TCP/IP ARCHITECTURE, DESIGN,
AND IMPLEMENTATION
IN LINUX

Sameer Seth
M. Ajaykumar Venkatesulu

[EEE
computer
society

WWILEY

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by IEEE Computer Society.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 978-0470-14773-3

Printed in the United States of America

10987654321

CONTENTS

Preface

Acknowledgments

1 inTRODUCTION

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Overview of TCP/IP Stack

1.1.1 Moving Down the Stack

1.1.2 Moving Up the Stack

Source Code Organization for Linux 2.4.20

1.2.1 Source Code Organization for Networking Code
TCP/IP Stack and Kernel Control Paths

Linux Kernel Until Version 2.4 Is Non-preemptible
141 System Call on Linux

1.42 Adding New System Call

Linux Process and Thread

1.5.1 fork()

1.5.2 Thread

1.5.3 Kernel Threads

Kernel Synchronization Mechanism

1.6.1 Semaphore

1.6.2 Atomic Operations

1.6.3 Spin Lock

Application Interfaces for TCP/IP Programming
1.7.1 Server Application

1.7.2 Client Application

1.7.3 Socket Options

1.7.4 Option Values

Shutdown

1.8.1 Kernel Shutdown Implementation

1.8.2 Send Shutdown

1.8.3 Receive Shutdown

/0

1.91 read()

1.92 write()

XXi

XXVii

~N D N -

11
14
16
17
17
18
19
22
22
23
23
24
25
27
29
29
35
36
36
36
38
38
38

vi

1.10

1.11

1.93 recv()
1.94 send()
1.9.5 select()
TCP State

1.10.1 Partial Close
1.10.2 tcpdump Output for Partial Close
Summary

2 PROTOCOL FUNDAMENTALS

2.1

22

2.3

24
2.5
2.6
2.7
2.8

29
2.10

2.11

212
2.13
2.14

2.15
2.16
2.17
2.18

TCP

2.1.1 TCP Header

TCP Options (RFC 1323)

221 mss Option

222 Window-Scaling Option
223 Timestamp Option

224 Selective Acknowledgment Option
TCP Data Flow

23.1 ACKing of Data Segments
Delayed Acknowledgment
Nagle’s Algorithm (RFC 896)
TCP Sliding Window Protocol
Maximizing TCP Throughput
TCP Timers

2.8.1 Retransmission Timer
2.8.2 Persistent Timer

2.83 Keepalive Timer

2.84 TIME_WAIT Timer

TCP Congestion Control

TCP Performance and Reliability
2.10.1 RTTD

2.10.2 SACK/DSACK

2.10.3 Window Scaling

IP (Internet Protocol)

2.11.1 IP Header

Routing

netstat

traceroute
2.14.1 traceroute Mechanism
ICMP

ping

ARP/RARP
Summary

CONTENTS

38
39
39
39
45
47
48

49
50
50
54
55
55
56
57
58
58
67
69
72
79
82
82
83
84
85
85
86
86
86
87
87
88
90
90
92
93
93
95
97
99

CONTENTS

3 KERNEL IMPLEMENTATION OF SOCKETS

3.1
32
33
34
3.5
3.6
3.7

3.8
3.9

Socket Layer

VEFS and Socket

Protocol Socket Registration
struct inet_protosw

Socket Organization in the Kernel
Socket

inet_create

371 Sock

Flow Diagram for Socket Call
Summary

4 KERNEL IMPLEMENTATION OF TCP CONNECTION SETUP

4.1

4.2

4.3

Connection Setup

4.1.1 Server Side Setup

41.2 Server Side Operations
Bind

4.2.1 Data Structures Related to Socket BIND
422 Hash Buckets for tcp Bind
423 tcp_ehash

4.2.4 tcp_listening hash

42.5 tcp_bhash

42.6 tcp_hashinfo

4.2.7 tcp_bind_hashbucket
4.2.8 tcp_bind_bucket

429 bind()

4.2.10 sys_bind()

4211 sockfd_lookup()

4212 fget()

4213 inet_bind()

4.2.14 tcp_v4_get_port()
4215 tep_bind_conflict()
Listen

43.1 sys_listen()

4.3.2 inet_listen()

433 tcp_listen_start()

434 Listen Flow

43.5 struct open_request
43.6 Accept Queue Is Full

4.3.7 Established Sockets Linked in tcp_ehash Hash
Table

101
102
103
105
107
107
108
110
112
118
118

121
122
122
124
124
125
125
125
125
125
126
129
129
130
130
130
131
131
133
135
137
138
139
139
142
142
147

150

vii

viii

4.4

4.5

4.6

4.7

CONTENTS

43.8 State of the Connection Request when the Three-Way
Handshake Is Still Pending

4.3.9 State of the Connection Request when the Three-Way
Handshake Is Completed

Connection Request Handling by Kernel

441 SYN Queue Processing

442 Accept Queue Processing

443 Flow Control for Handling a New Connection Request
Accept

4.5.1 inet_accept()

452 Linking of Inode and Socket Data Structures when the
Three-Way Handshake Has Completed and Is
Accepted by Application

453 Linking of VFS and Socket Data Structures in the
Kernel when a New Connection Is Established

4.5.4 File Table Entry of a New Accepted Connected
Socket

4.5.5 Flow Control for Accepting New Established
Connections

Client Side Setup

4.6.1 Client Side Operations

4.6.2 Connect

4.6.3 tcp_v4_connect()

4.6.4 ip_route_connect()

4.6.5 Flow Control for Generating a Connection Request
4.6.6 tcp_v4_hash_connect()

4.6.7 __tcp_v4_check_established()
4.6.8 tcp_connect()

4.6.9 tcp_transmit_skb()

Summary

5 sk_buff AND PROTOCOL HEADERS

5.1
52
5.3

5.4

struct sk_buff

struct skb_shared_info

sk_buff and DMA—SKB_FRAG_STRUCT
53.1 DMA and Fragmented sk_buff Containing Paged Data
5.3.2 sk_buff and IP Fragmentation

533 sk_buff and Fragmentation
Routines Operating on sk_buff

54.1 alloc_skb()

542 skb_reserve()

543 skb_put()

54.4 skb_push()

54.5 skb_pull()

150

151
151
155
155
156
156
159

161

162

162

162
163
164
164
167
167
167
170
171
174
176
178

181
182
186
187
188
188
190
190
190
191
192
194
195

CONTENTS

5.5 sk_buff Builds Protocol Headers as It Traverses Down the
Protocol Layers
5.5.1 Tcp Header Is Added to sk_buff
5.52 Ip Header Is Added to sk_buff
5.5.3 Link Layer Header Is Added to sk_buff
5.6 sk_buff Extracts Protocol Headers as It Traverses Up the
Protocol Layers When a Packet Arrives
5.6.1 sk_buff Is Made to Point to a Datalink Layer Header
Which Will Be Processed by a Dalalink Driver
5.6.2 sk_buff Is Made to Point to an ip Layer Header Which
Will Be Processed by an IP Layer
5.63 sk_buff Is Made to Point to a tcp Layer Header Which
Will Be Processed by a tcp Layer
5.7 Summary
6 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS
6.1 Packet Traversing Down the TCP/IP Stack
6.1.1 Path of Packet Traversal from Socket Layer to Device
for Transmission
6.1.2 Kernel Path for TCP Packet Traversing Down the Stack
6.2 Routed Packet Ready for Transmission
6.3 Kernel Flow for a Packet Moving Down the Stack
6.4 Packet Traversing Up the TCP/IP Stack
6.4.1 Path of Packet Traversal from Device (Reception)
to Socket Layer
6.42 Kernel Path for TCP Packet Traversing Up the Stack
6.5 Kernel Flow for a Packet Moving Up the Stack
6.6 Summary
7 TCP SEND
7.1 TCP Segmentation Unit for Sending Data
7.1.1 Functioning of Segmentation Unit without Scatter—
Gather Support
7.1.2 Segmentation without Scatter—Gather Support
7.1.3 1 mss of Data Written over the Socket
7.2 Segmentation with Scatter-Gather Technique

7.2.1 Segmentation with Scatter—Gather Support
7.2.2 Application Writes Y Bytes over the Socket
7.2.3 can_coalesce()

7.2.4 tcp_copy_to_page()

725 tecp_mark_push()

7.2.6 forced_push()

196
196
197
198

199

199

200

200
202

205
206

207
208
214
214
214

219
219
225
225

231
232

232
234
235
235
239
239
239
240
241
241

7.2.7
7.2.8
729
7.2.10
7.2.11
7212
7213
7.2.14
7.2.15

tep_push()

__tep_push_pending_frames()
tep_snd_test()

tep_nagle_check()
tcp_minshall_ckeck()
tep_write_xmit()
update_send_head()
tep_push_one()
skb_entail()

7.3 Sending OOB Data
7.4 Flow for TCP Segmentation Unit and Send Process
7.5 Functional Level Flow for Segmentation and Send
Mechanism
7.6 Summary
TCP RECEIVE
8.1 Queuing Mechanism
8.1.1 Processing in tcp_rcv_established()
8.1.2 tcp_prequeue()
8.1.3 Processing of Queues
8.1.4 tcp_data_wait()
8.1.5 tep_prequeue_process()
8.1.6 lock_sock()
81.7 __lock_sock()
8.1.8 release_sock()
8.1.9 _ release_sock()
8.2 Processing of TCP Data from the Receive Queue
8.2.1 cleanup_rbuf()
8.2.2 skb_copy_datagram_iovec()
8.2.3 Reading Data from Receive Buffer without Paged
Data Area
8.2.4 X Bytes Requested from the Application
8.2.5 1 mss =n Bytes Requested from the Application
8.2.6 n — X Bytes Requested from the Application
8.2.7 Consumption of Data from a Paged Buffer
8.2.8 n Bytes Requested by the Application
8.2.9 One Page of Data Requested by the Application
8.3 TCP Urgent Byte Processing
8.3.1 Urgent Byte Read as OOB Data
8.3.2 tep_recv_urg()
8.3.3 Urgent Mode Processing and Reading an Urgent

Byte as Inline Data

CONTENTS

242
243
243
244
245
245
247
247
248
249
250

250
251

255
256
256
258
259
263
264
265
265
266
266
267
268
271

273
273
275
275
275
276
276
276
277
278

280

CONTENTS

8.4

8.5

DATA Flow Diagram for Receiving Data over the TCP
Socket

Summary

9 TCP MEMORY MANAGEMENT

9.1

9.2

9.3
9.4

9.5

Transmit Side TCP Memory Management
9.1.1 select_size()

9.1.2 tep_alloc_pskb()

9.1.3 alloc_skb()

9.1.4 tcp_alloc_page()

9.1.5 skb_charge()

9.1.6 tcp_mem_schedule()

9.1.7 tep_free_skb()

9.1.8 sock_wfree()

9.1.9 tcp_write_space()

9.1.10 tcp_mem_reclaim()

9.1.11 __tep_mem_reclaim()

9.1.12 wait_for_tcp_memory()

Receive Side TCP Memory Management
9.2.1 tep_prune_queue()

9.2.2 tep_clamp_window()

923 tep_collapse_ofo_queue()

9.2.4 tcp_collapse()

9.2.5 __skb_queue_purge()

Freeing of Memory Allocated to a Receive Buffer

System-Wide Control Parameters Are Worth Noticing When It
Comes to TCP Memory Management

Summary

10 Tcp TIMERS

10.1

10.2

Timers in Linux

10.1.1 mod_timer()

10.1.2 detach_timer()

10.1.3 del_timer()

10.1.4 When Are Timer Routines Executed?
TCP Retransmit Timer

10.2.1 When Do We Set Retransmit Timer?
10.2.2 When Do We Reset or Cancel Retransmit Timers?
10.2.3 tcp_enter_loss()

10.2.4 tcp_retransmit_skb()

10.2.5 tcp_retrans_try_collapse()

10.2.6 skb_cloned()

284
290

291
291
294
295
296
297
298
298
300
300
301
302
302
303
305
308
309
311
312
317
319

319
321

323
324
324
325
325
326
326
327
327
330
333
334
336

xi

Xii

CONTENTS

10.3 Zero Window Probe Timer 336
10.3.1 When Is the First Time Probe Timer Installed? 337
10.3.2 When Is the Probe Timer Canceled for the Connection? 337
10.3.3 tcp_ack_probe() 338
10.3.4 How Does the Window Probe Timer Work? 338
10.3.5 tcp_probe_timer() 339
10.3.6 tcp_send_probel() 339
10.3.7 tep_write_wakeup() 339

10.4 Delay ACK Timer 342
10.4.1 When Is the ACK Scheduled? 344
10.4.2 How and When Is the ACK Segment Sent? 344
10.4.3 Quick ACK Mode 345
10.4.4 __tep_ack_snd_check() 345
10.4.5 tcp_ack_snd_check() 346
10.4.6 tcp_send_delayed_ack() 347
10.4.7 tcp_delack_timer() 348
10.4.8 tcp_reset_xmit_timer() 349
10.4.9 tcp_write_timer() 351
10.4.10 tcp_clear_xmit_timer() 352

10.5 Keepalive Timer 353
10.5.1 When Is the Keepalive Timer Activated? 353
10.5.2 How Is the Timer Reset? 354
10.5.3 tcp_keepalive_timer() 354

10.6 SYN-ACK Timer 356
10.6.1 When Is the SYN-ACK Timer Activated? 356
10.6.2 When Is the SYN-ACK Timer Stopped? 357
10.6.3 tcp_synack_timer() 357

10.7 TIME_WAIT Timer 361
10.7.1 When Do We Trigger TIME_WAIT Timer? 361
10.7.2 tep_time_wait() 362
10.7.3 tcp_tw_schedule() 362
10.7.4 Non-recycle Mode 363
10.7.5 Recycle Mode 365
10.7.6 tep_twkill() 367
10.7.7 tep_twecal_tick() 370
10.7.8 __tcp_tw_hashdance() 374

10.8 Summary 375

11 TCP CORE PROCESSING 377

11.1 TCP Incoming Segment Processing 378

11.1.1 Prediction Flags 378

11.1.2 Building Prediction Flags 379

CONTENTS

11.1.3
11.1.4
11.1.5
11.1.6

Condition to Enable the Fast Path

When to Enable the Slow Path

When to Enable the Fast Path

Points to Remember about Prediction Flags

11.2 Fast Path Processing
11.3 Slow Path Processing

11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11.3.7
11.3.8
11.3.9
11.3.10
11.3.11
11.3.12
11.3.13

tep_sequence()
tep_replace_ts_recent()
tcp_event_data_recv()
tep_incr_quickack()
tep_grow_window()
__tep_grow_window()
How Do We Calculate Window to Be Advertised?
tep_receive_window()
__tep_select_window()
tep_space()
tep_data_snd_check()
__tep_data_snd_check()
tep_paws_discard()

11.4 Processing of Incoming ACK

11.4.1
1142
11.4.3
11.4.4
11.45
11.4.6

tep-packets_in_flight()
tep_ack_is_dubious()
tcp_cong_avoid()
tep_ack_update_window()
tcp_may_update_window()
tep_clean_rtx_queue()

11.5 Processing of SACK blocks

1151

tep_sacktag_write_queue()

11.6 Reordering Length
11.7 Processing TCP Urgent Pointer

11.71

tep_check_urg()

11.8 Processing Data Segments in Slow Path

11.8.1
11.8.2
11.8.3
11.8.4
11.8.5

tep_sack_new_ofo_skb()
tep_sack_maybe_coalesce()
tep_sack_extend()

tep_ofo_queue()
tcp_sack_remove()

11.9 Overview of Core TCP Processing

11.10 Summary

380
382
382
383
384
386
387
387
390
391
392
393
394
395
395
397
397
398
398
400
403
404
405
406
407
408
410
410
417
421
422
424
433
434
435
436
441
442
442

xiii

Xiv

12 TCP STATE PROCESSING

13

12.1
12.2

12.3

12.4

12.5

12.6

12.7

Overview of State Processing

TCP States

1221 TCP_CA_CWR

12.2.2 Undoing from TCP_CA_CWR
Processing of Duplicate/Partial ACKs in Recovery State
12.3.1 tcp_remove_reno_sacks()
12.3.2 tep_try_undo_partial()
Processing of Duplicate/Partial ACKs in Loss State
12.4.1 tcp_try_undo_loss()

12.4.2 tcp_check_sack_reneging()
Default Processing of TCP States
12.5.1 tcp_time_to_recover()

12.5.2 tep_head_timedout()

12.53 tep_try_to_open()

12.5.4 tcp_update_scoreboard()

12.5.5 tcp_xmit_retransmit_queue()
12.5.6 tcp_packet_delayed()
Processing of TCP Non-open States when ACKed Beyond
tp — high_seq

12.6.1 TCP_CA_Loss

12.6.2 TCP_CA_CWR

12.6.3 TCP_CA_Disorder

12.6.4 tcp_try_undo_dsack()

12.6.5 TCP_CA_Recovery

12.6.6 tcp_add_reno_sack()

12.6.7 tcp_check_reno_reordering()
12.6.8 tcp_may_undo()

12.6.9 tcp_packet_delayed()

12.6.10 tcp_undo_cwr()

12.6.11 tcp_mark_head_lost()

12.6.12 tcp_sync_left_out()

Summary

NETLINK SOCKETS

13.1
13.2
13.3
13.4
13.5

Introduction to Netlink Sockets

Netlink Socket Registration and Initialization at Boot Time
How Is the Kernel Netlink Socket Created?

How Is the User Netlink Socket Created?

Netlink Data Structures

13.5.1 nl_table

13.5.2 rtnetlink_link

CONTENTS

445
446
448
449
449
449
450
451
452
453
455
456
459
460
461
462
464
466

467
467
468
470
471
471
472
473
473
474
475
475
477
477

479
479
480
481
482
485
485
486

CONTENTS

14

13.6

13.7
13.8

13.9

Other Important Data Strutures

13.6.1 struct nlmsghdr

13.6.2 struct msghdr

Netlink Packet Format

Netlink Socket Example—tc Command for Adding a qdisc
13.8.1 tc Command Flow in User Space for Adding a qdisc
13.8.2 tc Command in Kernel Space

13.8.2.1 sys_sendmsg()

13.8.2.2 sock_sendmsg()

13.8.2.3 netlink_sendmsg()

13.8.2.4 netlink_unicast()

13.8.2.5 netlink_data_ready()

13.8.2.6 rtnetlink_rcv()

13.8.2.7 rtnetlink_rcv_skb()

13.8.2.8 rtnetlink_rcv_msg()

Flow Diagram for tc Command in Kernel Space

13.10 Summary

IP ROUTING

14.1
14.2
14.3
14.4

14.5

14.6
14.7

14.8

Routing
Policy-Based Routing
Multipathing

Record Route Options (RFC 791) and Processing by Linux
Stack

14.41 Record Routing

Source Routing

14.5.1 Strict Record Routing

14.5.2 Loose Record Routing

14.5.3 SRR Processing Implementation

Linux Kernel Implementation of Routing Table and Caches
Routing Cache Implementation Overview

14.7.1 Routing Cache Data Structures

Managing Routing Cache

14.8.1 Routing Cache for Local Connections

14.8.2 __sk_dst_check()

14.8.3 Link Failure and Reporting to Routing Subsystem
14.8.4 dst_link_failure()

14.8.5 ipv4_link_failure()

14.8.6 dst_set_expires()

14.8.7 Routing Cache for the Incoming Packets

14.8.8 Routing Cache Timer

14.8.9 rt_periodic_timer

488
488
489
490
490
490
491
491
492
492
493
494
494
494
495
496
496

499
501
503
505

509
510
510
510
511
511
517
517
519
523
525
526
527
527
527
528
529
530
530

Xv

xvi

14.9

14.8.10 rt_may_expire()

14.8.11 dst_free()

14.8.12 __dst_free()

14.8.13 dst_destroy()

14.8.14 dst_run_gc()

14.8.15 Interface down and rt_flush_timer
14.8.16 rt_cache_flush()

Implementation Overview of Forwarding Information Base
(FIB)

14.9.1 struct fib_table

14.9.2 struct fn_hash

14.9.3 struct fn_zone

14.9.4 struct fib_node

14.9.5 struct fib_info

14.9.6 struct fib_nh

14.9.7 struct fib_rule

14.10 Adding New Entry in Routing Table Using ip Command

(RT Netlink Interface)

14.10.1 What Happens When the ip Command Is Run
with a Route Option for Adding an Entry in Routing
Table?

14.10.2 inet_rtm_newroute()
14.10.3 struct rtmsg

14.10.4 struct kern_rta
14.10.5 fn_hash_insert()
14.10.6 fn_new_zone()
14.10.7 fib_create_info()
14.10.8 fn_hash_insert()

14.11 What Happens When the ip Command Is Run with a Rule

Option for Adding an Entry in the Routing Table?
14.11.1 inet_rtm_newrule()
14.11.2 FIB Initialization

14.12 FIB Traversal Flow Diagram

14.12.1 ip_route_output()
14.12.2 ip_route_output_key()
14.12.3 ip_route_output_slow()
14.12.4 ip_dev_find()

14.12.5 __in_dev_get()

14.12.6 inet_select_addr()
14.12.7 ROUTE__SCOPES
14.12.8 fib_lookup()

14.13 Summary

CONTENTS

533
534
535
535
536
537
538

540
540
543
543
544
546
547
548

549

550
550
551
552
553
554
557
558

558
559
561
563
563
564
566
576
577
578
580
581
589

CONTENTS

15w QUALITY OF SERVICE IN LINUX (IP QoS)

15.1
15.2
15.3
15.4

15.5

15.6

15.7

15.8

15.9

15.10

15.11
15.12

1513

Introduction

Basic Components of Linux Traffic Control
Linux Implementation of pfifo_fast qdisc
Queueing Discipline Data Structure

15.4.1 struct Qdisc

15.4.2 struct Qdisc_ops

15.4.3 struct Qdisc_class_ops

15.4.4 struct cbq_class

tc User Program and Kernel Implementation Details
15.5.1 tc_modify_qdisc()

1552 gqdisc_create()

15.5.3 c¢bq_init()

15.5.4 qdisc_graft()

15.5.5 dev_graft_qdisc()

The tc Commands for Creating Class Hierarchy for CBQ
15.6.1 tc_ctl_tclass()

15.6.2 c¢bq_change_class()

Filters

15.7.1 tc_ctl_tfilter()

u32 Filter Implementation

15.8.1 u32_change()

Route Filter Implementation

15.9.1 route4_change()

Enqueue

15.10.1 cbq_enqueue()

15.10.2 ¢bq_classify()

15.10.3 Overview of chq_enqueue()
Overview of Linux Implementation of CBQ
cbq_dequeue()

15.12.1 From net/dev/core.c

15.12.2 qdisc_run()

15.12.3 gdisc_restart()

15.12.4 ¢bq_dequeue()

15.12.5 ¢bq_dequeue_1()

15.12.6 cbq_dequeue_prio()

Summary

591
591
592
593
596
596
597
598
599
601
601
602
604
604
605
605
607
607
610
611
614
615
616
618
619
620
621
621
622
622
626
626
626
627
629
630
633

XVii

xviii

16 1P FILTER AND FIREWALL

16.1
16.2

16.3
16.4
16.5

16.6

16.7

16.8

16.9

16.10

16.11
16.12

16.13

Netfilter Hook Framework

Netfilter Hooks on IP Stack

16.2.1 Hooks for Outgoing Packets
16.2.2 Hooks for Incoming Packets
Overview of Netfilter Hooks on Linux TCP-IP Stack
Registration of Netfilter Hooks
Processing of Netfilter Hooks

16.5.1 nf_hook_slow()

16.5.2 nf _iterate()

16.5.3 struct nf_hook_ops

Compatibility Framework

16.6.1 fw_in()

Ip Chains

16.7.1 Filtering with Ipchains

16.7.2 Ipchain Chain of Rules

16.7.3 struct ip_chain

16.7.4 struct ip_fwkernel

16.7.5 struct ip_reent

16.7.6 struct ip_fw

16.7.7 Organization of Tables in Ipchains
How Is the Packet Filtered with Ipchains
16.8.1 ip_fw_check()

16.8.2 ip_rule_match()

Iptables

16.9.1 Registration of Iptables Hooks
Iptables Filter Rules and Target Organization
16.10.1 struct ipt_table

16.10.2 struct ipt_table_info

16.10.3 struct ipt_entry

16.10.4 struct ipt_entry_match

16.10.5 struct ipt_tcp

16.10.6 struct ipt_entry_target

16.10.7 struct ipt_standard_target
Organization of Filter Rules and Target for Iptables
Filtering Packets with Iptables

16.12.1 ipt_do_table()

16.12.2 IPT_MATCH_ITERATE
Summary

CONTENTS

635
636
638
638
639
640
640
642
642
643
644
644
645
647
648
649
649
650
651
651
652
653
653
655
655
657
657
658
658
661
662
663
664
664
664
664
664
668
668

CONTENTS

17 NET SorTIRQ

17.1 Why Net SoftIRQs, and How Do We Raise Them?

17.1.1 Transmission
17.1.2 Reception

17.2 How Are SoftIRQs Are Processed, and When?

17.3 Registration of SoftIRQs

17.4 Packet Reception and Delayed Processing by Rx SoftIRQ

17.5 Processing of Net Rx SoftIRQ
17.6 Packet Transmission and SoftIRQ
17.7 Summary

18 TRANSMISSION AND RECEPTION OF PACKETS

18.1 DMA Ring Buffers for Transmission and Reception of Packets

18.2 Packet Reception Process

18.2.1 Flow of Packet Reception with DMA

18.2.2 Reception Ring Buffer
18.3 Packet Transmission Process

18.3.1 Flow of Packet Transmission with DMA

18.3.2 Transmission Ring Buffer
18.3.3 Transmission Ring Buffer

18.4 Implementation of Reception and Transmission of Packets

18.4.1 struct etrax_eth_descr
18.4.2 struct etrax_dma_descr
18.4.3 Initialization of Device

18.4.5 Initialization of DMA Transmit Ring Buffers
18.4.6 Initialization of DMA Receive Ring Buffers

18.5 Rx Interrupt for Reception of Packets
18.5.1 Rx DMA Bulffer Initialized
18.5.2 el00_rx()

18.5.3 Rx Descriptors After Reception of Three Packets in
DMA Buffer Before Rx Interrupt Being Raised

18.5.4 Rx Descriptors After First Packet Is Pulled Out of
DMA Buffer and Given to OS in Rx Interrupt

Handler
18.6 Transmission of Packets
18.6.1 el00_send_packet()

18.6.2 Tx DMA Ring Buffer Descriptor After Initialization

18.6.3 el00_hardware_send_packet()

18.6.4 There Are Two Packets in Device’s DMA Tx Ring

Buffer to Be Transmitted
18.6.5 el00tx_interrupt()

671
672
672
672
675
678
679
682
686
696

697
698
698
698
698
700
702
702
703
704
705
706
707
707
709
709
711
711

713

713
713
713
717
717

717
720

Xix

XX

18.7

CONTENTS

18.6.6 First Packet from the DMA Queue Is Transmitted and

Second One Is yet to Be Transmitted; After Interrupt
Generated, Transmitted Buffer Is Freed

Summary

19 Ikcd AND DEBUGGING TCP/IP STACK

19.1
19.2
19.3

19.4
19.5
19.6
19.7
19.8
19.9

19.10
19.11
19.12
19.13

19.14
19.15

19.16

lkcd Source and Patches

Touching the Socket

Looking into the Receive Socket Buffer

19.3.1 Route Information in sk_buff

Peep into Send Socket Buffer

TCP Segmentation Unit

Send Congestion Window and ssthresh
Retransmissions and Route

Peeping into Connection Queues and SYN Queues
Routing and IP Qos Icrash Steps

19.9.1 Icrash Steps for Default Queueing Discipline in Linux

(pfifo_fast)
CBQ (Class-Based) Queueing Discipline lcrash Steps

U32 Filters
Route Filters

FIB Table Icrash Output for Setting Up the Realm Using ip
Command

Icrash Output for Setting Up Route Filter Using tc Command
Netlink Data Structure

19.15.1 nl_table

19.15.2 rtnetlink_link

Summary

20 NEXT EDITION

Bibliography

Index

Is
721

721

723
724
724
726
727
727
729
730
733
733
735

735
739
739
743

745
749
755
755
755
757

759

763
765

PREFACE

For more than a decade, Linux has been the most popular choice for server technol-
ogy, embedded systems, or research work in the networking domain. It slowly gained
momentum beginning with the student community and slowly reaching researchers
and the corporate world. Networking, when combined with Linux, gives birth to an
innovative product line, be it in the high-end telecom sector, data centers, or embed-
ded systems, and so on.

