Lecture Notes in Physics 847

Ernst Bauer
Manfred Sigrist Editors

Non-centrosymmetric
Superconductors

Introduction and Overview

@ Springer



Lecture Notes in Physics

Volume 847

Founding Editors

W. Beiglbock

J. Ehlers

K. Hepp

H. Weidenmiiller

Editorial Board

B.-G. Englert, Singapore

U. Frisch, Nice, France

F. Guinea, Madrid, Spain

P. Héinggi, Augsburg, Germany

W. Hillebrandt, Garching, Germany
M. Hjorth-Jensen, Oslo, Norway

R. A. L. Jones, Sheffield, UK

H. v. Lohneysen, Karlsruhe, Germany
M. S. Longair, Cambridge, UK

M. Mangano, Geneva, Switzerland
J.-F. Pinton, Lyon, France

J.-M. Raimond, Paris, France

A. Rubio, Donostia, San Sebastian, Spain
M. Salmhofer, Heidelberg, Germany
D. Sornette, Zurich, Switzerland

S. Theisen, Potsdam, Germany

D. Vollhardt, Augsburg, Germany

W. Weise, Garching, Germany

For further volumes:
http://www.springer.com/series/5304


http://www.springer.com/series/5304

The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new devel-
opments in physics research and teaching—quickly and informally, but with a high
quality and the explicit aim to summarize and communicate current knowledge in
an accessible way. Books published in this series are conceived as bridging
material between advanced graduate textbooks and the forefront of research and to
serve three purposes:

e to be a compact and modern up-to-date source of reference on a well-defined
topic

e to serve as an accessible introduction to the field to postgraduate students and
nonspecialist researchers from related areas

e to be a source of advanced teaching material for specialized seminars, courses
and schools

Both monographs and multi-author volumes will be considered for publication.
Edited volumes should, however, consist of a very limited number of contributions
only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic
formats, the electronic archive being available at springerlink.com. The series
content is indexed, abstracted and referenced by many abstracting and information
services, bibliographic networks, subscription agencies, library networks, and
consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the
managing editor at Springer:

Christian Caron

Springer Heidelberg

Physics Editorial Department I
Tiergartenstrasse 17

69121 Heidelberg/Germany
christian.caron @springer.com



Ernst Bauer - Manfred Sigrist
Editors

Non-centrosymmetric
Superconductors

Introduction and Overview

@ Springer



Editors

Ernst Bauer

Institute of Solid State Physics, Vienna
University of Technology, Wiedner
Haupstrasse 8-10

1040 Wien, Austria

e-mail: bauer@ifp.tuwien.ac.at

ISSN 0075-8450

ISBN 978-3-642-24623-4

DOI 10.1007/978-3-642-24624-1

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011941704

© Springer-Verlag Berlin Heidelberg 2012

Prof. Manfred Sigrist

ETH Ziirich
Wolfgang-Pauli-Str. 27

8093 Ziirich, Switzerland
e-mail: sigrist@itp.phys.ethz.ch

e-ISSN 1616-6361
e-ISBN 978-3-642-24624-1

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcast-
ing, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: eStudio Calamar, Berlin/Figueres

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Symmetry plays an important role in superconductivity and influences many of its
properties in a profound way. Ever since the discovery of the first unconventional
superconductors roughly 30 years ago, the search for the symmetry of Cooper pairs
has been among the most important tasks to be addressed, when studying new
superconducting materials. Two symmetries are particularly important for super-
conductivity—time reversal and inversion symmetry. If at least one of the two is
absent in the normal state already, Cooper pairing appears in non-standard forms.
Ferromagnetic superconductors, lacking time reversal symmetry, form most likely
pairs of electrons of the same spin, if the pairing mechanism permits. Missing
inversion symmetry in so-called noncentrosymmetric crystals gives rise to mixed-
parity pairing.

Non-centrosymmetric superconductors are known since a long time, but
received little attention until recently. Their rise to a prominent topic of research
occurred actually 2004 with the discovery of the first heavy fermion supercon-
ductor without inversion symmetry, CePt;Si. This example was followed swiftly
by the synthesis of other superconductors in similar classes, such as CelrSi; and
CeRhSi;, as well as several others also outside the heavy fermion family. These
superconductors received special attention due to the expectation of unconven-
tional pairing due to non-standard pairing mechanisms, most likely driven by
magnetic fluctuations.

The symmetry properties are intriguing for many reasons connecting these
unconventional superconductivity with several other modern research fields in
condensed matter physics, such as multi-ferroics, spintronics or topological
insulators. Many symmetry-related properties have been observed in experiment
and others are predicted by theory, displaying most intriguing features of a
superconducting phase.

This book provides an introduction to and an overview on many aspects of non-
centrosymmetric superconductivity, written by several scientists who are most active
in this field. We are most grateful to all authors for their contributions. In addition, we
are very grateful to Prof. H. von Lohneysen (KIT Karlsruhe, Germany) for critically
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reading the manuscripts, suggesting many useful improvements. Finally, the editors
wish to thank Springer for making this book project possible.

Vienna and Ziirich, August 2011 Ernst Bauer
Manfred Sigrist
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Chapter 1
Non-centrosymmetric Superconductors:
Strong vs. Weak Electronic Correlations

E. Bauer and P. Rogl

Abstract Superconductivity in materials without inversion symmetry displays
intriguing properties due to a strong modification of their band structures caused by
antisymmetric spin-orbit coupling. This is most dramatically seen in several recently
discovered heavy fermion superconductors such as CePt3Si or Ce7 Si3 (T = Rh and
Ir). These systems are interesting in view of the involvement of magnetic fluctua-
tions in the pairing mechanism yielding dominant unconventional Cooper pairing in
a so-called mixed parity form. However, also other non-centrosymmetric supercon-
ductors with weakly correlated electrons are in many respects interesting and will be
reviewed here.

1.1 Introduction

The discovery of superconductivity (SC) 100 years ago has triggered countless devel-
opments relevant to practical applications as well as the fundamental understanding
of this most intriguing macroscopically coherent state of electrons. In the course of
time, many groups of materials exhibiting SC were found and the underlying physics
was unravelled. The microscopic understanding of SC to the present day is based on
the seminal work of Bardeen, Cooper and Schrieffer [1] which explains SC as the
formation of a macroscopic coherent state of Cooper pairs formed by conduction
electrons. In the traditional BCS theory the interaction allowing the electrons to pair
results from electron-phonon coupling and has due to screening effects the character
of a contact interaction which through retardation effects (slow ion motion) is able to
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circumvent the strong (instantaneous) Coulomb repulsion which is essentially also a
contact interaction. A contact interaction requires the electrons to form Cooper pairs
in their most symmetric channel, generally called “s-wave” channel. The correspond-
ing pair wavefunction has even parity and, in order to obtain a totally antisymmetric
wavefunction, spin-singlet spin configuration (odd under exchange of the two elec-
trons). A superconductor based on such a pairing state is termed “conventional”. It
exhibits a quasiparticle spectrum with a nodeless gap. This gives rise to activated
behaviour in the temperature dependence of many quantities at very low tempera-
tures, such as the specific heat, NMR relaxation rates and the London penetration
depth.

Leaving the realm of electron-phonon coupling opens the possibility for alterna-
tive pairing mechanisms driven by electron-electron coupling, e.g. spin fluctuation
exchange. These interactions are generally longer-ranged and allow for other pair-
ing channels with higher angular momentum. Since, in general, the corresponding
pair wavefunctions have nodes, the electrons do not approach each other closely
and can in this way diminish the adverse effect of the (contact) Coulomb repulsion.
Superconductors relying on Cooper pairing in a channel different from “s-wave” are
called “unconventional” [2]. In general, pairing states may be distinguished by even
and odd parity. The Pauli principle requiring a totally antisymmetric Cooper pair
wavefunction imposes the condition that even parity is tied to the spin-singlet and
odd parity to the spin-triplet configuration. The pair wavefunctions or gap functions
in spin space may then be written in the following way [2]:

aw = (301 31ie)
For even-parity states we parametrize
Alk) = i6y (k) with Y (k) =y (—k), (1.2)
and for odd-parity states
A(k) = id (k) <66y with d(k) = —d(-k). (1.3)

This classification relies on the presence of an inversion center in the crystal structure,
as to have parity as a proper quantum number. The lack of inversion symmetry
introduces a special form of spin-orbit coupling, so called anti-symmetric spin-orbit
(ASOC) coupling among which Rashba-type and Dresselhaus-type of spin-orbit
coupling are the best-known examples, and can be represented as

Hasoc = D D Gk * Oy CpsChs’ (1.4)
k s,s
where the characteristic vector g, is an odd function: g_; = —gy. It has been

shown that ASOC acts detrimental on spin-triplet pairing states [3], in general, with
the exception of states satisfying the condition d (k) || g [4]. For spin singlet states
the influence of ASOC is minor.
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The energy scale introduced by ASOC is E4qsoc ~ 10 — 100 meV which is
much larger than the energy scale of the superconducting phase. ASOC has the
structure of a Zeeman term in Eq.(1.4) with k-dependent “magnetic field” such
that we observe a spin splitting of the energy bands with spin-split Fermi surfaces.
The effect of this splitting is most important for the pairing symmetry as it intro-
duces a mixing of the pairing parity and we talk about “mixed-parity” pairing states
in non-centrosymmetric superconductors. Consequently, there is neither separation
according to parity nor spin-singlet and -triplet pairing.

1.2 Superconductivity of Strongly Correlated Electron Systems
Without Inversion Symmetry

In the following sections an overview will be given on prominent physical properties
of SC without inversion symmetry possessing at the same time strong electronic cor-
relations. The examples in mind are Ce-based heavy fermion superconductors. Here,
the Kondo effect in competition with the RKKY interaction and crystalline electric
field (CEF) effects dictate the ground state of such materials many of which show
a magnetic quantum phase transition upon changing parameters such as pressure
or composition. In this family of compounds SC emerges in the proximity of such
quantum phase transitions leading also to coexistence of magnetic order with SC.
Thus spin-fluctuations will likely be the principal ingredient of SC and properties
characterizing the NCS state above 7. may relate to the mechanism of SC.

Takimoto and Thalmeier [5] have recently shown that the lack of inversion sym-
metry leads to novel spin fluctuations which tend to mix spin-singlet and spin-triplet
parts. Both components of such mixed-parity state display non-trivial momentum
dependencies, which may give rise to accidental line nodes in the gap function. The
characteristic g-dependence of the anomalous (NCS) spin fluctuations responsible
for this mixing originates from ASOC.

1.2.1 Ternary CePt;3Si

CePt3Si crystallizes in tetragonal symmetry P4mm (No. 99), isotypic with the
ternary boride CePt3B [6] (see Fig. 1.1). Crystallographic data (standardized) are:
a = 0.4072(1) nm and ¢ = 0.5442(1) nm; Ce is in site 1(b) at (3, 3, 0.1468(6));
Pt(1) in 2(c) at (%, 0, 0.6504(6)), Pt(2) in 1(a) at (0, 0, 0) (fixed) and Si in site 1(a)
at (0,0, 0.412(3)) [7]. CePt3Si derives from hypothetical CePts with cubic AuCusz
structure by filling the void with Si, which causes a tetragonal distortion of the unit
cell to c/a = 1.336.

CePt3Si is a heavy fermion compound with a substantial Sommerfeld constant
of the specific heat in the normal state region (y 2~ 400 mJ/molK?) that orders
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Fig.1.1 Crystal structure of CePt,Si - PAmm; CePt,B-type
CePt3Si. The coordination .

figure around the Si atoms
Si[Pt14Pt2] plus one remote
Pt2 atom are outlined as
capped tetragonal pyramids
(shaded). Note origin shifted
by (1, 1. 0.8532) in order to
match setting of the parent
AuCus-type structure

antiferromagnetically below Ty = 2.25 K [7]. Antiferromagnetism occurs with a
simple propagation vector @ = (0,0, 1/2), i.e. with ferromagnetic layers in the
basal plane [8]. The ordered moment is small (s =~ 0.16 wp), originating from
a crystalline electric field (CEF) doublet as ground state in relation to Kondo type
interaction.

The ground state of CePt3Si results from the lifting of the 6-fold degeneracy of
the J = 5/2 total angular momentum due to CEF effects in tetragonal symmetry.
Neutron studies and polarized soft x-ray experiments reveal the first and the second
excited doublet at &~ 15 and &~ 19 meV above the ground state, respectively. Thus,
physics at low temperatures is governed by the ground-state doublet only. In standard
notation the CEF ground state is given by Iy = 0.46| & 5/2) + 0.89] = 3/2) [10].

SC in CePt3Si occurs in high-quality polycrystalline samples below ~ 0.75 K [7].
Quite unexpectedly, single-crystalline materials show bulk SC around 0.45 K [11].
An explanatory statement for this discrepancy is given below. A muon spin rotation
study carried out as a function of temperature and field [12] gives clear evidence of
a complete spatial coexistence of both long-range magnetic order and SC.

Various intriguing features of the superconducting state have been observed from
macroscopic and microscopic measurements: i) the width of the SC transition is
unusually large; ii) the upper critical magnetic field exceeds the paramagnetic limit
Hp [7]; iii) a non-exponential temperature dependence of the NMR relaxation rate
1/ T is observed below T, together with an unexpected Hebel-Slichter peak in some
of the samples right at 7;. [13]; iv) the Knight shift does not change from the normal
to the superconducting state neither in the basal plane nor along the c-axis [14].

The principal conclusion drawn from such observations is that the superconduct-
ing gap likely has line nodes and the spin susceptibility is at most only modestly
affected by the superconducting phase. Both features fit well into the present under-
standing of NCS in CePt3Si. The polar symmetry of the crystal lattice suggests a
shape for g, = Xk, —Jk, inlowestorder expansionin k, i.e. the standard Rashba-type
of ASOC [15]. The mixed-parity state yields different gap structures on the two spin-
split Fermi surfaces which can in general have line nodes [16]. A mixed-parity state
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with the full lattice symmetry, AA(k) = i{A| + A2gy - 6}6, would yield line nodes,
if the odd-parity is larger than the even-parity part (|Az| > |Aj| with |gz| = D).
Moreover, such a state would contribute to the NMR signal with a finite coherence
factor, explaining the NMR Hebel-Slichter peak [17].

The upper critical field exceeding Hp may have various reasons and can occur for
spin-singlet pairing if i) a reduction of the Lande g-factor occurs as it was observed
e.g. in URu;Sip [18] or ii) a strong-coupling effect yields a large SC gap A (A >
Apcs ~ 3.52kpT,). As a consequence of both, the limiting field Hp rises above
H g S = 24 /(gup). For NCS systems, two additional mechanisms have been
proposed, weakening the Pauli-limiting effect: iii) the reduced pair-breaking effect of
spin polarization due to ASOC [19, 20] and iv) the realization of a helical vortex state
[21]. Frigeri et al. [20] demonstrated that the spin susceptibility of spin-singlet states
behaves approximately as that of a spin-triplet state with d(k) || gy, if the ASOC
is strong (i.e., the energy difference of split bands Essoc > kpT.). For CePt3Si,
the spin susceptibility for fields along [001] remains basically unchanged entering
the superconducting phase, while it reduces to an intermediate size for fields in the
basal plane of the tetragonal crystal lattices. Concomitantly, paramagnetic limiting
is absent for fields along the [001] direction and moderate in the basal plane.

A helical vortex state has been proposed to appear in CePt3Si for fields perpendic-
ular to the c-axis, because such a magnetic field would modify the Fermi surfaces in a
way as to shift the centers by a wave vector g (¢ o (Z x H)) [21]. This introduces an
additional phase factor exp(iq R) for the order parameter without inducing, however,
a net current flow along ¢ due to gauge invariance. This helical order coincides with
an increase of the upper critical field, T.(H) = T, —aH +b(n x H )2 [21], where a
and b are positive constants. The in-plane enhancement of H., can be substantial and
might thus explain the extraordinarily small anisotropy of the upper critical fields
found for H//c and H L c in CePt3Si [22].

Microscopic studies carried out on CePt3Si by NMR experiments on high quality
single crystals revealed unconventional strong-coupling SC with a line node gap
below T, ~ 0.45 K [23]. However, disordered domains in both single- as well as
polycrystalline samples might give rise to the occurrence of a more conventional
s-type superconducting state below 0.75 K [23]. Evidence for line nodes in the gap
structure is also derived from London penetration depth studies, exhibiting a linear
temperature dependence for T << T, [24]. Such a conclusion is drawn from thermal
conductivity data as well [25].

The phase diagram of CePt3(Si, Ge) is displayed in Fig. 1.2 [26, 27, 28]. The
characteristic temperatures of the system, i.e., Ty and T, are represented as a func-
tion of the reduced volume, V/Vy, where Vj refers to the volume of CePt3Si at
1 bar. Stoichiometric CePt3Si at ambient pressure exhibits the largest SC transition
temperature. The most important features derived upon the application of pressure

are the suppression of long-range magnetic order at a critical pressure pAf™ ~ 6

to 8 kbar and of the superconducting transition temperature at pCT;’ ~ 14 to 16 kbar
[27, 29, 30].
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Substitution of Si by Ge in CePt3Si provides the possibility to expand the unit-cell
volume without substantially changing the electronic structure. In order to compare
both pressure and volume effects, a bulk modulus of typical intermetallic compounds,
i.e., Bp = 1000 kbar is assumed. Si substitution by Ge causes an increase of 7Ty buta
decrease of 7. The increasing unit-cell volume releases pressure from the Ce ion; as
a consequence, there is a loss of hybridization and the 4 f! electronic configuration
becomes more localized, thus magnetism is stabilized. Additionally, pair breaking
by non-magnetic impurities, appearing through the Si/Ge substitution, reduces the
SC transition temperature on the side where the volume increases (V/Vy > 1). The
latter, however, appears to be the more relevant mechanism as was found from a
pressure study carried out on CePt3Sip 94Geg o6 [30].

The superconducting “dome”, i.e., the broad 7, maximum as a function of V / V is
found only in part below the regime with long-range magnetic order, while for pres-
sure values p > 8 kbar, SC survives in a nonmagnetic environment. The coexistence
of long-range magnetic order and SC obviously hints at magnetic fluctuations being
a necessary ingredient for Cooper pairing, while due to the heavy quasi-particles
formed by the Kondo interaction in CePt3Si, the retardation effect with respect to
phonons becomes weaker and thus, Cooper pairs mediated by phonons are rather
unlikely.

1.2.2 Ternary CeRhSij3

Shortly after the discovery of heavy fermion SC in CePt3Si, the ternary tetragonal
non-centrosymmetric compound CeRhSi3 was reported by N. Kimura [31] to show
SC as well, although only at elevated pressure. CeRhSi3 crystallizes in the BaNiSn3
structure, which belongs to the space group /4mm (No. 107) with Ce in site 2a (0, 0,
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Table1.1 Normal-state and superconducting properties of correlated materials without inversion
symmetry

Compound CePt3Si CeRhSi3 CelrSij
structure type CePt3B BaNiSn3 BaNiSn3
space group Pdmm I4mm 14mm
lattice parameter [A] a=4.072,c=5442 a=4.269,¢=9738 a=4.252,¢c=9.715
T [K] 0.75 1.05 1.6

H.o [mT] 26 37 54
H(0) [T] ~4 ~7 ~11
dH., /AT [T/K] —-8.5 —12 —114
v, [mJ/molK? ] 390 110 100

& [A] 81 66 57

1(0) [A] 11000 10100 8300

K ~140 ~140 ~135

Some of the superconducting properties are calculated in terms of the BCS theory using the free
electron model [9]. /"% is the SC transition temperature, H,¢ is the thermodynamic critical field
at T = 0, Op is the Debye temperature, H.,(0) is the upper critical field, dH.>/d T is the slope of
the upper critical field, y, is the Sommerfeld value of the normal state, £(0) is the coherence length
at 7 = 0, 1(0) is the London penetration depth at 7 = 0 and « is the Ginzburg-Landau parameter.
Data (in general the largest one reported for a certain material and a certain physical property) are
taken from references of section 2.

0.5759), Ptin 2a (0, 0,0.2313), Sil in 2a (0, 0, 0.0) and Si2 in 4b (0, % 0.3253). The
BaNiSns-type structure is an ordered variant within the large family of compounds
based on the parent type BaAly. The latter exhibits inversion symmetry, while com-
pounds belonging to the BaNiSn3 type, however, lack a center of inversion rendering
positive and negative [001] directions inequivalent (Fig. 1.9). Crystallographic data
are summarized in Table 1.1 [32].

At ambient pressure, CeRhSi3 orders antiferromagnetically at 7y = 1.6 K. Para-
magnetic properties are characterized by the coaction of crystalline electric field
(CEF) effects and a Kondo-type interaction. The tetragonal crystal symmetry causes
a lifting of the 2J + 1 = 6-fold degenerate ground state into 3 doublets located at
0,220 and 270 K, respectively. Applying the standard CEF Hamiltonian one obtains
the CEF parameters as BY = —1.75 K, BY = 0.381 K and B} = 4.74 K [34].

Susceptibility measurements up to room temperature revealed an effective mag-
netic moment p.rr = 2.65up, fairly well corresponding to the J = 5/2 free ion
value of Ce**. The paramagnetic Curie temperature, 0, = —128 K is indicative
of antiferromagnetic interactions among Ce ions. The Kondo interaction is deduced
from the large Sommerfeld constant y = 110 mJ/molK?, equivalent to a Kondo
temperature Tx ~ 50 K [32]. The latter is connected to the (negative) paramagnetic
Curie temperature of 6, since Tk o |6),].

At T = 1.6 K CeRhSij3 exhibits an AFM instability characterized by an incom-
mensurate propagation vector Q = (£0.215, 0, 0.5) [35]. Resistivity data below 1.6
K suggest a gap ASY a2 K in the antiferromagnetic spin-wave dispersion relation.
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At very low temperatures, Fermi-liquid behavior dominates, putting CeRhSi3 onto
the standard Kadowaki-Woods relation [33].

The application of pressure initially increases 7y ; above 9 kbar the phase transition
temperature starts to drop before merging with the SC phase-line above 20 kbar
(Fig, 1.3). In parallel, the SC transition temperature 7, increases up to 1.05 K for
p ~ 30 kbar. For a narrow pressure range from 12 to 18 kbar, a further characteristic
temperature scale 7* is deduced [34], denoting the temperature where a distinctly
different slope in the electrical resistivity occurs. The most important SC feature of
CeRhSi3 is an extraordinarily large upper critical field. H.»(7) behaves concavely
as function of temperature and exceeds the paramagnetic limit by far. Specifically,
for p = 26 kbar and H || ¢, uoHe2 ~ 16 T at 0.4 K, with /LOHC’2 = —23 T/K [36].
As in the case of CePt3Si, involvement of spin-triplet Cooper pairs might be, at least
partly, responsible for this behavior.

1.2.3 Ternary CelrSi3

Similar to CeRhSis, isotypic CelrSi3 crystallizes in the tetragonal BaNiSn3 struc-
ture. Ce atoms occupy the corners and the center of the tetragonal unit cell. The
arrangement of Si and Ir, however, lacks inversion symmetry along the [001] direc-
tion (see Fig. 1.9 for a sketch of the crystal structure). For crystallographic data see
Table 1.1 [32].

At ambient pressure, CelrSi3 is an antiferromagnet below Ty =5 K. For T > Ty,
the magnetic susceptibility is highly anisotropic; while the effective magnetic
moment in both directions is close to the value of Ce*, the paramagnetic Curie
temperature 6, ranges from —186 K (H || [100]) to —109 K (H || [001]) [37]. CEF
effects cause a splitting of the 6-fold degenerate ground state, revealing doublets at
0, 160 and 501 K, respectively. The corresponding CEF parameters are Bg =9K,
Bg =0.1 K and Bf‘L =9 K [37]. Below Ty antiferromagnetic order develops; the
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Fig.1.4 Pressure phase 6
diagram of CelrSi3 for the

AFM phase transition T CelrSi,
temperature 7 and the Al
superconducting transition
temperature 7y.. The inset
indicates the tetragonal
crystal structure of CelrSi3
(Figure taken from Ref. [43])
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ordered moment, however, appears to be very small, well below 0.25 wp [38].
Antiferromagnetism occurs with an anisotropic gap in the spin-wave dispersion rela-
tion, with ASW = 2.1 K (J || [110]) and ASW = 3.3 K (J | [001]). Heat capacity
data also show evidence for long-range magnetic order at 5 K; the Sommerfeld value
y ~ 105 mJ/molK? characterizes CelrSi3 as a heavy fermion material due to Kondo
interaction.

Pressurizing CelrSi3 causes a suppression of the antiferromagnetic order, which
vanishes at about 25 kbar (see Fig. 1.4) [37]. Simultaneously, SC develops above 18
kbar, reaching a maximal value of 7, = 1.6 K at 25 kbar. At this optimal pressure, the
upper critical field H., for H || [110] is extraordinarily large, extrapolating to 10 T
for T — 0. The initial slope, H/, is about —11.4 T/K; H.>(T') simply follows theory
developed by Werthamer, Helfand, and Hohenberg (WHH theory) [39]. Again, the
paramagnetic limit (Hp ~ 3 T) is exceeded by far. Measurements for H || [001],
however, do not comply with the WHH behavior and g H,2 (0) extrapolates to fields
well above 20 T. The heat capacity data inside the SC pressure regime reveals a very
sharp transition, while AC/C,(T =T, p=22.5kbar) ~ 5.7 & 0.1 substantially
exceeds the BCS value of 1.43 and turns out to be one of the largest values found
among SCs [40]. In general, such a behavior points to strong coupling SC. Strong-
coupling might explain, at least partly, the concave upturn behaviour of H.(T).
Besides strong coupling, the very large value observed for H || [001] might be a
direct consequence of the absence of inversion symmetry. Frigeri et al. [20] have
demonstrated that in this case the paramagnetic limiting becomes weak for H || [100]
and is almost absent for H || [001].

A microscopic study of the pressure-induced superconducting state of CelrSi3
using 2 Si NMR exhibits a 7’3 nuclear-spin relaxation rate 1/ T below T, without
any coherence peak right at 7. These facts provide evidence for a superconduct-
ing quasiparticle gap characterized by line nodes. For T' > T,., 1/T; follows a /T
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dependence [41], as a signature that SC emerges under non-Fermi liquid conditions
around a quantum critical point. The rather high SC transition temperature, compared
to other Ce-based materials might be a result of strong AFM spin fluctuations, as it
is also the case in CeColns [42]. Note also that the SC dome extends to very high
values of pressure; the maximum of 7, roughly corresponds to that pressure where
Tn(p) seems to cross the SC phase line.

Further members in this class of compounds are CeCoGes crystallizing in the
BaNiSn3 structure and Ulr which shows the monoclinic PdBi type of structure (space
group P2y).

CeCoGejs is an antiferromagnet that orders at 7y; = 21 K [44] determined by
a resistivity anomaly for currents along [100]; further magnetic phase transitions
have been observed for J || [001] at 12 and 8 K, respectively. The T? term in the
electrical resistivity would correspond to a Sommerfeld value y ~ 34 mJ/molK?
[45] within the Kadowaki-Woods [33] scheme, indicating only a moderate mass
enhancement of charge carriers. Applying pressure causes a continuous reduction of
Tn1, with Ty — 0 for p. & 65 kbar. Concomitantly with the suppression of long-
range magnetic order, SC occurs in a pressure range from about 54 kbar to 75 kbar,
with a maximum 7, = 0.69 K at 65 kbar [46]. For fields along [001] the slope of the
upper critical field amounts to —20T/K [45], referring to a huge upper critical field,
comparable to CeRhSi3 and CelrSi3.

At ambient pressure, monoclinic Ulr is a ferromagnet, with T¢; = 46 K [47].
The ferromagnetic moments orient along the [101] direction in the (010) plane,
with a saturation value of 0.5 up/U (FMI1 phase). The Sommerfeld value y = 49
mJ/molK? refers to weakly enhanced effective electron masses.

Upon the application of hydrostatic pressure, the FM 1 phase of Ulr is suppressed,
vanishing presumably at p.; & 17 kbar [48]. Above about 10 kbar and well below 30
K, two further ferromagnetic phases (FM2 and FM3) develop above p.3 & 28 kbar.
A superconducting phase within a narrow pressure range is embedded in the FM3
phase, below p.3. The largest T, observed is about 140 mK [48, 49]. For p = 26.1
kbar, noHs ~ 26 mT revealing a coherence length £ = 1100 A A p X Tl6
dependence above T refers to non-Fermi liquid behaviour. Thus, SC may originate
from ferromagnetic spin fluctuations. Unconventional SC can be concluded as well
from a significant pair breaking effect by non-magnetic disorder [49]. The small
upper critical field is well below Hp; thus the superconducting condensate may
consist primarily from spin-singlet components. Besides ferromagnetic order of Ulr,
the small value of H.,(0) and the large coherence length is in strong contrast to all
other SCs described in this chapter.

1.3 Superconductivity of Materials Without Inversion Symmetry
and Electronic Correlations

A central issue that arises when filing physical properties of NCS SCs pertains to
the role of strong correlations among electrons. Such a distinct knowledge allows
disentangling the physics related to the antisymmetric spin-orbit coupling owing
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to the absence of inversion symmetry on the one hand, and the role of electronic
correlations on the other. The absence of substantial electronic correlations provides
a possibility to carry out band structure calculations, in order to derive rather accurate
information on the splitting of electronic bands due to the ASOC.

In the remaining part of this chapter, a number of materials will be described
in some detail, which are characterized by NCS in their crystal structure but also
by the absence of f or d electronic configurations responsible for strong electronic
correlations.

1.3.1 Sesquicarbides R,C3_

The family of sesquicarbides R,C3_, (R = rare earth) is known for their relatively
high superconducting transition temperatures (up to 18 K) [50, 51]. Renewed interest
in carbide-based SCs was stimulated by the fact that the crystal structure of the
sesquicarbides does not possess inversion symmetry. Light-atomic-mass elements
like B or C in BCS SCs favor a coupling of parts of the Fermi surface with high-
frequency phonon modes, resulting in SCs with substantial transition temperatures.

Rare earth sesquicarbides crystallize in the bcc PuyC3 type with space group 743d
(No. 220). The structure is built by eight bcc subunits and, thus, may be regarded as a
partially filled superstructure of a distorted bee unit (a = 0.81350(2) nm; Puin 16¢
(0.0492(5), x, x) and C in 24d (0.2896(5), 0, ‘l‘)). A sketch of the crystal structure
of isotypic La,C3; (a = 0.8818(4) nm) is shown in Fig. 1.5, from which one can
recognize carbon-dumbbells embedded in a polyhedron formed by 8 metal atoms
fused from two severely distorted octahedral units of C[LasC] sharing a common
edge of two La-atoms. Concomitant with the strong distortions is a spread of La-La
distances 0.360 < dy,—14 < 0.404 nm, some of which being closer than next-nearest
neighbors in B-La (0.375 nm). Whereas the C-C distances derived from X-ray data
[52, 53], dc—c = 0.151 nm in PuyC3z and 0.153 nm in Y;C3 (prepared at high
pressure), seem to be long, neutron powder data for La,C3 with dc_¢c = 0.132(3)
nm and for PuyC3 with de_¢c = 0.139(3) nm indicate a double bond [54, 55].

143d defines the tetrahedral crystal class T, lacking a center of inversion. Initial
studies evidenced superconducting transition temperatures around 11 K for La;Cs
and Y,C3. Doping with Th even drives 7, up to 17 K [56]. Y2C3, however, turns out
to be metastable. High pressure synthesis was successful in providing samples with
T, ~ 18 K and uoH2(0) > 30 T [57, 58]. The specific carbon content turns out to
be the principal parameter determining superconducting properties like 7, or H,;.
In order to obtain R,C3 with optimal T, it is of importance compensating carbon
loss during preparation [59].

The electronic structure of LayC3; was derived from LAPW calculations in terms
of a generalized gradient approximation [60]. Bands crossing the Fermi surface are
the hybridized La-d and the anti-bonding C-C states. The bonding C-C bands are
separated by a gap of about 2.5 eV from the Fermi energy.
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LasC,- I-43d; Pu; C,-type

Fig.1.5 Crystal structure of La3C,. Right panel shows connectivity of distorted octahedra C[LasC].
Left panel outlines the La-atom coordination around each C,-dumbbell

The electronic structures calculated with and without spin-orbit coupling are quite
similar. Due to the lack of inversion symmetry, however, ASOC causes lifting of the
spin degeneracy. As a consequence, bands become spin split as obvious from details
of the LAPW calculations around the Fermi energy.

The DOS at the Fermi energy depends sensitively on off-stoichiometries of the
system: slight C-deficiencies result in a substantial decrease of the DOS at Ef. A 2%
C-deficient sample has a DOS reduced by about 25% and even 30% when taking
into account the calculation based on spin-orbit coupling. These remarkable results
may straightforwardly explain substantial differences of transition temperatures and
upper critical fields deduced for the various sesquicarbides.

Nuclear magnetic resonance, high-resolution photoemission studies and muon
spin rotation [61, 62, 63] carried out on high-quality samples revealed multigap SC
for both Y>C3 and LayC3, similar to MgB,. The gaps turn out to have no nodes
with 2A1/kpT ~5 in both cases. These large gaps in the dominating Fermi surface
exceed the BCS value, 2A;/kpT = 3.5 by far, classifying both sesquicarbides as SCs
in the strong coupling limit. In fact, specific heat data reveal A.;_,;, ~ 1.4 for La>C3,
corroborating the above conclusions. Similar conclusions may be drawn from mea-
surements of the upper critical field. Although poH:2(0) ~20 T for LayCj3 is rather
large, the Pauli limiting field (o Hp & 25 T) is even above this value. Consequently,
orbital currents constitute the principal depairing mechanism restricting the upper
critical field. Interestingly, H.(T) deviates at low temperatures from the standard
WHH behaviour. Rather, H.>(7T') behaves almost linearly in the entire range studied.
Beside localization effects and anisotropy of the Fermi surface, such a behaviour
might be attributed to strong electron — phonon coupling, fully in agreement with
the microscopic studies. Since H.2(0) < Hp, spin-triplet pairing is rather unlikely.

Symmetry considerations of the NCS point group 7y led Sergienko [64] to propose
for Y,C3 and LayC3 two-band SC from the fact that there are certain directions where
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the spin-orbit-split bands must touch each other. This conclusion fits well with the
experimental findings.

1.3.2 Complex Metallic Alloy B’-Mg,Al3

Structurally complex metallic alloy phases (CMA) are remarkable metallic systems
based on crystal structures composed of several hundreds or even thousands of atoms
per unit cell. CMAs are characterized by the occurrence of different length scales,
with a lattice periodicity of several nm and cluster-like atomic arrangements on
a nm-scale. Hence, CMAs are periodic crystals, but on an atomic scale resemble
quasicrystals. Such competing scales are expected to trigger novel physical properties
of these specific materials (Fig. 1.6) .

B-Mg, Al was studied for the first time by Samson [65] and was classified as a
cubic system with centrosymmetric space group Fd3m (No. 227) and lattice para-
meter a =2.8239(1) nm comprising 1168 atoms in the unit cell. The coordination
polyhedra consist of icosahedra, Friauf polyhedra (a truncated tetrahedron where
each of the four hexagonal faces are capped by one additional atom, all together
forming a CN-16 polyhedron), and other irregular polyhedra of various ligancies. Of
particular interest is the intrinsic disorder due to mismatch of the various adjacent
polyhedra. This causes displacement- and substitutional disorder as well as fractional
site occupation. The investigation of the Al-Mg phase diagram [66] assigned the
B-phase to the composition Mgsg sAlg1 5. The redetermination of the crystal struc-
ture via in-situ X-ray single crystal diffraction at 400°C essentially confirmed the
structure model of Samson [65] and in consistency arrived at 1168 atoms per unit
cell with a =2.8490(2) nm. Out of the 23 independent crystallographic sites, eleven
positions show partial and/or random atom occupation or split sites to comply with
the atom disorder. 8-Mg,Al3 was found to undergo a structural phase transition at
T =214°C from the high temperature cubic phase to a trigonal low temperature
modification 8/-Mg, Als with space group R3m (No. 160). In the hexagonal setting,
the lattice parameters deduced are a = 1.9968(1) nm and ¢ =4.89114(8) nm, assem-
bling a total of 925 atoms per unit cell [66], corresponding well to the content of
the cubic high temperature cell (1168/4 =292 and 292 x 3 =876 atoms). It should
be noted that all crystallographic sites in 8’-Mg,Als are fully occupied but a con-
siderable number of sites still exhibit random Mg/Al disorder. Although a crystallo-
graphic group - subgroup relation exists, the phase transformation was found to be of
first order.

A particular feature of this crystal structure is the absence of inversion symmetry.

Intrinsic disorder in B'-Mg,Alj is rendered from resistivity measurements [68]
revealing a residual resistivity ratio RRR of about 1.16 only, as displayed in
Fig. 1.7(a); SC appears below 0.9 K. Magnetic fields suppress SC at ;1o Hc2(0) ~ 0.14
T (inset, Fig. 1.7(a)). The strongly curved p(T') data above T = T, remind us of A15
SCs and might be described in terms of a parallel resistor model.
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Fig.1.6 Crystal structure of B‘-M92A|3_ R3m
B'Mg,Als showing a
three-dimensional
framework built by
face-connected truncated
tetrahedra enclosing clusters
(“spheres”) packed in form
of a diamond network.
(Figure taken from Ref. [66])
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Fig.1.7a Temperature dependent electrical resistivity p of B'-Mg,Als. The solid line is a least
squares fit according to a model of Woodard and Cody [67]. The inset shows the onset of a super-
conducting transition at Tcmid = 0.9 K. The application of magnetic fields suppresses SC. b Tem-
perature dependent upper critical field H.. The dashed line corresponds to H. (T') derived in terms
of the model of Werthamer et al. [39] for « = A;, = 0 revealing ,u,oHC’2 ~ —0.23 T/K. (Figure
taken from Ref. [68])

The upper critical field He.y of 8/-Mg,Als is displayed in Fig.1.7(b). A the-
oretical description is possible in terms of the WHH model [39], taking into
account orbital pair-breaking, including the effect of Pauli spin paramagnetism and
spin-orbit scattering. Two parameters essentially define H., : the Maki parameter
o and the spin-orbit scattering parameter Ag,. Because of the presence of light ele-
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Fig.1.8 Temperature 0.8
dependent specific heat C), y~6.6 mJ/molK? p'-Mg, Alg
of B’-Mg, Alj3 plotted as
C,/T vs. T. The inset shows
low temperature heat
capacity data, evidencing
bulk SC. The solid line
adjusts the numerical data of
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ments only, As, ~ 0. The dashed line in Fig. 1.7(b) represents the WHH model
with ¢ = 0.1. Orbital pair-breaking is the most relevant mechanism in the low-field
limit and therefore determines H/,. The Maki parameter a ~ 0.1 of p’-Mg,Al3
corresponds to a dominant orbital pair breaking field.

Figure 1.8 summarizes heat-capacity measurements performed on B’-Mg,Alj.
Low temperature data yield a Sommerfeld coefficient y = 6.6 mJ/molK? and a
Debye temperature 6p = 373 K. The jump of the specific heat AC, /T (T = T;) ~
8.5 mJ/molK?2, allows calculation of AC p/(vuT:) ~ 1.41, which matches closely the
figure expected from weak coupling BCS theory (AC,/(yT.) ~ 1.43). BCS-type
SC follows also from the comparison with Miihlschlegel’s calculations [69]. These
fits are shown as a solid line in the inset of Fig. 1.8, revealing agreement with a fully
gapped SC (A(0) = 1.5 K). Within the McMillan formula [70], the electron-phonon
coupling strength A, ,, = 0.42 of B'-Mg, Alj is derived from 6p = 373 K and from
the repulsive screened Coulomb parameter ©* =~ 0.13. This defines g’-Mg,Al3 to
be a SC in the weak coupling limit.

SC in B’-Mg,Alj3 occurs in a crystal environment without inversion symmetry,
favoring a mixture of spin-singlet and spin-triplet pairing in the superconducting con-
densate. The small values of the upper critical field, however, seem to exclude a sub-
stantial portion of spin-triplet pairs in the condensate. Moreover, the light elements
Al and Mg may be responsible for only a minimal spin-orbit coupling in 8'-Mg,Al3,
hence, the spin-singlet condensate dominates. Additionally, the very complex crystal
structure is supposed to smooth the effect of missing inversion symmetry.

1.3.3 Ternary BaPtSi3

In a detailed investigation of the phases of Ba-Pt-Si at 900°C [71], the compound
BaPtSi3 was identified as a representative of the NCS BaNiSnj3 type, exhibiting a
SC phase transition below 2 K. The tetragonal crystal structure corresponds to the
space group I4mm, (as shown in Fig.1.9), being an ordered variant of the cen-
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Fig.1.9 Crystal structure of BaP1Si;- 14mm; BaNiSn-type
BaPtSis clearly revealing
non-centrosymmetry due to
the missing mirror plane
perpendicular to the c-axis.
(Figure taken from Ref. [72])

Fig.1.10 Temperature 08 ————F———T————T
dependent specific heat [
C, of BaPtSi3, plotted as
C,/T versus. T. The inset 06 |
shows low temperature
details of the
superconducting transition
for various values of
externally applied magnetic
fields. The solid line
represents the temperature 0.2
dependent specific heat of a I
spin-singlet fully gapped SC
according to the model of 00 W .. .
Miihlschlegel [69]. (Figure 0 50 100 150 200
taken from ref. [72]) TIK]
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trosymmetric ThCr,Siy structure type. The standardized crystallographic data are:
a =0.44094(2) nm and ¢ =1.0013(3) nm; Ba is at the 2(a) site with coordinates
(0, 0, 0.6022(8)); Pt at 2(a) with (0, 0, 0.2502(7)), Si2 at 2(a) with (0, 0, 0) and Sil
at 4(b) with (0, 1, 0.3608(8)).

Resistivity data show SC below 7, ~ 2 K [72]. The normal metal state is
well described by a standard Bloch-Griineisen behaviour. Least squares fits reveal
a Debye temperature of 6p =345 K. Both, magnetic fields and pressure, rapidly
suppress SC. An estimation of the electron-phonon interaction strength [70] con-
sidering Op = 345K and p* & 0.13 yields A._,; ~ 0.5, characterizing BaPtSi3 as
a weak-coupling SC. Heat capacity data of BaPtSi3 yield a Sommerfeld value of
y A~ 5.7 mJ/molK?. Details of the superconducting transition under a magnetic field
are compiled in the inset of Fig. 1.10.
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Fig.1.11 Section of electronic band structure along high symmetry directions for BaPtSi3 in the
energy range +2.5 eV around the Fermi energy Ep. Upper panel: spin-orbit coupling included;
lower panel: scalar relativistic only. (Figure taken from ref. [72])

BCS-type SC follows from both the specific heat jump AC,/(y, 1) ~ 1.38 as
well as from the temperature dependence of the specific heat C, (T') in the supercon-
ducting state. The solid line in the inset of Fig.1.10 shows C,(T') by applying the
generalized BCS model by Miihlschlegel [69], corresponding to spin-singlet pairing
and an isotropic quasiparticle gap.

The application of external fields rapidly suppresses bulk SC. Accordingly, a
field of 0.01 T shifts 7, by about 0.25 K to lower temperatures, while fields of
the order of 0.05 T already inhibit SC. The initial slope of the upper critical field
uoH/,(T) = —0.033 T/K is substantially lower than the value deduced from the
resistivity data (uoH/,(T) ~ —0.1 T/K). The Maki parameter « = 0.018 [72],
clearly indicates that orbital depairing is the essential mechanism which limits the
upper critical field.
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Li,Pd,B - P4,32; filled p-Mn-type

view along [100] view along [111]

Fig.1.12 Crystal structure of Li, Pd3B with corner-connected distorted Pd-octahedra (shaded); left
panel: view along [100]; right panel: view along [111] highlighting the icosahedral coordination
figure (distorted) around Li-atoms: Li[LizPdg]

The DOS of BaPtSi3 is shown in Fig. 1.11, for both non-relativistic (upper panel)
and relativistic (including spin orbit coupling, lower panel) band structure calcula-
tions. The main difference between these calculations occurs at about —1.5¢V below
the Fermi energy, at which the DOS splits into two prominent peaks of mixed Pt-d
and Si-p character. The spin-orbit coupling most strongly affects the Pt-like states,
which due to hybridization transfer the relativistic effect to the Si-like states. At the
Fermi level one essentially finds Si-p and Pt-5d, as well as a smaller contribution
from Ba-p states. Close to the Fermi energy, EF, both calculations produce very
similar and rather smooth DOS features. The values of the total DOS at Er are
N(Er) = 1.64 and 1.60 states/eV for the non-relativistic and the relativistic cal-
culation, respectively. The Sommerfeld coefficient of the electronic specific heat,
y = ”Tk;N (EF) allows direct comparison with the calculated electronic density
of states and suggests a phonon enhancement factor of A = 0.5, reasonable for a
weak-coupling BCS SC and perfectly in agreement with the McMillan model [70].

1.3.4 Ternary Liy(Pd, Pt)3;B and Mo3Al,C

The solid solution Li(Pd, Pt);B crystallizes in a perovskite-like cubic structure
(space group P4332; No. 212) with a lattice constant a = 0.67534(3) nm in the
case of Pd and a = 0.67552(5) nm in the case of the Pt compound [73, 74]. The
simple cubic cell contains four considerably distorted octahedra B[T¢] (T = Pd, Pt)
which sharing vertices form a three-dimensional framework enclose icosahedrally

coordinated Li atoms. As filler atoms of the octahedra in site 4a (%, %, %), there
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are neither B-B contacts nor Li-B bonds in the structure. Strong bonds, however,
exist for B-Pd: dp;_p =0.213 nm. The structure can be best described as a filled and
ordered S-Mn-type where Li atoms occupy the Mnl-atoms in 8c (0.0572(9), x, x)
and Pd the Mn2 sites in 12d (%, 0.19583(5), }t +y); all positions given refer to the
standardized structure in P4132. The compounds Li>(Pd, Pt)3B are the first 5-Mn
structures where boron atoms act as fillers. The distorted octahedra cover a wide
span of eight Pd-Pd distances (0.278 < dps—pq < 0.353 nm) of which only six
can be considered as next nearest neighbours. All elements, particularly the heavy
elements Pd (or Pt) occupy NCS sites. As a consequence, stronger effects of inversion
symmetry breaking result.

The physical properties, specifically the superconducting state of Lix(Pd;_y
Ptx)3 B, depends on the content of Pt. Although the unit-cell volumes are alike and
there are many similarities between Pd and Pt, their electronic structure turns out to
be distinctly different. The DOS at the Fermi energy, N (EF), increases from 2.24
states/eV in the case of Pd to 2.9 states/eV in the Pt case. Additionally, there are
many more bands in a region within 1 eV below Ef as a consequence of a wider
bandwidth, 7.6 eV in case of Pt and 6.7 eV in the case of Pd [75]. The band splitting
due to ASOC is as large as 200 meV in LioPt3B and about 30 meV for LioPd3;B.

Both ternaries Li;Pd3B and Li>Pt3B exhibit SC below 7 and 2.7 K, respectively
[76, 77, 74, 78]. The distinct differences due to the much larger band splitting in
the case of the Pt-based compound is obvious from the 1/ 77 relaxation times taken
from !'B and '°>Pt NMR experiments derived by Nishiyama et al. [79]. In the case
of Pd, a Hebel-Slichter peak appears around 7' = T as a signature of a fully gapped
DOS in the superconducting state, while such a peak is missing for the Pt-based
compound. Moreover, a T2 dependence is observed below T, pointing to line nodes
of the superconducting order parameter as it is the case in various heavy fermion
SCs (compare also Chapt. 2). An exponential, BCS-like temperature dependence of
1/ T is observed for Li;Pd3B, resulting from a gap in the DOS around Er without
any nodes.

Unconventional SC of Li;Pt3B is also evidenced from 9Pt NMR Knight shift
data [79]. In conventional s-wave SCs the spin susceptibility decreases below 7,
following the Yoshida function, attaining zero at zero temperatures. The Knight
shift of Lio Pt3B is temperature independent for 7 < T, suggesting that we encounter
here not simple spin-singlet superconductivity. Indeed, this behaviour is a strong
indication of unconventional Cooper pairing. The striking difference between
Li;Pt3B and LipPd3;B may be attributed to substantial differences in the spin-orbit
coupling, since Pt has a larger atomic number than Pd. Equally striking is the tem-
perature dependent London penetration depth A, behaving BCS-like (T << T;) in
the case of LioPd3B, but has a linear temperature dependence in Li; Pt3 B [80]. While
the former is a signature of a fully gapped SC state, the latter might be a consequence
of line nodes in the SC gap.

Carbides based on Mo comprise a large body of refractory compounds, where
carbon atoms (in trigonal prismatic or octahedral MogC subunits) occupy a frac-
tion of the interstitial sites either in an ordered or in a random manner. Among
Mo-based carbides for which superconductivity was reported («-MoC at 7, = 9.95
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Energy E-E; (eV)

Fig.1.13 Relativistic electronic band structure along high symmetry directions for Moz Al,C in
the energy range +1. eV around the Fermi energy E . (Figure taken from ref. [82])

K, nMoC at7.57 K, Mo,;BC at 6.33 K and Mo3 Al;C at 9.05 K) the crystal structure of
Moz Al,C is outstanding, since the respective S-Mn type does not possess a center of
inversion [81].

Electrical resistivity, specific heat and NMR measurements classify non-
centrosymmetric Mo3Al,C (filled S-Mn type, space group P4;32) as a strong-
coupled superconductor with 7, &~ 9 K deviating notably from BCS-like behaviour.
The absence of a Hebbel-Slichter peak, a power-law behaviour of the spin-lattice
relaxation rate (from 2’ Al NMR), an electronic specific heat strongly deviating from
BCS model and a pressure enhanced 7, suggest unconventional superconductivity
with possibly a nodal structure of the superconducting gap [82, 83]. Relativistic
DFT calculations [82] reveal a splitting of degenerate electronic bands due to the
asymmetric spin-orbit coupling (compare Fig. 1.13), favouring a mix of spin-singlet
and spin-triplet components in the superconducting condensate, in absence of strong
correlations among electrons. In fact, both Li> (Pd, Pt)3B and Mo3Al,C crystallize
in the very same B-Mn structure, which lacks inversion symmetry along all principal
axes. As a result, ASOC is particularly pronounced presumably driving supercon-
ductivity unconventional.

1.3.5 Pyrochlores A;B,07 and AB,0g

The class of pyrochlores comprises a series of compounds characterized by geometri-
cally frustrated magnetism/spin-ice due to three-dimensional triangular lattices. The
crystal chemical formula for a-pyrochlore is Ay BOgO’ generally abbreviated as
A>B>07. The face centered cubic lattice with space group Fd3m (No. 227) accom-
modates four inequivalent lattice sites, where A occupies the 16d site, B the 16¢
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aCd,Re,0, - I-4m2 KOs,04 - F-43m

Fig.1.14 Crystal structures in three-dimensional view for «-pyrochlore a-Cd; Rey O7 (left panel)
and B-pyrochlore (right panel) KOs;Og; the corner connected octahedra ReOg and OsOg are
outlined

site, and oxygen atoms O are at 48 f and O’ at 8b. The elements A are electropos-
itive from the first, second or third main group whereas B belongs to transition
elements. B-pyrochlores, AOs,Og with space group Fd3m, are formed for A!*
elements when O’ is replaced by K, Cs or Rb, B = Os, and the 16d sites stay
vacant. The defect structure of B-pyrochlore is then given by the ideal formula
[, B0gA’, where [ is a vacancy. The B atom (Os) is octahedrally co-ordinated
by six O atoms such that OsOg octahedra sharing vertices form channels, which host
the A atoms. For a summary of the structural chemistry of the pyrochlore family, see
the review by Subramanian et al. [84]. High-resolution neutron powder diffraction
carried out on «-pyrochlore Cd,Re,O7 [85] revealed symmetry violations below
180 K. Best agreement with the experimental data is achieved for a tetragonal struc-
ture model (a = ag/ V2,¢ = cp) with space group [ 4m2 (No. 119) which lacks
a center of symmetry. Below 120 K the structure of Cd,Re;O7 was indicated to
become more complex; although the small structural distortions gave no clear hints
for a specific space-group symmetry, the low-temperature structure seems to retain
non-centrosymmetry in any case [85]. A closer inspection of the crystal structure of
a single crystal of KOs>Og by Schuck et al. [86] revealed low intensity x-ray reflec-
tions, incompatible with the space group symmetry Fd3m. The best description of
the single crystal X-ray diffraction pattern was claimed to be the cubic NCS space
group F43m (No. 216). Thus, SC in some of the pyrochlores may occur in a NCS
environment. A very recent structure study on KOs, Og confirmed, however, the cen-
trosymmetric Fd3m space group [87]. Symmetry reductions have been reported in
other studies on pyrochlores as well [88, 89, 90, 91, 92, 93] (Fig. 1.14).
Normal-state properties of the pyrochlores [94] are characterised by strong cur-
vatures in the temperature dependence of the resistivity, particularly pronounced in
case of KOsyOg, even at low temperatures. This points towards an extraordinary
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electron-phonon interaction, possibly as a precursor of SC. Except for the K-based
compound, a T%-dependence of p(T') refers to Fermi-liquid behaviour.

