, and len fi elds of sk_buff . We will study the data_len fi eld of sk_buff
and functions manipulating it. We need to study struct skb_shared_info and how it
is used. Then we move down to descriptions of various functions specifi c to cloning
and queuing sk_buff .

 sk_buff contains linear and nonlinear data portions. Linear data are repre-
sented by the data fi eld of sk_buff . Normally, we allocate one page of linear data
only for IP segments that can be accommodated in a single page. In the case where
the total IP segment length is more than one page, we have two options. First is to
have a linear data area of length which can accommodate the entire segment, and
second is to have a paged data area for the rest of packet (linear data = 1 page and
(IP segment — 1 page) length of IP segment in a paged data area of sk_buff). The

182 sk_buff AND PROTOCOL HEADERS

latter is performed only if the output device ’ s DMA channel doesn ’ t support the
scatter – gather technique. This chapter discusses the structure of the paged data area
of sk_buff and discusses the routines to manipulate it.

 There is also a provision to link all the fragments of the IP datagram in the case
where the original datagram is fragmented by some intermediate router. Linux
sk_buff has a pointer to such a fragmentation list which has all the IP fragments
arranged in the same order. We study the sk_buff fragment list as part of struct
skb_shared_info in this chapter.

 We will study how the protocol headers are built as a packet (sk_buff) traverses
down the protocol layers for transmission. At the same time we will also study how
protocol headers are extracted by protocol layers as the packet (sk_buff) moves up
the layers by manipulating sk_buff data fi eld. This will make the sk_buff concept
very clear as a Linux network buffer.

 5.1 STRUCT sk _ buff

 sk_buff structure represents a packet on Linux. It consists of three segments:

 • sk_buff structure, which is also referred to as a sk_buffer header
 • Linear data block containing data
 • Nonlinear data portion represented by struct skb_shared_info

 The sk_buff structure contains fi elds that contain pointers to protocol - headers -
specifi c data structures. Then there are fi elds that contain some control information
for each protocol which may be used to build headers and also can also be used to
decide the next action to be taken based on specifi c events. Some fi elds contain the
IP checksum and also the next protocol information. We have some fi elds that
manipulate actual packet data. sk_buff also contains information about the device
from where the packet has arrived and about the device from where it has to leave
the system. Whenever a new packet needs to be transmitted ot received over the
interface, a new sk_buff structure is allocated along with the data block, and data
are copied to the sk_buff and then only the packet is processed further. Each sk_buff
for a connection may have some fi elds in common, but the others may differ.
Depending on requirements, we can clone sk_buff (separate copy of sk_buff struc-
ture but sharing same data blocks) or make an exact copy of the sk_buff (duplicating
the sk_buff with a separate copy of the data block). Let ’ s look at the sk_buff struc-
ture in detail. Figures 5.1a and 5.1b have the defi nition of sk_buff struct. Let ’ s look
at each fi eld in the sk_buff structure:

 next and prev : These fi elds link the related sk_buffs together. For example,
when a packet is fragmented, each fragment of the original packet is linked
through the next fi eld. (We will further discover why these two fi elds are
placed at the start in the same order, maybe to align it with sk_buff_head .)

 list : This is pointer to the queue (struct sk_buff_head) or list on which this
 sk_buff is currently placed.

 sk : Pointer to the socket to which this packet (sk_buff) belongs.
 stamp : This is the fi eld keeping the timestamp of the point when the packet is

transmitted or received.

STRUCT sk_buff 183

 Figure 5.1a. Network buffer — Linux implementation of packet.

184 sk_buff AND PROTOCOL HEADERS

 dev : This is the pointer to the device, struct net_device , through which the packet
is received or transmitted. The net_device keeps information about the
network interface (data link layer) and operations specifi c to the device.

 union h : This is a union of pointers to different transport layer headers. This
fi eld points to the offset in the packet data that is the start of transport layer
header.

 union nh : This is a union of pointers to different network layers headers
supported by Linux. It points to the offset in the packet data that is the start
of the network layer header.

 union mac : This is a union of pointers to different mac layer headers supported
by Linux. It points to the offset in the packet data that is the start of the mac

 Figure 5.1b. Network buffer — Linux implementation of packet (continued).

STRUCT sk_buff 185

layer header. We will see how these fi elds are made to point to the appropri-
ate locations in the packet data so that they correctly access the start of the
protocol headers.

 dst : This points to dst_entry structure, which keeps the information about the
route for a given destination and also some information specifi c to the
network characterstics for a given connection such as pmtu, rtt, and so on;
we study more about it in Section 14.8 .

 cb : This fi eld keeps control information specifi c to the protocol. This may be
used independently by each protocol layer. If we want to keep the same
information across the layers, we can clone sk_buff. The socket layer can
map these data to struct inet_skb_parm , and tcp can map this buffer to struct
tcp_skb_cb. We will see the usage in later sections.

 len : This fi eld keeps the total length of the data associated with the sk_buff
(packet length at any point of time).

 data _ len : This fi eld is used only when we have nonlinear data (paged data)
associated with the sk_buff . This fi eld indicates the portion of the total packet
length that is contained as paged data, which means that the linear data
length will be skb → len − skb → data_len . We will discuss more about it in
Section 5.2 .

 csum : This is the checksum of the protocol at any point in time. Discuss more
about it later.

 cloned : This fi eld keeps information that the sk_buff is the cloned one or the
original one.

 pkt _ type : This fi eld contains information about the type of the packet. The
types generally are multicast, broadcast, loopback, host, other hosts,
outgoing and so on; we will come to know more about it later.

 ip _ summed : This fi eld indicates whether the driver calculated the IP checksum
for us.

 priority : This fi eld keeps information about the queuing priority of the packet.
This is based on the TOS fi eld of the IP header.

 users : This fi eld keeps account of number of references to the sk_buff .
 protocol : This fi eld keeps the information of the next layer protocol and is set

when a packet is processed by the current protocol layer.
 security : This keeps the security level for the packet. We discuss it in more

detail later.
 truesize : This fi eld keeps the information about the total memory allocated for

this buffer. This includes the sk_buff structure size + the size of the data
block allocated for this sk_buff .

 head : This fi eld points to the start of the linear data area (fi rst byte of the
linear - data area allocated for the sk_buff).

 data : This fi eld points to the start of the data residing in the linear - data area.
The data residing in the linear - data area may not always start from the start
of the linear - data area pointed to by head because of the reasons that we
discuss in Section 5.4.2 .

 tail : This fi eld points to the last byte of the data residing in the linear - data
area.

186 sk_buff AND PROTOCOL HEADERS

 end : This fi eld points to the end of the linear - data area and is different from
 tail . The end of the data residing in the linear - data area may not always be
at the end of the linear - data area, so we have tail . With this fi eld we make
sure that we don ’ t use more than what is available.

 Head, data, end, and tail fi elds manipulate the linear area, and we will see it in
the latter part of the discussion. Whenever we allocate a new sk_buff, we provide
the size of the linear - data area. At the same time, we initialize the four fi elds of
sk_buff to point to linear - data area in appropriate positions. Figure 5.2 shows the
position of four fi elds when a new sk_buff is allocated. We can see that when we
request sk_buff for a given length len of linear - data area, we have fi elds of sk_buff
set appropriately. We can also see the addition area reserved for struct skb_shared_
info at the end of the linear data area. This structure is shared across the sk_buff
clones.

 5.2 STRUCT skb _ shared _ info (Fig. 5.3)

 This structure contains information about the nonlinear data area for the sk_buff .
By nonlinear area, it means that the data contained by the sk_buff are just more
than that can be accommodated in the linear data area. The data contained in the
nonlinear data area is continuation of the data from the offset pointed to by end
fi eld of the sk_buff . The total length of the data is contained in linear and nonlinear
data area. The total length of the sk_buff data is stored in len fi eld, and the length
of the nonlinear (paged) data area is stored in data_len fi eld of sk_buff ; please refer
to Fig. 5.4 . The paged - data area is possible only if DMA allows scatter – gather
operations on the physically scattered pages.

 Figure 5.2. sk_buff when it is

just as returned by skb_allocr().

 dataref : This keeps the account of number of references for skb_shared_info
object.

 nr _ frags : This fi eld keeps the number of paged fragments for the sk_buff . It is
an indication of the number of elements in the frags[] array containing paged
data for sk_buff .

 frag _ list : This fi eld keeps the pointer to the list of sk_buffs representing the
fragments for the original packet (sk_buff , to which the frag_list belongs).
We will see in the next section the live example explaining the fi eld. If the
original packet is fragmented, all the sk_buffs representing those fragments
will be linked in this list and the total length of the original sk_buff is the
sum of the lengths (skb → len) of each fragment in the frag_list list including
the length of the original sk_buff. Please refer to Fig. 5.5 .

 frags : This fi eld is the array of fragments containing the paged data for the
sk_buff. The paged data are represented by struct skb_frag_struct . The length
of data contained in the paged area (represented by frags[]) is the sum of
the number of bytes contained in each page fragment (frags[i] → size) and is
stored in data_len fi eld of sk_buff .

 5.3 sk _ buff AND DMA — SKB _ FRAG _ STRUCT

 This structure is a descriptor for each paged fragment containing paged data for the
 sk_buff .

 page : This fi eld is a pointer to the page structure containing paged data for the
fragment. Each page fragment contains a maximum of one page of data.

 Figure 5.3a. Structure at the end of linear - data area containing sk_buff fragment info and

nonlinear data info for sk_buff .

 Figure 5.3b. Structure, keeping information of nonlinear data for sk_buff .

STRUCT skb_shared_info 187

188 sk_buff AND PROTOCOL HEADERS

 Figure 5.4. Paged data area organization for sk_buff .

The kernel virtual address to which this page is mapped can be obtained
 page_address() .

 page _ offset : This fi eld is the offset for the page that points to the start of the
data in this page.

 size : This fi eld is the total length of data contained in the page pointed by page
fi eld.

 5.3.1 DMA and Fragmented sk _ buff Containing Paged Data

 Figure 5.4 shows linking of kernel data - structures to implement pagedata area for
sk_buff.

 5.3.2 sk _ buff and IP Fragmentation

 Figure 5.5 shows linking of sk_buff ’ s to implement IP fragmentation.

 We can use a paged data area for sk_buff only if DMA supports the scatter – gather
process on physically noncontagious pages. The fi ne example to understand the
usage of the paged - data area is tcp_sendmsg() . If we look at this function, it is clear
under what conditions we are making use of paged - data area. While allocating
sk_buff, we need to actually decide on the length of the linear data area depending
on whether DMA supports scatter – gather for physically noncontiguous pages. To
decide on this, we call select_size() to get the size of the linear data area for the
 sk_buff. select_size() checks if DMA supports scatter – gather (see cs 5.1).

 Figure 5.5. Fragmentation and paged data area for sk_buff.

 cs 5.1. select_size() .

STRUCT skb_shared_info 189

190 sk_buff AND PROTOCOL HEADERS

 If the above is true, we try to allocate one page of data for the linear - data area, and
the rest of the data goes as a paged - data area where one page is allocated per sk_
buff fragment for subsequent data. If the scatter – gather is not supported, we try to
allocate contiguous physical memory to accommodate entire sk_buff data in the
linear - data area.

 5.3.3 sk_buff and Fragmentation

 A good example to understand the usage of frags_list (skb_shinfo(SKB) → frag_list)
is ip_frag_reasm() . The function is called when we have received all the fragments
for the original packet. All the fragments for the original packet are linked together
by skb → next in a chain of sk_buff pointed by qp → fragments . The packet fragments
are arranged in the list in proper order. The list of fragments is pointed to by
 head → next where head is the fi rst sk_buff in the list (the fi rst packet in the list).
The head → next is copied to list head ’ s frag_list (cs 5.2).

 Now head ’ s len, data_len, csum, and truesize fi elds are updated to represent
the complete packet including all the fragments that belong to the original packet
(see cs 5.3).

 5.4 ROUTINES OPERATING ON sk _ buff

 Let ’ s look at the routines operating on sk_buff . Later on we will see how these
routines are used in actual practice. First we will look at the routines that manipu-
late the linear - data area.

 5.4.1 alloc _ skb ()

 This function allocates a new sk_buff . We pass on the length of the data area and
the mode of memory allocation. Data area is the block of memory allocated for the
 sk_buff where the packet is constructed. End of the linear data area is reserved for

 cs 5.2. ip_frag_reasm() .

 cs 5.3. ip_frag_reasm() .

structure that keeps information of the paged - data area and fragments associated
with the sk_buff . So, we allocate a sk_buff head and the data area of length ‘ len ’
bytes. The position of head, data, tail, and end pointers are shown in Fig. 5.6 when
the alloc_skb() returns. We can see that the tail room is equal to the length of the
data block requested for sk_buff just after allocation. Head room and data length
are zero.

 5.4.2 skb_ reserve ()

 This function changes head and tail room for the sk_buff. It is called mostly to
reserve space for the protocol headers. We pass length of the headroom we need
to reserve for the protocol headers (Fig. 5.7). Whenever sk_buff is allocated to send
a new TCP data, it allocates data space for the user data, protocol headers, and the

 Figure 5.6. Status of sk_buff after it is allocated.

 Figure 5.7. Status of sk_buff after call to skb_reserve() .

ROUTINES OPERATING ON sk_buff 191

192 sk_buff AND PROTOCOL HEADERS

 skb_shared_info . When we are constructing a packet, we reserve the maximum
length that could be occupied by the protocol headers as headroom. Since there are
some optional fi elds in the TCP/IP protocol headers, we allocate the tailroom as
the sum of maximum header lengths (including all the optional header fi elds) of the
protocols. For example, if we look at tcp_alloc_pskb() , it is clear that total data
length allocated for sk_buff is requested length + MAX_TCP_HEADER. MAX_
TCP_HEADER is the sum of maximum length of TCP header(64) + maximum
length of IP header(64) + Maximum length of link layer(LL_MAX_HEADER)
(see cs 5.4).

 5.4.3 skb_ put ()

 The routine is used to manipulate sk_buff ’ s linear data area. The function reserves
space for the segment data at the end of the linear data area, skb → tail . We record
 sk_buff ’ s original tail fi eld at line 788 (cs 5.5). At line 790, the tail fi eld is incremented
by requested length. Modifi ed tail fi eld expands sk_buff ’ s total length, so we incre-
ment the skb → len by requested length at line 791. A sanity check is done at line
792 to make sure that the tail has not gone past the end of the linear data area

 cs 5.4. tcp_alloc_pskb() .

 cs 5.5. skb_put() .

(skb → end). If everything is OK, we return the original reference to sk_buff ’ s tail
fi eld 795.

 In most of the cases, user data go here or we can say that TCP/UDP payload
is copied in here. It creates space for the segment payload (see Fig. 5.8). The dotted
blue line in Fig. 5.8 shows the original position of the skb → tail , which is returned
to the caller when sk_buff ’ s length was l o . After call to skb_put() , the solid gray line
is the fi nal position of sk_buff ’ s tail fi eld and the total sk_buff ’ s length becomes l o
 + l r . Tail room is reduced by l r . The caller directly uses the returned pointer to copy
data.

 The good example to explain this is skb_add_data() called from tcp_sendmsg() .
Here we fi rst check how much space is available at the tail end at line 1080 (cs 5.6)
by calling skb_tailroom() . If some space is available, we fi nd out if current request
can be satisfi ed with the available tail room at line 1082. skb_add_data() is called
at line 1084 to copy the data to the sk_buff linear data space. In skb_add_data() we
call csum_and_copy_from_use() to copy data to sk_buff . The second argument is
the location to where the data should be copied.

 We call skb_put()(cs 5.7 , line 985), which returns us the exact location in the
 sk_buff linear data area where the data should be copied (original location where
skb → tail was pointing).

 Figure 5.8. Status of sk_buff after call to skb_put() .

 cs 5.6. tcp_sendmsg() .

ROUTINES OPERATING ON sk_buff 193

194 sk_buff AND PROTOCOL HEADERS

 cs 5.7. skb_add_data() .

 5.4.4 skb_ push ()

 This function manipulates the data fi eld of sk_buff and acts only on linear data area.
It pushes the data fi eld closer to the head by the number of bytes provided as an
argument to the function. The headroom is reduced by the number of bytes that
data length has increased. Data fi eld is deducted by length requested at line 817, cs
 5.8 . This shift of data fi eld toward head causes overall sk_buff length to expand by
the length requested so we increment sk_buff length at line 818. We do a sanity
check at line 819 to make sure that the data fi eld has not one past start of the buffer
(line 819). If things are correct, reference to a data pointer is returned to the
caller.

 Figure 5.9 shows how a data fi eld is manipulated by calling skb_push(). l o was
 sk_buff ’ s original length with a data fi eld pointer represented by a dotted black line.
 l r is the length requested by the caller of skb_push() . After sk_buff is processed by
 skb_push() , the total length of linear data area becomes l r + l o , and a data pointer
is represented by a solid black line.

 This is mainly called when we want to send a packet. The packet contains data
and protocol headers. We need to add data, and each protocol layer will add its
header as it passes through different layers. So, the topmost layer adds data and
then its header. We have seen functions that will create headroom and the room
for the user data. We create headroom by calling skb_reserve() and then room for
user data by calling skb_put() . We copy user data in the data area pointed to by

 cs 5.8. skb_push() .

 skb → data . Now it is the chance to add the protocol header just before the start of
user - data. For a more detailed example, refer to Section 5.5.1 .

 5.4.5 skb _ pull ()

 The routine pulls down the data pointer by number of bytes specifi ed as an argu-
ment to the function and returns the new data pointer. This manipulates sk_buff ’ s
linear data area by modifying its data fi eld. It reduces skb → len by the number of
bytes requested hence increasing headroom for sk_buff ’ s linear data area. Let ’ s look
at the implementation. First we do some sanity check on the requested length. If it
is more than the total sk_buff ’ s length, we need to return NULL, indicating no
action was taken (cs 5.9 , line 846). If we can process the request, __skb_pull() is
called at line 848.

 __skb_pull() does the actual processing as requested by the caller. It reduces
 sk_buff ’ s len fi eld by the number of bytes requested because the request is to shrink
the linear data area at line 827, cs 5.10 . Next we make sure that the total length,
just calculated at line 827, has not gone below the linear data area length(skb →
 data_len) . If things are good, we increment the data pointer by the length of data
requested at line 830 and return it to the caller.

 Figure 5.9. Status of sk_buff after call to skb_push() .

 cs 5.9. skb_pull() .

ROUTINES OPERATING ON sk_buff 195

196 sk_buff AND PROTOCOL HEADERS

 The routine is mostly used to access protocol headers when the packet arrives.
Let ’ s look pictorially as to what happens when sk_buff is processed by skb_pull() (see
Fig. 5.10). Originally, sk_buff ’ s total length (skb → len) was l 0 and data fi eld is rep-
resented by a solid black line. Length requested to skb_pull() is l r and fi nal data
fi eld is represented by dotted black lines. The reference to data fi eld represented
as a dotted black line is returned by skb_pull() to its caller fi nally. For a more
detailed example, see Section 5.6 .

 5.5 sk _ buff BUILDS PROTOCOL HEADERS AS IT TRAVERSES DOWN
THE PROTOCOL LAYERS

 5.5.1 Tcp Header Is Added to sk_buff

 We need to pre - pend the TCP header to sk_buff ’ s data area just before the TCP
payload. The situation is similar to Fig. 5.11 where we have copied l d length (skb →
 len) of data starting at skb → data . Now we need to add a TCP header before a TCP
payload — that is, before skb → data . TCP calls tcp_transmit_skb() to build a TCP
header for the TCP segment. First it calculates the TCP header length, taking into
consideration options that is used for current TCP connection. Once this is done,

 cs 5.10. __skb_pull() .

 Figure 5.10. Status of sk_buff after call to skb_push() .

we call skb_push() to allocate room for the TCP header. This moves data toward
the head by a number of bytes required for the TCP header as shown in Fig. 5.11 .
Now skb → h.th is made to point to skb → data (returned by skb_push()) in cs 5.11 ,
line 226. We access the skb → data memory region as if it were struct tcphdr and
initialize the fi elds of the struct tcphdr .

 5.5.2 Ip Header Is Added to sk _ buff

 Now the packet containing a TCP header and a TCP payload is passed to the IP
layer. IP creates its own header and adds it to the beginning of the packet (before
 skb → data). The example we take here is ip_build_and_send_pkt() . This function
builds an IP header for the packet and sends it to the link layer. The IP options are
already processed before we come here. So, we calculate the fi nal IP header length
and then call skb_push() to allocate space for IP header. This function returns the
 skb → data pointer.

 We construct an IP header at the location pointed to by skb → data and fi nally
make skb → nh.iph point to skb → data (line 147, cs 5.12) as shown in Fig. 5.12 , which

 Figure 5.11. Status of sk_buff after TCP header is added to the outgoing packet.

 cs 5.11. tcp_transmit_skb() .

sk_buff BUILDS PROTOCOL HEADERS AS IT TRAVERSES DOWN THE PROTOCOL LAYERS 197

198 sk_buff AND PROTOCOL HEADERS

means that a reference of the location for the start of an IP header is stored in
 skb → nh.iph for later use and at the same time we have reference to the TCP header
with sk_buff as skb → h.th .

 5.5.3 Link Layer Header Is Added to sk _ buff

 Until now we have added the transport layer header and the network layer header
to the packet. It is the turn of the link layer to add its header. Considering that it
is an ethernet frame, we will take the example of the eth_header() (see cs 5.13).

 This routine pushes the data fi eld by ETH_HLEN bytes toward the head as
shown in Fig 5.13 . We access the location pointed to by skb → data as the start of
the ethernet header and build the header in this location. Finally the packet is ready

 cs 5.12. ip_build_and_send_pkt() .

 Figure 5.12. Status of sk_buff after IP header is added to the outgoing packet.

 cs 5.13. eth_header() .

to be transmitted. The total length of packet that will be transmitted is the area
covered between skb → tail and skb → data in case we don ’ t have any paged data
area.

 5.6. sk _ buff EXTRACTS PROTOCOL HEADERS AS IT TRAVERSES UP
THE PROTOCOL LAYERS WHEN A PACKET ARRIVES

 5.6.1 sk_buff Is Made to Point to a Datalink Layer Header Which
Will Be Processed by Dalalink Driver

 When a new packet arrives, a new sk_buff is allocated with the data buffer equal
to the packet size. sk_buff ’ s data fi eld points to the start of the packet (ethernet
header) as shown in Fig. 5.14 . We will once again traverse from the link layer to
the transport layer to look at how skb_pull() does the job of striping the protocol
headers when the packet moves through different protocol layers. It is the job of
the link layer driver to fi nd out the next protocol layer from its header and then
appropriately manipulate the pointers. Let ’ s have a look at one of the Ethernet
driver ’ s receive routine e100_rx() . It gets the pointer to the received packet in the
ring buffer and fi nds out the next layer protocol from the ethernet header fi eld. It
calls eth_type_trans(). eth_type_trans() pulls the data fi eld of sk_buff to point to the
IP header by pulling it down by the length of the ethernet header. This is done
before the sk_buff is queued in the IP backlog queue. So just before queuing the
 sk_buff in the IP backlog queue, it looks as shown in cs 5.14 .

 Figure 5.13. Status of sk_buff after link

layer header is added to the outgoing

packet.

sk_buff EXTRACTS PROTOCOL HEADERS AS IT TRAVERSES UP THE PROTOCOL LAYERS WHEN A PACKET ARRIVES 199

200 sk_buff AND PROTOCOL HEADERS

 5.6.2 sk _ buff Is Made to Point to an ip Layer Header Which Will Be
Processed by an IP Layer

 Now the sk_buff is taken off the IP backlog queue and processed by the routine
 netif_receive_skb() that pulls sk_buff from the backlog queue. Here nh.raw is made
to point to the data fi eld of the sk_buff . So, we can directly access IP header
as nh.iph (see cs 5.15 , line 1435). So, the fi nal sk_buff picture will look like
Fig. 5.15 .

 5.6.3 sk _ buff Is Made to Point to a tcp Layer Header Which Will Be
Processed by a tcp Layer

 Finally, an IP layer routine ip_local_deliver_fi nish() processes the packet for the
next protocol and pulls the data fi eld of sk_buff by the length of the IP header
(including IP options) to point to the transport protocol header (see cs 5.16 line
227). So, fi nally the sk_buff is passed to the transport layer handler with h.th
pointing to start of the transport layer header as shown in Fig. 5.16 .

 Finally, the transport layer needs to process the transport header packet. This
is done in tcp_v4_do_rcv() . If the connection is found to be established and we have

 Figure 5.14. Status of sk_buff when

new packet arrives on the interface, data

points to start of data link header.

 cs 5.14. eth_type_trans() .

 cs 5.15 netif_receive_skb() .

 Figure 5.15. Linklayer has processed the

packet and passes it to the network layer

after making data point to start of

network header.

 cs 5.16. ip_local_deliver_fi nish() .

 Figure 5.16. Network layer has

processed the packet and has passed it

to the transport layer after making data

point to start of transport layer header.

sk_buff EXTRACTS PROTOCOL HEADERS AS IT TRAVERSES UP THE PROTOCOL LAYERS WHEN A PACKET ARRIVES 201

202 sk_buff AND PROTOCOL HEADERS

 cs 5.17. tcp_rcv_established() .

data in the TCP segment, we need to copy the data to the user application by calling
 skb_copy_datagram_iovec() from the offset l d t h starting from skb → data . If because
of some reason, we are not able to copy data to the user application, we just pull
the data fi eld of the sk_buff by the length of the TCP header (including options)
and queue it in the receive queue of the socket (see cs 5.17 , line 3343). If the sk_buff
is queued in the socket ’ s receive buffer, the sk_buff looks as shown in Fig. 5.17 .

 We need to look at the other routines related to sk_buff like clone and paged
 sk_buff , which is an exercise until the next release of the book is available.

 5.7 SUMMARY

 sk_buff is a socket buffer header that represents a packet on Linux. Separate
memory is allocated to store sk_buff data pointed to by head fi eld of sk_buff.

 Data area of sk_buff is divided into two parts:

 • Linear data area manipulated by head and end fi elds of sk_buff .
 • Paged data area managed by skb_shared_info object located at the end of the

linear data area.

 One page is allocated at a time to skb_shared_info . There is a limitation on number
of pages allocated to paged data area. This restriction may cause a performance

 Figure 5.17. Transport layer has pro-

cessed the packet and passed the data to

the socket layer after making data point

to the transport payload.

issue when we can ’ t use the scatter – gather capability of the network controller in
the case where complete segment can ’ t be fi t into paged data area. In such cases a
big chunk of memory is allocated to linear data area, which is an expensive
process.

 skb_shared_info also manages IP fragments.
 sk_buff has a back pointer to the socket to which it belongs. It can traverse

anywhere in a stack with an identity.
 skb_pull() removes data from the head of a buffer by moving the data pointer

of sk_buff up in the memory, thereby creating head room. A routine is used to strip
protocol headers as a packet moves up the stack.

 skb_push() pushes a data pointer of sk_buff down in the memory, thereby
reducing head space. This routine is used to build a protocol header when a packet
is moving down the stack.

 skb_reserve() reserves header room by moving data and tail pointers of sk_buff
up in the memory by a given length.

SUMMARY 203

205

6

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 MOVEMENT OF sk _ buff
ACROSS PROTOCOL LAYERS

 In this chapter we focus on the movement of sk_buff across protocol layers and
discussion of only a TCP/IP over an ethernet link layer, which means the major
kernel path through which sk_buff passes while in the transmission and reception
process. We discuss the design of a TCP/IP stack here. In this chapter we see how
fi rewall hooks are inserted and the way in which we fi nd the route for the destina-
tion packet. We see how we attach an outgoing device with sk_buff , depending on
the route. We cover ARP resolution for the outgoing packet in the chapter. At the
same time we see how the incoming packet(sk_buff) traverses through the protocol
layers. We need to see how sk_buff is processed in the network layer. In the IP layer
we need to fi nd a route for the packet, depending on the source and destination IP.
If the packet needs to be forwarded, it will be routed through different path to the
outgoing interface; otherwise it will be delivered locally. The IP layer has to process
the packet to fi nd out the next transport layer and send it to the transport layer for
further processing. Finally, the transport layer has to demultiplex the packet and
fi nd out the socket to which the packet belongs. The idea is to discuss the how the
packet is delivered to the next layer for processing when the packet is going up/
down the TCP/IP stack. We discuss the TCP/IP stack in brief and focus on the design
of the stack implementation on Linux. The details of each is covered in individual
chapters.

 The entire discussion is divided into the following layers:

 • Socket layer
 • TCP layer

206 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

 • IP layer
 • Link layer
 • Packet scheduling layer, Qdisc
 • softIRQ framework
 • Transmission/reception

 6.1 PACKET TRAVERSING DOWN THE TCP / IP STACK

 This section addresses how the fi rst packet for a given connection traverses down
the TCP/IP stack when it has no information about the route and the outgoing
device. Then we will see how the packet is generated and trickles down the protocol
layers when we write data over the connected socket. In this section we will not
discuss anything specifi c about TCP and IP processing but just the kernel framework
that implements the network protocol.

 When an application wants to connect to the server, it issues a connect on the
server with the destination socket address as an argument to the connect systemcall.
The socket address for inet protocol should contain a port number and an IP
address. So, the connect only knows the port number of the service and the IP
address of the host where the server needs to be contacted. Let ’ s see step by step
how we go about initializing the connection. The fi rst thing that we need to do is
to fi nd the route for the given destination IP address. Here we check the kernel
routing table for the destination IP address. If we don ’ t get a valid route for the
destination, we return error. There needs to be only one outgoing interface for a
given route. If we have a valid route to a given destination, it should also contain
information about the outgoing device. We cache the route along with the outgoing
device with the connecting socket. Now we need to initialize ARP - specifi c informa-
tion for the outgoing device if required. Since only Ethernet devices require such
information and our discussion contains such a device, we need to initialize ARP
information for the outgoing device and cache them. Outgoing interfaces such as
PPP or PLIP don ’ t require ARP to be initialized. Until now we have gotten the
route for our destination in the connecting socket ’ s cache. Data fl ow for packet
down the TCP/IP stack is shown in Fig. 6.1(a) through 6.1(b) .

 TCP Layer. The next step is to build a TCP SYN packet for the destination as
a fi rst step to establish a connection. The TCP header is built for the SYN packet
and and send it to the IP layer for building an IP header and further processing.
The IP layer fi rst checks if the cached route is still valid for the outgoing packet. If
it is not valid, we once again try to get the valid route for the outgoing packet. This
may happen because the route may have changed from the time we fi rst found the
route for the destination by the routing daemon because of failure in the link.

 IP Layer. So, we once again repeat the steps for the new route; that is, we ini-
tialize the outgoing device for the route and also the ARP - specifi c information is
initialized. If we are here, we have all the route specifi c information and we can go
ahead with packet processing. We now build an IP header, and the IP layer does
processing on the packet if required. Now we need to fi nd out if there is a fi rewall
policy that doesn ’ t allow the packet to be sent out. If everything is OK, we do IP
checksum for the packet just formed and place it on the IP header in the checksum

slot. We do IP checksum here because the outgoing device may have changed and
packet might need to be fragmented here. The next step is to masquerade the packet
or do any modifi cations on the packet such as encryption and encapsulation packet
(IPSec), if required. This is implemented by the way of a netfi lter hook post route
operation.

 Link Layer. If everything is OK, we also build a link layer header because here
we have a fi nal valid output device for the packet. We can build a link layer header
only if we have a hardware address for the destination IP. If this destination hard-
ware is not yet known, we send out an ARP request now and get the hardware
address for the destination IP in the ARP reply. We need to place it on the device
queue for fi nal transmission.

 Packet Scheduler. We de - queue the packet from the device queue (this may
not be the packet we just queued on the device queue because there may already
be frames queued on the device). We try to transmit the packet by programming a
device DMA for the current frame. Otherwise we requeue the packet on the device
queue, queue the device on the CPU, and raise Tx IRQ on the CPU and return.
When Tx softIRQ comes on the CPU, it just dequeues the packet from the device
queue and starts transmitting it. Tx interrupt is raised after the packet is successfully
transmitted. The packets (sk_buff) that are transmitted successfully are freed in the
Tx interrupt.

 In our last discussion we saw how the fi rst - time connection setup is done which
caches in important information such as route, device, and ARP. Now we will see
how subsequent packets (sk_buff) are generated when we write data over the TCP
socket.

 Socket Layer. This is to discuss how a cached route is used by all the subse-
quent packets generated for the established connection. This will be explained by
taking an example of TCP write over an established socket. We need to fi nd a socket
for the corresponding socket descriptor. Using fi le inode and private data, we can
fi nd the socket. Now we write data over connected sockets. When an application
writes some data over the connected socket, the TCP either copies the data on last
partial packet (sk_buff which is not yet full) or creates a new packet (sk_buff).

 TCP Layer. Once the data are copied to the sk_buff , we need to consult the
TCP state machine to check if we can send the packet now or wait for some event
to occur before we can send it out. In case we are the only packet and are allowed
to send the packet now, we will build the TCP header and send it to the IP layer.
Otherwise, we queue the packet at the end of the the TCP send buffer queue. After
queuing the packet on the TCP send buffer queue, we check if we need to send out
the fi rst packet on the send buffer. If so, we need to dequeue the fi rst packet from
the send buffer build the TCP header and give the packet to the IP layer for further
processing. We initialize the TCP retransmit timer.

 6.1.1 Path of Packet Traversal from Socket Layer to
Device for Transmission

 Figures 6.1(a) and 6.1(b) describes the date fl ow diagram for processing data down
the stack. It describes how data is processed from socket layer to device layer unless
transmitted, discussed in Section 6.1 .

PACKET TRAVERSING DOWN THE TCP/IP STACK 207

208 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

 Figure 6.1a. Packet traversal down TCP/IP.

 6.1.2 Kernel Path for TCP Packet Traversing Down the Stack

 The outgoing packet (sk_buff) gets most of the information about route and next
protocol layer from the sock structure. sock structure is initialized once and has all
the information about the connection. Each outgoing packet gets all the required
information from sock structure. With the help of an example, we will see how the

TCP packet is getting ready to be transmitted over IP network when it is built from
scratch right from its allocation until it is transmitted out of the system. Each pro-
tocol has to add its header to the outgoing packet. The hardware layer adds infor-
mation to the header which is more or less the same for all the outgoing packets
for a given destination. The IP layer keeps information about the route to the des-
tination. The IP header keeps information about the source and destination end
points only, but the route will actually decide which interface it has to be transmit-
ted. Once we know the route to the destination, we need not worry about the route
for any future outgoing packets on this specifi c connection until that specifi c route
is modifi ed. Route - specifi c information is stored in struct dst , which has a pointer
to the outgoing device as well. It is only the TCP layer whose header fi elds may
change for each outgoing packet because it depends very much on the events and
not on a one - time initialization. For TCP, most of the protocol - specifi c information
is stored in a tcp_opt structure, which is linked with the sock structure as sk → tp_
pinfo.af_tcp . Once the initial setup is over at the time of the connection setup, pro-
tocol layers use the same set of information for building protocol headers and
maintaining the protocol state throughout the connection. Network interface is
defi ned by struct net_device . This structure keeps device - specifi c information and
also hardware - specifi c operations such as transmission and reception callback rou-
tines. In the case of the Ethernet framework, we have struct neighbor that is respon-
sible for doing ARP and RARP. Neighbor framework manages the RARP/ARP
table.

 In this chapter we will take a simple example of initiating TCP/IP connection
over the Ethernet interface. In this process we will go through the entire setup of
the connection, which includes the setup for transport, the network, and the link
layers. In Chapter 4 we discussed the fl ow of connect systemcall, but that was very

 Figure 6.1b. Packet traversal down TCP/IP stack.

PACKET TRAVERSING DOWN THE TCP/IP STACK 209

210 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

much related to the socket connect describing TCP ports allocation and stuff. Here
we will discuss connect from the point of view of kernel framework required to send
the fi rst packet out to the destination when we know nothing about the route and
the outgoing device. Also, this discussion describes the entire path for the packet
from the time it is generated until it is transmitted. We will see how a packet is built
using the information stored in sock structure (at the time of connection setup) as
it passes through different protocol layers. We will not discuss any protocol - specifi c
details here but only the TCP/IP stack major functionality so that we need not
wonder every time as to how are we getting any specifi c information. All the details
about the protocols will be covered in the specifi c chapters. Flow of packet down
the TCP/IP stack in kernel 2.4.20 is shown in Fig. 6.3 .

 Socket Layer. When an application wants to do a connect on a given TCP
socket, it passes the socket address, struct sockaddr , to the kernel. Inside the kernel
we make protocol - specifi c connect calls inet_stream_connect() , which calls tcp_v4_
connect() for TCP. The socket over which we are we are trying to do a connect has
no idea of the route or outgoing device for the destination at this point of time.
Without route to the destination, the fi rst SYN packet can ’ t be sent anywhere. Let ’ s
see how we fi nd out route specifi c information to route the very fi rst packet. Once
we have route information, we cache it with the socket for the connection so that
we need not repeat the same step to fi nd a route for each outgoing packet each
time.

 IP Layer Routing. In tcp_v4_connect() we start with ip_route_connect() that
gets us route to the destination to which application wants to send connection
request. Application passes sock address of the remote services. Based on the des-
tination IP address, we fi nd the route which contains information like outgoing
device and the routines that will push the packet through the stack. This calls ip_
route_output() , which will generate key for route entry search. Key is defi ned as
 struct rt_key that contains four fi elds:

 • Destination IP (is must)
 • Source IP (optional)
 • Output interface (optional)
 • Type of service (IP option and is optional)

 The kernel routing table is cached in rt_hash_table[] . The hashing function has
four inputs mentioned above. The route is defi ned as struct rtable , which has two
parts:

 • struct dst_entry
 • Search key and fi elds for the route

 dst_entry object contains route - specifi c information such as the following:

 • It contains a pointer to an outgoing interface (net_device object).
 • It contains a pointer to a neighbour object that manages ARP/RARP for the

destination IP.

 • It also caches in hardware - specifi c routines and address.
 • It caches some of the path - specifi c protocol parameters like MSS, congestion

window, reordering, and so on, so that it can be used by many TCP connec-
tions using the same route.

 If we are able to fi nd an entry in the kernel route cache, we return with the
object rtable for the destination. If not, we need to look into the FIB table, which
is a database for all the routes. All the routing information is a stored FIB database
because the kernel routing cache is usage - based. Other than boot time entries, all
other entries will be added and removed depending on the usage. We call ip_route_
output_slow() to build routing information from FIB entries, if at all it exists. fi b_
lookup() is the routine that gets us the information about the route; based on the
results, we create a new routing entry in the kernel routing cache. Object rtable is
created for the new routing entry and is cached with rt_hash_table[] by calling
 rt_intern_hash() .

 If it is Ethernet link and unicast packet, we resolve ARP for the destination. To
associate the route with ARP, we need to initialize neighbor object for the route.
We call arp_bind_neighbor() from rt_intern_hash() to resolve ARP for the destina-
tion. arp_bind_neighbor() looks up for cached neighbour entry in the global table
 arp_tbl by calling __neigh_lookup_errno() . If we get the entry from the cache, we
return it and link it with the route for the connection (object dst_entry). Otherwise
we create a new entry by calling neigh_create() from __neigh_lookup_errno() and
hash it in the arp_tbl table. The hash function takes two inputs in this case:

 1. Gateway address for the route
 2. The outgoing device

 Later in the discussion, we will see how to resolve ARP for the destination.
 The route is returned to tcp_v4_connect() and is cached with the socket by

calling __sk_dst_set() . This routine makes sk → dst_cache point to dst_entry object.

 TCP Layer. The next step is to create SYN segment and transmit it. This is done
in tcp_connect() . Here we initialize sequence numbers and queue the SYN segment
in the socket ’ s send queue. Finally, we call tcp_xmit_skb() to build a TCP header
and push the packet to the IP layer for further processing. From here onwards, the
path for the SYN packet and the TCP data packet will be the same. The TCP calls
the internet address family - specifi c callback routine tp → af_specifi c → queue_xmit to
pass the packet on to the next layer. This is initialized to ip_queue_xmit() . af_specifi c
fi eld of tcp_opt object is initialized at the time of socket initialization in inet_create()
by a call to sk → prot → init , which is nothing but tcp_v4_init_sock() . For TCP it is
initialized to an ipv4_specifi c containing a set of operations specifi c to TCP - IP.

 IP Layer. ip_queue_xmit() checks if the route cached with the socket to the
destination is valid by calling __sk_dst_check() . The route may have become obso-
lete because the packet was queued in TCP ’ s transmit queue. If the route is no
longer valid, we will try to fi nd a new route for the destination by calling ip_route_
output() . This routine goes through the same cycle of fi nding the route as discussed
earlier. Once we have a valid route, we build an IP header and pass the IP datagram
to be screened through the netfi lter NF_IP_LOCAL_OUT using NF_HOOK
macro.

PACKET TRAVERSING DOWN THE TCP/IP STACK 211

212 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

 Netfi lter Hook. This framework implements fi rewall and extensions to the
TCP/IP functionality. Here we will pass a packet to the netfi lter hook to check if
there is any fi rewall rule that is set for the packet generated locally. If so, a further
decision is made based on the target set for the rule. Otherwise a callback routine
passed to the hook will be executed, if we get clean chit. The callback routine in
this case is ip_queue_xmit2() .

 ip_queue_xmit2() is an intermediate routine before we pass on the packet from
the IP layer to the packet scheduler. The routine is called both for locally generated
packets and for a forwarded packet. It does some routine checks such as header
room in the buffer. In the case where the header room is less than the size of the
hardware address, we need to reallocate the buffer for the packet. This may happen
because the routine for the destination has changed. We also compare the size of
IP datagram against the current PMTU here. If the datagram size is found to exceed
the PMTU, we need to fragment the packet. If the don ’ t fragment bit is set for IP
datagram, we need to send an ICMP message to the source TCP by calling icmp_
send() . If we are allowed to fragment the packet, it is split into fragments by calling
 ip_fragment() . It is always preferable to ask TCP to resegment the packets instead
of IP fragmenting it because one fragment loss means that the whole packet will be
discarded. ip_fragment() splits the packet into smaller sizes and transmits them one
by one by calling the callback routine registered with the socket skb → dst → output .
This points to ip_output() .

 In case we don ’ t need to fragment the packet, we get an IP for the packet and
add an IP checksum to the header by calling ip_select_ident() and ip_send_check() ,
respectively. We add an IP checksum here for the obvious reason that we may
expect PMTU changed at this point. An output routine for the connection is called
to push the packet further down the stack, skb → dst → output (= ip_output()).

 Netfi lter Hook. ip_output() effectively applies NAT on the packet, if NAT
needs to be applied to the packet in case the kernel is compiled with the NAT
option. If not, we directly call ip_fi nish_output() . Once again, ip_fi nish_output()
does nothing additional but sends packet to netfi lter check post to check if any post
routing rule is applicable using macro NF_HOOK. Postrouting fi ltering may be
required for IP Masquerading, NATing, Redirection, Ipsec, and so on. If so, the
packet is modifi ed and processed further by the target. If no rule applies, the call-
back routine ip_fi nish_output2() is called to push the packet down the stack.

 ARP and Neighbor Framework. ip_fi nish_output2() needs to fi nd out the
hardware address for the destination IP in the case where a link layer being used
in Ethernet. This is required to build a link layer header. If we already have the
destination hardware address resolved, the packet is passed to the packet scheduler
for transmission. We make a decision based on hardware caches for the route. If
the route ’ s hardware cache (skb → dst → hh) is initialized, the hardware address is
resolved. Otherwise we may need to search in the ARP table for the destination IP
entry. Neighbor framework manages and implements ARP/RARP on Linux.

 In the case where the hardware cache (object hh_cache) is not initialized for
the route, we call neighbour ’ s output routine dst → neighbor → output (= neigh_
resolve_output()) to resolve the hardware address. Neighbour operations are initial-
ized at the time when the neighbour object is created in neigh_create() . Its output
routines are initialized by calling a constructor routine specifi c to the neighbor table,

 tbl → constructor (= arp_constructor()). This initializes the neighbor ’ s set of opera-
tions (neigh → ops) to arp_generic_ops.

 neigh_resolve_output() is called to get a hardware address for the destination
IP by issuing an ARP request. __neigh_event_send() is ultimately called down the
line to initiate an ARP request in case we have not already resolved the ARP
request or we are already in the process of probing (check fl ags in neigh_event_
send()). __neigh_event_send() checks the fl ag and if it fi nds that the neigh entry is
neither STALE nor is it in the process of sending ARP request, it calls neigh → ops →
 solicit (= arp_solicit()) to initiate arp request. arp_solicit() internally calls arp_send()
that build ARP header and broadcasts the request. It also starts timer, neigh_timer_
handler() , for the neighbor entry. This timer will manage IP datagrams that are
queued up in the neigh → arp_queue queue waiting for ARP reply. Timer retransmits
ARP request and set ’ s timer once again to probe ARP request once again.

 In the case where we have already sent out an ARP request, the IP datagram
is queued in the neigh → arp_queue queue and return.

 We receive ARP replies in the protocol handler arp_rcv() . The ARP packet is
processed in arp_process() . If the reply is valid, neigh_update() is called that will
ultimately send out all the IP datagrams that are queued in the ARP queue for the
neighbour, neigh → arp_queue, using skb → dst → neighbor → output (= neigh_resolve_
output()) callback routine.

 Let ’ s return to neigh_resolve_output() . Once we have the hardware address
updated in the neighbor and our hardware cache (dst → hh) for the route is not
updated, we do that by calling neigh_hh_init() . We build a link layer header for the
IP datagram by calling the hardware - specifi c routine dev → hard_header . Finally,
send the packet to the packet scheduler neigh → ops → queue_xmit (= dev_queue_
xmit()) for transmission.

 Once the hardware cache for the route in initialized, the next packet for the
route can be sent out to the packet scheduler directly in ip_fi nish_output2() by
directly calling dst → hh → output (= dev_queue_xmit()) for transmission.

 Packet Scheduler and Hard Transmission. dev_queue_xmit() is a routine that
checks if the packet has fragmented data and the device doesn ’ t understand scatter –
 gather; in this case it tries to linearize the packet data by calling skb_linearize() .
Also it checks if the IP checksum is not yet done; if the device is not capable of
doing that, it does the IP checksum. Finally it queues the packet on the device queue
(dev → qdisc) by calling enqueue() routine specifi c to the scheduler. Scheduler is
defi ned by Qdisc object and its queue is pointed by q fi eld. The generic enqueue
routine for the device is pfi fo_enqueue() .

 Once we have a queued packet on the device queue, we need to wake up the
device by calling qdisc_run() . In case device is already running, we need not worry
and just return because somebody is already processing packet ’ s from the device
queue. Else, we need to process packets from the device queue by calling qdisc_
restart() . This routine will start dequeuing packets on the device queue by calling
the dequeue callback routine specifi c to the device discipline. The default dequeue
routine for the device is pfi fo_dequeue() .

 pfi fo_dequeue() dequeues one packet at a time from the device queue and
calls the hard transmit routine for the device (dev → hard_start_xmit) if nobody has
held the lock. In case somebody has held the lock and it is not us, we requeue the
packet on the device queue by calling the requeue() callback routine from queue

PACKET TRAVERSING DOWN THE TCP/IP STACK 213

214 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

operations (q → ops) and fi nally call netif_schedule() to schedule the device for
transmission.

 NET soft IRQ . netif_schedule() schedules the device on the CPU output queue,
 softnet_data[cpu].output_queue , and raises the transmit soft IRQ(NET_TX_
SOFTIRQ) by calling cpu_raise_softirq() . Later on when the Tx softIRQ is pro-
cessed, the same dequeue routine for the device is called that will start processing
packets queued on the device queue for fi nal transmission.

 Figure 6.2 shows link between the sock, sk_buff , dst_entry , net_device , neigh-
bour, Qdisc and queue once it is ready for transmission.

 6.2 ROUTED PACKET READY FOR TRANSMISSION

 Figure 6.2 illustrates linking of kernel data - structures that links sk_buff, with route,
outgoing device, CPU queue, arp table, queuing descipline queue etc.

 6.3 KERNEL FLOW FOR A PACKET MOVING DOWN THE STACK

 Figures 6.3(a) through 6.3(c) show fl ow of control to send TCP data down the stack.
It shows major routines called to process data - through different layers unless trans-
mitted. It also shows locations of queue moving down the stack where packets can
be queued before transmission this queue is discussed in section 6.1.2 .

 6.4 PACKET TRAVERSING UP THE TCP / IP STACK
(see Figs. 6.4a – 6.4b)

 We start with the explanation of the reception process fi rst. We have a fl ow diagram
that indicates queuing of sk_buff at various stages when it is traversing up the stack
from reception to the fi nal socket ’ s receive buffer. We divide the entire discussion
into various stages explaining each step such as packet reception, soft IRQ process-
ing, IP reception, fi rewall check, routing entry initialization, forwarding processing,
local delivery, TCP entry point, backlog queue, prequeue, out - of - order - queue,
socket receive queue, and so on. Data fl ow for the packet traversing up the stack
is shown in Fig. 6.4(a) through 6.4(b) .

 Packet Reception and DMA . When a packet is completely DMAed in the ring
buffer, receive interrupt is generated to remove the packet from the DMA ring
buffer. The interrupt handler removes the packet from the DMA ring buffer and,
after doing some sanity checks on the packet, queues it on per CPU receive queue .
Once the packet is queued, it raises the Rx soft IRQ.

 R x SOFT IRQ . On return from the interrupt, we check if there is any soft IRQ
to be processed. Since we just raised the Rx soft IRQ, it will be processed now. In
Soft IRQ, Packet is completely processed through L3, L4 layer and packet is deliv-
ered to the Socket layer. The action is to remove the packet from CPU ’ s input queue
and fi nd the next protocol layer (from the link layer header) to which the packet
should be given for processing. Here the protocol switcher does the job of fi nding

the correct protocol layer. We will narrow down the discussion to TCP - IP protocols.
The IP receive routine is called to process the packet.

 Prerouting Netfi lter Hook. Just at the entry, the IP enforces the netfi lter hook
before the route is fi nalized for the packet. The prerouting hook takes care of NAT/
IP Masquerading issues, Ipsec, and so on. Netfi lter framework provides extended
functionality to the TCP/IP stack. Once we pass through the fi lter, we need to fi nd
the route for the packet.

 IP Layer. We try to determine the route for the packet. The packet may be
destined for some other host in which it needs to be forwarded. In the case where
the packet needs to be delivered, we need to fi nd the next protocol layer to
which the packet needs to be delivered. In the case of forwarding, we need to decre-
ment the hop count for the packet; and if the hop count becomes zero, the packet

 Figure 6.2. Linking of route - specifi c data structures when the packet is fi nally routed and ready

for transmission.

PACKET TRAVERSING UP THE TCP/IP STACK 215

216 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

needs to be dropped. In the case the link that the forwarded packet needs to take
is the Ethernet and the destination is not directly connected to the link, the link
layer address needs to be changed to that of the next hop.

 Local Input Netfi lter Hook. In the case where the packet needs to be delivered
locally, we fi rst need to pass the packet through the netfi lter hook for the incoming
packet. We need to check if the packet is acceptable or any fi rewall policy would
reject the packet.

 Figure 6.3a. Flow of packet down a TCP/IP stack in kernel 2.4.20.

 Figure 6.3b. Flow of packet down a TCP/IP stack in kernel 2.4.20 (continued).

PACKET TRAVERSING UP THE TCP/IP STACK 217

218 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

 TCP Layer. Once the packet is accepted, we need to check which protocol layer
the packet belongs to. Protocol switcher once again does the job for us and fi nds
out appropriate protocol specifi c handler. We call the protocol handler routine to
process the packet. For the TCP, we check if this is a new connection request for
any of the listening sockets or packet for already established connections. We have
different hash tables for listening sockets and established connections. Once we
have found the socket for the packet, we need to take appropriate action. In case
this is a new connection request, we need to create a new request and send out
SYN - ACK and wait for the fi nal ACK. In the case of an established connection,

 Figure 6.3c. Flow of packet down a TCP/IP stack in kernel 2.4.20 (continued).

we can either queue the packet on the backlog queue or just process it depending
on whether the socket is being used by somebody or not. If we are queuing the
packet in the backlog queue, the packets will be processed once the socket is
released by the user.

 In TCP processing, if we have TCP data in the new packet, either (a) we can
directly copy it to the user buffer or (b) the data segment is queued in the socket ’ s
receive queue. TCP options are processed, and fi nally any pending outstanding data
are sent along with the ACK for the new data or ACK may be delayed depending
on conditions. If we receive out - of sequence data, ACK with SACK is sent out
immediately.

 Data that are queued in the receive buffer is eaten up by the application when
it issues recv over the connected socket. Once the application has read data, it sends
ACK in the case where ACK is pending or when the window is opened because
space is generated in the receive buffer. Urgent byte is an exception and can be
received as out - of - band data or can be read inline.

 6.4.1 Path of Packet Traversal from Device (Reception) to
Socket Layer

 Figure 6.4(a) & 6.4(b) describes data fl ow diagram for processing data up the stack.
It shows the processing of packet right from data reception stage at device layer
through different protocol layers until it reaches the socket layer.

 6.4.2 Kernel Path for TCP Packet Traversing Up the Stack

 In this section we will see how the packet is handled inside the kernel while travers-
ing up the stack. We will see entry points into a different kernel framework that
implements the stack. Then we will have entry points into different protocol layers
using a protocol switcher. There will be a short description for each entry point
regarding its functionality. Flow of packet up the stack in kernel 2.4.20 is shown in
Figs. 6.5(a – d) .

 Packet Reception. Receive interrupt for the NIC is generated once the packet
is completely received through the DMA channel into the memory. Interrupt han-
dling is a controller - specifi c process, but the common part in the reception of the
packet is to pull out the packet from the DMA ring buffer. After doing some sanity
check on the hardware header, place the packet on CPU ’ s input queue, softnet_
data[this_cpu] → input_pkt_ queue. This is per CPU queue designed to achieve better
scalability on SMP architectures. We don ’ t process the packet in the interrupt
routine; otherwise the interrupt will be blocked for a long time. Instead we raise
net Rx softIRQ, which will process the packet later. This is done by calling
 netif_rx() .

 S oft IRQ . SoftIRQ is processed in various places:

 1. Just after we returned from the interrupt in interrupt context.
 2. SoftIRQ daemon running per CPU.
 3. Whenever softIRQ on the CPU is enabled.

PACKET TRAVERSING UP THE TCP/IP STACK 219

220 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

 Figure 6.4a. Traversal of a packet up the TCP/IP stack.

 Figure 6.4b. Traversal of a packet up the TCP/IP stack (continued).

 In the case where net Rx softIRQ is enabled, net_rx_action() is called just after we
return from the interrupt. This will start processing the packet received in the CPU ’ s
input queue. The packet is processed completely in softIRQ. Even though we are
in interrupt context, the interrupt for the controller is enabled so that NIC can
continue to receive packets and queue them on CPU ’ s input queue. Processing of

PACKET TRAVERSING UP THE TCP/IP STACK 221

222 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

the packet starts with the protocol switching section where we fi nd out which pro-
tocol will handle the packet.

 Packet Switcher. netif_receive_skb() is called to process the packet, which
fi nds out the next protocol layer to which the packet would be delivered. The pro-
tocol family of the packet is extracted from the link layer header. In our case, this
will be IP. All the protocols supported by Ethernet technology are registered with
the Ethernet framework by calling dev_add_pack (). Object of type packet_type is
linked with the following:

 1. The list ptype_all in case the handler supports all protocol families.
 2. The hash table ptype_base [] for every other protocol family supported by the

Ethernet framework.

 In the case of IP, ip_packet_type is registered with the Ethernet framework
(cs 6.1). Its corresponding receive routine is ip_rcv() . For IP, the receive handler is
registered when we initialize the protocol in ip_init() (cs 6.2). I hope we register
ourselves with ptype_all , while snooping the interface to receive all the packets
received over the interface. Packets of all types are handled by those handlers listed
in the list ptype_all fi ltered on the basis of the network interface from where packets
are received.

 Once we have sent the packet to the handlers listed in ptype_all in netif_receive_
skb() , we check the actual protocol that needs to be delivered to the packet by tra-
versing through the hash table ptype_base . This is a table of length 15. The key to
match the entry is the packet protocol as mentioned in the Ethernet header. The
packet is fed to the IP handler callback routine ip_rcv() for further processing.

 IP Layer. ip_rcv() is an entry point for IP packets processing. It fi rst checks if
the packet we have is destined for some other host (PACKET_OTHERHOST).

 cs 6.1. ip_packet_type object to register an IP packet handler.

 cs 6.2. ip_init() .

This may happen in the case where the interface is in the promisc mode. In such
cases we just drop the packet.

 We check the sanity of the IP header and checksum the packet by calling ip_
fast_csum() . Before even fi nding the route for the packet, we pass it through netfi lter
hook NF_IP_PRE_ROUTING . Here the packet may be de - masqueraded or
decrypted(IPSec) or NAT may be applied to the packet. The next step is to fi nd
the route for the packet. We call ip_route_input(), where kb → dst is initialized. This
routine checks kernel routing table rt_hash_table . If there is no entry for the packet,
FIB is consulted and the route is built. If the packet needs to be forwarded, the
input routine is ip_forward() ; otherwise it will be ip_local_deliver() .

 ip_forward() decrements ttl in the IP header by 1 and checks if the packet needs
to be discarded (in case ttl becomes zero). If the next hop is the gateway that is
connected through the Ethernet link, the destination hardware address is changed.
The packet is then scanned through the netfi lter hook NF_IP_FORWARD . ip_
send() is called to check if the packet needs to be fragmented. If so, it fragments
the packet by calling ip_fragment() , which sends out each fragment through the
packet output path ip_fi nish_output() . If no fragmentation is required, ip_send()
sends the packet through the output path ip_fi nish_output() .

 In the case where the packet needs to be delivered locally, ip_local_deliver() is
called for further processing. This routine fi rst checks if this is a fragment of IP
datagram from the IP header. If so, it calls ip_defrag() to process the fragment.

 IP Fragment Handling. This routine calls ip_fi nd() to check if we have already
received other fragments for the packet. The kernel maintains the hash table to
manage fragmented IP datagrams ipq_hash . Fragments are hashed in the table
based on destination, source IP address, packet ID, and protocol. struct ipq manages
fragmented IP datagrams. All the received fragments of IP datagram are linked in
the fragments fi eld of this object. If we fi nd an entry for the received fragment in
the ipq_hash table and this is the last fragment for the IP datagram, ip_frag_reasm()
is called to reassemble all the received fragments. Otherwise just queue the new
fragment by calling ip_frag_queue() . The fragmentation handling unit installs a
timer for each IP fragment that will expire after a certain time, if the complete
packet is not assembled. ip_expire() is the timer callback routine initialized when
the fi rst fragment of the IP datagram is received and the new ipq object is created
in ip_frag_create() . This routine sends out an ICMP message to the originator of
the message that fragmentation – reassembly has timed out.

 Coming back to ip_local_deliver() , if we obtained a full datagram or the frag-
ment receive completed the IP datagram, we need to screen the packet through the
netfi lter hook NF_IP_LOCAL_IN. Here we check if there is any fi rewall rule to
reject the received datagram. If the policy accepts the datagram, ip_local_deliver_
fi nish() is called to fi nd the next protocol to which the packet should be
delivered.

 INET Protocol Packet Switcher. We have come here from the IP layer. So,
the next protocol switcher scans the datagram ’ s protocol identifi er through all L4
layer protocols that are supported by IP. The IP header for the received packet
contains a protocol identifi er fi eld that corresponds to the next protocol layer to
which the packet belongs (skb → nh.iph → protocol). There is a list of protocols that
are supported by the IP and that are registered with the system. inet_add_protocol()

PACKET TRAVERSING UP THE TCP/IP STACK 223

224 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

is called to register INET protocol handlers with the IP. This routine adds the object
of type inet_protocol to the global protocol table inet_protos . Protocol fi eld in the
 inet_protocol fi eld is matched against the protocol fi eld in the IP header to fi nd
protocol handler for INET protocols.

 For INET - TCP, UDP, and ICMP, protocol handlers are registered in inet_
init() (cs 6.3). There are other INET protocols registered which we won ’ t discuss
here. For TCP, the protocol handler is tcp_protocol , which has a pointer to receive
handler, tcp_v4_rcv() (see cs 6.4).

 For TCP we fi nd the receive handler routine as tcp_v4_rcv(), which is called
from ip_local_deliver_fi nish() . Raw sockets are registered with the raw_v4_htable
table. If we fi nd any raw socket registered for the INET protocol to which the packet
belongs, we pass a copy of the packet to raw socket by calling raw_v4_input() .
Libpcap opens a raw socket to capture IP packets.

 TCP Layer. tcp_v4_rcv() is the entry point for the TCP layer. First some of the
fi elds from the TCP header are copied to the socket buffer (sk_buff), and the TCP
checksum is done on the TCP header. We try to fi nd out the socket to which the
packet belongs by calling __tcp_v4_lookup() . This routine tries to fi nd out if the
packet belongs to an established connection where we try to match the source/
destination IP and the source/destination port of the packet with the sockets in the
established state. Established state sockets are maintained in the hash table tcp_
ehash . __tcp_v4_lookup_established() searches for sockets in the established and
time - wait state. If we don ’ t fi nd any socket in the established state here, we might
have gotten a new connection request for any listening socket. For this we search
for a listening socket with port numbers the same as the destination port in the lis-

 cs 6.3. inet_init().

 cs 6.4. Object inet_protocol to register the TCP packet handler.

tening socket ’ s hash table tcp_listening_hash . The search for listening socket ’ s is
carried out in tcp_v4_lookup_listener() .

 If we fi nd the listening socket for the new request, we create a new open request,
send SYN - ACK, and wait for fi nal ACK by calling tcp_v4_hnd_req() from tcp_v4_
do_rcv() . If the socket for the packet is in an established state, we either queue the
packet in a backlog queue by calling sk_add_backlog() (if the socket is already in
use by someone) or process the packet by calling tcp_rcv_established() from
 tcp_v4_do_rcv().

 tcp_rcv_established() processes the TCP segment. If we received in - sequence
data in the packet, it is queued in the socket ’ s receive buffer (sk → receive_queue);
or if the application is waiting for data, it is directly copied to user buffer. If we
receive out - of - order data, it is queued in tp → out_of_order_queue . If there are any
data pending to be transmitted, we send them here along with the ACK for the new
data.

 Socket Layer. If we queued data in the receive queue, it is read by application
when it issues recv() . Kernel routine to read data from TCP socket is tcp_recvmsg() .
Data are read from the receive queue, and prequeue and socket buffers are freed.
If we have an opened window, we send out an ACK immediately in this routine.

 6.5 KERNEL FLOW FOR PACKET MOVING UP THE STACK

 Figures 6.5(a) through 6.5(d) show fl ow control that implements packet processing
while traversal up the stack from device layer to the socket layer. It shows major
routines that are queues, called to process packets up the stack. It also shows imple-
mented at various points while traversing up the stack where packets can be queued
before reaching socket layer or before being forwarded. This is discussed in Section
 6.4.2 .

 6.6 SUMMARY

 The packet fl ows up the stack in three stages to reach from device to socket
queue:

 1. Network controller Rx DMA ring
 2. CPU input queue, softnet_data[cpu_id] → input_pkt_queue
 3. Socket queue, sk → rcv_queue

 Packet fl ows down the stack in three stages to reach from socket layer to
device:

 1. Socket send queue, sk → write_queue
 2. Device queue, dev → q
 3. Network controller DMA Tx ring buffer.

 Linux implements per CPU softIRQ for transmission and reception of packets.
Packets are received and queued on the CPU ’ s input queue. Rx softIRQ, NET_RX_

SUMMARY 225

226 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

 Figure 6.5a. Flow of a packet up a TCP/IP stack in kernel 2.4.20.

 Figure 6.5b. Flow of a packet up a TCP/IP stack in kernel 2.4.20 (continued).

SUMMARY 227

228 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

 Figure 6.5c. Flow of a packet up a TCP/IP stack in kernel 2.4.20 (continued).

SOFTIRQ is raised on the CPU for further processing of the packet by a call to
 netif_rx() . On the SMP architecture, Rx softIRQs can be run parallelly on each CPU,
thereby providing better scalability. On the transmission side, Tx soft IRQ, NET_
TX_SOFTIRQ, is raised if we are not able to transmit the packet. Tx soft IRQ will
be executed in the future and will start transmission of the packet queued on the
device.

 Received packets are processed completely in Rx softIRQ until it reaches the
socket layer.

 Figure 6.5d. Flow of a packet up a TCP/IP stack in kernel 2.4.20 (continued).

 Callback routine to Rx softIRQ is net_rx_action() , whereas for Tx softIRQ it
is net_tx_action() .

 When the packet is going down the stack, it is the job of the routing engine to
associate the outgoing device with the packet, which is done by calling ip_route_
output() . Similarly, when the packet is received, routing is taken by calling
 ip_route_input() .

 Ethernet protocol switching is done in netif_receive_skb() , where we get the
handler for next protocol layer. INET protocol layer switching is done in
 ip_local_deliver_fi nish() .

 The entry point for the TCP protocol is tcp_v4_rcv() . The socket for the TCP
packet is identifi ed in __tcp_v4_lookup() . tcp_rcv_established() is the entry point
for established sockets.

 TCP packets are processed with the socket lock (sk → lock.slock) held.
 Extension to the IP stack is provided with the help of netfi lter hooks. NF_IP_

PRE_ROUTING and NF_IP_POST_ROUTING are two hooks that can be used
by Ipsec, IP masquerading, and NAT modules.

 neighbour framework implements ARP. The object of type neighbour is associ-
ated with the route and the net_device object. There is one net_device object per
physical network interface.

 dev_queue_xmit() routine is called to queue the packet on the device queue
when the packet leaves the IP layer.

SUMMARY 229

231

7

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 TCP SEND

 TCP is a reliable protocol and applies fl ow control on the data being transmitted.
It treats data as a stream of bytes and associates each byte with a sequence number.
It requires each byte to be acknowledged. For fl ow control, TCP applies a sliding
window protocol and congestion control algorithms. TCP has to consult the link
layer and restricts the maximum size of the frame it can transmit from the interface.
This restricts the maximum size of the segment that TCP can produce. TCP needs
to discover the minimum transmission unit across the path that the packet takes to
reach the destination. This is because If some link at an intermediate router offers
a lower MTU than our interface MTU, the packet will be fragmented at the router,
thereby hindering TCP and network performance.

 Application needs not know anything about how data are sent to the peer. It
just writes data in chunks over the TCP socket, and the rest is taken care of by the
TCP segmentation unit. When data reach the TCP layer, they then break a big
chunk into small units each of 1 mss size and queue them on the socket ’ s send queue.
Then we apply certain algorithms like Nagle ’ s algorithm, sliding window protocol,
and congestion window to check if the new segment can be transmitted.

 We will fi rst explain how TCP segmentation unit with and without scatter –
 gather DMA support. Then we learn about the policies to trigger transmission of
segments. We will see how Nagle ’ s algorithm is implemented to avoid transmission
of small segments. There are different congestion control algorithms implemented
in the core of TCP state machine that need to be taken into consideration here
before we can transmit new buffer. Also, we will learn how a sliding window protocol
is implemented. The process involved is explained in Figs. 7.5 (a) and 7.5 (b) .

232 TCP SEND

 7.1 TCP SEGMENTATION UNIT FOR SENDING DATA

 In this section we will see how the big chunk of data to be sent over the socket
requested by the user is broken into small segments by the segmentation unit. We
will also see how the segmentation unit works when DMA supports the scatter –
 gather technique. See Figs. 7.6 (a) and 7.6 (b) for the fl ow control diagram.

 7.1.1 Functioning of Segmentation Unit without Scatter – Gather
Support (see cs - 7.1 and cs - 7.4)

 When an application wants to write data over a TCP socket, fi nally tcp_sendmsg()
is called inside the kernel. The segmentation unit works on the basic principle of
breaking a big chunk of data into small chunks of 1 mss each. So, the fi rst thing we
do is get the cached in mss by calling tcp_current_mss() at line 1035. Next we get
the number of the user buffers and the pointer to the user buffer at line 1038 and
1039, respectively. There are essentially two loops used to implement segmentation.
The outer loop accesses the next user buffer in each iteration, and the inner loop
generates segments from each user buffer. In the outer loop we access a pointer to
the user buffer to be segmented and the length of the buffer at lines 1047 and 1048,
respectively. We iterate in the inner loop until the entire buffer is used by the seg-
mentation unit to generate segments.

 Let ’ s look at the implementation of the segmentation unit — that is, inner loop
1052 – 1184. Since we want to generate segments of 1 mss size, we fi rst check if there
is any partial segment in the transmit queue (sk → write_queue). By partial segment,
I mean that the size of the segment is less than 1 mss. With this logic, a new segment
is generated only after the existing segment is fully loaded. So, we always check the
last segment in the queue to be partial at any point of time. The last segment for
the socket can be accessed from the prev fi eld of the queue head since it is a doubly
linked link list, line 1055. We fi rst check if there is any segment at the head of the
transmit queue pointed to by tp → send_head . If this value is NULL, there is no point
checking for partial segment because we know that the prev accessed at line 1055
is a back pointer to the transmit queue itself.

 If the transmit queue is not empty, we check if the last segment in the queue is
partial (length of the segment is less than the current mss) at line 1058. If we don ’ t
fi nd a partial segment in the transmit queue, we need to create a new segment for
the user data.

 Before allocating memory for a new segment, we fi rst check if the socket ’ s
quota for the send buffer has exceeded its limit by calling tcp_memory_free() . If
we have enough memory, tcp_alloc_pskb() is called to allocate a new buffer for
the TCP segment. If our hardware is aware of the scatter – gather technique, we
allocate a buffer that fi ts into a single page. Otherwise, we get a buffer of length
1 mss (buffer that can hold 1 mss of TCP payload). In the case of a memory short-
age, we need to wait for memory to be available, line 1069. Otherwise we queue
the new segment at the tail of the transmit queue by calling skb_entail() (see Section
 7.2.15 for more detail). Actually, Linux implements a transmit and retransmit queue
as a single queue (tp → write_queue). tp → send_head marks the start of the transmit
queue.

 From line 1076, the code is common for both cases:

 cs 7.1. tcp_sendmsg() .

TCP SEGMENTATION UNIT FOR SENDING DATA 233

234 TCP SEND

 • We created a new segment.
 • We found partial segment in the transmit queue.

 If the space found to exist in the selected segment is smaller than the data to be
copied, we make an adjustment at line 1077. Next we check if any is space available
in the linear area of the selected buffer. Now why do we make this additional check
here when we know that for a new segment will have tail room? We do this test
only for the case where we have identifi ed a partial segment in the transmit queue.
Even if it is a partial segment, we need this check because we might have paged
data area for the partial segment. If our interface implements the scatter – gather
technique, the segment extends to the paged data area when the linear data area is
full (linear data area is limited to a single page for such cases). If there is room in
the linear data area and the data to be copied are more than the space available,
we make an adjustment at line 1083. Now we are ready to copy data to the identi-
fi ed segment by calling skb_add_data() at line 1084. We need to update TCP with
the new data added to the send queue. We update write sequence (tp → write_seq)
with the amount of data added to the write queue at line 1156. We also need to
update the end sequence number of the segment to complete the sequence space
covered by the segment at line 1157. Shift the user buffer pointer to point to the
location where we need to start copying next at line 1159 and also update number
of bytes copied at line 1160. If we have copied the entire data from the user buffer
at line 1161, we try to send out the segment queued in the transmit queue by calling
 tcp_push() at line 1189. We release the socket user status and return the number of
bytes.

 In case we have not copied the entire user buffer to the socket buffer, we check
if the segment we are working on is still partial or we are sending an OOB message
at line 1164. If any one of the cases is TRUE, we would like to continue to iterate
once again. In case the segment is still partial, we need to make it full. This will be
the situation when we are fi lling paged data area because we are allocating 1 page
per iteration. In the case of the OOB fl ag set, we will get out of the loop in the next
iteration and get into tcp_push() where urgent data will be processed.

 In case we have a full - sized segment at line 1164, we check if we need to force
a push fl ag on the last segment in the transmit queue by calling forced_push() at
line 1167. In case we need to tell the receiver to push data to the application at the
earliest, mark the push sequence number as a write sequence number by calling
 tcp_mark_push() and call __tcp_push_pending_frames() at line 1169 to start trans-
mitting pending segments in case we satisfy Nagle ’ s algorithm, congestion window
and send window. If we can ’ t force the data to be pushed and there is only one
segment in the transmit queue (line 1170), tcp_push_one() is called to push the
segment from the transmit queue. We continue with segmentation for the rest of
the user data by iterating in the inner loop.

 7.1.2 Segmentation without Scatter – Gather Support

 The application has written X bytes of data: 1 mss = X + Y bytes. These segments
are not yet transmitted because of any of the reasons which failed the send test. We
generate two sk - buff ’ s, one buffer is full and the other one is partially fi lled (see Fig.
 7.1).

SEGMENTATION WITH SCATTER–GATHER TECHNIQUE 235

 7.1.3 1 mss of Data Written over the Socket

 The application has written 1 mss of data. First the partial segment is fi lled to make
it full - sized. Next we allocate one more segment to copy the rest of the X bytes.
The send head is still pointing at segment 2, which is yet to be transmitted. (See Fig.
 7.2 .)

 7.2 SEGMENTATION WITH SCATTER – GATHER TECHNIQUE
(E.g., Fig. 7.4 , see cs 7.1 and cs 7.4 unless mentioned)

 Until now we have seen how segmentation works for buffers with linear data area
only where the interface is not scatter – gather capable. Now we extend our discus-
sion to paged data area in segmentation. Our discussion starts from line 1086, where
we come because there is no space left in the linear data area of the buffer and still
the segment is seen as partial. This may happen because of two reasons:

 • Our hardware is scatter – gather capable.
 • Hardware doesn ’ t implement the scatter – gather technique, which means that

we can have data only in a linear - data area. In such cases, we allocate a big
chunk of linear - data area of 1 mss. The only possibility to reach here is change
of mss. Mss for the segment has gone up since a partial segment was created.
Only in this case would we have allocated 1 mss of memory for a linear - data
area where mss has now increased and the segmentation unit does not real-
locate linear data area.

 Figure 7.1. X bytes of data copied to socket buffer linear area.

236 TCP SEND

 So, we get ready for processing page data area. We get number of fragments already
allocated for the buffer from skb_shinfo(skb) → nr_frags at line 1088. Current page
that is partially fi lled can be accessed macro TCP_PAGE at line 1089 and offset
within the page can be accessed from macro TCP_OFF at line 1090.

 TCP_PAGE and TCP_OFF accesses sndmsg_page and sndmsg_off fi eld of
object tcp_opt for the connection (cs 7.2). Later in the discussion we will see when
are these fi elds are initialized. Next, we check if data can be added to the existing
partially fi lled page for the paged data area by calling can_coalesce() . If we can
coalesce and we still have space left in the last modifi ed page, we set a mark that
new data should be merged to the last modifi ed page. If we can ’ t merge data with
the existing page, we check if we can allocate another page. If the number of pages
allocated has exceeded the limit for the buffer (= MAX_SKB_FRAGS) or we are
allocating the fi rst page and our hardware is not capable of scatter – gather, we need
to allocate a new TCP segment CSK-buff. When our hardware is scatter – gather
capable but current mss is so large that it can ’ t be accommodated in a single
segment, this is a cause for a network performance issue because we are not able
to send full - sized segment because of buffer design limitation. This probably happens
because mss has increased since the buffer was allocated. During buffer allocation,

 Figure 7.2. 1 mss of data copied to socket buffer linear area.

 cs 7.2. Macros used for paged data area management.

SEGMENTATION WITH SCATTER–GATHER TECHNIQUE 237

we check if our hardware is scatter – gather capable; if it is capable, we also check if
a full - sized segment can be accommodated in a single buffer (check select_size(),
Section 9.1.1 .). If so, we go for paged data area. Otherwise, we allocate a big chunk
of memory that can accommodate full - sized segment. The other condition at line
1096 checks if we are allocating a page for the fi rst fragment of the paged data area;
if our interface is non scatter – gather, we need to allocate a new segment. This condi-
tion also arises from the fact that mss has changed since the buffer was allocated.

 If we are not allowed to merge or we do not need to create a new segment, we
check if the page TCP_PAGE() points to a valid page at line 1103. We may have
a valid page that is FULL, because of which we are here. So, we check if the page
is FULL at line 1108. If so, we release the page and initialize TCP_PAGE to NULL
at line 1110 because the page is already full and we can ’ t modify it anymore. If we
didn ’ t fi nd the page that can be modifi ed, try to allocate a page by calling tcp_alloc_
page() at line 1116. This looks like another performance hit where we need to allo-
cate 1 page of memory for each PAGE_SIZE of user data, which is an expensive
operation. If we fail to allocate a page, we wait for memory to be available. Other-
wise, we are ready to copy data to the newly allocated page.

 We are here either because we found a partial page in which case we merge
data to the existing page or we have allocated a new page. We adjust the bytes to
be copied to the space available in the page at line 1122. We copy data to the page
by calling tcp_copy_to_page() . We also update buffer fi elds specifi c to length and
account for memory used to copy user buffer to the segment.

 After copying data to the page, we need to update fragment information. In
the case where we have merged data to the existing page, the last fragment ’ s size
needs to be updated at line 1139. In the case where we have allocated a new page
to copy data, a new descriptor needs to be initialized. fi ll_page_desc() is called to
initialize the descriptor at line 1141. We access a fragment from the index passed to
the routine at line 764 (cs 7.3). page, page_offset , and size fi elds are initialized.
 page_offset is set to 0 here as an offset for partial page is maintained by TCP_OFF
macro. size is the number of bytes copied to the page. Finally, nr_frags is incremented
by 1 at line 768 (cs 7.3) because a new fragment is active now.

 We need to hold an additional reference on the page by calling tcp_get() at line
1143 as it is being referred by TCP_PAGE macro. In the case where TCP_PAGE
is not yet initialized and we have not fi lled the entire page, TCP_PAGE is initialized
to point to the partial page at line 1146. Finally, TCP_OFF is initialized to point to
a location where we need to copy the next byte in the page at line 1150.

 cs 7.3. fi ll_page_desc().

238 TCP SEND

 cs 7.4. tcp_sendmsg().

SEGMENTATION WITH SCATTER–GATHER TECHNIQUE 239

 7.2.1 Segmentation with Scatter – Gather Support

 Application has written X + 1 page bytes of data over the socket where mss = X +
 Y + (1 page) bytes (Fig. 7.3). Assume that the segment has not transmitted for some
reason.

 7.2.2 Application Writes Y Bytes over the Socket

 Application has written Y bytes of data over the socket. Since the existing segment
is partial, we allocate a new page for the next fragment in the paged data area to
copy Y bytes (Fig. 7.4). Now we have a full - sized segment that is ready to be
transmitted.

 7.2.3 can _ coalesce ()

 We have exceeded the number of fragments total allocated for a buffers ’ paged data
area. We have a pointer to the buffer, a pointer to the page, and an offset passed
as an argument to the routine. The caller wants to check if the page and offset as
accessed from TCP_PAGE and TCP_OFF, respectively, are from the fragment last
modifi ed. We check the availability of space in the last modifi ed fragment because
we don ’ t move to the next fragment until the current fragment is partially fi lled.
The last modifi ed fragment can be accessed from total the number of fragments
allocated. At line 754 (cs 7.5), we access the last modifi ed fragment. Next we compare
the fragment page and offset with the page and offset passed as an argument.

 Figure 7.3. X bytes + (1 page) of data copied to a paged data area.

240 TCP SEND

 7.2.4 tcp _ copy _ to _ page ()

 The routine is called to copy data from a user buffer from a specifi ed offset within
the page and account for the memory usage by the socket buffer. We add the amount
of coped bytes to total and paged area length of the buffer at line
969 – 970 (cs 7.6). So also we account for the overall memory usage by the buffer

 Figure 7.4. Data copied to a paged data area.

 cs 7.5. can_coalesce().

SEGMENTATION WITH SCATTER–GATHER TECHNIQUE 241

(skb → truesize). Account for the overall memory allocated for the socket ’ s send
buffer and account for the memory taken from the socket ’ s memory pool at line
973.

 7.2.5 tcp _ mark _ push ()

 This sets a PSH fl ag for the sk_buff and at the same time updates the push sequence
with the latest write sequence (cs 7.7). We mark byte as PUSHED in the case where
we have written more than half of the so far maximum window size from the last
byte marked as pushed, or in the case where we have one full - sized TCP segment
ready for transmission.

 7.2.6 forced _ push ()

 This checks if we have written out more than half of the maximum window size ever
advertised by the peer. tp → write_seq indicates the sequence number of the unsent
byte on the TCP stream. tp → pushed_seq is the sequence number associated with
the byte in the TCP stream that was last marked pushed (cs 7.8). This forces the last
segment to be sent out in the window to have a PSH fl ag set indicating the receiver
to read all the data it has received so far if it has not yet done that.

 cs 7.6. tcp_copy_to_page().

 cs 7.7. tcp_mark_push().

242 TCP SEND

 7.2.7 tcp _ push ()

 The routine is called when we are either writing OOB data or we have consumed
user buffer completely. We fi rst check if there is anything to transmit (line 809). The
fi rst buffer of the send queue (sk → write_queue) is made to point tp → send_head ,
which means that the next TCP segment that is not yet transmitted is pointed to by
 tp → send_head . Now we check if we need to mark the PUSH fl ag for the TCP buffer.
We mark the buffer as PUSH if the application has no more data to send or if we
have written more than half the maximum receive window size observed so far since
the last PUSHed byte (line 811, cs 7.9). Call forced-PUSHed to check this. The
receive - window is advertised by the receiver of the TCP data; the sender TCP keeps
track of this window. If so, we mark the last byte as PUSHed and also set the PUSH
fl ag for the TCP segment (line 812). Now we call tcp_mark_urg() . This routine just
checks if we are writing an OOB data. If so, we set the TCP in urgent mode (tp →
 urg_mode indicates that TCP connection is in urgent mode and it gets reset when
we get ACK for the urgent byte). Now we initialize the urgent pointer for the urgent
byte to tp → write_seq (tp → snd_up contains the sequence number of the send urgent
pointer byte in the stream of TCP data). We initialize the send urgent pointer to the
sequence number of the last byte written because we write only 1 byte as OOB data
and we don ’ t wait for any more data when we need to send urgent data. So, the
urgent sequence number will be same as the sequence number of the last written
byte. We fi nally set a URG fl ag for the TCP buffer (line 813). We are not discussing
any urgent mode here, so we won ’ t discuss more about it here. Now we call __tcp_
push_pending_frames() at line 814 to try to send segments pending to be transmitted
in the socket ’ s write queue.

 cs 7.8. forced_push().

 cs 7.9. tcp_push().

SEGMENTATION WITH SCATTER–GATHER TECHNIQUE 243

 7.2.8 __ tcp _ push _ pending _ frames ()

 This routine does all the work required to transmit TCP buffers queued up in the
send queue so far. So, the fi rst thing we check here is whether we have anything to
transmit in the write queue (line 1247, cs 7.10). If the send queue is not empty, we
call tcp_skb_is_last() (line 1248). This routine checks if we are the last and only
buffer in the write queue. If this is not the last buffer in the write queue, we force
Nagle ’ s algorithm to be disabled (line 1249). This is because nothing can be added
to the packet that needs to be transmitted fi rst so we make sure that we can transmit
the segment. In the case where there is only one segment, let Nagle ’ s algorithm
decide whether to transmit the packet now. Now we call tcp_snd_test() to make all
the possible tests to check if we can transmit any unsent segment. If the test fails,
we can ’ t transmit any more data currently. In the case where the test passes, we call
 tcp_write_xmit() to try to send out segments to the allowable limits. In the case
where both routines fail, we are not able to send out any new data. We check if the
receiver has advertised zero - window and we need to reset the window probe timer
by calling tcp_check_probe_timer() at line 1252.

 7.2.9 tcp _ snd _ test ()

 This make all the possible tests to checks whether we can transmit segments in the
transmit queue now. We make the following checks:

 • Are we sending a segment without violating Nagle ’ s algorithm?
 • Do we need to send out an urgent byte?
 • Are packets in fl ight greater than the current congestion window?
 • Are we sending a FIN segment?
 • Are we sending an out - of - window data?

 If Nagle is enabled, we don ’ t have to send out an urgent byte and Nagle ’ s algo-
rithm doesn ’ t allow us to send out new data, and we defer transmission of segments.
If we are not violating Nagle ’ s rule or we are in an urgent mode, continue with other

 cs 7.10. __ tcp_push_peding_frames().

244 TCP SEND

checks to transmit a new segment. tcp_nagle_check() is called to check if Nagle is
not violated. If any of the above - mentioned conditions is TRUE, we next check if
the congestion window allows us to send out more segments. packets_in_fl ight()
counts those segments that are transmitted but not yet ACKed and are neither
SACKed nor considered lost. These segments are considered to be consuming the
network resources. If the count exceeds the congestion window (line 1220, cs 7.11),
we are fully utilizing the network resources for the connection. So, we can ’ t send
more, otherwise, we may end up congesting the network. FIN segment is an excep-
tion. Even if the connection is fully utilizing network resources, we can send out a
FIN segment. The last check is to fi nd out if we are not sending data out of the
receivers window at line 1222. When we receive ACK for the new in - sequence data,
window shifts toward right. tp → snd_una is updated to the acknowledged sequence
number when we get ACK for new data and tp → snd_wnd is updated to window
advertised by the receiver. So, the check reduces to the end sequence number of
the segment being transmitted should not exceed end sequence number of the right
edge of the send window.

 7.2.10 tcp _ nagle _ check ()

 The very fi rst check we make here is whether TCP segment is partial, skb → len <
mss (line 1180, cs 7.12). If this condition fails it means that we have complete
segment ready to be transmitted so we don ’ t make more checks are return FALSE
to tcp_snd_test() . Else we check if this is a FIN segment (line 1181). If it is a fi n
segment, we return FALSE to tcp_send_test() . Else we move on to the next check
for TCP cork (line 1182). If we have set cork on the socket we return TRUE (When

 cs 7.11. tcp_snd_test().

 cs 7.12. tcp_nagle_check().

SEGMENTATION WITH SCATTER–GATHER TECHNIQUE 245

we set cork on the socket stream, we can ’ t send any TCP data until we release the
cork). Otherwise we move on to the next check for Nagle ’ s. If Nagle is not enabled,
we return FALSE to tcp_send_test() (line 1183). Otherwise we move on to the next
check to see if there are any packets which are sent out but not yet acknowledged
(line 1184). If we have nothing unacknowledged, we just return FALSE. Otherwise
we move on to the next check, which is to check if we have unacked small segments.
For this we call tcp_minshall_check() (line 1185).

 7.2.11 tcp _ minshall _ check ()

 This checks if tp → snd_sml (end sequence number of the last partial TCP segment,
 skb → len < mss) is less than or equal to the last unacknowledged byte (tp → snd_una).
If not, we return FALSE (line 1159, cs 7.13), which means that we return FALSE
if we have no unacknowledged small segments so far. Otherwise we still have an
unacknowledged small segment. Now we check if we have not yet sent the small
packet. If not yet sent (tp → snd_sml > tp → snd_nxt), we return FALSE. Otherwise
we return TRUE (line 1160). There is SWS avoidance from the sender side to avoid
sending too many small segments.

 7.2.12 tcp _ write _ xmit ()

 Here we try to process all the TCP segments queued up at the socket ’ s write
queue one by one. For this we need to make a check for each segment to determine
whether we can send it out or not. The next packet to send out can be accessed
from tp → send_head (line 566, cs 7.14). At the same time we check if we can transmit
this segment now by calling tcp_snd_test () (line 567). If we can send the segment
now, the next thing we check is whether we have segment length more than
the current mss. We may have changed the route to the destination. If segment
length is more than the current segment, we fragment the segments further by
calling tcp_fragment() (line 568 – 571) to avoid IP fragmentation, which is a heavy
process. We discuss tcp_fragment() some time later. In case we need to fragment
the segment, we come out of the loop (line 566 – 580). Otherwise we are all set to
transmit the segment by calling tcp_transmit_skb() . We always pass a clone of the
TCP segment to tcp_transmit_skb() and not the original sk_buff (line 574). The
reason is that we want to maintain the original TCP buffer until it is ACKed. We
will drop the reference for sk_buff once it is transmitted out of the hardware device.
 tcp_transmit_skb() actually builds TCP header, sends it to the IP layer for process-
ing, and puts the fi nal IP datagram on the device queue for hardware transmission.
If this TCP segment could not be sent out successfully, we come out of the loop
(line 566 – 580). Otherwise we need to update the send queue information and the

 cs 7.13. tcp_minshall_check().

246 TCP SEND

TCP state machine variables and move on to process the next segment in the write
queue.

 If the segment is transmitted successfully, we update the send head to point to
the next segment to be transmitted by calling update_send_head() at line 577. Now
we need to update TCP variables that keep information of any small segments
that are sent out recently by calling tcp_minshall_update() at line 578. If the most
recent transmitted TCP segment had length less than the current mss, tp → snd_sml
is updated to the end sequence number of that small segment (cs 7.15). This is

 cs 7.14. tcp_write_xmit().

 cs 7.15. tcp_minshall_update().

SEGMENTATION WITH SCATTER–GATHER TECHNIQUE 247

used to check if we are transmitting a larger number of smaller segments while
sending out the segments while Nagle is enabled (check tcp_nagle_check()). We
have completely processed one TCP segment and sent it out. Now once again check
if there is a TCP segment to be sent out (line 566). If we have consumed all the
TCP segments in the write queue (tp → send_head == NULL), we come out of the
loop.

 7.2.13 update _ send _ head ()

 Here we update the tp → send_head to the next sk_buff in the write queue (line 50,
cs 7.16). If we have just transmitted the last sk_buff in the write queue, we set tp →
 send_head to NULL (line 51 – 52). Now we update the TCP variable that keeps
account of what needs to be sent next, tp → snd_nxt. tp → snd_nxt is updated with
the end sequence number of the segment just transmitted (line 53). TCP also keeps
track of a number of packets that are sent out but are yet to be ACKed (tp →
 packets_out). So, we increment tp → packets_out by one. If this is the fi rst packet to
be sent out or the fi rst packet out and there is no outstanding ACKs (tp → packets_
out is decremented by one once an ACK for the segment is received), we set the
retransmission timer for the packet just send out. If we are sending out the TCP
segment when we already have unACKed segments in the queue, we don ’ t update
the TCP retransmission timer because the retransmission happens for any one
segment for the TCP and this is the very fi rst unACKed segment.

 7.2.14 tcp _ push _ one ()

 This routine is called to send once we have a full - sized segment ready for transmis-
sion and we have only one segment in the transmit queue. It calls tcp_snd_test() to
check if we can transmit the TCP segment right now (line 338, cs 7.17). We have
already discussed the function in much detail before. We disable Nagle here because
we don ’ t have any unACKed segment here because this is the only segment in the
write queue. If we are allowed to transmit the segment, we directly call tcp_
transmit_skb() , which builds the TCP/IP header and puts the IP datagram on the
device queue for transmission. We initialize the send head (line 342) to NULL
because this was the only segment in the write queue. Next we assign the end
sequence number of the segment to the tp → snd_nxt (next byte to be sent, line 343).

 cs 7.16. update_send_head().

248 TCP SEND

Finally, if this is the only unACKed segment sent out, we reset the retransmit timer
for this segment.

 7.2.15 skb _ entail ()

 We initialize the start and end sequence for the segment to sequence number of the
next unwritten byte, the reason being we don ’ t know how much will be copied into
the buffer. So, the end sequence number for the segment will be initialized only
after we have copied data to the buffer. The buffer fl ag is initialized to TCPCB_
FLAG_ACK because every TCP segment carries a minimum ACK fl ag. We queue
the segment to the tail of the transmit queue at line 790. We then account for the
socket memory allocated for the buffer by calling tcp_charge_skb() at line 791. If
this is the fi rst segment queued in the transmit queue, the send head (tp → send_head)
is inititialized to point to this segment at line 793.

 cs 7.18. skb_entail().

 cs 7.17. tcp_push - one().

 7.3 SENDING OOB DATA

 Whenever we want to send out urgent byte, we do it by calling send() with MSG_
OOB set in the user application. So, essentially we write only one byte as OOB data.
In tcp_sendmsg() we write 1 byte either to existing segment or new segment and
then continue in a loop at line 1165 (cs 7.4). we get out of inner loop here because
seglen has become zero here because we had only 1 byte of data to copy. For the
same reason, we get out of the outer loop because we had only 1 byte of data to
copy. We call tcp_push() at line 1189 (cs 7.4) with fl ag set to MSG_OOB . From
 tcp_push() we call tcp_mark_urg() which in turn checks if MSG_OOB fl ag is ON.
If that is the case, we set urgent mode (tp → urg_mode), set urgent pointer (tp →
 snd_up) to write sequence (tp → write_seq) and set URG fl ag for the TCP segment.
Now urgent pointer will be set for all those segment ’ s which are yet to be transmit-
ted and for which following condition satisfy

 sequence number urgent pointer sequence number xffff>= >= + 0

 All those segments for which urgent pointer lies within start sequence number and
0xffff offset from the start sequence number for the segment, will have urgent
pointer set (tcp_transmit_skb() , line 248).

 We clear an urgent mode at the sender side in tcp_clean_rtx_queue() in
case the segment for which urgent pointer is set is ACKed, and the ACKed segment
contained marked urgent pointer, we clear the urgent mode at line 1781 (see
Section 11.4.6). While building header for the TCP segment in tcp_transmit_skb() ,
we check if urgent mode is ON at line 247 (cs 7.19). We also check if the
urgent pointer lies within the valid sequence range for the outgoing data segment
at line 248 (tcp_transmit_skb()). If both of the above conditions satisfy, we set an
urgent fl ag in the current segment ’ s TCP header and also set the current urgent
pointer.

 cs 7.19. tcp_transmit_skb().

SENDING OOB DATA 249

250 TCP SEND

 Figure 7.5a. Data fl ow of the TCP send process.

 7.4 FLOW FOR TCP SEGMENTATION UNIT AND SEND PROCESS

 Figures 7.5a and 7.5b are the data fl ow diagram for the processing of TCP data by
segmentation unit. It describes how data is processed through segmentation unit,
write queen and TCP state machine to send it down the stack. It also describes
processing of urgent TCP data.

 7.5 FUNCTIONAL LEVEL FLOW FOR SEGMENTATION AND
SEND MECHANISM

 Figures 7.6a and 7.6b show fl ow of control to implement processing of TCP data in
the kernel. It shows major routines that are called to implement send side TCP data
processing.

 Figure 7.5b. DATA fl ow of TCP send process (continued).

 7.6 SUMMARY

 TCP sends out data in chunks of 1 mss. Maximum segment size is based on MTU,
which is a link layer characteristic and can be retrieved from tcp_current_mss() .

 tcp_alloc_pskb() allocates a new buffer for TCP data, and its minimum size is
1 mss or one page in case scatter – gather is supported.

 skb_entail() queues up packet on the transmit buffer and also accounts for
allocated buffer memory.

 In the case where scatter – gather is supported by a network controller and mss
is more than a single page, data are copied to sk_buff ’ s paged data area. There is a
limitation on the number of pages allocated to sk_buff ’ s paged area. A segmentation
unit looks slightly underperforming as far as memory allocation is concerned here.
If the connection has very high mss with scatter – gather - capable NIC, we won ’ t be
able to take advantage of scatter – gather technique in the case where mss exceeds
the limit imposed by number of pages that can be allocated to single sk_buff . Also,
if the mss increases when we have partial segment in the transmit queue, we can ’ t

SUMMARY 251

252 TCP SEND

 Figure 7.6a. Functional fl ow of TCP send process.

 Figure 7.6b. Functional fl ow of

TCP send process (continued).

reallocate memory for the partial segment to accommodate more data as per new
mss. This would cause underperforming TCP.

 tcp_push_one() tries to transmit one segment in the write queue. __tcp_push_
pending_frames() tries to transmit more than one segment queued up in the write
queue.

 tp → send_head points to fi rst segment in the write queue that needs to be trans-
mitted next. This fi eld marks the start of the transmit queue and separates it from
the retransmit queue.

 tcp_send_test() implements all the sender side algorithms like Nagle ’ s algo-
rithm, sliding window protocol, and congestion window test.

 tcp_mark_urg() checks if we need to send out an urgent byte and sets TCP fl ag
to indicate an urgent byte.

SUMMARY 253

255

8

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 TCP RECEIVE

 Application reads may request a kernel to receive normal or urgent data from a
TCP socket. Kernel socket implementation has to differentiate between the two
different types of requests. When an application wants to receive an urgent byte as
OOB data, it has to take care of reading it at an appropriate time; otherwise, there
is a chance of losing it.

 TCP treats data as a stream of bytes. Only those bytes that are received in
sequence are queued by a TCP receive buffer. Out - of - sequence data go into a sepa-
rate queue, and data from this queue can ’ t be considered to serve an application
request.

 Kernel processing of TCP data received can be divided into two parts. If an
application is blocked to read data and in - sequence data are received, TCP directly
copies data to a user buffer. The other way is to queue in - sequence data to a socket ’ s
receive queue, and the application request is served from the receive queue. The
kernel implements the queuing mechanism for the received TCP segments, and
there are more than one queue implemented.

 In this chapter we will learn all about processing TCP data and about the design
of receive queues. TCP data include normal and urgent data. We will learn about
the queuing mechanism of TCP segments and about the processing sequence of the
queues. We will also get to see how data are read from the socket buffers. There is
a section that explains the receive mechanism from paged buffers as well. Then we
have section on how an urgent byte is received both as inline and OOB data. There
is a section that explains a blocking mechanism to receive data. Complete processing
of receiving TCP data is explained in Figures 8.14(a) through 8.14(f) .

256 TCP RECEIVE

 8.1 QUEUING MECHANISM

 In this section we will see all the queues that exist for the incoming TCP packets.
What is the design point of view to have all those queues, and in what sequence are
they processed? There are three queues to receive incoming TCP segments:

 • Backlog queue (sk → backlog)
 • Prequeue queue (tp → ucopy.prequeue)
 • Receive queue (sk → receive_queue)

 sk → receive_queue contains processed TCP segments, which means that all the pro-
tocol headers are stripped and data are ready to be copied to the user application.
 sk → receive_queue contains all those data segments that are received in correct
order. TCP segments in the other two queues are the ones that need to be
processed.

 Packets intended for TCP are fi rst processed by tcp_v4_rcv() (cs 8.1). Here we
need to make a decision on whether the packet needs to be processed or needs to
be queued in either backlog or prequeue queues. We fi rst hold a socket spin lock
at line 1766. The bottom half is already disabled when this routine is entered
because it is called from NET softIRQ. Next we check if any body is already using
the socket at line 1768. sk → lock.users is one in case somebody is using the socket.
The socket is in use when we are reading/writing/modifying the socket. If the socket
is already in use, we fi rst try to queue the TCP packet in the prequeue queue by
calling tcp_prequeue() at line 1769. If for some reason we are not able to queue the
TCP packet in a prequeue queue, we directly process the segment by calling tcp_
v4_do_rcv() at line 1770. In our discussion, we are assuming that the socket is in an
established state. So, the packet will be processed by calling tcp_rcv_established()
from tcp_v4_do_rcv() (cs 8.1).

 8.1.1 Processing in tcp _ rcv _ established ()

 Let ’ s see how a TCP data packet is processed in tcp_rcv_established() (cs 8.2). We
will not learn the entire processing of the data segment here, but only the data

 cs 8.1. tcp_v4_rcv() .

QUEUING MECHANISM 257

processing and queuing mechanism. First we look for the possibility of copying data
directly to the user buffer. If that is not possible, we will strip the TCP header and
queue the data segment in the receive queue.

 There are certain conditions that need to be satisfi ed before we can copy TCP
data directly to the user buffer. These are:

 • The current process (current) should be the one that installed the receiver
(tp → ucopy.task) at line 3301. It means that the chances of data being copied
from softIRQ are very low because an interrupt can come anytime and it is
not guaranteed that the same process may be running on the CPU that
installed the receiver.

 • (The copied sequence (tp → copied_seq) should be the same as the sequence
number that is expected next (tp → rcv_nxt) at line 3302, which means that no
outstanding data are there in the receive queue to be processed.

 • TCP data contained in the segment should be maximum, equal to the length
requested by the user (tp → ucopy.len) at line 3303. We do only one thing out
of two: either copy data to the user buffer or queue the buffer to the receive
queue. We don ’ t queue a partially read segment on the receive queue; other-
wise it will add further complexity and increase calculations.

 cs 8.2. tcp_rcv_established() .

258 TCP RECEIVE

 • The fi nal condition is that the routine should be called from socket user
context. This will make sure that the data can ’ t be directly copied to the user
buffer from interrupt context (softIRQ), because tcp_v4_rcv() adds the TCP
packet to the backlog queue in case somebody is already using the socket. So,
we are sure that TCP data can be copied directly to the user buffer only from
process context.

 If all the above conditions are satisfi ed, we call tcp_copy_to_iovec() to copy TCP
data from the packet being processed to the user buffer. This will also add copied
length to tp → ucopy.len and tp → copied_seq . We also update tp → rcv_nxt to the end
sequence of the processed packet at line 3319.

 If we are not able to copy data to the user buffer because of any of the condi-
tions above failing, we will queue a data segment at the end of the receive queue
by calling __skb_queue_tail() at line 3344. We queue the buffer after stripping the
TCP header so that we directly point to the data in the TCP segment. Update tp →
 rcv_nxt as the end sequence of the segment.

 8.1.2 tcp _ prequeue ()

 The routine is called when we receive a TCP packet from tcp_v4_rcv() . This routine
is called to queue a TCP packet in the prequeue queue, in the case where the
receiver is installed by some user process (line 1328, cs 8.3). tp → ucopy.task points

 cs 8.3. tcp_prequeue() .

QUEUING MECHANISM 259

to the process that installed the receiver (for more details see Section 8.2 , tcp_
recvmsg()). We are called only if no one is using the socket currently, which essen-
tially means that some user process wants to receive data and we are waiting for
data over the socket. We can queue a TCP packet here only in one situation — that
is, when we are waiting for a socket ’ s wait queue in tcp_data_wait() called from
 tcp_recvmsg() .