In 1996, I was introduced to Linux while doing my first assignment on TCP/IP
socket programming. At that time, I had a very little knowledge about a server
program using a unique port number to register itself with the system or a client
program using the same port number to communicate with the server. I also had
little knowledge of an IP address that is fed to the client program to identify the
host. I then set myself to learn about how all that was made possible.

Much information needed to be explored at that time, such as system calls,
protocols, Linux kernel, drivers, and kernel framework that supports the stack, and
so on. Slowly, I explored the Linux kernel and user-land program interaction with
that kernel by writing new system calls and kernel modules.

This learning process began with the TCP/IP Illustrated, Volume I by the honor-
able Richard Stevens. But it continued to be really difficult to map the protocol
with the implementation on Linux because there was so little documentation, and
available books provided hardly any information. So, I decided to dive deep into
the jungle of the huge source base to find out how the stack is implemented. Finally,
I got hooked to the socket and VES layer to understand how socket layer is linked
to the VFS layer. Then slowly I was pointed to the TCP layer and the first routine
that interfaces TCP protocol to send out data. Then the journey of documenting and
experimenting with the TCP/IP stack began. When the documentation had grown
big enough, the idea of making it available to the Linux community emerged. But
writing a book was beyond my strength and it was too much work, requiring a lot
of time and dedication. But I was determined to expose the complex topic to the
Linux community to whatever extent I could even if it demanded many require-
ments. The absence of detailed, leveled documentation or a book that would have
made the subject easier to understand, forced me to think about the topic. The idea
of writing a book was supported when I received acceptance on the subject from
IEEE Computer Society Press and John Wiley & Sons.

Working on the book along with office work became difficult so I searched for
a co-author who would help cover some of the topics. After a long struggle, I con-
vinced M. Ajaykumar Venkatesulu to be my co-author and work on a giant and
most complex routing subsystem and QOS.

xxi

XXii

PREFACE

This text tries to cover almost all the aspects of TCP/IP stack and supporting
kernel framework. The idea is to present the topic in a way that dilutes its complex-
ity so that it can be easily understood. To understand TCP/IP implementation on
any OS, we need to understand the kernel frameworks that support the stack. On
Linux, these frameworks include VFS layer, socket framework, protocol layer,
timers, memory management, interrupt handling, softIRQ, kernel threads, kernel
synchronization mechanism, and so on. This is the kernel perspective of the stack.
Apart from this, we also need to know the basics of the communication protocol
and application interfaces (system calls) to open TCP communication sockets and
the client-server program. This knowledge is helpful as a reference for experienced
professionals and for students willing to learn the complex subject and contribute
to the Linux community.

This book is written for the Linux kernel 2.4.20. The newest kernel version 2.6
does not have much variation as far as the TCP/IP stack is considered. Kernel
version 2.4 is the most widely accepted kernel in the Linux world. Version 2.6 spe-
cific changes will be discussed in subsequent revisions of the book.

AUDIENCE

The book is targeted for large cross section of audience:

Researchers at Worldwide Premier Institutes. Researchers who work on various
aspects of the TCP/IP stack find BSD the most suitable networking OS. But BSD
is not a popular choice in the corporate world. So, the next most popular choice of
researchers is the Linux OS and improvement of the TCP/IP stack performance on
this OS. Networking is currently the most popular field for research because of
growing usage and popularity of the Internet. Mostly, researchers prefer an OS with
commercial viability that can run on cheap hardware.

Academia. Advanced academic degree projects, such as MS, M. Tech., B. Tech.
and PG, are mostly done on Linux because it was the first UNIX-like OS available
with fairly good documentation and stability. In the networking area, students
usually choose Linux over TCP/IP for their project work. The project may require
modifying the router or TCP performance, implementing some new TCP/IP RFC,
network drivers, implementing secured IP layer, or improving scalability factor to
handle network traffic.

Corporations. For the most part, the corporate world has widely accepted Linux
as the base OS for networking products. Many companies are developing network
products, such as IP security, QOS (class-based routing), developing routers, band-
width management products, cluster servers and many more, which require modify-
ing the TCP/IP stack or writing a new module altogether that fits into Linux TCP/IP
stack somewhere. Linux is not only popular as an open system but is also a major
choice for embedded products or real-time OS. These embedded products are
mostly developed for networking domains such as routers, embedded web servers,
web browsers, and so on.

Entrepreneurs. New ideas keep popping up which need to be turned into prod-
ucts. With the Internet gaining popularity, many ideas have been born to develop
networking products. Linux is once again the most popular choice for development
among entrepreneurs.

PREFACE

The Open Source Community. Because of the growing popularity of Linux and
Internet technologies, many fresh college graduates or even software professionals
want to contribute to Linux networking capabilities. Their goal is to make Linux
more powerful, stable, secure, and full of network capabilities in order to meet cor-
porate requirements in every possible way. Many professionals want to contribute
to Linux networking capabilities but don’t find enough time to get acquainted with
its networking stack and the kernel framework.

Defense Organizations. There is a growing popularity of Linux as network OS
in defense organizations with increasing military adoption of Linux IP security with
some modifications for secured military network transactions.

All these audiences require a thorough knowledge of Linux TCP/IP stack and
kernel framework for networking stacks. To understand TCP, IP, BSD sockets, fire-
wall, IP security, IP forwarding, router network driver, complete knowledge of how
networking stack implementation and design work is needed. If IP security or fire-
wall implementation is wanted, then knowledge of how the packet is implemented
in Linux, how and where packet is passed to the IP layer, how the IP processes the
packets and adds headers, and finally how the IP passes the packet to the device
driver for final transmission is needed. Similarly, implementation of the QOS or
some modifications in the existing implementation is needed, knowledge of Linux
routing table implementation, packet structure, packet scheduling and all related
kernel frame work including network soft IRQs is required. So, anything and every-
thing that requires modifying the Linux network stack or adding a new feature to
the stack, requires complete knowledge of the design and implementation of Linux
TCP/IP stack.

ORGANIZATION OF THIS BOOK

This book completely explains TCP/IP protocol, its design, and implementation in
Linux. Basically, the book begins with simple client-server socket programs and
ends with complex design and implementation of TCP/IP protocol in Linux. In
between, we gradually explain the different aspects of socket programming and
major TCP/IP-related algorithms. These are:

Linux Kernel and TCP/IP Application Interfaces: Chapter 1 covers the Linux
kernel basics and we kick start with kernel interfaces (system calls) to use TCP/IP
protocol stack for communication.

Protocols: Chapter 2 covers TCP/IP protocols and supporting protocols such as
ARP and ICMP. We cover some of the major RFCs with illustrations to acquaint
the reader with the protocols so that it will be easy to map Linux implementation
on Linux in further chapters.

Sockets: Chapter 3 explains the implementation of BSD socket implementation
in the Linux kernel. Here we discuss in detail how socket layer is hooked to VFS
layer and how various protocols are hooked to BSD socket.

Kernel Implementation of Connection Setup: Chapter 4 explains the client—
server application with the help of the C program. We explain the complete process
of connection setup with the help of tcp dump output in different chapters. We cover
kernel implementation of system calls used by application program to implement
client-server interaction. We see how connections are accepted on the server side

xxiii

XXiv

PREFACE

and at the same time, learn how the server program registers with the kernel to bind
to a specific listening port.

Linux Implementation of Network Packet: Chapter 5 explains sk_buff which
represents network packet on Linux. We explain important routines that manipulate
sk_buff.

Movement of Packet Across the Layers: Chapter 6 covers the complete TCP/IP
stack framework, showing how the packet is generated and trickles down the
network stack until it is out of the system. Similarly we explain the complete path
taken by a packet received from the device to reach the owning socket, covering
complete kernel framework that implements TCP/IP stack on Linux.

TCP recv/send: Chapters 7 and 8 address TCP receive/send implementation and
cover all the aspects related to TCP receiving and sending data. We also explain the
TCP segmentation unit when an ICMP error (mss change for the route) is received
by the TCP. There is a small description of how urgent data are processed.

TCP Socket Timers and Memory Management: The kernel keeps track of
memory consumed by a connection at the socket layer so that a single-socket con-
nection is not able to hog all the system memory because of a misbehaving applica-
tion. We also try to collapse sequential buffers in the receive queue when the
application is not reading enough fast and socket has exhausted its quota. This
aspect of memory management is covered in Chapter 9. TCP is an event-driven
protocol. TCP implements timers to track loss of data, to send delayed ACKs, to
send out zero window probes, and so on. Chapter 10 addresses all these aspects.

TCP State Machine: Chapter 11 covers TCP core processing, such as reception
of packets, sending ACKs, sliding window protocol, Nagle’s algorithms, scheduling
of delayed ACK’’s, processing of out-of-order segments, processing SACK, D-SACK,
and so on. The tcp_opt object represents state machine implementation on Linux.
Chapter 12 covers TCP congestion control algorithms implementation.

Netlink Sockets: User—land applications, such as netstat and iproute, and routing
protocol daemons use special netlink sockets to update/read routes and configure
QOS in the kernel. We cover netlink sockets in Chapter 13.

IP Layer and Routing Table Implementation: Chapter 14 covers implementa-
tion of routing table (FIB) on Linux. We also explain different aspects associated
with routing, such as multipathing, policy routing, and so on. This chapter also
explains the different kernel control paths that update kernel routing tables and
route cache management.

IP QOS: IP in today’s network is an advanced topic and is used for different
services in the public network. Linux implements QOS very cleanly and we discuss
PFIFO and CBQ queuing discipline implementation in Chapter 15.

Netfilter Framework: Linux provides extensions to the TCP/IP stack by way of
the netfilter framework. These extensions can be firewall, masquerading, IP security,
and so on. Chapter 16 covers netfilter hooks at different layers in the stack and also
netfilter implementation.

SoftIRQ Implementation for Scalability: Network frames are received in
the kernel memory in the interrupt handler code but complete processing of the
packets can’t be done in the interrupt handler. Linux associates softIRQ, one each
for reception and transmission of packets for processing of packets. Chapter 17
explains net softIRQ framework with the help of illustrations. This chapter com-
pletely explains the high scalability of Linux on SMP architecture in handling
network traffic.

PREFACE

Link Layer and DMA Ring Buffers: Chapter 18 covers link layer(device driver)
processing of packets. Design and working of DMA ring buffer for reception and
transmission are also addressed and are explained with the help of a device driver
and interrupt routines for a real device.

Debug TCP/IP Stack: Debugging the TCP/IP stack is discussed in Chapter 19.
The lkcd (linux kernel crash dump) debugger is used to illustrate the debugging
technique, peeking into different kernel data-structures associated with TCP/IP
stack.

LEVEL OF DISCRIPTION

As outlined here, we have touched upon critical portions of the implementation that
are required to understand core TCP/IP stack and kernel framework. Each chapter
begins with a chapter outline and ends with a summary that highlights important
points. Source-level explanations with diagrams are provided where ever required.
Important routines are explained line-by-line. Code snippets are provided for all
those routines with line numbers and files of code snippet. Sometimes routines are
so big that they are split into different code snippets. Routines that are called from
the main routines are explained in different sections. If the called routine is a couple
of lines long, there is no separate section for those routines. Line number and code-
snippet number (cs-) are provided with the explanation to assist understanding.
When the routines are very big in size, notification is provided at the beginning of
the section stating, see cs ®e.ee unless mentioned; this means that where ever line
numbers are mentioned, we need to see the code snippet mentioned at the start of
the section.

In the explanation if we encounter some concept that is already explained in
some other section, a cross reference to that section is provided, as see Section ee.
ee_Cross references are provided because the subject is interrelated, for example
while explaining queuing of incoming TCP packet, we refer to sockets receive
buffer. If we have exhausted the receive socket buffer, we need to call routines to
collapse receive queue to make space for the new TCP data segment. For this we
may need to refer to a section from the TCP memory management chapter. We have
explained major data structures with significance separately. Where ever that has
not been done, fields of those data-structures are explained as and when they appear
in the routines.

Examples and illustrations are provided where ever it is required to make
subject easier to understand. For example, diagrams to link various kernel data
structures are drawn to illustrate connection requests in the SYN queue. Then we
illustrate shifting of connection requests from SYN queue to accept queue when a
three-way handshake is over with the help of diagrams. All these illustrations assist
in visualizing the complex data structures and scenarios.

SAMEER SETH
Bangalore, India
September 2008

XXV

ACKNOWLEDGMENTS

For me, this is the heaviest section of the book that carries the most weight. First of
all, I'm very thankful to my family for being so supportive and patient when I was
working on the title, with little time left for them. My wife, Sumam, provided selfless
support to the work right from day one. She provided me with confidence to convert
my hard work into a book on the day she provided me with the list of publishers.
When submitting my book proposal, only 20% of the work was done and that too
was not organized.

I thank my co-author, M. Ajaykumar Venkatesulu, who agreed to join hands
with me at the much-needed hour. His commitment eased the load on my shoulders
and he worked very hard with all dedication to make this possible. He had a really
tough time setting up QOS on Linux, with a couple of Linux boxes, and modifying
the kernel for his illustrations.

I'd like to thank the very first person at the IEEE Computer Society with whom
I interfaced, Deborah Plummer, who worked on the proposal until it was finished.
She helped me in many ways to understand the publication process and was very
patient all through, clarifying my doubts. IEEE Staffers, Janet Wilson and Dante
David, were so nice and prompt throughout the review process. Even a small com-
munication gap caused serious concerns because this was the first time I was working
on such a big project. But Janet and Dante were patient and always prompt in their
replies to make sure that all my concerns were addressed. I was introduced to Lisa
Van Horn from Wiley much later, when the book had entered the production phase.
It is a great experience working with her because she spent time educating me at
every point. At times I would be very irritating to her by asking silly doubts but she
tackled them all with grace. She has worked very hard editing the book because
there were grammatical corrections in almost every line. Through the production
process, she was very helpful, cooperative, and prompt in the same way.

There are a few names without which this book would look incomplete. I thank
Richard McDougall, the respectable author of Solaris Internals, for time spent edu-
cating me on the publication process. His inputs helped me achieve the most from
my hard work. The respectable senior engineer from SGI and owner of the dwarf
extract utility for lked, Cliff Wickman, is owed thanks for without him this book
would have looked quite dry. He provided a tool to generate a kernel-type database
(kerntypes) because the basic lked utility does not come with all the stubs for kernel
data-structures in kerntypes. Without this tool, the debug chapter would not have
been possible. He not only provided the tool but also helped get the kernel-type
database built for the kernel 2.4 when the tool was compatible only with kernel 2.6.

S.S.

XXVii

xxviii

ACKNOWLEDGMENTS

Writing or co-authoring a book was never even in my wildest dreams. The oppor-
tunity came by chance and then it became my choice. God has been kind enough
to give me such an amazing opportunity. I have a couple of people to thank with
whom my words fall short. First of all I would like to thank the author of the book
who had faith in me that I could write on this subject. He gave me a lot of trust
when he gave me an opportunity to work on this book. It was solely his brainchild
which he shared with me selflessly. He gave me guidance whenever I faced any dif-
ficulty in any subject matter. His valuable suggestions and most importantly his
inspirations have made it possible for me to finish this assignment.

I thank my family for all their support: My father who stood beside me through
all the odds and evens of life so that I could concentrate on this project; my newly
wedded wife, Priyanka, who never complained when I had less or sometimes no
time left for her; and lastly, my brother-in-law Balaji who has been a great source
of inspiration in my life.

Last but not least, I thank Deborah Plummer, Janet Wilson, and Dante David
from IEEE for being so cooperative and nice.

The book is not a result of any inspiration but the need of the day. When you
have the strong desire to achieve something, then the whole of creation conspires
to accomplish your goal.

M. A.V.

INTRODUCTION

Internetworking with Linux has been the most popular choice of developers. Not
only in the server world where Linux has made its mark but also in the small embed-
ded network OS market, Linux is the most popular choice. All this requires an
understanding of the TCP/IP code base. Some products require implementation of
firewall, and others require implementation of IPSec. There are products that
require modifications in the TCP connection code for load balancing in a clustered
environment. Some products require improving scalability on SMP machines. Most
talked about is the embedded world, where networking is most popular. Real-time
embedded products have very specific requirements and need huge modifications
to the stack as far as buffer management is concerned or for performance reasons.
All these require a complete understanding of stack implementation and the sup-
porting framework.

As mentioned above, some of the embedded networking products require a
minimum of the code to be complied because of the memory requirements. This
requirement involves knowledge of source code organization in the Linux source
distribution. Once we know how the code is distributed, it becomes easier to find
out the relevant code in which we are interested.

Mostly all the networking application work on very basic client-server
technology. The server is listening on a well-known port for connection requests
while the client is sending out connection request to the server. Many complex
arrangements are made for security reasons or sometimes for load balancing to the
client-server technology. But the basic implementation is a simple client-server
program in which the client and server talk to each other. For example, telnet or

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

INTRODUCTION

ftp services are accessed through the inet program which hides all the details of
services. There are many tunable parameters available to tune your TCP/IP con-
nections. These can be used to best tune the connection without disturbing overall
system wide tuning.

Most of the network applications are written to exchange data. Once a connec-
tion is established, either (a) the client sends data to the server or (b) data flow in
the opposite direction or may flow in both directions. There are different ways to
send and receive data over the connection. These different techniques may differ
in the way that application blocks once the socket connection either receive or send
data.

In the entire book we discuss only TCP and no other transport protocol. So,
we need to understand the TCP connection process. TCP is a connection-oriented
protocol that has a set process for initializing connections, and similarly it has a set
process for closing connection cleanly. TCP maintains state for the connection
because of handshakes during connection initiation and closure processes. We need
to understand the TCP states to completely understand the TCP connection
process.

In this chapter we will present an overview of how the TCP/IP protocol stack
is implemented on Linux. We need to understand the Linux operating system,
including the process, the threads, the system call, and the kernel synchronization
mechanism. All these topics are covered though not in great detail. We also need
to understand the application programming interface that uses a TCP/IP protocol
stack for data transmission, which is discussed. We discuss socket options with
kernel implementation. Finally, we discuss the TCP state, which covers a three-way
handshake for opening connection and a four-way handshake for connection
closure.

1.1 OVERVIEW OF TCP/IP STACK

Let’s see how the TCP/IP stack is implemented on Linux. First we just need to
understand the network buffer that represents the packet on Linux. sk_buff repre-
sents the packet structure on Linux (see Fig. 1.1). sk_buff carries all the required
information related to the packet along with a pointer to the route for the packet.
head, data, tail, and end point to the start of the data block, actual start of data, end

sk_buff

len

head

data

tail

L

boo-o- ... f Head room
1| skb_shared_infe E Data
' H block
"""""""" Tail room Figure 1.1. Network buffer, sk_buff.

OVERVIEW OF TCP/IP STACK

of data, and end of data block, respectively. skb_shared_info object is attached at
the end of the sk_buffheader which keeps additional information about paged data
area. The actual packet is contained in the data block and is manipulated by data
& tail pointers. This buffer is used everywhere in the networking code as well as
network drivers. Details are discussed in Chapter 5.

Now we will have a look at how the stack is implemented in Linux. We will first
start with down-the-stack processing of the packet from the socket layer to the
driver layer and then move up the stack. We will take an example of sending TCP
data down the stack. In general, more or less the same stack is used for other trans-
port protocols also, but we will restrict our discussion to TCP only.

1.1.1 Moving Down the Stack

When an application wants to write data over the TCP socket, the kernel reaches
the socket through VES (see Fig. 1.2). inode for the file of the type socket contains
a socket object, which is the starting point for the networking stack (see Section 3.2
for more details). The socket object has a pointer to a set of operations specific to
the socket type pointed to by field ops. Object proto_ops has a pointer to socket-
specific operations. In our case, the socket is of type INET, so send systemcall ends
up calling inet_sendmsg() inside kernel via VFS. The next step is to call a protocol-
specific send routine because there may be different protocols registered
under INET socket (see Section 3.1). In our case, transport later is TCP, so
inet_sendmsg() calls a protocol-specific send operation. The protocol-specific
socket is represented by a sock object pointed to by the sk field of the socket object.
A protocol-specific set of operation is maintained by a proto object pointed to
by prot field of sock object. inet_sendmsg() calls a protocol-specific send routine,
which is tcp_sendmsg().

In tcp_sendmsg(), user data are given to a TCP segmentation unit. The segmen-
tation unit breaks big chunks of user data into small blocks and copies each small
block to sk_buff. These sk_buffs are copied to the socket’s send buffer, and then
the TCP state machine is consulted to transmit data from socket send buffer. If the
TCP state machine does not allow sending new data because of any reasons, we
return. In such a case, data will be transmitted later by a TCP machine on some
event which is discussed in Section 11.3.11.

If the TCP state machine is able to transmit sk_buff, it sends a segment to the
IP layer for further processing. In the case of TCP, sk—tp—af_specific—>queue_xmit
is called, which points to ip_queue_xmit(). This routine builds an IP header and
takes an IP datagram through the firewall policy. If the policy allows, an IP layer
checks if NAT/Masquerading needs to be applied to the outgoing packet. If so, a
packet is processed and is finally given to the device for final transmission by a call
to dev_queue_xmit(). Device refers to a network interface, which is represented by
net_device object. At this point, the Linux stack implements QOS. Queuing disci-
plines are implemented at the device level.