Specific-heat measurements reveal enhanced Sommerfeld values y in the range
from 30 to 70 mJ/molK?. The respective values deduced from bandstructure calcu-
lations, however, are constraint to about 10 mJ /molK2 [94].

The coefficient A of the 72-dependence of the electrical resistivity, together with
the Sommerfeld value for the various pyrochlores, fit perfectly into the Kadowaki-
Woods plot [33], grouping primarily in the lower left part of this plot where s-wave
SCs (either isotropic or anisotropic) aggregate. In contrast, SCs with nodal gaps (e.g.,
heavy fermion compounds) are predominantly found in the upper right corner of the
Kadowaki-Woods plot [95].

SC in pyrochlores was discovered for the first time in a-pyrochlore CdaRexO7
with 7, = 1.0 K [96, 97]. Larger transition temperatures have been found in 8-
pyrochlore AOs>Og with 7, = 3.3, 6.3, and 9.6 K for A = Cs [98], Rb [99, 100,
101], and K [102], respectively. This increase is concomitant with a substantial
decrease of the lattice parameter « in the respective compounds [94] and might be a
consequence of a significant enhancement of the electron-phonon parameter A;— pp
together with a rattling mode of the A atom inside the cage-forming structure [103].
Since the B-pyrochlores are, most likely, centrosymmetric in their crystal structure,
the brief discussion of SC is constrained to a-pyrochlore Cd,;Re>O7. The electrical
resistivity of Cd,Re,O7 vanishes at &~ 1 K and the application of magnetic fields
suppress T, at a critical value of about 0.29 T.

Heat-capacity data taken at low temperatures for Cd,Re>O7 result in a Sommer-
feld value y = 30 mJ/molK? and a Debye temperature 0 = 485 K [104]. A distinct
jump of C,, at T, = 0.97 K evidences bulk SC. However, AC, /(y T;) ~ 1.15 is well
below the BCS value of 1.43. C,(T) below T, follows an exponential behaviour,
referring to a node-less behaviour of the superconducting gap. A least-squares fit
reveals 2A /(kpT,) = 3.6, very close to the weak-coupling BCS value. This agrees
with Ag—pn A~ 0.42, derived in terms of the McMillan formula. A fully gapped
BCS-like superconducting state can also be concluded from the '8’Re NQR 1/7;
relaxation rate, exhibiting a Hebbel-Slichter coherence peak at T = T, [105].

The temperature-dependent upper critical field H., follows the WHH curve and
extrapolates to woH:2(0) & 0.29 T. This value is well below the Pauli limiting field
noHp = 2 T. Orbital pair breaking is thus the most reliable scenario constraining
H.,. Consequently, spin-singlet pairs dominate SC of Cd;Re>O7. The electronic
mean free path in Cdy;Re,O7 is much larger than the correlation length £ = 34 nm;
hence SC occurs within the clean limit [104].

1.3.6 Binary T;Gag, T = Rh, Ir

Binary 7,Gag with T = Rh, Ir have recently been shown to exhibit SC below 1.95
and 2.25 K, respectively [106].
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Fig.1.15 Crystal structure Rh.Ga.- Pc: Rh.Ga.-tvpe
of RhrGag with a three 2~ s RhyGag-typ

dimensional network of
corner connected
mono-capped Archimedian
antiprisms Rh[Gag]

Although the centrosymmetric monoclinic crystal structure of CoyAlg (space
group P2;/c; No. 14) is the parent structure type represented by e.g., CopAlg and
RhyAlg [107], the gallides based on Rh and Ir, as a result of differences in inter-
atomic interactions, show small distortions from centrosymmetry best described in
space group Pc (No. 7). This structure is characterized by single-capped square
antiprismatic coordination polyhedra around the transition metals Rh or Ir (see
Fig. 1.15). Corner-connected polyhedra form zig-zag strands parallel to the c-axis. In
the low-symmetry case of gallides, each of the zig-zag strands contains polyhedra of
only one of the two crystallographic independent transition metal atoms [108].
The bond-angle of 165.8° for 7-Ga-T in the case of Ir,Gag and 164.5° for RhyGag
are much smaller than 180°, but comparable, e.g., with 8-Mn type Li>Pt3B. These
substantial deviations from 180° are the reason for the lack of inversion symmetry.
Furthermore, the heavy elements Rh and Ir give rise to strong ASOC.

Electronic structure calculations were carried out for centrosymmetric Ir, Alg and
NCS IrpGag. Results of the DOS show very similar features in both cases. Relatively
small DOS values are found at the Fermi energy Er, about 5 states/eV, indepen-
dent of the material and also independent of the crystal structure assigned [108].
Interestingly, the electronic states at Er originate primarily from Al respectively Ga,
while the 5d states of Ir play only a minor role. Slightly above Er the DOS exhibits
a pronounced local minimum.

SC of RhyGag and IrpGag is observed in resistivity, specific-heat and magneti-
sation measurements. The temperature dependent resistivity is metallic-like and can
be accounted for in terms of a parallel resistance model. The application of external
magnetic fields rapidly diminishes 7, yielding critical magnetic fields of about 200
and 300 Oe for the Rh- and Ir-based compounds, respectively. The field response,
however, is distinctly different in both cases. Field dependent heat capacity data show
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evidence for a second order phase transition in IrpGag, while the application of a
magnetic field changes the type of transition from second to first order in the case
of RhyGag. This demonstrates type-II SC for the former, but type-I SC for the latter.
In fact, the critical magnetic field for RhyGag coincides perfectly with the thermo-
dynamic critical field H.(T) [106]. Improved sample quality in the case of IryGag
[109] also reveals type-I SC, rather than type-II.

Specific-heat data at zero field are indicative of a weak-coupling s-wave BCS SC.
Support for this conclusion follows from Ga-nuclear-quadrupole-resonance (NQR)
measurements [110]. A Hebel-Slichter peak right at 7. and an exponential decrease of
the 1/ T relaxation rate reveal an isotropic gap with 2A(0)/kp T, = 4.4, hallmarks
of BCS SC. Despite the absence of inversion symmetry of the crystal structure, there
is no evidence of any feature in the physical properties characterising unconventional
SC.

1.3.7 Ternary LaNiC,

RNiC, compounds (R = rare earth) crystallize in the NCS orthorhombic CeNiC;
structure type, space group Amm?2 (No. 38). R-atoms in the crystal structure (Ce in site
2b (%, 0, 0.3857) form face-connected triangular prisms Re which are alternatively
centered by either a Ni-atom (in site 2a (0, 0, 0.0) or by a dumbell of C-atoms in
site 4d (0, 0.3447, 0.1775) (see Fig.1.16). The structure of CeNiC, can also be
conceived as a distorted Al B>-type with alternating Ni and C, constituting the boron
net. Whereas R-C, R-Ni and C-Ni distances are close to the sum of metal radii, C-C
distances, dc—c = 0.141(3)nm, indicate strong bonding (although confirmation by
neutron diffraction is desirable) [111]. Depending on the specific rare earth element,
antiferromagnetic ordering with a maximum transition temperature of 25 K (TbNiC»)
is observed [112].

Evidence for bulk SC of metallic LaNiC; is obtained from a variety of measure-
ments at T, &~ 2.75 K. Upon Ni/Cu substitution, 7, unexpectedly increases [113],
a fact that has been interpreted in terms of a volume enlargement, accompanied
by a change of the density of states and electron-phonon coupling strength. Early
specific-heat measurements revealed a 7> behaviour for T < 7, rather than an expo-
nential temperature dependence [114]. However, improved measurements carried
out in a broader temperature range showed a standard exponential BCS behaviour,
with 2A /(kgT.) = 4.62. BCS-type SC was concluded from '*°La-NQR studies as
well from both, a Hebel-Slichter peak around 7, and an exponential temperature
dependence of the 1/T7 rate. A fitto 1/7T; for T < T, reveals 2A /(kpT,) = 3.34
[115].

Very recently, however, Hillier et al [116] observed from muon spin relaxation
studies the appearance of spontaneous intrinsic magnetization in the SC phase starting
at T.. This may be interpreted as a superconducting state with broken time-reversal
symmetry (TRS). In a SC with broken TRS, spontaneous fields arise in regions where
the order parameter is inhomogeneous, such as domain walls and grain boundaries.
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Fig.1.16 Crystal structure LaNiC,- Amm2; CeNiC,-type
of LaNiC, where La-atoms

form triangular prisms which
are alternatively centered by
either a Ni-atom or by a
dumbell of C-atoms

It is unclear so far how to explain this finding within the frame work of the symmetry
classification of pairing states in this material.

Other recently discovered non-centrosymmetric superconducting compounds in
this group are Mg;(Iri9B1s, WRes3, the low charge carrier compound LaBiPt (7, ~
0.9K) [117] and YNiGe3 (T, = 0.46 K) [118], as well as numerous amorphous SCs
like Zr,Cuj_y [119].

Mg oIr19B16 crystallizes in a body centered cubic structure with a lattice parame-
tera = 1.0568 nm and the space group /43m. Each of the elements in the compound
occupies a NCS lattice site. Mgy /719 B1¢ behaves metallic below room temperature
exhibiting a SC transition between 4 and 5 K, depending on the actual stoichiometry
[120]. The extrapolated upper critical field does not exceed 0.8 T; hence it is well
below the standard paramagnetic limit. As a consequence, spin-singlet pairs should
dominate the type-II SC (¢ & 20) [121]. Such a conclusion can be drawn from a
BCS-like temperature dependent heat capacity in the SC temperature range as well.
The relatively large Sommerfeld value y 252 mJ/molK? might be a result of the
large number of atoms in the unit cell counting 90. A modified McMillan formula
[122] reveals Ae;—pn =0.66, thus classifying Mg;oIrj9Bie as a moderate-coupling
SC. The value of the coherence length is £ =206 A and the London penetration depth
is calculated as A =4040 A[121]. Penetration-depth studies [123] of Mg;glri9B¢
denote a further transition or crossover around 0.8 K and an overall low-temperature
response that possibly indicates a two-gap SC, ruling out an isotropic spin-singlet
gap structure, as suggested by specific-heat measurements.

WRej3 is a cubic compound that crystallises in the o-Mn crystal structure (space
group 143m) with a lattice constant a = 9.596 A. SC in intermetallic WRe3 was first
studied in the 1960s. The SC transition temperature was found to be 7, ~ 9 K [124,
125]. A study of the low-temperature susceptibility and heat capacity by Jing et al.
[126] hints at two SC phase transitions, at 7.1 =9 K and 7., =7 K. The Sommerfeld



1 Non-centrosymmetric Superconductors: Strong vs. Weak Electronic Correlations 29

value y = 17 mJ/molK? and 6p = 348 K, revealing Ael—ph =0.74, a value slightly
beyond the weak coupling limit. The temperature dependent specific heat for T < T,
follows the BCS behaviour, suggesting a fully-gapped s-wave SC state. The latter
is entirely supported by temperature dependent penetration depth studies [127]. The
coherence length for WRes is estimated as & ~ 2000 A [127].

1.4 Summary

Non-centrosymmetric superconductors have been identified as an intriguing family of
intermetallics which challenge both theory and experiment. The materials explored so
far can be sub-grouped in classes where strong correlations occur between electrons
(evidenced, e.g., by a substantially large Sommerfeld value) and those which behave
like simple metals. While the latter in each case, except LiPt,B3 and Mo3Al,C,
appear to be textbook-like BCS SCs, the former have attracted much interest because
of a variety of unconventional SC features, such as line nodes in the SC gap function
or the involvement of spin-triplet pairs in the SC condensate.

A generally accepted description relies on the Rashba-type antisymmetric spin-
orbit coupling (ASOC) which lifts the spin degeneracy of electronic bands. If the
ASOC splitting is large, a genuine mixing of spin-singlet and spin-triplet compo-
nents occurs. In fact, the possibility of sizable spin-triplet pairing components in
non-centrosymmetric superconductors is suggested by spin-fluctuation theory, where
NCS spin fluctuations enable spin-triplet paring, while the centrosymmetric fluctua-
tions contribute only to spin-singlet components. Strong electronic correlations, i.e.,
a substantially large Coulomb correlation parameter U, favour such a scenario.
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Chapter 2
Non-centrosymmetric Heavy-Fermion
Superconductors

N. Kimura and 1. Bonalde

Abstract In this chapter we discuss the physical properties of a particular fam-
ily of non-centrosymmetric superconductors belonging to the class heavy-fermion
compounds. This group includes the ferromagnet Ulr and the antiferromagnets
CeRhSij, CelrSij, CeCoGej, CelrGes and CePt3Si, of which all but CePt3Sibecome
superconducting only under pressure. Each of these superconductors has intriguing
and interesting properties. We first analyze CePt3Si, then review CeRhSi3, CelrSis,
CeCoGes and CelrGes, which are very similar to each other in their magnetic
and electrical properties, and finally discuss Ulr. For each material we discuss the
crystal structure, magnetic order, occurrence of superconductivity, phase diagram,
characteristic parameters, superconducting properties and pairing states. We present
an overview of the similarities and differences between all these six compounds at
the end.

2.1 CePt3Si

The enormous interest in superconductors without inversion symmetry started
with the discovery of superconductivity in the heavy-fermion compound CePt3Si
[1], which exhibits long-range antiferromagnetic (AFM) order below the Neel
temperature 7y =2.2 K and becomes superconducting at the critical temperature
T.=0.75K. CePt3Si is the only known heavy-fermion (HF) compound without
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Table2.1 Normal and superconducting parameters of CePt3Si

N. Kimura and I. Bonalde

Crystal structure
Space group
Lattice parameters

Tetragonal
Pdmm
a=4.072 A
c=5.442 A

Sommerfeld value of specific heat at 7,
Effective electron mass (Fermi sheet o)
Mean free path

Antiferromagnetic transition temperature
Antiferromagnetic propagation vector
Staggered magnetic moment mg along
Ordered moment per Ce atom

Superconducting transition temperature
Specific heat jump at 7,

Upper critical field (small anisotropy)
Thermodynamic critical field
Ginzburg-Landau coherence length
Ginzburg-Landau parameter

London penetration depth

Nodal structure

Y =300 — 400 mJ/mol K?
m* ~ 11 — 23 my
1=1200 — 2700 A

Ty =22K

q=(0,0,1/2)

[100]

s =0.16 up

T,=0.75K (or 0.5K ?)
AC [y, T, ~ 0.25
H,(0)~3T
H,(0)=26 mT

£(0) ~ 104 A

k=82

A(0) ~ 0.86 um

Line nodes

inversion symmetry that superconducts at ambient pressure, as opposed to the cases
of CelrSiz, CeRhSiz, CeCoGes, CelrGes and Ulr. The heavy-fermion character has
been established from the large Sommerfeld coefficient y, ~ 0.39 J/K? mol [1].
The coexistence of antiferromagnetism and superconductivity has been proved by
zero-field muon-spin relaxation [2] and neutron scattering [3]. Although CePt3Si
has been intensively studied both theoretically and experimentally many questions
regarding its superconducting state remain unresolved, in part because the observed
properties have some sample dependence. We will focus here on the superconduct-
ing properties of CePt3Si, giving only a brief review on normal state and magnetic
behaviors (a detailed review of these can be found in Refs. [4, 5]).

2.1.1 Crystal Structure, Sample Growth and Characteristic
Parameters

CePt3Si crystallizes in a tetragonal crystal structure with space group P4mm(No.
99) without inversion symmetry [1]. The lattice parameters are listed in Table2.1.
The unit cell has one formula unit with one Ce, one Si and two Pt inequivalent
sites. The absence of inversion symmetry comes from the missing mirror plane
(0,0, %) (see Fig.2.1). The antiferromagnetic lattice has an ordered wave vector
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Fig.2.1 Crystal and [001]
magnetic structures of t
CePt3Si

[100]

(0,0,1/2), with a magnetic moment oriented ferromagnetically along the axis [100]
and antiferromagnetically along the axis [001], as indicated in Fig.2.1.

The melting temperature of CePt3Si is about 1390 °C [6]. An isothermal section of
the Ce-Pt-Si phase diagram at 600 °C was presented by Gribanov et al. [6], who indi-
cated that the interaction of Ce, Pt and Si leads to the formation of at least nine stable
ternary phases. Seven of these ternary phases have a fixed composition. Polycrys-
talline samples of CePt3Si have been grown by argon arc melting and high-frequency
melting and single crystals by the Bridgman and high-frequency techniques. These
samples are usually annealed under high vacuum around 900 °C for 2-3 weeks. Inter-
estingly, the annealing process has been linked to a Si excess [7]. Growing very high
quality single crystals of CePt3Si has taken a long path that has led to the resolution
of most of the problems in identifying the true superconducting properties of this
compound.

2.1.2 Normal State

2.1.2.1 Phase Diagram and Magnetic Properties

Figure2.2 shows the temperature-pressure phase diagram of CePt3Si determined
by specific heat, resistivity and ac magnetic susceptibility measurements [8]. The
antiferromagnetic 7 and superconducting 7, transition temperatures decrease with
increasing pressure and become zero around Psr =0.7GPa and P, =1.6GPa,
respectively.

The phase diagram indicates that there are two distinct superconducting phases:
one below P4r coexisting with the AFM phase and another above P4r being pre-
sumably the only ordered phase. The coexistence of the superconducting and AFM
phases was confirmed by neutron-scattering measurements that clearly show two
superlattice peaks below and above the superconducting critical temperature (see
Fig.2.3) [3]. The observed peaks (0 0 1/2) and (1 0 1/2) correspond to an AFM
vector Qo =(0 0 1/2). The magnetic structure consists of ferromagnetic sheets
of rather small Ce moments of 0.16 up/Ce stacked antiferromagnetically along the



38 N. Kimura and I. Bonalde

Fig.2.2 Temperature— T T T
pressure phase diagram of CePt;Si
CePt3Si showing the ; i
coexistence of the )
R °
antiferromagnetic and e o } c
superconducting phases for 5 o p
pressures below 0.7 GPa [8] s
2 & Xac
g i
[
0 . ; ° -~y
0 | 2
Pressure (GPa)
Ll L] T
(a (b) ‘ g=(00172)
800 _E‘ p=016p,
g L % A 2 lob o
(=" =
8 =
= E SSERRSNERSS
‘= - SceoSo0eCSo
§ = 600} OO OO m—= =iy
= g2
g CePt,Si
[=}
- o 0012 4 mg
a 10172
m 1 1 i 1 ¢
0 2 -
20 (deg.) T(K)

Fig.2.3 a (101/2) AFM Bragg reflection observed below 0.1 K (open circles) and the background
measured at 4.2 K (solid circles). b The intensity of (001/2) and (101/2) magnetic reflections as
a function of temperature, shown by open circles and solid triangles, respectively. Up and down
pointing arrows indicate 7 and 7, respectively [3]

c axis (see Fig.2.1). Here, u p is the Bohr magneton. The small value of the moment
relative to 2.54 pup/Ce of Ce’* may partially be explained through the itinerant
character of Ce 4f-electrons involved in the formation of the heavy quasiparticles. In
parts the reduction of the moment is also due to the Kondo screening effect viewing
these electrons as almost localized moments [1]. In general, the magnetic response
of CePt3Si in the normal state involves also the interplay of crystal electric field
splitting of the 4f-orbitals and Kondo interaction (see, for example, Ref. [5]).

2.1.3 Superconducting State

At ambient pressure superconductivity in CePt3Si appears within a Fermi-liquid
state, as evidenced by quantum oscillations [9] and resistivity measurements [1, 10].
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However, CePt3Si becomes a non-Fermi-liquid under pressure, as indicated by the
linear temperature behavior of the resistivity above 0.4 GPa [10].

Most of the unusual superconducting properties found initially in CePt3Si have
been clarified by now, but others have appeared. First results, like second anom-
alies or a small peak just below the superconducting transition in the NMR 1/T T,
are not observed in the latest measurements carried out on new single crystals.
These early results were associated with sample dependence: sample preparation,
oft-stoichiometry, impurity phases and/or annealing conditions. The new puzzling
feature is a transition temperature that falls sometimes below 0.5 K [11-14].

Several theoretical approaches have been developed to try to understand this super-
conductor [15-19]. The models take into account the splitting of the spin-degenerate
bands caused by the absence of inversion symmetry. Antiferromagnetic order effects
in the heavy-fermion superconductors are also considered [18, 19]. Even though
much experimental and theoretical efforts have been dedicated to clarify its physics,
CePt3Si continues to be the most interesting and challenging of all superconductors
without spatial inversion symmetry.

2.1.3.1 Probing the Pairing Symmetry

Several techniques have been employed to test the Cooper pairing state in non-
centrosymmetric CePt3Si. We will review what has been done thus far.

Spin State

One of the most direct probes of the spin state of the pairing is the ratio of the
superconducting to the normal electron-spin paramagnetic susceptibility, x; and y,,
respectively, which for a spin-singlet pairing state may be written as

ﬁ:—z/mds<w> . 2.1)
0

Xn oL [;

The integration is over &, the energy of the free electrons relative to the Fermi

level, f is the Fermi distribution function, and E =/£2 + A(k)? is the energy of
the quasiparticles. The bracket (- - - ); denotes the angular average. Here, A(k) is the

energy gap that in general depends on the momentum direction k and temperature. For
T << T, theratio xs/x, goes as (1/\/7) exp(—Ao/kpT) for an s-wave pairing
state with an isotropic gap and as T for a d-wave pairing state where the gap has line
nodes (Fig.2.4(a)). Ap is the zero-temperature value of A and kp is the Boltzmann
constant.

For spin-triplet pairing the ratio xs/x, is more complicated and depends on the
field orientation. In the most simple cases, the susceptibility does not change across
the transition if the field is perpendicular to the d vector denoting the spin-triplet
gap function, but decreases continuously down to zero at T =0 if the applied field
is parallel to the d vector (Fig.2.4(b)).
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Fig.2.4 Electronic spin susceptibility expected in a spin-singlet states s-wave and d-wave and
b spin-triplet states. ¢ Experimental electronic spin susceptibility of CePt3Si showing no change
across the superconducting transition for all orientations of the applied magnetic field (upper panel:
H L Z and lower panel H || Z) [20]

In CePt3Si the experimental result of x/x, is puzzling: xs/x, does not change
at all in the superconducting phase for any orientation of the field as shown in
Fig.2.4(c) [20]. Model calculations including a sizable ASOC characteristic for the
non-centrosymmetric CePt3Si predict that for both spin-singlet and spin-triplet states
xs(0)/xn — 1 for fields parallel to the z axis and x;(0)/x, — 1/2 for fields
perpendicular to z [21, 22]. On the other hand, if electron correlations are included,
Xs/xn can be calculated to be constant across the transition independently of the
field orientation [18, 19]. Thus, in CePt3Si spin-susceptibility measurements are not
quite useful to distinguish between spin-singlet and spin-triplet pairings.

The upper critical field H., can also be used to get information about the spin
configuration of a pairing state. A magnetic field induces pair breaking via para-
magnetic and orbital mechanisms. The Pauli paramagnetic limiting field Hp can be
estimated by comparing the (zero-field) superconducting condensation energy with
the Zeeman energy

1 2 |1 2
=(Xn _XS)HP:_ OA(), (2.2)
2 2
where Ny is the density of states at the Fermi energy. The Pauli susceptibility x, is
given by x, = (gi)>No/2, where g is the gyromagnetic ratio. Hp is then derived
as

_ V240
guBT—=xs/Xn
As discussed above, for spin-singlet superconductors x; goes to zero as T — 0.

Then, using the BCS value Ag = 1.76kg T, for a weak-coupling superconductor and
g = 2 for free electrons, we obtain the well-known estimate

Hp (2.3)

HECS = Hp(0) = 1.86T.[T/K]. (2.4)
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This expression is also valid for spin-triplet superconductors if the field is applied
parallel to the d vector. On the other hand, if the field is applied perpendicular to the
d vector x; = x, as T — 0 and Eq.(2.3) yields Hp — oo. This would imply the
absence of the Pauli paramagnetic limiting effect for fields along the ab plane.

Measurements on high-quality single crystals of CePt3Si show a weak anisotropy
for the upper critical field H.,(0) with a value around 3 T (Fig.2.5) [10] that exceeds
the standard BCS weak-coupling paramagnetic limit Hp (0) ~ 1 T.

From Eq.(2.3) and the predictions for x/x, in the non-centrosymmetric super-
conductors, no limiting behavior is expected for fields parallel to the ¢ axis, whereas
Hp(0)= A¢/uup =~ 1.4 T for fields in the ab plane. As mentioned above, modifica-
tions of x, due to correlation effects as well as magnetic ordering could eliminate the
paramagnetic limiting for all field directions [18, 19]. It was also suggested that the
realization of a so-called helical phase for fields perpendicular to the ¢ axis would
strongly reduce paramagnetic limiting effects [23, 24].

The orbital limiting field H,,j is expressed by

Dy

Horb(T) = m,

(2.5)

where @y is the flux quantum. H,,, (T = 0) can be in principle obtained by using the
BCS expression £(0) =0.18hvg/(kgT.), where vg is the Fermi velocity. However,
H,p(T =0) is usually estimated from the formula [25]

Horp(T) = h(T)H,, ... (2.6)

Here, H L/~2 = —dHx»/dT|r=71.. h(0)=0.727 for weak-coupling BCS supercon-
ductors in the clean limit. Using the data of Fig.2.5 we estimate H, ~ —6.8 T/K
and from Eq. (2.6) H5$® ~ 3.7 T. This is about the value of H(0) for both field
orientations, which suggests that CePt3Si may be restricted by the orbital depairing
limit. In such a case the spin-triplet state should be favorable. Both paramagnetic
and orbital mechanisms will be discussed in more detail in Sect.2.2.
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Fig.2.6 Penetration depth in a a polycrystalline sample and b single crystals of CePt3Si.The
linear temperature behavior indicates line nodes in the energy gap. The single crystals used in the
penetration depth measurements shown in b have different defect concentrations, which suggests
that the linear behavior is unaffected by disorder [13]

Nodal Structure

The structure of the energy gap is directly related to the symmetry of the Cooper pair-
ing. The energy gap is isotropic for s-wave spin-singlet superconductors and usually
has zeroes (nodes) for other symmetries. Thus, the determination of the presence of
nodes in the energy gap is crucial to establish pairing with symmetries lower than the
s-wave. The existence of nodes in the energy gap leads to low-temperature power laws
(T™) in several superconducting properties, instead of the BCS exponential temper-
ature response observed for an isotropically gapped excitation spectrum. In CePt3Si
magnetic penetration-depth, thermal-conductivity and specific-heat measurements
show power-law behaviors indicative of line nodes in the energy gap.

A linear temperature dependence of the magnetic penetration depth A(7) below
0.16 T, was first found in a polycrystalline sample of CePt3Si (Fig.2.6(a)) [26],
and later also in single crystals [13]. In the local limit of the electrodynamics of
superconductors, the magnetic penetration depth is given by

S ON TN P —of
e, = lb - fe Gl e

In superconductors with inversion symmetry AA(T) o T is expected in the low-
temperature limit for an energy gap with line nodes [27]. Thus, the linear response
in CePt3Si was taken as evidence for line nodes. Surprisingly, the temperature
response in the penetration depth is not affected by the sample quality, as opposed
to what occurs in unconventional superconductors with line nodes in the gap [13].
Figure2.6(b) displays the low-temperature region of the penetration depth of sev-
eral single crystals of different quality. A clear linear behavior is observed in all of
them. We note that the superfluid density p;(7") shows a small anisotropy [28], in
agreement with the upper critical field result.
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Fig.2.7 Temperature dependence of a thermal conductivity [29] and b specific heat [30] of CePt3Si.
The linear temperature response suggests line nodes in the energy gap

Thermal transport measurements also suggest the presence of line nodes by show-
ing aresidual lineartermink (7)/T as T — 0 (Fig.2.7(a)). In superconductors with
inversion symmetry such a linear term is expected when the energy gap has nodes,
and is due to impurity scattering. The quasiparticle thermal conductivity has universal
components in the low-temperature limit (kg7 < y)

7.[2 ) A yz
Kii:?NOUFT kikim . (28)

that are linear functions of temperature at low 7 and whose proportionality constants
depend on the specific form of the order parameter [27]. y is the quasiparticle decay
rate. In CePt3Si the experimental «(7)/T =0.1 W/(K2- m) is in good agreement
with the calculated universal conductivity limit 0.09 W/(K2- m) [29]. Moreover, the H
dependence of «x follows the prediction by a theory of Doppler-shifted quasiparticles
in a superconductor with line nodes [29, 31].

In the low-temperature limit the electronic specific heat of CePt3Si has been
found to follow the expression Co;/T = A + BT, with A=34.1 mJ/(K2- mol) and
B =1290 mJ/(K3- mol) (Fig.2.7(b)) [30]. In general, the electronic specific heat is
given by [27]

_ > of
C.1=2Ny /_Oo d& <Ek3Ek >l2 . (2.9)

For superconductors with inversion symmetry, in the low-temperature limit C¢; oc T2
for a gap with line nodes. The residual linear term in C,;/ T of CePt3Si is considered
to be caused by impurities or by electrons on part of the Fermi surface that do not
participate in superconducting. Thus, the observed behavior of the electronic specific
heat is taken as evidence for line nodes in the energy gap [30].

For a theoretical discussion on line nodes in non-centrosymmetric superconduc-
tors, see other chapters in this book.
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2.2 CeTX3 Compounds

2.2.1 Crystal Structure and Related Compounds

Most CeTX3 compounds crystallize in the BaNiSn3-type tetragonal structure with
space group I4mm (No.107) [32]. The BaNiSns-type structure derives from the
BaAly-type structure whose basic frame is the body-centered tetragonal lattice shown
at the top in Fig.2.8. There are two other derivatives of the BaAls-type structure,
the ThCr,Si» and CaBe;Ge, types. Some heavy-fermion superconductors crystal-
lize into the former structure: e.g. CeCu,Sis [33], CeCurGe; [34], CePd,Sis [35],
CeRh;Si; [36] and URu,Si; [37]. The latter structure is often found in RPt; X, com-
pounds [38], where R denotes a rare-earth element. The ThCr;Si;— and CaBe,Ger—
type structures have an inversion center, while the BaNiSn3-type structure does not.
Fig.2.8 displays the BaAly-type crystal lattice and its three derivatives.

The atomic framework of the BaNiSns-type structure can be alternatively dis-
played as a sequence of planes of the same atoms R — 7 — X(1) — X(2) — R —
T — X(1) — X(2) — R along the ¢ axis of the tetragonal structure, where 7 and X
denote a transition metal and Si/Ge, respectively. The point group of the BaNiSn3-
type structure is Cy,,, which lacks the mirror plane and a two-fold axis normal to the
c axis (z axis). Therefore, a Rashba-like spin-orbit coupling exists in this system, as
it does in CePt3Si that also belongs to Cy, [1].

Of the CeTX 3 compounds, the series CeT Si3 (T = Co, Ru, Rh, Pd, Os, Ir and Pt)
and CeT Ge3 (T = Fe, Co, Rh and Ir) are known to crystallize in the BaNiSn3-type
structure. Among these, CeRhSi3 [39], CelrSiz [40], CeCoGes [41] and CelrGes
[42] have been found to be pressure-induced superconductors. Single crystals of
CeRhSi3 and CelrSis, as well as of CeRuSi3 [43], can be obtained by the Czochralski
pulling method in a tetra-arc furnace using a pulling speed of 10 mm/h or 15 mm/h.
In these compounds annealing treatments at 900 °C, in vacuum, for a week are
usually very effective. Notably, for CeRhSi3 the use of stoichiometric amounts of
the components sometimes yields a different crystal; e.g., CeRhSi;. To obtain a
crystal of CeRhSi3 an off-stoichiometric composition, typically Ce:Rh:Si = 1:1:3.3,
works better. Single crystals of CeCoGes are obtained by the Bi-flux method (the
Czochralski method is unsuitable) [44]. In this procedure, arc-melt-prepared ingots
of CeCoGes and Bi are placed in an alumina crucible and heated up to 1050 °C in
an argon atmosphere. After keeping this temperature for a day, the crucible is cooled
down to 650 °C over a period of two weeks and then down to room temperature
rapidly. Single crystals of CeRhGe3 can also be obtained by the Bi-flux technique
[43]. Single crystals of CelrGes are grown by the Bi- and Sn-flux methods [42, 43].

Other CeTX3 compounds with BaNiSn3-type structure are CeT Alz (T = Cu,
Au) and CeAuGaz. They order magnetically at low temperatures [45, 46, 47, 48,
49]. In particular, CeCuAl3 and CeAuAls are suggested to be HF compounds with
AFM ground states [46] and have the potential to become non-centrosymmetric HF
superconductors. There are at least two Ce7TX3 compounds that do not have the
BaNiSn3-type crystal lattice: CeNiGes, which has an orthorhombic structure and
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Fig.2.8 BaAly-type crystal structure and its three derivatives TrCr,Si, BaNiSnz and CaBe,Ge;.
Only the BaNiSn3-type structure does not have an inversion center

exhibits superconductivity under pressure [50], and CeRuGes, which is reported to
have either orthorhombic [51] or cubic structure [52].

On the other hand, no uranium-based compound (U7X 3) has been fully confirmed
to have the BaNiSn3-type structure. Only UNiGas, that exhibits AFM order at 39 K,
seems to have this structure [53].

Last, we briefly comment on non-heavy-fermion La7X3 compounds. Some of
them, like LaRhSi3, LalrSi3 and LaPdSis3, also have BaNiSn3-type structures and
show superconductivity at the critical temperature 1.9, 0.9 and 2.6 K, respectively
[32, 54, 55]. In these materials, however, no evidence for unconventional behavior
has been observed [54].

2.2.2 Normal State

2.2.2.1 Magnetic Properties

The CeTX3 compounds exhibit various magnetic ground states as summarized in
Table2.2. The magnetic ground states vary from AFM to intermediate valence
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Table2.2 Unit-cell volume (V), magnetic ground state, electronic specific-heat coefficient y,,,
ordering temperature (T ), Weiss temperature (® ) and effective moment (jL 75 ) for the BaNiSn3-
type CeTX3 compounds

Compound a c Vv Magnetism y,, Tn ©p ey Ref.
(Al Al [A% [mJ/mol-K?] [K] (K] [u]
*CeT Si3
CeCoSiz  4.135 9.567 163.6 PM(V) 37 - —840 2.80 [59]
CeRuSiz  4.21577 9.9271 176.43 PM(IV) - [43]
CeRhSiz  4.269 9.738 177.5 AFM(HF) 110 1.6 —128 2.65 [60, 55]
4237 9.785 175.7 [61]
CePdSiz  4.33 9.631 180.6 AFM 57 5.2/3 —26 2.56 [62,55]
CeOsSis PM(V) [63]
CelrSi3 4252 9715 175.6 AFM(HF) 120 5.0 —142 2.48 [60, 55]
CePtSi3 43215 9.6075 179.42 AFM 29 4.8/2.4 [64]
*CeT Ges
CeFeGes 4.332 9955 186.8 PM(HF) 150 - —90 2.6 [65]
4.3371 9.9542 187.24 [66]
CeCoGes 4.320 9.835 183.5 AFM 32 21/19 —51 2.54 [59]
4319 9.829 1833 21/12/8 [44]
CeRhGes 4.402 9993 193.6 AFM 40 14.6/10/0.55 —28 2.53 [60]
43976 10.0322 194.01 14.9/8.2 [43]
CelrGes; 4409 10.032 195.0 AFM 80 8.7/4.7/0.7 —21 2.39 [60]
4.401 10.024 194.2 8.7/4.8 [43]

The abbreviations PM and AFM denote paramagnetic and antiferromagnetic ground states, respec-
tively. The abbreviations IV and HF denote intermediate-valence and heavy-fermion states, respec-
tively. We consider compounds with y, > 100 mJ/mol-K? to be heavy-fermion systems

(IV) through HF states with decreasing unit-cell volume V. For example, CeCoGes

(V=183.3 10\3) displays an AFM ground state [44, 56, 57], while CeCoSij3
(V =163.6 A3) is thought to be an IV compound [58].

Figure 2.9 shows the Néel temperature T and the electronic specific-heat coeffi-
cient y;, as a function of unit-cell volume for CeTX3 in which T belongs to the Group
9 (Co, Rh and Ir) in the Periodic Table [43]. Ty approximately follows a simple

curve which peaks at 186 A3. This behavior supports the Doniach model in which
the on-site Kondo effect dominates over the inter-site RKKY interaction with the
coupling constant J being effectively enhanced relative to the kinetic energy with
decreasing unit-cell volume [43]. y,, is also described by a simple curve which peaks

at the unit-cell volume 176 A” at which T goes to zero, suggesting that the y,, value
is enhanced by the magnetic fluctuation arising at the corresponding volume.

Besides the Group 9 (Co, Rh, Ir) compounds, one can consider CeFeGe;s to be
a potential superconductor because its ¥, is comparable to those of CeRhSi3 and
CelrSiz. However, in CeFeGes superconductivity has not been observed down to
0.05K [65].
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Fig.2.9 Unit-cell volume dependence of a the Néel temperature and b the y,, value in Ce7Si3 and
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CeRhSi3

As shown in Figs.2.10(a) and 2.11(d), the magnetic properties of CeRhSi3 are
anisotropic especially at low temperatures [55, 67]. The induced magnetization along
the easy axis [100] has a quite small value of 0.1 pp at 7 T. The magnetic susceptibility
curves for H parallel to the a and ¢ axes show a strong anisotropy at low temperatures,
while they obey the Curie-Weiss law above about 150 K. The effective moments piqf
for both field directions are 2.65up, which is close to the expected value for the
Ce* ion. The Weiss temperatures are negative and very large (—112 and — 160 K
for H parallel to the a and ¢ axes, respectively), as often found for IV compounds.
The susceptibility for H || ¢ has a broad peak around 50K that is characteristic of HF
compounds.

From the jump of the specific heat at Ty, the magnetic entropy gain is estimated
to be only 12% of RIn2 [60]. The AFM state is robust against a magnetic field
(Fig.2.12(a)) and survives up to 8 T, although such a strong field should be sufficient
to suppress an AFM state with a low T of the order of 1 K. The temperature and
height of the specific-heat peak decrease with increasing field along the easy axis
(H || @). The magnetic contribution to the specific heat when the field is aligned with
the hard axis (H || ¢) does not change even at 8 T [67]. The tiny entropy gain and the
insensitivity to a magnetic field are attributed to the strong Kondo screening of the
4f electron. The Kondo temperature is estimated to be about 50K [60].

The magnetic structure at ambient pressure is revealed by neutron experiments to
be a longitudinal spin-density-wave (LSDW) type characterized by the propagation
vectors Q = (£0.215, 0, 0.5) with polarization along the a* axis [69]. The magnetic
structure is shown in Fig.2.13. The staggered moment 0.13 pp is quite small [70].
The incommensurate LSDW structure with such a strongly suppressed moment sug-
gests that itinerant-electron magnetism is realized in CeRhSi3z. The 4f electrons are
expected to be strongly hybridized with the conduction electrons through the Kondo
effect, leading to the formation of the SDW state caused by nesting of the Fermi
surface.

It is not obvious whether this magnetic structure persists under pressure. In the
pressure-dependent specific-heat curve, a shoulder-like transition is seen below 7Ty
at a pressure of 0.55 GPa [71]. The origin of the transition is unclear at present.
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Fig.2.10 Magnetization curves of CeRhSi3, CelrSi3, CeCoGes and CelrGes [44, 55, 68]

Considering that multiple magnetic transitions are observed in other magnetic Ce7X3
compounds, the magnetic structure realized in CeRhSi3 at ambient pressure may
change under pressure where superconductivity appears.

The electrical resistivity below Ty can be fitted by an antiferro-magnon model
[72]. At sufficiently low temperatures (7' < 0.6 K), the resistivity follows the
Fermi-liquid description of p(T) = po + AT?, where pg is the residual resistivity.
A =0.19 £ - cm/K? for the current J along the a axis and A = 0.24 u$2 - cm/K? for
J || c. Theratios A/y?> =1.6x 107 (J | @), 2.0 x 1073(J | ¢) u2-cm - K% - mol -
mJ~2 arecloseto 1x10734Q-cm-K?-mol-mJ~2 as given by the Kadowaki-
‘Woods relation [73].

CelrSi;

Although the magnetic structure of CelrSi3 is unknown at present, the specific heat,
magnetic susceptibility and electrical resistivity are similar to those of CeRhSi3. The
magnetization curve is anisotropic and a is the easy axis (Fig. 2.10(b)) [68]. The mag-



2 Non-centrosymmetric Heavy-Fermion Superconductors 49

@os . (b)> :
CeCoSi, CeCoGey
% A ]
©os :
E CeRuSi; 1
3 J
5
2
=
(

0 100 200 300 00 100 200 300
Temperature ( K )

Fig.2.11 Magnetic susceptibility of Ce7X3 compounds as a function of temperature [43]

netization increases almost linearly with magnetic field. Neither a saturation behavior
nor metamagnetic transitions are observed for fields in the basal plane up to 50 T.
The induced magnetization is very small and comparable to that of CeRhSi3; 0.1 p
at 10 T for the easy axis. The temperature dependence of the magnetic susceptibility
is anisotropic at low temperatures (Fig.2.11(g)) [40, 68].

The entropy gain associated with the AFM transition is small, 0.2R1In2, asin
CeRhSi3 (Fig.2.12(b)) [68]. The AFM state is robust against a magnetic field, as
shown in the inset of Fig.2.10(b). The electrical resistivity below Tx can be fit-
ted by an antiferro-magnon model as done in CeRhSiz. The coefficient of the
T2 term A=0.04 4 - c/K? for J || ¢ and J L ¢ [68] is about one fifth of
the coefficients of CeRhSi3. The ratio A/)/n2 =3.6x107%.Q-cm-K?-mol-mJ 2 is
much smaller than the ratios in CeRhSij3 but still in the range of the Kadowaki-Woods
relation.

CeCoGe;s

Unlike CeRhSi3 and CelrSiz, CeCoGes exhibits three successive AFM transitions
[44]. Correspondingly, the magnetization for H | ¢ shows three-step metamag-
netic transitions. It reaches M /4, Ms/3 and M, whereM; =0.43p/Ce, at each
transition. The anisotropic magnetization curve indicates an Ising-like magnetism



50 N. Kimura and I. Bonalde
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with the easy axis along the ¢ axis, which is different from what is found in
CeRhSi3 and CelrSi3 as seen in Fig.2.11.

The neutron-diffraction experiments revealed that the magnetic structure of
the ground state at ambient pressure consists of two components with dominant
q1 =10, 0, 1/2) and subordinate g, = (0, 0, 3/4) [74]. Figure 2.14 shows a possible
magnetic structure of the g; sublattice. The magnetic moments are parallel to the
c axis and alternate in the up-up-down-down sequence. The magnitude of the mag-
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Fig.2.14 Possible magnetic
structure for g1 = (0, 0, 0.5)
sublattice in the ground state
of CeCoGes [74]

netic moment in the sublattice w1 is estimated to be 0.5(1)up. A more complete
magnetic structure that includes the g, sublattice is not clear at present.

The magnetic susceptibility of CeCoGes does not show a peak or a saturated
behavior at low temperatures as observed in CeRhSi3 and CelrSiz. Specific heat
measurements revealed that the entropy gain reaches 68% of RIn2 at Ty = 21K
and that 32% of entropy loss is recovered at 38 K. The magnetism of CeCoGej3 is
basically understood in terms of localized 4f electron.

CelrGes

The magnetic structure of CelrGes seems to be more complicated. There are two
successive magnetic transitions at Ty =8.7 K and Ty, =4.8 K. The former is
antiferromagnetic and the latter is unknown although magnetization measurements
indicate weak ferromagnetism with a small moment below Tx»> (see Fig.2.10(d)).
A parasitic ferromagnetism due to the Dzyaloshinsky-Moriya interaction caused by
the broken space inversion symmetry is discussed in Ref. [43]. Ty merges into Ty
with the application of pressure (see Fig.2.15(d)).

2.2.2.2 Temperature-Pressure Phase Diagram

All known CeTX3 superconductors need pressure to become superconducting. The
temperature-pressure (7-P) phase diagrams of CeRhSi3 [72], CelrSi3 [75], CeCoGe3
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Fig.2.15 Temperature-pressure phase diagrams of CeRhSi3 [72], CelrSiz [75], CeCoGes [77]
and CelrGes [42]. T* in panel a denotes an anomaly observed in the resistivity and magnetic-
susceptibility measurements [39]

[76] and CelrGes [42] are shown in Fig.2.15. In CeRhSi3, the Néel temperature Ty
initially increases and subsequently decreases with applying pressure, while those
of CelrSi3 decreases monotonically with pressure. The Ty (P) of CeCoGes and
CelrGes exhibits step-like decreases probably relevant to successive magnetic phase
transitions observed at ambient pressure. The superconducting transitions of these
four compounds are observed at pressures at which the AFM order still exists. We
define here three characteristic pressures: P, where Ty = T, P} where Ty — 0
and P5* where the superconducting transition temperature 7. reaches a maximum.
The values of these pressures are summarized in Table 2.3. P’ of CeRhSi3 is unclear
because Ty does not decrease steeply near Pj".

The resistivity drop at the superconducting transition of CeRhSi3, CelrSiz and
probably CeCoSi3 has its sharpest form at P5". The resistivity drop in the AFM phase,
especially far below Py, is very broad. In this pressure region, the drop width depends
on the applied current [39, 75]. These observations imply that superconductivity
is inhomogeneous or fluctuating in the antiferromagnetic state and is optimum at
P3". Such a phenomenon is found in centrosymmetric HF superconductors as well
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Table2.3 Normal and superconducting parameters of Ce7X3 compounds

CeRhSi3 CelrSis CeCoGes CelrGe;s
Crystal structure Tetragonal
Space group H4mm
a[A] 4.237 4252 4.320 4.401
c[A] 9.785 9.715 9.835 10.024
¥, [mJ/mol- K?] 110 120 32 80
m*[mo] 4-19 N/A N/A N/A
11A] 2400 — 3400 N/A N/A N/A
Ty [K] 1.6 5.0 21/12/8 8.7/4.8
q (£0.215,0,0.5) N/A (0,0,1/2) (0,0,3/4) N/A
mg orientation [001] [001] [100] [100]?
uslup/Cel 0.13 N/A 0.5 N/A
P (GPa) 2.4-2.5 2.25 5.5-5.64 > 21
P5 (GPa) ? 2.50 55-5.74 ~24
Py (GPa) 2.65 2.63 5.7¢ or 6.5¢ > 24
T. @P; K] 1.09 156 —1.59  0.66¢ or 0.69¢ > 16
AC/yn T, N/A 5.7 N/A N/A
H2(0) [T]1(H | ¢) 30 £2¢ 45 £ 10¢ 22 +8/¢ 27+ 10
H:(0) [T (H L) 7.5b 9.5¢ N/A N/A
£0)[A] (H | ¢ ~ 33 ~27 ~ 39 ~ 35
H', [T/K] (H || ¢) 23b 17¢ 204 16"
H!, [T/K](H Lc) 27° 14.5¢ N/A N/A

£(0) isestimated from Eq. (2.5). Here, we regard H.» (0) for H || ¢ as H,,p; thatis, the paramagnetic
pair-breaking effect is absent. P", P;" and P5" are the pressures at which Ty =T, Ty — 0 and T
reaches a maximum, respectively. q, mqg and g denote magnetic propagation vector, magnetic
moment and value of ordered moment, respectively, and H sz = —dHy/dT|r =7,

¢ at 2.85 GPa

b at 2.6 GPa

¢ at 2.65 GPa

4 determined from heat-capacity measurements[77].

¢ determined from electrical-resistivity measurements [43].

/ at 6.5 GPa

8 estimated from Fig. 2.25.

" at 24 GPa

and, thus, seems to be realized irrespective of the presence or absence of inversion
symmetry.

A similar evolution of superconductivity in the AFM state is seen by the heat
capacity C (Fig.2.16). The heat capacity jump (AC) at the superconducting transi-
tion below P|" is small and broad, while it becomes sharper with increasing pres-
sure and is strongly enhanced above P} [75]. In CelrSiz, as shown in Fig.2.16,
AC/C,,where C, is the normal state value just above T, reaches 5.7 £ 0.1 at
2.58 GPa, which is much larger than the 1.43 value expected from the weak-coupling
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Fig.2.16 Temperature dependence of the ac heat capacity C,. (circles, left side) and the electrical
resistivity p (lines, right side) at several pressures in CelrSi3. The dotted line in the panel at 2.58 GPa
indicates the entropy balance below T, [75]

BCS model and is probably the highest value among all known superconductors. On
the other hand, the jump of the heat capacity associated with antiferromagnetism
diminishes when approaching P, and is no longer observed above P*. Apparently,
the entropy gain of the AFM transition is transferred to the superconducting one.

2.2.2.3 Quantum Criticality and Non-Fermi Liquid

Superconductivity in f-electron materials often appears in the vicinity of a quan-
tum critical point (QCP) at which the magnetic ordering temperature is reduced to
zero by a nonthermal control parameter such as pressure, magnetic field, or chem-
ical substitution. Often, a QCP accompanies the emergence of a non-Fermi liquid
in which the temperature dependence of some physical properties obeys different
behavior from that expected in the Fermi-liquid theory. As shown in Fig.2.17,
the electrical resistivity changes from the Fermi-liquid prediction p(7T) = po +
AT? below Pf to p(T)=po + A'T above P/ in CeRhSi3 and CelrSi3
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[40, 72]. A similar crossover occurs in CeCoGes at 6.9 GPa [43]. The T-linear depen-
dence of the resistivity agrees with the prediction by the 2D spin fluctuation theory
as indicated in Table 2.4. On the other hand, in CelrSiz 1/ 71-NMR measurements in
the normal state reveal a /T dependence at 2.7 GPa for H L ¢. This supports a pre-
diction for 3D AFM fluctuations in this system: 1/ Ty o< T/xo(T) o< T//(T + 6)
[78]. Here, xo(T), the staggered susceptibility with the AFM propagation vector Q,
follows the Curie-Weiss law and 6 measures the deviation from the QCP. The spe-
cific heat divided by temperature C/T of CelrSi3 is estimated to be enhanced almost
linearly with decreasing temperature from consideration of the entropy balance [75].
The enhancement of C/T is consistent with the spin fluctuation theory, even though
from theory we cannot determine the proper dimensionality. The contradiction in the
temperature responses of p and 1/77 remains unsettled.

In general, it is unclear whether or not a QCP truly exists in Ce7X3, since the AFM
transitions above P|" are prevented or masked by superconductivity. For example, the
specific heat jump associated with the AFM transition seems to disappear suddenly
just above P} in CelrSi3 as mentioned above. This suggests that the QCP exists
neither at P’ nor at higher pressures. However, this does not necessarily indicate that
magnetic fluctuations vanish at these pressures. The fact that the maximum 7, and the
sharpest resistivity drop take place at P5" implies that magnetic fluctuations survive
even above P} and rather develop toward P5. Assuming that magnetic fluctuations
stabilize the superconducting phase and become stronger at the QCP, P35 should be
regarded as a virtual QCP.

In the vicinity of the QCP some pressure-induced HF superconductors display a
strong enhancement of the effective mass of the conduction electrons; namely, via
the y, value and the coefficient A of the T2 term of the electrical resistivity [79-
81]. In the cases of CeRhSi3 and CelrSi3, however, such an enhancement is less
obvious. The coefficient A in CeRhSi3 is almost constant up to Pl* [72] and the y;,
value in CelrSij is suggested to be unchanged up to P35 [75]. On the other hand, the
coefficient A in CeCoGej is strongly enhanced from 0.011 € - cm/K? at ambient
pressure to 0.357 12 - cm/K? at 5.4 GPa. In CelrGes p(T') exhibits a complicated
pressure dependence (as shown in Fig.2.18) that makes unclear how A varies with
pressure. The drastic changes at certain pressures between 8.6 GPa and 17 GPa
may be associated with the step-like decrease of T (P) around 13 GPa as seen in
Fig.2.15(d). The residual resistivity becomes maximum at a pressure near 17 GPa.
Since such an enhancement of residual resistivity can be a signature of critical valence
fluctuations [82], a valence transition or crossover may take place around 13 GPa in
CelrGes.