 First we queue a TCP packet on prequeue, tp → ucopy.prequeue , and account
for the memory allocated by the user buffer (tp → ucopy.memory) at line 1329 – 1330.
We actually don ’ t process the TCP packets in the prequeue in the interrupt context
(done usually in process context). But in the extreme case, where memory con-
sumed by user buffer has stuck the upper limit (sk → rcvbuf) at line 1331, we need
to process TCP segment ’ s from the prequeue. We process all the segment in the
prequeue one by one by calling callback routine sk → backlog_rcv , line 1337 – 1338.
 backlog_rcv points to tcp_v4_do_rcv(). The situation may arise in the case where
packets are coming fast enough and the receiving process is not getting scheduled
to process the prequeue. This is when we queue the fi rst TCP segment on the
preqeue (line 1343), the receiving process is woken up by calling wake_up_inter-
ruptale() . In the case where we are queuing the fi rst TCP segment on the prequeue,
the delayed ACK timer is reset in the case where ACK is not already scheduled to
three - fourths of the minimum RTO value. We do this because we process the pre-
queue queue in the delay ACK timer if the application is not able to do it fast
enough. We return values indicating whether we are able to queue the TCP segment
on the prequeue.

 8.1.3 Processing of Queues (see cs 8.4a and cs 8.4b
unless mentioned)

 TCP queues are processed mainly in two places:

 • delay ACK timer, tcp_delack_timer()
 • tcp_recvmsg() , when the application wants to receive data over the socket

 Let ’ s see how the queues are processed in tcp_recvmsg() . We process the queues
as a user of the socket. We become a socket user by calling lock_sock() at line 1480
(cs 8.4a,b). Before entering tcp_recvmsg(), we can have data in the receive queue
only. The reason for this is that the receiver is not installed for the socket, because
of which the packets won ’ t go into prequeue. Even if someone were holding the
socket ’ s user status because of which the packets were queued into a backlog queue,
those packets would have been processed while the socket ’ s user status is released.
When the backlog queue is processed without the receiver being installed, the pro-
cessed TCP data packets are queued into the receive queue. In the case where no
one had socket ’ s user status before entering this routine, all the segments received
will be processed by tcp_v4_rcv() and the processed data packets will be queued in
the receive queue.

 So, the order will be to fi rst process a receive queue. In the receive queue, only
TCP data segments go which are received in order. We eat up data from the TCP
receive queue in the loop 1524 – 1545. If we fi nd the segment of our interest at line
1539, we consume data by jumping to a location and once again enter the same
loop. Once we have completely processed a receive queue and we have copied the
requested data, we return at line 1550.

260 TCP RECEIVE

 cs 8.4a. tcp_recvmsg() .

QUEUING MECHANISM 261

 In case after completely processing a receive queue we could not satisfy an
application request, we need to wait for some more data to arrive before we can
return. So, we install a receiver at line 1590. Since this is the fi rst time we have come
here, we need to initialize tp → ucopy object. Structure ucopy is embedded in the
 tcp_opt structure and contains details of the user buffer. prequeue is a pointer to
the queue where the TCP packets go when there is no socket user but receiver is
installed. task is a pointer to the process that has installed the receiver. Using this
fi eld, we avoid copying data in a user buffer directly from interrupt context. i ov is
the pointer to the user buffer where data should be copied. memory keeps account
of the amount of memory consumed by the buffers queued in the prequeue queue.
 len is the number of bytes we are interested in.

 We initialize task, iov , and len fi elds of the ucopy object (cs 8.5). Next we check
if there are any packets in the prequeue to be processed at line 1628. In the fi rst
iteration we should not see any packets in this queue because the receiver is just
installed and we are still the user of the socket. In tcp_v4_rcv() we queue packets
on this queue only if no one is using the socket and a receiver is installed.

 cs 8.4b. tcp_recvmsg() (continued).

262 TCP RECEIVE

 Next we check if we have copied the requested data at line 1634. If so, we just
release the socket ’ s user status by calling release_sock() at line 1636 and then try to
get the socket ’ s user status by calling lock_sock() at line 1637. We do this because
this will cause all the packets queued on the backlog queue to be processed in
release_sock(). All the packets arrived until the call to release_sock() will be queued
on the backlog queue in tcp_v4_rcv() because socket is being used. We leave the
routine after processing packets in the backlog queue this way even after all our
requests are satisfi ed.

 In the case where we have not copied all the data requested, we wait for data
to be available by calling tcp_data_wait() at line 1639. We wait here until woken up
due to the arrival of TCP packet for the socket or we experience timeout. On return
from tcp_data_wait(), we might have packets in the prequeue (for more details see
Section 8.1.4 , tcp_data_wait()). The next step after waiting will be to test if the we
have installed a receiver at line 1732. Since we are discussing the reception of data,
this will always be non - NULL and will point to the process that wants to receive
data. In the case where TRUNCATE fl ag is set, we don ’ t have this set, but we don ’ t
care. So, the fi rst check is made for the possibility of direct consumption of data
during processing of packets. How is this possible? We may have copied data to the
user buffer while releasing the socket ’ s user status by calling release_sock() in tcp_
data_wait() . Because a backlog queue will be processed here and since socket user
status is retained by us, any TCP data packet processed will directly copy data in
the user buffer in tcp_rcv_established() . If we have copied data to the user buffer,
 tp → ucopy.len will be decremented by copied length in tcp_rcv_estbalished() and we
need to account for the copied data at line 1649 – 1650.

 Next we check whether we can process a prequeue queue. Here we need to
check for two conditions:

 • Is there anything in the receive queue to be processed (line 1653)? If some-
thing is there in the receive queue to be processed, tp → rcv_nxt will be differ-
ent from the tp → copied_seq ; see Section 11.8 , tcp_rcv_established() . If data
are directly copied to the user buffer, the above two fi elds will have the same
value.

 • Is there anything in the prequeue to be processed (line 1654)?

 To process the messages in the prequeue, there should be nothing in the receive
queue to be eaten up; otherwise, things will mess up. We can have packets in the
pre - queue to be processed at this point because of the small window between releas-
ing and holding socket user status during which the receiver is already installed (see

 cs 8.5. Data structure to manage user buffer for copying tcp data.

QUEUING MECHANISM 263

Section 8.1.4 , tcp_data_wait()). But, how do we have a situation where we have
packets in the prequeue along with TCP data in the receive queue? In the small
window when we have released socket ’ s user status, we start queuing packets in the
prequeue. On arrival of the fi rst entry in the prequeue, we kick off a delay ACK
timer in tcp_prequeue() called from tcp_v4_rcv() . If the delay ACK timer fi res
before we get the CPU, packets from the prequeue will be processed and all the
data segments will be queued in the receive queue (as we are in the interrupt
context). The delay ACK timer proceeds only if there is no user of the socket. After
the prequeue is processed in the delay ACK timer, there can still be some time
before we get the CPU and get the socket ’ s user status. In this duration, packets
arriving for the socket will be queued on the prequeue.

 In the case where we are able to process packets on the prequeue because there
was nothing in the receive queue to be processed, tcp_prequeue_process() is called
to process the prequeue at line 1656. If there are any data segments on the pre-
queue, data will be directly copied to the user process in tcp_recv_established()
because we are the process who has installed a receiver as with the socket ’ s user
status on. Next we account for the copied data at line 1660 – 1661 and continue.

 In case we are not able to process the packets on the prequeue because of
pending data to be processed in the receive queue, we continue at line 1671. We
repeat the processing from the start of the processing of the receive queue at line
1523. Consume all the data from the receive queue and we still fall short of data
requested by the user; we will come to line 1628 from where we jump to line 1655
to process the prequeue. In the case where we have satisfi ed the request from the
user by processing the receive queue and we still have packets in the prequeue, we
process the prequeue before leaving the routine at line 1738 by calling tcp_pre-
queue_process() . This will process all the data segments in the pre - queue and queue
them in the receive queue. This makes sure that the next time we enter tcp_
recvmsg() , the sequence of queue processing is maintained; that is, receive queue
then prequeue and then backlog queue.

 8.1.4 tcp _ data _ wait ()

 The routine is called when we want to wait for data to arrive over a socket. We add
wait queue to the socket ’ s wait queue sk → sleep and set the process state to TASK_
INTERRUPTIBLE at line 1348 (cs 8.6). We set the SOCK_ASYNC_WAITDATA
fl ag for the socket, which means that the socket is waiting for data to arrive asyn-
chronously. Now we release the socket ’ s user status by calling release_sock() at line
1351. As explained in Section 8.1.8 , this will process all the TCP packets queued in
the backlog queue. Now we check if the receive queue is empty at line 1353. Until
releasing the socket ’ s user status, whatever packets arrive will be queued in the
backlog buffer in tcp_v4_rcv() . If the backlog queue was not empty and we received
TCP data segments, they will be queued in the receive buffer. So, the receive buffer
will not be empty in this case and we try to get the socket ’ s user status for the process
by calling lock_sock() at line 1356. Clear the SOCK_ASYNC_WAITDATA fl ag
for the socket, remove the process from socket ’ s wait queue at line 1359, set process
state to TASK_RUNNING, and return.

 In the case where there was nothing in the backlog queue or there were no TCP
data segments by the time we released the socket ’ s user status, we need to wait
until data arrive by yielding our position at line 1354. We will be awakened either

264 TCP RECEIVE

whenever the TCP packet arrives or when we experience timeout. In either case,
we just return from the routine.

 There is a small window between releasing the socket ’ s user status and reacquir-
ing it at line 1356 where the current process is not the user of the socket. If no other
process is using the socket in this duration, all the TCP packets intended for the
socket will be queued in the prequeue queue because the receiver is installed.

 8.1.5 tcp _ prequeue _ process ()

 The routine is called from process context, and is called from tcp_recvmsg() when
we want to process packets queued in the prequeue (cs 8.7). We process packets in
the prequeue with local bottom - half disabled. Disabling of the bottom - half is not
required here because we already have acquired the socket ’ s user status. Once the
socket is in use, incoming TCP packets will be queued in the backlog queue. By
disabling the local bottom half, we are actually deferring the processing of packets
on the current CPU because they are processed in NET softIRQ.

 cs 8.6. tcp_data_wait() .

 cs 8.7. tcp_prequeue_process() .

QUEUING MECHANISM 265

 8.1.6 lock _ sock ()

 The routine is called when someone wants to read/modify/write to the socket. This
macro grants socket user status to the caller. It holds socket spin lock sk → lock.slock
and checks if somebody is already using the socket at line 787 (cs 8.8). If so, it has
to wait for the user of the socket until it releases the user status by calling __lock_
sock() at line 788. Once __lock_sock() returns, it means that someone has released
the socket user status (sk → lock.users == 0). We are still holding the socket spin
lock, so we become a user of the socket at line 789. At last we release the socket
spin lock.

 8.1.7 __ lock _ sock ()

 The routine essentially waits for the socket ’ s lock wait queue (sk → lock.wq) until it
is awakened by someone who releases the socket ’ s user status (cs 8.9). By doing
this, we loop forever by doing the following steps in each iteration:

 1. Set the status of the current task to TASK_UNINTERRUPTABLE at line
847.

 2. Release socket ’ s spin lock at line 848.
 3. Call schedule() to preempt the current process at line 849.
 4. We return from schedule only after someone wakes us up (the one who

releases hold on the socket user status, release_sock()).

 cs 8.8. lock_sock() .

 cs 8.9. __lock_sock() .

266 TCP RECEIVE

 5. If the socket user status is still available, we break from the loop at line 852.
Otherwise we iterate in a loop. Once someone holding the socket user status
releases it, it wakes up everyone waiting for the status. Whoever gets CPU
fi rst will get the status, and the rest of them will once again wait until the
next release.

 Once we are out of the loop, we set the task status as TASK_RUNNING and
remove the process from the socket ’ s wait queue at line 855.

 8.1.8 release _ sock ()

 This macro is called when the user of the socket wants to release the user status on
the socket. Hold the socket spin lock and fi rst check if the backlog queue is empty
at line 795. We need to check this because when the socket is in use, the incoming
TCP packets in tcp_v4_rcv() are not processed immediately but are queued in the
backlog queue. These packet ’ s should be processed when the user of the socket is
releasing the status. This way we maintain the order of packet processing. After
holding the socket user status, no new TCP packet is processed until the socket user
status is released by the process.

 In the case where the backlog queue is not empty, we need to process all the
TC packets queued in the backlog queue by calling __release_sock() at line 796 (cs
 8.10). Once we have processed the backlog queue, the socket user status is released
at line 797. If we have any processes queued in the socket ’ s wait queue, sk → lock.
wq , we wake up all the processes sleeping on this wait queue by calling wake_up()
at line 798. Release socket ’ s spin lock and return.

 8.1.9 __ release _ sock ()

 We process the TCP packets on the backlog queue here. The idea is to process the
backlog queue until it is empty. We can ’ t process the TCP packet with the socket
lock held, so while processing the packet ’ s from the queue we release the socket
lock. We have two loops to implement the idea. The outer loop is iterated until we
have empty backlog queue. The inner loop processes one packet at a time from
the backlog queue until all are processed by calling sk → backlog_rcv,
tcp_v4_do_rcv() .

 The fi rst time we enter the routine, we detach the chain of packets from the
queue at line 860 and then enter the inner loop after releasing the socket lock at

 cs 8.10. release_sock() .

line 864 (cs 8.11). Once all the packets in the chain are processed, we come out of
the inner loop, hold the socket lock, and check if there is any packet in the backlog
queue to be processed at line 875. If there is anything to be processed, we detach
the chain at line 863 and proceed further to process the chain. We make this check
at the end of the outer loop because there is a window between the socket spin lock
being held and released. In this duration if the packets arrive, they will be queued
in the backlog queue in tcp_v4_rcv() because the socket is still in use by the current
process processing the backlog queue.

 8.2 PROCESSING OF TCP DATA FROM THE RECEIVE QUEUE
(see cs 8.12a and 8.12b unless mentioned)

 In the previous section we saw how queues are designed to work such that TCP
data integrity is maintained and we leverage prequeue design to copy data effi -
ciently to the user buffer. In this section we will learn how data are copied from the
receive queue and the processing of receive buffers. This section covers only normal
data receive, and Section 8.3 will cover urgent byte processing.

 To copy data from socket buffer to the user land, we rely on the following
fi elds:

 1. tp → copied_seq is the sequence number of the byte that is copied to the user
land. This is updated whenever we copy data to the user buffer in tcp_
recvmsg() and also in tcp_copy_to_iovec() when data are directly copied to
user buffer.

 2. skb → len is the length of the socket buffer (TCP payload).
 3. TCP_SKB_CB(skb) → seq is the sequence number corresponding to the fi rst

byte of the socket buffer.

 cs 8.11. __release_sock() .

PROCESSING OF TCP DATA FROM THE RECEIVE QUEUE 267

268 TCP RECEIVE

 We are interested in all those bytes that are received in - sequence. Each byte has
a sequence number associated with it. Data segments queued in the receive
queue have no hole is the sequence space. Moreover, each segment has its own
sequence space — that is, start and end of the data sequence numbers. So, we can
exactly know how much is copied and what needs to be copied. Even in the case of
overlapping sequence spaces of the segments, we have no problem because each
byte is marked with sequence number and we can avoid copying common data
twice.

 In this section we will see how data are copied from the socket buffer to the
user buffer. In this discussion we assume that all the data we are interested in comes
from the receive queue. We will have examples with paged and linear data sections
each. When we enter tcp_recvmsg(), the copied sequence number is marked at line
1494 (cs 8.12a). Next we need to fi nd out the segment that contains the byte that
corresponds to sequence number next to the copied sequence in the receive buffer
in a loop 1524 – 1545. For each buffer we calculate the offset within the buffer from
the copied sequence and the start sequence number for the buffer at line 1536. If
the offset is smaller than the length of the buffer, we have the buffer, line 1540.
Otherwise we move on to the next buffer at line 1544. We copy data from the buffer
by jumping to line 1673.

 We found the buffer from where we need to copy data, and now we need to
fi nd how much data need to be copied from the buffer from the total length of the
buffer and the offset within the buffer at line 1675. If the length requested by the
user application is less than the number of unread bytes within the buffer, we adjust
the number of bytes that can be copied at line 1677. Now we are ready to copy data
with the offset and number of bytes from an identifi ed buffer by calling skb_copy_
datagram_iovec() at line 1697. We don ’ t know if the data need to be copied from
the linear data area or paged data area or from fragments. This part is taken care
of by skb_copy_datagram_iovec() . We will learn more about it in Section 8.2.2 . We
have already read data from the buffer and now need to account for the same. So,
we increment the copied sequence by the number of bytes read at line 1706, the
total number of bytes copied to the user buffer, and the number of bytes remaining
to be copied at lines 1707 – 1708. We check if complete buffer is consumed at line
1715 (cs 8.12b). If we still have data left in the buffer, it means that the number of
bytes requested has been served and we need to return because the outer loop
condition will fail at line 1730. In the case where the application has requested more
data and the buffer just read couldn ’ t satisfy the request, we move on to the next
buffer by iterating through the outer loop. In this case, we have consumed the entire
data from the current buffer and need to unlink it from the receive buffer by calling
 tcp_eat_skb() at line 1721. Once we come out of the loop after reading in all the
requested by the application, we have actually created some space in the socket ’ s
receive buffer for more data to be received. In this case, we need to advertise the
new window to the sender. We may be opening a window here, so we should notify
the sender which must be waiting to send in data. For this we call cleanup_rbuf()
at line 1756.

 8.2.1 cleanup _ rbuf ()

 This routine is called to check if we can send an ACK after application has read
data from the socket buffer. First we check if the ACK was scheduled by calling

 cs 8.12a. tcp_recvmsg() .

PROCESSING OF TCP DATA FROM THE RECEIVE QUEUE 269

270 TCP RECEIVE

 tcp_ack_scheduled() at line 1291 (cs 8.13). If so, we can send ACK under following
conditions:

 1. Is the ACK blocked at line 1293? This may happen if the delayed ACK timer
was intercepted by us as we are holding user status. Since we are called from
 tcp_sendmsg() holding user status, if the delayed ACK fi res, ACK will be
blocked. So, before releasing socket ’ s user status, we are called. It is our job
to send out blocked ACK in such cases.

 2. We have not ACKed data of length greater than 1 mss at line 1295. tp → rcv_
wup is synced with tp → rcv_nxt only when we send ACK.

 3. When we have emptied the receive buffer, and there is data fl ow only in one
direction (tp → ack.pingpong is not set).

 In the case where none of the above conditions is TRUE, we still can send out an
ACK if we have read some data because we might be opening the window. If the
receive side of the socket is not shut down (we won ’ t receive any data in this case)
and the application has read some data before coming here (line 1316), we check
if the window has opened. We get the last advertised window from tcp_receive_
window() at line 1317. Next we check if twice of the window advertised is smaller
than the window clamp (line 1320), and we calculate the new window by calling __
tcp_select_window() at line 1321.This routine will take into consideration space
available in the receive buffer. If we have read enough data from the socket buffer,
the window to be advertised will increase considerably. In the case where the new
window calculated is more than twice of the window advertised last (line 1328), we
need to send an ACK. This condition also satisfi es the condition where the window
is opened from zero.

 We send an ACK by calling tcp_send_ack() at line 1333 if any of the conditions
discussed above is satisfi ed.

 cs 8.12b. tcp_recvmsg() (continued).

 8.2.2 skb _ copy _ datagram _ iovec ()

 The routine is called to copy data from a socket buffer to a user buffer. We are
passed a socket buffer (sk_buff) from where data need to be copied (offset within
the buffer), a user buffer where data should be copied, and the length of data to be
copied. The buffer is divided into two parts:

 1. Linear data area
 2. Paged data area or shared data area

 First we read data from the linear data area and then get data from the paged data
area. We fi rst calculate linear data area length at line 208 (cs 8.14). skb → len is the
total length of the buffer, and skb → data_len is the total length of the paged data
area. If our offset is within the paged data area, we call memcpy_toiovec() at line
214 to copy data from a given offset into the buffer to the user buffer. In the case
where our request is satisfi ed from the linear data area, we return at line 216 – 217.
If more data are requested, paged data are looked into for more data. We increment
the offset by the amount of data copied at line 218.

 Let ’ s see how we get data from the paged data area. A number of fragments in
the paged data area are stored in skb_shinfo(skb) → nr_frags. skb_shinfo() is a

 cs 8.13. cleanup_rbuf() .

PROCESSING OF TCP DATA FROM THE RECEIVE QUEUE 271

272 TCP RECEIVE

 cs 8.14. skb_copy_datagram_iovec() .

macro that accesses the end of the linear data area where the skb_shared_info object
for the buffer exists. For more details on skb_shared_info object, see Section 5.2 .
Each fragment is represented as an skb_frag_t object containing a pointer to the
page (frag → page), offset within the page (frag → page_offset) and length of each
fragment (frag → size). There is an array of skb_frag_t objects, skb_shinfo(skb) →
 frags containing fragments. Data are stored sequentially in the successive elements
of the array skb_shinfo(skb) → frags .

 So, we traverse through all the fragments in a loop 222 – 247 to copy data until
either the required data are copied or we have consumed all the data from the paged
area. We use the same logic to fi nd out whether the offset lies in the given fragment
as we use for the linear data area. Offset and length of the fragment are calculated
with respect to the base of the linear data area. For this reason, when we switch
from linear to paged data area, the offset is recalculated as the amount of data
copied from the linear data area at line 218. For each fragment we fi rst calculate
the total length of the buffer including the fragment at line 227. Next, we check if
there is anything that can be copied from current fragment at line 228. In the case
where we have already copied entire data from the current fragment, the new length
is calculated as the cumulative length of the current fragment starting from the
linear data area at line 246 and we access the next fragment from the array.

 If we have data to be copied from a fragment and the number of bytes remain-
ing in the page to be copied is more than the requested length, we adjust the amount
that can be copied to the requested length at line 235. Next we access virtual address
of the page for the fragment at line 236. We now copy number of required bytes
from the page offset (frag → page_offset) starting from page virtual address to the
user buffer by calling memcpy_toiovec() at line 237. If we have copied the entire
data, return at line 243. Otherwise we calculate the new offset at line 244 by adding
the copied length to it and start all over again.

 In the case where we have fragmented buffer (IP datagram was received as
fragments) and we have consumed all the data from paged data area, fragments
(skb_shinfo(skb) → frag_list) of the buffer will contain rest of the data. Overall
length of the main buffer is the sum of the lengths of all the fragments including
itself. So, we fi nd out if the next offset lies in any of the fragments while traversing
the fragment list, line 252 – 268. once we fi nd the fragment, we call skb_copy_data-
gram_iovec() recursively at line 261 and process the linear and paged data section
of each fragment in the same way as we did for the main buffer.

 8.2.3 Reading Data from Receive Buffer without Paged Data Area

 Let ’ s take an example of how we consume data from the receive buffer. We
assume that the buffers in the receive buffer contain only linear data area and are
not fragmented. Let ’ s assume that we have received two full - sized segments as
shown in Fig. 8.1 . The application issues three reads of size X bytes, n bytes, and
(n − X) bytes, respectively. Let ’ s see what happens to the buffers in the receive
queue.

 8.2.4 X Bytes Requested from the Application

 After the fi rst read of X bytes, the receive buffer will be as shown in Fig. 8.2 . Since
complete data from the fi rst buffer is not completely consumed, it remains in the

PROCESSING OF TCP DATA FROM THE RECEIVE QUEUE 273

 Figure 8.1. 2 mss of data to read from the receive buffer.

 Figure 8.2. X bytes copied to the application buffer.

queue. From the sequence number and sequence space of the buffer, we can fi nd
out the exact byte from where we need to start reading next.

 8.2.5 1 mss = n Bytes Requested from the Application

 In the second read, application requests for n bytes (=1 mss) of data. At this time
we have completely consumed fi rst buffer in the receive queue, so it unlinked from
the queue. Only (n − X) bytes are remaining in the second buffer on the receive
queue (Fig. 8.3), which will be consumed in the third read.

 8.2.6 n − X Bytes Requested from the Application

 The receive queue as seen after the third read of (n − X) bytes is shown in Fig. 8.4 .
Here copied sequence is same as receive next because all the data in the receive
queue are consumed.

 8.2.7 Consumption of Data from a Paged Buffer

 In this example we see how data are copied from the buffer with a paged data area.
Suppose we have a total of n + 2 pages of data from the buffer. n bytes come from
the linear data area and two pages come from the paged data area as shown in

 Figure 8.3. 1 mss data copied to the application buffer.

PROCESSING OF TCP DATA FROM THE RECEIVE QUEUE 275

276 TCP RECEIVE

 Figure 8.4. Complete data from a socket buffer are copied to a user buffer.

Fig. 8.5 . The application issues 2 reads of n bytes and 1 page each. Let ’ s see how
data is copied in this case.

 8.2.8 n Bytes Requested by the Application

 After the fi rst read of n bytes, the picture of the buffer will be as shown in Fig. 8.6 .
These bytes are consumed from the linear data area.

 8.2.9 One Page of Data Requested by the Application

 In the second read of one page, the buffer looks like as shown in Fig. 8.7 . The next
read will start from the beginning of the next page.

 8.3 TCP URGENT BYTE PROCESSING

 A TCP urgent byte can be read in two different modes:

 1. Inline
 2. Out - of - band

 Figure 8.5. Data in a linear and paged data area of socket.

 The default mode for a socket to receive an urgent byte is out - of - band. Out - of - band
data are a socket level abstraction and have nothing to do with TCP byte - of - stream.
In both the cases, the TCP transmits and receives an urgent byte as normal data.
Once the urgent byte is received, it depends on the mode of reception of an urgent
byte from where the urgent byte will be read. See cs 8.15 for all the codes referring
to tcp_recvmsg() .

 8.3.1 Urgent Byte Read as OOB Data

 If an application wants to read an urgent byte as out - of - band data, it needs to issue
 recv() with an MSG_OOB set. There are ways to inform the application that the
urgent data have arrived. It is up to the application to handle such events at the
proper time and take the appropriate action to read the urgent byte. In the case
where urgent byte is read inline, we don ’ t need to issue recv() with an MSG_OOB
fl ag set because it is read from the stream of bytes directly. tcp_recvmsg() is called

TCP URGENT BYTE PROCESSING 277

278 TCP RECEIVE

 Figure 8.6. n bytes of data copied from a linear data area.

in the kernel to read an urgent byte. We start with reading an urgent byte as out -
 of - bound data by calling tcp_recv_urg() at line 1768 in tcp_recvmsg() .

 8.3.2 tcp _ recv _ urg ()

 The very fi rst thing we check here is whether we have any urgent byte to be read.
For this we check three conditions at line 1224 (cs 8.15):

 1. If the sk → urginline fi eld is set, it means that we are supposed to read an
urgent byte inline. This is the wrong request to read an urgent byte.

 2. If the above fails, we need to check if tp → urg_data are still set, which means
that we may have an urgent byte to be read. If not set, we just return with
an error number set. We will see later that if an application reads past an
urgent pointer mark without reading an urgent byte, that urgent byte is lost.

So, it is up to the application to read an urgent byte at the appropriate
time.

 3. If tp → urg_data is nonzero, we need to check if a TCP_URG_READ bit is
set. If this fl ag is set, it means that an urgent byte is already read. So, we
return with an appropriate error number set. A misbehaving application
might issue more than one recv() for one urgent data notifi cation.

 Next we do some socket - related checks and check if the urgent data validity
fl ag, TCP_URG_VALID, is set. This fl ag is set when we receive an urgent byte in
 tcp_urg() (see Section 11.7). If so, we read an urgent byte stored in the lower 8 bits
of tp → urg_data . If we are just peeking urgent data, we won ’ t set TCP_URG_READ
fl ag set. Otherwise we clear everything and set the read fl ag indicating that the
urgent byte is already read. If the number of bytes to be read is more than 1 and
the message is not to be truncated, we read one byte of data in the user buffer at
line 1242. Note that even with the MSG_PEEK fl ag set, we can read an urgent byte

 Figure 8.7. One page of data copied from a paged data area.

TCP URGENT BYTE PROCESSING 279

280 TCP RECEIVE

but do not set the TCP_URG_READ fl ag because the subsequent recv() will
consume the urgent byte.

 8.3.3 Urgent Mode Processing and Reading an Urgent Byte as
Inline Data (see cs 8.12a and 8.12b unless mentioned)

 We remain in urgent mode until we read the data past an urgent pointer mark. We
do this in a normal data receive path in tcp_recvmsg() . Here we will see what
happens when an urgent pointer is marked and we are reading normal data. In this
section we will also see how a TCP urgent byte is read when we are receiving an
urgent byte as inline data. From cs 8.12(a) and (b) (see tcp_recvmsg()) we are trying
to read data from a socket ’ s receive buffer. There are two loops here, and the outer
loop (lines 1502 – 1730) makes sure that we get the amount of data requested wherein
we may have to wait for the data or process the data from the prequeue, and it also
does the job of copying data to a user buffer and performing processing related to
urgent data. The inner loop (1524 – 1545) looks if there is any data to be read from
a socket ’ s receive buffer and if any data are to be read from the buffer, it provides
us the buffer (sk_buff) from where data need to be copied (1539). It makes use of
 tp → copied_seq (line 1494) to fi nd the buffer from where the requested data need
to be copied to the user buffer. tp → copied_seq is the sequence number of the last
byte in the stream of bytes which has been copied to the user buffer. We get the
difference of the copied sequence and the start sequence number of the buffer as
an offset in the buffer. If the offset is more than the buffer length, we have already

 cs 8.15. tcp_recv_urg() .

copied the entire buffer so we move on to the next buffer. Once we have found the
buffer, which means that the offset is less than the buffer length, we try to process
the required data from the buffer in the outer loop by jumping to line 1673.

 In the outer loop, we fi rst check whether we have any valid urgent pointer at
line 1507. In the case where we have valid urgent pointer, set (tp → urg_data). We
discontinue reading any more data in the case where we have read some normal
data and have already copied data (tp → copied_seq) pointed to by an urgent pointer
mark (tp → urg_seq). Linux implementation supports both theories of urgent byte,
where one says that an urgent byte is one byte ahead of the urgent pointer mark
and the other one says that an urgent byte is exactly pointed to by an urgent pointer
mark. We make these adjustments only at the time of reception of an urgent pointer
(see Section 11.7.1). So, at this time we need not worry about any theory and con-
sider that an urgent byte is pointed to by one byte ahead of an urgent pointer. If
we have read a byte pointed to by an urgent pointer (tp → urg_seq), the next byte
to be read is the urgent byte. So, if we are reading normal data, we will continue to
read until we have read data up to an urgent pointer mark (tp → urg_seq) and return
to the application even if more data are requested. The application can then check
if an urgent pointer mark has reached. If so, an application can issue recv() of 1
byte to read in urgent byte. So, the condition at line 1507 makes sure that we should
continue to read normal data until an urgent pointer mark and then stop. If we are
entering the loop for the fi rst time and next byte to be read is urgent byte, we go
ahead and read it.

 Let ’ s discuss what happens when application issues read for normal data where
urgent byte has already been received. Once we fi nd a buffer that contains the next
byte to be read, we jump to line 1673. First we check how much is already being
read in the buffer at line 1675. Let ’ s assume that the urgent byte also lies in the
same buffer (see Fig. 8.8).

 Suppose an application issues a read of n bytes of normal data. The fi rst byte
is found to exist in the buffer as shown in Fig. 8.9 . Our request can be satisfi ed by
this buffer alone. We check if urgent data exist at line 1680. If the urgent data exist,
we try to fi nd out the offset of the urgent byte with respect to the sequence number
corresponding to the last read byte. In the case where the urgent byte offset is more
than the number of normal bytes that an application has requested, we just read
the requested number of bytes and return it to the application as shown in Fig.
 8.10 .

 In the case where an application has requested number of bytes beyond the
urgent pointer mark and the current buffer can satisfy the request, we return the
number of bytes until an urgent pointer mark (line 1692). Figure 8.11 and Figure
 8.12 show a buffer state just after we return to the application. A good application
design should try to sense an urgent data mark and then issue a read of 1 byte of
data to read an urgent byte. Otherwise, we check if the next byte to be read is
pointed to by an urgent pointer mark (a copied sequence is the same as an urgent
pointer mark). If that is the case, the next byte to be read is an urgent byte. We
take two different paths from here, depending on whether the socket is set to receive
an urgent byte as out - of - band data (sk → urginline not set) or as inline data.

 In the case where an urgent byte is received as out - of - band data, sk → urginline
is not set. We know that the next byte is an urgent byte, and we skip reading the
urgent byte. We will read the urgent byte from a different channel. In this case, we
increment the copied sequence (tp → copied_seq) by 1 at line 1685. Next we check

TCP URGENT BYTE PROCESSING 281

282 TCP RECEIVE

 Figure 8.8. Urgent byte is received.

 Figure 8.9. Urgent byte is covered by the sequence space of data requested by the

application.

 Figure 8.10. Application is returned data until an urgent pointer.

 Figure 8.11. Application has read data past an urgent pointer.

if the user has requested more than 1 byte, and we go ahead by reading the required
number of bytes and skipping the urgent byte (line 1697) and then process the TCP
urgent state at line 1710. In the case where the user has requested for only one byte,
nothing needs to be copied to the user buffer and we jump to line 1710 for further
processing of an urgent state.

 An urgent byte is received inline. We don ’ t skip an urgent byte and start reading
the requested number of bytes starting from the next byte — that is, urgent byte. If
 tp → urginline is set, a good application design will request only 1 byte of urgent byte
once it senses that the next byte to be read is an urgent byte.

 Figure 8.12. Application is returned data until an urgent pointer.

TCP URGENT BYTE PROCESSING 283

284 TCP RECEIVE

 The next step is to process a TCP urgent state starting at line 1710. Since we
have already read an urgent byte as shown in Fig. 8.11 , we need to reset the fl ags
related to an urgent state. We check the following:

 1. If urgent data are valid (tp → urg_data is nonzero).
 2. If an urgent byte has been read (tp → copied_seq > tp → urg_seq).

 An urgent mode for the connection, once we have read data past an urgent byte,
will be as shown in Fig. 8.13 . If both of the above conditions are TRUE, tp → urg_
data is reset and then we check if we can get back to the fast path of TCP processing.
If we entered a slow path just because a new urgent pointer was received, a fast
path will be enabled here.

 8.4 DATA FLOW DIAGRAM FOR RECEIVING DATA OVER
THE TCP SOCKET

 Figures 8.14(a) through 8.14(f) show data fl ow diagram to implement reception of
TCP data at the socket layer. They describe processing of different receive queues
and also reception of TCP urgent data.

 Figure 8.13. Application is returned data until an urgent pointer.

 Figure 8.14a. Receive process.

DATA FLOW DIAGRAM FOR RECEIVING DATA OVER THE TCP SOCKET 285

286 TCP RECEIVE

 Figure 8.14b. Receive process (continued).

 Figure 8.14c. Receive process (continued).

DATA FLOW DIAGRAM FOR RECEIVING DATA OVER THE TCP SOCKET 287

288 TCP RECEIVE

 Figure 8.14d. Receive process (continued).

 Figure 8.14e. Receive process (continued).

DATA FLOW DIAGRAM FOR RECEIVING DATA OVER THE TCP SOCKET 289

290 TCP RECEIVE

 Figure 8.19. Receive process (continued).

 8.5 SUMMARY

 Incoming TCP data segments are processed from three different queues in the fol-
lowing order:

 • Receive queue (sk → receive_queue)
 • TCP prequeue (tp → ucopy.prequeue)
 • Backlog queue (sk → backlog)

 A backlog queue is processed when we release a socket ’ s lock by calling
 release_sock() .

 TCP segments are queued in the queue holding a socket spin lock by calling
 bh_lock_sock() in tcp_v4_rcv() .

 TCP segments are processed from the queue after locking the socket by calling
l ock_sock() in tcp_recvmsg() .

 tp → copied_seq is a sequence number associated with the byte in the TCP
stream of bytes until data are copied to the application buffer.

 tcp_data_wait() is called to wait for TCP data when the socket is blocking.
 sk → urginline is a fl ag that indicates whether we are receiving a TCP urgent byte

as out - of - band data or inline.
 tp → urg_seq stores an urgent byte as well as fl ags associated with urgent data

processing. In the case where we are receiving a TCP urgent byte as OOB data, it
is read from here.

 tcp_recv_urg() is called to receive an urgent byte in the case where we are
receiving an urgent byte as OOB data.

 tcp_eat_skb() is called to release a socket buffer from a receive queue once all
the data from the buffer are already copied to a user application.

 cleanup_rbuf() is called to check if ACK needs to be generated once data are
read. This is required in the case where we have an opened window because an
application has consumed data from the receive queue.

291

9

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 TCP MEMORY MANAGEMENT

 Each TCP socket has send and receive buffers of fi xed size. The reason for fi xing
buffer size is to allow each connection to fairly use system resources. If there was
no limit on the size of the socket buffers, one connection on which data are com-
municated at a very fast rate would have left other connections starving for memory.
Data from receive buffer are consumed when application issues receive a request
on the TCP socket. Similarly, data from the send buffer is consumed only when
data are ACKed.

 TCP applies fl ow control on the connection when any of the buffers is full.
Because of the difference rate of consumption of data and rate of arrival of data,
we need a buffer. Linux does not allocate memory for socket buffers in one go.
Memory is allocated in small chunks so that on every allocation we will can keep
track of memory usage by socket and also overall system - wide memory usage by
TCP. We will see how a socket ’ s send and receive side buffer management is done
in the current discussion.

 9.1 TRANSMIT SIDE TCP MEMORY MANAGEMENT
(see cs 9.1 unless mentioned)

 When we need to send out data over a TCP socket, new buffer needs to be allocated
containing data. This buffer in Linux is represented by struct sk_buff . It contains
complete TCP packet information as well as pointer to TCP payload. In this section
we will see how memory is allocated for TCP buffer in tcp_sendmsg() . We will also

292 TCP MEMORY MANAGEMENT

check how a socket blocks in the case where memory is not available for the new
buffer and how the sleeping socket is awakened when the memory is available. See
Figure 9.1 for overview of send side TCP memory management memory.

 When there is no partial packet at the head of the transmit queue, we need to
allocate a new buffer (sk_buff object) to send out requested data over the socket,
lines 1057 – 1058 (cs 9.1). In this case, the fi rst thing that we do is check if the TCP
memory quota is over for the socket by calling tcp_memory_free() at line 1064
(cs - 9.1).

 The routine (cs - 9.2) checks if memory allocated for a socket ’ s write buffer (sk →
 wmem_queued) is less than the maximum limit on the send buffer (sk → sndbuf). If
the condition is TRUE, we can allocate memory for the new send buffer; otherwise
we need to wait for TCP memory to be available. The reason for nonavailability of

 cs 9.1. tcp_sendmsg().

TRANSMIT SIDE TCP MEMORY MANAGEMENT 293

 Figure 9.1. TCP memory management for send buffer.

294 TCP MEMORY MANAGEMENT

memory is that the socket buffers in the write queue are either not transmitted or
not acknowledged. In this case we jump to line 1175, set SOCK_NOSPACE fl ag
for the socket, and wait for memory to be available by calling wait_for_tcp_memory()
at line 1180. We call tcp_alloc_pskb() to allocate memory for the socket send buffer.
In the case where hardware is not capable of doing scatter – gather DMA(NETIF_
F_SG bit is not set for sk → route_caps), this will allocate memory for a TCP payload
of size 1 mss. Otherwise, if the hardware is scatter – gather - enabled and the paged
area of single sk_buff can accommodate 1 mss of data, this routine should allocate
1 page of memory. Otherwise, it should allocate memory for the complete 1 mss as
a linear data area. See Section 9.1.1 for more details on select_size() . In the case
where tcp_alloc_pskb() fails to allocate a buffer of required length, we need to wait
for memory to be available at line 1180 by calling wait_for_tcp_memory() . This
memory requirement is different from the requirement at line 1065, which is because
the socket ’ s send buffer is already full. In case, buffer is allocated successfully, we
need to account for allocated memory for the write side socket by calling skb_
charge() from skb_entail() at line 1071.

 In the case where the hardware interface is capable of doing scatter – gather
DMA, we don ’ t allocate a big chunk of memory for linear data area to copy the
entire 1 mss of data. If data require more than 1 page of space, pages are allocated
as per the requirement in the paged date area (see Section 5.1). For this we call
 tcp_alloc_page() at line 1116. If we fail to allocate the page here, we need to wait
for memory by jumping at line 1180.

 9.1.1 select_ size ()

 The size passed to tcp_alloc_pskb() is the one returned by select_size() (cs 9.3). We
fi rst take mss value as stored in tp → mss_cache . In the case where the NETIF_F_SG
bit is not set for sk → route_caps (hardware is capable of doing scatter – gather), we
calculate the length of the buffer; that is, 1 page — (MAX_TCP_HEADER + size of
object skb_shared_info) by using macro SKB_MAX_HEAD (cs 9.4). MAX_TCP_
HEADER is the maximum number of bytes occupied by TCP + IP + link layer
headers along with options (cs 9.5). The end of the linear area of sk_buff should
contain object skb_shared_info . So, SKB_MAX_HEAD macro called at line 1001
should return the actual TCP payload bytes that can be accommodated within a
page.

 Continuing with select_size() at line 1003, we check if the space left in a page
can make a full - length TCP segment. If yes, it means that a complete segment can
be accommodated in a single page. Otherwise, mss is big enough to be accommo-
dated in a single page and we need to allocate pages in paged data area of sk_buff
to make a full segment. We can allocate maximum up to (MAX_SKB_FRAGS − 1)
pages for a single sk_buff . If our mss can be accommodated in a a single sk_buff ’ s

 cs 9.2. tcp_memory_free().

TRANSMIT SIDE TCP MEMORY MANAGEMENT 295

paged data area, we return bytes returned by SKB_MAX_HEAD as pages can be
allocated for the rest of the data. Otherwise, complete mss is returned wherein we
need to allocate a big chunk of memory for sk_buff ’ s linear area. In a nut shell,
 select_size() returns 1 page of data in case our hardware is capable of doing scatter –
 gather, given that the complete segment can be accommodated in paged area of
single sk_buff . In all other cases, 1 mss is returned for the linear data area of
 sk_buff .

 9.1.2 tcp _ alloc _ pskb ()

 This routine returns buffer (sk_buff) with pointer to the linear data area of size as
requested. First we call alloc_skb() with linear data area length that is split as size
of TCP payload (size) + MAX_TCP_HEADER at line 1712 (cs 9.6). If we are able
to allocate sk_buff with the required length of linear data area, we need to check
if our quota allows us to do that. skb → truesize contains the total length of memory
allocated for this buffer, which includes (size of sk_buff object + length of linear
data area). We will learn this in the next section. Next we will check if memory to
be forward allocated for the socket is more than total size of the buffer allocated

 cs 9.3. select_size().

 cs 9.4. Calculation of memory size for sk_buff.

 cs 9.5. Maximum header size for a TCP packet, taking into account TCP/IP options and link layer

header length.

296 TCP MEMORY MANAGEMENT

(skb → truesize) at line 1716. If not, we need not worry and return a buffer at line
1719. Otherwise, we check if we can allocate required amount of memory for the
buffer by calling tcp_mem_schedule() at line 1717. In the case where we are able to
allocate memory for the buffer, we return the pointer to the allocated buffer. Learn
more about scheduling of memory in Section 9.1.6 .

 In the case where we are not able to allocate memory for the buffer, we need
to enter a TCP memory pressure zone by calling tcp_enter_memory_pressure() and
also call tcp_moderate_sndbuf() to moderate our send buffer at line 1724. We enter
memory pressure to globally let all the users of TCP sockets in the system know
that we have memory crunch and need to wait until we memory is available. We
moderate out send buffer so that we wait for memory to be available before even
trying so hard (tcp_memory_free() should fail, Section 9.1).

 9.1.3 alloc _ skb ()

 The routine can also be called from interrupt context. So, we need to check if it is
called from interrupt context and __GFP_WAIT fl ag is set. If so, we should disable
the fl ag because we can ’ t sleep in interrupt context; otherwise it will freeze the
system. First, we try to allocate a buffer head (sk_buff object) from the pool by
calling skb_head_from_pool() at line 180 (cs 9.7). We keep some of the freed sk_
buff ’ s in this pool so that we don ’ t need to knock at the cache for getting sk_buff
object, which is expensive. If we fail here, we allocate sk_buff from cache at line
182. If we don ’ t get an sk_buff object from cache, we return NULL. We now allocate
a memory chunk requested for the linear data area of sk_buff object by calling
 kmalloc() at line 189. If we succeed in getting the memory chunk, we initialize a
 truesize fi eld of sk_buff to the size of memory block requested + size of sk_buff
object at line 194. Next we make the head of the buffer point to the start of the
memory chunk at line 197. We do other initializations here, but it is of no relevance
to the topic.

 cs 9.6. tcp_alloc_pskb().

TRANSMIT SIDE TCP MEMORY MANAGEMENT 297

 9.1.4 tcp _ alloc _ page ()

 This routine is called when we want to allocate a page for a TCP buffer (paged area
of sk_buff object). This is called from tcp_sendmsg() at line 1116. We fi rst check if
we have already consumed all the forward allocated memory (sk → forward_alloc)
at line 1736 (cs 9.8). We allocate memory in multiples of page size. We learn more
about sk → forward_alloc in Section 9.1.6 . We try to look for the possibility of allo-
cating the single page memory quota for our socket by calling tcp_mem_schedule()

 cs 9.7. alloc_skb().

 cs 9.8. tcp_alloc_page().

298 TCP MEMORY MANAGEMENT

at line 1737. If permission is granted, alloc_page() is called to allocate a single page
of memory.

 In the case where we are not allowed additional page quota or a new page could
not be allocated, we know that there is memory pressure. So, we call tcp_enter_
memory_pressure() to declare socket users that there is memory crunch for TCP
memory pool. We also try to moderate the send buffer size so that we may not have
to come along so far next time.

 9.1.5 skb _ charge ()

 Whenever we allocate a buffer (sk_buff) to send data over the socket, this routine
is called to account for memory used by a socket. sk → wmem_queued is the amount
of memory used by the socket send buffer queued in the transmit queue and are
either not yet sent out or not yet acknowledged (cs 9.9). We add the size of the
buffer to sk → wmem_queued . We also decrement socket ’ s forward_alloc fi eld by the
size of the buffer. We allocate memory in multiple pages in tcp_mem_schedule() .
Whenever we free a socket buffer, this fi eld is incremented by size of the socket
buffer. More details are given in Section 9.1.7 .

 9.1.6 tcp _ mem _ schedule ()

 We are called whenever the forward allocated memory is exhausted, which means
that the requirement of memory for a new socket buffer is less than the total
memory currently available in the socket ’ s quota (sk → forward_alloc). We are called
from memory allocation routines such as tcp_alloc_page(), tcp_alloc_pskb() , and so
on. We get the size of buffer to be allocated. This routine does all the required
checks before actually allocating memory for the socket ’ s buffer. These checks will
be system - wide TCP memory pressure, socket ’ s memory quota, and so on; and if
all the condition ’ s are satisfi ed, we get the requested quota.

 First we round off the memory requirements to multiple of TCP_MEM_
QUANTUM size (1 page) by using macro TCP_PAGES at line 289 (cs 9.10). This
provides us the number of pages that we need to allocate. So, we add total memory
calculated to sk → forward_alloc at line 291. Add total memory allocated to a global
TCP memory pool, tcp_memory_allocated , at line 292. Now we check if the total
memory allocated via the TCP memory pool has exceeded the lower limit on the
TCP memory pool (sysctl_tcp_mem[0]) at line 295. If the memory pool is not
exceeded and memory pressure is indicated, we put off memory pressure at line
297. If memory allocated to TCP is underutilized, we should remove TCP memory
pressure and we reach the requested memory quota.

 cs 9.9. tcp_charge_skb().

TRANSMIT SIDE TCP MEMORY MANAGEMENT 299

 cs 9.10. tcp_mem_schedule().

 If total memory allocated for the TCP pool has exceeded the higher limit
(sysctl_tcp_mem[2]), we enter memory pressure by calling tcp_enter_memory_
pressure() at line 303. This routine sets tcp_memory_pressure to 1, in case it is not
already set. We need to suppress allocation at this condition because we cannot
utilize all the available memory for TCP socket requirement. So, we jump to line
327. If we have come here for send buffer memory requirements, we still have a
chance to allocate memory. For this we fi rst try to moderate send buffer size by

300 TCP MEMORY MANAGEMENT

calling tcp_moderate_sndbuf(). If we are able to shrink the same, we make sure
that next attempt to send tcp data will block for memory as tcp_memory_free() fails
and we return success . . . Finally we reclaim whatever memory we allocated at the
entry. sk → forward_alloc and tcp_memory_allocated are subtracted by the amount
allocated, because we could not succeed.

 In case we have not reached a hard limit, we check if we are entering a pressure
zone at line 308. If so, we just mark TCP memory pressure by calling tcp_enter_
memory_pressure() . In this case, we can allocate memory if the socket ’ s buffer limit
has not reached. If we have come here for receive buffer requirement and receive
buffer memory allocated so far, (sk → rmem_alloc) is below receive allocation limits
for the socket (sysctl_tcp_rmem[0]), and we got the allocation approved (line 312).
If we are here for send buffer requirements and send buffer allocated so far, (sk →
 wmem_queued) is below send buffer allocation limit (sysctl_tcp_wmem[0]), and we
got our allocation approved (line 315). In both cases if we fail because we have
reached the memory allocation limits, we still have a chance to get our allocation
approved in the following circumstances:

 1. There is no memory pressure or,
 2. If we consider the average memory consumed by each allocated socket in

the system (tcp_sockets_allocated) the same as memory consumed by this
socket (sk → wmem_queued + sk → rmem_alloc + sk → forward_alloc), the
total memory consumed should not exceed the hard limit for TCP memory
allocation (sysctl_tcp_mem[2]).

 If any of the above conditions is TRUE, we can still get approval for the
memory requirements. Otherwise we will dishonor the request.

 9.1.7 tcp _ free _ skb ()

 This routine is called whenever we are freeing sk_buff allocated for TCP sockets.
For example, we call this when a TCP segment in the retransmit queue is acknowl-
edged. Here we set queue_shrunk fi eld of tcp_opt object to 1 so that if there is a
memory requirement for send buffer, we can wake up the socket as soon as we call
 tcp_data_snd_check() next (see Section 11.3.11). The queue_shrunk fi eld indicates
if some memory is released because write queue has shrunk. Next we decrement
the memory allocated for send buffer by size of buffer being freed at line 1674 and
also increment forward allocated memory (sk → forward_alloc) by size of the buffer
being released; this memory goes in the socket ’ s pool (cs 9.11). Finally we call __
kfree_skb() to release the socket by calling the destructor routine for the buffer.
For send buffer, this destructor routine is sock_wfree() .

 9.1.8 sock _ wfree ()

 This is a destructor routine for send buffer and is a common routine for any type
of socket. It is called when the buffer (sk_buff) is being freed. It decreases total
write memory allocated (sk → wmem_alloc) by size of the buffer. If confi gured, we
wake up the socket by calling sk → write_space (= sock_def_write_space()) at line 652
to wake up the socket, in case it is waiting for memory requirements for send
buffer.

TRANSMIT SIDE TCP MEMORY MANAGEMENT 301

 9.1.9 tcp _ write _ space ()

 This is a callback routine for write side TCP socket called whenever write queue is
shrunk (send buffers are freed). Since write queue has shrunk (TCP segments are
being acknowledged), there may be chance that the socket may be waiting for
memory availability to write data over the socket. So, we call this routine to check
if the write queue has shrunk enough to wake up the socket waiting for memory.
The condition here is that the total memory left to completely exhaust the write
socket buffer (returned from tcp_wspace()) should be at least equal to half of
the memory allocated for the write socket buffers (sk → wmem_queued), line 468
(cs 9.13).

 cs 9.11. tcp_free_skb().

 cs 9.12. sock_wfree().

 cs 9.13. tcp_write_space().

302 TCP MEMORY MANAGEMENT

 If the condition is TRUE and some process is waiting for socket ’ s wait queue
(line 471), we wake up the process by calling wake_up_interruptable() at line 472
because memory is now available. tcp_wspace() returns the amount of space left in
the write queue to complete exhaust the send quota. tcp_min_write_space() returns
half of the space occupied by the write queue (cs 9.14).

 9.1.10 tcp_ mem _ reclaim ()

 This routine is called to reclaim the memory allocated for the socket ’ s memory pool
to TCP memory pool if the forward allocated memory for the socket is more than
a unit of TCP memory allocation (1 page). It may happen that a lot of memory is
being allocated for the socket ’ s send buffer and the socket ’ s memory pool is not
being reused because a huge number of segments are transmitted before any one
is acknowledged (high send window). Once all of these segments are acknowledged,
the socket ’ s memory pool (sk → forward_alloc) becomes huge even if it not being
utilized fully, also consuming a huge amount of memory from a system - wide common
TCP memory pool causing memory pressure (cs 9.15). So, frequently we need to
check if we can reclaim memory from a socket ’ s memory pool. This routine is called
from timer callback routines such as tcp_delack_timer(), tcp_write_timer(), and so
on.

 9.1.11 __ tcp _ mem _ reclaim ()

 In the case where the socket ’ s memory pool contains more than a unit of TCP
memory allocation (TCP_MEM_QUANTUM), we return a number of pages con-
tained in the socket ’ s memory pool from global TCP memory pool (tcp_memory_
allocated), line 346 (cs 9.16). This will make availability of TCP memory globally.

 cs 9.14. tcp_min_write_space().

 cs 9.15. tcp_mem_reclaim().

TRANSMIT SIDE TCP MEMORY MANAGEMENT 303

Next we keep a number of bytes, if at all left, within a page in the socket ’ s memory
pool, line 347. If there is a memory pressure and the total memory allocated from
global TCP memory pool is less than the lower limit on the memory allocation
(sysctl_tcp_mem[0]), we release memory pressure at lines 348 – 350.

 9.1.12 wait _ for _ tcp _ memory ()

 This routine is called when we need to wait for memory to be available for a send
socket buffer. We call this routine in two cases:

 • Either socket send buffer quota is full (sk → wmem_queued > = sk → sndbuf).
 • There is memory pressure and we have not exhausted our send buffer

quota.

 Let ’ s see how it works. We check if the routine is called because we could not allo-
cate a quota for the socket because of memory pressure. The fact that the socket ’ s
send buffer quota is not yet exhausted is an indication of this, line 695. If that is the
case, we need to set a new timeout value at line 696, so that we can wait for some
time for some more free memory to be available with the system. Next we loop
until one of the events happens:

 • The socket encounters an error or the send side of the socket has been shut
down, line 704 (cs 9.17).

 • The timeout value has expired, line 706. In the fi rst iteration we can get out
of the loop if we are nonblocking.

 • We obtained a signal. We check this by calling signal_pending() at line 708.
We may get a signal because of which we are awakened from sleep.

 • We obtained the socket ’ s send buffer quota and we are not waiting for system
to free more TCP memory, line 711. If we are called because the socket ’ s send
buffer was exhausted and now tcp_memory_free() returns TRUE, it means
that the send buffer quota is now available. In this case, we should not wait
for VM timewait. In the case where we had come here because the system
memory in general is not available but the socket ’ s send buffer quota exists,
we should at least wait until VM timeout occurs so that some system memory
is freed by now. VM timeout is calculated at line 696.

 cs 9.16. __tcp_mem_reclaim().

304 TCP MEMORY MANAGEMENT

 cs 9.17. wait_for_tcp_memory().

 In each iteration, set the current task state to TASK_INTERRUPTIBLE , line 702.
We set SOCK_NOSPACE fl ag for the socket, line 714. Next we need to wait for
memory to be available at line 717 in any of two cases:

 • The socket ’ s send buffer quota is exhausted.
 • We have come here because of system memory crunch and our VM timeout

is not exhausted.

 If any of the above cases is TRUE, we call schedule_timeout() to wait for speci-
fi ed time, line 718. We don ’ t hold a socket lock while going to sleep, so we release
the socket lock at line 716. Once we are awakened because of timeout or we got a
signal or somebody woke us up because the socket ’ s send buffer has shrunk, we
hold the socket ’ s lock at line 719 and proceed.

 When we return from schedule_timeout() and VM timeout is set, we need to
recalculate the timeout value. In case we are interrupted, schedule_timeout() returns
the time left in expiry of scheduled timeout. We reset VM timeout at line 728. If
we are not woken up because of signal, we might have timed out or we are woken
up because some one released TCP memory and woke us up. In the second itera-
tion, we will block only if TCP memory crunch still exists (tcp - memory - free()
returns FALSE) because VM timeout will be reset in fi rst iteration in any case. In
all the cases, we break from the loop. We come out of the loop, so we should set
ourselves to the TASK_RUNNING state and remove ourselves from socket ’ s wait
queue, sk → sleep , at lines 733 – 734. In case of the nonblocking systemcall or if we
have timed out, we set the error number to EAGAIN at line 741. In case the send
side of socket has shut down, we set the error number to EPIPE at line 738. In case
we are interrupted because of signal, we set the error number to ERESTARTSYS
or EINTR depending of whether we were blocked forever or not, line 744.

 9.2 RECEIVE SIDE TCP MEMORY MANAGEMENT

 In this section we will see how memory is managed for receive socket buffers. We
take a snapshot of tcp_rcv_established() to learn about socket buffer memory man-
agement. When we get a data segment, it gets processed in tcp_rcv_established() . If
we got a data segment containing new data and data could not be copied to the user
buffer, we need to queue it in the receive queue (sk → receive_queue). For queuing
the received segment, we will consume the socket ’ s resources such as memory. The
socket ’ s receive buffer quota should be accountable for queuing the received
segment. Refer Fig. 9.7 for overview on receive side TCP memory management.

 First we check if the memory requirement for the current segment (including
size of sk_buff) can be satisfi ed from the already allocated socket ’ s pool of memory
(sk → forward_alloc) at line 3337 (cs 9.18). If not, we need to allocate a fresh quota
for socket ’ s memory pool, which we discuss later. In case we are able to satisfy the
buffer requirement from the already allocated socket ’ s memory pool, we queue the
received buffer by pulling off the data fi eld to point to the start of TCP payload in
 sk_buff . The buffer is queued up in the socket ’ s receive_queue at line 3344. Next
we account for the queued segment by calling tcp_set_owner_r() at line 3345.

 tcp_set_owner_r() is called to account for the new segment queued to the
socket ’ s receive buffer. We associate buffer with the socket at line 1760 (cs 9.19).

RECEIVE SIDE TCP MEMORY MANAGEMENT 305

306 TCP MEMORY MANAGEMENT

Destructor callback routine for the buffer is initialized to tcp_rfree() at line 1761.
Next we account for memory allocated for the new receive buffer at line 1762. sk →
 rmem_alloc contains total memory allocated for the socket ’ s receive buffer so that
we can keep check on total allocation for the socket ’ s receive queue. We take this
fi eld into account while advertising the receive window. Since memory allocated for
the buffer is taken from the socket ’ s memory pool (sk → forward_alloc), we need to
account for it at line 1763.

 Continuing with our discussion, we may face a condition where the socket ’ s
pool of memory is below the memory requirements for queuing a new buffer while
processing a received segment in tcp_rcv_established(). In this case the segment is
processed in tcp_data_queue() . In case we have received in - sequence or out - of -
 order data segment, memory management is done in the same way if the segment
needs to be queued. For in - sequence data received, processing is done at lines

 cs 9.18. tcp_rcv_established().

 cs 9.19. tcp_set_owner_r().

2569 – 2578; for an out - of - order data segment, it is done at lines 2644 – 2657 (cs
 9.20).

 Let ’ s see how we proceed when the socket ’ s memory pool is exhausted and we
need to allocate a fresh quota pool for the socket from global TCP memory pool.
First we check if total memory allocated for receive side socket buffer (sk → rmem_
alloc) has exceeded the limit (sk → rcvbuf). The situation arrives when:

 • The application is not getting the chance to read data queued up at the sock-
et ’ s receive queue.

 • We have received a huge amount of out - of - order segments.

 In the above case, we have a different strategy to manage some memory from
the socket ’ s pool. Now, we will look at a simpler case where the socket ’ s receive
buffer is still not full but the socket ’ s pool of forward allocated memory is exhausted
such that a new segment can ’ t be accommodated. In this case, the condition at line
2571 fails and we call tcp_rmem_schedule() at line 2572 (cs 9.20).

 tcp_rmem_schedule() checks if memory required for the received buffer (skb →
 truesize) is available from the socket ’ s memory pool (sk → forward_alloc), line 2516
(cs 9.21). In our case, we have come here because the socket ’ s memory pool has
become exhausted. In this case, we try to allocate memory to the socket ’ s memory
pool from the global TCP memory pool by calling tcp_mem_schedule() . For more

 cs 9.20. tcp_data_queue().

RECEIVE SIDE TCP MEMORY MANAGEMENT 307

308 TCP MEMORY MANAGEMENT

details on tcp_mem_schedule() , see Section 9.1.6 . Let ’ s return to our discussion at
line 2572 (cs 9.20). We got the requested memory for the receive buffer to the
socket ’ s memory pool from the TCP global memory pool. So, we need to account
for the receive buffer by calling tcp_set_owner_r() at line 2576.

 tcp_set_owner_r() is called to account for read side socket buffer memory. We
fi rst associate the received buffer with the socket at line 1760 at cs 9.19 . The destruc-
tor callback routine is initialized to tcp_free() , which will be called when the buffer
is freed. We need to account for allocated memory toward the read side buffer
allocation (sk → rmem_alloc) at line 1762. We allocate this memory from the socket ’ s
memory pool (sk → forward_alloc), so we need to account for the socket buffer
allocated.

 Continuing with our discussion on tcp_data_queue() , what do we do if our read
side memory quota is full, which means that the condition at line 2571 is TRUE?
We call tcp_prune_queue() to check if we can squeeze in a receive queue and an
out - of - order queue to generate some space for the arrived buffer. In the worst case
we may also discard segments received out - of - order in order to generate space for
the new in - sequence received data.

 9.2.1 tcp _ prune _ queue ()

 tcp_prune_queue() is called when socket has exhausted its quota of receive buffer.
The idea is that we can still try to generate some space out by collapsing queues. If
we have come here because our quota for the receive buffer has exhausted (line
2878, cs 9.22), we try to increase the quota for the receive buffer and also pull up
the receive window by calling tcp_clamp_window() . The quota for the receive
window can be increased in case we don ’ t have memory pressure as far as the TCP
memory pool is concerned. See Section 9.2.2 for details on tcp_clamp_window() .
On the other hand, if we have come here because of TCP memory pressure, we
reduce receive a slow - start threshold to a minimum of 4 mss. We do this in order to
restrict the window advertised to the sender to low value so that it can ’ t transmit a
huge amount of data. See Section 11.3.7 for more details.

 Next we try to collapse an out - of - order queue by calling tcp_collapse_ofo_
queue() at line 2883. Here we try to collapse a contiguous block of received segments
based on some conditions. For more details see Section 9.2.3 . Next we try to gener-
ate some space out by squeezing the receive queue (tp → receive_queue) at line 2884
by calling tcp_collapse() . If We have come here because of memory pressure, it
means that we may still have a quota in the socket ’ s memory pool. In the case where
the socket ’ s memory pool has enough memory but not enough for the caller, we try
to release some memory from the socket ’ s memory pool to the global TCP pool.
We do this because the caller tries to allocate memory to the socket ’ s memory pool
from the global memory pool on return.

 cs 9.21. tcp_mem_schedule().

 cs 9.22. tcp_prune_queue().

 The next step is to check if we have generated some space after all the efforts.
If so, we return at line 2890. Otherwise we have one more way of fi nding some space
for the new arrival. We try to release buffers from an out - of - order queue by calling
 __skb_queue_purge() at line 2898, in case there are any. If SACK is enabled, we try
to reset the SACK state by calling tcp_sack_reset() at line 2906. In this case, the
next ACK will not have any SACK information and the peer should sense this and
clear all the segments marked SACKed in its retransmit queue. We check if we have
some space after purging an out - of - order queue at line 2910. If we succeed, return.
Otherwise we badly failed after all the efforts, so we disable a fast path by resetting
prediction fl ags at line 2920. It means that when the next segment arrives, it neces-
sarily has to take a slow path in tcp_recv_established() .

 9.2.2 tcp _ clamp _ window ()

 The routine is called when the socket ’ s receive side memory is exhausted com-
pletely, which means that the memory allocated for the receive side socket buffers
(tp → rmem_alloc) has exceeded the maximum limit on the allocation (tp → rcvbuf).
This may happen because of two reasons:

 1. Out - of - order segments have arrived eating up the receive buffer quota.
 2. Application is not reading data.

RECEIVE SIDE TCP MEMORY MANAGEMENT 309

310 TCP MEMORY MANAGEMENT

 Both of these can in some proportion cause the socket to hit a memory bound. We
fi rst try to see if an out - of - order segment has contributed to memory consumption.
So, we walk down the out - of - order queue (tp → out_of_order_queue) at lines 322 –
 324 (cs 9.23) and calculate the total memory occupied by TCP data. Next we check
if the memory is consumed by an out - of - order queue, and we try to increase the
quota for the receive buffer. The reason for this is that the segments may be reor-
dered in the network, thereby causing segments to reach out - of - order. So, we try
to stretch the quota for the receive buffer because the missing segments may appear
any time that may cause an application to read the entire data. We can increase the
quota on the receive buffer under the following conditions:

 1. Receive buffer quota is below sysctl_tcp_rmem[2] , which means that we have
not yet come here for the socket.

 2. Receive buffer lock is not held (it is held when the socket buffer is being
modifi ed by the user).

 3. TCP memory pressure does not exist.
 4. Total memory allocated through the TCP memory pool (tcp_memory_

allocated) is below lower limits (sysctl_tcp_mem[0]).

 If all the above condition ’ s apply, we raise the quota on the receive buffer to
 sysctl_tcp_rmem[2] at line 334.

 cs 9.23. tcp_clamp_window().

 If the memory bound has come because application is not consuming TCP data,
we don ’ t try increasing the quota on the receive buffer. The reason for this is either
lack of resources or misbehaving application.

 Next we check if the total memory allocated for the receive buffer is still exceed-
ing the quota. The condition may be false in the case where we got chance to raise
the quota on the receive buffer to sysctl_tcp_rmem[2] . If so, we return. Otherwise,
we try to reduce the window clamp and receive a slow - start threshold value. The
window clamp puts a cap on the window size advertised, and a slow - start threshold
value puts a limit on the window to be advertised at any instance (see Sections 11.3.7
and 11.3.5).

 We fi rst calculate the total TCP data stuck in an out - of - order segment and the
receive queue (application window) at line 337. If the memory allocated for received
buffers has reached double the limit on the receive quota (tp → rcvbuf), we half the
total TCP data received at line 339. We modify the window clamp to the minimum
of current window clamp and application window calculated only if there was no
contribution from an out - of - order queue, line 345. The receive slow - start threshold
value is calculated as the minimum of window clamp and twice mss (advertised at
the time of three - way handshake).

 9.2.3 tcp _ collapse _ ofo _ queue ()

 Routine is called to collapse an out - of - order queue whenever memory quota for
the receive queue is full to make some space for the newly arrived data segment.
The idea is to fi nd out buffers containing contiguous data and pass the chain of
buffers to tcp_collapse() to try to collapse buffers in the chain. Let ’ s see how we
fi nd segments with contiguous sequence space.

 We start with the fi rst buffer of the out - of - order queue and record the start and
end sequence for this buffer at line 2835 – 2836, which will be the collapsible sequence
space. We mark this buffer as the head of the chain at line 2837. Now we enter the
loop 2839 – 2860 to start processing an out - of - order queue to fi nd out contiguous
buffers.

 In each iteration we do the following:
 We get a pointer to the next buffer in the queue at line 2840. Next we check if

we need to collapse the chain. We do so in the following situation (we do all the
checks with respect to the buffer accessed at line 2840):

 1. If this is the last buffer in the queue at line 2844.
 2. If the buffer comes after a hole in the TCP sequence space, line 2845. This

can be detected from the sequence space for the segment being processed.
 3. If the start sequence of the segment is more than the end of sequence space

recorded so far.
 4. If the hole is detected at the end of the current buffer — that is, the end

sequence of the buffer is more than the start sequence recorded so far.

 In the case where none of the conditions satisfy, the current buffer is contiguous
with the buffer ’ s inspected so far. So, we need to inspect the next buffer. Before
doing that, we need to check if we need to expand the sequence space for collapse.
So, we modify the collapsible start sequence to the start sequence of the buffer
just inspected, in the case where the start sequence of the buffer is less than the

RECEIVE SIDE TCP MEMORY MANAGEMENT 311

312 TCP MEMORY MANAGEMENT

collapsible start sequence recorded so far at lines 2855 – 2856 (cs 9.24). If the end
sequence of the buffer is beyond the end sequence recorded so far for collapse, we
record the end sequence for the buffer as a new value for the collapsible end
sequence, lines 2857 – 2858.

 In the case where we fi nd the gap in the sequence space — that is, one of the
condition ’ s TRUE at lines 2844 – 2846 — we need to try to collapse the buffers
between start and end sequence space recorded so far. The fi rst buffer is the one
marked as head, and the last buffer is the one just inspected. We call tcp_collapse()
at line 2847. Once we return from tcp_collapse() , we need to mark new head as the
one just inspected because it will be the start of the new chain of buffers after the
gap. The new collapsible sequence space is taken from the head of the buffer, and
we start over again in the loop trying to fi nd the new gap.

 9.2.4 tcp _ collapse () (see cs 9.26 , unless mentioned)

 In this routine we try to merge those segments, which are as follows:

 cs 9.24. tcp_collapse_ofo_queue().

 1. Bloated segments where TCP data are very less as compared to total buffer
size.

 2. Overlapping of segments.

 New buffers are created with size (skb → truesize) of around one page. Data
from overlapping/bloated segments are copied into buffers of size one page. This
will save us a lot of memory and will make room for a new segment when the receive
queues are full. Let ’ s see how this is achieved.

 We would like to merge all the segments between a specifi ed sequence space.
So, start sequence, end sequence, start buffer, and the end buffer are fed to the
routine by the caller. The chain of buffers passed to the routine don ’ t have any holes
in it.

 We start with fi nding a segment that can be the starting point for the collapse
process. Start traversing the list starting from the start buffer toward the end in the
loop 2741 – 2767. The fi rst condition we check is the segment we are not interested
in. In the case where the end sequence of the segment is before the start sequence
we are interested in (line 2743), we remove the buffer from the queue and continue
with the next buffer in the list.

 Next we check for the buffer that can be the start of a collapse operation. For
a segment to be collapsed, the following conditions should be satisfi ed:

 1. The segment should not be tagged as SYN/FIN, line 2757.
 2. The segment should be bloated, line 2758.
 3. The segment should be overlapping with the previous segment, line 2759.
 4. The segment is overlapping with the next segment, lines 2760 – 2761.

 We don ’ t collapse the SY/FIN segment because it will add complexity to the
situation later. By bloated segment we mean that the overall size of the buffer is
much higher in comparison to the TCP payload it carries. s kb → truesize is the total
memory allocated for the buffer which accounts for buffer header (sk_buff object)
and the number of bytes allocated for buffer data (containing actual packet). If the
size as returned by tcp_win_from_space() is greater than the length of the TCP
payload (skb → len), we consider this as bloated. On my machine, tcp_win_from_
space() returns three - fourths of the value passed to the routine as sys_tcp_adv_win_
scale is set to 2 (cs 9.25).

 I think we have sysctl_tcp_adv_win_scale to compensate for the sk_buff header
which accounts for the total receive memory usage. When the buffer is queued in
any of the receive queues (including out - of - order queue), skb → len sums to the

 cs 9.25. tcp_win_from_space().

RECEIVE SIDE TCP MEMORY MANAGEMENT 313

314 TCP MEMORY MANAGEMENT

length of the TCP payload as all the headers are stripped by this time. So, the fi nal
equation sums to the following: If three - fourths of the total memory allocated by
the buffer is greater than the total TCP payload the buffer carries, a big proportion
of memory allocation has come from infrastructure overhead, that is, buffer head
(sk_buff). In this case we try to collapse this segment.

 The next case is overlapping segments. It may happen that the segments queued
do overlap. Overlapping segments have common data and also have the packet
header overhead, which also contributes to memory consumption. Each TCP
segment queued in the receive queue amounts for sk_buff overhead and memory
occupied by protocol headers which is no more required.

 Let ’ s say in the fi rst iteration of the loop we didn ’ t get any of the segments sat-
isfying the criteria to be considered as a collapsible segment. We move on to the
next segment at line 2766; before doing so, we replace our start sequence with the
end sequence of the buffer being examined at line 2765. This is to detect overlap-
ping; moreover, we can ’ t collapse the segment that contains the start sequence
number from the previous segment.

 Let ’ s assume we fi nd a segment that is considered collapsible, so we break from
the loop at line 2762. First we check that the buffer we are currently pointing to
should not be SYN/FIN or the last segment in the chain to be examined at line 2768.
We break from the loop only under two conditions: Either we have reached the
end of the chain or we have found the collapsible buffer. If the buffer is found to
have a SYN/FIN fl ag outside the loop, it necessarily means that this is the last buffer
in the chain to be examined.

 If we have found the collapsible segment, next we start with the process to col-
lapse the buffers in the loop 2771 – 2819. The fi rst thing we do at the start of the loop
is to allocate a new buffer with true size of one page irrespective of the size of the
segment being collapsed. For doing this, we actually need to calculate the exact size
that should be passed to alloc_skb() . To alloc_skb() , we should pass the total length
required for storing protocol headers (TCP + IP + link layer) and TCP payload.
The routine itself allocates space for skb_shared_info at the end of the linear data
area as shown in Fig. 9.2 . We also want to restrict the total memory allocated for
the buffer to be within one page, that is, skb → truesize to be one page. For this we
need to calculate the header length for the collapsible segment as the rest of the
parameters are fi xed. skb_headroom() will actually return us the size occupied by
the protocol headers at line 2773. Now we can calculate the total length that should
be requested to skb_alloc() . Since we want total allocation for the buffer to not to
exceed one PAGE, we calculate the size of the linear data area to be one PAGE

 Figure 9.2. Memory layout of network buffer.

(size of sk_buff + protocol header length + size of skb_shared_info), lines 2774 –
 2775. Since we have already calculated protocol header length, we pass the length
of the linear data area as calculated above + protocol header length to skb_alloc() .
So fi rst we try to fi ll a new segment by copying data from collapsed segments and,
once the segment is full, allocate new buffer in the same way as described above.
In this loop we will cover all the segments until the end of sequence space has
reached.

 Once we have allocated a new buffer, the next step is to copy data from the
collapsed buffers. First, reserve space to copy protocol headers at the head of the
linear data area by calling skb_reserve() at line 2785. Now copy the header from an
identifi ed buffer to the new buffer at line 2786. We initialize certain sk_buff pointers
that point directly into the linear data area to the start of protocol headers, lines
2787 – 2789. Copy the TCP control block at line 2790. Initialize the start and end
sequence as a start sequence number for the new buffer at line 2791, and insert a
new buffer prior to the buffer identifi ed to be collapsed at line 2792. Next we
account for the memory allocated for the new buffer from the socket ’ s memory
pool by calling tcp_set_owner_r() .

 Next we need to copy the TCP payload from the collapsed buffers to the new
buffer. We continue to copy data from the collapsed buffers to the new buffer until
there is no space left in the new buffer. So, we may have n buffers collapsed to a
single new buffer or n buffers collapsed to new m buffers where n > m . We can save
on buffer head overhead (sk_buff) and also on overlapping segments. The loop
where we copy data to the new buffer is lines 2796 – 2818. We fi rst take the offset
into the segment that needs to be collapsed from the start sequence number that
needs to be collapsed at line 2797.

 Next we calculate the total data that need to be copied from the segment from
the start sequence number for data to be copied and the end sequence number for
the segment at line 2798. If there are data from the collapsible segment to be copied,
we take minimum of the data left in the collapsible segment for copying and space
available in the new segment at line 2802. Next we copy data by calling skb_copy_
bits() at line 2803. The third argument to skb_copy_bits() is a function call that will
make room for new data to be copied in the new buffer and return the pointer to
the location where data should go (skb → data). Increment the end sequence for the
new buffer to indicate the sequence space it covers at line 2805. Account for the
number of bytes copied at line 2806 and increment the start of the sequence number
that needs to be copied next at line 2807. Next we check if all the data from the
collapsible segment are copied at line 2809. If so, we need to unlink the copied col-
lapsible segment from the chain and take the get next collapsible buffer for copying
data. So, we call __skb_unlink() to remove the copied buffer from the chain at line
2811 and point to the next collapsible buffer at line 2814. If the new buffer has a
SYN/FIN tag set or it is the last segment in the chain (line 2815), we stop there.

 Just to explain how it works, we can assume that there are ‘ n ’ buffers passed
to tcp_collapse() each of size TCP payload X bytes. New buffer generated to replace
the collapsed ones can accommodate 2X bytes of TCP payload. Also assume that
none of the buffer ’ s have sequence spaces overlapping and there is no gap in the
sequence spaces of the buffers. Figure 9.3 shows four buffers with contiguous TCP
sequence spaces and rest of them are not shown. In Fig. 9.4 , we have gone through
fi rst iteration and have copied the header from the fi rst buffer in the new buffer and
X bytes from the collapsed buffer to the new buffer. In Fig. 9.5 , we have copied
data from the second collapsible buffer into the new buffer. Now the new buffer is

RECEIVE SIDE TCP MEMORY MANAGEMENT 315

316 TCP MEMORY MANAGEMENT

 cs 9.26. tcp_collapse().

 Figure 9.3. There are four buffers in the receive queue when we need to collapse the queue.

 Figure 9.4. The new buffer is allocated and the fi rst buffer is copied to the new buffer.

full and for the third buffer we have once again allocated a new buffer and copied
the header from the third buffer into the new buffer. Once we have copied the TCP
payload from the fourth buffer to the second new buffer, the fi nal picture is as shown
in Fig. 9.6 . So, four segments are collapsed to two segments eliminating the overhead
of two buffer heads.

 9.2.5 __ skb _ queue _ purge ()

 This routine is called to destroy the chain of buffers. It is mainly called to destroy
an out - of - order queue when facing an acute shortage of resources. __skb_dequeue()
returns the head of the chain and also removes the buffer from the chain (cs
 9.27).

RECEIVE SIDE TCP MEMORY MANAGEMENT 317

318 TCP MEMORY MANAGEMENT

 Figure 9.5. Data from two adjacent buffers are accommodated to a single page of the new

buffer.

 Figure 9.6. Finally we have two new buffers replacing four old buffers after collapsing the

queue.

 cs 9.27. __skb_queue_purge().

 9.3 FREEING OF MEMORY ALLOCATED TO A RECEIVE BUFFER

 Memory is returned to the socket ’ s memory pool when data are read from the
receive queue in tcp_recvmsg() by calling tcp_eat_skb() . This routine frees the
buffer by calling __kfree_skb() , which calls the destructor callback routine of the
receive buffer, tcp_rfree() (cs 9.28). In this routine, we deduct the size of the buffer
(skb → truesize) from the total allocated memory for a read side socket buffer (sk →
 rmem_alloc). This will make room for one more data segment in the receive queue.
Next we return memory associated with the buffer to the socket ’ s memory pool
(sk → forward_alloc) at line 359.

 9.4 SYSTEM - WIDE CONTROL PARAMETERS ARE WORTH NOTICING
WHEN IT COMES TO TCP MEMORY MANAGEMENT

 tcp_ memory _allocated : This is the total memory allocated to the TCP sockets
system - wide.

 sysctl_ tcp _ mem [0] : Memory allocated for TCP socket buffers is within limit,
 tcp_memory_pressure is reset.

 sysctl_ tcp _ mem [1]: Under pressure. Pressure starts when overall TCP memory
allocated just reaches this limit. We set global variable tcp_memory_pressure
to indicate that TCP memory pressure has begun.

 sysctl_ tcp _ mem [2]: We have reached hard limit with tcp_memory_pressure set.
When overall TCP memory allocated has reached this limit, we start sup-
pressing allocation of memory for TCP socket buffers.

 tcp_ memory _ allocated : Each time we allocate memory quantum for TCP
socket buffers, tcp_memory_allocated accounts for the memory allocated for
socket buffer (TCP payload + sk_buff).

 cs 9.28. tcp_rfree().

SYSTEM-WIDE C ONTROL PARAMETERS ARE WORTH NOTICING WHEN IT COMES TO TCP MEMORY MANAGEMENT 319

320 TCP MEMORY MANAGEMENT

 Figure 9.7. TCP memory management for a receive buffer.

 sysctl_ tcp _ rmem [0]: Per socket lower limit on the total memory allocated for
TCP read side. If sk → rmem_alloc goes beyond this limit, we can allocate
additional memory for the read side only if the pressure is not there or if
the total TCP memory allocated limit has not been reached (check
 tcp_mem_schedule()).

 sysctl_ tcp _ rmem [1]: Per socket medium limit (default value of sk → rcvbuf) on
the total memory allocated for the TCP read side, check tcp_v4_init_sock()
when socket is initialized.

 sysctl_ tcp _ rmem [2]: Per socket upper limit on the total memory allocated for
a TCP socket read side buffer (upper cap on sk → rcvbuf). Check tcp_fi xup_
rcvbuf() and tcp_clamp_window() .

 sysctl_ tcp _ wmem [0]: Per socket lower limit on the total memory allocated for
the TCP write side. If sk → wmem_queued goes beyond this limit, we can
allocate additional memory for write side only if the pressure is not there or
if the total TCP memory allocated limit has not been reached (check
 tcp_mem_schedule()).

 sysctl_ tcp _ wmem [1]: Per socket medium limit (default value for sk → sndbuf)
on the memory allocated for the TCP write side, check tcp_v4_init_sock()
when socket is initialized.

 sysctl_ tcp _ wmem [2]: Per socket upper limit on the total memory allocated for
TCP socket write side buffer (upper limit on sk → sndbuf).

 9.5 SUMMARY

 Memory for socket buffers is allocated in multiples of TCP_MEM_QUANTUM in
 tcp_mem_schedule() .

 tcp_memory_allocated is a system - wide memory quota for TCP sockets.
 Quota for send buffer and receive buffer can be increased, depending on total

memory usage by TCP sockets system wide.
 Segments in out - of - order queue also account for a socket ’ s receive buffer

quota.
 Once the receive bugger is full, the TCP tries to generate some space by squeez-

ing in receive queue and out - of - order queue in tcp_collpse() . If it is not able to
generate space even after purging queues, the new data segment is dropped.

 If the write is blocking and enough memory is not available to queue new data,
 wait_for_tcp_memory() blocks the process until memory is available to write new
data.

 Once data in the transmit queue are ACKed, tcp_write_space() tries to wake
up the process sleeping in wait_for_tcp_memory() to start queuing new data.

SUMMARY 321

323

10

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 TCP TIMERS

 TCP is an event - driven state machine. Events happen asynchronously and we can ’ t
keep on looping to wait for an event to happen. Sometimes we need to wait for a
small period of time to expire after which we can send ACK for better network
utilization. On the other hand, we need to keep track of losses that are signaled
when certain time lapses and we don ’ t get an event. TCP has to take care of the
data fl ow, depending on the resources advertised by the receiver. In the case where
the sender fi nds that the receiver is falling short of resources, it needs to put a brake
on the fl ow of data and keep tracking the event when it can send data again. There
are a times when we need to check if the peer is still connected and our connection
is still active where TCP connections are on for days (like telnet). New connection
requests are queued up in a SYNQ until it is accepted. In the case where the accept
queue is full and the application is not accepting new connections, we need to
remove requests from the queue on timely basis. All these functionalities require a
timely probe into the matter so that the proper action can be taken at right time.
For this we need a timer to be introduced in TCP implementation. Let ’ s take each
TCP timer one by one to see their functioning and importance. TCP specifi cations
recommend the following timers for functioning of the reliable transport protocol:

 • Retransmit timer
 • Delayed ACK timer
 • Zero window probe timer (persistent timer)
 • Keep - alive timer

324 TCP TIMERS

 • TIME_WAIT timer
 • SYN - ACK timer (timer for listening sockets)

 Retransmit timer, delayed ACK timer, and zero - window probe timer are imple-
mented as part of a core TCP state machine. Keepalive timer is implemented to
manage established connections. TIME_WAIT timer is implemented to manage
connections that are closed and waiting for 2 * MSL time to expire. SYN - ACK timer
is implemented to manage new connection requests. There are three routines pro-
vided by TCP to manage its timers:

 • tcp_reset_xmit_timer()
 • tcp_reset_keepalive_timer()
 • tcp_clear_xmit_timers()

 tcp_reset_xmit_timer() is a common routine to reset time for TCP state machine
timers. As the name suggests, tcp_reset_keepalive_timer() is an interface to reset time
for connection managing timers like keep - alive and syn - ack timers. tcp_cleat_xmit_
timers() is called to clear/remove any of the installed TCP timers.

 In this chapter we discuss various TCP timers and their implementation on
Linux. We will try to explain the timers with the help of examples for better under-
standing. First there will be short description of how timers on Linux are imple-
mented, and then we will take up one timer at a time.

 10.1 TIMERS IN LINUX

 Linux implements timers as struct timer_list . It has three members: expires stores
the number of clock ticks after which the timer should fi re, data contains any argu-
ment to be passed to the timer callback routine, and function is actually a callback
routine to the timer that is actually executed when the timer expires (cs 10.1).

 list is the pointer to the list head on which this timer should sit. timerlist_lock
is a global timer lock to access the timer list. There are a set of routines to manipu-
late timers. We will discuss some of them here.

 10.1.1 mod _ timer()

 Whenever we want to modify expire time for the timer, we call mod_timer() (cs
 10.2). We hold a global timer spin lock timerlist_lock to modify the expires fi eld for

 cs 10.1. timer_list object to register timer with kernel.

the timer. Call detach_timer() to detach the timer from the global list if already
installed. Thereafter, internal_add_timer() is called to add a timer to the global list.
 internal_add_timer() has its own algorithm to fi nd an appropriate global list to add
the timer, depending on the expiry time for the timer. Once we get the pointer to
the global list, we add the timer to the list by calling list_add() .

 10.1.2 detach _ timer ()

 This routine detaches the timer from the global list in case it is already installed.
We call routine timer_pending() to check if the timer is already installed on the
global list (cs 10.3). The next fi eld of the timer ’ s list head is NULL in the case where
the timer is not installed. If it is installed, we call list_del() , which detaches the timer
from the global list of timers.

 10.1.3 del _ timer ()

 Whenever we want to cancel timer, we fi rst check if timer is already installed or not
by calling timer_pending() . In the case where we fi nd that the timer is already
installed, we call del_timer() to remove the timer from the list. We once again hold
global spin lock timerlist_lock to detach timer from the global list. We call detach_
timer() to detach the timer from the global list and initialize next and previous fi eld
of the timer ’ s list head to NULL, line 224 (cs 10.4).

 cs 10.2. mod_timer() .

 cs 10.3. detach_timer() .

TIMERS IN LINUX 325

326 TCP TIMERS

 10.1.4 When Are Timer Routines Executed?

 Timer interrupt fi res every 10 ms — that is, one tick. This interrupt raises soft Inter-
rupt to process timers by calling mark_bh() from do_timer(). To mark_bh() we pass
offset in the bh_task_vec[]. mark_bh() calls tasklet_hi_schedule() to schedule the
tasklet pointed to by bh_task_vec [TIMER_BH]. Here we fi rst check if the tasklet
is not already scheduled. In the case where it is not already scheduled, we schedule
it by calling __tasklet_hi_schedule() (cs 10.5). This ensures that one tasklet is sched-
uled on only one CPU and that also the same tasklet cannot be scheduled on the
same CPU twice. This will schedule the timer tasklet on the CPU currently being
executed on. The tasklet is added to per CPU list tasklet_hi_vec[cpu].list and sub-
sequently HI_SOFTIRQ softirq is raised. On returning from timer interrupt,
do_softirq() is executed, which will check for softirq ’ s to be processed. Here, HI_
SOFTIRQ is processed, which will also process tasklet_hi_vec list for that CPU. This
list includes TIMER_BH tasklet, which gets executed as timer_bh(). run_timer_list()
is called from timer_bh() to execute all the timers from the global list which have
expired.

 10.2 TCP RETRANSMIT TIMER

 The timer is part of the TCP state machine to detect network congestion/loss of
data. TCP maintains data integrity by sending out ACK for every byte of data that
is received. The receiver doesn ’ t remove transmitted data from the retransmit queue

 cs 10.4. del_timer()

 cs 10.5. __tasklet_hi_schedule() .

TCP RETRANSMIT TIMER 327

until it gets ACK for the transmitted data. So, the sender is not expected to wait
forever to receive ACK for the transmitted data. The sender calculates RTO (retrans-
mission timeout) based on RTT (round - trip time) calculated from timestamp options
in the ACKing segment (check RFC 2988 and RFC 1323). When the fi rst segment
from the window is transmitted, we set a retransmit timer to expire after the RTO
time interval. This is to make sure that we get an ACK within RTO time from the
time when segment is transmitted. In case we don ’ t get ACK, the retransmit timer
would expire and signaling that all the data within the window is lost. So, our job
will be to start transmitting lost segments starting from the head of the retransmit
queue. This may happen because of network congestion causing some intermediate
router to drop packets.

 10.2.1 When Do We Set Retransmit Timer?

 We set a retransmit timer when we are transmitting the fi rst packet in the current
window. packets_out is a fi eld in the TCP state machine struct tcp_opt structure
which keeps track of the packet ’ s transmitted but not yet ACKed. We increment
this fi eld whenever we transmit a new segment. Just after transmitting a segment,
we check if this fi eld is zero. If so, we start the retransmit timer to expire after tp →
 rto ticks.

 We can see that update_send_head() resets the retransmission timer for the fi rst
segment (lines 54 – 55, cs 10.6). This routine is called from tcp_write_xmit() after it has
successfully transmitted a segment. We transmit a segment by calling different rou-
tines like tcp_send_skb() , tcp_push_one() , and tcp_connect() , and in each of these
routines we make the same check and, if required, we reset the retransmit timer.

 10.2.2 When Do We Reset or Cancel Retransmit Timers?

 We need to reset a retransmit timer on each ACK we receive that advances a send
window in tcp_ack_packets_out() called from tcp_ack() → tcp_clean_rtx_queue() (cs
 10.7). RFC 2988 recommends that on reception of each ACK acking new data, we
should reset the retransmit timeout to a new value of RTO. This gives some advan-
tage to the remaining segments in the sense that their timeout is incremented by
the time lapsed since the time they were transmitted. In the case where all the seg-
ments are ACKed, we remove retransmit timer by calling tcp_clear_xmit_timer() at
line 1726. Otherwise we reset timer by calling tcp_reset_xmit_timer() at line 1728.
This is the only place when we clear retransmit timer since we know that we are
not waiting for any more ACKs.

 cs 10.6. update_send_head() .

328 TCP TIMERS

 When we are retransmitting segments during loss - recovery process, we reset the
retransmission timer in the case where we are retransmitting the fi rst segment on
the retransmit queue in tcp_xmit_retransmit_queue() . We set the retransmit timer
for the very fi rst unacknowledged segment; and since the fi rst segment that is being
retransmitted is lost we need to reset retransmit timer.

 Let ’ s see what happens when the retransmit timer expires. The timer expires
because we have not gotten ACK for the very fi rst segment transmitted in the
current window. So, we consider all the segments in the current window which are
not yet SACKed/lost as lost. We need to reduce the rate of transmission to avoid
any more losses by performing slow - start. Finally we retransmit the head of the
retransmit queue.

 The retransmit timer not only takes care of retransmissions but also needs to
adjust timeout values, reset routes, check if the number of retries has exceeded limit,
and so on. Let ’ s see what all it does. If no packets are transmitted, just return because
we have nothing to retransmit at line 324 (cs 10.8). Next we check if the socket is
still alive and not in the SYN_SENT/SYN_RECV state and if somehow the send
window is closed, we need to timeout the connection in case we have not received
any ACK from the peer for more than TCP_RTO_MAX. In case the socket is not
timed out, we enter the loss state by entering slow - start (call tcp_enter_loss()),
retransmit the head of the retransmit queue at line 347 (cs 10.8), and then invalidate
the destination by calling __sk_dst_reset() . The reason for fi nding an alternate route
for the connection may be that we are not able to communicate with the peer
because of which we may not be able to get window updates. Then we reset the
retransmit timer doubling timeout by jumping to line 406 (cs 10.8).

 Next we check if we have actually exhausted all our retries by calling tcp_write_
timeout() at line 352. tp → retransmits keeps account of the number of times we have
tried retransmitting a lost segment. We have four system - wide control parameters
here to timeout a connection:

 • sysctl_tcp_retries1
 • sysctl_tcp_retries2
 • sysctl_tcp_syn_retries
 • sysctl_tcp_orphan_retries

sysctl_tcp_retries1 is the maximum number of retries after which we need to check
if the intermediate router has failed. If the number of retransmits exceeds this value,
route - specifi c negative_advice routine is called (dst → ops → negative_advice()) from

 cs 10.7. tcp_ack_packets_out() .

TCP RETRANSMIT TIMER 329

 dst_negative_advice() . In the case of Ipv4, this is ipv4_negative_advice() , which sets
 sk → dst to NULL in case the route has become obsolete or the destination has
expired. rt_check_expire() is run as a periodic timer for routing entries cached with
the kernel to check old not - in - use entries.

 sysctl_tcp_retries2 is the maximum number of retries the segment should be
retransmitted after which we should give up on the connection.

 cs 10.8. tcp_retransmit_timer() .

330 TCP TIMERS

 sysctl_tcp_syn_retries is the number of retries allowed to retransmit a SYN
segment after which we should give up.

 For an orphaned socket (that is detached from the process context but exists
to do some cleanup work), we have some more hard rules for number of retries.
The maximum number of retries for an orphaned socket is sysctl_tcp_orphan_retries .
Still we need to kill an orphaned socket in two cases even if it has not exhausted
its retries (check tcp_out_of_resources()):

 1. Total number of orphaned sockets has exceeded the system - wide maximum
allowed number (sysctl_tcp_max_orphans).

 2. There is acute memory pressure (tcp_memory_allocated >
 sysctl_tcp_mem[2]).

 If we are here at line 375 of cs 10.8 , we have not exhausted our retries. We need to
call tcp_enter_loss() to enter into the slow - start phase (see Section 10.2.3). Thereaf-
ter, we try to retransmit the fi rst segment from the retransmit queue at line 377
(cs 10.8). In case we fail to retransmit here, the reason for failure is local congestion.
In this case, we don ’ t back off the retransmit timeout value. We reset the retransmit
timer with a minimum timeout value of tp → rto and TCP_RESOURCE_PROBE_
INTERVAL . Since we need to probe availability of local resources more frequently
than RTO, that is why we want the tcp retransmit timer to expire fast so that we
can retransmit the lost segment.

 If we are at line 403 of cs 10.8 , we have retransmitted the lost segment (head
of the retransmit queue) successfully. We increment tp → back_off and tp → retrans-
mits by one. Even though we are not using the value of tp → back_off here, it is
required by the zero - window probe timer. We take timeout value as minimum of
 tp → rto and TCP_RTO_MAX and store this value in tp → rto (RTO can ’ t exceed
beyond TCP_RTO_MAX). Finally we reset the retransmit timer to expire at the
backoffed value of RTO, tp → rto , by calling tcp_reset_xmit_timer() at line 408 of cs
 10.8 . We now check if the maximum number of retries has exceeded the limit to
reset route, at line 409. If so, we reset the route for the connection so that on next
retransmit we are able to fi nd a new route for the connection because the current
route may be causing a problem.

 While retransmitting a segment, we store the retransmission timestamp in tp →
 retrans_stamp for the very fi rst segment retransmitted. We also increment tp →
 retrans_out and tp → undo_retrans by 1 every successful retransmission. tp → retrans_
out is to keep track of the number of segments retransmitted, and tp → undo_retrans
is to catch the number of D - SACKs which is required to check unnecessary
retransmissions.

 10.2.3 tcp _ enter _ loss ()

 We call tcp_enter_loss() to tag the lost segment from the current window and also
reduce the rate of transmission of data by performing slow - start (cs 10.9). Let ’ s see
how is it done. We do reduce slow - start threshold only if it is not done in the current
window, which means that within a window if multiple losses take place, we won ’ t
reduce the slow - start threshold every time. We reduce slow - start threshold to half
of the congestion window for the reason that during slow - start we increment the
congestion window by 1 every time we receive an ACK. So, the increment is expo-
nential every RTT. If the current congestion window caused packet loss, we need

TCP RETRANSMIT TIMER 331

to go back to the previous congestion window that provided an acceptable rate of
data transmission. So, we divide the current congestion into two halves: The fi rst
half is for slow - start because it was in the previous congestion window, and the
second half is for slow transmission of data (where congestion window is incre-
mented every RTT). This will get us better congestion control in the second half
session that got us into trouble. That is the reason we don ’ t decrease slow - start
threshold value twice for the same window. We just start with one congestion
window every time we sense a loss through retransmission timer fi ring. Conditions
to decrement slow - start threshold are as follows:

 1. The TCP state should be less than disorder, which is nothing but open. If we
are entering into the loss state from the open state, we have not yet reduced
the slow - start threshold for the window of data.

 cs 10.9. tcp_enter_loss() .

332 TCP TIMERS

 2. If we have entered the loss state with all the data pointed to by tp → high_seq
acknowledged. Once again it means that in whatever state we are (other than
open state), all the data from the window that got us into the state, prior to
retransmission timer expiry, has been acknowledged.

 3. If the above two conditions fail, we still have one more condition that can
demand reducing the slow - start threshold: If we are already in the loss state
and have not yet retransmitted anything. The condition may arise in case we
are not able to retransmit anything because of local congestion.

 In case any of the above conditions is TRUE, we store the current slow - start thresh-
old in tp → prior_ssthersh in case our current state is CWR or recovery. Otherwise
we store three - fourths of the current cwnd or slow - start threshold, whichever is
maximum at line 985. Slow - start threshold is set to half of the current congestion
window by calling tcp_recalc_ssthresh() at line 986. Next we set send the congestion
window to 1, and this fi nally completes the slow - start phase. We clear all the coun-
ters related to retransmissions by calling tcp_clear_retrans() at line 992, because we
are going to do fresh calculations in the next step.

 In case the second argument to tcp_enter_loss() is not set, we push tp → undo_
marker so that we are eligible for undoing from the loss state. We set this argument
only when we are called from tcp_check_sack_reneging() because the reason for
entering into loss state is entirely different here. The reason is that whatever out -
 of - order segments have reached the receiver are discarded by the receiver and we
need to retransmit all the data within the window once again. So, it is not the con-
gestion state but the receiver ’ s mismanagement that causes us to enter into the loss
state. So, we cannot undo from the loss state.

 Next we traverse the retransmit loop (lines 999 – 1012). First we check if any of
the segments was retransmitted when we are entering into the loss state. In case
something was already retransmitted, we unset tp → undo_marker, the reason being
that we will never know if the Ack for packet appears from the retransmission or
the original transmission. In the case where we get an ACK for retransmitted
segment that is misinterpreted as an ACK for original segment and we undo from
the loss state, this will be misleading (see Section 12.6.8). If the tp → undo_marker
is unset, we are not eligible for undoing from the loss state. Next we check for the
segment tags. In case the second argument for the routine tcp_enter_loss() is set, we
just don ’ t care for SACKed segments and mark all the segments as lost (line 1004),
the reason being that we set the second argument only when we are called from
 tcp_check_sack_reneging() where we know that all the out - of - order segments are
discarded by the receiver. Otherwise we increment the counter for each SACKed
segment we encounter, line 1009. We also set tp → facked_out to the total segment
traversed whenever we come across SACked segment at line 1010.

 We need to recalculate left out segments by calling tcp_sync_left_out() because
all the counters were reset by call to tcp_clear_retrans() . Next we calculate reorder-
ing length to a minimum of current reordering length (tp → reordering) and sysctl_
tcp_reordering(3) . Set TCP state to loss at line 1016. Mark the highest sequence
number transmitted so far as tp → high_seq at line 1017. Set TCP_ECN_QUEUE_
CWR for the TCP because we have just reduced C(ongestion) W(indow) by calling
 TCP_ECN_queue_cwr() at line 1018. The next new data segment that the sender
sends will have a CWR bit set in the TCP header informing the receiver that it has
reduced its congestion window.

TCP RETRANSMIT TIMER 333

 10.2.4 tcp _ retransmit _ skb ()

 We need to explain that during retransmissions we adjust the segment length. In
the case where the PMTU has changed and our segment length is more than the
mss, we need to repacketize all the segment ’ s by calling tcp_fragment() at line 834.
This is a very common case, where we check if mss is changed before transmitting
any segment (check tcp_write_xmit()). On the other hand, if the segment length of
the retransmitted segment is less than 1 mss, we try to collapse the adjacent segment
with the current segment in question to generate a full - length segment by calling
 tcp_retrans_try_collapse() at line 848 (cs 10.10). The following conditions should
be satisfi ed to collapse the adjacent segments in the retransmit queue (lines
842 – 846):

 1. The segment being retransmitted should not be SYN segment.
 2. The length of the current segment is lesser than half of current mss.
 3. The adjacent segment to be merged should not be a new segment; that is, it

should be from the retransmit queue.
 4. Both segments should not contain any paged data.
 5. The system should allow us to collapse the segments; that is, sysctl_tcp_

retrans_collapse should be set.

 cs 10.10. tcp_retransmit_skb() .

334 TCP TIMERS

 We store the timestamp of the retransmitted segment in the TCP control block,
 TCP_SKB_CB(skb) → when at line 870, which means that the timestamp is not
retained from the original transmission. Once we have transmitted the segment
correctly, we tag the segment as transmitted (TCPCB_RETRANS) at line 886 and
also account for retransmission (tp → retrans_out) at line 887. We increment tp →
 undo_retrans by 1 to account for D - SACKs at line 893.

 10.2.5 tcp _ retrans _ try _ collapse ()

 Here we try to merge the current retransmitted segment with the next segment in
the retransmit queue by calling tcp_retrans_try_collapse() (cs 10.11).

 The very fi rst condition to continue with the merger is that both segments
(retransmission and next segment) should not be in use at line 698, which means
that the original transmission should not be there in the IP or device queue pending
for transmission. If that is the case, TCP ’ s data integrity will not be maintained. If
the original segment (not yet transmitted) and the merged segment reach the
receiver in the same sequence, data in the second segment will be discarded because
of the same sequence number (considering retransmission). This can be checked
from tcp_cloned() .