Packet (sk_buff) is queued to the device according to their priority levels and
queuing discipline. Next is to dequeue the packet from the device queue, which is
done just after queuing sk_buff. The queued packet may be transmitted here,
depending on the bandwidth for the packet’s priority. If so, the link layer header is
prepended to the packet, and the device-specific hard transmit routine is called to
transmit the frame. If we are unable to transmit the frame, the packet is requeued

TCP socket
Socket layer, send queue
inode inode inode
i_sock =1 i_sock =1 i_sock =1
u.socket_i u.socket_i u.socket_i
socket socket socket
ops proto_ops ops proto_ops s proto_ops
connect sk | connect | sk | connect
i i inode I i inode ! !
'] '] |
accept accept accept
listen listen listen
sock sendmsg sock sendmsg sock sendmsg
recvimsg recvmsg recvmsg
prot prot prot
proto proto proto
|_connect | |_connect | |_connect |
1 ! 1 ! 1 !
. ! | ! i
accept accept accept
listen listen listen
sendmsg sendmsg sendmsg
recvms, recvms, recymsg

inode

sk

INTRODUCTION

Application writes data over

sock->ops->sendmsg = inet_sendmsg()
socket specific processing

sk->prot->sendmsg = tcp_sendmsg()
Protocol specific processing

sk->tp->af_specific->queue_xmit = ip_queue_xmit()
Network layer processing,

dev_queue_xmit()
QOS & link layer processing

Packet transmitted

Figure 1.2. TCP packet moving down the protocol stack.

SOURCE CODE ORGANIZATION FOR LINUX 2.4.20

on the device queue and Tx softIRQ is raised on the CPU adding device to the
CPU’s transmit queue. Later on when the TX interrupt is processed, frames are
dequeued from the device queue and transmitted.

1.1.2 Moving Up the Stack

Refer to Fig. 1.3 for the flow of packet up the stack. We start with the reception of
packets at the network interface. Interrupt is generated once the packet is com-
pletely DMAed on driver’s Rx ring buffer (for details see Section 18.5). In the
interrupt handler, we just remove the frame from the ring buffer and queue it on
CPU’s input queue. By CPU I we mean the CPU that is interrupted. It is clear at
this point that there is per CPU input queue. Once the packet is queued on the
CPU’s input queue, Rx NET softIRQ is raised for the CPU by call to netif_rx().
Once again, softIRQ’s are raised and processed per CPU.

Later when Rx softIRQ is processed, packets are de-queued from CPU’s receive
queue and processed one-by-one. The packet is processed completely until its des-
tination here, which means that the TCP data packet is processed until the TCP
data segment is queued on the socket’s receive queue. Let’s see how is this process-
ing done at various protocol layers.

netif receive_skb() is called to process each packet in Rx softIRQ. The first step
is to determine the Internet protocol family to which a packet belongs. This is also
known as packet protocol switching. We send the packet to the raw socket in case
any raw socket is opened for the device. Once the protocol family is identified,
which in our case is IP, we call the protocol handler routine. For IP, this is the
ip_rcv() routine. ip_rcv() tries to de-NAT or de-masquerade the packet at this point,
if required. The routing decisions are made on the packet. If it needs to be delivered
locally, the packet is passed through firewall policies configured for the locally
acceptable IP packets. If everything is OK, ip_local_deliver_finish() is called to find
the next protocol layer for the packet.

ip_local_deliver_finish() implements INET protocol switching code. Once we
identify the INET protocol, its handler is called to further process the IP datagram.
The IP datagram may belong to ICMP, UDP, and TCP.

Since our discussion is limited to TCP, the protocol handler is tcp_v4_rcv().
The very first job of the TCP handler is to find out socket for the TCP packet. This
may be a new open request for the listening socket or may be another packet
for the established socket. So here, various hash tables are looked into. If the
packet belongs to the established socket, the TCP engine processes the TCP
segment. If the TCP segment contains in-sequence data, it is queued on the socket’s
receive queue. If there are any data to be sent, they is sent along with the the ACK
for the data arrived here. Finally, when application issues read over the TCP socket,
the kernel processes the request by providing data from the socket’s receive
queue.

The Linux stack maps to the OSI networking model (see Fig. 1.4).

1.2 SOURCE CODE ORGANIZATION FOR LINUX 2.4.20

Figure 1.5 shows the kernel source tree.

Packet received

INTRODUCTION

Interrupt handler

removes packet from

DMA ring buffer

ip_local_deliver_finish(),
INET protocol switcher

sock sock sock sock / sock / sock /
e next next next next next
pprev \ pprev \ pprev \ pprev \ pprev \— pprev
protocol specific processing
socket socket socket
sk sk sk
sock sock sock
receive_queue receive_gueue receive_gueue

Application reads data from receive queue

Figure 1.3. TCP packet moving up the stack.

TCP/IP STACK AND KERNEL CONTROL PATHS

Application Application
browser browser
Presentation Presentation
HTTP HTTP
Session = socket layer Session = socket layer

inet_sendmsg() socket receive buffer
transport =TCP transport =TCP
tcp_sendmsg() tep_v4_rev()
Network = IP Network = IP
ip_quene_xmit() ip_rcv()
Link = hard transmit Link = driver
dev_quene_xmit() interrupt processing
Physical layer _p Physical layer

Figure 1.4. Linux network stack and OSI model.

1.2.1 Source Code Organization for Networking Code

Figure 1.6 shows the kernel networking source tree.

1.3 TCP/IP STACK AND KERNEL CONTROL PATHS

In this section we will see how TCP data are being processed by the Linux kernel.
In totality, we will see different kernel control paths and processor context that are
involved in packet processing through the kernel. When the process writes data
over the TCP socket, it issues write/send system calls (see Fig. 1.7). The system call
takes the process from the user land to the kernel, and now the kernel executes on
behalf of the process as shown by the solid gray line. Let’s determine the different
points in the kernel where the kernel thread sending TCP data on behalf of the
process preempts itself.

Kernel Control Path 1. In this kernel control path, the kernel thread processes
TCP data through the complete TCP/IP stack and returns only after transmitting
data from the physical interface.

Kernel Control Path 2. This kernel control path processes data through TCP/IP
stack but fails to transmit data because the device lock could not be obtained. In

INTRODUCTION

Architecture specific source files
i386, ia64, alpha, arm, sparc...
kernel, math-emu, mm, boot.

Contains header files.
Architecture specific header files
can be found in architecture specific
sub directory. Generic header files are
within sub-directories linux, asm-generic,
math-emu, net, pcmcia,scsi,video.

Kernel main program that
initializes operating system.

Kernel memory management source
is contained in this directory.
Swap, paging, memory mapping,
memory locking, high memory etc.,

All driver code goes here. Some
of these drivers can be complied
as part of kernel and others as
modules. Keeping minimum of
drivers as part of kernel makes it
much smaller in size.

Inter process communication code
goes here. These are shared mem,
semaphore, message queues.

60909\69\99

Network specific code goes here.
Protocol specific files are ipv4, ipv6,
bluetooth, appletalk... socket.c has
generic socket code, sched contains code
specific to IP TOS and generic packet
scheduling, netlink contains netlink
socket source files.

Filesystem related code goes here.
This directory contains generic VFS
code, incode, devfs, pipe, file locks,
etc are covered in this directory.
File system specific code is contained
here which can be directly complied
in the kernal or as module.

Core kernel generic code goes here,
core kernel contains scheduler, process
management module support, timers,
signal, softIRQ, resource management
etc.,

Figure 1.5. Kernel source tree.

TCP/IP STACK AND KERNEL CONTROL PATHS

Contains routines socket specific
VFS operations socket sub-system.

Contains core networking code.
This code contains files that provides core|
framework to the networking sub-system.
These files are sock.c, skbuff.c, rtnetlink.c,
netifilter.c, neighbour.c, filter.c. dst.c,
datagram.c, dev.c.

Ipv4 specific source files.

This covers entire protocol suite for
Ipv4. Socket, TCP, timer, congestion, TCP
input and output processing UDP, IP,
routing forwarding, input & output
processing FIB framework, Raw
sockets, ARP, ICMP.

Ipv6 specific code,
socket, TCP, UDP(minimal).
IP input & output processing, FIB,
multicast, forwarding, fragmentation
RAW, ICMP.

Netlink sockets specific code. ‘

Raw sockets specific generic code. |

Packet scheduler code. This contains
code specific to IP TOS, IP classifiers.
Different algorithms are provided
to implement TOS and these are fifo
chq, thb, sfq etc.,

Unix socket specific code.

Generic code for ethernet protocol.

Figure 1.6. Kernel networking source tree.

10 INTRODUCTION
I-T - T - - - - - - - - - - """ -"-"-="-"=-"-"-”"°-"°"¥°*"¥°¥°*¥=¥°¥°¥°¥=¥"° =¥ 7°¥F°¥F 7Y 7/ 7/ 7 = -7 /- == === ==-=-==-== I
I I
process
; A A A A |
1 4 3 2 1 1
777 User land
kernel
Socket layer Kernel thread/
v soft IRQ(may be interrupt context)
TCP layer
User context
v kernel thread
IP layer - queuing & dequeuing
v | TxSofiRQ” T T T T T T T T i
Link layer - device lock <—I—>'_ _ (OR kernel softIRQ thread) __
7 6 5

v

Packet transmitted

Figure 1.7 Packet transmission via different kernel control paths.

this case, the kernel thread returns after raising Tx softIRQ. SoftIRQ processing is
deferred to some later point of time which will transmit data queued up on the
device. See Section 17.1 for details on softIRQ processing.

Kernel Control Path 3. This kernel control path processes data through the
TCP layer but is not able to take it further because the QOS policy is not allowing
further transmission of data. It may happen that either someone else is processing
the queue on which packet is queued or the quota for queue is over. In the later
case, a timer is installed which will process the queue later.

Kernel Control Path 4. This kernel control path processes data through the
TCP layer but cannot proceed any further and returns from here. The reason may
be that the TCP state machine or congestion algorithm does not allow further
transmission of data. These data will be processed later by the TCP state machine
on generation of some TCP event.

Kernel Control Path 5. This kernel control path may execute in interrupt
context or kernel context. Kernel context may come from softIRQ daemon, which
runs as kernel thread and has no user context. Kernel context may also come from
kernel thread corresponding to user process which enables softIRQ on the CPU by
call to spin_unlock_bh(). See Section 17.6 for more detail. This kernel control path
processes all the data queued by control path 2.

Kernel Control Path 6. This kernel control path executes as a high-priority
tasklet that is part of softIRQ. This may also be executed in interrupt context or
kernel context as discussed above. This processes data queued by control path 3.

Kernel Control Path 7. This kernel control path executes as softIRQ when
incoming TCP packet is being processed. When a packet is received, it is processed

LINUX KERNEL UNTIL VERSION 2.4 IS NON-PREEMPTIBLE

User space

¢ 3 Kernel space

1

soft IRQ(may be interrupt context)

Socket layer
TCP layer Kernel thread/
1P layer User context
2 kernel thread
I T TRxSopIRQT T T T T T T T T !

1

| Link layer

A

Packet arrived

Figure 1.8. Packet reception and different kernel control paths.

by Rx softIRQ. When a TCP packet is processed in softIRQ, it may generate an
event causing transmission of pending data in the send queue. This kernel control
path transmits data that are queued by control path 4.

On the reception side, the packet is processed in two steps (see Fig. 1.8). An
interrupt handler plucks received a packet from the DMA ring buffer and queues
it on the CPU-specific input queue and raises Rx softIRQ. Rx softIRQ is processed
at some later point of time in interrupt context or by softIRQ daemon. The TCP
data packet is processed completely by Rx softIRQ until it is queued on the socket’s
receive queue or is eaten up by the application. The TCP ACK packet is processed
by a TCP state machine, and softIRQ returns only after action is taken on the events
generated by the incoming ACK.

1.4 LINUX KERNEL UNTIL VERSION 2.4 IS NON-PREEMPTIBLE

Let’s define the term preemptive first and then we will move ahead with its effect
on the Linux kernel. Preemption in general means that the current execution
context can be forced to give away CPU for some other execution context under
certain conditions. Now we will say that what is so great about it is that it is hap-
pening on any multitasking OS. On a multitasking OS, many user land processes
run on the CPU one at a time. These processes are assigned quota and continue to
occupy CPU until they have exhausted their quota. Once the quota for the currently
running process is over, it is replaced by some other runnable process on the CPU
even if the former was already executing by the kernel scheduler. So, we can say
that the process was preempted here. Very true, the user land process is preempted
to fairly give other processes a chance to run on the CPU. We are not discussing
scheduling with respect to real-time processes and are discussing only normal prior-
ity processes that are scheduled based on a round-robin scheduling policy. This way
kernel preempts the user land process.

What we would like to know in this section is very different from what has been
discussed so far. We want to know how a kernel can be preemptive. Let’s suppose

12

INTRODUCTION

arch/i386/kernel/entry.S

256 ENTRY(ret_from_intr)

257 GET_CURRENT(%ebx)

258 ret_from_exception:

259 movl EFLAGS(%esp), Joeax # mix EFLAGS and CS

260 movb CS(%esp), %oal

261 testl $(VM_MASK | 3), %oeax # return to VM86 mode or non-supervisor?
262 Jne ret_from_sys_call

263 Jjmp restore_all

264
265 ALIGN
266 reschedule:

267 call SYMBOL_NAME(schedule) # test
268 Jjmp ret_from_sys_call

¢s 1.1. Return from interrupt.

that some kernel control path is being executed on the CPU and it is looping into
infinite loop by mistake. Can a kernel preempt itself to get out of the infinite loop
and give a CPU to some other runnable process. (Note: I'm taking an example of
infinite loop inside the kernel just to explain the term preemption, but the intent
here is very different. Normally, a kernel code does not end up in this situation).
Kernel control path gives away CPU to other burnable process by calling scheduler.
We must first know what event causes a running process to preempt. This is done
by the timer interrupt which is raised on the CPU at some definite time interval and
is nonmaskable. This interrupt does all the necessary calculation determine the
duration of the current execution context on the CPU. If it has expired its quota, it
sets a ‘scheduling needed’ flag for the process. While returning from the interrupt,
this flag is checked but only if we were interrupted in the user mode (which essen-
tially means that the CPU was executing user land code when the timer interrupt
occurred).

Control is passed to an assembly code at line 256 in cs 1.1 when we are return-
ing from the interrupt. Line 257 first gets the pointer to a current process (kernel
thread corresponding to the user land process) in ebx%. At line 259, we get EFLAGS
for the current process from the stack pointer (%esp) and save this to eax%. At
line 260, we get a code segment byte from the stack pointer and save it as a byte in
eax%. At line 261, we check if the execution mode was within the kernel or user
land at the time when the CPU was interrupted. This can be verified from the code
segment that is copied to eax% at line 260. If the CPU was executing in the kernel,
we jump to restore_all at line 263. restore_all will switch to the execution context
within the kernel by loading register values saved at the stack and will start execut-
ing from where it was interrupted. If we were interrupted in the user land, control
is passed to ret_from_sys_call. re_from_sys_call does lots of checks; for example, if
there is a pending signal for the current process, reschedule is needed, and so on,
and takes appropriate action. If the current process has not consumed its time slice,
it will continue to execute in the user land; otherwise, some other runnable process
will be given the CPU.

LINUX KERNEL UNTIL VERSION 2.4 IS NON-PREEMPTIBLE

3
=)
o
1)
8
g

Timer interrupt

User space

13

occurred on the
CPU

Find kernel stack for the current process. Store Return from interrupt -
check if the kernel was executing in the user land

at the time of interrupt from CS register, In our case,

1
1
: user context on the kernel stack and jump to
' interrupt vector for interrupt handling.

|

we were executing in the user space. So, check

if need_sched is set for the current process. If so, call

1
1
1
1
1
1
1
1
1 schedule() to schedule next runnable process on the
1
\ CPU and return to user land.

: If need_resched is not set for the current process and
I there is no signal pending for the current process,

1 . Lo

| restore user land registers and start executing in the
1

|

user land.

[
Calculate time slice for the current :
process. If exhausted, set need_resched 1

1
flag for the current process. \

Figure 1.9a. Interrupt happened while executing in the user space.

As shown in Fig. 1.9a, we switch to kernel mode to handle interrupts. We
have shown timer interrupt in particular, but it may also happen that some
other interrupt may also cause the current user process to give away CPU to some
other process. For example, network interrupt may cause some process to wake
up that is waiting for data over the connection. Since I/O intensive processes
always have a higher priority over the CPU intensive processes, network interrupt
carrying data may cause current process to give CPU to the process waiting for I/O
over this connection. In the case where the current process has not consumed its
time slice, it will continue to run on the CPU in case it has not received any Kkill
signal.

Figure 1.9b shows that when a timer interrupt happens with CPU executing in
the kernel, control is passed to the interrupted kernel path that was being executed
at the time of interrupt. This allows the kernel to complete its execution before it
can return to the user space. This design makes sure that the kernel will continue
to run unless it kernel gives away CPU (by calling schedule()). Nothing can force
kernel to give way CPU for any thing else other than interrupts/exceptions. The
simple reason for this is data consistency, and this causes the Linux kernel to be
non-preemptible. For example, if by mistake any buggy driver causes a kernel to
execute an infinite loop, the single CPU system will be frozen forever.

In short, the Linux kernel 2.4 and below are not designed for real-time require-
ments as there may be huge latencies introduced because of a non-preemptive

Kernel space

14

INTRODUCTION

User space

Kernel space

Timer interrupt

occurred on the

CPU

Return from interrupt -

check if the kernel was executing in the user land

at the time of interrupt from CS register, In our case,
Timer interrupt occurred when kernel code

is being executed. Store current kernel context on the
kernel stack and jump to interrupt vector for Just restore kernel context from the kernel stack
interrupt handling.

[
1
1
1
1
Lo 1
we were executing in the kernel space. \
1
1
1
. . . 1
ad continue executing the kernel code where it \

1

was interrupted stopped.

Calculate time slice for the current
process. If exhausted, set need_resched
flag for the current process.

Figure 1.9b. Interrupt happened while executing in the kernel space.

kernel. An attempt is made to make Linux kernel 2.6 onwards preemptible, though
not completely. We will see this in the next revision of the book.

1.4.1 System Call on Linux

In this section we will learn implementation of system call on Linux system running
on Intel X86 architecture. Any Unix system implements a system call so that user-
level application programs can request kernel services. Let’s take the simple example
of an open system call. When an application wants to open a file for read and write,
the very first step is to issue an open system call. Just like regular files, Pipe, fifo,
socket, device, and so on, are also treated as special files on the Unix systems and
will use an open system call for further I/O.

Why do we need kernel services to open a file? This is required because file-
system-specific information is maintained in the kernel. File-system-specific data
structures are maintained in the kernel and is accessed only in the processor privi-
leged mode; the reason for this is consistency and uninterrupted execution. Every
care is taken inside the kernel to maintain data consistency by very careful program-
ming where an execution of code can be made uninterrupted by blocking maskable
interrupts. Also, kernel is non-preemptive. So we are assured that even if the kernel
is interrupted by some high-priority interrupt, the processor returns its control to
the point in the kernel where it left. The kernel control path can itself give away

LINUX KERNEL UNTIL VERSION 2.4 IS NON-PREEMPTIBLE 15

User mode
execution code

System call

1
1
1
1
1
1
1
1
1
3
] |
: syscall number L 9 —>:|
I _ int 0x80 ! o

_________ User mode
int 0x80
1
1 kernel
1
1
Y U , - Super user privilege
1 ! \ p ! ! - kernel mode stack for the process
! | system_call_table[] Teesp | ;
, 1 System_call_table, : ! | - save user mode register on
1
| | 0 | : : kernel mode stack
: : I : : kernel mode stack ' - find system call code from sys_call_table
: 23 ! 1 : using syscall number
1 4 : : - pass the control to system call code
1
1 g 1 h
! .
1
1 : —’u ------- 1
: | ' SYS_xyz()
1
1
, 1
1
1
1
1
1
1
1
1

Figure 1.10. System call implementation on Linux.

CPU, and no one can force it to preempt. One of the most important reasons for a
file system to be inside the kernel is that it is not an independent subsystem. The
file system code has to interact with other subsystems such as virtual memory,
network, device controllers, paging, and scheduling; all these subsystems cannot
afford to run in the user land because of the reason mentioned above.

So, for execution of the system, a call takes place inside the kernel (see Fig.
1.10). The processor has to switch from user mode to privileged mode to access
kernel code and data structure. This is done by software interrupt 0x80, which is
generated by the open library routine. The system call number is loaded in eax, and
arguments are loaded on ebx, ecx, edx, registers. The processor determines kernel
stack for the process from by loading ss and eps registers. The user context is saved
on the stack by the processor control unit. Once this is done, control is passed to
the system call handler.

The system call handler looks into the system call table sys_call_table, which
indexes system call handling routine vectors based on system call number. Control

16

INTRODUCTION

include/asm-i386/unistd.h

8 #define __NR_exit

9 #define __NR_fork

10 #define __NR_read

11 #define __NR_write
12 #define __NR_open
13 #define __NR_close
14 #define __NR_waitpid
15 #define __NR_creat

S N Oy U N W~

Figure 1.11 . System-call-associated number.

arch/i386/kernel/entry.S

.data

ENTRY(sys_call_table)

.long SYMBOL_NAME(sys_ni_syscall) /*0 - old "setup()" system ca long SYMBOL_NAME(sys_exit)
.long SYMBOL_NAME(sys._fork)

.long SYMBOL_NAME(sys_read)

.long SYMBOL_NAME(sys_write)

.long SYMBOL_NAME(sys_open) /¥5%

Figure 1.12. System call table in the kernel.

is passed to the system-call-specific routine; and after execution of system call, the
return value is stored in eax.

1.4.2 Adding New System Call

Let’s see how we can we add a new system call to the system. To add a new system
call, a new number is associated with the system call, and the system-call-specific
handler should register with the system. System call numbers are listed in include/
asm-i386/unistd.h file as macro _ NR_sys, where sys is the name of the system call
(see Fig. 1.11). In this file we need to add one more line for the new system call.

The next step is to write system call routine in appropriate file in the available
in kernel source tree. For example if the system call is specific to scheduling, it
should be added to kernel/sys.c. Conventionally, the name of the routine should
start with sys_. Once a system call number and system-call-specific routine are
added to a kernel source, we need to add the system call routine to the system call
table by using macro SYMBOL_NAME(). A new line should be added to file arch/
i386/kernel/entry.S (see Fig. 1.12). The line for the new system call should be added
exactly to the sys_call_table at the line number matching the system call number.
So, it is always better that a system call number for the new system call should be
the next available number, and the entry for this system call should come at the end
of the sys_call_table table. The kernel is compiled and a new kernel is placed in the
correct location.

How do we access the new system call from application program. So, we can
use syscall() or syscall*() system calls to invoke our system call. To syscall(), we

LINUX PROCESS AND THREAD

Jusr/include/asm/unistd.h

289 #define _syscalll(type,name,typel,argl)\
290 type name(typel argl)\

291 {\

292 long __res; \

293 __asm__volatile ("int $0x80"\

294 s"=a" (__res)\

295 2 "0" (__NR_##name),"b" ((long)(argl))); \
296 __syscall_return(type, _res); \

297}

Figure 1.13. Implementation of syscall1.

need to pass the system call number corresponding to the new system call registered.
If we use syscall() interface, we can’t pass any arguments to our system call. If our
system call takes one argument, we can use syscalll(), for two arguments we can
use syscall2(), and so on; we can pass four arguments using these interfaces.

Let’s see how syscalll is implemented (see Fig. 1.13). This is implemented as a
macro in /usr/include/asm/unistd.h. It can take one argument argl. The macro breaks
into an inline assembly code that generates software interrupt int 0x80 at line 293.
Line 294 indicates that the result needs to be stored in eax%. There are two inputs:
eax% contains a system call number that is combined as (__NR_##name) at line
294, and ebx% contains the value of the first argument for the systemcall.

1.5 LINUX PROCESS AND THREAD

Each user land process has an associated task_struct object associated with it in the
kernel. The process has two modes, user and kernel. The user land context is dif-
ferent from the kernel context, where each one has different code, data, and stack
segment registers. Each process has user mode and kernel mode stack. The kernel
mode stack is an 8 K memory block, which has task_struct object at the end of the
stack (see Fig. 1.14). The application runs in user mode and uses a user mode stack
until it makes a system call when it switches from user mode to kernel mode where
it starts using kernel mode. See Section 1.4.1 for more details.

Each process has a unique process ID by which it is identified in the system.
task_struct object contains the entire information about the process, including hard-
ware context. Some of this process-specific information is file system information,
file table, signal handling, memory management, and so on. Each process has a
kernel level thread associated with it which is seen by the scheduler as scheduling
entity. This thread is represented by task_struct object. The kernel maintains a
doubly linked link list of task_object corresponding to all runable processes in the
system.

1.5.1 fork()

New processes can be created by calling fork(). It inherits all the property of the
parent process and shares VM, open files, and so on. Initially, user stacks for child
and parent are shared; but as the stack grows for the child, it gets its own copy of

17

18

INTRODUCTION

esp —> _______________

kernel mode Grows towards higher
stack(8k) address

task_struct

Figure 1.14. Kernel mode stack for the process.

the stack viaa COW (copy-on-write) mechanism. Child created by fork has separate
task_struct object and different kernel mode stack. Fork internally uses a clone to
create a new process. The exec*() family of system calls is used to replace an exist-
ing process with a new process.