2.2.3 Superconducting State

2.2.3.1 Anisotropic Upper Critical Field: Two Limiting Fields

Thus far, the most interesting phenomenon in the Ce7X3 superconductors is the
extremely high anisotropy in the upper critical magnetic field H.,, with stunningly
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Fig.2.17 Temperature dependence of the resistivity of a CeRhSi3 [72], ¢ CelrSiz [40] and
d CeCoGes [43]. b Resistivity against 72 in CeRhSi3

Table2.4 Theoretically

. o o 1/Th Cc/T

predicted quantum critical
behavior for 3D and 2D 3D AFM 3?2 T/VT +6 Const. — T/
antiferromagnetic fluctuations 2D AFM T T/(T +06) —InT
and corresponding CeRhSi3 T[39]
temperature dependence on CelrSis T[40] T/ JT +0[78] T?(75]
CeTX3 compounds CeCoGes T[43]

CelrGes T [42]

high values for fields along the ¢ axis. In CeRhSi3 and CelrSis, for example, H.»
exceeds 30 T along the ¢ axis, whereas falls below 10 T along the plane. Considering
that in these materials 7T is of the order of 1 K, this leads to very high H.,/ T, ratios
not known previously for any centrosymmetric superconductors (except for field-
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Fig.2.18 Temperature dependence of the resistivity of CelrGes at several pressures up to 24 GPa
below room temperature (/eff) and below 20 K (right) [42]

induced superconductors like URhGe [83] and organic superconductors [84]). The
strong field anisotropy and the extremely high H,s are thought to be understood
in terms of the anisotropy of the paramagnetic pair-breaking effect characteristic of
non-centrosymmetric (Rashba-type) superconductors.

There are two pair-breaking mechanisms for Cooper pairs under magnetic fields:
the paramagnetic and the orbital. The former mechanism is attributed to the spin
polarization due to the Zeeman effect, which competes with the antiparallel-spin
formation of the Cooper pair in spin-singlet superconductors. The influence of the
paramagnetic effect depends on the symmetry of the Cooper pairs, as discussed later.
On the other hand, the orbital effect is ascribed to the orbital motion in a magnetic
field. The influence of this effect is thought to be independent of the pairing symmetry.
The magnitude of H.,(0) is consequently restricted by both the paramagnetic (Pauli-
Clogston-Chandrasekhar) limiting field Hp and the orbital limiting field H,,; [85].
Hereafter, we call Hp the Pauli limiting field for simplicity.

Pauli-Clogston-Chandrasekhar Limit

The paramagnetic effect in spin-singlet and spin-triplet pairing symmetries is illus-
trated schematically in Fig.2.19. In centrosymmetric superconductors, the up-spin
and down-spin bands of the conduction electrons are degenerate in zero field. The
corresponding Fermi surfaces are also degenerate. The presence of a magnetic field
inflates and deflates the down-spin and up-spin Fermi surfaces, respectively, due
to the Zeeman effect. When the Cooper pair consists of antiparallel spins, e.g. the
conventional singlet pair, the paramagnetic pair breaking occurs on the whole Fermi
surface. When the Cooper pair comprises parallel spins, namely the triplet pair, the
paramagnetic pair breaking does not occur, therefore the Pauli limit is absent. Since
the spin direction of the Cooper pair is always aligned to the magnetic field, both
cases are independent of the field direction unless the coupling between the orbital
and spin parts of the pairing function is present.
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Fig.2.19 Two-dimensional Fermi surfaces for centrosymmetric and non-centrosymmetric super-
conductors at zero and finite fields. The centrosymmetric superconductors can be classified into
parallel- and antiparallel-spin pairs. In the non-centrosymmetric superconductor, only the Rashba
type is displayed. The hollow arrows indicate a pairing no longer allowed. In the antiparallel-spin
pair including the conventional singlet pair, the pair breaking occurs on the whole Fermi surface
under magnetic fields. On the other hand, in the parallel-spin pair, all the pairing persist. In the
Rashba-type superconductor, pair breaking occurs only for the pairs parallel to the applied mag-
netic field. When the magnetic field is applied along &, pair breaking does not occur

In non-centrosymmetric superconductors, the up-spin and down-spin Fermi sur-
faces are not degenerate even in zero field. In the Rashba-type (tetragonal) super-
conductors, the spins are perpendicularly aligned with the momenta in the k, plane
(Fig.2.19) by the spin-orbit coupling, yielding a momentum-dependent effective
magnetic field. The presence of an applied magnetic field along the k, direction
inflates and deflates the Fermi surfaces only along the ky direction, since the spin
component perpendicular to the k, direction is not affected by this field. The paramag-
netic pair-breaking effect is thus partial for field along the k, plane. On the other hand,
when the magnetic field is applied along the &, axis, the paramagnetic pair-breaking
effect is absent because all the spins aligned with the &, plane are perpendicular to the
field direction. The strongly anisotropic H.»(T), with high H.(0) for H || c, real-
ized in CeTX3 compounds is attributed to the anisotropic spin susceptibility expected
to appear in non-centrosymmetric superconductors as discussed above in Spin State,
Sect.2.1.3.1.

Figure 2.20 shows H.(0) versus T, for CeTX3 compounds and some well-known
HF superconductors. The dashed line indicates HECS (see Eq.2.4). The H»(0) of
the U-based superconductors UGe,, URhGe and UPt3 exceeds H}?CS. These super-
conductors are thought to form a parallel-spin pairing free from the paramagnetic
pair-breaking effect. In some spin-singlet superconductors H.,(0) is located above
the HECS line, which seems a contradiction. Two possibilities have been proposed:
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one is areduction of the g-factor and the other is an enhancement of Ag due to a strong-
coupling effect. H.2(0)s of CeTX3 compounds do not only exceed the H ECS line, but
also surpass those of all other materials. To understand the high H., of the CeTX3
compounds, it is necessary to consider the orbital pair-breaking effect that we discuss
next.

Orbital Limit

As we discussed above, the orbital limiting field can be estimated from Eq. (2.6).
The value 1(0) depends on both the ratio £(0)/! and the strong-coupling parameter
A (I: mean free path). In the weak-coupling limit (A = 0), namely the BCS model,
h(0) = 0.727 for (£(0)/I) — 0 (clean limit) and /#(0) =0.693 for (£(0)/]) — oo
(dirty limit). Most HF superconductors satisfy the clean limit. In the strong-coupling
limit (A —> ©0), h(0) approaches 1.57 for clean superconductors [86] and increases
with X for dirty superconductors. It is noted that the A dependence of % is usually
derived on the basis of the conventional electron-phonon model, but that in HF
systems a corresponding electron-magnon approach should be employed since it is
generally believed that the attractive interaction leading to Cooper pairs arises from
coupling to spin excitations.
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The H.>(0)sinFig.2.20 are plotted against H/, 7. in Fig.2.21. The dashed and dot-
ted lines indicate the orbital limiting fields at A = O (weak-coupling limit) and A — oo
(strong-coupling limit) for clean superconductors; that is, Hfrgs =0.727H,T.
and H =1.57TH/,T,, respectively. Some parallel-spin, namely triplet, supercon-
ductors like UPt3 and URhGe are located just below H fr(lgs. The compounds located
far below the HECS line in Fig.2.20, e.g. UNibAl; and CeRh,Siy, are seen in
the vicinity of the Hfr%s line in Fig.2.21. The H.,s of these compounds may be
mainly restricted by the orbital limit rather than by the Pauli limit. CePt3Si is also
located near the Hf;%s line. Considering that H, is almost isotropic in CePt3Si [10],
it may be also mainly constrained by the orbital limit rather than by the paramagnetic
one.

The H.s of the CeTX3 compounds for fields along the ¢ axis well exceed the
H 3%5 line. They seem to be close to the strong-coupling limit /7, . Although the high
H./(H c/z T.) is acommon feature in the Ce7X 3 HF superconductors, it is not obvious
that such a result can be associated with their non-centrosymmetric crystal structures.
Note that UGe; also seems to be above the Hfrgs line, but this is due to the jump of
the H,; curve attributed to the metamagnetic transition [87, 88]. Therefore, this plot
does not necessarily indicate that the intrinsic H.2(0) of UGe;, exceeds the H BCS

. orb
line.
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2.2.3.2 Upper Critical Field for ¢ Axis

In addition to the high values of H.,(0), the upward shape of the temperature depen-
dence of H.,(T) for certain pressures seems to be also a characteristic of the CeTX3
superconductors [43, 54, 72]. They mostly keep a positive curvature (d* H,> /dT*>0)
down to relatively low temperatures; for example, in CelrSiz down to 7 = 0.25T,
at 2.6 GPa (Fig.2.23). Interestingly, the curve shapes of CeRhSi3 and CelrSiz vary
with pressure in a complex manner. As for CelrSi3, a positive curvature is seen up
to 2 GPa that gradually changes to a negative curvature at 2.4 GPa to a quasi-linear
shape at 2.3 GPa. At2.6 GPa and 2.65 GPa, a positive curvature is recovered that turns
to a negative one at higher pressures. Similar behavior is seen in CeRhSi3. Below
and above 2.6 GPa, the curvatures of H.»(T) are positive. At 2.6 GPa, a quasi-linear
change of H.»(T) is observed. Because of the lack of sufficient pressure data, it is
not clear whether such a phenomenon is realized in CeCoGe3 and CelrGes.

In order to understand the superconducting phase diagram of the CeTX3 com-
pounds the pressure dependence of H.,(0) will be very helpful. Fig.2.22(c) shows
H:(0) versus pressure in CelrSiz [54]. H.2(0) increases with pressure and tends
to diverge close to 2.65 GPa (~P5"). Above 2.65GPa it falls steeply to half or less
of the value of the maximum H.;(0). It is pointed out that such an acute enhance-
ment of H.(0) can be interpreted as an electronic instability arising at P3 [54]. This
instability can cause a mass enhancement of the conduction electrons, giving rise to
a reduction in the superconducting coherence length £(0). At a first glance, a mass
enhancement at Py is consistent with the pressure dependence of the initial slope of
the superconducting H-T phase diagram, H', = —dH/dT |7 — 7,. From Egs. (2.5)
and (2.6), we can derive

3T ~ Hopp ~ E72(0) ~ (Agm™)*. (2.10)

Here, we use vg = hkp/m*. As shown in Figs.2.23-2.25, Hc’zs of CelrSiz and
CeRhSij3 increase with increasing pressure and become maximum at about Pj.
However, strong pressure dependence of the cyclotron effective mass is not observed
in de Haas-van Alphen experiments in CeRhSi3 [89]. This is consistent with the result
of the less obvious pressure dependence of the resistivity coefficient A. A small
enhancement of the effective mass is also suggested by heat-capacity measurements
in CelrSis [75].

In order to explain the positive curvature of H.>(7T) and the strong pressure depen-
dence of H.(0), Tada et al. considered the temperature and pressure dependencies
of the correlation length of the spin fluctuations, &, [90]. Since &is expressed as

s (T) = J% in which 6 — 0 toward the QCP and the effective pairing interac-
tion is quadratically proportional to &y, the superconducting coherence length &(0)
is strongly reduced and H,,; enhanced at low temperatures. This model can explain
the enhancement of the initial slope and is compatible with the weaker enhancement

of the effective mass.
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2.2.3.3 Superconducting Phase Diagram for Field in the Basal Plane

In contrast to the high H.»(T) forthe c¢ axis, H.»(T) in the basal plane is not
too high. However, it still significantly exceeds HIE’CS and is situated in the upper
part of Fig.2.20. As discussed in the section above, the high H.(0) is attributed
to the reduced paramagnetic pair-breaking effect which originates mainly from a
non-vanishing spin susceptibility. In addition to this, Agterberg et al. pointed out
that another characteristic mechanism, the helical vortex state, can also evade the
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paramagnetic pair-breaking effect when the magnetic field is applied in the basal
plane [91, 92].

As discussed above, the paramagnetic pair-breaking effect operates partially, with
the center-of-mass momentum of the Cooper pair remaining zero at any k as shown
in Fig.2.26(b). On the other hand, in the helical vortex state, the Fermi surfaces shift
toward opposite directions perpendicular to the field direction. An application of a
magnetic field does not break the Cooper pairs for all k. In this case, the center-
of-mass momenta of the Cooper pairs belonging to each Fermi surface acquire a
finite value ¢ (Fig.2.26(c)). The sign of g depends on the Fermi surface. In the
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state, a Cooper pair with a finite center-
of-mass momentum is also realized. However, the pairing takes place in a limited
region on the Fermi surface. In other regions, indicated by the shades in Fig.2.26(c),
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pairing is not allowed. Since both states, helical vortex and FFLO phase, evade the
paramagnetic pair breaking, relatively high H.,(0) can be realized.

Although thus far no direct evidence for a helical vortex state has been detected
in either CeTX3 compounds or CePt3Si, some unusual superconducting properties
for the field in the basal plane are reported in CeRhSi3 [39]. First, there is a con-
cave shape of the H.>(T) curve as shown in Fig.2.27(a). The rapid change of H.,
at low temperatures looks similar to the one observed in a theoretically predicted
helical-vortex phase diagram [92]. However, this feature observed at P < P} becomes
less obvious at P3* ~ 2.6 GPa [72]. An influence of the antiferromagnetic order to
explain this unusual curve shape cannot be excluded. Second, the ac susceptibility
in the superconducting state shows an unusual shape especially below P;*. The tem-
perature at which a large drop occurs in the real part of the susceptibility x’ is far
below the onset temperature of superconductivity. This might indicate that super-
conductivity develops gradually in the antiferromagnetic state. On the other hand,
the imaginary part x”, namely the energy dissipation associated with the dynamics
of the superconducting flux, is large even above the temperature at which the large
drop occurs in x’. This contradicts the view of a gradual development of supercon-
ductivity. Although the influence of antiferromagnetism is unclear at present, this
rare behavior of the flux may be a key feature to verify the helical vortex state.
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2.2.3.4 Energy Gap Structure and Pairing Symmetry

In CelrSi3 the nuclear spin-lattice relaxation rate 1/ 7} shows a T3-like dependence
below T, without a coherence peak, as shown in Fig.2.28 [78]. The data are well
fitted by the line-node gap model A = Agcos20. The fit yields 2A¢/ kT, = 6,
which is much larger than the BCS weak-coupling value 3.53 and thus suggests
strong-coupling superconductivity. Using an extended s + p pairing state within
a recent theoretical model a behavior indicative of a line-node gap can be predicted
[94]. This 1/T-NMR measurement is the only one carried out to determine the
energy gap structure in Ce7X3 compounds. To identify the pairing symmetry in
these materials, other measurements, like the Knight shift, are highly desirable.

2.2.4 Outlook

The high anisotropy and strong enhancement of H., seem to be unique to Ce7X3
superconductors. Interestingly, other HF and non-HF superconductors without
inversion symmetry do not show these properties. The high orbital limiting field inher-
ent to the non-centrosymmetric HF CeTX3 superconductors discloses the absence
of the paramagnetic pair-breaking effect. Conversely, absence of the effect unveils
the unconventional nature of the upper critical fields probably associated with the
quantum criticality of magnetism. CeTX3 compounds have the potential to provide a



66 N. Kimura and I. Bonalde
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vital clue to the underlying mechanism of superconductivity mediated by magnetic
fluctuations.

To consider the relation between magnetism and superconductivity in Ce7X3,
we need to keep in mind that the magnetic ground states of CeCoGes and CelrGes
are different from that of CeRhSi3 and probably of CelrSiz. CeCoGes seems to
display localized f-electron magnetism, while CeRhSi3 probably exhibits itinerant-
electron magnetism. It is very interesting that in these compounds the H,, behaviors
are similar in spite of their different magnetism. The mass enhancement at P5" is
suggested only in CeCoGe3. The comparison of the superconducting properties of
CeCoGes and CelrGes with those of CeRhSi3 and CelrSiz will be important to
elucidate the nature of HF superconductors. Identification of the gap structure in each
compound is also a challenging issue, which could provide possible evidence for the
parity mixing of the superconducting wavefunction. Moreover, some theoretically
predicted phenomena, like a helical vortex phase and a novel magnetoelectric effect,
remain to be verified in the future.
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2.3 Ulr

Whereas CeRhSi3, CelrSiz, CeCoGes, CelrGe; and CePt3Si are 4f-electron anti-
ferromagnets, Ulr is a Sf-itinerant-electron ferromagnet with a Curie temperature
T.1 =46K at ambient pressure [95]. The superconducting state in Ulr appears to
develop within a higher pressure ferromagnetic phase at a critical temperature
T.=0.14 K in a narrow pressure region around 2.6 GPa [96]. Ulr is a moder-
ate heavy-fermion compound with a cyclotron mass m* ~ 10 — 30mg [97]. The
coexistence of superconductivity and ferromagnetism imposes several theoretical
challenges, such as the mechanism and the state of pairing. The pairing state in super-
conducting ferromagnets needs to be spin triplet, otherwise the internal exchange field
would break the Cooper pairs. On the other hand, a ferromagnetic state has a broken
time reversal symmetry. The superconducting BCS ground state is formed by Cooper
pairs with zero total angular momentum. The electronic states are four-fold degen-
erate: |k 1),| —k 1), ]k |) and | — k |) have the same energy (k). The states
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with opposite momenta and opposite spins are transformed to one another under
time reversal operation K |k 1) =| —Kk | ), and the states with opposite momenta are
transformed to one another under inversion operation /|k |)=| — k |). The four

degenerate states are a consequence of spatial and time inversion symmetries. Parity
symmetry is irrelevant for spin-singlet pairing, but is essential for spin-triplet pairing.
Time reversal symmetry is required for spin-singlet configuration, but is unimportant
for spin-triplet state [98, 99]. In Ulr the lack of spatial and time inversion symme-
tries lifts the degeneracies and, therefore, superconductivity is not expected to occur.
Thus, Ulr differs from the other two known ferromagnetic superconductors UGe;
[100] and URhGe [101], in which the spatial inversion symmetry allows degeneracy
in the spin-triplet states. Theoretically and experimentally Ulr is a very special and
challenging superconductor.

2.3.1 Crystal Structure and Characteristic Parameters

Ulr crystallizes in a monoclinic PbBi-type structure (space group P21) without inver-
sion symmetry [95]. The lattice parameters are given in Table 2.5. The unit cell has
eight formula units with four inequivalent U and Ir sites. The absence of inversion
symmetry comes from the missing mirror plane (0, %, 0) perpendicular to the b axis
(see Fig.2.29). Magnetism is of the Ising type with the ordered magnetic moment

oriented along the spin easy axis [1 0 1 ] (Fig.2.29).
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Table2.5 Normal and superconducting parameters of Ulr
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Crystal structure
Space group
Lattice parameters

Monoclinic
P2
a=5.62A
b=10.59 A
c=5.60 A
B=98.9°

Sommerfeld value of specific heat

Effective electron mass (Fermi sheet «)

Mean free path (Fermi sheet o)

Ferromagnetic transition temperature (ambient pressure)
Magnetic propagation vector

Magnetic moment mg along

Saturated moment per U atom

Superconducting transition temperature
Upper critical field

Thermodynamic critical field
Ginzburg-Landau coherence length
Ginzburg-Landau parameter

¥, = 40-49 mJ/molK?
m* ~ 10-30mg
1=1270 A

T, =46 K
q=(1,0,-1)

[101 ]

s =0.5pup

T,=0.14K
H(0) =26 mT
H.(0)=8 mT
£(0)=1100 A

K ~2

Fig.2.29 Crystal and
magnetic structures of Ulr
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Single crystals of Ulr have been grown by the Czochralski method in a tetra-arc
furnace [102-106]. After annealing, using the solid-state electrotransport technique
under high vacuum of the order of 10~!° Torr, crystals become of very high quality
with residual resistivity pg ~ 0.5 © €2 and residual resistivity ratio (RRR) p300x /00 =~
200 at ambient pressure. Interestingly, single crystals of Ulr seem to be of the highest
quality amongst those of non-centrosymmetric heavy-fermion superconductors.
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2.3.2 Normal State

2.3.2.1 Phase Diagram and Magnetic Properties

Figure 2.30 shows the temperature-pressure phase diagram as drawn by magneti-
zation and resistivity measurements [96]. The diagram consists of a low-pressure
ferromagnetic phase FM1 (F; in the figure), a high-pressure ferromagnetic phase
FM2 (F; in the figure) and a superconducting phase. A third magnetic phase was
reported [107], but not further evidence for it has been found. Application of pressure
decreases the Curie temperature 7, of the ferromagnetic phase FM1 eventually to
zero at the critical pressure P, ~ 1.7 GPa. The FM2-paramagnetic curve appears
justbelow 30 K and about 1.4 GPa, and goes away at a critical pressure P.3 ~ 2.7—2.8
GPa. Superconductivity is found in the narrow pressure range 2.55-2.75 GPa below
T.=0.14 K.

The magnetic properties of this compound are governed by a saturation moment
along the easy axis [101], as indicated by the magnetization curve of a single crystal
at2 K shown in Fig. 2.31(a) [108]. The ordered magnetic moment goes from 0.5ug/U
at ambient pressure in the ferromagnetic phase FM1 to 0.07up/U at 2.4 GPa in the
ferromagnetic phase FM2 [96]. The anisotropy of the magnetization remains at high
temperatures, as can be seen in Fig. 2.31(b). The susceptibility data follow a Curie-
Weiss law in the high-temperature paramagnetic region, with an effective magnetic
moment around 3.57 up/U that is pretty close to the 5 f2 free-ion value 3.58 uz/U.
The small value of the ordered moment 0.545/U has been taken as evidence for the
itinerant character of the 5f electrons in the ferromagnetic phase, though such a low
value could also be due to crystal-field effects [106, 109].
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Fig.2.31 Magnetization as a function of a field strength at 2 K and b temperature in 10 kOe in a
single crystal of Ulr [108]

2.3.2.2 Electronic States

Quantum-oscillation and resistivity measurements provide evidence that the low-
temperature metallic state of Ulr is a Fermi liquid at ambient pressure. The dHvA
measurements suggest that the Fermi surface of Ulr is two-dimensional and consists
mainly of nearly cylindrical sheets [97]. It has an effective mass m™ ~ 10—30 mg and
a mean free path [ ~ 1270 A. Such a value of the effective mass of the 5f electrons
leads to the classification of Ulr as a moderate heavy-fermion compound. Since the
linear coefficient of the heat capacity y,, o« m*, summing for all the branches yields
the electronic specific-heat coefficient of 40—49 mJ/K2 mol [97, 110]. There are no
band-structure calculations for this compound.

Figure 2.32(a) shows the variation of the electrical resistivity of Ulr as a function of
pressure [105, 110]. At low pressure, in the ferromagnetic phase FM1, the resistivity
follows p=pg + AT", with n ~ 2 suggesting Fermi-liquid behavior. However,
as pressure increases the behavior becomes non-Fermi-liquid like and eventually
superconductivity appears in this regime. Figures 2.32(c—) show the variation in n,
A and pg as pressure increases. The non-Fermi-liquid behavior above ~ 1GPa may
be related to critical fluctuations near the different magnetic transitions.

2.3.3 Superconducting State

Because of its extremely low critical temperature 7, =0.14 K (in most figures in
this section this critical temperature is called Tj.), there is little information on
the superconducting state of Ulr. Superconductivity seems to occur inside and near
the quantum critical point of the FM2 phase, in the very narrow pressure range of
2.6-2.75 GPa [96]. In the ferromagnet UGe; with inversion symmetry the supercon-
ducting phase exists inside the ferromagnetic phase as well. Figure2.33(a) shows
the temperature dependence of the resistivity below 10 K and at 2.61 GPa, where
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Fig.2.32 aResistivity as a function of temperature of Ulr at different pressures, and c—e variations
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Fig.2.33 a Resistivity below 10K and at 2.61 GPa of Ulr showing a non-Fermi-liquid behavior.
The three samples possess different RRR-values: 82, 183 and 248. b Low-temperature region of
the phase diagram of Ulr [107]

it follows a non-Fermi-liquid form T L6 1105]. Figure2.33(b) is a close-up of the
low-temperature region of the phase diagram where superconductivity appears (in
this figure, FM3 denotes the ferromagnetic phase FM2).

Up to now experimental indications of the existence of a superconducting phase
in Ulr come from measurements of resistivity in samples of different qualities. No
definite diamagnetic signal has yet been observed in Ulr (Fig.2.34) [107]. The
temperature dependence of the resistivity for three different samples is shown in
Fig.2.33(a). The data indicate that superconductivity becomes weaker as the resid-
ual resistivity ratio (RRR) of the samples drops. Such a strong suppression of 7, with
increasing impurities/defects is typical of unconventional parity-conserving super-
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conductors [27]. Recent theoretical works [111, 112] considered impurity effects
on the critical temperature of superconductors without inversion symmetry. It was
found that impurity scattering leads to a functional form of 7. that, up to a prefactor,
is the same as the one for unconventional superconductor with inversion symmetry:

In(T,/T0) = [w(%) - (% — %)] . The suppression of T, by impurities in
non-centrosymmetric Ulr agrees with this prediction [111, 112].

The upper critical field H.»(T) in the direction of the easy axis [1 0 1]inthe high-
temperature region was determined by resistivity measurements in a sample with a
very high RRR (Fig. 2.35) [105]. 7. was defined as the midpoint of the resistivity drop.
By assuming the standard empirical expression H.2(T) = H:2(0) [1 —(T/ TC)Z], the
zero-temperature upper critical field H.>(0) was estimated as 26 mT corresponding
to a coherence length of £(0) = 1100 A. Since this value of H,,(0) is smaller than the
paramagnetic limiting field H,, =280 mT orbital depairing is the likely mechanism
for the upper critical field in Ulr.

It is believed that near a ferromagnetic quantum critical point spin fluctuations
lead to Cooper pairing in a spin-triplet channel. There are some possible scenarios
for the unexpected realization of superconductivity in this compound. It needs to be
confirmed that FM2 is indeed a ferromagnetic phase, and not a canted antiferromag-
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netic phase that could yield pairing in the spin-single channel. A canted antiferromag-
netic phase may be caused by the spin-orbit coupling and the low symmetry of the
crystalline structure without inversion symmetry, as discussed by Dzyaloshinky and
Moriya. In this sense, it is important to note that the saturated moment of 0.07 ug/U
in the FM2 phase is quite small. Another possibility is the FFLO state, in which at
zero magnetic field electrons with momenta k and —k + ¢ can pair with nonzero
angular momenta. A mean-field model has been recently proposed for supercon-
ductivity in non-centrosymmetric ferromagnets [113], in which the antisymmetric
spin-orbit coupling (ASOC) turns out to enhance both superconductivity and ferro-
magnetism in all spin channels. Future experiments will be absolutely important for
the understanding of this unique superconductor.

2.4 Comparison of the Superconducting States of CePt3Si,
CeRhSij3, CelrSis, CeCoGes, CelrGes and Ulr

The superconducting properties of the non-centrosymmetric HF compounds have
not been easy to determine. On the one hand, the Ce7X3 and Ulr compounds only
superconduct under pressure, making technically difficult to study them. On the other
hand, CePt3Si does become superconducting at ambient pressure, but has drawbacks
in the crystal quality available. In spite of this, it has been possible to establish some
of the characteristics of these materials.

The CeTX3 materials, with tetragonal space group /4mm, and CePt3Si, with
tetragonal space group P4mm, have the same generating point group Cys, which
lacks a mirror plane and a two-fold axis normal to the ¢ axis. Thus, a Rashba-type
interaction appears in all these compounds due to the missing of inversion symmetry.
In contrast, Ulr has a monoclinic lattice.
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The Sommerfeld coefficient is much larger in CePt3Si than in Ce7TX3 and Ulr.
Electron correlations should hence be stronger in CePt3Si. On the other hand, all
compounds turn from Fermi-liquid to non-Fermi-liquid states as pressure is increased
and become superconducting in the Fermi-liquid state, with the exception of Ulr.

The behavior of the upper critical field H., in the CeTX3 systems is very different
from that in CePt3Si. In CeTX3, Heoe > 22 T and (—=d Hep)o(T)/dT) 1. > 17 T/K
are larger than Hepe ~ 3 T and (—=d Hep)c(T)/dT) 7. ~ 6.3 T/K in CePt3Si. More-
over, in CeTX3H»(T) has a positive curvature, unlike in CePt3Si. In CelrSis3, for
example, superconductivity is anisotropic (He|ic/Hc2jjab) > 3, whereas in CePt3Si
itis almostisotropic. There are clear signatures for unconventional superconductivity
in CelrSiz, CeRhSi3 and CePt3Si, including evidence for line nodes in some cases.
The fact that these compounds also support strong magnetic features and order sug-
gests strongly that unconventional pairing mechanisms could be at work here. In this
context it is particularly intriguing to analyze the role the antisymmetric spin-orbit
coupling.
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Chapter 3

Electronic States and Superconducting
Properties of Non-centrosymmetric
Rare Earth Compounds

Yoshichika Onuki and Rikio Settai

Abstract The property of Fermi surface splitting in the non-centrosymmetric tetrag-
onal compounds RPt3Si (R: La, Ce) and RT X3 (T: Co, Rh, Ir; X: Si, Ge) are studied
by de Haas-van Alphen experiments and compared with energy band calculations.
Moreover superconducting properties are investigated in these compounds. In partic-
ular, in CelrSi3 the unusual behavior of the upper critical field H., at pressures around
2.6 GPais analyzed in detail. At 2.6 GPa, a huge value of H.>(0) >~ 450 kOe is found
for magnetic fields along the [0 O 1] direction of the non-centrosymmetric tetrago-
nal crystal structure, in contrast to the smaller H.>(0) ~ 95 kOe for H || [1 1 0].

3.1 Introduction

Since the discovery of the first heavy fermion superconductor CeCu;Si; in 1979,
heavy fermion superconductivity has been observed in several cerium, praseodym-
ium, uranium, and nowadays even neptunium and plutonium compounds. Heavy
fermion superconductivity is found to coexist with antiferromagnetism as well as
ferromagnetism. Furthermore, it is widely recognized that pressure P is a useful
tuning parameter to find superconductivity in magnetically ordered f-electron com-
pounds [1, 2]. With increasing pressure, the magnetic ordering temperature 7in,e
becomes zero at a critical pressure Pc in some compounds: Trag — 0 for P — Pe.
For example, an antiferromagnetic cerium compound is changed into a paramag-
net at pressures higher than P.. The heavy fermion state is formed around P, as
a result of the competition between the Ruderman-Kittel-Kasuya-Yosida (RKKY)
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interaction and the Kondo effect. Heavy fermion superconductivity is often observed
in this pressure region.

Phonon-mediated Cooper pairing is most likely not effective in heavy fermion
superconductors due to the strongly repulsive interaction among the quasiparticles
derived from the itinerant and strongly correlated f-electrons. Nevertheless, super-
conductivity is realized in these systems. To minimize the repulsive interactions, elec-
trons preferentially choose an anisotropic channel, such as a p-wave spin-triplet state
or a d-wave spin-singlet state, to form Cooper pairs [3]. Neutron-scattering experi-
ments clearly indicate a close relationship between superconductivity and magnetic
excitations in UPd>Al3 [4, 5, 6]. The magnetic excitation gap of UPd,Al3, which
appears in inelastic neutron scattering below the superconducting transition temper-
ature Ty, results from the presence of the superconducting order parameter.

Figure 3.1 shows a schematic view of the superconducting order parameters with
s-, d-, and p-wave pairings. The order parameter ¥ (r) with even parity (s- and
d-waves) is symmetric with respect to » where one electron with the up-spin state of
the Cooper pair is simply considered to be located at the center of ¥ (r), namely at
r = 0, and the other electron with the down-spin state is located at r, revealing the
spin-singlet state of (|1J) — [{1))/ V2 (total spin S = 0). The width of ¥ (r) with
respect to r is called the coherence length &, as shown in Fig 3.1a. Nuclear magnetic
resonance (NMR) and nuclear quadrupole resonance (NQR) have proved to be useful
tools for determining the symmetry of the superconducting condensate. For example,
UPd;Aljs is considered to be a d-wave superconductor from the NMR experiment [7],
which corresponds to the case in Fig. 3.1b. The origin of pairing has also been clarified
by neutron-scattering experiments on UPd;Als [4, 5, 6], as mentioned above. On the
other hand, ¥ (r) with odd parity (p- or f~wave) is not symmetric with respect to r,
where the parallel spin state is shown in Fig.3.1c. Namely, the spin state is of spin-
triplet in nature: [11) (S; = 1), (114) + [11)/+v/2 (S. = 0), and [J) (S, = —1).
From NMR, magnetization and thermal conductivity experiments, UPt3 is considered
to possess odd parity symmetry [8, 9, 10].

Recently superconductivity in several non-centrosymmetric heavy fermion com-
pounds has been reported, in CePt3Si [11, 12] with the tetragonal structure (P4mm),
Ulr [13, 14] with the monoclinic structure (P2;), CeRhSi3 [15-17], CelrSi3 [1, 18,
19] and CeCoGes [20] with the tetragonal BaNiSn3-type structure (/4mm). We
show in Fig.3.2 the crystal structure of CePt3Si and CelrSi3, which lack inversion
symmetry along the tetragonal [0 O 1] direction (c-axis). In CelrSi3, the Ce atoms
occupy the four corners and the body center of the tetragonal structure, similar to
the well-known tetragonal CeCu,Sis (ThCr,Sis-type), but the Ir and Si atoms lack
inversion symmetry along the [0 O 1] direction.

Inversion is an essential symmetry for the formation of Cooper pairs. In non-
centrosymmetric metals a splitting of Fermi surfaces with different spin directions
occurs, restricting the possible Cooper pair states which can be formed keeping the
total momentum zero. In the case of CePt3Si, CeRhSi3, CelrSiz and CeCoGes split
Fermi surfaces very similar to each other in topology but different in volume are
formed due to the presence of a Rashba-type antisymmetric spin-orbit interaction:
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Fig.3.1 Schematic view of the superconducting order parameters with s-, d- and p-wave pairings
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Fig.3.2 a Crystal and magnetic structure of CePt3Si, and the crystal structure of CelrSi3, which
also lack inversion symmetry along the [0 O 1] direction

h
Heo = —m(vv(") X p)- o
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=uop, -0,
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where « denotes the strength of the spin-orbit coupling, n is a unit vector derived
from VV (r), which lies along the [0 O 1] direction (c-axis) for these compounds,
and o is the Pauli matrix [21, 22]. This additional term in the electron Hamiltonian
separates the spin degenerate bands into two given by [22-24],
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Fig.3.3 a Spherical Fermi surface with degenerated up (1) and down ({) spin states, and b the
Fermi surface and the corresponding energy bands are split into two components depending on
the up and down spin states when the magnetic field H is applied to the material. The maximum
cross-sectional areas Sg are also split into two components as a function of the magnetic field, well
known as Zeeman splitting. ¢ The Fermi surface and the corresponding energy band are split into
two components depending on the up and down spin states due to the antisymmetric spin-orbit
interaction even when H = 0. The field dependence of the maximum cross-sectional areas Sp— and
Sk+ are also shown in the non-centrosymmetric structure
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Ept =
P 2m

where p, = (py, —px, 0). This splitting appears in the absence of a magnetic field
and introduces a characteristic momentum-dependent spin structure to the electronic
states, as shown in Fig.3.3(c). Note that the spins of the conduction electrons are
rotated for the direction of the effective magnetic field, n x p, clockwise or anticlock-
wise, depending on the up and down spin states. For comparison, in Fig.3.3(b), we
show the well-known Zeeman splitting, where the degenerated Fermi surface is split
into two Fermi surfaces corresponding to a majority and minority spin, respectively,
for a given quantization axis parallel to an applied magnetic field.

In a non-centrosymmetric metal most p-wave pairing states are prohibited because
electrons would have to form zero-momentum Cooper pairs, which are separated
by an energy of 2jap)| ~ 10 — 1000K, much larger than the superconducting
energy gap of a few Kelvin in heavy fermion superconductors. Frigeri et al. studied
theoretically the possible existence of a spin-triplet pairing state compatible with
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Fig.3.4 a Schematic picture ()
of parity-mixed Cooper
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the sum of a spin-singlet spin-singlet “
state and a spin-triplet state

with §; = %1 for the spin L
quantization axis parallel to spin-triplet
the z-axis, or the [0 0 1]

direction, Ref. [26].
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antisymmetric spin-orbit coupling [21, 25]. The d vector characterizing the corre-
sponding spin-triplet state, is parallel to p | : d(k) = A(kyx — kyy). In a complete
description the order parameter is a mixture of spin-singlet and spin-triplet compo-
nents, as shown schematically in Fig.3.4(a) [26]. The corresponding spin suscep-
tibility becomes non-zero at 0 K, as shown in Fig.3.4(b): for the magnetic field H
along the [0 0 1] direction, x (H || [0 0 1]) is unchanged below the superconducting
transition temperature Ty, and x (H L [0 O 1]) becomes x (H || [0 0 1])/2 at 0 K.
The fact that the spin susceptibility remains constant below Ty for H || [00 1] is a
result of a van Vleck-type contribution to x due to the spin-orbit coupling and the
Fermi surface splitting.

The theoretical resultin Fig. 3.4 suggests that there exists no paramagnetic limiting
effect on the upper critical field H., for magnetic fields along the [0 O 1] direction
(c-axis), while paramagnetic suppression is expected for H L [0 O 1]. On rather
general grounds it has been shown theoretically that the mixing of even and odd
parity states can give rise to nodes in the quasiparticle excitation gap.

We studied Fermi-surface properties by de Haas-van Alphen (dHvVA) measure-
ments and compared the results with energy band-structure calculations. The dHvVA
signal Vi, in the usual 2w-type field modulation method, is simply given as follows
[27, 28]:
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where & is the modulation field. In our measurements we take # = 100 Oe and
the frequency w/2m = 11Hz, J>(x) is a Bessel function and the dHVA frequency
F(= chSp/2me) is proportional to the extremal (maximum or minimum) cross-
sectional area Sg of the Fermi surface. The dHVA frequencies F, obtained by fast
Fourier transformation (FFT) from the dHVA oscillations, are expressed in units of
magnetic field. Moreover, Rt, Rp and Rg are reduction factors due to finite temper-
ature, finite scattering lifetime and interference between up and down spin electrons,
respectively. From temperature and field dependences of the dHvA amplitude, we can
determine the cyclotron effective mass m} and the Dingle temperature Tp, respec-
tively. Tp(= h/2mkpt) is inversely proportional to the scattering lifetime t of the
conduction electrons. We can also estimate the mean free path ¢ from the simple
relations: Sg = nk%, hkr = m}vr, and £ = vpt, where kp is half of the diameter
of a circular Sg and v is the Fermi velocity.

Here we comment on the relation between the Fermi surface and the spin states of
conduction electrons. For an inversion-symmetric crystal structure the up and down
spin states of conduction electrons are degenerate and have the same Fermi surface,
as shown in Fig. 3.3(a). In a magnetic field, the degenerate Fermi surface is split into
two sheets, as shown in Fig. 3.3(b), the well known Zeeman splitting. The split Fermi
surfaces, however, yield the same dHVA frequency F corresponding to the frequency
extrapolated to zero field, as shown in Fig.3.3(b).

The relations of Egs. (3.3)—-(3.9) can also be extended to the dHvA oscillations for
non-centrosymmetric metals. Due to the Fermi surface splitting the dHVA frequency
F is split into two dHVA frequencies, F; and F_, as shown in Fig.3.3(c). Using
the relations of eg = hzk%/2mz‘, Sk = nk% and Sp = (2we/ch)F, we obtain from
Eq. (3.2):

2c
|F. — F_| = §|apj_|m2‘. (3.10)
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Fig.3.5 a Typical dHVA
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We can thus determine the magnitude of the antisymmetric spin-orbit interaction
2|ap | | via the dHVA experiment.

In this chapter, we show the split Fermi-surface properties of RPt3Si(R: La, Ce)
and RT X3 (T: Co, Rh, Ir, X: Si, Ge), and also their corresponding characteristic
superconducting properties.

3.2 Electronic States and Superconducting Properties
of LaPt3Si and CePt3Si

First we show in Fig. 3.5(a) typical dHVA oscillations for LaPt3Si in a magnetic field
H along the [0 0 1] direction (c-axis) and its FFT spectrum [29]. The detected dHvVA
branches are named «, 8,7V, 6 and ¢, as shown in Fig.3.5(b).
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Fig.3.6 a Experimental angular dependence of the dHvA frequency, b the theoretical one and
¢ the corresponding theoretical Fermi surfaces in LaPt3Si, Ref. [29]

Figures 3.6(a), 3.6(b) and 3.6(c) show the experimental angular dependence of the
dHvA frequency, the theoretical one based on the full potential linearized augmented
plane wave (FLAPW) method and the corresponding Fermi surfaces in LaPt3Si,
respectively. The branches «, 8, § and ¢ correspond to bands 64, 63 hole-Fermi
surfaces, 65 and 66 electron-Fermi surfaces, respectively, as shown in Fig.3.6(c).
The two kinds of Fermi surfaces can be attributed to the splitting of the electron
spectrum by antisymmetric spin-orbit coupling, as mentioned above. Therefore, the
Fermi surfaces of the bands 61 and 62, bands 63 and 64, and bands 65 and 66 form
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Fig.3.7 Energy band LaPt; Si
structure in LaPt3Si, 11
Ref. [30] '
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such split pairs, respectively. The structure off spin-orbit coupling implies that the
Fermi surface degeneracy exists only for k along the c-axis (within the Brillouin zone
along the I'-Z, X-R and M-A directions) in LaPt3Si (CePt;Si), while splitting is
realized along all other directions as shown in Figs. 3.6(c) and 3.7.

Using the observed dHVA frequencies and the averaged value of two cyclotron
effective masses, we obtain the antisymmetric spin-orbit interaction 2|ap | as
2400K for branches @ and B, and 800 K for branches § and ¢. The correspond-
ing theoretical values are 4200 K for branches « and S, and 2000 K for branches
8 and ¢, where we used the theoretical dHVA frequencies and averaged band masses
in Table3.1. We summarize in Table 3.1 the experimental values of the dHVA fre-
quency F, the cyclotron effective mass m and the antisymmetric spin-orbit inter-
action 2 |ap |, together with the corresponding theoretical values of the dHVA
frequency Fy and the band mass my, and the estimated value 2 |ap | for branches
o, B,6 and ¢.

CePt3Si orders antiferromagnetically below Ty = 2.3 K[11, 32, 32], with a small
ordered moment of 0.16 ug/Ce and a propagation vector ¢ = (0 0 %), where the
ordered moments are ferromagnetically directed along the [1 0 0] (a-axis) in each
plane and antiferromagnetically stacked along the [0 O 1] direction, [33] as shown
in Fig. 3.2(a). Within the antiferromagnetic state, CePt3Si becomes superconducting
below the transition temperature T, = 0.46 K, as shown in Fig. 3.8(a). The electronic
specific heat (C./T) is shown in Fig. 3.8(c) as a function of temperature for H = 0,
after subtracting antiferromagnetic and phonon contributions from the raw C/T
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Fig.3.8 a Temperature dependence of the specific heat divided by temperature C/T of CePt3Si,
together with the data of a non-4f reference compound, LaPt3Si. Solid lines show idealized jumps
at Tyc and Ty, Ref. [30]. b Specific heat divided by temperature C/T around Ty, of CePt3Si.
Circles (o) and triangles (A) show the data under magnetic fields H = 0 and 40 kOe, respectively.
A nuclear Schottky contribution of 0.03[mJ- K/mol}/T3 was subtracted from the raw C /T data
measured at 40 kOe. The broken line indicates an extrapolation below 7x which is expressed as
C/T = 335 [mJ/K?- mol]+165[mJ/K*- mol]T2. ¢ Electronic specific heat divided by temperature
C./T for H = 0 after subtracting 165[mJ/K*- mol]T2 from the raw C/T data. The solid line
shows the linear temperature dependence of Cs/T = 34.1[mJ/K2- mol]+1290[mJ/K3- mol]7. The
broken line indicates the normal-state electronic specific-heat coefficient y, = 335 mJ/K?- mol.
The dashed-dotted line shows a prediction of BCS weak-coupling theory with 2A / kg Ts. = 3.53.
The electrical resistivity data of the same sample are also shown in the right-hand scale
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Table3.1 Experimental dHvA frequency F, the cyclotron effective mass /m} and the spin-orbit
interaction 2 |ap |, and the theoretical dHVA frequency Fy, the band mass my, and the theoretical
spin-orbit interaction 2 |ap | for H || [0 0 1] in LaPt3Si, Ref. [30]

Experiment Theory
Branch  F(x107 Oe)  m¥(mo) 2lapi|(K)  Fo(x10” Oe)  mp(mo)  2lapi|(K)
o 11.0 1.4 10.5 0.91
24 42
s 1.68 1.2 1.54 0.72
e 0.97 1.0 ] 800G 8) (63 051 } 2000 (5, )

data in Fig.3.8(b): Ce/T = vy, + BT with v, = 34.1 mJ/K2 - mol and Bs =
1290 mJ/K? - mol, as shown in Fig.3.8(c), revealing a low-temperature power law
consistent with the existence of line nodes in the superconducting energy gap. The
normal-state electronic specific heat is obtained as 335 mJ/K? - mol. LaPt3Si also
shows superconductivity below Ty = 0.6 K. The specific heat below 0.5 K displays
an exponential dependence as a function of temperature, following the standard BCS
relation. LaPt3Si might be even a type-I superconductor, because superconductivity
can be easily suppressed by a small magnetic field of 100 Oe. The electronic specific-
heat coefficient is 11 mJ/K2- mol in the normal state.

We show in Fig.3.9 the magnetic and superconducting phase diagram. Open
circles and squares in the phase diagram were determined from specific heat and
electrical-resistivity measurements, respectively. Open triangles are due to the data
obtained from thermal expansion and magnetostriction measurements. With regard
to the superconducting phase, we observe a small anisotropy in the upper critical
field H.2(0) between H || [1 0 0] and [0 O 1] from the resistivity measurements,
where the superconducting transition temperature T is defined through the vanishing
of electrical resistivity. As shown in Figs.3.8(c) and 3.9, the resistivity becomes
zero below 0.7 K, whereas bulk superconductivity inferred from the specific heat is
realized only below Ty, = 0.46 K.

We show in Fig.3.10 the pressure phase diagram of CePt3Si [31, 34]. In this
figure, data shown by open and closed circles were obtained from ac-specific-heat
measurements, data marked by squares from zero-resistivity measurements and data
shown by triangles from ac-susceptibility measurements. By applying pressure, the
Néel temperature Ty = 2.3 K decreases and becomes zero around Par = 0.6 GPa.
Also the superconducting transition temperature Ty decreases with increasing pres-
sure, and becomes almost constant around 0.6-0.8 GPa, showing a shoulder-like
feature in the pressure dependence of Ty.. Upon further increasing pressure, Ty
decreases again, and superconductivity disappears around Py = 1.5 GPa.

We performed the dHvA experiment under pressures crossing Pap and Py, in
order to study the change of the electronic states. Figures3.11(a) and 3.11(b) show
typical dHvA oscillations at 1.28 GPa for H || [0 0 1] and the FFT spectra at 0, 1.28
and 2.4 GPa, respectively, at about 80 mK. The only detected dHvA branch is branch
8 at0 and 1.28 GPa and its second harmonic. The spectrum at P = 0 GPa, obtained at
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Fig.3.9 Magnetic and superconducting phase diagrams fora H || [1 0 0] and b [0 0 1] in CePt3
Si, Ref. [30]. Open circles and squares are obtained from specific heat and the electrical-resistivity
measurements, respectively, and open triangles show data obtained from thermal expansion and
magnetostriction measurements. Solid lines connecting the data are a guide to the eye
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34 mK, contains one more branch with the dHVA frequency F = 1.37 x 107 Oe, [29]
although the corresponding dHvA peak could not be seen in the present pressure-cell
experiment due to the very weak intensity of this branch. On the other hand, two
branches are clearly observed at 2.4 GPa: F = 1.64 x 10’ Oeand F = 2.21 x 107 Oe.
The former branch might correspond to §, but the latter branch is a new one.

We show in Figs.3.12(a) and 3.12(b) the pressure dependence of the dHVA fre-
quency and the cyclotron effective mass, respectively. The branch & (open circles)
might be observed from 0 GPa to 2.7 GPa, indicating a gradual increase of the dHvVA
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frequency with increasing pressure with a rate of (2.5 & 0.1) x 10> kOe/GPa, as
shown in Fig. 3.12(a). Above 1.5 GPa, a new branch (open squares) is observed, and
the dHVA frequency (2.21 x 107 Oe) of this new branch also increases with growing
pressure by (3.2 & 0.1) x 10?> kOe/GPa. On the other hand, the cyclotron effective
mass of branch & decreases slightly as a function of pressure and shows a discon-
tinuous change around 1.5 GPa. The cyclotron effective mass of the new branch is
extremely large, 19m( at 2.0 GPa, and decreases steeply with increasing pressure,
11mg at 2.7 GPa. We could not determine the cyclotron effective mass of the new
branch at 1.5 and 1.77 GPa because of a small dHVA signal and most likely a larger
cyclotron mass.

We also carried out the dHvA experiment for H || [1 0 0]. At ambient pressure and
at temperatures of about 30 mK, three branches with dHvA frequencies F = 1.49 x
107, 1.64x 107, 1.83x 107 Oe are observed, [29] while only one branch is observed in
the pressure-cell experiment at 7 = 80 mK. The pressure dependences of the dHvVA
frequency and the effective mass are shown in Figs. 3.13(a) and 3.13(b), respectively.
The dHVA frequency of F = 1.83 x 107 Oe at ambient pressure decreases with
increasing pressure up to 2 GPa with the rate —(3.540.7) x 10?> kOe/GPa, as shown
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inFig. 3.13(a) (open circles). The amplitude of the dHVA signal at ambient pressure is
relatively small compared with the one for H || [0 0 1]. It rapidly decreases above 1.5
GPa, and was not observed anymore above 2 GPa. Although the obtained cyclotron
effective mass has a relatively large ambiguity due to the small dHvA amplitude, it
is clear that it increases as a function of pressure up to 1 GPa and becomes almost
constant at higher pressures, as shown in Fig. 3.13(b) (open circles).

We discuss the pressure dependence of the Fermi-surface properties in CePt3Si.
At ambient pressure, we assume that the topology of the Fermi surface in CePt3Si is
similar to that in LaPt3Si. This might be the case up to the critical pressure Par = 0.6
GPa, where Ty becomes zero. Actually similar dHVA experiments under pressure
for antiferromagnets such as CeRh,Si, [35, 36] CeRhlns [37] and Celn3 [38] indi-
cate that their dHVA branches at ambient pressure persist up to Par and new dHvA
branches appear only above Pap. These new branches are well explained by an
itinerant 4f-band model. We expect that in CePt3Si the 4f-Fermi surfaces shown in
Fig.3.14(c) are observed above Paf asin CeRh;Si;, CeRhlns and Celn3. How-
ever, no distinctive change in the dHvA frequency and cyclotron effective mass
of CePt3Si is visible at Par, although a new branch with a dHVA frequency of
2.21 x 107 Oe and a large cyclotron effective mass of 19m( appears above 2 GPa.
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We show the experimental angular dependence of the dHVA frequency at ambi-
ent pressure in Fig.3.14(a). This should be compared with the theoretical angular
dependence of the dHVA frequency of CePt3Si under the assumption that the 4f
electrons are itinerant, because CePt3Si displays a paramagnetic state above Pap
(Fig.3.14(b)). In the paramagnetic state, CePt3Si becomes a compensated metal with
equal volumes of electron and hole Fermi surfaces. The theoretically determined main
dHVA branches are o(Fy, = 5.76 x 107 Oe and my, = 2.96myg), 8(Fy, = 5.67 x
107 Oe and my, = 6.25myg), e(Fy, = 3.52 x 107 Oe and my, = 2.52myg), B(Fp =
3.03 x 107 Oe and my, = 2.07my) and §'(Fy, = 2.01 x 107 Oe and my, = 1.50my).
These branches were not observed in the experiment, although the new branch of
2.21 x 107 Oe is close to branch §'. In the dHVA experiment under pressure for
CePt3Si, we found a change of the electronic states at about 1.5 GPa, but it cannot be
concluded that itinerant 4f-electronic states are realized above 1.5 GPa. It is neces-
sary to perform the dHVA experiment at ambient pressure as well as under pressure
for a sample of much higher quality.

The electronic state is often reflected in the upper critical field in supercon-
ductivity. The superconducting transition temperature T is 0.7 K, from electrical-
resistivity measurements, as mentioned above. Using resistivity measurements the
zero-temperature upper critical field is H¢2(0) =32 kOe for H| [0 O 1] and
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Fig.3.14 a Experimental angular dependence of the dHvA frequency at ambient pressure, b the
theoretical dependence and ¢ the corresponding theoretical Fermi surfaces based on the 4f-itinerant
band model in CePt3Si, Refs. [29] and [30]

H(0) =27 kOe for H|| [1 0 0] as shown in Fig.3.9 (squares). Specific-heat mea-
surements probe the onset of bulk superconductivity and point to a lower Ty = 0.46
K and an upper critical field of 23 kOe, as shown by circles in Fig.3.9.

We studied the upper critical field under pressure from resistivity measurement.
Figure 3.15 shows the temperature dependence of the electrical resistivity at 0.1, 0.3
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and 0.6 GPa. The electrical resistivity at 0.1 GPa decreases slightly below Ty = 2.2K,
and steeply below Ty = 0.8 K, becoming zero at 5. = 0.6 K, as shown by arrows. At
0.3 GPa, a similar resistivity behavior is obtained, but the resistivity drop at 7g. = 0.3
K becomes sharp at 0.6 GPa, where the Néel temperature approaches zero.