 The next condition that disqualifi es us from merging is that the next segment
to be merged should not have been SACKed already at line 703. We can merge the
two segments only if the receivers ’ window allows it to happen. If the merged data
exceeds total available space in the receive buffer (tp → snd_wnd), we can ’ t merge
the two segments (line 707). Next we need to check if not enough tail room is avail-
able in the buffer being retransmitted to accommodate data from the next buffer
(check being made at line 714) or if the sum of payload for both segments is exceed-
ing the current mss. If any of the mentioned conditions is TRUE, we can ’ t merge.
We exit in case the former condition is TRUE because we are not going to add any
data to the paged area nor are we going to reallocate memory in the linear area to
accommodate new data (expensive operation). In case the latter condition is TRUE,
we exit because we can ’ t transmit more than mss.

 If all the above - mentioned conditions are satisfi ed, we are eligible for merger.
We fi rst unlink the next segment from the retransmit list at line 719. If the next
segment is hardware check - summed, we need to forcefully mark the original segment
as hardware check - summed at line 722. In case the CHECKSUM_HW fl ag is not
ON for the segment, we copy data from the next segment to the one being retrans-
mitted at line 725 and also recalculate the checksum for the new data being copied
at line 726. The CHECKSUM_HW fl ag is enabled for segments containing paged
data, and here we are not dealing with any paged data. It appears that if we come
here and the CHECKSUM_HW fl ag is ON, we are in trouble.

 Next we update the sequence space of the merged segment (retransmit) by
initializing the end sequence number from the next segment at line 730. We also
merge control fl ags (TCP_SKB_CB(skb) → fl ags) of both the segment ’ s at lines
733 – 734. Because the next segment being merged may contain PSH/FIN fl ags that
should be set out for the new merged segment. If the segment being merged (next
segment) was retransmitted, we need to account for it by decrementing the retrans-
mission counter by 1 at line 741. This is because we are removing the segment and
the merged segment is not yet retransmitted. We also account for the lost counter
in the case where the segment being removed is marked lost at line 743, the reason

TCP RETRANSMIT TIMER 335

being the same because the segment does not exist anymore and the new merged
segment is not yet considered lost. In the case of Reno implementation, if our SACK
count is nonzero, we decrement the SACK count by 1 (tp → sacked_out) at line 748.
This is a special case of Reno where we SACKed counters but no segment is marked
SACKed because SACK information is drawn from duplicate ACKs. If our FACK

 cs 10.11. tcp_retrans_try_collapse().

336 TCP TIMERS

count is a positive nonzero value, we just decrement it by 1 because one segment
is removed from the retransmit queue (line 756). The unlinked segment is freed at
line 757, and the packet count is decremented by 1 at line 758 for the obvious
reasons.

 10.2.6 skb _ cloned ()

 Whenever we transmit a segment, we clone it by calling skb_clone() and transmit
the cloned segment. When we clone a segment, the sk_buff header is copied com-
pletely. The data part is shared here. The paged data are not copied; only the header
part of paged data is copied. Since ‘ struct skb_shared_info ’ lies at the end of sk_buff ,
we need not copy it explicitly. We increment skb_shinfo(skb) → dataref by 1 when
we are cloning sk_buff . When we check if the sk_buff is cloned, we check two fl ags
in skb_cloned():

 • skb → cloned
 • skb_shinfo(skb) → dataref

 Once a segment is transmitted, skb → cloned is set, which will always be set even if
the sk_buff is transmitted. But additional skb_shinfo(skb) → dataref will be decre-
mented by 1 once sk_buff is transmitted by calling skb_release_data() . So, ck_buff
is considered cloned if the transmitted data are actually transmitted and are not
queued up in the transmit queue or IP queue for transmission.

 10.3 ZERO WINDOW PROBE TIMER

 The receiver TCP advertises zero window whenever its receive buffer is full. This
happens mainly because the application is not able to read the data fast enough to
make room for the new TCP data in the socket ’ s receive buffer. Whenever an
application reads data from the receive buffer, it checks if enough space is generated
in the receive buffer to advertise the new window to the sender. If so, it sends out
an ACK segment advertising the new window. If this segment is lost, there will be
deadlock between the sender and the receiver if the data are fl owing only in one
direction. To avoid this, the sender implements a zero window probe timer, also
called a persistent timer to probe if the peer has opened window. It sends out 1 byte
of data along with the zero - window probe. The macro defi ned for the persistent
timer is

 TCP_TIME_PROBE0

[Note : How probes are sent, tcp_xmit_probe_skb() : While sending out a probe
segment, we don ’ t queue up the probe segment and we send out sequence number
that is one less than the last sent sequence number. In the case of urgent data, we
send out two zero - length segments: one with sequence number same as Unacked
sequence containing sequence number for the urgent byte (just urgent pointer) and
the other one with sequence number UNA – 1. In both cases, the outgoing packets
are not accounted for in packet count (tp → packets_out)].

 10.3.1 When Is the First Time Probe Timer Installed?

 When we try to transmit a new segment, a check is made whether we can send out
a new segment or not. There may be so many factors to decide on whether we can
send out a new segment or not. One of the reasons can be that a window advertised
by the receiver does not allow to receive any more data. We make these checks in
many places when we want to send out new segments: __tcp_push_pending_frames()
and tcp_data_snd_check(). __tcp_push_pending_frames() is called when we write
data over the socket from an application in order to push out segments in the trans-
mit queue. tcp_data_snd_check() is called when we receive a segment from the peer.
The segment may be an ACK or DATA/ACK segment. While processing the received
segment before sending out an ACK, we check if there are any data to be transmit-
ted in the queue. If the data exist, we call tcp_data_snd_check() to piggyback data
along with the ACK in tcp_rcv_established() .

 These routines check if we can send out a new segment. If not, we call tcp_
check_probe_timer() to check if the receive window is the cause that is not allowing
us to send out new segments. tcp_check_probe_timer() checks if no outstanding
unacknowledged data (!tp → packets_out) and no timer is installed (!tp → pending) at
line 1227 (cs 10.12). From timers here we mean only retransmit and window probe
timer ’ s only. If there are no outstanding data that are unacknowledged, it means
that only one condition can prevent more data to be pushed: a zero window adver-
tised by the receiver. There is a common callback routine for retransmit timeout
timer and zero - window probe timer. If a retransmit timer is already installed, it
means that we are already probing a zero window because all the data are ACKed
and there is nothing to be transmitted (possibility of retransmit timeout timer
installed is ruled out). If the above two conditions are TRUE, we reset the zero -
 window timer with a timeout value of tp → rto at line 1228.

 10.3.2 When Is the Probe Timer Canceled for the Connection?

 We receive a window update from the receiver whenever the application reads data
from a socket ’ s receive queue and enough space is available in the receive buffer
to accommodate at least 1 mss of data. Another way we can receive window update
information is in response to the zero - window probe. While processing incoming
ACK in tcp_ack() at line 1944 of cs 11.26 , we just check if the valid ACK has come
with no outstanding unacknowledged data. If that is the case, we know that this may
be window update or ACK resulting from a zero - window probe. We just jump to
line 1968 to process the window update. We fi rst clear the probe count (tp → probes_
out); furthermore, if any new segment is pending for transmission at line 1975 (tp →
 send_head != NULL), we call tcp_ack_probe() for further action (cs 11.26).

 cs 10.12. tcp_check_probe_timer() .

ZERO WINDOW PROBE TIMER 337

338 TCP TIMERS

 10.3.3 tcp _ ack _ probe ()

 This checks if the next segment to be transmitted is within the window opened by
the peer at line 1825 (cs 10.13). If the end sequence of the head of the transmit
queue (tp → send_head) is within the opened window sequence space, we can stop
the zero - window probe by calling tcp_clear_xmit_timer() at line 1827, which means
that the receiver has enough room to accommodate all the data in the head of the
transmit queue in its receive buffer. On the other hand, if the end sequence is
beyond the opened window as shown by dotted lines in Fig. 10.1 , the receiver still
doesn ’ t have enough space to accommodate all the data from the head of the trans-
mit queue. So, we continue with the zero - window probe timer by resetting the timer
with timeout value governed by tp → rto and tp → backoff . Here, we don ’ t have a
backoffed timeout value for TCP state machine which means that we are not
backing off retransmittion time out as tp → rtof & tp → backoff are not changed (line
1832). So, next zero - window - probe will not be backed off. Normally when a retrans-
mission timer fi res, the next retransmission timer is set to expire after twice the
current timeout so that we don ’ t retransmit too fast and worsen the congestion state.
This is known as exponential backoff of RTO.

 10.3.4 How Does the Window Probe Timer Work?

 A single - timer callback routine, tcp_write_timer() , exists for both a retransmit timer
and a window probe timer. tcp_write_timer() checks what routine to call, depending

 cs 10.13. tcp_ack_probe() .

 Figure 10.1. The window has opened enough to transmit new data.

on tp → pending fl ag. Very obviously, only one timer can be installed at any given point
of time — that is, either retransmit or window - probe timer. When the window - probe
timer expires, we call tcp_probe_timer() to transmit a zero - window probe segment.

 10.3.5 tcp _ probe _ timer ()

 Here we do some cleanup checks and also resource management for the window
probe timer. First we check if we have any unacknowledged data. If tp → packets_out
is more than one, it means that we have transmitted some new segment after a
zero - window probe timer was installed. This indicates that a window opened and a
new segment got transmitted before the window probe timer could be canceled. The
second condition we check here is whether we have any new segment to be trans-
mitted. In this case again there is no point in having a window probe timer installed
if there are no new data to be transmitted. In both the cases, we return without
proceeding any further from line 279.

 Next we check if the socket associated with the connection is already dead at
line 299. If so, we need to check if the connection needs to be dropped because we
can ’ t allow the socket already detached from the application to hang on for a long
time, thereby eating up resources. We call tcp_out_of_resources() to check if we can
drop the connection immediately (for details on the routine, see Section 10.2.2). If
the TCP socket is already in the dead state, we impose an additional penalty on the
dead socket, that depends on the total number of orphaned sockets in the system.
Which means that the dead connection should be closed in case there is no activity
on the connection for a long time so that we are unnecessarily not utilizing resources.
Otherwise, we check if the number of probes (tp → probes_out) already sent out has
exceeded the system - wide control probe parameter (sysctl_tcp_retries2). If so, we
just drop the connection by calling tcp_write_err() at line 309 (cs 10.14). If we still
have another chance, tcp_send_probe0() is called to send out a zero - window probe
at line 312.

 10.3.6 tcp _ send _ probe 0()

 The routine tries to send out new data in case the window is opened by calling tcp_
write_wakeup() . If a new segment is transmitted out, it is only because the window
has opened enough. In this case, tp → packets will never be zero. Once again, if there
is no segment in the transmit queue to be transmitted, there is no need to process
the timer further. So, if a new segment is transmitted after a call to tcp_write_
wakeup() or there are no new data to be transmitted (tp → send_head equal to
NULL), we just return without processing any further.

 If we are here, it means that we have not transmitted any new segment because
the window has not opened. So, we are able to either transmit a window probe or
not. If we are able to send out a window probe, just backoff RTO, increment the
probe counter and reset the window probe timer to a new backoffed timeout value
(lines 1433 – 1437, cs 10.15). Otherwise there was internal congestion at the driver
level, so we reset the window probe timer to a minimum of TCP_RESOURCE_
PROBE_INTERVAL and current backoffed RTO at line 1447.

 10.3.7 tcp _ write _ wakeup ()

 This routine checks if the receiver has advertised enough window to transmit new
data and transmits the new segment if permitted. First we check if the connection

ZERO WINDOW PROBE TIMER 339

340 TCP TIMERS

 cs 10.14. tcp_probe_timer() .

 cs 10.15. tcp_send_probe0() .

has already been closed at line 1375 (cs 10.16); if so, we return. We do the next check
here:

 1. if there is no new segment to be transmitted at line 1379 (tp → send_head
equal to NULL).

 2. If the above is FALSE, then we need to check if the window advertised by
the receiver is big enough to transmit out new data at line 1380 (start
sequence of segment < SND.WND + SND_UNA). Zero - window scenario at
the render is shown in Figure 10.2 .

 If both of the above conditions satisfy, we calculate the size of the window that is
opened at line 1383, shown as the shaded area in Fig. 10.3 . Next we check if we
need to fragment the segment to be transmitted. We need to fragment the segment
in two cases:

 cs 10.16. tcp_write_wakeup() .

ZERO WINDOW PROBE TIMER 341

342 TCP TIMERS

 1. The window opened is less than the segment length, line 1392.
 2. The length of the segment is more than the current mss, line 1393.

 In both cases, we fragment the segment into two parts. The segment is split: One
part is equal to a minimum of window opened and current mss, and the other part
contains the rest of the data. We call tcp_fragment() to fragment the segment. We
set PUSH fl ag (TCPCB_FLAG_PSH) for the segment ’ s control block. We then
transmit the new segment at the head of the transmit queue at line 1401. In case
we are able to transmit the segment properly, update_send_head() is called to
update tp → send_head at line 1403.

 In case the window has not yet opened as shown in Fig. 10.2 , we just need to
transmit a zero - window probe segment. We have two situations here. These are with
and without urgent mode. Without urgent mode, we just transmit the window probe
by calling tcp_xmit_probe_skb() . The sequence number sent out with this probe is
one less than the unacknowledged sequence number in order to get fast ACK. With
the urgent mode on, we transmit one more segment along with the probe segment.
We send out one additional segment having an urgent fl ag set with a pointer to
urgent data. This segment contains a sequence number that is equal to the unac-
knowledged sequence number (see line 1367 of tcp_xmit_probe_skb()).

 10.4 DELAY ACK TIMER

 TCP implements two modes of ACKing. These are:

 1. Quick ACK
 2. Delayed ACK

 Figure 10.2. The window has not opened to transmit new data.

 Figure 10.3. The window has opened enough to transmit new data.

 In some cases we need to ACK quickly so that the sender continues to pump in
more data with the reception of ACK, because each ACK for new data increments
the congestion window by one segment. Other cases where we need to ACK quickly
is when we receive an out - of - order segment or when the gap in the received data
is fi lled. In both cases we need to inform the sender about the event; otherwise in
the former case, the sender may experience timeout unnecessarily entering into the
loss state. In the latter case, the sender may continue to retransmit segments unnec-
essarily adding to network congestion. These are some of the reasons why we need
quick ACKing. There are reasons for delayed ACKing also. In some cases we have
an interactive session like telnet, rlogin, and so on, where each character typed
needs to be echoed back. In such cases, if we generate ACK for each segment
(containing one character), it will generate a huge number of segments in the
network. In this case we delay ACK so that either the echoed character is piggy-
backed along with the ACK or some more characters are received before we can
send out an ACK. In such cases, delayed ACK will save us a lot of ACK segments
unnecessarily loading the network. Linux maintains all the ACK - related informa-
tion with the help of struct ack (cs 10.17), which is embedded as part of struct tcp_
opt. Pending fi eld indicates the state of the ACK at any given point of time. There
are three TCP ACK states as shown in (cs 10.18). TCP_ACK_SCHED indicates
that the ACK is scheduled, TCP_ACK_TIMER indicates that the delayed ACK
timer is already set, and the TCP_ACK_PUSHED fl ag indicates that the ACK is
already pushed and needs to be sent out at the earliest.

 cs 10.17. to ‘ struct ack ’ implement ack management .

 cs 10.18. ACK fl ags .

DELAY ACK TIMER 343

344 TCP TIMERS

 10.4.1 When Is the ACK Scheduled?

 ACK is scheduled whenever we get data from the peer. We set the TCP_ACK_
SCHED fl ag by calling tcp_schedule_ack() . (cs 10.19). We schedule ACK whenever
we receive data in tcp_event_data_recv() called from tcp_rcv_established() and tcp_
data_queue() . Then we directly schedule ACK whenever we receive out - of - order
segment, retransmitted segment, zero - window probe, out - of - window data, or partial
segment in all these events detected in tcp_data_queue().

 10.4.2 How and When Is the ACK Segment Sent?

 There are a number of places where we need to make a decision whether to send
segment immediately or to delay it. We can schedule an ACK by calling tcp_sched-
ule_ack() but can ’ t force an ACK based on the fl ag. There are certain conditions
based on which we can send and ACK or delay it further. The simplest case we take
here is from tcp_rcv_established() (cs 10.20). Whenever we receive in - sequence data
in tcp_rcv_established() , we copy data directly to the user land process or queue it
in a receive buffer. In case an application has read all the data that has arrived, we
enter into block 3360 – 3364. In this case we check if we are in quick ack mode by
calling tcp_in_quickack_mode() . See Section 10.4.3 for quick ACK mode.

 If we are in quick ACK mode, ACK is generated immediately by call to tcp_
send_data() at line 3361. In case we are not in quick ACK mode, we delay ACK for

 cs 10.19. tcp_schedule_ack() .

 cs 10.20. tcp_rcv_established() .

some more time by calling tcp_send_delayed_ack() (see Section 10.4.6). We delay
ACK so that we can send out cumulative ACK for some more segment ’ s that arrive
quickly or it may wait for some data to be written so that data can be piggybacked
along with the ACK.

 In the case where data are not consumed by the application and it is queued
up in the receive queue, we call __tcp_ack_snd_check() to do some more aggressive
checking to send out an ACK. Please see Section 10.4.4 . In the case where we have
received out - of - window data, retransmission, out - of - order segment, or urgent
pointer, we take slow path. In slow path, we check if ACK needs to be sent at line
3440 after processing the received segment. The ACK may be scheduled when we
are here, but whether we need to delay it or send an ACK immediately will be
checked by calling tcp_ack_snd_check() . For more details see Section 10.4.5 .

 10.4.3 Quick ACK Mode

 In quick ACK mode, we check two fi elds from struct ack. Pingpong is set in case
TCP connection is interactive like telnet, rlogin, and so on. In the case of interactive
session, we don ’ t ACK immediately because of the reason explained in Section 2.4 .
We enter quick ACK mode when we don ’ t want to delay the ACKs such as out - of -
 order segments are received, segment fi lls hole in the received data, and so on. We
call tcp_enter_quickack_mode() to enter quick ACK mode. We reset pingpong fi eld
and also initialize quick fi eld of struct ack. quick fi eld indicates the number of quick
ACKs that we can send in a row and is decreased by one whenever an ACK is sent
out by calling tcp_dec_quickack_mode() from tcp_transmit_skb() . So, we are in
quick ACK mode if pingpong is reset and we still have quick ACK quota (tp → ack.
quick > 0) (cs 10.21).

 10.4.4 __ tcp _ ack _ snd _ check ()

 In this routine we make some checks before we conclude whether to delay an ACK
or to send it immediately. We can send an ACK immediately under the following
conditions:

 1. If the ACK is pending for more than full - segment - sized data. tp → rcv_wup is
updated to tp → rcv_nxt when we send an ACK. If the difference of these two
fi elds is more than received mss, ACK is pending for more than 1 mss of data.
Along with this condition, we also need to have enough space in the receive
buffer such that the window we are going to advertise is more than the last
window (lines 3010 – 1014, cs 10.22). The latter condition ensures that fast

 cs 10.21. tcp_in_quickack_mode() .

DELAY ACK TIMER 345

346 TCP TIMERS

ACKs should be sent out only if we have enough space in the receive buffer,
because the rate at which new segments are transmitted depends on the rate
at which ACKs are received. In the case where we have less space in the
receive buffer because the application is reading slowly, we delay the ACK
slightly so that the application gets enough time to read data in the receive
queue before which new data should not arrive and fi ll the receive buffer. In
this case, we are an eligible candidate for generating immediate ACK.

 2. We have out - of - order data that can be detected from tp → out_of_order_
queue (!= NULL) at line 3019. It means that we should generate an ACK
immediately in order to tell the other end that we have received the segment
out of order so that it should not experience timeout.

 3. We are in quick ACK mode, if tcp_in_quickack_mode() returns TRUE at line
3016. See Section 10.4.3 .

 If any of the above conditions is TRUE, we call tcp_send_ack() to immediately
generate an ACK; otherwise we call tcp_send_delayed_ack() in order to defer ACK
for some more time.

 10.4.5 tcp _ ack _ snd _ check ()

 We call this routine in the slow path after processing the incoming segment just to
check if ACK needs to be sent out from tcp_rcv_established() . Here, we fi rst check
if the ACK is scheduled. In case we got out - of - sequence data or retransmissions,
ACK will be scheduled in tcp_data_queue() and we can send out an ACK segment
here. Before this routine is called, we call tcp_data_snd_check() to check if there
are any new data to be sent out. If new data are transmitted here, we have already
ACKed the incoming segment. So, the ACK signal that was set in tcp_data_queue()
will be reset and ACK need not be generated separately.

 cs 10.22. __tcp_ack_snd_check().

 If the ACK is not scheduled, we just return. Otherwise, we we need to make
some more checks before we conclude whether an ACK should be sent out. So, we
call __tcp_ack_snd_check() with a second argument as 1 (cs 10.23). This value signals
that we should not ignore the possibility of an out - of - order segment being received,
in which case we need to send out an ACK immediately (for details see Section
 10.4.4).

 10.4.6 tcp _ send _ delayed _ ack ()

 In this routine we fi rst try to adjust delay ACK timeout, depending on:

 1. Current timeout, tp → ack.ato
 2. Smoothened rtt
 3. Whether the ACK is in pingpong mode

 In the case where the pingpong mode is on, we keep a lower limit on the maximum
allowable timeout (HZ/5) as pinpong is enabled for interactive session. In the case
where echo does not happen fast enough, we need not wait long enough to send
the ACK back. Once we have smoothened the timeout value, we calculate timeout
with respect to jiffi es (number of ticks since the machine has booted) at line 1282.
Next we check if the delayed ACK timer is already installed at line 1285. The reason
for this may be:

 1. The delayed ACK timer fi red and got blocked because the socket was in use
by some other thread (tp → ack.blocked is set) when the timer expired last.
For details, see Section 10.4.8 .

 2. We got here much before the installed timer would expire.

 In the latter case, if very little time is left for the installed timer to expire, we send
out the ACK immediately. In the former case, we should process delayed ACK at
the earliest because we already missed the delayed ACK timer for the reason that
the socket was in use by someone else. If any of the above condition ’ s is TRUE,
we call tcp_send_ack() to send an ACK immediately at line 1290 and return (cs
 10.24).

 If both condition ’ s are false, we need to reset delay ACK timer for which we
are called. If the above calculated timeout is more than the current timeout (tp →

 cs 10.23. tcp_ack_snd_check() .

DELAY ACK TIMER 347

348 TCP TIMERS

 ack.timeout), we take the the current delay ACK timeout at lines 1294 – 1295. The
reason for this is that we are here with the timer already installed, so we should
expire as per the schedule. Next we set TCP_ACK_SCHED and TCP_ACK_TIMER
fl ags related to delayed ACK at line 1297. We set these fl ags here unconditionally
because we don ’ t know if the timer was already installed when we entered the
routine. Next we modify a delayed ACK timer with the new timeout value by calling
 mod_timer() at line 1299. We hold a socket reference by calling sock_hold() at line
1300 in case mod_timer() returns 0. mod_timer() returns zero only if the timer was
not already installed or had already expired. If it is already installed, the socket ’ s
reference is already held by the timer. The reference on the socket is released in
the delay ACK timer routine which we are going to discuss next. We hold reference
to socket so that the socket should not be destroyed before the timer expires.

 10.4.7 tcp _ delack _ timer ()

 This is a callback routine for Delay ACK timer. We hold socket ’ s spin lock and fi rst
check if the socket is already in use mainly because somebody is already accessing
socket (sk → lock.users != 0) at line 216. If the socket is already being accessed
somewhere else, we just set a blocked fi eld at line 218 to indicate that the delay
ACK timer was blocked because of a socket in use. We modify delay ACK timer
with expiry time of TCP_DELACK_MIN at line 220. If the timer was not already
installed, we need to hold additional reference on the socket by calling sock_hold()
at line 221. We now release the socket lock and return.

 cs 10.24. tcp_send_delayed_ack() .

 In the case where the socket is not in use, the fi rst thing we do is claim some
memory for the socket by calling tcp_mem_reclaim() from TCP memory pool. For
more detail, see Section 9.1 . We do some clean checks such as if the socket is already
closed or TCP_ACK_TIMER is not set at line 227. If any of these conditions is
TRUE, we return. If we got fi red before the expire time set for the timer at line 230,
we modify the timer to the current timeout (tp → ack.timeout) value. If required, hold
additional reference on the socket and return.

 We are ready to handle delay ACK timer now. So, the fi rst thing we do is to
clear the TCP_ACK_TIMER bit, which indicates that the timer is installed. Next
we check if the there is anything queued up in TCP ’ s prequeue. This may happen
because when an incoming segment is being processed in tcp_v4_rcv() , we fi rst try
to queue the segment in TCP prequeue by calling tcp_prequeue() . In case this is the
fi rst segment in the queue, we wake up the thread blocked to read data from the
socket and also install delayed ACK in case ACK is not already scheduled. In case
the timer fi res before the sleeping thread gets the processor, we will process the
prequeue fi rst and then send the cumulative ACK. In case we have segments to be
processed in the prequeue, they are processed in loop 242 – 243 by callback routine
 sk → backlog_rcv() , which is nothing but tcp_rcv_established() .

 While processing segment ’ s in the prequeue, we might have already sent out
ACK. So, next we check if the ACK is already scheduled at line 248. If we are in
interactive session (pingpong mode is turned off), we just infl ate ACK timeout (tp →
 ack.timeout) by backing off current timeout but not more than retransmission
timeout at line 251. On the other hand, if it was interactive session and we have
timed out, it means that we have not yet transmitted anything after we received
data for a long time. For example, if this happens with telnet, rlogin server side TCP
sessions and we have not echoed the characters typed from the client end TCP fast
enough, we should leave pingpong mode of ACKing. Next thing we do is to send
an ACK by calling tcp_send_ack() at line 259 (cs 10.25). We do some cleanup work,
release lock on the socket by calling bh_unlock_sock() , release additional hold on
the socket by calling sock_put() , and leave.

 10.4.8 tcp _ reset _ xmit _ timer ()

 This a common routine to reset timers for RTO, window probe, and delayed ACK
timer. The second argument to the routine is the kind of timer, and the third argu-
ment is the expire time in ticks. The very fi rst action we take here is that if the
timeout passed to the routine is more than maximum RTO, we reduce it to TCP_
RTO_MAX. Depending on the TCP timer, we take further action in the switch
case. For RTO and window probe timers the callback routine is same, that is, tcp_
write_timer() . Timer request for both these timers is processed in lines 876 – 879. We
differentiate between these timers from tp → pending fi eld. We set this fi eld accord-
ing to the timer type at line 876. Now we store the expiry time for the timer in tp →
 timeout in jiffi es (clock ticks) at line 877. Next we call modify_timer() to reset the
timer with an expiry value as tp → timeout . If the timer is not already installed, we
need to hold the reference for the socket at line 879 (cs 10.26).

 Delay ACK timer is slightly different from these two timers in a way that we
don ’ t initialize tp → pending fi eld here. Instead we just set TCP_ACK_TIMER bit
in pending fi eld of struct ack . Timeout for the delay ACK is set in tp → ack.timeout
fi eld. All the ACK status is maintained in struct ack , embedded in struct tcp_opt .

DELAY ACK TIMER 349

350 TCP TIMERS

 cs 10.25. tcp_delack_timer() .

 10.4.9 tcp _ write _ timer ()

 This is a callback routine for RTO and window probe timers. We process the timer
with socket lock held by calling bh_lock_sock() . Next we check if the socket is being
accessed by some other thread (sk → lock.users != 0). If so, we don ’ t continue with
processing of the timer; instead we defer the timer by HZ/20 ticks by calling mod_
timer() at line 424 (cs 10.27). We need to hold the additional reference on the socket
in case the timer was not already installed at line 425 and return.

 Next we check if the socket is closed or no timer is pending (tp → pending ==
0) at line 429. If any of these conditions is TRUE, we return. If the timer has expired
prematurely, line 432, we reset the timer with expiry time of tp → timeout ticks. Hold
an additional reference on the socket in case timer is not already installed at line
434 and return.

 If we are here, it is time to execute the TCP timer. Either RTO or window probe
timer has timed out. tp → pending fi eld stores the timer event — that is, which timer
has expired. Depending on the pending timer, we call callback routine. On every
exit from the timer callback routine, we release the socket lock and also release an
additional reference on the socket by calling bh_unlock_sock() and sock_put() ,
respectively.

 cs 10.26. tcp_reset_xmit_timer() .

DELAY ACK TIMER 351

352 TCP TIMERS

 10.4.10 tcp _ clear _ xmit _ timer ()

 This is a common routine to cancel TCP timers. The second argument to the routine
is the timer that needs to be canceled. For RTO and window probe timers we clear
 tp → pending fi eld at line 834 (cs 10.28). Additionally, we can remove a timer from
the list if it is installed (timer_pending() returns TRUE) and delete the installed
timer by calling del_timer() . If we delete a timer here, the additional reference
placed on the socket should be released here by calling __sock_put() . We delete the
timer from the global lost only if TCP_CLEAR_TIMERS is defi ned. In the case of
delayed ACK timer, we need to reset two fi elds tp → ack.pending and tp → ack.
blocked at lines 843 – 844. The rest of the deletion of the timer process is the same
as explained for the RTO timer above.

 cs 10.27. tcp_write_timer() .

 10.5 KEEPALIVE TIMER

 The keepalive timer is used by TCP to probe the peer when there is no activity over
the connection for a long time. This timer is used by interactive TCP connections
where the connection may be in an idle state for a long time — for example, telnet,
rlogin, and so on. Connections need to probe their peers by sending a TCP segment.
The segment is sent with sequence number 1 less than the the highest acknowledged
sequence number. When this segment reaches the other end, it should generate an
ACK immediately thinking that it was retransmission. Once the ACK to the kee-
palive probe is received, we are sure that the peer is alive; otherwise we know that
there is a problem. Let ’ s see how this timer is implemented in Linux.

 10.5.1 When Is Keepalive Timer Activated?

 On Linux, the keepalive timer implements both a SYN ACK timer and a keepalive
timer. This means that for any of these timers, we reset the same timer, that is, tp →
 timer . In this section we will only focus on the keepalive timer. The timer is started
when a new connection is established in tcp_create_openreq_child() , only if the
KEEP ALIVE option (tp → keepopen) is enabled for the socket. This is done when
an application issues the SO_KEEPALIVE socket option on the socket. This option

 cs 10.28. tcp_clear_xmit_timer() .

KEEPALIVE TIMER 353

354 TCP TIMERS

is not enabled by default, which also means that the keepalive timer is not enabled
for all the TCP connections by default.

 10.5.2 How Is the Timer Reset?

 The timer is reset by calling tcp_reset_keepalive_timer() , which kicks off the keepal-
ive timer registered as tp → timer for the TCP connection. This timer is initialized as
 tcp_keepalive_timer in tcp_init_xmit_timers() at the time of opening a socket.

 10.5.3 tcp _ keepalive _ timer ()

 Let ’ s see how the keepalive timer functions. It fi rst looks for the user of the socket.
If so, we need to let the user of the socket complete its task and defer execution
of the timer at some later time. We reset keepalive timer by calling tcp_reset_
keepalive_timer() to expire after HZ/20 ticks at line 584, release socket hold and
leave (cs 10.29a). The keepalive callback routine can act as a SYN - ACK timer by
calling tcp_synack_timer() at line 589 to manage incoming connection request (dis-
cussed in Section 10.6.3), in case it is a listening socket. Next we check if the socket
is in the FIN_WAIT2 state, and the socket is already closed at line 593. If that is
the case, we call tcp_time_wait() in case we have not expired TCP_TIMEWAIT_
LEN number of ticks. Otherwise if we have expired, we send out reset on the con-
nection and remove the connection from our end. TIME_WAIT timer will be
discussed in Section 10.7.2 .

 Next we check if the keepalive connection is not enabled (tp → keepalive) or
the connection is in the closed state at line 606. If any of the conditions is TRUE,
we release socket lock and return. We send the keepalive probe only if the segment
has been idle for some time. So, next we check if any data segment was transmitted
which is still unacknowledged (tp → packets_out is nonzero) or if there is anything
in the send queue that needs to be sent next (tp → send_head != NULL) at line 612.
If any of these conditions is TRUE, we reset the keepalive timer by calling tcp_
reset_keepalive_timer() at line 642, release the socket lock, and leave (cs 10.29b).

 If we are here, we are eligible for sending out the keepalive probe if the time
has actually expired. First we calculate the time elapsed since the last segment was
received at line 615. Next we compare if the time since last segment was received
has exceeded the probe time interval at line 617. keepalive_time_when() gets us
probe time interval. The keepalive probe time interval is tp → keepalive_time in case
it is set using socket options; otherwise it is sysctl_tcp_keepalive_time . If the timer
has not expired, we calculate the next expiry as the time left for the keepalive timer
to expire at line 635 and would reset the probe timer to expire in the near future.
Otherwise, if the time has actually expired, the next check would be to see if the
number of unacknowledged probes has exceeded the limit at lines 618 – 619. We
increment tp → probes_out whenever the probe is sent out (is discussed ahead), and
the counter is reset when we get an ACK when no outstanding unacknowledged
data are there in the queue (see Section 10.4). If we have exceeded probe limits,
the reset segment is sent out by calling tcp_send_active_reset() and the connection
is closed, lines 620 – 621. In this case, we release the socket lock and leave.

 If we have not exceeded the limit on the number of unacknowledged probes,
we call tcp_write_wakeup() to send out a probe (see Section 10.3.7). If the probe
segment is transmitted successfully, we increment the probe counter by 1 at line 625.

 cs 10.29a. tcp_keepalive_timer() .

KEEPALIVE TIMER 355

356 TCP TIMERS

 cs 10.29b. tcp_keepalive_timer() (continued).

Get the probe interval by calling keepalive_intvl_when() . In the case where the
probe interval was not transmitted successfully, we need to send it at the earliest.
So, the expiry time for the keepalive timer is reduced to TCP_RESOURCE_
PROBE_INTERVAL at line 631, because we are not able to transmit because of
lack of resources. Next we call tcp_mem_reclaim() to reclaim some memory. We do
this here because if our connection has consumed its quanta of memory allocated,
the next processing of the incoming segment will take it to the slow path. So, we do
this check in advance here. Next we call tcp_reset_keepalive_timer() at line 642 to
reset the keepalive probe timer to whatever expiry time we have calculated above.
We release the socket lock and leave.

 10.6 SYN - ACK TIMER

 There is a timer maintained by Linux to manage connection requests that are not
being accepted for a given period of time. The entire idea of having this timer is
that if we are not able to accept more connections (accept queue is full) because
the application is not able to get CPU or it is busy doing something else, we need
to manage the connection request. There are two main cases where connection
requests need to be managed:

 1. Established connections are not being accepted because the accept queue is
full and the application is not accepting new connections.

 2. We don ’ t get ACK for the SYN - ACK we sent; that is, the third step in the
three - way handshake is not completed.

 10.6.1 When Is the SYN - ACK Timer Activated?

 The timer is activated when we get a connection request and there is no pending
connection request in the listening socket ’ s SYN queue to be processed. lopt → qlen
is the counter that is incremented by 1 whenever a new connection requested arrives

by calling tcp_synq_added() (cs 10.30). Whenever the new connection moves from
SYN queue to accept queue after three - way handshake, the counter is decremented
by 1 by calling tcp_synq_removed() . In tcp_synq_added() we call tcp_reset_
keepalive_timer() when we are processing the fi rst connection request when no
request is pending in the SYN queue to be processed.

 10.6.2 When Is the SYN - ACK Timer Stopped?

 The SYN - ACK timer stops when we fi nd that the queue length (lopt → qlen) is zero,
which means that there is no open request pending on the listening socket. So, all
the open requests are now established and accepted since the SYN - ACK timer was
reset. Whenever the connection requested is moved from SYN queue to accept
queue after the three - way handshake is over, we decrement the counter by 1. If the
counter becomes zero, we cancel the SYN - ACK timer in tcp_synq_removed() by
calling tcp_delete_keepalive_timer() at lines 1606 – 1607 (cs 10.31).

 In the case where SYN - ACK is not retransmitted even once, the connection
request is considered young.

 10.6.3 tcp _ synack _ timer ()

 In the case where the SYN queue is more than half - fi lled, we try to reserve half of
the space for the young requests. Requests are young until they are retransmitted.
The idea of SYN queue management is to keep most of the young entries and
remove old ones from the queue which have been there for quite some time and

 cs 10.30. tcp_synq_added() .

 cs 10.31. tcp_synq_removed() .

SYN-ACK TIMER 357

358 TCP TIMERS

have not yet been accepted or acknowledged. For this we have a timer per listening
socket that expires after a given time interval TCP_SYNQ_INTERVAL . The value
is HZ/5 ; that is, the timer expires fi ve times per second. The individual entries in the
SYN queue has its own expiry as req → expires . The timeout value for each request
increases exponentially on each expiry. req → retrans counter is incremented by 1
every time SYN - ACK is retransmitted. Retransmission may happen because of two
reasons:

 1. The three - way handshake is over but there is no space in the accept queue
for the new connection. In this case, req → acked is set.

 2. The fi nal ACK is not received for the request, which may be due to the SYN -
 ACK being lost, the fi nal ACK being lost, or the peer not responding, and so
on. In this case, req → acked is not set.

 The very fi rst retransmission converts a young request into a matured one, and
 lopt → qlen_young is decremented by 1.

 Let ’ s see how the idea is implemented. First we check if the SYN queue for the
listening socket is more than half - fi lled at line 492 (cs 10.32). lopt → max_qlen_log is
log base 2 of the maximum queue length. If the result of division of lopt → qlen by
2 (lopt Æ max_qlen_log - 1) is a nonzero positive number, it means that our SYN queue is more
than half full (equivalent to expression at line 492). For example, if lopt → max_qlen_
log is 6, it means that the maximum queue length is 64. If the queue length is divided
by 2 4 and the integral result is nonzero, it means that the queue length is minimum
32, which is half of 64.

 So, once we are halfway through the queue length, we enter the block 492 – 501
to calculate the number of retries for the old entries which are not yet acknowl-
edged. thresh is a local variable that is equal to the max_retries storing value that
indicates a maximum number of retries for the retransmission, after which we
should drop the connection request. We traverse in a loop 495 – 500, until thresh is
greater than 2. In each iteration we decrement thresh by 1 and divide the number
of young entries by 2. We also break from the loop when the length of the queue
becomes less than the number of young entries in any iteration. This means that the
higher the number of young entries, the lower the number of iterations we go
around the loop and thus higher the thresh . The fi nal value of thresh will decide as
to how many times old unacknowledged connection requests in the SYN queue
should be retransmitted before we drop those unacknowledged connection
requests.

 The maximum number of retries by default is the sysctl_tcp_synack_retries
system - wide control parameter. The user can also set this value for the listening
socket by using socket options TCP_SYNCNT . The fi nal value of maximum number
of retries for the SYN queue requests is decided by the socket option TCP_DEFER_
ACCEPT. At line 504, maximum retries is set to tp → defer_accept , which is set by
using the TCP_DEFER_ACCEPT socket option.

 Next we need to calculate the total number of hash table entries be examined.
There may be hundreds of requests in the SYN queue and we can ’ t examine each
open request every time that the SYN - ACK timer expires. So, we calculate a budget
at line 506 which takes into account the HASH table size for the SYN queue,
the time before which a new entry in the SYN queue should not be examined
(TCP_TIMEOUT_INIT) and the time period for the SYN - ACK timer
(TCP_SYNQ_INTERVAL).

 cs 10.32. tcp_synack_timer() .

SYN-ACK TIMER 359

360 TCP TIMERS

 We examine entries in the SYN queue table in a clock - arm manner. We have
already calculated the number of hash table entries to be examined, so we start from
the zeroth hash table entry and cover a number of hash table entries calculated
above. We fi nally store the hash table index in lopt → clock_hand once we have
exhausted our budget. Thus the next time the SYN - ACK timer expires, we start
from the same hash table entry from where we left, line 507.

 The clock works as shown in Fig. 10.4 . If the length of the hash table is n + 1
and the fi xed budget is 4, fi rst processing will start from the zeroth entry. After pro-
cessing, the clock arm will point to the fourth entry in the hash table. This value is
stored in the clock arm lopt → clock_hand . The next time the SYN - ACK timer
expires, we start from where lopt → clock_hand points. In each round all the requests
in the collision list of the hash table entry is examined. If the hash function is not
proper, we may have an uneven length of collision list in the each entry.

 So, the number of requests examined on every timer expiry will be very much
different. But the timer interval is so small (HZ/5) that each entry is examined at a
very high rate.

 We have two loops to examine entries in the SYN queue. The outer loop (509 –
 542) advances us in the SYN queue hash table. The inner loop (511 – 538) takes us
through each element in the hash collision list. In each iteration of the outer loop,
we point to next entry in the hash table at line 510, where an increment is done at
the end of the loop at line 540. Let ’ s look at what is the inner loop is doing. We

 Figure 10.4. SYN ACK timer schedule.

traverse through the collision list by accessing dl_next fi eld of request structure. First
we check if the request has timed out from req → expires at line 512.

 • Next we check if the number of retransmissions for the request has not
reached thresh calculated above at line 513.

 • If it has exceeded (above condition fails), we once again check if the request
being examined is already acknowledged (three - way handshake is over). We
may have such requests in the SYN queue because the accept queue has
overfl own. We have a slightly different criterion for such requests. The
maximum number of retries for already acknowledged requests is decided by
either a user - defi ned value (tp → defer_accept, tp → syn_retries) or a system -
 wide control parameter sysctl_tcp_synack_retries .

 If any of the above conditions is TRUE, we try to retransmit the SYN - ACK by
calling the rtx_syn_ack() routine for the request, which is tcp_v4_send_synack() at
line 515. In case we are able to retransmit SYN - ACK successfully, we increment
the retransmit counter for the request at line 518. If this was the fi rst retransmission
for the request, we decrement the Young request counter by 1 at line 519 because
this request has now matured. We calculate the next examination time for the
request as exponentially incremented TCP_TIMEOUT_INIT or TCP_RTO_MAX ,
whichever is minimum at line 520. We set this timeout value for the request at line
522 and continue with the next element in the hash collision list.

 If both conditions mentioned above fail, it means that the request has timed
out in all the respects. We need to remove the connection from the hash collision
list. We do this with syn_wait_lock held for the connection at line 528 – 530. Since a
request has been dropped, we need to decrement the SYN queue length by 1 at line
531. If the request just dropped was young (req → retrans equal to 0), we decrement
the young request counter by 1 at line 533. Next we free the open request by calling
tcp_openreq_free() and continue with the next request in the collision list.

 Once we have exhausted the budget, we come out of the outer loop and record
the next hash table entry in lopt → clock_hand at line 544. If we still have requests
in the SYN queue, we reset the SYN - ACK timer by calling tcp_reset_keepalive_
timer() at line 547 and return. The callback routine for the SYN - ACK timer is the
same as that for the keepalive timer.

 10.7 TIME _ WAIT TIMER

 When the TCP connection enters the TIME_WAIT state, it needs to wait for 2
MSL seconds before the connection is completely dropped. The reason is to avoid
any misunderstanding of the segments from this connection (delayed in the network)
with the segments from the new reincarnation of the connection. So, we need to
keep the old connection in TIME_WAIT state for the duration until we can expect
that delayed segments from this connection can appear.

 10.7.1 When Do We Trigger TIME _ WAIT Timer?

 We trigger the TIME_WAIT timer by calling tcp_time_wait() when we are closing
the connection in tcp_fi n() & tcp_close() . When we doing active close and receive

TIME_WAIT TIMER 361

362 TCP TIMERS

FIN/ACK from the peer, we enter into TIME_WAIT state and here we call tcp_
time_wait() to schedule expiry of the TIME_WAIT socket.

 10.7.2 tcp _ time _ wait ()

 When we are entering into the TIME_WAIT state, we need to wait for 2 MSL
seconds before we can destroy the connection completely. Linux implements this
by having a list of time - wait socket entries in the form of struct tcp_tw_bucket . Each
socket that goes into the TIME_WAIT state has a corresponding tcp_tw_bucket
object. A list of time - wait buckets is maintained, and timers are triggered to fi re at
the appropriate time to examine time - wait buckets and destroy them. In this section
we will see how all this is achieved.

 Linux has two approaches to process TIME_WAIT sockets, depending on the
time - wait period. We can have either a fi xed period (considered as 2 * MSL) or a
variable waiting period calculated on the basis of the connection ’ s RTO. This deci-
sion is made based on two factors:

 1. Whether recycling of the TIME_WAIT socket is allowed (sysctl_tcp_tw_
recycle is enabled).

 2. We can remember the timestamp from the most recent segment that is seen
from the destination (peer for the connection going into the TIME_WAIT
state).

 In case both of the above conditions are TRUE, we just call tcp_v4_remember_
stamp() to check if the peer information exists in the global list. If it exists, we have
timestamp information maintained that can be used to catch duplicate/retransmit-
ted/delayed segments from the original connection in case a new reincarnation of
the connection happens fast. We can enter the recycle mode for this time - wait
socket, line 353.

 Next we check if total number of time - wait buckets allocated (tcp_tw_count)
has reached the limit, sysctl_tcp_max_tw_buckets , at line 355. If we have reached
the limits, we don ’ t register the socket in the TIME_WAIT state and close the con-
nection. Otherwise, we allocate the tcp_tw_bucket object at line 356 and copy rele-
vant information from the sock object to the tcp_tw_bucket object. We calculate
RTO as 3.5 tp → rto at line 359. This will be used as expiry time in case the time - wait
socket is eligible for recycling. Next we need to join the TIME_WAIT socket in
the bind - hash list and remove the socket from established list by calling
 __tcp_tw_hashdance() .

 Next we make sure that timeout for expiry of the time - wait socket is not less
than the 3.5 RTO calculated, line 397 – 398. If we are eligible for the recycle mode,
 tw → timeout is set to 3.5 RTO, line 401. Otherwise, expiry time for the time - wait
socket is set to TCP_TIMEWAIT_LEN at line 405. Now we need to schedule the
time - wait socket by calling tcp_tw_schedule() . The fi xed TIME_WAIT period,
 TCP_TIMEWAIT_LEN , considered by Linux is 60 sec (cs 10.33).

 10.7.3 tcp _ tw _ schedule ()

 This routine is called to schedule the time - wait socket. The idea is to calculate the
appropriate slot for the time - wait socket based on timeout ticks. Each slot is

processed at equal time intervals. If we get the fi rst slot, it means that we should be
placed in the very next slot from the current scheduled slot that is going to expire
fi rst. First we calculate the slot for recycle mode; and if the value exceeds the recycle
mode limit, we switch to non - recycle mode. The recycle mode timer expires every
2 TCP_TW_RECYCLE_TICK ticks, which means that two consecutive slots will be processed
at an interval of 2 TCP_TW_RECYCLE_TICK clock ticks in recycle mode. So, we calculate
the slot for the recycle mode at line 529 (cs 10.34), where we round up the timeout
value to a multiple of 2 TCP_TW_RECYCLE_TICK and divide the fi nal value by 2 TCP_TW_

RECYCLE_TICK . We hold global time - wait lock, tw_death_lock , at line 531 because we
are going to manipulate the global time - wait chain. We fi rst check if the time - wait
bucket is already scheduled. If pprev_death fi eld of the time - wait bucket is non -
 NULL, we are already linked in the global list. In this case, we remove the bucket
from the list, lines 534 – 539. We decrement tcp_tw_count because we are going to
reschedule it, which is going to increment the counter by 1. If the bucket was not
already scheduled, we hold an additional reference on the bucket because we should
not destroy the time - wait bucket before the timer expires. Next we check if the slot
calculated based on recycle ticks is more than maximum slots held by the recycle
time - wait table, TCP_TW_RECYCLE_SLOTS . Let ’ s see how recycle and non -
 recycle time - wait timers are processed.

 10.7.4 Nonrecycle Mode (see cs 10.34 unless mentioned)

 This may happen when our timeout value is too high with the recycle mode or we are
in the nonrecycle mode. In this case we take slow timer path. In the slow timer path,
we expire for consecutive slots at fi xed timer interval — that is, TCP_TWKILL_
PERIOD as shown in Fig. 10.5 . TCP_TWKILL_PERIOD is calculated by dividing
time - wait length (60 sec) by total number of slots, TCP_TWKILL_SLOTS . If our
timeout value for expiry of this time - wait bucket is more than TCP_TIMEWAIT_
LEN , the time - wait bucket should occupy the last slot with respect to the current
scheduled slot, tcp_tw_death_row_slot , at line 546. Otherwise, we calculate the slot
as dividing a rounded up timeout value to TCP_TWKILL_PERIOD by TCP_
TWKILL_PERIOD at line 548. In any case, the slot should not go beyond TCP_
TWKILL_SLOTS . Next we calculate the slot with respect to the current scheduled
slot, tcp_tw_death_row_slot , at line 553. We keep the pointer to the entry in the tcp_
tw_death_row[] table corresponding to the slot calculated above at line 554. tcp_tw_
timer is the timer for nonrecycle mode operation. The timer is triggered when the fi rst
time - wait bucket entry arrives. Once the timer is triggered, it will continue to fi re at
equal intervals of TCP_TWKILL_PERIOD clock ticks (cs 10.35) for each slot irre-
spective of whether the slots have entries scheduled for it. The timer stops only when
there is no entry in any of the slots and the tcp_tw_count has come down to zero. For
more details see Section 10.7.6 , which discusses tcp_tw_timer timer .

 cs 10.33. Time - wait timer frequency for any slot in the nonrecycle mode.

TIME_WAIT TIMER 363

364 TCP TIMERS

 cs 10.34. tcp_tw_schedule() .

 Let ’ s take an example for the slot calculation with slow timers. We take two
timeout values − 20 Hz ticks (20 sec) and TCP_TIMEWAIT_LEN . The slow timer
fi res after every TCP_TWKILL_PERIOD ticks, that is, 7 sec (7 - Hz clock ticks). The
fi rst timeout value will be rounded off to multiple of 7 and then divide it by 7 to get
the slot. We get slot 3 according to the above calculation for a timeout value of
20 sec. Since the current slot (tcp_tw_death_row_slot) is 2, our time - wait bucket
should go in slot 6 as shown in Fig. 10.6 . In the case where the timeout was greater
than or equal to TCP_TIMEWAIT_LEN , we would have taken the last slot with
respect to the current slot (i.e., slot 1) because the clock hand moves ahead by 1
slot on each expiry of the timer and the timer fi res at an equal interval of TCP_
TWKILL_PERIOD ticks.

 10.7.5 Recycle Mode (see cs 10.34 unless mentioned)

 In the recycle mode we have 32 slots, 0 – 31. The timer in this case can be
scheduled to fi re at any time that is a multiple of 2 TCP_TW_RECYCLE_TICK as shown

 Figure 10.5. Time - wait timer schedule for the non - recycle mode.

 cs 10.35. Time - wait timer frequency.

TIME_WAIT TIMER 365

366 TCP TIMERS

 Figure 10.6. Time - wait timer in slot 6 is scheduled with respect to slot 1.

in Fig. 10.7 . There are 32 slots, and each slot is processed at equal intervals of
2 TCP_TW_RECYCLE_TICK . TCP_TW_RECYCLE_TICK is calculated as defi ned in
cs 10.36 . It depends on Hz which is frequency of times Interrupt.

 The timer used for processing of recycle mode time - wait sockets is tcp_twcal_
timer . Hash bucket for this mode is tcp_twcal_row[TCP_TW_RECYCLE_SLOTS] .
The scheme used here is slightly different from the one used for the non - recycle
mode. Here we are allowed to modify expiry time for the timer whenever a new
time - wait entry arrives. In the case where there is no entry in the time - wait hash
bucket, tcp_twcal_hand is set to − 1. Once the fi rst entry arrives, we do the
following:

 • tcp_twcal_hand is set to 0, line 559.
 • tcp_twcal_jiffi e is another global variable that keeps the value of jiffi es when

the fi rst entry arrives, line 560. This is used to compare with the expiry time
of each slot. Will learn more in Section 10.7.7 that explains tcp_twcal_tick() .

 • Timer expiry time is set as jiffi es + slot * 2 TCP_TW_RECYCLE_TICK , line 561. jiffi es
contains number of clock ticks since the machine was booted. Even though
this is the fi rst entry that may go in any slot including 0, our arm (tcp_twcal_
hand) is pointing at slot 0. We will see how this is taken care of in the timer
routine.

 • Next we trigger the timer by calling add_timer() at line 562.

 In the case where we are going to add new a time - wait socket entry when the entries
already exist — that is, the timer is already scheduled, we just check if the time

remaining for the timer to expire is more than the expiry time for our new time - wait
entry at line 564. If that is the case, we reschedule the timer at line 564 by calling
 mod_timer() and set expiry time from new time - wait entry. If this is the case, a new
entry would have gone into the slot that appears prior to current scheduled slot. So,
the very next timer will process the slot corresponding to the new entry, and the
current scheduled slot will be processed in the subsequent timers (explained with
the help of Fig. 10.7). Next we calculate the new slot with respect to the current
slot, tcp_twcal_hand , at line 566. For example, Fig. 10.8 shows that a new time - wait
timer is added in slot 16 with respect current slot 0.

 Next we add the new time - wait to the selected slot in the appropriate hash
bucket using the next_death and pprev_death fi eld of the tcp_tw_bucket object, lines
571 – 574. We increment tcp_tw_count by one. In the case where this is the fi rst time -
 wait socket entry, we trigger tcp_tw_timer timer irrespective of timer mode. We
release the global time - wait lock, tw_death_lock and leave.

 10.7.6 tcp _ twkill ()

 This is the timer callback routine for the tcp_tw_timer timer used for processing of
time - wait sockets in the non - recycle mode. In the non - recycle mode, we have a timer
that fi res at equal time intervals of TCP_TWKILL_PERIOD to process each slot
(cs 10.37). The timer fi res for the slot irrespective of whether we have any time - wait
sockets being there for that slot or not. We hold the tw_death_lock lock to access
each bucket in the hash bucket collision list. With the tw_death_lock lock held (line
443), we check if there is no time - wait sockets to be processed in any of the slots at
line 445. If so, we just return without rescheduling timer. This is one of the places
where we stop the timer for the nonrecycle mode.

 cs 10.36. Logarithm of time - wait timer frequency depending on CPU frequency.

TIME_WAIT TIMER 367

368 TCP TIMERS

 Figure 10.7. Time - wait timer slots for the recycle mode.

 Figure 10.8. New time - wait timer is added to slots 16 with respect to slot 0 .

 cs 10.37. tcp_twkill() .

 We are here because the time - wait bucket is not empty. But we don ’ t know
whether the current slot being processed has any entry to be processed. We start a
loop here to process entries in the current slot, pointed to by tcp_tw_death_row[tcp_
tw_death_row_slot] . Entries are accessed in the collision chain using the next_death
fi eld of the tcp_tw_bucket object. Once we have gotten the node to be processed
(tcp_tw_bucket object) from the chain, we release the tw_death_lock lock at line 451.
With this design of holding and releasing the lock for each node access, we can have
 tcp_tw_schedule() continue to do its job while the slot is being processed because
there is a single lock for any time - wait table access. Next we unlink the time - wait
socket from the time - wait hash table, tcp_ehash , and also from bind hash bucket,
 tcp_bhash , by calling tcp_timewait_kill() . We release an additional reference on
the time - wait bucket while unlinking it from a different time - wait hash table in
 tcp_timewait_kill(). The additional reference was put on the time - wait socket when
it was linked to these hashes by a call to __tcp_tw_hashdance() in tcp_time_wait() .
Next we release one more reference on the time - wait bucket at line 454. This refer-
ence was put on the socket while adding in tcp_tw_schedule() when we are linking
time - wait socket to the time - wait table slot. Counter is incremented every time to
keep track of the number of sockets killed from the slot. This will help us in making
a decision to stop the timer further down the line.

 Once we have processed all the time - wait sockets in the slot, we calculate the
next slot to be processed at lines 460 – 461. tcp_tw_death_row_slot moves like arm of

TIME_WAIT TIMER 369

370 TCP TIMERS

a clock in one direction as shown in Fig. 10.9 . The slot wraps around itself once it
has reached the maximum value of 7. Next we check if there are any more entries
in the time - wait table to be processed over all at line 463. We do this by subtracting
killed counter from tcp_tw_count . If entries exist, we reschedule tcp_tw_timer timer
to expire after the TCP_TWKILL_PERIOD clock ticks. In the case where the next
slot is empty, we don ’ t care and we schedule the timer to process the next slot
pointed to by tcp_tw_death_row_slot . This way we maintain simplicity of processing
the slots at the correct time without too much manipulations at the cost of the timer
fi ring unnecessarily for the slot that has nothing to be processed. But we never know
if something can be added to the current slot before it is being processed in the next
timer event after TCP_TWKILL_PERIOD clock ticks. Release the time - wait lock
and return.

 10.7.7 tcp _ twcal _ tick ()

 This is a timer callback routine for tcp_twcal_timer timer used in the recycle mode.
This timer works slightly different from tcp_tw_timer . With this design, the timer is
set to expire only for the slot at a minimum distance from the current scheduled
slot. In tcp_tw_schedule() we can see that if the timer is already scheduled and that
the new entry that needs to be scheduled earlier than the time left in expiry of the
scheduled timer is more than the current entry, we reschedule the timer to expire
early to process the latest entry. So, the chances of multiple nonvacant slots being
processed on a single timer event are much lower. There is a boundary line case
where the new entry arrives just at the boundary of 2 TCP_TW_RECYCLE_TICK ticks where
the condition mentioned above is not satisfi ed (time left for timer to expire is equal
to 2 TCP_TW_RECYCLE_TICK ticks). In this case we miss our opportunity to reschedule the

 Figure 10.9. Movement of time - wait slot clock arm to point to the current slot being

processed.

timer but place the new entry in the slot. In this case, both slots will be processed
when the next timer expires.

 Let ’ s see how the idea is implemented. We have two global variables here:

 • tcp_twcal_hand
 • tcp_twcal_jiffi e

 When the fi rst entry is added to the hash table, tcp_twcal_jiffi e is set to jiffi es
and tcp_twcal_hand is set to slot zero. Suppose the fi rst entry is added to slot 20,
depending on the timeout value as shown in Fig. 10.10 (left). Since this is the fi rst
entry, all the slots will be vacant and will be pointing to NULL. The timer is set to
expire at 20 * 2 TCP_TW_RECYCLE_TICK ticks. In this case, when the timer fi res, let ’ s see
how loop 596 – 622 (cs 10.38) works. The loop does 32 iterations. In each iteration
it checks if the current time is more than the time stored in tcp_twcal_jiffi e . In the
fi rst iteration, we will surely have a value in tcp_twcal_jiffi e less than current time
since tcp_twcal_jiffi e stores the value of jiffi es when the fi rst entry went into slot 20.
At the end of each iteration we add 2 TCP_TW_RECYCLE_TICK ticks to the value stored in
 tcp_twcal_jiffi e because in each iteration we are moving to process the next slot, and
the time period to process subsequent slots is 2 TCP_TW_RECYCLE_TICK ticks. In the fi rst
iteration we pass the test, and so we are all set to process slot 0. This part is same

 Figure 10.10. Time - wait timer added to slot 21 in nonrecycle mode.

TIME_WAIT TIMER 371

372 TCP TIMERS

as the one explained in section 10.6.3 , where we traverse through the collision hash
list (lines 600 – 607) by accessing the next_death fi eld of object tcp_tw_bucket . In each
iteration we call tcp_timewait_kill() to unlink the time - wait socket from the time -
 wait hash table and from the bind hash table. Thereafter, we call tcp_tw_put() to
release an additional reference held on the time - wait bucket in tcp_tw_schedule() .
Finally we increment the killed counter by 1 in order to keep track of the number
of entries in the time - wait table subsequently.

 cs 10.38. tcp_twcal_tick() .

 In this case, slots 0 – 19 are empty (no entries for time - wait buckets). So, until
the 20th iteration, we simply increment the slot number at line 621 and add time
period (2 TCP_TW_RECYCLE_TICK ticks) to the value stored in tcp_twcal_jiffi e at line 620
and do nothing. The condition at line 597 is TRUE until the 20th iteration because
the timer has expired after 20 * 2 TCP_TW_RECYCLE_TICK ticks since the entry was received.
Once we are at the 20th iteration, we process all the time - wait entries in the 20th
slot. In the next iteration, we fi nd that the value of clock ticks has exceeded the
current value of jiffi es . So, we enter the else part (lines 608 – 619). Since this is the
fi rst time we have entered this block, we store the number of ticks calculated at the
end of each iteration in tcp_twcal_jiffi e and store the value of slot 21 (next to slot
processed recently) in tcp_twcal_hand .

 Next we check if the current slot has any entries, line 615. If there are entries
in the slot, we schedule the timer to expire after 2 TCP_TW_RECYCLE_TICK ticks (since
value of ticks calculated until now at line 620 is jiffi es + 21 * 2 TCP_TW_RECYCLE_TICK
ticks). And we leave. In the next timer, tcp_twcal_hand will be pointing to the 21st
slot as shown by dotted lines in Fig. 10.10 (right). In our case, all the slots from 21
to 31 are empty. So, in each iteration we enter the else part (lines 608 – 619) and fi nd
that there is nothing in the slot to be processed. We come out of the loop and set
tcp_twcal_hand to − 1 at line 623; − 1 signifi es that there is no entry in the time - wait
table. In this case, tcp_twcal_hand & tcp_twcal_jiffi e will be reinitialized in
 tcp_tw_schedule() .

 In the above case, if the 20th and 24th slots had entries, the fi nal scene would
have been (as shown in Fig. 10.11).

 Figure 10.11. After processing timers from slot 20, we need to process slot 24.

TIME_WAIT TIMER 373

374 TCP TIMERS

 • tcp_twcal_hand would be pointing to the 21st slot.
 • The timer would be set to expire after 4 * 2TCP_TW_RECYCLE_TICK ticks.
 • tcp_twcal_jiffi e would be set to current value of jiffi es .

 With this kind of setup, if we get time - wait socket entries for slot 22 or 23 before
the clock passes the 21st slot, the timer can be rescheduled with a new expiry time
to process the closest slots fi rst.

 10.7.8 __ tcp _ tw _ hashdance ()

 This routine is called when a connection moves into the TIME_WAIT state. In this
case, we need to link the TIME_WAIT socket to the bind - hash table, unlink it from
the established state, and link it in the time - wait hash table. The socket is already
hashed in the bind hash table tcp_bhash[] using socket ’ s num fi eld. We get the head
of the hash table entry at line 310 (cs 10.39) in order to hold the bind hash spin lock

 cs 10.39. __tcp_tw_hashdance() .

at line 311. When we are binding the socket to a port, we make sk → prev point to
the bind bucket, tcp_bind_hashbucket object, which corresponds to its entry in the
bind hash collision list. We link object tcp_tw_bucket with the chain of sockets (tb →
 owners) associated with the tcp_bind_bucket object, lines 314 – 317. Next we need to
remove the socket ’ s entry from the established list. For this we need to hold the
established hash table head lock. We get access to the established hash list lock by
accessing tcp_ehash_bucket object corresponding to the socket. This index in the
 tcp_ehash[] table is stored in the socket ’ s hashent fi eld, line 302. We hold the estab-
lished hash table head lock at line 320 and now unlink the socket from the hash
table, tcp_ehash[] , lines 323 – 329. The socket is linked through the next and pprev
fi eld in the established collision hash chain. Next we need to link the socket in the
time - wait hash bucket. There is no separate bucket for time - wait sockets; instead,
the bucket is a part of the tcp_ehash[] table. The lower half of the tcp_ehash[] is
used for time - wait sockets. So, to access the head of the hash bucket, we just need
to add tcp_ehash_size to the head of the established hash bucket, line 332. The socket
is linked through next and pprev fi eld in the time - wait hash collision chain, lines
334 – 337.

 10.8 SUMMARY

 struct timer_list is the object that is initialized to register timer.
 mod_timer() and del_timer() are the interfaces provided by the Linux kernel to

manipulate timers.
 mark_bh() is called to raise HI_SOFTIRQ softIRQ from the timer interrupt

and schedules the timer tasklet for which the callback routine is timer_bh() .
 tcp_reset_xmit_timer() is a common timer callback routine to register retrans-

mit, zero - window probe, and delayed - ACK timer.
 tcp_reset_keepalive_timer() is an interface to reset the keepalive timer.
 tcp_clear_xmit_timers() is an interface to clear TCP timers.
 tcp_ack_packets_out() resets retransmit to expire after RTO when new data are

ACKed in tcp_ack() .
 tcp_delack_timer() is a callback routine for the delayed - ACK timer.
 tcp_retransmit_timer() is a callback routine for the retransmit timer.
 tcp_check_probe_timer() is called to reset the zero - window probe timer in case

we are not able to transmit new data and we have no unacknowledged data. The
routine is called from __tcp_push_pending_frames() and __tcp_data_snd_check() .

 tcp_probe_timer() is a callback routine to handle zero - window probe.
 tcp_synq_added() is called to register the SYNQ timer for a new connection

request. SYNQ timer is implemented as part of the keepalive timer. The keepalive
timer callback routine calls tcp_synack_timer() in case the socket is in the listen
state.

 tcp_time_wait() is a callback routine for the time - wait timer.
 The TIME_WAIT timer operates in two modes: recycle and nonrecycle mode.

Those TIME_WAIT connections are processed in the recycle mode, for whom the
last received timestamp information is available in a peer list.

 In the non - recycle mode, the time - wait timer fi res at a fi xed interval of TCP_
TWKILL_PERIOD ticks, whereas in the recycle mode the timer fi res in multiples
of 2 TCP_TW_RECYCLE_TICK ticks.

SUMMARY 375

377

11

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 TCP CORE PROCESSING

 TCP is a full duplex stream protocol where data can fl ow in both directions. Each
side has to apply fl ow control. When a TCP segment is received, it may contain data
or may be plane ACK. If it contains data, it may be in - sequence data or out - of - order
data. If it is in - sequence data, it is queued on the socket ’ s receive queue or is imme-
diately consumed by the application. In case we received new data, ACK may be
generated immediately or delayed slightly so that combined ACK for more than
one data segment can be generated together.

 Before sending out an ACK, we need to check what information we have gotten
from the peer. We need to process ACK generated by the peer. This includes the
processing of (a) TCP options such as SACK and DSACK (b) advertised window,
and (c) TCP fl ags such as ECE and CWR. The timestamp option is processed to
calculate RTO and also to check against PAWS. The ACK sequence number will
provide information about what data have reached the receiving TCP in - sequence.
We update our retransmit queue based on this information and also update the
congestion window. This information along with the advertised window will be used
to make a decision on whether we can transmit new data.

 SACK/DSACK and ACK sequence number will be used to sense congestion.
If we sense congestion or early loss of data, the congestion control algorithm can
be applied.

 If the TCP urgent fl ag is set, we need to enter the urgent mode until we receive
an urgent byte. In case we received out - of - order segments, an immediate ACK needs
to be scheduled in order to let the sender TCP know about it at the earliest. If we

378 TCP CORE PROCESSING

have received an ACK segment without any data, it may be a window probe or
because the peer has an opened window.

 Once the incoming ACK is processed, TCP needs to check if any data are
pending to be transmitted. It needs to check if new data can be transmitted. If the
congestion window and the window advertised allow us to transmit new data, we
transmit data from a transmit queue. This will require calculation of the window to
be advertised. If data are transmitted here, an ACK for any new data that has arrived
will also be sent out along with data.

 In this chapter we will discuss how incoming TCP segments are processed. It is
this place where we receive and queue TCP data. We process TCP options here and
sense the state of the peer as well as state of the network. We do receive socket
buffer management here when our socket ’ s memory pool runs out of stock. We
process ACK for the incoming segments. The decision on whether to update window
advertised by the sender is made here. SACK processing and the cleaning of
the retransmit queue are done here based on ACKed segments. On the basis of the
received segment size, we grow the send window size here to be advertised to the
peer. We will see how this is done. Congestion control algorithms are implemented
here, and they are discussed separately in a different chapter. But we will see under
what conditions decisions are made to divert our path to congestion state processing.
We now try to send out any data that need to be sent out in the transmit queue
along with the ACK for the received data. Once we have processed incoming
segment, we check if the ACK needs to be sent out immediately or deferred.

 11.1 TCP INCOMING SEGMENT PROCESSING

 In this section we will see how the incoming segment is processed. A single point
entry to process TCP segments is tcp_rcv_established() . Linux has two approaches
to process incoming TCP segment: fast and slow path. In fast path we do minimal
processing such as processing incoming data, sending ACK/data, and storing a time-
stamp received from the peer, whereas in the slow path we take care of out - of - order
segments, PAWS, socket ’ s memory management, urgent data, and so on. Linux
manages to differentiate between the two modes of processing by implementing a
prediction fl ag. The prediction fl ag is the fourth word of the TCP header, which
includes TCP header length, fl ags, and advertised window.

 11.1.1 Prediction Flags

 When we are processing a TCP segment in tcp_rcv_established() at line 3241 of cs
 11.7 , we check if the fast path is enabled. The fast path usually is an indication of
the following:

 1. Either the data transaction is taking place in only one direction (which means
that we are the receiver and not transmitting any data) or in the case where
we are sending out data also, the window advertised from the other end is
constant. The latter means that we have not transmitted any data from our
side for quite some time but are receiving data from the other end. The
receive window advertised by the other end is constant.

 2. Other than PSH|ACK fl ags in the TCP header, no other fl ag is set (ACK is
set for each TCP segment). The PSH fl ag is just an indication from the sender

TCP INCOMING SEGMENT PROCESSING 379

to read data fast and has nothing to do with anything special. This means that
if any other fl ag is set such as URG, FIN, SYN, ECN, RST, and CWR, we
know that something important is there to be attended and we need to move
into the SLOW path.

 3. The header length has changed. If the TCP header length remains unchanged,
we have not added/reduced any TCP option and we can safely assume that
there is nothing important to be attended, if the above two conditions are
TRUE.

 This fl ag is 32 bits long and contains the fourth word of the segment ’ s TCP header as
shown in Fig. 11.1 , where HL is the header length in number of words. From the TCP
header, we can directly get this value. Directly access the fourth word of the TCP
header by using macro tcp_fl ag_word . If we AND this value with MASK TCP_HP_
BITS , we can get the prediction fl ag (cs 11.1 – 11.3). TCP_RESERVED_BITS in
network byte order is 0x0000000F. We ignore the PSH fl ag in the header prediction
because it does not require any attention. So, MASK TCP_HP_BITS in network
byte order becomes ∼ 0x0000080F, which is 0xFFFFF7F0 shown in Fig. 11.2 .

 11.1.2 Building Prediction Flags

 When we enter into the fast path, the prediction fl ag is built into tp → pred_fl ags . We
call __tcp_fast_path_on() to do this (cs 11.4). Let ’ s assume we are on X86 platform,
we fi rst build prediction fl ag in host byte order and then convert it to network byte
order and store it in tp → pred_fl ags (26 is because of − 2 bits for dividing header
length by 4 because the last 4 bits of the tcp header ’ s fourth word contains header
length in number of words), shown in Fig. 11.3a , b .

 In network byte order, tp → pred_fl ags will be fi nally as shown in Fig. 11.3b .

 Figure 11.1. Fourth word of TCP header is directly taken as a prediction fl ag in network byte

order.

 cs 11.1. Prediction fl ags related macro and data structure.

 cs 11.2. Macro to build prediction fl ags.

380 TCP CORE PROCESSING

 11.1.3 Condition to Enable the Fast Path

 When the fast path is on, tp → pred_fl ags will be nonzero; otherwise it will be set to
zero. We check certain conditions before moving into the fast path. These condi-
tions are checked in tcp_fast_path_check() under the following conditions (cs 11.5 ,
cs 11.6):

 • If there is anything in the out - of - order queue, line 947
 • If our receive window is not zero, line 948

 cs 11.3. TCP fl ags and macro to access header length from TCP header (all in network byte

order).

 cs 11.4. __tcp_fast_path_on().

 Figure 11.2. TCP_HP_BITS in network byte order, 0xFFFFF7F0.

 cs 11.5. tcp_fast_path_check().

TCP INCOMING SEGMENT PROCESSING 381

 Figure 11.3a. Calculation for building prediction fl ags tp → pred_fl ags .

 Figure 11.3b. Calculation for building prediction fl ags tp → pred_fl ags (continued) .

 cs 11.6. tcp_fast_path_on().

382 TCP CORE PROCESSING

 • If we are not running out of memory, line 949
 • If we have not received any urgent pointer, 950

 11.1.4 When to Enable the Slow Path

 Whenever we want to be processed in a slow path, the slow path is enabled by
resetting tp → pred_ fl ags. This is done when the following events occur:

 • We receive an out - of - order data segment in tcp_data_queue() , line 2651 (cs
 11.44). We do it here because subsequent segments need to be processed in
the slow path in tcp_data_queue() .

 • We run short of memory and start dropping packets in our call to tcp_prune_
queue() , line 2920 (cs 9.22). We do this because we have memory crunch and
sub sequent data packets will be dropped. If we don ’ t enable the slow path
here, the data packet will enter the fast path fi rst in tcp_rcv_established() .
When it fi nds that the socket ’ s memory pool is empty, the slow path will be
entered anyway.

 • We get urgent pointer in tcp_urg_check() , line 3117. Urgent data are
handled in the slow path in tcp_rcv_established() by calling tcp_urg() at line
3434 (see Section 11.7.1).

 • Our send window drops down to zero in tcp_select_window() , line 172 (cs
 11.18). In this case, we may get an out - of - window segment, which is handled
in the slow path in tcp_data_queue() .

 • The path is enabled for the new connection.

 11.1.5 When to Enable the Fast Path

 By enabling the fast path, we mean that we are setting tp → pred_fl ags from TCP
header of the incoming segment under the conditions mentioned in Section 11.1.3
by calling tcp_fast_path_check() . The routine is called from three places:

 • When we have read past an urgent byte in tcp_recvmsg() , line 1713. We
have gotten an urgent byte and we remain in the slow path mode until we
receive the urgent byte because it is handled in the slow path in
 tcp_rcv_established() .

 • When the gap is fi lled in tcp_data_queue() . This may create some space in the
receive buffer as the gap in received data is fi lled and we could have read data
from the socket buffer. The slow path set due to receive memory crunch will
be treated here.

 • When the sender has updated its window in tcp_ack_update_window() (see
Section 11.4.4). We do this because the window advertised in the incoming
segment has changed because of which we have entered the slow path (assum-
ing that nothing in the prediction fl ag has changed). If we don ’ t set fresh pre-
diction fl ags with the new advertised window, the next segment having the
same send window will unnecessarily enter the slow path. By syncing predic-
tion fl ags on fi rst detection of the send window, we avoid subsequent packets
being handled in the slow path given that nothing in the prediction changes
after that.

TCP INCOMING SEGMENT PROCESSING 383

 11.1.6 Points to Remember about Prediction Flags

 1. We start with the slow path fi rst and once we receive the fi rst segment, while
processing the ACK received in tcp_ack() , we enter into the fast path by a
call to tcp_fast_path_check() in case the advertised window has changed
from the previous value (cs 11.26).

 2. Once we enter the fast path, the advertised window and the TCP header
length are recorded in tp → pred_fl ags as explained in Section 11.1.2 . We
ignore the PSH fl ag and also the ACK fl ag. The PSH fl ag does not indicate
any noticeable change at the other end. All the TCP segments will have an
ACK fl ag set except for the very fi rst SYN segment sent out. In case any of
the fl ags other than PSH and ACK is set, we will go process the segment
through the slow path. May not enter slow path. If we get urgent fl ag set,
we enable slow path (check tcp_urg_check()).

 3. In the case where the receive window has changed, once again we take the
slow path. This may or may not enable the slow path for the connection.
Only the send window change alone does not qualify to enable the slow
path. Since the send window has changed, we may have gotten a zero
window or the other end might have opened the window; all these are
special cases and are handled in the slow path.

 4. In the case where the header length changes, it may mean that some option
has changed (either withdrawn or introduced). It may also mean that we
have gotten SACK blocks, in case SACK is supported.

 5. Even if we have prediction fl ag intact, we can enter into the slow processing
path in case out - of - order is received. In this case, we enable the slow path
also in tcp_data_queue() (cs 11.44).

 6. In case we receive the prediction fl ag intact and also no hole is seen in the
data received, we can still enter into slow path processing in case we don ’ t
receive timestamp option or we sense PAWS.

 7. We enable the slow path on other occasions where we fall short of memory
for socket receive buffer and fail to make room for the new received TCP
segment even after pruning the receive queues in tcp_prune_queue() . We
allocate memory in advance for the receive socket in the slow path by
calling tcp_data_queue() .

 8. One more occasion where we enable slow path is when we are advertising
0 window in tcp_select_window() (cs 11.18). Out - of - window data are being
processed in the slow path in tcp_data_queue() .

 9. The slow path is enabled because of reception of an urgent pointer and also
because of reception of out - of - order segments. We need to disable the slow
path once we have read urgent byte and also when we have fi lled the gap
in the received data. We try to undo the slow path once we have read past
an urgent byte in tcp_recvmsg() at line 1713. We also try to disable the slow
path once we receive a fi lled gap in the received data in tcp_data_queue() ,
line 2598 (cs 11.44).

 10. The slow path is enabled when data are fl owing in only one direction; that
is, we are a receiver and not sending any data. In this case, since the window
advertised will always be constant and the rest of the fl ag remains unchanged,
we will be in the slow path.

384 TCP CORE PROCESSING

 11.2 FAST PATH PROCESSING (see cs 11.7 and cs 11.8
unless mentioned)

 We discuss fast path processing of a received segment in tcp_rcv_established() . All
the bits in the prediction fl ags should match TCP_HP_BITS bits in the TCP header
of the received segment to enter fast path processing, line 3241 (cs 11.7). Once we
have entered the slow path mode, prediction fl ags (tp → pred_fl ags) are set to zero.
So in that case, none of the TCP_HP_BITS will match from the TCP header.
Another necessary condition for entering the fast path is that the segment should
be received in sequence, line 3242. If both of the above conditions are TRUE, we
enter the fast path to process the segment. We check if the timestamp option is
enabled in the TCP header at line 3251. If so, we access the end of the TCP header
that should be the start of TCP timestamp option, 3252. If the code for the TCP
timestamp option is incorrect, we will be processed in the slow path at line 3257.
Otherwise we store the value of the received timestamp in tp → rcv_tsval and the
echoed timestamp in tp → rcv_tsecr at lines 3261 – 3263. If the new timestamp received
is less than the timestamp recorded earlier in tp → ts_recent, we need to process this
situation in the slow path (line 3267) looking for the possibility of PAWS.

 Next we check for a corrupted TCP header or TCP segment without any data.
If the length of the TCP segment is just equal to the header length (line 3278), we
can record received timestamp by calling tcp_store_ts_recent() only if no ACK is
pending at line 3286. We will echo the timestamp from the very fi rst segment
received, in case more than one segment is cumulatively acknowledged as a result
of delayed ACK. This done so that the peer should calculate RTO taking delayed
ACK into account (RFC 1323). We process incoming ACK by calling tcp_ack() at
line 3290 and try to send any pending data in the transmit queue by calling tcp_
data_snd_check() at line 3292. Otherwise if the segment length is smaller than the
minimum header length, there is an error.

 In case we have received data, we fi rst try to consume data if the receiver is
installed by calling tcp_copy_to_iovec() at line 3307 (discussed in much detail in
Section 8.2). In this case, we try to record timestamp received only if no ACK is
pending at line 3316. Record the next sequence number to be received in tp → rcv_nxt
from the end sequence of the received segment at line 3319. If we are not able to
consume data, we try to queue it in the receive queue at line 3344 only if we have
enough memory available in the socket ’ s memory pool. Otherwise we try to get
some memory into the socket ’ s memory pool by entering the slow path at line 3338.
Here also we record timestamp received, if no ACK is pending at line 3335.

 We have consumed or queued up received data, and now we need to schedule
ACK and also adjust the delayed ACK interval based on how fast we receive data.
We also need to do a calculation for the receive window depending on the segment
size received. All this is done by calling tcp_event_data_recv() at line 3349 (cs 11.8).

 Next we check if new data are acknowledged at line 3351. If so, we process the
incoming ACK by calling tcp_ack() at line 3353 with FLAG_DATA set. tcp_ack()
will remove acknowledged segments from the retransmit queue generating space in
the transmit queue. So, we call tcp_data_snd_check() to check if the socket is under
memory pressure. If the socket is waiting for memory to be available, it wakes up
the socket and fi nally it tries to send out any data in the transmit queue.

 If we are able to transmit data in tcp_data_snd_check() , any pending ACK for
the received data would have already been sent out. But nothing is guaranteed at

 cs 11.7. tcp_rcv_established().

FAST PATH PROCESSING 385

386 TCP CORE PROCESSING

this point; that is, we are not sure that we are able to transmit new data. So, we check
if ACK is still scheduled for the received data by calling tcp_ack_scheduled() at line
3355. If no ACK is scheduled, we are done. If we have copied received data to the
user buffer, just free the buffer at line 3371. Otherwise, we have queued data in the
receive queue and we need to wake up socket sleeping to receive more
data by calling sk → data_ready (= sock_def_readable()) at line 3373. If ACK is
scheduled, then we need to make a decision on whether we need to send an ACK
immediately or defer it, depending on many factors (lines 3359 – 3367). This is dis-
cussed in great detail in Section 10.4 (TCP timer chapter).

 11.3 SLOW PATH PROCESSING (see cs 11.10 unless mentioned)

 Slow path processing starts from line 3379. First we do some sanity check. If the
length of the segment is less than the header length as specifi ed in the TCP header
fi eld or if the checksum is incorrect as indicated by tcp_checksum_complete_user()
at line 3379, we discard the segment. Next we do a PAWS check against wrapped
timestamps. For this we fi rst parse TCP options by calling tcp_fast_parse_options()
at line 3385. If the timestamp option is present, we will proceed with the PAWS
check; otherwise we proceed with slow path processing. When a timestamp option
is present, we call tcp_paws_discard() at line 3386 to check if the packet can be dis-

 cs 11.8. tcp_rcv_established().

carded because PAWS has failed (see Section 11.3.13 for details). In the case where
it is an RST segment, we will process the segment even if PAWS has failed but won ’ t
process the segment further otherwise. Next we check if the segment maintains
sequence number integrity by calling tcp_sequence() .

 11.3.1 tcp_sequence()

 This checks if we have gotten a data segment that is completely acknowledged and
we have all the bits from the segment already with us, line 2188. tp → rcv_wup is
synced with tp → rcv_nxt when we are sending an ACK in tcp_select_window() . If the
end sequence of the segment is below tp → rcv_wup , we should not accept this
segment. We have already sent an ACK for all the data up to tp → rcv_wup . The
second check we do here is that the start sequence of the segment should not be
beyond the sequence number corresponding to the end of the receive window, 2189,
which essentially means that the segment should not be out of window with respect
to the acknowledged data. In this case we send a duplicate ACK (with DSACK) by
calling tcp_send_dupack() at line 3411 (cs 11.10), if it is not RST segment and discard
the packet. The sequence fi eld for the RST segment should not be out - of - window,
nor should it correspond to an already acknowledged sequence number (refer to
RFC 793).

 Now we are sure that the sequence fi eld is valid for the segment and PAWS is
also acceptable. If the segment has an RST bit on, we reset our side of connection
without any formal TCP closing process by calling tcp_reset() at line 3416 (cs 11.10)
and stop processing the segment any further. tcp_reset() wakes up any process
waiting for socket ’ s sleep queue and closes the TCP connection.

 Now we check if the timestamp from the segment can be recorded as the most
recent timestamp from the peer by calling tcp_replace_ts_recent() at line 3420 (cs
 11.10).

 11.3.2 tcp_replace_ts_recent()

 This should make sure that we are not keeping a timestamp from out - of - order seg-
ments. Start of the sequence space for the segment should be maximum equal to
the byte already acknowledged (tp → rcv_wup), line 2110 (cs 11.11). If the timestamp
from the segment is more than the current recorded timestamp (tp → ts_recent), then
we directly replace it with the new timestamp by calling tcp_store_ts_recent() at line
2120. Otherwise if the timestamp is less than the recorded timestamp, we need to
check if the time elapsed since the timestamp was recorded is more than 24 days.
If so, we replace the recorded timestamp with the one from the segment because
the recorded timestamp is too old.

 cs 11.9. tcp_sequence().

SLOW PATH PROCESSING 387

388 TCP CORE PROCESSING

 cs 11.10. tcp_rcv_established().

 Continuing with tcp_rcv_established() at line 3422, if it is not an RST segment
and has a SYN bit set, we need to handle it only if the sequence number is not less
than the next expected sequence number, line 3422. This might happen because of
retransmission of the SYN segment from the side that got a connection request,
where both the original and retransmission reached the other end consecutively. If

the sequence number is less than the next expected sequence, we need to reset the
connection because the peer may be buggy or we can sense some kind of attack.
The SYN segment, even if retransmitted, will never have two different sequence
numbers and no SYN bit will be set in more than one segment other than retrans-
mission. The situation arises where the originator of the connection receives SYN/
ACK (entered established state) and transmitted a fi nal ACK which reached the
other end slightly late. The other end retransmitted the segment because it didn ’ t
receive the fi nal ACK.

 Next we need to process incoming ACK by calling tcp_ack() , line 3431. The
routine does some sanity checks on the ACK sequence, updates the send window,
clears ACKed data from the retransmit queue, processes SACK information,
manages the congestion window, and clears/resets the zero - window probe timer (see
Section 11.4 for more details).

 Once we have processed incoming ACK, we check if an urgent bit was set in
the segment and need to process it if it exists; call tcp_urg() at line 3434. Here we
check if we have gotten the urgent pointer. In the case where we have gotten the
urgent pointer, we remain in urgent mode until we read data past the urgent pointer.
For details see Section 11.7 .

 Now, process data in the segment by calling tcp_data_queue() . We may have
entered the slow path because the socket ’ s pool has exhausted its quota of memory,
and we have gotten an out - of - order segment. Both cases are handled in tcp_data_
queue() . If some data segment arrives that fi lls the hole, we take care of this situation
here. Duplicate segments, out - of - window segments, and retransmissions are also
handled here. We also set D - SACK in case the SACK option is enabled and we get
duplicate segments. For more details see Section 11.8 .

 Check if any data are pending to be transmitted by calling tcp_data_snd_check()
at line 3439. Since we might have ACKed some data increasing the congestion
window, try to send data pending to be transmitted in the transmit queue. ACK of
data in the retransmit queue may have generated some space in the socket ’ s send
buffer, and we try to wake up the process waiting for memory to be available in the
write queue. See Section 11.3.11 for more details.

 Finally, check if ACK is scheduled by calling tcp_ack_snd_check() at line 3440.
If required, we need to send out any ACK for the received data; otherwise we start
a delay ACK timer to defer sending ACK. We do this after sending out data at line
3439. If data are transmitted in tcp_data_snd_check() , we have already piggybacked
pending ACK along with the data. In that case, there won ’ t be any ACK
scheduled.

 cs 11.11. tcp_replace_ts_recent().

SLOW PATH PROCESSING 389

390 TCP CORE PROCESSING

 11.3.3 tcp_event_data_recv()

 The routine is called whenever we receive in - sequence data to take certain actions.
These actions are as follows:

 • Schedule ACK.
 • Measure receive mss up until now. That is the size of the TCP payload of the

received packet.
 • Calculate a new delay ACK period based on the rate at which a data segment

arrives.
 • Grow a receive window based on the size of the received TCP segment.

 tcp_schedule_ack() is called to schedule ACK for the received data sometime in the
future or immediately at line 364. We call tcp_measure_rcv_mss() to cache in
the maximum length of the TCP segment so far received. This will be used to cal-
culate receive window size later. Next we calculate the delay - ACK timeout value

 cs 11.12. tcp_event_data_recv().

(tp → ack.ato). In case we have not yet initialized it (very fi rst segment has arrived),
we initialize it to TCP_ATO_MIN and also initialize quick ack counter (tp → ack.
quick) by calling tcp_incr_quickack() . This makes sure that we send out ACKs faster
in the beginning because rate of transmission will depend on the rate of data being
ACKed in the slow - start phase. If this is not the fi rst data packet we have received,
we need to calculate delay - ACK timeout based on the frequency at which data
segments arrive. If data packets have arrived after more than RTO value, it may
be because we have an opened window. In this case, we need to ACK quickly
because the sender would like to push data quickly.

 If our segment size is above 128 bytes, we need to check the possibility of
incrementing the receive window by calling tcp_grow_window() at line 399. Linux
adopts a strategy of forcing a slow start from the receiver ’ s end. Since the sender
can send a minimum of the congestion window and the advertised window, the
receiver takes advantage by slowly incrementing the receive window. The idea is
not only to reduce congestion in the network but also to take care of the receive
buffer management. Consider a case where the sender is sending data in small
chunks at high speed, and the application is not able to read data at such highspeed.
In this case, data segments will be queued up on the receive queue causing receive
queue to get full. If segments are so small that buffer overhead is eating up most
of the space in the receive queue, a very small proportion of receive buffer space
is used by data. In this case we need to prune the queue to generate some space in
the receive queue, which is an expensive process. So in order to avoid pruning the
queue too often, we manipulate the receive window to be advertised to the sender
based on the size of the received data segment. We do this in tcp_grow_window() .
If the sender is sending small segments, we don ’ t increment the receive window so
that the sender cannot transmit at a very high rate and the application can get a
chance to read data from the queue.

 11.3.4 tcp_incr_quickack()

 Quickack counter is required to make a decision on whether we can send ACK
immediately or defer it so that we can cumulatively send out ACK for more than
one data segment received. This counter is decremented whenever a segment is
transmitted (other than SYN segment) in tcp_transmit_skb() . We calculate a quick
ACK counter based on the receive window and segment size received at line 159
(cs 11.13). We do this because on an average (receive window/segment size), a
number of segments can be sent out by the sender at any given point of time. Quick

 cs 11.13. tcp_incr_quickack().

SLOW PATH PROCESSING 391

392 TCP CORE PROCESSING

ACK count is just half of the number of such segments, meaning that one ACK
can be sent out per two data segments received. The rest of the calculations show
that quick ACK can assume a minimum 2 value and a maximum TCP_MAX_
QUICKACKS value.

 11.3.5 tcp_grow_window() (see cs 11.14 unless mentioned)

 When we receive a data segment, we need to calculate a receive window that needs
to be advertised to the sender, depending on the segment size received. The idea
is to avoid fi lling the receive buffer with too many small segments when an applica-
tion is reading very slowly and packets are transmitted at a very high rate, thus
avoiding pruning of queues to make space in the receive queue. tp → window_clamp
is the maximum window that can be advertised and tp → rcv_ssthresh is the slow - start
threshold for the receiver side (cs 11.14). tp → rcv_ssthresh functions very much
similar to send congestion window. On reception of data segment from the sender,
this value is recalculated based on the size of the segment, and later on this value
is used as upper limit on the receive window to be advertised. The idea is not to
use a complete receive buffer space to calculate the receive buffer. We reserve some
space as an application buffer, and the rest is used to queue incoming data segments.
An application buffer corresponds to the space that should compensate for the
delay in time it takes for an application to read data from the socket buffer. If the
application is reading more slowly than the rate at which data are arriving, data will
be queued in the receive buffer. In order to avoid queue getting full, we advertise
less receive window so that the sender can slow down the rate of data transmission
and by that time the application gets a chance to read data from the receive buffer.
We are advertising a receive window smaller than the space available in the receive
buffer because of the application buffer space. tcp_win_from_space() returns us the
value taking into account application space (cs 11.15). If sysctl_tcp_adv_win_scale
is set to 2, one - fourth space will be reserved for user application for the reason
explained above.

 cs 11.14. tcp_grow_window().

 We try to increment tp → rcv_ssthresh here whose effect will be seen while calculat-
ing a receive window in tcp_select_window() . The following conditions should be
satisfi ed to qualify for increase in an tp → rcv_ssthresh :

 1. tp → rcv_ssthresh should not have exceeded a maximum limit out on the
receive window (tp → window_clamp), line 244.

 2. tp → rcv_ssthresh has not yet exceeded the space available in the receive
buffer as returned by the tcp_space() , line 245. tcp_space () returns total
space available in socket ’ s receive buffer (cs - 11.16).

 3. There should not be memory pressure, line 246. TCP enters into memory
pressure when total memory allocated for TCP socket system exceeds a limit.
In this case there is a chance that we may start pruning receive queues or
start dropping packets, if the rate of data consumption by the application is
lower than the rate of data being queued. So, we avoid increasing tp → rcv_
ssthresh in case of memory pressure.

 If all the above conditions are TRUE, we are an eligible candidate to increment tp →
 rcv_ssthresh . Next we check if the buffer is bloated at line 252. By bloated buffer we
mean that the actual proportion of TCP data in the total size of the buffer is much
lower, which effectively means that we have received a very small segment. If the
buffer is bloated, most of the space will be taken away by the buffer head and we
may need to prune the queues. If not bloated, we increment tp → rcv_ssthresh by
twice the advertised mss. Otherwise we check for the possibility of incrementing tp →
 rcv_ssthresh, depending on the degree of bloating of the segment with respect to the
space available in the receive buffer by calling __tcp_grow_window() at line 255.

 11.3.6 __tcp_grow_window() (see cs 11.17 unless mentioned)

 We check the degree of bloat of segment with respect to the space available in the
receive buffer. First we take half of the available space and true size of the buffer
after taking an application buffer into account from both the buffers. We continue
to loop until one of the conditions becomes true:

 cs 11.15. tcp_win_from_space().

 cs 11.16. tcp_space().

SLOW PATH PROCESSING 393

394 TCP CORE PROCESSING

 • tp → rcv_ssthresh is less than the total receive buffer space available, line
230.

 • Total space occupied by buffer is at max equal to the segment length, line
231.

 In each iteration we reduce total space available in the receive buffer and buffer
size to half of the value. If we come out of the loop because the fi rst condition
becomes FALSE, we should not increment the receive window, the reason being
that the buffer overhead is too huge to be accommodated in the available space. In
a simpler way we can say that the degree of bloat is so much (very small segment)
that even if we continue decrementing total space available and total buffer size by
the same proportion, buffer overhead is too high even when total apace available
in the receive buffer is less than the window to be advertised.

 If the loop is exited because of later condition is TRUE, it means that buffer
overhead is bearable because the segment length is good enough to be accommo-
dated in the receive buffer. In this case, we may increment receive buffer by twice
the maximum segment length seen so far.

 11.3.7 How Do We Calculate Window to Be Advertised

 We calculate receive window in tcp_select_window() . As discussed in Section 11.3.9 ,
we know that there are two factors that decide on the receive window. They are
 tp → window_clamp and tp → rcv_ssthresh . The role of these two parameters is already
discussed in Section 11.3.9 , so it won ’ t be repeated here. On reception of the data
segment, we calculate tp → rcv_ssthresh and we use the parameter here to calculate
the receive window.

 First we get the current window from tcp_receive_window() at line 150 (cs
 11.18). We calculate the new window based on the space available in the receive
buffer, the upper limit on the receive window (tp → window_clamp), and tp → rcv_
ssthresh by calling __tcp_select_window() . If the new window calculated is less than
the current window, the new window is raised to the current window. We do this
because the advertised window should not be allowed to shrink. The new window

 cs 11.17. __grow_tcp_window().

as returned by __tcp_select_window() is 0, in case free space has fallen below 1 mss.
But we can ’ t advertise the zero window abruptly. In such cases, the current window
as returned by tcp_receive_window() will get us the exact window to be advertised.
Similarly, when a small window is opened (less than 1 mss), we don ’ t advertise it
unless a minimum 1 mss of window is opened. __tcp_select_window() takes care of
this scenario (cs 11.18).

 11.3.8 tcp_receive_window()

 This is calculated as the last advertised window minus unacknowledged data length.
 tp → rcv_wup is synced with next byte to be received (tp → rcv_nxt) only when we
are sending ACK in tcp_select_window() . If there is no unacknowledged bytes, the
routine returns the exact receive window advertised last (cs 11.19).

 11.3.9 __tcp_select_window()

 We are called to calculate the new window to be advertised. The new window is
calculated on the basis of

 cs 11.18. tcp_select_window().

 cs 11.19. tcp_receive_window().

SLOW PATH PROCESSING 395

396 TCP CORE PROCESSING

 1. The mss received so far (tp → ack.rcv_mss)
 2. The total space in the socket ’ s receive buffer obtained from

 tcp_full_space()
 3. The space available in the receive buffer from tcp_space()
 4. tp → rcv_ssthresh

 tp → window_clamp is the upper limit on the total space in the receive buffer.
We get the full space available in the socket ’ s receive buffer at line 655 (cs 11.20).
If the highest mss observed so far is higher than the maximum space in the socket ’ s
receive buffer, we need to slash mss to the maximum buffer size at line 659. We have
to do this because our receive buffer should at least have space to receive a full - sized
segment. Next we check if our receive buffer is half full, line 661. If so, we disable
quick ACK mode at line 662. The reason is that we don ’ t want to acknowledge data
very fast to restrict the rate of data transmission by the sender so that the applica-
tion gets enough time to eat up data in the receive buffer and leave enough space
for the new data. If there is a memory pressure, we once again want to keep the
advertised window tight. So, we restrict tp → rcv_ssthresh to be maximum four times
advertised MSS at line 665. By doing this we are not shrinking the window but
simply restricting the receive window to not to increase beyond its current value. If
the new window calculated is less than the current window, tcp_select_window()
takes the last advertised window as the current receive window. If the free space

 cs 11.20. __tcp_select_window().

available is less than the highest mss observed so far, we return 0. Next we check if
the free space is more than tp → rcv_ssthresh at line 671. If so, we adjust free space.
This is the place where we are restricting the receive window to have a maximum
value of tp → rcv_ssthresh . If the current window offered is within 1 mss of the free
space (current window is greater than free space minus mss and also less than free
space), we don ’ t update the receive window at line 683. Otherwise the new window
is taken as free space calculated above rounded to mss, line 684.

 11.3.10 tcp_space()

 Free space in the receive buffer is available from tcp_space() (cs 11.21). sk → rmem_
alloc is the amount of memory allocated for the socket ’ s receive buffer, and sk →
 rcvbuf is the upper limit on the socket ’ s receive buffer size. We take the application
buffer into account as discussed in Section 11.3.5 .

 11.3.11 tcp_data_snd_check()

 We are called to check if there are any data to be transmitted from the transmit
queue while processing the incoming segment. We are called before sending an
ACK so that we can piggyback ACK along with the data segment. We fi rst check
is there are any data to be transmitted by accessing the head of the transmit queue
(tp → send_head) at line 2995. If there is nothing in the queue, we just check if some
space is generated in the write queue by calling tcp_check_space() at line 2999. We
do this check here because we have just processed incoming ACK; and if new data
are acknowledged, space is generated in the write queue. If space is generated in
the write queue, we may need to wake up the socket sleeping on memory require-
ments in the write path. tcp_check_space() takes care of doing all this.

 If there are any data to be transmitted, we try to transmit it by calling __tcp_
data_snd_check() at line 2998 (cs 11.22).

 cs 11.21. tcp_space().

 cs 11.22. tcp_data_snd_check().

SLOW PATH PROCESSING 397

398 TCP CORE PROCESSING

 11.3.12 __tcp_data_snd_check()

 We are called to check the possibility of transmitting any segment in the transmit
queue. We make the following checks before the segment may be transmitted:

 1. The segment should be within the window, line 2987 (cs 11.23).
 2. Packets that are transmitted but have not yet left the network should be less

than the congestion window, line 2988.
 3. Nagle ’ s algorithm is not violated.

 If the above conditions are TRUE, tcp_write_xmit() is called to transmit any pending
segment ’ s in the write queue. tcp_write_xmit() once again makes all the necessary
checks for all the segments in the transmit queue before transmitting them. If we
fail to transmit segments because of any reason, we check if we need to start a zero -
 window probe timer by calling tcp_check_probe_timer() .

 11.3.13 tcp_paws_discard() (see cs 11.24 unless mentioned)

 This routine is called to carry out the PAWS test against the timestamp value from
the TCP segment. If the timestamp value from the TCP segment (tp → rcv_tsval) is
less than the timestamp stored last (tp → ts_recent). We should carry out PAWS test.
(Check Section 11.2 for details on timestamps.) This code follows the PAWS speci-
fi cation as mentioned in RFC 1323. The following conditions should be satisfi ed for
the segment not to be discarded:

 1. The difference between the timestamp value obtained in the current segment
and last seen timestamp on the incoming TCP segment should be equal to
 TCP_PAWS_WINDOW (= 1), which means that if the segment that was
transmitted 1 clock tick before the segment that reached here earlier TCP
seq should be acceptable. It may be because of reordering of the segments
that the latter reached earlier.

 2. If the fi rst condition passes and the timestamp difference is more than 1, we
need to check if the 24 days have elapsed since last time timestamp was
stored, line 2169. tp → ts_recent_stamp is updated whenever we update tp →
 ts_recent in tcp_store_ts_recent() . If last timestamp recorded is 24 days old,
we discard further PAWS test and process the segment. For machine with

 cs 11.23. __tcp_data_snd_check().

1 - ms frequency, it will take approximately 24 days for timestamp value to
wrap up.

 3. If 24 days have not elasped, we need to still look for a more strict condition
before which a segment can be considered to have failed PAWS. We check
if this segment is not going to make any changes to the sequence or update
window. For this we call tcp_disordered_ack() . For a segment to pass the
PAWS check, this routine should return TRUE, line 2170.

 The routine tcp_disordered_ack() checks if the ACK is harmless as far as PAWS
is concerned (cs 11.25). The PAWS check passes in the following situations:

 1. The segment doesn ’ t carry any data and it is pure ACK in correct order, line
2154. The start sequence should be the same as the end sequence number
and should also be the same as the next sequence number expected.

 2. The ACK should not acknowledge any new data and at the same time should
not acknowledge any old data. It should be a duplicate ACK, line 2157.
Duplicate ACKs carry a valid timestamp.

 3. ACK does not update the window, line 2160.
 4. The timestamp received is within the replay window, line 2163.

 In all we can say that this segment is a duplicate ACK that may carry D - SACK
information.

 cs 11.24. tcp_paws_discard().

 cs 11.25. tcp_disordered_ack().