1.5.2 Thread

A thread on Linux can be user level or kernel level. User level threads are ones
that are scheduled in the user land by libraries. The kernel has no idea about these
threads, and there is only one kernel thread for all the threads which corresponds
to the process which has created these threads. Kernel level threads are much like
Linux processes. These are also called lightweight processes (LWPs). Each thread
created by the process has a corresponding kernel level thread and is treated as a
scheduling identity by the kernel (see Fig. 1.15). Each thread is scheduled irrespec-
tive of every other thread for the process. So, there is much better control as far as
a blocking system call is concerned. The only thing that differentiates it from a
normal process is its lightweight.

Threads share virtual memory, signals, and open files with its parent. But each
of them has separate process IDs. A clone system call can be used to create LWPs
for the process. Clone flags to create LWPs are

CLONE_VM
CLONE_FS
CLONE_FILES
CLONE_SIGHAND
CLONE_THREAD

The pthread library creates kernel threads for the process. LWPs created by
using a clone systemcall with the above flags have separate process IDs. The option

LINUX PROCESS AND THREAD

RSAL:

process

process

19

thread
kernel
T el e R 1
kernel mode ernel mode kernel mode kernel mode ernel mode kernel mode kernel mode | |kernel mode
istack(tl) Istack(12) stack(t3) stack(t4) tack(p) istack(t5) stack(t6) stack(t7)
task_struct task_struct task_struct task_struct task_struct task_struct task_struct task_struct

- threads are LWP's for the main process each having separate PID.

- threads are scheduling entity for the scheduler

- Threads share VM, Signal, Open files, filesystem info of the Parent process
- Threads fall in the same thread group as process

Figure 1.15. Process, LWPs, and kernel thread.

m of ps command can show all the threads corresponding to the process. In one
example, I creates a program to spawn kernel level threads using pthread_create().
The ps command is used to display all the threads for the process as shown in
Fig. 1.16.

1.5.3 Kernel Threads

In this section we will discuss the threads that are created inside the kernel and not
by user land processes. Kernel threads are the same as the one created by the user
land applications in the way they both use a clone kernel interface and both have
a separate kernel mode stack. Kernel threads are created by making a call to
kernel_thread(). Kernel threads have no user context because they are not associ-
ated with any user process. A kernel thread executes in a user kernel address space
and does not have an address space of its own, unlike a user process. A kernel
thread is not interrupted by any one once it starts executing. It can yield CPU by
itself by going to sleep. These threads are very much visible using a ps command
and can be recognized by the name because they start with a k—for example, ksoft-
irqd, kflushd, and so on. These threads either wake up on expiry of the timer by

20

INTRODUCTION

[root@moksha root]$ ps -aejlcm | grep thread

FS UID PID PPID PGID SID CLS PRI ADDR SZ WCHAN TTY TIME CMD

0S 0 3028 2708 3028 2708 - 24 - 12639 schedu pts/I 00:00:00 thread-p
1S 0 3029 3028 3028 2708 - 24 - 12639 schedu pts/I 00:00:00 thread-p
1S 0 3030 3028 3028 2708 - 24 - 12639 schedu pts/I 00:00:00 thread-p
1S 0 3062 3028 3028 2708 - 24 - 12639 schedu pts/I 00:00:00 thread-p
1S 0 3072 3028 3028 2708 - 24 - 12639 schedu pts/I 00:00:00 thread-p
1S 0 3073 3028 3028 2708 - 24 - 12639 schedu pts/1 00:00:00 thread-p
1S 0 3076 3028 3028 2708 - 24 - 12639 schedu pts/I 00:00:00 thread-p

Figure 1.16. ps output showing process and associated threads (LWPs) created using a clone
interface.

kernel/softirq.c

398 static __init int spawn_ksoftirqd(void)

399 (

400 int cpu;

401

402 for (cpu = 0; cpu < smp_num_cpus; cpu++) {

403 if (kernel_thread(ksoftirqd, (void *) (long) cpu,

404 CLONE_FS | CLONE_FILES | CLONE_SIGNAL) < 0)
405 printk("spawn_ksoftirqd() failed for cpu %d\n", cpu);
406 else {

407 while (!ksoftirqd_task(cpu_logical_map(cpu)))

408 yield();

409 }

410 }

411

412 return Oy

413}

¢s 1.2. spwan_ksoftirqd().

themselves or are woken up by some other thread inside the kernel and are sched-
uled by the kernel as usual.

Let’'s take an example of ksoftirgd kernel thread to illustrate kernel
threads. Soft IRQ are also processed by kernel daemons in case there is a lot to
be processed by softIRQs; this is mostly true in the case of network packet
processing. Softirq daemons are created per CPU in routine spwan_ksoftirqd() (see
cs 1.2).

kernel_thread() is called in a loop 402—410 to create one kernel thread per CPU.
The routine that needs to be executed as a kernel thread is passed as a first argu-
ment to kernel_thread(); that is, ksoftirqd and second argument is CPU ID. Let’s
see why we pass CPU ID when we are creating a kernel thread. The name of the
kernel thread is stored in current—comm. Since softirq daemons are per CPU, the
name of each daemon contains a CPU number (see cs 1.3, line 375). This name of

LINUX PROCESS AND THREAD

FS LTD PID PPID PGID SID CLS PRI ADDR SZ WCHAN TTY TIME CMD
IS 0 4 1 1 1 - 5 - 0 ksofti ? 00:00:00 ksoftirgd_CPUO

Figure 1.17. ps output shows kernel thread as ksoftirqd_CPUO.

kernel/softirq.c

361 static int ksoftirqd(void * __bind_cpu)

362

363 int bind_cpu = (int) (long) __bind_cpu;

375 sprintf(current->comm, "ksoftirgd_CPU%d", bind_cpu);
396 }

cs 1.3. ksoftirgd().

include/linux/irq_cpustat.h

33 #define ksoftirqd_task(cpu) __IRQ_STAT((cpu), __ksoftirqd_task)

cs 1.4. ksoftirqd_task().

kernel/softirq.c

53 static inline void wakeup_softirqd(unsigned cpu)

54 {

55 struct task_struct * tsk = ksoftirqd_task(cpu);
56

57 if (tsk & & tsk->state != TASK_RUNNING)
58 wake_up_process(tsk);

59}

¢s 1.5. wakeup_softiqd().

kernel softirq daemon appears with the name ksoftirgd CPUO on running ps
command as shown in Fig. 1.17.

softIRQ daemon is awakened by using interface wakeup_softirqd(). This routine
gets access to softIRQ thread for the CPU by calling ksoftirqd_task() at line 55.
ksoftirqd_task() is a macro that accesses thread information from CPU-specific
structure by using another macro _ IRQ_STAT (see cs 1.4).

Once ksoftirqd_task() gets softIRQ thread for the CPU, it checks if it is not
already in running state (cs 1.5, line 57). If not already scheduled, it is woken up by
a call to wake_up_process() at line 58. This routine changes the state to TASK
RUNNING and puts the thread on the kernel run queue.

21

22

INTRODUCTION

1.6 KERNEL SYNCHRONIZATION MECHANISM

The Linux kernel implements many synchronization mechanisms that are applic-
able in different situations on different kernel control paths. Some of these synchro-
nization mechanisms are

+ Semaphore

+ Atomic operations

- Disabling interrupts locally or globally
+ Spin locks

The above synchronization mechanisms work on different principles, but the
aim is to synchronize access to kernel global data structures across different kernel
control paths and also across CPUs. Different kernel control paths are discussed in
Section 1.3, but let us summarize here:

- Kernel path executing system call on behalf of process
- Kernel path executing interrupt routine
- Kernel path executing softIRQ.

Let’s see what synchronization mechanism could be best used for different
kernel control paths. Spin lock is the most commonly used synchronization mecha-
nism in different flavors. We will discuss this in more detail in shortly. Let’s see how
semaphore is implemented, and let’s discuss its usage.

1.6.1 Semaphore

A semaphore is used to synchronize access to global data structure in an asynchro-
nous way. When many kernel control paths want to acquire a kernel resource, only
one gets the lock and the rest are put to sleep until the lock is released by the one
that is acquired. down() and up() are the two routines that manipulate semaphores.
When the kernel control path wants to acquire a semaphore, it calls down(). If we
are the first one to acquire semaphore, we change the state of the semaphore and
get access to the shared resource. If somebody has already acquired the semaphore,
the caller has to wait on a semaphore wait queue until it is woken up by the control
path that has acquired it. up() routine is called by the kernel control path to release
the semaphore, and it also wakes up all the processes waiting on a semaphore wait
queue.

The best example that explains the usage of a semaphore is page fault. Process
address space may be shared by many threads (LWPs) or a child process. It may
happen that page fault occurs while executing for the code area or stack area. In
this case, a page fault handling routine takes a semaphore for its kernel address
space (current—mm—mmap_sem). Then it starts to find the cause of fault and tries
to get the missing page and map it to the process page table. In the meantime, some
other thread which is sharing the address space of the process which is already in
the process of finding page for the faulting address also faults. In this case, the
thread that has faulted later will go to sleep on mm—mmap_sem and will be woken
up once the page fault handler returns for the process that faulted first.

KERNEL SYNCHRONIZATION MECHANISM

1.6.2 Atomic Operations

This is mainly used to synchronously access a memory region when two or more
kernel control paths are trying to access them simultaneously. There are instructions
that may require us to test and modify a bit atomically (without being interrupted
by interrupts) on the CPU. On SMP machines, such instructions appear to be non-
atomic as both the CPU’s read the same value in a given memory location in two
simultaneous read cycles. If the 0 value in the memory location means acquire the
lock, both will acquire the lock and will wait for the big blast. On an SMP machine,
these instructions should be preceded by lock instruction to lock the memory bus
by any CPU until atomic instruction is executed completely.

1.6.3 Spin Lock

The third and most commonly used synchronization technique used everywhere
inside the kernel is spin locks. It is used to synchronize data access when kernel
control paths on two or more CPUs try to access the same memory region simulta-
neously. It differs from a semaphore in the way that the semaphore freezes the
process that wants to acquire the semaphore when it is already acquired. Spin lock,
on the other hand, does not put the process to sleep that wants to acquire the spin
lock when it is already acquired. Instead, it executes a tight loop spinning around
the lock each time atomically testing the lock, also called busy-wait loop. If it finds
that the lock is released, it tries to acquire it atomically. Spin lock makes use of
atomic instructions. Whichever CPU succeeds in acquiring the lock first gets it, and
others continue to move in a tight loop and this continues.

Spin locks have an edge over semaphores because we save a lot of time in
context switching when the process trying to acquire a lock is put to sleep by the
semaphore. Critical section in the kernel is refereed to code that modifies/accesses
global data-structures accessed from a different kernel control path. Critical sec-
tions should be protected by locks. Locks held for a longer time cause other kernel
control paths to paths to wait for a longer time causing a performance hit. A critical
section of the kernel code is executed for a much shorter period of time. If the time
required in context switching is much more than the time spent in executing a criti-
cal region, semaphores penalize the performance extensively. In such cases, waiting
on a busy loop to acquire the lock gives a much better performance. Not only this,
there are other reasons to use spin lock on SMP machine instead of semaphores for
serialized access of global data. For example, data that are shared between a kernel
control path and an interrupt cannot be protected by a semaphore because it could
freeze the system by calling a schedule in interrupt routine (hypothetical case). In
the same way, a spin lock cannot be used for serialized access of data shared
between interrupt and kernel control path on a single CPU machine. This would
cause the machine to freeze because the tight loop in the interrupt routine would
never let us come out of it when a spin lock is already acquired by the other kernel
control path. For this reason, we acquire a spin lock with local interrupts disabled
when data are shared between kernel control path and the interrupt routine. This
doesn’t stop interrupts from occurring on other CPUs, which is OK because they
will wait in a tight loop until we release the lock. Maskable interrupts are disabled
locally by using the macro local irq_disable() and are enabled by using
local_irq_enable().

23

24

INTRODUCTION

include/linux/spinlock.h

10 #define spin_lock_irgsave(lock, flags) do { local_irq_save(flags); spin_lock(lock); } while (0)
11 #define spin_lock_irg(lock) do { local_irq_disable(); spin_lock(lock); } while (0)
12 #define spin_lock_bh(lock) do { local_bh_disable(); spin_lock(lock); } while (0)

Figure 1.18. Interface to acquire spin lock.

include/linux/spinlock.h

22 #define spin_unlock_irqrestore(lock, flags) do { spin_unlock(lock); local_irq_restore(flags); } while (0)
23 #define spin_unlock_irq(lock) do { spin_unlock(lock); local_irq_enable(); } while (0)
24 #define spin_unlock_bh(lock) do { spin_unlock(lock); local_bh_enable(); } while (0)

Figure 1.19. Interface to release spin lock.

A spin lock can also be used to serialize data shared between the kernel control
path, softIRQ also. In such cases, two macros can be used to disable and enable
soft IRQ); these are local_bh_disable and local_bh_enable, respectively. Check
Section 17.2 for details.

Different flavors of spin_locks are shown in Figs. 1.18 and 1.19. In some cases
we need to store EFLAGS for the CPU before disabling interrupts locally to restore
it once we enable interrupts once again as interrupts are handled in nested fashion.
Nested interrupt handling means that an interrupt is raised when another low-
priority interrupt is already being handled on the CPU. We do this because we are
not sure whether interrupts were enabled at the time we disabled them. This means
that IRQs may already have been disabled by an upper layer before we are going
to disable them.

In such cases, spin_lock_irgsave() and spin_unlock_irgrestore() are used to
serialize data access between kernel control path and interrupt. spin_lock_irq() and
spin_unlock_irq() are used simply when we want to serialize access of data shared
between kernel and interrupt. spin_lock_bh() and spin_unlock_bh are used to seri-
alize access of data shared between kernel and softIRQ.

Similarly, we have the same flavors of spin locks for reader and writer locks,
which we won’t discuss here in much detail. Read spin lock allows multiple readers
to get access to the shared data, whereas writer lock exclusively allows only a single
writer to access the resource. When writer lock is acquired, no one including the
reader is allowed access to the resource.

1.7 APPLICATION INTERFACES FOR TCP/IP PROGRAMMING

In this section we will see various interfaces that are provided to the user applica-
tion to write a client-server program. All networking applications are based on
client-server technology other than multicasting and broadcasting applications.
There may be variants to the outlook of these applications, but basically the under-
lying functionality remains the same. Normally, a server is a program that provides

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING

a known service to the client program. The example is telnet, FTP, http, and so on.
Client and server are in some kind of understanding with each other for all such
services. But there is one thing in common in all the programs: client-server tech-
nology. In all the cases, a server has established its identity, which is known to the
client. The client sends out a request to the server for the service, which in turn
offers its services once they are connected to each other. We first discuss simple
server application and then client application and see how they use TCP protocol
over IP to communicate with each other.

1.7.1 Server Application

A server program has to provide its identity to the client programs by way of listen-
ing on a specific port. Port is a unique number that identifies a connection or specific
services on a given host. When we say identifying specific connection on specific
port it means that the server application needs to register its service with the kernel
by way of port number. When we request a kernel to register our service, a unique
port number is provided by server application to the kernel to associate its services
with this number.

This port number should be known to the client application so that it can send
its request to the host machine running this service. Let’s see what all interfaces are
providing to hook its services with specific port number and register its service with
the kernel.

We want to start service using TCP transport protocol (see Fig. 1.20). The first
step is to make a socket() system call at line 25. The socket is a framework to com-
municate with the network protocol within the kernel. This call opens a socket in
the kernel. The arguments to the socket call are AF_INET and SOCK_STREAM.
This means that we want to open an internet family socket of type STREAM refer-
ring to TCP. The socket initializes INET socket-specific data structures and also
TCP protocol-specific data structures and a set of operations. It links the socket
with the VFES, which is then associated with the file descriptor and returned to the
application. Now using this file descriptor, the server can request to kernel any
operation on the socket.

The next step is to bind the socket with a specific port number by making the
bind() system call at line 33. This is the way we are requesting a kernel to allocate
a specific port number to its service. Here comes the concept of socket address
whose C equivalent is sockaddr_in. This has two fields: port number and IP address.
If the host machine has more than one interface, an application can request a kernel
to bind the socket with a given interface or with all the available interfaces. This
means that application may want to accept connection requests from only one
interface or from all the available interfaces. In the former case, the sin_addr field
of the socket address is initialized to the specific IP address and the same field needs
to be initialized to INADDR_ANY in the latter case, line 31. Since this is INET
address family, the sin_family field of the socket address is initialized to AF_INET.
The port number to which we want to glue the services is initialized at line 32. The
socket address is now ready for registration as object sockaddr_in.

The socket address is passed to bind() call. If the return value is less than zero,
the socket could not be bound to the given port number because there may be any
reason, including the fact that a port number may already be allocated to some
other services. Otherwise, we got the port number that was requested.

25

26

server:

1 #include <stdio.h>
2 #include <sys/types.h>
3 #include <sys/socket.h>
4 #include <netinet/in.h>
5 #include <signal.h>

11

12 #define READ_BUFFER 50000

13

14 int main(int argc, char *argv[]) {

15

16 int sockfd, newsockfd, portno, clilen, childpid;
17 char buffer/lREAD_BUFFER];

18 struct sockaddr_in serv_addr, cli_addr;

19 intn;

20 signal(SIGCHLD, SIG_IGN);

21 if (arge < 2) {

22 fprintf(stderr,"ERROR, no port provided\n");
23 exit(1);

24)

25 sockfd = socket(AF_INET, SOCK_STREAM, 0);
26 if(sockfd < 0)

27 error("ERROR opening socket");

28 bzero((char *) &serv_addr, sizeof{serv_addr));
29 portno = atoi(argv[1]);

30 serv_addr.sin_family = AF_INET;

31 serv_addr.sin_addr.s_addr = INADDR_ANY;
32 serv_addr.sin_port = htons(portno);

33 if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {

34 perror("ERROR on binding");
35 exit(2);
36 }

37 listen(sockfd,5);
38 while (1) {

39 clilen = sizeof(cli_addr);

40 newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);
41 if (newsockfd < 0) {

42 perror("ERROR on accept”);

43 if ((childpid = fork()) < 0) {

44 error("server: fork error");

45 exit(3);

46 }

47 else if (childpid == 0) {

48 close(sockfd);

49 while (1) {

51 bzero(buffer, READ_BUFFER);

53 n = read(sockfd,buffer, READ_BUFFER-1);
54 if(n<0)

55 perror("ERROR reading from socket");
56 n = write(sockfd,buffer, READ_BUFFER-1);
57 if(n<0)

58 perror("ERROR writing to socket");
59 J

60 exit(0);

61]

62 close(newsockfd);

63)}

64}

Figure 1.20. Server program.

INTRODUCTION

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING

Next is to request the kernel to start the accepting the connection, which is done
by making a call to listen() at line 37. A listen call will actually start the services for
the server application. Now the kernel will start accepting connection a request for
the socket. A second argument to /listen() call is to accept a queue length for the
listening socket. All the established connections for the socket sit in this queue to
be accepted. Connection requests can come faster than they can be accepted by the
application. For this reason we need a queuing mechanism to buffer a pending con-
nection on the busy server.

The final step is a call to accept() systemcall at line 40. accept() call is made in
an infinite loop. This call blocks until a new connection is available from the accept
queue. As soon as a new connection is available, application is awakened and new
connection is returned to the application associated with the file descriptor associ-
ated with the new socket connection.

The returned value of the accept call is associated with a new connection and
can be used for communication between two ends. This opens a new channel
between the two ends and is differentiated from all other connections for the same
service using a remote port and an IP address. For each connection, a remote port
number or a remote IP address will be unique.

Our serve program forks a new process for the newly accepted connection by
a call to fork() at line 43. fork() syscall returns with value zero in the child process.
In the parent process, it returns childs PID. This way we start services in the child
thread in while loop 47-61. We are blocked to read data over the socket by a call
to read() at line 53. Once it has read data over the socket, it writes received data
back to the sender at line 56 by a call to write(). A child thread closes a listening
socket at line 48 because additional reference was held on the listening socket when
we were waiting on accept in parent. Parent thread closes a new socket at line 62.
In the next section we will see what the client program does.

1.7.2 Client Application

A client program has to be sure of the server it needs to contact. To contact the
server, it has to know two things about the server:

- Port number of the server at which it is listening
« IP address of the host machine where this server is running

Refer to Fig. 1.21 for a client program. The socket address consisting of these
two information C equivalent of socket address is struct sockaddr_in, as discussed
in Section 4.2. First we make socket() call at line 27 to open TCP socket. sin_addr
field is initialized to the IP address of the server and sin_port field is initialized to
port number of the listening server at lines 39 and 42, respectively. Next we make
a call to connect() at line 43, to which we pass the socket address of the server. We
pass the socket descriptor to the connect() on which the connection is to be estab-
lished. The kernel finds route for the destination (server) and then initializes the
connection process. Once the connection is established, the connect returns.

Once connect() returns, we are ready to communicate with the server using read
& write calls using a socket descriptor. In the while loop 47-56, we are reading one
line from the standard input (keyboard) at line 49 and writing it over the socket by
a call to write at line 51. Just after writing data over the socket, we are waiting to

27

INTRODUCTION

lient-

1 #include <stdio.h>
2 #include <sys/types.h>
3 #include <sys/socket.h>
4 #include <netinet/in.h>
5 #include <netdb.h>

13 #define READ_BUFFER 50000

14

15 int main(int argce, char *argv[])
16 {

17 int sockfd, portno, n;

18 struct sockaddr_in serv_addr;
19 in_addr_t addr;

20 struct hostent *server;

21 char buffer[READ_BUFFER];
22 if (arge < 3) {

23 [fprintf(stderr, "usage %s hostname portwi”, argv[0]);
24 exit(0);
25 }

26 portno = atoi(argv[2]);
27 sockfd = socket(AF_INET, SOCK_STREAM, 0);
28 if (sockfd < 0) {

29 perror("ERROR opening socket");
30 exit(2);
31 }

32 server = gethostbyname(argv[1]);
33 if (server == NULL) {

34 Jprintf(stderr,"ERROR, no such hosin");
35 exit(0);
36 }

37 bzero((char *) &serv_addr, sizeof(serv_addr));
38 serv_addr.sin_family = AF_INET;
39 beopy(&addr,

40 (char *)&serv_addr.sin_addr.s_addr,

41 sizeof(addr));

42 serv_addr.sin_port = htons(portno);

43 if (connect(sockfd, (struct sockaddr *)&serv_addr,sizeof(serv_addr)) < 0) {
44 perror("ERROR connecting");

45 exit(3);

46 }

47 while(1) {

48 printf{"Please enter the message: ");

49 Jgets(buffer, READ_BUFFER-1,stdin);

50 bzero(buffer,READ_BUFFER);

51 n = write(sockfd,buffer, READ_BUFFER-1);
52 if(n<0)

53 perror("ERROR writing to socket");
54 n = read(sockfd,buffer, READ_BUFFER-1);
55 if (n<0)

56 perror("ERROR reading from socket");
57 else {

58 buffer[n] = \0';

59 printf{ “%s\n”, buffer);

60 }

61 }

62 return 0;

63}

Figure 1.21. Client program.

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING

read data over the socket by a call to read at line 54. Data received are printed at
line 59. The server returns whatever it has read over the socket, which is read by
the client and displayed at standard output. This makes an echo server.

1.7.3 Socket Options

Sockets can be tuned as per the requirements by an applications. This facility can
save us from tuning the entire system where different applications have different
requirements. For example, telnet connection requires setting a KEEP_ALIVE
timer for the TCP connection between telnet server and client. This facility is
required because telnet connection can be open for months without any activity.
With KEEP_ALIVE socket option, the server can probe client to find out if it is
alive. On the other hand, FTP doesn’t need this option.

setsockopt(). There are many socket options that can be used to tune different
TCP connections. setsockopt() is an interface that is provided to the application to
set socket options for a given connection without disturbing global settings (see Fig.
1.22). Arguments to the system call are as follows:

s: This is the socket descriptor as returned by the socket.
optname: This is the name of the socket option that needs to be tuned.
optval: This is the value of the socket option to be set.

optlen: This is the length of the optional value that is passed to the kernel to
mark the end of option length. The reason is that optlen is a pointer to
void.

getsockopt(). getsockopt() is an interface provided to get the value of socket
option (see Fig. 1.23). The arguments are the same as they are for setsockopt(), with
the difference being that they are used to fetch the value of the socket options.

1.7.4 Option Values

SO_DEBUG. This turns on debugging at various protocol layers. This may be
useful when we want to track allocation of buffers, traversal of packets on the stack,
behavor of TCP algorithms, and so on. If the socket debug option is enabled, the
SOCK_DEBUG macro prints messages on reception of bogus ACK for the byte
that is not yet sent (line 1908, cs 1.6).

int setsockopt(int s, int level, int optname, const void *optval, int optlen);

Figure 1.22. setsockopt().

int getsockopt(int s, int level, int optname, void *optval, socklen_t *optlen);

Figure 1.23. getsockopt().