We measured the electrical resistivity under magnetic fields to analyze the
behavior of the upper critical field. Figure 3.16 gives the upper critical field for H ||
[0 0 1] and [1 O 0], shown by circles and squares, respectively, at 0, 0.1 and 0.6
GPa. The anisotropy of Hcy between H| [0 O 1] and [1 O 0] is found to be
small even at 0.6 GPa: —dH,/dT = 43 kOe/K at Ty = 0.3 Kand H(0) =~
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Fig.3.17 a Typical dHVA (a)
oscillation for H || [0 0 1] LalrSiy
and b its FFT spectrum in H /11001]

68 mK

LalrSis, Ref. [19]
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9.5 kOe for H||[001]and — dH>/dT = 33 kOe/K and H(0) >~ 7.9 kOe for H ||
[1 0 0]. These results indicate that CePt3Si does not show the characteristic features
of an upper critical field dominated by paramagnetic limiting effects, suggesting that
here the mechanism determining H.,(T) is orbital depairing.

3.3 Electronic States and Superconducting Properties
of LaT X3 and CeT X3

We now turn to the group of La7 X3 and CeT X3 compounds (T = Co, Rh, Ir and
X = Si, Ge). In Fig.3.17(a) we show the typical dHVA oscillations of LalrSi3 for
the magnetic field H along the [0 0 1] direction (c-axis) and its FFT spectrum. The
observed dHVA branches, «, 8, ¢, and 7, are depicted in Fig.3.17(b). The signal «
with the largest dHVA frequency is clearly split into two branches, each of which
separates once more into two branches. The former splitting is due to antisymmetric
spin-orbit coupling, while the latter one is mainly due to the slight corrugation of each
Fermi surface, possessing two extremal (maximum and minimum) cross-sections.

Figures 3.18(a) and 3.18(b) show the angular dependence of the dHVA frequency
in LalrSi3, together with the theoretical one. The detected dHvA branches are well
explained by the result of the FLAPW energy band calculation. The corresponding
theoretical Fermi surfaces are shown in Fig.3.19.
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Fig.3.18 a Angular dependence of the dHVA frequency and b theoretical angular dependence in
LalrSis, Ref. [19]

The dHvA branches are identified as follows:

1. branches o and 7 correspond to outer and inner orbits of the electron Fermi
surfaces belonging to band 41 and 42, respectively. These Fermi surfaces have a
void around the center of the Brillouin zone (I" point). Also the branches &’ and «”
are due to these Fermi surfaces.

2. branch g is due to the hole Fermi surfaces corresponding to band 39 and 40.

3. branch ¢ originates from the hole Fermi surface of band 38.

We determine the cyclotron effective mass /m; from the temperature dependence
of the dHVA amplitude and find, for example, 1.03 m for branch « in the magnetic
field along the [0 O 1] direction. The Fermi-surface properties are summarized in
Table 3.2.

The dHVA results of LalrSi3 are also compared with those of LalrGes, as shown
in Fig. 3.20. The valence-electron configurations are 3523 p? in Si and 4524 p? in Ge.
The dHVA frequency of LalrGes is slightly smaller than that of LalrSi3, because the
lattice constants of ¢ = 4.4343 A and ¢ = 10.0638 A in LalrGes are larger than
a =4.2820 A and ¢ = 9.8391 A in LalrSi3 and the corresponding Brillouin zone
of LalrGes has a smaller volume than that of LalrSi3. However, the 2|ap | value is
almost the same for the two compounds as listed in Table 3.2.

We now discuss the Fermi-surface properties and the magnitude of the antisym-
metric spin-orbit coupling in La7Ge3 (7: Co, Rh, Ir). Figure 3.21 shows the angular
dependence of the dHvA frequency. The topologies of the Fermi surfaces are essen-
tially the same in LaTGes (T = Co, Rh, Ir). This is plausible in view of the fact
that the valence electron configurations do not differ in LaTGesz 3d”’4s> in Co,
4d85s' in Rh and 5d4° in Ir. Note, however, that the dHvVA frequency of branch
o in LaCoGes is smaller than those in LaRhGes and LalrGes, and the width of
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LalrSis

T 39-hole 41-electron

[100]
[1 101/ 38-hole 40-hole 42-electron

Fig.3.19 Theoretical Fermi surfaces in LalrSi3, Ref. [19]

Table3.2 Experimental dHvA frequency F, the cyclotron mass m, and the antisymmetric spin-
orbit interaction 2 |ap | for H || [0 0 1]in La TX3 (T = Co, Rh, Ir and X = Si, Ge) and
PrCoGejs, Ref. [40]

Branch o Branch 8

F(x10"0e)  m&(mg)  2lap | (K)  F(x10’0e)  mi(mo)  |api] (K)
R
LakiGes {100 ygs O s om0
LiGes o3 gm0 gp 106
e [ T R
e R L S S

the split dHVA frequencies, |Fy — F_|, for branch « in LalrGes is larger than
those in LaCoGes and LaRhGes. Hence the Fermi surface in LaCoGes is slightly
smaller in volume than those in LaRhGes; and LalrGes. Moreover, we may con-
clude that the antisymmetric spin-orbit coupling 2|ap | in LalrGes is larger than
in LaCoGes; and LaRhGes 2|ap | = 460 K in LaCoGe3, 510 K in LaRhGes and
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Ref. [40]

1090 K in LalrGe3 for branch «. Precise values for branches o and § are given in

Table 3.2.

In this series of dHVA experiments, the potentials can be varied by changing the
transition metal ions 7 = Co, Rh and Ir in LaTGes. This may explain the reason
why the antisymmetric spin-orbit coupling in LalrGes is relatively large compared
with those in LaCoGes and LaRhGes. The difference is connected with both the
characteristic radial wave function ¢(r) of Ir-5d electrons and the relatively large
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Fig.3.22 Radial wave Co-3d
function r¢ (r) as a function ~—Rh-4d
of the distance r for Ir-5d,
Rh-4d and Co-3d electrons in Ir-54
the isolated atoms, Ref. [40]
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effective atomic number Z¢ in Ir close to the nuclear center. Here we simply calculate
the spin-orbit interaction for the d electrons, not in the lattice but in the isolated atom,
following the method presented by Koelling and Harmon [41].

Figure 3.22 shows the r-dependence of the radial wave function r¢ (r) for Ir-5d,
Rh-4d and Co-3d electrons. We assume the valence electrons to be 3d”4s2 in Co,
4d75s5% in Rh and 5d76s? in Ir. The r¢ (r) function of Ir-5d electrons possesses a
maximum at 7 = 0.11 atomic units (a. u.), very close to the atomic center, while the
corresponding distance r is 0.37 a. u. in Rh-4d and 0.66 a. u. in Co-3d, farther from
the atomic center.

Next we will consider the potential V (r), which corresponds to the sum of the
nuclear potential, and the classical Coulomb and exchange-correlation potentials
derived from electron interactions. Figure 3.23(a) shows the coupling constant of the
spin-orbit interaction, 7> dV (r)/dr. Simply thinking, this value corresponds to the
effective atomic number Zgs in the potential V (r) = —Zegr /1. Zetr at r = 0 is very
close to the atomic number Z in the nuclear potential V (r) = —Z/r, where Z is
77, 45 and 27 for Ir, Rh and Co, respectively. As seen in Fig.3.23(a), the coupling
constant of the spin-orbit interaction is reduced strongly as a function of the distance ,
because of screening of the nuclear charge by the electron cloud, reaching Zegf —> 1
for r — oo.

Finally we calculate the spin-orbit interaction, I,:

R rrave’y, s
Lo(r) = W/o S eGP dr, (3.11)
which is shown in Fig.3.23(b) as a function of the distance r. /5, becomes constant
at about 1.0 a. u., but approximately reaches this constant value at » = 0.11 a. u.
for Ir-5d, 0.37 a. u. for Rh-4d and 0.66 a. u. for Co-3d, where the corresponding
radial wave functions possess the extremal values, as mentioned above. The spin-
orbit coupling is, thus, obtained as 38.0 mRy (6000 K) for Ir-54, 12.8 mRy (2020 K)
for Rh-4d and 5.72 mRy (900 K) for Co-3d. These calculations suggest that the radial
wave function of Ir-5d electrons has a larger weight at distances close to the center,
compared with those of Rh-4d and Co-3d, and develops a relatively strong spin-orbit
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coupling in Ir, closely connected with the relatively large effective atomic number
Z.¢ for Ir at the distance r close to the atomic center.

This result of the spin-orbit interaction for an isolated atom is applied to the non-
centrosymmetric crystal lattice. In this case, the degenerate Fermi surface is split
into two Fermi surfaces of which the magnitude of the antisymmetric spin-orbit
interaction is approximately proportional to the spin-orbit coupling of Eq. (3.11),
because the same potential is in principle used in the band structure calculation. The d
electrons in the transition element as well as the 5d electrons in the La atom and the
other electrons contribute to the conduction electrons in La7Ges. This is the main
reason why the antisymmetric spin-orbit interaction 2|op | in LalrGes and LalrSi3
is larger than in LaCoGe3 and LaRhGes. These results may also be applied to
Li;Pt3B and Li;Pd3B, [42] where the spin-orbit coupling in Li;Pt3B, which origi-
nates mainly form Pt-5d electrons, is expected to be larger than the contribution from
Pd-4d orbitals in Li;Pd3B. Note also that 2 |ap, | = 2400 K is large for the main
Fermi surface in LaPt3Si.

Next we will discuss spin-orbit coupling in PrCoGes, which shows no magnetic
ordering and has a singlet ground state within the 4f crystalline electric-field scheme.
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Fig.3.24 Angular dependence of dHVA frequency in a PrCoGe3 and b LaCoGes, Ref. [40]

The dHVA frequency in PrCoGes is the same as that in LaCoGes (see in Fig. 3.24),
but the 2|ap | value in PrCoGes is nearly half of the one in LaCoGes because the
cyclotron mass of PrCoGes is nearly twice as large as the one of LaCoGes, as shown
in Table3.2. The contribution of localized 4f electrons to the topology of Fermi
surface is thus very small in PrCoGes, but still enhances the cyclotron mass.

The dHVA experiment was also carried out for the antiferromagnetic CeCoGes
[43]. Figure 3.25 shows the angular dependence of the dHVA frequency in the field-
induced ferromagnetic state. The magnetization indicates a metamagnetic transi-
tion, and the antiferromagnetic state is changed into a field-induced ferromagnetic
state with a magnetic moment of 0.42 up/Ce. The width of the split dHVA fre-
quencies, |F4 — F_|, is large due to the ferromagnetic exchange interaction and
also to the antisymmetric spin-orbit coupling. The cyclotron mass for H || [0 0 1]
is relatively large, 12 mq for branch S, for example, reflected in the large value
v=32 mJ/K?-mol for the specific-heat coefficient. Note that the corresponding
cyclotron mass in LaCoGes is about 1 m, and yields a small y value of 4.4 mo mJ/K>-
mol.

Now we consider the Fermi-surface properties of CelrSi3, which is an antifer-
romagnet with 7y = 5.0 K. The magnetic structure has not been clarified in detail
so far. In low-temperature specific-heat experiments a large y value was found, y =
120 mJ/K? - mol, while the corresponding magnetic entropy Smag = 0.2R1n2 at Ty
is small, indicating a heavy fermion antiferromagnet based on the Kondo screening
effect [44].

Figure 3.26(a) shows the angular dependence of the dHVA frequency in the antifer-
romagnetic state of CelrSi3 at ambient pressure. No dHvA signal could be observed
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around the [0 O 1] direction, which is most likely due to the presence of the antifer-
romagnetic zone boundaries, indicating a complicated antiferromagnetic structure.
The cyclotron mass is large: 40 mq (F = 3.8 x 107 Oe) for a magnetic field along
[1 1 0]. Figure 3.26(b) shows the angular dependence of the theoretical dHVA fre-
quency based on the 4f-itinerant band model. The experimental result is different for
localized 4f-electrons corresponding to the result of LalrSiz shown in Fig.3.18 and
the heavy-fermion-like itinerant 4f-electrons in Fig.3.26(b).

The magnitude of the antisymmetric spin-orbit coupling of CelrSiz cannot be
determined from the result of the present dHVA experiments, but can be roughly
estimated from the y value: we estimate 2|ap | | =~ 40 K from ¥ = 120 mJ/K?- mol
in CelrSi3, assuming that |ap | [m} in Eq. (3.10) or |ap |y are unchanged between
CelrSi3 and LalrSiz, and 2|ap, | and 7y values are 2|ap | ~ 1000 K and vy =
4.5 mJ/K?- mol in LalrSiz [19]. This value is much larger than the superconducting
transition temperature Ty, = 1.6 K at 2.65 GPa in CelrSi3z, as shown below.

Figure3.27 shows the FFT spectra under pressure for the magnetic field along
[0 O 1]. While there was no dHVA signal at ambient pressure, three signals appear
above 1.62 GPa, named a, b and c. Here, the Néel temperature decreases monotoni-
cally and reaches zero at P. = 2.25 GPa. Superconductivity appears above 1.9 GPa.
The dHVA signals above 2.20 GPa were obtained in the superconducting mixed
state. As shown in Fig.3.27, the FFT spectra in the superconducting mixed state are
extremely small in magnitude. Note that the scale of the FFT spectrum at 2.50 GPa
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Fig.3.26 a Experimental angular dependence of the dHvA frequency at ambient pressure, b the
theoretical one, and ¢ the corresponding theoretical Fermi surfaces based on the 4f-itinerant band
model in CelrSi3, Ref. [45]

is enlarged twice in magnitude compared with the spectra below 2.35 GPa, and the
spectrum at 2.60 GPa is enlarged by ten times. The dHvA frequencies are, however,
unchanged as a function of pressure, as shown in Fig.3.28(a), although branch “a”
with F = 6.85 x 107 Oe disappears above 2.25 GPa. The corresponding cyclotron
masses slightly decrease as a function of pressure, as shown in Fig. 3.28(b).
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We investigated the electronic states of Ce7Si3 (T: Co, Rh, Ir) and CeTGes to look
for superconductivity under large enough pressure. The localization of 4f-electrons is
enhanced in Ce7Ges (T: Co, Rh, Ir) compared with that in Ce7Si3. The correspond-
ing Néel temperature in CeTGes is larger than that in Ce7Si3. This is because the
lattice constants of Ce7Ges are larger than those of Ce7Si3: a = 4.398 Aand c =
10.032 A in CeRhGes and a = 4.237 A and ¢ = 9.785 A in CeRhSi3. Actually, Ge
in Ce7Gejs increases the molar volume and enhances the antiferromagnetic ordering,
as discussed also for CeT> X, (T transition metal, X: Ge, Si) [47].

We plot the Néel temperature and the electronic specific-heat coefficient y as a
function of the average lattice constant 3+/a2c, in Figs.3.29(a) and 3.29(b), respec-
tively. Note that the lattice constant decreases from left to right (data from Refs. [17,
19, 44] and [46]). The observed relation of Ty vs >+/a2c in Fig. 3.29(a) roughly cor-
responds to the Doniach phase diagram, [48] which indicates a competition between
the RKKY interaction and the Kondo screening effect. The magnetic ordering tem-
perature is shown as a function of |JC f| D (ep) in the Doniach phase diagram, where
Jey is the magnetic exchange interaction and D (eg) the electronic density of states
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at Fermi energy ep. Experimentally, ch} D (ef) corresponds to pressure. In fact, the
Néel temperatures in CeRhSi3 and CelrSiz become zero at a relatively small value of
pressure, P, >~ 2 GPa, which corresponds to their magnetic quantum critical points.

The effect of pressure on the electronic states in Ce7Ge3 compounds is very
different from that in CeRhSi3 and CelrSiz. The Néel temperature does not change
appreciably upon application of pressure in CeRhGe; and CelrGes [50-51].
Figure 3.30 shows the pressure dependence of Ty in CelrGes. High pressures are
needed to reach the quantum critical region. The antiferromagnetic ordering tem-
perature Ty = 8.7K possesses a maximum and then decreases with increasing
pressure, while the magnetic transition temperature Tn2 = 4.7 K increases with
increasing pressure. Both temperatures merge at 4 GPa. The antiferromagnetic order-
ing temperature 7N remains unchanged up to pressures of 8 GPa, decreases steeply
below 10 GPa, remains again unchanged up to 22 GPa, and becomes zero around 24
GPa, reaching a quantum critical region. Superconductivity with Tg,c = 1.3-1.5 Kis
observed at pressures larger than 20 GPa.
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Fig.3.30 Pressure-
temperature phase diagram
in CelrGes, Ref. [51]
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Next we consider the effect of pressure on CeCoGes [20, 52, 53, 54]. Figure 3.31(a)
shows a typical temperature dependence of the electrical resistivity at 6.5 GPa,
together with the resistivity at ambient pressure. The overall feature of the resis-
tivity is approximately the same between 6.5 GPa and ambient pressure, although
the Néel temperature 7y = 21 K at ambient pressure becomes zero at 6.5 GPa and
superconductivity appears below Ty = 0.69 K.

Figure3.31(b) shows the low-temperature resistivity at pressures 5.4, 6.5 and
6.9 GPa. At 5.4 GPa, the electrical resistivity decreases steeply below the Néel
temperature Ty = 2.9 K, and drops sharply below 0.43 K, indicating the onset of
superconductivity, reaching eventually zero at Ty = 0.13 K. We define T as the
superconducting transition temperature where the resistivity vanishes. At 6.5 and
6.9 GPa, the antiferromagnetic ordering is not seen clearly. The electrical resis-
tivity, which shows a T2-dependence, 0 = po+ AT?, below about 2.5 K at 5.4
GPa, changes into a 7-linear temperature dependence below about 4 K at 6.9 GPa,
indicating non-Fermi-liquid character. The A value of A =0.357 uQ-cm/K? at
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Fig.3.32 Pressure-
temperature phase diagram
in CeCoGes,
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5.4 GPa corresponds to the electronic specific-heat coefficient y = 190 mJ/K>
mol, following the Kadowaki-Woods relation, [S5] which is compared with A =
0.011 €2 - cm/K? and y = 34 mJ/K?- mol at ambient pressure. Superconductivity
in CeCoGejs is apparently realized in a moderately heavy fermion state. Note that
the y value of about 120 mJ/K?- mol at ambient pressure in CelrSi3 is unchanged
as a function of pressure, even at about 2.6 GPa where the superconducting state is
realized, as described below [56].

Superconductivity in CeCoGes is observed at T,c = 0.69 K at 6.5 GPa and
Tse = 0.65 K at 6.9 GPa. The maximum superconducting transition temperature
might be realized at about 6.5 GPa. We show in Fig.3.32 the pressure-temperature
phase diagram. The Néel temperature decreases with increasing pressure and super-
conductivity appears in the pressure region from 5.4 GPa to about 7.5 GPa. The
critical pressure is estimated to be P. >~ 6.5 GPa.

In CelrGesz and CeCoGes, the Néel temperature does not decrease monoton-
ically, but with a few steps as a function of pressure, as shown in Figs.3.30 and
3.32, respectively. The present step-like feature in the phase diagram might be a
signature corresponding to a change of the magnetic spin structure. This is because
the magnetic structure, where the ordered moment is oriented along the [0 O 1]
direction, with ¢ = (001/2) in CeCoGes, [57] is not favorable in superconductivity,
especially in the tetragonal crystal structure. The magnetic structure might be changed
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as a function of pressure, and superconductivity is most likely realized in favorable
magnetism.

Now we discuss the superconducting phase of CeCoGe3 in a magnetic field. In
this compound, superconductivity is very robust against magnetic fields. Actually,
the slope of H as a function of temperature is extremely large: —dH/dT = 200
kOe/K at T,c = 0.69 K under 6.5 GPa, larger than —dH»/dT = 154 kOe/K at
Ty = 1.56 K under 2.65 GPa in CelrSi3 [19, 20], shown below. The upper critical
field has an upward curvature with decreasing temperature, as shown in Fig.3.33,
and superconductivity appears with an increasing slope of the upper critical field. In
Fig.3.33, the upper critical field at 6.9 GPa is also shown: —dHc2/dT = 190 kOe/K
at Tyc = 0.65 K.

Finally, we investigate the pressure-induced superconducting state of CelrSis
[18, 19]. The effect of pressure on the electronic state was studied through resistivity
measurements. Figure 3.34 shows the low-temperature resistivity at P = 0, 1.95,
and 2.65 GPa. With increasing pressure, the Néel temperature, shown by arrows,
decreases monotonically, although it is not clearly defined at pressures higher than
2 GPa, where pressure-induced superconductivity appears, as shown in Fig. 3.34 for
1.95 GPa. The antiferromagnetic ordering disappears completely at P = 2.65 GPa.
The superconducting transition temperature 7T, as shown by arrows, increases as a
function of pressure and finally attains a value of Ty, = 1.6 K at 2.65 GPa. Note that
the resistivity at 2.65 GPa does not show a T2-dependence, but indicates a T-linear
dependence, which persists up to 18 K.
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Figure 3.35 shows the temperature dependence of the ac-specific heat at pressures
1.31, 2.19 and 2.58 GPa. At 1.31 GPa, the antiferromagnetic ordering is clearly
observed at Ty = 4.5 K, but at 2.19 GPa antiferromagnetism with 7y = 1.7 K coex-
ists with superconductivity with 7y. = 1.4 K. An exclusively superconducting phase
is observed only above the critical pressure P. = 2.25 GPa [56]. The specific heat
has a huge jump at the superconducting transition above P., ACyc/Cac(Tyc) at 2.58
GPais5.75 at T, = 1.6 K, which is extremely large compared with the BCS value of
ACyc/YTsc =1.43. This value is the largest in all the discussed superconductors. The
antiferromagnet CelrSis is thus changed by pressure into a strong-coupling super-
conductor. The ¥ value at 2.58 GPa is roughly estimated as y = 100 + 20 mJ/K>-
mol, which is approximately the same as Y = 120 mJ/K>- mol at ambient pressure.
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We measured the electrical resistivity in a magnetic field as a function of pressure
[58]. Figure 3.36 shows the field dependence of the electrical resistivity at 2.60 GPa
at a constant temperature, with the magnetic field applied along the [0 0 1] direction.
These resistivity data are plotted in a way as to reflect the phase diagram of magnetic
field versus the temperature at which the resistivity reaches zero. The dashed line
indicates the phase boundary which extrapolated to zero temperature exceeds clearly
300 kOe, and is roughly estimated to be about 450 kOe (=450 £ 100 kOe).

The upper critical field H; is determined in a wide pressure range from 1.95 to
3.00 GPa, as shown in Fig.3.37. H2(0) >~ 50 kOe at 1.95 GPa is almost the same
for both H || [0 0 1] and [1 1 O]. The temperature dependence of H.», however,
differs strongly between H | [0 0 1] and [1 1 O]. The upper critical field for H ||
[0 O 1] displays an upward feature with decreasing temperature, while for H ||
[1 1 0] saturation is observed at low temperatures.

With further increasing pressure, the upper critical field deviates substantially
between H | [0 0 1] and [1 1 O]. The superconducting properties become highly
anisotropic: —dHep/dT = 170 kOe/K at Ty = 1.56 K, and Hc»(0) ~ 450 kOe for
H ||[001],and —dH»/dT = 145kOe/K at Ty = 1.59K, and H»(0) = 95 kOe for
H ||[110]at2.65GPa, as shownin Fig.3.38. The upper critical field H.p for H ||[11
0] shows strong signs of Pauli paramagnetic suppression with decreasing temperature
because the orbital limiting field Ho,(= —0.73(dHp/dT)T) is estimated to be
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170 kOe, [59] which is larger than Hc>(0) = 95 kOe for H || [1 1 0]. On the other
hand, the upper critical field H || [0 O 1] is not destroyed by spin polarization based
on Zeeman coupling but possesses an upward curvature below 1 K. A similar result
is also obtained for CeRhSis [15, 16].

Itisinteresting to compare the results of H., with the upper critical field of the non-
heavy-fermion reference compound LalrSiz. This is a conventional superconductor
with Tyc >~ 0.9 K, with an exponential dependence of specific heat as a function
of temperature [19]. Figure3.39 shows the temperature dependence of the upper
critical field H,y in LalrSi3, which was obtained by resistivity measurements in
a magnetic field [58]. The anisotropy of H., is small between H | [0 O 1] and
[1 1 0]. Note that the upper critical field for H || [1 1 0] is slightly larger than that
for H || [001]: =dH/dT = 2.6 kOe/K and Hc2(0) >~ 1.7 kOe for H || [1 1 0],
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and —dH./dT = 1.9 kOe/K and H(0) ~ 1.25 kOe for H | [0 O 1]. The solid
lines connecting the data are guidelines based on the WHH theory [60].

As shown above, the electronic structure as inferred from the Fermi surface of
LalrSi3 is three-dimensional [19]. The small anisotropy of Hc, in LalrSi3 is most
likely due to the corresponding anisotropy of effective mass. On the other hand,
the extremely large H»(0) for H || [0 O 1] in CelrSi3 cannot be explained by an
effective-mass model, because the electronic states are also three-dimensional in
CelrSi3. In fact, the electrical resistivity in CelrSi3 is approximately the same for
J || [00 1] and [1 1 O] at ambient pressure as well as under pressure.
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We will discuss the reason why the Hc»(0) for H || [0 0 1] in CelrSiz becomes
extremely large at 2.65 GPa. Figure 3.40 shows the pressure dependence of the Néel
temperature 7y, the superconducting transition temperature 7y, the specific-heat
jump at Ty, ACyc/Cac(Tyc), and the upper critical field at 0 K Hp(0) for H ||
[00 1]. The ac-specific-heat measurements indicate both the antiferromagnetic order-
ing at Ty = 1.88 K and the superconducting transition at Ty = 1.40 K at 2.19 GPa
[56]. The critical pressure, where the Néel temperature becomes zero, is estimated to
be P. = 2.25 GPa. Above P, = 2.25 GPa, the antiferromagnetic ordering absent, and
only the superconducting transition is observed in the ac-specific-heat measurement.
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The superconducting transition temperature becomes maximum at about 2.6 GPa,
as shown in Fig. 3.40(a). Simultaneously, the jump of the specific heat at Ty, becomes
large. This might be reflected in the upward curvature of H.,, as noted above. As
shown in Fig. 3.40(c), the upper critical field at 0 K H»(0) for H || [0 O 1] becomes
maximum at P ~ 2.63 GPa.

From these precise experiments in magnetic fields, we noticed a field-induced
antiferromagnetic phase [61]. The existence of the field-induced antiferromagnetic
phase is closely related to superconductivity. Figures3.41(a) an3.41(b) show the
temperature dependence of the electrical resistivity at 2.40 GPa for H || [0 0 1] in
the current density of 40 mA/mm?” and 4 mA/mm?, respectively. Each data under
magnetic fields is vertically shifted for clarity.

Two characteristic features are observed. One is a small kink in the electrical
resistivity, shown by arrows labeled 7y in Fig.3.41(a), which appears in magnetic
fields larger than 120 kOe. We consider that this anomaly corresponds to the anti-
ferromagnetic ordering. The other characteristic feature is that the superconducting
transition becomes broad at magnetic fields larger than 100 kOe, which occurs even
in a small current density. For example, the onset of superconductivity under 140
kOe occurs at 72" = 0.93 K and the resistivity-zero is attained at Ty = 0.62 K, as
shown in Fig.3.41(b). It is also noted in CePt3Si that the superconducting transition
is broad in the antiferromagnetic phase but becomes sharp at 0.6 GPa where the
antiferromagnetic phase disappears, as shown in Figs.3.10 and 3.15. A similar fea-
ture is also observed in CeCoGes, as shown in Fig.3.31(b) and again in CelrSi3, as
shown in Fig. 3.34. The antiferromagnetic ordering is more visible in the ac-specific
heat, as shown in Fig.3.41(c). Two kinds of arrows, up and down, are indicated
in Fig.3.41(c) for the superconducting transition and antiferromagnetic ordering,
respectively. From the resistivity and ac-specific-heat experiments, we constructed
the antiferromagnetic (AF) and superconducting (SC) phase diagram, as shown in
Fig.3.42(a).

The present phase diagram in CelrSi3 reminds us the similar phase diagram in
CeRhlns [62, 63], as shown in Fig. 3.42(b). In CeRhlns, the field-induced AF phase
line crosses the H; line and the AF phase exists in the SC phase. On the other hand,
the AF phase line touches the H., line and disappears at lower magnetic fields in
CelrSis.

The antiferromagnetic phase was thus investigated under magnetic fields and
pressures in CelrSi3. We show in Fig.3.43 the AF and SC phase diagram under
various pressures. The antiferromagnetic phase is robust in magnetic fields. In other
words, superconductivity is realized in the antiferromagnetic state. It is concluded
that the H¢, value for H || [0 O 1] becomes maximum when the antiferromagnetic
phase disappears completely in magnetic fields. This pressure corresponds to P} =~
2.63 GPa.

Also note that result of the 2”Si-NMR experiment at 2.7 GPa for CelrSi3 supports
the present result [64]. In the normal state, the nuclear spin-lattice relaxation rate
1/ T, shows a +/T dependence, as shown in Fig.3.44. When the system is close to
an antiferromagnetic quantum critical point, the isotropic antiferromagnetic spin-
fluctuation model predicts the relation of 1/77 o T/+/T + 6, [65] where 6 is a



3 Electronic States and Superconducting Properties 119

Fig. 3f41 Te.m}.)e.ratl.lre of the CelrSis
electrical resistivity in the -

. H//'1001]
current density of a 40 2 40 GPa
mA/mm?, b 4 mA/mm? at 2|
2.40 GPa and ac specific heat g N
for H || [00 1] at 2.40 GPa, & | 160kOe
Ref. [61 E

o [61] 2 T 140

80
40 mA/mm> 69t02
| |
T ‘ét T
TO"S
T sc ) (b)
160 kOe 4 ™ gzlésclfpa
‘ .
140 M HJ//[001]

' ' 2
120 ~matnr 4 mA/mm
100M ! f
8 vl

-y

p (arb. units)
T

| CelrSis |
H //1001]
2.40GPa

| 160 kKO

C (arb. units)
I
Z 2B
R
Y
1

005 T To 15 20
Temperature (K)

measure of the proximity of the system to the quantum critical point. If 6 = 0, 1/ T}
shows a 1/+/T dependence. In this context, the NMR experiment shows that the
electronic state at 2.7 GPa is very close to the quantum critical point. Moreover, the
temperature dependence of 1/7T; below Ty is a T dependence without a coherence
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Fig.3.42 Antiferromagnetic and superconducting phase diagram in CelrSi3, Ref. [61] and b
CeRhlns, Refs. [62] and [63]

peak just below Ty, revealing the presence of line nodes in the superconducting
energy gap.

Moreover, the 2°Si Knight-shift experiment was carried out under pressure of
2.8 GPa and magnetic field of 13.26 Oe, revealing the superconducting transition
temperature Ty = 1.2 K, as shown in Fig.3.45 [66]. In this experiment, a single
crystal enriched by 2°Si isotope was used for CelrSis. It is remarkable that the
Knight-shift K (T')/Ks(Ts) decreases below Ty = 1.2 K for H || [1 1 0], whereas
it does not change at all below 7. for H || [0 O 1]. Note that the Knight-shift or
the spin susceptibility decrease with decreasing temperature and becomes zero at
0 K regardless of crystal directions when superconductors with an inversion center
in the crystal structure are in the spin-singlet state. On the other hand, in the spin-
triplet state the corresponding spin susceptibility for H | d vector is unchanged
below Ty, but the spin susceptibility decreases to zero for H || d. The present
results are inconsistent with the characteristic features in both superconductors with
the inversion center, because the Knight shift does not become zero, but are most
likely applied to those in superconductors without inversion symmetry, as shown
in Fig.3.4(b). In this case, the spin susceptibility x (H || [110])/x (Ts) becomes
1/2 at T —> 0 and x(H | [001]) is unchanged. In the present experiment of
CelrSi3, x (H | [001]) is unchanged below Ty but x (H || [110])/x (Ts) is 0.9 at
Tyc at T — 0 K. The present discrepancy between experiment and theoretical pre-
diction is unclear, but the present Knight-shift experiment reveals that paramagnetic
suppression of the upper critical field H.> would be absent only for H || [0 0 1].

In conclusion, we found a strongly increasing upper critical field H, at pressure
P} ~ 2.63 GPa for H | [0 0 1], indicating a huge Hc>(0) =~ 450 kOe, while the
upper critical field He, for H || [1 1 0] indicates Pauli paramagnetic suppression.
The electronic instability, non-centrosymmetry and strong-coupling superconductiv-
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ity are combined into the huge H,(0) value for H || [0 0 1]. The electronic instability
produces a large slope of the upper critical field, —d Hep /d T at Ty, where PF =2.63
GPa is a quantum critical point. It has been predicted on theoretical grounds, together
with the results of the 2°Si Knight-shift experiment, that paramagnetic suppression
of H.» would be absent only for H || [0 0 1], based on the temperature dependence
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of the spin susceptibility below Ty for this type of non-centrosymmetric supercon-
ductor. It turns out that CelrSij is a strong-coupling superconductor, looking at the
results of specific-heat measurements. These result in the huge H., values for H ||
[00 1] and a large anisotropy of H.>(0) between H || [1 1 0] and [0 O 1]. The present
experimental results are discussed in the recent theoretical work [67].

3.4 Summary

We studied the splitting of Fermi surfaces by dHvA measurements and obtained
estimate for the magnitude of the antisymmetric spin-orbit coupling 2|ap | in RPt3Si
(R:La,Ce)and RT X3 (T: Co, Rh, Ir, X: Si, Ge) which all have a non-centrosymmetric
tetragonal crystal structure. The 2|ap | value varies with changing 7 from Co to Rh
and Ir for LaTGes3, but remains unaffected when replacing Si by Ge in LalrSi3. The
value of 2|ap | is largest for the compounds LalrSi3 and LalrGes and decreases
for Rh and Co. This effect can be attributed to the large effective atomic number
of Ir and a large weight of the radial wave function of the Ir-5d electrons close to
the nuclear center, compared with those of Co and Rh. LaPt3Si with Pt-5d electrons
also possesses a large value of 2 |ap | = 2400 K for a main Fermi surface. The
magnitude of the antisymmetric spin-orbit coupling of CelrSiz and CePt3Si can
be roughly estimated under consideration of the electronic specific-heat coefficient,
which is one order smaller than that of the corresponding La compound.

We also studied the superconducting properties such as the upper critical field
H_; under pressure for CelrSiz and CePt3Si.A magnetic quantum phase transition
occurs in CelrSi3 at about 2.6 GPa, coinciding with a huge H., value of H>(0) ~
450 kOe for H || [0 0 1], while H.2(0) >~ 95 kOe for H || [1 1 0]. Quantum critical
behavior and the specific form of spin-orbit coupling combined are likely responsible
for the extraordinary enhancement of the out-of-plane upper critical field in this
superconductor. On the other hand, no such drastic behavior is observed in CePt3Si.
The corresponding H; (0) value is not so large and determined by orbital depairing.
Therefore this superconductor does not show paramagnetic limiting effects for any
field direction. The important task to estimate the relative magnitude of even and
odd parity components in the Cooper pairing state is left for future studies. The
huge H>(0) values found in CelrSi3 is a unique phenomenon reflecting the drastic
influence of the non-centrosymmetric crystal structure on electronic properties.
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Theory of Non-centrosymmetric
Superconductors



Chapter 4
Basic Theory of Superconductivity in Metals
Without Inversion Center

V. P. Mineev and M. Sigrist

Abstract This Chapter gives a brief introduction to some basic aspects metals and
superconductors in crystals without inversion symmetry. In the first part we analyze
some normal state properties which arise through antisymmetric spin-orbit coupling
existing in non-centrosymmetric materials and show its influence on the de Haas—van
Alphen effect. For the superconducting phase we introduce a multi-band formulation
which naturally arises due the spin splitting of the bands by spin-orbit coupling. It
will then be shown how the states can be symmetry classified and their relation to the
original classification in even-parity spin-singlet and odd-parity spin-triplet pairing
states. The general Ginzburg—Landau functional will be derived and applied to the
nucleation of superconductivity in a magnetic field. It will be shown that magneto-
electric effects can modify the standard paramagnetic limiting behavior drastically.

4.1 Introduction

Motivated by the discovery of the non-centrosymmetric heavy fermion superconduc-
tor CePt3Si [1], the physics of unconventional superconductivity in materials without
inversion symmetry has recently become a subject of growing interest. The lack of
inversion symmetry, a key symmetry for Cooper pairing, combined with unconven-
tional pairing symmetry is responsible for a number of intriguing novel properties.
In a short time the list of new superconductors in this class has been enlarged by
compounds such as Ulr [2], CeRhSi3 [3], CelrSisz [4], Y2C3 [5]and Lip (Pd—, Pt )3B
[6-8]. In all listed heavy fermion compounds superconductivity appears in
combination with a magnetic quantum phase transition suggesting the presence of
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strong electron correlation effects. Thus, it is widely believed that magnetic fluctu-
ations are likely responsible for inducing here unconventional Cooper pairing. For
other materials correlation effects seem to be less relevant. Nevertheless, some of
them show unexpectedly features of unconventional pairing. Li; Pt3B belongs to this
class. While in some cases experimental results give rather clear suggestions on the
gap symmetry, the definite identification of pairing states is far from concluded.

The microscopic theory of superconductivity in metals without inversion has
a long history predating these recent experimental developments [9—12]. Specific
aspects such as the possibilities of inhomogeneous superconducting states [13—15]
and the magneto-electric effect [16, 17] in this type of materials have been discussed
already in the nineties of the last century. Moreover, general symmetry aspects of
non-centrosymmetric superconductors have been addressed rather early in Refs. [18—
20]. A wide variety of physical phenomena connected with non-centrosymmetricity
have since been studied by many groups:

* paramagnetic limitations of superconductivity and the helical vortex state [21-32];

e paramagnetic susceptibility [33-35, 66] and the magnetic field induced supercon-
ducting gap structure [36];

* Josephson and quasiparticle tunneling [37, 38], surface bound states [39, 40], and
vortex bound states [41];

* London penetration depth [42] and the magnetic field distribution [43];

« effects of impurities [44—46];

e upper critical field [47, 48];

* nuclear magnetic relaxation rate [49, 50];

* general forms of pairing interaction [51];

» inhomogeneous superconducting states in the absence of external field [52].

In this Chapter we give a brief introduction to several topics in this context,
leaving most of the special aspects of non-centrosymmetric superconductivity to
other Chapters.

4.2 Normal State

The absence of inversion symmetry is imprinted into the electronic structure through
spin-orbit coupling effects. Already the normal state of non-centrosymmetric metals
bears intriguing features which result from the specific form of spin-orbit coupling.
In this section we discuss the electronic spectrum.

4.2.1 Electronic States in Non-centrosymmetric Metals

Our starting point is the following Hamiltonian of non-interacting electrons in a
crystal without inversion center:



4 Basic Theory of Superconductivity in Metals Without Inversion Center 131

Ho=2 > [EK)bap +y (k) - ouplay axg 4.1)
k of=1]

where al_ia (akq) creates (annihilates) an electronic state |ka). Furthermore, &(k) =
e(k) — pn denotes the spin-independent part of the spectrum measured relative to
the chemical potential u, o, B =1, | are spin indices and o are the Pauli matrices.
The sum over k is restricted to the first Brillouin zone. The second term in Eq.
(4.1) describes the antisymmetric spin-orbit (SO) coupling whose form depends on
the specific non-centrosymmetric crystal structure [53—56]. The pseudovector y (k)
satisfies y (—k) = —y (k) and gy (gk) = y (k), where g is any symmetry operation
in the generating point group ¢ of the crystal (see below). The usual symmetric spin-
orbit coupling which is present also in centrosymmetric crystals yields a new spinor
basis (pseudospinor) «, 8 in Eq. (4.1), which retains the ordinary spin-1/2 structure
with complete SU(2) symmetry. This is different for the antisymmetric spin-orbit
coupling. The effect of the antisymmetric spin-orbit coupling is a spin splitting of
the band energy with k-dependent spin quantization axis which removes the SU(2)
symmetry.

Depending on the purpose it is more convenient to express the Hamiltonian (4.1)
in the initial 2x2 matrix form (spinor representation) or in its diagonal form (band
representation). The energy bands are given by

E+(k) = &(k) = |y (K)| 4.2)
with the Hamiltonian
Ho=>">" &K . (4.3)
kK A=+

where the two sets of electronic operators are connected by a unitary transformation,

ko = Y ttar (K)cka, (4.4)
A

with
Iyl + Ay, Ayx + iVy))

V207 Ayl + Ay

The normal-state electron Green’s functions in the spinor representation can be writ-
ten as

(urn(k), uy;(k)) =

(4.5)

Gk, w,) = D I, K)Gy(k, w), (4.6)
A==
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where

1+ 2 K)o

T, (k) = 5

4.7)

are the band projection operators and y = y/|y|. The Green’s functions in the band
representation have then the simple form

Gk, wp) = m ,

where w,, = 7T (2n + 1) is the Matsubara frequency.

The Fermi surfaces defined by the equations &+ (k) = 0 are split, except at specific
points or lines where y (k) = 0 is satisfied. The band dispersion functions &, (k)
are invariant with respect to all operations of ¢ and the time reversal operations
K = i62K( (Ko is the complex conjugation). The states |k, 1) and K |k, 1) belonging
to the band energies &, (k) and &, (—K), respectively, are degenerate, since the time
reversal operation yields K|k, A) = 1, (k)| — k, A), where £, (k) = —#,(—Kk) is a
nontrivial phase factor [12, 19]. For the eigenstates of Hp, defined by (4.5), this
phase factor takes the form,

(4.8)

Ya (k) —iyy (k)

Jr2m+ 200 @9

Finally we turn to the basic form of the antisymmetric spin-orbit coupling as it
results from the non-centrosymmetric crystal structures. Here we ignore the Brillouin
zone structure and use only the expansion for small momenta k leading to basis
functions satisfying the basic symmetry requirements of y (k). For the cubic group
¢ = 0O, the point group of Lip(Pd;_y, Pt,)3B, the simplest form compatible with
symmetry requirements is

£ (K) = —

v (K) = yok, (4.10)

where y is a constant. For point groups containing improper elements, i.e. reflections
and rotation-reflections, expressions become more complicated. The full tetrahedral
group ¢4 = Ty, which is relevant for Y,C3 and possibly KOs;Og,the expansion of
y (K) starts with third order in the momentum,

y(K) = polke (ky — kD% +ky (k2 —kDF + k. (k —kD2L. (4.11)

This is sometimes called Dresselhaus spin-orbit coupling [53, 54], and was originally
discussed for bulk semiconductors of zinc-blend structure.

The tetragonal point group & = Cy,, relevant for CePt3Si, CeRhSi3 and CelrSis,
yields the antisymmetric spin-orbit coupling

y (k) = o (ky® — ke$) + vykekyko (2 — kD)2, (4.12)
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In the purely two-dimensional case, setting y| = 0 one recovers the Rashba inter-
action [55, 56] which is often used to describe the effects of the absence of mirror
symmetry in semiconductor quantum wells.

4.2.2 de Haas—van Alphen Effect

An experimental way of observing the spin-splitting of the Fermi surface is the de
Haas—van Alphen (dHvA) effect which can help to estimate the magnitude of the
antisymmetric spin-orbit coupling [57]. The single-electron Hamiltonian (4.1) can
be extended to include the magnetic field as follows:

Ho=> > [E®Sup+yK)owp — usHoupla) ars.  (4.13)
k of=t]

The last term describes the Zeeman interaction for an external magnetic field
H, with pp being the Bohr magneton. The orbital effect of the field can be included
by replacing kK — Kk + (e/hc)A(r), [58] where t = i Vi is the position operator in
the k-representation.

The eigenvalues of the Hamiltonian (4.13) are

£k, H) = &(k) + Aly (k) — ugH]. (4.14)
There are two Fermi surfaces determined by the equations
£.(k, H) = 0. (4.15)

For certain directions and magnitudes of H there may be accidental degeneracies of
the Fermi surfaces, determined by the equation y (k) = upH. However, there are no
symmetry reasons for such intersections.

An important property of the Fermi surfaces (4.15) is the fact that their shapes
depend on the magnetic field in a characteristic way, which can be directly probed
by dHVA experiments. Note that while at H = 0 time reversal symmetry guarantees
&.(—k) = &.(k), the loss of time reversal symmetry for H # 0 yields, in general,
& (—k, H) # &, (k, H), i.e. the Fermi surfaces do not have inversion symmetry.

Including now the coupling of the magnetic field to the orbital motion of the elec-
trons we derive in quasi-classical approximation the Lifshitz—Onsager quantization
rules [58]:

2meH
he

Si(e, kn) = [n + e (IM]. (4.16)

Here Sj is the area of the quasi-classical orbit I”, in the K-space defined by the
intersection of the constant-energy surface ¢; (k) = & with the plane k - h = kpy
(h = H/H). Moreover, n is an integer number (n > 1), and 0 < o3 (I") < 1 is
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connected with the Berry phase of the electron as it moves along I" [59, 60]. The
value of &y (I") does not affect the dHVA frequency discussed below.

The dHVA signal contains contributions from both bands and can be approxi-
mately decomposed into the form,

2n F;
Mose = D" Ay cos( ot m) : (@.17)
A

where A, and ¢, are the amplitudes and the phases of the oscillations. The amplitudes
are given by the standard Lifshitz—Kosevich formula and the dHVA frequencies F}
are related to the extremal (with respect to ky) cross-section areas of the two Fermi
surfaces,

Py = —— s, (4.18)

In addition to the fundamental harmonics (4.17), the observed dHvVA signal also
contains higher harmonics with frequencies given by multiple integers of Fj.

Itis interesting to consider the field dependence of the band energies (4.14), which
yield

S (H) = ¢ (0) + Ay (W H + By(R)H? + - (4.19)

Inserting this in Eq. (4.17) the term linear in H contributes to the phase shift, simi-
lar to the paramagnetic splitting of Fermi surfaces in centrosymmetric metals. The
quadratic term is responsible for the magnetic field dependence of the dHVA fre-
quencies. This is a specific feature of non-centrosymmetric metals which could be
observable, if the Zeeman energy is at most of comparable magnitude as the spin-orbit
coupling.

For illustration, let us look at the example of a three-dimensional elliptic Fermi

. I S .
surface with £ (k) = ﬁ + 5, — &F, where m and m_ are the effective masses.
The extremal (maximum) cross-sections of the Fermi surfaces (4.15) correspond to

k., = 0. Introducing the Fermi wave vector kr via ep = hzk% /2m | , we obtain

k 2H?
S (H) = k2 [1 _ vk (1+ ol )} (4.20)

EF ZyEk%

In this approximation we assumed that the Zeeman energy is small compared to
the spin-orbit band splitting, which in turn is much smaller than the Fermi energy:
upH < |y1lkr < er. Based on this result it is also possible to obtain an estimate
of the strength of the spin-orbit coupling.

We use the expressions (4.18) and (4.20) to calculate the difference of the dHVA
frequencies for the split bands:

2¢ uiH?
Fo—Fr="lyilkpmo {1+ 2~ ). 4.21)
he 2yTky
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For example, from the frequencies of the “o” and “p” dHvA frequency branches
in LaPt3Si [61], Fy = 1.10 x 10%0e and Fg = 8.41 x 10’Oe, and m =~ 1.5m,
we obtain for the spin-orbit splitting of the Fermi surfaces: |y |kr ~ 10°K, which
is in reasonable agreement with the results of band structure calculations [18, 61].
According to Eq. (4.21), the magnetic field effect on F— — F in the range of fields
used in Ref. [61] (up to 17T) should be of the order of a few percent. In this way,
the interplay of the Zeeman splitting and the spin-orbit coupling which results in a
deformation of the Fermi surface, is responsible for a field dependence of the dHvVA
frequencies, an effect absent in centrosymmetric metals.

4.3 Superconducting State

In this section we turn to the discussion of some novel aspects of the superconducting
state in non-centrosymmetric materials. Here we can consider only a few examples,
while a wider range of other phenomena will be discussed in other Chapters of this
book.

4.3.1 Basic Equations

After our introductory discussion of single-electron properties we now include
electron—electron interactions to examine the implications of non-centrosymmetricity
on Cooper pairing. Therefore we retain among all interactions only those terms cor-
responding to the Cooper channel and formulate it in the band representation. The
general form is given by

1 +
Hine = -7 Z z Viararsia (K, k/)ClT(,,\,C'_k,MC—k/,MCk’,M- (4.22)
k. K Air2A3Ag

It is reasonable to assume A; = Ay and A3 = A4, such that only intra-band pairing
is considered. Inter-band pairing is usually suppressed, since the spin-orbit coupling
induced band splitting would require that electrons far from the Fermi surfaces would
have to pair, which is unlikely, if the energy scale of the band splitting strongly
exceeds the superconducting energy scale.! Introducing the notation A; = Ay = A
and A3 = A4 = A/, we obtain:

! The interband pairing leads to the interesting possibility of existence of nonuniform supercon-

ducting states even in the absence of external magnetic fields [52]. These states, however, could
be realized in the noncentrosymmetric compounds with the SO band splitting smaller than the
superconducting critical temperature. To the best of our knowledge, in all noncentrosymmetric
compounds discovered to date the relation between the two energy scales is exactly the opposite:
the SO band splitting exceeds all superconducting energy scales by order of magnitude, completely
suppressing the interband pairing, both uniform and nonuniform.
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1 ¥
Hint = 52 S Vi K)ol el ew e (4.23)
kk'q AA/
where
Vi (k, K') = (k) (K) V0 (k, K). (4.24)

Since under time reversal the creation and annihilation operators behave as
Kay, =1, (k)“ik,w Kag y = t; (K)a_x (4.25)

Vi (K, K) represents the pairing interaction between time-reversed states. The
amplitude V., (k, k') is even in both k and k’ due to the anticommutation of fermi-
onic operators and is invariant under the point group operations: Vj,(gk, gk') =
Vi (k, K'). The gap functions of the superconducting state can be expressed as,
Ay(kK) = 1, (k)A~ »(K), in each band, where A, transforms according to one of the
irreducible representations of the crystal point group [63, 64].

The Gor’kov equations in each band read

(iwn —&.(K) Gk, w,) + Akfo(k, wy) =1 (4.26)
(iwn + £.(—K)) F} (k, 0,) + Al Gy (k, @) = 0. 4.27)

The gap functions obey the self-consistency equations
A =-T Z Z Z Vi (k, K) For (K, ). (4.28)
n K N

The resulting Green’s functions are then,

iwy + & (—k)
Gy, (k, w,) =— o 2 — (4.29)
(iwp — 5 (K) ((wp + §1(—K)) — Ap Ay,
—A
F (k, o) =— — . (4.30)
(iog — E,(K)(iwp + E1(—K)) — Ak Ay,
and the quasiparticle excitation energies for each band have the form
k) — & (—k K+ 65K\ -
o = B0 8 >+/(a<> i )) Aedl @3

which becomes in case of time reversal symmetry,

Ex. = \/&(k)2 + A AL (4.32)
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These Green’s function are analogous to those of a multi-band superconductor
[62], apart from the fact that in the non-centrosymmetric case the two bands do not
possess spin degeneracy. They rather correspond to a type of spinless fermions, since
their spinors on each band are subject to a momentum dependent projection. This
distinction becomes more apparent, if we write the Gor’kov equations in the initial
spinor basis (spin up and down),

(iwp — E(K) — ko) Gk, w,) + AcFT (K, w,) = 1 (4.33)

(ion +&(—K) + y_ko") Fi(k, w,) + AL G(k, w,) = 0, (4.34)

where £(K) = ex — U,

Gk, wy) = [1,G 1 (k, ) + [1_G_(k, wy), (4.35)
Fl(k wp) = ¢ {1 Fl ko0 + A-FL (00} (436)
A=A A+ 1Ay g, (4.37)

with ¢ = i6,. Examining the form of the gap function reveals that in the non-
centrosymmetric superconductor both even-parity spin-singlet and odd-parity spin-
triplet pairing are mixed, since no symmetry is available to distinguish between the
two. Therefore, we may write

" A~k, +A~k,_A A~k, —A~k,—A A
Ak = +2 8+ +2 o8, (4.38)

The odd-parity component is represented by a vector which is oriented along the vec-
tor yk of the spin-orbit coupling. In this discussion the only approximation entering
so far is the absence of inter-band pairing.

4.3.2 Critical Temperature

For the discussion of the instability condition at the critical temperature and the
topology of the quasiparticle gap we can use the symmetry properties of the pairing
interaction matrix VA » (K, K’) mentioned earlier. The momentum dependence of the
matrix elements can be represented in a spectral form decomposed in products of
the basis functions of irreducible representations of ¢. It is generally sufficient to
consider only the part of the pairing potential based on one irreducible representation
I' corresponding to the superconducting state with maximal critical temperature [63].
In a simplified formulation this could be represented by even basis functions on the
two bands, ¢ ; (k) and ¢_ ; (k),
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dr
VoK) = =V S s (085, (K, (4.39)
i=1

While ¢ ; (k) and ¢_ ; (k) both belong to the same symmetry representation, their
momentum dependence does not have to be exactly the same. The basis functions are
assumed to satisfy the following orthogonality conditions: (¢;"i &)@, j(K))y = 8ij,
where the angular brackets denote the averaging over the Ath Fermi surface. The
coupling constants Vj;, form a Hermitian matrix, which becomes real symmetric, if
the basis functions are real. The gap functions take the form

dr
A (k) =D migni(K), (4.40)

i=1

and n, ; are the superconducting order parameter components in the Ath band.