SLOW PATH PROCESSING 399

400 TCP CORE PROCESSING

 11.4 PROCESSING OF INCOMING ACK (see cs 11.26
unless mentioned)

 We process an incoming ACK in tcp_ack() while processing an incoming segment
in tcp_rcv_established() . We will be updating retransmit queue by cleaning ACKed
data. We update TAGS on the socket buffers based on the SACK information we
get with the ACK. Based on the SACK information, we calculate lost/left - out seg-
ments. We update the send window conditionally in this routine. Congestion is
sensed based on the SACK information or duplicate ACK, and accordingly we
update the congestion window and also process the congestion state. In case we
have already entered the congestion state, all the required processing is done in this
routine. Let ’ s see how all this is implemented.

 We reject any ACK processing if we have gotten ACK for something that has
not been transmitted yet (tp → snd_nxt) at line 1908 (cs 11.26). Similarly, if we have
gotten an ACK for data that are already acknowledged (tp → snd_una) at line 1911,
we won ’ t process it but we may have gotten D - SACK/SACK information that we
would like to be processed. So, we process SACK/D - SACK blocks in case they exist
at line 1981 by calling tcp_sacktag_write_queue() .

 Next we will try to update the send window advertised with the ACK segment.
If we are processing the segment in the FAST mode and new data are acknowledged
(line 1914), we immediately update the tp → snd_wl1 to the sequence number of the
segment by calling tcp_update_wl() at line 1919. tp → snd_w1 is updated whenever
we update the send window. We don ’ t update the send window (tp → snd_wnd) here
because it has not changed; otherwise we would have been processing the segment
in the SLOW path (check prediction fl ags in Section 11.2). Even though we have
not updated the send window, still tp → snd_wl1 could have changed because the left
edge of the window might have advanced toward the right. It is just that send
window has remained the same. tp → snd_una is updated to the acknowledged
sequence at line 1920.

 If either we are processing in the FAST mode or we have not acknowledged
any new data, some additional checks need to be done before updating the send
window. In this case, we check if the ACK segment being processed carries data at
line 1925. If so, we update fl ag FLAG_DATA that will be used later to detect a
dubious ACK (duplicate ACK) because we don ’ t know if the window is going to
be updated or new data are ACKed in this path. Next we would like to check if
the send window has changed and whether we need to update it by calling
 tcp_ack_update_window() .

 Next, we check if there are any SACK blocks; if so, they need to be processed
by calling tcp_sacktag_write_queue() at line 1933. The routine does all the necessary
calculations to process SACK blocks. We also catch D - SACK in this routine. From
the SACK block information we can have a fair estimation of packets that have left
the network. Not only this, we can sense the state of the network congestion and
guess reordering length using FACK.

 Next we set the ECE fl ag at line 1936, in case the ECE bit is set in the TCP
header. This is an indication from the peer that it has sense congestion at one of the
intermediate routers. So we should reduce the transmission rate before we congest
the network.

 If we have nothing unacknowledged (line 1944), we have a pure ACK for the
zero - window probe sent by us or which might be generated by the peer when it
opened the window. In this case, we handle this situation by calling tcp_ack_probe()

 cs 11.26. tcp_ack().

PROCESSING OF INCOMING ACK 401

402 TCP CORE PROCESSING

at line 1975. The routine checks if the enough window is opened to transmit a
segment; if so, we clear off the zero - window probe timer. Otherwise we reset the
zero - window probe timer with timeout exponentially backed off. When we return
to tcp_rcv_established() , a subsequent call to tcp_data_snd_check() will start trans-
mitting the segments in case enough window is opened and will also wake up the
socket if it is blocking.

 Until this point, we have processed SACK, recorded the send window, and
updated the last acknowledged byte. We now need to clean up the retransmit queue
by removing acknowledged segments from the queue. We do this by calling tcp_
clean_rtx_queue() at line 1950. This routine processes tags on the segments being
acknowledged and so adjusts counters that keep account of retransmitted segments,
sacked - out segments, lost segments, and fi nally unacknowledged segments. Since the
routine modifi es an unacknowledged segment counter, we need to record a number
of segments on the fl ight prior to arrival of this segment by calling tcp_packets_in_
fl ight() at line 1947. This is required to decide if we have acknowledged new data
to detect partial ACK in case we are operating in the congestion state. Prior packets
in fl ight is also required to calculate the next congestion window.

 Next we check for any congestion indications at line 1952. We check if the ACK
is dubious by calling tcp_ack_is_dubious() . This routine checks if we are about to
enter the congestion state or are already in the congestion state. The next course of
action will depend on the congestion state of the connection. In case ACK is not
dubious, things are very straightforward and we need not take any special care and
should look at the possibility of incrementing the send congestion window if we
have ACKed new data. So, we have two checks at line 1959:

 1. Is new data acknowledged?
 2. Have we been utilizing the network at its full capacity?

 If the number of segments transmitted is equal to the congestion window, the network
is being utilized at its full capacity. We check this by comparing packets in fl ight prior
(calculated at line 1947) to the segment being processed against the current send
congestion window (tp → snd_cwnd). In case we get a cumulative ACK for more than
one data segment transmitted, the rate of increment of the send congestion window
will not be as fast as the increment in case each data segment is ACKed separately.
Cumulative ACK for multiple segments indicates that more data segments have left
the network. For the same congestion window we can send out more data, and the
case looks similar to the network bandwidth being underutilized because ACKs are
not generated at the same rate at which data are being transmitted.

 If both the conditions are TRUE, we call tcp_cong_avoid() to check if we can
increment the congestion window further, depending on whether we are doing slow -
 start or congestion avoidance .

 In case we are dubious (see Section 11.4.2), we need to make one additional
check along with the two tests performed for the nondubious case before we can
try increasing the congestion window. We call tcp_may_raise_cwnd() to check the
following conditions: (cs 11.27):

 1. We may not have the ECE fl ag set in the TCP header of the ACKing segment.
If it is already set, our congestion window should be below the slow - start
threshold (tp → snd_ssthresh) at line 1845.

 2. We should not be in either the recovery (TCP_CA_Recovery) or the conges-
tion window reduction state (TCP_CA_CWR).

 In case the ECE fl ag is set, we are advised to slow down transmission rate. If
we are in CWR state, we are once again advised not to increase the rate of data
transmission because there may local congestion at the device driver level or we
might have gotten the ECE fl ag set in the TCP header. If we are doing fast recovery
(TCP_CA_Recovery), priority should be given to lost segments fi rst and then we
should try to transmit new segments. The current congestion window is assumed to
have saturated the network in the fast recovery state, so we try to be conservative
about congestion window.

 If the ACK is dubious, we also need to do congestion state congestion process-
ing by calling tcp_fastretrans_alert() . As already discussed, we may have sensed
congestion or may be in the congestion state, and both these situations are handled
in tcp_fastretrans_alert() . We handle fast - transmissions fast - recovery, partial ACK,
reneging of SACK, and so on, in this routine. For more details, see Section 12.1 .

 11.4.1 tcp_packets_in_fl ight()

 This routine gives us a fair estimation of the packets that are still in fl ight at any
point of time (cs 11.28). By packets in fl ight, we mean that the segments have not
left the network. How do we know this? We know the number of segments that are
transmitted and are not yet acknowledged as tp → packets_out . Then we know the
number of segments that have reached the other end but not in order with the help
of SACK blocks as tp → sacked_out . If a loss is sensed, we have a rough estimate of
lost segments as tp → lost_out . If there are no sudden spikes in RTT or network
reordering doesn ’ t increase abruptly, our loss estimation is correct. The number of
segments that have left the network are the ones that are either SACKed or con-
sidered LOST. Then we have retransmitted segments as tp → retrans_out . When a
segment is considered lost, we don ’ t decrement tp → packets_out for the lost segment
but instead compensate for lost segment by incrementing the lost count tp → lost_out .
So, we balance the number of segments in fl ight. Once we retransmit this segment,

 cs 11.27. tcp_may_raise_cwnd().

 cs 11.28. tcp_packets_in_fl ight().

PROCESSING OF INCOMING ACK 403

404 TCP CORE PROCESSING

one extra segment is pumped in the network which is consuming network resources.
That is why we consider tp → retrans_out while calculating packets in fl ight.

 11.4.2 tcp_ack_is_dubious()

 Here we have three checks to confi rm that either we are already in the congestion
state or have sensed congestion: (cs 11.29):

 1. FLAG_NOT_DUP fl ag set by the current ACK. This indicates if we have a
duplicate ACK.

 2. FLAG_CA_ALERT fl ag set by the current ACK. This indicates if we need
to be at alert because we have sensed congestion.

 3. TCP state at present should not be set to open (TCP_CA_Open). We are
already in one of the congestion states.

 FLAG_NOT_DUP is defi ned as the combination of three fl ags: (cs 11.30):

 1. FLAG_DATA
 2. FLAG_WIN_UPDATE
 3. FLAG_ACKED = FLAG_DATA_ACKED|FLAG_SYN_ACKED

 If any of the above fl ags is set, we need to check for other conditions that we will
discuss later. If none of the above is set, we have gotten a duplicate ACK. The
reasons for this are as follows:

 1. FLAG_DATA is set if we have gotten DATA. Even though we did not
acknowledge any new data, this should not be considered as duplicate ACK
with FLAG_DATA set. A simple example is to consider data fl owing only in
one direction where we are the receiver. In this case we will always get the
same ACK sequence number because we are not sending anything. We can ’ t
consider all the ACKs as duplicate.

 cs 11.29. tcp_ack_is_dubious().

 cs 11.30. Incoming ACK fl ags.

 2. FLAG_WIN_UPDATE is set if either peer ’ s receive window has either
changed or it has acknowledged new data. The duplicate ACK we are discuss-
ing is the one that is generated once an out - of - sequence segment has been
receive by the peer. Since this out - of - sequence segment doesn ’ t shift the left
edge of the window toward the right, it won ’ t change its receive window. If
the segment doesn ’ t acknowledge new data and doesn ’ t carry any new data
but it changes the send window, it can be considered as window update from
the peer and not as duplicate ACK.

 3. FLAG_ACKED is set if new data are ACKed or we got SYN segment. In
both the cases, this can ’ t be considered as duplicate ACK.

 FLAG_CA_ALERT has two parts, FLAG_DATA_SACKED and FLAG_
ECE . If any of these fl ags are set, we need to take action because we have sensed
congestion.

 FLAG_DATA_SACKED is set when we get SACK blocks. This is an indica-
tion that segments have reached the receiver out - of - order. This may be because of
reordering of segments or because some segment is lost. We need to be watchful
here.

 FLAG_ECE is set when we get the ECE fl ag set in the TCP header. The other
end received an indication from one of the intermediate routers about the conges-
tion state at that router. The router may be loaded heavily and about to drop
packets. In this situation it sets the EC fl ag in the IP header of the packet that is
directed for the receiver. The receiver turns the ECE fl ag in the TCP header to
indicate the sender of the congestion state. We need to take action to reduce the
transmission rate in such condition.

 If none of the above - mentioned conditions satisfy, we consider ACK as dubious
only if we are already in a congestion state; that is, TCP state is anything other than
 TCP_CA_Open .

 11.4.3 tcp_cong_avoid()

 This routine implements a congestion control algorithm during slow start and fast
retransmission. In Section 10.2.3 (explaining slow start) and Section 12.5.5 (explain-
ing fast retransmission), we can see that whenever we sense congestion, we adjust tp →
 snd_ssthresh and tp → snd_cwnd as explained by Jacobson (SIGCOM 88). tp → snd_
ssthresh is slow - start threshold. Once the send congestion window (tp → snd_cwnd)
exceeds this value, we enter into the recovery state where the rate of increment of the
congestion window is a function of RTT and not number of ACKs returned, whereas
before the congestion window exceeds the slow - start threshold, we are into slow - start
algorithm where congestion window increases exponentially with RTT (increments
by 1 with reception of each ACK). In ideal conditions, calculation shows that when
we are operating at full network capacity, we can send out segments equal to the
congestion window without waiting for ACK for any of these segments. In such case,
the rate at which segments are ACKed per RTT is equal to the congestion window.
Once we have recovered from the congestion state, we call tcp_undo_cwr() where we
set ssthresh to the value prior to entering the congestion state.

 The very fi rst condition that we check here is if we are in the slow - start phase
(line 1701). If so, we increment the congestion window by 1 only if the send conges-
tion window clamp (tp → snd_cwnd_clamp) is not exceeded. Initially, ssthresh is set

PROCESSING OF INCOMING ACK 405

406 TCP CORE PROCESSING

to a very high value, so the congestion window keeps increasing until we experience
congestion (loss of segments or duplicate ACKs). At this point we recalculate
ssthresh to half of the congestion window or 2, whichever is higher (see Section
 10.2.3). If both conditions are TRUE, we increment the congestion window by 1
(line 1704, cs 11.31).

 In case we have entered the recovery state, which means that the send conges-
tion window has exceeded the slow - start threshold (lines 1706 – 1715), Linux takes
the path of the incrementing congestion window per ‘ current congestion window ’ —
 that is, tp → snd_cwnd , the number of ACKs received. This is because the congestion
window is assumed to be saturating the network at any given point of time by
making full utilization of the available network bandwidth under a given network
congestion state. Each time we receive an ACK, we do the following:

 1. We check if the counter (tp → snd_cwnd_cnt) is equal to the current conges-
tion window.

 2. If 1 is FALSE, we increment the the congestion window counter (tp → snd_
cwnd_cnt) (line 1714).

 3. Otherwise we are ready to increment the congestion window only if we are
not exceeding the cwnd clamp (line 1710). If we pass this post, increment the
congestion window and reset the congestion window counter (line 1712).

 11.4.4 tcp_ack_update_window()

 We fi rst check if the window can be updated by calling tcp_may_update_window() .
If the window is allowed to be updated, we set the fl ag FLAG_WIN_UPDATE at
line 1872 (cs 11.32). Since the window is being updated, we record the sequence
number of the segment in tp → snd_wl1 by calling tcp_update_wl() . If the new window
advertised is more than the recorded send window, we sync up the send window at
line 1876. In this case, we also check if we need to switch to FAST path by calling
 tcp_fast_path_check() (see Section 11.1.3 for details on PATH). We do it here
because the window has changed and if are already in FAST path, prediction fl ag

 cs 11.31. tcp_cong_avoid().

needs to be initialized as it takes the window into account. If the new window
advertised is more than the largest window seen so far, we sync up tp → max_window .
Finally, the acknowledged sequence number is synced up at line 1890.

 11.4.5 tcp_may_update_window()

 We can update the window under the following conditions (RFC 793, p. 72):

 1. If new data are acknowledged, line 1855 (cs 11.33).
 2. If the fi rst condition fails, the sequence number of the segment should be

higher than the sequence number last recorded (tp → snd_wl1) when the
window was updated, line 1856. The reason for this check is that it gives an
indication of the latest scenario at the other end as it carries new data with
respect to the segment that updated the window last.

 cs 11.32. tcp_ack_update_window().

 cs 11.33. tcp_may_update_window().

PROCESSING OF INCOMING ACK 407

408 TCP CORE PROCESSING

 3. If both condition fail, we check if the sequence number of the segment is
same as tp → snd_wl1 , but the window advertised is more than the last recorded
send window (tp → snd_wnd), line 1857. This condition may arise because the
peer has opened the window.

 We don ’ t update the window in the case where the sequence is less than the tp →
 snd_wl1 because the segment may have arrived out - of - order and have an incorrect
window. This segment was transmitted prior to the one that has updated the window
last, so we discard the window update in this case.

 11.4.6 tcp_clean_rtx_queue()

 The routine is called while we are processing incoming ACK (cs 11.34). The routine
removes the acknowledged segment from the retransmit queue. If the segment is
tagged as SACKED, retransmitted, or lost, the routine updates counters specifi c to
SACKed - out segments, lost segments, and retransmitted segments associated with
the segment.

 In this routine we traverse through each segment in the write queue until we
fi nd a segment beyond tp → snd_una (line 1749). tp → snd_una is already updated to
the next unacknowledged byte before we are called. Next we need to check if data
were ACKed or if it was a SYN segment that was ACKed. Since we have ACKed
some data, we are here. If it is a SYN segment that is ACKed, it is ok since SYN
carries one byte. Otherwise we have ACKed data. In both the cases we set FLAG.
The next step is to process the tag on the segment.

 If the segment is tagged, fi rst we check if the segment was ever retransmitted.
If so, we set the FLAG_RETRANS_DATA_ACKED fl ag; and at the same time if
the segment is tagged as retransmitted, tp → retrans_out is decremented by 1 (lines
1767 – 1770). Otherwise if the segment was never retransmitted and RTT is not yet
recorded (line 1772), we calculate RTT based on the current timestamp and the
time recorded when the segment was transmitted. We don ’ t calculate RTT for
retransmitted segment (line 1773). If the segment was SACKed out, we need to
decrement the SACK counter (line 1775). If the segment is marked lost, the lost
counter is decremented by 1. If this segment is marked to contain an urgent pointer,
we check if the urgent mode is set (see Section 11.7.1). If set, we check if the segment
covers the urgent pointer (lines 1779 – 1780). If both are true, an urgent byte is
ACKed and we unset the urgent mode.

 Otherwise the segment that is ACKed was not tagged (neither retransmitted
nor SACKed, and neither was marked lost) and we have not yet calculated RTT,
and we can record RTT (line 1784). Next we check if the segments are FACKed
out, and we decrement the FACKed segments by 1 (line 1786). Decrement a number
of transmitted packets by 1. Remove the ACKed segment from the retransmit queue
by calling (line 1788).

 The next step is to estimate RTO based on either TCP timestamp option or the
new rtt calculated above. This is done by calling tcp_ack_update_rtt() . We have three
fi elds, which are used to calculate RTO:

 1. tp → srtt smoothened RTT. On reception of RTT value each time, we calculate
the error based on the srtt and the new value. It is calculated as 7/8(srtt) +
 1/8 (new value).

 cs 11.34. tcp_clean_rtx_queue().

 2. tp → mdev . This is the mean deviation in calculation of RTT, and once again
it is calculated as 3/4 (mdev) + 1/4 of new deviation.

 3. tp → rttvar is called a variant in the rtt calculation.

 Finally, RTO is calculated as

 1 8 smoothened RTT variance RTT() +

PROCESSING OF INCOMING ACK 409

410 TCP CORE PROCESSING

 Finally, we need to adjust the retransmit timer depending on whether we still have
unacknowledged packets (tp → packets_out > 0) by calling tcp_ack_packets_out() . If
we have acked all the data, the retransmit timer should be stopped (line 1726, cs
 11.35). Otherwise we should set the retransmit timer to the current value of RTO
for the next segment to be ACKed (line 1728).

 We return the fl ags set in the routine that will be used later to determine the
course of action.

 11.5 PROCESSING OF SACK BLOCKS

 When we receive an ACK, we need to process SACK blocks if the TCP sack option
is enabled and we have received SACK blocks. TCP_SKB_CB(skb) → sacked is ini-
tialized to offset corresponding to the start of the SACK option in the TCP header
for the segment received. This is done while processing optional fi elds in the TCP
header in tcp_rcv_established() by a call to tcp_fast_parse_options() . Let ’ s see how
SACK blocks received are processed by calling tcp_sacktag_write_queue() from
 tcp_ack() .

 11.5.1 tcp_sacktag_write_queue() (see cs 11.36 to
cs 11.41 unless mentioned)

 We get access to SACK information as shown in Fig. 11.4 . Before we are called from
 tcp_ack() , we have already updated the unacknowledged byte fi eld in the TCP state
machine (tp → snd_una). But we have stored the unacknowledged byte fi eld to be
used further to fi nd out duplicate ACKs and ACKs for very old segments.

 0 = SACK option.
 1 = total length of the SACK optional fi eld.

 Our consideration here is that the segments which are still in the fl ight may be
reordered. So, we store tp → packets_out for further use. If none of the segments
were SACKed out prior to arrival of this segment, we initialize FORWARD
ACKed (tp → fackets_out) segment count to 0 at line 773. The reason is that forward
ACKed segments are calculated based on the latest SACK information (Mathis,
 1996). This will give the latest picture of the network congestion at any given point
of time.

 In the Fig. 11.5 , we have four SACKed segments, but the number of FACKed
segments is 12. We process all the SACK blocks associated with the arrived ACK.

 cs 11.35. tcp_ack_packets_out().

There may be D - SACK blocks or SACK blocks which may have SACKed new data.
We need to update the state of each individual segment in the retransmit queue. We
may have a new SACK block that has selectively ACKed a never retransmitted
segment or a retransmitted segment or lost segment. The SACK block may have
fi lled the GAP that causes the right edge of the window to move toward the right.
We may end up modifying FACK information in the TCP state machine. We may
sense reordering of segments in case we get a SACK block that fi lls up a never
retransmitted old hole. And we update reordering information here. D - SACK is
also an indication of segment reordering. D - SACK is generated when the receiver
receives a segment that is partly or completely received as out - of - order segment
and resides in out - of - order queue. Hole is created in sending TCP sequence space
when we get SACK block as a result of packet re - ordering or loss of segments.

 The very fi rst thing that we do here is to check if we got D - SACK (duplicate
SACK). The information about D - SACK is stored in the fi rst block SACK block.
RFC 2883 says that D - SACK is generated in the case where the receiver receives
the following:

 1. A segment that advances the right edge of the window toward the right such
that it covers the hole and spans across the segment in the out - of - order queue
as shown in Fig. 11.6 . sb0 s < tp → snd_una (or sequence number of the ACKing
segment), line 787 (cs 11.36).

 2. A segment that may not advance the right edge of the window, but the new
segment is completely covered by the existing segment in the out - of - order
segment and the new segment may also span across multiple segments in the

 Figure 11.4. Organization of SACK blocks in TCP header.

 Figure 11.5. SACKed segments.

PROCESSING OF SACK BLOCKS 411

412 TCP CORE PROCESSING

 Figure 11.6. SACKed segments covered by

ACK.

 cs 11.36. tcp_sacktag_write_queue().

out - of - order queue as shown in Fig. 11.7 (see Section 11.8). sb0 s > = sb1 s & &
sb0 e < = sb1 e (lines 791 – 793).

 In both of the above cases, we enable D - SACK option for the TCP connection (tp →
 sack_ok) and we set a duplicate SACK fl ag.

 Next we check if the D - SACK is generated for the data that are already ACKed
because the retransmitted segment reached before the original segment was ACKed
or vice versa. In this case the end sequence of the SACK block should be within
the ACKed sequence prior to arrival of this segment, and the end sequence should
also be after the tp → undo_marker (which is set to tp → snd_una when we enter the
recovery phase and retransmit data, lines 801 – 803). We will decrement tp → undo_
retrans by 1 in such a case because D - SACK is generated because of retransmission
of the segment after we entered the recovery/loss state. In all, it means that D -
 SACK is generated because of retransmission of a segment that was considered lost
when we entered the recovery phase. But the segment reached the receiver later
because of reordering. tp → undo_retrans keeps account of number of retransmitted
segments (see Section 10.2.4). We never know when the duplicate segment reaches
the receiver.

 Finally we check if we got ACK for too old data (line 810); that is, ACK
acknowledges one window of old data. This ACK segment might have got stuck in
the network for sometime before it reached before we got ACK for the latest data
that are received in sequence. In this case we discard the SACK because the SACK
information may be too old to consider and return.

 tp → undo_retrans is also related to tp → undo_marker in the way that whenever
D - SACK is generated, we check if the end of the SACK is after tp → undo_marker .
If so, D - SACK is because of the retransmitted segment that was assumed lost
wherein the original segment arrived late at the receiving end. When DSACK is
received, we need to decrement the tp → undo_retrans if the end sequence of the
SACK block is not higher than the ACK sequence prior to the arrival of the
segment being processed and at the same time higher than tp → undo_marker , which
means that D - SACK is generated because of the retransmission due to current
congestion state as tp → undo_marker is set once we enter congestion state. tp →
 undo_retrans helps in detecting false retransmits in recovery/loss state. Isis also
helpful in detecting spurious RTO.

 tp → retrans_out , on the other hand, takes care of the retransmitted segments
marked as lost. This will be helpful in detecting partial ACKing in the congestion
state. With the help of these two fi elds, we can always know what amount of
reordering is happening in the network.

 We check if we have received SACK for the data that were transmitted ahead
of tp → high_seq. tp → high_seq is set to the highest sequence number that has been
transmitted at that point of time when we enter loss or recovery state. It may happen
that the congestion window allows us to transmit more data before we enter the
OPEN state. In such a case, we may transmit data with sequence higher than tp →
 high_seq in recovery state.

 Figure 11.7. New SACK

block covered by already

SACKed segments.

PROCESSING OF SACK BLOCKS 413

414 TCP CORE PROCESSING

 If we get a SACK that covers tp → high_seq , we consider that some data are lost
here (line 815, cs 11.37). Otherwise we would have gotten ACK for the entire data
transmitted so far, if SACK blocks are generated because segments got reordered
in the network instead of getting lost. We set a data loss fl ag in this case and will
check later if we actually lost any data or not. Let ’ s see how the SACK blocks arrived
with the TCP segment processed. Here we traverse the entire retransmit queue for
each SACK block (loops 818 – 910). The segments in the retransmit queue may
already be tagged. These segments are marked either retransmitted, SACKed, lost,
or none of these.

 1. If the segment was retransmitted, it is marked as TCPCB_RETRANS .
 2. If the segment is SACKED, it is marked as TCPCB_SACKED_ACKED .
 3. If the segment is LOST, it is marked as TCPCB_LOST .

 The next step will be to fi nd out the segment which is covered by the current
SACK block. It may also have happened that the SACK block is generated for the
segment that is already ACKed as part of in - sequence data. We will sense reordering
for the case where a new SACK block is generated for never retransmitted data or
a D - SACK block is generated. Finally we tag the segments in the retransmit queue

 cs 11.37. tcp_sacktag_write_queue().

according to the new events. Components of a TCP state machine related to
re ordering of segments, FACKed out segments, and SACKed out segments are also
modifi ed accordingly.

 We will examine each segment in the out - of - order queue for every SACK block
in the following way:

 The segments in the retransmit queue are arranged in order of increasing start
sequence number. So, if we fi nd that the end sequence of the SACK block is below
the start sequence of the segment, we just skip through this SACK block and move
on to the next SACK block (line 825). If not so, the SACK block is covered by at
least one of the segments in the retransmit queue. This condition will make us tra-
verse all those segments in the retransmit queue which are within the end sequence
of the SACK block.

 Each time we iterate through the inner loop for a given SACK block, we incre-
ment the FACK count by 1 (line 828). This way we can keep account of the FACKed
segments while processing each SACK block. We will retain the FACK count from
the SACK block that forwards ACK ’ s highest sequence number.

 We check if the SACK block completely covers the segment. If so, we mark the
segment as within SACK. One SACK segment may cover more than one segment
in the case where more than one contiguous (but not in - sequence) segment reaches
the receiver. We will process each segment that is covered by the SACK block
one - by - one.

 If the current segment is within the SACK block and the SACK block is marked
as a duplicate SACK, we check if the segment under consideration is marked
as retransmitted (line 835). If all the conditions are true and the end sequence
number of the segment is after the undo mark, tp → undo_marker (line 836). We
need to account for the retransmitted segment that caused D - SACK by decrement-
ing tp → undo_retrans . An end sequence of the segment occurring after an undo
marker means that the segment was retransmitted after TCP entered loss/recovery
state.

 Next we check if the current segment is ACKed by the received segment (line
840). If so, we will check if this was result of reordering or not. If the segment is
ACKed, we check if the segment was retransmitted (line 841). If so, we check if it
is a duplicate SACK; this segment is covered by the SACK (line 842), and the
segment is also marked as being SACKed previously. In this case we encountered
reordering. We record reordering as a minimum of reorder segments and forward
ACKed segments (line 844). Reordering segments is initialized to packets sent out
but not yet ACKed (tp → packets_out). Otherwise if the segment was not retrans-
mitted and the segment under consideration was not SACKed, it means that the
hole was fi lled because the segment arrived late out - of - order. If FACK count at this
point is less than the FACK recorded earlier, we update the FACK count. In this
case, we continue with the next segment in the retransmit queue. Since a segment
is ACKed completely, we will remove this from the retransmit queue in
 tcp_clean_rtx_queue() .

 We are here because the current segment under examination is not ACKed. The
next step is to check if the current segment was retransmitted and probably the
retransmission is also lost. At the time of retransmission, in tcp_retransmit_skb() ,
we store the sequence number to be transmitted next in TCP_SKB_CB(skb) →
 ack_seq . This will help us detect if the retransmissions are lost in case the TCP has
entered the RECOVERY state. In case we enter the LOSS state, all those segments

PROCESSING OF SACK BLOCKS 415

416 TCP CORE PROCESSING

which are not yet SACKed are marked as lost in tcp_enter_loss() but we are not
sure of LOST segments in the case of the RECOVERY state.

 If the SACK block ends after the highest sequence number to be transmitted
next was marked at the time when the segment was retransmitted, it means that
some data were pushed ahead of tp → snd_nxt and are also SACKed. If this is the
case, we are alarmed of this retransmission being lost. We just mark the end sequence
of the SACK block here, and later we may need to check which segments need to
be marked as lost based on the marked sequence number (line 859, cs 11.38). At
this point we need to check if the segment being examined is covered by the SACK
block (line 830). If segment is not covered by the SACK block, we continue with
the next segment (line 861). Otherwise we will process the SACK further.

 Now there are two possibilities: Either the segment under examination is already
SACKed or not. If the segment is already SACKed, we check if the current block
is a duplicate SACK; and if the segment that is covered by the duplicate SACK is
marked retransmitted, we update reordering based on segments FACKed so far for
this SACK block (lines 896 – 897, cs 11.39). Otherwise the segment being examined
is SACKed. If this segment was retransmitted, we update loss and retransmit counts
only if the segment is already marked as lost. We also update the segment TAG by
clearing retransmit and loss fl ags in this case. The reason for doing this is that if the
segment is not marked lost, we may have retransmission in the fl ight for which we
may get D - SACK later when we decrement tp → retrans_out by 1 at line 908.

 cs 11.38. tcp_sacktag_write_queue().

 Otherwise we check if the segment was never retransmitted (line 897). If so, it is
time to update reordering only if the FACK count for this segment is less than the
number of segments forward ACKed prior to arrival of the ACK segment. The
condition at line 880 is probably because we try to check here that the current
segment is lower in order (fack_count) than the previously highest - order SACKed
segment (tp → facked_out). If the new SACKed segment is marked lost, we clear the
lost fl ag for the segment and also adjust the counter for lost segments (lines 883 –
 885). We need to TAG the new SACKed segment as SACKed (line 889) and incre-
ment the counter that is specifi c to SACKed out segments by 1 (line 891). If the
new segment FACKs a higher number of segments than recorded previously, we
update the FACKed segments (line 893 – 894).

 Next we check if the SACK block under consideration is D - SACK; if the
segment covered by this block was retransmitted (TCPCB_SACKED_RETRANS
fl ag is set), we clear the retransmit tag and decrement the retransmit counter by 1.

 Reordering length is the number of segments between the segments SACKed/
ACKed with the highest sequence number (tp → facked_out) and the lowest sequence
number (reord). That is why we are marking the minimum of the fack_count and
previously recorded reorder. Finally, when we update reordering by calling tcp_
update_reordering() , we just pass FACKed - out segments (tp → facked_out) − reord
 + 1, where ‘ reord ’ is calculated as segment lowest in the sequential order SACKed/
ACKed so far which is recorded whenever we receive D - SACK or receive SACK
for the hole which was never retransmitted.

 11.6 REORDERING LENGTH

 The fi rst SACK arrives and SACK ’ s seventh segment is in the retransmit queue;
FACK should be set to the segment SACKed. tp → fackets_out will be set to 7 as

 cs 11.39. tcp_sacktag_write_queue().

REORDERING LENGTH 417

418 TCP CORE PROCESSING

shown in Fig. 11.8 . We can ’ t detect reordering at this stage until we receive another
SACK block or any D - SACK block.

 The second SACK block arrives and SACK ’ s second segment that is already in
the retransmit queue. tp → fackets_out is still set to 7. But now we have knowledge
of reordering taking place in the network. Segments 2 and 7 are reordered and all
other segments in between are also reordered in the network. So, reorder length in
this case becomes 6 as shown in Fig. 11.9 .

 The third SACK block arrives SACKing segment 9 in the retransmit queue.
Since the new segment SACKed is beyond the last FACKed segment, it means that
this segment has arrived in order with respect to segments 6 and 7. This SACK
indicates that the segment high in order so far has reached the receiver, which means
that the FACKed segment should be updated to the new SACKed segment. tp →
 fackets_out is set to 9, whereas reorder length updated as the new segment arrives
as 8.

 The next step is to spot those retransmitted segments in the retransmit queue
which should be assumed lost. In the case where we are in the recovery state and
we have a SACK block that covers the sequence number to be transmitted next
(tp → snd_nxt) when the segment was retransmitted, the segment should be consid-
ered lost if not SACKed and not already marked lost. We mark such an event while
processing the SACK block at line 859. The reason for this is that we may transmit
the segment beyond the marked high sequence (tp → high_seq) when we enter the
recovery stage if the congestion window allows. We may have entered the recovery
state because of excessive reordering. If the SACK block is received covering a high
sequence, it is assumed that the holes are lost. This is illustrated in Fig. 11.11a – d .

 In this phase, we traverse through all the segments in the retransmit queue until
(line 924, cs 11.40) we get a segment whose start sequence is beyond the lost retrans-
mit mark (marked at line 859). We won ’ t consider those segments (line 926) which
have been just ACKed (will be removed from the queue in the next step). We will
consider only those segments that are marked as retransmitted (line 927) because
we want to check here if the retransmissions are lost. The very fi rst thing we check
here is that is the lost - retransmit mark is beyond the highest sequence mark recorded
at the time of segment retransmission. If not so, we are not an eligible candidate to
be assumed as lost. Otherwise we proceed further only in two cases.

 Figure 11.8. Reordering length

is with single SACK block.

 Figure 11.9. Reordering length

is calculated on arrival of

second SACK block.

 Figure 11.10. Reordering

length is adjusted according to

the new SACK.

 Figure 11.11a. Tracking lost retransmits.

 Figure 11.11b. Tracking lost

retransmits (continued).

 Figure 11.11c. Tracking lost

retransmits (continued).

 Figure 11.11d. Tracking lost

retransmits (continued).

 1. The FACK is enabled for the connection (line 929).
 2. The lost retransmit mark is beyond the reordering limits for this segment,

which essentially means that the SACKed block covers the segment that is
beyond tolerant estimated reordering (tp → reordering) with respect to the
highest sequence mark for the segment. We can ’ t consider so much reorder-
ing, and the segment should be considered lost in case it not already SACKed
(line 930). Segments 1, 2, and 3 are retransmitted, and they record the highest
sequence to be transmitted at the time of transmission.

 Segment ’ s 1, 2, and 3 are retransmitted and segment 8 is transmitted (forward
transmission). We get the SACK block for segment 8. In the case of FACK enabled,
all those segments which are not marked LOST or are not SACKed and are retrans-
mitted are marked LOST (i.e., segments 1, 2, and 3). For both cases, we clear the
retransmit fl ag for this segment (line 931) and decrement the retransmit counter

REORDERING LENGTH 419

420 TCP CORE PROCESSING

 cs 11.40. tcp_sacktag_write_queue().

(line 932). And fi nally if the segment is not already marked lost or SACKed (line
934), we mark the segment as lost (line 936) and increment the lost counter (line
935). In the case where FACK is not enabled and reordering length is default 3
segments, we will not have marked any of the segments as lost.

 We need to update the left - out segments based on new SACKed segments and
lost - out segments. At last we update the reordering level. We update tp → reordering
only if the lowest observed reordered segment is not the same as total FACKed - out
segment (highest reorder segment), which means that we know that there is nothing
to update. Update re - ordering, in case we sense reordering and are not in LOSS
state (cs - 11.41 , line 946). In the state of loss, we are not sensitive to reordering
because we have already reduced the congestion window to control congestion.
Reorder length is calculated as the number of FACKed segments − the reorder
segment that SACKed the hole closest to the ACKed sequence number or any such
D - SACK block + 1.

 This updates the tp → reordering fi eld in case the new value of reordering is more
than the existing value. Reordering is being used in the recovery state to assume

 cs 11.41. tcp_sacktag_write_queue().

retransmit lost or to enter recovery state from other states. We need this fi eld to
guess lost segment in tcp_update_scoreboard() .

 tp → fackets_out and tp → reordering together can be used to guess lost - out seg-
ments. Reordering takes into account the lowest SACKed - out segment and the
highest SACKed - out segment (tp → facked_out), and the rest of the segments from
the start of the retransmit queue are processed to be marked as lost in tcp_update_
scoreboard() . Since reordering length (tp → reordering) takes into account the highest
and lowest SACKed segments, we assume that the segments that are missing in
between these two may appear some time in the future out - of - order. In tcp_update_
scoreboard() we try to mark the lost segments based on FACKed - out segments and
reordering in case SACK is enabled. Thus, during the loss and recovery stage, we
can retransmit only those segments which are marked lost by calling tcp_xmit_
retransmit_queue() and at the same time we can transmit unsent segments in the
retransmit queue (beyond tp → high_seq) if the congestion window allows.

 11.7 PROCESSING TCP URGENT POINTER (see cs 11.42
unless mentioned)

 We check if there are any urgent data to be processed in the slow path. We call tcp_
urg() to process urgent data. As far as urgent data processing is concerned, specifi ca-
tion says that we may or may not get an urgent byte with the segment containing an
urgent pointer and an urgent fl ag set. The urgent pointer is a 16 - bit number that is
offset in the TCP segment (containing urgent pointer) starting from fi rst byte of the
TCP payload. It means that the urgent pointer points to the byte in the TCP data
stream treated as an urgent byte. We may get an urgent pointer and urgent fl ag in the
segment providing information about the urgent byte coming ahead. An urgent byte
may be present in the same segment or in the segments to follow. We remain in the
urgent mode until we receive an urgent byte. Once we have received a TCP urgent
byte, the urgent mode is turned off. We process an urgent byte in the slow path, so
the slow path is set once we receive the urgent pointer. tcp_urg() is called in tcp_rcv_
established() (line 3434, cs 11.10) to process urgent data.

 If we have a new urgent pointer, an URG fl ag will be set in the TCP header.
Let ’ s hope we got the new urgent pointer, so we call tcp_check_urg() at line 3127
(cs 11.42) to process the urgent pointer. We may have have URG fl ags set in the
TCP header because of two reasons:

 • It is a duplicate urgent pointer because urgent data are yet to be received.
 • A new urgent pointer is received.

 tcp_check_urg() makes all the necessary checks and either copies the urgent
byte to the user space or wants us to do that. It also sends SIGURG to the process
that is receiving urgent data. For details see Section 11.7.1 . Now we need to check
if the urgent byte has arrived along with the segment containing an urgent pointer
(lines 3131 – 3134). If we have received an urgent byte, the TCP_URG_VALID bit
is set for tp → urg_data and the urgent byte is stored in the tp → urg_data at line 3138.
The TCP_URG_VALID fl ag means that the urgent byte is valid and is ready to be
read. tp → urg_data is a 16 - bit fi eld where the higher 8 bits are used as control fl ags
for urgent data and the lower 8 bits are used to store the urgent byte as shown in
Fig. 11.12 .

PROCESSING TCP URGENT POINTER 421

422 TCP CORE PROCESSING

 Finally we wake up the process waiting on the socket ’ s wait queue and the
process polling exception event on the socket.

 11.7.1 tcp_check_urg()

 We are called when a new urgent pointer is signalled on incoming TCP segment.
We need to clear any unread out - of - band urgent byte to make room for new OOB
urgent byte. Linux implements both versions of the tcp urgent pointer. Some imple-
mentations assume that the TCP urgent byte is pointed by an urgent pointer, and
the others consider the urgent byte to be one byte ahead of the urgent pointer. If
 sysctl_tcp_stdurg is set, an urgent byte is just one byte ahead of an urgent pointer.
In the other case, an urgent byte is just the byte pointed to by an urgent pointer.
This the reason why we decrement the urgent pointer by 1 here in the latter case
(line 3054). Next we calculate the urgent pointer because what we get in the TCP
header as an urgent pointer is the offset with respect to the sequence number of
the segment containing an urgent pointer (see Fig. 11.13).

 If we received an urgent pointer that is already being read, just ignore it (line
3058). The second thing we need to check here is if we received an urgent pointer

 cs 11.42. tcp_urg().

 Figure 11.12. Urgent fl ag tp →
 urg_data.

 Figure 11.13. Accessing

urgent byte in sequence of

bytes.

for the data that have already been received in sequence before (line 3071, cs 11.43).
This may happen in the case where we receive a segment having an urgent pointer
pointing to a segment present in an out - of - order queue. This may be buggy imple-
mentation in the sending TCP.

 Next we check if we received a duplicate urgent pointer. This may happen in
the case where there are many segments yet to be transmitted in the write queue
when an urgent byte is written. This urgent byte is not sent immediately but is sent
out in correct order, but the urgent pointer is sent out in the segments that are sent
out prior to the segment containing an urgent byte.

 We are here because we received a new urgent pointer. So, we need to inform
to the application that urgent data are received, and it must read the urgent byte at
the earliest. So, we send out SIGURG to the application and also wake up any
process polling for the urgent data (lines 3079 – 3085).

 cs 11.43. tcp_check_urg().

PROCESSING TCP URGENT POINTER 423

424 TCP CORE PROCESSING

 Next we check if an urgent byte is not yet read but it has been received and
valid when the urgent byte is not received as inline data:

 1. Urgent byte is not yet read (tp → urg_seq == tp → copied_seq).
 2. Urgent data are still valid (tp → urg_data != 0).
 3. We are not reading urgent data as inline (sk → urginline is not set).
 4. We have already received an urgent byte (tp → copied_seq != tp → rcv_nxt).

Since case 1 is TRUE, we have received data beyond urgent pointer.

 If all the above conditions are TRUE, we need to increment the tp → copied sequence
by 1. If the urgent byte to be read is the last byte of the fi rst segment in the receive
queue or is in the next segment, we remove the fi rst segment from the queue. We
do this for the reason that we want to void reading an urgent byte from the receive
queue accidently in normal read when we are receiving an urgent byte as out - of -
 band data in tcp_recvmsg() (explained in Section 8.2). If OOB urgent byte is the
last byte in the fi rst TCP segment and we have read entire data in this segment until
last byte, we should remove this segment.

 Normally, an urgent byte is either the last byte of the segment or the only byte
in the segment because as soon as we write an urgent byte, we can either append
data to the existing segment and try to transmit it at the earliest or create a new
segment and try to transmit it at the earliest. But this does not guarantee that an
urgent byte should be at the end of the segment or is the only segment in the
segment. This is because if we are not able to send urgent byte in the segment con-
taining an urgent pointer, urgent byte is sent in one of the subsequent TCP seg-
ments. There may be data pending to be transmitted when urgent byte is queued
in by the sender. In such case sender will signal urgent pointer in all the TCP
Segment, unless urgent byte is transmitted.

 Now we update the urgent data fl ag to TCP_URG_NOTYET , meaning that the
urgent byte is yet to be read. Next we set the urgent pointer to tp → urg_seq . We
need to disable the FAST mode (line 3117) because the urgent pointer is processed
in the slow path (tp → pred_fl ags is reset).

 From here we return to tcp_urg() with the new urgent pointer set and tp →
 urg_data set to TCP_URG_NOTYET in case a new urgent pointer has arrived.
Otherwise, no new urgent pointer has arrived (it may be a duplicate urgent
pointer).

 11.8 PROCESSING DATA SEGMENTS IN SLOW PATH (see cs 11.33 to
 11.46 unless mentioned)

 tcp_data_queue() is the routine called to process any data segment in the slow path.
This routine is called from tcp_rcv_established() at line 3437 (cs 11.10). This routine
does the following:

 • It processes the data segment received in sequence.
 • It gets the memory to the socket ’ s memory pool from the TCP global pool or

by pruning receive queues.
 • It processes data segments from the out - of - order queue in case a new data

segment fi lls the gap.

 • It queues data in out - of - order segments in the ofo queue.
 • It processes SACK/DSACK to be sent to the receiver in case SACK is enabled

and we receive out - of - order segments.

 Let ’ s see how is this implemented. We discuss tcp_data_queue() in this section
(cs 11.44). First we check how in - sequence data are processed. Then we look at
processing of out - of - order segments and processing of SACK information. We fi rst
check if there are no data to be processed in the segment at line 2528. If so, we don ’ t
process the segment. We do processing of in - sequence data segments in the same
way as we did in tcp_rcv_established() . We don ’ t process the incoming timestamp
here because it is already done by the caller. We copy data to the user buffer by
calling skb_copy_datagram_iovec() at line 2560 in case the reader is installed and
we are the one who installed it.

 If we are not able to copy in - sequence data to the user buffer for any reason,
we need to queue it in the socket ’ s receive buffer at line 2577. What additional we
do in this path before queuing is to check if the socket ’ s memory pool is exhausted
and we need to allocate more. If so, we try to allocate more memory to the socket ’ s
buffer pool by calling tcp_rmem_schedule() at line 2571. In case we are still not able
to allocate memory, tcp_prune_queue() is called to squeeze out some memory by
pruning the receive queue/out - of - order queue.

 The rest of the operations are the same as we did in tcp_rcv_established() .
 One additional check that we do in this path while processing in - sequence data

segment is to check if the new segment has fi lled the gap in the received data
sequence space. Segments received out - of - order are queued in the out - of - order
queue (tp → out_of_order_queue). If the new segment fi lls the hole such that some of
the segments can be removed from the out - of - order queue, we check this possibility
by calling tcp_ofo_queue() at line 2586. We generate DSACK in the case where new
segments cover partially or fully any segment in the out - of - order queue. In the case
where all the gaps in the out - of - order queue are fi lled, we need to send immediate
ACK by disabling the pingpong mode. We do this so that the sender should stop
retransmitting; as with Reno implementation, we have no idea of how many seg-
ments are lost. We need to adjust the SACK list because some of the SACK blocks
are eaten up by the tcp_ofo_queue() . So, we call tcp_sack_remove() at line 2596.

 We also check if the FAST path can be enabled by calling tcp_fast_path_check()
at line 2598. We do it here because all the segments from the out - of - order queue
might have got processed as the hole is fi lled due to arrival of new segment.

 In this part we covered how incoming data segments are processed in SLOW
path when the segment has arrived in - sequence. Now let ’ s see if we have received
out - of - order. We will start from line 2607 (cs 11.45) where we check for retransmis-
sion. If the end sequence of the segment is not beyond the last in - sequence byte
received so far (tp → rcv_nxt), it is a retransmission. In this case, we need to generate
DSACK as per the specifi cation by calling tcp_dsack_set() at line 2610. The sender
keeps track of the false recovery mode or spurious retransmissions through DSACK
received. We need to send an ACK at the earliest to let the sender know that it can
repair its state, if it mistakenly sensed congestion. We call tcp_enter_quickack_
mode() to disable delayed ACK and schedule ACK. Once we return to tcp_rcv_
established() from here, ACK will be sent out by call to tcp_ack_snd_check() . We
don ’ t proceed further in this case.

 Next we check if the segment is out of window at line 2621. tcp_receive_window()
returns the current advertised window. In this case we need to ACK quickly and

PROCESSING DATA SEGMENTS IN SLOW PATH 425

426 TCP CORE PROCESSING

 cs 11.44. tcp_data_queue().

 cs 11.45. tcp_data_queue().

PROCESSING DATA SEGMENTS IN SLOW PATH 427

428 TCP CORE PROCESSING

discard the segment. The sender may be misbehaving or we might have gotten
urgent data or this may be a zero - window probe. Next we check if we received a
partial segment at line 2626. We check only if the start sequence of the segment is
below the sequence of the last byte received in - sequence, but we don ’ t check for
the end sequence. The reason is that we have already done that check at line 2607.
Since some portion of the sequence space for the segment is already received, we
need to generate DSACK for the overlapping segment at line 2632. We also need
to check if our receive window is zero. If so, we schedule ACK in quick ACK mode
and discard the segment. Otherwise, we need to receive this data segment as a
normal in - sequence segment and queue it on the receive queue being processed at
line 2570. If we are still processing a data segment, it is because we received an out -
 of - order segment. This segment needs to go into out - of - order queue (tp → out_of_
order_queue). We fi rst check if enough memory is available to queue the new
segment, lines 2644 – 2646. If we fail here, the segment is dropped.

 Otherwise we process the out - of - order segment further. We force the SLOW
processing path by disabling the prediction fl ag at line 2651. The reason is under-
standable because we have received an out - of - order segment, and all the subsequent
data segments should be processed in the SLOW path. Only in the SLOW path do
we process the fi lling of holes in the received sequence space. We are already in the
quick ACK mode and we also schedule ACK at line 2652 so that ACK should be
sent at the earliest. We should be able to send immediate ACK in case an out - of -
 order segment is received at the earliest so that the sender is notifi ed of loss and
congestion. Charge socket receive buffers for the memory consumed by the new
out - of - order segment by calling tcp_set_owner_r() at line 2657.

 Now we start the process of fi nding the right place for the segment in the out -
 of - order queue. If this is the very fi rst segment to go into the queue (line 2659), we
initialize the fi rst SACK block tp → selective_acks[0] and also the SACK - related
fi elds for the connection (lines 2661 – 2667). Finally, queue the data segment in the
out - of - order queue at line 2668. If we are not the fi rst one to go on the queue, we
need to fi nd the proper position to insert the segment, depending on the sequence
space of the segment. If we already have sk_buff in the out - of - order queue, we have
many possibilities. We will check these one by one:

 1. If the sequence space of the new segment starts beyond end sequence of the
last segment in the out_of_order queue, queue it after the last segment in
the out - of - order queue at line 2657. Either the new segment can expand
the existing SACK block or we need to create a new SACK block. We will
fi rst try to look at the possibility of expanding the existing SACK block. We
check if the new segment arrived is in - sequence with the last segment in the
out - of - order queue, line 2674. If so, we need to check if we need to create
new SACK block for the new segment.

 2. If there is no SACK block (tp → num_sacks = = 0), line 2677, there can be a
situation where we have sk_buffs in the out - of - order queue still tp → num_
sacks be 0. The reason for this is that there can only be four SACK blocks
at any given point of time (RFC - 2018 requirements). Only the latest SACK
blocks are listed in tp → selective_acks , and rest are discarded. This does not
mean that the segments corresponding to the older SACK blocks are also
discarded. It may happen that some of the GAPS get fi lled because of which
 tp → num_sacks has come down to 0. This does not mean that all the gaps are

fi lled, so we may have tp → num_sacks to drop down to 0 with segments still
there in the out - of - order queue (see Sections 11.8.4 and 11.8.5).

 3. The last segment in the out - of - order queue is not the latest one to arrive, line
2678. Since the SACK block corresponding to the latest out - of - order segment
sits at the start of the SACK block array (RFC - 2018 requirements), tp →
 selective_acks[0] , we check if that is expandable.

 If any of the above conditions is TRUE, we need to create a new SACK block
for the new segment, for which we call tcp_sack_new_ofo_skb() at line 2724. For
details, check Section 11.8.1 . Otherwise we expand the latest SACK block at line
2682.

 If we are at line 2687 (cs 11.46), we need to fi nd the right place for the new
segment in the out - of - order queue because the new segment was not in - sequence
with the last segment in the out - of - order queue. Segments in the out - of - order queue

 cs 11.46. tcp_data_queue().

PROCESSING DATA SEGMENTS IN SLOW PATH 429

430 TCP CORE PROCESSING

are arranged in the order of their sequence spaces. We start traversing the list in the
reverse order, which means starting from the segment with a higher sequence
number toward the lower ones in the order (traversing prev link in the list), loops
2687 – 2690. We break if (a) we fi nd a segment with start sequence number at the
maximum same as sequence number of the new segment or (b) we have traversed
the entire list.

 We would like to check if the new segments partially or fully overlap with any
of the existing segment. This may happen as a result of retransmissions when both
the original transmissions and retransmissions reach the receiver. Excessive reorder-
ing of segments in the network may result in this kind of scenario. In overlapping
segment case, we are not at the end of the queue and the start sequence number of
the new segment lies between the start and end sequence of the segment already
in the queue. In case we have traversed the entire queue, the sequence space for
the new segment is highest of all the queued segments. So, this new segment will be
queued at the tail of the out - of - order queue, line 2708.

 We can have a combination of any of the following scenarios:

 1. Queue(seq) < new_seg(seq) < Queue(end_seq)
 2. Queue(seq) = new_seg(seq) < Queue(end_seq)
 3. new_seg (end_seq) < = Queue(end_seq)
 4. new_seg(end_seq) > Queue(end_seq)

 A. If conditions 1, 2, and 3 are TRUE, the new segment is completely covered
by one of the segments in the out - of - order queue (Fig. 11.14). In this case, we set
the DSACK by calling tcp_dsack_set() and we free the new segment, line 2698. If
the SACK block corresponding to the selected segment exists in the queue, we need
to shift the SACK block at the head of the SACK array, tp → selective_acks[0] , as
per RFC 2883 (see Fig. 11.15 b). Otherwise we need to create a SACK block with
the sequence space of the new segment. We call tcp_sack_new_ofo_skb() to manip-
ulate the SACK array.

 This is a duplicate segment, and the list need not be manipulated because all
the bits in the new segment are already present. We only need to update DSACK
information and create a new SACK block with the same start and end sequence
as of the new segment.

 B. If conditions 1 and 4 is true, the new segment partially overlaps the segment
in the queue (Fig. 11.16). In this case we set a duplicate SACK by calling tcp_dsack_
set() with sequence space of the new segment at line 2698. We insert the new
segment just after the identifi ed segment.

 Figure 11.14. DSACK block.

 In the above case, we never know how many segments are being covered by
the new segment. So, we traverse the segments ahead of the overlapping segment
to check this in the loop, lines 2711 – 2720. We remove the segments that are covered
by the new segment and also modify DSACK block.

 C. If conditions 2 and 4 are true, new segment completely covers the identifi ed
segment in the queue (Fig. 11.17). In this case we are sure that the identifi ed segment
needs to be removed from the queue because all the bits are covered by the new
segment. We insert the new segment ahead of the identifi ed segment, line 2795. We
try to remove all the segments in the queue which are covered by the new segment
ahead in loop 2711 – 2720. Finally, add the new SACK block to tp → selective_ack[] .
We will see if the duplicate SACK is generated for this case.

 We don ’ t fi nd any overlapping segments for the new segment, and the new
segment should be added just after the identifi ed segment at line 2708. We are here
after queuing the new segment in its proper place on the out - of - order queue. We

 Figure 11.15. Generating DSACK blocks.

 Figure 11.16. DSACK blocks generated in case new out - of - order segment spans across several

segments in an out - of - order queue.

PROCESSING DATA SEGMENTS IN SLOW PATH 431

432 TCP CORE PROCESSING

have queued the new segment in the list in the correct place — that is, just after the
segment whose initial sequence number is below the initial sequence number of the
new segment. But we don ’ t know about the end sequence number of the new
segment whether it spans across a few segments ahead of it. Now we need to check
for all that segments those are covered partially/fully by the new segment as they
need to be removed.

 We traverse the list from the position where we have inserted the new segment
in forward direction (accessing skb → next) in loop 2711 – 2720. The list is traversed
until either (a) we have traversed the entire list (line 2711) or (b) the new segment
extends into the next segment, line 2712. If these two conditions are not TRUE, the
new segment does not cover the next segment in the list completely (line 2713).

 In each iteration, we remove the segment that is being covered by the new
segment at line 2717 and also extend DSACK information at line 2718. Here
DSACK is extended until the end of the segment being covered. Once we get a
segment that is partially covered by the new segment, DSACK is extended until the
end of the new segment and we break.

 Let ’ s take an example where we received a new out - of - order segment [seq n ,
end_seq n] when we already have segments in the out - of - order queue as shown in
Fig. 11.18 . The segment fi nds its place after segment [seq 1 , end_seq 1] in the out - of -
 order queue as seq 1 < seq n as shown in Fig. 11.19 . Segment [seq 2 , end_seq 2] is com-
pletely covered by the new segment, so it is removed from the out - of - order queue
as shown in Fig. 11.20 . DSACK generated for the new segment is shown in
Fig. 11.21 .

 The last step to process D - SACK is to call tcp_sack_new_ofo_skb() from tcp_
data_queue() at line 2729. We need to reorganize SACK information. If we already

 Figure 11.17. DSACK blocks generated in case new out - of - order segment completely covers

segment in out - of - order queue.

 Figure 11.18. New segment covers segment 1 and segment 3 partially and segment 3 fully.

have SACK block adjacent to the sequence space of the DSACK block generated
for the new overlapping segment, we need to bring it to the beginning of the SACK
array. Otherwise we need to create one. This is done in tcp_sack_new_ofo_skb() .

 11.8.1 tcp_sack_new_ofo_skb()

 We are called from tcp_data_queue() after the new segment has found its place in
the out - of - order queue. We need to generate a SACK block for the new segment
that can be an extension of any of the existing SACK block. If the new segment has
overlapping sequence space with any of the existing segments in the out - of - order
queue, we have already generated DSACK for this segment before being called. In
this case we check if there exists any of the SACK blocks adjacent to the sequence
space of the DSACK generated. Since SACK blocks are arranged in tp → selective_
acks[] in the order they have arrived, so we need to search for all the SACK blocks
in the array in loop 2405 – 2414 (cs 11.47). If we fi nd a SACK block with sequence
space overlapping with the sequence space of DSACK at line 2406, the sequence
fi eld of the SACK block is extended to take care of DSACK sequence space in
 tcp_sack_extend() itself. We need to get the identifi ed SACK block to the top of the
SACK list (tp → selective_acks[0]) in loop 2408 – 2409. We look at the possibility of
eating up SACK blocks covered by the new SACK block by calling tcp_sack_
maybe_coalesce() at line 2411 and then returning .

 Figure 11.19. Position os new segment in out - of - order queue.

 Figure 11.20. Segment 2 is eaten by new segment.

 Figure 11.21. DSACK generated for the new segment.

PROCESSING DATA SEGMENTS IN SLOW PATH 433

434 TCP CORE PROCESSING

 In case we are not able to fi nd any SACK block of interest, a new SACK block
is generated matching the DSACK sequence space, lines 2432 – 2433, and is placed
at the top of the SACK array. We can ’ t send more than four SACK blocks. So we
need to remove the furthest SACK block from the array in case we are going to
add a fi fth SACK block. Since the new SACK block needs to be added at the top
of the array, we generate space for it in a loop 2427 – 2428 by shifting the SACK
blocks toward the end of the array by one position traversing the array in the reverse
direction.

 For the example considered in Section 11.8 , SACK blocks are arranged as
shown in Fig. 11.22 a. After call to tcp_sack_maybe_coalesce() SACK blocks are
arranged as shown in Fig. 11.22 b. Segment [seq 1 , end_seq 1] and segment [seq 3 , end_
seq 3] are partially covered but [seq 1 , end_seq 1] is fully covered. So, it reduces to one
extended SACK block [seq 1 , end_seq 3].

 11.8.2 tcp_sack_maybe_coalesce()

 tcp_sack_maybe_coalesce() is used to see if the new extended SACK block extends
into any of the existing SACK block region (cs 11.48). If that is the case, all those

 cs 11.47. tcp_sack_new_ofo_skb().

 Figure 11.22. Organization of SACK blocks after new out - of - order segmentarrived.

SACK blocks are removed from the selective ACK array and is coalesced with the
new extended SACK block. We check if the fi rst SACK block overlaps with any of
the existing SACK block (in the outer loop 2365 – 2377) at line 2366. We traverse
through the SACK blocks starting from the second SACK block. If we fi nd any of
the SACK blocks being overlapped with the new SACK block (zeroth SACK
block), we need to remove the SACK block from the array by shifting the SACK
block by one position toward the beginning (loop 2374 – 2375). The removed SACK
block is already merged with the new SACK block (zeroth SACK block) by calling
 tcp_sack_extend() at line 2366, if the sequence spaces overlap.

 11.8.3 tcp_sack_extend()

 tcp_sack_extend() tries to fi nd the possibility of extending the SACK block if the
sequence space provided to the routine overlaps with the SACK block. We are
extending the SACK block with respect to the sequence space, provided that the
following conditions are satisfi ed at line 2299:

 • The start of the sequence space is at maximum equal to the end sequence of
the SACK blocks.

 • The start sequence of the SACK block is at maximum equal to the end of the
sequence space.

 If either of the conditions is FALSE, we will have a hole in the sequence space.

PROCESSING DATA SEGMENTS IN SLOW PATH 435

436 TCP CORE PROCESSING

 Next we check if the left edge or the right edge of the SACK block can be
extended, depending on the new sequence space lines 2300 – 2303.

 1. sequence space [seq, end_seq] that can ’ t be extended using tcp_sack_extend()
with the SACK block(sp) as there is a hole in the sequence spaces and the
SACK block, refer Fig. 11.23 .

 2. sequence space [seq, end_seq] that can be extended using tcp_sack_extend()
with the SACK block(sp) as the sequence spaces and the SACK block are
overlapping (see Fig. 11.24).

 11.8.4 tcp_ofo_queue()

 This routine checks if the new in - sequence data segment received fi lls the hole in
the received out - of - sequence data so far (cs 11.50). It checks sequence spaces of the

 cs 11.48. tcp_sack_maybe_coalesce().

 cs 11.49. tcp_sack_extend().

 Figure 11.23. Sequence spaces are not overlapping, not eligible for SACK extension.

 Figure 11.24. Overlapping sequence spaces, eligible for SACK extension.

 cs 11.50. tcp_ofo_queue().

PROCESSING DATA SEGMENTS IN SLOW PATH 437

438 TCP CORE PROCESSING

segments in the out - of - order queue. If we have fi lled a hole, all the in - sequence data
are transferred from the out - of - order queue to the receive queue. One thing that
we need to remember is that the new in - sequence data segment that fi lls the hole
is already processed and tp → rcv_nxt is also modifi ed to point to the end of this
segment before we are called.

 We loop in 2485 – 2511 until we have traversed all the segments in the out - of -
 order queue or we fi nd another hole in the sequence space (line 2486). We unlink
all those segments from the out - of - order queue which are covered partially or fully
by tp → rcv_nxt and place them the receive queue. In each iteration, we update tp →
 rcv_nxt to the end sequence of the segment which is moved from the out - of - order
queue to the receive queue at line 2508 because this is the sequence number
received in - sequence so far. If the new segment doesn ’ t cover any of the segment
in the out - of - order queue but just fi lls the gap at the boundary, we need not process
DSACK. If the new segment partially or fully covers any of the out - of - order seg-
ment ’ s sequence space, the condition at line no 2489 will be true. Once again, we
check if the out - of - order segment is covered fully; if so, the condition at line 2491
will be true and we set the end of the DSACK block to the end of the segment.
DSACK mark is set to the end of the segment just to make sure that in the next
iteration we make correct judgment about the DSACK. We call tcp_dsack_extend()
to either initialize DSACK block if it does not exist else extend the same. In case
we have overlapping out - of - order segments, in the next iteration we will once again
have to extend DSACK. In this case, DSACK will be generated for which the end
sequence will be within the ACK sequence, which is a valid case.

 Finally we remove all those segments partially or fully covered by the new
segment from the out - of - order queue (line 2506) and queue them in the receive
queue (line 2507). In both examples explained below, we have the following SACK
and DSACK blocks before we reorganize SACK blocks in tcp_sack_remove(). tcp_
sack_remove() is called immediately after this routine to remove any SACK blocks
that are covered by tp → rcv_next .

 Let ’ s see how it works with the help of an example. If we have two segments
received out - of - order as shown in Fig. 11.26 . Sequence space for the received data
is shown in Fig. 11.25 . There is only one segment in the receive queue as shown in
Fig. 11.27 . We take two different examples where different scenarios are presented
in a way that a hole is fi lled by a new segment and how DSACK is generated.

 We get segment that partially covers segment [seq 1 , end_seq 1] as shown in Fig.
 11.28 . such that seq 1 < = tp → rcv_nxt < end_seq 1 . Once we have gone through process-
ing in tcp_ofo_queue() , the receive queue looks as shown in Fig. 11.29 . This queue
will have overlapping segments since we don ’ t do any truncation in this routine. The
receive routine takes care of this while reading data. The out - of - order queue will

 Figure 11.25. Sequence space for received out - of - order segments.

 Figure 11.26. Out - of - order segments.

 Figure 11.27. Segment is receive

queue.

 Figure 11.28. New ACK partially covers a segment in an out - of - order queue.

 Figure 11.29. Out - of - order queue after queuing a new segment.

be left with only one segment [seq 2 , end_seq 2] because it is not being covered by
 tp → rcv_nxt as shown in Fig. 11.30 . The fi nal sequence space is shown in Fig. 11.31 .

 Next we take an example of the case where the new in - sequence data segment
fully covers the segment as shown in Fig. 11.32 . The sequence spaces before we enter
the routine are

 tp → rcv_nxt > end_seq 1
 n = tp → rcv_nxt − end_seq 1

PROCESSING DATA SEGMENTS IN SLOW PATH 439

440 TCP CORE PROCESSING

 Here, segment [seq 1 , end_seq 1] is covered completely by the new segment so it is
removed from both the queues as all the bits are already there in the receive queue
as shown in Fig. 11.33 . The out - of - order queue will have only one segment in the
queue [seq 2 , end_seq 2] as shown in Fig. 11.30 . The fi nal sequence space will show
only one hole as shown in Fig. 11.34 .

 In both cases, the DSACK block will be same because the specifi cations say so.
The DSACK block should be completely covered by a big SACK block, and
minimum their boundaries should match exactly. See Fig. 11.35 .

 Figure 11.30. Only one segment

is left in an out - of - order queue

as an in - sequence segment is

moved to receive queue.

 Figure 11.31. Sequence space after shuffl ing

of a segment from an out - of - order queue to

a receive queue.

 Figure 11.32. New ACK covers the sequence space of one segment completely in the out - of -

 order queue.

 Figure 11.33. New segment is queued on the receive queue.

 Figure 11.34. Sequence space after the new

segment is moved to receive queue.

 Figure 11.35. SACK blocks adjusted to

accommodate DSACK block because of

segment received overlapping with

segment in out - of - order queue.

 11.8.5 tcp_sack_remove()

 We are called from tcp_data_queue() after a hole in the sequence space of the
received data is fi lled by a new data segment. In this process we have removed some
of the segments from an out - of - order queue to the receive queue. We need to modify
SACK blocks in this case. Here we look out for the SACK blocks which are covered
by tp → rcv_nxt . This is the only place where we check if SACK information needs to
be reset because we might have removed all the segments from the out - of - order
queue as the hole is being fi lled (lines 2447 – 2451, cs 11.51). We return if the out - of -
 order queue is empty after resetting the SACK state. We traverse all the SACK
blocks currently active for the session (loop 2453 – 2469). Those SACK blocks that are
fully covered by the latest event of packet arrival need to be removed. If the start
sequence of the SACK block is covered by tp → rcv_nxt, the end sequence necessarily
has to be covered also. We take care of this aspect in tcp_ofo_queue() . If we fi nd one
such SACK block, we remove it by left - shifting all the SACK blocks one position
starting from the SACK block next to the one that has been identifi ed until the end
of the SACK block array (loop 2462 – 2463). Finally, we sync up the SACK count in
case any SACK block has been removed, and we also update effective number of
SACK blocks (considering DSACK) at lines 2471 – 2472. An effective number of
SACK blocks (tp → eff_sacks) is used to build a SACK block in the TCP header.

 If we consider the example in Section 11.8 , the fi nal SACK blocks will have a
SACK block with sequence space [seq 1 , end_seq 1] removed. The reason for this is

PROCESSING DATA SEGMENTS IN SLOW PATH 441

442 TCP CORE PROCESSING

that the SACK block is covered entirely by tp → rcv_nxt because the new data
segment fi lled the hole. Figure 11.36 is the scene of SACK blocks before we are
called, and Fig. 11.36 b is after the SACK block [seq 1 , end_seq 1] is removed.

 11.9 OVERVIEW OF CORE TCP PROCESSING

 An overview of core TCP processing is presented in Fig. 11.37 .

 11.10 SUMMARY

 tp → pred_fl ags is the way to implement SLOW and FAST paths for TCP packet
processing. It takes into account TCP header length, fl ags (other than ACK/PSH),
and window advertised. This makes life simpler in a fast path when we have data
fl ow only in one direction and we do minimum processing to process data and send
back ACK and escape so many conditional checks.

 tp → ucopy manages a user buffer and keeps information about the details such
as

 • Pointer to the thread that wants to read data from TCP socket
 • Pointer to user buffer
 • Length of data to be read in the user buffer

 cs 11.51. tcp_sack_remove().

 TCP data are directly copied to the user buffer if they are received in - sequence
and if a receiver is installed for the socket and we are processing the packet in a
user context.

 The TCP timestamp option is used to check PAWS in tcp_paws_discard() .
 The new timestamp from the arrived segment is replaced by the older one after

all the conditions applied in tcp_replace_ts_recent() .
 Incoming ACK is processed in tcp_ack() . It processes the following:

 • Acknowledgment sequence number to clean up retransmit queue
 • SACK/DSACK blocks
 • ECE fl ags
 • Duplicate ACKs
 • Congestion control

 Incoming SACK/DSACK are processed in tcp_sacktag_write_queue() .
 tcp_packets_in_fl ight() gives a number of packets that are considered consum-

ing network resources. This is a simple calculation based on the total number of
packets transmitted minus the number of packets that have left the network (lost
 + SACKed).

 tcp_clean_rtx_queue() removes segments from the retransmit queue which have
been ACKed.

 tcp_cong_avoid() calculates congestion window depending on whether we are
in a slow - start phase or in congestion recovery.

 tcp_ack_probe() checks if we need to stop probing timer.
 tcp_urg() processes TCP urgent data if there is any in the segment being

processed.
 tcp_data_queue() takes care of out - of - order segments and is also called to

manage a socket ’ s memory pool.

 Figure 11.36. SACK blocks adjusted to follow the DSACK format.

SUMMARY 443

444 TCP CORE PROCESSING

 Figure 11.37. Core TCP processing.

 tcp_data_snd_check() transmits any data that are pending in the transmit queue
and that the congestion state allows. This is called once an incoming segment is
processed completely.

 tcp_ack_snd_check() sends out ACK if any ACK is pending. This is called after
the call to tcp_data_snd_check() ; othewise we may end up sending two segments —
 ACK and data segments — separately.

445

12

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 TCP STATE PROCESSING

 Sender TCP sends a data segment and it expects ACK for the sent data. The rate
of transmission of data increases with the ACK received because the congestion
window increases exponentially in the slow - start phase. We keep increasing the data
transmission rate until we saturate the network by utilizing full network capacity.
On further increasing the transmission rate, we may see one of the intermediate
routers dropping packets because it is not able to handle it. In an ideal condition,
this causes all the packets transmitted within the window to be dropped as they are
all transmitted in a row. TCP comes to know about the loss when it doesn ’ t get ACK
for the fi rst segment transmitted in the current window and it times out. We need
to start retransmission of the lost segments in such a case and slow down the rate
of data transmission.

 Above is one of the examples of congestion. There are different situations
where we can sense congestion. One of the algorithms where we can detect early
congestion is fast recovery and fast retransmission. With this algorithm, we can
detect loss much before we experience timeout by counting duplicate ACKs.

 Using an ECN (explicit congestion notifi cation) bit in the IP header, one of the
intermediate routers can tell the receiver TCP about the congestion it is encounter-
ing. This is a proactive approach from the router to notify TCP much in advance
about the congestion state. The receiver TCP then sends a congestion notifi cation
to the sender by setting an ECE fl ag in the TCP header. This way the sender TCP
reduces the rate of data transmission which can save us from loss due to a packet
being dropped at the router facing congestion.

 There are certain smart algorithms designed that will detect false retransmis-
sions in the case of both (a) fast retransmission and fast recovery and (b) RTO. With

446 TCP STATE PROCESSING

the help of these algorithms, we can get better network performance when we enter
into the loss state because packets are being delayed in the network or ACKs get
lost.

 In this chapter we are going to see handling of the TCP congestion state. We
will see under what conditions we enter and exit the TCP congestion state. Then we
will also learn how we control data transmission and retransmission in the conges-
tion state. We will cover the calculation of reordering length and logic of the retrans-
mission of lost segments. Complete congestion control logic is implementation in
 tcp_fastretrans_alert() . We divide the routine into different sections:

 • Processing in the TCP congestion state
 • Processing exit from the congestion state

 12.1 OVERVIEW OF STATE PROCESSING
(see cs 12.1 unless mentioned)

 Let ’ s start with tcp_fastretrans_alert() . We call this routine from tcp_ack() on recep-
tion of an ACK segment after processing the ACKed segment and the SACKed
segment only when the ACK is found dubious (see Section 11.4.2). It simply means
that we enter here when we sense congestion for the fi rst time or to process TCP
already in the congestion state (other than OPEN state). We implement the follow-
ing algorithms in this routine:

 1. False retransmissions
 2. Recovery from a different congestion state
 3. Sensing a false congestion state due to delay in transmission of packets
 4. Recovering to an open state from all the congestion states here

 We mark the segment as duplicate (line 1494, cs 12.1) only if its ACK sequence
number is the same as the previously ACKed sequence number and any of the bits
in FLAG_NOT_DUP is not set for this segment (see Section 11.4.2).

 We need to complete the preliminary work before processing TCP states. We
check if all the packets sent out are ACKed by the segment being processed at line
1498. In such cases, the SACK count is also reset because Reno implementation sim-
ulates SACKed segments based on duplicate ACKs. In the case where SACK is sup-
ported, we account for the SACK count once a SACKed - out segment is ACKed
in - sequence (see Section 11.4.6). But in the case of Reno, segments are never marked
SACKed out so we take care of the Reno Sack count here. In the case where the
SACK count is zero, the FACK count should also necessarily be to zero (line 1502)
because the FACK count is derived only if at least one segment is SACKed out.

 Irrespective of whichever state we are currently in, if an ECE fl ag is found in
the TCP header, we reset a prior slow - start threshold at line 1507. The reason for
this is congestion that is sensed by one of the intermediate routers. If we don ’ t do
this and we are about to undo from a non - open state, we may end up increasing the
congestion window to a very high value in tcp_undo_cwr() , thereby aggravating the
congestion conditions.

 In the case where the SACK count is nonzero, we check for reneging SACKs.
We check this by calling tcp_check_sack_reneging() . Reneging SACK means that
we need to destroy all the SACK information so far sent by the receiver because

either the receiver is buggy or the receiver is not able to handle out - of - order
segments correctly because of any reason.

 Next we check if DATA is actually lost in the case where the FLAG_DATA_
LOST fl ag is set. This fl ag is set in tcp_sacktag_write_queue() when we get SACK
that covers tp → high_seq . We enter tcp_sacktag_write_queue() only if SACK is
enabled and we received a SACK block. If we are in the congestion state and we
receive a SACK block that covers tp → high_seq , it means that the new segment
transmitted after the lost segment was retransmitted got SACKed. This gives us
indication that the new segment reached before the retransmitted segment reached
the receiver. In this case, we can assume that the data in the window are lost. We
check for some more conditions here before declaring that the data are lost.

 • The very fi rst condition we check here is if in - sequence data acknowledged
so far is below tp → high_seq , which means that the segment covering tp →
 high_seq has reached the receiver as an out - of - order segment that has been
SACKed (line 1515).

 • We are in any congestion state other than an OPEN state at line 1516. It may
happen that TCP has entered into the congestion state incorrectly because of
either reordering or fast RTO. In such cases, we are able to undo from the
congestion state with tp → high_seq already set. In this case, we may have
condition at line 1515 true with condition at line 1516 false.

 cs 12.1. tcp_fastretrans_alert() .

OVERVIEW OF STATE PROCESSING 447

448 TCP STATE PROCESSING

 • Finally we check if the number of FACKed segments is greater than the reor-
dered segments at line 1517. This surely means that some of the segments at
the start of the retransmit queue can be considered lost. The segments that
need to be marked lost are all those segments from the beginning of the queue
which are not yet SACKed.

 If all the above conditions are TRUE, we are in a non - open state and
have SACKed tp → high_seq , and facked - out segments are more than the reordering
count. In such cases, we try to mark all those retransmitted segments from the
start of the retransmitted queue as lost until we fi nd the fi rst SACKed segment. This
is because the reordering length is the difference between the facked - out segments
and the position of the fi rst SACKed - out segment lower down the order in the
retransmit queue (see Section 11.6). Call tcp_mark_head_lost() at line 1518. This is
a special case where we may need to mark the head lost because it may happen that
we are not already in the fast retransmit mode. With the indication of a SACK block
covering tp → high_seq , we can start fast retransmit and we don ’ t cover this case
anywhere.

 At line 1530 (see fast_netrans_alert()), check if we can undo from any of the
congestion states in case we have ACKed data beyond tp → high_seq . While entering
into any state other than TCP_CA_Open , we mark highest sequence number so far
transmitted as tp → high_seq .

 If we have come to the next stage, it means that either we are unable to undo
from congestion states or we are going to enter any of the non - open states other
than loss state. Whether we received a duplicate ACK or received an ACK for the
new data, for any state, processing is done here. We get TCP states processed beyond
line 1569 (cs 12.5).

 If we are at line 1631 (cs 12.8), it means that we have entered the recovery state
(TCP_CA_Recovery) or we were already in this state. The fi nal step is to estimate
the number of segments lost based on the reordering or number of duplicate seg-
ments received (in the case of Reno) by calling tcp_update_scoreboard() and then
fi nally we need to retransmit the lost segment (i.e., fast retransmission). In the case
where the congestion window allows transmission of new data and we have new
segments to be transmitted in the write queue, we can do so. The SACK option
provides much better control on the choice of segments that need to be retransmit-
ted because we know the exact holes in the data segments received by the receiver.
We also moderate the congestion window each time we come here.

 12.2 TCP STATES

 The following TCP states are processed here:

 • TCP_CA_CWR
 • TCP_CA_Disorder
 • TCP_CA_Recovery
 • TCP_CA_Loss

 We will cover the processing of each state one at a time.

PROCESSING OF DUPLICATE/PARTIAL ACKS IN RECOVERY STATE 449

 12.2.1 TCP _ CA _ CWR

 This is set by calling tcp_enter_cwr() under the following conditions:

 Driver Senses Local Congestion. This TCP state indicates that the congestion
window has been reduced. Mainly the reason is that the device is congested. The
device is not able to transmit a segment because of huge traffi c for this packet
priority at the device level.

 We Received an ECE Flag Set in a TCP Header. The other reason this TCP state
is entered is when we get a TCP segment that has an ECE (explicit congestion echo,
RFC - 3168) fl ag set. A receiver TCP sets this fl ag in the TCP header when it receives
a CE segment (indication of congestion in the IP header, set by any of the routers
on the way). On reception of a TCP segment with an ECE fl ag set, ACK is consid-
ered dubious because FLAG_CA_ALERT includes an ECE fl ag. Suppose we are
in an open state when we got a TCP segment with an ECE fl ag set, and we enter
 tcp_fastretrans_alert() from tcp_ack() . Here we need to process OPEN state; and if
we have not sensed any congestion, we call tcp_try_to_open() . Here we call tcp_
enter_cwr() to enter into the TCP_CA_CWR state.

 ICMP Resource Quench Is Received over the Connection. The error message is
generated by the router to the source of the packet in case it is about to drop the
packet. This ICMP message is outdated, but some of the router implementations still
support it. RFC 1122 suggests that on reception of such an error message, TCP is
supposed to back off the congestion window in order to slow down the transmission
rate. Instead of resorting to a slow start, Linux enters into the recovery state by
simply setting a slow - start threshold to half of the congestion window. We handle the
ICMP resource quench error in tcp_v4_error() by calling tcp_enter_cwr(). Section
 12.2.2 explains what happens when we enter the TCP_CA_CWR state in terms of a
congestion window, a slow - start threshold, and a highest sequence mark.

 12.2.2 Undoing from TCP _ CA _ CWR

 We process the TCP_CA_CWR state in tcp_fastretrans_alert() and exit the conges-
tion state only if we get ACK for the last byte transmitted at the time of entering
the CWR state line 1541 (cs 12.2).

 We adjust the send congestion window to a minimum of current congestion
window and slow - start threshold value by calling tcp_complete_cwr() . We don ’ t
increment the congestion window on reception of ACK in case we are in the CWR
state because of a restriction imposed by tcp_may_raise_cwnd() . We will see in a
later section that the congestion window can be reduced on reception of ACK in
this state (until we ACK tp → high_seq). We return to the open state at line 1543
(cs 12.2) and go ahead for next step of processing open state.

 12.3 PROCESSING OF DUPLICATE/PARTIAL ACK S IN
RECOVERY STATE

 We receive a duplicate ACK; and if it is Reno implementation, we call tcp_add_
reno_sack() to increment SACK count emulated for Reno at line 1573 (cs 12.5). We

450 TCP STATE PROCESSING

also check if the reordering length needs to be modifi ed because of the duplicate
ACK received. tcp_check_reno_reordering() is called from tcp_add_reno_sack().
The idea to check reordering is simple. If the sum of lost and sacked segments is
more than the packets transmitted, it means that some of the segments that were
considered lost and retransmitted were actually not lost but instead reached late.
This happened because of reordering of segments. In this case the original transmis-
sions and the retransmissions both got received, and duplicate ACK was generated
for both.

 In the case where sacked - out segments have exceeded our expectations at line
1195 (cs 12.21), we adjust the sacked - out segments as the difference between packets
transmitted and lost segments at line 1196. Then we call tcp_update_reordering() to
update the reordering length to a number of packets transmitted in the current
window at line 1197 (cs 12.21). In Reno, we have no idea which segment caused the
generation of duplicate ACK and we are equating packets sacked and packets lost
to exceed the total length of the transmission; we need to assume that the entire
transmission is reordered.

 If we are at line 1574 (cs 12.5), it is because we received ACK paritially for new
data. We will try to remove Reno SACKs in case of Reno implementation by calling
 tcp_remove_reno_sacks() at line 1577 (cs 12.5). The number of segments ACKed is
calculated based on number of packets transmitted (tp → packets_out) before and
after arrival of the ACK at line 1575 (cs 12.5). When new data are ACKed, tp →
 packets_out is decremented by the number of segments covered by the new ACK
sequence number in tcp_clean_rtx_queue() .

 We check if we can undo from received partial ACK by calling tcp_try_undo_
partial() at line 1578 (cs 12.5). We check if the partially ACKed data exist because
of original transmission and not retransmission. We don ’ t switch to an open state
here but only revert to a congestion state prior to entering congestion in case we
received ACK for original transmissions. The return value of tcp_try_undo_partial()
will decide if we want to mark more segments as lost and carry on with retransmits
later at line 1634 (cs 12.8). TRUE return value is considered similar to duplicate
ACK because duplicate ACK will force tcp_update_scoreboard() to be called later
at line 1632 (cs 12.8).

 12.3.1 tcp _ remove _ reno _ sacks ()

 tcp_remove_reno_sacks() recalculates SACKed - out segments based on the ACK we
received. Since Reno implementation can ’ t see what all the segments have reached,
it assumes that each duplicate ACK means that a segment has reached the receiver
after the hole. If SACK count is n , it means that n − 1 segments after one hole has

 cs 12.2. tcp_fastretrans_alert() .

PROCESSING OF DUPLICATE/PARTIAL ACKS IN RECOVERY STATE 451

reached the receiver (Fig. 12.1) when the reality may be very different. If we have
ACKed n + 1 segments, where n is the number of sacked - out segments (duplicate
ACKs), Reno SACK counter is reset because all the sacked out segments are
covered by the ACK (line 1217, cs 12.3).

 Otherwise if segments covered by ACK is less than SACKed - out segments, we
decrement the SACKed - out segments by ACKed segments − 1 (1 for hole) at line
1219. In the above example if fi ve segments are ACKed, then the scenario would
be as shown in Fig. 12.2 .

 Finally, we update Reno reordering length by calling tcp_check_reno_reorder-
ing() at line 1221 in tcp_remove_reno_sacks() as explained in Section 12.6.7 .

 12.3.2 tcp _ try _ undo _ partial ()

 Here, we don ’ t want to leave recovery and enter an open TCP state because of the
partial ACK. In the case of Reno implementation or with SACK, if the FACKed - out
segment is greater than reordering length, we want to mark new segments as lost
for retransmission by calling tcp_update_scoreboard() because partial ACK has
fi lled up some of the holes. That is the reason why we set the fl ag if any of the above
two cases is true. If we received partial ACK because the packet got delayed and
reached the receiver before the retransmitted segment could reach, we will try to

 Figure 12.1. Reno SACK simulation.

 Figure 12.2. Partial ACKing causes recalculation of SACK.

 cs 12.3. tcp_remove_reno_sack() .

452 TCP STATE PROCESSING

slightly improve the condition by opening a congestion window to increase the fl ow
of data transmission. If the ACK covers all the retransmitted segments, it shouldn ’ t
necessarily mean that retransmitted segments fi lled the hole. It may also happen
that the original packets that reached the receiver prior to retransmissions got
delayed. Is such cases we are able to undo in case we received partial ACK. It may
also happen that only a few of the retransmitted segments got covered by the ACK.
If all the retransmitted segments got ACKed, tp → retrans_out should be zero and
we reset a retransmit timestamp at line 1405 (cs 12.4). We update the reordering
length because some of the SACKed - out segments are eaten up by the ACK by
calling tcp_update_reordering() at line 1407. Then we call tcp_undo_cwr() with a
second argument as 0. It means that we can set a congestion window to the value
prior to entering the congestion state but can ’ t set ssthresh to the value prior to
entering congestion. This means that we can inject more segments into the network,
but the rate of increment of the congestion window will be 1 per RTT. Since we are
able to undo from partial ACK, we can expect more segments to be delayed in the
network. That is the reason we don ’ t want to retransmit more segments but can
either transmit new segments or do forward retransmissions (reset fl ag) at line 1417.
We return the fl ag at line 1419. We return TRUE in case we are not able to undo
from partial ACK, and Reno Implementation or Facked out segments are more than
current reorder length (line 1398). Otherwise we return FALSE. Reno implementa-
tion does not take care of SACK, with SACK implementations, we can predict
reordering of Segments in the network and congestion state. This is the reason we
return TRUE for every partial ACK for Reno implementations. Reno is highly
sensitive to Partial ACKs because SACK implementation Provides much closer
estimate of re - ordering.

 12.4 PROCESSING OF DUPLICATE/PARTIAL ACK s IN LOSS STATE

 When we enter a loss state, we assume that all the segments from the last window
which are not already marked either lost or SACKed are lost. In most of the cases

 cs 12.4. tcp_try_undo_partial() .

when a retransmit timer times out, either we have lost all the segments from the
last window or we are experiencing spurious retransmission assuming that all the
packets are following the same path. But rate of transmission can be infl ated with
loss state with Reno implementation. We enter loss state when:

 a. The retransmit timer times out by calling tcp_enter_loss() from
 tcp_retransmit_timer() .

 b. We get SACK reneging SACK by calling tcp_enter_loss() from tcp_check_
sack_reneging() . Here we are not sure of the SACK state of the receiver, so
we discard all the data transmitted within the last window and enter into a
loss state.

 c. PMTU has changed and needs to do a path MTU discovery and needs to
retransmit everything that is not marked SACK/lost by calling tcp_simple_
retransmit() from do_pmtu_discovery() . In this case we enter into a loss state
but without reducing the congestion window to 1 but reduce the slow - start
threshold to half of the congestion window, which means doing congestion
avoidance. We don ’ t want to undo from the loss state here until we get ACK
for tp → high_seq because the idea here is to just reduce the rate at which the
congestion window should be increased on arrival of ACK.

 We enter a loss state mostly when the retransmit timer expires — that is, when we
don ’ t get ACK for the very fi rst segment transmitted in the current window within
RTO time (see Section 10.2.2). Here we consider that all the segments that were
transmitted within the window are lost and we transmit only the head of the retrans-
mit queue. When we get an ACK, we will know exactly as to what action should
be taken depending on whether we received a duplicate ACK or ACK for the data
that we retransmitted. In case we receive ACK for the retransmitted segment, it
means that the loss is proven and we continue retransmitting lost segments. Or we
receive partial ACK from the original segment, and we know that the packet got
delayed in the network. In these cases, we undo from the loss state and in case of
SACK implementation we enter into the open state, which may fi nally fall into the
recovery phase. With Reno implementation, we continue with the loss state until
 tp → high_seq is ACKed (cs 12.5). We call tcp_try_undo_loss() to check partial
ACKing in the loss state at line 1584. If we are able to undo, we return only if TCP
state has not opened (cs 12.5 , line 1589). If the TCP state has opened, because of
partial ACK we may look for the possibility of entering into the recovery state and
we proceed with default processing of the TCP state at line 1592 (cs 12.5).

 12.4.1 tcp _ try _ undo _ loss ()

 Let ’ s see what happens when we receive duplicate ACK/partial ACK as a result of
original segment reaching the receiver slightly late. Let ’ s take each case
one - by - one:

 1. In the case where none of the segments was lost when the retransmit timer
fi red, this happened because the packet got delayed in the network or there
was a sudden spike in RTO. Here we retransmit the lost segment (head of
the list) and wait for the fi rst ACK. We received an ACK that ACKs the head
of the list from the window at the time when we enter the loss state. But the

PROCESSING OF DUPLICATE/PARTIAL ACKs IN LOSS STATE 453

454 TCP STATE PROCESSING

ACK was generated for the original transmission and not for the retransmit-
ted segment which we can detect from the echoed timestamp. In this case we
are able to undo from the loss state because the original transmission suc-
ceeded. In the case of Reno implementation, we don ’ t exit the state until we
ACK something more than tp → high_seq .

 2. In the case where packets are being routed through different internet paths,
some of the packets are dropped and others are delayed, thus leading to
retransmission timeout. In this case, out - of - order segments may reach the
receiver generating duplicate ACKs (with SACK, in case SACK is enabled).
In such cases, we know that all the segments from the last window is not lost
and we should undo from the loss state. In such cases, we can exit from the
loss state only in the case where SACK is enabled; otherwise we exit the state
only when tp → high_seq is ACKed. RFC 1323 specifi es that the timestamp
echoed with the duplicate ACK generated for out - of - order segment is from
the segment that was last received in - sequence.

 Under the above - mentioned situations, tcp_may_undo() returns TRUE. Let ’ s see
what happens when we undo from loss state. We clear the TCPCB_LOST bit from
each segment in the retransmit queue (loop 1427 – 1429, cs 12.6). This means that
none of the segment is considered lost, and the loss counter is reset at line 1431.
We also recalculate the segments that have left the network because they comprise
two components: lost segments and SACKed segments. Since the lost - out segments
equal zero, we initialize left - out segments to sacked - out segments. The number of
retransmissions is zeroed out here at line 1435. If our TCP is Reno implementation,
we will wait until tp → high_seq is acknowledged. Otherwise we enter the open state

 cs 12.5. tcp_fastretrans_alert() .

because SACK implementations have good control over the congestion state. We
may enter the recovery state depending on the number of segments SACKed out
immediately.

 12.4.2 tcp _ check _ sack _ reneging ()

 This routine checks if we need to destroy all the SACK block received from the
peer because it may be buggy. If so, we need to enter into the loss state because all
the SACKed segments are marked lost. The indication is that the fi rst segment in
the write queue is marked as SACKed at line 1032 (cs 12.7). This should never be

 cs 12.6. tcp_try_undo_loss() .

 cs 12.7. tcp_check_sack_reneging() .

PROCESSING OF DUPLICATE/PARTIAL ACKs IN LOSS STATE 455

456 TCP STATE PROCESSING

the case because if the fi rst unACKed segment in the write queue has reached the
receiver, then it should be ACKed as in - sequence data. If this segment is SACKed,
it means that this in - order segment is still lying in the out - of - order queue even
though there is no hole in the data received prior to this segment. In this case, we
mark all the segments in the retransmit queue as lost by calling tcp_enter_loss() at
line 1035. We refer to this routine with the second argument as 1, which means that
we want to mark all the segments in the retransmit queue as lost and at the same
time we don ’ t initialize tp → undo_marker. tp → undo_marker remains uninitialized,
which means that we don ’ t want to undo from the loss state because we know that
something is messed up at the receiver and so far it is not able to handle unacknowl-
edged segments properly and we need to retransmit all of them once again. We start
the slow - start algorithm here. Transmit the fi rst segment in the retransmit queue at
line 1037 and reset the retransmit timer at line 1038.

 12.5 DEFAULT PROCESSING OF TCP STATES
(see cs 12.8 unless mentioned)

 For default processing of TCP states we have a common code. We come here in case
TCP has entered any of the congestion state and we received got an ACK for data
that are below tp → high_seq (recorded at the time when we entered congestion
state) under different conditions for each TCP state. We also enter here in case we
are in the OPEN state and we received a fi rst duplicate ACK. We will discuss pro-
cessing of each state separately. Here we will discuss only the default processing of
TCP state. We refer to cs 12.8 , line 1593 – 1634.

 In case it is Reno implementation, we need to update the Reno SACK in case
we have received a duplicate ACK. In case we have ACKed new data, we need to
reset Reno SACK counters. Since Reno implementation has no idea which segment
has reached the receiver out - of - order, it just increments the SACK counter on
reception of every consecutive duplicate ACK by calling tcp_add_reno_sack() at
line 1597. Similarly, it resets the SACK counter when new data are ACKed by calling
 tcp_reset_reno_sack() at line 1595. This way Linux TCP implementation simulates
SACK for SACKless Reno implementation.

 In case we have reached the default processing of TCP state and we have
ACKed the new data line 1594, we reset Reno SACK information by calling tcp_
reset_reno_sack() (cs 12.9).

 The next step is to check if we can undo from disorder state (TCP_CA_Disor-
der), which means that we have just sensed reordering but have not entered the
recovery state. In this case we try to undo DSACK by calling tcp_try_undo_dsack()
at line 1601. It may happen that we received acknowledged tp → high_seq and recov-
ered from congestion to the OPEN state without undoing from the congestion state.
So tp → undo_marker and tp → undo_retrans will still be nonzero. This means that we
may still have retransmissions in the network which may reach the destination later
generating DSACK. If we received a duplicate ACK containing DSACK from the
window that got us into the congestion state causing tp → undo_retrans to become
zero, we try to undo congestion window reduction. It means that the original trans-
missions for all the retransmitted data during the congestion state have reached the
receiver generating DSACK. So, our retransmission was false. We won ’ t leave the
current state (i.e., TCP_CA_Disorder) but will reset the congestion state variables

values that were set prior to entering the congestion state. We leave the TCP_CA_
Disorder state only when something above tp → high_seq is acked.

 The next step is to see if we need to enter the fast - retransmission fast - recovery
state (TCP_CA_Recovery). We check all the conditions to enter into the recovery
state by calling tcp_time_to_recovery() at line 1603. We are here only if we have
entered tcp_fastretrans_alert() in any of the four states:

 cs 12.8. tcp_fastretrans_alert() .

 cs 12.9. tcp_reset_reno_sack() .

DEFAULT PROCESSING OF TCP STATES 457

458 TCP STATE PROCESSING

 1. TCP_CA_Open
 2. TCP_CA_Disorder
 3. TCP_CA_CWR
 4. TCP_CA_Loss

 We discuss these once we discuss the processing of these states. If tcp_time_to_
recover() returns TRUE, it is an indication that we are entering into a fast - retrans-
mit fast - recovery state (TCP_CA_Recovery). In the case where the routine returns
FALSE, we can ’ t enter into the recovery state. So, we check the possibility of enter-
ing the disorder or CWR state by calling tcp_try_to_open() . The TCP disorder state
indicates that packets are getting reordered in the network or we may have just
recovered from the congestion state but are not yet completely undone (see Section
 12.6.3). Before entering into the recovery state, we always fi rst enter into the dis-
order state. The disorder state is an initial indication of congestion as explained in
Section 12.6.3 , where we discuss how we enter into the disorder state.

 In the case where tcp_time_to_recover() returns TRUE, it is time to enter the
fast - recovery state (TCP_CA_Recovery). Starting from line 1615, we mark tp →
 high_seq to the next sequence number to be transmitted (tp → snd_nxt). tp → prior_
ssthresh is reset here because we set it once again only if we have not received con-
gestion notifi cation. We set tp → undo_marker to the fi rst unacknowledged sequence
number. tp → undo_retrans is set to tp → retrans_out. tp → retrans_out may be set while
entering the recovery state in case we have undone from the loss state because of
duplicate ACKs generated as a result of an out - of - order segment from the window
that got us into the congestion state. Or we may have exited the loss state on recep-
tion of a partial ACK from the original transmission, and we can catch DSACKs
from this window now.

 The next step is to set tp → prior_ssthresh to the current value as returned by
 tcp_current_ssthresh() at line 1622. tp_current_ssthresh() returns maximum of tp →
 snd_ssthresh or three - fourths of the current congestion window. This is recorded so
that we can revert to these values in case we are able to undo from this state (false
entry into congestion state by calling tcp_undo_cwr()). Next is to bring down the
value of the slow - start threshold, which is standard practice. We set the slow - start
threshold to half of the congestion window or 2, whichever is maximum.

 Call TCP_ECN_queue_cwr() to set the TCP_ECN_QUEUE_CWR fl ag, ensur-
ing that we send out the CWR bit with the new data segment to inform the other
end that we have a reduced congestion window.

 We are here if we have just entered the recovery state or we received a partial
or duplicate ACK in the recovery state. In the next step we will see how we mark
lost segments, and then we will learn how we select segments to be retransmitted
starting from line 1631. We call tcp_update_scoreboard() to update lost segments
within the window in two cases:

 1. If the segment we are processing is a duplicate ACK.
 2. In the case where the head of the segment has timed out and tcp_head_

timedout() returns TRUE (see Section 12.5.2).

 In the case where we received a duplicate ACK, we may have updated reordering
and also Facked out segments. We may need to update lost - out segments here for

retransmission. Also, in the case where the head of the segment is timing out and
we have entered into the recovery state because of this reason (see Section 12.5.2),
we need to mark the head lost. Let ’ s see how we mark segments lost in tcp_update_
scoreboard() in Section 12.5.4 .

 Next is to reduce the congestion window in case we have just entered the recov-
ery state or are processing ACK in the recovery state by calling tcp_cwnd_down() .
For each duplicate ACK that we receive in the recovery state, we make room for at
least one segment to be transmitted or retransmitted. Even for Reno, we count each
duplicate ACK as a sacked - out segment. The left - out segment will be incremented
by 1. tcp_cwnd_down() initializes cwnd to a minimum of congestion window and
packets in fl ight + 1, making room for transmitting or retransmitting one segment.
If SACK is implemented, we know exactly which segment to mark lost and retrans-
mit, but in the case of Reno implementation we just retransmit segments from the
head of the list one at a time.

 Next we call tcp_xmit_retransmit_queue() at line 1634 to initiate retransmission
of the segments marked as lost. We may also do forward retransmissions here. Let ’ s
see how tcp_xmit_retransmit_queue() works in Section 12.5.5 .

 12.5.1 tcp _ time _ to _ recover () (see cs 12.10 unless mentioned)

 This routine checks we need to enter the recovery state. tp → lost_out is incremented
in tcp_mark_head_lost() even if we are in a disorder state or an open state. This
happens in tcp_fastretrans_alert() when a FLAG_DATA_LOST fl ag is set. Other-
wise there is no other way we call tcp_time_to_recover() with tp → lost_out more than
zero (cs 12.10). We might have entered tcp_fastretrans_alert() in any of the conges-
tion states as stated above, but we may leave the congestion state and enter the
open state (because of tp → high_seq being ACKed).

 cs 12.10. tcp_time_to_recover() .

DEFAULT PROCESSING OF TCP STATES 459

460 TCP STATE PROCESSING

 If no segment is marked lost, the next condition we check here is the number
of Facked - out segments that have exceeded reordering length. See Section 11.6 to
know more about reordering length. If the condition is true, it means that some of
the segments at the beginning of the retransmit queue are considered lost because
the rest of them covered by reorder length are considered as being reordered in the
network and will appear sooner or later. In the case of SACK implementation, we
exactly know FACKed - out segments, but in Reno implementation we hardly have
an idea of it. So, we consider only SACKed - out segments (number of duplicate
ACKs + 1) as FACKed - out segments in Reno implementation (line 1046, cs 12.11).
We add one because we consider one segment lost at the head of the retransmit
queue in the case of Reno Implementation. This a classic rule to enter into the fast -
 retransmit fast - recovery state where if we get three duplicate ACKs, we consider
the head of the list as lost and retransmit the head of the list. With FACK/SACK,
we know exactly what is lost and how much to transmit that we see later.

 Next we check if the head of the retransmit queue has timed out by calling
 tcp_head_timedout() at line 1166. The retransmission timer is reset on reception of
each ACK. The packet should be ACKed within an estimated RTO. If the time for
the packet exceeds RTO, it is another way to signal early retransmission.

 If we are at line 1172, we have not entered fast - recovery state because of the
following:

 1. No packet is lost.
 2. Head if the transmit queue has not timed out.
 3. Facked segments has not exceeded reordering length.

 We still can enter into the fast - recovery state. We have reordering length calcu-
lated from the SACK information calculated from the last window. In the current
window, in this case, we may be misled and can detect congestion here. In the case
where the number of packets sent out (tp → packets_out) is less than the reordering
length and the SACKed out segments are more than the maximum of half the
number of the packets transmitted so far and sysctl_tcp_reordering (line 1173), we
can enter into the recovery state if there is nothing to be sent out (tcp_may_send_
now() returns FALSE, line 1174).

 12.5.2 tcp _ head _ timedout ()

 We try to fi nd out if the head of the retransmit queue is not ACKed even after it
has elapsed more than RTO since it was transmitted. Timestamp is stored in each
segment (skb → when) when it is transmitted in tcp_transmit_skb() . When we receive
ACK for a segment, we set a retransmission timeout timer for the next segment in

 cs 12.11. tcp_fackets_out() .

 tcp_ack() → tcp_ack_packets_out() . The timeout value for the retransmission timer
is set to tp → rto , even though the next segment was transmitted much earlier. So,
timeout for the next segment is slightly overestimated by time lapsed since it was
transmitted and the ACK for the previous segment arrived. We can detect early
timeout for the retransmit queue head by calling tcp_head_timedout() . The routine
checks if the time lapsed since the head of the retransmit queue was transmitted
has exceeded the RTO. The retransmit timer won ’ t fi re for the next segment (head
of the retransmit queue) even if the segment has elapsed more than RTO (tp → rto)
because the retransmit timer is started only after the ACK for the previous segment
was received (cs - 12.12). But, early indication of timing out from tcp_head_
timedout() can save us from entering into the loss state in the case where the
segment is slightly delayed in the network, which is very expensive. In this routine
we check if there are any segments which are transmitted (tp → packets_out > 0). If
so, we check if the head of the list has timed out by using the buffer ’ s timestamp
stored at the time when it is transmitted (TCP_SKB_CB(skb → when)) (cs - 12.12 ,
line 1051). If the head of the retransmit queue has timed out, we enter into the
fast - recovery state.