29

30

INTRODUCTION

net/ipvd/tcp_input.c

1896 static int tep_ack(struct sock *sk, struct sk_buff *skb, int flag)
1897 {

1908 if (after(ack, tp->snd_nxt))
1909 goto uninteresting_ack;

1983 uninteresting_ack:

1984 SOCK_DEBUG(sk, "Ack %u out of You:%u\", ack, tp->snd_una, tp->snd_nxt);
1985 return Oy

1986 }

cs 1.6. tcp_ack().

include/net/sock.h

467 #ifdef SOCK_DEBUGGING
468 #define SOCK_DEBUG(sk, msg...) do { if((sk) && ((sk)->debug)) printk(KERN_DEBUG msg); } while (0)

¢s 1.7. SOCK_DEBUG().

net/ipvd/udp.c

416 int udp_sendmsg(struct sock *sk, struct msghdr *msg, int len)

417 {

525 if (rt->rt_flags&RTCF_BROADCAST & & !sk->broadcast)
526 goto out;

527 if (connected)

528 sk_dst_set(sk, dst_clone(&rt->u.dst));

569}

¢s 1.8. udp_sendmsg().

The SOCK_DEBUG macro uses the kernel printk() interface to write debug
messages. These messages can be seen through dmsg command or from file /var/
log/messages. We can see that SOCK_D EBUG first checks if debug option is on for
the socket (sk—debug) at line 468 (cs 1.7). sk—debug is set by the application using
setsockopt() interface.

SO_BROADCAST. This enables sending of broadcast messages, if this is sup-
ported by the protocol. Broadcast is not supported by TCP. Only UDP and raw
socket support broadcast. In udp_sendmsg(), if the route is of type broadcast
(RTCF_BROADCAST), it can send broadcast messages only if socket option
enables (sk—broadcast) is set (line 525, cs 1.8).

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING

net/ipvd/tcp_ipv4.c

202 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
203 {

249 if (tb I= NULL && th->owners != NULL) {

250 if (sk->reuse > 1)

251 goto success;

252 if (tb->fastreuse > 0 & & sk->reuse != 0 && sk->state != TCP_LISTEN) {
253 goto success;

254 Jelse

283)

¢s 1.9. tcp_v4_get_port().

SO_REUSEADDR. Whenever any server application wants to bind to a port
which is already in use by some other application on the same machine, this option
may allow us to use the same port number under certain conditions. This option
sets the reuse field of the sock object.

tecp_v4_get port() is called inside the kernel through a bind path when
application wants to bind to a specific port. We traverse through the bind hash list;
and if we find port already occupied and sk—reuse is set more than 1 (line 250, cs
1.9), we can directly use the port. Otherwise, if the value of sk—reuse is set to 1
(line 252, cs 1.9), it has to go through some additional checks before getting the
port.

SO_KEEPALIVE. This option enables a heartbeat mechanism for TCP connec-
tion. An application like telnet may be active for months, where one end never
knows about the other end when connections are ideal. It may happen that the one
end has gone down, in which case the other end will never know. Half-connection
will unnecessarily be open, thereby occupying resources. This option keeps sending
messages to the other end once connection is idle for some time. In return, the
sending end expects acknowledgment. If acknowledgments are not received, the
connection is closed after a certain number of retries.

When the option is enabled, tcp_set_keepalive() is called to set the keepalive
timer for TCP, and sk—keepopen is set to 1. tcp_set_keepalive() resets the keepalive
timer in case it is not already set; this is done by calling tcp_reset_keepalive_timer()
(see cs 1.10, line 568).

SO_LINGER. The linger option is to enable a TCP socket to provide enough
time to send unsent data in the send queue when a socket is closed by an applica-
tion. We provide a timeout value with this option so that the kernel hangs on for
this much time before closing the socket. In this time, the TCP gets enough time to
flush all the data to the receiver. If timeout is not provided, the kernel waits until
all the data are flushed out.

This option sets sk—linger to 1, and sk—lingertime is set to a timeout value
provided by user application. When an application issues a close() syscall an INET
socket, inet_release() is called. If a linger option is set, a linger timeout value is taken

31

32

INTRODUCTION

net/ipvd/tcp_timer.c

562 void tep_set_keepalive(struct sock *sk, int val)

563 {

564 if ((1<<sk->state)&(TCPF_CLOSE|TCPF_LISTEN))

565 return;

566

567 if (val && !sk->keepopen)

568 tep_reset_keepalive_timer(sk, keepalive_time_when(&sk->tp_pinfo.af _tcp));
569 else if (Ival)

570 tep_delete_keepalive_timer(sk);

571}

cs 1.10. tcp_set_keepalive().

net/ipvd/af inet.c

444 int inet_release(struct socket *sock)

445 {

446 struct sock *sk = sock->sk;

447

448 if (sk) {

449 long timeout;

461 timeout = 0;

462 if (sk->linger && !(current->flags & PF_EXITING))
463 timeout = sk->lingertime;
464 sock->sk = NULL;

465 sk->prot->close(sk, timeout);
466 }

467 return(0);

468 }

cs 1.11. inet_release().

from sk—lingertime (cs 1.11, line 463). Finally, a protocol-specific close routine is
called with a linger timeout value at line 465 (see cs 1.11).

In tep_close(), we check the timeout value passed as an argument to the routine.
If set, the kernel puts the process to sleep before by calling add_wait_queue() at
line 1978 (see cs 1.12). By the time we request a timeout, all data would have been
flushed. Once we have performed the timeout, the socket is closed.

SO_OOBINLINE. This option is related to a TCP urgent byte. If the option is
set, the TCP urgent byte is received inline; otherwise, it is received on different
channel as out-of-band data. The option sets sk—urginline to 1. sk—urginline is
discussed in much detail in Section 8.3.2.

SO_SNDBUF. This option sets send buffer size for the socket, sk—sndbuf. This
value puts a limit on the total amount of memory allocated for the send buffer. In

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING

net/ipvd/tcp.c

1900 void tep_close(struct sock *sk, long timeout)
1901 {

1902 struct sk_buff *skb;

1976 if (timeout) {

1977 struct task_struct *tsk = current;

1978 DECLARE_WAITQUEUE(wait, current);
1979

1980 add_wait_queue(sk->sleep, &wait);
2064 }

cs 1.12. tcp_close().

net/ipvd/tcp.c

680 static inline int tcp_memory_free(struct sock *sk)
681 {

682 return sk->wmem_queued < sk->sndbuf;
683 }

¢s 1.13. tcp_memory_free().

case the segments get acknowledged, they stay in the send buffer and account for
the send buffer consumption.

tcp_memory_free() is called when application data are written over the TCP
socket to check if we have enough space in the send buffer for application data. If
this returns TRUE, we can queue new data to socket’s send buffer, otherwise not
(see cs 1.13).

SO_RCVBUF. The option is the same as SO_SND BUF with the difference that
this option sets an upper limit on the receive buffer, sk—rcevbuf. In tep_data_queue(),
we check if allocated memory for receive socket buffer is more than socket send
buffer limit at line 2571 (cs 1.14). If the condition is true, we try to squeeze some
memory from the receive queue by calling tcp_prune_queue() at line 2573.

SO_DONTROUTE. This option is mainly used by RAW sockets or UDP sockets
and sets sk—localroute to 1. If this option is enabled, the normal routing policy is
disabled for the outgoing packet. The packet will be routed only if the destination
is directly connected to the network.

SO_RCVTIMEO. This sets the timeout value for the socket that specifies the
maximum amount of time the process should be blocked for an incoming event such
as the following:

+ Accept blocked for new connection on listening socket.
- Read is blocked to receive data on the connected socket.

33

34

INTRODUCTION

net/ipvd/tcp.c

2522 static void tep_data_queue(struct sock *sk, struct sk_buff *skb)

2523 (
2570 if (eaten < 0 &&
2571 (atomic_read(&sk->rmem_alloc) > sk->rcvbuf 1|
2572 ltcp_rmem_schedule(sk, skb))) {
2573 if (tcp_prune_queue(sk) < 0| Itcp_rmem_schedule(sk, skb))
2574 goto drop;
2575 }
2726 }
cs 1.14. tcp_data_queue().
include/net/sock.h

1238 static inline long sock_rcvtimeo(struct sock *sk, int noblock)

1239 (
1240 return noblock ? 0 : sk->rcvtimeo;
1241}
cs 1.15. sock_revtimeo().
include/net/sock.h

1467 int tcp_recvmsg(struct sock *sk, struct msghdr *msg,

1468 int len, int nonblock, int flags, int *addr_len)
1469 {

1488 timeo = sock_rcvtimeo(sk, nonblock);

1638 Jelse {

1639 timeo = tcp_data_wait(sk, timeo);
1640 }

1770 }

¢s 1.16. tcp_recvmsg().

sock_rcvtimeo() returns a value of timeout for blocking sockets, (see cs 1.15).

tep_recvmsg() calls sock_rcvtimeo() at line 1488 (cs 1.16) to get a timeout value
for the socket. Once requested data are not available, tcp_data_wait() is called at
line 1639 (cs 1.16) with a timeout value returned by sock_rcvtimeo(). This puts the
process to sleep until timeout occurs or until data are received, whichever happens
first.

SO_SNDTIMEO. This option is similar to SO_RCVTIMEO except that this sets
a timeout for receiving events on the socket. This sets a value of sk—sndtimeo.

SHUTDOWN

include/net/sock.h

1243 static inline long sock_sndtimeo(struct sock *sk, int noblock)

1244 {
1245 return noblock ? 0 : sk->sndtimeo;
1246 }
cs 1.17. sock_sndtimeo().
net/ipvd/tcp.c

1009 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, int size)
1010 {

1025 timeo = sock_sndtimeo(sk, flags &MSG_DONTWAIT);

1067 skb = tcp_alloc_pskb(sk, select_size(sk, tp), 0, sk->allocation);
1068 if (skb == NULL)
1069 goto wait_for_memory;

1180 if ((err = wait_for_tcp_memory(sk, &timeo)) !=0)
1181 goto do_error;
1210}

cs 1.18. tcp_sendmsg().

sock_sendtimeo() returns a timeout value as sk—sndtimeo for blocking sockets
(see cs 1.17).

tcp_sendmsg() calculates records timeout value at line 1025 (cs 1.18) by
call to sock_sndtimeo(). If it fails to allocate memory for copying new data into
a network buffer (line 1068, cs 1.18), it has to wait for memory by calling wait_
for_tcp_memory() until it times out or memory is available, whichever happens
first.

1.8 SHUTDOWN

The client-server program may be sending and receiving data from both the ends
because TCP is a fully duplex stream protocol. It may happen that one end doesn’t
want to send or receive any more data because it is already done. In such a case, it
will close that end of the socket. If any activity happens on that end further, the
socket will throw an error saying that operation is not permitted. The shutdown()
function shall cause all or part of a full-duplex connection on the socket to be shut
down.
The shutdown() function takes the following arguments (Fig. 1.24).

35

36

INTRODUCTION

int shutdown(int socket, int how);

Figure 1.24. shutdown().

socket. This is a file descriptor associated with the socket.
how. This specifies what action needs to be taken. The values are as follows:

SHUT_RD. This disables reading of any more data over the socket. TCP
may be accepting data, but the application is not allowed to read data over
the socket.

SHUT_WR. This disables writing of data over the socket. When application
wants to send data over the socket after write side is shut down, the socket
throws an error to the application, indicating that a pipe is broken.

SHUT_RDWR. This disables further send and receive operations.

1.8.1 Kernel Shutdown Implementation

Let’s see how shutdown is implemented in the kernel. sk—shutdown flags shutdown
events. There are two flags here:

« SEND_SHUTDOWN, set to disable send events.
« RCV_SHUTDOWN, set to disable receive events.

1.8.2 Send Shutdown

When an application wants to send a message after the send side of the socket
is shut down, fcp_sendmsg() handles the situation. sk—shutdown has SEND_
SHUTDOWN bit set for the socket in this case. An error is initialized to E_PIPE
at line 1042, cs 1.19. At line 1043 we check the shutdown flag. If the SEND_SHUT-
DOWN bit is set, we go to error handling at line 1202. It is rare that any data are
copied to the application buffer. I mean that it is rare that shutdown is called from
application when the kernel is in the process of reading data from the socket buffer.
So, we move to error handling at line 1205. Here we do some cleanup operation
and then return error number which is set to E_PIPE.

1.8.3 Receive Shutdown

When an application wants to receive data over a TCP socket, a kernel calls tcp_
recvmsg(). Error number is initialized to ENOTCONN. We read data in do-while
loop 1502-1703, cs 1.20. In the process, we check if a shutdown bit is set for the
socket at line 1568. If so, we break. We do a cleanup operation and then return the
value of copied, which may be a positive value if there was any data copied from a
receive buffer or 0 if there was nothing copied from the receive buffer. It doesn’t
return an E_PIPE error instead 0. Zero return value to the application means that
nothing was there to be read from the socket.

SHUTDOWN

net/ipvd/tcp.c

1009 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, int size)
1010 {

1042 err = -EPIPE;
1043 if (sk->err || (sk->shutdown&SEND_SHUTDOWN))
1044 goto do_error;

1202 do_error:

1203 if (copied)

1204 goto out;

1205 out_err:

1206 err = tcp_error(sk, flags, err);
1207 TCP_CHECK_TIMER(sk);
1208 release_sock(sk);

1209 return erry
1210)

¢s 1.19. tcp_sendmsg().
net/ipvd/tcp.c

1467 int tcp_recvmsg(struct sock *sk, struct msghdr *msg,
1468 int len, int nonblock, int flags, int *addr_len)
1469 {

1470 struct tep_opt *tp = &(sk->tp_pinfo.af _tcp);

1484 err = -ENOTCONN;

1502 do {

1568 if (sk->shutdown & RCV_SHUTDOWN)
1569 break;

1730 J} while (len > 0);

1758 TCP_CHECK_TIMER(sk);
1759 release_sock(sk);

1760 return copied;

1770 }

¢s 1.20. tcp_recvmsg().

38

INTRODUCTION

1.9 1/0

In this section we discuss different system calls on Unix systems that deal with I/O.
Our discussion will be more focused on the feature that system call adds to I/O
activities. These system calls can be used to receive or send normal- or high-priority
data over the socket.

1.9.1 read()

This is the simplest system call to read data over the socket. We specify a
socket descriptor as a first argument, address of the location where data should
go as a second argument, and number of bytes to be read in the buffer as a
third argument (see Fig. 1.25). The system call can a block or return immediately,
depending on whether the socket is blocking or nonblocking. By default, it is block-
ing. If the socket is blocking, read blocks in case its request is not satisfied
completely.

1.9.2 write()

This is simplest system call to send data over the socket (see Fig. 1.26). Arguments
are same as that for the read; the difference is that instead of reading, this will write
data. The blocking and non-blocking nature is the same as that for read.

1.9.3 recv()

This system call would receive data over the socket with some added control (Fig.
1.27). The first three arguments are the same as that for read, with an additional
fourth argument as control flags. With the additional flag, we can just peek for the
data or can receive TCP urgent data as out-of-band data. In the latter case, the
process will never block even if the socket is blocking.

ssize_t read(int fildes, void *buf, size_t count);

Figure 1.25. read().

ssize_t write(int fildes, const void *buf, size_t count);

Figure 1.26. write().

ssize_t recv(int s, void *buf, size_t len, int flags);

Figure 1.27. recv().

TCP STATE

ssize_t send(int s, const void *msg, size_t len, int flags);

Figure 1.28. send().

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
void FD_CLR(int fd, fd_set *set);
int FD_ISSET(int fd, fd_set *set);
void FD_SET(int fd, fd_set *set);

void FD_ZERO(fd_set *set);

Figure 1.29. select().

1.9.4 send()

This system call would send data over the socket with some added control (Fig.
1.28). This is the same as recv, with the difference being that this is used for sending
data instead of receiving data. The flags argument has the same meaning as it is for
Tecv.

1.9.5 select()

The select system call offers more features with added complexity (Fig. 1.29). The
added feature is to do I/O multiplexing demultiplexing. With the system calls dis-
cussed so far, we can do I/O only on a single socket descriptor or file descriptor.
With select, we can block on multiple events for different descriptors. The events
are read, write, and exception. For each event, we have pointer to fd_set object. We
can mark the bit corresponding to the file/socket descriptor in fd_set object. We do
this by using macro FD_SET(). We pass pointers to fd_set for each event to select.
The first argument to select is a maximum file descriptor number that will be one
more than the highest number received as the file/socket descriptor for the process.
We can also provide a timeout value as the fifth argument. Once select returns, the
return value indicates the number of events that has occurred. We need to check
each event by using macro FD_ISSET on each descriptor to check which event has
occurred. For example, if there are data to be read on the socket and we want this
event to be notified, select returns with bit set for read event. FD_ISSET() for readfs
event will return 1 for the descriptor that received data.

1.10 TCP STATE

TCP is a state-oriented protocol. Each TCP session maintains a state of its own.
The state of the TCP connection is a kind of marker for the protocol which decides
the behavior of the protocol at any given point of time. Each state will have a pre-
decided set of rules that need to be followed strictly. Specific events can change the

39

INTRODUCTION

1 10:07:35.210908 192.168.1.4.32966 > moksha.isakmp: S [tcp sum ok] 552231777:552231777(0) win 49640
<mss 1460,nop,wscale 0,nop,nop,sackOK> (DF)

2 10:07:35.210974 moksha.isakmp > 192.168.1.4.32966: S [tcp sum ok] 1163300465:1163300465(0) ack 552231778
win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)

3 10:07:35.211186 192.168.1.4.32966 > moksha.isakmp: . [tcp sum ok] ack 1 win 49640 (DF)

Figure 1.30. TCP three-way handshake.

Client Server
SYN
10:07:35.210908 \

10:07:35.210974
ACK

10:07:35.211186 \

Figure 1.31. Time-line diagram for
three-way handshake.

state of the protocol, which in turn changes the next course of action. Any diversion
from the current course of action may lead to major failures caused from breaking
protocol. As we see later in the discussion, there is a way in which a connection
needs to be established initially between two TCP peers. If the protocol is not
followed as expected, the two ends keep on exchanging the connection-specific
packets forever, thereby causing a lot of damage to the system as well as to network
resources.

Let’s see what these TCP states are. We divide the discussion into three differ-
ent categories, depending on the stage of the TCP connection:

1. Connection initiation (active and passive)
2. Established connection
3. Connection closure (active and passive)

Connection initiation (three-way handshake) is illustrated in Fig. 1.30. We have
already discussed the client-server program in Section 1.7. We take the same
example and see what happens when a client is trying to send a connection request
to the server.

On a time-line diagram, the connection initiation would be as shown in Fig.
1.31. Connection initiation is started by the client, which invokes connect system
call. So, a client sends SYN packet to the server at time 10:07:35.210908. The server
responds to the connection request by ACKing (acknowledging) the SYN. Finally,
the client acknowledges the SYN/ACK by sending the final ACK. From Fig. 1.30,

TCP STATE
CLOSED Client Server
| SYN LISTENING
! 10:07:35.210908 *
v
SYN_SENT
5\(N|P*CK

10:07:35.210974

4_-.__.__.__.__.__.__.__.__.__

|

'

|

|

'

|

|

'

|

|

'

|

|

'

|

!

|
v

ACK

10:07:35.211186 \
ESTABLISHED
SYN_RCVD
v

ESTABLISHED
Figure 1.32. TCP states during three-way handshake.

it is worth noting that some information is exchanged between the peers in initial
SYN and SYN/ACK packets. The information contains TCP options. Please refer
to Section 2.2 for detailed information about protocol headers. Let’s see how the
client and server side TCP state changes with each event.

Figure 1.32 shows the transition of TCP states at client and server when some
event triggers. First look at client side states:

- Initially, the client’s TCP is in a CLOSED state when it sends out SYN packet
to the server. This SYN packet is a connection request to the server from
client. Here the client is supposed to be doing active open.

+ After the client has sent out the SYN packet (connection request), its state
changes from CLOSED to SYN_SENT.

« Now the client waits for the server to send ACK for the SYN sent. Once the
client receives ACK for the connection request, its TCP state changes from
SYN_SENT to ESTABLISHED.

Handling error at client end. If the client receives an RST (reset) packet in reply
for the initial SYN sent, its state changes to CLOSED.
Let’s look at the server side TCP state transition:

+ At the server side, we have a listening socket. So, the initial TCP state at the
server side is LISTENING.

- The server receives connection request for the LISTENING socket—that is,
the first SYN packet from the client. The server sends out an SYN/ACK
packet in response to the client’s connection request. The server side TCP
state doesn’t change because the connection request is still pending to be
completed until the server receives the final ACK from the client. This

41

42

1

INTRODUCTION

connection request remains open until the final ACK is received from the
client and is queued in the SYN queue for the listening socket. No new socket
is created at this point in time.

« The final ACK is received from the client. So the three-way handshake is
completed here. A new socket is created for the connection request, which is
in the SYN_RECYV state. Before any event occurs, the socket is further pro-
cessed and its state is changed to ESTABLISHED because both sides have
agreed completely for this connection and negotiation is completed between
client and server.

Once the connection is in an established state, both ends can exchange data
until one of the ends decides to close the connection. Let’s see what happens when
one of the ends does an active close. The client is 192.168.1.4 and the server is
moksha. The client sends 100 bytes of data to the server and then does an active
close to the connection. Figure 1.33 shows the tcpdump output of the life cycle of
the TCP connection.

We have already discussed three-way handshake, so we won’t discuss packets
1, 2, and 3. Packet 4 is 100 bytes of data from a client which is ACKed (acknowl-
edged) by a server in packet 5. Thereafter, the client closes the connection and
hence sends FIN packet (packet 6) with 1 byte of data. The server acknowledges
byte 101 in packet 7 and then sends out an FIN packet with 1 byte (packet 8).
Finally, the client that did the active close gets a final FIN with ACK from the server.
The client sends the final ACK to the server. Now we see how the state of TCP
connection changes with each event during close.

Let’s see how the state transition happens at the two ends of the TCP connec-
tions. We take the same example where the client is writing data to the server; and
after the write of 100 bytes is over, the client closes the connection (Fig. 1.34).
From Fig. 1.35 we can see that once the client does an active close, it sends out a
FIN segment to the other end and its state changes from ESTABLISHED to FIN_
WAITI. So, the FIN_WAIT1 state indicates that FIN still needs to be acknowl-
edged. At the server side, FIN is received so it knows that that the client wants to
close the connection in a normal way. On reception of FIN for the connection,
the state of server side TCP changes from ESTABLISHED to CLOSE_WAIT. In
response to the FIN received, the server can do two things here:

09:46:52.920305 192.168.1.4.33002 > moksha.5000:S 2135112431:2135112431(0) win 49640

<mss 1460,nop,wscale 0,nop,nop,sock OK> (DF)

2

09:46:52.920364 moksha.5000 > 192.168.1.4.33002:S 4191973139:4191973139(0) ack 213511243 2 win 5840

< mss 1460,nop,sock OK,nop,wscale 0> (DF)

3

© 00 N o g

09:46:52.920556 192.168.1.4.33002 > moksha.5000: ack 1 win 49640 (DF)
09:46:52.920774 192.168.1.4.33002 > moksha.5000: P 1:101(100) ack 1 win 49640(DF)
09:46:52.920802 moksha.5000 > 192.168.1.4.33002: ack 101 win 5840(DF)
09:46:52.920840 192.168.1.4.33002 > moksha.5000: F 101:101(0) ack 1 win 49640(DF)
09:46:52.956438 moksha.5000 > 192.168.1.4.33002: ack 102 win 5840(DF)
09:46:52.768805 moksha.5000 > 192.168.1.4.33002: F 1:1(0) ack 102 win 5840(DF)
09:46:52.769001 192.168.1.4.33002 > moksha.5000: ack 2 win 49640(DF)

Figure 1.33. Complete life cycle of TCP connection.

TCP STATE

Client (active close) Server (passive close)

ESTABLISHED
] ESTABLISHED

v , FIN |
FIN WAIT1 09:46:52.920840 | i

! CLOSE_WAIT

5 ACK !

i v

v

e LAST ACK

FIN WAIT2 09:46:52.956438 CIIRCK -

v 09:47:32.768805 !
TIME_WAIT !

: ACK !

: 09:47:32.768805 \ !

i v

v CLOSED

CLOSED

Figure 1.34. Four-way connection closure process.

Client (active close) Server (passive close)

ESTABII_ISHED ESTABLISHED
1

: FIN !
v * i
FIN_WAIT1 v
5 CLOSE_WAIT
; v
! EINIACK LAST_ACK
v
TIME_WAIT

—m e
>
(@]
=

/

CLOSED CLOSED

Figure 1.35. TIME_WAIT2 state is skipped as ACK is piggybacked with FIN segment.

1. It sends out ACK in reply to the FIN received from the client & send out
FIN segment as another packet (Fig. 1.34).

2. It sends out FIN with ACK (Fig. 1.35).

In the former case, the state of the server side TCP doesn’t change after it has sent
out ACK. But the client is actually waiting to receive a FIN segment from the server.

44

INTRODUCTION

The client receives ACK from the server in response to its FIN. This event changes
the client side TCP state from FIN_WAIT1 to FIN_WAIT?2. So, the FIN_WAIT2
state indicates that FIN has been acknowledged but is waiting for the FIN segment
from the peer. In the latter case, the FIN_WAIT?2 state is skipped at the side that
has done an active close. Finally, the server sends out a FIN segment to the client
so that the server side TCP state changes from CLOSE_WAIT to LAST_ACK,
which means that now the server is waiting for the final ACK from the client that
would be acknowledgment for the server side of FIN. On reception of FIN from
the server, the client sends out a final ACK to the server and the server goes to the
TIME_WALIT state. The server receives the final ACK form the client and goes to
the CLOSED state. Now when does the client close the connection that is in the
TIME_WAIT state?