As an example, consider a superconducting state with the order parameter trans-
forming according to a one-dimensional representation A; (K) = n,¢;. (k). The lin-
earized gap equations Eq. (4.28) acquire simple algebraic form

N+ = (8++1+ + g+-n-)81(T),
n- = (g—+n+ + g-——n-)S1(T), (4.41)

where

8uw = Vi Now, (4.42)

and Ny, = <|¢)L(k)|2N())L(lE)> » 1s the weighted average angular dependent den-

sity of states over the Ath Fermi surface. Note that for multidimensional rep-

resentations (dimensional dr), due to the crystal point symmetry, the values of

No), = (|¢;L,,-(k)|2Nm(lA());\ are equal for all components i = 1,...,dr and all

components 0.1, - .., N4 separately satisfy the same system of equations (4.41).
The function S{(7T') is

2yec
nT

1
S(T)=2aT» — =l , (4.43)
Wp

n>0

where Iny = 0,577... is the Euler constant. Moreover, &, is an energy cutoff for
the pairing interaction, which we assume to be the same for both bands. From Eq.
(4.41) we obtain then the following expression for the critical temperature:

2 1
o= 25 exp (). (4.44)
0 8

where

2
8++ T+ 8- —g-—
g = 5 +\/(8++ 5 § ) +8+-8—+ (4.45)
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is the effective coupling constant. For multidimensional representations the critical
temperature is the same for all dj components of 7, ; of the order parameter. The
particular combination of amplitudes 7, ; in the superconducting state below 7, is
determined by the nonlinear terms in the free energy or self-consistent equation,
which depend on the symmetry of the dominant pairing channel.

The solution of Eq. (4.41) (4, n—) corresponding to the eigenvalue S (7;) deter-
mines two unequal order parameter components A; (k) = 1,¢; (k). In the spinor
representation (4.38) both singlet and triplet parts of the order parameter are present.
Pure singlet or pure triplet pairing occurs only under rather restrictive conditions.
First, the momentum dependence of the gap function in both bands is the same
Aj(K) = n,$ (k). Second, g4 = g__ and g4 = g_ isrealized. Then we obtain
two solutions of equations Eq. (4.41) with

N+ =1-, (4.46)
Ny = —n_. (4.47)

The critical temperature of the state (4.46) corresponding to the singlet part is ij =
(2e/m)e~ /85 where g; = g4+ + g+—. The critical temperature of the spin triplet
state (4.47) is TL,’0 = (2ec/m)e /& where g, = g4y —g4_.If g4_ > 0 then T >

T!, and the phase transition occurs to the state (4.46). While at g < 0 we see that
T!, > T, and the phase transition occurs to the state (4.47).

4.3.3 Zeros in the Quasiparticle Gap

On the one hand, the zeros in the gap for elementary excitations are dictated by
the symmetry of the superconducting state or its superconducting class which is a
subgroup 77 of the group of symmetry of the normal state ¢ x #" x U(1). Here ¢4
is the point group, % is the group of time reversal, U(1) is the gauge group. The
procedure to find symmetry dictated nodes is described in Ref. [63]. Let us consider
the possible superconducting states (4.40) and their nodes for CePt3Si with point
group symmetry Cy,. This group has four one-dimensional irreducible representa-
tions, A1, Az, By, B>, and one two-dimensional representation, E. Examples of even
basis functions of these irreducible representations are

r | or k) | nodes

A | KK+ ck? -

Ay kky (k2 — k2) ke =0,ky =0,k = £k,
B k} — K} ky = £k,

B> kyky ke =0,ky =0

For the E state the basis functions are ¢ g1 (k) = kyk; and ¢g2(K) = kyk; leading
to the order parameter for the Fermi surfaces A,
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Ay (K) = m 1 £1(K) + 13203, E2(K). (4.48)

The symmetry of superconducting state and the corresponding node positions
depend on the particular choice of amplitudes 7, ;. Under weak-coupling condi-
tions the combination generating least nodes is most stable, corresponding here to
(Ma,1, mx,2) = m (1, £i). This is a time reversal symmetry violating phase with a
line node on the plane k; = 0 and point nodes at k, =k, = 0.

On the other hand, the fact that their gaps on the two Fermi surfaces are composed
of an even- and an odd-parity part, can also lead to nodes which are not symmetry
protected, as discussed in Ref. [45].

4.3.4 The Amplitude of Singlet and Triplet Pairing States

The coupling constants V) ;,» we have used in previous considerations can be expressed
through the real physical interactions between the electrons naturally introduced in
the initial spinor basis where BCS-type Hamiltonian has the following form [63]

1

Hin = 2 D VA K) (02)ap (i02)]
kk'q afyé

+ VAR, K)(00702)ap ((0702) ] 50k g o€ gk yChiqsr  (449)

here the amplitudes V¢ (k, K’) and Vl’; (k, K') are even and odd with respect to their
arguments, correspondingly. The unitary transformation (4.4) transforms the pairing
Hamiltonian (4.49) to the band representation (4.22). If we neglect inter-band pair-
ing, it is reduced to (4.23) and (4.24) with the amplitudes given by the following
expression

_ 1 1 o
Vi (k, K') = SVE G K)(00 + o) + 5 Vi K7 K)7; (K) (00 — 0
(4.50)

The explicit derivation is given in [51], where a similar procedure was also made for
more general interactions mediated by phonons or spin fluctuations. It can be shown
that the pairing given by the amplitude V8 (k, k') in the initial spinor basis including
the simple s-wave pairing V& (k, k') = const does not induce any inter-band pairing
channel.

To illustrate the origin of the singlet and triplet pairing channels, let us consider
a superconductor with tetragonal symmetry Cy, and Rashba spin-orbital coupling
y(k) = y1(Z x k), for a spherical Fermi surface. We describe the pairing by the
following model which is compatible with all symmetry requirements:

VE(k, k) = —V,,
Vi, K) = =V (7 (K)7;(K)), (4.51)
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where V, and V), are constants. This type of pairing interaction yields the supercon-
ducting state with full symmetry of the tetragonal group Cj, transforming according
to unit representation A both in singlet and in triplet channels.

With Eq. (4.50) we arrive at the band representation:

- 1 1
Viw(k K) = —EVg(UO + o) — EVM(O'O — O (4.52)

Thus, this pairing interaction is even simpler than that considered in the previous
subsection (Eq. (4.39)). So, in our model the gap functions in the two bands (Eq.
(4.40)) are: A}(k) = M@a, (k) with k independent functions ¢4, (k) = 1. The
amplitudes 7, satisfy the equations

m = Z gwnT Z (4.53)
no | + U)L/
where
Ve, +V, V, =V,
gt = 2 5 “Not, gig = %NO:F, (4.54)

and the critical temperature is given by Eq. (4.44).

According to the Eq. (4.38) the singlet and triplet parts of the order parameter
are determined by the order parameter amplitudes in different bands. For the ratio of
triplet to singlet amplitudes in the vicinity of 7, we find:

e —1- _ 284—+ 84+ —8-——V7
netn— 28 +g  —g VT

*
Il

(4.55)

where 7 = (g4, — g__)> +4g,_g_.. Itis easy to see that for V,, = 0 the triplet
component of the order parameter vanishes identically and » = 0. On the other hand,
for V, = 0 the singlet component of the order parameter disappears and rl=0.
Generally the relative weight of singlet and triplet component in the order parameter
depends on the ratio of pairing interactions decomposed into even- and odd-parity
channels.

A simple BCS-type of model with

V8(k, k') =-V, and Vl.'j (k,k') =0 (4.56)
yields in the band representation
1
V)ﬁ/cs(ks K) = —zvg (00 + ox)an- (4.57)

and gives rise to purely spin-singlet pairing within our notion.
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4.3.5 Ginzburg—Landau Formulation

The Ginzburg—Landau theory is a very efficient tool to discuss a wide variety of phe-
nomena of the superconducting state, in particular, the instability conditions at the
critical temperature. We will derive the Ginzburg—Landau functional from a micro-
scopic starting point, with the aim to address in the following chapter the influence
of the magneto-electric effect on the nucleation of superconductivity in a magnetic
field, i.e. the modification of paramagnetic limiting in a non-centrosymmetric metal.

For this purpose we extend the self-consistent equation (4.28) to the case where
magnetic fields are present and the superconducting order parameter has a weak
spatial dependence,

Ak@) =T > > Vi (kK) Gk, 0)G(-K +q, —0n) A, (K, q).
n kK v
(4.58)
Near the critical temperature one can use the normal metal Green functions Gg k, wy),
which yield then the linearized gap equation, to examine the instability condition.
This equation can be derived from the free energy functional of the form

P d’q il
=53] @y %“m,i((ﬂ o i (@)

k-, 8
—ZVZTZHZ/WAV&, QG (K, 0,)Gy(—k + q, —0,) Ak, q) } .

(4.59)

The corresponding normal-metal electron Green function G, (k, ;) = (iw —
&.(k, H))~! in a magnetic field is determined by the electron energies (4.14),

& (k, H) = §(k) + Aly (k) — upH| = §,.(k) — m, (k)H, (4.60)

where &, (k) = £(k) + A|y (k)| and the second term on the right-hand side is the
analog of the Zeeman interaction for non-degenerate bands [34] with the form:

m;, (k) = Appy (K), (4.61)

which is valid everywhere except for the vicinity of band crossing points, where the
approximation of independent non-degenerate bands fails. In standard centrosym-
metric metals the magnetic field splits the Fermi surfaces into majority and minority
spin surfaces. Here the spin-splitting is imposed at the outset by the spin-orbit cou-
pling. The effect of the magnetic field is a deformation of the band and shape of the
Fermi surfaces. As we will see this will influence the superconducting condensate
nucleated in a magnetic field.
The normal electron Green function is then approximated as

1
Gk o) = e (0 + my(OH

(4.62)
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Since the gap function depends weakly on energy in the vicinity of the Fermi surface,
one can integrate the products of two Green’s functions with respect to &, = &, (k):

Noj. / d§,.G(k, w)Gi(—k +q, —w,) = 7 Nop Ly (K, q, @), (4.63)

where

1
L k, , W = - - 464
r 4 on) |wn | +i82;.(K, q)sign w, ( )

depends only on 12, the direction of k,

2k, q) =

k
V*(z 9 _ o (0H, (4.65)
with v, (k) = 9§, (k)/0dk being the Fermi velocity in the Ath band.

The Ginzburg—Landau free energy in usual coordinate representation (as well as
the Ginzburg-Landau equations) can be obtained from the Taylor expansion of Egs.
(4.58) and (4.59) in powers of £2, (K, q), by the replacement

q— D=—iV; 4+ 2eA(r) (4.66)

in the final expressions. In the following we will put 7 = ¢ = 1. The special form of
£2, (k, q) introduces a novel gradient term in the free energy of non-centrosymmetric
superconductors. Instead of powers of q it contains powers of £2; (k, q). This can
can lead to the formation of a nonuniform superconducting state known as helical
phases and to a magneto-electric effect in a magnetic field.

4.4 Magneto-Electric Effect and the Upper Critical Field

The term “magneto-electric effect” in non-centrosymmetric superconductors encom-
passes several intriguing features. It has been discussed on a phenomenological level
by introducing additional linear gradients terms to the Ginzburg—Landau free energy,
so-called Lifshitz invariants, like

n*(r)K;; H; Djn(r) (4.67)

Here n(r) denotes the superconducting order parameter, H is the magnetic field and
D = —iV +2¢A is the gauge-invariant gradient. First predicted by Levitov, Nazarov
and Eliashberg [10], the magneto-electric effect was studied microscopically by sev-
eral authors [11, 16, 17, 21, 26]. In this context several observable effects have been
predicted: (i) the existence of a helically twisted superconducting order parameter in
a magnetic field in two and three dimensional cases and spontaneous supercurrents
in a 2D geometry [17, 21, 23, 24, 26, 29, 32] and near a superconductor surface
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[31] as well as along junctions of two superconductors with opposite directions of
polarization [30], (ii) the enhancement of the upper critical field oriented perpendic-
ular to the direction of the space parity breaking [26, 29], (iii) magnetic interference
patterns of the Josephson critical current for a magnetic field applied perpendicular
to the junction [29].

The presence of Lifshitz invariants (4.67), however, can mislead to invalid con-
clusions so that a careful analysis of different contributions is mandatory. Especially
the question of the influence of the magneto-electric effect on paramagnetic limiting
deserves special attention in this context. Moreover, the notion of helical phase has
to be considered with caution as it may seduce to wrong pictures. In this section
we would like to give insight into these subtleties by discussing the magnetic field
dependence of the effective critical temperature in the Ginzburg—Landau framework.

4.4.1 One-Band Case

Before considering the intrinsic multi-band situation due to the spin splitting of the
electron band, we restrict ourselves, for simplicity, to a one-band situation, i.e. we
ignore one of the two bands. This band shall be characterized by an isotropic density
of states at the Fermi energy, No4+ (k) = Ni.

The Ginzburg-Landau free energy for this one-band case with a one-component
order parameter can be derived from Eq. (4.59)

1 dq
2) @)l

2
[V— — Not-S1(T) + Noy S3(T){(¢° k) 2k, q)>2>] (@I,
++
(4.68)
where we restrict to the second order terms [26, 46]. This is sufficient to analyze the
instability conditions. Here, ¢ (K) describes the superconducting state and is an even
function belonging to one of the one-dimensional representations of the point group

of the crystal, £2 is given by (4.65), (...) means the averaging over the Fermi surface,
the function §1(7) is given by Eq. (4.43) and

1 7£@3)

n

The Ginzburg-Landau free energy functional in real space can be obtained through
a Fourier transformation and leads to

F= [ @ {ar = To)nl 07 [K1(D} + D)+ KaD2 + Ky HiD; + 0i it | n].
(4.70)
where

a = Now/2Te0.  Teo = yeo/m) exp (—2/ Viy Noo), @.71)



4 Basic Theory of Superconductivity in Metals Without Inversion Center 145

NoL S N,
K= °+ 20 62 k02 (K)), Ko = °+ Mot a2y, @72)
No. S N 2 No4. S A
Ki; = —%(a&%km(km(k», 0ij = %w%k)mkm(k».

4.73)

The term linear in H incorporates the magneto-electric effects, while the term
quadratic in H describes the paramagnetic effect. This means also that Q;; [n|? is
connected with the change of the paramagnetic susceptibility in the superconducting
phase compared with the normal state (Pauli) susceptibility. In particular, Q;; van-
ishes when there is no change of the paramagnetic susceptibility. These coefficients
have to be compared with those of a spin singlet state in a centrosymmetric super—

conductor, Q( ) = 8,J,uBN053/2 Assuming Not+ = Ny, the coefficients Q(O)

larger than the above Q;; due to the fact that 1 = ((])2 k)) > (¢2 K)yi (K)y 7 (K)).
We consider now two illustrative cases, the point groups Cy4, and D4 which are
characterized by the pseudovectors

y(k) = y1(&ky — $k) + ykekyk (k7 — k3) for Cyy,
Y (K) =y (kX 4+ ky ) + yyk:2 for LDy. (4.74)

For symmetry arguments and using above expressions we find the following relations
for the coefficients,

Kyy=—-Ky #0 and K;; =0 otherwise

Qxx = Qyy #0,; >0 and Q;; =0 otherwise @75

for C4, where presumably |K ;| < |Kyy| and Q;; < Oy, due to the large number
of nodes in the k-dependence of the y)-part of y (k), and

Kyx =Ky, #0,K;; #0 and K;; =0 otherwise
Qxx = Qyy # 0,z >0 and Q;; =0 otherwise

for the point group Dj.

(4.76)

4.4.1.1 Symmetry C4,, H || 2

In the case of Cy, for the field directed parallel to the z-axis H = H (Q, 0, 1) the
terms linear in gradients and H are absent. The standard solution n = ¢'??Y f(x) of
the GL equation

2

IO!(T — Te0) + K [—m

9 2
+ (—ia— + 2eHx) } + QZZHQ} n=0, (4.77)
y

is degenerate in respect to gy. The magnetic field dependence of the critical temper-
ature is
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o o

T, =T, — (4.78)
Both the orbital (linear in H) and paramagnetic (quadratic in H) depairing effects
are present. Compared to the ordinary spin-singlet case, however, the effect of the
paramagnetic limiting is weaker here due to Q,, < Qg;). It is important to note that
no magneto-electric effect comes into play here.

4.4.1.2 Symmetry D4, H || Z

The situation is quite different for uniaxial crystals with point symmetry group
Dy (or Dg). The GL equation includes gradient terms in the field direction and
acquires the form

92 9 2
a(T —To)+ K1 | —— +|—i— +2¢Hx
ax2 Ay

9 92
+iKZZH8_Z_K2P++QZZH2]n=0. 4.79)
The solution can be written as
n = DYl f(x), (4.80)

which remains degenerate with respect to the wavevector gy, but not with respect to
g, which is used to maximize the critical temperature to

. 2Ky K2 H? 181
T. = Teo o H + 4K2 sz a ( )

This corresponds to the finite wavevector

K. H

= . 4.82
qz 2K, ( )

Note that this wave vector could also be absorbed into the vector potential without
changing the physically relevant results: A — A 4+ Vx with x = —q,z/2e.

The simple paramagnetic depairing effect is weakened due to the magneto-
electric response of the system. Adjusting the nucleation of the superconducting
phase to the shifted Fermi surface, as incorporated in the wavevector g,, recov-
ers some of the strength of the nucleating condensate. This is a specific effect of
the non-centrosymmetric superconductor and has its conceptional analogue in the
Fulde—Ferrel-Larking—Ovchinnikov (FFLO) phase for centrosymmetric spin singlet
superconductors, where the condensate also nucleates with finite-momentum Cooper
pairs in order to optimize the pairing of degenerate quasiparticles on the split Fermi
surface.



4 Basic Theory of Superconductivity in Metals Without Inversion Center 147
4.4.1.3 Symmetry C4,, H L Z
Now we turn the magnetic field into the basal plane, H = H(cos ¢, sin ¢, 0), and

impose a gauge to have the vector potential A = Hz(sin ¢, — cos ¢, 0). The corre-
sponding GL equation takes the form

32
{a(T —Teo) + K1(DF + D) — K5 + Ky (HxDy = HyDy) + QuxH* { =0,
(4.83)
where
0 0
D, = —la—x +2eHyz, D, = —15 —2eH,z. (4.84)

Like in ordinary superconductors the solution of this equation have the Abrikosov
form

n(r) =exp[i(p x r);]f(2), (4.85)

where we write p = pH/H as a vector parallel to the magnetic field (p x r), denoting
the z-component of the vector (p X r), and f(z) satisfies the resulting renormalized
harmonic oscillator equation

32 K?
{a(T — To0) + K1(2eH)*(z — 20)* — Kags+ (Qxx - ”)H2 f(z) =0,

4K,
(4.86)
with the shifted equilibrium position

K,
20 = (2eH)™! (p + 2Ky1 ) (4.87)

Thus, the vector p is absorbed into the shift zo and does not appear anywhere else
in the equation. Then the corresponding eigenvalue determines the magnetic field
dependence of the optimized critical temperature:

2e KK K? H?
—a‘ 2H+( s Qxx)

— — —_—. 4.88
4K, o ( )

In the used gauge the eigenstates are degenerate with respect to p and acquire the
same structure as the usual Landau degeneracy. Nevertheless, the characteristics of
non-centrosymmetricity incorporated in the K;; terms appear in the expression of
T,. Similar to the previous case of D4 with H || z the magneto-electric effect yields
a reduction of the paramagnetic limiting term. This renormalization is surprisingly
strong in general, as we can see when we return to the expressions we derived for
the different coefficients. We obtain for the last term in Eq. (4.88),
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K? H? [ (02(K)P (K)vy (K))? W2H2N, Ss
Say s x y 20002 B +23
[4K | Q”} - [ Wiy 0% (k”} 2
(4.89)

Considering the simplified picture of a parabolic band with v(k) = k/m* and a
Rashba spin-orbit coupling y = k x Z (setting y,(k) = 0) we find the amazing
result that the two terms cancel exactly and the paramagnetic effect is completely
suppressed. This result can be immediately obtained, if we perform the gauge trans-
formation

2upm*(Z x H)

i (4.90)

q—>q+

already in Eq. (4.65) and eliminate the paramagnetic term at the outset. However,
it is important to notice that this exact cancellation is a consequence of the sim-
plified forms of the band structure and the spin-orbit coupling term. Taking more
realistic band structure effects into account it is obvious that this identity does not
hold anymore in general. Nevertheless, our results suggest that the magneto-electric
effect can, in principle, yield a substantial contribution to eliminate the paramagnetic
limiting also for fields in the basal plane.

4.4.1.4 Symmetry Dgy, H L 7

It is easy to see that this case is analogue to the situation for the field along the z-axis
and has only quantitative differences. Thus also here we encounter a reduction of the
paramagnetic limit due to the magneto-electric effect yielding

2e /KK, K2, H?
H + - Qxx V)
o 3K1

T, =T — (4.91)
where also the same considerations concerning the gauge freedom apply as in the
case of H || z.

4.4.1.5 Two-Dimensional Case, Symmetry Cy4,, H L Z

The simplest way to pass from the 3D to the 2D situation is to introduce a §(z)-
function potential well into the 3D GL equation (4.83). This is equivalent to the
theory used by Tinkham [65] for the calculation of the upper critical field in a thin
film with thickness d << & for a field parallel to the film. Thus, we consider the
instability equation

2

ad
[a(T — T.o) — Ki(D; + D) — Kags

2K
+ny(Hny - H}’Dx) + Q)cxI"I2 - 728(1)] n=0, (4.92)
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where d is a length of the order of the film thickness that in the pure 2D case it is an
atomic scale length. This eigenvalue equation has the solution

. 1]

n(r) = Aexp [1 (p x r)Z] exp (—7 , (4.93)
where p = pH/ H is a vector with arbitrary length directed along the magnetic field.
This then determines the critical temperature as a function of the applied magnetic
field.

2

7 2 2 KXV 2
(T = Teo) + K1 QeH)* (2 = 200) + | Qux = = JH = 0. (494)

Here T, is the critical temperature in the absence of a magnetic field, corresponding
tod? = K, /a(Tco — T.0). Moreover, the brackets (...) denote the expectation value
using the wave function exp (—|z|/d) and zp is determined by the same expression
as in the 3D case

0= QeH) " (p+ Koy ). (4.95)
2K,
Hence, we obtain for the critical temperature
2

= ny H? Ki > 2 2
T. =T + 4 —OQxx | —— _(ZO +d°/2)(2eH)". (4.96)
K o o

The critical temperature reaches obviously a maximal value at zg = 0, i.e. for

Ky
2K,

p= (4.97)
The upper critical field shows also here the square root temperature dependence usual
for thin films in a parallel magnetic field [65]. Under special conditions (e.g. rotation
symmetry around the normal vector of the film) the expression in the square parenthe-
sis in Eq. (4.96) may vanish, as described above. Then, unlike in usual superconduc-
tors, non-centrosymmetric superconductors follow the standard Tinkham behavior
unchanged by paramagnetic contributions.

In view of strong inequality d < 1/+/2eH the complete suppression of the 2D
superconducting state (7. (H) = 0) is reached in the field which exceeds the orbital
critical field in the 3D case (4.88).

4.4.2 Two-Band Case

While the one-band picture discussed so far gives useful insights into the influence
of the magneto-electric effect on the upper critical field, in particular, in the context
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of paramagnetic limiting, in reality there are at least two split bands whose Fermi
surface allows for the nucleation of a condensate in a finite magnetic field. In the two-
band picture the situation is somewhat more complex, so that we restrict ourselves
here to a few aspects only which, we believe, are relevant in this context without
attempting to give a complete overview. We base our analysis on the formalism
introduced for the homogeneous superconducting phase in Sect.4.2.5. We use also
an order parameter belonging to a one-dimensional representation on the two Fermi
surfaces, A; (K, r) = n,. ()¢, (K) with A = 4. Moreover we restrict our discussion
to the case of the point group Cy4, with an in-plane magnetic field. Then the linearized
Ginzburg-Landau equation is given by

N+ = g4 [S1(T) — LIy + g—[S1(T) — L_n—,
N- = g+ [S1(T) — Lilng + g——[S1(T) — L_1n_, (4.98)

with the operators L Lo

2

. _ 9
Ly = Ng;! [Ku(Di + Dy) = Koz + 1Ky (Hi Dy = HyDo) + QmHﬂ :

(4.99)

where the coefficients are defined through the straightforward generalization of Eqs.
(4.72) and (4.73) to the two-band case with the gap functions ¢, (k), the Fermi
velocity components v, _; (k) and the densities of states N, taken in the corresponding
band.

Similar to the one-band case the solutions of this equation system can be cast into

the Abrikosov form
MO\ _ (fr@)
(n—(r)) B ( f- (z)) exp [i(p x 1).] (4.100)

where again p = pH/H and the functions f4 (z), f—(z) satisfy the system of equa-
tions

fr= g SI(T) = M) fy + g4 [S1(T) — M_1f-.,
fo =g+ [SI(T) — M1 fy + g——[S1(T) — M_1f-. (4.101)

Using the same gauge as in the one-band example, the new operator Mj, is then

~ _ 82 K27A
M, = Nm1 |:K1)\(2€H)2(Z —2:0)% — szg + (QmA _ 41?u 2|

(4.102)

K
200 = (2eH)™! (p+AﬂH). (4.103)
2K
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As in the one-band case the eigenstates of this system possess the Landau degeneracy
represented through the equilibrium positions of the coupled harmonic oscillators,
z0+ and zo—, which both depend on p. Through the substitution

=7+ -2

we can formulate the equation system so that p is eliminated and zg), — Zoy,

Zoy = Ly (4.104)

The general solution of Eq. (4.101) can be found only numerically. Here we limit
ourselves to a variational solution of the form,

eHv?THZ-Zmdzl
Koy ’
eHVK\_(Z — Zo_)> ]

Koo

J+(Z) = Cyexp {—

f-(Z) =C_exp [— (4.105)

In the following calculations, taking into account that the band splitting is much less
than the Fermi energy |y |kr < eF, we neglect the difference between the Fermi
velocities vy (K) and the densities of states Ny, of the two bands. In this case, the
values of Zp; = A Z for different bands differ each other only by sign. Returning to
the free energy functional and integrating over Z we obtain new variational equations
for the coefficients C4 and C_:

Cy = g+[S1(T) = M(H)]Cy + Ig4[S1(T) = M(H)]C—,

C_=1g[S1(T)— M(H)IC+ + g——[8:1(T) — M(H)]C- (4.106)
with
KZ
M(H) = Ny |:2eH\/K1K2 + (Qxx — ﬁ) HQ} , (4.107)
1
and

I =exp(—2eHZ}). (4.108)

The Egs. (4.106) have the same form as Eq. (4.41) in the absence of magnetic field.
Hence, for the critical temperature we obtain

T. = Too(1 — M) (4.109)

where the temperature T,o is given by the same formula (4.44) as T.q, taking in
mind the substitutions g4 — g4+ = Igy_, g+ — g_4+ = Ig_4. The product
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2eHZ} ~ eHm*?/(kpm)?) is much less than unity generally, except for heavy
fermion or layered superconductors.

Thus, in the two-band situation the paramagnetic suppression of the supercon-
ducting state o« —Q ., H? is substantially weakened by the magneto-electric effect
x Kfy H?/4K|. The latter has a finite value as long as we work in the limit
upH < |y1lkr.

This conclusion is qualitatively valid in general, although our discussion was
limited to a simple variational approach only. Moreover, assuming g4+ = g—_ and
g4+— = g—4, as it was done in the absence of magnetic field (see Eqs. (4.46) and
(4.47)), we come to the solution of (4.106) with either pure singlet or with pure triplet
pairing. The effect of paramagnetic limiting is identical in both cases. This underlines
directly that the weakening of the paramagnetic limiting in the non-centrosymmetric
superconductors is not connected to the formation of a mixed singlet—triplet state. The
important point is the spin-orbital splitting of the bands. The Pauli spin susceptibility
of the quasiparticles in whole space between the two Fermi surfaces is not changed
in the superconducting state in comparison of its normal state value. This leads,
therefore, to the weakening of the paramagnetic suppression of the superconducting
state.

Various approximations to the two-band model have been used in the literature,
some of which can obscure the subtleties of non-centrosymmetric superconductors.
In particular, the discussion of the spin susceptibility in the superconducting phase
given in [33-35] has to be considered with caution in view of the magneto-electric
effects which are neglected there. The adjustment of the superconducting state to the
field-induced shifts of the Fermi surface yields a correction to the spin susceptibility
which is not negligible as our discussion in the Ginzburg—Landau regime show. The
subtle two-band effects, however, often make quantitative predictions difficult [66].

4.5 Conclusion

In this chapter we have given an overview on some theoretical aspects of non-
centrosymmetric superconductors. Unlike symmetric spin-orbit coupling found in
centrosymmetric metals, the antisymmetric spin-orbit coupling has a spectacular
influence on the electronic bands through a specific spin splitting of the quasiparticle
states. Superconductivity as a Fermi-surface instability is naturally influenced by
such a modification of the electronic states. Under these circumstances it has always
multi-band character. Moreover, parity does no longer provide a good quantum num-
ber to classify the superconducting phases.

One of the physically most remarkable aspects of non-centrosymmetric super-
conductivity is connected with magneto-electricity, the peculiar connection between
supercurrents and spin polarization. We have considered one aspect in this context,
namely its influence on paramagnetic limiting. This effect is of interest in strongly
correlated electron systems where the coherence length is generally small due to the
enhanced masses as in heavy fermion compounds. Here ordinary orbital depairing
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in a magnetic field is weak, such that the upper critical field reaches magnitudes
where paramagnetic limiting through spin polarization becomes visible. Interest-
ingly, already on the basis of symmetry considerations, it is possible to arrive at
important predictions which are borne out in some of the non-centrosymmetric heavy
fermion superconductors.
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Chapter 5

Magnetoelectric Effects, Helical Phases,
and FFLO Phases

D. F. Agterberg

Abstract This chapter emphasizes new magnetic properties that arise when inver-
sion symmetry is broken in a superconductor. There are two aspects that will be
covered in detail. The first topic encompasses physics related to superconducting
magnetoelectric effects that arise from broken inversion symmetry. Broken inver-
sion symmetry allow for Lifshitz invariants in the free energy which can be viewed
as a coupling between the magnetic induction and the supercurrent. There are similar-
ities between these invariants and the better known Dzyaloshinskii-Moyira interac-
tion in magnetic systems. These Lifshitz invariants give rise to anomalous magnetic
properties as well as new phases in the presence of magnetic fields. Here, we will
describe the consequences of these Lifshitz invariants, provide estimates for the
relative magnitudes of the novel effects, and discuss the important role that crystal
symmetry plays in understanding this physics. Finally, we provide a discussion of
the fate of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases in broken inversion
superconductors. In particular, we show how broken inversion symmetry can have a
profound effect on the stability, existence, and properties of FFLO phases.

5.1 Introduction

One important way in which non-centrosymmetric superconductors differ from
conventional superconductors is in the response to magnetic fields. In particular,
the removal of inversion symmetry leads to new terms in the free energy that give
rise to magneto-electric effects. These effects are closely related to the appear-
ance of magnetic field generated helical phase in which the superconducting order
develops a periodic spatial variation. Here we review this physics beginning with a
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detailed examination of the phenomenological theory followed by an overview of
microscopic treatments of these problems which include an overview an of the
interplay of the helical phase and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases
[1,2].

5.2 Phenomenology of Single Component Superconductors

This section reviews the phenomenology relating Lifshitz invariants in the the free
energy to magnetoelectric effects, vortex structures, and the helical phase.

5.2.1 Ginzburg-Landau Free Energy

A key new feature of non-centrosymmetric superconductors is the existence of
Lifshitz invariants in the Ginzburg-Landau (GL) free energy [3—-8]. These give rise
to magnetoelectric effects [5, 9-13], helical phases [6, 7, 14—16], and novel magnetic
properties [7, 9, 12, 17-19] discussed in this chapter. To examine the consequences
of these invariants we initially consider a GL theory for a single component order
parameter (for example, an s-wave superconductor) and add the most general Lifshitz
invariant allowed by broken inversion symmetry. Specific Lifshitz invariants are tabu-
lated in Table5.1 for different point group symmetries of the material in question.
Since the primary goal is to reveal the new physics arising from these invariants, we
ignore the role of any anisotropy that might appear in the usual GL free energy. Under
these conditions the GL free energy under consideration is (we work in units such
that h=c=1):

B2
F= /d3r [Otlnl2 + Kn*D*n + Kij Biln*(Djn) + n(D;n)*1 + §In|4 + Q] :
(5.1)

where « =ao(T — T;), Di = —iV; —2eA; and B=V x A. From this free energy,
the GL equations can be found by varying the above with respect to A and 7. This
results in the following:
an + Blnl*n + KDy + Kij[2hi(D;n) + inV;Bi]1=0 (5.2)
and
1
Ji= E[V x (B —47M)]; =2eK [n*(Din) + n(Din)*1 +4eK ;i Bj|n|*  (5.3)

where

M; = —Kij[n*(D;n) +n(D;n"]. (5.4)
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Table5.1 Allowed Lifshitz invariants for different point groups

Point group Lifshitz invariants

o0 K (B jx + Byjy + B jz)

T K(Bx jx + Byjy + B Jz)

Dg Kl(ijx +Byjy +szz)+K2szz

C()v K(ijy - Bij)

Ce Ki(Byjx + Byj_v + szz) + KZBZjZ + K3(ijy - Bij)
Dy Kl(ijx +Byjy +szz)+K2szz

C4v K(ijy - Bij)

Dyq K(ijy - B_vjx)

Cy Ki(Byjx + Byjy + B;j;) + K2Bj; + K3(ij)' - Bij)
54 Kl(ijx - Byjy) + KZ(Bij + ijy)

D3 Ki(Byxjx + Byjy + szz) + K2szz

C3u K(ijy - Bij)

C3 Kl(ij.x + Byjy + szz) + KZszz + K3(ijy - Bij)
D, KBy jx + KZByjy + K3B;j;

Cay Kle].y + KZBij

Cy KBy jx + K2 Byky 4+ K3B; j, + K4By jx + K5By jy

Cs KBk + K2B;jj + K3By j, + K4By J;

C all components allowed

Here ji =n*(Din) + n(Din)*

These equations are joined by the boundary conditions (which follow from the surface
terms that arise from integration by parts in the variation of F):

[Kﬁi(Din) + Kij B[’Alj n]boundary =0 (5.5)

where 71 is the component of the surface normal along f and the usual Maxwell
boundary conditions on the continuity of the normal component of B and the trans-
verse components of H = B—4x M (the appearance of M due to the Lifshitz invariants
makes this boundary condition non-trivial). Note that adding the complex conjugate
of Eq.5.5 multiplied by n* to Eq.5.5 multiplied by 7 yields J - Ailpoundary = 0.

The appearance of M in Eq. 5.4 and the associated magnetization current leads
to new physics in non-centrosymmetric superconductors. Also note, as is the case
for centrosymmetric superconductors, the boundary conditions are valid on a length
scale greater that &y, the zero-temperature coherence length. In the following few
subsections, we present the solution to some common problems to provide insight
into the role of the Lifshitz invariants.

5.2.2 Solution with a Spatially Uniform Magnetic Field:
Helical Phase

In situations when the magnetic field is spatially uniform, the GL equations describing
the physics can be greatly simplified by introducing the following new order
parameter:
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- . iBiKjixi
n=nexp (zq-x) =nexp (l%) . (5.6)

The GL free energy for 7 no longer has any Lifshitz invariants and is

2

P= [ ar|[o BB i + 02 B+ o) 6
The resulting new GL equations are now those of a single component superconductor
with a magnetic field induced enhancement of 7, (this magnetic field enhancement
is discussed in more detail in Chap.1). These new GL equations follow from a
minimization of Eq.5.7 with respect to A and 7. Note that the phase factor intro-
duced above cancels the additional current contribution from the Lifshitz invariants
in Eq. 5.3 and also cancels the related Lifshitz invariant contribution to the boundary
condition. Furthermore, the magnetization that follows from Eq.5.7 by taking the
derivative with respect to B; coincides with that due Eq. 5.4 found prior to the rede-
finition of the order parameter. This modified free energy of Eq.5.7 immediately
implies that some results from the usual GL theory apply. In particular:

(i) the vortex lattice solution near the upper critical field is the same as that of
Abrikosov.
(ii) the surface critical field H,3 is the same as that of DeGennes. The order B2
corrections to 7, do not change H,3 to leading order in (T, — T')/ T¢).
(iii) the critical currentin this wires will show no unusual asymmetry (this conclusion
differs from that of Ref. [4]).

5.2.2.1 Helical Phase

The main new feature that appears in a uniform magnetic field is the spatial modu-
lation of the order parameter. Since 1 develops a helical spatial dependence in the
complex plane, the resulting thermodynamic phase has been named the helical phase.
Since helicity of the order parameter is related to its phase, an interference experi-
ment based on the Josephson effect would provide the most reliable test to observe
this. Indeed, such an experiment has been proposed [7]. In particular, consider the
example of a 2D non-centrosymmetric superconductor (with a Rashba spin-orbit
interaction) with a Zeeman field applied in the 2D plane. Then consider a Josephson
junction between this and another thin film superconductor that is centrosymmetric.
For a magnetic field applied in the plane of the film perpendicular to the junction
and with the non-centrosymmetric superconductor oriented so that the helicity q is
perpendicular to the field ; we find this gives rise to an interference effect analogous
to the standard Fraunhofer pattern. For this experiment, the film must be sufficiently
thin that the magnetic field and the magnitude of the order parameter are spatially
uniform.
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To illustrate this, consider the following free energy of the junction
H;j=— t/dx[llfl(x)llli“(x) +c.c] (5.8)
where the integral is along the junction. The resulting Josephson current is

IJ:Im[t / dxllfl(x)lllz*(x)] (5.9)

Setting the junction length equal to 2L, and integrating yields a maximum Josephson
current of
|sin(gL)|

1,=2t|wf)||w§||q—L| (5.10)

This demonstrates that the Josephson current will display an interference pattern for a
field perpendicular to the junction. Note that in the usual case the Fraunhofer pattern
would be observed for a magnetic field perpendicular to the thin film for which a
finite flux passes through the junction.

5.2.2.2 Magnetoelectric Effect

Amongst the early theoretical studies of non-centrosymmetric superconductors, it
was pointed out that a supercurrent must be accompanied by a spin polarization
of the carriers [10]. Within the macroscopic theory given above, this spin polariza-
tion is described by the magnetization in Eq.5.4. This magnetization appears when
the supercurrent is non-vanishing due to a finite phase gradient. Subsequent to this
proposal, it was suggested that the converse effect would also appear: a Zeeman
field would induce a supercurrent [5]. This would follow from the expression for the
current of Eq. 5.3 when the usual GL current (2¢K [n*(D;n) + n(D;n)*]) vanishes.
However, the latter proposal does not include the possibility discussed above that the
order parameter develops a spatial modulation in the presence of a spatially homo-
geneous magnetic field (which leads to a nonvanishing 2¢K [n*(D;n) + n(D;n)*]).
Indeed, this new equilibrium state ensures that the resultant supercurrent is vanishing.
Nevertheless, as pointed out in Ref. [14], it is possible to create this current using
a geometry similar to that used to observe Little-Parks oscillations. In particular,
the supercurrent has two contributions, one is the current due to the Lifshitz invari-
ants and the other is the usual GL current 2¢K [n*(D;n) + n(D;n)*]. In the helical
phase, these two contributions exactly cancel. By wrapping the superconductor in
a cylinder, the condition that the order parameter is single valued does not allow
the helical phase to fully develop since arbitrary spatial oscillations are not allowed.
Consequently, when a magnetic field is applied along the cylindrical axis, a non-zero
current can flow. The resulting current will develop a periodic dependence on the
applied magnetic field [14].
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5.2.3 London Theory and Meissner State

We now turn to situations in which the magnetic field is not spatially uniform. The
Lifshitz invariants lead to new physics for both the single vortex solution and for the
usual penetration depth problem. To see this, we begin with the London limit and
set 7 = |n|e’ and assume that the magnitude |7| is fixed. The GL free energy is then
minimized with respect to 6 and A. The minimization with respect to 6 yields

K1V~(V9—2eA)+K,-jV,»Bj=O 5.11)

which is equivalent to the continuity equation for the current (V - J =0). The mini-
mization with respect to A yields

1

1 1
Ji= - IVxB—47M)]i= — -—5 AI-—ZV,-Q—Z@,-BJ- (5.12)

with
M = — zo,, ( v 9) (5.13)

1/3% =87 (2¢)*K |n|* and ojj = 167rek K;;. We take the surface normal is along
the Z direction and that the applied field is oriented along the y direction. Note that by
applying an appropriate rotation to the fields in the free energy, this geometry results
in no loss of generality. We assume that there are spatial variations only along the
direction of the surface normal (z). We therefore have from V-B =0 that B, =0. We
further choose A =[A,(z), Ay(z), 0] so that B=(—-0A,/dz, dA,/0dz, 0) and work
in a gauge where VO = 0. The three components of Eq.5.12 yields

0B,y 1 1

9z )\2 97 [G)YA + o7y ALl + )\2 — Oxx By (5.14)

0By 1 0 1 1

a2 )\2 9z —[owxAx + 04 A;] — Ay - ﬁo'yyBx (5.15)
47TJZ= 0 :AZ — o By _UzyBy~ (5.16)

Note that contributions from oy, and oy, cancel in the above. Taking derivatives of
Eqgs.5.14 and 5.15 with respect to z, using Eq.5.16 to eliminate A, we find

B, 1 Oxx + Oyy OBy | 0zy0zx 9° By
1— ) g, — WX 5.17
( ,\2) 972 A2 22 9z Ttz 22 92 >.17)
2 2 2
o 0“B 1 Oyy +0yy OB 0,v0.x 0° B,
1-Z ) =B +—52 2+ 22 2 5.18
( AZ) 972 A2 x 22 9z + 22 972 (5.18)

The above must be solved with the boundary conditions B;(z — 00) =0 and
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Hy =B, (z=0) — 47 M, (z =0) (5.19)
0=B,(z=0) — 4w M,(z=0) (5.20)

where H, is the applied field. My, M, can be found using Eqs.5.13, 5.14, 5.15,
and 5.16 to eliminate A, Ay, and A; in favor of B, and By and their derivatives.
By setting B; = Bjp exp(—38z/A), the solution can be found analytically. The general
form of the solution is quite involved, so here we present the solution for point groups
O and Cy,.

5.2.3.1 O Point Group

A representative material is LioPt3B [20-22]. This problem has been solved in
Refs. [9, 12]. In this case there is only one Lifshitz invariant: KB - j. Since this
is a scalar under rotations the solution is the same for any orientation of the surface
normal. The equations for B become:

B, 1 8 3B,
=—B,+ 55— 5.21
8z2 A2 T 0z 21

B, 1 8 9B,
—=—=By — ——. 5.22
9z2 A2 A2 bz (5:22)
where § = —20, (note oy, =0y, in this case). This coupled set of equations can

solved for B+ = By i B, [9, 12] with the result that to first order in §/A:
(3Z 1) . (SZ —7 /A
B, = Hy[cos 2 + n sin ﬁ]e Z/ (5.23)
8 8 8

Bx:Hy[X cos)\—i — sin A—i]e_z/’\. (5.24)

Physically, this implies that the the magnitude of the B, is discontinuous as it crosses
the surface (though not that of By) and that B also rotates inside the superconductor.
Note that in a slab geometry, B, is of opposite sign on the two sides of the slab. It
may be possible to observe this through muon spin resonance experiments.

5.2.3.2 Cy4, Point Group

A representative material is CePt3Si [23]. In this case, the single Lifshitz invariant is
generated by a Rashba spin-orbit coupling and is given by KZ - B x j. This implies
0 =0yy = —0y, # 0. The solution of the London problem now depends upon surface
orientation and has been considered in Ref. [18]. We consider two situations here: the
surface normal along and perpendicular to Z (the four-fold symmetry axis). Consider
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first the normal along the Z direction (in this case the applied field is H, and we find

that By =0), then we have the usual London equation
3B, 1

with the unusual boundary condition Hy|,—o=(By + %By)lzzo. This yields the
solution

H,
By(z) = 1 +> e i (5.26)

>l

These equations show that there is no rotation of B across the sample surface.
However, the magnetic induction B is discontinuous as the surface is crossed. Again,
in a slab geometry, the discontinuity in By is opposite for the two sides of the slab.

For the surface normal perpendicular to the z direction, the situation is different.
To be concrete, consider the normal along the X direction and the applied field along
the y direction (for the field along the Z direction the usual London Equations result).
In this case, it is again permissible to set B, =0 and solve for By to find

H ~
By=—25¢%* (5.27)

where o0 =0y and 1 =2\ (1 — ‘7—2>.

5.2.4 Spatial Structure of a Single Vortex

The London theory can also be used to examine the field distribution of a vortex in
a strongly type II superconductor. Again, the lack of inversion symmetry introduce
some new physics. Here we focus (as above) on two examples with point groups O
and Cy4, and provide the solutions of Refs. [12, 13, 18, 19]. The approach used in
these publications is to consider the parameter o;; /A to be small and then the Lifshitz
invariants perturb the usual London solution. When there are no Lifshitz invariants,
the solution to the London equations are 6 = — ¢ (¢ is the polar angle) and the field
is applies along the 7 direction

1 .
where Ko(x) is a modified Bessel function. The perturbative solutions depend upon
the specific form of the Lifshitz invariants and we turn to a discussion of two case in
turn.
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5.2.4.1 O Point Group

The solution in this case was found in Ref. [12, 13]. The modified London equation
is (the problem does not depend upon field direction)

UxVxAtaAzs 2 00 gua T 2n: (5.29)
x V x —A=— —V xA— —8§°(r)zZ. .

T 2z T2 ez’ Wt
The new term impAlies that, in addition to the field along Z, there is an additional
component along ¢. The authors of Ref. [12, 13] find that to first order in §/A the
additional field is

B(;)l)(x:r/)»):%{l(l(x)/ x’dx/Il(x’)Kl(x/)+11(x)/ x’dx/[Kl(x’)]z}
er 0 X

s
“ 21
(5.30)

where I and K| are modified Bessel functions of the first kind.

5.2.4.2 C4 Point Group

The solution in this case was found in Ref. [18, 19]. The fields that appear due to
the Lifschitz invariants depend in this case upon the orientation of the field. For the
field along the y direction, it is found that the solution for B is given by (correct to
first order in o /A) [18, 19]

= Ko (|r+%2|/)») 5. (5.31)
Physically, this implies that the maximum value of B is shifted from the vortex
center. This shift has also been seen in a full numerical solution of the Ginzburg
Landau equations [17]. For the field along the Z direction (the four-fold symmetry
axis), the B field is unchanged and there is an induced magnetization along the radial
direction [18] (this redial magnetization was also found in the vortex lattice solution
near Hq [7]).

5.2.5 Vortex Lattice Solutions

For fields near the upper critical field, there have been a variety of studies on the
Abrikosov vortex lattice [7, 24-26]. Some of these studies predict multiple phase
transitions in the vortex lattice state [24—26]. These studies are based on microscopic
weak-coupling theories and involve an interplay of paramagnetism, orbital diamag-
netism, gap symmetry, band structure, and spin-orbit coupling [24-26]. While this
chapter will not address these vortex lattice transitions, we will address some of
the microscopic issues in the next chapter. Here we focuss on the GL theory, for
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which the predictions are more straightforward. In particular, near the upper crit-
ical field, the magnetic field is approximately uniform and the considerations above
imply that the vortex lattice is hexagonal (perhaps distorted by uniaxial anisotropy).
Consequently (following the arguments of Section II B), the order parameter solution
near the upper critical field is n(r) = cnst exp(iq - r)¢o(x, y) where ¢o(x, y) is a
lowest Landau level (LLL) solution. This solution, combining a phase factor and a
(LLL) solution, has been called the helical vortex phase. The primary consequence
of this solution is that the upper critical field is enhanced due to the presence of
the Lifshitz invariants [7]. We note that due to the degeneracy of the LLL solution,
there is ambiguity in the existence of the phase factor. In particular, the LLL solu-
tion ¢ (x, y) = e/l ¢o(x,y — 1y) (I is the magnetic length) is degenerate with
¢o(x, y), consequently in some circumstances the wavevector ¢ can be removed in
favor of a shift of origin. This can be done whenever q is perpendicular to the applied
magnetic field (this is the case for Cy4, point group symmetry but not for O point
group symmetry). We feel that is still meaningful to speak of the helical vortex phase
for the point group C4, because the same phase factor implies an increase of the
in-plane critical field in two-dimensions for which this ambiguity does not exist. The
name helical vortex phase reveals the link between the solutions in two and three
dimensions.

In addition to studies near the upper critical field, there has been one numerical
study of the time dependent GL equations in the vortex phase [17]. This study found
the surprising result that the vortices flow spontaneously, in spite of the lack of an
applied current. The claim is that the paramagnetic supercurrent (the magnetization
current V x M) is the origin of this spontaneous flux flow. We note that in this study
the following boundary condition was used: B,,sside = Binsige. This differs from the
continuity of H=B — 47 M discussed above. In the problem that was studied, M
is non-trivial and an examination of its neglect in the boundary condition can be
seen to be equivalent to having a current flow. We argue that this current is cause the
spontaneous flux flow. We note that the boundary conditions discussed here should
be used in problems where the minimum length scale is &p, the zero temperature
coherence length. However, at lengths scale smaller than this, a microscopic theory
isrequired and the single particle quantum mechanical wavefunctions will obey quite
different boundary conditions.

5.2.6 Multi-Component Order Parameters

There have not been as many studies on Lifshitz invariants in non-centrosymmetric
superconductors in cases when the order parameter contains more than one complex
degree of freedom. There has been one noteworthy result, which is the appearance
of the helical phase when no magnetic fields are applied [8, 22]. In particular, if the
ground state of the multi-component order parameter breaks time-reversal symmetry
[27, 28], then the lack of both parity and time-reversal symmetries allows the helical
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phase to appear. As an example, consider the three dimensional irreducible repre-
sentation of the point group O, with an order parameter n where the components
transform as the (x, y, z) component of a vector. The following Lifschitz invariant
exists [8]

iK(Dyn3z + 05D m + 03Dy — c.c.). (5.32)

This Lifschitz invariant leads to a ground state order parameter n = ¢*9%(1, i, 0). The
state n = (1,7, 0) breaks time reversal symmetry and thus mimics the role of the
magnetic field in the single component case.

5.3 Microscopic Theory

The phenomenological arguments of the previous section have also been the subject
of many microscopic calculations. These calculations, while all related, focus and
extend different aspects of the phenomenological theory above. In particular, four
points of contact exist between the phenomenological theories and the microscopic
theories. These are: direct calculations of the Lifshitz invariants in the free energy
in Eq.5.1; calculations of the magnetization in Eq. 5.4; calculations of the current in
Eq.5.3; and calculations of the helical wavevector q in Eq. 5.6. We briefly review the
first three of these and then turn to a more complete overview of microscopic studies
of the helical phase since this turns out to be closely linked to the FFLO phases.

5.3.1 Contact Between Microscopic and Macroscopic Theories:
Lifshitz Invariants

The direct calculation of the Lifschitz invariants in Eq. 5.1 has been carried out by a
few authors [4, 5, 7, 8] and can be found in Chap. 1 of this book. In particular, the
non-interacting Hamiltonian is

Ho= 2" > £ + v (&) - 0uplay,axs (5.33)
k af=1.

where a:( « (@) creates (annihilates) an electronic state [Ka), & (K) = (k) —u denotes
the spin-independent part of the spectrum measured relative to the chemical potential
uw,o, B= 1,] arespinindices, o are the Pauli matrices, and the sum over Kk is
restricted to the first Brillouin zone. In the helicity basis, this Hamiltonian is diago-
nalized with energy bands given by

Ex(k)=£&(k) £ |y (k)| (5.34)
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with the Hamiltonian

Ho=>">" &)cy, i, (5.35)

k A==

where the two sets of electronic operators are connected by a unitary transformation,
ko= ttar (K)cra, (5.36)
A

with

(Y| + Ay, Alyx + iVy))

V2IyI(y 1+ 2y2)

In the limit that only one of the bands cross the the Fermi energy (this can be realized
for superconductivity at the surface of a topological insulator [29]), the following
weak-coupling result for the coefficients defining the Lifishitz invariants of Eq.5.1
is found

(urn(K), (k) = (5.37)

_ 1BNoS3

K,'j = )

(9”17 (k) (k) (5.38)
where Ny is the density of states of the band at the chemical potential, ¢ (k)
describes the superconducting state and is an even function belonging to one of

one-dimensional representations of the point group of the crystal, (...) means the
averaging over the Fermi surface, up is the Bohr magneton, and

1 7£@3)

Sg(T):nTZ

Equation 5.38 is valid when there is only a single band present. When two bands
are present (as is often the case), and assuming that ¢ (k) is the same for both bands,
then Eq.5.38 must be multiplied by the factor

SN =(Ny— N_)/(Ns + N_). (5.40)

where N1 are the density of states of the two bands (Ng = N4 + N_). Microscopic
calculations of the Lifshitz invariants are limited to the regime near 7, where the GL
theory is valid.