 12.5.3 tcp _ try _ to _ open () (see cs 12.13 unless mentioned)

 The routine checks if we need to enter into the CWR state or the disorder state.
We adjust the congestion window for these states by trying to bring it down as we
need to keep congestion under control to avoid serious loss. We are called only in
open, C(ongestion)W(indow)R(eduction), and disorder TCP states. So, we initialize
 tp → left_out to tp → sacked_out at line 1452 because nothing is marked lost in these
states. If tp → retrans_out is set to zero, tp → retrans_stamp is set to zero. It may
happen that we have left the congestion state without undoing from the state. If we
come here just after entering the open state from the congestion state, we will try
to reset tp → retrans_stamp in case tp → retrans_out is set to zero at line 1455. We
enter into the open state from the congestion state only after all the retransmitted
segments are ACKed. So, tp → retrans_out should become zero. In such cases, we
should try to reset tp → retrans_stamp because it records the timestamp of the fi rst
retransmitted segment. If we don ’ t do this here, and the very next instance we need
to retransmit the segment, we will still have the older value in tp → retrans_stamp
and will not set the new value (check tcp_retransmit_skb() at line 890). This may
provide us wrong results in case we are detecting false retransmissions in tcp_may_
undo(). tp → retrans_stamp is useful to check false retransmission (see Section
 12.6.8).

 cs 12.12. tcp_skb_timedout() .

DEFAULT PROCESSING OF TCP STATES 461

462 TCP STATE PROCESSING

 Next is if ECE fl ag is set, we enter into the CWR state here by calling tcp_enter_
cwr() . This is the place where we can enter into the CWR state in case we received
an ECE fl ag set in the packet being processed currently. Here, we reduce the slow -
 start threshold to half of the congestion window or minimum 2 and the send conges-
tion window is reduced to a value so that we should be able to send a maximum of
one segment. tp → undo_marker is not set because we are sure that we are not
retransmitting anything in this state (tp → undo_marker should be set to undo from
the congestion state; refer to tcp_may_undo()). If we are not retransmitting any-
thing, we should not expect any test for false retransmissions and delayed packets.
Check Section 12.2.1 for details on entering the CWR state.

 The next action will be based on the TCP state. As stated earlier, we are here
only in three TCP states: TCP_CA_Open, TCP_CA_CWR , and TCP_CA_Disorder .
We may have entered the CWR state in this routine itself because of the ECE fl ag
set. If the CWR state is set, we just call tcp_cwnd_down() to simply try to reduce
the congestion window on the reception of every second ACK. In tcp_cwnd_down()
we also try to keep the congestion window such that at the most one new segment
can be transmitted which is calculated as packets_in_fl ight() + 1. Otherwise if the
congestion window is less than the number of packets in fl ight + 1, we wait for more
segments to be ACKed before we can transmit any new segment.

 If the TCP state is other than TCP_CA_CWR , then, we are processing either
the TCP_CA_Open state or the TCP_CA_Disorder state here. If we have entered
 tcp_fastretrans_alert() in the open state, it may be because we received the fi rst
duplicate ACK. In such cases, tp → left_out will be a nonzero positive number because
it is set to the number of SACKed - out segments. In Reno implementation, SACKed -
 out segments are emulated as duplicate ACKs.

 We may have entered tcp_fastretrans_alert() with the TCP state as a loss and
have just left these states (because tp → high_seq is ACKed with this segment). In
this case, if we are not able to undo from the congestion states, tp → undo_retrans
and tp → undo_marker will still be set to the congestion state value.

 In both of the above cases, we just set the TCP state to disorder at line 1466 (cs
 12.13). Next we check if the state is something other than TCP_CA_Open (can only
be a disorder state), We set the state to the disorder state and set tp → high_seq to
the highest sequence number transmitted so far at line 1470. Finally, we call tcp_
moderate_cwnd() to slow down the rate of transmission. By calling tcp_moderate_
cwnd() , we actually restrict ourselves to sending out a maximum of three new
segments from here. This way we enter into the disorder state.

 In the case where we are already in the disorder state and received an ACK,
we just call tcp_moderate_window() to bring down the transmission rate and do
nothing.

 12.5.4 tcp _ update _ scoreboard () (see cs 12.14 unless mentioned)

 In the case where FACK is implemented, we take difference of FACKed - out segment
and disorder length to estimate the lost segments. Otherwise we assume that only
the head of the retransmit queue is lost. In the example shown in Fig. 12.3 , 12 seg-
ments are transmitted in a window and out of 12 segments, only 3 segments are
SACKed, that is, s4, s8, and s12. In this case, the FACK count is 12 and the reorder
length is 9 — that is, number of segments covered between highest and lowest
SACKed segments (see Section 11.6). So, the number of segments that will be

marked as lost in this window when we call tcp_update_scoreboard() will be 3, that
is, s1, s2, and s3.

 In the case where SACK is not supported or it is Reno implementation, we have
little or no idea of reordering and the segments that have reached the receiver. So,
in this case we mark only one segment at the head of the retransmit queue as
lost.

 We call tcp_mark_head_lost() to mark the segments lost. The second argument
to the routine is the number of segments to be marked lost, and the third argument
is the highest sequence that marks the right edge of the window. Beyond this
sequence number, we should not consider any segment as lost. For details on tcp_
mark_head_lost() see Section 12.6.11 .

 In the case where head of the retransmit queue has timed out, we check for
each segment in the retransmit queue which has timed out in loop 1272 – 1278 (cs
 12.14). If the segment is found to have timed out and it has not yet been retransmit-
ted or SACKed out or marked lost (TCPCB_TAGBITS for the segment is not set),

 cs 12.13. tcp_try_to_open() .

 Figure 12.3. Partial ACKing causes recalculation of SACK.

DEFAULT PROCESSING OF TCP STATES 463

464 TCP STATE PROCESSING

we mark the segment as lost and increment the lost counter. This is just a proactive
approach or a protective way to sense any congestion and retransmit at least one
segment so that the retransmit timer does not experience timeout and we can avoid
the loss state. Finally, we calculate the segments that have left the network by calling
tcp_sync_left_out() at line 1279 since we have sensed lost segments.

 12.5.5 tcp _ xmit _ retransmit _ queue () (see cs 12.15
unless mentioned)

 As discussed above, on reception of each duplicate ACK or if the head of the
retransmit queue has timed out, we update lost segment information. First we
consider normal retransmissions based on the number of segment ’ s marked lost
(tp → lost_out). Thereafter we need to make a decision between forward retransmis-
sion and transmitting new segments in case we still have enough congestion window
to pump out more segments.

 If tp → lost_out is some positive number, we traverse through the retransmit
queue (lines 919 – 941, cs 12.15) and for each segment in the retransmit queue we do
the following things:

 1. Check if the congestion window is greater than packets in fl ight at line 922.
If so, we can pump out more segments in the network; otherwise we
return.

 2. Check if the segment is marked lost at line 925. If it is marked lost, we try
to retransmit this segment only if the segment is not yet SACKed or retrans-
mitted at line 926. If the error code returned from tcp_retransmit_skb()
is nonzero, there was some problem and the segment could not be

 cs 12.14. tcp_update_scoreboard() .

 cs 12.15. tcp_xmit_retransmit_queue() .

DEFAULT PROCESSING OF TCP STATES 465

466 TCP STATE PROCESSING

retransmitted. In that case, we just return and don ’ t try for the second time.
In case we are able to retransmit the segment and this was the fi rst segment
in the write queue, we reset the retransmit timer at lines 934 – 935, the same
as we do for plane transmission of a segment where we set the retransmit
timer for the fi rst segment and we reset the retransmit timer once some data
gets ACKed. Next is to decrement the lost segment count. If the count is
zero, we come out of the loop at lines 938 – 939; otherwise we traverse in the
loop for the next segment.

 The above was retransmission on demand, and now we check for the possibility
of forward retransmission — that is, those segments that are not yet SACK/
retransmitted/lost. Here we also have the choice of transmitting new data segments
that are not yet transmitted. We are allowed to do forward retransmissions only if
we are in the recovery state and not in the loss state, line 947. The reason for this
is that the loss state indicates acute congestion as packets are getting dropped by
some intermediate router and we assume that all the segments in the window being
lost. So we want to transmit very limited segments in a controlled way in a loss state.
Another reason is that we may expect original retransmissions reaching the receiver,
causing partial ACKing or duplicate ACKs that may get us out of the loss state.
One more reason we keep retransmitting slowly is that we may have entered the
loss state because of false retransmissions.

 We are an eligible candidate for forward retransmission only if SACK is imple-
mented, else return (line 951). The reason for this is that we have a fair idea of which
segments to transmit and have controlled retransmissions with SACK in place.

 While in forward retransmission, Linux has a choice of retransmitting un -
 ACKed segments from the current window or transmitting new segment. Linux
prefers transmitting new data segments once it has retransmitted marked lost seg-
ments in case congestion window allows. First we check if there are any new seg-
ments to be transmitted by calling tcp_may_send_now() at line 961. This should
ensure that there tp → send_head is non - NULL and that all other conditions are also
satisfi ed related to Nagles, algorithm, the congestion window, and the receiver ’ s
window. If for any reason we are not able to transmit a new segment, we try to
retransmit segments from the retransmit queue which are not marked as Lost/Sack/
retransmitted. We traverse through the queue in the loop 966 – 984. We make the
same checks as in the loop 934 – 935. The only difference is that there we knew the
exact number of segments and we don ’ t try for anything above the specifi ed number
of segments. Here, we look for the possibility of transmitting segments that are
covered by FACKed - out segments, the condition at line 967.

 12.5.6 tcp _ packet _ delayed () (see cs 12.23)

 From this logic we can conclude that we can undo from loss state as soon as we get
a duplicate ACK from the window that got us into congestion because the time-
stamp echoed will always be less than the timestamp for the fi rst retransmitted
segment. We get back to the congestion state prior to entering the congestion state,
but we exit the loss state only if SACK is supported over the connection; otherwise
we remain in the loss state even with a high rate of data transmission. We undo from
the recovery state only if we received an ACK that ACKed full (tp → high_seq) or
partial (current tp → snd_una is higher than the value before the ACK being pro-

cessed arrived) data but not from retransmission but from original transmissions
(tp → retrans_stamp > tp → rcv_tsecr). For the same reason, tcp_try_undo_recovery()
is called only when we get partial/full data ACKed, whereas tcp_try_undo_loss() is
called irrespective of the fact that we obtained a duplicate ACK or data ACKed in
 tcp_fastretrans_alert() .

 12.6 PROCESSING OF TCP NON - OPEN STATES WHEN ACK ED
BEYOND tp → high _ seq (see cs 12.19)

 The fi rst thing we check here is if we have entered this routine in the open state. If
so, we should not have any retransmissions pending (tp → retrans_out should be
zero). We enter into the congestion state once we have retransmitted a segment
because of any reason. In the open state since there are no retransmissions, we need
not have the tp → retrans_stamp set. So, we reset it here at line 1529. This is impor-
tant because we may be sensing congestion and may need to retransmit segments.
If tp → retrans_stamp is set, we won ’ t be able to record retransmission timestamp for
our fi rst retransmission (check tcp_retransmit_skb()) and this will mislead us in
detecting false retransmissions.

 If we have not entered the routine in the open state, we check if we can exit
from any of the congestion states. We exit the congestion state if tp → high_seq
(highest sequence number transmitted when we enter the congestion state, i.e.,
 tp → snd_nxt) recorded at the time of entering the congestion state has been ACKed
at line 1530. In the case where tp → high_seq is ACKed with the segment being pro-
cessed, we have different processing for each TCP congestion state. Let ’ s look at
them one - by - one.

 12.6.1 TCP _ CA _ L oss

 When we enter the loss state, all the transmitted segments within the window which
are not SACKed out are marked lost (see Section 10.2.2 for retransmission timer).
In the case of Reno implementation, all the segments within the window are marked
lost because we have no idea which segment is SACKed. We mark the highest
sequence number that is transmitted in tp → high_seq at the time we enter the loss
state. We leave the loss state when tp → high_seq is ACKed. This is because we would
like to be in the congestion state until all the data within the window at the time of
entering the congestion state has reached the receiver in correct order. Thereafter
we can start pushing out data gradually in the network. So, no new data are pumped
in the network until tp → high_seq is ACKed. We need to reset tp → retransmits
(number of attempts to retransmit the same segment without getting ACK) here.
We check if we can undo from the recovery state by calling tcp_try_undo_recovery() .
In tcp_try_undo_recovery() we fi rst check if we did false retransmission because of
underestimated RTO or packets getting late in the fl ight by calling tcp_may_undo() .
If it returns TRUE, we undo from the state by calling tcp_undo_cwr() . The routine
reverts the congestion variables back to the value that was set prior to entering
congestion state (see Section 12.6.10) and reset tp → undo_marker . Whether we can
leave the congestion state will depend on the TCP implementation and sequence
number ACKed. With Reno implementation, we don ’ t want to leave the loss state
until something above tp → high_seq is ACKed to avoid false fastretransmissions.

PROCESSING OF TCP NON-OPEN STATES WHEN ACKED BEYOND tp→high_seq 467

468 TCP STATE PROCESSING

This is very well documented in RFC 2582. The idea is that we may have retransmit-
ted three segments after entering the loss state. When those segments reach the
receiver, it will generate a duplicate ACK when those segments are already there
in the out - of - order queue. In the case of Reno implementation, we have no idea of
SACK/DSACK, so these duplicate ACKs should not be confused with the fast -
 recovery state we wait for until something above the high sequence is ACKed. New
data (above tp → high_seq) are transmitted only after we have retransmitted all the
lost segments and the congestion window allows us to do so. So, new data ACKed
means that we have already ACKed new data that are beyond the window that
moved us into the congestion state. In this case, we just moderate the congestion
window and continue to send out new segments in the loss state until something
beyond tp → high_seq is ACKed. The reason that we are doing this in the loss state
is that there may be reordering taking place in the loss state also that may lead to
retransmission of segments causing false fast recovery when the retransmitted seg-
ments cause duplicate ACKs when tp → high_seq is ACKed.

 In the case of SACK implementation, we exit the congestion state (loss) as soon
as we ACK tp → high_seq because the duplicate ACK for the above - explained case
will carry DSACK and will differentiate these duplicate ACKs from fast recovery.
In the case where we are not able to exit the loss state, we return with TCP_CA_Loss
state; otherwise we need to process the open state further.

 12.6.2 TCP _ CA _ CWR

 The following two fl ags are used to exchange ECN information:

 • TCP_ECN_QUEUE_CWR
 • TCP_ECN_DEMAND_CWR

 ECN - related information is maintained in the tp → ecn_fl ags fi eld. How does ECN
work? Whenever an ECN fi eld is set in an IP header (set by the intermediate
router), the receiver TCP sets an ECE fl ag in the TCP header. The ECN fi eld is
checked by calling TCP_ECN_check_ce() . The routine is called from tcp_event_
data_recv() and tcp_data_queue() . An ECN fl ag is checked by calling INET_ECN_
is_ce (TCP_SKB_CB(skb) → fl ags). It checks if the fl ag ’ s zeroth and fi rst bits are set.
If so, a TCP_ECN_DEMAND_CWR bit is set for tp → ecn_fl ags . Now it means that
the receiver is demanding a CWR bit in the TCP header. If the TCP_ECN_
DEMAND_CWR bit is set in tp → ecn_fl ags , we set an ECE fl ag in the next TCP
segment that is transmitted by calling TCP_ECN_send() in TCP_ECN_send() .

 Once the sender receives the TCP segment with an ECE fl ag set (check is made
in TCP_ECN_rcv_ecn_echo() called from tcp_ack()), we enter into the TCP_CA_
CWR state by calling tcp_enter_cwr() called from tcp_try_to_open() in case we are
in an open state or a disorder state but not in any other TCP state. From tcp_enter_
cwr() we call TCP_ECN_queue_cwr() to set a TCP_ECN_QUEUE_CWR bit in
 tp → ecn_fl ags fi eld. In the very next new data segment that we transmit, we check
if we need to set a CWR fl ag in the TCP header by calling TCP_ECN_send() from
 tcp_transmit_skb() . In TCP_ECN_send() , we check if the new data segment is being
transmitted at lines 52 and 53 and if the TCP_ECN_QUEUE_CWR bit is set (cs
 12.16). If so, we set the CWR fl ag in the TCP header and also clear the TCP_ECN_
QUEUE_CWR bit in tp → ecn_fl ags so that every time we don ’ t send out the TCP

segment with a CWR fl ag set. The receiver checks for a CWR fl ag in the TCP header
by calling TCP_ECN_accept_cwr() from tcp_data_queue() ; because an additional
fl ag is set in the TCP header, it will take a slow path and tcp_data_queue() will be
called. Here we make a check if CWR fl ags is set. Once we have received CWR for
the ECE fl ag, we clear off the TCP_ECN_DEMAND_CWR bit (cs - 12.17). It means
that our ECE request is being heard by the sender, and it has reduced its congestion
window to slow down the rate of data transmission and no more TCP segments will
be sent out with ECE fl ags set.

 Important: When we enter the CWR state by calling tcp_enter_cwr() , we adjust
the congestion window to a minimum of current congestion window and (packets
in fl ight + 1), which means that at the most we can send only one new segment until
segments in fl ight are ACKed. We don ’ t leave this state until something higher than
 tp → high_seq (recorded at the time of entering TCP CWR state) is ACKed. The
CWR state is maintained only for a single window of TCP data. Once data above
 tp → high_seq are ACKed, we leave the CWR state to enter the open state and also
adjust the congestion window to a minimum of slow - start threshold and congestion
window. We need to wait for anything above tp → high_seq to be ACKed in order to
make sure that the CWR bit has reached the receiver. The CWR bit is sent in the
very next new segment after we have received an ECE bit from the receiver. When

 cs 12.16. TCP_ECN_send() .

 cs 12.17. TCP_ECN_accept_cwr() .

PROCESSING OF TCP NON-OPEN STATES WHEN ACKED BEYOND tp→high_seq 469

470 TCP STATE PROCESSING

we receive an ECE bit, we enter into the CWR state setting tp → high_seq to tp →
 snd_nxt . So, the next new segment carrying data beyond tp → high_seq will contain
a CWR bit. If we leave the state without the receiving end receiving data segment
with CWR bit, it may cause a problem because the sender has exited from the CWR
state but has not received a CWR bit. This will cause every ACK to carry an ECE
bit set from the receiver once again, causing the sender to enter into CWR state.
In case nothing above tp → high_seq is ACKed, we don ’ t leave the CWR state and
continue our processing in default processing of a TCP state by calling tcp_try_to_
open() (only if we don ’ t enter into the recovery state).

 For TCP_CA_CWR state processing in tcp_try_to_open() , we always try to
adjust CWR such that at the most we can send out only one segment on reception
of ACK. The congestion window is adjusted to the minimum of congestion window
and (packets in fl ight + 1) by calling tcp_cwnd_down() .

 12.6.3 TCP _ CA _ D isorder (see cs 12.19 unless mentioned)

 We acknowledged all the data that were transmitted until we enter the disorder
state, so we need to take action. As explained in Section 12.5.3 , we enter the disorder
state in two cases in routine tcp_try_to_open() :

 1. From the open state when we receive fi rst the duplicate ACK.
 2. When we exit the congestion state (loss) and enter the open state on ACKing

 tp → high_seq but without undoing from congestion. This means that tp →
 undo_retrans and tp → undo_marker are set with a TCP open state, which
means that we are not reverting back to the congestion state prior to entering
the congestion. With SACK implementation, we can still get DSACK for the
retransmissions which will indicate if the congestion state was entered
incorrectly.

 In the latter case, we know that retransmissions are still there in the fl ight and can
expect them in the form of DSACK. So, in case we get ACK for tp → high_seq in
the disorder state, we call tcp_try_undo_dsack() at line 1548 to check if we received
DSACK that clears off tp → undo_retrans fi eld.

 The next step is to check if we can undo from the disorder TCP state. There
are three conditions to exit the disorder state:

 1. Is tp → undo_marker reset?
 2. Is it Reno implementation (SACK is disabled)?
 3. If condition 2 is false, have we received ACK for data above tp → high_seq .

 If we have entered the disorder state from the open state without tp → undo_marker
set (reception of the fi rst duplicate ACK) or call to tcp_try_undo_dsack() might
have cleared tp → undo_marker . In the case where tp → undo_marker is set, we can
still enter the open state in case this is Reno implementation because we have
nothing like DSACK to catch. Still we can undo from the disorder state in the case
where SACK is implemented and we have ACKed something above tp → high_seq
because this makes sure that all the data from the window at the time of entering
the congestion state have reached the receiver properly. In the case where we are
entering open state, we reset tp → undo_marker .

 Once we have exited the disorder state, we process open state in default pro-
cessing of TCP states as mentioned in Section 12.5 . In case we are in the TCP_CA_
Disorder state and could not ACK tp → high_seq the processing of ACK received
takes place in default processing of the TCP state as described in Section 12.5 . Pro-
cessing takes place in tcp_try_to_open() in case we are not entering into the fast -
 recovery state. We just call tcp_moderate_cwnd() to reduce the congestion window
to slow down the rate of data transmission to send a maximum of three new seg-
ments and return.

 12.6.4 tcp _ try _ undo _ dsack () (see cs 12.18)

 This routine is called to check if the DSACK is received that may open the TCP
state. If so, we are able to undo from the congestion state prior to entering the
recovery state. On reception of each DSACK within the window, tp → undo_retrans
is decremented by 1 (see Section 11.5.1).

 We call tcp_undo_cwr() to get us back to the congestion state prior to entering
congestion by adjusting tp → snd_ssthresh and tp → snd_cwnd . This is to increment
the rate of data transmission. We reset tp → undo_marker , which is a clear indication
that we can no longer undo from the congestion state for a current window.

 12.6.5 TCP _ CA _ R ecovery (see cs 12.19 unless mentioned)

 We have acknowledged all the data that were transmitted until the time we entered
the recovery state. So, we process the recovery state between lines 1558 and 1564.
In case we have ACKed tp → high_seq in the recovery state, we reset tp → sacked_out
in the case of Reno implementation. This is done because we have ACKed all the
data within the window transmitted at the time when we entered the recovery state.
Reno emulates duplicate ACKs as SACKed - out segments. Duplicate ACKs were a
result of data loss or reordering of segments within the window marked by tp →
 high_seq . Once we ACK tp → high_seq, should reset the SACK counter because
SACK implementation will automatically have the SACK count set to 0 as all the
holes in the window are fi lled when we ACK tp → high_seq . In Reno implementation,
we need to reset the SACK counter here because there is no way we can detect the
fi lling of holes. Next we check if we can try undo recovery by calling tcp_try_undo_
recovery() . Here we check if our retransmission was false by calling tcp_may_undo() .
If so, we revert back to the congestion variables that were set prior to entering
congestion state by calling tcp_undo_cwr() and we reset tp → undo_marker . Irrespec-

 cs 12.18. tcp_try_undo_dsack() .

PROCESSING OF TCP NON-OPEN STATES WHEN ACKED BEYOND tp→high_seq 471

472 TCP STATE PROCESSING

tive of whether we are able to undo from the recovery state, the next step is for
exiting the recovery state. In the case of Reno implementation, we should ACK
something beyond tp → high_seq to exit the recovery state. This is done in order to
avoid entering a false fast - recovery state in case the retransmissions for segments
below tp → high_seq generate duplicate ACKs. In the case of SACK/DSACK imple-
mentation, DSACKs are generated for each such duplicate ACKs, so we need not
worry and exit the recovery state as soon as tp → high_seq is ACKed. In the latter
case we are not able to exit the recovery state, so we moderate the congestion
window by calling tcp_moderate_cwnd() to slow down the data transmission rate
until we get ACK beyond tp → high_seq . In the case where we exit the recovery state,
the next step is to continue processing for the open state; otherwise we return with
the recovery state from the routine.

 12.6.6 tcp _ add _ reno _ sack ()

 Reno implementation does not have any idea of any out - of - order segments that are
received by the peer. We try to simulate SACK - out segments from the duplicate
acknowledgments we receive. This makes our work simpler by having a common

 cs 12.19. tcp_fastretrans_alert() .

net/ipv4/tcp_input.c tcp_fastretrans_alert()..... cont

1527 if (tp->ca_state == TCP_CA_Open) {
1528 BUG_TRAP(tp->retrans_out == 0);
1529 tp->retrans_stamp = 0;
1530 } else if (!before(tp->snd_una, tp->high_seq)) {
1531 switch (tp->ca_state) {
1532 case TCP_CA_Loss:
1533 tp->retransmits = 0;
1534 if (tcp_try_undo_recovery(sk, tp))
1535 return;
1536 break;
1537
1538 case TCP_CA_CWR:
1539 /* CWR is to be held something *above* high_seq
1540 * is ACKed for CWR bit to reach receiver. */
1541 if (tp->snd_una != tp->high_seq) {
1542 tcp_complete_cwr(tp);
1543 tp->ca_state = TCP_CA_Open;
1544 }
1545 break;
1546
1547 case TCP_CA_Disorder:
1548 tcp_try_undo_dsack(sk, tp);
1549 if (!tp->undo_marker ||

1552 IsReno(tp) || tp->snd_una != tp->high_seq) {
1553 tp->undo_marker = 0;
1554 tp->ca_state = TCP_CA_Open;
1555 }
1556 break;
1557
1558 case TCP_CA_Recovery:
1559 if (IsReno(tp))
1560 tcp_reset_reno_sack(tp);
1561 if (tcp_try_undo_recovery(sk, tp))
1562 return;
1563 tcp_complete_cwr(tp);
1564 break;
1565 }

routine for SACK as well as Reno implementations. In tcp_add_reno_sack() we
increment the SACK counter (tp → sacked_out) by 1, and we call tcp_check_reno_
reordering() in order to check if we need to update the Reno reordering length.
Finally we call tcp_sync_left_out() at line 1207 (cs 12.20) to update the segments
that have left the network that is the sum of SACKed - out and lost - out segments.
We do it here because we have a new Reno SACK.

 12.6.7 tcp _ check _ reno _ reordering ()

 The routine tries to calculate the reordering length for Reno implementations
where we have no idea of out - of - order segments received by the peer. Normally,
with SACK implementation, we can calculate the reordering length from SACK
block highest and lowest sequence spaces. With Reno, we have no such case. Reor-
dering can be observed only if we receive more than expected duplicate ACKs. This
may happen in case the lost segment reaches the receiver out - of - order after we have
already retransmitted it. In such cases, we get a duplicate ACK for the retransmitted
segment which will be one more than expected. We can safely assume this as reor-
dering. In such cases where the sum of SACKed - out segments and lost segments is
more than the segments so far transmitted within the window (line 1195, cs 12.21),
we need to update reordering length as the number of packets transmitted but not
yet ACKed within the window (tp → packets_out) by calling tcp_update_reordering()
at line 1197.

 12.6.8 tcp _ may _ undo () (see cs 12.22 unless mentioned)

 The routine checks if we can revert back to the open state because we may have
entered the congestion state incorrectly. When the TCP enters into any state other

 cs 12.20. tcp_add_reno_sack() .

 cs 12.21. tcp_check_reno_reordering() .

PROCESSING OF TCP NON-OPEN STATES WHEN ACKED BEYOND tp→high_seq 473

474 TCP STATE PROCESSING

than open because of congestion, we record the highest sequence number transmit-
ted so far (tp → high_seq), the slow - start threshold and congestion window are
adjusted to slow down the rate of transmission of segments, and we record the slow -
 start threshold prior to entering the congestion state. We record tp → high_seq so
that once this sequence is acknowledged, we can try to undo from the congestion
state.

 Undoing from state means that if we were misled into the congestion state
because of a packet delayed in the network, reordering of segments, and under-
estimated RTOs, we can resume the same state as it was before. After entering into
congestion state, we may retransmit segments marked lost. We can sense undoing
from the state in case we fi nd that the original transmissions are succeeding. We do
this by calling tcp_may_undo() .

 We check that if tp → undo_marker is set, this is set to unACKed sequence
number (tp → snd_una) when we enter the congestion state. If this fi eld is set, we
know that we are eligible for undoing from the congestion state. We proceed further
to check if we can undo from the congestion state. Next we check is whether tp →
 undo_retrans is 0. If this fi eld is zero, it means that either we have not retransmitted
anything or whichever segment was retransmitted has been DSACKed, indicating
that the original segments were not lost and they also reached the destination along
with the retransmitted segments. It may also happen that the ACKs to the segment
transmitted earlier were lost and when we retransmitted them, we got DSACKs for
those retransmitted segments. If tp → undo_retrans is nonzero, it means that we have
retransmitted something. We check if packets got delayed in the network but reached
the destination by calling tcp_packet_delayed() .

 12.6.9 tcp _ packet _ delayed () (see cs 12.23 unless mentioned)

 We undo from the congestion state only if we got DSACKs for all retransmitted
segments (tp → undo_retrans equal to 0) or our original transmissions successfully
reached the receiver (tcp_packet_delayed() returned TRUE because tp → rcv_tsecr
 < tp → retrans_stamp).

 cs 12.22. tcp_may_undo() .

 cs 12.23. tcp_packet_delayed() .

 tp → retrans_stamp → is the timestamp when the fi rst segment was
retransmitted.

 tp → rcv_tsecr → is the echoed timestamp from the receiver.

 If tp → rcv_tsecr < tp → retrans_stamp , it means that the echoed timestamp was from
the original transmission because the retransmission timestamp is higher than the
echoed timestamp. If the echoed timestamp was greater than the timestamp of the
fi rst retransmission, it means that the retransmission has fi lled the hole. To under-
stand which timestamp is echoed in the case of reordering, just check RFC 1323.
According to this document, we echo the timestamp from the last segment that
advanced the left window in case we receive an out - of - order segment. When a
segment arrives that fi lls a gap, we echo back the timestamp from this segment. The
reason for this is that the segment that fi lls the gap represents the true congestion
state of the network. See Section 11.8 .

 12.6.10 tcp _ undo _ cwr ()

 In case we are about to undo from any of the non - open (congestion) states, we may
revert back to the congestion state prior to entering the congestion state. There are
two congestion state variables: slow - start threshold and congestion window. We
record the slow - start threshold value before entering the congestion state in tp →
 prior_ssthresh , and the slow - start threshold is initialized to half of the congestion
window at that time. While undoing from the congestion state, we call tcp_undo_
cwr() to revert back to the original congestion state, in case the prior threshold
recorded in tp → prior_ssthresh is greater than the current slow - start threshold value.
Since half of the congestion window was recorded in the slow - start threshold (tp →
 snd_ssthresh), we initialize the congestion window to the maximum of current con-
gestion window and double the slow - start threshold value (line 1337) since during
the congestion state the congestion window may have increased to a high value if
the number of packets in fl ight is too high at the time of congestion. This will
increase the data transmission to a very high value. If the prior slow - start threshold
is zero, we don ’ t revert back to the slow - start threshold value recorded prior to going
into the congestion state, and the congestion window is initialized as a maximum of
current congestion window and a slow - start threshold value (line 1344, cs 12.24).

 Finally, we try to moderate congestion window in case we have reverted back
to the congestion window prior to congestion. This may infl ate the congestion to a
very high value, suddenly causing a burst of packets in the network diffi cult to
handle. We call tcp_moderate_cwnd() . It may happen that all the ACKs from the
last window were lost and on reretransmission after we got ACK for all the data,
thereby causing congestion window to grow up to very high value. This may cause
a burst of segment to be transmitted. The congestion window is initialized to a
minimum of current congestion window and packets in fl ight + maximum burst
(cs - 12.25). Linux assumes maximum burst to be 3, which means that even with
delayed ACK, it can send out a maximum of 3 segments.

 12.6.11 tcp _ mark _ head _ lost ()

 This routine is called to mark a specifi ed number of segments lost starting from the
head of the retransmit queue. The number of segments is the minimum of the

PROCESSING OF TCP NON-OPEN STATES WHEN ACKED BEYOND tp→high_seq 475

476 TCP STATE PROCESSING

 cs 12.24. tcp_undo_cwr() .

number of segments as specifi ed by the caller and tp → high_seq recorded so far
(line 1241, cs 12.26). The segments are marked lost only if they are neither
SACKed/retransmitted or not already marked lost (lines 1243 – 1246). Finally, we
need to synchronize the segments that have left the network by calling
 tcp_sync_left_out()

 cs 12.25. tcp_moderate_cwnd() .

 cs 12.26. tcp_mark_head_lost() .

 12.6.12 tcp _ sync _ left _ out ()

 This routine is called when we need to update segments that have left the network
(cs 12.27). This is required when we have updated SACKed - out segments or lost - out
segments. In the case where SACKed - out segments have exceeded the number of
segments already transmitted minus the number of segments considered lost, we
need to equate the SACKed - out segments to the difference of these two (line 1101).
This may happen in the case of Reno SACK implementation, where every duplicate
ACK is considered to be a SACKed - out segment. The duplicate ACK may also be
generated from retransmits failing the packet conservation law. Finally, the number
of segments that have left out the network is calculated as the sum of the number
of segments lost out and the number of segments SACKed.

 12.7 SUMMARY

 In this chapter we have seen how tcp_fastretrans_alert() implements the logic of
TCP congestion state enter and exit logic. There are four TCP congestion states that
are processed:

 • TCP_CA_CWR , congestion window reduction. This is set because of local
congestion or we received a TCP segment with an ECE fl ag set.

 • TCP_CA_Disorder . TCP enters this state when it senses congestion for the
fi rst time because of SACK blocks or duplicate ACK. TCP enters this state
before entering recovery.

 • TCP_CA_Recovery . TCP enters the recovery state when we get an early
indication of congestion because of duplicate ACKs and the retransmission
head timing out.

 • TCP_CA_Loss . TCP enters the loss state when we experience timeout or we
reject all the SACK blocks in tcp_check_sack_reneging() as the receiver has
destroyed its out - of - order queue.

 The two congestion state variables are implemented as follows:

 • tp → snd_cwnd , which is send side congestion window that is manipulated by
different congestion control algorithms and rate at which ACK is received.

 • tp → snd_ssthresh , which is sender ’ s slow - start threshold to mark the start of
the recovery algorithm.

 cs 12.27. tcp_sync_left_out() .

SUMMARY 477

478 TCP STATE PROCESSING

 • tp → high_seq is used as an exit condition when TCP has entered any of the
congestion state.

 • tcp_may_undo() is used to detect false entry into the congestion state and
spurious RTO.

 • tcp_xmit_retransmit_queue() implements the fast retransmission algorithm.
 • Linux simulates Reno SACK by incrementing the SACK count on reception

of duplicate ACK.
 • tcp_update_scoreboard() implements logic of updating lost segment based on

FACK count for SACK implementation.

479

13

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 NETLINK SOCKETS

 This chapter starts with the introduction of netlink sockets and the different types
of protocol families supported. Then gives a detailed explanation of how netlink
sockets are registered at boot time. In addition, we will explain how the kernel and
user netlink sockets are created. Then we see the details of netlink data structures
and the format of netlink packet. Finally we will go through the details of how a
netlink user and a kernel socket interact.

 13.1 INTRODUCTION TO NETLINK SOCKETS

 Netlink is a bidirectional communication method for transferring the data between
kernel modules and user space processes. This functionality is provided using the
standard socket APIs for user space processes and an internal kernel API for kernel
modules.

 The supported netlink families are as follows:

 • NETLINK _ ROUTE : It is used for queueing disciplines, to update the IPV4
routing table.

 • NETLINK _ SKIP : Reserved for ENskip.
 • NETLINK _ USERSOCK : Reserved for user mode socket protocols.
 • NETLINK _ FIREWALL : Receives packets sent by the IPv4 fi rewall code.
 • NETLINK _ TCPDIAG : TCP socket monitoring.

480 NETLINK SOCKETS

 • NETLINK _ NFLOG : Netfi lter/iptables ULOG.
 • NETLINK _ ARPD : To update the arp table.
 • NETLINK _ ROUTE6 : To update the IPV6 routing table.

 Why Netlink Sockets?

 • Netlink sockets support multicast, and one process can multicast messages to
a netlink group of addresses.

 • They provide BSD socket - style APIs.
 • Netlink sockets are asynchronous, and they provide queuing of messages for

socket.
 • For any new feature support, only the protocol type has to be implemented.

 13.2 NETLINK SOCKET REGISTRATION AND INITIALIZATION AT
BOOT TIME

 At boot time when the netlink module (net/netlink/af_netlink.c) gets loaded, the
 module_init function calls the netlink_proto_init() initialization routine (cs 13.1).

 In the netlink_proto_init() routine, the sock_register() function gets called at
line 1013 with ‘ netlink_family_ops ’ as parameter.

 ‘ netlink_family_ops ’ is of type net_proto_family struct, and in case of
netlink protocol it is defi ned as shown in cs 13.2 , where PF_NETLINK is the family
of protocol type. netlink_create is the create function for the socket of
 PF_NETLINK .

 The main purpose of the sock_register() function is to advertise the protocol
handler ’ s address family and have it linked into the socket module (cs 13.3).

 cs 13.1. Netlink_proto_init () .

 cs 13.2. Netlink_proto_family .

HOW IS THE KERNEL NETLINK SOCKET CREATED? 481

 At line 1630 (cs 13.3) the sock_register() checks for the socket system call pro-
tocol family entry in the net_families table and at line 1631 it inserts the protocol
family entry in the net_families table (in this case it is a netlink protocol).

 The net_families table is an array of struct net_proto_family pointers where all
the protocol families are registered, net_families is defi ned as shown in cs 13.4 where
NPROTO is the manimum number of protocol that can be registered. It ’ s value is
set to 32 in kernel.

 13.3 HOW IS THE KERNEL NETLINK SOCKET CREATED?

 At Linux booting when the CPU subsystem is up and running and memory and
process management works, the function do_basic_setup() does network initializa-
tion by calling the function sock_init() at line 541 as shown in cs 13.5 .

 The sock_init() function initializes all the address (protocol) families at lines
1677 and 1678 (cs 13.6). Here we are interested in the initialization of the protocols
module, particularly about the netlink protocol. For initializing the netlink protocol
there is a function called rtnetlink_init() which gets called at line 1717 to initalize
and create the kernel netlink socket.

 The rtnetlink_init() creates a netlink socket in the kernel for handling the user
requests (cs 13.7). It calls the routine ‘ netlink_kernel_create ’ with parameters such
as NETLINK_ROUTE and rtnetlink_rcv function pointer at line 523.

 cs 13.3. sock_register () .

 cs 13.4. net_families .

 cs 13.5. do_basic_setup () .

482 NETLINK SOCKETS

 The netlink_kernel_create() function fi rst allocates a socket by calling the routine
 sock_alloc() at line 715. Then it initializes the socket type to SOCK_RAW at line
718 (cs 13.8).

 At line 720 the kernel netlink socket is created by calling the function netlink_
create() and then initializes the sock struct pointer sk to point to the socket object
of socket struct at line 724 which is dynamically allocated in the netlink_create()
function. Also it initializes the data_ready function pointer of sock struct to point
to the netlink_data_ready() function, and then it checks if there is a second input
parameter is passed; if yes, then it initializes the af_netlink → data_ready function
pointer to the second input parameter at line 727, which is rtnetlink_rcv for netlink
protocol. Finally, it adds the entry of this socket in nl_table (see Section 13.5) by
calling the routine netlink_insert at line 729.

 13.4 HOW IS THE USER NETLINK SOCKET CREATED?

 The user space netlink socket is created by the socket() system call, for example,

 fd = socket(AF_NETLINK, SOCK_RAW, protocol);

where AF_NETLINK is the address family and the SOCK_RAW is socket type.
 The following protocol families are supported by the netlink socket:

 NETLINK_ROUTE
 NETLINK_FIREWALL
 NETLINK_ARPD

 cs 13.6. sock_init () .

 cs 13.7. rtnetlink_init () .

 NETLINK_IP6_FW
 NETLINK_NFLOG
 NETLINK_ROUTE6
 NETLINK_TAPBASE
 NETLINK_TCPDIAG
 NETLINK_XFRM

 Here We Will Discuss the NETLINK _ ROUTE Protocol. The NETLINK_
ROUTE protocol is used for updating the routing table, to link parameters for
setting up network interfaces, to address for setting up ip address for network inter-
face, for queuing disciplines, for traffi c classes, for setting up of fi lters for traffi c
classes, for neighbor setups, and for setting up of rules for the routing. It controls
the Linux networking routing system.

 For example, the user command used for updating the routing table is ‘ ip, ’ and
that for the queuing discipline and traffi c classes is ‘ tc ’ using NETLINK sockets
for the NETLINK_ROUTE protocol.

 LINK Parameter Messages. The LINK messages allows a NETLINK_ROUTE
protocol user to set and retrieve information about the network interfaces on the
system. It consists of the following message types:

 RTM_NEWLINK
 RTM_DELLINK
 RTM_GETLINK

 cs 13.8. netlink_kernel_create () .

HOW IS THE USER NETLINK SOCKET CREATED? 483

484 NETLINK SOCKETS

 The ADDR Messages. The ADDR messages allows a NETLINK_ROUTE
protocol user to set/unset the IP address on the network interface on the system. It
consists of the following message types:

 RTM_NEWADDR
 RTM_DELADDR
 RTM_GETADDR

 The ROUTE Messages. The ROUTE messages allow a NETLINK_ROUTE
protocol user to update the routing table. It consists of the following message
types:

 RTM_NEWROUTE
 RTM_DELROUTE
 RTM_GETROUTE

 The QDISC Messages. The QDISC messages allows a NETLINK_ROUTE
protocol user to add/delete the qdisc to the queuing discipline of the system. It
consists of the following message types:

 RTM_NEWQDISC
 RTM_DELQDISC
 RTM_GETQDISC

 The CLASS Messages. The CLASS messages allow a NETLINK_ROUTE
protocol user to add/delete a class to the qdisc of the queuing discipline of the
system. It consists of the following message types:

 RTM_NEWCLASS
 RTM_DELCLASS
 RTM_GETCLASS

 The FILTER Messages. The FILTER messages allows a NETLINK_ROUTE
protocol user to add/delete a fi lter to the class of qdisc of the queuing discipline of
the system. It consists of following message types:

 RTM_NEWFILTER
 RTM_DELFILTER
 RTM_GETFILTER

 The socket() is a system call which is then resolved in the kernel. It calls the sys_
socketcall() , which in turn calls sys_socket() ; sys_socket() calls the sock_create() , and
based on the family in this case it is netlink; and sock_create() calls the netlink_
create. This function creates the socket and initializes the operations of protocol
performed with socket. It initializes the sock → ops to be & netlink_ops , where
 netlink_ops is a list of function pointers for various operation to be performed on
netlink sockets (cs 13.9).

 13.5 NETLINK DATA STRUCTURES

 Kernel Data Structures

 • nl_table
 • rtnetlink_link

 13.5.1 nl _ table

 nl_table is an array of pointers to sock structures (socket linked list). Its size is set
to MAX_LINKS (32). It is defi ned in kernel as shown in cs 13.10 . Each element of
 nl_table array represents a NETLINK protocol family — for example, NETLINK_
ROUTE , NETLINK_FIREWALL, and so on, as shown in Fig. 13.1 and each
NETLINK protocol family contains a pointer to the socket (struct sock) linked list.
The nl_table is looked up based on the protocol when there is a communication
between user and kernel space for the netlink socket; and based on the protocol,
the socket (struct sock) linked list is searched for sock that has the same pid with
the current process. Once the sock struct is found in the sock list for the protocol
in the nl_table , then it enqueues the skbuff (contains netlink packet) into the sock ’ s
receive queue.

 cs 13.9. netlink_ops .

 cs 13.10. nl_table .

NETLINK DATA STRUCTURES 485

486 NETLINK SOCKETS

 13.5.2 rtnetlink _ link

 rtnetlink_links is defi ned as an array of pointers to rtnetlink_link data structure (cs
 13.11). Each rtnetlink_link data structure corresponds to a rtnetlink command — for
example, RTM_NEWQDISC , which is a command for adding a new qdisc. Here the
 rtnetlink_link is shown in cs 13.12 .

 doit : pointer to a function which will be called based on the command in the
control message.

 dumpit : pointer to a function to clear data after completion of command or on
error.

 Each entry in the rtnetlink_links table corresponds to a particular family such
as AF_NETLINK .

 The rtnetlink_link data structure contains the doit and dumpit function pointers
(Fig. 13.2). The rtnetlink_links table gets initialized while registering the net_device
if CONFIG_NET_SCHED is defi ned in the case of queueing discipline.

 The rtnetlink_links gets initialized in pktsched_init() from net/sched/sch_api.c in
the case of queuing discipline (cs 13.13).

 In pktsched_init () , at line 1167 we declare a data structure rtnetlink_link and
then directly assign the global rtnetlink_links table address based on the address

 Figure 13.1. nl_table data structure .

 cs 13.11. rtnetlink_links .

 cs 13.12. rtnetlink_link .

family (used as an index for the array) at line 1180. Here the address family is PF_
UNSPEC . The rtnetlink_links global table is viewed as a two - dimensional array, its
row corresponds to family, and each column on a row corresponds to command
(struct rtnetlink_link) in that family. Then based on the type — for example, RTM_
NEWQDISC (which acts as command for adding the new qdisc) — the doit function
pointer of struct rtnetlink_link for RTM_NEWQDISC type points to function tc_
modify_qdisc() at line 1187. Similarly from lines 1188 to 1194, based on other type
the doit and dumpit function pointer gets initialized for struct rtnetlink_link
(command).

 Similarly the queuing discipline fi lter function pointers for adding fi lter to the
class are initialized in function tc_fi lter_init() (cs 13.14).

 We can see that for adding/deleting/getting the fi lter doit function pointers are
initialized to tc_ctl_tfi lter () function at lines 441 – 443.

 Figure 13.2. rtnetlink_links and rtnetlink_link data structure.

 cs 13.13. pktsched_init () .

NETLINK DATA STRUCTURES 487

488 NETLINK SOCKETS

 In case of the routing, this table is defi ned as inet_rtnetlink_table and it gets ini-
tialized as part of inet_init() . For routing, inet_rtnetlink_table is declared as in net/
ipv4/devinet.c as shown in cs 13.15 .

 13.6 OTHER IMPORTANT DATA STRUTURES

 13.6.1 struct nlmsghdr

 The nlmsghdr is a standard message header for each message sent or received for
the netlink protocol (cs 13.16).

 nlmsg_len is the length of total amount of data in the message including the
header itself.

 cs 13.14. tc_fi lter_init () .

 cs 13.15. inet_rtnetlink_table .

 nlmsg_type defi nes the format of the data which follow the netlink header.
 nlmsg_fl ags defi nes various control fl ags.
 nlmsg_seq is used by a process that creates the netlink request messages to

correlate those requests with their responses.
 nlmsg_pid is the sending process PID.

 13.6.2 struct msghdr

 The msghdr data structure contains the netlink message that will be passed to the
kernel (cs 13.17). msg_iov is a pointer of type iovec, where iovec is as shown in cs
 13.18 .

 cs 13.16. nlmsghdr .

 cs 13.17. msghdr.

 cs 13.18. iovec.

OTHER IMPORTANT DATA STRUTURES 489

490 NETLINK SOCKETS

 The iovec structure consists of two elements: the pointer to data and the length
of the data.

 iov_base points to the netlink packet (netlink message header plus data).
 iov_len contains the length of this packet to be passed to the kernel.

 13.7 NETLINK PACKET FORMAT

 Figure 13.3 shows the format of the netlink socket in the case of queuing disciplines.
The parameters have to be fi lled in the above format before passing the netlink
socket in the kernel. Based on the parameters, the appropriate action is performed
by the spefi c kernel module.

 In the case of the routing table, only the struct tcmsg is replaced by the rtmsg.
So the netlink packet for the queuing discipline consists of

 struct nlmsghdr: netlink message header.
 struct tcmsg: for setting up classes, qdisc type, and fi lters.
 struct rtattr and attributes (parameters to be passed to buffer)

 Figure 13.3. Netlink packet format.

 13.8 NETLINK SOCKET EXAMPLE — tc COMMAND FOR
Adding a qdisc

 In this section we see how the netlink socket is used in ‘ tc ’ command implementa-
tion, e.g., tc qdisc add dev etho root handle 1 : 0 cbq bandwidth 10 mbit.

 13.8.1 tc Command Flow in User Space for Adding a qdisc

 Figure 13.4 shows tc command user space fl ow diagram. Here we are not covering
details about the tc command user space fl ow. From Fig 13.4 , it ’ s clear that how

request and msghdr structures are allocated. After allocating these structures
 sendmsg() sys_call get invoked and enters the kernel mode with request and msghdr
details.

 13.8.2 tc Command in Kernel Space

 In this section the details about TC command implementation in kernel space are
outlined.

 13.8.2.1 sys _ sendmsg () . This function gets invoked in kernel space for a
 sendmsg() systen call. The main parameter to sys_sendmsg() is struct msghdr
msg. The msg struct includes a pointer to the netlink packet (struct req). The

 Figure 13.4. tc command user space fl ow diagram.

NETLINK SOCKET EXAMPLE—tc COMMAND FOR ADDING A qdisc 491

492 NETLINK SOCKETS

 sys_sendmsg () creates a new data structure of the same type as struct msghdr msg
from user space. The new data structure is declared as msg_sys at line 1350.

 Then at line 1354 using copy_from_user , copy each element from the user space
msg struct to the kernel space new data structure msg_sys . The iovec element of
 msg_sys contains a pointer to the netlink packet which will be verifi ed and copied
by calling the verify_iovec () function at line 1376. Finally, the sock_sendmsg is
invoked at line 1403 with argument msg_sys passed to it (cs 13.19).

 13.8.2.2 sock _ sendmsg () . The sock_sendmsg() declares a data structure
 scm_cookie at line 503 (cs 13.20). Its main purpose is to hold information about the
socket control messages (uid, gid, pid, etc., of the process). This scm_cookie data
structure is initialized by calling the function scm_send() at line 505. And fi nally
the function pointer sendmsg at line 507 is invoked; here the operation pointer
points to the netlink_ops data structure, and the sendmsg in netlink_ops points to
 netlink_sendmsg . So netlink_sendmsg is invoked.

 13.8.2.3 netlink _ sendmsg () . In netlink_sendmsg a new sk_buff skb is allo-
cated at line 600 for copying the netlink data. Then at line 618 (cs 13.21) memcpy_
fromiovec () copies the msg → msg_iov (message buffer), which contains the pointer

 cs 13.19. sys_sendmsg () .

 cs 13.20. sock_sendmsg () .

to netlink packet to the sk_buff skb ’ s data area. After copying the netlink packet
to sk_buff , at line 625 or 627 netlink_broadcast() or the netlink_unicast() with skb
as main parameter is called based on the value of dstgroups (which checks for mul-
tiple process broadcast or for the single process).

 13.8.2.4 netlink _ unicast () . The netlink_unicast () gets the socket ’ s protocol
from the sock structure (passed as a parameter ssk → protocol) at line 412 (cs 13.22).
Then it calls the function netlink_lookup() to fi nd the corresponding linked list from
the global netlink table (i.e., nl_table). After getting the corresponding linked list,
it then searches the linked list for the sock struct with the same pid. Then based on
the mode defi ned when the socket was created, it calls the add_wait_queue() to put
the current process into the socket ’ s wait queue and set the process ’ s state to
 TASK_INTERRUPTIBLE . Again, it continuously checks for the state for running

 cs 13.21. netlink_sendmsg () .

 cs 13.22. netlink_unicast () .

NETLINK SOCKET EXAMPLE—tc COMMAND FOR ADDING A qdisc 493

494 NETLINK SOCKETS

the current process; and if there is no overload, it then changes the current process
state to TASK_RUNNING at line 450. Finally, at line 463 enqueues the sk_buff to
the socket ’ s receive queue and calls the function sk → data_ready(sk_len) at line 464.
This function pointer is initialized to netlink_data_ready() function (see Section
 13.3).

 13.8.2.5 netlink _ data _ ready () . The netlink_data_ready() again invokes
the data_ready function pointer of rtnetlink socket, which is rtnetlink_rcv() function
at line 690 (cs 13.23).

 13.8.2.6 rtnetlink _ rcv () . The rtnetlink_rcv () dequeues each skbuff from
the socket ’ s receive in a while loop at line 443 (cs 13.24) and calls the function
 rtnetlink_rcv_skb () at line 444 for each sk_buff for processing the data.

 13.8.2.7 rtnetlink _ rcv _ skb () . The rtnetlink_rcv_skb() typecasts the skb →
 data pointer at line 405 (cs 13.25) to struct nlmsghdr, which is the netlink header
structure. This skb → data is the starting address of the netlink packet (see Section
 13.7 for more information). Then rtnetlink_rcv_skb () calls the function rtnetlink_
rcv_msg() with netlink header struct as one of the parameters at line 411.

 cs 13.23. netlink_data_ready () .

 cs 13.24. rtnetlink_rcv () .

 13.8.2.8 rtnetlink _ rcv _ msg () . The rtnetlink_rcv_msg () fi rst extracts the
type and family of the netlink socket at lines 289 and 299 (cs 13.26) from the netlink
packet(nlh) passed as an input parameter to this function. The doit and dumpit
function pointers are stored in the rtnetlink_link in the rtnetlink_links table. Family
and type were setup in the tc (user space code of tc). Finally, based on the family
row and type column, the doit function is called at line 378. In this case for adding
a qdisc, the tc_modify_qdisc() function is called. Similarly, for adding a fi lter in that
case, doit will point to tc_ctl_fi lter ; and for deleting/or getting the qdisc, doit will
point to the tcl_get_qdisc() function.

 cs 13.25. rtnetlink_rcv_skb () .

 cs 13.26. rtnetlink_rcv_msg () .

NETLINK SOCKET EXAMPLE—tc COMMAND FOR ADDING A qdisc 495

496 NETLINK SOCKETS

 Figure 13.5. TC command fl ow in kernel

space.

 13.9 FLOW DIAGRAM FOR tc COMMAND IN KERNEL SPACE

 Figure 13.5 shows the TC command fl ow in kernel space. For more details refer to
Section 13.8.2.2 .

 13.10 SUMMARY

 What happens in user space?

 1. It creates a netlink socket and binds it to the address structure.
 2. It allocates the request message.
 3. It allocates a message structure msg.
 4. It calls system call sendmsg.

 What happens in kernel space?

 1. The received msg structure and the necessary data structure gets copied to
kernel space by copy_from_user and verify iovec.

 2. It creates sk_buff and uses memcpy_from_iovec to copy the msg ’ s iovec to
the data area of sk_buff .

 3. It searches the nl_table with the sock that has the same pid as the current
process.

 4. It enqueues the sk_buff in the socket ’ s receive queue and then dequeues
each sk_buff in the receive queue.

 5. It extracts the family and type from the sk_buff ; and based on the family and
type values, it checks the rtnetlink_link table for calling the appropriate doit
function, which takes the appropriate actions.

SUMMARY 497

499

14

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 IP ROUTING

 The Internet is designed to communicate between any two networks that don ’ t have
any idea about each other ’ s location. The unit of information carrier in the Internet
is a packet that contains an Internet protocol header that carries enough informa-
tion for the packet to take it to its destination. So far, we learned about the transport
layer protocol that carries information enough to identify the consumer of the
Internet data at the two ends of the connection. But it says nothing about what path
the packet is taking in the Internet to reach the destination or what path should be
taken by the packet to reach the destination.

 The Internet is a huge and complex web of networks interconnected with each
other. There is a basic Internet backbone that connects the networks useful for
providing services at the periphery of the Internet backbone. These periphery net-
works are either Internet consumers or services provided over the Internet. Each
host providing service over the Internet has a unique I(nternet)P(rotocol) address
that should be known to all the consumers of the service to avail it. It is diffi cult to
remember the IP address of each host on the Internet providing service, so these
IP addresses are mapped to the names. These names are called domain names and
are resolved by D(omain)N(ame)S(ervice). So, to cut it short we can say that to
reach a specifi c host on the Internet, we need to know the Fully Qualifi ed Domain
Name of the host. DNS will resolve the domain name and get a corresponding IP
address. This is all about how hosts on the Internet are identifi ed. But the question
still remains as to how these hosts are reached from anywhere in the Internet. We
will not go into the details of DNS functionality but will be focused on understand-
ing the Internet.

500 IP ROUTING

 Figure 14.1 shows how the Internet is designed. It has mainly two components
namely, router and network. Two different networks are connected via a router, and
two or more than two routers are also connected to each other directly. Note that
all the entities in the Internet are public and can be seen by every other entity in
the Internet. The packet that traverses between the two networks may take different
routes at the same time, depending on the intermediate router confi guration. The
packet is routed out of the network through the router, also called gateway. The
gateway will have information about its next hop (router) which is stored in
the database maintained by the routing subsystem also called as routing table. Once
it knows the route for the packet (next hop), it also knows from which interface it
can reach the next hop. The packet is transmitted out of the interface to reach the
next hop. Once the packet reaches the next hop, the routing table is consulted on
that router to fi nd the next hop if that is not the fi nal destination for the packet. So,
this way each router knows the next hop for the packet and if the route to the des-
tination is not found in the routing table, the packet is dropped. Let ’ s consider an
example of a packet starting from network n1 and destined for network n5. The
packet can take two different paths, namely, [r5, r6, r7] and [r1, r2, r3, r4]. The
path taken may depend on different factors router confi guration and link status at
different routers. We will discuss this later.

 The routing table can be built mainly in two different ways. One is statically,
which is done at the system boot - up time and by the administrator by issuing com-
mands such as ifconfi g, route , and so on. Another way to add an entry to the routing
table is dynamically, which is done by routing daemons. Routing daemons are mainly
very much dominant in the Internet backbone, where different routers need to tell
each other ’ s neighboring router about its routing table. Or routers can also demand
a certain part of the routing table from neighboring routers, and all this is done by
routing daemons that understand routing protocols. There are various routing

 Figure 14.1. Internet with complex web of routers and networks.

protocols such as RIP (routing information protocol), OSPF (open shortest path
fi rst), BGP (broader gateway protocol), and so on.

 RIP . With RIP, each router broadcasts information about the neighboring
network to all the other networks linked with the router. Among other information,
the most important is the network ID, netmask, and the distance of the network
from the router (hop count). This way, each neighboring router will have its routing
table updated for all remotely connected networks. RFC 1388 covers the specifi cation
for the protocol.

 OSPF . RIP has some shortcomings as regards to the information it provides
and also the features. This protocol provides information about the link status of
each connected network to every other network it is directly connected to. This way
it is very effective as far as recovery of routes is concerned. For example, if a link
to a specifi c network goes down, there may be some other link which may get us to
that network. Not only this, it also provides information about different routes based
on TOS. Most importantly, OSPF is multicast, as compared to broadcast, which
brings down network load. The specifi cation is covered by RFC 1247 .

 Today ’ s Internet is very different from the Internet at the time it was just intro-
duced. Many more features are added to make on - demand services available on the
Internet. The Internet is fair to each of its users as long as resource allocation is
concerned. But nowadays, Internet service providers are providing on - demand
services. With the introduction of multimedia and application requiring a huge
bandwidth, the Internet resources need to be shared fairly among the consumers of
high and nominal bandwidth based on demand.

 With these features, ISPs can pump out data at a higher rate for the high -
bandwidth consumers based on demand. Among many features, some of them
added to the routing subsystem are

 • Policy routing
 • TOS

 In the current chapter, we will discuss all these features along with the routing
concepts and its implementation in detail.

 14.1 ROUTING

 When a packet is generated locally or is received from any of the interfaces, it has
to consult a routing subsystem for the routing decisions based on the destination IP
address. The route basically decides on the outgoing interface to which the packet
should be transmitted so that the packet is closer to its destination. This is the very
basic functionality of the routing subsystem. If the route is defi ned for the packet,
it is routed via a defi ned interface for the route; otherwise the packet is dropped
and an ICMP message is sent to the originator of the packet.

 Routing works on very simple rules, which are defi ned as follows:

 1. First try to fi nd out matching entry for complete destination IP address of
the packet.

ROUTING 501

502 IP ROUTING

 2. If there is no match found, then all the network entries are matched against
the destination IP address.

 3. If there is no matching network found for the destination, we take the default
route in case any exist.

 The above is a very basic type of routing. An example of a routing table is
covered in Section 14.2 , which explains how to interpret netstat output. ‘ netstat - nr ’
reads kernel routing table entries and displays them. ifocnfi g output shows confi gu-
ration of the network interface. It shows all the physical and virtual interfaces con-
fi gured for the interface. The physical interface is confi gured with the netmask and
IP address. There can be multiple IP addresses assigned to the physical interface. In
doing so, we are creating virtual interfaces associated with each IP address. The
virtual interfaces can be confi gured for eth0 as eth0:1, eth0:2, and so on. The purpose
of having multiple IP address confi gured for the same NIC is that we can remain
connected to different subnets on the same physical network.

 Routing entries have following basic entities:

 Network Gateway Interface
 192.168.1.0/24 0.0.0.0 eth0
 192.168.1.1 0.0.0.0/0 eth0

 Network means the network we are trying to match, gateway is the next hop
gateway to reach the network, and interface is the network interface through which
we can reach the network. There are fl ags and metrics associated with each entriy,
and they are used to identify the route. These are discussed in Section 2.13 . In the
above example, 192.168.1.0/24 means network 192.168.1 with netmask of 24 bits
(255.255.255.0). This network is directly reachable via interface eth0 because gateway
entry for this is 0.0.0.0. So, all the packets destined for the 192.168.1 network will
be routed via eth0. How do we know that a packet is destined for a specifi c network?
We use the network fi eld of the entry (i.e., 192.168.1.0/24) to fi nd this out. If the 24
most signifi cant bits of a packet ’ s destination IP match the network ID for the route
(i.e., 192.168.1), the packet is destined for network 192.168.1.

 Another entry is 0.0.0.0/0, which means that this is a default route. If none of
the entries in the table match against the destination IP address for the packet, this
entry will be used to route the packet. For this entry, the destination network is
0.0.0.0 and the netmask is 0 bit (0.0.0.0), which means that the destination is not at
all matched for the packets using this route. But there is a gateway fi eld set for the
default entry which is reachable through interface eth0. This essentially means that
destination is not reachable directly and will use default gateway 192.168.1.1 to
further route the packet. In other words, gateway for the default entry is also called
next hop for the route. So, the packets using this route will have destination IP
address as it is, but the destination link layer address will be that of the default
gateway (192.168.1.1).

 As shown in Fig. 14.2 , there are hosts H1, H2, H3, H4, and so on, on the network
192.168.1.0/24, and each one of them will have the two routing entries: one for the
local network and the other one for default gateway. The GW is the default gateway
with IP 192.168.1.1. The default gateway will have minimum of two interfaces: one
connected to the network 192.168.1.0/24 and the other one connected to the Internet
(via ISP). GW will route all the packets destined for the Internet through the second
interface PPP0 (dial out connection to the ISP).

 To further explain routing decisions, let ’ s take a simple example where a packet
is generated for host 192.168.1.3 from host 192.168.1.2. The routing table at
192.168.1.2 is consulted, which fi rst looks if there is any entry for destination host.
This means that it checks if any entry exists with matching host 192.168.1.3. Since
no such entry exists, it will check if there is any entry with matching network ID.
An entry for network 192.168.1.0/24 matches network ID for the destination
192.168.1.3. So, this route is picked up and the packet is transmitted out through
interface eth0.

 In another example, there is a packet that is destined for 192.168.2.3 and is
generated from 192.168.1.2. First the matching entry for destination IP 192.168.2.3
is searched in the routing table. Since it does not exist, we check if there is any
matching entry for the destination network ID. There is only one entry for the
network in the routing table, that is, 192.168.1.0/24. The destination network for the
packet does not match this entry. So, fi nally the default route is selected to route
this packet through interface eth0. In this case, the packet is sent to the default
gateway 192.168.1.1 to fi nally route the packet in its fi nal destination. In this case,
the destination link layer address in the Ethernet frame is that of the default
gateway (192.168.1.1) rather than the destination IP (192.168.1.2).

 The above example explains very simple confi gurations. There may be complex
scenario where we may end up having thousands of entries in the routing table. The
routing table may not be statically confi gured but may be updated dynamically by
the routing daemons. But whatever be the case, the routing decisions are based on
the very simple three rules as stated above. There are many features added to the
routing subsystem some for enhancing performance and others for on - demand
services.

 14.2 POLICY - BASED ROUTING

 As discussed until now, the packets reach their destination in the Internet based on
the routing information (next hop) at each router. This is the simplest way to see
the packet traversing through the Internet. With the advancement and on - demand
usage of the Internet services, there is something more required other than just
routing the packet correctly to its fi nal destination. For example, in demand - based
Internet services, one user may require a high bandwidth for streaming multimedia
whereas another user just needs enough bandwidth to browse through the Internet.
If we take another example, it may be for security reasons that we would like to
separate out routes for a different cadre of employee for the same/different services.

 Figure 14.2. Network segment pointing to default gateway to access internet.

POLICY-BASED ROUTING 503

504 IP ROUTING

All these requirements need adding a new feature to the routing subsystem which
will route packets based on certain policies.

 Current implementation on Linux takes into account the following criteria to
build a policy to route a packet that has originated from the system locally or that
has originated elsewhere (forwarding). List the entities used to build policy to route
a packet:

 Destination Net ID . This is derived from the source IP and by applying an
appropriate netmask to it.

 Source net ID . This is derived from the destination IP and by applying an
appropriate netmask to it.

 TOS . The IP header has a type - of - service fi eld that is used by the routers to
queue the packet in different queues to achieve differential services.

 Forward Mark. In the case where multiple routing tables are confi gured on the
system, the packets are marked by the routing subsystem to use a specifi c
route. We take this also into consideration while setting policy for the route
(CONFIG_IP_ROUTE_FWMARK).

 Incoming Interface. This is the interface from which the packet is arrived (in
case of packets to be forwarded). This allows us to provide differential
services for packets arriving from different networks.

 Class ID . CONFIG_NET_CLS_ROUTE.

 Figure 14.3 illustrates a typical example of routing policy confi gured on router
R1 to divert intranet traffi c through different routers R2 & R3. It may be confi gured
because of resource utilization or security reasons.

 For confi guring policy - based routing we use the “ ip rule ” command. The rule
option consists of a selection criteria based on which we use the routing table from
the multiple routing tables.

 Here we are adding the ip rule for the following:

 1. The packets with source address ‘ ipaddr1 ’ should use the routing table 1 (dev
is eth0).

 2. The packets with source address ‘ ipaddr2 ’ should use the routing table 2 (dev
is eth1).

 Figure 14.3. Traffi c an R1 is routed through routers R2 and R3 based on policy.

 Policy routing acts as a load balancing for the outgoing packets.
 First we start with adding the default route to the routing tables 1 and 2:

 1. # ip route add default via ‘ ipaddr1 ’ dev eth0 tab 1.
 2. # ip route add default via ‘ ipaddr2 ’ dev eth1 tab 2.

 Then add the policy rule to the routing table based on the source address:

 1. # ip rule add from ‘ ipaddr1 ’ tab 1 priority 500.
 2. # ip rule add from ‘ ipaddr2 ’ tab 2 priority 600.

 Here the ip rule command confi gures the routing table selection based on the source
ipaddress. Check Sections 14.11 and 14.12.8 for more details.

 14.3 MULTIPATHING

 There may be situations where we can have multiple gateways to the public network
from the local network. For example, we can have multiple connections to the ISP
from a single host that is acting as a gateway for the private network, which means
that we have many alternatives to reach the public network. One of the reasons for
having this kind of setup is to make arrangements for higher availability of the
Internet for the private network. If one of the ISPs goes down, the public network
may still be available via another ISP. When all the ISPs are up, we need to make
arrangements to distribute the load fairly across different ISP connections. It is up
to the administrator to setup distribution of load across all the connected ISPs. The
algorithm to distribute load across multiple gateways is implemented as part of
multipathing in a routing subsystem.

 We have discussed a simple example where we have multiple connections to
ISP for the outgoing Internet traffi c where we can use multipathing to our advan-
tage. There may be other examples where we can use the same concept to balance
load. One example is if we have certain service running on different hosts connected
to a single host acting as load balancer. Any traffi c bound to this service will go
through the load balancer, which in turn will have multipathing confi gured to
distribute incoming traffi c to different servers, hence balancing loads (Fig. 14.5).
Similarly, we can have multipathing confi gured on the router to better distribute
traffi c across different links for the same route (Fig. 14.4).

 CONFIG_IP_ROUTE_MULTIPATH is a kernel option to confi gure
multipathing.

 fi b_select_multipath() (See cs 14.2 unless mentioned) is called from ip_route_
output_slow()/ip_route_input_slow() to select a default gateway from multi-
ple gateways when the kernel is compiled with the CONFIG_IP_ROUTE_
MULTIPATH option. As shown in Figure 14.6 multipathing parameters are
embedded in fi b_nh (nexthop) object entries for each gateway.

 fi → fi b_power → cumulative power allocated to all the nexthop entries.
 nh → nh_power → individual power allocated to each next hop entry

(consumable).

MULTIPATHING 505

506 IP ROUTING

 Figure 14.4. GW does multipathing.

 Figure 14.5. Multipathing and policy - based routing.

 nh → nh_weight → static weight assigned to each hop entry. Power to each entry
is assigned this value when they are exhausted.

 The algorithm works like this: If the complete power of the route is not exhausted
(fi → fi b_power > 0), we need to select one of the gateways from the list of entries
for the route. Here we are not very sure which gateway entry we are going to select
because it will not depend on the power left with the entry. Selection of entry is
based on the initial power calculated, which is given as (line 980)

 jiffi es % fi → fi b_power

 jiffi es is a system variable that is incremented on each clock tick and rolls over
when it attains 2 32 on a 32 - bit machine. So, the value of the calculated weight is
always between 0 − fi → fi b_power . So, we never know what value the weight will
have.

 We try to match the entry with weight, more than or the same as the weight
calculated (loop 982 – 992). If we received the match, we use the gateway associated
with the entry to route packets for the requested route. If the power of this entry
is not exhausted and the route is alive, we have selected this entry (line 983). In this
case, we decrement the power for the entry (line 985), decrement the cumulative
power for the route (line 986), and assign the index corresponding to the selected
next hop entry to the result (line 987) and return.

 In case, the weight calculated is more than the weight of the entry, the weight
is subtracted from the current entries ’ weight, and the next entry is checked against
the new reduced weight. Like this the search goes on until we fi nd the suitable entry
with weight more than (or equal to) the calculated weight. With this algorithm, we
get either fair selection or in worst cases the reverse case also. In the worst case, the
entry with the lowest weight may fi rst get exhausted and then the entries with higher
values may get selected. The other extreme would be that higher weights may get
exhausted before the lower - powered entries because we are calculating weight
randomly (see Fig. 14.7). We manipulate the next hop entries with fi b_multipath_
lock lock held.

 We need to check how the entries are arranged in the list (are they according
to the weights?).

 Once the entire power for the route gets exhausted (fi → fi b_power == 0), the
fresh allocation takes place (lines 960 – 973). Here we go through the list of entries
and add the individual power of each entry (nh → nh_power) in case the entry is not
dead (line 962). We also replenish the power of each entry at line 963. Once we have
come out of the loop, the cumulative power calculated is assigned to the route ’ s
power (line 966).

 change _ nexthops (). This macro traverses through the nexthop entries for the
route. The fi b_nh fi eld of the fi b_info object points to the list of nexthop entries of

 Figure 14.6. fi b_info and fi b_nh objects

designed for multipathing.

MULTIPATHING 507

508 IP ROUTING

type fi b_nh . The fi b_nhs fi eld of the object fi b_info indicates the maximum number
of nexthop entries (cs 14.1).

 endfor _ nexthops (). This macro just ends the loop by closing braces.

 FIB _ RES _ NH . Once nexthop is selected for the route, it is accessed using macro
 FIB_RES_NH later to build the routing cache entry (cs 14.3 , Fig. 14.7).

 cs 14.1. Declaration of nexthops.

 Figure 14.7. Selection of nexthops with multipathing enabled.

 cs 14.2. fi b_select_multipath ().

 cs 14.3. FIB_RES_NH.

 14.4 RECORD ROUTE OPTIONS (RFC 791) AND
PROCESSING BY LINUX STACK

 As discussed in Section 14.1 , the routing subsystem bothers only about the next hop
for the given destination. It selects the best possible route for the given destination,
in case there are many choices. So, it is always left to the routing subsystem to decide

RECORD ROUTE OPTIONS (RFC 791) AND PROCESSING BY LINUX STACK 509

510 IP ROUTING

on the next hop router for the given destination. But, there is a feature extended to
the IP wherein the user can supply its own build chain of next hops to reach a speci-
fi ed destination. On the other hand, the IP option is provided which can record the
next hop value at each router that a packet reaches. The usage of these options is
not well - defi ned, but to me it looks like these options are mainly used for network
diagnostics purposes. For example, traceroute uses a strict - route - record option to
determine routes taken by a packet to reach a specifi c destination. The proper ICMP
error code is returned in case the strict - record - route option is set and the next hop
is unknown at any point of time.

 14.4.1 Record Routing

 The IP option requires that each router should record its address when reached by
the packet. This way we get a complete list of routers when the packet reaches its
fi nal destination. This list of routers is copied back to the IP datagram in reply to
the IP datagram that has recorded the route so that the originator of the packets
gets the route to the destination.

 The format for the record - route option is shown in Fig. 14.8 .

 Zeroth byte contains opcode for record route, that is, 0 x 7.
 First byte is the total length of the record - route option data.
 Second byte contains the offset from the start of the record - route option where

the next entry should be copied. The router will need this fi eld to copy the
IP address when the option is set.

 There can be a maximum of nine entries that can be recorded using this
option.

 14.5 SOURCE ROUTING

 This option entitles the originator of the IP datagram to specify its own route for a
given destination, which essentially means that the user will provide an IP layer with
complete set of next hops (in the correct sequence) which the IP datagram should
follow to reach the destination. It is similar to the record - route option except that
the list of next hops is specifi ed by the originator of the datagram and is not recorded
by the intermediate routers. If it is found that any of the routes as mentioned in the
list of next hops is not reachable at any point of time, an ICMP error message is
returned to the originator of the IP datagram. There are two options here.

 14.5.1 Strict Record Routing

 When this option is set in the IP datagram, the router has to strictly follow the same
path as specifi ed by the list of next hops. This means that if the next hop router is

 Figure 14.8. Format for record - route option.

not found at any intermediate router, the datagram will be dropped and the ICMP
error message will be returned to the originator. The message format is the same
for the option as described in Fig. 14.8 . The opcode for the option is 0x89 and it can
have maximum of nine next hop values. The ptr fi eld is modifi ed by each router to
point to the next value in the list so that the next router uses this fi eld to identify
the next hop for the packet.

 14.5.2 Loose Record Routing

 The option is similar to a strict - route option except that the IP datagram is allowed
to take different paths while traversing between the two consecutive next hops as
mentioned in the option list. This essentially means that any of the next hops speci-
fi ed in the list may not be directly reachable but is surely reachable. The opcode for
the option is 0x83 and can have a maximum of eight entries. Ptr is used in the same
way as it is done for strict - route option.

 14.5.3 SRR Processing Implementation

 In ip_rcv_fi nish() , we fi rst process IP options from the IP header ip_options_
compile() . If SRR/LSRR is set in the IP header, opt → srr will be set to point to the
start of the SRR option in the IP header. We fi rst check if the SRR option is sup-
ported by the interface on which the packet is received by using macro IN_DEV_
SOURCE_ROUTE at line 353 (cs 14.4 , cs 14.5). If the option is not supported for
either IP or the incoming interface, we drop the packet; otherwise we call ip_
options_rcv_srr() to further process the SRR option.

 cs 14.4. ip_rcv_fi nish ().

SOURCE ROUTING 511

512 IP ROUTING

 14.5.3.1 ip _ options _ compile (). This is a routine that is called from ip_rcv_
fi nish() , where IP options are processed from the received packet. The IPOPT_
SSRR, IPOPT_LSRR and IPOPT_RR record - route options are identifi ed from the
IP header here, and a sanity check is made against the format for these options.

 If the record - route options are identifi ed, the rr fi eld of the ip_options object is
made to point to the start of the option string in the IP header. If we have not
reached the end of the list or the packet has not reached the fi nal destination, the
 is_changed and rr_needaddr fi elds of the ip_options object are set. These fi elds will
be used later by the forwarding subsystem will see later. We will copy the IP address
of the next hop in the IP header location as specifi ed by the ptr fi eld of the option
and increment the ptr fi eld to point to the next copy location.

 If any of the source - route option is identifi ed, srr fi eld of the ip_options object
is made to point to the start of the option string in the IP header. If the strict - route
option is set, the is_strictroute fi eld of the ip_options object is also set here which
will be used later by the forwarding subsystem.

 Note: PACKET_HOST means that the packet belongs to the host (i.e., US) and it is a
unicast packet. In a promiscuous mode, the Ethernet driver collects all the packets which
don ’ t even belong to us and sends it to the IP layer for further processing. In the case where
the packets don ’ t belong to us, those are marked by the Ethernet driver as PACKET_
OTHERHOST in eth_type_trans() . These packets are dropped by the IP layer in ip_rcv() . All
those packets which belong to us are not marked as PACKET_HOST and skb → pkt_type
remains zero, which means that any packet for which pkt_type is zero belongs to us
(PACKET_HOST).

 [IPCB macro provides a pointer to IP control block pointed to by cb fi eld of skb. This
fi eld can be used by any protocol layer for option processing. In the case of IP, this control
block is mapped to struct inet_skb_parm . To access IP options from IPCB, we need to access
 opt fi eld of struct inet_skb_parm . The Opt fi eld is embedded type ip_options in struct
inet_skb_parm .]

 14.5.3.2 ip _ options _ rcv _ srr (). In lines 582 – 587 the route is calculated for the
source and destination IP addresses for the packet before the routine is called (cs
 14.6). So, the route checked here is for the packet destination. If the route type is
 RTN_UNICAST , it means that the destination IP does not belong to any of the IP
confi gured for the host. In the case of the strict route, this is not acceptable. The
packet at each step should reach the exact destination as specifi ed by the destination
IP in the packet. In the case of the loose record route option, we may reach the
destination (specifi ed by destination IP in the IP header) through one or more hops.
That is the reason why even if the route for the destination is not the local host (line
582), we consider this packet if the packet has a loose record route option set (line
583); otherwise we discard the packet sending an ICMP message to the originator
of the packet.

 cs 14.5. IN_DEV_SOURCE_ROUTE.

 cs 14.6. ip_options_rcv_srr ().

SOURCE ROUTING 513

514 IP ROUTING

 In loop 591 – 613, we are traversing through list of next hops listed in the strict
route IP options pointed to by skb → nh.raw + opt → srr . We do some sanity checking
on the srr string, if the format is not proper, the ICMP message is generated for an
improper parameter (line 593). nexthop is copied from srrptr, which is offset into
the srr option string pointing to the nexthop router (line 596). We check routing
entry for the next hop by calling ip_route_input() at line 600. On return, route is
either defi ned or not. If not, an error is returned; otherwise we get a valid entry that
is updated in the dst fi eld of skb. We need to make checks here on the type of route
that is associated with the nexthop selected at line 602. If the route is not unicast
(directly connected or gateway) and at the same time is also not a route for the
local machine (RTN_LOCAL), it means that the route is invalid. It means that the
we have not reached the destination, nor can we reach the next hop router directly
from any of the interfaces confi gured on the host. We return with an error here. In
the case where one of the conditions is false — that is, either the route is a directly
connected one or we are the ones that the next hop points to — we will proceed
further. Further, we make a check if the route for the next hop selected points to
us at line 608. If so, we continue with the nexthop search jumping to the next entry
in the srr option string and copy the current next hop as pointed to by SRR pointer
to the destination address in the IP header. If not, we got the nexthop to route the
packet to its next destination. We return with srr_is_hit and srr_is_changed set if we
have not reached past the end of the list (line 617). If one of the nexthop from the
SRR list is successfully found, the dst fi eld of skb will be pointing to the route that
will be used later to route the packet by the forwarding module.

 14.5.3.3 ip _ forward _ options (). This routine is called from ip_forward_
fi nish() , which is the fi nal call by a forwarding subsystem while forwarding a packet.
 ip_forward_options() needs to update some of the fi elds in the IP header options
based on the IP options processed in ip_options_compile() when the datagram is
received. We will check how SRR and RR - related options are processed here. In
 ip_options_rcv_srr() we found out the route for the packet in case the SRR option
is set. Also for the RR option, we did most of the processing in tcp_options_compile() .
For the RR I option, we try to modify the IP address recorded so far for the current
hop (in ip_options_compile()) depending on the IP addresses of the forwarding
interface as permitted by scope of the IPs confi gured on the interface. We do this
to take care of the administrative scopes of the IP address as set for the interface
and also to record actual nodes from where the packet is forwarded with an SRR/
RR option for the IP set. Similarly, for the SRR IP option, we do the same and also
modify the pointer to the next hop as to be seen by the next hop router.

 At line 523, we access IP options then we access routing table information at
line 525 and fi nally we access the IP header for the packet at line 526 (cs 14.7). The
 rr_needaddr fi eld of the ip_options object is set only if RR option is set in ip_
options_compile() . We call ip_rt_get_source() at line 530 to copy the appropriate
source address in the location specifi ed by the pointer for RR option. The pointer
for the RR option is already modifi ed to point to the new location to copy the next
hop router in ip_options_compile() . At line 533 we check if srr_is_hit fi eld of ip_
options object is set. This is set in ip_options_compile in the case where SRR option
in the IP header is set. If this fi eld is set, we try to loop through the next hop list
starting from the location as specifi ed by the pointer to SRR option (lines 538 – 546).
In each iteration we try to match the next hop route entry in the SRR list with the

destination IP address for the route set for the packet in ip_options_rcv_srr() . If a
match is found and is not the last entry (line 547), we try to replace the entry in the
SRR list for the current router with the IP address of the forwarding interface as
permitted by the scope value by calling ip_rt_get_source() at line 549. At line 550,
we modify the destination fi eld of the IP header from the destination IP address in
the routing entry. At line 551, the SRR pointer is modifi ed to point to the next loca-
tion as seen by the net hop router where the packet is being forwarded.

 The processing of the SRR option is shown in Fig. 14.9 . The packet originating
from host H1 has an SR set with a list of next hops R1, R2, R3, … , Rn and a pointer
set to 3 (fi rst next hop in the list). When the packet emerges from the fi rst router
R1 from the interface with IP IP1, this IP is recorded, replacing R1 in SRR option
fi eld. The pointer is incremented to point to the next hop, that is, R2. This repeats
as the packet emerges from each router, and fi nally we have a list of IP addresses
of the forwarding router interfaces replacing the IP addresses of the routers speci-
fi ed by the end user. This list is copied in the reply so that the originator of the
packet knows exactly how the packet has traversed.

 cs 14.7. ip_forward_options.

SOURCE ROUTING 515

516 IP ROUTING

 14.5.3.4 ip _ rt _ get _ source (). In this routine we try to get the source IP
address for the interface used by the selected route and return it to the caller. If an
incoming interface is not provided (line 1168), the source IP for the interface is just
the source IP as specifi ed by the route itself. Otherwise we try to look up the routing
table using a key for the route to fi nd out the preferable source IP address for the
route, and we call fi b_lookup() at line 1170. In case the result indicates that the route
is of type NAT, we need to fi nd the NATed source address for the packet by calling
 inet_select_addr() for a given gateway with universal scope at line 1173. Otherwise,
we try to get the most preferable source IP address for the interface used by the
route using macro FIB_RES_PERFSRC (cs 14.8 , cs 14.9). If the preferred source is
set for the route (fi b_prefsrc), else __fi b_res_prefsrc() is called to the return source
with universal scope (using outgoing interface and the gateway information).

 Figure 14.9. Packet with SRR IP option being modifi ed as it emerges from each router

interface.

 cs 14.8. FIB_RES_PREFSRC.

 If no results are returned by the route lookup, inet_select_addr() is directly
called at line 1180 to fi nd the source IP with universal scope (also using gateway
information for the route) for the route. We do this because there may be a different
source IP confi gured for the interface for administrative reasons. Finally we copy
the identifi ed source address to return to the caller at line 1182.

 14.6 LINUX KERNEL IMPLEMENTATION OF ROUTING TABLE
AND CACHES

 Let ’ s start with the fl ow of how the routing table and routing caches are maintained
by the kernel.

 We will draw a diagram of how routing tables are updated, how they are
accessed, and different paths in the linux kernel. Also, we will explain the relation
between routing table and the routing cache (Fig. 14.10).

 14.7 ROUTING CACHE IMPLEMENTATION OVERVIEW

 The routing cache is the fastest caching method for fi nding the route (Fig. 14.11).
The FIB also offers a method to fi nd the route, but the lookup time is greater and
for each single packet to run a FIB query impacts the performance, whereas the
routing cache reduces the lookup time for fi nding the route information.

 A single routing cache is shared in the case where multiple routing tables are
confi gured for policy routing. The routing cache keeps every route that is in use or
used recently in a hash table. It also maintains timers and counters to remove the
route that is no longer in use.

 cs 14.9. tp_rt_get_source.

ROUTING CACHE IMPLEMENTATION OVERVIEW 517

518 IP ROUTING

 Figure 14.10. Route cache and FIB.

 Figure 14.11. Routing cache implementation overview.

 The routing cache is a single hash table which includes the cache entries. cs 14.10
shows that the routing cache hash table is an array of rt_hash_bucket structures.

 Each rt_hash_bucket structure contains the chain element and the read/write
spin lock. The chain element includes the list of ratable structures that represent the
cache entries.

 When an IP layer wants to fi nd a route, based on the hash value it goes to the
proper hash_bucket and searches the chain of cached routes for the match. If a
match is not found, then the FIB is accessed to fi nd the match.

 The routing cache is initialized in ip_rt_init() function called by ip_init ()
fucntion. The size of the routing cache hash table depends upon the physical memory
in the system. At boot time a message is displayed which displays the size of the
hash table.

 The rt_hash_bucket is selected based on the hash value, which is a combination
of source, destination, and TOS values.

 The routing cache in IP is defi ned in kernel as a pointer called rt_hash_table ,
which points to a single array of rt_hash_bucket structures.

 14.7.1 Routing Cache Data Structures

 struct rt _ hash _ bucket . This structure contains a list of rtable and a read – write
lock for accessing the rtable from the list (cs 14.11).

 Chain: This includes the list of rtable structures that represent the routing table
entries.

 Lock: Read/write spin lock for accessing the routing cache entries.

 struct rtable . An rtable data structure is used to store a routing table entrry
in the routing cache. It represents each destination route entry in the routing cache
(cs 14.12).

 union { dst _ entry dst ; rtable * rt _ next ;} u . Both dst and * rt_next are used concur-
rently. The dst next pointer and * rt_next points to the same memory location. Here

 cs 14.10. rt_hash_bucket declaration.

 cs 14.11. rt_hash_bucket.

ROUTING CACHE IMPLEMENTATION OVERVIEW 519

520 IP ROUTING

the pointer to the next rtable can be accessed as either a pointer to a destination
cache entry through dst or a routing table entry pointer through rt_next . The union
is used to embed the dst_entry structure into the rtable structure.The socket buffer
 sk_buff for an outgoing packet contains a pointer to the destination cache entry;
this dst would also be used as a pointer to the routing cache entry for the packet.
This cache entry is sometimes used to decide to send the packet to the destination
by avoiding lookup into global routing tables.

 rt _ fl ags . This contains routing cache fl ags (can also be used in a routing table).
This fl ag value is used to determine the accessibility or reachability of the destina-
tion route. It can be any of these fl ags shown in cs 14.13 . Important fl ags from above
list are:

 RTCF _ DEAD : Indicates that the route is dead.
 RTCF _ ONLINK : Indicates that the destination route is locally reachable

network.
 RTCF _ BROADCAST : Indicates that the destination route is a broadcast

route.
 RTCF _ MULTICAST : Indicates that the destination route is a multicast route.
 RTCF _ LOCAL : Indicates that the destination is a local route.

 cs 14.12. rtable.

 rt _ type . This is a type of route that indicates whether the route is UNICAST,
MULTICAST, and so on, and specifi es whether the route is for a single destination
or for all destinations or to a group of machines in a network. It can be any of the
routes listed in cs 14.14 .

 rt _ src and rt _ dst . The source and the destination address.

 rt _ gateway . Address of next hop gateway.

 rt _ key . Key used for searching the cache entry for destination route.

 _ u 32 rt _ spec _ dst . Specifi c destination for the use of UDP socket users to set
the source address.

 cs 14.13. IPV4 routing cache fl ags.

 cs 14.14. Route types.

ROUTING CACHE IMPLEMENTATION OVERVIEW 521

522 IP ROUTING

 _ u 32 rt _ src _ map and _ u 32 rt _ dst _ map . Used for the NAT if confi gured in
kernel.

 peer . This is a pointer to inet_peer structure, which is used to store the informa-
tion related to the recent communication to the remote host. This is ‘ Long - Living
IP Peer Information. ’

 struct dst _ entry . This structure contains protocol - independent destination
cache defi nitions and pointers to the destination - specifi c input and output functions
and data.

 next . Pointer to the next dst_entry instance from the list for same route cache
hash table ’ s bucket.

 cs 14.15. dst_entry.

 refcnt . Reference count to keep track for entries in use or deleted.

 use . Number of times this entry has been used.

 dev . Pointer to the egress device to be used for packet transmission to reach
the next destination.

 lastuse . Timestamp to indicate when this entry was used last time. This fi eld is
useful for the garbage collector ro clear the dst structs that are not in use.

 expires . Timestamp to indicate when this entry would expire.

 pmtu . Max packet size for this route.

 neighbor . Pointer to the ARP cache neighbor structure for this route.

 hh . Pointer to a hardware header cache.

 (* input). Pointer to the post routing input function for this route.

 (* output). Pointer to the output function for this route (dev_queue_xmit()).

 ops . Pointer to an operational structure of dst that is dst_ops struct that contains
family, protocol, and operational functions for the route cache.

 tclassid . Used in class - based queueing discipline for queueing of the packets;
represents a classid.

 14.8 MANAGING ROUTING CACHE

 As discussed in Section 14.6 , whenever a new route is created, there is a route cache
miss. When a Linux machine is acting as a router, it gets a huge number of packets
with different origins and destinations. This may cause a huge number of entries in
the routing table. These entries take up a huge amount of system memory. This
requirement raises the need to clean up the kernel routing cache on a regular basis.
The entries in the routing cache are added for each new route but are not destroyed
as soon as the connection associated with the packet is closed or the incoming
packet for which an entry is made is already processed. We need to cache entries
in the kernel routing cache for some time so that we can reuse it for connections/
packets using the same route. The sole aim of having a routing cache table is to save
a huge amount of time creating routing entry by re - using entries already created
for the route. But what about stale entries in the cache or entries that are no longer
in use? To manage such unused entries, a routing subsystem introduces timers that
will be fi red periodically to check if there are any entries that are no longer in use
or have become stale and will remove those entries from the routing cache.

 For every packet that enters the system whether originated locally or from a
different host, the route needs to be defi ned. The route is created based on various
criteria from the information available in the kernel FIB (see Section 14.12.3). This

MANAGING ROUTING CACHE 523

524 IP ROUTING

routing entry is cached for all the packets/connections that need to be routed using
the same route. When a connection is established for the fi rst time, the route cache
is consulted fi rst to check if the entry is cached in for the route by calling ip_route_
output_key() (cs 14.16). This routine traverses the chain of routing entries to fi nd
out if they have hit the cache (loop 2007 – 2025). In each iteration we check the entry
for matching route key (lines 2008 – 2016). If we miss the cache, FIB is consulted to
build a routing entry for the requested route by calling ip_route_output_slow () (line
2028) which will fi nally add an entry to the cache. If we hit the cache, the following
action is taken:

 1. lastuse fi eld of the routing entry (object dst_entry) is updated with current
value of jiffi es (line 2017). lastuse fi eld of the route indicates when was the
routing cache entry last hit. This value indicates how old the entry is as in
when it was last used.

 2. dst_hold() is called for the route at line 2018 to increment reference count
for the routing cache entry. This value indicates the number of references to
the cached routing entry. The cached entry can be destroyed only if the there
is no one referencing the cached entry; that is, nobody is using the cached
entry.

 cs 14.16. ip_route_output_key ().

 3. __use fi eld of the object dst_entry is incremented by one. This fi eld is not used
while destroying the cached routing entry and should not be confused with
reference count(__refcnt). This is incremented whenever there is a cache hit
for the entry and is used for statistical purpose. Similarly, on line 2020 we
update statistical data for the cache hit on the CPU.

 14.8.1 Routing Cache for Local Connections

 Let ’ s have a look at how the routing cache is consulted when a TCP connection is
initiated. The tcp_v4_connect () routine is called within the kernel when a new TCP
connection request is made from the user application (cs 14.17). It calls ip_route_
connect() at line 773 to get route for the destination. If route for the destination is
found, it is returned as fi rst argument to the routine; otherwise error is returned.
The simple step to get routing information is to fi rst check the kernel routing cache
and if an entry does not exist, build new routing entry from the information pro-
vided in FIB and cache it in kernel routing cache. ip_route_connect() does some
sanity checks and calls ip_route_output_key() to search kernel routing cache for the
routing entry requested for the connection. If the routing entry is found in the cache,
we hold reference for the routing entry as explained in Section 14.12.2 . We cache
the routing information for the socket by calling __sk_dst_set() at line 783. This
routine makes a dst_cache fi eld for the socket (sock object), to point to the new
route (dst_entry object). The route information will be used for all the packets sent
out on this socket connection.

 Whenever a packet is sent out over the socket connection, cached in route
information is checked for its validity in ip_queue_xmit() (cs 14.18). Before the
packet is processed by the IP layer, __sk_dst_check() is called at line 354. This
routine returns NULL in the case where the cached routing entry is marked obso-
lete; otherwise it returns a value cached in by the socket (pointed to by sk → dst_
cache) at the time of connection setup in tcp_v4_connect() . In case the route is
obsoleted, we call ip_route_output() to build routing entry for the destination at line
367. We cache in the new routing entry with the socket by calling __sk_dst_set() at
line 371. The routing entry is also pointed to by each outgoing packet, and this is
done by calling dst_clone() at line 374. dst_clone() increments the reference count
of the routing entry (dst_entry object) so that it should not be destroyed before the
packet is fi nally sent out.

 cs 14.17. tcp_v4_connect ().

MANAGING ROUTING CACHE 525

526 IP ROUTING

 14.8.2 __ sk _ dst _ check ()

 __sk_dst_check() checks if the route exists (dst != NULL) and is obsolete (dst →
 obsolete > 0) at line 1100 (cs 14.19). If both are TRUE, it calls a check routine specifi c
to IP version. In case of Ipv4, this routine points to ipv4_dst_check() . This routine
just calls dst_release() to decrement the reference count of the dst_enrty object and
returns NULL. Essentially we call ipv4_dst_check() only if the route has become
obsolete, and in that case the reference count for the route is decremented by 1
because we are not referring to this routing entry anymore (sk → dst_cache is set to
NULL at line 1101. In Section 14.8.3 , we will see under what conditions the routing
entry is marked obsolete.

 cs 14.18. ip_queue_xmit ().

 cs 14.19. __sk_dst_check ().

 14.8.3 Link Failure and Reporting to Routing Subsystem

 In this section we will see how the routing cache entry is invalidated when link
failure associated with the route is indicated. The fi nal step in packet transmission
is to build a link layer header. For this, the hardware address corresponding to the
destination IP should be made available. The neighboring subsystem is consulted to
resolve the hardware address. It sends out an ARP request and queues the packet
in its queue. A timer is installed for this ARP request so that we can check the ARP
results asynchronously. neigh_timer_handler() is the routine that is run when the
neighbor timer expires (cs 14.20). In this routine we check if we have exhausted the
maximum number of retries to send out ARP requests without getting ARP reply
at line 650. If so, we will do error handling for each queued packet on the neighbor
queue waiting for ARP resolution in a loop 663 – 667. We call neighbor - specifi c
error handling routine, neigh → ops → error_report , at line 665. This points to
 arp_error_report() .

 arp_error_report() calls a routine to free sk_buff and also makes sure that the
routing entry associated with the packet is removed from the system at the earliest
by calling dst_link_failure() .

 cs 14.20. neigh_timer_handler ().

MANAGING ROUTING CACHE 527

 14.8.4 dst _ link _ failure ()

 This gets reference to the dst_entry object from the dst fi eld of the packet (line 142)
(cs 14.21). Next we check if this fi eld is not NULL and link failure operation specifi c
to the route (dst → ops → link_failure !=NULL) is defi ned at line 143. If so, we make
a call to link a failure routine for the route at line 144. For Ipv4, this operation is
defi ned as ipv4_link_failure() .

 14.8.5 ipv 4_ link _ failure ()

 This routine sends out an ICMP error message to the originator of the packet
reporting error ‘ destination not reachable. ’ The routing entry for the packet is

528 IP ROUTING

referred to at line 1140 (cs 14.22). If it exists, the route is all set to be expired at the
earliest by calling dst_set_expires() at line 1142. The timeout value we are providing
is 0, which means that we want this route to expire whenever the next routing cache
timer is run (see Section 14.8.10 for more details).

 14.8.6 dst _ set _ expires ()

 We fi rst calculate the expiry value relative to the current value of jiffi es at line 149
(cs 14.23). The sanity check at line 151 to keep a minimum value of expiry to 1

 cs 14.21. dst_link_failure.

 cs 14.22. ipv4_link_failure ().

 cs 14.23. dst_set_expirese ().

because of the requirements in the routing cache timer (Section 14.8.10). Next we
check if the expiry of route is set to 0 or the route is set to expire at a much later
time than the value calculated above (line 154). In any case, we set the value of the
routes expiry to the value calculated at line 149. I suppose that a zero value of the
routes expiry means that the route should never be destroyed.

 14.8.7 Routing Cache for the Incoming Packets

 The routing subsystem is consulted for every incoming packet in the same way it is
done for outgoing packet. We need to know if the incoming packet needs to be
delivered locally, needs to be forwarded, is a multicast or a broadcast packet, and
so on. All this information is available from the routing entry corresponding to the
packet, and a further course of action is decided based on this information.

 ip_route_input() is called from ip_rcv_fi nish() to get routing information for the
packet (cs 14.24). First the hash bucket is identifi ed for the packet, and then the
collision list for the bucket is traversed (loop 1648 – 1665) to match the routing entry.
Once we have the matching routing entry for the packet, the lastuse fi eld of the
 dst_entry object is updated to value of jiffi es at line 1657. This value indicates when
the entry was last used, and we can see the details in Section 14.8.11 . Next we incre-
ment the reference count for the routing entry by calling dst_hold() at line 1658. We
do this to avoid destruction of the routing entry before the packet is either sent out
of the system or delivered locally. Usage count of the routing entry is incremented
for kernel statistics at line 1659, and a hit count for the routing entry on the CPU
is incremented at line 1660 for kernel stats. The dst fi eld of the packet is made to

 cs 14.24. ip_route_input ().

MANAGING ROUTING CACHE 529

530 IP ROUTING

point to the routing entry (dst_entry object) at line 1662 for further processing by
the IP layer. In the case where the routing entry is not found in the kernel routing
cache, we call ip_route_input_slow() .

 14.8.8 Routing Cache Timer

 As mentioned earlier, we need to keep a constant eye on the routing cache entries
as they grow in size on a busy system making a huge number of network connec-
tions per seconds or a busy router. A single routing table entry in FIB may lead to
hundreds of kernel routing cache entries. Each connection to different hosts on the
remote network (single routing table entry in FIB) will have one routing cache entry.
The routing entries in the kernel routing cache may be lying unused for a long time,
taking up system memory. To manage these situations, a timer is installed to monitor
routing cache entries at some preset time intervals.

 There are two system - wide timers related to routing cache management:

 • rt_periodic_timer
 • rt_fl ush_timer

 rt_fl ush_timer and rt_periodic_timer timers are initialized at the system bootup time
in routine ip_rt_init() , but only an rt_periodic_timer timer is installed at line 2525
(cs 14.25). The timer routine for rt_periodic_timer and rt_fl ush_timer are rt_check_
expire and rt_run_fl ush , respectively. We discuss these timers in detail in the sections
that follow.

 14.8.9 rt _ periodic _ timer

 As the name suggests, this is a periodic timer that is kicked off at the boot - up time
when a routing subsystem is initialized. Once started, this timer will never stop but
may not necessarily happen at fi xed frequency. In this section we will see the role
of this timer and how it calculates the next expiry time.

 The routine registered to execute when this timer fi res is rt_check_expire() . The
routine checks for all those routing entries in the cache which have expired by this

 cs 14.25. ip_rt_init e () .

time. Expired entries are removed from the kernel routing cache so that it should
not be used any more. Later in this section we will see what to do with the expired
entry. First we will learn how to identify the expired routing entries in the cache.

 1. lastuse fi eld of the dst_entry object (embedded in rtable object) is used to
identify if the routing entry has expired. As discussed in Section 14.12.2 , this
fi eld is updated with the value of jiffi es whenever there is cache - hit for route
lookup in ip_route_output_key()/ip_route_input() . In the timer, we check the
value of expires fi eld of dst_entry object to identify the expired entry.

 2. expires fi eld of the dst_entry object is set to the value (with respect to jiffi es)
that indicates the number of clock ticks, after which this entry should be
removed from the routing cache. expires fi eld is set by call to dst_set_expires()
whenever we want to remove the entry forcefully even if the entry is in use
and has not yet aged.

 rt_hash_log is the base 2 logarithm of rt_hash_mask , where rt_hash_mask is the
number of buckets in the routing cache, rt_hash_table . Calculation of ‘ t ’ doesn ’ t
make any sense because it is not used anywhere. It is used just to calculate the
number of times the outer loop should be traversed, which is never less than the
number of hash buckets in the rt_hash_table . The outer loop 376 – 407 starts at a
fi xed value of ‘ t ’ that is ip_rt_gc_interval * 2 rt_hash_log (cs 14.26). In each iteration, ‘ t ’ is
decremented by ip_rt_gc_interval until ‘ t ’ becomes zero. This essentially means that
the loop will iterate for number of turns that equals number of hash buckets in the
routing hash table rt_hash_table . Instead, rt_hash_mask could have been used to do
this. If there are huge number of entries, the outer loop is terminated when the next
timer interrupt has fi red, in which case jiffi es > now will be true at line 405.