TIME_WAIT. The TCP side that has done an active close goes to the TIME _
WAIT state finally before going to the CLOSED state. It remains in the TIME_
WAIT state for some definite time which we discuss later before it goes to the
CLOSED state. It is primarily because this side of the TCP connection is the last
to send out the ACK segment to the peer. After sending out the final ACK, it has
to wait to make sure that the final ACK is received by the peer. It might happen
that the final ACK is lost and the peer retransmits the FIN once again, thinking
that its FIN is lost because it has not received the final ACK. So, someone has to
be there at the active close end to respond to such retransmissions. If the TIME_
WAIT state does not exist and the active close end does not bother to wait any
longer for the final ACK segment status, it might mess up the closing process
because a response to the retransmitted final FIN from the passive close end will
be an RST segment.

This is one of the reasons that we need to have the TIME_WAIT state for the
TCP that did the active close.

Other reasons are more obvious which might happen rarely but nevertheless
cannot be ignored. Suppose the server does an active close and does not go into the
TIME_WALIT state. In the meantime, the client crashes and reboots. Immediately
after reboot, the client tries to connect to the server using the same port number
that it used for the previous connection. It gets the connection. The two ends start
communicating with each other. The sequence number used by the client in the
current connection overlaps with the previous connection by coincidence. If there
is some TCP segment from the previous connection held with some router and it
reaches the server (delayed segment), that this is surely to cause a mess up with the
data integration. If we wait here in the TIME_WAIT state, the server refuses the
connection request from the client because it finds a TCP connection for the qua-
druplet (local IP, local port, remote IP, and remote port) which is in the TIME_
WAIT state. Make sure that no connection is established with the client using a
port number for which the TCP connection exists in the TIME_WALIT state, thus
avoiding any unforeseen disaster.

Consider another case where a client does an active close and does not go into
the TIME_WAIT state. In this case, it might reuse the same port as used by the
previous connection to connect to the server. This may again cause the same
problem. This problem may be curbed if the client has entered the TIME_WAIT
state. Some of the implementations may allow reuse of the port that is already in
use by a TCP that has entered TIME_WAIT state by deciding on the sequence

TCP STATE

number for the new connection. Here we need to make sure that the new connec-
tion gets the sequence that will never overlap with the sequence number from the
previous connection. So, in case the new sequence number obtained is overlapping
with the previous connection that has gone into the TIME_WAIT state, we add a
number to the current selected sequence number that makes it greater than the
maximum sequence used by the previous connection and reuse the port (RFC 1185).
This makes the connection unique, and delayed segment if any from the previous
connection can be taken care of. Please refer to Section 4.6.7 for implementation
of the logic in Linux.

Now we should be wondering for how long the connection should go into the
TIME_WAIT state? RFC 793 states some of the fixed values for the TIME_WAIT
state duration. Any fixed values for this may cause overestimating or underestimat-
ing the values. For example, if we are in a local subnet and we go into the TIME _
WAIT state for a fixed duration of 1 minute, this causes an unnecessary wait period
because any delayed segment from the last connection will not get held up for so
long. On the other hand, if we keep the TIME_WAIT duration on the lower side
(few seconds), and the destinations are many routers away (say internet), we might
end up waiting for the disaster to happen. So, we need to decide upon TIME_WAIT
duration dynamically for each connection, depending on how many routers a packet
has to pass to reach to the destination. This is decided by the number of hops. So,
msl (maximum segment lifetime) is the correct parameter to decide upon the
TIME_WAIT duration. ms! is the maximum lifetime of the segment in the internet
after which it should be discarded. So, this is updated at equal intervals and aver-
aged out each time because for the same destination, routes may differ at different
times. The msl for the packet is a function of the hops field in the IP header. For
more details refer to Section 2.11.

1.10.1 Partial Close

Until now we have seen the case where data flow is in one direction and the end
that is sending data initiates the close when it has sent all the required data. Now
we will look at the case where the connected TCP ends are sending data whereby
each end can notify its peer that the data transfer is over from their side. This means
that application can do partial close from its end when it thinks that it is done with
sending all the data it had and we will see how the other end is notified in such
case.

We take an example where both client and server are sending data to each
other. The TCP end that is done first with sending all its data will close the write
end of the socket. It means that it won’t send any more data to its peer. At the same
time it can still continue to receive data from its peer until the peer closes its write
side. We take client and server programs that will use shutdown.

A client issues a connect to the server; and after getting connected, it enters a
loop where it issues three writes of 1024 block of data over the TCP connection to
the server and then does a partial close to close its write end. At the same time it
continues to receive data from the server until the server is done. Finally, the client
doesn’t issue any close on the socket. The client does close the write end of its side
by issuing shutdown() with the SHUT_WR option.

The server accepts the connection request from the client by issuing accept()
and gets a new socket for this connection. It then enters a loop for five iterations

45

46

INTRODUCTION

of data transfer. At each iteration it reads data; and if the read returns 0, it knows
that the client will send no more data. So, it doesn’t issue any additional reads. At
the same time it continues to send data in a block of 1024 bytes. After issuing 5
writes of 1024 bytes each, the server issues a close from its side, which is an indica-
tion for the client that the server is done with sending data. After this close, both
ends are done and finally the sockets at both client and sever close the connection
fully.

Let’s study the whole phenomenon of data transfer and TCP signaling with the
help of the tcpdump output when the client and the server are transacting data.
Figure 1.37 is the tcpdump output for the entire transaction until both the ends are
finally closed. The client is 192.168.1.4 and the server is moksha. The first three
packets are nothing but a three-way handshake when the connection is initiated.
Packets 4 and 5 are a first write of 1024 bytes issued by client and acknowledgment
for this write from server. Packets 6 and 7 are a repeat of packets 4 and 5; but this
time, write is issued from the server side, and this write is acknowledged by the
client. This continues to happen from both the ends until the client and server have
issued three writes and received acknowledgment for all the writes (until packet
12). Packet 13 can be seen as a client sending FIN to the server. This means that
after the third write is over, the client has closed its write end by issuing shutdown.
This shutdown generates FIN from the client’s side TCP. Packets 14 and 15, each
consisting of a 1024-byte block, are writes issued by the server. After these two
writes, the server decides to close the connection. So, FIN is combined with the final
TCP data segment; that’s why FIN appears in packet 15. The client acknowledges
the FIN segment, and the connection is closed at both ends.

Let’s map the transaction to the time-line diagram (Fig. 1.36).

Client (active close) Server (passive close)

ESTABLISHED ESTABLISHED

i FIN 3073: !

v 11:00:21.629451 73:3073(0) ack 3073 ;
FIN_WAITL shutdown FIN CLOSE_WAIT

| OTA . |

o Oﬁm ack3 Write 1024 Bytes
o1 34

'
|
|
'
'
|
|
'
'
i
|

v

i

i
FIN_WAIT2

1

i

M 11:00:21.630857
- Write 1024 Bytes,
dose LAST_ACK

v !
TIME_WAIT 11:00:21.630925 !

i 11:00:21.632744 ACK ack 519, |

! v

v CLOSED

CLOSED

Figure 1.36. Time-line diagram for client that issues shutdown on write.

TCP STATE

1.10.2 tcpdump Output for Partial Close

1.11:00:21.622198 192.168.1.434289 > moksha.5000: S 960507178:960507178(0) win 49640<mss1460, nop,
wscale 0, nop, nop, sack OK > (DF)

2.11:00:21.622255 moksha.5000 > 192.168.1.4.34289: S 1884652429:1884652429(0) ack 960507179 win 5840
< mss 1460, nop, nop, sack OK, nop, wscale 0 > (DF)

3.11:00:21.622448 192.168.1.4.34289 > moksha.5000: ack 1 win 49640 (DF)

4.11:00:21.623359 192.168.1.4.34289 > moksha.5000: P 1:1025(1024) ack 1 win 49640 (DF)
5.11:00:21.623414 moksha.5000 > 192.168.1.4.34289: ack 1025 win 8192 (DF)

6. 11:00:21.623443 moksha.5000 > 192.168.1.4.34289: P 1:1025(1024) ack 1025 win 8192 (DF)
7.11:00:21.624478 192.168.1.4.34289 > moksha.5000: ack 1025 win 49640 (DF)
8.11:00:21.625369 192.168.4.34289 > moksha.5000: P 1025:2049(1024) ack 1025 win 49640 (DF)
9. 11:00:21.625390 moksha.5000 > 192.168.1.4.34289: P 1025:2049(1024) ack 2049 win 11264 (DF)
10. 11:00:21.626389 192.168.1.4.34289 > moksha.5000: ack 2049 win 49640 (DF)
11.11:00:21.627284 192.168.1.4.34289 > moksha.5000: P 2049:3073(1024) ack win 49640 (DF)

12. 11:00:21.628420 moksha.5000 > 192.168.1.4.34289: P 2049:3073(1024) ack 3073 win 14336 (DF)

13.11:00:21.629451 192.168.1.4.34289 > moksha.5000: F 3073:3073(0) ack 3073 win 49640 (DF)

14. 11:00:21.630857 moksha.5000 > 192.168.1.4.34289: P 3073:4097(1024) ack 3074 win 14336 (DF)
15. 11:00:21.630925 moksha.5000 > 192.168.1.4.34289:FP 4097:5121(1024) ack 3074 win 14336 (DF)

16. 11:00:21.632744 192.168.1.4.34289 > moksha.5000: ack 5122 win 49640 (DF)

Figure 1.37. tcpdump output to illustrate TCP shutdown process.

48

INTRODUCTION

1.11 SUMMARY

When an application sends out TCP data, the application’s associated kernel thread
may return after transmitting data completely. TCP data may be queued at different
levels such as socket’s send queue, device queue (TOS), and CPU output queue.
This data are transmitted asynchronously by kernel timers or Tx softIRQ.

TCP data are processed in two steps: The packet is queued to CPU’s input
queue and is processed completely later on by Rx softIRQ. SoftIRQ may execute
in interrupt context or may also be executed by a kernel thread.

A network-specific kernel code can be found under net directory of the kernel
source tree. An IPv4-specific code can be found under ipv4 subdirectory of net. A
packet-scheduling-specific code can be found under sched subdirectory of net
directory.

Linux kernel 2.4 and below are non-preemptive kernels; as a result, they are
not suitable for real-time applications that require low latencies and timeliness for
execution.

A system call is implemented by raising soft interrupt int 0x80. This interrupt
switches from user to kernel mode and switches processor privilege to super-user
mode where kernel code and data structure can be accessed on behalf of applica-
tion. A kernel searches sys_call_table to execute systemcall. sys_call_table maps a
system call number to systemcall callback routines.

Each Linux process has a kernel thread and kernel mode stack. A processor
switches to kernel mode stack when the process enters a kernel via systemcall. The
kernel thread is a scheduling entity for the kernel. The pthread library on Linux
creates an LWP for the process. These LWPs share resources with the parent
process including process address space. All the lightweight processes (LWP) as
scheduling entities inside the kernel.

Threads created in the kernel cannot be preempted unless they yield on their
own. Kernel threads can be seen with ps command and usually start with the letter
k, like kflushd.

Linux implements atomic operations, ssmaphores, and spin locks as a synchro-
nization mechanism. Spin locks are the most extensively used synchronization
mechanism to synchronize data access between two CPUs, kernel control path and
softIRQs, kernels, and interrupts and have a performance edge over semaphores.

Applications communicate over the TCP/IP protocol by way of client-server
technique. These programs use a socket interface to open connection and commu-
nicate over the socket using different I/O interfaces provided to the application
programs.

TCP is a connection-oriented protocol that maintains state. To start a connec-
tion, TCP completes a three-way handshake and attains an established state. TCP
closes connection cleanly by way of a four-way handshake. It maintains state at each
step of connection initiation and connection closure stages and defines action for
each state.

PROTOCOL FUNDAMENTALS

The TCP/IP protocol suite works on an OSI networking model. Each layer has its
own functionality defined very clearly. TCP is a transport layer protocol, and IP is
a network layer. TCP manages connection and data integrity, whereas IP is respon-
sible for delivery of data to the correct destination. The link layer manages the
transmission and reception of frames by converting digital data into signals and
converting signals into digital data. The physical medium actually carries all the data
and control signals in the form of voltage or waves.

Irrespective of physical medium or the link layer, TCP and IP core functionality
remain unchanged even though TCP may tweak around with congestion algorithms
for wireless mediums. TCP functionality can be divided into two parts: connection
management and reliable data transfer. TCP connection management is discussed
in detail in Section 4.4. TCP is a heavyweight protocol that requires acknowledg-
ment of each byte it has transmitted for reliability. This may overload the network
in case a huge number of small packets are generated. Then there are situations
where loads of data need to be transmitted with maximum throughput utilizing
maximum network bandwidth. There may be situations where packets get lost
because of network congestion. In all these different situations, TCP is adaptive
and alert and takes corrective action to minimize losses and maximize throughput.
TCP also uses extensions to normal protocol for enhanced performance and
reliability.

IP, on the other hand, carries TCP data over the internet. IP has many function-
alities such as routing, sending back error message to the originator, packet encryp-
tion decreption, NAT, masquerading, and so on. Routing is the most basic

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

49

50

PROTOCOL FUNDAMENTALS

functionality that IP offers. There are thousands of routers that make up the inter-
net. Routing information is maintained by each router and is updated regularly
with the help of routing daemons implementing routing protocols. IP also needs to
take care of the erroneous situations such as packets never reaching the destination
and living in the internet forever. The frame size that can be transmitted over a link
is limited by the physical capability of the medium and is called MTU. This limit
may vary over the internet. Packets bigger than the MTU for the link are frag-
mented by IP which are reassembled at the final destination. Errors are inevitable
is such a vast internet, and ICMP is widely used in the internet to report common
errors.
In this chapter we learn all about TCP/IP protocols in much detail.

2.1 TCP

TCP is a connection-oriented communication protocol. It maintains the state of the
connection at any given point of time. The behavior of TCP protocol changes with
change in the state. There is a well-defined set of actions for each TCP state which
is followed to maintain the integrity of the connection between the two ends. The
connection is initiated by exchanging a set of messages between the two ends, and
the same way connection is closed. We learn more about it in the later chapters.
TCP is considered as a reliable protocol because it keeps account of each byte of
sent data received by the other end. Any loss of data is detected and is dealt with
care by TCP. Since TCP is a connection-oriented protocol, each end needs to take
care of the other end to better understand each other’s problem. Any shortage of
resources in terms of memory/CPU at one end is communicated to the other end
so that the other end takes corrective action to slowdown the rate of data transac-
tion. This avoids the duplication of efforts and unnecessary network traffic. For
doing this, TCP implements the sliding-window algorithm, which we will study in
this chapter. TCP not only sends/receives data reliably but also works out the best
way to avoid any duplication of efforts because of loss of data. So, it works in con-
junction with the network layer to find out the network traffic situation. Depending
on the traffic conditions, TCP makes a decision on whether to send data in smaller
or bigger chunks. This is known as the congestion control mechanism. Without this
provision, TCP would end up increasing network congestion in the case of heavy
network traffic and at the same time reduce the throughput when network has high
bandwidth to accommodate high data transfer rate. There are many algorithms
designed for congestion control which we discover in this chapter. All this makes
TCP a more reliable, more stable, and more controlled protocol to be used most
extensively in the internet technology.

2.1.1 TCP Header

The TCP segment contains a TCP header and the TCP data (payload). The header
contains protocol control information, connection-specific information and field to
validate integrity of the TCP header. Normally, the TCP header is 20 bytes long (Fig.
2.1), but there are TCP options in the header which makes TCP header length vari-
able. We will discuss fields of the TCP header in the first 20 bytes, and then we will
discuss TCP options.

TCP

16

32

64

96
100

106

112

128

144

4} 16-bit(0-15) source port number

15

4} 16-bit(16-31) destination port number

31

4’ 32-bit(32-63) TCP sequence number

63

4} 32-bit(64-95) TCP acknowledgment number

95
TP 4-bit(96-99) TCP header length
— P 6.bit(100-105) unused

105

T> 6-bit(106-111) TCP flags URGIACKIPSHIRSTISYNIFIN

— 16-bit(112-127) TCP window size

127

—> 16-bit(128-143) TCP checksum

143

Start bit of the header field

4} 16-bit(144-159) urgent pointer
() urgentp End bit of the header field

159
Figure 2.1. TCP header.

52

PROTOCOL FUNDAMENTALS

Port Numbers. TCP connection is identified by a quadruplet—that is, destina-
tion IP, destination port, source port, and source port. The first two fields of the TCP
header contain source port (0-15 bits) and destination port (16-31 bits) numbers,
each of 16 bits. These port numbers uniquely identify sockets at each TCP-connected
end.

Sequence Number. This is a 32-bit (32-63) field in the TCP header. Sequence
number indicates the offset of the first byte in the byte stream that the sending TCP
intends to send in the current TCP segment to the receiving TCP. This doesn’t reflect
the number of bytes transmitted by the sending TCP. The sequence number in the
header field is an offset from the initial sequence number selected for a given con-
nection. So, offset is the actual indication of the number of bytes already transmitted
by the sending TCP +1. The initial sequence number, ISN, is generated at each end
of the connecting TCP ends. The ISN is unique for a given connection. The primary
reason to keep it unique for a given connection is to avoid any misunderstanding
any delayed TCP segment from the previous connection as part of the new connec-
tion that is reincarnated of the previous connection. Please refer to Section 2.8.4
(TCP close) for more details. SYN and FIN segments are considered to carry one
byte. This field gets rolled over after reaching 2** — 1. Sequence number helps in
maintaining TCP data integrity and identifying the retransmissions that will be dis-
cussed later in this chapter.

Acknowledgment Number. This is a 32-bit (64-95) field in the TCP header.
TCP is a reliable protocol, so it needs to keep track of each byte transmitted/
received. Acknowledgment number helps TCP doing this. The receiving TCP
acknowledges the last byte in the stream of bytes received from the sender. Suppose
the sender sends n bytes of data with the sequence number s. On reception of this
TCP segment, TCP acknowledges with acknowledgment number 7 + s + 1, which
means that it has received n bytes of data and now it is waiting for the n + 1 byte.
Out-of-sequence TCP segments are not acknowledged until the gap is filled. For
example, if the sending TCP sends out three TCP segments of 10, 20, and 30 bytes
of data in the same sequence and all the segments reach the destination except for
a segment with 20 bytes of data which is lost, the receiver TCP acknowledges only
10 bytes of data. Because of this, the sending TCP will eventually come to know that
one of the segments is lost and thus it will retransmit those segments. At the same
time, duplicate TCP segments are also not acknowledged. We will take the same
example to explain the phenomenon. If, because of some reason, the segment with
20 bytes is not lost but is stuck at some router on its way to the destination and is
released after the sender has already retransmitted this segment and receiver has
acknowledged all the three segments, the segment is either discarded or is replied
back with latest acknowledgment number.

Header Length. This is 4-bit field in the TCP header. TCP header is normally
20 bytes without any TCP options. With the TCP options in place we never know
the exact length of the TCP header. For the same reason we have the field. The field
indicates the number of words that comprise of TCP header. So, the maximum TCP
header length that we can have is restricted to 60 bytes.

TCP

Unused Field. A 6-bit field (100-105) is still unused and is saved for future
use.

TCP Flags. This is a 6-bit field in the TCP header. Each bit in this field repre-
sents a TCP flag. These flags are in the order URGIACKIPSHIRSTISYNIFIN.

URG: This indicates that there is an urgent pointer set and we need to check
urgent pointer field to find the address of the urgent pointer.

ACK: This indicates that this TCP segment is acknowledgment by the sender.
If this field is set, we check the acknowledgment number field of the TCP
header. Except for the first SYN segment, all the TCP segments have this
field set because we are losing nothing by doing this.

PSH: This indicates that the sender wants these data to be consumed on priority
basis.

RST: This indicates that the sender wants to close the connection without any
formal handshake. This bit is set by the TCP when it wants to inform the
other end that the TCP segment is no more valid. For example, if the host
receives a connection request for which it doesn’t have any listening socket,
it generates an RST TCP segment in response.

SYN: This indicates that the TCP segment is being exchanged between the two
ends trying to synchronize at the time of connection initiation.

FIN: This indicates that one of the TCP wants to close the connection.

Window Size. This is a 16-bit field in the TCP header. TCP detects resource
crunch of its peer with the help of this field and acts accordingly. The field indicates
the receive buffer size available at any point of time. The receive buffer is consumed
when data are received and is vacated as these data are processed and are consumed
by the application. If the application is not able to consume the data from the receive
buffer as fast as it is received, the receive buffer gets full and eventually the window
size also reduces to 0. When the sender gets this information, it stops sending any
more data until further notice of window size is advertised by the receiving end.
Each TCP peer declares its window size at the time of synchronisation (connection
initiation). We take this up in Section 2.6 (sliding window).

Checksum. This is a 16-bit (128-143) field in the TCP header. This is the field
used by the receiver to verify that the TCP segment it has received is exactly the
one sent by the valid sender. This covers the TCP header and the payload. This way
we make sure that the correct TCP segment is being received. This is calculated with
the following algorithm: Take TCP header + payload as a stream of a 16-bit word.
Sum up all 16-bit words and take 1’s complement of this number. This is the final
TCP checksum. At the receiving end, the same thing is repeated. The final value
obtained at the receiving end should be all 1’s in 16-bit number 2'¢ - 1.

Urgent Pointer. This is a 16-bit (144-159) field in the TCP header. This is the
offset from the sequence number in the current TCP segment where the urgent data
reside and need to be processed at the earliest. This field is set only if the URG flag
is set in the TCP header. This is discussed in Section 11.7.

53

54

PROTOCOL FUNDAMENTALS

2.2 TCP OPTIONS (RFC 1323)

At the time when TCP was first designed, future requirements were not very well
defined. So, TCP was designed in a very flexible way by introducing options in addi-
tion to the basic functionality in order to keep the basic functionality untouched
when additions are made to it. Basic TCP works fine with first 20 bytes of informa-
tion provided in the TCP header. There are continuous efforts to enhance the per-
formance and reliability of TCP with time. RFC 1323 and 793 provide specifications
and need for the TCP options in detail. In this section we will cover only the descrip-
tion of the TCP options, and details will be covered in the later sections. Extended
TCP header with options would be more than 20 bytes and less than 60 bytes as
shown in Fig. 2.2. Four-bit length field in the TCP header indicates the total length
of the TCP header. So, if the value of the field is greater than 20, it means we need
to check for additional TCP options.

There is a standard format for TCP optional header to properly identify the
options. The basic format of the TCP options header contains three fields (Fig.
2.3):

- Kind
« Length
» Value

Kind: This field identifies the TCP option. Each option is assigned a specific
number.

Length: This indicates the length of the TCP optional header.
Value: This contains the actual TCP option value.

There are two special formats for TCP options:

« End of Option List. This is a 1-byte field with value 0. It indicates that there
are no more options.

kind=0

20 Bytes <=40 Bytes

Figure 2.2. TCP header with options.

kind = |length=

Value =Variable length
I Byte | 1 Byte alue =Variable leng

Figure 2.3. TCP option format.

TCP OPTIONS (RFC 1323)

« No Operation. This is a 1-byte field with value 1. It indicates that there is no
option here. It is used to pad the fields for memory alignment purposes.

Maximum segment size (mss) is a mere reflection of maximum size of the TCP
payload that can be accepted by the remote host. mss is a function of the maximum
transmission unit (MTU), which is a property of the link layer. So, TCP has to work
in coordination with the IP layer to arrive at this value. It is the IP layer which finds
out the lowest MTU for the internet path (MTU discovery, RFC 1191). RFC 793
specifies that standards to arrive at the send and receive mss for TCP. The mss option
is always exchanged with the TCP SYN segment at the time of connection initializa-
tion. The idea of exchanging mss information is to improve the performance of TCP.
In the case where sending TCP can send more than the receiving end can accept,
the IP datagram will be fragmented at the IP layer. Each fragment is now transmit-
ted with the header overhead consuming the bandwidth. If any of the fragment is
not received or lost, the entire TCP segment needs to be retransmitted hitting the
throughput. On the other hand, if the sender TCP is generating smaller TCP seg-
ments with default mss (536 bytes) where it is capable of sending bigger segments
and the other end is also capable of receiving bigger TCP segments, TCP will be
operating at lower throughput and hence low performance. Format for the mss
option is shown in Fig. 2.4.

2.2.1 mss Option

2.2.2 Window-Scaling Option

RFC 1323 provides specification for the Window scaling option. Window size is
exchanged between connected TCP peers at the time of synchronization. It indicates
the receive buffer size of the receiving TCP end. The window size in the TCP header
is a 16-bit field. Any TCP can advertise a maximum of 2'® bytes (i.e., 65,536), even
though it has more resources. In Section 2.7 we will study how window size plays
role in deciding throughput of the TCP. In short, lower window sizes will restrict
TCP throughput to lower value with high rtt and high bandwidth networks. With
the window-scaling option, TCP can advertise window sizes as high as 30 bits in size.
The format for the option is shown in Fig. 2.5. It is a 3-byte header identified by
kind with value 3. The value in the window-scaling header is a shift count by which
the actual window size in the TCP header should be left shifted to get the final
window size. For example, if the shift count is 2 and the actual window size from
the TCP header is 2'°, the final window size will be calculated as

kind = |length=

) 4 mss =2 Bytes

Figure 2.4. mss option format.