5.3.2 Contact Between Microscopic and Macroscopic Theories:
Current and Magnetization

In the limit of small magnetic fields (B) and small phase gradients (V) in the
superconducting order parameter, it it possible to find microscopic extensions to
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Eq.5.3 and Eq.5.4 that are valid for all temperatures. This has been carried out in
Refs. [5, 10]. Here, we follow the notation of Ref. [5]. In the clean limit, for 2D
cylindrical bands with a Rashba interaction (y (k) = a7 x p(k)) Eq.5.3 and Eq.5.4
can be rewritten as

hVy6

Jy=ps — KBy
Lo (5.41)
M, = EFLVXO
where M, is the magnetic moment, oy is the superfluid density, and
m
k(T)= m[pn{l —Y(T, Ay} — pr-{1 =Y(T, A}] (5.42)

where pr 1 are the Fermi momenta for the two bands, A4 are the gaps on the two
bands, u is the Fermi energy, and Y (x) is the Yoshida function. Note that Eq.5.42 is
proportional to § N in the limit SN << 1.

The role of Fermi liquid corrections has also been examined [11] in this context.
This study has found the that the only Fermi liquid corrections that alter the current
contribution from the Lifshitz invariants are ferromagnetic correlations. If there are
no ferromagentic correlations, then Eq. 5.42 is unchanged. This is important in heavy
Fermion materials, where the effective mass enhancement suppresses the usual super-
current but does not change Eq.5.42 [11].

5.3.3 Microscopic Theory of the Helical and FFLO Phases

The helical phase has received a great deal of attention from the microscopic point
of view [7, 14-16, 24, 26, 29-31]. One reason for this is that it is closely related
to the FFLO phase [1, 2] in which the superconducting order parameter develops a
periodic spatial structure. The interplay between these two phases is not trivial. It
is perhaps not surprising that spatially oscillating superconductor solutions readily
appear in non-centrosymmetric superconductors when magnetic fields are applied.
In particular, a state with momentum k at the Fermi surface will generally not have
a degenerate partner at —k with which to form a Cooper pair when both parity and
time reversal symmetries are broken. The state k would rather pair with a degenerate
state —k + ¢ and in this way generate a spatially oscillating superconducting order
parameter.

The microscopic origin of the spatially oscillating states can be understood by
an examination of the single particle eigenstates when a Zeeman field H is included
(for now we ignore the vector potential A)

Hz=— > ppH - oopa) axp. (5.43)
k.o,
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field
—

-k+q/

+q/2

Fig.5.1 A magnetic field directed as shown together with a Rashba spin-orbit interaction shifts
the center of the large and small Fermi surfaces by +q/2. The smaller dot represent the point (0,0)
(center of Fermi surfaces without field) and the two larger dots represent the points (0, —q/2) and
(0, q/2) (centers of the new Fermi surfaces). Pairing occurs between states of k+q/2 and —k+q/2,
leading to a gap function that has a spatial variation A(x) = Ag exp(iq - X). From Ref. [16]

The single particle excitations now become

£k, H) = £(K) % /y2(K) — 21157 (K) - H + p3H2. (5.44)

In the limit |y| >> |H|, this becomes (we ignore the small regions of phase space
for which y =0)

§+(k, H) ~ & (k) & ppy (k) - H. (5.45)

The origin of pairing states with non-zero q (that is A(X) €'9%) follow from this
expression. As an example, consider a Rashba interaction y =y (kyX — k,y) for
a cylindrical Fermi surface and a magnetic field along x. In this case, as shown in
Fig.5.1, the Fermi surfaces remain circular and the centers are shifted along the
¥ direction. A finite center of mass momentum Cooper pair is stable because the
same momentum vector q can be used to pair every state on one of the two Fermi
surfaces. In the more general case, for a non-zero q state to be stable, the paired
states should be degenerate: £+ (k+q, H) = &1 (—k +q, H), this gives the condition
hq - vp = ugH - p(K). This differs from the condition for the usual FFLO phase,
for which hq - vp = up|H|. The optimal paring state corresponds to finding q that
satisfies the pairing condition for the largest possible region on the Fermi surface.
The above paragraph also reveals the origin of the interplay between the helical
and FFLO phases. In particular, the two Fermi surface sheets prefer pairing states
with opposite sign of q. Choosing a particular q allows pairing on one Fermi surface,
but not on the other. This naturally leads to competition between single-q (helical)
and multiple-q (FFLO-like) states. Which state appears depends upon the details of
the system. Without going into further microscopic details, which can be found in
Refs. [7, 14-16, 24, 26, 29-31], we summarize some of the main results here. One
important result is that since there are two sources of the modulation q (FFLO-like
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ON=0
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31
Hus/Tc
2 . Helical
Multiple-q
® o000 -‘-
I 1 Helical
Uniform
s . - - - 0 . - - -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T/Tc T/Tc

Fig.5.2 Typical phase diagram showing both multiple-q and single-q (helical phase) phases as
a function of Zeeman field in a clean non-centrosymmetric superconductor for two different
values of 6 N. These calculations where carried out with a Rashba spin-orbit interaction and
a 3D spherical Fermi surface (a 2D cylindrical Fermi surface gives similar results). For fields
Hup/T. <1.5,q~6NHup/vp (for the §N =0, this leads to q=0), while for higher fields
q ~Hup/vr. From Ref. [16]

physics and Lifshitz invariants), there are two typical values for the magnitude of g
[15, 16,26, 31] that both appear in different regions of the temperature/magnetic field
phase diagram. In particular ¢ &~ H up/vr stems from FFLO-like physics related to
Fig.5.1 and is the value of ¢ in the high-field regime (in clean materials). While
q ~8NHup/vr stems from the Lifschitz invariants and is the typical magnitude
of g in the low-field regime [15, 16, 31]. As shown in Fig.5.2, in the clean limit,
both single-q and multiple-q phases exist [15, 16]. However, the multiple-q phase
become less stable as § NV increases [16]. We note that in the case of superconduc-
tivity at the surface of a topological insulator, which is akin to §N =1, only the
single-q exists [29]. In the dirty limit the multiple-q phases no longer appear, while
the single-q phase with ¢ &~ 8 NH g /vF is robust [15, 31]. Finally we note that when
the vector potential is also included then novel vortices and vortex phases may appear
[15,24-26, 32].

5.4 Conclusions

In this chapter we have examined the role of Lifshitz invariants that appear in
the Ginzburg Landau free energy of non-centrosymmetric superconductors. These
invariants lead to magnetoelectric effects, novel London physics in the Meissner
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state, new structure in individual vortices, and a helical phase in which the order
parameter develops a periodic spatial variation. Additionally, we have provided an
overview of theoretical developments in the microscopic description of this physics.
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Chapter 6
Microscopic Theory of Pairing Mechanisms

Y. Yanase and S. Fujimoto

Abstract This chapter deals with the microscopic theory of pairing mechanisms for
noncentrosymmetric superconductors. One of curious questions is how to understand
microscopically the parity mixing arising from the interplay between pairing inter-
actions and the spin-orbit interactions that stem from broken inversion symmetry.
Here, some examples of microscopic models which exhibit this phenomenon are pre-
sented. Our argument is mainly concentrated on the heavy fermion superconductors
CePt3Si and CeRh(Ir)Si3, for which ample experimental evidence confirms the real-
ization of unconventional superconducticvity caused by non-phonon mechanisms.
In these heavy fermion systems, superconductivity appears in or in the vicinity of
an antiferromagnetic phase. Thus, it is important to clarify the role of magnetism in
the pairing state. We examine the scenario that magnetic interaction is the origin of
the pairing interaction for these systems. The influences of the coexisting magnetic
order are also investigated.

6.1 Introduction

The BCS theory is the standard microscopic description of superconductivity. It
is natural to expect that the central notion of the BCS theory is still applicable to
noncentrosymmetric superconductors (NCS), of which the crystal structures lack
inversion symmetry. Some distinct novel features associated with broken inversion
symmetry, however, appear in their pairing states. For instance, because of parity
violation, the admixture of spin-singlet pairing states and spin-triplet pairing states
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occurs [1-4]. We here illustrate this phenomenon briefly, before entering the main
part of this chapter. For systems without inversion symmetry, there is an asymmetric
potential gradient caused by nuclei located at asymmetric positions. The asymmetric
potential gradient V'V givesrise to a spin-orbit (SO) interaction (k x VV)-a acting on
electrons with momentum k and spin o. This interaction is odd in k. In the following,
we refer to this SO interaction as an antisymmetric SO interaction to distinguish it
from usual SO interactions caused by spherical Coulomb potentials. To make our
argument concrete, we consider the case that there is no mirror symmetry with respect
to a (001)-plane, and that VV o n = (001); i.e. the antisymmetric SO interaction is
the Rashba SO interaction. This SO interaction splits the bands into two parts, each
of which is an eigenstate of spin chirality, and hence the spin rotational symmetry is
broken; i.e. in one band, an electron with momentum k (— K) is in the spin up (down)
state | 1) (] {)), while in the other band the spin state is reversed. Here the spin
quantization axis is taken to be parallel to k x n. When the magnitude of the SO split
Eso is sufficiently larger than the superconducting gap A, as in the case of any NCS
discovered so far for which Egp is 10 ~ 100 meV, interband Cooper pairing between
electrons in the two SO split bands is strongly suppressed. In one of the two SO split
bands, a Cooper pair formed between electrons with momenta k and — k is in the state
|k t)|—k |), while in the other band, itis |k | )| —k 1). If the density of states of the
one band is different from the other, the superposition between the state |k 1)|—k |)
and the state [k |)| — k 1) is suppressed. Then, the pairing state in one band
kD) =k L) = Lk D)=k 1)~k )=k 1)+ L0k 1)~k )+ [k L) —k 1)
is the admixture of the spin-singlet pairing and the spin-triplet pairing with the spin
projection of the total spin of the Cooper pair S = 0 for the spin quantization
axis parallel to kx n. In addition to this effect, the antisymmetric SO interactions
also give rise to pairing interactions which conserve neither spin nor parity; i.e. the
spin-singlet channel and the spin-triplet channel are directly mixed by the spin-non-
conserving pairing interactions. Because of these two effects, the parity-mixing of
Cooper pairs occurs. In this argument, an important parameter which controls the
parity-mixing is the ratio Eso/EF [1-3]. For any NCS discovered so far, Eso/EF is
at most ~0.1. Despite such a small magnitude of Eso/ EF, it is possible that, in some
particular situations, the parity mixing becomes a substantial effect for pairing states.
For instance, when the attractive pairing interactions in the spin-singlet channel and
spin-triplet channel mixed by the antisymmetric SO interaction are comparable in
magnitude to each other, the transition temperatures for the spin-singlet state and
the spin-triplet state in the absence of the SO interaction are close to each other,
and even for the small magnitude of the SO interaction, strong mixing of these two
states occurs. Another possible scenario for strong parity mixing is that the spin-non-
conserving pairing interactions which directly couple the odd parity channel with
the even parity channel are enhanced by some specific mechanisms such as strong
correlation effects. This results in the substantial admixture of spin-singlet pairs and
spin-triplet pairs, even when the magnitude of Ego/EF is small.

In the parity-mixed pairing state, when the interband pairings between the two
SO split bands are completely suppressed, the superconducting gap function has the
following form [1-3]
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Aslsz (k) = A (k)i(UZ)slxz +dk) - i(O'GZ)slsz, 6.1)

where Ay (k) is the gap for the spin-singlet pairing, and d(k) is the d-vector for
the spin-triplet pairing. It is noted that the d-vector in this case is parallel to a vec-
tor g(k), which is defined by the average of k x VV with respect to Bloch wave
functions. This simple form of the gap function (6.1), however, is applicable only
when the dominant pairing interaction in the spin-triplet channel has the momentum
dependence compatible with that of the antisymmetric SO interaction. Generally, it
may occur that the spin-triplet pairing interaction which is mismatched with the anti-
symmetric SO interaction is substantially strong, giving rise to frustration between
these two kinds of interactions. In this situation, the structure of the parity-mixed
pairing state crucially depends on microscopic details of pairing interactions and the
antisymmetric SO interactions. Thus, for understanding pairing states in NCS, it is
vitally important to investigate the microscopic nature of pairing interactions.

In this chapter, we present some examples of microscopic studies on pairing mech-
anisms of NCS. In particular, we mainly consider two families of heavy fermion NCS,
CePt3Si and CeRh(Ir)Si3. The reason why we choose these systems is as follows.
According to accumulated experimental evidence, it is well established that uncon-
ventional superconductivity is realized in these systems, and it is suggested that
non-phonon mechanisms for providing the pairing glue play a crucial role. Actually,
in these strongly correlated electron systems, superconductivity occurs in or in the
vicinity of antiferromagnetically ordered phases. This observation strongly supports
the idea that Cooper pairs are mediated by spin fluctuations. It is plausible to expect
that strongly anisotropic pairing interactions mediated by spin fluctuations give rise
to situations advantageous for parity mixing of Cooper pairs involving different angu-
lar momentum channels. In fact, as will be discussed in the next section, the strong
parity mixing is realized for CePt3Si because of enhanced spin-non-conserving pair-
ing interactions caused by a cooperative effect between spin fluctuations and the
antisymmetric SO interaction. Furthermore, the interplay between broken inversion
symmetry and magnetic correlations leads to various rich physics, as will be discussed
in the following sections; e.g. a helical state with spatially modulated superconduct-
ing order parameters which is expected to be realized in CePt3Si, and extremely large
upper critical fields observed for CeRh(Ir)Si3.

The organization of this chapter is as follows. In Sect. 6.2, we discuss the micro-
scopic pairing mechanism of CePt3Si. We also discuss the relation between the
chiral magnetism and superconductivity for this system. In Sect. 6.3, the cases of
CeRh(Ir)Sij3 are considered. The upper critical field of CeRh(Ir)Si; is also discussed
on the basis of the microscopic theory. Sections 6.2 and 6.3 are independently read-
able. In fact, CePt3Si and CeRh(Ir)Si5 are quite different from each other in their
fundamental properties, as will be explained in the following sections. Thus, the
approximation schemes used for the calculations of superconducting properties are
different between these two classes of the heavy fermion systems. Conclusions are
given in Sect. 6.4.
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6.2 Case of CePt3Si

Among non-centrosymmetric heavy fermion superconductors, CePt3Si has been
investigated most extensively because its superconductivity occurs at ambient pres-
sure [5]; others superconduct only under substantial pressure. In CePt3Si, supercon-
ductivity with T, ~ 0.5 K appears in the AF state with a Neél temperature 7y = 2.2
K [5-7]. The AF order microscopically coexists with superconductivity [8, 9]. Neu-
tron scattering measurements characterize the AF order with an ordering wave vector
Q = (0, 0, m) and magnetic moments in the ab-plane of a tetragonal crystal lattice
[10]. The AF order is suppressed by pressure and vanishes at a critical pressure
P. ~ 0.6 GPa. Superconductivity is more robust against pressure and therefore a
purely superconducting phase is present above the critical pressure P > 0.6 GPa[11,
12]. The coexistence of superconductivity and AF order gives rise to some intriguing
phenomena, but complicates the situation. Therefore, we discuss the pairing state
and the microscopic mechanism of superconductivity in the absence of AF order in
Sect.6.2.3. We study the NCS in the AF ordered state in Sect. 6.2.4. The Sect.6.2.1
is devoted to the microscopic derivation of the Rashba SO interaction based on the
tight-binding scheme. In Sect. 6.2.2, we describe the formulation to study the pairing
states.

The nature of the superconducting phase has been clarified by several experiments.
The low-temperature properties of thermal conductivity [13], superfluid density [14],
specific heat [6], and NMR 1/TT [15] indicate line nodes in the gap. The upper
critical field Hey ~ 3 — 4 T exceeds the standard paramagnetic limit [5, 11], which
seems to be consistent with the Knight shift data displaying no decrease in spin
susceptibility below T, for any field direction [16, 17]. The combination of these
features is incompatible with the usual pairing states such as the s-wave, p-wave, or
d-wave state. We show that these features are consistent with NCS which coexists
with AF order (Sect.6.2.4) [18-20].

6.2.1 Derivation of SO Interaction in Heavy Fermions

The antisymmetric SO interaction Haso stems from asymmetric potential gradi-
ents VV caused by broken inversion symmetry of crystal structures; i.e. Haso =
ﬁ(dyﬂa - (k x VV)|¢p) with |¢p4 p) a Bloch state. In heavy fermion systems
which consist of both well-localized f-electrons and conduction electrons, the anti-
symmetric SO interaction involves matrix elements between different orbital states
as well as those between the same orbital states. Here, we show how the Rashba
SO interaction is microscopically derived by taking the multi-orbital nature of heavy
fermion systems into account [20]. In the following, we omit the matrix element
of the SO interaction between the same orbital states in order to focus on the spe-
cific feature of the antisymmetric SO interaction inherent in heavy fermion systems.
The following recipe can be generally used for non-centrosymmetric heavy fermion
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systems. The generalization to the other systems, such as transition metals, is also
straightforward.

We here construct a periodic Anderson model and Hubbard model on the basis
of the tight-binding approximation. The localized 4f states in the Ce-based heavy
fermion systems, such as CePt3Si, CeRhSi3, and CelrSi3 are described by the
J = 5/2 manifold whose degeneracy is split by the crystal electric field. For instance,
the following derivation is based on the level scheme proposed for CePt3Si [10]

|Iy+) = \/7|i \/7|¢ (6.2)

|I¢+) = | :I: (6.3)

5.3
|T7) = f& fngw (6:4)

According to ref. [10], the ground state is |/7=£), and the others are excited states.
Similar, but different crystal field levels have been proposed for CePt3Si [7, 21]. The
Rashba SO interaction is derived for these levels in the same way, but the momentum
dependence of g-vector g(k) depends on the low-lying crystal field level, as we show
below.

We here assume the low-lying |I;£) doublet and take into account the hybridiza-
tion with other electron states. Because the mirror symmetry is broken with respect
to the ab-plane in CePt3Si, the odd-parity 4f orbital is hybridized with the even-parity
s and d orbitals in the same Ce site. Owing to the symmetry of the |[%+) state, this
4f state is hybridized with the dxy, dx, and dy, orbitals. Then, the wave function of
the localized state is expressed as

) = «|I7%) +i€ldxy) x+ + n(ldxz) F ildyz)) X, (6.5)

where €, n and k = /1 — €2 — 252 are real number and x4+ describes the wave
function of the spin. A periodic Anderson Hamiltonian is constructed for local-
ized |f%) states and conduction electrons. We here consider conduction electrons
arising from the Ce 5s orbital for simplicity. Taking into account the inter-site
hybridization between the s, d and f orbitals, we obtain the tight-binding Hamil-

tonian Hy = >, &Elflo(k)gl}k, where 1/}]; = (fkTJr, flf_, Clt?’ CITQ), and

; Be(k) V(k)
Hoyk)={ -~ ". ) 6.6
oo (wk)' &(k)) ©©
The 2 x 2 matrices &¢(k), &c(k), and V (k) are obtained as
~ o er (k) a(isinky + sinky)
er(k) = (al(— isinky + sinky) er(K) ) ’ 6.7)

Lo (ee®) 0
sc(k)—( 0 Ec(k)), (6.8)
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‘7(1*() . (8V3sink, + 4ieVy) sinkx sinky  (2iV5 — 4nVg sinkz)(sin kx + isinky)

— \ 2iV5 — 4n Vg sink,)(sin kx — isin ky)  (8V3sink, + 4ieVy) sin kx sin ky :

(6.9)

We ignored the off-diagonal terms in the second order with respect to small parame-
ters € and 1. We obtain ¢ (k) = K28F7 (k) + ezsxy(k) + % (ex, (K) + &yz(K)) where
ea(K) is the dispersion relation for the |A) state. In Eq.(6.8), we ignored the SO
interaction in the conduction electrons to focus on f electron physics. It is straight-
forward to take into account the SO interaction in conduction electrons, and also to
construct a model for conduction electrons in p and d orbitals.

Equation (6.7) has the Rashba SO interaction term and the coefficient is obtained
as

= —4eV, — 4n V. (6.10)

The hybridization parameters in Egs. (6.9) and (6.10) are obtained as

5 100

V1=K,/21V vz’ (6.11)
/ 15 100 1 100

V2 = K( Evy:;_:;xzy’yz - Evy(Szz—rz),yz N (6.12)

Vi =i,/ — > vl (6.13)
21 °

Vi = VY, (6.14)
100 ]00

( 42 x3 —3xy2,s \/ 2 X(SZZ—I‘Z) s) (6.15)

Vo = V01 (6.16)

where Vg‘”ﬁ is the hopping matrix element between the |A) and |B) states along the
[abc]-axis.

Applymg an approprlate unitary transformation to the conduction electron,
(ck 4 ck )= (Ckm ck ¢)UC (k), the hybridization matrix is transformed as

V() = VK)Uc(k) =

Ver(K) ap(K)(isin ky sin ky + sin? ky sin ky)
a2 (k) (—i sin? ky sin ky + sin? ky sin ky) Vet (k)

6.17)
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where

a2 (K) = 4(e V4 Vs — 43 V3 Vg sin® ky)

(6.18)
/\/ 16V sin® ky sin? ky sin” k, + VZ(sin? ky + sin? ky),

is a real and even function with respect to kx, ky, and k.
Taking into account the on-site repulsion in the |f=£) state, we obtain the periodic
Anderson model with a Rashba SO interaction as

H = Hx + Hso + Hi, (6.19)

He= Y e f fus+ D el s+ D Ver®) fy scws +hocl,

k,s==+ k,s==+ k,s==+
(6.20)
Hso = a1 ) gr(k) - Sir(k) + D _[oa(K)ger (K) - Ser (k) + h.c.], (6.21)
k k
Hi=U» n nj_, (6.22)

where Sgr(k) = X 0 fil fiy and Ser(K) = Y oo fil ok gk) =
(sinky, —sinkx, 0) and ger(k) = (sin® kx sin ky, — sin? ky sin kx, 0) describe the
g-vector for the intra- and inter-orbital Rashba SO interactions, respectively. The
coefficients o1 and o3 (k) have been obtained in Egs. (6.10) and (6.18), respectively.
The parameters € and 7 vanish, and therefore «; and o7 (k) disappear in cen-
trosymmetric systems.Thus, the Rashba SO interaction is generally derived in the
tight-binding approximation by taking into account the parity mixing in the atomic
states.

Note that the SO interaction arises from the combination of the atomic LS cou-
pling and the parity mixing in the localized Ce 4f state. The inter-site hybridization
between the f and admixed d (or s) orbitals gives rise to the intra-orbital SO interac-
tion, while the inter-orbital SO interaction is induced by the hybridization between
the conduction electrons and admixed d- (or s-)orbitals. Note that the cubic term
o sin ky sin ky sin k, (sin2 ky—sin? ky)o, [22] does not appear in the above derivation.

The periodic Anderson model for the localized |F6/ +) =& %) state is derived
in the same way. Then, we obtain the Hamiltonian that is similar to Eq.(6.19),
but the g-vector for the inter-orbital SO interaction is replaced with g.r(k) =
(sinky, — sin kx, 0) = g¢(K). Thus, the momentum dependence of g-vector depends
on the symmetry of low-lying localized state and conduction electrons.

The kinetic energy term Hy in the periodic Anderson model is diagonalized by
the unitary transformation (a;k " a;k )= fljj:, Clt :l:)[jcf (k) with

A _ [ a1(k) a5(k)
Uct (k) = (az(k) _Zal(k)) : (6.23)
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Applying this unitary transformation to the periodic Anderson model in Eq.(6.19)
and dropping the upper band described by a;k 1, we obtain the single-orbital model
with a Rashba SO interaction. Then, the g-vector is obtained as

ag(k) = a1a; (k)°gr (k) + oz (k)a) (k) (a2 (k) + a5 (k))ger (K). (6.24)

The unitary transformation described by Ucf (k) leads to the momentum dependence
of the two-body interaction term Hj, as in the case of the multi-orbital Hubbard
model [23]. By neglecting this momentum dependence for simplicity, we obtain the
single-orbital Hubbard model

H=>e®a axs+ay gk Sk +U> niny. (6.25)

k,s k

As shown in Eqgs. (6.18) and (6.24), the g-vector of SO interaction has a com-
plicated momentum dependence, and therefore, an often-used assumption g(k) =
(ky, —kx, 0) or g(K) = (sin ky, — sin kx, 0) is not justified. In subsection 6.2.3.3, we
show a phenomenon which is induced by the complicated momentum dependence
of Rashba SO interaction.

6.2.2 Microscopic Model and Approach

In this section we discuss the pairing state of CePt3Si on the basis of the minimal
model. We here introduce a single-orbital Hubbard model including the molecular
field arising from the AF order

H=> elc s+ gk Sk —> ho-Sok)+U > nini. (6.26)
k i

k,s k

where S(k) = > Gss'CLka,s' and Sq(k) = > ass/c]LQ’sck,sr.
We consider a simple tetragonal lattice and assume the dispersion relation

e(K) = 2t1(cos kx + cos ky) + 413 cos ky cos ky + 23(cos 2kx + cos 2ky)
+ [2t4 + 4t5(cos kx + cos ky) + 4t5(cos 2kx + cos 2ky)] cosk,
+ 2t7cos 2k, — 1, (6.27)

where the chemical potential p is included. We determine the chemical poten-
tial p so that the electron density per site is n. By choosing the parameters as
(t1, 12, 13, ta, t5, 16, t7,n) = (1, —0.15, -0.5, —0.3, —0.1, —0.09, —0.2, 1.75), the
dispersion relation Eq. (6.27) reproduces the Fermi surface of g-band in CePt3Si,
which has been reported by band structure calculation without the AF order [24-26].
Fermi surfaces of this tight-binding model are depicted in Fig. 6.1. Thus, we assume
that the superconductivity in CePt3Si is mainly induced by the S-band because the
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n
kz=nt kz=2n/3 kz=m/3
ky — :;:;77 /
N0 @
i ‘ N f/ r'/
0 kx T

Fig.6.1 Fermi surfaces of the model Eq.(6.26). We assume a = 0.3, U = 0 and hq = 0. The
cross sections at k, = m, k; = ZT” and k, = % are shown from the left to the right. (Ref. [18])

B-band has a substantial Ce 4f-electron character [24] and the largest density of states
(DOS), namely 70% of the total DOS [25].

For the Rashba SO interaction, we assume a simple model for the g-vector g(k) =
(—vy(K), vx(K), 0)/v, where vy y(k) = 0e(K)/dky y, to study the deviation from
the often-used form g(k) = (sinky, —sinkx, 0). The form of the g-vector hardly
affects the microscopic mechanism of superconductivity and the pairing symmetry.
However, some intriguing properties can be induced by the g-vector adopted here.We
choose the coupling constant « = 0.3 so that the band splitting due to Rashba SO
interaction is consistent with the band structure calculations [25].

The AF order enters in our model through the staggered field hg without discussing
its microscopic origin. The experimentally determined AF order corresponds tohg =
hqx pointing in the [100] direction with a wave vector Q = (0, 0, ) [10]. For the
magnitude, we choose |hg| <« W where W is the bandwidth since the observed AF
moment ~ 0.16up [10] is considerably less than the full moment of the J = 5/2
manifold in the Ce ion.

The undressed Green functions for U = 0 are represented by the matrix form
Gk, iwp) = (iw,1 — H(K))™!, where

. G (K, iw,) G2(k, iw,)
Gk, =\ A . A X , 6.28
(e feon) (G2<k+Q, i) Gk +Q, iwn) (©:2%)
and
son o ek —hge™
o= (—ho6<"> dk+Q) (29
vyith é(k) = k)6 + ag(k)o. The normal and anomalous Green functions

G'(Kk, iwy) are the 2 x 2 matrix in spin space, where w, = 2n + 1)nT and T
is the temperature.

We study the superconducting instability which we assume to arise through
electron—electron interaction incorporated in the effective on-site repulsion U. The
linearized Eliashberg equation is obtained by the standard procedure:

)\Ap,sl,sz (k) = - Z Vp,q,sl,s2,53,S4(ks k/)wq,S3,S4 (k/)v (630)

k’,q,83,54
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wp,sl,sz (k) = Z ¢p,i,j,s1,x3,sz,s4(k)Aq,S3,s4 (k + (i - 1)Q)7 (6~31)

1,],83,54
where g = p (¢ =3 — p)fori = j (i # j)and

Bpijusrsnsrss ) =T D Gh (K, i) G, 5 (—k + (p — DQ. —iwy), (6.32)
n

for p = 1, 2. Here, we adopt the so-called weak-coupling theory of superconduc-
tivity and ignore self-energy corrections and the frequency dependence of effective
interaction [27, 28]. This simplification strongly affects the resulting transition tem-
perature but hardly affects the pairing symmetry[29]. We optimize the momentum
dependence of order parameters A, 5, s, (K) to study the mixing of singlet and triplet
pairings due to Rashba SO interaction. Here, Ay g, 5, (k) and A g, s, (k) describe
the Cooper pairing with the total momenta (0, 0, 0) and (0, 0, i), respectively. The
former is the order parameter for ordinary Cooper pairs, while the latter is that for
m-singlet and 7 -triplet pairs [30-35].

We assume that the paring interaction V), 4 s, s, 5,54 (K, K') originates from spin
fluctuations that we describe within the RPA [27, 28] according to the diagrammatic
expression shown in Fig. 6.2. We obtain

Viists2,s3,54(k K) = —[U' 31 (K — k)l}/]SS,sl,x4,s2 + Ust 5253545 (6.33)

Viosts2.53.54 (K K) = —[U' 220k —K)U'13.51.54.525 (6.34)

Vaa(k,K) = Vi1 (k, K') and Vs 1(k, k') = V; 2(k, k). The generalized suscepti-
bility is expressed in the matrix form,

N N N —1
():m(q) )= I-1"@0 %" @0\ (%@ 635
X2(q4) @0 1-3"@nH0 a0 ) '

where ¢+ = q+Q. The matrix element of the bare susceptibility x i(O) (q) is expressed
as

0 . .
Kol 23.50@ = =T D [Gly o (K + Qi) Gy (3 (K, i)

k,wn

+ Gy (k+q,i0,)Gh 3(k+ Q. iwy)]. (6.36)

0 . .
XZ(,s)l,SZ,SS,s4(q) =-T Z[Gi&sl(k +q, la)n)GA%Z,x?: (k’ iwy)

Kk,w,

+ Gy (k4 q,i0,) Gy 3k + Q, iwp)]. (6.37)
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e - o0 e
Fig.6.2 Diagrammatic representation of the pairing interaction. The white circle represents the
on-site interaction U. (Ref. [20])

We denote the element of 4 x 4 matrix, such as )21.(0) (q) and x;(q), using the spin
indices as

Apprr Aptry Arrer Ay

A= | At Ariry Arpr Ay | 6.38)
Attt Appry Appr Aprgy
Apprt Apirl Ayt Ayl

The matrix U is expressed as

-U

—
[l

0 0
0 U
0 0 (6.39)
0

o J oo
S OO

-U

The superconducting T is determined by the criterion A = 1. We here determine
the leading instability to the superconductivity at 7 = 0.02, where the maximum
eigenvalue is A = 0.3 ~ 0.6. The pairing state below 7 is captured by this sim-
plified procedure because the momentum and spin dependences of order parameter
Ap .5, (K) are nearly independent of the temperature.

6.2.3 Microscopic Theory for Magnetism and Superconductivity

In this subsection, we study the magnetism and superconductivity in CePt3Si from
the microscopic point of view [18, 20]. To illustrate the basic properties, we ignore
the AF order and assume i = 0 in this section. While some properties are affected
by the AF order as shown in the next Sect.6.2.4, the mechanism and symmetry of
superconductivity are not altered.

6.2.3.1 Helical Spin Fluctuations

Helical magnetism is one of the characteristic properties of non-centrosymmetric
systems [36]. The RPA adopted in our calculation captures the helical anisotropy of
spin fluctuations. The spin susceptibility tensor x (q) is expressed by the generalized
susceptibility in Eq. (6.35) as
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x"(q) = Z 0)1 2 X1s1.52.53.54 (@03 4 (6.40)
s1,52,53,54

In our model Eq.(6.26), the spin susceptibility shows a peak around q = Q =
(0, 0, ). The helical spin fluctuation is described by the spin susceptibility tensor
around q = Q, which is approximated to first order of SO interaction « as

x4q@) 0  iaBgy
X(q) = 0  x%q) iaBgy |, (6.41)
—ia Bgx —ioquy Xd(q)

where x4(q) = x(Q) —alqy 12 —cqz2 with (qy, ¢,) = q—Q. This form can be viewed
as aresult of the Dzyaloshinski-Moriya-type interaction Hpy = Zq iD(q)-S(q) x
S(—q) [37, 38] with D(q) o aZ x q. Owing to the Rashba SO interaction, the spin
susceptibility tensor has the maximum eigenvalue at q; # 0 with an eigenvector
S(q) = \/Li(éx, gy, i), where gxy = gx,y/Iqy|. This mode describes the fluctu-
ations of cycloid-type helical magnetism along q. Thus, the fluctuation of helical
magnetism is appropriately described by the RPA. More detailed discussion on the
anisotropic spin fluctuations is given in Ref. [39].

6.2.3.2 Pairing States

We examine here the pairing state realized in the model Eq. (6.26). We do not adopt the
approximated form of the spin susceptibility in Eq. (6.41), but numerically calculate
Eqgs. (6.35-6.37) in the following part.

Two pairing states are stabilized by the pairing interaction mediated by the heli-
cal spin fluctuation discussed in the previous subsection. One is the s + P-wave
state, in which the order parameter has the leading odd-parity component d(k) ~
(—sin ky, sin kx, 0) and the admixed even-parity part @ (K) ~ & + cos kx + cos ky
with § ~0.2. Here and in the following, the leading angular momentum contribution
is written in the capital letter. The s + P-wave symmetry has been proposed in Refs.
[3, 40, 41]. In contrast to these literature, the spin-singlet component is viewed as
an extended s-wave pairing in our calculation, where the order parameter changes
its sign along the radial direction in order to avoid the local repulsive interaction
U. The extended s-wave pairing in the admixed singlet component can be distin-
guished from the conventional s-wave pairing by the NMR 1/7;T. The coherence
peak appears in 1/T1T just below T, for the latter [40, 42]. On the other hand, the
coherence peak almost vanishes in case of the extended s-wave pairing [20]. Recent
NMR measurements show no coherence peakin 1/7 T [15] and therefore consistent
with the extended s-wave pairing.

Note that the often-assumed relation d(k) || g(k) is not satisfied in the entire
Brillouin zone. This is a general consequence since the g-vector has a complicated
momentum dependence as shown in Sect.6.2.1. The momentum dependence of d-
vector is mainly determined by the paring interaction, which favors the short-range
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Cooper pairing and leads to the simple form d(k) ~ (—sinky, sinky, 0) in our
calculation. In the next section, we show that the mismatch of d-vector and g-vector
gives rise to the line node of superconducting gap.

The other stable solution is the predominantly d-wave state that can be viewed
as an interlayer Cooper pairing state: @ (K) ~ {sin kx sin k, sin ky sin k,} (two-fold
degenerate) admixed with an odd-parity component d(k)~@® (K)(sin ky, sin kx, 0).
In the paramagnetic phase, the most stable combination of the two degenerate states
is chiral: @4 (k) ~ (sin kx % i sin ky) sin k, which gains the maximal condensation
energy in the weak-coupling approach. Since the spin-triplet order parameter has
both the p-wave and f~-wave components, we denote this state as the p+ D + f-wave
state.

Among these states, the s + P-wave state is stable for a small U, while the
p+ D+ f-wave state is favored by a large U [20]. This is because the dimensionality
of spin fluctuation changes as increasing U. For a small (large) U, the spin
fluctuation has a two-dimensional (three-dimensional) nature. The intra-plane nearly
ferromagnetic correlation induces the s + P-wave superconductivity, while the AF
inter-plane coupling induced by a large U stabilizes the p + D + f-wave state.

Next we discuss the roles of Rashba SO interaction on the pairing state. It
has been argued that the SO interaction leads to the parity mixing. In our case,
the mixing of spin-singlet and -triplet components is closely related to the heli-
cal spin fluctuation discussed in Sect.6.2.3.1. Since the helical anisotropy of spin
fluctuations is pronounced around q = Q and the spin susceptibility is enhanced
by the electron correlation there, a significant mixing of order parameters occurs.
We obtain |<1§(k)|mx/|ci(k)|m,‘lX = 0.2 ~ 0.3 in the s + P-wave state, and
[d(K) |max/|1 P (K)|lmax = 0.2 ~ 0.3 in the p + D + f-wave state for « = 0.3,
where the suffix ||hax means the maximum in the Brillouin zone.

The Rashba SO interaction also affects the stability of pairing states. Figure 6.3
shows the o dependence of eigenvalues A for the s + P-wave and p + D + f-wave
states. A large eigenvalue A of Eliashberg equation indicates a high 7.. We see
the concave structure of A for the s + P-wave state. A small Rashba SO interaction
destabilizes the s + P-wave state. Although the depairing effect due to the Rashba SO
interaction is almost avoided in the s+ P-wave state withd (k) ~ (—sin ky, sinky, 0),
it does not vanish owing to the mismatch of d-vector and g-vector . This is the reason
why A decreases with increasing the SO interaction for o« < 0.4. On the other hand,
A for the s + P-wave state increases with o for & > 0.4. This is because the helical
anisotropy of spin fluctuations enhances the predominantly spin-triplet pairing state.
If we assume an isotropic spin fluctuation, A for the s + P-wave state monotonically
decreases with increasing o, as shown by the dashed line in Fig.6.3. This means
that the enhancement of A for @ > 0.4 is due to the helical spin fluctuation induced
by the SO interaction. In contrast to the s + P-wave state, the p + D + f-wave
state is not favored by the helical spin fluctuations as shown in Fig.6.3. Thus, the
predominantly spin-triplet pairing state can be stabilized by a large SO interaction
near the AF critical point.
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Fig.6.3 Eigenvalues of

Eliashberg equation A for the 0.55
s + P-wave (circles) and
p + D + f-wave states
(triangles). We assume
U=4and hq =0.
Eliashberg equation is solved 0.45
in the 128 x 128 x 32 lattice. |
The dashed lines show A ~ 2

which is estimated by using 04 @@ s+P-wave T~

the generalized susceptibility A—A p+D+-wave - _
Xi(q) for o = 0. (Ref. [20]) 035 .
0 0.2 0.4 0.6 0.8

Fig.6.4 Schematic sketch of (a) (b)
a the g-vector and b the —_

d-vector around k = Kkg. The
arrows show the direction of

vectors. A topological defect N \
of g-vector is shown by the . X

red circle in a l
v~ A

6.2.3.3 Topologically Protected Accidental Line Node

We have pointed out that the often assumed relation d(k) || g(k) [3, 43, 44] is not
satisfied in the entire Brillouin zone. While the g-vector generally has a complicated
momentum dependence as shown in Sect.6.2.1, the d-vector generally has a sim-
ple momentum dependence dominated by the short range Cooper pairing. Such a
mismatch occurs because the momentum dependence of the vector in an irreducible
representation of the point group is not unique. As a consequence, some intriguing
properties appear. For instance, we here show that the line node of the supercon-
ducting gap is induced by the topological properties of the d-vector and g-vector .
Strictly speaking, the excitation gap is not zero on this line node, but is negligible
since the minimum of the gap is in the order of 10~ of the maximum gap. This line
node is not protected by symmetry, but robust against any perturbations because of
the topological properties.

We here assume that the g-vector has some topological defects in the k-space,
where g(kg) = 0 with ko # 0, and the d-vector has no nontrivial topological
defect except for (kx, ky) = (0, 0), (0, ), (7r, 0), and (7, 7r). This is the case of our
calculation, where g(k) = (—vy(K), vx(Kk), 0)/v is assumed. A schematic sketch of
the d-vector and g-vector in our case is shown in Fig.6.4. Since the difference of
winding number around k = kg between the g-vector and d-vector, these vectors
have to be orthogonal along the line passing through k = kg.

We assume the || > |d(K)|max for simplicity. Then, the superconducting gaps in
Fermi surfaces split by the SO interaction are expressed as A4 (k) = £@ (k) +d(k) -
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Fig.6.5 Superconducting

gap | A4 (k)| in the (0,m) (m.m) 0.12
s + P-wave state at k, = ZT” ’
Node of the gap arising from 0.1
the topological defect of 0.08
g-vector is shown by the 0.06
arrow. Although the zeros of 0.04
superconducting gap do not 0.02
intersect with the Fermi 0'

surface at k, = %’T (thin
dashed lines), the line nodes
exist on the three-
dimensional Fermi surface at
another k,. (Ref. [20])

(0,0) T (,0)

Node of gap

g(k)/|g(k)|. Both gaps have a line node around the line passing through k = ko,
when the leading order parameter is the spin-triplet component and the admixed part
|® (k)| is much less than |d(k)|. For instance, we show the superconducting gap
|A4 (k)| atk, = 2?” in Fig. 6.5. We see the line node of the gap around a topological
defect of g-vector at (kx, ky) ~ (7/3, 7/3).

For a finite |d(K)|max /@, the combination of the admixed spin-singlet component
|® (k)| and the d-vector perpendicular to the g-vector gives rise to a tiny excitation
gap. The amplitude of the gap is in the order of Ay, ~ |®(k)||dy (k)|?/a?, where
di (k) = d(k) x g(k)|, with g(k) = g(k)/|g(k)|. This gap is much smaller than
the maximum gap. If we assume |d(K)|max /o ~ 0.01, we obtain Apyjn/|d(K)|max ~
1073,

Note that this node of the superconducting gap is not protected by the symmetry
and, therefore, classified as an accidental line node. However, this node is protected
by the topological property of g-vector and therefore robust for the perturbation.
This is a general mechanism for the line node in the NCS dominated by the spin-
triplet pairing. The topologically protected accidental line node in NCS should be
contrasted to the accidental line node in spin-triplet superconductors with inversion
symmetry, such as SroRuOy4 [45]. In the latter, the accidental line node disappears
for an infinitesimal perturbation.

6.2.4 NCS in AF State

In this section, we discuss the superconducting properties of NCS in the pres-
ence of AF order and study the pairing state in CePt3Si at ambient pressure
[18-20]. In all of the presently known NCS in heavy fermion systems, namely,
CePt3Si, CeRhSi3, CelrSiz, and Ulr, superconductivity coexists with the magnetic
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Fig.6.6 Schematic phase T
diagram in the P-T plane. a AF

s + P-wave state and b

p + D + f-wave state. “D”

(“cD”) shows the dy,-wave

(dy, + idy,-wave) state. (Ref. P+AF
[20D)

(a)

order. Most of the following results do not rely on the specific electronic structure
of CePt3Si, and therefore, can be applied to other compounds as well.

6.2.4.1 Multiple Phase Transitions

We first discuss the possibility of multiple phase transitions. To illustrate our results,
we show the phase diagrams in the pressure-temperature (P-7) plane in Fig. 6.6.

Multiple superconducting transitions may occur in the superconductors having
multi-component order parameters. The spin-triplet superfluid *He [46] and spin-
triplet superconductors UPt3, UBe3 [47], and SroRuO4 [45] actually show multiple
phase transitions. On the other hand, multiple phases do not appear in the predomi-
nantly spin-triplet pairing state (s + P-wave state) in NCS, as shown in Fig. 6.6(a).
This is because the six-fold degeneracy in the p-wave state in the absence of Rashba
SO interaction is strongly split by the SO interaction. The s + P-wave state with
d(k) ~ (—sinky, sinky, 0) is the most stable, while the other predominantly p-
wave state is strongly suppressed. Then, the phase transition between those states
does not occur. This feature of NCS should be contrasted with the centrosymmetric
spin triplet superconductors. For instance, the splitting of the degeneracy is very
small in transition-metal oxides with inversion symmetry [48].

The p + D + f-wave state has two-component order parameters. Then, multiple
phase transitions occur, as shown in Fig. 6.6(b). The phase transition from the chiral
dx, % idy,-wave state to the dx,-wave state must occur around the critical pressure
P = P.. Thus, the observation of a multiple phase transition in the P—T7 plane
might provide clear evidence of the p + D + f-wave state. Although the second
superconducting transition has been observed in CePt3Si [14, 49], that may have
an extrinsic origin. There are two superconducting phases with 7, ~ 0.75 K and
T: ~ 0.45 K owing to the sample inhomogeneity [6, 15, 49, 50]. Thus, the double
transition in CePt3Si may be caused by the sample inhomogeneity.

6.2.4.2 Superconducting Gap
We here investigate the influence of AF order on the gap structure of both s + P-

wave and p + D + f-wave states and discuss the experimental results for CePt3Si
at ambient pressure [6, 13—15].
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The quasiparticle spectrum in magnetic superconductor without inversion sym-
metry is obtained by diagonalizing the 8 x 8 matrix

. Hk) —AoAK)
H(k) = ~ N , 6.42
0 (—Aom k) —H(—k)T) (042
where A(K) is the order parameter in the spin basis expressed as
A Ay s,5(K) Ap s 5 (K) )
Ak) = - - . 6.43
0 (Az,s,sf (k+Q Apoy(k+Q) €4

The matrix element of A(K) is determined from the linearized Eliashberg equation
Eq.(6.30) by assuming that the momentum and spin dependences of the order para-
meter are only weakly dependent on temperature for 7 < 7.. We choose Ag so that
the magnitude of the maximal gap is Ay = 0.1 in our energy units. We define the qua-
siparticle DOS as p (&) = 7& >.; > A(e—E;(K)), where >} denotes the summa-
tion within |k,| < % The eigenvalues of Eq. (6.42) Eg(k) > E7(k) > --- > E1(k)
satisfy the relation E; (k) = —FE9_; (k).

To study the superconducting gap, it is more transparent to describe the supercon-
ducting order parameter in the band basis, which is obtained by unitary transformation
using

Apana(k) = U (R)A(K)U*(—K). (6.44)

The unitary matrix U (k) diagonalizes the unperturbed Hamiltonian as
UT () HK)U (k) = (e;(K)Ayj). (6.45)
The superconducting gap in the Yth band is obtained as
Ay(k) = AgWy(K), (6.46)

where Wy (k) is the (Y Y) component of the matrix Apana (K). Since the relation T, <
|| is satisfied in most of the NCS, the relation |A{fand (k)| < lagk)|, max{hq, |e(k)
— e(k + q)|} is valid for each matrix element of Aband (k) except for the special
momentum such as k = (0, 0, k). Then, the off-diagonal components of Aband (k)
hardly affect the electronic state, and the quasiparticle excitations E; (k) are expressed
as £EY (k) with ES™4(k)? = ey(k)? + | Ay(k)|*. Thus, | Ay (k)] is the supercon-
ducting gap in the Y-th band.

It is clear that the p + D + f-wave state has a horizontal line node because all
of the matrix elements of A(K) are zero at k, = 0. Since the pairing state changes
from the chiral d, & idy,-wave state in the paramagnetic state to the dy,-wave state
in the AF state (see Fig. 6.6b), another line node appears at kx = 0 in the AF state.
These line nodes are protected by the symmetry.

An accidental line node of the gap is induced by the AF order in the s + P-wave
state. The quasiparticle DOS p(¢) is shown in Fig.6.7, and the superconducting
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Fig.6.7 DOS p(¢) in the

s + P-wave state.
Paramagnetic state (hg = 0)
and AF state (hq = 0.125
and hg = 0.2) are assumed.
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show the results for & > 0
because p(e) is particle-hole
symmetric owing to our
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gap |Ay(K)| for Y = 4 is shown in Fig.6.8. We see that the DOS at low energies
is enhanced markedly by the AF order. This is mainly due to the mixing of the p-
wave order parameter between the leading part d(k) ~ (—sinky, sin kx, 0) and the
admixed part d(k) = (sin ky, sin ky, 0). Because the a- and b-axes in the tetragonal
lattice are no longer equivalent in the presence of the AF order, the p-wave order
parameter is modified to d(k) = (— sinky, B sinkx, 0) with 8 # 1. This change can
be viewed as a rotation of the d-vector. According to the RPA theory, 8 decreases with
increasing hq. Then, many low-energy excitations are induced around ky = 7/6,
as shown in Fig.6.8. The superconducting gap in the 4th band (Fig.6.8) is further
decreased by the admixture of an extended s-wave order parameter.

Another line node is induced by the folding of Brillouin zone, as investigated in
ref. [51]. However, the contribution to DOS from this line node is negligible in our
results because the superconducting gap shows a steep increase around the node.

The DOS in the s + P-wave state clearly shows a linear dependence at low ener-
gies (Fig. 6.7), which is consistent with the experimental results of CePt3Si at ambi-
ent pressure [6, 13—15]. We have calculated the temperature dependence of NMR
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1/T1 T and specific heat [20] and confirmed the existence of a line node observed
in these experiments. Both s + P-wave state and p + D + f-wave state show the
T-square law of 1/TT and the T-linear law of the specific heat coefficient C/T,
when the superconductivity coexists with the AF order. No coherence peak appears
in both states. Thus, the experimental results on the low-energy excitations are con-
sistent with both states, and therefore, another experiment is needed to distinguish
between these states. In the next section, we point out that the predominantly spin-
singlet state and spin-triplet state can be distinguished by the non-linear response to
the magnetic field. Other experimental tests have been discussed in ref. [20].

6.2.4.3 Helical Superconducting State

We study the NCS in the magnetic field. The helical superconductivity with mod-
ulation vector qg L H is realized in NCS with Rashba SO interaction under the
magnetic field along the ab-plane [52, 53]. In the helical state, the phase of super-
conducting order parameter is modulated as A(r) = Ae!", This state can be viewed
as a superconducting state with finite total momentum of Cooper pairs qy. (This is
the same as in the Fulde—Ferrell state in centrosymmetric superconductors [54—-56].)

For the discussion of the helical superconducting phase, we investigate the fol-
lowing effective model using the mean-field approximation

H = Hy+ Hz + Hj, (6.47)
Ho =" e®)cf s+ gk)-Sk) — > hg-Sqk), (6.48)
k.s k k
Hz = - h-S(K), (6.49)
k

Hi=UY nigniy+(V=J/4D ninj+J D (Si-S; —25'S}). (6.50)
i (i.J) (i.j)

The first term is the same as in the Hubbard model in Eq. (6.26). We take into account
the Zeeman coupling term Hy due to the applied magnetic field to be oriented along
the [010]-axis. We assume the AF moment along [100]-axis since the magnetization
energy is maximal when hg L h = hy. Assuming the last term Hy with U > 0,
V = —0.8U, and J = 0.3V, superconducting order parameters obtained by the RPA
in Sect.6.2.4.2 are reproduced. The coupling constant J describes the anisotropic
spin—spin interaction arising from the AF order. This term plays an essential role to
reproduce the results of the microscopic theory based on the Hubbard model. The
details of the mean-field theory have been given in Ref. [19]. As we focus here on
the paramagnetic limiting effect, we neglect the orbital depairing for simplicity.
First we show that the Pauli-limited critical magnetic field Hp along the ab-plane is
significantly enhanced by the formation of helical superconducting phase. Figure 6.9
shows the Hp for the s+ P-wave state. To illuminate the helical superconducting state,
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Fig.6.9 Reduced pauli-limited critical magnetic field hp/ T = %guB Hp/ T, against the reduced
temperature 7'/ T¢ in the s 4+ P-wave state. Circles and squares show the helical superconducting
state in the paramagnetic state (hq = 0) and in the AF state (hq = 0.125), respectively. The
triangles show the uniform BCS state at hq = 0. The s-wave state is also shown for a comparison
(dashed line). (Ref. [19])

we first discuss the paramagnetic state with 2 = 0. According to the linear response
theory, the spin susceptibility in the NCS with Rashba SO interaction decreases to
the half of the normal-state value for the magnetic field along the ab-plane [1, 2, 57],
independent of the pairing symmetry [19]. When we assume a simple formula Hp =
\/ N(0)AZ/(xN — xs), the Pauli-limited critical magnetic field Hp is enhanced by
V2. By taking into account the non-linear response, the Hp is furthermore enhanced,
as shown in Fig. 6.9. This is because the paramagnetic depairing effect is substantially
avoided in the helical superconducting phase at high fields. Figure 6.9 shows that the
Hp in the helical state (solid line, circles) is much larger than that in the uniform
BCS state (dash-dotted line, triangles) for T < T, /2.