 We start from the next routing cache hash bucket entry from where we left last
(line 380). When we are entering the routing for the fi rst time, it will be the zeroth
hash bucket. The reason for this is that rover is a local variable that is declared
 ‘ static ’ (line 371). We grab the lock for the hash bucket at line 383 and start travers-
ing the routing entries in the hash bucket in the inner loop 384 – 401. Once we have
traversed all the entries in the hash bucket, the lock is released at line 402. If another
timer interrupt has happened while we are here processing routing caches, the value
of jiffi es would have incremented by 1. So, the condition at line 405, if TRUE, indi-
cates that we have spent the entire time between two clock ticks in this routine. We
stop processing in this case; otherwise for a system with huge number of entries in
the routing hash table, CPU will always be busy processing routing caches. When
we are leaving the routine (outer loop), rover is set to the current hash bucket at
line 408 and a timer is reset to fi re after ip_rt_gc_interval ticks from now at line
409.

 Processing within the inner loop (381 – 401) will do all the expiry check for each
routing entry in the hash bucket. First check is whether the expiry fi eld of the dst_
entry object is set. This is set in case we want to forcefully remove the routing cache
entry from the system (by call to dst_set_expires()) — for example, when link failure
is detected. When the entry has expired (condition at line 387 is FALSE), we delink
the current routing entry at line 399 and free the current entry at line 400 by a call
to rt_free() . Otherwise the entry has not expired (condition at line 387 is TRUE),
the timeout value is halved at line 388, and we move to the next entry (line 389).
The reason why we half the timeout value here for the next entry here is because

MANAGING ROUTING CACHE 531

532 IP ROUTING

the routing entries are organized in the hash bucket chain in the order they arrive.
The old entries can be found at the head and latest entries at the tail. The reason
for this kind of arrangement is that when a new entry is entered, it is checked against
all the entries in case the matching entry already exists. In this process we reach the
end of the chain where the new entry is inserted (check rt_intern_hash()).

 In the case where the expire fi elds of the dst_entry object are not set, we are
not forcing the entry to expire but still the entry can be removed from the system
depending on its age and value. We call rt_may_expire() at line 392 to check expiry
of the routing entry with respect to its age. We pass two timeout values to this
routine: The second argument (fi rst timeout value) is the reduced timeout value for
the much latest entries, and the third argument (second timeout value) is the fi xed
timeout value ip_rt_gc_timeout . In section 14.8.11 , we will see how these two values
are used. If the route is not in use, rt_may_expire() returns an indication to remove
the entry from the cache in case the entry is at least ip_rt_gc_ timeout ticks old. If

 cs 14.26. SMP_TIMER_NAME () .

the entry has not expired, we half the timeout value for the very latest entries and
move on to the next routing entry (line 393 – 394). If both the tested conditions fail,
we need to remove the entry from the routing cache as the route has expired.

 14.8.10 rt _ may _ expire ()

 This routine makes various checks on the routing cache entry regarding its expiry.
First we check if anybody is referencing the routing entry (reference count for the
entry) at line 352 (cs 14.27). If the route is being used, we don ’ t check anything else
and just return failure. Next is to check if expiry for the route is set (forceful removal
of the route) at line 356. If so, the expiry check is made with current jiffi es value to
see if we have expired. In case we have expired, we return success (indicating expiry
of the entry). In case it is not forced expiry for the entry or the entries forced expiry
has not timed out, we need to do some more expiry checks. Now we calculate the
age of the route using lastuse fi eld of dst_entry object (line 359), which is updated
whenever there is a cache hit. If the age of the entry has not expired as per the fi rst
timeout considered (line 361), the route can still be removed. In this case we check
if the entry can be cleaned fast by calling rt_fast_clean(). rt_fast_clean() checks if
this is multicast/broadcast route (cs 14.28 , line 337) and if we are not the latest entry
in the chain (rth → u.rt_next != NULL) .

 If any of these conditions is FALSE, rt_may_expire() returns false, if the entry
has not aged. If either entry has expired against the fi rst timeout value (age > tmo1)
or rt_fast_clean() returns TRUE, the route can still be valid. Here we need to check
for another set of conditions at line 362. If the route has not expired against the
second timeout value (age ⇐ tmo2), we call rt_valuable() to check if the route is
valuable. rt_valuable() checks if expiry time is set for the route and some other
conditions which are of less relevance. If the route is valuable and the route has not
timed out, we keep it. Else we return TRUE if any of the conditions at line 362 is

 cs 14.27. rt_may_expire () .

MANAGING ROUTING CACHE 533

534 IP ROUTING

FALSE. In any case, if route has timed out against second timeout value provided
to the routine, we return TRUE.

 [Note : In the case where we are called from rt_check_expire(), the second argument is ip_
rt_gc_timeout . If the route times out against ip_rt_gc_timeout and the route is not in use, the
route is removed from the cache.]

 14.8.11 dst _ free ()

 The routine is called to free the dst_entry object and also to free any resources
associated with it. First we check if the entry is obsolete and is already there on the
garbage list (dst_garbage_list) at line 118 (cs 14.29). If so, we just return at line 119.
If we are not on the garbage list, next check is for the references to this routing
entry. If someone is already using the routing cache entry (dst → __refcnt > 0), we
will defer freeing of the cache entry by calling __dst_free() at line 124. In case no
one is referring to the routing cache entry, we will free the dst_entry object by calling
 dst_destroy() at line 121 and return.

 cs 14.28. rt_fast_clean () .

 cs 14.29. dst_free () .

 14.8.12 __ dst _ free ()

 The routine puts routing cache entry (dst_entry object) on the garbage list to be
freed asynchronously by the dst_gc_timer timer. We hold dst_lock to manipulate
 dst_garbage_list . In case there is no interface device (dst → dev) associated with the
route or the associated interface is down (line 126, cs 14.30), we set input and output
routine associated with the route to dst_discard and dst_blackhole , respectively. We
do this to ignore any packets that are sent or received using the route. We set an
obsolete fi eld to 2 at line 130, indicating that the entry is already on the garbage list.
Next we add the route at the start of the garbage list using the next fi eld of the
 dst_entry obect (line 131 – 132). It means that the latest entries reside at the head of
the list.

 Whenever a new entry is made to the garbage list dst_garbage_list (check __
dst_free()), dst_gc_timer_inc is reinitialized to DST_GC_INC (5 Hz) and dst_gc_
timer_expires is initialized to DST_GC_MIN (1 Hz) and dst_gc_timer timer is set to
expire after one second by calling add_timer() , in case there was no fresh entry in
the garbage list which has even expired once. If there is even one entry on the
garbage list which has expired even once, dst_gc_timer_inc would always be more
than DST_INC_MIN (check Section 14.8.15).

 cs 14.30. __dst_free () .

MANAGING ROUTING CACHE 535

 14.8.13 dst _ destroy ()

 This is the routine that is fi nally called to free the route and associated resources
when the route has expired and there is no one referring this route. The hh_cache
object contains cached - in hardware (NIC) - related information for the route. If
nobody is referring to the cached object (line 150, cs 14.31), free it at line 151. If
there is ARP associated with the route (dst → neighbour), just free it by calling

536 IP ROUTING

 neigh_release() at line 155. This frees the neighbour object and also the resources
associated with it, in case we were the ones last referring it. The destroy method of
 dst operations is called to destroy the dst_ops object at line 161. If there is an inter-
face associated with the route (dst → dev), we decrement the reference count on the
device by calling dev_put() at line 162. If we are the last one to refer the device, it
is unregistered from the system and freed. dst_entry object is returned to the cache
from where it was allocated at line 167.

 14.8.14 dst _ run _ gc ()

 This routine is run whenever dst_gc_timer expires. It checks if any routing entry on
the dst_garbage_list needs to be destroyed. If any such entry is found, dst_destroy()
is called to free the routing entry (dst_entry object) and also any resources associ-
ated with it.

 First we try to acquire dst_lock by a call to spin_trylock() at line 49 (cs 14.32).
If we could not get the lock, we reset the timer (dst_gc_timer) to expire after one -
 tenth of a second at line 50 and return. Otherwise, we delete the timer and move
ahead to manipulate the garbage list. The list (dst_garbage_list) is traversed in the
loop 57 – 65. For each entry we check if the reference count has become zero at line
58. If somebody is already referring to the routing entry, we move to the next entry
and continue (line 59). Otherwise, we remove the entry from the list at line 63
(remember dstp is double pointer) and call dst_destroy() at line 64 to free the dst_
entry object. Once we have traversed the entire list, we check if there is any entry
left on the list at line 66. If there is nothing left in the dst_garbage_list, dst_gc_timer_

 cs 14.31. dst_destroy () .

inc is initialized to DST_GC_MAX (120 Hz = 150 sec) at line 67 and the timer is not
restarted.

 dst_gc_timer_expires keeps the value of next expiry of the dst_gc_timer timer
and can assume a maximum of DST_GC_MAX (120 Hz = 120 sec). If there is any
entry still on the list which is being referred, expiry time of the timer is incremented
by DST_GC_MAX (5 Hz = 5 sec) at line 70. dst_gc_timer_inc is incremented in
multiples of DST_GC_INC (5 Hz) every time dst_gc_timer timer expires, in this case.
 dst_gc_timer is installed with the new calculated value of dst_gc_timer_expires at
line 78. Now we release dst_lock at line 81 and return.

 14.8.15 Interface down and rt _ fl ush _ timer

 rt_fl ush_timer is used for the forced fl ush of a routing cache because of any reason
such as interface down, routing table is fl ushed, and so on; rt_run_fl ush is a routine

 cs 14.32. dst_run_gc () .

MANAGING ROUTING CACHE 537

538 IP ROUTING

installed for rt_fl ush_timer timer. Let ’ s look at the functionality of rt_fl ush_timer .
We initialize rt_deadline to 0 and we will see later (Section 14.8.17) how the value
of rt_deadline does matter. We traverse through all the bucket in the routing cache
bucket in the outer loop (lines 424 – 435, cs 14.33). rt_hash_mask is the number of
buckets in the kernel routing hash table rt_hash_table . This value is calculated in
 ip_rt_init() at kernel boot - up time where resources are allocated for routing caches.
If there are any routing entries in the hash bucket (line 427, cs 14.33), the chain is
detached at line 428. We release the hash bucket lock at line 429 and traverse the
routing entries chain in the inner loop (lines 431 – 434). We call rt_free() for each
routing entry (dst_entry object) in the chain to free these entries one at a time. This
way complete routing cache is fl ushed.

 14.8.16 rt _ cache _ fl ush ()

 When a network interface card is brought down or it comes down, fi b_inetaddr_
event() is called as notifi er callback routine registered for the device. We call rt_
cache_fl ush() with a negative argument when the NETDEV_DOWN tag is set. In
this section we will see how rt_cache_fl ush() works and under what conditions it
will start the rt_fl ush_timer timer.

 We record current jiffi es at line 444 (cs 14.34) and also mark if we are being
called from soft IRQ at line 445. in_softirq() returns the softIRQ counter on the
current CPU. If it is nonzero positive value, it means that the current CPU is pro-
cessing softIRQ from where we are being called. If delay from the caller is a negative
value, we set it to a minimum delay value of ip_rt_min_delay (= 2 sec). We try to
acquire the rt_fl ush_lock lock after making sure that the softIRQ is disabled locally
at line 450.

 cs 14.33. SMP_TIMER_NAME () .

 If the timer is already installed, we delete it by a call to del_timer() at line 452.
In case there was no timer installed, we move to line 469. Here we check if the delay
provided by the caller is zero or a negative value. The logic says that if no timer was
installed, we need to urgently fl ush the routing cache only if the delay provided is
zero. In this case, we directly call rt_run_fl ush() . Remember that rt_run_fl ush() is
the callback routine for the rt_fl ush_timer timer. In this case, we directly fl ush the
routing cache and return. Otherwise, if timer is not installed and the delay provided
was negative or more than 0, we need to freshly install the timer at line 478.

 If the rt_fl ush_timer timer was installed and the delay provided by the caller is
a positive value and rt_deadline is also a positive value, we try to recalculate the
delay (expiry time for the rt_fl ush_timer). All these conditions being TRUE means
that the timer was installed and the route cache has not been fl ushed. rt_run_fl ush()
can be called from an outside rt_fl ush_timer from rt_cache_fl ush(). rt_deadline is
zero only when rt_fl ush_timer is being run or has just run before we came here
because it is reset in rt_run_fl ush() . We calculate timeout value from the value of
 rt_deadline , which was set when the timer was last installed from this routine.

 If we are not called from soft IRQ (timer) and timeout is not very huge (line
462), we set timeout to 0. If the delay provided is more than the timeout value

 cs 14.34. rt_cache_fl ush () .

MANAGING ROUTING CACHE 539

540 IP ROUTING

calculated so far, we set delay to the value of timeout at line 466. If rt_deadline is
zero, it means that either rt_fl ush_timer has already expired or it was never installed
and the route was never fl ushed. In this case, rt_deadline is set to ip_rt_max_delay
ticks with respect to current jiffi es . If someone tries to fl ush caches with negative or
positive delays and nobody has fl ushed the routing caches since we have installed
the timer, the new delay will be calculated for that timer based on rt_deadline value
set here.

 14.9 IMPLEMENTATION OVERVIEW OF FORWARDING
INFORMATION BASE (FIB)

 The Forwarding Information Base (FIB) represents the internal routing structure
in the kernel. It contains the routing information (Fig. 14.12). When the IP layer
sends the request for identifying the route for the destination address and if the
entry is not found in the routing cache, then the IP layers does the FIB lookup with
most specifi c zones and searches the table until it fi nds a match. When it fi nds the
match, the FIB updates the routing cache with the match so that the next time the
IP layer can fi nd the route in the routing cache.

 Structure fi b_table represents the routing table in the kernel. This is defi ned as
an array variable; as illustrated in cs 14.35 . This fi b_table structure contains a pointer
to the fn_hash structure which contains a table of fn_zone structures. One zone for
each bit in the netmask (i.e., 32 Zones) and each zone can have entries for networks
or hosts which can be identifi ed by the number of bits. For example, a netmask of
255.255.0.0 has 16 bits, and this will correspond to zone 16; also a netmask of
255.255.255.0 has 24 bits and corresponds to zone 24.

 Each fn_zone structure also contains a pointer to the hash table of nodes rep-
resented by the fi b_node structure. The fi b_node structure contains the pointer to
the fi b_info structure which contains the actual data of an routing table entry. If
several routing table entries have the same hash value, then the corresponding fi b_
node structures are linked in the linear list.

 14.9.1 struct fi b _ table

 The fi b_table structure represents a routing table (cs 14.36). It contains a table
identifi er and pointers to routing table functions (lookup, insert, delete, hash, etc.).
It also contains a hash table structure which has a pointer to zone structures.

 tb _ id . This is a table identifi er. There are up to 255 different routing tables that
can be created. Each routing table in the system is identifi ed by table identifi er. By

 cs 14.35. Declaration of fi b_table .

 Figure 14.12. FIB implementation overview.

default there are two tables: local and main. Identifi ers for local and main tables are
255 and 254.

 tb _ stamp . This is an unused element.

 fi b _ table . This structure contains function pointers to create/delete/lookup, and
so on, for entries in the routing table.

IMPLEMENTATION OVERVIEW OF FORWARDING INFORMATION BASE (FIB) 541

542 IP ROUTING

 tb _ lookup () . This is a routing table lookup for matching a key — that is, for
searching a particular route (destination) from the routing table. This function
pointer gets initialized in the fi b_hash_init () function and points to the fn_hash_
lookup() function.

 tb _ insert . This inserts/updates the entries in the routing table. This function
pointer gets initialized in fi b_hash_init () function and points to the fn_hash_insert
() function.

 tb _ delete () . This deletes entries from the routing table. This function pointer
gets initialized in the fi b_hash_init () function and points to the fn_hash_delete ()
function.

 tb _ dump () . This dumps the contents of a routing table. This function pointer
gets initialized in the fi b_hash_init () function and points to the fn_hash_dump ()
function.

 tb _ fl ush () . This frees the entries in the table (i.e., the fi b_info structures) if the
 RTNH_F_DEAD fl ag is set. This function pointer gets initialized in the fi b_hash_
init () function and points to the fn_hash_fl ush () function.

 tb _ select _ default () . This selects one route from several existing default routes.
This function pointer gets initialized in the fi b_hash_init () function and points to
the fn_hash_select_default () function.

 cs 14.36. fi b_table .

 tb _ get _ info () . Output entries in the /proc/net/route format. This function
pointer gets initialized in the fi b_hash_init () function and points to the fn_hash_
get_info () function.

 tb _ data [0] . This is a variable - sized area for which memory is allocated along
with fi b_table struct. tb_data[0] contains a pointer to the FIB hash table (fn_hash).
This fn_hash structure has an fn_zone structure table that contains pointers to the
zones based on the netmasks and the zone list.

 14.9.2 struct fn _ hash

 The fn_hash structure consists of an array of pointers to fn_zone structures, where
each fn_zone structure represents a zone (collection of routes) for the same netmask
length and a pointer to the zones list (cs 14.37).

 fn _ zone [33] . This is an array of pointers of type fn_zone struct; it contains a
pointers to the table of zones where each fn_zone structure represents a zone
(collection of routes) for same netmask length.

 fn _ zone _ list . This is a pointer to the fi rst non - empty zone with more specifi c
netmask (i.e., longest netmask length) in the zones list; that is, it points to the head
of the list fron the active zones list.

 cs 14.37. fn_hash .

IMPLEMENTATION OVERVIEW OF FORWARDING INFORMATION BASE (FIB) 543

 14.9.3 struct fn _ zone

 This represents an active zone for the same netmask length, and it contains hashing
information and a pointer to the hash table node (cs 14.38). It manages all the
entries for the same netmask.

 fz _ next . This is a pointer to the next non - empty zone in the zones list. The head
of the list is kept in the fn_zone_list fi eld of the fn_hash structure.

 fz _ hash . This is a pointer to the hash table of nodes for this zone, where the
hash table of nodes is an array of fi b_node structures which represent a single route
entry for the routing table. This hash table is organized based on the key value (dst
address, netmask, tos, etc.).

 fz _ nent . This is the number of routes (nodes, i.e., fi b_node structs in hash table)
in this zone.

544 IP ROUTING

 fz _ divisor . This is a hash divisor (number of buckets in the hash table). Nor-
mally, this value will be 0xf except for prefi x (netmask) length 0. If netmask length
is 0, the fz_divisor value is 1.

 fz _ hashmask . This is a bit mask used to mask the hash value for indexing in
the hash table bucket to select the fi b_node ’ s list for traversing. Normally, this value
is 0xf.

 fz _ order . This is the fi xed prefi x length for this zone (bit length of the
netmask).

 fz _ mask . This is a zone netmask. There are total 32 zones for a fi b_table , and
each zone has a specifi c netmask. This fi eld contains the zone netmask.

 14.9.4 struct fi b _ node

 This represents a single (destination) route entry from the routing table; it describes
each host network route (cs 14.39).

 fn _ next . fi b_node structures are organized in a hash table. This is a pointer to
next fi b_node from the fi b_node ’ s list in a single bucket of a hash table.

 fn _ info . This structure contains protocol - and hardware - specifi c information for
the fi b_node structure; it also maintains common features of the routes.

 fn _ key . This structure contains a destination network prefi x (hash table key —
 least signifi cant 8 bits of the destination address).

 fn _ type . This fi eld represents a type of address.The signifi cance of this fi eld is
that it indicates whether a destination is a single machine, all machines, or a group
of machines in a network. It can be any of the values of UNICAST, BROADCAST,
MULTICAST, LOCAL, and so on, listed in cs 14.40 .

 cs 14.38. fn_zone .

 fn _ scope . This fi eld represents a scope of this route. The signifi cance of this fi eld
is that it indicates the distance to a destination host or network. It can be any of the
values listed in cs 14.41 .

 fn _ state . This fi eld stores fl ags for fi b_node ; they can be either of two fl ags,
namely, FN_S_ZOMBIE or FN_S_ACCESSED , where ZOMBIE nodes are con-
sidered nonusable, and it is likely that deleted routes or dead interface.ACCESSED
nodes are usable nodes and are currently active.

 cs 14.39. fi b_node .

 cs 14.40. Route types .

 cs 14.41. Route scopes .

IMPLEMENTATION OVERVIEW OF FORWARDING INFORMATION BASE (FIB) 545

546 IP ROUTING

 14.9.5 struct fi b _ info

 This contains protocol - and hardware - specifi c information which basically defi ne a
destination route (cs 14.42).

 fi b _ next and fi b _ prev . This points to the next and prev fi b_nodes from the fi b_
node ’ s list in a single bucket of the hash table.

 fi b _ treeref . Reference count to track the number of fi b_node structures holding
a reference on this fi b_node instance.

 fi b _ clntref . Reference count to track number of successful routing lookups.

 fi b _ dead . Indicates route entry is removed from the table.

 fi b _ fl ags . Represents any of RTNH_F_DEAD, RTNH_F_PERVASIVE , and
 RTNH_F_ONLINK fl ags. Of these RTNH_F_DEAD is currently in use and indi-
cates that nexthop is dead (used by multipath only).

 fi b _ protocol . This identifi es the source of the route — that is, the protocol that
installed the route. The possible values for this fi eld are listed in cs 14.43 .

 fi b _ prefsrc . This contains the preferred source address. This is selected either
by the user while confi guring the route or by calling the function inet_select_
addr () .

 cs 14.42. fi b_info .

 fi b _ priority . This indicates the priority of the route: The smaller the value, the
higher the priority. Default value is 0 when not set.

 fi b _ power . This fi eld is used only when multipath routing is enabled in kernel.

 fi b _ nh [0] . This element is an fi b_nh structure array that contains information
about the output interface used and the next hop along the route. Several equivalent
routes get the same destination in FIB query; this array represents these routes.

 fi b _ nhs . This represents the number of entries in fi b_nh[0] . The value of this
fi eld is greater than one only when multipath routing is enabled in the kernel.

 14.9.6 struct fi b _ nh

 This contains the pointer to the net device and the next hop gateway for this route.
Apart from this, it contains more information required for multipath routing and
the class used for queueing if class - based queuing is activated (cs 14.44).

 cs 14.43. Fib protocols .

 cs 14.44. fi b_nh .

IMPLEMENTATION OVERVIEW OF FORWARDING INFORMATION BASE (FIB) 547

548 IP ROUTING

 nh _ dev . This is a pointer to the net_device structure.

 nh _ scope . This is the scope of the route used to get to the next hop (for more
inforamtion on scopes refer routing scopes section).

 nh _ fl ags . This represents any of the RTNH_F_DEAD, RTNH_F_PERVASIVE ,
and RTNH_F_ONLINK fl ags. Of these, RTNH_F_DEAD is currently in use and
indicates that nexthop is dead (used by multipath only).

 nh _ weight and nh _ power . This is used only when multipath routing is confi g-
ured in kernel.

 nh _ oif . This is the output interface id to be used — that is, the index of the
interface.

 nh _ gw . IP address of the next router.

 nh _ tclassid . This is used in a class - based queueing discipline for queueing of
the packets, and represents a classid.

 14.9.7 struct fi b _ rule

 This data structure represents the rule or policy defi ned by the user for selection of
the routing table from the multiple routing tables in the system (cs 14.45). This is
used only if policy routing is confi gured in the kernel.

 cs 14.45. fi b_rule .

 r _ next . This is the pointer to the next fi b_rule in the global list of rules maintained
by the kernel. By default, this global list has a local, main, and default rule.

 r _ clntref . This is the reference count of the rule instance being used.

 r _ preference . This is the priority of the rule. The three default rules in the
system — that is, local, main, and default rules have 0, 0x7ffe, and 0x7fff — are assigned.
 local_rule value 0 has the highest priority. The user can assign the priority to the
rule using ip rule command or if it is not asssinged by the user, then kernel will
assign the priority that is one less than priority of the last added rule.

 r _ table . This is the routing table to be used for fi nding the destination route if
this rule is applied to the packet.

 r _ action . This fi eld contains the policy action type, and there are fi ve types of
policy actions. They are RTN_UNICAST, RTN_NAT, RTN_UNREACHABLE,
RTN_BLACKHOLE , and RTN_PHOHIBIT . If the type is RTN_UNICAST,
RTN_NAT , then we have a matching rule; otherwise, for any other policy action
we return error.

 r _ dst _ len and r _ src _ len . This stands for length of destination and source IP
address, in terms of bits.

 r _ src and r _ srcmask . This stands for source IP address and netmask.

 r _ dst and r _ dstmask . This stands for destination IP address and netmask.

 r _ fl ags . This is currently not in use.

 r _ tos . This is the IP header ’ s TOS fi eld value.

 r _ ifi ndex . This represents the output interface id.

 r _ ifname [IFNAMSIZ] . This represents the name of the device.

 r _ tclassid . This is used in class - based queueing discipline for queueing of the
packets, represents a classid.

 r _ dead . This fi eld value is 0 when the rule is available.

 14.10 ADDING NEW ENTRY IN ROUTING TABLE USING ip
COMMAND (RT NETLINK INTERFACE)

 Routing tables can be updated from the user space using the RT Netlink interface.
For more details on how RT Netlink works, refer to the netlink chapter (Chapter
 13).

 Here we will see details about the only two options of the ‘ ip commnad ’ and
the kernel functions invoked when these options are used — that is, for updating the
routing table and adding a new rule (policy) for a new routing table.

ADDING NEW ENTRY IN ROUTING TABLE USING ip COMMAND (RT NETLINK INTERFACE) 549

550 IP ROUTING

 1. ip route option
 2. ip rule option

 For more details refer to the Linun manual page for ‘ ip command. ’
 The following functions are registered in net/ipv4/devinet.c : inet_rtnetlink_

table[]:

 1. inet_rtm_newroute()
 2. inet_rtm_delroute()
 3. inet_dump_fi b()

 Any of these functions are invoked when the ip command is run from the user space
with route option for adding, deleting, and displaying routing table.

 1. inet_rtm_newrule
 2. inet_rtm_delrule
 3. inet_dump_rules

 Any of these functions are invoked when the ip command is run from the user space
with a rule option for adding new rule either new or existing routing table.

 14.10.1 What Happens When the ip Command Is Run with a
Route Option for Adding an Entry in the Routing Table?

 The RT Netlink interface uses the netlink packet for communication with the
kernel. When the ip command is run with the ‘ route add ’ option to update the
routing table, a netlink packet is created in the user space; and when this packet
reaches the kernel, the doit function in the inet_rtnetlink_table indexed by RTM_
NEWROUTE is called (see Chapter 13 for more details) and the function inet_rtm_
newroute() gets invoked.

 14.10.2 inet _ rtm _ newroute ()

 This function adds a new route to the FIB.
 The main input parameters passed to this function are sk_buff struct, netlink

header nlmsghdr struct, and the pointer to the optional data (user arguments) of
type void which can be typecasted to FIB internal interface struct kern_rta through
struct rtattr (for more details on struct rttr, see Chapter 13).

 So at line 369 (cs 14.46) we are assigning the optional arguments pointer to
struct rttr, and at line 370 the NLMSG_DATA (for more details on NLMSG_DATA
see Chapter 13) macro takes you to the start of the rtmessage (struct rtmsg) in the
netlink packet.

 At line 372 the inet_check_attr() function loops through the optional parameter
list and creates an array of parameters consisting of only the data; this is later type-
casted to struct kern_rta , which is an FIB internal interface. Then at line 375 we call
the function fi b_new_table () , which allocates memory for fi b_table and initializes
the function pointers by calling the function fn_hash_init () . And fi nally at line 377
if fi b_table is returned by fi b_new_table() , then fn_hash_insert() gets called since
 tb → tb_insert is initialized to fn_hash_insert() in the fn_hash_init () function.

 The fn_hash_insert() function adds a new entry into the routing table.
 Here the important data structures for interaction between user space and

kernel for adding the routing table entry or adding a new rule to the routing
table:

 1. struct rtmsg
 2. struct kern_rta

 14.10.3 struct rtmsg

 This structure is used for representing the user arguments set through the command
line for adding a new routing entry in the routing table (cs 14.47).

 rtm _ family . This contains information about the supported address family, for
example, AF_INET (IP protocol).

 cs 14.46. inet_rtm_newroute () .

 cs 14.47. rtmsg .

ADDING NEW ENTRY IN ROUTING TABLE USING ip COMMAND (RT NETLINK INTERFACE) 551

552 IP ROUTING

 rtm _ dst _ len and rtm _ src _ len . This represents the number of bits used to create
a 32 - bit or smaller netmask for AF_INET addresses for both source and destination
addresses.

 rtm _ tos . This is a ToS fi eld in the IP header.

 rtm _ table . This contains routing table ID.

 rtm _ protocol . This refers to the routing message protocol — for example,
 RTPROT_UNSPEC, RTPROT_KERNEL , and so on.

 rtm _ scope . This refers to the route message scope — for example, RT_SCOPE
UNIVERSE , and so on.

 rtm _ type . This refers to the type of the route — for example, UNICAST , and so
on.

 rtm _ fl ags . Any of these three values — RTM_F_NOTIFY — notify the user route
change.

 RTM _ F _ CLONED . This route is cloned.

 RTM _ F _ EQUALIZE . This route is not implemented yet.

 14.10.4 struct kern _ rta

 This data structure represents the FIB internal values. It is used for assigning the
values to the FIB data structures whenever there is an update to the routing table
(cs 14.48).

 rta _ dst . This is the destination address.

 rta _ src . This is the source address.

 cs 14.48. kern_rta .

 rta _ iif . This is the input internal network interface.

 rta _ oif . This is the output network interface.

 rta _ gw . This contains gateway IP address.

 rta - prefsrc . This is the preferred source address (used by RFC 1122 as part of
UDP multihoming).

 14.10.5 fn _ hash _ insert ()

 This function is called for adding/inserting route information in the fi b table. The
 fi b_table pointer and the netlink message parameters (main structures are struct
rtmsg and struct rta) are passed to this function. It starts with extracting the indi-
vidual parameters from the netlink message struct and then checks if the zone is
already existing; if not, then it allocates and initializes the new zone by calling the
function fi b_new_zone() at line 455 (cs 14.51).

 After assigning the new zone, new hash key value is generated by using the
destination and the netmask value by calling the function fz_key() at line 464.

 The function fz_key() builds the hash key by AND - ing the destination address
with the zone ’ s netmask (cs 14.49). Now before getting the hash index from the hash
table, fi b_info struct is allocated and initialized in fi b_create_info() at line 467.

 The zone - specifi c fz_hash table is a table of fi b_node structures as shown in Fig
 14.13 . We have seen that the memory is already allocated for fz_hash table in fi b_
new_zone() . By using the hash key, we can get the hash table index from the fz_hash
table at line 477 by calling the function fz_chain_p() (cs 14.50) and then check for
the fi b_node list using the hash index.

 The function fz_chain_p() calculates the hash index from fz_hash table by
calling the function fn_hash () based on the key value and returns a pointer to
pointer to the fi b_node for that hash index.

 cs 14.49. fz_key () .

 Figure 14.13. fz_hash pointer .

ADDING NEW ENTRY IN ROUTING TABLE USING ip COMMAND (RT NETLINK INTERFACE) 553

554 IP ROUTING

 Using the new fi b_node list address from the hash index returned by fz_chain_
p() , scan the list to check that the destination address (hash key) is already
existing.

 There are four cases to check for scanning the list:

 1. Scan the list to fi nd the fi rst route with the same destination at line 483 (cs
 14.51).

 2. If ‘ CONFIG_IP_ROUTE_TOS ’ is defi ned, then scan the list to fi nd route
with the same destination and tos at line 492.

 3. If any of the above scan checks returns fi b_node for the hash key, then check
for the state of the fi b_node for ZOMBIE at line 500. If the state is ZOMBIE,
then delete the old fi b_node and insert the new fi b_node in fi b_node_list .

 4. If fi b_node state is not ZOMBIE, then scan the list with an additional check
for the fi b → priority of fi b_node at line 511; and again if such a key exists,
then replace the fi b_node with the new one.

 (ZOMBIE nodes are considered nonusable and are likely to be deleted routes or
a dead interface.) If this is a new entry, then all the scan checks will fail and fi nally
the memory for the new entry (fi b_node) is allocated at line 564 from the fi b_node
cache. Then this new entry (fi b_node) will initialize to type, tos, scope values and
the fi b_info pointer from line 570 to line 576.

 And fi nally this new entry (fi b_node) is inserted into the fi b_node_list at line
584.

 14.10.6 fn _ new _ zone ()

 fn_new_zone() basically gets the struct fn_hash pointer and the destination address
bit length as parameters. It starts with allocating and initializing the new zone struct
(fn_zone) at line 229 and then checks for the destination address bit length at line
234. If bit length is zero, then the hash table will have a single entry and the divisor
in this case will be 1. For any bit length apart from zero, the hash table will have 16
entries and the divisor in this case will be always 16. After calculating the hash table
size for the zone, it then allocates and initializes fz → fz_hash table space for this
zone at line 241. Next assign the bit length (netmask length) value to the fz → order
and fz → mask with the netmask for this zone at lines 247 and 248.

 Before inserting this new zone into the zones list, we need to identify the fi rst
non - empty zone with more specifi c netmask (i.e., longest netmask length). The sig-
nifi cance for doing this is that the lookup algorithm used to fi nd the route from the
routing table is the longest prefi x match (LPM), which starts the lookup with the
zone having the longest prefi x (netmask) length.

 cs 14.50. fz_chain_p () .

 14.10.6.1 Why LPM Algorithm for Routing Table Lookup? IP performs
the steps in following order to fi nd the destination route in its routing table:

 1. It searches for a matching host address (IP address).
 2. It searches for a matching network address.
 3. It searches for a default entry (The default entry is a network address with

0).

 cs 14.51. fn_hash_insert () .

ADDING NEW ENTRY IN ROUTING TABLE USING ip COMMAND (RT NETLINK INTERFACE) 555

556 IP ROUTING

 A matching host address (host ’ s IP address) is always used before matching a
network address. If both host address and network address are not matched, then
we use the default entry (default route) which is a network address with ID 0 for
which a default gateway address is defi ned in the routing table.

 The fn_zone[33] array fi eld of the fn_hash struct of fi b_table maintains a list of
zones based on the netmask length, and each zone represents each bit in the
netmask (32 - bit).

 fn_zone[0] represents the default entry (default route).
 fn_zone[32] represents the more specifi c route.

 At lines 251 and 252 (cs 14.52) we identify the fi rst non - empty zone with the
longest netmask length based on the fz → fz_order value. Then we check if the new
zone ’ s netmask length is greater than the found longest netmask length zone. It is
then that we insert the new zone as the longest netmask length after this found
longest netmask length zone and initialize the fn_zone_list to this new zone at lines

 cs 14.52. fn_new_zone () .

257 and 258. The fn_zone_list contains the earlier longest netmask length
zone. Otherwise, if the new zone ’ s netmask is less than the found longest netmask
length zone, then we insert the new zone before the found longest netmask length
zone at lines 260 and 261. Finally at line 263 we add this new zone to the table ’ s
zone list.

 14.10.7 fi b _ create _ info ()

 The main parameters passed to this function are the rtmsg struct and the kern_rta
struct (netlink message). It starts with allocating the memory for the fi b_info struct
at line 446 (cs 14.53). Here the total memory allocated to fi b_info is size of fi b_info
and the size of fi b_nh with number of elements (fi b_nh) required for this fi b_info .
The fi b_nh struct is one of the elements (declared as array) of fi b_info struct, and
it should be allocated at the end of fi b_info struct so that the memory will be con-
tiguous. After allocating the memory, the fi b_info struct elements are initialized
based on the values in rtmsg and the kern_rta struct.

 cs 14.53. fi b_create_info .

ADDING NEW ENTRY IN ROUTING TABLE USING ip COMMAND (RT NETLINK INTERFACE) 557

558 IP ROUTING

 14.11 WHAT HAPPENS WHEN THE ip COMMAND IS RUN WITH A
RULE OPTION FOR ADDING AN ENTRY IN THE ROUTING TABLE?

 The RT Netlink interface uses the netlink packet for communication with the
kernel. When the ip command is run with a ‘ rule add ’ option to update the new

 Figure 14.14. fn_hash_insert () fl ow.

 14.10.8 fn _ hash _ insert ()

 Fig 14.14 shows the fn_hash_insert() fl ow diagram for more details refer to Section
 14.10.5 .

routing table (created by using ip route command prior to adding new rule) or
existing routing table, the netlink packet is created in the user space; and when this
packet reaches the kernel, the doit function in the inet_rtnetlink_table indexed by
 RTM_NEWRULE is called (see Chapter 13 for more details) and the function
 inet_rtm_newrule() gets invoked.

 14.11.1 inet _ rtm _ newrule ()

 This function adds a new rule or policy to the new or existing routing table.
 The main input parameters passed to this function are sk_buff struct, netlink

header nlmsghdr struct, and the pointer to the optional data (user arguments) of
type void which can be typecasted to the FIB internal interface struct kern_rta
through struct rtattr (for more details on struct rttr refer Netlink chapter), at line
164 (cs 14.54) we are assigning the optional arguments pointer to struct rttr and at
line 165 NLMSG_DATA (for more details on NLMSG_DATA see Chapter 13)
macro takes you to the start of the rtmessage (struct rtmsg) in the netlink packet.

 Any ip rule can be added to the routing table. For example, a rule can be that
packets coming from ‘ this ’ source address should use ‘ this ’ routing table for lookup.
At line 176 we get the routing table id which signifi es that a new ip rule is going to
be added to this routing table. If routing table id is unspecifi ed, then we allocate a
unique new table id at line 180 by calling the function fi b_empty_table () . Then
allocate a new fi b_rule struct at line 186 for defi ning the new rule for the routing
table and initialize it at line 189.

 Now we copy the user data to the newly allocated the fi b_rule structure. The
user data are source address, destination address, gateway address, type of address,
fl ags.table id, and so on.

 cs 14.54. inet_rtm_newrule () .

WHAT HAPPENS WHEN THE ip COMMAND IS RUN WITH A RULE OPTION FOR ADDING AN ENTRY 559

560 IP ROUTING

 The most important data is the priority that would be assigned to the fi b_rule
r_preference fi eld at line 208. Its signifi cance is that it plays an important role in
deciding the position for this new fi b_rule in the global list of fi b_rules defi ned in
the kernl. If a network interface is provided, we get the net_device pointer before
copying the device pointer in the fi b_rule . Finally, copy the fl ow id (realm) used in
the queueing discipline for identifying the class is copied at line 221 (cs 14.55).

 After copying the user data into the new fi b_rule struct now, this new rule has
to be added into the fi b_rules global list maintained by the kernel. By default, there
are three rules in the system local, main, and default rules. The priority of these rules
are 0, 32766, and 32767. This list is sorted in increasing order based on the priority
(0 is the highest priority rule). Any new rule added would be inserted between the
 loca_rule and the main_rule . We do this by getting the address of the global fi b_rules
list at line 224 (cs 14.56). Before traversing through this list for inserting a new rule,
if priority (r_preference) is provided by the user, then we check at line 235 if there
is any rule which has a priority value greater than this new rule, if it is then we insert
this new rule before tht rule in the rules. If the priority value is not provided by the
user at line 225, then before checking the condition at line 235 we decide the priority
value for this new rule at line 230 and then continue to traverse the list and insert
this new rule.

 cs 14.55. inet_rtm_newrule () (continued) .

 14.11.2 FIB Initialization

 Linux supports 255 routing tables, and each routing table is identifi ed by the table
id. By default, local (id = 255) and main (id = 254) tables are used. If policy routing
is defi ned, multiple tables can be confi gured and used for the route lookup. If policy
routing is not confi gured, then only the local and main routing tables are used and
the lookup to fi nd the route is done only in these tables. The local table has the
highest precedence. Figure 14.15 shows the details about FIB initialization.

 cs 14.56. inet_rtm_newrule () (continued) .

WHAT HAPPENS WHEN THE ip COMMAND IS RUN WITH A RULE OPTION FOR ADDING AN ENTRY 561

 Figure 14.15. FIB initialization fl ow diagram.

562 IP ROUTING

 The local table consists of routes to local and broadcast addresses. This table is
maintained by the kernel automatically. Any routing lookup request has to go
through the local table fi rst, and the signifi cance of this table is to determine whether
a packet has to be delivered locally or has to be forwarded. The local table is
searched fi rst for any routing lookup request, and this saves lookup time if the
packet has to be delivered locally and there is no need to search other tables. The
contents of the local table can be viewed by running the command:

 # ip route show table local

 The main table consists of all the normal routes, and these routes are inserted
by the ‘ ip route ’ command when no other table is mentioned. This can be manually
confi gured, and the kernel uses this table to calculate the routes to destination. The
contents of the local table can be viewed by running the command:

 # ip route show table
 #route - n
 #netstat - nr

 The inet_init () function called by socket.c on kernel starup is responsible to set the
IP module up by invoking the function ip_init () .

 The ip_init () function initializes the IP subsytem and registers the packet type
and the subprotocol initializers. To initialize the routing subsystem, it invokes the
function ip_rt_init () .

 The ip_rt_init () function does the two important initializations to the routing
code:

 1. It sets up the routing cache (defi nes the size of the cache and the memory
allocation, starts the cache - related timers, etc.)

 2. It calls the function ip_fi b_init () , which initializes the default routing tables
(FIB for IPV4).

 The ip_fi b_init () function checks if CONFIG_IP_MULTIPLE_TABLES (Policy
Routing) is defi ned in the kernel. If the policy routing is defi ned in the kernel, then
the fi b_rules_init () function is invoked to set up the policy - based routing; otherwise,
it calls the fi b_hash_init () function to set up the default routing tables (local and
main table only) which are defi ned globally.

 14.11.2.1 fi b _ hash _ init (). This function initializes and allocates a fi b_table
in the kernel. A FIB slab cache is allocated at line 899 (cs 14.57), from which fi b_
node structures will be allocated for various FIB entries. Then a new fi b_table is
allocated at line 904. At least two fi b_table instances are present in the kernel; if
policy routing is enabled, then there are more instances of fi b_table in the kernel
for different routing tables. After allocating the fi b_table , we initialize the various
fi eld of fi b_table .

 First the tb_id fi eld is set to the table number at line 908, which is passed as an
input parameter. Then we set the various function pointers in the fi b_table struct to
point to the fn_hash_lookup,fn_hash_insert , and so on, functions from lines 909 to
914. Finally the tb_data fi eld of fi b_table is initialized using the memset at line 918.
This fi eld is an anonymous pointer and is further used to point to an fn_hash struct

FIB TRAVERSAL FLOW DIAGRAM 563

which contains array of fz_zone struct, and this in turn contains an array of fi b_node
hash structures.

 14.11.2.2 fi b _ rules _ init (). This function registers the callback function fi b_
rules_event () (cs 14.58). The rules list is already statically linked, and it doesn ’ t do
any intializations.

 The fi b_rules_event () function is invoked whenever a new network device is
registerd or unregistered. The fi b_rules_attach () and fi b_rules_detach () functions
are called for all rules to correct all the ifi ndex entries to any event of register or
unregister network device.

 14.12 FIB TRAVERSAL FLOW DIAGRAM

 Figure 14.16 shows details about destination route lookup for the outgoing packet.
The destination route lookup is done fi rst in route cache if it ’ s not found then search
the FIB detabase.

 14.12.1 ip _ route _ output ()

 The main arguments to ip_route_output (cs 14.59) function is the source and desti-
nation address, tos, and the output interface. It initializes the rt_key structure with

 cs 14.57. fi b_hash_init ().

564 IP ROUTING

 cs 14.58. fi b_rules_event().

the saddr, daddr, tos, and oif values at line 143 and calls the function ip_route_
output_key() for getting the routing cache entry.

 14.12.2 ip _ route _ output _ key ()

 The rt_key struct is passed as an argument to this function from ip_route_output() .
This rt_key struct is used to fi nd the hash index for rt_hash_table so that the appro-
priate chain from rt_hash_bucket of routing entries are searched. At line 2004 (cs
 14.60) it calls the rt_hash_code() function to calculate the hash value. Once the hash
value is returned from rt_hash_code() , then at line 2006 it acquires the rt_hash_ table
lock for reading the entries from rt_hash_table for comparison with the hash key.

 The hash value returned from rt_hash_code is used to search the appropriate
hash queue from rt_hash_table to fi nd an entry that matches the key with respect
to destination & source address and tos & oif values (if CONFIG_IP_ROUTE_

 cs 14.59. ip_route_output ().

FIB TRAVERSAL FLOW DIAGRAM 565

FWMARK is enabled in the kernel, then the mark value is also used for matching
the key, i.e., at line 2007 to 2011).

 If an entry is found for the input key from hash queue of rt_hash_table , then
since we are going to use this routing cache entry, so at line 2017 the routing cache
entries ’ last time of use should be updated so that the garbage collection routine
for cleaning the entries from the chain should be aware of this. And dst_hold() is
called at line 2018, and this function simply increments the reference count so that
this can ’ t be deleted if its in use. Finally at line 2022, * rp is set to this found entry
from the chain and then returns.

 If the matching key is not found from the rt_hash_table — that is, the condition
fails at line 2008 — then we exit from the loop and fi nally call the function ip_route_
output_slow at line 2028, which uses the FIB to construct the new routing entry.

 Figure 14.16. FIB traversal fl ow diagram.

566 IP ROUTING

 14.12.3 ip _ route _ output _ slow ()

 This function is a major route resolver. The input parameters to this function are
routing key (rt_key struct) and a pointer to pointer of type struct rtable. The main
functionality of this function is to search the FIB database based on the input
routing key; and if the match entry is found, then create a new route cache entry.
The new route cache entry is returned as a pointer and stored in * * rp, which is an
input parameter of type struct rtable.

 It mainly delivers an IP packet locally or to a remote destination. Any IP packet
created by the host system must have an source address; so whenever a packet is
transmitted, the destination should know the source of the received packet to send
a reply back to the source.

 The main signifi cance of this routine is that it checks for the IP source address
and selects the egress device for the packet transmission. It checks for both the IP
source address and egress device. If the source address is given, then it selects the
egress device by doing local routing table lookup; or else if the egress device is
already known, then it selects the source address based on the egress device. Finally,
if the route lookup is successful for the IP packet, then it creates and initializes a

 cs 14.60. ip_route_output_key ().

FIB TRAVERSAL FLOW DIAGRAM 567

new route cache table entry and inserts it into the route cache. It also identifi es
whether the packet is of multicast, broadcast, or unicast type. It also provides
support for multipath routing if confi gured in kernel for the next hop selection, or
it selects the default gateway for the next hop. Multicast routing is also supported
if defi ned in kernel.

 The key (struct rt_key) and res (struct fi b_result) are two important local vari-
ables at lines 1707 and 1708 (cs 14.61), where the struct rt_key contains information
about the destination, source, input, and output interface, the tos, and the forwarding
mark. The ‘ key ’ variable is of type struct rt_key , gets initialized to values pointed by
oldkey, which is also of type struct rt_key , and is passed as an input parameter. The
 ‘ res ’ variable is of type struct fi b_result , which is later passed as an input parameter
to fi b_lookup () function and gets the route information required. It is also used to
build the new routing cache entry, where the fi b_result struct contains information
about the route — that is, prefi xlen, next hop details, scope of route, and type of
address. The input parameter ‘ oldkey ’ contains the information about the route, and
the ip_route_output_slow () starts with copying the values from oldkey to local
variables for building the new search key.

 At line 1717, before assigning the oldkey → tos value, we are checking whether
the fl ag RTO_ONLINK is set or not, where ‘ RTO_ONLINK ’ is used to indicate
that the destination is no more than one hop away and reachable via a link layer
protocol. This fl ag is important for scope value of the new key element of struct rt_
key . From lines 1718 to 1722, new key values of key variables are getting assigned
from the input parameter oldkey; that is, fi rst the destination and source address
are copied into the new search key, followed by the tos value and the output

 cs 14.61. ip_route_output_slow ().

568 IP ROUTING

interface identifi er. Initially the input interface identifi er is pointed to the loopback
device at line 1721 and at line 1724; if CONFIG_IP_ROUTE_FWMARK is defi ned,
then the new mark (netfi lter) value is assigned to key.fwmark. The value of key.
scope at line 1726 depends on the fl ag ‘ RTO_ONLINK . ’ If RTO_ONLINK fl ag is
set, then the scope of the route must be RT_SCOPE_LINK ; otherwise it is RT_
SCOPE_UNIVERSE . The key.scope indicates the distance to the destination IP
address (local network, host, universe, etc.). For more information on scopes, see
Section 14.12.7 . Then the fi b_info pointer is initialized to NULL at line 1728. If
policy routing is defi ned in the kernel ‘ CONFIG_MULTIPLE_TABLES , ’ then the
fi brule struct (i.e., res.r) at line 1730 is initially set to NULL.

 Here we check for the source address from the search key at line 1733 (cs 14.62).
As mentioned earlier, any IP packet must have the source address so that the des-
tination can send back the reply. If we have the source address at line 1733, then
we need to test whether this is of type MULTICAST, BADCLASS, or ZERONET
at line 1735, and any source address cannot be of these types. If there is any chance
of either of these types occurring, then we return the error to the caller by jumping
to the label out at line 1738.

 Then we need to check if this source address is one of our local addresses that
is assigned to one of the network interfaces of the system. So we call the function
 ip_dev_fi nd () at line 1741 to identify the interface with this source address. This
function returns the pointer to the net_device struct associated with the source
address; that is, we get the network interface from which the packet has to be trans-
mitted. For more information on ip_dev_fi nd , refer to Section 14.12.4 .

 At lines 1753 and 1754, the egress device is not provided by the search key and
the destination is multicast or a limited broadcast address (cs 14.63). If the destina-
tion is a multicast address, then a group of hosts or systems on the same subnet or
different subnet (or WAN) can receive the packet, whereas in the case of broadcast
packets they can be received by all the hosts on the subnet. So here the source
address plays an important role in communication since the destination can be a
group of hosts or all the hosts in the link. This is the case of the special hack as per
the comments in the code at lines 1755 – 1769, which gives more details about this
hack. So the check is made at lines 1753 and 174 for this case. If the condition at
lines 1753 and 1754 is true, then the output interface identifi er of the new search

 cs 14.62. ip_route_output_slow () (continued).

FIB TRAVERSAL FLOW DIAGRAM 569

key is the output interface associated with the device returned by the ipdev_fi nd
() function as explained earlier. So it uses the returned net_device from the ip_dev_
fi nd () . Then it jumps to the label make_route . Here the packet can be routed
without doing the fi b_lookup since we have all the routing information.

 Finally, release the device by calling the dev_put () function and set the dev_out
to NULL at line 1775. This is the case where an output interface is provided, so we
check for the source address; if it is not provided, we get the source address. If the
output interface identifi er is specifi ed in the search key, then we get the net_device
by calling the function dev_get_by_index () at line 1778 (cs 14.64). If the returned
value is NULL, then jump to label out and return error at line 1781. The function
 __in_dev_get() returns the void * ip_ptr element of the net_device structure at line
1782; if not, the device is released and an error is returned. The ip_ptr element points
to the instance of in_device struct. This in_device struct contains the important
element ifa_listof type in_ifaddr struct, which is an IP ifaddr chain (list of struct
 ifa_list). This is important that each physical net_device on the system may be
assigned alias IP addreses and labels (eth0:0, eth0:1, etc.)

 If the destination is a local multicast address, then a group of hosts or systems
on the same subnet can receive the packet, whereas in the case of broadcast packets
they can be received by all the hosts on the subnet. The source address is required
here before transmitting these types of packets since it is the important key for the
communication because the destination can be a group of hosts or all the hosts in
the link.

 So if the destination is the local multicast or the broadcast address at line 1787
and if the source address is not provided in the key but output interface identifi er
is specifi ed, then we retrieve the source address of the output device by calling the
function inet_select_addr () (for more information on inet_select_addr , see Section
 14.12.6). The scope here is RT_SCOPE_LINK (for more information on scopes, see
Section 14.12.7). The reason for link scope is that the local multicast, broadcast, and
limited broadcast destinations are on the same subnet. Here the destination address
is with scope RT_SCOPE_LINK , so we have the route information and hence it
jumps to label make_route without doing the route lookup at line 1791.

 cs 14.63. ip_route_output_slow () (continued).

570 IP ROUTING

 If the source address is not specifi ed in the search key at line 1793 and then if
it is for the general multicast (can be same subnet or on WAN), then we retrieve
the IP source address by calling the function inet_select_address () (for more infor-
mation on inet_select_addr , see Section 14.12.6) using the key scope as an input
parameter. Otherwise, if the destination address is not specifi ed, then the scope
 RT_SCOPE_HOST is passed as an input parameter to inet_select_address () to get
the source IP address for the output device.

 This is a case wherein the destination address is not specifi ed in the search key.
If it is not specifi ed, then we assign the source address from the search key as the
destination address at line 1804 (cs 14.65). If the source address from the search key
is also NULL, then both the destination and source address is set to the loopback
address at line 1806. Then release the device line 1808 and use the loopback device
at line 1809 for sending packets to this machine. The type of the address is RTN_
LOCAL , and it fi nally jumps to the label make_route without doing the route
lookup because it is not required since it is for a local machine.

 The function fi b_lookup() is invoked at line 1817 (cs 14.66) to resolve the des-
tinations address by fi nding a specifi c route. A more detailed description about fi b_
lookup is explained in Section 14.12.8 .

 In the case where fi b_lookup() fails here, it falls into the block at line 1818. If
an output interface is specifi ed by the search key at line 1819, then it is still possible

 cs 14.64. ip_route_output_slow () (continued).

FIB TRAVERSAL FLOW DIAGRAM 571

to send the packet. First it checks for the source address from the key; and if it is
not provided, then it gets the source address of the device by invoking the function
 inet_select_addr () at line 1839. Here the assumption is made that the destination
address is on the link, hence the scope RT_SCOPE_LINK . The type of the address
is set to RTN_UNICAST at line 1841. Then it jumps to the label make_route at line
1842. If the egress device is not provided by the key (i.e., condition at line 1844
becomes false), then release the device by calling the dev_put () function and set
the dev_out to NULL at line 1845 and set the error to destination unreachable and
then jump to label out at line 1847.

 The variable res has type fi b_result struct, and it is updated and returned by the
fi b_lookup () function. Here we are checking the address type for RTN_LOCAL

 cs 14.65. ip_route_output_slow () (continued).

 cs 14.66. ip_route_output_slow () (continued).

572 IP ROUTING

at line 1854 (cs 14.67). RTN_LOCAL fl ag indicates that the packet is routed
locally.

 If the source address is not specifi ed in the search key, then we assign the source
address from the search key as the destination address at line 1856 (source address
and destination address are same). Then release the device at line 1860 and use the
loopback device at line 1859 for sending packets to this machine. Release the refer-
ence to the fi b_table by calling the fi b_info_put () function. RTCF_LOCAL is an
indication that the route is specifi c to the local IP address. For the routes that are
destined to or originate from one of local interfaces, the routes have an RTCF_
LOCAL bit set. Finally, jump to the label make_route .

 The multipath route selection happens only when the multipath support
(CONFIG_IP_ROUTE_MULTIPATH) is enabled in the kernel. If the multipath
support is enabled in the kernel, then we check to see if the fi b_lookup () function
returns to the route with more than one next hop (routers), that is, res.fi → fi b → nhs
 > 1. And also check for the if egress device is not provided with the search key. If
both these conditions are true, then only the fi b_select_multipath () functions gets
called to select the route from the multiple routes. For more information on mul-
tipath routing see Section 14.3 .

 The default route selection happens only if the prefi x length (netmask) of the
route is 0; that is, the route returned by fi b_lookup () and the type of the address
is RTN_UNICAST and also the egress device in not provided by the search key. If
these three conditions are true at line 1874, then only the fi b_select_default () func-
tion is invoked at line 1875 (cs 14.68) to select the right default gateway. The input
parameters to the fi b_select_default () function are search key, and the fi b_result
struct was returned by the fi b_lookup () function.

 A check is made if the source IP address is still NULL at line 1877. If it is NULL,
then the FIB_RES_PRESRC macro is used to get the IP address at line 1878. The
 FIB_RES_PRESRC macro retrieves the source IP address from the fi → fi b_prefsrc
fi eld of the fi b_info struct fi eld. If this fi b_info fi eld is also NULL, then the inet_
select_address () function is invoked to get the source IP address from the
 net_device .

 cs 14.67. ip_route_output_slow () (continued).

FIB TRAVERSAL FLOW DIAGRAM 573

 Finally, release the net_device if dev_out is holding it at line 1881 and then
set the dev_out using macro FIB_RES_DEV (from fi b_info struct of fi b_result
struct) at line 1882. Also set the value of key.oif using the dev_out ’ s ifi ndex at line
1884.

 Here fi rst we are checking if the source address is LOOPBACK, and the
selected the output device has an IFF_LOOPBACK fl ag set at line 1887 (cs 14.69).
If not jump to label e_inval at line 1888 and return error.

 cs 14.68. ip_route_output_slow () (continued).

 cs 14.69. ip_route_output_slow () (continued).

574 IP ROUTING

 Then check for the following:

 1. key.dst == 0XFFFFFFFF at line 1890; if it is, then set the type of address to
 RTN_BROADCAST .

 2. The destination address is multicast at line 1892; if it is, then set the type of
address to RTN_MULTICAST .

 3. If the destination address is BADCLASS or ZERONET at line 1894, then
jump to label e_inval and return error.

 If the res.type (type of address) is RTN_BROADCAST at line 1900, then the fi b_
info struct associated will be released at line 1903 by calling the function fi b_info_put
() .

 If the res.type is RTN_MULTICAST , then check the multicast list of the net_
device by acquiring inetdev_lock .

 The function __in_dev_get() returns the void * ip_ptr element of the net_device
structure. The ip_ptr element points to the instance of in_device struct. This in_device
struct contains the important element mc_list of type ip_mc_list struct . To check the
destination, the IP address is multicast and the function ip_check_mc () is
invoked.

 Allocate the memory for the rtable struct rth (route cache entry) at line 1923
(cs 14.70).

 Then copy most of the elements of the oldkey structure from line 1928 to 1933
(cs 14.71), which is used to create route the key - for - key struct embedded in rtable
struct rth . The rth → key struct will be used in subsequent route cache olookups and
must match the input key.

 Then copy the elements used to route the packet to rt_fi elds of the route cache
element from line 1943 to 1947. These are the elements that are actually used in
building and routing the packet. Setup the function that will be used to transmit the
packet at line 1949.

 The output function used to transmit the packets is set to ip_output () at line
1949 (cs 14.72).

 Then check for the fl ags at line 1953 for local delivery and line 1957 for multicast
that this route is terminating on the local machine or different and based on that

 cs 14.70. ip_route_output_slow () (continued).

FIB TRAVERSAL FLOW DIAGRAM 575

 cs 14.71. ip_route_output_slow () (continued).

 cs 14.72. ip_route_output_slow () (continued).

576 IP ROUTING

set the ip_function for delivery of packets. In case of local delivery of packets the
output function is set to ip_local_deliver () and for the multicasting the output
function is set to ip_mc_output () function.

 The CONFIG_IP_MROUTE option at line 1963 is enabled in kernel if the
machine acts as a router for multicast destination addresses.

 The rt_set_nexthop() at line 1978 sets the next - neighbor parameters including
pmtu.

 And fi nally fi nd the hash code value by calling the function rt_hash_code() at
line 1982. This hash code value is used by the function rt_intern_hash() at line 1983
to search in the respective hash queue of rt_hash_table . The rp parameter passed to
 ip_route_output_slow as the location at which a pointer to a new route cache entry
should be returned.

 14.12.4 ip _ dev _ fi nd ()

 The ip_dev_fi nd () function returns the network device confi gured within this
machine for the source IP address provided as input parameter to this function. It
starts with initializing the rt_key struct at line 151 (cs 14.74). The only fi eld used
here for the rt_key struct is the dst element. The input source IP address is copied
to the dst fi eld of the rt_key struct before doing the lookup in the local table at line
152. If the policy routing (CONFIG_IP_MULTIPLE_TABLES) is defi ned in the
kernel, then initially we set the fi b_rule struct to NULL at line 154.

 Then we proceed with the local table lookup to fi nd the source address with
the network device. The local table here consists of local and broadcast address
information within this machine. The lookup routine called through the function
pointer tb_lookup at line 157 is fn_hash_lookup () (for more information on lookup,
see Section 14.12.8.1) function. After successful local table lookup, the most impor-
tant check is made at line 160 for the routing type of the source address found. If

 cs 14.73. ip_route_output_slow () (continued).

FIB TRAVERSAL FLOW DIAGRAM 577

it is not RTN_LOCAL type, otherwise this is a invalid entry in the table. The
 RTN_LOCAL signifi es that the address found is confi gured on the local interface
of the system.

 If the routing type of the source address from local table lookup is RTN_
LOCAL , then get the reference to the net_device by calling the macro FIB_RES_
DEV at line 162. Finally, increment the use count in the net_device struct at line 164
and return the net_device pointer at line 168 before releasing the reference in the
 fi b_table by calling the function fi b_res_put () function.

 14.12.5 __ in _ dev _ get ()

 The function __in_dev_get() returns the void * ip_ptr element of the net_device
structure (cs 14.75).

 cs 14.74. ip_dev_fi nd ().

 cs 14.75. in_device.

578 IP ROUTING

 The ip_ptr element points to the instance of in_device struct. This in_device
struct contains the important element ifa_list of type in_ifaddr struct which is an IP
ifaddr chain (list of struct ifa_list) (Fig. 14.17). This is important that each physical
 net_device on the system may be assigned alias IP addresses and labels (e.g., eth0:0,
eth0:1, and so on).

 14.12.6 inet _ select _ addr ()

 This function (cs 14.76) selects the IP address (i.e., source IP) confi gured on the
network device. If there are multiple IP addresses confi gured on the device, it selects
the appropriate IP address based on the inputs provided. Why source address
selection?

 For any IP packet created on the host system, it has to select the some source
address before sending that packet to the destination address. This source informa-
tion is important for the destination system to know from where the packet has
arrived, so that it can deliver a reply to the source. If source information is not pro-
vided to the destination system, then half of the communication will never arrive
and the reply is lost.

 Linux selects the source address using the following rules:

 • The application may be already using the socket, so the source address is
already selected or may request the source address using bind () call.

 • It performs route lookup to fi nd the destination route. If the destination route
is found, then it checks the src parameter from the route; if it is not found,
then the kernel selects this source address for communication.

 • If application or route lookup doesn ’ t provide the source address, then the
kernel searches the list of IP addresses confi gured for the network interface.

 Figure 14.17. ifa_list and mc_list.

FIB TRAVERSAL FLOW DIAGRAM 579

Here the inet_select_addr () function comes into the picture, it performs the
lookup into the list of address confi gured on the interface and selects the
appropriate IP address.

 The Network Interface Card (NIC) can be confi gured for a single IP address or
multiple IP addresses. If multiple addresses are set for a NIC, then some of the
addresses are called primary while others are called secondary. Each IP address
confi gured on the NIC must have a netmask; either this is provided by the user while
confi guring the IP address or the system would assign the default netmask based
on the IP address class.

 A single subnet or multiple subnets can be confi gured on the NIC, and each
subnet would have multiple addresses. The distinction between the primary and sec-
ondary addresses can be automatically done by the system. The fi rst address confi g-
ured on the subnet is the primary address, and thereafter any IP address confi gured
is called a secondary address. For example, if there are three subnets confi gured for
the NIC, there are three primary addresses, and each subnet would have one primary
address and the rest of the addresses of the specifi c subnets are called a secondary
address. The interface can have many primary and secondary addresses.

 A system can be confi gured with a single interface or multiple interfaces, and
any of the interfaces in turn can be confi gured with a single IP address or multiple

 cs 14.76. inet_select_addr ().

580 IP ROUTING

IP addresses with different subnets. The selection of the IP address is straightfor-
ward in the case of a single IP confi gured on the interface.

 The input parameters to the inet_select_addr () function are the net_device
pointer, IP address (not local to the system), and the scope. If the input IP address
is zero, then any primary address confi gured on the ingress device would be selected.
The selection of the source IP address from multiple IP addresses confi gured on the
ingress device is based on the input scope provided and the location of the destina-
tion address. Selection based on the scope is important here since the destination
has to in turn reply to the source with the same scope.

 The scope can be RT_SCOPE_LINK/HOS/SITE/UNIVERSE .
 The in_device instance has the list of IP addresses confi gured on the net_device .

We get the pointer to the in_device instance at line 724 (cs 14.76). Then using the
kernel provided macro for_primary_ifa , we browse through the list of IP addresses
confi gured for the net_device . The for_primary_ifa macro is used to search the ifa_
list in_device instance of the network device.

 Here the scope plays an important role in selecting the source IP address. This
function selects an ingress address with a scope the same as or smaller than the
scope of the destination address. If the scope of the ingress address is greater than
the scope of the destination address, we skip that address and continue the search
at line 732. Another option is to search all interfaces for an address with an appro-
priate scope at line 758.

 14.12.7 ROUTE _ SCOPES

 The scope of a route is used to fi nd out much precisely the route for a given desti-
nation. fi elds fn → fn_scope and key → scope are compared in fn_hash_lookup() to
check if an entry found satisfi es the scope criteria. For higher values of scope, we
need to fi nd a more specifi c route for the destination. For lower values of scope, the
routes belong to a destination network.

 The scopes are listed in cs 14.77 .

 RT_SCOPE_HOST indicates that the destination address is for the local
host.

 RT_SCOPE_LINK indicates that the destination address is for the local
network.

 cs 14.77. rt_scope_t.

FIB TRAVERSAL FLOW DIAGRAM 581

 RT_SCOPE_NOWHERE indicates that there is no route to the destination
address.

 RT_SCOPE_SITE indicates an interior route within the site.
 RT_SCOPE_UNIVERSE indicates that the destination address is not directly

connected and it is more than one hop away.

 Important Routing Control Flags
 RTCF_LOCAL is an indication that the route is specifi c to the local IP address.

For the routes that are destined to originate from one of local interfaces,
routes have RTCF_LOCAL bit set.

 RTCF_MULTICAST is an indication that the route is to the multicast
address.

 RTCF_BROADCAST is an indication that the route is to the broadcast
address.

 RTCF_ONLINK is an indication for a locally rechable destination.

 Important Routing Types
 RTN _ UNICAST : Route is a gateway or direct route.
 RTN _ LOCAL : Route is a local address.
 RTN _ BROADCAST : Accepts packets locally as broadcast, send packet as

broadcast.
 RTN _ MULTICAST : Indicates that this is a multicast route.

 14.12.8 fi b _ lookup ()

 There are two versions of fi b_lookup () :

 1. If policy routing is not enabled, then the following version of fi b_lookup ()
gets invoked. The fi b_lookup() function gets struct rt_key and fi b_result as input
parameters. It calls the function pointer tb_lookup for both local and main table at
lines 157 and 158 to fi nd the destination match entry either in the local table or in
the main table. This tb_lookup function pointer is resolved to fn_hash_lookup()
function. This fn_hash_lookup_function() returns 0 on success and nonzero on
failure. The lookup returns network unreachable error at line 159 only when didn ’ t

 cs 14.78. fi b_lookup ().

582 IP ROUTING

get any match from either of the tables. The local table has precedence over the
main table.

 The lookup here consists of only two tables, namely, local and main tables. If
policy routing is defi ned in the kernel, several routing tables can be confi gured.

 2. If policy routing (CONFIG_IP_MULTIPLE_TABLES) is defi ned in the
kernel, then the version of fi b_lookup shown in cs 14.79 gets invoked.

 In the case of policy routing (for detailed information see Section 14.2), several
routing tables are confi gured and we can defi ne a rule to select a particular routing
table based on the packet routing requirement.

 What Is This Rule?

 In the case of nornal routing for a single routing table, the routing decisions are
based on the destination address. With policy routing confi gured, including destina-
tion address, we can also use the source address, tos fi eld, and iptables marking
(fwmark) as parameters to defi ne a rule for packet. This rule based on these param-
eters is used to select the routing table. Each rule has a unique priority, and this
priority rules list is searched for the given rule. The rules list is sorted in increasing
order based on the priority.

 There are three default rules in the system without any confi guration added by
the user:

 1. local_rule
 2. main_rule
 3. default_rule

 cs 14.79. fi b_lookup ().

FIB TRAVERSAL FLOW DIAGRAM 583

 local _ rule : The priority of this rule is 0 and it is the highest priority. Whenever
the rules list is searched to match the given rule, this rule always matches for any
rule and it does lookup in the local routing table. So if there are any packets for a
local system, it doesn ’ t require any further routing decisions. The local table is
maintained by the kernel for local and broadcast addresses.

 main _ rule : The priority of this rule is 32766, and this is the main routing table
in the system and it always matches and searches the route.

 default _ rule : The priority of this rule is 32767, and this rule is at the end of
the rules list.

 Any user added rule is inserted between the local and main rule.
 The global variable fi b_rules points to the rules list in the system. Before search-

ing this rules list, we need acquire a ‘ fi b_rules_lock ’ at line 321, which is an rwlock
and protects the fi b_rules list of fi b_rule data structures. Then the for loop is used
to search the given rule of the packet from the rules list; and if there is a match for
the given rule of the packet, we can continue to fi nd the routing table based on the
policy action defi ned in the matched rule; otherwise, if there is no match, continue
the search in the rules list (cs 14.80).

 Once a matching rule for the packet is found from the fi b_rules list, the match-
ing rule (fi b_rule struct) has the policy action fi eld; based on this action, we decide
the policy type.

 There are fi ve policy types:

 1. RTN _ UNICAST : Based on the rule, a specifi c routing table lookup is done
to fi nd the route for the packet.

 2. RTN _ BLACKHOLE : The packet is discarded and no feedback is given.
 3. RTN _ UNREACHABLE : The packet is discarded and the destination

network is unreachable.

 cs 14.80. fi b_lookup () (continued).

584 IP ROUTING

 4. RTN _ PROHIBIT : The packet is discarded and the communication is not
allowed.

 5. RTN _ NAT : This is used for status network address translation (NAT).

 If the policy type is RTN_UNICAST , then fi nd the routing table based on the
table id (r → r_table) from the matched rule (fi b_rule) by calling the function fi b_
table_get () at line 352 (cs 14.81); lookup is done for that table to fi nd the route.
Other policy types lead to error.

 The lookup function here is the fn_hash_lookup () . This function is a registered
handler to the tb_lookup function pointer, and this is done in the function fi b_hash_
init () . If the lookup is successful, then we initialize the res → r (fi b_rule of fi b - result
struct) to the policy (matched rule from the fi b rules list) and then increment the
count to keep track of the number of refrences to the fi b_rule struct (matched rule)
at line 358. Finally release the fi b_rules_lock at line 359 and return 0 to the caller
function.

 14.12.8.1 fn _ hash _ lookup () . The fn_hash_lookup() function is used for
routing table lookup, to match and fi nd a destination route for the packet. The main
function does the lookup in a single routing table at a time by acquiring the proper
locks to read the table information.

 Input parameters to this function are as follows:

 tb : routing table to search for fi nding the destination route for the packet.
 key : search key used for lookup in the table.
 res : route lookup is successful and then res is intialized to route information.

 cs 14.81. fi b_lookup () (continued).

 tb → tb_data pointer at line 273 (cs 14.82) is a pointer to the associated FIB hash
table (fn_hash) of the routing table (fi b_table). Before doing any lookup operation
in the routing table, we need to acquire a ‘ fn_hash_lock ’ lock in shared mode at line
275. ‘ fn_hash_lock ’ is a read – write spin lock (rwlock).

 The lookup algorithm is based on the LPM (Longest Prefi x Match) algorithm.
This algorithm is used to fi nd the most specifi c route for the destination. Each
routing table (fi b_table) contains a associated pointer to FIB hash table (fn_hash),
and this FIB hash table contains a array of fi b zones (fz_zone) and a pointer to the
fi b zones list (fn_zone_list). Based on the netmask (prefi x) length which is 32 bits,
for each bit of the netmask there is a zone associated with it; this is the reason why
 fz_zones[33] is defi ned in fn_hash struct. Each element of this zones array repre-
sents a single zone. The fn_zone_list pointer points to the longest netmask zone.
Hence the LPM algorithm starts the search with the longest netmask zone to fi nd
the more specifi c route for the packet (closer to the fi nal destination).

 Why LPM Algorithm for Routing Table Lookup?

 IP performs the steps in the following order to fi nd the destination route in its
routing table:

 • Searches for a matching host address (IP address)
 • Searches for a matching network address
 • Searches for a default entry (the default entry is a network address with 0)

 A matching host address (host ’ s IP address) is always used before matching a
network address. If both host address and network address are not matched, then
we use the default entry (default route), which is a network address with ID 0 for
which a default gateway address is defi ned in the routing table.

 cs 14.82. fi b_hash_lookup ().

FIB TRAVERSAL FLOW DIAGRAM 585

586 IP ROUTING

 fn_zone[0] represents the default entry (default route).
 fn_zone[32] represents the more specifi c route.

 This is achieved by using the for loop at line 276, which loops over the zones
list starting with the longest netmask to fi nd the more specifi c route. Before starting
the search into the zone, using the search key ’ s destination, a test key is built by
AND ’ ing the destination address with the zone ’ s netmask. This is done by calling
the function fz_key() at line 278. This test key is used for the lookup into the fi b_
node chain (cs 14.83).

 Each zone has a pointer to the hash table (fz_hash). This hash table ’ s each
bucket points to the fi b_node list. To calculate which bucket of the hash table to be
searched fz_chain() function is called at line 280. This is again a one more for loop
to traverse through the fi b_mode list based on the bucket returned by the fz_chain
() function (cs 14.84).

 The fz_chain() function calculates the the hashing value to get the hash table
bucket for accessing the fi b_node list by calling the function fn_hash() .

 The fn_hash() function calculates the hash value by AND ’ ing the ket.datum
(after performaing the shift operations) value with the fz_hashmask (0xf) to get a
hash table bucket. The hash table consists of the 16 buckets, and that ’ s the reason
why the fz_hashmask value is always 0xf(15) (cs 14.85).

 On returning to the fn_hash_lookup() , the fi rst step in the inner loop after
getting the fi b_node list to traverse is to compare the test key built by the fz_key
() function with the key (f → fn_key , which is an address) from the fi b_node list. This
is done by calling the function fn_key_eq() at line 281 (see cs 14.86).

 If the fn_key_eq() function returns true — that is, the key value are matching —
 then we continue to check whether the matched fi b_node is a valid one; if the fn_

 cs 14.83. fz_key().

 cs 14.84. fz_chain ().

 cs 14.85. fn_hash().

 cs 14.86. fn_key_eq ().

key_eq() function returns false — that is, the keys are matching — then the function
 fn_leq_key() is called at line 282 to check whether the test key value is greater than
that of the key value from the fi b_node ; if it is, we continue to search the next
 fi b_node — otherwise we come out of the inner for loop. This is because the fi b_nodes
on the list are sorted in decreasing order by prefi x.

 If the control reaches at line 287 and if the CONFIG_IP_TOS is defi ned in the
kernel and if the tos value of the fi b_node is not equal to the tos value of the key,
the match is discarded and the search continues. fi b_node state information is
checked for ACCESSED or ZOMBIE.

 ZOMBIE nodes are currently not in use and related to deleted routes or dead
interfaces. If the state is ZOMBIE at line 293, then we discard the search and con-
tinue. The fi b_node scope should be at least equal to or greater than the key node
scope; if it is less than the key scope, then the match is discarded at line 296 and the
search continues.

 The fi b_semantic_match() is called at line 298 is to check the usability of the
matched fi b_node . It represents an acceptable route, the next hop is alive or not,
and the output interface mentioned in the search key is the same as the one associ-
ated with the next hop. If any of these are not correct fi b_semantic_match() , then
return error. If there are no errors, then we initialize the fi b_result struct (res) with
the fn_type, fn_scope , and fz → fz_order and then jump to the label out at line 303
and release the fi b_hash_lock before returning the err at line 312 (cs 14.87 ,
Fig. 14.18).

FIB TRAVERSAL FLOW DIAGRAM 587

 cs 14.87. fi b_hash_lookup () (continued).

 Figure 14.18. fn_hash table.

 14.13 SUMMARY

 IP routing decides the best possible route for a packet transfer between
computers.

 The IP layer handles the routing between computers.
 The two main functionality of the IP routing are:

 1. Forwarding of the IP packets in routers.
 2. Identifying the best possible routes for transport of each packet between

networks.

 Linux uses the following tables for routing:

 1. Forwarding Information Base (FIB): contains and keep tracks of every
known route.

 2. Routing cache: faster cache for destinations that are currently in use.
 3. Neighbor table: keeps track of computers that are physically connected to a

host.

 Different types of routing supported in Linux are: policy - based routing, multipath
routing, source routing, and record routing.

SUMMARY 589

591

15

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 IP QUALITY OF SERVICE IN LINUX
(IP Q O S)

 In this chapter we are going to discuss the pfi fo_fast and cbq queueing disciplines;
 pfi fo_fast is the default qdisc for the linux and is classless queueing discipline,
whereas the cbq qdisc is not the default qdisc for linux, needs to confi gured by
user, and is a class - based queueing discipline. We explain in detail the data structures
for Qdisc (Queueing Discipline) and then the implementation details of pfi fo_fast
qdisc and the CBQ qdisc. Also we will see in detail how to confi gure CBQ — that
is, overriding default qdisc, confi guring CBQ classes for handling traffi c, and
creating fi lters for the classes. In addition to this, we will also see types of fi lters
confi gurable for classes and discuss implementation details of u32 and route fi lters.
Finally, we will look at the details of how cbq_enqueue and cbq_dequeue are
implemented.

 15.1 INTRODUCTION

 The basic functionality of quality of service (Queueing Discipline) in Linux is to
decide how the input network packets will be accepted in order and what bandwidth
rate and make a decision on when and how the output network packet is arranged
in queues and transmitted at allocated bandwidth rate. It basically administers the
bandwidth based on the application requirements.

 In Linux, a “ qdisc ” represents a queueing discipline. The default qdisc attached
to the network interface for linux is “ pfi fo_fast_qdisc ” ; this qdisc can be replaced
based on the requirement for other types of queueing discipline.

592 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 Following are the types of the queueing discipline supported in Linux:

 1. First In, First Out (FIFO)
 2. Priority FIFO (PFIFO)
 3. Token Bucket Flow (TBF)
 4. Asynchronous Transfer Mode (ATM)
 5. Random Early Detection (RED)
 6. Stochastic Fair Queueing (SFQ)
 7. Class - Based Queueing Discipline (CBQ)
 8. Generalized RED (GED)
 9. Diff - Serv Marker (DS_MARK)
 10. Clark – Shenker – Zhang (CSZ)

 15.2 BASIC COMPONENTS OF LINUX TRAFFIC CONTROL

 • Queueing Discipline
 • Classes
 • Filters/Classifi ers
 • Policing

 Queueing Discipline. Each network device on Linux has a queueing discipline,
which controls how the network packets are enqueued and dequeued before
transmission (Figs. 15.1 – 15.3).

 Classes. Classes are supported by only class - based queueing discipline. We can
divide the network traffi c based on fi lters (IP address, TCP/IP port, etc.) for classi-
fi cation into different classes before transmission, and each class will be scheduled
for dequeuing a packet based on the priority.

 Figure 15.1. Block diagram of Linux traffi c control.

 Filters. Filter organize the packets into different classes based on the certain
parameters (IP addr, TCP/IP port, etc.).

 Policing. After the enqueueing of the network packets, the packets can be
policed for letting the packets go, dropping of the packets and the packets can go
but mark them.

 15.3 LINUX IMPLEMENTATION OF pfi fo _ fast qdisc

 pfi fo_fast qdisc is the default qdisc for all the network interfaces on the Linux
system. pfi fo_fast queueing discipline can be replaced by any other queueing disci-
pline for the Linux system (Fig. 15.4).

 pfi fo_fast contains three different FIFO queues (different bands) for enqueue-
ing of the packets based on the priority. The highest - priority packet goes into FIFO
0, and this highest packet is dequeued fi rst before handling any packets in FIFO 1
and FIFO 2. Similarly, packets in FIFO 1 are considered fi rst before any packets
handling in FIFO 2.

 Figure 15.2. pfi fo_fast queueing discipline in Linux (default queueing discilpline in Linux).

 Figure 15.3. Cbq queueing discipline in Linux.

LINUX IMPLEMENTATION OF pfi fo_fast qdisc 593

594 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 pfi fo_fast is not user - confi gurable because it it hardwired by default. The packet
priorities are assigned by the kernel and mapped to the appropriate band (FIFO)
based on the TOS octet of the packet (priomap) (Fig. 15.5).

 For packets enqueueing and dequeueing, the pfi fo_fast qdisc uses the pfi fo_fast_
enqueue() and pfi fo_fast_dequeue() functions.

 The four TOS bits are defi ned as follows:

 Binary Decimal Meanings

 1000 8 Minimize delay
 0100 4 Maximize throughput
 0010 2 Maximize realiability
 0001 1 Minimize monetary cost
 0000 0 Normal service

 Figure 15.4. pfi fo_fast qdisc implementation overview.

 Figure 15.6 illustrates the TOS fi eld in detail:
 The precedence bits and their possible values are as follows:

 000 (0): Routine
 001 (1): Priority
 010 (2): Immediate
 011 (3): Flash
 100 (4): Flash override
 101 (5): Critical
 110 (6): Internetwork control
 111 (7): Network control

 Now the TOS bits:

 Delay: When set to ‘ 1, ’ the packet requests low delay.
 Throughout: When set to ‘ 1, ’ the packet requests high throughput.

 Figure 15.5. pfi fo_fast priority bands.

 Figure 15.6. TOS fi eld.

LINUX IMPLEMENTATION OF pfi fo_fast qdisc 595

596 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 Reliability: When set to ‘ 1, ’ the packet requests high reliability.
 Cost: When set to ‘ 1, ’ the packet has a low cost.
 MBZ : Checking bit.

 This following table from RFC 1349 explains how applications might use the
TOS bits:

 TELNET 1000 (minimize delay)
 FTP
 Control 1000 (minimize delay)
 Data 0100 (maximize throughput)
 TFTP 1000 (minimize delay)
 SMTP
 Command phase 1000 (minimize delay)
 DATA phase 0100 (maximize throughput)
 Domain Name Service
 UDP Query 1000 (minimize delay)
 TCP Query 0000
 Zone Transfer 0100 (maximize throughput)
 NNTP 0001 (minimize monetary cost)
 ICMP
 Errors 0000
 Requests 0000 (mostly)
 Responses < same as request > (mostly)

 15.4 QUEUEING DISCIPLINE DATA STRUCTURE

 15.4.1 struct Qdisc

 struct Qdisc data structure represents a qdisc for the traffi c queueing discipline
and is attached to the net device (cs 15.1). This qdisc is responsible for the traffi c
control (packets queueing) before sending to the network interface of the Linux
system.

 enqueue : Function pointer pointing to the enqueuing function of the queuing
discipline. The default function is pfi fo_fast_enqueue() if no other queueing
discipline is confi gured. The main purpose of the enqueue function is to
enqueue an sk_buff in the proper queue of the scheduler.

 dequeue : Function pointer pointing to the dequeuing function of the queueing
discipline. The default function is pfi fo_fast_dequeue() . The main purpose is
to dequeue the packet from the highest - priority non – empty queue.

 ops : Each queueing discipline has a set of functions to control its operation,
and the Qdisc_ops data structure contains all these control functions.

 next : The Linux net device structure maintains the qdisc_list to link all the
queueing disciplines which are used for the device ’ s queueing. Here the next
pointer is pointing to the next queuing discipline supported by the device.

 handle : There are more than one instance of queueing disciplines in the kernel,
and each instance of queuing discipline is identifi ed by the 32 - bit number.

QUEUEING DISCIPLINE DATA STRUCTURE 597

handle represents this 32 - bit number (consists of major and minor number,
minor number is always zero) .

 q : Represents the head of the queue.
 dev : Points to the net device.
 stats : Represents the statistics — that is, number of enqueued bytes and packets,

packets dropped, and so on.
 data : This is a place holder. In the case of default pfi fo_fast , this points to an

array of sk_buff_head structures; for CBQ, this points to the cbq_sched_data
data structure which contains classes for different queues.

 15.4.2 struct Qdisc_ops

 struct Qdisc_ops data structure provides the set of control functions for various
operations to be performed on the queueing discipline.

 next : points to next Qdisc_ops to link all the queuing discipline operation that
has registered in the kernel.

 cl _ ops : This is a class operation data structure Qdisc_class_ops which provides
a set of functions for a particular class.

 id : Char array contains the identity of the queueing discipline (e.g., pfi fo, cbq,
etc.).

 The function pointers to the queueing discipline are as follows:

 enqueue (): Function pointer pointing to the enqueueing function of the queue-
ing discipline.

 cs 15.1. Qdisc data structure.

598 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 dequeue (): Function pointer pointing to the dequeuing function of the queue-
ing discipline.

 requeue (): If the packet was dequeued to send but it fails for unknown reason,
then the requeue function puts back the packet back to the queue at the
same place whereit had been before.

 drop (): Removes the packet from the queue and drops it.
 reset (): Resets the queueing discipline back to the initial state.
 init (): Initialize new queueing discipline.
 destroy (): Destroys the resources used during initialization of the queuing

discipline.
 change (): Changes values of the parameters of a queueing discipline.
 dump (): Shows the statistics of the queueing discipline.

 15.4.3 struct Qdisc_class_ops

 This is a class operation data structure that provides a set of control functions for
a particular class (cs 15.3).

 graft : Functionality is to attach a new queueing discipline to a class and return
the previously attached queueing discipline.

 leaf : Returns a pointer to the queueing discipline of class.
 get : Returns the internal ID of the class.
 put : Invoked when a class returned by the get is dereferenced.
 change : Changes the properties of the class, also used for creating new

classes.
 delete : Deletes a class.

 cs 15.2. Qdisc_ops data structure.

QUEUEING DISCIPLINE DATA STRUCTURE 599

 walk : Iterated over all classes of a queueing discipline, used to obtain diagnostic
data for all classes.

 tcf _ chain : Returns a pointer to the list of fi lters for a class, used to manipulate
the fi lter list.

 bind _ tcf : Binds an instance of a fi lter to the class.
 unbind _ tcf : Removes an instance of a fi lter from the class.
 dump _ class : Returns stats for a class.

 15.4.4 struct cbq _ class

 struct cbq_class data structure represents a traffi c class for the cbq queueing disci-
pline for scheduling a packet based on the bandwidth allocated for the class
(cs 15.4).

 cs 15.3. Qdisc_class_ops data.

 cs 15.4. cbq_class data structure.

600 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 Here we will discuss important fi elds of the cbq_class :

 next : Points to the next class in the class tree (hash table link).
 next _ alive : cbq scheduling algorithm maintains a list of active traffi c classes for

scheduling the class based on the priority. This fi eld will point to the next
class with backlog of packets from the list of active classes.

 classid : Every class in the cbq queueing discipline is represented by an id. This
fi eld contains a unique id for a cbq class.

 priority : This fi eld contains the class priority which is used in scheduling a cbq
class.

 priority 2: This fi eld contains the class priority to be used after the overlimit. A
cbq class is of three types: overlimit, underlimit, and at limit. Depending on
the usage of the class in cbq scheduling function, a class is classed overlimit,
underlimit, and at limit based on the allocated bandwidth.

 ewma _ log : The fi eld is used for calculating the idle time calculation required in
cbq scheduling function.

 allot : Specifi es how many bytes a qdisc can dequeue during each round. This
is reconfi gurable and depends on the weight fi eld of the cbq_class struct
(cs 15.5).

 quantum : Specifi es the allotment per weighted round robin based on the band-
width assigned for the class.

 weight : If the cbq_class has more bandwidth than other classes in the queue,
then the weight fi eld is used for the high - bandwidth class to send more data
in one round than the others.

 tparent : points to the parent of the cbq_class tree (cs 15.6).

 cs 15.5. cbq_class data structure (continued).

 cs 15.6. cbq_class data structure (continued).

 borrow : This fi eld indicates if the child class can borrow the bandwidth from
the parent class. If it is NULL, then class is bandwidth - limited and not able
to borrow bandwidth from parent class.

 siblings : Points to the siblings class.
 children : Points to the children class.
 level : Level of the class in the class tree (cs 15.7).
 defi cit : This fi eld is used in the round - robin process of the scheduling. This fi eld

contains a saved defi cit value if the allocated bytes are not sent in the same round,
and this defi cit value will be used for the next round.

 15.5 tc USER PROGRAM AND KERNEL IMPLEMENTATION DETAILS

 The tc is a user program which overrides and updates the default queueing discipline
in Linux. It uses a netlink as communication channel for interaction between user
space and kernel. It adds the new queuing discipline, traffi c classes, fi lters, and
so on.

 Here we will discuss the CBQ queueing discipline.
 How is tc used?
 From command prompt:

 # tc qdisc add dev eth1 root handle 1: cbq bandwidth
10 Mbit cell 8 avpkt 1000 mpu 64

 The above tc command adds the new cbq queueing discipline.
 For more details on tc command fl ow and how the doit function pointer is

invoked, see Chapter 13 .
 The doit function pointer points to tc_modify_qdisc() in the case of adding qdisc

to queueing discipline (cs 15.8).

 15.5.1 tc _ modify _ qdisc ()

 This function fi rst calls the dev_get_by_index() function to fi nd out the network
interface device at line 604. The argument to the dev_get_by_index() is tcm → tcm_
ifi ndex , which is specifi ed at the command prompt.

 dev_get_by_index() , based on the argument (ifi ndex), searches for an interface
and returns the pointer to the device.

 cs 15.7. cbq_class data structure (continued).

tc USER PROGRAM AND KERNEL IMPLEMENTATION DETAILS 601

602 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 Then tc_modify_qdisc() checks for the tcm → tcm_parent value at line 607. If it ’ s
not equal to TC_H_ROOT , it calls the functions qdisc_lookup() and qdisc_leaf() at
lines 610 and 612 for fi nding out the parent qdisc and band qdisc. If tcm → tcm_parent
is equal to the TC_H_ROOT , then the band qdisc points to the device ’ s qdisc_sleep-
ing at line 614.

 After this, tc_modify_qdisc() checks for the tcm → tcm_handle value at line 624.
If it is not empty, then it calls the function qdsic_lookup() at line 630 to search for
the band qdisc q with dev and tcm → tcm_handle as the arguments (cs 15.9). If it
doesn ’ t fi nd the band qdisc, then it jumps to create_n_graft label at line 631; other-
wise, it jumps to the label graft at line 640.

 At create_n_graft label line 690 the kernel fi rst checks for the nlmsghdr →
 nlmsg_fl ags has its NLM_F_CREATE bit set to 1 (cs 15.10). If it is set to 1, then it
checks for INGRESS or EGRESS before calling the qdisc_create() at lines 694 or
696 which allocates and initializes the new qdisc.

 Again at graft label line 700, the qdisc_graft() function is called at line 703; it
sets the dev ’ s qdisc_sleeping to the new queueing discipline and sets dev → qdisc to
 noop_qdisc , and it reactivates the device at the end and returns the old queueing
discipline oqdisc.

 If there is no error, the graft fi nally calls qdisc_notify() function at line 712 and
sends the message(skb) to the user space.

 15.5.2 qdisc _ create ()

 Based on the kind of qdisc by looking at the TCA_KIND - 1 entry in the argument
tca at line 390, it searches for the queueing discipline by name by calls the function
 qdisc_lookup_ops() (cs 15.11). Then it allocates space for the queuing discipline

 cs 15.8. tc_modify_qdisc() .

 cs 15.9. tc_modify_qdisc() (continued).

 cs 15.10. tc_modify_qdisc() (continued).

tc USER PROGRAM AND KERNEL IMPLEMENTATION DETAILS 603

604 IP QUALITY OF SERVICE IN LINUX(IP QOS)

qdisc where size is equal to the size of Qdisc with additional space for the Qdisc
private data structure and fi nally initializes the Qdisc queue by calling the function
 skb_queue_head() at line 427.

 At line 432, it initializes the Qdisc operational (sch → ops) pointer which sets up
queueing discipline operations such as enqueue, dequeue, and device at lines 433,434,
and 435 (cs 15.12). Finally, it calls the ops → init function pointer and in this case it
is pointing to cbq_init() function.

 15.5.3 cbq _ init ()

 This function is responsible for initializing the cbq queueing discipline. It sets up
the classid of class at line 1422 (cs 15.13), priority at line 1427, siblings link at line
1421, and so on, and then creates a default qdisc for the queueing discipline by
calling the function qdisc_create_dfl t() . By default, the type of qdisc is pfi fo.

 15.5.4 qdisc _ graft ()

 The arguments to the qdisc_graft() are dev, p, clid, q & old, where p is the parent
queueing discipline, clid is the class ID, q is the band queueing discipline, and old_q
is the old queueing and is set to NULL.

 The basic functionality of the qdisc_graft() is to graft qdisc “ new ” to class
 “ classid ” of qdisc “ parent ” or to device “ dev. ” qdisc_graft() fi rst checks whether the
parent queueing discipline p is empty or not at line 358 and then it calls the function
 dev_graft_qdisc() at line 360 or 362 based on the EGRESS and INGRESS; other-
wise it calls the get() from the parent queueing discipline ’ s class operation set at
line 370 (cs 15.14).

 cs 15.11. qdisc_create() .

 15.5.5 dev _ graft _ qdisc ()

 This fi rst deactivates the device by calling the dev_deactivate() function at line 305,
and then it checks for the INGRESS or EGRESS (cs 15.15). If it is EGRESS, then
set the old qdisc_sleeping to an oqdisc variable. Then it checks whether the supplied
new queueing discipline is empty or not. If it is empty, set the new queueing disci-
pline to noop_qdisc . Then it sets the dev ’ s qdisc_sleeping to the new queueing dis-
cipline and set dev → qdisc to noop_qdisc and reactivate the device at the end and
return the old queueing discipline oqdisc.

 15.6 THE tc COMMANDS FOR CREATING CLASS HIERARCHY
FOR CBQ

 # tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth 10 Mbit rate 10 Mbit
allot 1514 cell 8 weight 1 Mbit prio 8 maxburst 20 avpkt 1000

 cs 15.12. qdisc_create() (continued).

 cs 15.13. cbq_init() .

THE tc COMMANDS FOR CREATING CLASS HIERARCHY FOR CBQ 605

 cs 15.14. qdisc_graft() .

 cs 15.15. dev_graft_qdisc() .

 # tc class add dev eth0 parent 1:1 classid 1:2 cbq bandwidth 10 Mbit rate 3 Mbit
allot 1514 cell 8 weight 100 Kbit prio 3 maxburst 20 avpkt 1000 split 1:0

 # tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth 10 Mbit rate 7 Mbit
allot 1514 cell 8 weight 800 Kbit prio 7 maxburst 20 avpkt 1000 split 1:0

 In this case the doit function pointer (more details on how it is assigned are given
above) from rtnetlink_rcv_msg() would point to tc_ctl_tclass() , and this function gets
invoked when the tc command for creating class is executed.

 For more details on tc command fl ow & how the doit function pointer invoked,
see Chapter 13 .

 15.6.1 tc _ ctl _ tclass ()

 This function fi rst calls the dev_get_by_index() function to fi nd out the network
interface device at line 852 (cs 15.16). The argument to the dev_get_by_index() is
 tcm → tcm_ifi ndex , which is specifi ed at the command prompt..dev_get_by_index()
based on the argument (ifi ndex) searches for an interface and returns a pointer to
the device.

 dev_get_by_index() based on the argument (ifi ndex) searches for an interface
and returns a pointer to the device.

 Then based on the tcm → tcm_parent value, it determines whether the class is
root (which has no parent) or the class is node in hierarchy and locates the qdisc
by calling the function qdisc_lookup() at line 895 and then checks whether it sup-
ports a class or not at line 899.

 If yes, it then checks for the classid at line 904 based on the value set at the
command prompt. If the classid is zero and equal TC_H_ROOT , then it is a parent
class; otherwise, it ’ s a child class.

 Next it calls the function cbq_get() at line 911 which tries to get the class by
calling the function cbq_class_lookup() , which checks if class already exists with the
same classid or not; if yes, it returns the class or the returns NULL.

 tc_ctl_tclass() calls the function cbq_change_class (cops → change) at line 939.
Finally, the tc_ctl_tclass() calls the tclass_notify() function and sends the message
(skb) to the user space. Fig. 15.8 shows the fl ow diagram for tc_ctl_tclass() .

 15.6.2 cbq _ change _ class ()

 The main functionality of this function is to

 • Allocate memory for the cbq_class data struct.
 • Initialize all the class elements based on the arguments.
 • Link the class in the hierarchy by calling the function cbq_link_class .

 The memory for the new class is allocated and initialized at line 1914s and 191 and
then creates a default qdisc for this class by calling the function at line 1921 (cs
 15.17). It sets up the classid of class at line 1923, class parent at line 1924, and qdisc
at line 1925. The allot and quantum values of the class are set at lines 1926 and 1927,
which are used in cbq_dequeue() function for scheduling this class and the siblings
link at line 1932.

THE tc COMMANDS FOR CREATING CLASS HIERARCHY FOR CBQ 607

608 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 Figure 15.7. tc_modify_qdisc fl ow diagram.

 cs 15.16. tc_ctl_tclass() .

 cs 15.17. cbq_change_class() .

610 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 15.7 FILTERS

 The main function of fi lters is to assign the incoming packets to classes for a qdisc.
The classifi cation of packets are based on the IP address, port numbers, and
so on.

 Types of Filters

 • RSVP
 • U32
 • Route
 • Police
 • Estimator
 • Firewall - based

 We will discuss only the U32 and route fi lters.
 How do we set fi lters using route and U32?

 # tc fi lter add dev eth0 parent 1:0 protocol ip prio 100 route or
 # tc fi lter add dev eth0 parent 1:0 protocol ip prio 100 u32

 Figure 15.8. tc_ctl_tclass fl ow diagram.

 In this case the doit function pointer (more details on how it is assigned are
given above) from rtnetlink_rcv_msg() would point to tc_ctl_tfi lter() , and this func-
tion gets invoked when the tc command for setting fi lters is executed.

 For more details on tc command fl ow and how the doit function pointer is
invoked, see Chapter 13 .

 15.7.1 tc _ ctl _ tfi lter ()

 The main functionality of the tc_ctl_tfi lter() is to add/delete/change/get the fi lter.
The main message argument for the tc_ctl_tfi lter is the struct nlmsghdr , which
embeds another message struct tcmsg at line 121 (cs 15.18). The message provides
the three important types of information (tcm_info): node ’ s protocol (minor part
of tcm_info), fi lter ’ s node priority (major part of tcm_info), and the parent ID
(tcm_parent).

 tc_ctl_tfi lter fi rst identifi es the device by calling the function _dev_get_by_index()
using the tcm_ifi ndex value at line 146 (cs 15.19), and then we do the lookup for the
qdisc by calling the function qdisc_lookup() for the queueing discipline using the
parent ID (tcm_parent). Then using the tcf_chain of the queuing discipline class
operation at line 168, we identify the queueing discipline fi lter list. After that we
check for the fi lter by traversing the list using the loop at lines 174 – 183, if not found,
then we create/allocate a new fi lter node.

 After traversing the fi lter list, if the fi lter node is not found, then it creates/allo-
cates a new fi lter node at line 199 and initializes the fi lter node operation structure
 tp_ops at line 201 by calling the tcf_proto_lookup_ops() function using the optional
argument struct rtattr * * tca (cs 15.20). Then using the fi lter node operation, struct
values initialize the fi lter node from lines 220 – 226.

 The main data structures initialized are tcp_proto and tcf_proto_ops .

 • First, struct values initialize and assign the fi lter type to the new fi lter node
operation pointer (tcf_proto_ops * ops) by calling the function tcf_proto_
lookup_ops() whose functionality is to fi nd a classifi er type by string name.

 cs 15.18. tc_ctl_tfi lter() .

FILTERS 611

612 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 cs 15.19. tc_ctl_tfi lter() (continued).

 cs 15.20. tc_ctl_tfi lter() (continued).

 • The queuing discipline pointer points to the queueing discipline associated
with this fi lter.

 • The classifi er function pointer points to the classify function in its fi lter
operation.

 • The classid is assigned to the ID of the queueing discipline.
 • Then the classid calls the init function to initialize the rest of the fi lter

structure.

 And fi nally the classid calls the change function of fi lter either u32_change or
 route4_change . Fig 15.9 shows the fl ow diagram for tc_ctl_tfi lter() .

 Figure 15.9. tc_ctl_tfi lter() fl ow diagram.

FILTERS 613

614 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 15.8 u32 FILTER IMPLEMENTATION

 In u32 fi lters the classifi cation of packets is done based on the destination IP, desti-
nation TCP/IP port, source IP address, source TCP/IP port, TOS byte, and protocol
(Fig. 15.10).

 Commands for Setting u32_fi lter

 /root/work/iproute/iproute2 - ss050607/tc/tc fi lter add dev eth1 parent 1:0 proto-
col ip prio 1 u32 match ip dst 192.168.2.101 match ip sport 23 0xfff fl owid
1:2

 /root/work/iproute/iproute2 - ss050607/tc/tc fi lter add dev eth1 parent 1:0 proto-
col ip prio 1 u32 match ip dst 192.168.2.102 match ip sport 80 0xfff fl owid
1:3

 Figure 15.10. u32 fi lter implementation overview.

 15.8.1 u 32_ change ()

 The u32_fi lters are stored in hash tables, the data structure defi ned for the hash
table is struct tc_u_hnode at line 502, and the key nodes for storing the information
for fi lters are defi ned as struct tc_u_knode at line 503 (cs 15.21). Then defi ne a key
struct (i.e., struct tc_u32_key) at line 504 which is used to hold information about
the fi lter type (i.e., IP address info, TCP/IP port, etc.).

 The rtattr struct contains information about the tc command arguments for
setting the fi lter parameters at lines 505 – 506, and the struct tc_u_common which
holds a pointer for the queuing discipline type is defi ned at line 501.

 The if condition at line 523 becomes true if a new hash node is required. Based
on the divisor value at line 524, a new hash node for the struct tc_u_hnode is allo-
cated at line 535 and initialized at line 538 (cs 15.22).