55

56

PROTOCOL FUNDAMENTALS

kind = |length=

3 3 Shift count = 1 Bytes

Figure 2.5. Window scaling option format.

Kind = [Length=

g 10 TS value = 4 Bytes TS echo reply = 4 Bytes

Figure 2.6. Timestamp option format.

Final window size = (2'° << 2)|((2"°) >> (16 -2))

which makes the new window size as 2'®. Now that the window size cannot exceed
2%, the value of the shift count in the window-scaling option should not exceed
14.

2.2.3 Timestamp Option

TCP needs to accommodate more changes with fast changing network speeds to
maintain high performance and reliability as well. Timestamp option is used for both
improving the reliability and performance. RFC 1323 provides specification for the
timestamp TCP options. TCP uses this option to average out rtt for the entire life
cycle of the TCP connection. At the same time, this option is used to implement the
PAWS algorithm for reliability. PAWS stands for protection against wrapped sequence
numbers. TCP data corruption may occur if the delayed TCP segment is confused
with the in-sequence segment when the sequence number has wrapped in the case
of high speed of networks. The timestamp option is helpful in detecting such delayed
TCP segments. Figure 2.6 shows the format of the timestamp optional header.

The timestamp option is identified by kind as 8, and the total length of the
timestamp option is 10. There are two timestamp fields, each of size 4 bytes. The TS
value contains the sender TCP’s timestamp, and the TS echo reply contains the value
of the sender’s timestamp (TS value field) copied by the receiver in the ACK
segment.

The timestamp option is agreed upon at the time of connection initialization.
The first SYN packet must contain this option, if the connection initiator wants
timestamp option. SYN/ACK should contain this option if:

1. It has received the timestamp option in the SYN segment and it supports the
timestamp option.

2. It has not received any timestamp option from the connection initiator but
it wants the timestamp option to be active for the connection.

The calculation is simple: The sender sends out its timestamp in the TS value field,
and the receiver copies this value in the TS echo reply field while ACKing this
segment. The original sender calculates tss by taking the difference of the current
timestamp and the timestamp in the TS echo reply field of the ACK segment.

TCP OPTIONS (RFC 1323)

2.2.4 Selective Acknowledgment Option

Receiver TCP acknowledges every in-sequence data segment in a normal way as
explained in Section 2.3.1. There is a provision in the TCP to identify any out-of-
sequence data segment (RFC 793). On reception of any out-of-sequence data, the
receiving TCP gets an indication of a lost segment probably due to the network
congestion. In that case, it acknowledges the last in-sequence segment arrived. On
reception of such a sender, the TCP gets an indication of data loss and it knows that
data segments beyond acknowledged sequence number are lost; then it retransmits
the entire data from the sequence number identifier in the acknowledgment field
of the receiver, even though unacknowledged data segments are queued up at the
receivers end. This causes a drop in the TCP’s performance because it has to retrans-
mit entire data beyond the last acknowledged sequence number. RFC 1072 specifies
standards to selectively acknowledge the lost data with selective acknowledgment
TCP option. The option supplements the existing acknowledgment field in the TCP
header. If the receiver finds a hole in the received TCP segments, it sends the last
in-sequence TCP segment received in the acknowledgment field in the TCP header
and then sends the first offset of the first byte received as out-of-sequence TCP data
segment with length of the data segment received as TCP-selective acknowledgment
option. So, sender TCP knows which data segment is lost and it retransmits only
those segments. For example, receiver TCP received in-sequence data segments until
sequence number X and then received the next data segment starting at sequence
number X + n of length m bytes. So, there is a hole of n bytes in the stream of data
received starting from sequence number X. This is reported to the sender by the
way of selective acknowledgment option. The receiver sends ACK for last in-
sequence data X + 1, and in the selective acknowledgment header it sends X + n
with block length of m. So, the sender knows that it has to retransmit the blocks of
data of length m bytes that start from sequence number X + n.The selective acknowl-
edgment TCP option should be exchanged at the time of connection synchroniza-
tion (in SYN packets). If either of the peers doesn’t support this option, the
SACK-permit option is discarded for the connection. The SACK-permit option has
a format shown in Fig. 2.7.

Once both the sides agree for the selective acknowledgment option, the receiv-
ing TCP can send SACK whenever it receives out-of-sequence data in the format
shown in Fig. 2.8. The kind for the SACK option is 5 and its length is variable, which
means it can hold information about more than one hole in the stream of bytes
received. There are two fields for each SACK block that will have information about
one out-of-sequence segment.

kind = |length=

Figure 2.7. SACK option type 8 length.

kind = | length=| Start sequence=| End sequence=
5 variable 32-bits 32-bits

Figure 2.8. SACK option format.

57

58

PROTOCOL FUNDAMENTALS

S1 S2 S3 5S4

5}
N
e}
Co
o5}
~
[\S}

Figure 2.9. Segments received out-of-order.

kind = | length=
5 variable

L=l R=r L=l R =r

11 1 4 2 7 2 8

Figure 2.10. SACK block generated for out-of-order segments in the example.

Start Sequence: This is the start sequence number of the contiguous blocks of
data segment received (SACK block).

End Sequence: This is the end sequence of the contiguous block of data segment
received (SACK block).

There may be many such TCP SACK blocks selectively acknowledging noncontigu-
ous data blocks, with each block having in-sequence data. For a better understand-
ing of the SACK option, lets take small example where sender TCP has sent 12 data
segments each of length 1k. Figure 2.9 shows the queuing of the segments at the
receiving end with some of the intermittent segments missing.

sl, s2, s3, and s4 are the only segments that have arrived in sequence. After
segments s5 and s6 are missing, then we have segments s7 and s8 contiguous seg-
ments; later on, we have s9, s10, and s11 segments missing so that we have segment
12. With this scenario we have SACK enabled, and the receiver will send the TCP
segment with the SACK header option as shown in Fig. 2.10. L and R are the left
and right end of the SACK blocks. / and r are the left and right edge of each
segment.

This way the sender will come to know about the missing TCP segments and
will retransmit blocks s5, s6, 59, s10, and s11. If the SACK option was not there, the
sender would probably retransmit all the TCP segments starting from s5 through
s12.

2.3 TCP DATA FLOW

TCP is a reliable transport protocol whose main functionality is to make sure that
the data integrity is maintained and also that it is sending data to the correct recipi-
ent. There are different algorithms that TCP uses in different situations to ensure
high throughput, but data integrity is maintained by one basic algorithm. A very
basic algorithm used by TCP to ensure data integrity is acknowledgment for every
Byte of data. In this section we will discuss (a) the acknowledgment scheme used
by the TCP and (b) other algorithms used for improved efficiency. Discussion is
based on the assumption that there is no data loss and network congestion.

2.3.1 ACKing of Data Segments

The sender TCP expects acknowledgment for each byte of data it has sent to the
receiving TCP. Even the SYN/FIN TCP segments carry one byte of data. The TCP

TCP DATA FLOW

1% write
wlb4 [wib3 | wib2 | wlbl
2" write
w2b2 | w2bl
31 write
w3b4 | w3b3 | w3b2 | w3bl Figure 2.11. Representation of data in
host-byte order.

wlb4 | wib3 | wilb2 | wibl | w2b2 | w2bl | w4b4 [w3b3 | w3b2 | w3bl

Figure 2.12. Data organized in TCP stream of bytes.

header has two fields—sequence number and acknowledgment number—which are
used by the acknowledgment scheme to maintain data integrity. The TCP treats user
data as a stream of bytes and associates a number with each data byte, known as
sequence number. By stream of Bytes, we mean that no matter how and in what
format user application writes data over the TCP socket, the TCP arranges them in
the stream of bytes in the same sequence as they were written by the user applica-
tion. For example, an application sends 10 bytes of data in three consecutive writes
of 4 bytes, 2 bytes, and 4 bytes, respectively, as shown in Fig. 2.11. Each byte is rep-
resented as wxby where x represents write number and y represents the order
number of each byte in which they are written by the application on each write.
After three writes by the application, the TCP write buffer will have all these data
as a stream of 10 bytes as shown in Fig. 2.12. These bytes may be transmitted by the
TCP as blocks of contiguous bytes, which means that this stream of bytes can be
transmitted as blocks of 2 bytes, 3 bytes, 2 bytes, and 3 bytes, respectively, as shown
in Fig. 2.13.

Thus, the application may have written a 4-byte integer or a 2-byte short or a
character, but it makes no difference for the TCP. Ultimately, all the user data are
arranged as a stream of bytes and are transmitted by the TCP in the same order in
which they are arranged in the stream of bytes but in different chunks. The TCP
makes sure that each and every byte of data in the stream of bytes reaches the peer
in the same sequence as they are arranged at its end. If an application is writing an
integer or a short, it should not forget to convert them into network byte order
because byte ordering matters here. So also the other side of the TCP socket must
read those integers after converting them into the host byte order. Essentially, the
TCP has two buffers: send buffer and receive buffer. Data written by an application
is first copied to the TCP send buffer, and then the TCP makes a decision on how
to transmit that data. Similarly, data received by the TCP are copied to the receive

59

60

PROTOCOL FUNDAMENTALS

1% transmit

wib2 | wlbl

2" transmit

w2bl | wlb4 | wib3

31 transmit

w3bl | w2b2
4% transmit
w3b4 | w3b3 | w3b2 Figure 2.13. Transmission of data from TCP
stream of bytes.
application
User space write

Kernel space ;=TT T T T oo o T oT oo mmoofmomm s s s s s s !

TCP | TCP send buffer |

v

1
1
1
1
1
1
1
:
| TCP segmentation unit | |
1
1
1
1
1
1
1
1
1
1

TCP segments Hl sl | | s2 || s3 || s4 |

Figure 2.14a. TCP segmentation UNIT.

buffer, and the application reads data in whatever chunks of bytes from TCP’s
receive buffer. Figure 2.14a shows how data written by user application are buffered
into TCP send buffer before transmitting it. The segmentation unit then takes some
bytes from the send buffer, and then it generates TCP segments and sends them to
the next layer for processing. The length of each segment depends on different
parameters which we discuss later. The TCP data are received in a similar way. TCP
segments are received by the lower layers and then sent to the TCP segmentation
unit, which will extract payload from the segments and place it in the TCP’s receive
buffer. Now it is up to the application to read the data from TCP’s receive buffer
as a different block of data (see Fig. 2.14b). So, essentially there is TCP send and
receive buffer per connection.

Thus, we have learned how a TCP treats user data as a stream of bytes. Now
we will see how a TCP sequence number is associated with each byte in the stream
of bytes to be transmitted. At the time of connection initialization, each TCP end

TCP DATA FLOW

application

User space read

TCP | TCP receive buffer

?

TCP segmentation unit
(extract TCP payload)

TCP segments 4” sl | | s2 || s3 || s4 |

SYN = " Byte| SYN =
'n' Bytes of user data = stream of 'n' Bytes byt
1 Byte 1 Byte
S number = S number =
Sequence number =
ISN+1 ISN+1+n ISN+2+n

Initial Sequence
number(ISN)

Figure 2.15. TCP sequence number association with stream of bytes.

gets the sequence number called the initial sequence number. The very first byte
(sent as a SYN TCP segment) is associated with the Initial sequence number. In
Fig. 2.15, we can see an association between the sequence number and the stream
of user data bytes. Since the SYN segment is always considered to carry one byte
of data (different from user data), the first byte of the user data is associated with
the sequence number ISN (initial sequence number) + 1. According to this associa-
tion, the nth byte of the user data is associated with the sequence number ISN + n + 1
as shown in Fig. 2.15. We will see this phenomenon with the help of client-server
program. The client parikrama sends a connection request to the server moksha
and waits to read data from the server. The server sends 8 bytes of data in one
chunk and then closes the connection. tcpdump output is captured to study the
sequence number associated with the user data and acknowledgments. Figure 2.16
shows fcpdump output of data transaction. tcpdump uses the S option to print abso-
lute sequence numbers rather than relative sequence numbers. So, the sequence
number output format will be first_byte:last_byte(number_of bytes), where first_byte
is the sequence number associated with the byte in the stream of bytes which the
sender intends to send, last_byte is the sequence number associated with the last
byte in the sequence of bytes that sender intends to send (excluding last_byte), and

61

62

PROTOCOL FUNDAMENTALS

1. 09:45:57.483412 parikrama.33015 > moksha.5000: S 2020749023:2020749023(0)
win 49640 <mss 1460,nop,wscale 0,nop,nop,sackOK> (DF)

2. 09:45:57.483485 moksha.5000 > parikrama.33015: S 738652172:738652172(0)
ack 2020749024 win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)

3. 09:45:57.483675 parikrama.33015 > moksha.5000: . ack 738652173 win 49640 (DF)

4. 09:45:57.518037 moksha.5000 > parikrama.33015: P 738652173:738652181(8)
ack 2020749024 win 5840 (DF)

5. 09:45:57.518250 parikrama.33015 > moksha.5000: . ack 738652181 win 49640 (DF)

6. 09:45:57.518314 moksha.5000 > parikrama.33015: F 738652181:738652181(0)
ack 2020749024 win 5840 (DF)

7. 09:45:57.518483 parikrama.33015 > moksha.5000: . ack 738652182 win 49640 (DF)

8. 09:45:57.518549 parikrama.33015 > moksha.5000: F 2020749024:2020749024(0)
ack 738652182 win 49640 (DF)

9. 09:45:57.518570 moksha.5000 > parikrama.33015: . ack 2020749025 win 5840 (DF)

Figure 2.16. Sequence of packets exchanged when TCP sends 8 bytes of data over the
connection.

number_of _bytes is the number of bytes of user data that the sender intends to send
in the current TCP segment. The first three packets are three-way handshake
synchronization packets exchanged between client and server at the time of con-
nection initialization. In the first packet, the client sends a SYN segment with ISN
as 2020749023 and 0 bytes of user data, as is obvious from the format 2020749023:2
020749023(0). In the second packet, the server responds with an acknowledgment
to the client’s SYN segment with its ISN as 738652172 (0 bytes user data) and its
acknowledgment number as 2020749024 (ACK 2020749024). Even though the client
sent 0 bytes of user data, the server responds with acknowledgment of clients
ISN + 1. Acknowledgment number, as explained earlier, is the next byte in the
stream of bytes that receiver is expecting, which means that the SYN segment is
supposed to carry one byte of data and is well agreed upon between the two con-
nected TCP ends. Similarly, the third packet from the client acknowledges the
server’s SYN segment with acknowledgment number 738652173.

In the fourth packet, we can see that the server sends out the first eight bytes
of user data where the first byte is associated with sequence number 738652173 and
not 738652172 (ISN for the server). So the client acknowledges 8 bytes of user data
in the fifth packet with acknowledgment number 738652181, which means that the

TCP DATA FLOW

client is expecting the 9th byte associated with sequence number 738652181. The
sixth packet is a FIN segment from the server because it has no more data to send
to the client. Once again we can see that sequence number is 1+ sequence number
associated with the last byte of the user data (738652180) with 0 bytes of user data.
738652181 is the acknowledgment number from the client in packet 5, which the
server sends in the FIN segment, which means that the client is expecting a byte
associated with sequence number 738652180. If the server doesn’t send a FIN
segment with sequence number 738652180, the client would consider this as a bogus
packet and reject it because it is expecting a byte with sequence number 738652181.
So, now it is self-explanatory why the FIN segment is considered to carry one byte
of data. The acknowledgment number is the same as it was in the last segment from
the server because the client has not sent any data. The seventh packet from the
client is an acknowledgment for the FIN segment from the server with acknowledg-
ment number as 738652182, which means that the client is expecting the next byte
with sequence number 738652181 from the server. The eighth packet is the FIN
segment from the client to the server when it closes the connection from its side.
We can see that the client’s sequence number is 2020749024, which is ISN + 1; this
is acknowledgment from the server to the client so far and 0 bytes of user data
(2020749024:2020749024(0)). At the same time, it acknowledges the byte associated
with sequence number 738652182 because the server has not sent any data after the
FIN segment. The final and ninth packet is an acknowledgment for the FIN segment
from the client to the server with acknowledgment 2020749025. This means that the
server has received the byte associated with sequence number 2020749024 and is
expecting the next byte associated with sequence number 2020749025, indicating
that the FIN segment from the client to the server is considered to contain one byte
of data.

From the above discussion, we have seen how the sequence number is associ-
ated with the user data (stream of bytes for TCP) with the relationship between the
TCP sequence numbers and the acknowledgment numbers. We have also learned
that there is an acknowledgment for each byte of data sent to maintain data integrity
at each TCP connected ends. We will view the acknowledgment scheme from a
different angle to have better insight into it. We will see how TCP data are buffered
at the receiving and the sending TCP ends with the help of the same example and
how sequence number and acknowledgment numbers are advanced when data are
sent or received (see Figs. 2.17a-171).

1. Client has sent the SYN segment to the server:

client
SOEREEEEER
I Bytel . Sendbuffer . :
Seq No=ISN =

Figure 2.17a. SYN sent by client.

63

64 PROTOCOL FUNDAMENTALS

2. Server ACKs client’s SYN with the SYN segment:

server

SYN
Il Byte

Seq No=ISN =
738652172

Acknowledgment No =
2020749024 Figure 2.17b. SYN ACK’ed by server.

3. Client acknowledges server’s SYN segment:

client

Seq No=ISN =
2020749023

Acknowledgment No =
738652173 Figure 2.17¢. SYN ACK'ed by client.

4. Server sends 8 bytes of user data:

server

P YN
Il Byte

Seq No =
738652180

Acknowledgment No =
2020749024

Figure 2.17d. 8-bytes transmitted by server.

TCP DATA FLOW 65

5. Client acknowledges 8 bytes of data from the server:
client

SYN
Il Byte

A

Seq No=ISN =
2020749023

YN
L Byte

T

Acknowledgment No. = Figure 2.17e. 8-bytes ACK'ed
738652181 by the client.

6. Server sends the FIN segment because it is over with sending data and is
closing its end:

server

;;Nte I B =e Send buffer |

Seq No =
738652181

Acknowledgment No = Figure 2.17f. FIN sent by
2020749024 the server.

7. Client ACK’s the FIN segment from the server and one additional byte
associated with the FIN segment:

client

SYN
I Byte

Seq No=ISN =

2020749023

oy 1 Receivebuffer i
A
Acknowledgment No. = Figure 2.17g. FIN

738652182 ACK’ed by the client.

66

PROTOCOL FUNDAMENTALS

8. Client sends the FIN segment when it closes its end:

client
SYNJFINd™ "~~~ """ oottt
Byl Byee| Saudbatioe E
Seq No=ISN =
2020749024
YN FIN= T o
e O I I I Receivebuffer |

Acknowledgment No. =
738652182

Figure 2.17h. Client send’s FIN.

9. Server acknowledges the FIN segment from the client:
server

YN FIN=I T Tt
RS Y O I Send bufer |

Seq No =
738652181

SYN=[FIN= ; i
| Byte Receive buffer i

Acknowledgment No =
2020749025

Figure 2.17i. Server ACK's final FIN.

We have seen the sequence number—-ACKnowledgment scheme used by the
TCP to ensure data integrity. In short, every byte is associated with a sequence
number. Even SYN/FIN segments are supposed to carry one byte of data that is
not mixed up with the user data. Every segment sent needs acknowledgment from
the receiver, with an acknowledgment number indicating the sequence number
associated with the byte in the stream-of-bytes which the receiver wants to receive
next. This model ensures complete data integrity between the sender and the
receiver TCP ends. The TCP sends the next block of data (data segment) only when
it receives ACK for the last data segment. Each segment contains an ACK field set
other than the first SYN segment because it has nothing to ACK.

DELAYED ACKNOWLEDGMENT

This was the very basic TCP functionality. Until now, we have considered only
one end sending data to the receiver. We will see in the next section how TCP can
enhance its performance when both ends are sending data.

2.4 DELAYED ACKNOWLEDGMENT

Until now, we have seen a very basic ACKing scheme that TCP implements to
maintain data integrity. Now let’s look at the case where we need to maintain data
integrity along with the improved efficiency. Here we will consider data flow in both
the directions. The best example would be an interactive TCP session where each
byte of data typed needs to be echoed like telnet, rlogin, and so on. If we use the
same ACKing scheme as discussed for such interactive sessions, let’s see what
happens.

Figure 2.18 shows the condition where character ‘e’ is typed at the command
line telnet client. The TCP segment is generated to transmit character ‘e’ to the
server. Segment 2 is acknowledgment from server for reception of character ‘e’.
Segment 3 carries character ‘e’, which is an echo of the last byte sent by the client.
Segment 4 is an acknowledgment for segment 3. So, we see that there is an acknowl-
edgment for every data segment that TCP receives. With this kind of acknowledg-
ment scheme, we know that we are ensuring data integrity but at the same time we
also know that for each byte of data typed in at the client, we are generating four
segments. Each segment carries at least 50 bytes of header (20 bytes TCP, 20 bytes
IP, 10 bytes MAC). So, there is overhead of network traffic and resource utilization
associated with each segment at each TCP end. If we can reduce the number of
segments generated for each byte typed in by the telnet client, we can make the
TCP work more efficiently. The TCP makes this possible by introducing the delayed
acknowledgment scheme. With this scheme, the TCP waits for some time to acknowl-
edge the received data segment so that it can send some data along with the
acknowledgment if any data are available by that time. Let’s look at the same
example when delayed acknowledgment is implemented by TCP. The TCP registers
a delayed acknowledgment timer with the system after it receives any data segment
from the other end. By registering timer, I mean to say that every OS implements
timer interrupts that are generated after every fixed time interval (mainly imple-
mented for time-slicing the runable processes). There is a list of tasks that need to

Telnet client server

1 PSHByte o
CK for BY® ©
4 ACKfOTByt .)
N‘ Figure 2.18. Four TCP segments generated to echo a

character.

67

68

PROTOCOL FUNDAMENTALS

Telnet client server
P
I SH Byge 1o
psH Echo BY© €
cK forses !
2 4/
3 ACK for Byte o

Psy

' %

Figure 2.19. Delayed ACK is piggybacked with data
segment.

be performed by the system when this timer interrupt comes. So, we register our
task with the timer interrupt and we specify the delay in multiples of time interval
at which the timer interrupt occurs. Every time a timer interrupt occurs, it checks
every registered task if its time has expired. So, all those tasks are executed whose
time has expired. Thus, the delayed acknowledgment timer is registered such that
it is performed whenever the next timer interrupt comes. So, the acknowledgment
timer may expire any time between 0 and ¢ time units, where ¢ is the time interval
at which the timer interrupt comes. In short, delayed acknowledgment can be gener-
ated anytime between 0 and ¢ time units after it is registered. Suppose that ¢ is
200ms; the TCP can generate acknowledgment for the received data segment any
time between 0 and 200 ms with the delayed acknowledgment in action.

Now we must be thinking as to why we need this delayed acknowledgment
scheme as we are delaying the ACK which slows down the entire process. But it is
the other way around. With the delayed acknowledgment, the TCP tries to send
the data ready to be sent along with the ACK for the last data segment received.
In our example, the TCP receives data and puts it in the receive buffer. Telnet
application reads the data and writes it back to the TCP’s send buffer (see Fig.2.19).
This happens very fast, in case the server is not heavily loaded. So, by the time the
server’s delayed acknowledgment timer expires, the echoed data is there in the
TCP’s send buffer. Like this, the ACK is piggybacked along with the data to be
sent. Here, we can see that the echo of character ‘e’ generates only three segments,
which is less by 1. To continue with this, we can see that the client has generated a
data segment for character ‘c’ after sending ACK for the data segment 2, which
means that client side TCP did not have any data in its send buffer by the time the
delayed acknowledgment timer expired. This may be because there was no input
from the keyboard by the time the timer expired. This scheme works fine as long
as we limit ourselves to high-speed networks such as LAN. We are sending out data
when they are available. It is just that we are delaying ACK for any data received
so that we can piggyback the ACK along with any data to be sent. If any data are
available even when there is time for TCP’s delayed ACK timer to expire, we send
it. So, essentially this scheme will generate a large amount of segments carrying one
byte of data in the interactive sessions such as telnet, rlogin, and so on. In the case
of WANSs or slow networks, a large number of data segments carrying small payloads

NAGLE’S ALGORITHM (RFC 896)

might cause problems of network congestion. For this reason, we slightly
refine the scheme for slow WANSs, which we discuss in the next section.