The enhancement of Hp for the s + P-wave state below T = T./2 coincides
with two distinct changes of the superconducting order parameters. First there is
a significant increase of the helicity |qg|. Figure6.10 shows the magnetic field
dependence of the helicity |qyg| just below 7;. We see the non-linear increase from
|qu| ~ («/ep)h/vE in the low-field region to |qy| ~ % /vp in the high-field region
with arapid crossover around &2 ~ 1.57. This crossover can be viewed as a crossover
from the helical superconducting state to the Fulde—Ferrell-Larkin—-Ovchinnikov
(FFLO) state. While a small helicity at low fields is essentially due to the inversion-
symmetry-breaking, a large helicity |qug| ~ h/vr at high fields is an analogue of
the FFLO state [58—60]. Although the FFLO state is restricted to a small region of
the phase diagram in centrosymmetric superconductors [61], the high-field phase of
NCS is robust in the s + P-wave state, as shown in Fig.6.9. This is because the
crossover from the helical superconducting state to the FFLO state coincides with
the rotation of d-vector, as discussed below.

The enhancement of Hp in the s + P-wave state also coincides with the mixing
of p-wave order parameters. Owing to the magnetic field along the [010]-axis the
p-wave state d(k) = (— sinky, sin kx, 0) mixes with another p-wave state d(k) =




6 Microscopic Theory of Pairing Mechanisms 191

Fig.6.10 Helicity |qu]| just

below 7 in the s + P-wave HhQ:O
state. Circles and squares h.=0.125
show the paramagnetic state el

and AF state, respectively. 0.04

(Ref. [19])
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(sin ky, sin kx, 0) and leads to the d-vector d(k) = (—sinky, B sinky, 0) with 8 < 1.
The paramagnetic depairing effect is partly avoided by rotating the d-vector, and thus,
the superconducting state is stabilized. The enhancement of Hp due to these effects,
namely (i) the crossover from the helical superconducting state to the FFLO state and
(ii) the rotation of p-wave order parameter is pronounced when the Fermi surfaces
are anisotropic as in the model for CePt3Si (Eq. (6.27)) [19].

We now turn to the AF state. Figure 6.9 shows that the AF order furthermore
boosts Hp for the s + P-wave state. This is mainly because the coefficient 8 of the
d-vector d(k) = (—sinky, Bsinky, 0) is decreased in the AF state, as discussed
in Sect.6.2.4.2. Thus, both magnetic field and AF order lead to a decrease of S.
Since the small energy scale BT is relevant for the magnetic properties, the non-
linear response to the magnetic field is pronounced for small S. The non-linearity
with respect to the magnetic field generally enhances Hp. Actually, we see that the
paramagnetic depairing effect is almost avoided in the AF state (squares in Fig.6.9).

In the helical superconducting state with large helicity analogous to the FFLO
state, the spin susceptibility remains nearly constant through 7, as shownin Fig.6.11.
This is also a consequence of the pronounced non-linear response to the magnetic
field. Even when T is not significantly suppressed by the magnetic field, the magneti-
zation shows a significant non-linearity and leads to no decrease of spin susceptibility
below T.. These results on the Hp and spin susceptibility in the s + P-wave state
are consistent with the experiments for CePt3Si at ambient pressure [11, 16, 17].
However, they seem to be incompatible with the predominantly spin-singlet pairing
state [19].

In contrast to the s + P-wave state, the influence of AF order on Hp is negligible
for the predominantly spin-singlet pairing state [19]. Thus, the response to the AF
order is quit different at high fields between the predominantly spin-singlet and spin-
triplet pairing states. This is contrasted to the linear response to the magnetic field,
which is universal in the sense that it is independent of the pairing symmetry. The
influence of the AF order can be tested by using the fact that AF order is suppressed
by pressure in CePt3Si, CeRhSi3, and CelrSi;3.

As the last issue of this section, we would like to point that CePt3Si is a good can-
didate for an experimental observation of the helical superconducting phase and/or
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Fig.6.11 Spin susceptibility D S
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FFLO phase. It seems to be difficult to detect the helical superconducting phase with
a small helicity (|qu| ~ (o/er)h/vr) because the wave length is much longer than
the coherence length. Thus, the high-field phase with |qg| ~ % /vF is more promising
for the experimental observation. The high-field phase realizes in a large part of the
H-T plane for the s + P-wave state, as shown in Fig. 6.9. Comparing our theoretical
results with experiments, the s + P-wave state is most likely realized in CePt3Si.
Therefore, the experimental search for the helical superconducting phase in CePt3Si
is highly desirable. For the Rashba-type NCS, the helicity is perpendicular to the
magnetic field, and therefore, the helical modulation is coupled to the vortices. Even
then, a fingerprint of the helical phase appears [62].

6.2.5 Summary of CePt3Si

We studied the pairing state in CePt3Si from the microscopic point of view. According
to the microscopic analysis of the minimal Hubbard model in Eq. (6.26) based on
RPA, two pairing states are stabilized. One is the predominantly spin-triplet pairing
state (s + P-wave state) and the other is the predominantly spin-singlet pairing state
(p + D + f-wave state). We investigated the properties of these states theoretically
and compared with the experimental results. Although line-node behavior observed
in thermal conductivity [13], superfluid density [14], specific heat [6], and NMR
1/T\T [15] is consistent with both pairing states, magnetic properties clarified by
the Knight shift and H.» measurements are consistent with the s + P-wave state. We
have elucidated some intriguing properties of NCS with predominantly spin-triplet
pairing and proposed future experimental tests.

6.3 The Cases of CeRhSi3; and CelrSi3

In this section, we consider the pairing mechanism of heavy fermion noncentrosym-
metric superconductors CeRhSi3 [63] and CelrSiz [64]. Both of them possess the
same tetragonal structure without inversion center along the c-direction as depicted
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Fig.6.12 Crystal structure
of CeRh(Ir)Si3. t1, 2, and 13
denote the hopping integrals
between Ce sites

—— ¢ s
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in Fig.6.12. CeRhSi3 and CelrSi3 are antiferromagnets with the Neel temperatures
Ty = 1.6 K and 5.0 K, respectively, at ambient pressure. When applied pressure
increases, these systems exhibit the transition to superconductivity. The maximum
of the superconducting transition temperature 7. is achieved in the paramagnetic
phase where the antiferromagnetic order is completely destroyed by the applied
pressure P. The highest superconducting transition temperatures are 7, = 1.0 K
for CeRhSi3; at P = 2.63 GPa and T, = 1.6 K for CelrSiz at P = 2.6 GPa.
We refer to the pressure at which the highest 7, is realized as the “critical pres-
sure” P in this section. The validity of this assignment will become clear later.
Several experimental results of transport measurements [64] and NMR study [65]
for these systems revealed that in the vicinity of the critical pressure P, there exist
strong antiferromagnetic (AF) fluctuations interacting with itinerant electrons, which
affect drastically the Fermi-liquid properties; e.g. the nuclear relaxation rate 1/ 7} for
CelrSiz above 7. does not obey the Korringa law, but is proportional to +/7 [65]. This
temperature dependence is consistent with the prediction of Moriya’s SCR theory for
three-dimensional AF spin fluctuations [66]. Furthermore, just below 7, the nuclear
relaxation rate 1/ 77 exhibits no coherence peak, showing a power-law behavior pro-
portional to 73 at low temperatures, which indicates that unconventional supercon-
ductivity with line nodes of the superconducting gap is realized. These observations
strongly suggest that P is associated with an AF quantum critical point, and the AF
fluctuations play an important role for the realization of superconductivity in these
compounds. Thus, it is plausible to examine a scenario of spin-fluctuation-mediated
Cooper pairing for these NCS. In this section, we develop a microscopic theory for
the spin-fluctuation-mediated pairing mechanism applied to CeRhSi3 and CelrSi3.
This section consists of two parts: in the first part, we analyse the pairing states
and the superconducting transition temperatures realized for these systems employ-
ing microscopic calculations, and in the second part, we discuss the upper critical
fields of these systems on the basis of the spin-fluctuation scenario. One of the most
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remarkable features of CeRh(Ir)Si; is the experimental observation of extremely
large upper critical fields ~30-40 T [67, 68]. This magnitude of the upper critical
fields is rather astonishing, since the transition temperature in the case without mag-
netic fields is merely ~1 K. As will be shown in the following, this notable feature is
closely related to the microscopic origin of the pairing interaction. The calculation of
the upper critical field based on the spin-fluctuation mechanism confirms the validity
and correctness of our scenario for the pairing glue.

6.3.1 Microscopic Theory for the Pairing State

Here, we present microscopic theoretical analysis for the pairing states and the super-
conducting transition temperatures realized in CeRhSi3 and CelrSiz [44]. As shown
below, it is found that, in these systems, the formation of Cooper pairs is mediated by
AF spin fluctuations, and the pairing state is dominated by the spin-singlet extended
s-wave state with a weak admixture of a spin-triplet component.

6.3.1.1 Microscopic Model and Approach

The maximum 7, of CeRhSi3 (CelrSis) is achieved at the pressure for which the
antiferromagnetic order is completely destroyed. Thus, for the clarification of the
pairing mechanism, it is sufficient to consider only the paramagnetic phase. The band
structure of CeRhSi3 in the paramagnetic state was calculated by Harima on the basis
of the LDA calculation [69]. The LDA result of the Fermi surface is consistent with
the de Haas—van Alphen experiments under applied pressures [70, 71]. In Fig.6.13,
a pair of the SO split Fermi surfaces obtained by the LDA method is shown. The
spectral weight on these Fermi surfaces is dominated by that of f-electrons of Ce
atoms, characterizing the heavy fermion states. We first construct an effective low-
energy model for CeRhSi3 which properly reproduces the essential features of the
LDA results. As a first approximation, we consider a tight-binding model with a single
band which consists of f-electrons of Ce atoms on the body-centered tetragonal lattice
structure shown in Fig.6.12. We take account of the hopping of electrons between
the nearest-neighbor sites, the second nearest-neighbor sites, and the third nearest-
neighbor sites. The energy band of the tight-binding model is given by

e(k) = —2t1(cos ky+4-cos ky)+41 cos ky cos ky—8t3 cos(k, /2) cos(ky/2) cosk, —

(6.51)
We choose the hopping parameters as (t1, f2, t3) = (1.0, 0.475, 0.3) and the chem-
ical potential u so that the electron density is near half-filling. Then, in spite of the
drastic simplification, the model (6.51) well reproduces the LDA results of the Fermi
surfaces which mainly consist of itinerant f-electrons. This implies that f-electrons
in these systems possess notably itinerant character, which allows the description in
terms of the single-band Hubbard model rather than the periodic Anderson model.
This picture is also consistent with the experimental observation that the AF order
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Fig.6.13 Fermi surfaces of
CeRhSi3 obtained by the
LDA calculation. Top and
bottom figures are a pair of
the SO split Fermi surfaces
that have the largest weight
of f-electrons among all
Fermi surfaces. Quoted by B
courtesy of H. Harima /
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realized at ambient pressure in these systems is regarded as spin-density waves [72].
In Fig. 6.14, we show the Fermi surface of the tight-binding model (6.51). Since the
crystal structure lacks mirror symmetry with respect to the ab-plane, we assume the
existence of the Rashba SO interaction. Actually, the ground state of the f-electron
level for CeRhSi3 and CelrSi3 is the I Kramers doublet. Transforming the basis
of spin to the basis for the Kramers doublet, one can easily find that the antisym-
metric SO interaction represented in terms of the Kramers doublet has the same
form as that expressed in terms of a spin basis apart from a constant prefactor.
Thus, even in the case of heavy fermion systems, as long as the Bloch states of
f-electrons are labeled by pseudospins that constitute the Kramers doublet, we can
use the same expression for the antisymmetric SO interaction as that for electron
spins. Since the spectral weight in the vicinity of the Fermi level for CeRh(Ir)Sij5 is
largely dominated by that of f-electrons, it is expected that this approximation works
well.

We also consider the onsite Coulomb repulsion between f-electrons. Hence, the
total Hamiltonian of the minimum model for the analysis of the superconducting
transition is similar to Eq. (6.25):

H = ey cis+o D gk -SK) +U D nignil, (6:52)

k,s k

where ¢k ¢ withs =1, | is the annihilation operator of the Kramers doublet. The sec-
ond term of Eq. (6.52) is the Rashba SO interaction with g(k) = (sinky, —sinky, 0)
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Fig.6.14 Fermi surface of
the model (6.51). The
borderlines between the
white regions and the gray S
regions represent the
horizontal line nodes of the
gap function for the A
representation cos 2k.. (Ref.
[44])

0 (m.m.m)

A,

(~rt~m,-m)

and S(k) = >, 5.5/ amrc;S ck.s'- The parameter o controls the strength of the SO
interaction.

As mentioned before, since the highest T is realized in the vicinity of the critical
pressure at which the AF spin fluctuations develop, it is natural to investigate the
possibility that the Cooper pair is mediated by AF spin fluctuations [27, 28, 73, 74].
In general, the antisymmetric SO interaction gives rise to scattering processes with
spin flip. To simplify the following analysis, we exploit an approximation scheme
which captures the essential features of effects of the SO interaction, but omits com-
plexity arising from spin-non-conserving scattering processes. One important and
non-perturbative effect of the SO interaction is the SO splitting of the Fermi surface.
Another important effect associated with pairing mechanisms is parity mixing. We
take into account these two effects exactly. However, other aspects such as effects on
AF fluctuations and the Fermi-liquid properties can be treated by perturbative approx-
imations. For CeRh(Ir)Si;, the magnitude of the SO interaction is much smaller than
the Fermi energy; oo/ EF is less than 0.1. Thus, corrections due to the SO interaction
to AF fluctuations and the Fermi liquid properties are almost negligible at least qual-
itatively. Then, the expression for the single-electron Green function is considerably
simplified,

Gap) = w&(/«), (6.53)
=%
Gl (k) = Gyl k) — Z k), (6.54)
1
Goc (k) = m, (6.55)
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where k = (K, iw,), o, B =1, |, and g(k) = g(k)/|g(k)|. The single-electron
energy for U = 0 is given by ¢;(k) = e(k) + ta|g(k)|. X' (k) is the single-
electron self-energy. Because of the reason mentioned above, we have neglected
the self-energy that is off-diagonal with respect to spin indices, and also scattering
processes with spin flip for the diagonal self-energy X (k). Furthermore, we neglect
the anisotropy in the spin space due to the SO interaction. Based on these approxi-
mations, we exploit the standard random phase approximation (RPA) for the pairing
interaction mediated by spin fluctuations; vertex corrections to the effective coupling
between an electron and AF spin fluctuations are neglected. As is well-known, in
contrast to the phonon-mediated pairing mechanism, it is generally not justified to
neglect these corrections. However, according to several studies on effects of the
vertex corrections beyond RPA, this inclusion does not change the most stable pair-
ing state calculated within RPA. On the contrary, it raises the transition temperature
for this pairing state [75, 76]. Thus, the RPA method used here is reliable for our
purpose. The RPA calculations of the spin correlation function for the parameters
mentioned above well reproduce important features of the momentum dependence
obtained by neutron scattering measurements for CeRhSi3 at ambient pressure [72].
It exhibits a prominent peak at the wave number vector Q| = (£0.43x, 0, 0.57)
0, = (0, £0.43m, 0.57). In the following analysis, we assume that this momentum
dependence of the spin correlation function is almost unchanged by applying pres-
sure, though the applied pressure increases the band width, resulting in the destruction
of the AF order.

The superconducting transition temperature 7, is calculated by solving the lin-
earized Eliashberg equation recast into an eigenvalue problem, which is similar to
Eq.(6.30) with p = g = 1. However, an important difference is that, in this case,
we need to take into account frequency-dependence of the pairing interaction and
the gap function, and also the self-energy corrections to the single-electron Green
function given by (6.54). Then, the linearized Eliashberg equation is

T
)"A‘Ylsz (k) = _N Z VY]SZS3X4 (kv k/)Gtrls3 (k/)GO'zm(_k/)AGle (k/) (656)

k's3s40107

Here, k = (K, iw,) etc., Z = Z Z, and we have omitted the subscripts p, ¢ in
K n K

Eq.(6.30). The maximum eigenvalue Amax = 1 corresponds to the superconducting

transition. The pairing interaction Vy, s, 5,5, (k, k) calculated within RPA is

Virsassss (ks k) = Ug 53850548515 + VOO L (k, K) + VI -k, K),  (6.57)

51852853854 51525354

where the contributions from bubble diagrams Vsl?;lzjsz 5, and ladder diagrams V}f‘fﬂ 25

are, respectively given by V2 (k, k') = 0% (k — k') — 2% (k + k'), VIO (k, k') =
6 — K, and VIR = oSG — k) — o+ R, VLK) =
v (k — k') with,

5888
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verr (@) = —U? x85:5(@) / Doun (@),

W (q) = U (= x8s5 @) — U5 (@ x %55 (@) + U x5 (@) x5 (@) / Doun (@),
Doun(@) = (14 Ux0, @) (14 Uy 1 @) = U @y, @),
V5@ = U x55s5(@)/ Draa (@),

V(@) = U (X$h55(@) — U XSy @ Xiks5 (@) + U tskss (@ X$hs5,(@)) / Diaa (@),

Diad(q) = (1 - UXi)MT(CI)) (1 - UX$¢¢¢(Q)) - U2X?LN(CI)X8NT(Q)-

The bare spin susceptibility xo(q) is xo(q) = =T >_,, >k 0Gort(k +q)Goy (k).
Here Goqup is the electron Green function (6.53) without the selfenergy correction
X (k). This approximation scheme is sufficient to determine which pairing symmetry
is favored by the spin-fluctuation-mediated pairing interaction.

6.3.1.2 Pairing States

Because of the parity mixing due to the antisymmetric SO interaction, the pairing
gap function is generally expressed as,

Aslsz (k) = Ay (ien)dO(k)i(GZ)slsz + A/(igp)d(K) - i(602)51s2~ (6.58)

The momentum dependence of the spin-singlet part dp (k) obeys the group theoretical
classification of the pairing symmetry. For the tetragonal systems with the Rashba
SO interaction such as CeRh(Ir)Sis, dp(k) is given by one of basis functions of the
irreducible representations for Cy4,,, which are listed in Table 6.1. In this table, the basis
functions are expressed in terms of the second order harmonics cos 2k,, cos 2k,
cos 2k, etc. rather than the first order harmonics cos k., cos ky, cos k; etc., because
of the following reason. In our systems, the pairing interaction mediated by AF spin
fluctuations (6.57) has a prominent peak for k — k’ ~ Q with Q ~ (7/2, 0, w/2) or
(0, /2, w/2). This ordering vector Q is consistent with experimental observations
of neutron scattering measurements for CeRhSi3 [72]. This momentum dependence
stabilizes the gap functions that satisfy dp(k + Q) = —do(k). Thus, we use the basis
functions listed in Table 6.1 in the following calculations. On the other hand, for
the spin-triplet channel, d(k) is chosen so as to be consistent with the Rashba SO
interaction, i.e. d(k) = dp(k)d(k). For this choice of d(k), the interband pairings
which give rise to pair-breaking effects are suppressed, and thus the optimum 7 is
expected.

To examine which pairing state is the most stable in our model, we calculate
the maximum eigenvalues Apax Of the lineraized Eliashberg equation (6.56) for five
irreducible representations listed in Table 6.1. In this calculation, we neglect effects
of the normal selfenergy, putting X' (k) = 0 in (6.56). In Fig. 6.15, the Ap,x values
calculated for @ = 0 are shown. In the vicinity of the AF phase boundary determined
by the condition U x0(0, Q) = 1, the highest T, is achieved for the A; represen-
tation in the spin-singlet channel with the gap function d(? '(k) = cos2k;, which
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Table 6.1 Pairing symmetry for tetragonal systems with the Rashba SO interaction. The irreducible
representations are given by those of Cy,. g(k) = (sink,, —sinky, 0)

Spin-singlet/triplet  Irreducible representation Basis function

singlet A1 (extended s) d{)\ '(k) = cos 2k,

singlet A2 (Gry(2—y2) dé\z (k) = sin 2k, sin 2k, (cos 2k; — cos 2ky)
singlet Bi  (de2_2) dg‘ (k) = (cos 2k — cos 2ky)

singlet By  (dyy) ' dg 2 (k) = sin 2k, sin 2ky

singlet E (d;x) d(l;: (k) = sink, sin 2k,

triplet d" (k) = df ®gk)

Fig.6.15 Maximum eigen

values of the linearized 1.2
Eliashberg equation versus U
for five irreducible
representations with @ = 0 08 |
and T = 0.04. The upper

(lower) panel is for the spin x 06 b
singlet (triplet) channel. The & 04k |
dashed line is the AF phase ’
boundary. (Ref. [44]) 02 b
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corresponds to the extended s-wave state. In contrast, Apyax’s for all the spin-triplet
pairings are much smaller than unity. This is because that for the pairing interaction
mediated by AF spin fluctuations (6.57), the spin-triplet channels are repulsive, or
very weakly attractive. When the antisymmetric SO interaction is switched on, i.e.
a # 0, the pairing state with the highest 7, is the extended s-wave state with an
admixture of the p-wave state. The gap function of the mixed p-wave component
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Fig.6.16 Maximum eigen T=0.04
values of the linearized 1.2 T T ™
Eliashberg equation versus U 3 i
for the extended S + p-wave Tr ;‘D 5 1
state. T = 0.04. (Ref. [44]) 08 e ]
: oM
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®© |
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< 04} : 4
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is d(k) = d§ '(k)g(k). The maximum eigenvalues for the extended S + p-wave
state are plotted in Fig.6.16. The fraction of the mixed p-wave component is very
small; A;/Ag ~ 0.01. This small ratio of the admixture is due to the fact that, as
mentioned above, the pairing interaction in the triplet channel is much smaller in
magnitude than that in the singlet channel, and the ratio Eso/EF for CeRh(Ir)Sis,
which is a parameter controlling the parity-mixing, is less than 0.1. The gap function
for this pairing state with the dominated extended s-wave symmetry has horizontal
line nodes on the Fermi surface as depicted in Fig. 6.14 which is well consistent with
the NMR measurement for CelrSis at the optimum pressure P, indicating the power
law behavior of 1/T) at low temperatures and the absence of a coherence peak just
below 7. The existence of the horizontal line nodes for CeRhSij3 is also suggested by
the de Haas—van Alphen (dHvA) measurements of the Fermi surfaces for CeRhSi3
[70]. Terashima et al. carried out the dHvA measurements for the superconducting
state with high magnetic fields applied parallel to the c-axis. They observed the dHVA
oscillations even for magnetic fields corresponding to the Landau level spacing hw,
which is smaller than the superconducting gap A by a factor 1/3. According to the-
oretical studies on the dHvA effect in the superconductors [77-79], the amplitude
of the dHVA oscillation is suppressed when the BCS gap A is isotropic and exceeds
the cyclotron energy, while, for gap line nodes perpendicular to magnetic fields and
located near a curve enclosing the extremal cross section of the Fermi surface, the
dHvVA effect is not affected by the superconducting gap. Therefore, the observation
of the dHVA effect mentioned above is naturally interpreted as an evidence for the
existence of the horizontal line nodes for CeRhSiz. More precisely, the line nodes of
the cos 2k, state do not lie on the curve enclosing the extremal cross section of the
Fermi surface. However, as shown in Fig. 6.14, the Fermi surface has portions which
are almost flat along the z-direction and crosses the line nodes of the gap. For this
specific shape of the Fermi surface, it is plausible that the dHVA oscillation is not
suppressed even though the line nodes are not located exactly on the extremal part
of the Fermi surface.
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Another experimental evidence which supports the scenario of the AF spin-
fluctuation-mediated pairing mechanism for CeRhSi3 and CelrSi3 is provided by the
measurement of the upper critical field of these systems. We would like to address
this issue in the next section.

6.3.2 Upper Critical Fields

One of the most remarkable experimental observations for CeRhSi3 and CelrSis
is the extremely large upper critical field H.» for a magnetic field parallel to the
c-axis in the vicinity of the critical pressure P} [67, 68]. The observed H., ~30—40
T at P} is almost comparable to those of high-T, systems, though the transition
temperature at zero field is merely ~1 K. Also, the H-T curve exhibits upward
curvature in a wide range of temperatures; i.e. the increase in the upper critical
field is enormously enhanced as the temperature 7 is decreased, in sharp contrast
to any other superconductors in which the increase of H., becomes weaker as T is
decreased. Furthermore, the pressure dependence of H, is significantly strong in the
vicinity of P, while, by contrast, the pressure dependence of 7, is moderate. If the
SO interaction for these systems is assumed to be of the Rashba type, the absence
of the Pauli depairing is understood as follows. The Rashba SO interaction splits
the Fermi surface into two parts. For magnetic fields applied parallel to the c-axis
(or the z-axis in the notation of Eq.(6.52)), the uniform spin susceptibility in the
normal state xn is dominated by the van-Vleck-like susceptibility xyy governed by
contributions from the transition between the two SO split bands, and there is no Pauli
spin susceptibility dominated by contributions from the Fermi surface. When the SO-
splitting of the Fermi surface Eso is much larger than the superconducting gap A,
which is the case of the heavy fermion NCS, the spin susceptibility xy & xyy is not
affected by the superconducting transition, leading to the infinite Pauli limiting field
Hp; i.e. from the energy balance between the Zeeman energy and the condensation
energy, %XNH% = %XVVH% + %N(O)Az, we have Hp — o0. In contrast to the
Pauli depairing effect, however, the orbital depairing effect should always exist for
NCS. It is important to clarify why the orbital limiting fields of superconductivity
in CeRhSi3z and CelrSi3 are so large as indicated by these experiments. In this
section, we examine whether these remarkable features can be explained by the spin-
fluctuation-mediated pairing mechanism considered in the previous section [80]. A
key factor for understanding these experimental results is the existence of the quantum
critical point (QCP) associated with AF order at sufficiently low temperatures where
the huge H,, is observed. The pairing interaction mediated by spin fluctuations
should strongly increase just at the QCP where the correlation length of the AF
order diverges. On the other hand, at sufficiently low temperatures near quantum
criticality, pair-breaking effects of inelastic scattering due to spin fluctuations which
are important for the determination of the transition temperature are suppressed. The
interplay between the enhancement of the pairing interaction and the suppression of
the pair-breaking effect in the vicinity of the QCP yields naturally the remarkable
enhancement of H.,. We examine this scenario in the following.
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6.3.2.1 Quasiclassical Eliashberg Equation

For the calculation of the orbital limiting field in the vicinity of a QCP, it is important
to take account of pair-breaking effects due to the interaction with spin fluctuations.
This task is rather involved. To simplify the following analysis, we use a phenomeno-
logical model for the AF spin fluctuations, instead of calculating the spin fluctuation
propagator microscopically as done in the previous section. We assume the following
form of an effective action for the interaction between electrons and spin fluctuations,

Ssk == ¢"x(@)Sq -S4 (6.59)
q

Here, S, = > chaaalgckﬁ, q = (q,ig,) with &, = 27nT, and,

_ x0€2
X@=2, 77 £2(q — Qu)2 + lenl/(ToE2) (6.60)

a

We choose the propagating vectors of spin fluctuations as Q; = (£0.43x, 0, 0.57)
and Q2 = (0, £0.43, 0.57) in accordance with neutron scattering measurements
for CeRhSi3 [72]. We also assume that tl}e temperature dependence of the AF corre-

lation length £ (T') is given by £(T') = \/7%?’ which implies that the critical exponent
of £(T) is equal to the mean field value 1/2. This assumption for £(7’) is consis-
tent with the NMR experiment for CelrSiz at P ~ P, which indicates 1/T; JT
above T, [65]. The action (6.59) replaces the onsite repulsion term in (6.52). We inter-
pret that the interaction (6.59) is generated by renormalizing high-energy scattering
processes due to the onsite Coulomb repulsion U.

To investigate the orbital depairing effect, we need to deal with a spatially varying
vector potential A(r). For this purpose, we use a standard quasiclassical approxima-
tion, which is justified for kplg <« 1, where kF is the Fermi momentum, and /g the
magnetic length. The single-electron Green function within this approximation is

ie [ A(s)ds

Gupg(X,y iy A) =e Gug(X —y,iwy; A=0). (6.61)

Here, Gog(iw,, x —y; A = 0) is the Fourier transform of (6.53) with respect to
momentum K. The interaction with critical AF fluctuations strongly modifies the
Fermi-liquid properties of electrons. This effect is incorporated into the normal self-
energy X (k). Up to the first order in g2, it is given by

T
TH) = 5 28k —K)Goaa k). (6.62)

ko

As in the previous section, we neglect scattering processes with spin flip. We also
add the Zeeman term —ugH; >, c,i ock to the Hamiltonian to take account of the
Pauli depairing effect.
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The upper critical field H in the strong-coupling regime is obtained by solving
the linearized Eliashberg equation,

. T
Aga (K, i R) = —— D" Voo pp (k. k)
K.BB"yv’'
x Gy (K + 1L, iw,)Gpy (—K, —iwy) Ay, (K, iwy; R),

(6.63)

where R is the center of mass coordinate of Cooper pairs, and II(R) = —iVg +
2¢A(R) with Vg x A(R) = (0, 0, H). The pairing interaction mediated by AF spin
fluctuations is

/ 1 2 4 1 2 /
Vm,m(k,k)=—§g X(k—k)-l-zg x(k+ k'), (6.64)
VSE,SE(k» k/) = _Vsi,s_s(ka k/) (665)

— 1 2 ’ 2 /
=39 Xk —k)+ g x(k+ k), (6.66)

Here, we have assumed that the energy scale of the AF spin fluctuations is sufficiently
larger than the Zeeman energy introduced by the applied magnetic field, and that the
propagator for the spin fluctuations is not affected by the magnetic field. Since the
magnetic field is parallel to the c-direction and the SO interaction is the Rashba-type,
we do not need to consider nonuniform states like the helical vortex phase or the
FFLO state; i.e. under this situation, the nonuniform pairing states with center-of-
mass momentum require interband pairing between electrons of the two SO-split
bands, which is strongly suppressed when the SO splitting is much larger than the
superconducting gap. Then, it is sufficient to take only the lowest Landau level in the
evaluation of the kernel of the gap equation (6.63), and use the expression for the gap
function up to the lowest Landau level, Ay (k; R) = Ay (K)o (R, Ry), where ¢
is the basis function for the lowest Landau level. As a result, the Eliashberg equation
is rewritten as,

T 1+8f (k) -0 s
Ao K) = D Vaa/,ﬂﬂ/(k,ksz(f isgn(@)
k’vﬁﬁ,y}/, =% /3)’

X (L)l/zf (Lk/)) Ggy (=KNA,,, (k) (6.67)
ae (k/) /zar (k/) ﬁ ]// )/)/’ ’ .

where g7 (k) =g (k)/|g" (k)| with g (k) = (sinky, —sink,, —upH/a), and
dk)=w, — ImZo(k), ar(K)=[e[Hw(K)? + vry(k)?), b (k)=|a| +
isgn(®)e; (k), with the single-particle energy & (k) =e(k) + rar|g” (k)| and the
velocity U7 (K) = Ver (K). f(z) is defined as f(z) = */Tgezzerfc(z). Eq.(6.67) is the
basis for our analysis of the upper critical field in the strong-coupling regime.
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Fig.6.17 Upper critical 35
fields plotted as functions of a0l
temperatures. The Pauli
limiting field for & = 0.002 25
(a dotted line with open o0l
circles), and the orbital =
limiting fields for several 6 T 151
(solid lines) are shown. The 10l
unit of 6 is 11 = 113 K. (Ref.
[80D) 5t
0

6.3.2.2 Extremely Large H. Due to Critical Spin Fluctuation

The transition temperature 7, (H;) for a finite magnetic field H, and the upper critical
field H,» can be calculated from Eq. (6.67). Since the phenomenological form of spin
correlation function (6.60) possesses the momentum dependence quite similar to that
obtained by the RPA calculations for the model presented in the previous section,
the extended s-wave state with the small fraction of the admixture of p-wave state
has the highest 7 at zero field. This pairing symmetry is not changed by a magnetic
field along the z-direction within our calculations. As mentioned before, the ratio of
the spin-triplet gap to the spin-singlet gap obtained by our calculation is very small,
~0.01. Thus, we can safely neglect the admixture of the triplet component for the
discussion on H,, in the following. In Fig. 6.17, we show the calculated upper critical
field for this pairing state as a function of temperatures 7 for several values of the
parameter 6. In this calculation we set the coupling constant as g2 xo = 13, and the
lattice constant @ = 4 A, 1, = 113 K. The value of #; is determined by identifying
the calculated maximum transition temperature 7. = 0.0115 as 1.3 K. As shown
in Fig.6.17, because of the existence of the large van-Vleck-like susceptibility due
to the antisymmetric SO interaction, the Pauli limiting field for the magnetic field
parallel to the z-axis is so large that the upper critical field is solely determined by the
orbital limit. As the parameter 6 decreases, and the system approaches the AF QCP,
H,; increases remarkably reaching to H,» ~ 30 T, even though 7 for zero field is
merely ~1 K. These results successfully explain the experimental observations for
CeRh(Ir)Si; mentioned before. The main features of the upper critical fields stem
from the combination of the strong enhancement of the pairing interaction due to
the AF spin fluctuation in the vicinity of the QCP and the significant suppression of
the pair-breaking effect caused by inelastic scattering with the spin fluctuations at
sufficiently low temperatures. The enhancement of H, is prominent especially for
small 6, giving rise to the huge values of Hfrb, as seen in Fig. 6.17.

Another intriguing feature observed for CeRhSi3 and CelrSis is the strong pressure
dependence of H.» which is in sharp contrast to the quite weak dependence of 7. on
pressures in the vicinity of the QCP. This remarkable pressure dependence is also
reproduced from Eq. (6.67). To see this, we plot H., and T, at zero field as a function
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Fig.6.18 The normalized 5
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of 6 in Fig.6.18. As the system under consideration approaches the QCP (6 — 0),
H,; increases very rapidly while, by contrast, the change of 7, is moderate. These
behaviors are also understood as a result of the strongly enhanced pairing interaction
at low temperatures in the vicinity of the QCP. Although the increase of 7,.,(H = 0)
near the QCP (i.e. 6 = 0) is considerably suppressed by the pair breaking effects due
to inelastic scattering by spin fluctuations, H,» at low temperatures is not seriously
affected by them, resulting in the strong enhancement of H., for 8 ~ 0.

We would like to stress that the large enhancement of H., near a magnetic QCP for
a spin-fluctuation-mediated pairing mechanism is not specific to the NCS considered
here, but rather expected to occur more generally for orbital-limited superconductors
caused by spin fluctuations, as long as the Pauli depairing effect is suppressed by
some other mechanisms such as the lack of inversion symmetry as in the case of
CeRh(Ir)Si5. For instance, CeColns is also believed to be an unconventional super-
conductor located in the vicinity of AF QCP. However, because of the Pauli depairing
effect, the strong enhancement of H near the QCP is not realized for this system.
It would be intriguing to search for the huge enhancement of H, for triplet super-
conductors in the vicinity of a ferromagnetic QCP.

As clarified above, the coincidence between the theoretical results presented in
this section and the experimental observations for the upper critical fields strongly
supports the scenario that superconductivity realized in CeRhSiz and CelrSi3 is
caused by AF spin fluctuations in the vicinity of AF criticality.

6.3.3 Summary of CeRhSi3 and CelrSis

Superconductivity in CeRhSi3 and CelrSiz under applied pressure is realized in
the vicinity of AF criticality. There are several pieces of experimental evidence
which support the existence of strong AF spin fluctuations in these systems, as
indicated by the measurements of the NMR signal, the specific heat, and the transport
phenomena [63—-65]. It is natural to expect that the AF spin fluctuations mediate
Cooper pairing in these superconductors. The superconducting state obtained by
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the microscopic calculations is dominated by Cooper pairs with the extended s-wave
symmetry with small admixture of spin-triplet pairs. This gap symmetry is consistent
with experimental observations such as the NMR measurement [65]. The scenario
of AF spin-fluctuation-mediated pairing mechanisms for CeRh(Ir)Si; explains quite
nicely experimentally observed remarkable features such as extraordinarily large
upper critical fields [67, 68].

6.4 Conclusions

In this chapter, we have overviewed our understanding of superconductivity real-
ized in two classes of heavy fermion NCS, CePt3Si and CeRh(Ir)Si;, based upon
microscopic theories of pairing mechanisms. In both of these systems, non-phonon
mechanisms play a crucial role, stabilizing unconventional superconductivity. In par-
ticular, the spin-fluctuation-mediated pairing mechanism is a promising candidate
for the microscopic origin of superconductivity in these systems. There are some
important differences of superconducting states between CePt3Si and CeRh(Ir)Sis.
In CePt3Si, the s + p wave state with the dominant p-wave component is stabi-
lized by helical spin fluctuations. On the other hand, in CeRh(Ir)Si5, the dominant
extended s-wave state with small admixture of the p-wave pairs is realized by strong
AF spin fluctuations in the vicinity of the magnetic QCP. This difference of the char-
acter of spin fluctuations is due to the difference of the band structures and magnetic
properties between these systems. Furthermore, the node structures of the supercon-
ducting gap functions are also different. For CePt3Si, there are accidental line nodes
of the gap caused by the parity mixing of the pairing states and by the AF order,
while, for CeRh(Ir)Si3, there are horizontal line nodes associated with the extended
s-wave gap symmetry.

In addition to these heavy fermion NCS, there are other classes of NCS, which
are also expected to be unconventional superconductors: e.g. Ulr [81], and Li;
(Pt;_xPdy)3; B [82-84]. In particular, for LioPt3B, the NMR study and the mea-
surement of the penetration depth suggest that there are line nodes of the supercon-
ducting gap [83, 84]. A model of the parity-mixed s + p wave state was proposed for
understanding these experimental observations [83]. In this model, the p-wave pair-
ing dominates the superconducting state. However, this superconductor is regarded
as a weakly correlated system in which effects of electron—electron interaction are
negligible. It is an unresolved important issue to identify the microscopic origin of a
pairing interaction in the p-wave channel, if it does indeed exist in Lio Pt3B.

Finally, we mention some other theoretical studies on microscopic pairing mech-
anisms of NCS. In ref. [85, 86], a spin-fluctuation mechanism is investigated for the
two-dimensional Hubbard model with the Rashba SO interaction on the basis of the
RPA method. The d + f-wave state with a dominant d,>_ 2-wave component is
stabilized for electron density close to half-filling because of AF spin fluctuations.
The gap function for this state has the form given by Eq. (6.1). However, the weight
of the mixed f~wave component is very small for Eso/Er < 0.1, as in the case of
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CeRh(Ir)Si; discussed in Sect. 6.3.3. In ref. [87], the Kohn-Luttinger mechanism for
pairing interactions due to the Coulomb repulsion U is examined for a single-band
model with the Rashba SO interaction by using perturbative expansions in terms
of U. In this model, there are substantially strong attractive interactions in both the
p-wave channel and the d-wave channel. It is found that, in some parameter regions,
strong parity mixing between p-wave pairing and d-wave pairing occurs. However,
in this state, as in the case of CePt3Si discussed in Sect. 6.3.2, the d-vector for p-wave
pairing is not parallel to g(k) vector because of frustration between the Rashba SO
interaction and pairing interactions, and interband pairs between the SO-split bands
are induced.

The results presented in Sects.6.3.2 and 6.3.3 and the above-mentioned related
works imply that pairing states realized in NCS crucially depend on both the detailed
structure of pairing interactions and the character of the antisymmetric SO interac-
tion. In general, when there are substantial spin-triplet pairing correlations, it may be
possible that the momentum dependence of the dominant spin-triplet pairing inter-
action is not compatible with that of the antisymmetric SO interaction, because these
two kinds of interactions usually have different microscopic origins. In this case,
there are interband pairs between the SO-split bands, and the gap function can not
be expressed in terms of Eq.(6.1). The strong parity mixing with the gap function
of the form (6.1) satisfying d(k) || g(k) is realized only when the dominant spin-
triplet pairing interaction is matched with the antisymmetric SO interaction. Thus,
for the exploration of pairing states in NCS, it is particularly important to clarify the
microscopic nature of pairing interactions.
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Chapter 7
Kinetic Theory for Response and Transport
in Non-centrosymmetric Superconductors

Ludwig Klam, Dirk Manske and Dietrich Einzel

Abstract We formulate a kinetic theory for non-centrosymmetric superconductors
at low temperatures in the clean limit. The transport equations are solved quite gen-
erally in spin- and particle-hole (Nambu) space by performing first a transformation
into the band basis and second a Bogoliubov transformation to the quasiparticle-
quasihole phase space. Our result is a particle-hole-symmetric, gauge-invariant and
charge conserving description, which is valid in the whole quasiclassical regime
(lg! < kr and hw < Ep). We calculate the current response, the specific heat
capacity, and the Raman response function. For the Raman case, we investigate
within this framework the polarization dependence of the electronic (pair-breaking)
Raman response for the recently discovered non-centrosymmetric superconductors
at zero temperature. Possible applications include the systems CePt3 Si and Lip Pd,
Pt3_, B, which reflect the two important classes of the involved spin-orbit coupling.
We provide analytical expressions for the Raman vertices for these two classes and
calculate the polarization dependence of the electronic spectra. We predict a two-peak
structure and different power laws with respect to the unknown relative magnitude of
the singlet and triplet contributions to the superconducting order parameter, revealing
a large variety of characteristic fingerprints of the underlying condensate.
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7.1 Introduction

In a large class of conventional and in particular unconventional superconductors
a classification of the order parameter with respect to spin singlet/even parity and
spin triplet/odd parity is possible, using the Pauli exclusion principle. A necessary
prerequisite for such a classification is, however, the existence of an inversion center.
Something of a stir has been caused by the discovery of the bulk superconduc-
tor CePt3Si without inversion symmetry [3], which initiated extensive theoretical
[12, 26] and experimental studies [2, 11]. In such systems the existence of an anti-
symmetric potential gradient causes a parity-breaking antisymmetric spin-orbit cou-
pling (ASOC) that gives rise to the possibility of having admixtures of spin-singlet
and spin-triplet pairing states. Such parity-violated, non-centrosymmetric supercon-
ductors (NCS) are the topic of this chapter, which is dedicated particularly to a
theoretical study of response and transport properties at low temperatures. We will
use the framework of a kinetic theory described by a set of generalized Boltzmann
equations, successfully used before in [10], to derive various response and trans-
port functions such as the normal and superfluid densities, the specific heat capacity
(i. e. normal fraction and condensate properties that are native close to the long
wavelength, stationary limit) and in particular the electronic Raman response in
NCS (which involves frequencies fiw comparable to the energy gap Ay of the super-
conductor).

A few general remarks about the connection between response and transport phe-
nomena are appropriate at this stage. Traditionally, the notion of transport implies
that the theoretical description takes into account the effects of quasiparticle scat-
tering processes, represented, say, by a scattering rate I'. Therefore, we would
like to demonstrate with a simple example, how response and transport are inti-
mately connected: consider the density response of normal metal electrons to the
presence of the two electromagnetic potentials @' and A®*, which generate the
gauge-invariant form of the electric field E = —V @' — 9A /cdt. In Fourier space
(V — iq, 9/t — —iw) one may write for the response of the charge density:

ne = e*iq-My(q, ) - E

with M the Lindhard tensor and q-My-q = My the Lindhard function, appropriately
renormalized by collision effects [22]:

. 2(q, 0 +il")
Mo(q, ) = ir_[,_Z@otil)
w+ill Z(q, 0)

Here £(q, w) denotes the unrenormalized Lindhard function in the collisionless
limit I — O:

0 0
1 nova/2 = Mp_q/2
Z(q,0) =< Lan L

V 4 ep+a2 — Ep—q2 — I
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In this definition of the Lindhard function, nﬁ denotes the equilibrium Fermi-Dirac
distribution function and ex = &k + u represents the band structure with the chemical
potential ;. Now the aspect of transport comes into play by the observation that
My(q, w + iI') may be expressed through the full dynamic conductivity tensor
o(q, w) = e2(dn/dn)D(q, w) of the electron system as follows:

q-0(q,w)-q

Mola- @) = 3 D, ) - a/(1 —ia7)

—0

withq-o-q r i a)ez.,% (q, w), the particle density n, and with the so-called diffusion
pole including the diffusion tensor D(q, w) in the denominator of My(q, w) reflecting
the charge conservation law. This expression for the Lindhard response function M
clearly demonstrates the connection between response (represented by My itself)
and transport (represented by the conductivity o), which can be evaluated both in
the clean limit I" — 0 and in the presence of collisions I" # 0. In this sense, the
notions of response and transport are closely connected and therefore equitable. In
this whole chapter we shall limit or considerations to the collisionless case.

An important example for a response phenomenon involving finite frequencies
is the electronic Raman effect. Of particular interest is the so-called pair-breaking
Raman effect, in which an incoming photon breaks a Cooper pair of energy 2Ax on
the Fermi surface, and a scattered photon leaves the sample with a frequency reduced
by 2Ax /h, has turned out to be a very effective tool to study unconventional super-
conductors with gap nodes. This is because various choices of the photon polarization
with respect to the location of the nodes on the Fermi surface allow one to draw con-
clusions about the node topology and hence the pairing symmetry. An example for the
success of such an analysis is the important work by Devereaux et al. [6] in which the
d>_» symmetry of the order parameter in cuprate superconductors could be traced
back to the frequency dependence of the electronic Raman spectra, that directly mea-
sured the pair-breaking effect. Various theoretical studies of NCS have revealed a
very rich and complex node structure in parity-mixed order parameters, which can
give rise to qualitatively very different shapes, i. e. frequency dependencies, of the
Raman intensities, ranging from threshold- and cusp- to singularity-like behavior.
Therefore the study of the polarization dependence of Raman spectra enables one to
draw conclusions about the internal structure of the parity-mixed gap parameter in a
given NCS.

This chapter is organized as follows: In Sect.7.2 we introduce our model for
the ASOC, the two order parameters on the spin-orbit split bands and the pairing
interaction. Then, in Sect.7.3 we derive the kinetic transport equations for NCS at
low temperatures in the clean limit and transform these equations into the more
convenient band basis. In Sect.7.4, the transport equations are solved quite gen-
erally in band- and particle-hole (Nambu) space by first performing a Bogoliubov
transformation to the quasiparticle-quasihole phase space and then performing the
inverse Bogoliubov transformation to recover the original distribution functions.
We demonstrate gauge invariance of our theory in Sect.7.5 by taking the fluctua-
tions of the order parameter into account. Within this framework, we calculate the
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normal and superfluid densities in Sect. 7.6 and the specific heat capacity in Sect.7.7.
In Sect. 7.8, our particular interest is focused on the electronic Raman response. We
investigate the polarization dependence of the pair-breaking Raman response at zero
temperature for two important classes of the involved spin-orbit coupling. Finally,
in Sect. 7.9 we summarize our results and draw our conclusions.

7.2 Antisymmetric Spin-Orbit Coupling

We start from a model Hamiltonian for noninteracting electrons in a non-
centrosymmetric crystal [25]

ﬁ = z él’io‘ [Ek‘saa’ + VK- TJU’] ékc’v (7.1)

koo’

where & represents the bare band dispersion assuming time reversal symmetry
(.—x = &k), 0,0’ =1, label the spin state, and T are the Pauli matrices. The
second term describes an antisymmetric spin-orbit coupling (ASOC) with a (vector-
ial) coupling constant yk. The pseudovector function yy has the following symmetry
properties: y—x = —yy and gy,-1 = yk. Here g denotes any symmetry operation
of the point group ¢ of the crystal under consideration. In NCSs two important
classes of ASOCs are realized, reflecting the underlying point group ¢ of the crys-
tal. In particular, we shall be interested in the tetragonal point group Cy, (applicable
to the heavy fermion compound CePt3Si with T, = 0.75K[3] for example) and the
cubic point group O (applicable to the system Li, Pd, Pt3_, B with T, =2.2-2.8 K
for x=0 and T, =7.2-8 K for x=3 [1]). For 4 = Cy, the ASOC reads [14, 25]

i =g,k x &)+ g kiyk. (B2 - B)e.. (7.2)

In the purely two-dimensional case (g, = 0) one recovers, what is known as the
Rashba interaction [7, 8, 15]. We will choose for simplicity g; = 0 for our Raman
results. For the cubic point group 4 = O, y reads [30]

ye = gk — g [léx 2+ ED)ec + ey B2 + K08y + ke (2 + léﬁ)éz] . (3)

where the ratio g3 /g; =~ 3/21is estimated by Ref. [30]. Because of the larger prefactor
g3>g; we will keep the higher order term for our further considerations. Thus, in
terms of spherical angles, k = (cos ¢ sin 6, sin ¢ sin 8, cos 6), the absolute value of
the yk-vectors for both point groups, illustrated in Fig. 7.1, reads

|Yk| = sin6 for C4,  (7.4)

15 3
Ykl = \/1 TS sin® 20 — T sin® 0 sin? 2¢ (9sin® 0 — 4) for O (7.5)
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0(432)

Fig.7.1 The angular dependence of |y | for the point groups C4, and O. Since di ||y, these plots
show also the magnitude of the gap function in the pure triplet case for both point groups

By diagonalizing the Hamiltonian of Eq. (7.1), one finds the eigenvalues &; (k) =
&k + Alyk|, which physically correspond to the lifting of the Kramers degeneracy
between the two spin states at a given K in the presence of ASOC. The basis in which
the band is diagonal can be referred to as the band basis where the Fermi surface
defined by £4 (k) = 0 is split into two parts labeled +£. Sigrist and co-workers have
shown that the presence of the ASOC generally allows for an admixture of a spin-
triplet component to the otherwise spin-singlet pairing gap [12]. This implies that
we may write down the following ansatz for the energy gap matrix in spin space:

Ao (k) = {[Y (D1 + A (T) - Tlit"} 507, (7.6)

where Y (T) and dg(T) reflect the singlet and triplet part of the pair potential,
respectively. In the band basis we find immediately

Az (k) = Yi(T) £ |dk(T)]. (7.7)

It has been demonstrated that a large ASOC compared to kg 7. is not detrimental to
triplet pairing if one assumes d || yk [12, 26]:

di(T) = d(T)Vx, (7.8)

whereas the temperature-dependent magnitudes 1 (7") and d(T') of the spin-singlet
and triplet energy gaps are solutions of coupled self-consistency equations and y is
defined by

Yk

o= —8
T S Prs

Thus the energy gap of Eq. (7.7) can be written as:

(7.9)

Axr(k) = Y(T) £d(T)|pil- (7.10)
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For the T = 0 Raman response in Sect. 7.8 we will use the following ansatz for the
gap function on both bands (+ and —) [13]:

A+(k) =y £d|ykl =¥ (1 £ plyk)) = Ax, (7.11)

where the parameter p = d/ represents the unknown triplet—singlet ratio. Accord-
ingly, the Bogoliubov quasiparticle dispersion is given by E i k) = éi (k) + A3 1(k).
If we assume no q-dependence of the order parameter, A, (k) [and also E), (k)] is of
even parity i.e. A, (—k) = A, (k). It is quite remarkable that although the spin rep-
resentation of the order parameter A, (K) has no well-defined parity with respect
to k — —K, as easily seen in Eq.(7.6), the energy gap in the band representation
does. Note that for LipPd, Pt3_, B the parameter p seems to be directly related to
the substitution of platinum by palladium, since the larger spin-orbit coupling of the
heavier platinum is expected to enhance the triplet contribution [20]. This seems to
be confirmed by penetration-depth experiments [31, 30].

The corresponding weak-coupling gap equation reads

Ak, T) = — Z Vel Ak, TY6, (K) (7.12)

with

_ 1 E; (K)
0, (k) = 0 tanh T (7.13)

and its solution are extensively discussed in Ref. [13]. Here and in the following we
choose a separable ansatz for the pairing-interaction (cf. Ref. [13] with ¢,, = 0, i.e.
without Dzyaloshinskii-Moriya interaction):

VIR = Iy + ¥l e, (7.14)

where I'y and I represent the singlet and triplet contribution, respectively. Although
an exact numerical solution of Eqs. (7.12)—(7.14) with a microscopic pairing inter-
action would be desirable, we restrict ourselves in this work to a phenomenological
description which allows for an analytical treatment of response and transport in
NCS.