 Then the new hash node ’ s tp_c pointer is initialized at line 539 to point to the
 tc_u_common tp_c which contains information of the queuing discipline type and
the ref count is set to 0 at line 540.

 The divisor and the handle value is set at lines 541 – 542 based on the tc user
arguments. Finally the hlist (hash list) of struct tc_u_common is updated with the
new hash node at line 544.

 The if condition at line 549 will be true if a new hash key node is required (cs
 15.23). It starts with getting the value of ID of the tc_u_hnode for adding the new
hash key node to the specifi c node of the hnode hash table. Then next it gets the
information about the struct tc_u32_sel and its associated keys from the table entry
 TCA_U32_SEL at line 578.

 Then u32_change() allocates the memory for the new hash key node at line 579.
The memory space allocated depends on the number of keys specifi ed in tc_u32_
key → nkeys and initializes this memory at line 582. After the memory allocation,
memcpy will be called at line 583 to copy the contents of TCA_U32_SEL to the
keys of the new key node. Next the tc_u_node (ht) and the handle are assigned to
the new key node at lines 584 – 585.

 Finally the function u32_set_params() is called at line 586 to set the class - specifi c
information inside the new key node.

 cs 15.21. u32_change .

u32 FILTER IMPLEMENTATION 615

616 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 cs 15.22. u32_change() (continued).

 cs 15.23. u32_change() (continued).

 15.9 ROUTE FILTER IMPLEMENTATION

 Here the classifi cation of packets is based on the routing tables. Based on the infor-
mation in the routing table, a route fi lter is set for a specifi c destination (Fig.
 15.11).

 Route Filter Commands
 [root@localhost root]# ip route add 192.168.2.101 via 192.168.2.100 realm 2
 [root@localhost root]# ip route add 192.168.2.102 via 192.168.2.100 realm 3
 [root@localhost root]# tc fi lter add dev eth1 parent 1:0 protocol ip prio 100

route to 3 fl owid 1:3
 [root@localhost root]# tc fi lter add dev eth1 parent 1:0 protocol ip prio 100

route to 2 fl owid 1:2

 Figure 15.11. Route fi lter implementation overview.

ROUTE FILTER IMPLEMENTATION 617

618 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 15.9.1 route 4_ change ()

 The struct rtattr at lines 373 – 374 contains the different types of command arguments
(information) for setting the fi lter parameters for route (cs 15.24). The main data
structure for the route fi lters is the struct route4_head at line 370, which is initialized
to point to the queuing discipline type. Then the struct route4_fi lter and the route4_
bucket are declared at lines 371 – 372.

 The route4_head data structure contains the hash table of type struct route4_
bucket , and this route4_bucket data structure again maintains a table for struct
 route4_fi lter .

 The rtattr_parse() function at line 381 is called to sort out the arguments from
the command arguments from struct rtattr and arrange this specifi c information in
the form of a table. Then it checks for whether the struct route4_head is NULL; if
sturct route4_head is NULL, then route4_change() allocates the memory space for
the struct route4_head at line 414 and initializes this memory space at line 417 (cs
 15.25). It also allocates the memory space for the struct route4_fi lter at line 424 and
initializes it at line 428.

 The TCA_ROUTE4_TO table entry of struct rtattr contains information for the
realm id, and this is getting assigned to the (struct route4_fi lter) f → id at line 437 (cs
 15.26). Then it checks for the classid entry in the arguments table; and if the classid
entry available, the TCA_ROUTE4_TO entry assigns this classid to the f → res.
classid , where res is of type struct tcf_result which contains information for the
class.

 Using the f → handle value, to_hash() calculates the index for the route4_bucket
table by calling the function to_hash() at line 475 (cs 15.27). Then it checks whether
the entry at the index it is NULL; if it is null, the f → handle value allocates the
memory space for the struct route4_bucket and initializes at lines 478 – 481. Finally,
it inserts the allocated route4_bucket entry into the table head → table[h1] at line
484. Again, route4_change() calculates the indexing value for the route4_bucket
table by calling the function from_hash() at line 490. Using the index value returned
by from_hash() route4_change() calculates the address of the route4_bucket table
entry where the route4_fi lter gets assigned at line 506.

 cs 15.24. route_change() .

 cs 15.25. route_change() (continued).

 cs 15.26. route4_change() (continued).

 15.10 ENQUEUE

 The enqueue function enqueues a packet (sk_buff) in the scheduling queue of the
queuing discipline.

 When the enqueue function is called, the dev_queue_xmit() function from the
IP layer calls the enqueue function at line 1028 (cs 15.28) of the queuing discipline.
The default function is called pfi fo_fast_enqueue() if the default queuing discipline
is not overridden by another queuing discipline.

 Here we are discussing the cbq_enqueue() function for the CBQ queuing
discipline.

ENQUEUE 619

620 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 15.10.1 cbq _ enqueue ()

 The arguments passed to the cbq_enqueue() function are struct sk_buff (packet to
be queued) and the struct Qdisc (device qdisc). The kernel represents each class by
a unique internal classid for identifying the classes. The cbq_enqueue() function fi rst
calls the cbq_classify() function at line 397 with a buffer skb and a pointer to Qdisc
(scheduler) as arguments (cs 15.29). The cbq_classify() function ’ s main purpose is

 cs 15.27. route4_change() .

 cs 15.28. dev_queue_xmit() .

to identify the class by applying the fi lters that are already set for enqueuing the
packets in proper identifi ed queue; and if the fi lter matching is successful, the cbq_
classify() returns the class for enqueuing the packets. Then it checks for the class
at line 404 and calls the enqueue function of the queueing discipline owned by that
class at line 408; and if the enqueuing of the packet is successful, then it updates
the queue length at line 409, updates the packet statistics at lines 410 and 411, and
marks the top level of the class tree by calling the function cbq_mark_toplevel() at
line 412. Finally, it activates the class for scheduling purpose at line 414 by calling
the function cbq_activate_class() .

 15.10.2 cbq_ classify ()

 The cbq_classify() function fi rst checks if skb → priority (prio) points to one of the
classes at lines 253 and 254 and calls the function cbq_class_lookup() (cs 15.30). If
it is pointing to one of the classes, then it returns a class to the calling enqueue
function.

 If class is not found based on the skb → priority , then cbq_classify() checks for
the fi lter_list and calls the tc_classify() function at line 265 for fi nding the class - based
on the fi lter parameter (IP addr, TCP/IP source port, etc.). The tc_classify is a func-
tion pointer that points to the classify function of the fi lter based on the fi lter type
(e.g., u32_classify() in the case of u32 fi lters, route4_classify() in the case of route
fi lters, ets.).

 15.10.3 Overview of cbq _ enqueue ()

 Figure 15.12 shows cbq_enqueue() fl ow diagram.

 cs 15.29. cbq_enqueue() .

ENQUEUE 621

622 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 15.11 OVERVIEW OF LINUX IMPLEMENTATION OF CBQ

 Fig 15.13 is an overview of CBQ implementation in Linux.

 15.12 cbq _ dequeue ()

 The Class - based Queueing (CBQ) mechanism divides the network link ’ s bandwidth
within different multiple classes and provides a link - sharing approach by using the
same physical (network) link. The traffi c classes within the CBQ mechanism has
different priorities; and based on the priority, each class within the CBQ framework
is scheduled for packet transmission.

 The main blocks for the CBQ dequeueing mechanism are shown in Fig. 15.14 .
The mechanism consists of

 1. General scheduler
 2. Link – sharing scheduler
 3. Estimator

 The classifi er part in Fig. 15.14 for each arriving packet provides a classifi cation
based on the IP addr, source, or destination port, and so on, and puts the arriving
packet into the appropriate class using the cbq enqueue mechanism.

 cs 15.30. cbq_clasify() .

 Figure 15.12. cbq_enqueue() fl ow diagram.

 Figure 15.13. CBQ implementation.

624 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 Figure 15.14. CBQ block diagram.

 General Scheduler. The CBQ general scheduler uses a modifi ed weighted
round - robin (WRR) scheduling algorithm. CBQ maintains a circularly linked list
of active classes and, based on the priority the WRR schedules a class for packet
transmission. A class is active only if it has packets for transmission. Each class is
allocated a quantum of bytes for one round. After the class has transmitted the
allocated bytes, it then moves on to the next active class in the circularly linked
list.

 Link – Sharing Scheduler. The link - sharing algorithm ’ s main functionality is to
check the status of each class and distribute the excess bandwidth based on the
class ’ s idle time.

 Estimator. The estimator is used to measure the bandwidth used by the class.
For this it uses certain parameters of the class to determine the bandwidth con-
sumed. It used the idle and avgidle parameters of the class. Where the idle param-
eter is the interpacket time (gap between two packets) and the avgidle parameter
value determines whether the class is overlimit, underlimet, and at limit. This value
is calculated using the Exponential Weighted Moving Average (EWMA)
function.

 1. A class is overlimit when it uses more than its allocated bandwidth.
 2. A class is underlimit when it uses less than its allocated bandwidth.
 3. A class is at limit when it uses equal to its allocated bandwidth.

 Class - based queueing is arranged in a hierarchical manner (Fig. 15.15). The top of
the hierarchy is the root qdisc class that defi nes the total bandwidth for the entire
hierarchy of the classes. This bandwidth is further divided into the hierarchy for the
other classes.

 Figure 15.15. CBQ example.

cbq_dequeue() 625

626 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 CBQ assigns priority for the each class in the hierarchy; and based on the prior-
ity, a class will get a chance to send the packets to the interface. Also, a CBQ class
can be confi gured to borrow bandwidth from its parent, if the parent has excess
bandwidth.

 15.12.1 From net / dev / core . c

 Figure 15.16 shows a data fl ow diagram for CBQ enqueing and dequeing process.

 15.12.2 qdisc _ run ()

 After successfully enqueueing the packet in the appropriate class of the CBQ hier-
archy, the function dev_queue_xmit() calls the qdisc_run() function.

 The qdisc_run() function basically checks at lines 439 – 440 for qdisc_restart(dev)
until there are no more packets in the output queue or until the network
device does not accept any more packets — that is, !netif_queue_stopped(dev)
(cs 15.31).

 The qdisc_restart(dev) function is responsible for getting the next packet from
the queue of network device, using qdisc of the device and sending it by calling the
function hard_start_xmit() .

 cs 15.31. qdisc_run() .

 15.12.3 qdisc _ restart ()

 This function is responsible for getting the next packet from the queue of
network device using the qdisc of the network device. It starts with calling the
dequeue function of the device at line 83, which is a function pointer, that is, q →
 dequeue(q) . In this case it is initialized to the cbq_dequeue() function and it gets
called. This cbq_dequeue() function gets the next packet from the appropriate class.
If the packet is successfully dequeued and to send this dequeued packet from the
class to over the wire, the cbq_dequeue() function invokes the net device ’ s hard_
start_xmit() function. If the packet is transmitted successfully by the device ’ s hard_
xmit() function, then it returns − 1 at line 100 to qdisc_run() and again the loop in
 qdisc_run() continues to dequeue the next packet from the class (cs 15.32). If the
 hard_xmit() fails or the dequeue function is failed, then in both the cases the packet
is requeued in the queue and, using NET_TX_SOFTIRQ , is raised in net_if_sched-
ule() at line 137 for transmission of the packet when do_softirq() function is
invoked.

 Figure 15.16. CBQ enqueing and dequeing fl ow.

 15.12.4 cbq _ dequeue ()

 The argument passed to the cbq_dequeue() function is the qdisc of the net device.
When this function gets invoked for the fi rst time before starting the dequeueing
of packet from the queue, it gets the current (start) time using the macro PSCHED_
GET_TIME at line 995 (cs 15.33). Then it checks to determine the transmitting class

cbq_dequeue() 627

628 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 cs 15.32. qdisc_restart() .

 cs 15.33. cbq_dequeue() .

(i.e., q → tc_class); initially this condition at line 998 is false since this will be set in
the cbq_dequeue_prio() function after selecting the transmitting class from the
active classes list. If the transmitting class (q → tx_class) is set, then it invokes the
function cbq_update() , which basically calculates the CBQ parameters (idle and
avgidle) that will be used to identify whether the transmitting class is using the link
for transmission based on the allocated bandwidth rate. It decides this based on
factors such as whether the class is overlimit or underlimit or is at limit. The class
is overlimit if it is transmitting the packets faster than the allocated bandwidth, it is
at underlimit if it is transmitting slower than the allocated rate and has more
backlog, and it is at limit if it is transmitting at the allocated rate.

 Basically, cbq_update() does the following:

 1. It calculates the interdeparture time (using the timer) between successive
packets and subtracts from it the allocated interdeparture time for the class
(cl → last) to get the idle time. This idle time is defi ned as the difference
between the desired time and the measured actual time between the most
recent packet transmissions for the last two packets sent from this class.

 2. Then it computes the avgidle time using the exponentially weighted moving
average of idle, where the avidle is defi ned as average of the idle and where
avgidle < 0, =0, and > 0 defi ne whether the class is overlimit, at limit, and
underlimit, respectively.

 Based on this avgidle value, cbq_update decides whether the class is overlimit,
underlimit, or at limit and checks whether class can borrow bandwidth from a parent
or wait for a certain time before for transmitting a packet to achieve proper link
sharing. Then the cbq_dequeue calls the function cbq_dequeue_l() for selecting the
proper class from the active list at line 1019.

 15.12.5 cbq _ dequeue _1()

 This function calculates the activemask value at line 976 based on the q → activemask
value which is set in the function cbq_activate class() when the class is enqueued in
 cbq_enqueue() function. This value is required for getting the prio value at line 978
for indexing into the active classes queue list and calls the function cbq_dequeue_l()
at line 980 function to schedule the class based on the prio value (cs 15.34).

cbq_dequeue() 629

 cs 15.34. cbq_dequeue_1() .

630 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 cs 15.35. cbq_dequeue_prio() .

 15.12.6 cbq _ dequeue _ prio ()

 This function is responsible for selecting the class from the active list and runs the
class with allocated bytes. Based on the prio passed from the cbq_dequeue_l() func-
tion, it selects the class at lines 874 – 875 (cs 15.35).

 The cbq_dequeue_prio() uses a weighted round robin for active classes where
each class is allocated a quantum of bytes for one round. So under certain circum-
stances, a class may transmit more or less than its quantum in a round; we keep
track of its defi cit so that the allocation of that class in the next round could be
adjusted accordingly.

 The quantum required for every class is calculated in function cbq_normalize_
quanta() based on the class ’ s weight, allot, and quanta which are set by the user
arguments.

 Before starting the round, check for whether the class is underlimit at line 885;
if it is, then jump to label skip_class (cs 15.36). If not, check for the defi cit value of
the class; and if it is less than 0, then jump to label next_class at line 886; otherwise
continue and call the dequeue function of the class ’ s queueing discipline at line 897,
which is by default the pfi fo_dequeue() function. It checks whether the dequeue
function of the class returns sk_buff or not at line 903. If sk_buff is returned, then
it returns the skb to the calling function cbq_dequeue_l() at line 925; but before
that, it again checks for the defi cit value of the class at line 920.

 The skip_class label basically checks for whether a class is empty or is penalized
at line 928; if it is penalized, then it unlinks the class from the active list and returns
NULL.

 The next_class label changes the next round for the next class from the active
list and if the while conditions at lines 961 – 962 fail, then it returns NULL to the
calling function cbq_dequeue_l() and then cbq_dequeue_l() also returns NULL to
the calling function cbq_dequeue() (cs 15.39).

 If skb is not returned from cbq_dequeue_l() , then cbq_dequeue() checks whether
the q → toplevel is equal to TC_CBQ_MAXLEVEL and also whether it is time for
past perfect; if it is, then it comes out the infi nite loop at line 1046; otherwise, it
continues by setting the top level and the time. This happens when the class is
overlimit or the top level class is inhibited from borrowing. If there are still packets
in the scheduler at line 1055, then the watchdog timer is started for scheduling
the packets and fi nally returns the NULL to the calling function qdisc_restart()
(cs 15.40).

 cs 15.36. cbq_dequeue_prio() (continued).

 cs 15.37. cbq_dequeue_prio() (continued).

 cs 15.38. cbq_dequeue_prio() (continued).

632 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 cs 15.39. cbq_dequeue_prio() (continued).

 cs 15.40. cbq_dequeue() (continued).

 The summary of the cbq_dequeue process is that each class is not allowed to
send at length; they can only dequeue an allocated amount of data during each
round. Using a weighted round robin, it decides which of its classes will be allowed
to send. First it considers the highest - priority class for transmission of packets
and will continue to do so until there are no more packets, and then it considers
lower - priority classes. It also checks for the whether a class is overlimit,underlimit
or is at limit and based on this schedules other classes.

 15.13 SUMMARY

 The basic principle of Qos is to decide at what rate input/output packets would be
received/transmitted based on the available network speed. In Linux, the default
qdisc attached to the network interface for Linux is “ pfi fo_fast_qdisc ” ; this qdisc
can be replaced based on the requirement for other types of queueing discipline.
The class - based queueing discipline allows us to shape the link speed between dif-
ferent types of subclasses to achieve the quality - based transmission and to make
use of the allotted bandwidth for reception/transmission.

SUMMARY 633

635

16

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 IP FILTER AND FIREWALL

 In the age of computer networking and internetworking in a broader sense, the
computer is exposed to all sorts of invasions. Private networks and individuals are
connected to the public Internet for one or the other requirements. This kind of
access invites malicious ideas for attacks for the sole purpose of intruding the com-
puter or the network. The reason for intrusion may be anything from getting private
information of the organization to just block the network. These will have a serious
effect on the business. Attacks from outside the network were the cause of concern.
There are other issues like providing access to a specifi c service to a known host
when your services are known to many others. For example, when a machine is
connected to the Internet, we get a public IP address. If I run a web site on a public
machine and I need to update certain scripts on the server, only my machine should
be given access to use telnet or ftp services and no others. Also within an organiza-
tion if we want certain groups not to access the Internet, we should be allowed to
do that. On the routers we would not like to pass certain types of traffi c to be
routed.

 All the above situations are handled by fi rewall software that can be installed
on a single point of entry/exit on the network. The fi rewall mainly works on the
three directions of traffi c movement:

 • Incoming traffi c
 • Outgoing traffi c
 • Forwarded traffi c

636 IP FILTER AND FIREWALL

 The fi rewall has a chain of rules to be applied for a specifi c traffi c. It can be
confi gured to accept/reject traffi c to and from specifi c IP, as well as traffi c bound to
specifi c ports. The fi rewall can also be confi gured to block ICMP messages.

 This kind of facility not only blocks traffi c from an unwanted source to enter/
exit the network but also restricts specifi c network services from limited/known
hosts.

 In this chapter we are not going to discuss any fi rewall confi guration. We will
have an overview of the fi rewall framework. We will see the point of entry into the
fi rewall when a packet arrives and leaves the host. We will also cover two different
implementations:

 • ip chains
 • ip tables

 16.1 NETFILTER HOOK FRAMEWORK

 Linux installs fi rewall check posts at various points in the packet traversal path in
both directions. These check posts are known by the term netfi lter hooks and is
defi ned as a macro NF_HOOK . It checks if any fi rewall hook is registered for a
specifi c check and the protocol family to which the packet belongs. If so, we
need to go through all the fi rewall checks points registered by calling nf_hook_
slow() . The routine makes a decision about what to do with the packet, depending
on the fi rewall policy. It may accept the packet or reject it. In the case where there
is no fi rewall registered for the HOOK type, we will call a callback routine okfn
passed as a parameter to the macro that will take the packet forward for further
processing (cs 16.1). The framework not only supports fi rewall check posts but can
also be used to add features to the IP stack such as NAT/Masquerading, IP sec, and
so on.

 Global table nf_hooks is a two - dimensional array of list of registered fi rewall
checks for each hook and protocol family (cs 16.2). NRPROTO is a protocol family
and NF_MAX_HOOKS is the maximum hooks that each protocol family can have.
We will restrict our discussion to the Internet protocol family PF_INET .

 cs 16.1. Macro that implements netfi lter hooks.

 cs 16.2. Registered netfi lter hooks are linked with nf_hooks .

NET-FILTER HOOK FRAMEWORK 637

 Each hook corresponds to a check post while the packet is traversing through
the stack (cs 16.3).

 NF _ IP _ PRE _ ROUTING . This is a fi rewall hook applied for NAT/masquerading.
Before incoming packets are routed, we need to alter the destination in the case
where masquerading/NAT is applied to the connection; otherwise we may end up
delivering the packets locally. If the rule does not allow us or we don ’ t fi nd any
translation for the destination, we should drop the request. This is actually done for
the very fi rst packet, and the result is used for the rest of the connection. Not only
NAT/Masquerading but also IPsec modules can have processing done here on this
hook.

 NF _ IP _ POST _ ROUTING . This is a fi rewall hook applied for NAT/masquer-
ading to alter the source of the packet. The NAT server needs to replace the source
IP address of the originator with the IP address of the interface directly connected
to the Internet and also the source port (to distinguish the connection). NAT may
alter the source IP address only with the available public IP address. So, this fi rewall
checks if we can do this and does the alteration if allowed; otherwise, it rejects the
packet. This is done after routing decisions are made for the outgoing packet. Not
only NAT/Masquerading but also IPsec modules can have processing done here on
this hook.

 NF _ IP _ LOCAL _ IN . This is a fi rewall hook applied to the packets which are
destined for us; that is, the packet needs to be delivered locally. We do this check
after routing decisions are made that the packet needs to be delivered locally. The
fi rewall checks if the packets needs to be received for specifi c port (network ser-
vices) from a given source.

 NF _ IP _ LOCAL _ OUT . This is a fi rewall hook for all packets generated
locally for transmission. The post is installed just after the routing is done for the
packet.

 NF _ IP _ FORWARD . This is a fi rewall hook for the packets that needs to be
forwarded through different interface. This hook is installed for the packets that
arrive at one interface and needs to be transmitted through different interface. The
Linux machine should be acting as a router for this hook to be in place.

 cs 16.3. Netfi lter hook numbers.

638 IP FILTER AND FIREWALL

 16.2 NETFILTER HOOKS ON IP STACK

 In this section we will see where on the IP stack we have fi rewall check posts installed.
First we will discuss the path for packets generated locally and then we will discuss
the incoming packets. Netfi lter posts on an IP stack are shown in Fig. 16.1 . We will
keep it very simple to just show a minimal number of netfi lter entries.

 16.2.1 Hooks for Outgoing Packets

 After being processed by the higher protocol layers (TCP/UDP), packets need to
fi nd a route to the destination. A packet is sent to the IP layer, where a route is

 Figure 16.1. Firewall hooks installed on IP stack.

found for the packet and an IP header is built based on the routing information.
This is done in ip_queue_xmit() (cs 16.4). Once a header for IP is built, the packet
is screened by the fi rewall hook NF_IP_LOCAL_OUT . At this point in time, we
need to check if the packet from source port/IP is allowed to be routed through the
path. We also check whether we can send out packets to a given destination and
also make a request for a service running on the specifi ed destination. If the hook
fails to acknowledge the packet, it is dropped.

 If we are through with the fi rst check post, we need to go through one more
check post fi nally before putting the packet on the device queue for fi nal transmis-
sion. This one is generally used for the NAT/Masquerading purpose but can also be
used by IPsec modules to have their own hooks installed here. This check is done
in ip_fi nish_output() (cs 16.5).

 If the fi rewall policy allows, we fi nally transmit the segment. Otherwise we drop
the segment at this level.

 16.2.2 Hooks for Incoming Packets

 Once the packet is received and is identifi ed as IP datagram, the ip_rcv() routine
handles this (cs 16.6). It does all the sanity checks on the IP header and fi nally sends
the packet through the very fi rst fi rewall hook NF_IP_PRE_ROUTING . Here we
can perform NAT/Masquerading - related demultiplexing. Also, this can be used to
implement IP sec.

 Once we are through with the hook, the next step is to check if the packet needs
to be delivered locally or it needs to be forwarded. If the packet belongs to the local
process, it needs to go through another hook NF_IP_LOCAL_IN that is installed

 cs 16.4. ip_queue_xmit() .

 cs 16.5. ip_fi nish_output() .

NETFILTER HOOKS ON IP STACK 639

640 IP FILTER AND FIREWALL

in ip_local_deliver() (cs 16.7). Here we may have fi rewall fi lters based on source and
destination IP/port.

 In case the received packet needs to be forwarded, the situation is handled by
 ip_forward() (cs 16.8). Here IP fi rewall rules will be installed to check if the packet
is allowed to be routed. If allowed, it needs to go through one more hook NF_IP_
POST_ROUTING . We treat forwarded packets as if they are generated locally
before transmitting it over the wire. This is required because the packet may require
NATing/Masquerading. Also, if all the packets being forwarded through this router
needs to be encrypted, we take care of it in the NF_IP_POST_ROUTING hook.

 16.3 OVERVIEW OF NETFILTER HOOKS ON LINUX TCP - IP STACK

 16.4 REGISTRATION OF NETFILTER HOOKS

 Until now we have seen how netfi lter hooks are installed on the IP stack. We need
to know how these fi rewall hooks work. These hooks are fi rst registered from the

 cs 16.6. ip_rcv() .

 cs 16.7. ip_local_deliver() .

 cs 16.8. ip_forward() .

modules that implement them. The interface to register hooks is nf_register_
hook() (cs 16.9). We need to hold BR_NETPROTO_LOCK write lock to register
the hook. As discussed in Section 16.1 , nf_hooks is a global table that registers hooks
for a different protocol family.

 We need to register object nf_hook_ops as a netfi lter hook. We will look at the
structure later, but fi rst we will see what the registration routine does. Object list_
head is embedded in nf_hook_ops object. We have more than one netfi lter hook
registerd for a given hook type and protocol family. These hooks are linked through
the chain nf_hooks[pf][hooknum] , where pf is the protocol family and hooknum is
the hook type that we will discuss in Section 16.5.3 for IP. We insert a hook in the
chain according to the hook priority defi ned by the priority fi eld of object nf_hook_
ops . We loop through each entry in the chain; and once we fi nd a hook with priority
higher than the priority of the hook being registered (line 68, cs 16.9), we insert the
hook prior to that hook in the list. Lower value of priority means higher priority,
line 71 (cs 16.9).

 The hooks are arranged in the chain according to their priority. Packets are
passed through each hook in the order that they are arranged in the chain, which
means that packet is passed through the highest - priority hook fi rst and then pass
through lower - priority hooks. The reason for this is the order in which certain tasks
need to be performed. It is not necessary that hooks with all the priority mentioned
in cs - 16.10 is part of same hook type. But hooks with priorities NF_IP_PRI_CONN-

 cs 16.9. nf_register_hook() .

 cs 16.10. Netfi lter hook priorities.

REGISTRATION OF NETFILTER HOOKS 641

642 IP FILTER AND FIREWALL

TRACK and NF_IP_PRI_NAT_DST can be registered for the same hook number
and protocol family, which means that they can exist in the same chain arranged
according to their priority. The hook with priority NF_IP_PRI_CONNTRACK will
be the fi rst to be processed because it tracks the connection for the NAT packet;
and then the hook with priority NF_IP_PRI_NAT_DST (cs - 16.10) is processed,
which modifi es the destination of IP datagram for NAT.

 16.5 PROCESSING OF NETFILTER HOOKS

 In Section 16.1 we discussed the macro NF_HOOK. Macro acts as entry point to
netfi lter hook processing for a packet. We check if the entry for a particular hook
type and protocol family exists in the nf_hooks global table, and we go through each
hook that is registered for the hook type by calling nf_hook_slow() .

 16.5.1 nf _ hook _ slow ()

 In this routine we do some sanity check on the packet buffer (sk_buff) and IP
header. We call nf_iterate() at line 483 (cs - 16.11) to process the packet through all
the registered hooks. The routine returns the verdict that indicates what do do with
the packet. If the verdict is NF_DROP , it means that the packet was rejected by
one of the hooks. So, we drop the packet. If the verdict is NF_ACCEPT , our packet

 cs 16.11. nf_hook_slow() .

is accepted by all the hooks registered and we need to proceed further by making
a call to the callback routine okfn at line 492.

 16.5.2 nf _ iterate ()

 This routine processes the packet through all the registered hooks, lines 347 – 372.
In each iteration, the callback routine for the hook is used to process the packet,
line 349 (cs 16.12). The hook fi eld of the object nf_hook_ops points to the callback
routine. The result of the hook processing is the verdict that decides what action
needs to be taken next. If the verdict at any stage is NF_QUEUE, NF_STOLEN or
 NF_DROP , we return with these values to the caller, which means that the decision
of higher - priority hooks will be considered fi nal.

 NF_QUEUE means that the hook wants the packet to be queued for asynchro-
nous processing later.

 NF_STOLEN means that the hook has already processed the packet and it need
not go through rest of the hooks.

 NF_DROP means that hook has rejected the packet.

 The processing is aborted as soon as we need to drop the packet as it is rejected
by high - priority hook. We continue to process the hooks, if hooks in each iteration

 cs 16.12. nf_iterate() .

PROCESSING OF NETFILTER HOOKS 643

644 IP FILTER AND FIREWALL

keeps accepting the packet. If the verdict is NF_REPEAT, we need to repeat
processing the packet through the same hook.

 16.5.3 struct nf _ hook _ ops

 This structure defi nes the netfi lter hook (cs 16.13).

 list is the embedded structure that links the hook to the chain of hooks regis-
tered for same protocol family and hook type in global array nf_hooks .

 pf is the protocol family for which the hook should be applied.
 hooknum is the type of hook — for example, NF_IP_POST_ROUTING .
 priority is the priority associated with the hook. It decides the position of the

hook in the chain and the order in which the hook will be processed in the
chain.

 16.6 COMPATIBILITY FRAMEWORK

 Ipchains is an old - style fi rewall that works with a compatibility framework which
allows only a single fi rewall installed using this framework. The framework is called
compatibility. It requires a compat module to be installed on the system. The com-
patibility framework requires a fi rewall to register itself by calling register_fi rewall()
(cs 16.14).

 The object of type fi rewall_ops needs to be registered with the compat frame-
work. The global variable fwops is made to point to the the registered fi rewall fi re-
wall_ops object at line 62 (cs 16.14). The check at line 57 (cs 16.14) makes sure that
only a single fi rewall can be registered with the framework. fi rewall_ops has pointers
to set of callback routines that implement fi rewall check posts for minimum entry,
exit, and forwarding points.

 The compat framework registers a single set of hooks for any fi rewall registered
with it. NF_IP_PRE_ROUTING, NF_IP_POST_ROUTING , and NF_IP_
FORWARD are processed using a single point of entry, fw_in() . They all have the
same priority, that is, NF_IP_PRI_FILTER. The required functionality for each of
these hooks is separately handled in fw_in() , depending on the hook type. The
 NF_IP_LOCAL_IN hook is handled separately by fw_confi rm(). fw_confi rm() is
used to track connections for the received in the case of masqueraded packets.

 cs 16.13. netfi lter hook operations registered with netfi lter framework.

 Later we will see in fw_in() that NF_IP_PRE_ROUTING maps to an incoming
check post, NF_IP_POST_ROUTING maps to an outgoing check post, and
forwarding is as usual. According to current netfi lter hook arrangements on the
IP stack, NF_IP_PRE_ROUTING is the fi rst check post for the packets entering
the system and NF_IP_POST_ROUTING is the fi nal check post for the packets
leaving the system. (cs - 16.15)

 If hooks only from compat framework are installed, we will have all the fi ltering
done for incoming packets before routing decisions are taken and for the outgoing
packets after routing is done, whereas we see that the fi ltering of packets is done at
a much different stage, with the latest hooks depending on whether it needs to be
delivered locally or needs to be forwarded.

 16.6.1 fw_ in () (see cs 16.16 unless mentioned)

 This is a callback routine to execute netfi lter hooks registered with a compat fi rewall
framework. This is a common routine for incoming, outgoing, and forwarding hooks.
Depending on the hook type, fi rewall - specifi c input, output, and forwarding routines
are called to execute the hook. If we are processing an NF_IP_PRE_ROUTING
hook for the registered fi rewall, then the fwops → fw_input input callback routine is
used to process the hook (line 111, cs 16.16). For an NF_IP_POST_ROUTING
hook, an fwops → an fw_output output callback routine is used to process the hook
(line 126). For an NF_IP_FORWARD hook, an fwops → fw_forward forward
callback routine is used to process the hook (line 120).

 cs 16.14. register_fi rewall() .

 cs 16.15. Compat netfi lter hooks .

COMPATIBILITY FRAMEWORK 645

646 IP FILTER AND FIREWALL

 cs 16.16. fw_in() .

 These routines will return the fi nal verdict as to what action should be taken
on the packet after the packet is screened through the fi lters. The verdict is also
known as a target for the fi lters. Let ’ s see how verdicts are processed.

 FW _ REJECT . This verdict is set when the packet is rejected by the fi rewall
policy. This verdict is similar to a drop where the packet is dropped except we try
to send out an ICMP error message if the route for the source of the packet is
known, line 155. If the route is not set for the packet, we try to get a route by calling
 ip_route_input() at line 153.

 FW _ ACCEPT and FW _ SKIP . These verdicts are interpreted in the same way.
 FW_SKIP means that we should move to the next rule. Sometimes a hook may
return this verdict. In this case, we need to perform some more tasks. If the hook
for which we came here is NF_IP_PRE_ROUTING , we have received a packet and
may need to demasquerade before we can send this to IP layer for routing by calling
 check_for_demasq() at line 163. We also need to check if the connection was redi-
rected by calling check_for_redirect() at line 164. For redirected connections we
maintain a table of all the connection that maps original tuple source IP/source
port/destination port/ destination IP with new source IP/port. For the received we
check if it belonged to a redirected connection by checking the entry in the table.
If so, we need to change the destination port/IP before we go for routing for the
incoming packet for this redirected connection.

 In case we are processing an NF_IP_POST_ROUTING hook, we need to do
the reverse of what we did for hook NF_IP_POST_ROUTING . If the packet
belongs to a redirected connection, the source IP/port needs to be changed in the
IP/TCP headers with the new values by calling check_for_unredirect() .

 FW _ MASQUERADE . Linux implements masquerading through a netfi lter
because it is an extended feature of an IP stack. The fi lter may require packets going
through a certain interface to be masqueraded. So, we masquerade the connection
here by calling do_masquerade() at line 176 only if the we are processing an NF_
IP_FORWARD hook. The routine checks if we are already part of the connection
or we need to create a new masqueraded connection. It would return its own verdict
for the packet.

 FW _ REDIRECT . Once again redirection of connections is also done using a
netfi lter framework. For a compat framework, we need to redirect a connection if
the policy for the rule is set to FW_REDIRECT .

 The default case is to drop the packet.

 16.7 IP CHAINS

 Ipchains is a fi rewall implementation that works with a compat framework. The
scope of the discussion is limited to design and implementation of ip chains. We
won ’ t discuss how rules are set by the user land. A fi rewall is registered with the
compat framework when an ipchains module is initialized by calling register_
fi rewall() at line 1740 (cs 16.17).

IP CHAINS 647

648 IP FILTER AND FIREWALL

 ipfw_ops is an object that implements an ip chain fi rewall. There are three routines
registered for ipchain (cs 16.18):

 • ipfw_forward_check() implements a forward hook.
 • ipfw_input_check() implements a hook for incoming traffi c.
 • ipfw_output_check() implements a hook for outgoing traffi c.

 ip_fw_check() is a common routine called from all these registered routines with
specifi c netfi lter hook numbers.

 16.7.1 Filtering with Ipchains

 The way ipchains works is that it has a chain of fi lter rules that is traversed for the
packet. If the packet matches any of these rules, it may require the packet to be
passed through a different chain of rules as specifi ed by the target for that rule.
Once the packet has passed through the entire chain of rules in the branched chain,
it needs to continue with the fi rst chain of rules from where it branched.

 Let ’ s take an example of how rules are traversed and how we reach the fi nal
target for an IP packet. Suppose we get a TCP packet with destination port X2 and
destination IP a.b.c.d and we need to process it through the fi rewall rule as shown
in Fig. 16.2 . The packet enters chain C0 for screening. It doesn ’ t match rule 1. It is
screened through rule 2. Since this is a TCP packet, R2 matches. The target for this
rule is chain C1. We need to be screened through each rule in the chain C1. The fi rst
rule of C1 does not match, so we move down to the next rule R2 in same chain.
Rule R2 also does not match, so we need to jump to chain C0 back and start our

 cs 16.17. ipfw_init_or_cleanup() .

 cs 16.18. Firewall operations registered with a compat framework.

screening from R3. R3 matches because we are a TCP packet with destination port
X2. The target for this rule is chain C2. We need to screen the packet through rules
in chain C2. The fi rst rule in C2 matches the packet, and the target for this is
REJECT. So, further screening of the packet is stopped and we reject the packet
outrightly.

 16.7.2 Ipchain Chain of Rules

 ip_fw_chains points to the head of the list for different ipchain fi rewall hooks. The
ipchain fi rewall chain of rules is defi ned as struct ip_chain . There are three different
chains for each fi rewall hook. These are defi ned as IP_FW_INPUT_CHAIN for
incoming packets, IP_FW_FORWARD_CHAIN for forwarded packets, and IP_
FW_OUTPUT_CHAIN for outgoing packets (cs 16.19). Only input chain points to
the head of the list rest can be accessed by next fi eld of object ip_chain . Implemen-
tation of ipchain rules and chains is shown in Fig. 16.3 .

 16.7.3 struct ip _ chain

 This is the main table that defi nes fi lter rules for a specifi c hook (cs 16.20). Each
fi rewall hook will have one ip_chain object. It has following fi elds:

 Figure 16.2. Ipchains rules and target.

 cs 16.19. Firewall chains for ipchain framework.

IP CHAINS 649

650 IP FILTER AND FIREWALL

 label is the name of the hook to which this object belongs. Rule for any table
is modifi ed by using this label.

 next is a pointer to the table for next fi rewall hook.
 chain is an object of type ip_fwkernel . This object defi nes rules for the hook.
 refcount is the reference counter for the hook. Each hook is registered indi-

vidully and may be referred in many places. So, we need to keep track of the
references for the object so that we unregister only when reference count
drops down to 0.

 policy is the default policy for the hook.
 recent points to the end of the object ip_chain . An object of type ip_reent is

attached to the end of this structure. There one ip_reent object per CPU.

 16.7.4 struct ip _ fwkernel

 This object defi nes packet fi lter rules (cs 16.21). There is a chain of such rules for a
hook linked by the next fi eld of the structure.

 ipfw is the object of type ip_fw . This structure contains the information about
the fi lter rule.

 branch is a pointer to an object ip_chain . Whenever a rule matches, this fi eld
decides about the next rule for the packet.

 simplebranch just tells what to do in case the branch is not set and we match
the rule. The value indicates either to branch off the chain or proceed with
the next rule in the chain.

 cs 16.20. Ipchain main table.

 cs 16.21. Ipchain fi lter rule.

 ip_counters points to the end of the object ip_fwkernel . At the end of this struc-
ture we have storage for an ip_counters object.

 This is one per CPU for better cache locality. The object keeps account of the
number of packets fi ltered and the number of bytes in each IP datagram.

 16.7.5 struct ip _ reent

 This structure keeps the back pointer to the chain and the rule whenever we branch
off from the current chain (cs 16.22). Ths is required to jump back to the previous
chain once all the fi lter rules are covered in the branched chain. This object is stored
at the end of the object ip_chain , and it exists per CPU for cache locality purpose.

 prevchain is the back pointer to the chain from where we have branched.
 prevrule is the pointer to the next rule that needs to be accessed on the chain

from where we have branched after we jump back to that chain.

 16.7.6 struct ip _ fw

 This structure keeps all the required information for the fi lter rule to be matched
(cs 16.23).

 fw_dst & fw_src are destination and source IP addresses.
 fw_smsk & fw_dmsk netmask for source and destination IP addresses.

 cs 16.22. Back pointer management for ipchains.

 cs 16.23. Packet match for rule.

IP CHAINS 651

652 IP FILTER AND FIREWALL

 fw_proto is the protocol fi eld in the IP header, that is, TCP/UDP.
 fw_spts is the range of source port addresses to match.
 fw_dpts is the range of destination port addresses to match.
 fw_redirect is the port to which the packet is redirected in case it is

required.
 fw_vianame is the name of the interface to be matched for the fi rewall

rule.
 fw_invfl g is the fl ag per match entities that inverse the match rule. For example,

if the match rule says anything other than source IP, a.b.c.d will have the fl ag
on for source ip.

 fw_fl g is the fl ag to indicate special match entities that are not mentioned in the
structure, such as match SYN packet, rule for fragment, and so on.

 16.7.7 Organization of Tables in Ipchains

 Figure 16.3 represent kernel data structures that are linked together to implement
ip chains fi lters.

 Figure 16.3. Ipchains fi lter rules and chains.

 16.8 HOW IS THE PACKET FILTERED WITH IPCHAINS

 In Section 16.7.2 we saw that there are three netfi lter hooks registered by ip chains
to fi lter incoming, outgoing, and forwarded packets. A common routine that handles
fi ltering in all three cases is ip_fw_check() . This is the place where the packet is
passed through all the fi lters, and the fate of the packet is decided. Let ’ s see how
this is done.

 16.8.1 ip _ fw _ check ()

 We have a packet to be fi ltered and the hook - specifi c fi lter chain passed to this
routine. We need to keep a scanning packet until we fi nd a target for the fi lter rule
or we have ended scanning all the rules. We access the fi lter rule chain at line 713
(cs 16.24). There are two loops.

 • The outer loop keeps us iterating (line 714 – 787) until we fi nd the fi nal target
or we have completed the entire search and no target is found, condition at
line 787.

 • The inner loop loops through the fi lter rule chain and comes out only if we
have found a matching rule or no matching rule is found and we have com-
pleted scanning through all the rules, lines 716 – 731.

 Before processing the chain of rules, we need to do some groundwork like
extracting IP address, port numbers, fl ag fragments, SYN segments, and so on.

 Processing in Inner Loop. We traverse through the fi ler rules in the current
chain. In each iteration, we match fi lter rules by calling ip_rule_match() at line 718.
If we don ’ t match the rule, we move on to the next rule in the chain by accessing
 next fi eld of the object ip_fwkernel . We come out of the loop only if we have covered
the entire chain or we matched the rule.

 If we have come out of the loop because we have been scanned through the
entire chain of rules and we didn ’ t match any of the rules, then we need to check
if the chain we are processing is the one we have branched to. In case this is a
branched chain, the prevchain fi eld of reent object for current CPU must hold a
valid back pointer to the chain from where we jumped (line 772). We need to jump
back to the previous chain (line 775) and start from the rule next to the one where
we left the chain (line 774). We reset the pointer to the previous chain in this case
at line 776. Now we continue traversing the chain of rules from the previous chain
as usual in the inner loop. In the case where the pointer to previous chain is not
set, we are in the root chain. In this case, we take the default policy set for the chain
as the fi nal verdict, line 779. We account for the packet count and length of IP
datagram scanned through the chain, lines 781 – 782. We come out of the outer loop
after complete scanning.

 In case we have come out of the loop because we found matching rule for the
packet, we need to fi nd target for the the rule for further processing. If a branch
fi eld is set, we need to jump to that chain for further processing (line 756). The next
rule to be scanned on the chain is taken from the branched chain (line 757). We
also need to store the back pointer to the current chain and next rule to be scanned
on the current chain in the reent object of the branched chain, lines 752 – 754. We do

HOW IS THE PACKET FILTERED WITH IPCHAINS 653

654 IP FILTER AND FIREWALL

 cs 16.24. ip_fw_check() .

this so that if none of the rules match in the branched chain, we need to return to
the chain from where we branched off and start scanning the next rule in the chain
from where we left. In case branch is not set, we check from the simplebranch fi eld
what to do next. If this fi eld is set to FW_SKIP , we may need to skip to the next
fi lter rule in the chain. If the value is set to FW_SKIP+1 , we need to branch off from
the current chain at line 764, which means that we should stop scanning the current
list so either we branch or stop scanning further. For any other value, we just need
to check if we need to exit further scanning. We clear back pointer information for
the CPU slot from the current chain at line 766.

 16.8.2 ip _ rule _ match ()

 The rule matching is done here (cs 16.25). Object ip_fwkernel is the rule structure
containing all the rules to be matched. Macro FWINV is one smart way to handle
inverse rules. The inverse rules signifi es anything other than the match . The fw_invfl ag
fi eld of object ip_fwkernel has one bit for each inverse rule entity. FWINV does
both inverse and simple matching. The result of match is passed to the macro which
is XORed with the inverse bit for the entity. If the inverse fl ag for that bit for the
entity is set, the result of the match is inversed; otherwise it remains the same. If
any of the rule doesn ’ t match, we return.

 First we start with matching source and destination IP/network IDs at line 295.
If the mask is set to all 1s, we are exactly matching the IP address, otherwise we
compare the network IDs. Next we do wild matching for the interface name whose
packet is used only if the wild card fl ag (IP_FW_F_WILDIF) is set for the match
at line 313. If the fl ag is not set, we do exact matching of the interface name at line
322. If the rule is set for the fragment (IP_FW_F_FRAG fl ags is set), we return if
the packet is not fragmented at line 339. If the rule is set to test SYN packet (IP_
FW_F_TCPSYN fl ag is set), we test it only if the packet is not fragmented, line 344.
If the rule is set to fi lter a higher - layer protocol (fw_proto is set), we need to check
the port against the port range set for TCP/UDP. port_match() matches the port
only if the packet is not fragmented because only the fi rst fragment contains the
protocol header while the rest will contain only data. Otherwise, protocol port is
matched against the port range specifi ed in fw_dpts and fw_spts fi elds of object
 ip_fwkernel .

 16.9 IPTABLES

 Iptables is designed keeping in mind many of the shortcomings of ipchains. The
scope of the discussion is limited to design and implementation of ipchains. We won ’ t
discuss how rules are set by the user land. We won ’ t discuss here all those features
but look at the design and implementation of iptables in the kernel.

 1. The current design of ip tables is independent of any compat framework,
which means that it doesn ’ t need to be registered with the compatibility
framework.

 2. Memory management of the iptables is much better than those of ipchains.
 3. Filter rules are traversed in a much more effi cient way than ipchains.

IPTABLES 655

656 IP FILTER AND FIREWALL

 cs 16.25. ip_rule_match() .

 4. Per CPU fi lter tables have better cache locality and hence faster memory
access, leading to faster processing.

 16.9.1 Registration of Iptables Hooks

 Iptables directly registers its default hooks and need not register itself with the
compat framework. By default, it registers three hooks for local delivery, locally
generated traffi c, and forwarded traffi c. ipt_ops array lists these hooks. ipt_hook()
is a common hook callback routine for both locally delivered and locally generated
outgoing traffi c. The callback routine for forwarding a hook is ipt_local_out_hook()
(cs 16.26). When we look at these routines, a common routine used to fi lter the traffi c
is ipt_do_table() .

 These hooks are registered when the iptables module is initialized by calling
 nf_register_hook() . Each table associated with the iptables is registered with the
iptables framework using ipt_register_table(). ipt_tables is the list head for all the
tables registered with the iptables, which means that we can have different modules
register their tables with iptable framework. It looks like management of fi lter tables
for all those modules compatible with iptables is centralized and becomes simpler.
 packet_fi lter is a master table used to traverse through the fi lter rule.

 16.10 IPTABLES FILTER RULES AND TARGET ORGANIZATION

 A complete overview of iptables table organization is shown in Fig. 16.4 .

 cs 16.26. Netfi lter hooks for iptables.

 cs 16.27. init() routine for iptables module.

IPTABLES FILTER RULES AND TARGET ORGANIZATION 657

658 IP FILTER AND FIREWALL

 16.10.1 struct ipt _ table

 This is the table header that keeps pointers to the tables and gives an identity to
the table. This is the structure that is registered with the iptable framework and is
linked into ipt_tables (cs 16.28).

 list links the table with ipt_tables list.
 name is the name of the table.
 table is a pointer to the object that keeps complete information about the table

and hook entries. The table is built from the information available in this
object. Table is built in ipt_register_table() .

 valid_hooks is a fi eld holds bits corresponding to the hooks supported by the
table.

 lock is a read – writer spin lock held when we are accessing the table. For fi ltering
we hold reader lock. While modifying we need to hold writers lock.

 private is a pointer to object ipt_table_info that keeps complete information
about the hook entry tables.

 me points to the module to which the table belongs; otherwise this is NULL.

 16.10.2 struct ipt _ table _ info

 This structure keeps complete information about the table (cs 16.29). Tables are
appended to the end of the object, and the table is replicated one per CPU for better
cache locality. Then it has pointers to traverse the fi lter chain and manipulate the
jumps.

 size is the size of the table. Since there is one copy of table per CPU, the size
of each table should be the same.

 number is the total number of ipt rule entries in the table.
 initial_entries is the total number of entries at the time of initializing the table.

 cs 16.28. Main table for iptable framework.

 hook_entry has an offset for each hook entry in the table. This is initialized at
the time of registering the table in translate_table() by calling
 check_entry_size_and_hooks() .

 underfl ow is the base entry points for each hook that contains standard targets.
If all the rules are scanned through and no target is found, we come back to
the base hook entry point for a standard target.

 entries is the base of per CPU tables. When a new table is registered, the space
for a hook entry table is allocated at the end of this object. If it is an SMP
machine, the total space allocated is the size of the table times the number
of CPUs (see Fig. 16.4).

 cs 16.30 shows total space allocated at the time of registering new table is for
object ipt_table_info + size of the table times number of CPUs at line 1388. So, object
 ipt_table_info and entry tables are at contiguous memory location. Entry table is
copied at the end of the object ipt_table_info (line 1395), and later it will be repli-
cated for each CPU. The new table is inserted in the list ipt_tables at line 1433.

 cs 16.31 shows the table being replicated for each CPU in the loop 869 – 873.
 translate_table() is called from ipt_register_table() . We already have one copy of the
table at the base of the table (newinfo - > entries) before being called. So, we start

 cs 16.29. Table information for iptable chains.

 cs 16.30. ipt_register_table() .

IPTABLES FILTER RULES AND TARGET ORGANIZATION 659

660 IP FILTER AND FIREWALL

 Figure 16.4. Iptables fi lter rules and chains.

replicating the table from newinfo → entries to the location that is a multiple of size
of the table from the base of the table for each CPU (line 870). The size of the table
is an SMP cache aligned at a 128 - byte boundary for fast access of the table entry
points.

 cs 16.32 shows the way that hook_entries and underfl ows array are initialized.
The creater of the table knows how the rules entry are organized for each hook. So,
it supplies the offset for each hook entry points and also the offset for the standard
target entry points for each hook. From translate_table() a macro IPT_ENTRY_
ITERATE is used to traverse through the entire table entries. For each entry,
 check_entry_size_and_hooks() is called to check if the user supplied values for entry
points are correct (lines 759 and 761). If they are correct, we store the value in the
table information base (line 760 and 762). Each time we are called, we have a pointer
to the next entry in the table. The difference of the table base and the entry point
is the offset of the entry from the table base.

 16.10.3 struct ipt _ entry

 This is the entry point for the rule chain (cs 16.33). It contains a series of match
rules objects of type ipt_entry_match at the end of the object ipt_entry to be matched.
If we fi nd the packet that matches the rule for the ipt_entry object, then we traverse
through specifi c fi lter rules attached to the end of the ipt_entry . Finally we have a
target at the end of the ipt_entry object as a whole (ipt_entry , including all the fi lter
rules) (see Fig. 16.4).

 cs 16.31. translate_table() .

 cs 16.32. check_entry_size_and_hooks() .

IPTABLES FILTER RULES AND TARGET ORGANIZATION 661

662 IP FILTER AND FIREWALL

 ipt_ip contains all the general information about the packet we are interested
in. It keeps all the information about the packet we are interested in, along
with data on interfaces, protocol, fl ags, and so on, in the same way object ip_
fw for ipchains. We have much better control on the interface wildcard check
here using outiface_mask/iniface_mask fi elds, check ip_packet_match() . Once
we fi nd the packet of interest, we can proceed with more specifi c fi lter rules
at the end of the ipt_entry object.

 nfcache is the cache fl ags used for tracking connections and also for fragmented
packets.

 target_offset is the offset for the target object, ipt_entry_target , for the rule chain
from the beginning of the ipt_entry object. This object is located at the end
of the ipt_entry object. Since the size of the ipt_entry object is not known
because of the number of fi lter rules of type ipt_entry_match attached to its
tail, we need to have this offset to reach the target.

 next_offset is the offset of the next table entry with respect to the current entry
where the next rule chain is located. The reason is that ipt_entry has variable
length because of its variable tail length.

 comefrom stores the back pointer to the chain from where we branched off.
 counters is used to keep account of the byte count and number of packets

fi ltered.
 elems is the head of the specifi c rule chain for the match entry. We add fi lter

rules — that is, objects of type ipt_entry_match at the tail of ipt_entry object
that can be accessed using elems fi eld.

 16.10.4 struct ipt _ entry _ match

 This object contains information about protocol - specifi c matches (cs 16.34). It is
divided into three parts:

 1. The user part that contains the name of the match such as ‘ TCP, ’ ‘ UDP, ’ and
 ‘ ICMP. ’ Then it contains the length of the match size. The match size is the

 cs 16.33. Chain entry point for rules.

size of the object that defi nes the match for the match name. This is required
when the user wants to add a protocol - specifi c rule for a specifi c match name
such as tcp, udp, and so on.

 2. Kernel part, which contains size of the match which is same as the one for
the user part and the pointer to the object. ipt_match contains a pointer to
callback routines to process the match for the rule and to check the validity
of the rule when the new rule is added. For each match name, its correspond-
ing ipt_match object should be registered with the iptable framework. ipt_
match maintains a list where each registered entry gets linked.

 3. Data that contains a user - specifi ed rule to be matched. This is appended at
the tail of the object ipt_entry_match . For example for TCP, data should
point to an object of type ipt_tcp . Similarly, for udp and icmp the matching
object is ipt_udp and ipt_icmp , respectively.

 16.10.5 struct ipt _ tcp (cs 16.35)

 The object contains information about the entities to be matched for TCP - specifi c
fi lters.

 spts is the source port range to be matched against source port in the TCP
header.

 dpts is the destination port range to be matched against destination port in the
TCP header.

 option is a fi eld checks for any TCP options that are present in the TCP header
such as SACK, timestamp, and so on.

 fl g_mask & fl g_cmp are related to TCP fl ags in the header.
 invfl ags is used to inverse the search pattern. Check tcp_match() for more

details (cs 16.35).

 cs 16.34. Match information for rule.

IPTABLES FILTER RULES AND TARGET ORGANIZATION 663

664 IP FILTER AND FIREWALL

 16.10.6 struct ipt _ entry _ target

 This is the same as ipt_entry_match the only difference is that this object contains
all the information specifi c to the target for the match rule.

 16.10.7 struct ipt _ standard _ target

 This structure is used as a standard target by the search rule. It is used either to
jump to different chain of rules or when we encounter the end of the search. If the
 verdict fi eld is IPT_RETURN , we need to go back from the inbuilt chain to the
standard targets. If the verdict fi eld is some positive nonzero number, it means that
we need to branch to a new chain for the next fi lter chain screening.

 16.11 ORGANIZATION OF FILTER RULES AND TARGET FOR IPTABLES

 Figure 16.4 shows kernel data structures that implement ip table fi lters. Filter tables
are replicated pes CPU for performance guin.

 16.12 FILTERING PACKETS WITH IPTABLES

 As discussed in Section 16.9.1 , we have three basic fi lter hooks for incoming, outgo-
ing, and forwarded packets. Callback routines that do fi lter processing in all three
cases internally call ipt_do_table() , which implements fi ltering logic. In this section
we will discuss fi ltering logic implemented by iptables.

 16.12.1 ipt _ do _ table () (see cs 16.38a and cs 16.38b
unless mentioned)

 This fi lters the packet through all the possible rules for the hook. Once we fi nd an
entry for the packet, we do more specifi c fi ltering at the protocol level if required.

 cs 16.36. standard target for chain .

 cs 16.35. Match for TCP - specifi c rule.

Once the packet matches all the set rules, we fi nd out the target for the fi lter rule.
The target may be another entry for rule matching, in which case we remember the
back pointer to the current chain of entries in case we need to return to the current
chain. If the target provides us with a fi nal verdict, we stop further fi ltering and
return with the verdict. In the case, where we don ’ t fi nd any rule for the packet,
standard targets will return appropriate verdicts. The last chain entry for the hook
should contain a wild card match that should accept any packet; otherwise we won ’ t
be able to come out of the loop. We reach the end chain only if the packet did not
match any of the entry - level fi ltering rule.

 We hold the table read lock before we start the fi ltering process at line 289.
Hook entry tables are based at the end of the object ipt_table_info . Since this table
is replicated for each CPU, we need to access the base of the table for our CPU slot
(cs 16.37). cpu_number_map() gets us our CPU number. Since the size of each table
is the same (stored in size fi eld of object ipt_table_info), the offset of the table base
for current CPU can be accessed from macro TABLE_OFFSET.

 Adding the offset of the table base for current CPU with location of the table
base for the table will yield the location of the table base for current CPU, line 291
(cs 16.38a). Next is to fi nd out entry point for the hook in the table. The offset for
each hook entry is provided in the hook_entry fi eld of the object ipt_table_info . This
hook entry offset is with respect to the current CPU ’ s table base at line 294. Offset
for standard targets for the hooks can be accessed by using underfl ow fi eld of object
 ipt_table_info . It contains an offset for standard targets for each hook from the table
base. We keep record of standard target entry (line 310) so that we can jump to this
entry when required. Now we are all set to start the fi ltering process for our
packet.

 We iterate in a loop (line 312 – 397) until we get the fi nal verdict. The verdict
may be from standard targets or target set for the rule chain. In the loop we fi rst
try to fi nd if the packet is the one we are interested in by the fi rst round of screening
 ip_packet_match() . This has a rule to match IP address, network IDs, incoming/
outgoing interface, fragments, and upper layer protocol for the packet. The rule
is accessed from the ip fi eld of the entry object (it_entry). If our packet didn ’ t match
the current rule, we check with the next chain rule for the hook that can be accessed
from the next_offset fi eld of current ipt_entry object (line 395, cs 16.38b).

 In the case where we match the entry, the packet needs to be scanned through
more specifi c fi lters for this entry using macro IPT_MATCH_ITERATE . These
fi lters are the objects of type ipt_entry_match containing fi lter rule and are located
at the end of the object i pt_entry . These fi lters contain a match specifi c to an upper
layer protocol such as TCP/UDP/ICMP. If we are able to match all the fi lter rules,
we need to fi nd the target for the rule. Otherwise we move on to the next entry that
can be accessed by the next_offset fi eld (line 395).

 If all the fi lter rules match, we need to fi nd the target for the match entry by
calling ipt_get_target() at line 327. The target_offset fi eld is offset to the target for
the entry with respect to entry object (cs 16.39). From the target pointer, we access

 cs 16.37. Offset used to access per CPU table.

FILTERING PACKETS WITH IPTABLES 665

666 IP FILTER AND FIREWALL

 cs 16.38a. ipt_do_table() .

 cs 16.38b. ipt_do_table() (continued).

 cs 16.39. ipt_get_target() .

a target that may be a specifi c target for the rule or standard target. We need stan-
dard targets in case none of the rule match or we need to branch to some different
chain for fi lter. Standard targets will have verdict fi eld in addition to target object
(ipt_entry_target). One more thing, standard targets will not have target callback
routine initialised for its ipt_target object. We check iftarget for the match is standard
target at line 330. If so, we need to work upon the verdict fi eld for the standard
target for next course of action. If the verdict is a negative value, there can be two
possibilities:

 1. We got fi nal verdict.
 2. The verdict is IPT_RETURN .

 In the former case, we return with this fi nal verdict. In the latter case, we need
to get back to the standard target by back jumping to the standard target for the
hook entry. We traverse the back path by having one back pointer that keeps the
pointer to the location where we branched last. The next back pointer for the next
level of back jump is stored in the comeback fi eld of the back entry. In this case,
we jump to entry pointed to by back at line 340 and store the back pointer to the
next back jump using the offset stored in the comeback fi eld of the current back
pointer.

 In the case where the verdict is a positive nonzero value, it means that we may
be asked to branch off from the current chain to the different entry point or to the
next entry in the current chain. In the former case, we simply use next_offset fi eld
of the object to locate the next entry. In the latter case, we need to store the pointer

FILTERING PACKETS WITH IPTABLES 667

668 IP FILTER AND FIREWALL

to the next entry in the current chain in the back pointer before we branch off (line
353). This is required in the case where none of the rules match in the branched
chain, in which case we need to start matching from the next entry in the current
chain. Also we need to store the current back pointers ’ offset for the current chain
in comefrom fi eld of the next entry (line 350) as back pointer is modifi ed now. We
start traversing the new branched - off chain.

 In the case where the target is nonstandard, we have a target callback routine
set for the target that we call at line 364. The return value of the target will return
either the fi nal verdict or IPT_CONTINUE . In the former case, we return with the
routine with the verdict. Otherwise we continue with the next entry in the chain.

 16.12.2 IPT _ MATCH _ ITERATE

 This macro takes us through the list of protocol - specifi c rules for the hook entry.
These match rules are located at the end of the object ipt_entry . A target is located
at the end of list of protocol - specifi c rules. We start accessing fi rst rule at an offset —
 that is, size of the object ipt_entry , line 305 (cs 16.40). In each iteration we calculate
offset for the next rule entry by adding size of the current rule, line 307. We iterate
in the loop until we reach the start of the target for the hook entry, line 306. For
each rule, we use a function pointer to process the fi lter rule at line 310. If we match
the current rule, we continue to match the next rule; otherwise we return on the
fi rst mismatch (line 311).

 16.13 SUMMARY

 In the above discussion we saw that a netfi lter framework is used to implement
fi rewall in Linux. We use not only fi rewall but also netfi lter hooks to implement any
extension to the IP stack such as IP sec, connection tracking, IP masquerading, NAT,
redirection, and so on.

 cs 16.40. IPT_MATCH_ITERATE() .

 An entry point to the netfi lter hooks is NF_HOOK macro. The TCP/IP stack
for Linux 2.4 kernel implements the netfi lter hook entries for both the up and down
stacks. The two hooks for outgoing packets are as follows:

 NF_IP_LOCAL_OUT applies fi lter rules for outgoing packets.
 NF_IP_POST_ROUTING implements IP masquerading, IP Sec, and so on.

 The two hooks for incoming packets are as follows:

 NF_IP_LOCAL_IN applies fi lter rules for incoming packets, and this hook is
applied after the kernel has routed the packet for local delivery.

 NF_IP_PRE_ROUTING is a hook that is applied prior to routing as soon as
packet enters IP layer. It may be required by IP Sec, IP Masquerading, NAT,
and so on.

 Compat provides a netfi lter framework with which only one fi rewall can
be registered with the kernel. The object of type fi rewall_ops is registered using a
 register_fi rewall() using compat framework. Ipchain is designed to work with
compat framework.

 Iptables is not compatible with compat framework. Netfi lter hooks are regis-
tered using nf_register_hook() . It registers an object of type nf_hook_ops for a
specifi c hook type. Registered hooks are linked in global hash table nf_hooks .

 To register an Ipchain table, an ipt_register_table() interface is provided. It
registers an object of type ipt_table with global list ipt_tables .

 Iptable is much faster as and has many advanced features as compared to
Ipchains. Iptables maintains per CPU fi lter tables that get a much better perfor-
mance because of cache locality.

SUMMARY 669

671

17

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 NET SOFT IRQ

 Interrupts processing is divided into two parts. The minor part is done in the inter-
rupt handler, and the major part or lower half is deferred further to be processed
at safe time with minimum possible delay. This is done to avoid longer interrupt
latency. The Interrupt is disabled, while the interrupt handler is in action. Once the
interrupt processing is over, the interrupt is enabled. If we take a long time in the
interrupt handler, interrupt latency will be high.

 Earlier Linux kernel versions 2.2 and below implemented the bottom - half
framework to handle a major portion of interrupt handling. It used to work well
with a single CPU machine because it would hold the big bottom - half lock to the
execute the bottom half. With SMP machines, this framework would give serialized
access to the execute bottom half on each CPU because we need to hold lock to
execute bottom halves. The framework could not scale on SMP machines.

 To improve scalability of bottom - half execution, the framework is modifi ed to
scale better on SMP machines. The new framework is called softIRQ. SoftIRQs are
designed to run parallelly on more than one CPU. Also, the same softIRQ can run
parallelly on different CPUs at the same time. SoftIRQs can be raised indepen-
dently on each CPU because data on which they operate are also maintained per
CPU.

 Each interrupt event does not have a separate softIRQ. There are two network
softIRQs, one each for Tx and Rx interrupts. Other interrupt events register their
bottom - halves as either high - priority or low - priority tasklets. There are two soft-
IRQs for high priority and low priority, one for each tasklet. A tasklet has the
characteristic of being executed only on one CPU at a time, which means that a

672 NET SOFTIRQ

specifi c tasklet can run on one CPU at a time. In the current chapter, we will learn
more about softIRQs and their execution.

 17.1 WHY NET SOFT IRQ S , AND HOW DO WE RAISE THEM?

 Once a packet needs to be transmitted or received, how will that be done? Let ’ s
take the cases one - by - one. First we take the case of transmission on an SMP machine
with two CPUs.

 17.1.1 Transmission

 Two frames need to be transmitted parallelly from the same interface. One kernel
control path gets the device lock and comeback after transmitting the frame. In the
meantime, the other kernel control that also has to transmit a frame on the same
outgoing interface can either wait or loop until it gets the device lock. This brings
in performance issues. If the kernel returns because some other CPU is transmitting
the frame, it drops the packet and goes away, in which case the higher layer once
again has to build the entire packet and then retransmit it. If the other kernel control
path waits for the device lock to be freed in a loop, this again will waste CPU cycles
on the other CPU. On SMP architecture, this kind of arrangement will heavily penal-
ize the system and will certainly slow down the system at medium outgoing network
traffi c. What if we can queue - up the frames to be transmitted in some queue and
defer the processing of the frame transmission for some later point of time in the
near future as shown in Fig. 17.1 ?

 17.1.2 Reception

 In the case of reception, we take an example where we have a single interface. We
receive one frame. In the interrupt handler we need to do a lot of jobs such as pulling
out a frame from a device DMA buffer, fi nding out the next protocol layer, process-
ing the packet at each protocol layer, and fi nally delivering data or control message
to the socket layer. All this takes a lot of time. We can ’ t spend a long time in the
interrupt handler because it increases the latency of the network interface. In this
duration, whatever frames we receive over the interface are dropped. So, the inter-
rupt handler should be as fast as possible doing a minimum amount of work. What

 Figure 17.1. Tx net softIRQ.

WHY NET SOFTIRQS, AND HOW DO WE RAISE THEM? 673

if we can just pull out the frame in the kernel buffer from device DMA buffer and
queue it for later processing? The received frame can be scheduled for later process-
ing by the protocol layers, and we can return from the interrupt quickly as shown
in Fig. 17.2 .

 In our last discussion we saw the need for deferred processing of frames in the
case of both reception and transmission. This deferred processing is done by sched-
uling the packets to be processed by raising net softIRQs. For reception and trans-
mission we have separate IRQs that are mutually exclusive. The concept is the same
as that of the bottom half until kernel 2.2. The disadvantage with the bottom half
was that the bottom - half execution was serialized across CPUs. One bottom half
could be executed on only one CPU. With softIRQs, that limitation has gone and
now we can run the same bottom half on multiple CPUs and there need not be any
global lock acquired for doing that, which means that any softIRQ can run parallelly
on different CPUs. With this design of concurrency in running net softIRQs on dif-
ferent CPUs, great network performance is gained on SMP architectures.

 Net softIRQs can be raised for transmit or receive by a call to raise_softirq() .
For each softIRQ registered with the system, we have a bit assigned to it. For trans-
mit softIRQ we have NET_TX_SOFTIRQ , and for receive softIRQ we have NET_
RX_SOFTIRQ bits, respectively (see cs 17.1). SoftIRQs are per CPU. Different
softIRQs can be scheduled on different CPUs independent of each other.

 We call raise_softirq() with the corresponding bit for the softIRQ. We need to
raise IRQ for current CPU so we call cpu_raise_softirq() (see cs 17.2). cpu_raise_
softirq() actually raises softIRQ with the help of macro __cpu_raise_softirq() (see
cs 17.3). This sets the bit in the CPU - specifi c structure fi eld corresponding to the
softIRQ. We access a CPU - specifi c fi eld by calling softirq_pending() for the CPU
(see cs 17.4). softirq_pending() accesses __softirq_pending fi eld of cpu - specifi c

 Figure 17.2. Rx net softIRQ.

 cs 17.1. SoftIRQ supported by 2.4 kernel.

674 NET SOFTIRQ

structure irq_cpustat_t (see cs 17.6) with the help of macro __IRQ_STAT() (see
cs 17.5). We have an array of structure irq_cpustat_t one element per CPU (see
cs 17.6).

 Finally we can say that we set bit corresponding to the softIRQ in __softirq_
pending fi eld of structure irq_cpustat_ t corresponding to the current CPU (nothing
but irq_stat[CPU].__softirq_pending). irq_stat is an array of type irq_cpustat_t one
per CPU (cs 17.7).

 cs 17.2. raise_softirq() .

 cs 17.3. __cpu_raise_softirq() .

 cs 17.4. softirq_pending() .

 cs 17.5. __IRQ_STAT() .

 cs 17.6. irq_cpustat_t .

 irq _ cpustat _ t . This structure keeps status information and does accounting for
any CPU. It keeps account of an event that occurred on the CPU at any given point
of time, and at the same time it keeps a pointer to the kernel thread that is
responsible for processing softIRQs on the CPU. Let ’ s look at the fi elds of this
structure (see cs 17.6):

 __softirq_pending : This fi eld keeps information about any pending softIRQs
on the current CPU. Each bit in this fi eld corresponds to a specifi c IRQ. If
the fi eld assumes a positive value, some softIRQ is pending to be processed.
Thereafter we need to check the bit fi eld.

 __local_irq_count : This keeps the number of IRQs raised on this CPU.
 __local_bh_count : This keeps the number of times that bottom halves were

executed.
 __syscall_count : The keeps the number of system calls that were made on the

CPU.
 __ksoftirqd_task : This keeps the pointer to the ksoftirqd daemon ’ s task_struct

structure responsible for processing softIRQ on the current CPU.

 If we are raising softIRQ from interrupt or bottom half, we need not wakeup
daemon processing softIRQ for the CPU. Otherwise we should wake it up in cpu_
raise_softirq() (see lines 127 – 128 in cs 17.8). We will see the reason for this condi-
tional waking up of the daemon in the next section.

 17.2 HOW ARE SOFT IRQ S PROCESSED, AND WHEN?

 SoftIRQ is processed in function do_softirq(). This function is called from many
places in the kernel. This function returns if we are calling it from interrupt mode
(cs 17.9 , lines 68 – 69). Somebody may accidently call do_softirq() from an interrupt
handler or a bottom half. If it is called from an interrupt handler, the whole purpose
of having deferred processing via softIRQ is defeated because an interrupt handler

 cs 17.7. irq_stat .

 cs 17.8. cpu_raise_softirq() .

HOW ARE SOFTIRQS PROCESSED, AND WHEN? 675

676 NET SOFTIRQ

will take a lot of time and latency again will be too high. In the case where it is
called from a bottom - half handler, it will become recursive and may overfl ow the
kernel stack. It uses macro softirq_pending() to check if any softIRQ is pending on
the CPU (see cs 17.9 , line 73). If softIRQ is pending, we duplicate the bits corre-
sponding to the active softIRQs locally and start processing them one - by - one (cs
 17.9 , lines 88 – 93). After processing all the active softIRQs, we check if any softIRQs
(other than just processed) was raised in the meantime when the active softIRQs
were being processed (cs 17.9 , lines 97 – 101). If yes, we process them once again. If
the same softIRQs were raised which are already being processed, we schedule them
to be processed by softirqd daemon at some later point of time because we don ’ t

 cs 17.9. do_softirq() .

want to be stuck here long while depriving other kernel paths and application of
CPU resources (cs 17.9 , lines 104 – 105).

 Let ’ s see how this is implemented. There are two local variables that will be
used:

 Pending
 Mask

 Pending stores the bit pattern for all the softIRQs that are currently active, and
 mask is just a complement of pending . Now before starting to execute softIRQ
handler for the raised softIRQs, we have pending and mask variables initialized to
appropriate values and irq_stat[cpu]. __softirq_pending is set to zero. We check all
the bits in pending , until it has processed all the active softIRQs. We do this by
left - shifting pending by 1 in each iteration (cs 17.9 , line 92). We continue looping,
until pending in nonzero.

 Once we have processed all the active softIRQs, we again check if any softIRQs
was raised in the meantime (cs 17.9 , line 97). We need to check if the new softIRQ
raised is one of those that are not processed just now. Since mask has all the bits
reset corresponding to the softIRQs that are just handled. If we AND mask with
 pending , now it gives us positive number only if any softIRQs is raised which is
surely not being processed currently (cs 17.9 , lines 88 – 93). In this case, we once again
go through the loop cs 17.9 , lines 88 – 93. Otherwise if we have IRQs pending
(pending > 0), it is one of those which are just processed. In this case we wake up
 softirqd for this CPU to process these softIRQs at later point of time. This is done
in order to provide proper CPU share to user land applications because kernel is
not preemptible. SoftIRQs take longer to complete than IRQ. If the interrupts are
coming at higher rate, we will be spending more time in softIRQs handling.

 We manipulate irq_stat[cpu].__softirq_pending by disabling IRQ on the local
CPU by calling local_irq_save() and local_irq_disable() (see lines 71 and 95 on cs
 17.9). After we have manipulated, we enable IRQs on the local CPU by calling
 local_irq_enable() and local_irq_restore() (see cs 17.9 , lines 84 and 108). We do this
because irq_stat[cpu].__softirq_pending is modifi ed in the interrupt handler.

 We process softIRQ with bottom half disabled by calling local_bh_disable()
(see cs 17.9 , line 79). This increments irq_stat[cpu].__local_bh_count by one. We do
this because other kernel control paths on this CPU should not be able to process
softIRQ. There is one way this could happen. For example, one kernel control path
is executing do_softirq() , and an interrupt is raised. Interrupt is handled and while
returning from interrupt in do_IRQ() , we may call do_softirq() if any soft IRQ is
pending (refer cs 17.10 , lines 654 and 655).

 If we disable the bottom half while processing softIRQs in do_softirq() , we are
making sure that it won ’ t be executed while returning from do_IRQ() . Even if it
enters do_softirq() while returning from do_IRQ() , it won ’ t proceed further because
 in_interrupt() will always return a positive value.

 do_softirq() is called when we

 • Return from interrupt in do_IRQ() (cs 17.10). We have just returned from an
interrupt routine, and there is a chance that some softIRQ is raised as most
of the interrupt work is done in bottom half now implemented as softIRQ.
That is the reason why we check here. There may be a chance that softIRQ

HOW ARE SOFTIRQS PROCESSED, AND WHEN? 677

678 NET SOFTIRQ

on the local CPU is disabled because of any valid reason. In this case, any
softIRQ will not be processed even if raised.

 • Enable local bottom halves locally by calling local_bh_enable() . There are
many situations where softIRQs need to be disabled locally because we are
manipulating some data that are being accessed in softIRQ without disabling
IRQ. We just increment local bottom - half counters when we disable softIRQ,
which means that interrupts are allowed on local CPU. If this is not done, we
may get an interrupt that executes softIRQ on return from interrupt and we
are gone. This disabling of softIRQ avoids dead locks on SMP architecture
and freezing single CPU machine because there may be a situation where the
same lock needs to be acquired by kernel path and softIRQ. If we don ’ t
disable softIRQ and interrupt happens when some kernel control path is
holding a lock, which is showed with softIRQ that gets processed as a result
of interrupt, we end up in a deadlock. With SMP architecture, we are not
avoiding softIRQ to run on some other CPU which is OK as far as deadlock
is concerned. Once we are done with the execution of a critical code in the
kernel, we enable the bottom half. Here we decrement the local bottom - half
count; and if it has become zero, we execute softIRQ by calling do_softirq() .
This way we can have nested disabling of bottom half. The outermost enabling
of softIRQ will cause the processing of pending softIRQ. One small example
is that we lock a socket with the bottom half - disabled, referred to as lock_
sock() . This is required because tcp handler tcp_v4_rcv() is run in the bottom
half that also wants to acquire a socket lock (bh_lock_sock()).

 17.3 REGISTRATION OF SOFT IRQ S

 Each softIRQ is associated with specifi c bit in irq_stat[cpu].__softirq_pending . In
our current discussion design, we have struct softirq_action that represents softIRQ.
 softirq_ action has two fi elds, action and data (see cs 17.11). Action is the function
pointer to the soft IRQ handler, and data holds the argument to the handler action .
We have an array of struct softirq_action , named softirq_vec (see cs 17.12). Each
element in the array corresponds to one softIRQ. As of kernel 2.4.20, we have only
four softIRQ as shown in cs 17.1 . Array index in softirq_vec corresponds to bit
number associated with each softIRQ. For example, TASKLET_SOFTIRQ is
assigned a third bit and it has a fourth element in softirq_vec associated with it. With
this design, we need not do searching for a softIRQ handler while processing soft-
IRQs. We just traverse through all the bits in the 32 - bit variable pending . In each
iteration we move one bit toward MSB and check if the bit is set. If the bit is set, it

 cs 17.10. do_IRQ() .

means that the softIRQ corresponding to this bit number is raised and needs to be
processed. So, we call a softIRQ handler corresponding to softIRQ from softirq_vec ,
which is softirq_vec[iteration].action(). Iteration is nothing but the number of times
we have traversed in the loop to fi nd this bit set.

 We register softIRQ handler by calling open_softirq() . It makes entry for the
softirq handler in softirq_vec[32] corresponding to the soft IRQ bit (see cs 17.12).

 We register net soft IRQs for Rx and Tx in net_dev_init() by calling open_
softirq() (see cs 17.13 and cs 17.14).

 17.4 PACKET RECEPTION AND DELAYED PROCESSING BY RX SOFT IRQ

 When a frame is completely received at the network interface in its DMA buffer,
Rx interrupt for the device is raised. It is the job of the Rx handler to pull the frame
out of the Rx DMA buffer and send it to the upper layer for processing. The Rx

 cs 17.11. softirq_action .

 cs 17.12. softirq_vec .

 cs 17.13. open_softirq() .

 cs 17.14. net_dev_init() .

PACKET RECEPTION AND DELAYED PROCESSING BY RX SOFTIRQ 679

680 NET SOFTIRQ

handler should not take much time for processing the packet. So, it just queues it
on the CPU specifi c soft_net ’ s input queue softnet_data[this_cpu] → input_pkt_queue
(by calling netif_rx()) and schedules the device associated with current CPU ’ s soft
net queue (softnet_data[this_cpu] → blog_dev) for later processing by calling netif_
rx_schedule() . This raises net Rx softIRQ, NET_RX_SOFTIRQ on the CPU that
will process the received packet at later point in time. The complete process of
packet reception and scheduling it for delayed processing is shown in Fig. 17.3 . do_
softirq() is the function that is called to process all the raised softIRQ. It may be
called when we return from interrupts or is called from softirqd daemon.

 Let ’ s see what does netif_rx_schedule() do. It calls netif_rx_schedule_prep() to
check if the device is already scheduled or is off (see cs 17.15). Here we check if
device is in running state (dev → state should be set to __LINK_STATE_START)
and it is already not scheduled (dev → state should not be set to __LINK_STATE_
RX_SCHED). If both are true, netif_rx_schedule_prep() returns true (see cs 17.16).
There is only one net device per CPU which is scheduled to process received packet.
This is a special and hypothetical device softnet_data[this_cpu] → blog_dev .

 If the device softnet_data[this_cpu] → blog_dev is already scheduled, we don ’ t
schedule it once again and then we return. Otherwise we need to schedule it by
calling __netif_rx_schedule() .

 __netif_rx_schedule() fi nds the current CPU ID (refer cs 17.17 , line 729). It adds
the net device, passed as an argument to the function (softnet_data[this_cpu] →
 blog_dev), to the CPU ’ s soft net poll list (softnet_data[cpu].poll_list) (see cs 17.17 ,

 Figure 17.3. Processing of packets with softIRQ framework.

line 733). If the device ’ s quota is consumed (cs 17.17 , line 734), we increment the
existing quota by default (dev → weight). Otherwise we reinitialize the device quota
to default. The device quota limits the number of packets that a Rx softIRQ can
process on a given CPU in one go. We will see how the device quota plays a role
when we discuss net_rx_action() later. Finally we raise net Rx softIRQ on the CPU
by calling __cpu_raise_softirq() . On a single CPU machine with multiple network
interfaces, all the incoming packets on different devices are queued up on the same
CPU ’ s softnet_data[this_cpu] → input_pkt_ queue. Whatever be the case, there is
only one poll device per CPU (softnet_data[cpu].poll_list), which is on the CPU ’ s
poll list no matter which interface has received the packet. The picture looks very
similar to what is shown in Fig. 17.4 .

 On SMP machines, there is a per CPU device poll list, and packets from same
device may be queued up on different CPU ’ s softnet_data input queue; or if there
are more than one network device, the packets from different devices may be
queued up on different CPU ’ s softnet_data input queues as they appear on the
interface. This is shown in Fig. 17.5 .

 cs 17.15. netif_rx_schedule() .

 cs 17.16. netif_rx_schedule_prep() .

 cs 17.17. __netif_rx_schedule() .

PACKET RECEPTION AND DELAYED PROCESSING BY RX SOFTIRQ 681

682 NET SOFTIRQ

 Figure 17.4. Packets being queued on CPU input queue.

 Figure 17.5. Packets being queued on per CPU input queue.

 17.5 PROCESSING OF NET R X SOFT IRQ

 Net Rx softIRQ is processed in do_softirq() . Handler for net Rx softIRQ is net_rx_
action() . Let ’ s see how net_rx_action() works. The main job of this routine is to pull
the device from soft net poll list and start processing the packets one - by - one on the

CPU ’ s soft net input queue until we have exhausted our quota of time or number
of packets processed.

 We need to get CPU ID (cs 17.18 , line 1560). The next step is to get the softnet_
data array element for the CPU (cs 17.18 , line 1561). We initialize other variables
related to quota. Budget is initialized to netdev_max_backlog. netdev_max_backlog
is a global variable initialized to 300 (see cs 17.19). start_time is initilaized to current
CPU ’ s jiffi es (cs 17.18 , line 1562). We disable IRQs on the local CPU before access-
ing the poll list and jiffi es (cs 17.18 , lines 1566 – 1574). Interrupts are disabled because
 jiffi es is modifi ed in timer interrupt, and the poll list is modifi ed in the Rx interrupt
for the NIC. We check if we have exhausted the budget allocated for processing Rx
softIRQ (cs 17.18 , line 1571). If yes, we still have some more devices in the poll list

 cs 17.18. net_rx_action() .

PROCESSING OF NET RX SOFTIRQ 683

684 NET SOFTIRQ

to be processed. We reschedule the device to be processed at a later time by raising
softIRQ, enabling local IRQs, and returning (cs 17.18 , line 1596 – 1600).

 We access the next device from the poll list after enabling IRQ on the local
CPU (cs 17.18 , line 1576). We check the quota for the device. If we have exhausted
the quota, we disable interrupts on the local CPU, remove the device from the poll
list, add it to the end of the poll list, manipulate the device quota (see cs 17.18 , lines
1578 – 1585), and start all over again with the next device in the poll list (see cs 17.18 ,
line 1568). If we have not exhausted our quota (dev → quota > 0), call dev → poll() .
This points to process_backlog() by default and we are going to discuss it in the
next section. If dev → poll() returns 0, we move on to the next device in the poll list;
otherwise we once again repeat cs 17.18 , lines 1578 – 1585.

 We have exhausted all the devices on the poll list, enabled local IRQs, and
returned (see cs 17.18 , lines 1592 – 1594).

 process_backlog() is routine called to process the queued packets on the CPU ’ s
 softnet_data input queue. This is called when net softIRQ for Rx is processed in
 net_rx_action() . We pass net device queued up in the softnet_data ’ s poll list for the
CPU. The idea is to process as many packets queued up at the softnet_data input_
pkt_queue as permitted by time or the quota. We calculate the quota for the packet
processing as minimum of the budget passed and the device ’ s quota (see cs 17.20 ,
line 1499). We get hold of the softnet_data queue to be processed for the current
CPU (see cs 17.20 , lines 1500 – 1501). We store the current value of jiffi es in local
variable (see cs 17.20 , line 1502) for further calculating time spent.

 Now we are all set to process packets one - by - one from the CPU ’ s backlog
queue softnet_data[this_cpu] → input_pkt_queue . First we disable IRQs on the local
CPU and try to pull out the next packet to be processed (see cs 17.20 , lines 1508 –
 1509). We disable IRQ before accessing softnet_data[this_cpu] → input_pkt_queue
for the CPU because this queue is accessed from the Rx interrupt handler for the
device. If no packets are there in the backlog queue for processing, we need to pack
up (see cs 17.20 , lines 1510 – 1511). If we need to pack up, which means we have
consumed all the packets in the backlog queue on the CPU, device ’ s quota and
 budget (passed as an argument to the routine) are decremented by number of
packets processed (see cs 17.20 , lines 1541 – 1542). We now delete the device from
the CPU ’ s poll list and clear the schedule bit for the device (refer cs 17.20 , lines
1544 – 1545). We clear it because it has been removed from the CPU ’ s poll list. Next
time a packet arrives and IRQ is raised on this CPU, we once again schedule the
device on the CPU ’ s poll list and set __LINK_STATE_RX_SCHED bit for the
device.

 If we still have packets in the backlog queue, we dequeue it from the softnet_
data[this_cpu] → input_pkt_queue queue with IRQ disabled. We enable local IRQ
and send the packet for further processing by calling netif_receive_skb() (see cs
 17.20 , lines 1512 – 1516). netif_receive_skb() actually processes the packet until the
end of the last protocol before returning. For example, if this is a data packet for
some TCP connection, it needs to be processed by an IP layer and then a TCP layer

 cs 17.19. Maximum packets that can be queued on CPU input queue before throttling.

 cs 17.20. process_backlog() .

and fi nally return. We increment the local variable work , which indicates the number
of packets processed inside this function at any given point of time (see cs 17.20 ,
line 1520). Now we check if we have already exhausted the quota or time allocated
for processing backlog packets (see cs 17.20 , line 1522). Work indicates the number
of packets just processed, and quota is the maximum number of packets that can
be processed; if work has exceeded quota or if jiffi es - start_time is more than 1, it is
time to just return. jiffi es - start_time gives us an indication of how much time is spent
processing the backlog queue; this value more than 1 means we are at least allowed
to process the backlog packets for at least 1 jiffi es , which means until the time

PROCESSING OF NET RX SOFTIRQ 685

686 NET SOFTIRQ

another time interrupt is raised. In case we have exhausted our quota or time, we
will not remove the device from the CPU ’ s poll list and will not reset the schedule
fl ag for the device; we just update devices quota (dev → quota) and the budget and
return − 1. This is required because if we have other devices in the CPU ’ s poll list
to be processed and we have quota left for backlog processing on the CPU, net_rx_
action() the calling function will know it with the help of budget argument passed
to this routine. budget is a global quota whereas dev → quota is quota per device,
which means that if there are many devices queued up in the CPU ’ s poll list, each
device will be allowed to process packets as per each device quota because we are
taking a minimum of the device ’ s quota and the global quota (cs 17.20 , line 1499).
Each time we call process_backlog() , we may or may not consume the current
device ’ s quota but we return with global quota decremented by the number of
packets it has processed until now in net_rx_action() . If for the current device we
have not processed all the packets in process_backlog() , we just requeue this device
at the end of the poll list; otherwise it is removed from the poll list (cs 17.18 , lines
1578 – 1581).

 To summarize , we will continue to process backlog packets in net_rx_action()
until either we have consumed global quota or the next timer interrupt has occurred .
In process_backlog() , we continue to process packets until we have consumed the
 global quota or the device ’ s quota, whichever is smaller , or until the next timer inter-
rupt has occurred . This way, net_rx_action() works together with process_backlog()
to process backlog packets. Thus with the help of global and device quota, we are
able to give enough time for net Rx softIRQ to process backlog queues without
completely hogging CPUs at heavy network traffi c. The quota system doesn ’ t keep
the system busy processing backlog queue even if the backlog queue keeps on
growing on a given CPU while we are still processing it in net_rx_action() . The
current design of backlog queues per CPU allows us to get network packets for the
same device being queued on different CPU ’ s backlog queues and to get processed
by respective CPU ’ s net Rx softIRQs as shown in Fig. 17.6 .

 17.6 PACKET TRANSMISSION AND S OFT IRQ

 • We need to explain the need for Tx net softIRQ.
 • Explain the queuing of packet for transmission.
 • Flow of packet transmission.
 • Tx net softIRQ.

 In this section we will study how the complete packet is queued up for transmis-
sion on the device queue, and fi nally they are dequeued and actually transmitted
over the wire. Why do we need softIRQ in the case of transmission? The answer is
that we cannot always ensure that a device is ready for transmitting a packet over
the wire. The same device cannot be accessed by two or more CPUs to transmit
frames simultaneously. The hardware needs to be accessed serially for transmitting
frames. On SMP machines, if each CPU is running the same driver code to access
the hardware device to transmit frame, other CPUs either will need to wait or will
need to return back with the indication that the packet could not be transmitted.
This will hit the performance badly. So, in order to solve this issue on SMP machines,
we just requeue the frame on the device ’ s queue, schedule the device on CPU ’ s

output queue, and raise Tx IRQ on the CPU for later processing of the frames as
shown in Fig. 17.1 (Section 17.1.1). The same device may be queued on different
CPUs to be processed by Tx softIRQs raised on each of those CPU. The design of
Tx softIRQ makes sure that only one CPU will be allowed to process one device ’ s
queue at any given point of time. We will see later in this chapter how we achieve
this.

 We will start our discussion for packet transmission at the level where a com-
plete packet is formed and is ready for transmission. This packet is fi rst queued with
the device ’ s queue, and then the device queue is processed one - by - one for fi nal
transmission. In our discussion we will also see how we take the path of Tx softIRQ
for delayed processing of the device output queue. We will start from dev_queue_
xmit() . A complete frame is received by this routine. This frame is queued onto a
device ’ s queue by using device queuing routines specifi ed in structure Qdisc (dev →
 qdisc). Queue manipulation routines are initialized in a Qdisc structure for the
device.

 We need to hold a queue lock for the device (see cs 17.21 , line 1026) with the
bottom half disabled for an enqeuing packet on the device queue. This is done
because the device queue is accessed from a Tx softIRQ that we will see in a short
while from now. Now we call an enqueue function specifi c to the algorithm used for
the outgoing packet (dev → qdisc → enqueue()). Here, we have queued the packet for
transmission and we are not discussing algorithm for queuing, and this will be dis-
cussed in Chapter 15 . The next step is to dequeue the packet from the device queue
one - by - one and process them on this CPU. We call qdisc_run() to process the
packets queued on the device queue (see cs 17.21 , line 1031). This is done with queue

 Figure 17.6. Two packets from the different devices being received on different CPUs.

PACKET TRANSMISSION AND SOFTIRQ 687

688 NET SOFTIRQ

lock held so that no two CPUs should start processing the same device parallely.
We just unlock the device queue after return after from qdisc_run() and return from
 qdisc_run() . We need to know how qdisc_run() works.

 In qdisc_run() we continue to loop until the device is not closed (cs 17.22 , line
439) and we can process some more packets in the device ’ s queue (cs 17.22 , line
440). Let ’ s see how exactly qdisc_restart() works to process the packets on the device
queue. Get the pointer to the Qdisc structure for the device (cs 17.23 , line 79). This
can be accessed as dev → qdisc . Use a dequeue function specifi c to the queuing algo-
rithm selected for the outgoing packet by calling q → dequeue() (cs 17.23 , line 83) to
get the next packet out of the queue. If we have processed all the packets, we return
with the queue length (cs 17.23 , line 140). Otherwise we have to process the next
packet pulled from the device queue for transmission. The fi rst step is to grab a
device transmit lock (cs 17.23 , line 84). At this point in time, we already have a
device queue lock held so now we release the queue lock as we already have
a packet from the device queue (cs 17.23 , line 89). The next step is to check if the
device is put off (cs 17.23 , line 91). In the case where it is not put off, we call a device
transmit routine specifi c to hardware to start packet transmission (cs 17.23 , line 95).
If we are able to transmit the packet successfully, we enter the block (cs 17.23 , lines

 cs 17.21. dev_queue_xmit() .

 cs 17.22. qdisc_run() .

96 – 100). Here, we set the lock owner to − 1 (cs 17.23 , line 96) because it is always
set to a valid CPU ID that has held the lock (cs 17.23 , line 86). We need to set this
fi eld in order to track if the buggy driver is trying to hold the device transmit lock
twice on the same CPU. Next we release the device transmit lock (cs 17.23 , line 97),
hold the device queue lock, and fi nally return − 1. This returns to qdisc_run() , where
it once again calls qdisc_restart() because of the condition.

 There may be error conditions such as the following:

 • We could not get the device transmit lock because some other CPU already
has it.

 • We are not able to transmit the packet.

 cs 17.23. qdisc_restart() .

PACKET TRANSMISSION AND SOFTIRQ 689

690 NET SOFTIRQ

 In both the cases we will stop the processing of transmission on the device and
schedule the device for later processing on the CPU by raising net Tx softIRQ. In
the latter case we need to reset the lock owner to nobody (− 1), release the device
transmit lock, and hold the device queue lock (cs 17.23 , lines 105 – 107). In case we
are not able to get the device transmit lock, we check if the lock is held by the same
CPU on which the driver is being executed currently (cs 17.23 , line 117). If that is
the case, we release the sk_buff and return − 1 so that we can continue processing
the next packet in the queue. If this is not the case, we need to requeue the packet
on the device queue, schedule the device for later processing by raising net Tx
softIRQ on the CPU, and return 1 (cs 17.23 , lines 136 – 138). This time we return 1
so that qdisc_run() should break from the loop and return, because we have already
scheduled the device for later processing that will take care of all the packets queued
up on the device when softIRQ for Tx is executed.

 Let ’ s see how do we schedule device for later processing in netif_schedule() . It
checks if the device is still on. If it is on, it calls __netif_schedule() to actually sched-
ule the device for later processing (cs 17.24 , lines 530 – 531). The complete fl ow of
the packet transmission process is shown in Fig. 17.7 .

 In __netif_schedule() fi rst we check if the device is already scheduled on any
CPU (cs 17.25 , line 516). If already scheduled, don ’ t do anything and just return
because we have already queued the packet on the device queue which is already
being run on this or any other CPU and will process our packet. If the device is not
already scheduled, we fi nd out the CPU on which we are running, disable local IRQs
(cs 17.25 , lines 518 – 520) and proceed further. Queue the device on the CPU ’ s output
queue linked through dev → next_sched (cs 17.25 , lines 521 – 522). Now we raise net
Tx softIRQ on local CPU to process the packets (sk_buff) queued on this device

 cs 17.24. netif_schedule() .

 cs 17.25. __netif_schedule() .

 Figure 17.7. Packets being transmitted using Tx softIRQ framework.

(cs 17.25 , line 523). Enable interrupts on the local CPU. We disable interrupts on
local CPU to access softnet_data[cpu].output_queue because the device may be
scheduled from from Tx interrupts also (see e100tx_interrupt() in arch/cris/drivers/
ethernet.c). Our job is done here, and we have already scheduled the device to
process our packet sooner in the future and we return from here. Let ’ s wait for Tx
net softIRQ to start processing the device queue. The outgoing packet (sk_buff) is
queued on the device queue, and this device is queued on CPU ’ s output queue for

PACKET TRANSMISSION AND SOFTIRQ 691

692 NET SOFTIRQ

deferred processing by softIRQ; the entire arrangement looks as shown in Fig.
 17.8 .

 Net Tx softIRQ callback routine is net_tx_action() . Let ’ s see what this routine
does. We will always process output_queue of the CPU on which soft IRQ is raised.
The fi rst thing it does is to get the CPU ID (cs 17.26 , line 1337). The next thing we
check is the completion queue, softnet_data[cpu].completion_queue . This queue has
a list of all the packets (sk_buffs) that are already processed (transmitted). Once
the packet is transmitted, sk_buff corresponding to the packet is queued in this
 completion_queue on the CPU (for example, look at e100tx_interrupt() in arch/cris/
drivers/ethernet.c). If there are any sk_buff ’ s on the completion_queue of the CPU,
we dequeue them and free them one - by - one (cs 17.26 , lines 1347 – 1353). One thing
worth noticing here is that the completion_queue is detached from the CPU with
IRQ disabled on the local CPU (cs 17.26 , lines 1342 – 1345). Local IRQ is disabled
because the list is modifi ed inside the Tx interrupt handler (look at the same
example e100tx_interrupt()). The next step is to process the output_queue on the
CPU, softnet_data[cpu].output_queue . If there are devices to be processed on the
 softnet_data[cpu].output_queue , we will start processing them one - by - one (cs 17.26 ,
lines 1356 – 1378). The fi rst thing that we do here is detach the device list from the
CPU ’ s output_queue with local IRQs disabled (cs 17.26 , lines 1359 – 1362). The reason
for disabling the IRQ ’ s on local CPU is already explained above. Now we start
processing each device on the output_queue one - by - one (cs 17.26 , lines 1364 – 1378).
For each device on the list, we will repeat steps as explained ahead. We clear the
schedule status for the device as it is being processed (cs 17.26 , line 1369). This is

 Figure 17.8. Packets queued on device transmit queue.

 cs 17.26. net_tx_action() .

done so that if any packet arrives for transmission on some other CPU, it can be
queued on the device queue and the device can be scheduled for processing on that
CPU. This way we can have the same device being processed on different CPUs,
whichever has the slightest chance of running it. At the same time, the same device
cannot be processed on the different CPUs parallelly as dev → xmit_lock takes care
of this. The entire arrangement of the devices being queued on different CPU ’ s
output queue on the SMP machine is shown in Fig. 17.9 . We try to get the device ’ s
queue lock before calling qdisc_run() on the device. This is because other CPUs
may also be trying to access the same device for processing or adding sk_buffs on

PACKET TRANSMISSION AND SOFTIRQ 693

694 NET SOFTIRQ

 Figure 17.9. Packets being transmitted from different devices using Tx softIRQ framework on

SMP machine.

 Figure 17.10. Packets being transmitted using Tx softIRQ framework on SMP machine.

the device queue, and only one CPU may get access to device queue. The device
queue lock will be released in qdisc_restart() after dequeuing the fi rst packet for
transmission. So, if we get the queue lock, we call qdisc_restart() to process the next
packet (sk_buff) on the device queue (cs 17.26 , lines 1371 – 1373). Otherwise we
schedule the device for later processing by raising softIRQ on this CPU (cs 17.26 ,
line 1375). A block diagram for the transmission process on SMP machines is shown
in Fig. 17.10 .

PACKET TRANSMISSION AND SOFTIRQ 695

696 NET SOFTIRQ

 17.7 SUMMARY

 Linux kernel 2.4 supports four inbuilt softIRQs:

 • HI_SOFTIRQ , for high - priority tasks (e.g., timer tasklet).
 • NET_TX_SOFTIRQ , for network transmit interrupt.
 • NET_RX_SOFTIRQ , for network Rx interrupt.
 • TASKLET_SOFTIRQ , for low - priority tasks.

 SoftIRQs can be scheduled and run parallelly on different CPUs.
 SoftIRQs are executed on return from interrupt in do_IRQ() .
 SoftIRQs can be disabled locally by calling local_bh_disable() . Interrupts may

occur while softIRQs are being disabled on the CPU. These softIRQs are executed
when softIRQs are enabled in local_bh_enable() .

 SoftIRQs are designed to be disabled and enabled in nested fashion.
 raise_softirq() is an interface provided to schedule softIRQ on current CPU.
 softirq_open() is an interface provided to register softIRQ. An object of type

 softirq_action needs to be provided along with a softIRQ number to register
softIRQ.

 softirq_vec is an array of type softirq_action that registers softIRQ.
 There is one kernel daemon running per CPU to execute softIRQ.
 After all is said and done, there seems to be a small issue as far as network

softIRQ is concerned. If two consecutive TCP data packets are received for the
same connection but interrupted different CPUs, we are not very sure which packet
will be processed fi rst with the current softIRQ. If the order in which these packets
are processed is reverse of the order in which they are transmitted, to TCP they
have arrived out - of - order. This penalizes the TCP performance because ACK is
generated immediately on reception of an out - of - order segment. In a more adverse
situation, more than three packets may get reordered and may cause false entry into
a fast - recovery and fast retransmission state.

697

18

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 TRANSMISSION AND
RECEPTION OF PACKETS

 We will discuss the reception and transmission of packets on the network cards that
are DMA - capable. The intent is not to discuss hardware functioning; we will just
see how DMA descriptors are initialized and designed to receive and transmit
network packets. In our discussion we will take an example of an ether network
driver that has DMA capability and then discuss the topic. We will study the design
of network DMA ring buffers that are programmed for a network card for the
reception and transmission of packets. We will discuss the interrupt handlers for the
reception and transmission of packets where the ring buffers Rx and Tx are manipu-
lated. In the case of reception, the packet is pulled out of the next DMA buffer
marked for reception and sent to the next protocol layer for processing, and the
next DMA descriptor pointer is advanced in DMA ring buffer for next reception.
In the case of transmission, the functionality is slightly different. Tx interrupt is
generated after the complete packet is transmitted and we release sk_buff in Tx
handler. Let ’ s see how it all happens.

 Network adapters that don ’ t have DMA capability work on the simple principle
of frame transmission and reception. Once a complete frame is received in the
device ’ s Rx buffer, it generates an Rx interrupt. The interrupt handler routine takes
the packet out of the device queue and copies it to the network buffer. This network
buffer is then passed to higher protocol layers for further processing raising the net
Rx softIRQ. On the transmit side, we copy a complete frame in device Tx buffer
which is then programmed to start transmission if it is not already started. Once a
complete frame is transmitted, a Tx interrupt is generated which would then free
the buffer.