2.5 NAGLE’'S ALGORITHM (RFC 896)

A delayed acknowledgment scheme helps in reducing the number of small packets
by piggybacking the ACKs along with the data to be sent in the same direction,
delaying the acknowledgments. This scheme still doesn’t prevent a large number of
segments to be generated carrying one byte of payload in the case of interactive
sessions. This would surely cause problems in slow networks. To overcome this issue,
Nagle’s algorithm was introduced; it says that no data would be sent out until we
have an unacknowledged data, which means that all the data that need to be sent
out are collected until the time we receive an ACK for the last sent data. So, all the
data are now sent out in one data segment. This makes the entire process self-
clocking. In the slow networks where the ACKs are received after a long delays,
we collect a lot of data and send them all in one segment. On the other hand, in
fast networks we receive ACKs very fast and hence we can send large number of
packets with smaller payloads very fast. This algorithm is self-adjusting in the sense
that it adjusts itself according to the network conditions and automates the data
transfer rates. From Fig. 220 we can see that when ACK for data segment is
received, we have collected three characters and hence send all of them in one data
segment. With Nagle’s algorithm in action, we still have delayed ACK timer appli-
cable. Consider a case where ACK is received for the last data segment in Fig. 2.21
and there are no data to be sent out. So, the client waits for some data input before
it acknowledges the echoed data (segment 2).

At the client’s end, there was no data to be sent when the delayed ACK timer
expired, which generated ACK segment (segment 3). We then send the next char-
acter ‘c’ because TCP sends out data (segment 4) when they are there in the send
buffer because there is no unacknowledged data. We receive acknowledgment for
segment 4 (character ‘c’) in segment 5. We send out characters ‘h’ and ‘o’ together
in segment 6 which are collected in the TCP’s send buffer by the time the ACK for
character ‘c’ is received in segment 5 following Nagle’s algorithm.

We will compare the behavior of TCP with Nagle’s algorithm in place over LAN
and WAN. Tcpdump output shown in Fig(2.22) is taken from the telnet session over

1 PSH g Vie o

ps Echo BYE ©

ACK for seg 1

2 PSHByteS Chor ACK

3 FOR ge 2
o Beho BY'®® cho

ACK for 52>
4 4/

Figure 2.20. Fewer number of small segments generated with
Nagle’s algorithm.

69

70

PROTOCOL FUNDAMENTALS

1 PSH Byte

pSH Echo BYE €

ACK for 568 !
2 /

3 ACK seg 2

PSHBytes o, g o

\ﬁJFSf:_g;;\’

pot Echo BYSS
5 ACK for € 4

FSH Bytes Ack

psH Echo Bytes
ACK for seg 6
7

Figure 2.21. Packets exchanged on slow WAN with Nagle’s
algorithm enabled.

LAN(moksha = client, parikrama = server). We are doing nothing but typing some
characters at the telnet prompt which are echoed back from the server. We can see
that TCP is following Nagle’s algorithm completely because data are sent only when
we get back ACK for unacknowledged data. We can see one more thing here that
delayed acknowledgment timer expiring at the client end. Segments 3, 6,9, 12, and
19 are simply ACKs from the client moksha to the server parikrama because the
delayed acknowledgment timer has expired before any data are available to be sent
(there is no input from the keyboard when the delayed acknowledgment timer
expired). Let’s look at Fig. 2.22, which shows the tcpdump output taken from telnet
session over WAN. The telnet client and the server are 9 hops apart.

We see here how Nagle’s algorithms work effectively with slow networks. The
tcpdump data are collected at the server, and we can see an average RTT of 350 ms
(see Fig. 2.23). We type in a character at the telnet client, and packet 1 is generated.
Packet 2 is an ACK for 1 and also contains an echo of character contained in
segment 1. Then we proceed with the subsequent characters until segment 5, which
is an ACK for character echoed by the server in segment 4, is generated. Most prob-
ably segment 5 is generated because of the delayed acknowledgment timer. Segment
5 doesn’t contain any data, which means that no data were available by the time
the delayed ACK timer expired. We proceed once again by typing in a character
and generating a packet for each character (segments 6, 7, 8, and 9) probably
because only one character is typed in by the time the ACK for the last unacknowl-
edged byte appears. But here onwards we increased our typing speed and see that
instead of 1, we are sending 2, 3, 5, and 7 characters in segments 10, 12, 14, and 16,
respectively. So, by the time our ACK are received, we have collected more data to
be transmitted and we transmit them as one segment instead of generating one
segment per character. So Nagle’s algorithm is helpful in slow networks where we

NAGLE’S ALGORITHM (RFC 896) 71

1.

19:30:59.901376 moksha.1305 > parikrama.telnet: P 1765803975:1765803976(1)

ack 431576686 win 5840

O %0 NS RAWDN

L N T
O NS AR WD ~NO

1.

19:30:59.901672 parikrama.telnet > moksha.1305: P 1:2(1) ack I win 49232
19:30:59.901705 moksha.1305 > parikrama.telnet: . ack 2 win 5840
19:30:59.904281 moksha.1305 > parikrama.telnet: P 1:2(1) ack 2 win 5840
19:30:59.904490 parikrama.telnet > moksha.1305: P 2:3(1) ack 2 win 49232
19:30:59.942200 moksha.1305 > parikrama.telnet: . ack 3 win 5840
19:31:00.068928 moksha.1305 > parikrama.telnet: P 2:3(1) ack 3 win 5840
19:31:00.069206 parikrama.telnet > moksha.1305: P 3:4(1) ack 3 win 49232
19:31:00.069237 moksha.1305 > parikrama.telnet: . ack 4 win 5840
19:31:00.181595 moksha.1305 > parikrama.telnet: P 3:4(1) ack 4 win 5840

. 19:31:00.181884 parikrama.telnet > moksha.1305: P 4:5(1) ack 4 win 49232

19:31:00.181936 moksha.1305 > parikrama.telnet: . ack 5 win 5840
19:31:00.184557 moksha.1305 > parikrama.telnet: P 4:5(1) ack 5 win 5840
19:31:00.184767 parikrama.telnet > moksha.1305: P 5:6(1) ack 5 win 49232
19:31:00.187568 moksha.1305 > parikrama.telnet: P 5:6(1) ack 6 win 5840
19:31:00.187780 parikrama.telnet > moksha.1305: P 6:7(1) ack 6 win 49232
19:31:00.195539 moksha.1305 > parikrama.telnet: P 6:7(1) ack 7 win 5840
19:31:00.195748 parikrama.telnet > moksha.1305: P 7:8(1) ack 7 win 49232
19:31:00.232208 moksha.1305 > parikrama.telnet: . ack 8 win 5840

Figure 2.22. TCP dump output for telnet session on slow WAN.

15:28:56.855969 eth0 < client.1081 > server.telnet: P 2366787223:2366787224(1)

ack 3196104816 win 6642

2
3
4.
5.
6.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

15:28:56.856129 ethO > server.telnet > client.1081: P 1:2(1) ack 1 win 5792
15:28:57.195473 eth0 < client.1081 > server.telnet: P 1:2(1) ack 2 win 6642
15:28:57.195529 ethO > server.telnet > client.1081: P 2:3(1) ack 2 win 5792
15:28:57.575488 eth0 < client. 1081 > server.telnet: . 2:2(0) ack 3 win 6642
15:28:57.601943 ethO < client.1081 > server.telnet: P 2:3(1) ack 3 win 6642
15:28:57.601989 ethO > server.telnet > client.1081: P 3:4(1) ack 3 win 5792
15:28:57.955909 ethO < client. 1081 > server.telnet: P 3:4(1) ack 4 win 6642
15:28:57.955955 ethO > server.telnet > client.1081: P 4:5(1) ack 4 win 5792
15:28:58.296227 eth0 < client. 1081 > server.telnet: P 4:6(2) ack 5 win 6642
15:28:58.296280 ethO > server.telnet > client.1081: P 5:7(2) ack 6 win 5792
15:28:58.636017 ethO < client. 1081 > server.telnet: P 6:9(3) ack 7 win 6642
15:28:58.636080 ethO > server.telnet > client.1081: P 7:10(3) ack 9 win 5792
15:28:58.977773 ethO < client.1081 > server.telnet: P 9:14(5) ack 10 win 6642
15:28:58.977840 ethO > server.telnet > client.1081: P 10:15(5) ack 14 win 5792
15:28:59.319531 ethO < client.1081 > server.telnet: P 14:21(7) ack 15 win 6642
15:28:59.319609 ethO > server.telnet > client.1081: P 15:22(7) ack 21 win 5792
15:28:59.695524 ethO < client. 1081 > server.telnet: . 21:21(0) ack 22 win 6642

Figure 2.23. TCP dump output for telnet session on slow WAN.

72

PROTOCOL FUNDAMENTALS

are automatically controlling the traffic depending on the network characteristics.
In this example, we didn’t get to see the network characteristics changing like con-
gestion because RTT is more or less the same. But have tried to explain how a large
number of small segments containing one character can be avoided with the help
of Nagle’s algorithm.

2.6 TCP SLIDING WINDOW PROTOCOL

As of now, we have seen the TCP algorithms associated with the interactive sessions
such as telnet and rlogin in fast and slow networks. We were concerned with a small
amount of data transfer per segment in our discussions until now. Let’s see how a
TCP behaves when an application wants to send bigger chunks of data. When an
application is sending bulk data, TCP has to take into account some additional TCP
header fields to decide upon the data transmission rate. We will see how ACKs are
generated in a different way and how TCP controls data transmission rates in our
current discussion in the case of bulk data transfer. We introduce here one more
TCP parameter, window size, which is a part of the TCP header, and see how it
helps the sender TCP to understand the receiver’s resource constraints based on
which sender controls the data transmission rate. If we just recall from the previous
discussion regarding window size, we know that it is the indication of resource avail-
able at the receiver TCP end. First we will see how window size and TCP’s receive
buffer are associated and then move along with the actual discussion.

Consider a situation where bulk data are flowing in one direction in a high-
speed network. Now from Figs. 2.14a and 2.14b we know that when application
writes data over TCP socket it is not directly transmitted to the receiver. The TCP
first copies the data to the send buffer for various reasons—for example, waiting for
an ACK (Nagle’s algorithm). In the same way, receiver TCP gets data from the TCP
segments and puts it in its receive buffer. Further application reads the data from
TCP’s receive buffer when it has chance. If we don’t have send and receive TCP
buffer arrangements, there are great chances of a TCP connection hogging resources
such as memory, CPU, and network bandwidth starving other connections from
using the resources. With the TCP buffers in place, it is clear that the sender can
senddataintwocases (giventhatotherconditionsare favorable for datatransmission)—

1. There are data ready to be sent in sender TCP’s send buffer.
2. There is space in the receiver’s TCP receive buffer.

As discussed earlier, receiver TCP puts data in its receive buffer before applica-
tion can read it. Once an application has read data from TCP’s receive buffer, space
is created to accommodate more data. In short, at any given point in time, receiver
TCP can receive maximum data bytes restricted to the space in its receive buffer.
On the other hand, space in the receiver buffer is created only when the application
reads the data from the receive buffer. If the receiver’s receive buffer is full, no
more data will be accepted from the sender, and the sender has to wait until the
space is available in the receiver’s receive buffer. The question is, How does the
sender know about the availability of space in the receiver’s receive buffer?
The TCP exchanges this information using TCP’s header field window size. Each
TCP segment carries this information irrespective of whether it is a data segment

TCP SLIDING WINDOW PROTOCOL

or not. Let’s look at this example with the help of an example where the server is
sending bulk data in a chunk of 1kB to the client continuously. Client application
is programmed not to read any data sent by the server. This is done deliberately to
explain the concept of the TCP’s window size and also the flow control imposed by
the TCP’s window size. As we have already learned, the application writes data
over a TCP socket that goes into the TCP’s send buffer. The TCP reads the data
from the send buffer and sends it in small segments. At the other end, the TCP gets
these data segments, extracts data from the segments, and puts them in the receiv-
er’s TCP receive buffer. Finally, an application reads in data from the TCP’s receive
buffer and makes space for more data to be stored in the TCP’s receive buffer. We
will see how the receiver TCP’s receive buffer information is passed on to the sender
TCP and then how the sender TCP reacts to the changing receiver buffer size.

Network activity for bulk data transfer from server to client is captured using
tcpdump. The captured data are shown in Figs. 2.24a and 2.24b. Packet’s 1-3 are the
initial SYN segments exchanged between client and server as part of the TCP con-
nection initiation handshake. The client sends mss as a TCP option (1460) and also
the initial window size (5840). Similarly, segment 2 is again a SYN segment from
the server with mss (1316) TCP option and the initial window size (5216). Window
size advertised by the client in the SYN segment is nothing but the size of its receive
buffer (5840 bytes) and similarly for the server. We will concentrate only on the
client’s window size because it is at the receiving end and the server is only sending
data and not receiving any data from the client.

Server application writes 1024 bytes of data at a time, but we can see that TCP
is generating a TCP data segment of 1304 bytes. This is because it waits until we
have data equal to maximum segment size from the application in its send buffer.
Server side TCP has an mss from the client which is less than its own mss, but still
the TCP data segment is never found to have data more than 1304 bytes (<1316,
client’s mss) in the entire session. This is because the IP would have found out some
intermediate router whose MTU (maximum transmission unit) is such that an mss
of 1304 comes into picture. So, we can see that the server can send 5840 bytes of
data without receiving any acknowledgment from the receiver at this point in time.
The server keeps on sending data segments of 1304 bytes and receives acknowledg-
ment for each data segment. We can see that the client is advertising increased
window size each time with the reception of data, and this seems to be slightly con-
fusing. When the client has advertised its window as 5840, how can it advertise
window size 7842 after the reception of 1304 bytes of data which remains in its
receive buffer (because the application is not reading data). This is because TCP
can receive data more than the initially advertised window size. But by advertising
small window size initially, it is imposing control on the rate of data flow from the
sender. When the receiving TCP senses no congestion in the network, it gradually
increases the window size until it finally reaches the actual window size. Actually,
this is congestion control mechanism. The client continues to increase its window
size until the client has sent 19,560 bytes of data (packet 32). At this point in time,
the client’s window size has increased to 45,640. It means that the client has 19,560
bytes of data in its receive buffer and still it can receive 45,640 bytes of data, which
means that total receive buffer size of the client is 45,640 + 19,560 = 65,201 bytes.
Thereafter (packet no. >34) we can see the window size decreasing on reception of
each data segment. The decrease in window size is exactly equal to the number of
bytes received. This is because client application is not reading any data from TCP’s

73

74

PROTOCOL FUNDAMENTALS

1 16:42:01.077677 ethO > client.33496 > server.5000: S 3803112996:3803112996(0) win 5840
<mss 1460,sackOK, timestamp 5903892 0,nop,wscale 0> (DF)

2 16:42:01.418479 ethO < server.5000 > client.33496: S 2982028701:2982028701(0) ack 3803112997 win 5216

<mss 1316,sackOK, timestamp 592429 5903892,nop,wscale 0> (DF) [tos 0x20]
16:42:01.418507 ethO > client.33496 > server.5000: . 1:1(0) ack 1 win 5840
16:42:01.796991 eth0 < server.5000 > client.33496: . 1:1305(1304) ack 1 win 5216
16:42:01.797083 eth0 > client.33496 > server.5000: . 1:1(0) ack 1305 win 7824
16:42:01.815506 ethO < server.5000 > client.33496: . 1305:2609(1304) ack 1 win 5216
16:42:01.815579 eth0 > client.33496 > server.5000: . 1:1(0) ack 2609 win 10432
16:42:02.168928 ethO < server.5000 > client.33496: P 2609:3913(1304) ack 1 win 5216
16:42:02.168953 eth0 > client.33496 > server.5000: . 1:1(0) ack 3913 win 14344

10 16:42:02.192321 eth0 < server.5000 > client.33496. . 3913:5217(1304) ack 1 win 5216

11 16:42:02.192338 eth0 > client.33496 > server.5000: . 1:1(0) ack 5217 win 16952

12 16:42:02.213164 eth0 < server.5000 > client.33496. . 5217:6521(1304) ack 1 win 5216

13 16:42:02.213182 ethO > client.33496 > server.5000: . 1:1(0) ack 6521 win 19560

14 16:42:02.235281 ethO < server.5000 > client.33496: P 6521:7825(1304) ack 1 win 5216

15 16:42:02.235298 eth0 > client.33496 > server.5000: . 1:1(0) ack 7825 win 22168

16 16:42:02.543288 eth0 < server.5000 > client.33496: . 7825:9129(1304) ack 1 win 5216

17 16:42:02.543305 eth0 > client.33496 > server.5000: . 1:1(0) ack 9129 win 26080

18 16:42:02.565528 ethO < server.5000 > client.33496: . 9129:10433(1304) ack 1 win 5216

19 16:42:02.565546 ethO > client.33496 > server.5000: . 1:1(0) ack 10433 win 28688

20 16:42:02.588800 ethO < server.5000 > client.33496: P 10433:11737(1304) ack 1 win 5216

21 16:42:02.588817 ethO > client.33496 > server.5000: . 1:1(0) ack 11737 win 31296

O G0 NN L AW

~

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
2
43
44
45
46
47

Figure 2.24a. TCP dump output for bulk data transfer (application not reading data from socket
buffer).

16:42:02.609151 eth0 < server.5000 > client.33496: .
16:42:02.609175 ethO > client.33496 > server.5000: .
16:42:02.631592 eth0 < server.5000 > client.33496:
16:42:02.631609 ethO > client.33496 > server.5000: .
16:42:02.653178 eth0 < server.5000 > client.33496: .
16:42:02.653196 ethO > client.33496 > server.5000:
16:42:02.674845 eth0 < server.5000 > client.33496: .
16:42:02.674861 eth0 > client.33496 > server.5000: .
16:42:02.698110 eth0 < server.5000 > client.33496:
16:42:02.698127 eth0 > client.33496 > server.5000: .
16:42:02.968926 eth0 < server.5000 > client.33496: .
16:42:02.968944 eth0 > client.33496 > server.5000:

16:42:02.991001 eth0 < server.5000 > client.33496.

16:42:03.013938 ethO < server.5000 > client.33496.

16:42:02.991018 eth0 > client.33496 > server.5000:

11737:13041(1304) ack I win 5216
1:1(0) ack 13041 win 33904

. 13041:14345(1304) ack 1 win 5216

1:1(0) ack 14345 win 36512
14345:15649(1304) ack I win 5216

. 1:1(0) ack 15649 win 40424

15649:16953(1304) ack I win 5216
1:1(0) ack 16953 win 43032

. 16953:18257(1304) ack 1 win 5216

1:1(0) ack 18257 win 45640
18257:19561(1304) ack I win 5216

. 1:1(0) ack 19561 win 45640

: P 19561:20865(1304) ack I win 5216
. 1:1(0) ack 20865 win 44336

: P 20865:22169(1304) ack 1 win 5216
16:42:03.034950 eth0 < server.5000 > client.33496: .
16:42:03.047034 eth0 > client.33496 > server.5000.: .
16:42:03.057852 eth0 < server.5000 > client.33496:
16:42:03.080130 eth0 < server.5000 > client.33496: .
16:42:03.101919 ethO < server.5000 > client.33496: .
16:42:03.123747 ethO < server.5000 > client.33496: .
16:42:03.123766 ethO > client.33496 > server.5000.: .
16:42:03.145864 eth0 < server.5000 > client.33496:
16:42:03.167820 eth0 < server.5000 > client.33496: .
16:42:03.167837 ethO > client.33496 > server.5000: .
16:42:03.189569 ethO < server.5000 > client.33496:

22169:23473(1304) ack 1 win 5216
1:1(0) ack 23473 win 41728

. 23473:24777(1304) ack 1 win 5216

24777:26081(1304) ack 1 win 5216
26081:27385(1304) ack 1 win 5216
27385:28689(1304) ack 1 win 5216
1:1(0) ack 28689 win 36512

. 28689:29993(1304) ack 1 win 5216

29993:31297(1304) ack 1 win 5216
1:1(0) ack 31297 win 33904

. 31297:32601(1304) ack 1 win 5216

TCP SLIDING WINDOW PROTOCOL

48 16:42:03.212878 eth0 < server.5000 > client.33496: . 32601:33905(1304) ack 1 win 5216
49 16:42:03.227033 eth0 > client.33496 > server.5000: . 1:1(0) ack 33905 win 31296

50 16:42:03.234130 ethO < server.5000 > client.33496: . 33905:35209(1304) ack 1 win 5216
51 16:42:03.255142 ethO < server.5000 > client.33496: . 35209:36513(1304) ack 1 win 5216
52 16:42:03.279184 ethO < server.5000 > client.33496: P 36513:37817(1304) ack 1 win 5216
53 16:42:03.279201 ethO > client.33496 > server.5000: . 1:1(0) ack 37817 win 27384

54 16:42:03.302496 ethO < server.5000 > client.33496: . 37817:39121(1304) ack 1 win 5216
55 16:42:03.337033 ethO > client.33496 > server.5000: . 1:1(0) ack 39121 win 26080

56 16:42:03.340008 ethO < server.5000 > client.33496: . 39121:40425(1304) ack 1 win 5216
57 16:42:03.361761 ethO < server.5000 > client.33496: . 40425:41729(1304) ack 1 win 5216
58 16:42:03.383427 ethO < server.5000 > client.33496: . 41729:43033(1304) ack 1 win 5216
59 16:42:03.405308 ethO < server.5000 > client.33496: . 43033:44337(1304) ack 1 win 5216
60 16:42:03.417040 ethO > client.33496 > server.5000: . 1:1(0) ack 44337 win 20864

61 16:42:03.427127 ethO < server.5000 > client.33496: . 44337:45641(1304) ack 1 win 5216
62 16:42:03.452362 ethO < server.5000 > client.33496: . 45641:46945(1304) ack 1 win 5216
63 16:42:03.472835 ethO < server.5000 > client.33496: . 46945:48249(1304) ack 1 win 5216
64 16:42:03.496098 ethO < server.5000 > client.33496: . 48249:49553(1304) ack 1 win 5216
65 16:42:03.496116 ethO > client.33496 > server.5000: . 1:1(0) ack 49553 win 15648

66 16:42:03.519736 ethO < server.5000 > client.33496: . 49553:50857(1304) ack 1 win 5216
67 16:42:03.539842 ethO < server.5000 > client.33496: . 50857:52161(1304) ack 1 win 5216
68 16:42:03.561673 ethO < server.5000 > client.33496: . 52161:53465(1304) ack 1 win 5216
69 16:42:03.561691 ethO > client.33496 > server.5000: . 1:1(0) ack 53465 win 11736

70 16:42:03.585063 eth0 < server.5000 > client.33496: . 53465:54769(1304) ack 1 win 5216
71 16:42:03.608658 ethO < server.5000 > client.33496: . 54769:56073(1304) ack 1 win 5216
72 16:42:03.608675 ethO > client.33496 > server.5000: . 1:1(0) ack 56073 win 9128

73 16:42:03.628680 ethO < server.5000 > client.33496: . 56073:57377(1304) ack 1 win 5216
74 16:42:03.650798 ethO < server.5000 > client.33496: . 57377:58681(1304) ack 1 win 5216
75 16:42:03.667039 ethO > client.33496 > server.5000: . 1:1(0) ack 58681 win 6520

76 16:42:03.677136 ethO < server.5000 > client.33496: . 58681:59985(1304) ack 1 win 5216
77 16:42:03.695689 ethO < server.5000 > client.33496: P 59985:61289(1304) ack 1 win 5216
78 16:42:03.717273 ethO < server.5000 > client.33496: P 61289:62593(1304) ack 1 win 5216
79 16:42:03.737033 ethO > client.33496 > server.5000: . 1:1(0) ack 62593 win 2608

80 16:42:03.739105 ethO < server.5000 > client.33496: . 62593:63897(1304) ack 1 win 5216
81 16:42:03.762166 eth0 < server.5000 > client.33496: . 63897:65201(1304) ack 1 win 5216
82 16:42:03.807033 ethO > client.33496 > server.5000: . 1:1(0) ack 65201 win O

83 16:42:05.123565 eth0 < server.5000 > client.33496: . 65200:65200(0) ack I win 5216

84 16:42:05.123610 ethO > client.33496 > server.5000: . 1:1(0) ack 65201 win O

85 16:42:07.434423 eth0 < server.5000 > client.33496: . 65200:65200(0) ack I win 5216

Figure 2.24b. Receive buffer is full, zero-window is advertised (segment 82).

receive buffer. The client continues to accept data until it has space in its receive
buffer. We can see the client’s window size diminishing as follows: 15,648 (seg 65),
11,736 (seg 69), 9128 (seg 72), 6520 (seg 75), 2608 (seg 79), and 0 (seg 82). Segment
82 is an ACK from the client for reception of 65,200th byte with window size of 0.
After this we can see that the server is not able to send any data to the client because
the window size advertised by the client is 0, which means that there is no space in
the client’s receive buffer. The server cannot send anymore data until the client
advertises a positive window size.

So, we have seen from the above example how sender TCP uses window size
information from the other end (receiver TCP) to adjust its data transmission rate.

75

76

PROTOCOL FUNDAMENTALS

Let’s now see the TCP sliding window protocol in completeness. Window size is the
indication of the available space in the receiver TCP’s receive buffer to the sender
TCP. Sender TCP can always send data equal to the last advertised window size by
the receiver TCP. The ACK for the reception of the data segment from the receiver
TCP will have a new window size, and the sender will use this new value of window
size to transmit more data. We will learn that it is not only the window size but also
the acknowledged sequence number from the receiver that will finally decide the
rate at which the sender can transmit data.

The sliding window protocol is demonstrated in Fig. 2.25. We will learn how the
windo