698 TRANSMISSION AND RECEPTION OF PACKETS

 18.1 DMA RING BUFFERS FOR TRANSMISSION AND
RECEPTION OF PACKETS

 DMA buffer descriptors for the network device are initialized at the time of device
initialization when the driver module is loaded. For receiving, DMA buffer descrip-
tors are initialized with DMA buffer allocated for each DMA descriptor. For trans-
mission, only DMA buffer descriptors are initialized without a DMA buffer allocated
for a DMA buffer descriptor. Now the device registers are programmed to use the
initialized DMA buffer descriptors for Rx and Tx DMA buffers. Each DMA buffer
descriptor has the physical address of the DMA buffer (where the network packets
are actually stored) and certain control fl ags. A DMA buffer descriptor also has
physical address of the next DMA buffer descriptor. We always use a physical
address when doing DMA transfer because it doesn ’ t know anything about the
kernel virtual addresses. It does a frame transfer from the device to the DMA
memory without interference of CPU.

 18.2 PACKET RECEPTION PROCESS

 On a DMA - capable network card, we program Rx DMA descriptors for network
device. These descriptors are used by the device to store frames received on a
network card by using DMA transfer. When a complete frame is received in the
kernel memory, it is stored in the device ’ s Rx DMA buffer pointed to by the next
available DMA buffer descriptor. Once a complete frame is received using a device
DMA transfer in the DMA buffer, the device raises the Rx interrupt for the device.
Rx interrupt pulls out the frame from the DMA Rx ring buffer and advances the
next pointer to point to buffer in the next descriptor from where next frame is to
be read. In the next section we will see how the interrupt handler knows which
DMA buffer in the Rx ring needs to be pulled out (see Fig. 18.1).

 An Rx interrupt handler queues the packet on an element of array softnet_data
corresponding to the CPU (queue → input_pkt_queue) on which interrupt has
occurred by a call to netif_rx() . The device on which the packet is received is also
queued up on a current CPU ’ s softnet_data poll list (softnet_data[cpu].poll_list). A
network Rx soft interrupt is raised on the current CPU. This soft interrupt will be
processed on the same CPU. Any packet is queued on any single CPU ’ s softnet_data
array element corresponding to the current CPU (softnet_data[current_cpu] →
 input_pkt_queue), and there is no chance of two CPUs processing the same packet.
Even though the same device may be queued on different CPU ’ s softnet queues,
there won ’ t be any synchronization required to process these devices on different
CPUs via Rx softIRQ.

 18.2.1 Flow of Packet Reception with DMA

 Figure 18.1 illustrates the process of reception of packet from network interface
into DMA ring buffer. Complete process is explained in Section 18.2 .

 18.2.2 Reception Ring Buffer

 On complete reception of the frame in the DMA buffer, an Rx interrupt for device
is raised. Received frames will be queued up in the next available DMA ring
buffer:

 • An interrupt is already being processed at the time when the complete frame
is received in the DMA buffer.

 • A device is programmed to generate an interrupt on reception of more than
one complete frames.

 Let ’ s look at it with the help of an example. Ring buffer for Rx is initialized as
shown in Fig. 18.2 . No packet is received at this point of time. Three pointers are
initialized by the driver to keep track of where in the ring buffer the next frame
should be taken off and also to track the end of the ring. next points to the DMA
descriptor from where next frame to be received, prev points to the DMA descriptor
from where frame was last received, and last points to the end of the ring buffer.

 Figure 18.3 represents a scenario of Rx ring buffer when two frames are received
but interrupt is not generated. next has moved clockwise by two descriptors. There
is a difference between the next pointer and the location where the next frame is
received by NIC. next is the location from where the next frame is to be processed
by the Rx interrupt. The latter is advanced by the DMA engine logic to point to
the next buffer in the ring once it has received a full frame.

 Figure 18.4 represents a scenario where Rx interrupt is generated and the fi rst
frame is processed from the Rx ring buffer. next and prev pointers move by one
unit in an anti - clockwise direction. The position of last will remain unchanged. The
position of last changes only when we have processed half of the ring buffer with
respect to the last pointer. We will see this later. On the same Rx interrupt event,

 Figure 18.1. Network frame is received into kernel memory and processed further.

PACKET RECEPTION PROCESS 699

700 TRANSMISSION AND RECEPTION OF PACKETS

all the frames in the Rx ring buffer will be processed. So, both of the frames are
processed by one interrupt event, and the fi nal scenario after the interrupt handler
returns is shown in Fig. 18.5 . It looks like the Rx ring buffer has moved two units
in a clockwise direction, with last pointing to the end of the ring buffer.

 18.3 PACKET TRANSMISSION PROCESS

 We start our discussion from the point in the stack where IP datagram is ready to
be transmitted. The outgoing device for the datagram is known, and it is queued
on a devices queue. The device is scheduled to transmit a packet on its queue. The
packet scheduler for the device removes a packet from the device queue one - by - one

 Figure 18.2. DMA Rx descriptors initialized and no packet is received.

 Figure 18.3. Two packets are received but interrupt is not yet generated.

PACKET TRANSMISSION PROCESS 701

and tries to transmit them by making a call to a device - specifi c hardware transmit
routine. The hardware transmit routine builds a link layer header to the IP datagram
and programs the next available DMA Tx ring buffer to point to the frame to be
transmitted. If no error occurs in the hardware transmit process until now, the
packet will be transmitted. Once the packet is transmitted, the device ’ s DMA
controller generates an interrupt to let the kernel know the status of the frame
transmission. In the Tx interrupt handler, we will free the buffer just transmitted
and also adjust the pointer to the fi rst descriptor in the Tx ring that needs to be
transmitted next (see Fig. 18.6).

 Figure 18.4. Interrupt is generated and fi rst packet from ring buffer is processed.

 Figure 18.5. Both the packets in the ring buffer are processed on one interrupt event.

702 TRANSMISSION AND RECEPTION OF PACKETS

 The packet that needs to be transmitted is pointed to by the next available Tx
DMA descriptor. Once the packet is transmitted, the next descriptor is advanced
to point to the next available DMA Tx descriptor. If the DMA Tx ring buffer is
full, we stop the device to stop further scheduling of packets. The device queue is
enabled in the Tx interrupt handler when the packets from the DMA Tx ring buffer
are transmitted. We try to free all the buffers that have been transmitted success-
fully but not yet been removed from the DMA Tx ring buffer.

 18.3.1 Flow of Packet Transmission with DMA

 Figure 18.6 illustrates process involved in transmission of packet by programming
transmit DMA ring buffer for the interface card. Complete process is explained in
Section 18.3 .

 18.3.2 Transmission Ring Buffer

 Tx ring buffers are initialized at the time of device initialization. The device keeps
three pointers to manage the Tx ring buffer:

 • next points to the DMA descriptor in the Tx ring buffer where next frame for
transmission should go.

 • fi rst points to the DMA descriptor in the Tx ring buffer which is fi rst to be
transmitted.

 • last is the last descriptor in the DMA Tx ring buffer to be transmitted.

 The left side of the ring in Fig. 18.7 represents a situation when the Tx ring
buffer is initialized. One frame is queued to the controller ’ s Tx ring buffer, and next
is modifi ed to point to the next buffer in the Tx ring where the next frame for
transmission should go (see right side of the ring in Fig. 18.7). The frame is just
queued up in the device ’ s transmit ring buffer and not yet transmitted. Two more
frames are queued up in Tx ring buffer before they all are transmitted. The left side
of the Tx ring buffer as shown in Fig. 18.8 is the scenario just before transmission
of the frame starts. next points to the fourth buffer where the next frame for trans-
mission should be queued. last points to the third frame that is last in the Tx ring
buffer to be transmitted. A single frame is transmitted and the scenario of the ring
buffer is shown in the right side of Fig. 18.8 . fi rst has moved three positions clock-
wise, whereas next points to the location where the next frame to be transmitted is
pointing. This means that there are no more frames to be transmitted.

 The next step is to generate a Tx interrupt once frames are transmitted. Here
we try to free the buffer ’ s queue up in the Tx DMA buffer. We start freeing buffers
from the location pointed to by fi rst and traverse the ring buffer until we reach the
 next pointer or the device pointer (pointing to the next buffer to be transmitted),
whichever comes fi rst. The DMA controller Tx pointer advances itself by one unit
in an anti - clockwise direction to point to next frame to be transmitted in the ring
buffer on transmission of the frame. The right ring in Fig. 18.9 shows that scenario
when two buffers from Tx ring buffers are freed, and Fig. 18.10 shows the fi nal
position of buffer pointers after all the buffers in Tx ring buffer are freed on the
same interrupt event.

PACKET TRANSMISSION PROCESS 703

 18.3.3 Transmission Ring Buffer

 Figure 18.7 to Figure 18.10 illustrates processing of packets in transmit DMA ring
buffers for transmission. We can see the status of DMA ring buffers after packet
transmission. Complete process is explained in Section 18.3.1 .

 Figure 18.6. Process of packet transmission.

704 TRANSMISSION AND RECEPTION OF PACKETS

 Figure 18.7. Single frame queued to a network controller that is not yet transmitted.

 Figure 18.8. All three frames queued on a Tx ring buffer are transmitted using DMA engine

but interrupt not yet generated.

 18.4 IMPLEMENTATION OF RECEPTION AND
TRANSMISSION OF PACKETS

 We will take an example of an ETRAX network controller to explain DAM ring
buffers and frame reception and transmission process. From cs 18.5 , we can see that
at the time of device initialization, we initialize Tx and Rx ring buffers. These
buffers are actually queues used by the device to buffer packets to transmit and
receive. There may always be a chance that the rate at which packets are being
received is less than the rate at which they are pushed to the higher layers for pro-
cessing. On the other hand, many connections may be sending packets for transmis-
sion. If there is no concept of device transmit buffers, we may end up dropping
packets when the outgoing traffi c is too high over a given device. These Tx and Rx

buffer descriptors are of type etrax_dma_descr as shown in cs 18.1 . The DMA
transmit ring buffer is named as TxDescList of size NBR_OF_TX_DESC. Similarly,
we have receive DMA ring buffer named as RxDescList of size NBR_OF_RX_
DESC . We will see in the later section how these tables are used to implement ring
buffer.

 18.4.1 struct etrax _ eth _ descr

 This object is used by the driver to implement DMA ring buffers (cs 18.2). It has
two parts:

 Figure 18.9. Tx interrupt generated and two buffers in the Tx ring buffer and freed from the

ring.

 Figure 18.10. On return from the Tx interrupt, all three buffers in Tx ring buffer are freed.

IMPLEMENTATION OF RECEPTION AND TRANSMISSION OF PACKETS 705

706 TRANSMISSION AND RECEPTION OF PACKETS

 descr object is a DMA controller structure that implements a rig buffer on the
hardware.

 skb is a network buffer that has a pointer to the complete frame.

 18.4.2 struct etrax _ dma _ descr

 This object is a DMA controller structure and implements a ring buffer on the
hardware. We program a DMA controller ring buffer for the Tx/Rx by just initial-
izing this object. The descriptor contains DMA status and control fl ags along with
the fi elds that manage the DMA buffer (cs 18.3).

 sw _ len . This is the length of the DMA buffer (containing data) that is pointed
to by this DMA desctiptor (buf fi eld).

 c trl . This fi elds contains the control information (fl ags) for the DMA channel.
These control fl ags are specifi ed in cs 18.4 . We will discuss them as and when
they are referred.

 next . This fi eld points to the next descriptor in the DMA ring buffer list. cs 18.5
explains how a ring buffer is created.

 buf . This fi eld points to the start of the DMA buffer for this descriptor. This
fi eld points to the DMA location where data for transmission to device or
reception from device is actually located.

 cs 18.1. Ring buffers for Rx and Tx.

 cs 18.2. DMA buffer descriptor for driver.

 cs 18.3. DMA buffer descriptor for network controller.

 cs 18.4. DMA buffer descriptor control/status fl ags for network controller.

 hw _ len . This fi eld contains hardware length for the DMA data. This is different
from sw_len as because it may contain some hardware control bytes also
indicating the end of a frame.

 status . This fi eld contains the status/control fl ags for the DMA descriptor on
the controller. For example, the status may be set to d_eop , which indicates
that the descriptor is pointing to the DMA buffer that is the last packet
package in the case where a large packet is divided into many small packages.
cs 18.4 shows the bits that are used as status/control fl ags.

 18.4.3 Initialization of Device

 At the time of module initialization for the Ethernet device, we do certain initializa-
tions, some of which are generic to an Ethernet protocol in general while others
are specifi c to the network controller type. etrax_ethernet_init() is a routine called
to initialize the device. ether_setup() is called to initialize very generic callback
routines and fl ags related to the Ethernet protocol. These routines are related to
caching and building of an Ethernet header.

 Next we initialize receive and transmit ring buffers from DMA descriptors. A
ring buffer in the hardware is implemented by programing a DMA controller rep-
resented by struct etrax_dma_descr . We build the entire chain of DMA descriptor
linked with the next fi eld of the DMA descriptor (etrax_dma_descr object). etrax_
dma_descr is a DMA controller structure. The very fi rst descriptor is written into a
hardware - controller - specifi c location that implements the ring buffer. Once the fi rst
DMA descriptor is processed, the controller loads the next descriptor from the next
fi eld of the structure and moves ahead in the ring buffer. So, we just need to build
Rx and Tx DMA descriptor chain and write the head of the chain in the hardware
logic that implements the ring buffer. Flags of the DMA descriptor take care of the
rest.

 18.4.5 Initialization of DMA Transmit Ring Buffers

 From the example of the Ethernet driver (cs 18.5 , lines 418 – 426), we see that Tx
DMA descriptors are initialized when the module is initialized. This is an array of
 TxDescList of type etrax_eth_descr of size NBR _OF_TX_DESC . These descriptors
implement Tx DMA ring buffers for transmission of network packets. We see that
consecutive elements of the array are linked together by a descr fi eld (of type

IMPLEMENTATION OF RECEPTION AND TRANSMISSION OF PACKETS 707

708 TRANSMISSION AND RECEPTION OF PACKETS

 etrax_dma_descr) using its next fi eld. This arrangement makes the array TxDescList
look like a singly linked circular link list. None of the fi elds of the DMA descriptor
and object etrax_dma_descr are initialized in the case of Tx because they are initial-
ized when the frame needs to be transmitted.

 The last thing that we need to do is to initialize the variables myNextTxDesc,
myLastTxDesc , and myFirstTxDesc for the device (cs 18.6). MyNextTxDesc points
to the descriptor where the next frame for transmission needs to go. The next com-
plete frame from the higher protocol layer will be pointed to by the MyNextTxDesc.
MyLastTxDesc is the last descriptor in the DMA descriptor ring buffer that points
to a frame transmitted last. The d_eol control bit is always set for this descriptor

 cs 18.5. etrax_ethernet_init().

(myLastTxDesc → descr.ctrl). MyFirstTxDesc points to the fi rst packet that needs to
be transmitted. So, fi nally after the Tx descriptor is initialized, it will be arranged as
shown in Fig. 18.14 .

 18.4.6 Initialization of DMA Receive Ring Buffers

 Once again from the example of Ethernet driver (cs 18.5 , lines 401 – 411), we see
that Rx descriptors are initialized at the time of module initialization. This is an
array of RxDescList of type etrax_eth_descr of length NBR_OF_RX_DESC . These
descriptors manage DMA storage for the reception of network packets. We see that
consecutive elements of the array are linked together by next fi eld of the descr fi eld
(of type etrax_dma_descr) of each array element. We initialize skb fi eld of each
descriptor to point to sk_buff of buffer size MAX_MEDIA_DATA_SIZE . Network
buffers are initialized for receive DMA descriptors because the received frames are
directly DMAed in these buffers.

 This arrangement makes the array RxDescList look like singly linked circular
link list. This way we have built a DMA ring buffer for the reception of packets.
The last thing that we need to do is to initialize the variables myNextRxDesc,
myLastRxDesc , and myPrevRxDesc for the device (cs 18.7). MyNextRxDesc points
to the next descriptor from where the next frame is read by the interrupt handler,
which means that it points to the next packet that is received and is yet to be taken
off the device ’ s DMA queue for processing. MyLastRxDesc is the last descriptor in
the DMA ring buffer. The d_eol control bit is always set for this descriptor
(myLastRxDesc → descr.ctrl). MyPrevRxDesc always points to the descriptor that
is processed last, which means that it marks the end of the descriptor in the ring
buffer. Finally, after the Rx descriptor is initialized, it will be arranged as shown
in Fig. 18.11 .

 18.5 R X INTERRUPT FOR RECEPTION OF PACKETS

 e100rx_interrupt() is the interrupt handler for the reception of packets. This inter-
rupt comes when we have completely received one frame in the device ’ s DMA ring

 cs 18.6. Buffer pointers for Tx ring buffers.

 cs 18.7. Buffer pointers for Rx ring buffers.

RX INTERRUPT FOR RECEPTION OF PACKETS 709

710 TRANSMISSION AND RECEPTION OF PACKETS

buffer managed by a DMA descriptor for Rx as shown in Fig. 18.11 . We need to
get this packet out of the DMA buffer and process it further. To receive the frame
in the DMA ring buffer, we need to program the device DMA to tell it the location
of the Rx DMA descriptor. We do this while opening the device in e100_open() (cs
 18.8). R_DMA_CH1_FIRST is made to point to location of the next Rx DMA
descriptor initialized to myNextRxDesc . When a complete frame is received in the
DMA Rx buffer, the frame is stored in the buffer pointed to by R_DMA_CH1_
FIRST. After the reception of a packet, the DMA engine advances R_DMA_CH1_

 Figure 18.11. Rx ring buffer initialized.

FIRST to point to the next Rx DMA descriptor in the Rx ring buffer pointed to by
 myNextRxDesc → descr.next as R_DMA_CH1_FIRST stores the physical address of
the location where myNextRxDesc points to. We fi rst check if R_DMA_CH1_FIRST
is the same as myNextRxDesc . If that is the case, we have should stop processing
as there is nothing left in the Rx ring buffer. If they are not same, we have something
and we proceed ahead to get the frame out of the Rx DMA buffer by calling e100_
rx() (cs 18.9 , line 1004). We continue to check if we have another packet to process
in the while loop lines 1000 – 1015. Each frame in the Rx ring buffer is processed
here.

 18.5.1 R x DMA Buffer Initialized

 Figure 18.11 illustrates how device DMA structures implementing Rx DMA ring
buffer are linked on initialization. Section 18.5 explains the process in detail.

 18.5.2 e 100_ rx ()

 This routine is called to pull off the next received frame from Rx DMA buffer
pointed to by myNextRxDesc . We read the frame length from myNextRxDesc →
 descr.hw_len . If the frame length is more than a certain threshold, RX_COPY-

 cs 18.8. e100_open().

 cs 18.9. e100rx_interrupt().

RX INTERRUPT FOR RECEPTION OF PACKETS 711

712 TRANSMISSION AND RECEPTION OF PACKETS

BREAK, we pull off sk_buff from DMA ring buffer to the upper protocol layers
for processing. We allocate a new network buffer to replace the old buffer in the
DMA ring buffer and initialize a DMA descriptor at lines 1146 – 1147 (cs 18.10).
Otherwise we make a copy of the sk_buff from DMA descriptor (myNextRxDesc →
 skb) and pass a new network buffer to the upper layer for processing at line 1140.
In the former case, we are reducing the burden of copying a large datagram, hence
saving some CPU cycles in processing the frames. In the latter case, we are saving
the allocation of DMA buffers, which is expensive in terms of both size of the buffer
and size of the DMA tag.

 We fi ll dev and proto fi elds of sk_buff to indicate the next protocol layer to
which the packet belongs by calling eth_type_trans() . Send the packet to upper
layers for further processing by calling netif_rx() . We discuss more about it later.

 cs 18.10. e100_rx().

Lastly, myPrevRxDesc is made to point to myNextRxDesc, and myNextRxDesc
is advanced to point to the next descriptor in the Rx DMA ring buffer, myNextRx-
Desc → descr.next (lines 1158 – 1159). If we had three packets already queued on the
DMA ring buffer before an Rx interrupt was generated in Fig. 18.12 , the fi nal
picture of the Rx DMA descriptors after the fi rst packet is processed will be as
shown in Fig. 18.13 when the frame pointed to by myNextRxDesc is taken out of
the Rx descriptor list for further processing by the higher - layer protocols.

 If we have processed RX_QUEUE_THRESHOLD number of frames so far
with respect to the current last descriptor pointed to by myLastRxDesc , we need to
release the ring buffers. By releasing ring buffers, it means that new frames should
be allowed to be stored in DMA ring buffers beyond the last descriptor because
they are no longer in use. Every time a new frame is processed from the DMA ring
buffer, the descriptor previous (myPrevRxDesc) is made to point to the processed
descriptor. So, the previous descriptor should be marked as the end of the ring
buffer by setting d_eol fl ag for this descriptor, lines 1164 – 1170.

 18.5.3 R x Descriptors After Reception of Three Packets in DMA
Buffer Before R x Interrupt Being Raised

 Figure 18.12 illustrates the state of Rx DMA ring buffer after the reception of three
packets. These packets will be processed from ring buffer only when Rx interrupt
is generated. MyNextRxDesc and myPrevRxDesc are pointing to element in the
Rx Ring buffer that needs to be processed fi rst more is discussed in Section
 18.5.2 .

 18.5.4 R x Descriptors After First Packet Is Pulled Out of DMA
Buffer and Given to OS in R x Interrupt Handler

 Figure 18.13 illustrates the shapshot of Rx DMA ring buffer when fi rst packet is
pulled out of the Rx DMA ring buffer for processing in Rx interrupt handler.
MyNextRxDesc points to the next descriptor to be processed. MyPrevRxDesc still
points to fi rst descriptor because discuss need to free processed buffers tasting from
here. See Section 18.5.2 for details.

 18.6 TRANSMISSION OF PACKETS

 18.6.1 e 100_ send _ packet ()

 e100_send_packet() is the interface routine registered for sending a frame over the
wire. This is the fi nal step in packet transmission down the stack. This routine pro-
grams the device ’ s DMA channel to point to the packet frame to be transmitted
and then start the channel. So, make the next available DMA descriptor in the Tx
ring buffer, MyNextTxDesc , point to the network buffer just poured in from the
network stack (cs 18.11 , line 946). Call e100_hardware_send_packet() to initialize
the rest of the fi elds of MyNextTxDesc descriptor and start DMA channel. Now we
advance next descriptor in the Tx ring buffer to point to the next descriptor in the
ring buffer (line 952). Figure 18.15 represents the scenario where two packets are
queued up in the DMA channel to be transmitted. MyFirstTxDesc points to the fi rst

TRANSMISSION OF PACKETS 713

714 TRANSMISSION AND RECEPTION OF PACKETS

 Figure 18.12. Three packets already queued on Rx ring buffer.

 Figure 18.13. One packet taken out of Rx ring buffer for processing.

TRANSMISSION OF PACKETS 715

716 TRANSMISSION AND RECEPTION OF PACKETS

DMA descriptor which is yet to be processed, myLastTxDesc points to the last
DMA descriptor that is the last in the Tx ring buffer that needs to be transmitted,
and MyNextTxDesc points to next DMA descriptor that is unused and can be used
for queuing the next packet that needs to be transmitted.

 We check if the DMA ring buffer is full at line 955. MyNextTxDesc points to
the fi rst frame to be processed, and MyNextTxDesc is the descriptor that is used to
queue the next frame to be transmitted; and if both of them point to the same loca-
tion, it means that the device queue is full. In this case, we put off the device by
calling netif_stop_queue() at line 959 so that no more frames should be accepted by
the device. We see in a later section that once the frames are transmitted, the Tx
interrupt wakes up the device queue to start accepting more packets from the upper
layer for transmission. Otherwise we check if we need to do the cleanup operation
on the DMA ring buffer that is already processed. This may be required if Tx inter-
rupt is not yet generated after frames in the Tx ring buffer are actually transmitted.

 cs 18.11. e100_send_packet().

The R_DMA_CH0_FIRST macro points to the descriptor that is yet to be processed
in the ring buffer. So we will always know which DMA descriptor is being processed
currently and will not free the sk_buff associated with this DMA descriptor and
beyond this descriptor. We traverse through the Tx DMA ring buffers until the end
and check if the frame pointed to by the DMA is already processed, line 963. If it
being processed, we just free the sk_buff associated with the DMA descriptor.

 myFirstTxDesc is advanced to point to the next descriptor in the ring buffer.

 18.6.2 T x DMA Ring Buffer Descriptor After Initialization

 Figure 18.14 illustrates the snapshot of transmit DMA ring buffer just after it is
initialized details are coversed in Section 18.6.1 .

 18.6.3 e 100_ hardware _ send _ packet ()

 The e100_hardware_send_packet() routine is called from e100_send_packet() to
initialize some of the fi elds of the MyNextTxDesc descriptor and start the DMA
channel to trigger transmission. We initialize the length and frame to be transmitted
for the current DMA descriptor (pointed to by MyNextTxDesc), line 1391 (cs 18.12).
Mark this descriptor as the last descriptor in the Tx ring buffer for transmission;
the d_eol control bit is set for this descriptor at line 1392. Provide the physical
address of the frame buffer to be transmitted to the current descriptor at line 1391.
We do this because the DMA engine doesn ’ t go through the kernel VM subsystem.
The control bit of the last descriptor is modifi ed to indicate that it is not the last
descriptor in the Tx ring buffer, line 1396. The last descriptor pointer, myLastTx-
Desc , is made to point to the current descriptor (line 1397) because this points to
the last buffer in the TX ring buffer to be transmitted. Restart the DMA channel
to start transmission at line 1400.

 18.6.4 There Are Two Packets in Device ’ s DMA T x Ring Buffer
to Be Transmitted

 Figure 18.15 illustrates the snapshot of the transmit DMA ring buffer when two
packets are queued in the ring buffer for transmission. These packets are yet to be

 cs 18.12. e100_hardware_send_packet().

TRANSMISSION OF PACKETS 717

718 TRANSMISSION AND RECEPTION OF PACKETS

 Figure 18.14. Tx ring buffer initialized.

 Figure 18.15. Two packets queued on Tx ring buffer for transmission.

TRANSMISSION OF PACKETS 719

720 TRANSMISSION AND RECEPTION OF PACKETS

transmitted. MyFirstTxDesc points to the fi rst descriptor to be processed and
MyLastTxDesc points to the last description to be processed in the ring buffer.
These are used by the driver to know start and end of the descriptor to be processed
in the ring buffer.

 18.6.5 e 100 tx _ interrupt ()

 e100_send_packet() queues up the frame for transmission, and it programs the
DMA channel to start transmission of the frame. We have registered the Tx inter-
rupt handler for the device which will be executed at the time when complete DMA
transfer for one frame is completed. In the Tx interrupt handler we will check how
many DMA descriptors are already processed (number of frames already transmit-
ted). The e100tx_interrupt() routine is registered as an interrupt handler for Tx. We
acknowledge the interrupt at line 1037. We iterate between lines 1035 – 1053 until
either of the following occurs:

 • We have reached the end of the list. In this case, myFirstTxDesc is the same
as myNextTxDesc .

 • We are pointing to the DMA descriptor that is being currently processed by
the DMA engine R_DMA_CH0_FIRST .

 In each iteration we advance myFirstTxDesc to point to the next descriptor in the
Tx ring buffer, line 1052 (cs 18.13). In each iteration, we free the sk_buff associated

 cs 18.13. e100tx_interrupt().

with the DMA descriptor. The scenario looks very much like Fig. 18.16 after the
fi rst frame is transmitted and the Tx interrupt is generated. We also take care of
the device that is stopped because the DMA ring buffer is full. Since we are releas-
ing processed buffers in the Tx interrupt, we check if the device needs to be started
by calling netif_queue_stopped() at line 1047. In case we fi nd that the device is
stopped, try to wake up the device to accept more packets for transmission by calling
 netif_wake_queue() at line 1050.

 18.6.6 First Packet from the DMA Queue Is Transmitted and Second
One Is yet to Be Transmitted; After Interrupt Is Generated,
Transmitted Buffer Is Freed

 Figure 18.16 illustrates snapshot of the transmit DMA ring buffer when fi rst DMA
descriptor is processed. The transmitted buffer is freed in the Tx interrupt handler.
MyFirstTxDesc and myLastTxDesc point to same descriptor that is the only one to
be processed in the ring buffer. Details are covered in Section 18.6.5 .

 18.7 SUMMARY

 Each network interface is defi ned by struct net_device . This structure has callback
routines specifi c to hardware such as transmission building headers. When the
module is installed for the network card, the net_device object is initialized with
device - specifi c callback routines and certain parameters in the init routine. Tx and
Rx DMA ring buffers for the network controller are also initialized. When the
device is opened, DMA memory allocation, IRQ number, and interrupt handlers
are registered with the kernel.

 In this chapter we learned about Rx and Tx ring buffer design and functioning.
The DMA ring buffers logic is implemented on the DMA - capable NIC. We just
program it to point to the fi rst DMA descriptor in the DMA descriptor ring. The
DMA buffer for an Rx ring is preallocated, and its length is the maximum frame
length that we can receive on the interface.

 In the above discussion we learned the process of reception and transmission
of packets over the Ethernet interface. The packet is received in a DMA buffer
registered for reception, and the interrupt handler for the receive pulls out a frame
from the Rx ring and is queued on a per CPU input queue and the softIRQ is raised
by calling netif_rx() . The Rx softIRQ pulls out a packet from the CPU input queue
and gives it to the upper layer for further processing. The DMA controller can be
programmed to generate an interrupt on reception of more than one frame.

 Packet transmission takes a simple path. An IP datagram is queued on the
device queue and then the device scheduler is run to dequeue the device. Packets
are then processed by a device - specifi c hard transmit routine where a link layer
header is added to the IP datagram and a frame is added to the DMA Tx ring buffer.
A DMA controller is then programmed to start the transmission. Once the packet
is transmitted, a Tx interrupt is generated. A single Tx interrupt can be generated
for multiple transmissions.

 An added functionality that the DMA - enabled NIC provides helps in enhanc-
ing I/O performance. For example, an Rx interrupt is generated when the frame is
completely received in the kernel memory with a DMA - enabled NIC. Otherwise,
we need to copy a frame from the device queue into kernel memory in the interrupt

SUMMARY 721

722 TRANSMISSION AND RECEPTION OF PACKETS

 Figure 18.16. Tx interrupt is generated and the fi rst packet on the Tx ring buffer is freed.

handler. This saves us a huge number of CPU cycles. While transmitting, we need
not copy the frame to the device queue. With an DMA - enabled NIC, transmission
is simplifi ed and once again saves us CPU cycles. We program NIC DMA with the
address of the network buffer, and the rest is taken care of by the DMA engine
itself.

723

19

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 lkcd AND DEBUGGING TCP / IP STACK

 There are different debuggers available to debug a Linux kernel such as kdb, gdb,
lkcd , and so on. lkcd is a Linux kernel crash dump analyzer. This tool can generate
kernel crash dumps and can save it on the specifi ed location, and the crash can be
used to analyze the cause of kernel crash. We can ’ t do much as far as step debug-
ging on a live system is concerned, for which kdb or gdb can be used. But lkcd can
be used on the live kernel memory to analyze kernel data structures.

 In this chapter an attempt is made to familiarize the reader with lkcd and how
it can be used to peep through the kernel data structures related to TCP/IP stack.
We take small examples related to TCP connections, add a new route (QOS), and
try to peep through the related data structures to see how changes are taking place.
Because of lack of resources and time, performance - related tests and tools could
not be illustrated. But one can get an idea and feel of various aspects of TCP/IP
stack debugging after the discussion.

 I ’ d say that the best way to debug is to build a kernel module that records the
statistics for a given connection, route, interrupt, or any subsystem and report it
whenever requested. For example, I may need to analyze the complete history
related to reception and transmission of packets for a given connection by a TCP
state machine. I may write a kernel module to record certain TCP state machine
variables such as congestion window, slow - start threshold, receive and send buffer
space, timestamp, send window, rto, and so on, for each packet that is transmitted
and received. This statistics can be collected at the end of the connection for analy-
sis. Many such ideas can be implemented to make life easier to test and analyze the
behavior of TCP/IP protocol and related framework in different situations.

724 lkcd AND DEBUGGING TCP/IP STACK

 We won ’ t discuss confi guration and features of lkcd in our current discussion
but will discuss only the relevant stuff related to the topic. This will be peeping into
different kernel data structures and some analysis. The rest is left to the practice
and imagination of the reader.

 19.1 lkcd SOURCE AND PATCHES

 We can get an lkcd source from sourceforge.net. kerntypes is a database of kernel
data structures which is generated when lkcd is built. The path of kerntypes and a
system map fi le are arguments to the lcrash . The following command can start the
lcrash program on the kernel crash dump:

 lcrash kerntypes core - fi le system.map

 lcrash can also be used on the live system by running the following command:

 lcrash kerntypes /dev/mem system.map

 kerntypes generated by default may not contain stub for all the kernel subsystems
data structures. SG has developed a tool to generate a stub for all kernel data types.
We need to build a kernel in the debug mode and run dwarfextract binary to build
a kerntypes fi le in the following way:

 dwarfextract - p vmlinux kerntypes

Type in the modules you will need to add to the kerntypes with dwarfextract - c
or - C.

 kerntypes comes with the 7.0.1 - 27 version of lkcdutils and is found under lkcdu-
tils/dwarf/dwarfdump directory.

 All this is for lkcd utilities. We also need to confi gure a kernel with frame
pointer options and build a kernel with an lkcd patch. For kernel 2.4 a patch can
be found at

 http://lkcd.sourceforge.net/

User documentation for an lcrash can be found at

 lkcd.sourceforge.net/doc/ lcrash .pdf

 Complete information about lcrash can be found at

 http://www.faqs.org/docs/Linux-HOWTO/Linux-Crash-HOWTO.html

 19.2 TOUCHING THE SOCKET

 In this section, we will see how we can access a socket structure inside the kernel
when an application opens a TCP socket. In Chapter 3 we have discussed about

how kernel data structures are linked through VFS layer to get to reach socket. Just
to refresh our memories, a socket is treated just like any other fi le, and an applica-
tion can access a socket using fi le descriptors. An entry goes in the process fi le table
when we open a socket. Let ’ s fi rst see how can we access a process fi le table
(Fig. 19.1). lcrash is run on live memory (/dev/mem), and a simple application is run
that opens a TCP socket (INET_STREAM).

 We start an lcrash program as mentioned in Section 19.1 . The socket program
for which we need to fi nd socket in the kernel is client_do_nothing . First we fi nd
out the task_struct object for the process associated with our program client_do_
nothing . We run ps command at lcrash command line interface at line 2 in Fig. 19.1
to identify our process inside the kernel. The next step is to fi nd the fi le table for
the process. fi les fi eld of the task_struct object points to the fi le table, which is object
of type fi les_struct . Using a print command at line 5, we get the address of the fi le
table. Now we dump fi les_struct object with the given address at line 8. The fd fi eld
of the fi les_struct is an array of pointer to a fi le object, one for each open fi le for the
process. We found the fi le table, and the next step is to identify our socket fi le
descriptor from the fi le table.

 We dump 10 words (32 - bit) from the address of fd at line 26 as shown in
Fig. 19.2 . The fi rst three entries point to standard input, standard output, and stan-
dard error. The third entry points to the fi le opened by the process. Since our
program has opened only one socket, the fourth entry should correspond to the
socket. Let ’ s examine this.

 We will examine the fourth entry in the open fi le descriptor table. The fourth
entry is pointer to fi le object. We want to get to the inode object for this fi le. First
we access dentry object for the fi le that is pointed to by f_dentry fi eld of the fi le
object at line 32, Fig. 19.3 . inode object is pointed to by the d_inode fi eld of the
 dentry object at line 35. We have the address of the inode object for the fourth entry

 Figure 19.1. Accessing process fi le table.

 Figure 19.2. Dump of pointers to fi le objects corresponding to open fi les for the process.

TOUCHING THE SOCKET 725

726 lkcd AND DEBUGGING TCP/IP STACK

in the process fi le table at line 36. First we check whether the inode corresponds to
the socket from the i_sock fi eld. Since this fi eld is set, we are sure that the fourth
entry corresponds to the open socket.

 The next step is to fi nd the socket object corresponding to the inode. Since the
inode is a common interface provided by VFS for any type of fi le, u is the union of
all types of fi le - specifi c objects supported by Linux. For the socket inode , there is a
socket object as part of the inode union u . This object is pointed to by the socket_i
fi eld of the inode union in Fig. 19.4 , and we dump socket object at line 41. The state
of the socket is connected, as is obvious from line 43. The socket has a back pointer
to the inode object at line 46 and to the fi le object at line 48, which are very much
tallying.

 We have come to the BSD socket object. The s k fi eld of the BSD socket object
points to protocol - specifi c socket. In the next section we are going to examine a
TCP socket object. The BSD socket keeps account of the connection and links the
protocol - specifi c socket with the VFS and the process. The protocol - specifi c socket,
pointed to by sk , is actually responsible for doing protocol - specifi c operations and
for managing the protocol - specifi c state and the data for the connection.

 19.3 LOOKING INTO THE RECEIVE SOCKET BUFFER

 From the previous section, we extend our discussion to one step ahead. The applica-
tion is receiving data in chunks of 18 bytes, and the data is ‘ I got your message . ’
This application has not issued any recv() syscall to read data from the socket ’ s
receive buffer. So, we get a chance to peep through the socket ’ s receive buffer
dumped in Fig. 19.5 .

 Figure 19.3. Reaching inode entry from fi le object.

 Figure 19.4. Accessing socket object from inode.

 Since the application is not reading data over the socket, all the socket buffers
will get piled up on the socket receive queue. So, we can see 48 socket buffers
queued up at a receive queue at line 66 in Fig. 19.5 . These buffers are linked by
 next and prev fi eld of the sk_buff_head object. We pick up the fi rst buffer from the
receive queue and see what ’ s is in it from Fig. 19.6 .

 When the buffer is queued on the sockets ’ receive queue, the protocol headers
are already stripped. So, the data fi eld of the buffer (sk_buff) will be pointing to the
TCP payload. The pointer to the data fi eld is accessed at line 72. We dump 18 bytes
from the location pointed to by the data fi eld at line 75. We can see that the buffer
contains same data — ‘ I got the message ’ — at lines 76 – 77.

 19.3.1 Route Information in sk_buff

 Each network buffer that traverses up the stack contains route information once it
is routed. This will contain all relevant information about the route. The incoming
packet may need to be forwarded. In this case, all the information about the outgo-
ing interface, along with other information about the route, is cached with the buffer
itself. The information is available with a dst fi eld of sk_buff which is of type dst_
entry . We get the address of cached route information in sk_buff at line 82 in
Fig. 19.7 . This has a pointer to net_device object pointing to an outgoing interface
pointed to by dev fi eld. We get a pointer to an outgoing interface at line 85. Next I
cross - checked whether the interface is reported correctly by printing the name of
the interface at line 87. The interface reported was correct, that is, eth0.

 19.4 PEEP INTO SEND SOCKET BUFFER

 Whenever we write data over the socket, it fi rst goes into the socket send buffer
and is then transmitted from the send buffer. This is required for so many reasons,
such as we may want to queue data for the socket even if we are not able to transmit

 Figure 19.5. Socket receive buffer.

 Figure 19.6. Network buffer (sk_buff) content.

PEEP INTO SEND SOCKET BUFFER 727

728 lkcd AND DEBUGGING TCP/IP STACK

it at once. Then we need to queue the transmitted segment until it is ACKed. The
data are removed from the send socket buffer as soon as data are ACKed. We
learned in Section 7.1 that the data from the application are broken into smaller
segments before transmission. So, we will examine the send buffer of the socket
where the application wrote data in small chunks of 1 mss size so that data are not
overlapping. In every write, the application fi lls the buffer of 1 mss with the next
alphabet. Let ’ s examine these buffers.

 Figure 19.8 shows the complete path for reaching a socket ’ s send buffer
(sk → write_queue). The experiment is very simple where client and server programs

 Figure 19.7. Route information for network buffer, sk_buff .

 Figure 19.8. Access socket send buffer.

are running on two different hosts within LAN. We will be examining the socket ’ s
send buffer and the send head (tp → send_head). Since there is no congestion and
data are transmitted at high rate in LAN, packets are transmitted as soon as they
are queued on the socket ’ s send queue. The data segments on the socket ’ s send
queue are removed as soon as they are ACKed. Data are ACKed so fast in the LAN
environment that however fast we examine the send buffer, there won ’ t be anything
there to be examined. For the same reason, we tried a trick of unplugging the receiv-
ing end from the network for some time. In this duration, packets won ’ t be ACKed
and we can easily examine the socket send buffer.

 We fi nd a socket for the connection at line 377 in Fig. 19.8 for which an expla-
nation is already provided in Section 19.2 . Next we dump the send queue (sk →
 write_queue) for the buffer at line 398. We can see that two packets are queued on
the send queue at line 402. At this point, the send head points to the next packet
to be transmitted. This should point to the segment pointed to by prev in the sk →
 write_queue because the fi rst segment pointed to by the next fi eld of sk → write_queue
is already transmitted; and because the retransmit timer fi red, it has already been
retransmitted. This is clear from lines 407 – 408 in Fig. 19.9 . Just after examining the
socket ’ s send buffer, the receiver was plugged once again and all the data in the
send queue were transmitted and ACK. So, a snapshot of the socket ’ s send queue
dumped at line 414 shows that there is no segment in the queue for transmission in
Fig. 19.9 . In this case, the send head points to NULL, which is not shown here.

 Once again, the same step is repeated and the receiver is unplugged from the
network. We fi nd there are two segments in socket ’ s send buffer in Fig. 19.10 at line
427. We examine the contents of these segments. The data fi eld of the buffer points
to the start of the data because no header is built at this point. Since the application
is writing data in chunks of 1 mss, we don ’ t see any overlapping of data in the seg-
ments. The fi rst segment contains all k ’ s dumped at line 436, and second segment
contains all j ’ s dumped at line 443.

 19.5 TCP SEGMENTATION UNIT

 In this section we will see how a segmentation unit tries to make a full - length
segment in the case where an application sends data for transmission and there
exists a partial segment at the tail of the send queue. By full segment we mean 1
mss segment. The experiment is the same as explained in Section 19.4 . The only
difference is that instead of the application sending data in chunks of 1 mss, it is

 Figure 19.9. Send head pointing to next segment to send.

TCP SEGMENTATION UNIT 729

730 lkcd AND DEBUGGING TCP/IP STACK

 Figure 19.10. Examining data in the socket send buffers.

sending data in much smaller chunks. The application writes 18 bytes of data each
time the receiver is unplugged from the network.

 The process to fi nd a socket is the same as discussed in Section 19.2 . We fi nd a
socket for our connection at line 123 in Fig. 19.11 . We can see that there are two
segments in the send queue at line 158. The fi rst segment pointed to by the next
fi eld of sk → write_queue is already transmitted; and because of timing out, it is
retransmitted as well. So, this segment contains only 18 bytes of data indicated by
the len fi eld of sk_buff dumped at line 154. The length of the next buffer in the send
queue is dumped at line 165 and shows 342. On examining data in the buffers, it is
found that the fi rst one contains ‘ I got the message ’ data (line 159) and the second
buffer has the same data appended many times (line 168). Since the application is
writing 18 bytes of data (‘ I got the message ’) each time, TCP ’ s segmentation unit
appends data to the buffer at the tail of the send queue since it is partial and is not
creating new segment for each write. Once the other end is connected to the
network, we can see that these two segments are transmitted and all the subsequent
segments contain only 18 bytes of data because they are transmitted because soon
as they are queued.

 19.6 SEND CONGESTION WINDOW AND ssthresh

 In this section we will see how a congestion window changes with ACKs received
when we send data in bulk. A simple experiment is carried out to check this behav-
ior. First we sent out one data segment at an interval of 1 second; in another
program, 20 full - sized segment were sent out in the burst, and this is repeated at an
interval of 10 seconds. The socket for the connection is accessed at line 620
in Fig. 19.12 . The send congestion window (snd_cwnd) and the send slow - start

 Figure 19.11. Filling of partial segments to make it complete by segmentation unit.

SEND CONGESTION WINDOW AND ssthresh 731

732 lkcd AND DEBUGGING TCP/IP STACK

threshold (snd_ssthresh) are state variables for TCP, as part of the tcp_opt object.
The initial value of the congestion window is set to two (line 653), and the slow - start
threshold is set to a very large value (line 655).

 In the fi rst experiment where an application was sending 1 mss of data at an
interval of 1 second, it was observed that the congestion window remained constant
at two. The reason for this observation is that the congestion window is increased
only if we are using a network at full capacity offered at any point in time. In this
case the application sends out the next chunk of data only after ACK for the fi rst
chunk of data is received. So, we are not saturating the network enough with our
data transmission rate.

 In the second experiment, an application is sending data in a burst of 20 full -
 sized segments. The application is stuffi ng in enough data to the TCP socket buffer
so that next the data are ready by the time ACK for the fi rst data segment is
received. In this case we can expect an exponential rise in the congestion window.
Since the application is sending data in bursts, we can ’ t guarantee all the data from
an application to be sent to the socket before it is scheduled out. Let ’ s see whether
there is an exponential rise in the congestion window. Two snapshots are taken after
the application sends out a burst of 20 full data chunks in 20 writes in Fig. 19.13 .

 After the fi rst burst is sent out, the congestion window is incremented to 8
where we are expecting some higher value. The reason for this is cumulative ACKs.
The receiver is sending cumulative ACKs for 4, 3, and 2 data segments, which is
not certain. Then we may not have data ready in the socket ’ s send queue at the
time when ACKs arrive because the application may have scheduled out without
sending out a complete burst of 20 full - sized data chunks in 20 writes. One can try
out a small program that sends out a big data chunk of 20 mss in one write. Probably
this may give us some higher value of congestion window at the end of full transmis-
sion of data.

 Figure 19.12. snd_cwnd & snd_ssthresh.

 19.7 RETRANSMISSIONS AND ROUTE

 A simple experiment was conducted to check how a number of retransmissions and
routing information for the connection are related. Normal TCP connection is
established and the peer is unplugged from the network. The application continues
to send out data. Since we are on LAN, RTO will be much less. By the time we
check the probe using lcrash, the number of retransmissions reaches 10 as shown
in Fig. 19.14 , line 901. In this case, we have already retransmitted a segment 10 times
and are still not able to get an ACK. The route for the connection has vanished for
the socket, line 910. In the retransmit timer callback routine, we call tcp_write_
timeout() to check whether it is time to check the route for the connection. First we
check whether the number of retransmits has exceeded sysctl_tcp_retries1 . If so, we
need to check the route for the connection if it is valid. Here we call dst_negative_
advice() , which will update the route for the connection (sk → dst_cache). If the
number of retransmits has exceeded sysctl_tcp_retries2 , we need to close the con-
nection. The values of these two control parameters are checked out by using fsyms
lcrash command as shown in Fig. 19.15 . We have exceeded sysctl_tcp_retries1 which
is 3, we check route for the connection. The route is found to be invalid because
the destination is unreachable since the peer is not in the network. So, the socket ’ s
route cache is made NULL by call to ipv4_negative_advice() .

 19.8 PEEPING INTO CONNECTION QUEUES AND SYN QUEUES

 In this section we will see how connections are accepted and queued on the differ-
ent queues for a listening socket. The listening socket has two queues which is dis-
cussed in great detail in Section (4.4) . These queues are accept queue and SYN
queue. New requests are queued on the SYN queue; and once they are established,
it is dequeued from the SYN queue and are queued on the accept queue. The
number of requests that can be queued on the accept queue is defi ned by backlog
parameter to the listen() system call, and by default it is 5.

 Figure 19.13. snd_cwnd & snd_ssthresh .

 Figure 19.14. Number of retransmissions and routing information .

PEEPING INTO CONNECTION QUEUES AND SYN QUEUES 733

734 lkcd AND DEBUGGING TCP/IP STACK

 A simple server program is written which is run on the machine on which lcrash
is run to examine connection queues for the listening socket. The length of the
accept queue is set to 1 from application using listen() syscall. From the other
machine in the network, a number of connection requests are sent for this listen
socket. We will examine both the accept queue and the SYN queue for this
scenario.

 An accept queue for the listening socket is pointed to by accept_queue fi eld of
 tcp_opt object. SYN queue queues all the open requests and is pointed to by the
 syn_table fi eld of the tcp_listen_opt object. The server program is running as server_
do_nothing , and it doesn ’ t issue accept syscall. We get hold of the listening socket
at line 231 in Fig. 19.16 . The state of the socket is unconnected, line 233.

 Since the socket is in the listening state, 11 connection requests are issued for
the listening socket. We examine the tcp_listen_opt object for the listening socket
pointed to by the listen_opt fi eld of the tcp_opt object. We get hold of tcp_listen_opt
object at line 281 in Fig. 19.17 . It has queue management parameters and the SYN
queue has table syn_table of type open_request . The new connection request goes
in this table fi rst. Once the three - way hand shake is over, a new socket is created
for the connection request and the request is moved to the accept queue. If the
accept queue is full, the connection request may be retained by the SYN queue so
that later when connections are accepted from the accept queue, the established
connections can make their way into the accept queue.

 A snapshot of the connection requests shown in Fig. 19.17 indicates that there
are a total of nine requests queued up in the SYN queue (line 287). None of these
requests are young (line 288), which means that all the requests in the SYN queue
have retransmitted SYN - ACK at least once. This may happen in two cases:

 • SYN - ACK is not getting ACKed.
 • The accept queue is full with Partial Connections (three - way TCP handshake

not yet over).

 Figure 19.15. Retransmissions tries control parameters.

 The timer is set to expire periodically once there is any connection request in
the SYN queue. It removes old entries from the SYN queue once the entry has
expired. syn_table is the actual SYN queue of open_request . We can see all nine
entries in the SYN queue. Let ’ s examine one of these in Fig. 19.18 . The open_request
object contains all the information for the connection request that is contained in
the SYN segment. These will be TCP options, initial sequence number of both the
ends, window size, and so on; the acked fi eld at line 341 indicates that the request
has not yet received the fi nal ACK for the SYN sent. If this fi eld is set and the
request is still on the SYN queue, it means that we accept that the queue is full,
because of which we are here.

 Let ’ s see the status of the accept queue. We set the accept queue length to 1, and
for that reason the maximum number of requests that can be queued on the accept
queue is 2. The fi rst request on the queue is examined at line 256. The dl_next fi eld
is non - null, which means that there is one more request queued on the accept queue.
The dl_next fi eld of the next request is NULL, which we have not shown here. The
 Sk fi eld points to the socket created for this request because the three - way hand-
shake for the connection is over and the connection is in an established state.

 19.9 ROUTING AND IP Qos lcrash STEPS

 19.9.1 lcrash Steps for Default Queueing Discipline
in Linux (pfi fo _ fast)

 In this section we will see the data structures for the queueing discipline, as well as
how the default Linux queueing discipline is set up. Linux uses pfi fo_fast as the

 Figure 19.16. Reaching listening socket.

ROUTING AND IP Qos lcrash STEPS 735

736 lkcd AND DEBUGGING TCP/IP STACK

 Figure 19.17. SYN Queue table.

 Figure 19.18. Open request entry in the SYN queue.

default queueing discipline for enqueueing the packets before transmitting them to
the interface.

 First we can fi nd out the net_device structure for the interface from Fig. 19.20 .
For this, we get the address of the dev_base list using the fsym command in lcrash
at line 14 where the dev_base symbol is a list that contains the net_device for each
network interface in the system. Then we can walk through the dev_base list to fi nd
out the required net_device struct. In our case we are looking for eth1 network
device, so we walk through the device list. We can see this from lines 20 – 27, and

 Figure 19.19. Established connection in the accept queue.

 Figure 19.20. Examine net_device objects in the system.

ROUTING AND IP Qos lcrash STEPS 737

738 lkcd AND DEBUGGING TCP/IP STACK

fi nally we print the net_device struct for the required device at line 28. Basically we
are looking for the qdisc data structure address from the net_device struct, which is
at line 184. The qdisc data structure of the net_device represents the queueing
discipline for that network interface.

 Using the qdisc object address from the net_device struct here, we are
checking the enqueue fi eld, which is a function pointer, this got initialized to the
 pfi fo_fast_enqueue() function when the Linux system booted up. This function gets
called for enqueueing the packets. From Fig. 19.21 we access the qdisc object and
then check the value for the enqueue fi eld at line 228. Then, using this address of
the enqueue fi eld, we check for which function is pointing to the enqueue fi eld at
line 261.

 The data fi eld from the qdisc object in Fig. 19.21 is an anonymous pointer
which is a place holder for the private data structures of the queueing discilpline.
In the case of default pfi fo_fast queueing discipline, this data fi eld points to the
array of sk_buff_head structures. Basically, this contains the three different FIFO
queues (different bands) for enqueueing the packets based on the priority: FIFO 0,
FIFO 1, and FIFO 2. In the next section, we will see how we can access these
FIFOs.

 For accessing the array of the sk_buff_head objects for qdisc from Fig. 19.22 ,
we fi rst get the size of Qdisc struct at line 268 which is 0x5c bytes. The data fi eld of
the qdisc object contains the private data structures of the queueing discilpline, in
this case it is an array of three sk_buff_head data structures. To access the fi rst
element of the array, we use the sizeof value of the qdisc object (i.e., 0x5c) as an
offset from the base address of the qdisc object. After adding this offset value to
the base address of the qdisc object at line 278, we can acccess the fi rst sk_buff head
struct (FIFO 0) for the pfi fo_fast queueing discilpline.

 For accessing the next element of the array, we calculate the size of the sk_buff_
head struct, which is 0 x 0c bytes. By adding this value to the base address of the
 sk_buff_head array, we get the second the sk_buff_head structure (FIFO 1) at line
297. Then again adding the size two sk_buff_head structures to the base address of
the sk_buff_head array, we get the third sk_buff_head structure (FIFO 2) at line
306 from Fig. 19.23 .

 Figure 19.21. Examine enqueue and dequeue call back routine for Qdisc.

 19.10 CBQ (CLASS - BASED) QUEUEING DISCIPLINE lcrash STEPS

 In this section we are going to see the data structures for the CBQ queueing disci-
pline in lcrash.
 Commands for Setting Up CBQ Queueing Discipline

 # tc qdisc add dev eth1 root handle 1: cbq bandwidth 10 Mbit cell 8 avpkt 1000
mpu 64

 # tc class add dev eth1 parent 1 : 0 classid 1 : 1 cbq bandwidth 10 Mbit rate 10 Mbit
allot 1514 cell 8 weight 1 Mbit prio 8 maxburst 20 avpkt 1000

 # tc class add dev eth1 parent 1 : 1 classid 1 : 2 cbq bandwidth 10 Mbit rate 2 Mbit
allot 1514 cell 8 weight 100 Kbit prio 3 maxburst 20 avpkt 1000

 # tc class add dev eth1 parent 1 : 1 classid 1 : 3 cbq bandwidth 10 Mbit rate 8 Mbit
allot 1514 cell 8 weight 800 Kbit prio 5 maxburst 20 avpkt 1000

 We will check the CBQ confi guration for u32 and route fi lters separately. The
next section starts with how u32 fi lters are confi gured. (see Figure 19.24)

 19.11 U 32 FILTERS

 Commands for Setting Up u 32 Filters
 # /root/work/iproute/iproute2 - ss050607/tc/tc fi lter add dev eth1 parent 1 : 0 pro-

tocol ip prio 1 u32 match ip dst 192.168.2.101 match ip sport 23 0xfff fl owid
1 : 2

 Figure 19.22. Examine sk_buff ’ s queued on Qdisc.

U32 FILTERS 739

740 lkcd AND DEBUGGING TCP/IP STACK

 Figure 19.23. Examine sk_buff ’ s Queued on Qdisc (contd.).

 # /root/work/iproute/iproute2 - ss050607/tc/tc fi lter add dev eth1 parent 1 : 0 pro-
tocol ip prio 1 u32 match ip dst 192.168.2.102 match ip sport 80 0xfff fl owid
1 : 3

 Here the fi lter is set up for traffi c classes — that is, class 2 and class 3.
 If the destination is IP 192.168.2.101 and the source port is 23, then the packet

that matches this specifi cation must be queued in class 2.

 Figure 19.24. CBQ setup .

 If the destination is IP 192.168.2.102 and the source port is 80, then the packet
that matches this specifi cation must be queued in class 3.

 First we can fi nd out the net_device structure for the interface from Fig. 19.25 .
For this, we get the address of the dev_base list using the fsym command in lcrash
at line 53, where dev_base symbol is a list that contains the net_device for each
network interface in the system. Then we can walk through the dev_base list to fi nd
out the required net_device struct. In our case we are looking for eth1 network
device, so we walk through the device list. We can see this from lines 59 – 65, and
fi nally we print the net_device struct for the required device at line 67. Basically we
are looking for the qdisc data structure address from the net_device struct, which is
at line 223. The qdisc data structure of the net_device represents the queueing dis-
cipline for that network interface. In this case it is the CBQ queueing discipline.

 Using the qdisc object address from the net_device struct here, we are checking
the enqueue fi eld, which is a function pointer; this got initialized to the cbq_enqueue
() function when the Linux system booted up. This function gets called for enqueue-
ing the packets. From Fig. 19.26 we access the qdisc object and then check the value
for the enqueue fi eld at line 267. Then using this address of the enqueue fi eld, we
check for which function is pointing to the enqueue fi eld at line 300.

 The data fi eld from the qdisc object in Fig. 19.26 is an anonymous pointer which
is a place holder for the private data strucutures of the queueing discilpline. In
the case of CBQ queueing discipline, this data fi eld points to the cbq_sched_data

 Figure 19.25. Access qdisc fi eld for net_device object.

U32 FILTERS 741

742 lkcd AND DEBUGGING TCP/IP STACK

structure. Basically, the cbq_sched_data struct contains the information about the
classes setup, fi lter_list confi gured for the classes, and so on.

 The cbq_sched_data struct contains the information about the classes in CBQ.
We can see from Fig. 19.27 that it contains an array of classes (cbq_class struct)
which are confi gured for CBQ queueing discipline. In this case we confi gured a
parent qdisc class 1 : 0 at line 309; this parent qdisc class has a child class 1 : 1 at line
310, and this child class has again two child classes 1 : 2 and 1 : 3 at lines 311 and 312.
The basic structure for this hierarchy is shown in Fig. 19.24 .

 Then we can see the fi lter is set for this class hierarchy. At line 401 the fi lter_list
fi eld of cbq_sched_data struct contains the address of the root data structure of the
u32 fi lter.

 To see the information in the cbq_class structure, we just checked the parent
qdisc class information in Fig. 19.28 . We can see the classid of the class at line 476 and

 Figure 19.26. Examine enqueue routine for Q discipline.

 Figure 19.27. Access list of classes for cbq queueing discipline.

then the priority of the class at line 477; and we can also see if this class has any
children or not at line 499, qdisc for the class at line 500, and fi nally the fi lter_list at
line 526.

 Using the fi lter_list address from the parent qdisc class, we check the root data
structure for fi lter which is tcf_proto structure in Fig. 19.29 .

 This structure contains the information about which type of fi lter is confi gured.
In this case it is u32 fi lter. This we have verifi ed by checking the function pointer
classify at line 553 and then checking the symbol at this address, which is u32_clas-
sify() function at line 562. Then using the root fi eld value, we check the tc_u_hnode
structure at line 571 which maintains a table of tc_u_knode structure at line 578 for
each u32 fi lter.

 Using the address of the fi rst entry from the ht[] table of the tc_u_hnode struct,
we check the tc_u_knode struct at line 595 in Fig. 19.30 . This tc_u_knode struct
contains the address of next knode struct at line 597. The struct tcf_result at line
601 contains the information about the class for which the fi lter is set. The struct
 tc_u32_sel at line 606 contains the information about the number of fi lters set at
line 609 and about the tc_u32_key struct for each fi lter at line 615.

 Using the sizeof value for struct tc_u_knode.sel (exact offset of struct tc_u32_sel
in struct tc_u_knode) and the sizeof value for struct tc_u32_sel , we check the exact
values of keys array of struct tc_u_knode . nkeys from Fig. 19.30 represents the
number of elements for keys array. In this case, one for IP addr and the other for
sport. So we check the fi rst element of keys array, which is a struct tc_u32_key at
line 673 for IP addr and then again at line 681 for sport in Fig. 19.31 .

 We repeated the same procedure as above for checking the u32 fi lter data
structure for class 1 : 3 in Figs. 19.32 and 19.33 .

 19.12 ROUTE FILTERS

 Commands for Setting Up the Route Filter
 [root@localhost root]# ip route add 192.168.2.101 via 192.168.2.100 realm 2
 [root@localhost root]# ip route add 192.168.2.102 via 192.168.2.100 realm 3

 Figure 19.28. Examine cbq - class object.

ROUTE FILTERS 743

744 lkcd AND DEBUGGING TCP/IP STACK

 Figure 19.29. Access tc_u_hnode object from tcf_proto pointer.

 [root@localhost root]# tc fi lter add dev eth1 parent 1 : 0 protocol ip prio 100
route to 3 fl owid 1 : 3

 [root@localhost root]# tc fi lter add dev eth1 parent 1 : 0 protocol ip prio 100
route to 2 fl owid 1 : 2

 Here we are setting up the route fi lter based on the destination IP addresses
192.168.2.101 and 192.168.2.102. If the destination of the packet is 192.168.2.101,
then this packet is enqueued in class 2. If the destination of the packet is
192.168.2.102, then this packet is enqueued in class 3.

 We are using the ip and tc commands for setting up the route - based fi lter for
each class.

 The ip command will update the forwarding information base (FIB) database
with the realm setting for the class.

 The tc command will update the route fi lter data structure with the classid for
the particular realm.

 Figure 19.30. Access fi lter key for class 1 : 2.

 19.13 FIB TABLE lcrash OUTPUT FOR SETTING UP THE REALM
USING ip COMMAND

 From Fig. 19.34 , fi rst we fi nd out the address of the fi b_tables global variable, which
is defi ned as an array of fi b_table struct. Using the fsym command at line 48, we get
the address of fi b_tables . Then using this address, we dump the 255 words (32 - bit)
to get the address of fi b_table , which is a default routing table when the system
comes up. At location 255 from the dumped output, we get the address of fi b_table
at line 118. Using print command at line 119, we print the contents of the fi b_table .
We can see the table id at line 121, and then we can see the insert function pointer
pointing to function address at line 124; in this case it is pointing to fn_hash_insert()
function this we can see at lines 133 – 136. The data pointer of fi b_table struct at lines
130 is a place holder for private data structures of FIB database. This data pointer
is pointing to the fn_hash struct of the FIB database which contains information
about the different zones.

 Using the size of the struct fi b_table , which is 0 × 24 bytes, we print the contents
of fn_hash structure (data fi eld of fi b_table struct) at line 139 in Fig. 19.35 . fn_hash
struct contains array of fn_zone structures and the fn_zone_list . Each element in
the fn_zones array represents each bit in the netmask (32 - bit) fi eld. We added the
realms using 32 - bit netmask values, so the 32nd element of the fn_zones array con-
tains the address of fn_zone structure for this entry of the routing table at line
174.

FIB TABLE lcrash OUTPUT FOR SETTING UP THE REALM USING ip COMMAND 745

746 lkcd AND DEBUGGING TCP/IP STACK

 Figure 19.31. Examining fi lter keys for class 1 : 2.

 Next we print the contents of fn_zone struct at line 179 in Fig. 36 . The fn_zone
struct contains a pointer to the hash table at line 182, a hash table divisor value at
line 184, a hashmask for the hash table indexing at line 185, an order of the hash
table at line 186, and the netmask of the zone at line 187.

 Then using the pointer address of the fi b_node hash table, we dump the 16
words (32 - bit) to get the address for the fi b_node struct, which contains the fn_info
struct that represents the routing table entries. Here the array of fi b_node is initial-
ized and contains the fi b_node addresses at 12th and 15th index of the array. We

 Figure 19.32. Access fi lter key for class 1 : 3.

 Figure 19.33. Examining fi lter keys for class 1 : 3.

start with the fi rst fi b_node address from the array at line 195. The fi b_node struct
contains the address of fn_info struct at line 198. Then the key value is the destina-
tion address at line 200. Also we can fi nd the values of tos, type, scope, and state
at lines 202 – 205.

FIB TABLE lcrash OUTPUT FOR SETTING UP THE REALM USING ip COMMAND 747

748 lkcd AND DEBUGGING TCP/IP STACK

 Figure 19.34. Examining fi b_tables.

 Figure 19.35. Examining fn_hash object from fi b_table.

 Figure 19.36. Examining fi b_node object from fn_zone.

 Then using the fn_info address from the fi b_node struct in Fig. 19.37 at line 208,
we print the contents of the fn_info struct. The fn_info struct contains another data
structure fi b_nh at line 235, which has the routing table entries, and the fi eld fn_nhs
value at line 232 informs about how may fi b_nh struct entries are present in the
array of fi b_nh table at line 234.

 And fi nally we print the contents of the fi b_nh struct from the array of fi b_nh
table at line 248 using the sizeof value of fi b_info struct to get the exact offset from
the base address of fi b_info struct. The fi b_nh struct contains the information for
the net_device at line 250 and contains fl ags, scope, weight, and power at lines
251 – 254.

 The realm value that we set from the command line is at line 255, and the
gateway address is at line 257.

 To check the realm value for class 2 again, the same procedure as above is
followed. We can the see Fig. 19.38 to check the realm value for class 2.

 19.14 lcrash OUTPUT FOR SETTING UP ROUTE FILTER
USING tc COMMAND

 First we can fi nd out the net_device structure for the interface from Fig. 19.39 . For
this, we get the address of the dev_base list using the fsym command in lcrash at
line 63, where dev_base symbol is a list that contains the net_device for each network
interface in the system. Then we can walk through the dev_base list to fi nd out the
required net_device struct. In our case we are looking for the eth1 network device,
so we walk through the device list. We can see this from lines 69 – 76, and fi nally we

lcrash OUTPUT FOR SETTING UP ROUTE FILTER USING tc COMMAND 749

750 lkcd AND DEBUGGING TCP/IP STACK

print the net_device struct for the required device at line 77. Basically, we are
looking for the qdisc data structure address from the net_device struct, which is at
line 233. The qdisc data structure of the net_device represents the queueing disci-
pline for that network interface.

 Using the qdisc object address from the net_device struct in Fig. 19.40 , we are
checking the enqueue fi eld, which is a function pointer; this got initialized to the
 cbq_enqueue() function when the Linux system booted up. This function gets called
for enqueueing the packets. From Fig. 19.39 we access the qdisc object and then
check the value for the enqueue fi eld at line 277. Then using this address of the
enqueue fi eld, we check for which function is pointing to the enqueue fi eld at line
310.

 The data fi eld from the qdisc object in Fig. 19.40 is an anonymous pointer which
is a place holder for the private data strucutures of the queueing discilpline. In the
case of CBQ queueing discipline, this data fi eld points to the cbq_sched_data struc-
ture. Basically, the cbq_sched_data struct contains the information about the classes
setup, fi lter_list confi gured for the classes, and so on.

 Figure 19.37. Accessing fi b_nh object from fi b_info for realm 3.

 The cbq_sched_data struct contains the information about the classes in CBQ.
We can see from Fig. 19.40 that it contains an array of classes (cbq_class struct)
which are confi gured for CBQ queueing discipline. In this case we confi gured a
parent qdisc class 1 : 0 at line 319; this parent qdisc class has a child class 1 : 1 at line
320, and this child class has again two child classes 1 : 2 and 1 : 3 at lines 321 and 322.
The basic structure for this hierarchy is shown in Fig. 19.24 .

 Figure 19.38. Accessing fi b_nh object from fi b_info for realm 2.

lcrash OUTPUT FOR SETTING UP ROUTE FILTER USING tc COMMAND 751

752 lkcd AND DEBUGGING TCP/IP STACK

 Figure 19.39. Access qdisc object for net_device.

 Figure 19.40. Accessing cbq_class objects for queue discipline.

 To see the information in the cbq_class struct, we just examined the parent
qdisc class information in Fig. 19.41 . We can see (a) the classid of the class at line 486,
(b) the priority of the class at line 487, and (c) whether this class has any children or
not at line 509, (d) the qdisc for the class at line 510, and (e) the fi lter_list at line
536.

 Using the fi lter_list address from the parent qdisc class, we check the root data
structure for the fi lter, which is tcf_proto struct in Fig. 19.41 .

 This structure contains the information about which type of fi lter is confi gured.
In this case, it is route fi lter. We have verifi ed this by checking the function pointer
classify at line 563 and then checking the symbol at this address, which is route4_
classify() function at line 573.

 The route4_head data structure contains the hash table of type struct route4_
bucket , and this route4_bucket data structure again maintains a table for
 route4_fi lter .

 Figure 19.41. Examining tcf_proto object for class1 : 0.

lcrash OUTPUT FOR SETTING UP ROUTE FILTER USING tc COMMAND 753

754 lkcd AND DEBUGGING TCP/IP STACK

 Figure 19.42. Examining route4_fi lter for class 1 : 2.

 Using the root fi eld value from tcf_proto struct, we can see the contents of
 route4_head data structure at line 579 in Fig. 19.42 . This route4_head data structure
maintains a hash table. From lines 666 – 667 we can see the values for new route4_
bucket structure for class 2 and class 3.

 Based on the address at line 666, we can see the contents of route4_bucket
struct at line 924 which again maintains a table of route4_fi lter struct. This
 route4_fi lter struct contains the information about the class. The tcf_result struct
contains the information about the class address and the class id at lines 969 and
970.

 Figure 19.43 shows the lcrash output for the class 3 route fi lter; again the same
procedure as explained above is followed.

 Figure 19.43. Examining route4_fi lter for class 1 : 3.

 19.15 NETLINK DATA STRUCTURE

 19.15.1 nl _ table

 nl_table is an array of pointers to sock structure. Each element of nl_table array
represents a NETLINK protocol family — for example, NETLINK_ROUTE,
NETLINK_FIREWALL , and so on. From Fig. 19.44 we can see how we got the
pointer address to the nl_table lines 42 – 45. Then by derefrencing the pointer address
we get the fi rst sock element of the nl_table . Here we are just checking the sock
structure for the data_ready function pointers and to which function it is pointing.

 19.15.2 rtnetlink _ link

 rtnetlink_links is defi ned as an array of pointers to rtnetlink_link data structure. Each
 rtnetlink_link data structure corresponds to a rtnetlink command — for example,
RTM_NEWQDISC, which is a command for adding new qdisc. Figure 19.45 shows
the lcrash steps for accessing the rtnetlink_links table.

NETLINK DATA STRUCTURE 755

756 lkcd AND DEBUGGING TCP/IP STACK

 Figure 19.44. Examine nl_table.

 19.16 SUMMARY

 lcrash is a very powerful tool to analyze Linux crash dumps.
 dwarfextract is lcrash utility to generate kerntypes for the complete set of kernel

datatypes. This comes with the 7.0.1 - 27 version of lkcdutils .
 fsyms command can be used to get the address for kernel global symbols.
 Double pointers can be dereferenced by using the dump command as is shown

in Fig. 19.2 , where a fi le table is dumped.
 Kernel data structures are complex in nature and they need to be very clearly

traversed in small steps as is illustrated in different sections.

 Figure 19.45. Examine & rt_netlinkLinks.

SUMMARY 757

759

20

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 NEXT EDITION

 KERNEL 2.6 DESCRIPTION

 This chapter discusses TCP/IP implementation on kernel 2.6. There are not many
changes as far as basic framework and design are concerned. TCP/IP stack imple-
mentation has evolved over the period and with every release. These changes will
be with respect to the performance enhancement or introduction of new features
or congestion control algorithms. For example, in 2.6 there is a new feature added
from 2.6.18 onward to DMA TCP data to the user buffer (CONFIG_NET_DMA).
This is also called receive offl oading, where copying of socket data from the kernel
to the user buffer is done by programing the DMA channel, hence saving a lot of
CPU cycles by offl oading the job to the DMA engine; this is also known as I/OAT
DMA. This feature requires some modifi cations to the device layer, the TCP layer,
and the socket layer, which will be discussed in detail.

 Kernel is preemptive though not completely preemptive. There are preemption
points within the kernel where high - priority tasks can cause the kernel to preempt.
When we enter a critical region within the kernel, we disable preemption; and while
exiting, we enable kernel preemption. While enabling preemption, we check whether
rescheduling is required. If so, a scheduler is called. The scheduler checks whether
the preempting thread has higher priority than the currently running thread. If so,
it preempts the kernel; otherwise, not. This topic is discussed in detail.

760 NEXT EDITION

 UDP

 We have not discussed UDP sockets from the point of view of application and
kernel implementation. We will see how basic UDP client and server program is
written. Since UDP is a connectionless protocol, it does not need to initiate and
close connection for every interaction between the two ends. The client just needs
to know the port number and the IP address of the server to which it sends a
message, and that is it. The life cycle of the UDP connection involves just sending
a message to the server, and the server needs to take action. The UDP echo client –
 server application requires two packets to be exchanged between the client and the
server. One UDP packet is sent from the client to the server, and the other packet
is an echo message back from the server to the client. If it were TCP, three packets
are required to initiate the connection, minimum three packets for closing the con-
nection and 2 packets for echo request and response. So, a total of minimum eight
packets are required in the case of TCP to complete an echo request and a response
connection life cycle. But UDP is an unreliable protocol unlike TCP, which keeps
account of each byte received at the other end. In all, UDP is a lightweight protocol
and is used for a very different type of communication.

 In the next revision we will discuss different aspects related to the UDP proto-
col and will also discuss kernel implementation of UDP sockets. We will see how
UDP packets are handled by the kernel. Then we will see how a socket is recognized
corresponding to the UDP packet — that is, what hash tables are looked up for UDP
connections.

 MULTICASTING AND BROADCASTING

 Until now we have seen connections that send and receive packet to and from a
single host. There are different applications that have the requirement of sending
a message from one point to many hosts in or even outside the network. For
example, when a diskless client is booting, it needs to know about its own IP address.
In such cases, it sends out a broadcast RARP message to all the hosts in the subnet.
The machine that knows its IP address will respond and sends back a unicast reply
to the originator of the machine. There are many different applications that require
messages to be sent out to multiple hosts, and this is possible because of the broad-
casting technique. The UDP protocol supports the broadcasting of messages while
TCP doesn ’ t.

 In the similar way, there are requirements that require sending messages to
multiple hosts but not all hosts in the subnet. This is also possible with the help of
the multicasting technique. This requires multicast message receivers to register
themselves with the kernel to receive multicast messages destined for specifi c mul-
ticast addresses. The biggest example is the SAP or routing daemons. Once again,
UDP supports multicasting and TCP doesn ’ t because the latter is a connection - ori-
ented protocol, which means that the two ends are fi xed.

 We will discuss broadcast and multicasting on UDP protocol, how Ethernet
addresses are mapped to multicast addresses, and how applications register with the
kernel to receive messages destined for specifi c multicast address.

Ipv6 761

 FRAGMENTATION AND REASSEMBLY

 We have already discussed fragmentation and reassembly in this version of the book
but not in much detail. In the next version we will see complete implementation of
fragmentation and reassembly unit.

 IP FORWARDING

 Forwarding is functionality implemented at the router. Linux can act as a fully
functional router. Link layer header modifi cations may be required before forward-
ing a frame to the outgoing interface. In the next version we will see at what point
we come to know that the packet needs to be forwarded, and we will learn how to
handle those packets.

 ADDING NEW INTERFACE

 We will learn how ifconfi g works within the kernel and how to interact with the
network devices. We will also learn how to confi gure virtual interfaces for the single
physical network interface.

 I pv 6

 Ipv6 will be explained in complete totality, and its implementation in the kernel
will be covered comprehensively.

763

 BIBLIOGRAPHY

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

 Maurice J. Bach , Design of the UNIX Operating System , Prentice - Hall ECS Professional ,
 Englewood Cliffs, NJ , 1986 .

 Christian Benvenuti , Understanding Linux Internals , O ’ Reilly, 2005 .
 Daniel P. Bovet and Marco Cesati , Understanding the Linux Kernel , Second Edition , O ’ Reilly ,

 2003 .
 Intel ® 64 and IA - 32, Architectures Software Developer ’ s Manual , Vol. 3A: System Program-

ming Guide .
 Mike Fisk and Wu - chun Feng , Dynamic Adjustment of TCP Window Sizes , Los Alamos

Unclassifi ed Report LA - UR 00 - 3321 , 2000 .
 Matthew Mathis et al., Forward Acknowledgment: Refi ning TCP Congestion Control , Pitts-

burgh Supercomputing Center, ACM , 1996 .
 W. Richard Stevens , TCP/IP Illustrated , Vol. 1 : The Protocols, Addison - Wesley , Reading, MA ,

 1994 .
 W. Richard Stevens , Advanced Programming in the UNIX Environment , Addison - Wesley ,

 Reading, MA , 1992 .
 Richard Stevens , Bill Fenner , and Andrew M. Rudoff , Unix Network Programming , Vol. I ,

 Prentice - Hall, India , 2005 .
 Richard Stevens , Unix Network Programming , Vol. II , Prentice - Hall, India , 2002 .
 RFC 1388 : G. Malken et al., RIP version 2 Carrying Additional Information , 1993 .
 RFC 1247 : J. May et al., OSPF version 2 , 1991 .
 RFC 1349 : P. Almquist , Type of Service in the Internet Protocol Suite , 1992 .
 RFC 1122 : R. Braden , Requirement for Internet Hosts — Communication Layer , 1989 .
 RFC 2018 : M. Mathis et al., TCP Selective Acknowledgement Options , 1996 .
 RFC 1323 : V. Jacobson et al., TCP Extensions for High Performance , 1992 .
 RFC 2581 : M. Allman et al., TCP Congestion Control , 1999 .
 RFC 2582 : S. Floyd et al., The NewReno Modifi cation to TCP ’ s Fast Recovery Algorithm ,

 1999 .
 RFC 2883 : S. Floyd et al., An Extension to the Selective Acknowledgement (SACK) Option

for TCP , 2000 .
 RFC 2988 : V. Paxson et al., Computing TCP ’ s Retransmission Timer , 2000 .
 RFC 4138 : P. Sarolahti et al., Forward RTO - Recovery (F - RTO) , 1995 .
 RFC 3522 : Reiner Ludwig et al., The Eifel Detection Algorithm for TCP , 2003 .
 RFC 791 : Internet Protocol , 1981 .
 RFC 793 : Transmission control protocol, 1981 .
 Pasi Sarolahti et al ., FRTO — A New Recovery Algorithm for TCP Re - transmission Timeouts,

University of Helsinki, 7C - 2002 - 07, 2003 .

764 BIBLIOGRAPHY

 WEBSITES

 Werner Almesberger , Linux Network Trac Control | Implementation Overview, www.sim-
pleweb.org/bibliography/articles/general/alm9904.pdf .

 Differentiated Services on Linux, http://diffserv.sourceforge.net/ .
 S. Floyd and V. Jacobson , References On CBQ (Class - Based Queueing), http://ftp.ee.lbl.gov/

fl oyd/cbq.html .
 Netlink Sockets Tour , http://www.skyfree.org/linux/kernel_network/netlink.html .
 Kernel Korner — Why and How to Use Netlink Socket, http://www.linuxjournal.com/

article/7356 .
 tc - cbq - details(8) Linux man page, http://linux.die.net/man/8/tc-cbq-details .
 Linux 2.4 Advanced Routing HOWTO, http://www.linuxdocs.org/HOWTOs/Adv-Routing-

HOWTO.html#toc8 .
 Lcrash Howto, http://lkcd.sourceforge.net/ .
 http://devresources.linux-foundation.org/dev/iproute2/download/ , iproute2 (tc) source.
 http://lxr.linux.no/ , Linux source.
 http://www.kerne.l.org/ , download Linux source.

 http://lkcd.sourceforge.net/ , lcrash.

765

INDEX

Page numbers followed by f indicate fi gures

estimator, 625–626
general scheduler, 624
link-sharing scheduler, 625
from net/dev/core.c, 626
qdisc_restart(), 626–627
qdisc_run(), 626

CBQ queuing discipline Icrash STEPS, 739
Class-based Queuing (CBQ), 622
Client side setup, 164f

client side operations, 164
connect, 164–167, 165f, 166f
fl ow control for connection request,

167–170, 168f, 169f
ip_route_connect(), 167
tcp_connect, 174–176, 175f
tcp_transmit_skb(), 176–178
tcp_v4_check_established(), 171–174
tcp_v4_connect(), 167
tcp_v4_hash_connect(), 170–171

Compatibility framework
FW_ACCEPT and FW_SKIP, 647
fw_in(), 645–647
FW_MASQUERADE, 647
FW_REDIRECT, 647
FW_REJECT, 647

Connection queues, 733–735
Connection request handling, 151–154,

152f, 154f
accept queue processing, 155–156
fl ow control for handling a new

connection request, 156
SYN queue processing, 155

Connection setup
BIND, 124–125, 124f
bind(), 130
end of fget(), 131
end of inet_bind(), 137
end of sockfd_lookup(), 131

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

A
Accept systemcall, 157–159, 157f, 158f

fi le table entry, 162
fl ow control, 162–163
inet_accept(), 159–161, 160f, 161f
inode and socket data structures linking,

161–162
VFS and socket data structures linking,

162
Application interfaces for TCP/IP

client application, 27–29, 28f
option values

SO_BROADCAST, 30
SO_DEBUG, 29–30, 30f
SO_DONTTROUTE, 33
SO_KEEPALIVE, 31, 32f
SO_LINGER, 31–32
SO_OOBINLINE, 32
SO_RCVBUF, 33
SO_RCVTIMEO, 33–34, 34f
SO_REUSEADDR, 31
SO_SNDBUF, 32–33
SO_SNDTIMEO, 34–35, 35f

server application, 25–27, 26f
socket options, 29

ARP/RARP, 97–98, 97f, 98f

B
Basic implementation, 1–2
BGP. See Border Gateway Protocol
Border Gateway Protocol (BGP), 90

C
CBQ. See Class-based Queuing
CBQ_dequeue(), 623f, 624f

cbq_dequeue(), 627–629
cbq_dequeue1(), 629
cbq_dequeue_prio(), 629–632

766 INDEX

EWMA. See Exponential Weighted
Moving Average

Exponential Weighted Moving Average
(EWMA), 625

F
FIB. See Forwarding Information Base
FIB TABLE Icrash OUTPUT, 745–749,

746f, 747f, 748f
Filters, 615–616

route fi lter implementation, 617f
route4_change(), 618–619

tc_ctl_tfi lter(), 613f, 611613
types of, 610
u32_change(), 615–616
u32 fi lter implementation, 614f

Forwarding Information Base (FIB), 540
Fragmentation and reassembly, 761

I
ICMP, 94f

ping, 95–96, 95f, 96f
Icrash output for route fi lter, 749–755, 750f,

751f, 752f, 753f, 754f
Ikcd source and patches, 724
INET_CREATE, 111f
I/O

read(), 38, 38f
recv(), 38, 38f
select(), 39, 39f
send(), 39, 39f
write(), 38, 38f

IP chains
defi nition of, 647
fi ltering with Ipchains, 648–649, 649f
Ipchain rules chains, 649
IP tables

fi ltering packets, 664–668
fi lter rules, 657–658
ipt_do_table(), 664–668
ipt_match-iterate, 668
registration of, 657
struct ipt_entry, 661–662
struct ipt_entry_match, 662–663
struct ipt_entry_target, 664
struct ipt_standard_target, 664
struct ipt_table, 658
struct ipt_table_info, 658–661, 660f
struct ipt_tcp, 663–664

packet fi ltering
ip_fw_check(), 653–655
ip_rule_match(), 655

struct ip_chain, 649–650

Connection setup (cont’d)
end of tcp_v4_get_port(), 137
fget(), 131
hash buckets for tcp Bind, 125
inet_bind(), 131–133
related data structures, 125
server side operations, 124
server side setup, 122–124, 123f
sockfd_lookup(), 130
sys_bind(), 130
tcp_bhash, 125–126
tcp_bind_bucket, 129–130
tcp_bind_confl ict(), 135–136, 136f
tcp_bind_hashbucket, 129
tcp_ehash, 125
tcp_hashinfo, 126–127, 127f
tcp_listening_hash, 125
tcp_v4_get_port(), 133–135

Core TCP processing, 444f

D
Data fl ow diagram, 284f–290f
Data segments processing, 424–433

DSACK block and, 430, 430f, 431f
implementation, 425
tcp_ofo_queue(), 436–441, 437f, 439f,

440f
tcp_sack_extend(), 435–436
tcp_sack_maybe_coalesce(), 434–435
tcp_sack_new_ofo_skb(), 433–434
tcp_sack_remove(), 441–442

Delay ack timer
ACK segments ending of, 344–345
quick ACK mode, 345
scheduling of, 344
tcp_ack_snd_check(), 346–347
_tcp_ack_snd_check(), 345–346
tcp_clear_xmit_timer(), 352–353
tcp_delack_timer(), 348–349
tcp_reset_xmit_timer(), 349–351
tcp_send_delayed_ask(), 347–348
tcp_write_timer(), 351–352

Duplicate/partial ACKs in loss state
tcp_check_sack_reneging(), 455–456
tcp_try_undo_loss(), 453–455

Duplicate/partial ACKs in recovery state
tcp_remove_reno_sacks(), 450–451
tcp_try_undo_partial(), 451–452

E
Enqueue

cbq_classify(), 621
cbq_enqueue(), 620–621

INDEX 767

struct ip_fw, 651–652
struct ip_fwkernel, 650–651
struct ip_reent, 651
table organization in, 652f

IP forwarding, 761
IP (Internet protocol)

IP header
checksum, 89
dst addr., 90
fl g., 89
frag offset, 89
hlen, 88
ID, 89
prot., 89
src addr., 90
TOS, 88
total len, 88
TTL, 89
ver., 88

Ipv6, 761

K
Keepalive timer

activation of, 353–354
resetting of, 354
tcp_keepalive_timer(), 354–356

Kernel 2.6 description, 759
Kernel fl ow, 214, 216f
Kernel synchronization mechanism

atomic operations, 23
semaphore, 22
spin lock, 23–24, 24f

Kernel version 2.4, 11–14, 13f, 14f
new system call addition, 16–17, 17f
system call on Linux, 14–16, 15f

L
Length reordering, 417–421, 418f
Linux implementation of CBQ, 623f
Linux process and thread

fork(), 17–18, 18f
kernel threads, 19–21, 20f, 21f
thread, 18–19, 19f

Linux traffi c control
basic components of, 592, 592f
classes, 592
fi lters, 593
policing, 593
queuing discipline, 592

Listen systemcall, 138f
accept queue is full, 147–150, 148f, 149f
connection request with complete three-

way handshake, 151

connection request with pending three-
way handshake, 150–151

END of inet_listen(), 142
END of tcp_listen_start(), 142
established sockets linked in tcp_ehash

table, 150
inet_listen(), 139
listen fl ow, 142
max_qlen_log, 140
qlen, 140
qlen_young, 140
struct open_request, 142–147, 143f, 144f
SYN QUEUE, 140
syn_table, 140–141
sys_listen(), 138–139
tcp_listen_start(), 139–142

M
Multicasting and broadcasting, 760

N
Nagle’s algorithm (RFC 896), 69–71, 69f,

70f, 71f
Netfi lter hook framework, 636–637
Netfi lter hooks on IP stack

hooks for incoming packets, 639–640
hooks for outgoing packets, 638–639,

638f
nf_hook_slow(), 642–643
nf_iterate(), 643–644
processing of, 642
registration of, 640–642
struct nf_hook_ops, 644

Netlink data structure
nl_table, 755, 756f
rtnetlink_link, 755

Netlink sockets
CLASS massages, 484
data structures

nl_table, 485–486, 486f
rtnetlink_link, 486–488
struct msghdr, 489–490, 490f
struct nlmsghdr, 488–489

FILTER messages, 484–485
fl ow diagram for TC command, 495–496,

496f
introduction of, 479–480
kernel netlink socket, creation of,

481–482
netlink packet format, 490
QDISC messages, 484
registration and initialization, 480–481
ROUTE messages, 484

768 INDEX

Netlink sockets (cont’d)
socket example

TC command fl ow in user space,
490–491, 491f

TC command in kernel space, 491–495
user netlink socket, creation of

ADDR messages, 484
LINK parameter messages, 483

Net SoftIRQ, 672f
irq_cpustat_t, 675
packet reception, 679–679, 680f, 682f
packet transmission, 686–695, 687f, 691f,

692f, 694f, 695f
processing of, 675–678, 682–686
reception, 672–675
registration for, 678–679
transmission, 672
variables for, 677

New interface, addition of, 761

O
OOB data, sending of, 249–250
Open Shortest Path First (OSPF), 90, 501
OSPF. See Open Shortest Path First

P
Packet reception

DMA ring buffers and, 698
fl ow of, 698
process of, 698
reception ring buffer, 698–700, 700f

Packet transmission, 701f
device initialization, 707
DMA receive ring buffers initialization,

709
DMA transit ring buffers initialization,

707–709
e100_hardware_send_packet(), 717
e100_rx(), 711–713
e100_send_packet(), 713–717, 714f, 715f
e100tx_interrupt(), 720–721
fl ow of, with DMA, 702
implementation of reception, 704–705,

705f
Rx descriptors, 713
Rx DMA buffer initialization, 711
Rx interrupt and, 709–711, 710f
struct etrax_dma_descr, 706–707
struct etrax_eth_descr, 705–706
transmission ring buffer, 702, 703f
Tx DMA ring buffer initialization, 717,

718f, 719f

Packet traversing
APR and neighboring framework,

212–213
INET protocol packet switcher, 223–224
IP layer, 206–207
kernel path for TCP, 209

IP layer, 211–212
IP layer routing, 210–211
netfi lter hook, 212
packet scheduler and hard

transmission, 213
socket layer, 210
TCP layer, 211

link layer, 207
packet reception, 219
packet scheduler, 207
from socket layer to device, 207–208,

208f
socket scheduler, 207
TCP layer, 206, 207
up the TCP/IP stack, 220f, 221f

from device to socket layer, 219, 220f,
221f

IP fragment handling, 223
IP layer, 215–216, 222–223
kernel path for TCP, 219–225
local input netfl iter hook, 216
packet reception, 214
packet switcher, 222
pre-routing netfl iter hook, 215
Rx SOFT IRQ, 214–215
Socket layer, 225
SoftlRQ, 219–220
TCP layer, 218–219, 224–225

PFIFO_FAST QDISC implementation,
593–596, 594f, 595f

Processing TCP urgent pointer
tcp_check_urg(), 422–424

Protocol socket registration, 105f, 106f,
105107

Q
Qdisc. See Queuing Discipline
Queuing discipline data structure

struct cbq_class, 599–601
struct Qdisc, 596–597
struct Qdisc_class_ops, 598–599
struct Qdisc_ops, 597–598

Queuing Discipline (Qdisc), 591
Queuing mechanism

lock_sock(), 265
_lock_sock(), 265–266

INDEX 769

processing in tcp_rcv_established(),
256–258

queue processing, 259–263, 260f, 261f
release_sock(), 266
_release_sock(), 266–267
tcp data processing, 269f, 270f

cleanup_rbuff(), 268–270
data from receive buffer, 273
1mss = n Bytes requested, 275
n Bytes requested, 276
n-X bytes requested, 275
one page requested, 276
paged buffer, 275–276, 275f
skb_copy_datagram_iovec(), 271–273,

272f
X bytes requested, 273–275, 274f

tcp_data_wait(), 263–264, 264f
tcp_prequeue(), 258–259
tcp_prequeue_process(), 264–265

R
Receive side TCP memory management

general discussion, 305–308
_skb_queue_purge(), 317–319, 318f
tcp_clamp_window(), 309–311
tcp_collapse(), 312–316, 314f, 316f
tcp-collapse_ofo_queue(), 311–312
tcp_prune_queue(), 308–309

Retransmission and route, 732
RIP. See Routing Information Protocol
Routed packet, 214, 215f
Route fi lters, 743–745, 744f
Routines operating on sk_buff

alloc_skb(), 190–191, 191f
skb_pull(), 195–196
skb_push(), 194–195, 195f
skb_put(), 192–194, 193f
skb_reserve(), 191–192

Routing
general description of, 501–503
multipathing, 505–509, 506f, 507f

change_nexthops(), 507–508, 508f
endfor_nexthops(), 508
FIB_RES_NH, 508–509

netstat, 90–91, 91f
policy-based routing, 504–505, 504f
record route options, 509–510
record routing, 510
routing cache data structures

struct dst_entry, 522–523
struct rtable, 519–522
struct rt_hash_bucket, 519

routing cache implementation, 517–519,
518f

routing protocols, 90
source routing

loose record routing, 511
SRR processing implementation,

511–517
strict source routing, 510–511

traceroute, 92–93, 92f
Routing and IP Qos Icrash STEPS

steps for default queuing discipline, 735–
738, 736f, 737f

Routing cache
cache timer, 530
dst_destroy(), 535–536
dst_free(), 534–535
_dst_free(), 535
dst_run(), 536–537
fi b_create_info(), 557–558
FIB initialization, 562f

fi b_hash_init(), 562–563
fi b_rules_init(), 563

FIB overview, 540, 541f
FIB traversal fl ow diagram

fi b_lookup(), 581–582
fn_hash_ookup(), 584–585
_in_dev_get(), 577–578
inet_select_addr(), 578–579
ip_dev_fi nd(), 576–577
ip_route_output(), 563–564
ip_route_output_key(), 564–566, 565f
ip_route_output_slow(), 566–576

fn_hash_insert(), 553–554, 553f, 558f
fn_new_zone(), 554–555
for incoming packets, 529–530
inet_rtm_newroute(), 550–551
inet_rtm_newrule(), 559–560
interface down and rt_fl ush_timer,

537–538
link failure

dst_link_failure(), 527
dst_set_expires(), 528–529
ipv4_link_failure(), 527–528

for local connections, 525–526
LPM algorithm and table lookup,

555–557
management of, 523–525
new entry addition, 549–550
route scopes

control fl ags, 581
types, 581

rt_cache_fl ush(), 538–540

770 INDEX

Routing cache (cont’d)
rt_may_expire(), 533–534
rt_periodic_timer, 530–533
rules for, 583
_sk_dst_check(), 526–527
struct fi b_info, 546–547
struct fi b_nh, 547–548
struct fi b_node, 544–545
struct fi b_rule, 548–549
struct fi b_table, 540–543
struct fn_hash, 543
struct fn_zone, 543–544
struct kern_rta, 552–553
struct rtmsg, 551–552

Routing Information Protocol (RIP), 90,
501

Routing table, Linux kernel
implementation, 517

S
Sack blocks, processing of

tcp_sacktag_write_queue(), 410–417,
411f, 413f

Segmentation, functional level fl ow, 252f,
253f

Segmentation with scatter-gather
technique, 235–239, 236f

with scatter-gather support, 239, 239f
Y bites and

can_coalesce(), 239–240
forced_push(), 241–242
skb_entail(), 248
tcp_copy_to_page(), 240–241
tcp_mark_push(), 241
tcp_minshall_check(), 245
tcp_nagle_check(), 244–245
tcp_push(), 242–243
tcp_push_one(), 247–248
_tcp_push_pending_frames(), 243
tcp_snd_test(), 243–244
tcp_write_xmit(), 245–247
update_send_head(), 247

Send congestion window and ssthresh,
730–732, 731f

Send socket buffer, 727–729, 728f
Shutdown

kernel shutdown implementation
receive shutdown, 36–37, 37f
send shutdown, 36

values, needed for, 36
Sk_buff and

DMA-SKB_FRAG_STRUCT
DMA and sk_buff, 188f

sk_buff and fragmentation, 190
sk_buff and IP fragmentation, 189f

Sk_buff Builds protocol headers
IP header, 197–198, 198f
link layer header, 198–199, 199f
tcp header, 196–197, 197f

Sk_buff Extracts protocol headers
datalink layer point, 199–200
IP layer header, 200
tcp layer header, 200–201, 201f

Sock, 112–118, 113f, 114f, 116f, 118f
Socket, touching of, 724–726, 725f
Socket buffer, 726–727, 727f
Sockets

SOCK_ASYNC_NOSPACE, 109
SOCK_ASYNNC_WAITDATA, 109
SOCK_NOSPACE, 110
states of BSD socket, 108

Sockets, kernel implementation of, 101–
102, 102f, 107–108, 108f

Source code organization, 5–7, 6f, 7f
SRR processing implementation

ip_forward_options(), 514–516
ip_options_compiled (), 512
ip_options_rcv_srr(), 512–514
ip_rt_get_source(), 516–517

State processing
overview of, 446–448

Struct skb_shared_info, 186–187
Struct sk_buff, 182–186, 183f

structure of, 182–186
Syn-ack timer

activation of, 356–357
cancellation of, 357
tcp_synack_timer(), 357–361, 360f

Syn queues, 733–735
System-wide control parameters, 329–321

T
TC command in kernel space

netlink_data_ready (), 494
netlink_sendmsg (), 492–493
netlink_unicast (), 493–494
rtnetlink_rcv (), 494
rtnetlink_rcv_msg (), 494
rtnetlink_rcv_skb (), 494
sock_sendmsg (), 492
sys_sendmsg (), 491–492

TCP
congestion control, 85–86
data fl ow

ACKing of data segments, 59–67, 60f,
61f, 63f, 64f, 65f, 66f

INDEX 771

delayed acknowledgment, 67–69, 67f,
68f

header, 51f
acknowledgment number, 52
checksum, 53
header length, 52
port numbers, 52
sequence number, 52
TCP fl ags, 53
unused fi eld, 53
urgent pointer, 53
window size, 53

options, 54, 54f
mss option, 55, 55f
selective acknowledgment option, 57–

58, 57f
timestamp option, 56
window-scaling option, 55–56, 56f

performance and reliability
RTTD, 86
SACK/DSACK, 86–87
window scaling, 87

sliding window protocol, 72–79, 74f, 75f,
76f, 77f, 78f

timers
keepalive timer, 84
persistent timer, 83–85, 84f
retransmission timer, 88–83
TIME_WAIT timer, 85

TCP incoming segment processing, 378–
379, 383

fast path enablement
processing of, 384–386
timing of, 382

prediction fl ags
building of, 383
important points, 383

prediction fl ags, building of, 378–380
processing of incoming ACK, 400–402
slow path enablement, 383

processing of, 386–387
tcp_ack_is_dubious(), 404
tcp_ack_update_window(), 406–407
tcp_clean_rtx_queue, 408–410
tcp_cong_avoid(), 405–406
tcp_data_snd_check(), 397–398
_tcp_data_snd_check(), 398
tcp_event_data_recv(), 390–391
tcp_grow-window(), 392–393
_tcp_grow_window(), 393–394
tcp_incr_quickack(), 391–392
tcp_may_update_window(), 407–408
tcp_packets_in_fl ight(), 403–404

tcp_paws-discard(), 398–399
tcp_receive_window(), 395
tcp_replace_ts_recent(), 387–389
tcp_select_window(), 395–397
tcp_sequence(), 387
tcp_space(), 397
window calculation, 394–395

TCP/IP stack overview
INET socket in, 3
kernel control paths and, 7–11
kernel networking source tree, 9f
kernel source tree, 8f
packet moving down protocol stack, 3,

4f
packet moving up protocol stack, 5
packet reception, 11f
sk_buff, 2f, 3

TCP retransmit timer
resetting and cancellation, 327–329
setting of, 327
skb_cloned(), 336
tcp_enter_loss(), 329–332
tcp_retransit_skb(), 333–334
tcp_retrans_try_collapse(), 334–336

TCP segmentation unit, 729–730, 730f
functioning of, 232–233, 233f, 238f
segmentation without scatter-gather

support, 234
TCP states

categories of, 40
complete life cycle, 42f
connection closure, 40
connection initiation, 40
default processing, 456–459
established connection, 40
four-way connection closure, 43f
non-open states when acked beyond

tcp_add_reno_sack(), 472–473
TCP_CA_CWR, 468–470
TCP_CA_Disoder, 470–471
TCP_CA_Loss, 467–468
TCP_CA_Recovery(), 471–472
tcp_check_reno_reordering(), 473
tcp_mark_head_lost(), 475–477
tcp_may_undo(), 473–474
tcp_packet_delayed(), 474–475
tcp_sync_left_out(), 477
tcp_try_undo_dsack(), 471
tcp_undo_cwr(), 475

partial close, 45–47, 46f
TCP_CA_CWR, 449
tcp_head_timeout(), 460–461
tcp_packet_delayed(), 466–467

772 INDEX

TCP states (cont’d)
tcp_time_to_recover(), 459–460
tcp_try_to_open(), 461–462
tcp_update_scoreboard(), 462–464
tcp_xmit_retransit_queue(), 464–466
three-way handshake, 40f, 41f
TIME_WAIT, 44–45
undoing from TCP_CA_CWR, 449

TCP throughput, maximizing of
bandwidth, 79
congestion window, 80f, 81f
rtt (round trip time), 79

TC user program
cbq_init(), 604
commands for hierarchy creation

cbq_change_class(), 607–610
tc_ctl_tclass(), 606–607

dev_graft_qdisc(), 605
qdisc_create(), 602–604
qdisc_graft(), 604–605
tc_modify_qdisc(), 601–602

Timers in Linus
detach_timer(), 325
mod_timer(), 324–325
time routines execution, 326

Timers in Linux
del_timer(), 325–326

Time_wait timer
activation of, 361–362
non-recycle mode, 363–364, 365f
recycle mode, 365–367, 366f
tcp_time_wait(), 362
tcp_twcal_tick(), 370–374, 371f, 373f
_tcp_tw-hashdance(), 374–375
tcp_twkill(), 367–370, 368f
tcp_tw_schedule(), 362–363

Transit side TCP memory management,
291–294, 293f

alloc_skb(), 296–297
select_size(), 294–295
skb_charge(), 298
sock_wfree(), 300–301
tcp_alloc_page(), 297–298
tcp_alloc_pskb(), 295–296
tcp_free_skb(), 300
tcp_mem_reclaim(), 302
_tcp_mem_reclaim(), 302–303
tcp_mem_schedule(), 298–300
tcp_write_space(), 301–302
wait_or_tcp_memory(), 303–305, 304f

U
UDP, 760
U32 fi lters, 739–743, 740f, 742f
Urgent byte processing, 277f

byte read as OOB date, 277–278
reading as inline data, 280–284, 282f,

283f, 284f
tcp_recv_urg(), 278–280, 279f

V
VFS and socket, 103–105, 103f, 104f

Z
Zero window probe timer

cancellation of, 337
function of, 338–339, 338f
installation of, 337
tcp_ack_probe(), 338
tcp_probe_timer(), 339
tcp_send_probe0(), 339
tcp_write_wakeup(), 339–342