7.3 Derivation of the Transport Equations

In this section, we study the linear response of the superconducting system to an
effective external perturbation potential of the form

AS(q, ®)8gg7.
(7.15)

2
5%‘&?{7, = [e@(q, w) — —Vk A(q, a))] oo’ + A (q, w)m
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Table7.1 External perturbations can be decomposed into a vertex function and a potential

vertex (fictive) potential parity dimension response

ak 38,

e ol even scalar charge and

evi At odd vector current

( E*T(k) — %) AT even scalar specific heat
capacity

m(M, ! )i,j roAl.I Af even tensor Raman

The vertex function is characteristic for each response function and can be classified according to
parity (with respect to k — —Kk) and dimension

Here @ and A denote the electromagnetic scalar and vector potential. Electronic
Raman scattering is described by the third term in Eq. (7.15). It describes a Raman
process where an incoming photon with vector potential A’, polarization &/ and
frequency wy is scattered off an electronic excitation. The scattered photon with
vector potential AS, polarization & and frequency ws = w; — w gives rise to a
Raman signal (Stokes process) and creates an electronic excitation with momentum
transfer . Further, the Raman vertex in the so-called effective-mass approximation
reads

328(1()
(R) aS al
Y. =m E €; —28ki8kj €. (7.16)

In general, an external perturbation can be decomposed into a vertex function ax and
a related potential 6&,:

Sg = Z ard&,. (7.17)

A list of all relevant vertex functions and potentials that will be discussed in this
chapter is given in Table7.1. The charge density response to the electric field E =
—V @t — §A/cdt is characterized by a constant vertex ax = e (electron charge)
and therefore of even parity (with respect to k — —k), whereas the current response
to the vector potential A depends on the odd vertex function ax = evy (electron
velocity). In case of the specific heat capacity Cy (T), the role of the fictive potential
is played by the temperature change § ', which couples to the energy variable &g . For
the Raman response, this fictive potential depends essentially on the vector potential
of the incoming and scattered light. The response and transport functions will be
obtained as moments of the momentum distribution functions with the corresponding
vertex (see Sects. 7.6-7.8).

In addition to the external perturbation potentials, molecular potentials can be
taken into account within a mean-field approximation:

Stk = S5+ > ( fio+ vq) Snp = kbt + Vo + > fiydnp. (1.18)
po a po
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The short-range Fermi-liquid interaction flip leads to a renormalization of the elec-

tron mass [24] and the long-ranged Coulomb interaction with V4 = 4me? />

is included self-consistently through the macroscopic density fluctuations dny =
Zpg dnp with the non-equilibrium momentum distribution function énp.

The potentials SSEX‘ are assumed to vary in time and space o exp(iq -r — iwt).
Then the response to the perturbation potentials can generally be described by a
non-equilibrium momentum distribution function Npp's which is a matrix in Nambu,
momentum and spin space with p = k + q/2 and p’ = k — /2. The evolution of
the non-equilibrium matrix distribution function in time and space is governed by
the matrix kinetic (von Neumann) equation [4, 29]

Onpy + > [gpp,,, §p~p/], —0 (7.19)
p//

in which the full quasiparticle energy § - plays the role of the Hamiltonian of the

system. This equation holds for iw « Ep and |q| < kg. In general, a collision
integral (see e.g. [29]) could be inserted on the right-hand side of Eq.(7.19) that
accounts for the relaxation of the system into local-equilibrium through collisions. In
the following we will assume the absence of collisions.! After linearization according
to

Npy = 1k(q, ®) = 18q.0 + 6my (q, ) (7.20)
épp’ = ék(q’ C()) = éﬁaq,o + 8§k(q’ C()), (721)

the matrix kinetic equation assumes the following form in w — q- and spin-space:

wdny + dmyE)  — &) dmy = SE my_ — np 5. (7.22)

Here, w is the frequency and k+ = k 4 q/2, with q representing the wave

number of the external perturbation. The equilibrium distribution function rlﬁ and

quasiparticle energy & g are matrices in Nambu and spin space:

nd = (g‘; : _gl'; k) (7.23)
y _
o [(Ektrk-T Ak
5= ( AIT( — [ — vk - T]T) ' 729

'~ An example for collision integrals in the Raman response can be found in Ref. [10]
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The momentum and frequency-dependent deviations from equilibrium are defined
as

dng gk
snd = 7.2
ny (Sglt _(Sn_k) (7.25)
and
3k  0Ak
5&0 = 7.2
Sk (M,ﬁ —ss_k) : (7.26)

respectively. In the spin basis, the matrix kinetic equation Eq.(7.22) represents a
set of 16 equations, which can be reduced to a set of 8 equations by an unitary
transformation into the band basis (also referred to as helicity basis). This SU(2)
rotation is given by [28]

_(Uk O
Uy = ( 0 Ult) (7.27)
Oy O _ .o Oy
Uy = exp —i My T ) =cos—- —ify - Tsin— (7.28)
n, = X% (7.29)
Iy x 7|

which corresponds to a rotation in spin space into the z-direction about the polar
angle 6, between yy and Z, Then Eq. (7.22) may be written as

wQL‘S’lek— +Qlt+5ﬂkgk—glt—§ ﬁ_gk— _Q£+§ﬁ+gk+glt+8’lkgk—
t + i i
= Uy 05, Uy Uy ny Uy —Uyyny Uy Uy 86 Uy
(7.30)
or, more simply

wdng +Sngky  — &y Sny =Okyny —ng 8EL. (73D)

where the equilibrium distribution function and energy shifts in the band basis are
given by

3(1—£.00) 1 0 0 —A4 04
b 0 la-&06) a0 0
e = 0 Aro. ta+e6) 0 (7.32)

— A6y 0 0 T +&,0,)
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and

& 0 0 Ay
0 & —A- 0

=1 o _i* oo | (7.33)
A% 0 0 —&

The deviations from equilibrium can be parameterized as follows:

(Sn{’F 0 0 Sgi
0 én 842 0
0 —8g” —sn® 0
sgb 0 0 -8l

snf = Uy dm Uy = (7.34)

s 0 0 8ah
0 s —sab 0
S, =Up S5 U= | o a5 2 oo | (7.35)

sAY 0 0 —a&b

Thus, we have now derived a set of equations in spin and band basis [Eqs. (7.22)
and (7.31)] that allow us to determine the diagonal and off-diagonal non-equilibrium
momentum distribution functions. In Sects.7.6-7.8 we will use these distribution
functions to determine the normal and superfluid densities, specific heat capacity,
and the Raman response of NCS. From now on, we will omit the index “b” indicating
the band basis, since all further considerations will be made in the band picture.

7.4 Solution by Bogoliubov Transformation

In what follows we will solve the kinetic equation (7.31), derived in the previous
section. For this purpose, we perform first a Bogoliubov transformation into quasi-
particle space, where the kinetic equations are easily decoupled and then solved. For
the subsequent inverse Bogoliubov transformation we will introduce parity projected
quantities to obtain finally a relation between the diagonal and off-diagonal energy
shifts on the one side and the non-equilibrium distribution functions on the other. As
a fist step towards the solution of the kinetic equations, the momentum distribution
matrix m and the energy matrix &, (both in band basis) are diagonalized through
the following Bogoliubov transformation

fEL) 0 0 0
0 f(E.) 0 0
0 0 f(—E_) 0
0 0 0 f(—E})

v = Bin By = (7.36)



7 Kinetic Theory for Response and Transport 221

EL 0O 0 0
0E. 0 0
0 0 —E_ 0
00 0 —E,

Ey = BiE By = (7.37)

with the Fermi-Dirac distribution function f(E,) = [exp(Ex/ksT) + 117!, The
Bogoliubov matrix has been found to read in the band basis

u4 0 0 V4

0 u_—v_ 0
By = 0 v u_ 0 (7.38)
—Vj_ O 0 uy
with the coherence factors
1 £.(k)
s Ak
=3 (1 Ex(k)) |2, ()] (740

satisfying the condition |u; |> + [v1|> = 1, by which the fermionic character of the
Bogoliubov quasiparticles is established. In order to solve the transport equation in
the band basis (7.31), one may multiply from the left with the Bogoliubov matrix
Q;E . and from the right with By, _. The result is

il il T £0 T £0 T
w§k+52k§k_ +§kT+5’_lk§k_§k;§k_§k_ _§¥+§k+§k+§l‘(+8£k§k_
0 0 i
= By 88, By By _ny_ By —By m By, By 8§ By
(7.41)
or, more simply

C()Skk + Sﬁkﬁk— — Ek+82k = SEka_ — Zk_,’_(sEk. (742)

The new Bogoliubov-transformed quantities describing the deviation from equi-
librium are identified from the preceding equations and labeled as follows:

svik) 0 0 3y+(Kk)
0 sv(k) —8y (k) 0
0 —sy*k) —dv_(-k) 0
Syik)y 0 0 —8v4(=k)

sv(k) = BJ om By = (7.43)
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SEL(k) 0 0 5D, (k)
; 0 SE_(k) —6D_(K) 0
SEM) =By 36, Bi- = | _spr(k) —SE_(—-k) 0
5D (k) 0 0  —8E4(—k)

(7.44)
The solution of Eq. (7.42) for the quasiparticle distribution functions is the set of the
following eight equations (A = %):

k) = —2 %5 105E, (), (7.452)
w—n, (k)
(k)
vy (—K) = —— P25 (K)SE; (K 4
(k) = = S BE () (7.45b)
+
0t (k)
Syn(K) = ——0, (k)6 D; (Kk), 7.45
n) = o €000 (7.45¢)
Tk
5y (k) = _#})@@A(k)w;(k), (7.45d)

where we have introduced the following abbreviations:
0y (K) = Ej(k+) £ Ex(k—), (7.46)

- _ JIEA(&D)] — fIEL(k-)]
(k) = L&D B (7.47)

and

0, k) = L= LB = fLE ()] (7.48)
B E.(k+) + Ex(k—) ’

The expressions for these quantities in the long-wavelength limit can be found in
appendix 1. In this limit, the difference quotient y; (k) is equal to the Yosida kernel
v (k) which is given by the derivative of the quasiparticle distribution function

CAfIER] 1 1

IE; (k) 4T osh? (gkél;))

ya(k) =

(7.49)

and is crucial for the temperature dependence of all response and transport
functions. Accordingly, @, (k) = 0, (k) represents the kernel of the self-consistency
Eq.(7.12). It is instructive to note that the distribution functions v, (k) and &y, (k)
have a clear physical meaning: The diagonal component §v, (k) = 8(&I&A)(k)
describes the response of the Bogoliubov quasiparticles (with the quasiparticle cre-
ation and annihilation operators &j{, @, in the band 1). The off-diagonal component
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3y (k) = 8(@yay) (k) describes the pair-response. Note that the abbreviations n)jf (k)
are of even (+) and odd (—) parity with respect to k — —k and become very simple
expressions in the small wavelength limit (see Appendix 1).

For the inverse Bogoliubov transformation it is convenient to introduce parity-
projected quantities which are labeled by s = £1:

5n'" (k) = % [8n5.(K) + s8n5(—K)], (7.50)

1
561 (k) = 5 186100 + 588, (<K (7.51)

In almost the same manner also the off-diagonal components are decomposed by

® ey = L A5k M)
89, (k) =3 [(Sgk(k)m,\(kﬂ +S|A,\(k)|89k ( k)} , (7.52)

and

AR M)
SAT(=K) |. 7.53
2,000 T a0 )} 733

) 1
545 () = 2 [SAx(k)

We use the same symmetry classification for the Bogoliubov transformed quantities.
The physical meaning of § A, (K, q, ) becomes clear after a decomposition into its
real and imaginary part

8A5(k, q, 0) = a; (k, q, 0)e9?) — A, (k) (7.54)
A5 (k)

= [8a,(k. q, @) +i8¢2(q. ©)| A,(K)|] |4,

With Eq.(7.53) we can identify §A{" (k, q, w) = 8a,(k, q, ) as the amplitude
fluctuations and (SA;_)(k, q, w)/Ay(k) = id¢)(q, ®) as the phase fluctuations of
the order parameter.

The off-diagonal energy shift SA;‘Y) (k) can be determined from a straightforward
variation of the self-consistency Eq. (7.12):

5AY (k) = ZVkﬁ;ﬁ 899 (k) (7.55)

with § g(s)(k) = —0,(k)é Agf)(k). This off-diagonal self-consistency equation will
play an important role for the gauge invariance of the theory, as will be discussed in
Sect.7.5.

From the symmetry classification we can assign to each transport and response

functlon (see Table 7.1.) the corresponding momentum distribution function § n(+) (k)
or &n! 5 )(k). The vertex function of the (charge) density and Raman responses is
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even in Kk, thus only the even distribution function 8n§+) (k) contributes to those
response functions. For the current response (dynamic conductivity), the vertex func-
tion (as (k) = evk) is odd in momentum. Thus, only (Sn,(\_)(k) contributes to the
conductivity upon summation over k. Furthermore, the Bogoliubov transformation
can now be written in this simple form

w0 N _ (a4 0 w0 (60K 756
(s) = T ) : 0 (7.56)

5, (k) P 401 )\ 89, )

RN I OISR W ) 757

0,710 )\ =p 0 4,70 ) \ 543710 '

which might easily be inverted by using the sum rule

[qi”(k)]2 + [pﬁ”(k)]2 — 1. (7.58)

Here, we have defined the real-valued coherence factors

6I§S)(k) = |up(KH)u) (k=) — s|va (K+)vu (k=) (7.59)
and
Pﬁs)(k) = |u; (KH)Ivi(K=) | + slup (K—)vi (K+)] (7.60)

with the explicit form

61
2 T 2EDE. ko) (161

—) — 2
) /1 & (kb (k=) — 510, K|

and

(7.62)

s [ EkR)E (k=) —5|A(K)|2
p;. (k) = 57 °F .
r(K+H)En(k—)

From Eqgs. (7.57) and (7.42) we finally obtain the following solution of the matrix
kinetic equation

sn; (k) Ni1 N1z Ni3 Nig 8&;7 (k)
Sny (K) | _ | Nat Naa No3 Noa | | 88, (k) (7.63)
89, (K) N31 N3z N33 N3g 84T (k) '

39, (k) N41 Nap Naz Nay 34, (k)
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The vector on the left-hand side contains the non-equilibrium momentum distribu-
tion functions [defined in Eq. (7.34)] which can be expressed in terms of the diagonal
and off-diagonal energy shifts [defined in Eq. (7.35) and obtained from Table 7.1 and
Eq.(7.55)]. The matrix elements N;; read in detail:

N =g 2105 @) + p e (k) (7.64a)
N2 = ¢ P 107 @57 K) + pP k) p 7 )67 k) (7.64b)
Nz =P 0P 0[5 00 - 0 k)] (7.64¢)
Nia =4 ®p 71057 1) — ¢ 10 p P 07 (k) (7.64d)
Ny = ¢ @37 &) + p 206 (k) (7.64¢)
Ny = ¢, ®p 7 1057 ) — ¢\ ) p 7 067 (k) (7.641)
N = a7 Gopl 0[5 00 — 0 10| (7.64)
Ny = pi 2 ®05 7 k) + ¢ 7206 (k) (7.64h)
N3 = p P00 p7 W5 ) + ¢ Mgl 06, k) (7.641)
Naa = p{ 2057 () + ¢! 200 (1), (7.64))

The matrix elements N;; are symmetric, i.e. N;; = Nj; and the occurring products
of coherence factors can be found in the appendix 1. Above, we have introduced the
following abbreviations:

~(5) (5)2( k) .
yy (k) = m)’k(k) (7.65)
(s) (Y)z( k)

The matrix elements Nj3, No3 and N34 are shown to be odd with respect to
&. (k) — —&, (k). Thus in a particle-hole symmetric theory, these terms will van-
ish upon integration over &, (k) and are labeled O (pha) which stands for “particle-
hole asymmetric”. It is convenient to rewrite these matrix elements in terms of the
functions

) = [P0 — g0 ][50 00 — 0 )] (7.66)

@, (k) = ¢\ %5, &) + p{ %5, 105 (k) (7.67)
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ok 1’ ®eik — 1 05K
2 P2 k) — {72 (k)

(7.68)

where the first one, 1, (k) is referred to as the Tsuneto function [27]. A straightforward
but lengthy calculation yields

2P (k) — A (K)

Ny = PR (7.69a)
Npp = w’?[‘l’/\(zk) —;»A(k)] (7.69b)
=7
N1z = O(pha) (7.69¢)
w
Ny = 400 A (K) (7.69d)
2[@; (K) — A (K
Ny = 18200 = 1 ) 7.6%)
w?>—n
N3 = O(pha) (7.69f)
o
Noy = 24,00 A (k) (7.692)
0Pk o g —4A2K)
Nyg = =+ — YT (k) (7.69h)
N34 = O(pha) (7.691)
) L)
Nu= -2 0@ =, o, (7.699)

2 4A2(k)

where 17 = vk -q. Note, that all expressions are valid in the whole quasiclassical limit,
i.e.forq < kg and fiw < Er. For small wave numbers, as required e.g. in the Raman
case, the Tsuneto and related functions A (kK), @, (k) and 9k(+) simplify considerably.
The results for such a small-q expansion can be found in Appendix 1. Our further
considerations for response and transport properties require both main results of
this section: The solution of the transport equation in quasiparticle space, given by
Eq.(7.45), will be used directly in Sect.7.7 to derive the specific heat capacity in
NCS (see Table7.1.). While for the discussion of the gauge mode (Sect.7.5), the
normal and superfluid densities (Sect.7.6) and the Raman response (Sect.7.8) the
non-equilibrium distribution functions after an inverse Bogoliubov transformation,
given in Eq. (7.63) and Eq. (7.69), are necessary.
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7.5 Gauge Invariance

The gauge invariance of our theory is an important issue that will be discussed in
this section. For this purpose, it is very instructive to rebuild the original distribution
function by combining Sn;r and én, from Eq.(7.63) and Eq. (7.69):

wdny. — 0 [8ny + 1861 = —hy. [wS& + nd&, |+ ax (a) -7 ) ‘;2* . (1.70)
The left-hand side of this equation is of the same structure as the linearized Landau-
Boltzmann equation of the normal state. In what follows, we want to discuss the right-
hand side of the above equation. Note that all terms coupling to (SA;' have vanished
because of particle-hole symmetry. This means that the amplitude fluctuations of
the order parameter do not contribute to the response in a particle-hole symmetric
theory. The phase fluctuations are also given by Eq.(7.63):

o w?—n? W& + ndE;
S+ | 2+ ——0, | sAT = —2 T2k 5. 7.71
S [ > anr |0 24, * (7.71)

Multiplication with the pairing-interaction v e and summation over k” and the band-
index pu yields

2
8AL(K) + > Vi [9 +50, + 22— xk} 8A, (K) (7.72)
, 442
k'n
S&T (K s& (K
5y S W )
< 24;(K)
"

where we have introduced 66, = 0):" /2 — 6. It can be shown, that the &, (k)-
integral over 86, vanishes identically for all q. Using the equilibrium gap-equation
[Eq. (7.12)] we arrive at

sA;, 02— wu @88 () + g (K)
Z 4, kaklﬁf % ZVk,ﬁ A N A, (7.73)

These are two coupled equations (for © = =) which determine the phase fluctuations
of the order parameter (gauge mode). Note that in the weak-coupling BCS theory,
there are only two collective excitations possible: the Anderson-Bogoliubov and 2A
mode. In NCS, there exist two gauge modes due to the band splitting, which can be
connected with the particle number conservation law. In addition, due to existence of
a triplet fraction, there could be further collective excitation analogous to Leggett’s
spontaneously broken spin-orbit symmetry modes [21] predicted for the superfluid
phases of *He. The latter should be connectable with the spin conservation law in
NCS. Finally, massive collective modes with frequencies below 2A /i may exist in
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NCS. It can be shown, that the right-hand side of Eq.(7.70) vanishes upon k and A
(band) summation when inserting the above expressions for the gauge mode. This
leads us to the following continuity equation for the electron density:

® Y 5m(k) —q- > Vi [5n,(K) + @5 (k)85 (K)] = 0. (1.74)
k,A k.A

For a conserved quantity such as the particle (ax = 1) or charge density (ax = e),
we can identify the corresponding generalized density and current density

bna = aidn; (K) (1.75)
Kk, A

ja = axvic[8n;. (k) + ;. (k)85 (k)] (7.76)
kA

obeying the continuity equation
wéng —q - j, =0. (7.77)

Therefore, we have demonstrated charge conservation and gauge invariance of the
theory for hw <« EF and q < kF.

7.6 Normal and Superfluid Densities

The normal and superfluid densities are derived in the static and long-wavelength
limit (w — Oand q — 0). In order to preserve gauge invariance, gradient terms of the
order O(q) are still taken into account. The parity-projected distribution functions
are obtained from Eq.(7.63) and from Eq. (7.69):

snf (k) = —¢ (k)8 (k) (7.78)

547 (k)
24,(k)

én; (k) = — [¢r(k) — 1, (k)] 88, (k) + nix(k) (7.79)

where we made use of the q — 0 limit with the coherence factors g, (k) — 1,
p, (k) — 0, and @, (k) — ¢, (k), y1(k) = yi(K), as well as the Tsuneto function
A (k) = ¢ (k) — i (k) (see appendix 1). The combined expression for é‘n;r(k)
and én, (k) are now inserted in Eq. (7.76) to derive the supercurrent density (vertex
function aix = e):

B =D evpi [8na(0) + ¢85 (@] (7.80)

pPr

e h
= eZVP,-vpj)\,\(p) (—;A + EVSQD)L) .
pPr
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Here we used the result from Sect. 7.4 that A, (K) /A (K) = id¢, = id¢ represents
the phase fluctuations of the order parameter, assumed to be independent of the band
index A. These phase fluctuations ensure gauge invariance in the above expression for
the supercurrent. By rewriting the supercurrent as product of the superfluid density
and the corresponding velocity v¥, we can easily identify

F=en v (7.81)
, h

v=2< (—fA n —V(S(pk) . (7.82)
m c 2

Therefore, the superfluid and normal fluid density tensor read

nj; = > pivpira(p) (7.83)
pA
nj; =ndij —mj; = > pivpiyi(p). (7.84)
pPr

Thus, in this static and small-q limit we obtain a very clear picture: The Yosida kernel
v, (K) = —0f[E,(k)]/9E) (K) generates the normal fluid density and the Tsuneto
function A, (k) gives rise to the superfluid density.

It is important to realize that this result can be derived in the following alterna-
tive simple way from local-equilibrium considerations. In terms of the Fermi-Dirac
distribution function on both bands f[E), (p)] for the Bogoliubov quasiparticles, the
supercurrent can be written in the standard quantum-mechanical form:

.S S 1 S
Ji=mity > vpi (p) f (E2(p) +p - V) (7.85)
pXr

1 Af(Ex(pP)
Z”Vi+V§Vpi[f(EA(P))+—A ; }

aErp) 17V
_s AP fEEY |
E V%m( 9E;.(p) )p’ g

This immediately implies the definition of the normal fluid density in the form

1

nj; = % ZPiVjYA(p)~ (7.86)
pAr

Thus, the results obtained with our simple local-equilibrium picture are in agreement
with the results in Ref. [9].
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7.7 The Specific Heat Capacity

In order to derive the specific heat capacity, we start from an expression for the
entropy of a NCS, which has to be written in the general form

k
To(I) =~ > fIEMIIn fIE @]+ (1~ FIE@) In{l — fE@)])
PA
1
= 2 &m0y, (7.87)
pAr

The change of the entropy as a consequence of a temperature change 67 can then be
written in the form [9]

1
Téo(T) = v Z E;.(p)dvi.(p), (7.88)
pXr

where the quasiparticle distribution function is given by Eq. (7.45). In the static and
homogeneous limit, i.e. ® — 0 and q — 0, this expression simplifies considerably
to 6v, (k) = y,(K)SE, (k). The quasiparticle energy shift for a temperature change
is SE (k) = (Ey(k)/T — 0E,(k)/dT)3T for each band [9]. Therefore, our result
for the entropy change reads

1 0E; (p)
Téo(T) = — E E —-T 6T

o(T) V%M(P) um[ 2(P) o

=Cy(T)sT (7.89)
and one may easily identify the specific heat capacity as

1 T 3A2(p)

Cv(T)= =Dy | Er(p) — = —2— |. (7.90)
Vv Y 2 9T

An alternative way to derive the specific heat capacity employs again the concept of
local-equilibrium:

1
To0(T) = 3 > Ex(P)f (Ex(P)) - (7.91)
pXr

The change of the Bogoliubov quasiparticle (Fermi-Dirac) distribution function with
temperature has two causes: first the direct change 7 — T + 87 and second the
change of the quasiparticle energy with temperature through the 7' dependence of
the energy gap:
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_ Bap) + T E,(p)
5f (Ex(p)) = f( e )- ( 2z ) 7.92)
_ (_ 8f<EA(p)>) By _9E®)),,
N AE; (p) T aT '
~—— ——
v+ (p)
Hence we arrive at the same result for the entropy change
1 JE
T50(T) = 3 > v (E(P) |:EA(P) -7 ;T(p )} 5T (1.93)
pPr

=Cy(T)sT

and the result for the specific heat capacity is confirmed. Again, as in the case of
the normal and superfluid densities, the result for the specific heat capacity can be
viewed to consist of contributions from the two bands, in the sense that the sum
over the spin projections o = =1 is replaced by a sum over the pseudospin variable
A==

7.8 A Case Study: Raman Response

In the following section we will discuss in detail the electronic Raman response
for T = 0 in NCS [18]. An extensive description of the electronic Raman effect
in unconventional superconductors can be found in Ref. [5]. A Raman experiment
detects the intensity of the scattered light with frequency-shift w = w; — wg, where
the incoming photon of frequency w;j is scattered on an elementary excitation and
gives rise to a scattered photon with frequency wg and a momentum transfer q. The
differential photon scattering cross section of this process is given by Ref. [19]

3’0 ws 4
= 9,26 (. 7.94
3032wy 0@ @) (7.99)

with the solid angle £2 and the Thompson radius 7o = ¢%/mc?. The generalized struc-
ture function S, (q, ) is connected through the fluctuation-dissipation theorem to
the imaginary part of the Raman response function x, (q, ®):

h
Syy(Q ) =—— 1 +n@)] Xyy (@, @). (7.95)

Here, n(w) = [exp(ﬁw /kgT) — 1] denotes the Bose distribution function. After
Coulomb renormalisation and in the long-wavelength limit (q = 0), the Raman
response function is given by the imaginary part of (see also Ref. [23])
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©) I:Xyl) (CD)]
Xyy (@) = Xyy (@) — T (7.96)
(w)
Within our notation, the unscreened Raman response is given by
Xy (@) = Z apbpip (), (7.97)
p,O'

where the vertex functions ayp, by are either 1 or the corresponding momentum-
dependent Raman vertex y = (R) that describes the coupling of polarized light
to the sample. The long—wavelength limit of the Tsuneto function Ap(q = 0) =

4A56p/ (AE5 — »?) is given in appendix 1. Since we are interested in the 7 = 0
Raman response, it is possible to perform the integration on the energy variable
&k (see e.g. [5]). Note that the second term in Eq. (7.96) is often referred to as the
screening contribution that originates from gauge invariance. Since the ASOC leads
to a spllttmg of the Fermi surface, the total Raman response is given by x“"a] =
Dt XW with Xw = Xyy(A+), in which the usual summation over the spin
variable o is replaced by a summation over the pseudo-spin (band) index A. With
Eq. (7.11) the unscreened Raman response for both bands in the clean limit [/ > £(0)
with the mean free path / and the coherence length £(7 = 0) ] can be analytically

expressed as

Sx

O+ _ nN}:il/fm<y(R)2 |1+ P|Vk||2 (7.98)
vy w k @12 2/ )
JET = £ pind P/

Here, NFi reflect the different densities of states on both bands and (. . .)rs denotes
an average over the Fermi surface. We consider small momentum transfers (q — 0)
and neglect interband scattering processes, assuming non-resonant scattering. Then,
the Raman tensor is approximately given by

3%e(k)
(R) S I
—mz errTs e, (7.99)

where &5/ denote the unit vectors of scattered and incident polarization light, respec-
tively. The light polarization selects elements of this Raman tensor, where y, ( )¢

be decomposed into its symmetry components and, after a straight forward calcu-
lation (see appendix 2), expanded into a set of basis functions on a spherical Fermi

surface. Our results for the tetragonal group Cy, are

0o 1<k/2

yf(‘f) Z Z yk(f) cos 4l¢ sin* 6, (7.100a)
k=0 1=0
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Fig.7.2 Calculated Raman

spectra for a pure triplet 071
order parameter (i.e. = 0)

for B; 2 polarization of the 06 |
point group Cy, in

backscattering geometry 05

(zZ). The ABM (axial) state
with |dg| = dp sin 6 is

displayed as a dashed line 04r
and the polar state with
|[dx| = do| cos 0] as a dotted 0.3 -
line. For a comparison, also
the threshold behavior of the 02 |
Raman response for the BW
state (solid line) with 01k
|dx| = dp is shown g

okt

0

0o 1<(k+1)/2

yl(glf) Z Z y,((f) cos(4l — 2)¢ sin*
k=1 =1

0o I<(k+1)/2

Vi =2 Z y® sin(dl — 2) sin
k=1 =1

and for the cubic group O we obtain

oo I<k/2

yzglf) Z Z ykl cos 4l¢ sin** 6,

k=0 [=0

R R
yé(l)) = Vo( )(2 3sin ) + -

oo I<(k+1)/2

R R .
Vé(z)) = Z Z yk(,,) cos(4l — 2)¢ sin* 6,

k=1 =1

oo I<(k+1)/2

=2 2 n

— 2)¢ sin*

(7.100b)

(7.100c)

(7.101a)

(7.101b)

(7.101¢)

(7.101d)

in a backscattering-geometry experiment (zZ)%. In what follows, we neglect higher

harmonics and thus use only the leading term in the expansions of y;

(R)3

2 The vertices E) and E® seem to be quite different, but it turns out that the Raman response is
exactly the same because E) and E? are both elements of the same symmetry class.

3 Dueto screening, the constant term (k = 0,/ = 0) in the A vertex generates no Raman response,
thus we used (k = 1,1 = 0). For all the other vertices the leading term is given by (k = 1,/ = 1).
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In general, due to the mixing of a singlet and a triplet component to the super-
conducting condensate, one expects a two-peak structure in parity-violated NCS,
reflecting both pair-breaking peaks for the linear combination [see Eq.(7.11)] of the
singlet order parameter ¥ (extensively discussed in Ref. [5]) and the triplet order
parameter dx (shown in Fig.7.2), respectively. The ratio p = d/v, however, is
unknown for both types of ASOCs.

How does the Raman spectra look for a pure triplet p-wave state? Some repre-
sentative examples, see Fig. 7.2, are the Balian-Werthamer (BW) state, the Anderson-
Brinkman-Morel (ABM or axial) state, and the polar state. The simple pseudoisotropic
BW state with dy = doﬁ [equivalent to Eq.(7.3) for g3, 1, as well as previ-
ous work on triplet superconductors, restricted on a (cylindrical) 2D Fermi sur-
face, generates the same Raman response as an s-wave superconductor [17]. How-
ever, in three dimensions we obtain more interesting results for the axial state with
dx = do(lgyéx — l%xéy) [equivalent to Eq. (7.2) for g = 0 ]. The Raman response for
this axial state in By and B polarizations for &4 = Cy, is given by

(R)2
” 7T Np Yo
X820 =g
28 5+ 3x2 4+ 3x% 4 5x° 1
x(—10——x2—10x4+ R L Y R D
X x —1
(7.102)

with the dimensionless frequency x = w/2dp. An expansion for low frequencies
reveals a characteristic exponent [ gl,z x (w/ Zd())6 ], due to the overlap between
the gap and the vertex function. Moreover, we calculate the Raman response for the
polar state with dx, = dolzzéx; in this case one equatorial line node crosses the Fermi
surface and we obtain:

%xz—ST”x4+5l7gx6 x =<1
(R)2
7 Ng 3.4 o 1
0 = g | (22 34 ) i 7109

—(%—%xz—l— x)\/xz—l x> 1

with the trivial low-frequency expansion B & w/2dy. While the pair-breaking
peaks for the BW and ABM state were both located at w = 2dy (similar to the By,
polarization in the singlet d-wave case, which is peaked at 2A), for the polar state
this peak is significantly shifted to lower frequencies (w = 1.38dp).

Let’s turn to the Raman spectra predicted for the tetragonal point group &4 = Cy,.
In Fig.7.3 we show the calculated Raman response using Eq. (7.2) with g; = 0. This
Rashba-type ASOC splits the Fermi surface into two bands; while on the one band
the gap function is Ay = ¥ (1 + plw|) = A4, itis A_ = ¥ (1 — plyk|) on the
other band. Thus, depending on the ratio p = d /v, four different cases (see polar
diagrams in the insets) have to be considered: (a) no nodes; (b) one (equatorial) line
node (A_ band); (c) two line nodes (A_ band); and (d) two point nodes on both
bands. Since the Raman intensity in NCS is proportional to the imaginary part of
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@) o fp=12

02 04 06 08 1 12 14

o/2d

Fig.7.3 Calculated Raman spectra x{,’y (A_) (thin lines) and x{,’y (A4) (thick lines) for By 5 (solid
lines) and for A| (dashed lines) polarizations for the point group C4,. We obtain the same spectra for
the By and B, symmetry. The polar diagrams in the insets demonstrate the four qualitative different
cases for the unknown ratio p = d /¢

X;O)Ea] = ny(A—) + X}/}/(A+)a (7104)

it is interesting to display both contributions separately (thick and thin lines, respec-
tively). Although (except for ¢ = 0) we always find two pair-breaking peaks at

L 1+ p| (7.105)
2y TP '

we stress that our results for NCS are not just a superposition of a singlet and
a triplet spectra. This is clearly demonstrated in Fig.7.3(a), for example, where
we show the results for a small triplet contribution (p = 1/2). For X)//,V (AL)
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0 oL I 1 T . L L T

0 1 2 3 4 5 6 0 02 04 06 08 1 12 14
/2y w/2d

Fig.7.4 Calculated Raman spectra x,, (A_) (thin lines) and x,,, (Ay) (thick lines) for E (solid
lines), T2 (dashed lines) polarizations for the point group O. The insets display the point and line
nodes of the gap function A_

we find a threshold behavior with an adjacent maximum value of xgl (A =
- (R)2_2 —1 7 . : .
Npyy “n°/8yp~" — 1.Incontrast for ., (A4) azero Raman signal to twice the
singlet contribution followed by a smooth increase and a singularity is obtained.* In
the special case, where the singlet contribution equals the triplet one (p = 1), the
gap function A_ displays an equatorial line node without sign change. This is dis-
played in Fig. 7.3b. Because of the nodal structure and strong weight from the vertex
function (o sin” 8), many low-energy quasiparticles can be excited, which leads to

4 Note that even though the gap function does not depend on ¢ (see Fig.7.1, we obtain a small
polarization dependence. This unusual behavior only in A| symmetry is due to screening and leads
to a small shoulder for p < 1.
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Fig.7.5 Calculated Raman spectra x,,, (A_) (thin lines) and x,,,, (Ay) (thick lines) for A polar-

ization with screening (solid lines) and without screening (dashed lines) for the point group O. The
insets display the point and line nodes of the gap function A_

the square-root-like increase in the Raman intensity. In this special case the pair-

breaking peak is located very close to elastic scattering (w = 0.24v). In Fig.7.3(c)
the gap function A_ displays two circular line nodes. The corresponding Raman
response for p > 1 shows two singularities with different low-frequency power laws
[X5,,(A-) o /2y and x5 ,(As) o (@/2¢ — 1)'1/2 ], Finally, for p > 1 one
recovers the pure triplet case (d) which is given analytically by Eq. (7.102).

The Raman response for the point group O, using Eq.(7.3), is shown in Fig.7.4
for the E and T, symmetries and in Fig.7.5 for the A; symmetry with and without
screening. As in the previous (tetragonal) case, there is only little difference between
the unscreened and the screened Raman response. We again consider four different
cases: (a) no nodes; (b) six point nodes (A_ band); (c) six connected line nodes (A_
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band); and (d) 8 point nodes (both bands) as illustrated in the insets. Obviously, the
pronounced angular dependence of |yk| leads to a strong polarization dependence.
Thus we get different peak positions for the E and T; polarizations in X)/// ,(A4). Asa
further consequence, the Raman spectra reveals up to two kinks on each band (+, —)
at

w
— =|1+£p/4 7.106
2 [1 £ p/4] ( )
and
w
— = |1+ p|. 7.107
2 1+ pl ( )

Interestingly, the T> symmetry displays a change in slope at w/2¢¥ = |1 + p| instead
of a kink. Furthermore, no singularities are present. Nevertheless, the main feature,
namely the two-peak structure, is still present and one can directly deduce the value
of p from the peak and kink positions. Finally, for p > 1 one recovers the pure
triplet case (d), in which the unscreened Raman response is given by

" 2d < (R)2 el >

Xy @) & NN T T D @l2d — T s 7:108)
Clearly, only the area on the Fermi surface with @w/2d > |yx| contributes to the
Raman intensity. Since |yx| € [0, 1] has a saddle point at |y | = 1/4, we find
kinks at characteristic frequencies w/2d = 1/4 and w/2d = 1. In contrast to the
Rashba-type ASOC, we find a characteristic low-energy expansion o (w/2d)? for
both the A; and E symmetry, while o (w/2d)* for the T, symmetry. Assuming
weak-coupling BCS theory, we expect the pair-breaking peaks (as shown in Fig. 7.4
and in Fig.7.5) for Li,Pd, Pt3_, B roughly in the range 4 cm~!to 30 cm™!.

7.9 Conclusion

In this chapter, we derived response and transport functions for non-centrosymmetric
superconductors from a kinetic theory with particular emphasis on the Raman
response. We started from the generalized von Neumann equation which describes
the evolution of the momentum distribution function in time and space and derived
a linearized matrix kinetic (Boltzmann) equation in w-q space. This kinetic equa-
tion is a4 x 4 matrix equation in both particle-hole (Nambu) and spin space. We
explored the Nambu structure and solved the kinetic equation quite generally by first
performing an SU(2) rotation into the band basis and second applying a Bogoli-
ubov transformation into quasiparticle space. Our theory is particle-hole symmetric,
applies to any kind of antisymmetric spin-orbit coupling, and holds for arbitrary
quasiclassical frequency and momentum with fiw <« Ep and |q| <« kg. Further-
more, assuming a separable ansatz in the pairing interaction, we demonstrated gauge
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invariance and charge conservation for our theory. Within this framework, we derived
expressions for the normal and superfluid densities and compared the results in the
static and long-wavelength limit with those from a local-equilibrium analysis. The
same investigations were done for the specific heat capacity. In both cases we recover
the same results, which validates our theory.

Finally, we presented analytic and numeric results for the electronic (pair-
breaking) Raman response in noncentrosymmetric superconductors for zero tem-
perature. For this purpose we analyzed the two most interesting classes of tetragonal
and cubic symmetry, applying for example to CePt3Si(¢4 = Ca, ) and LioPd,Pt;_,B
¢ = 0. Accounting for the antisymmetric spin-orbit coupling, we provide vari-
ous analytic results such as the Raman vertices for both point groups, the Raman
response for several pure triplet states, and power laws and kink positions for mixed-
parity states. Our numerical results cover all relevant cases from weak to strong
triplet-singlet ratio and demonstrate a characteristic two-peak structure for Raman
spectra of non-centrosymmetric superconductors. Our theoretical predictions can be
used to analyze the underlying condensate in parity-violated noncentrosymmetric
superconductors and allow the determination of the unknown triplet-singlet ratio.

Acknowledgements We thank M. Sigrist for helpful discussions.

Appendix 1: Small q-Expansion

For small wave numbers, i.e. ¢ — 0, the Tsuneto and related functions, which
play an important role in the matrix elements N;; [see Eq.(7.69)], will simplify
considerably. Taking into account terms to the order 0(7;12() with nx = vk - q, we
obtain the well-known expression for the Tsuneto function [16]

(@* — D)0 (K) + n2 s (k)

lim A, (K) = —4A2 (k) (7.109)
a0 P02 w? — 4EX(K)] — niw? — 4E2(K)]
where
an, (k) EX(K) A2 (k)
K= -——2 -~ — k) + 05 (k 7.110
$:.(K) 05, (k) E%(k)yk( ) £2() 5 (K) ( )
is the derivative of the electron distribution function in the band A and
Of[E(Kk)] 1 1
n) =~ fZ)Ek(k) = MkpT g2 (Eak) (7.111)
A B4 cosh (ZkBT)

is the derivative of the quasiparticle distribution function.
The following limits are also of interest: the homogeneous limit (q = 0), e.g. for
the Raman response and the static limit (w = 0), used in local-equilibrium situation

_4A7 ()6, (K)

Ja(k, q = 0) = A
4= = —w

(7.112)
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lim lim Ay (k) = ¢y (k) — ya (k). (7.113)
w—0q—0

For the following small q-expansion we omitted the band-label A for better
readability:

2 2 2

M | A — 28 Sk
lim 6,7 = 26 + %5 | 5% (i — ) - 7.114a
lim e [ o R (71140
lim 6 = ’“‘E"( — 6 (7.114b)
q—0 k — 2 '

k

2 A2 A2 42
n_kAk(Ak 4Ek)(y — ) — 77k£k|: flé/ Ek flé//:|

lim @k = ¢y +
q—0 k ¢k 4El% ZEﬁ 4E2
(7.114¢)
50, 9k+ 6
k = — — btk
2 2 2 7.114d
_ Ak;zék(yk — ) — Ek f’/ ( )
8EZ | ED K
Sk = Pk — Pk (7.114e)
AE}  2E] 4B} el

where flin) denotes the nth derivative of f(Ey) with respect to Ex. Furthermore we
find the following expansions:

lim " =2E {1+ Tl (7.115a)
g0 K K 8E} '

L & n AL

lim = =— 1— 7.115b
dim) M Ex Nk SE? ( )

2 2 2

.~ e | A . Sk m

lim Pk = yx — —= | =Xy 4 2K, 7.115¢
P Yk Yk SEI% (Ek Kk 3 K ( )

2
11m Ok = O + 1k |:—k(yk — 6 — i—kv;;] ) (7.115d)
k
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The ten products of coherence factors in Eq. (7.64) have the following explicit form:

2 1 ExyEx_ + _—sA?
[‘11(:)] _ 1 B B + Bkt bk— — s 4y (7.116a)
2 Ex4+ Ex—
1 Exy Ex— — _+sA2
[Pl(f)] _ 1 Brs B — Bt + 54k (7.116b)
2 Ex  Ex—
1 Ex— E _
ql(j) (- _ L Ek &kt + Ex+&k (7.1160)
2 Ex4+ Ex—
1 Ex— — F] _
PIE;H - _ 1 Ek Ek+ k+8&k (7.116d)
2 Ex4+ Ex—
A _
]((s) 1(:) _ Ak Skt + 58k (7.116¢)
2  ExtFEx-
_ Ax Exy + Ex—
(=) (+) k Tk+ k
= " = 7.116
dx Pk 2 ExrEr ( 1)
and the small-q limit of each coherence factors reads:
2 42
A
lim ¢ = Sk (1 — Mk 7.117
a0 =g AE} (71172
242
. _ A
lim gl =1— K=k 7.117b
ql—%qk 8E} ( )
A 2t
+ _ 2k MkSk
11_1)1}) Px Ex (1 + _4E4 ) (7.117¢)
o nkAk
lim pi) = 7.117d
g0k 2E; ¢ )

Appendix 2: Derivation of the Raman Vertices

In order to derive the relevant expressions for the polarization-dependent Raman
vertices, we start from a general dispersion relation for tetragonal symmetry (Cy, )
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Z C4v [COS(I’lkxa) + c()s(nkya)] cos(rk;c)

M8

3
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+
Mz ;
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C4t
nmr

=
I
(=}
Me 1Mz -
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-
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)
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(7.118)
and for the cubic symmetry (O )

o
ek = Zano [cos(nkya) + cos(nkya) + cos(nk.c)]

n=1

oo
+ Zb,? cos(nkya) cos(nkya) cos(rk.a)
n=0
oo n—1
+ Z Z c,?m [Cos(mkxa) cos(mkya) cos(nk,a)
n=1m=1
+ cos(mkya) cos(nkya) cos(mk;a) + cos(nkya) cos(mkya) cos(mkza)]
oo n—1m—1
+ Z Z Z . |cOs(nkya) cos(mkya) cos(rk.a)
n=2m=1 r=0
+ cos(nkya) cos(rkya) cos(mk;a) + cos(mkya) cos(nkya) cos(rk;a)
+ cos(rkya) cos(nkya) cos(mk,a) + cos(mkya) cos(rkya) cos(nk,a)
+ cos(rkya) cos(mkya) cos(nkza)] .
(7.119)
Time reversal symmetry allows only for even functions of momentum k in the energy
dispersion. Furthermore the dispersion must be invariant under all symmetry ele-
ments of the point group ¢ of the crystal. For small momentum transfers and non-
resonant scattering, the Raman tensor is given by the effective-mass approximation

s 0%e(k)
— N I
y(k) = mz % kS (7.120)

where &5/ denote the unit vectors of the scattered and incident polarization light,
respectively.
The light polarization vectors select elements of the Raman tensor according to

wE=e y e, (7.121)

where the Raman tensor yx can be decomposed into its symmetry components and
later expanded into Fermi surface harmonics:
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Va + VB VB, YED

B = YBy Y40 T VB VE® (7.122)
YED YE®@ VA<12)
va, +ven = V3yge Yr® Yr®
2 2
nw = Vi yar+veo +V3v50 v . (7.123)
Yo Yr® Yy = 2vEpm

Here we have omitted all non-Raman active symmetries such as Ay,. The vertices
Aﬁl) and Aiz) are equal up to some constants determined by the band structure, and
the vertices for E(V) and E® in Cy, differ only by a rotation of the azimuthal angle
¢ by /2. Since this rotation is an element of the corresponding point groups, these
vertices are identical, too. The same holds for Tz(l) , T2(2) and T2(3) . Therefore the upper
indices will be omitted in the following (whenever possible). For the tetragonal group
Cy, the A 1, By, B; and E symmetries are Raman active in backscattering geometry.
Relevant polarizations for this group are:

A B 'x’ A B
V]foVkl“‘Vkl y]fxzykl_‘_J/kz

w=rt -t Y =t P

w = V'f C= (7.124)
o= net =yl

Ve =W =

w=n nh=w = in

The cubic group O reveals three Raman active symmetries, namely A1, (E, E?),
and T (still assuming backscattering geometry). The relevant polarizations are:

A (1) (2) I~ A (1) T-
ylfx:y 1+ E f E yl?x:ykl-i_ylf +yk2
)y (eY] 2) 'y (e8] T-
Vﬁ’=yk +VkE +VIET R = R

Xy _ X'y E@
WY =ne Vet = =3y 7.125)

xz _ D RR _ ED ’
Yo = Yk W = Vk '+ Yk

, T M
W= VkLL=Vk + %
1) 2) .

ylfzzyk —2pF —V3pE lk.

Here, we have defined the unit polarization vectors ¥ = (X + §)/+/2 and § =
(X — ¥)/+/2. L and R denote left and right circularly polarized light with positive
and negative helicity, respectively (eX = (X + i§)/+v/2, eR = (X — i§)/+/2). Note
that in a backscattering configuration the polarization vectors e/ are pinned to
the coordinate system of the crystal axes. Therefore some caution is advised when
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choosing the proper helicity for the scattered polarization vector e’. Although the
Raman vertices E(Y) and E® seem to look completely different, the Raman response
turns out to be exactly the same. From a tight-binding analysis we obtain the same
(band-structure) prefactors for both vertices, thus ylf @ and V3 ykE @ generate both
the same Raman response. Note that it is not possible to measure A; and E(!) inde-
pendently in backscattering geometry with the crystal c-axis aligned parallel to the
laser beam.

The Raman vertices are extracted from the band structure by comparing the sym-
metry components of the Raman tensor with the second derivative of the energy
dispersion. This can be done by solving a set of 6 coupled linear equations—the 6
equations correspond exactly to the 6 free components of the symmetric tensor of
inverse effective-mass and to the 6 symmetry elements (vertices) to be determined.
Finally we make a series expansion in k, in order to get the angular dependence of
the vertices on the Fermi surface. Our results for the tetragonal point group Cy, are

oo [<k/2

y =313 B cosdigsin® 0 (7.1262)
k=0 =0

oo 1<(k+1)/2

vel =2 > ) cos@l —2)¢sin* 0 (7.126b)
=1 =1
oo I<(k+1)/2

vl = >y sin@l —2)¢psin* 0 (7.126¢)
k=1 =1
o0 o

e ="y sin@l — 1) sin 246 (7.126d)

k=1 I=1

and for the cubic point group O we obtain

oo 1<k/2
yi =313 B cosdigpsin 0 (7.127a)
k=0 [=0
yao = v 2= 3sin? ) + - (7.127b)

oo I=<(k+1)/2

vio =2, > v cos@l —2)¢psin* ¢ (7.127¢)
k=1 =1
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0o 1<(k+1)/2

i =>" > W sin@l —2)psin* 0 (7.127d)
k=1 =1

in a backscattering-geometry experiment (zz).
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Chapter 8
Aspects of Spintronics

S. Fujimoto and S. K. Yip

Abstract In this chapter, transport properties raised by antisymmetric spin-orbit
interactions in noncentrosymmetric systems are discussed. We consider magneto-
electric effects, the anomalous Hall effect, the spin Hall effect, and topological trans-
port phenomena which are in analogy with the quantum spin Hall effect realized
in Z; topological insulators. These topics are supposed to be relevant to potential
applications to spintronics.

8.1 Introduction

Spin-orbit (SO) interactions in electron systems generally induce the coupling
between charge degrees of freedom and spin degrees of freedom, giving rise to dis-
tinct transport phenomena involving both charge and spin of electrons. A well-known
example is the anomalous Hall effect for which a charge Hall current is raised not by
the Lorentz force, but by the coupling between a momentum of an electron and a spin
moment through the SO interaction [1, 2, 3,4, 5]. A closely related phenomenon also
caused by the SO interactions is the spin Hall effect: a spin Hall current is generated
by an applied longitudinal electric field in the absence of a magnetic field [6, 7, 8, 9].
The spin Hall effect opens a possibility of manipulating electron spins coherently,
and may be utilized for potential applications to spintronics devices. In systems with
noncentrosymmetric crystal structures, in addition to spherical SO interactions, there
is an antisymmetric SO interaction,
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Hso = ak x VV) -o. (8.1)

Here VV is an asymmetric potential gradient due to atoms, the locations of
which break inversion symmetry. The antisymmetric SO interaction (8.1) introduces
another nontrivial coupling between charge degrees of freedom and spin degrees of
freedom, which associates parity-violation in momentum space with broken spin-
rotational symmetry. This leads to unique transport phenomena such as magneto-
electric effects [10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21]. For instance, a magnetic
field coupled to electron spins controls charge current dynamics of electrons, and
conversely, a charge current flow induces and affects magnetic moment of electron
spins, which implies potential applications to spintronics. In this chapter, we overview
the present theoretical understanding on these phenomena associated with the SO
interaction in noncentrosymmetric systems. In the Sects. 8.2, 8.3, 8.4, our main con-
cern are focused on bulk transport phenomena. Some of the above-mentioned effects
are related to paramagnetic effects, and hence, drastically influenced by electron
correlation effects. Furthermore, some noncentrosymmetric superconductors (NCS)
discovered so far are heavy fermion systems, which are regarded as strongly corre-
lated electron systems. Thus, we will present discussions about electron correlation
effects on these transport phenomena, examining feasibility of experimental obser-
vations of them in heavy fermion NCS. In the Sect. 8.5, we will discuss a transport
phenomenon analogous to the quantum spin Hall effect: spin currents carried by
edge excitations which appear on open boundaries of systems. This phenomenon
has been extensively studied for a certain class of band insulators. We demonstrate
that a similar effect also occurs in NCS under a particular circumstance.

8.2 Model Systems

In the following, our argument for the case of normal states is largely based on the
Hamiltonian,

H = Ho + Hso, (8.2)
Ho = Zekc}ick +U ZCLCT,'CL-Cu, (8.3)
k,o i
Hso =« Z CZL',()(k) - 0Ck, (8.4)
k

where c}; = (C; 0 ci ) 1s the two-component spinor field for an electron with spin
1, |, and momentum k. 0 = (oy, 0y, 0;) With 0y, v = x, y, z, the Pauli matrices.
‘Hso is an antisymmetric SO interaction with a coupling constant «. Lo (k) is given by
an average of the operator (k x VV') over Bloch wave functions. For tetragonal lattice
structures and small k, £Lo(k) = (ky, —ky, 0), which is the Rashba interaction [22].
We also include an onsite Coulomb repulsion U in H to discuss electron correlation
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effects on transport properties, which may be important for heavy fermion NCS. For
the discussion on superconducting states, which is presented in the Sect. 8.3 and in
the Sect. 8.7, we add the BCS mean field pairing term

1
Hacs = —3 D [AgorR)ch el +hc] (8.5)
k

to the Hamiltonian (8.2). Here the gap function is [11]
A(k) = Ag(k)ioa + Ay(k)Lo(k) - oior. (8.6)

The first (second) term of Eq. (8.6) is the superconducting gap for a spin-singlet (spin-
triplet) component. The d-vector for the spin-triplet component of (8.6) is chosen
s00 as to optimize the antisymmetric SO interaction.

8.3 Magnetoelectric Effect

The existence of the antisymmetric SO interaction a(k x VV) - ¢ yields nontrivial
coupling between charge and spin degrees of freedom, giving rise to magnetoelec-
tric effect. Magnetoelectric effects have been studied extensively for multiferroic
systems, i.e. insulators. However, our argument here is focused on itinerant electron
systems. This effect is possible in both the normal state and the superconducting state.
In particular, in the superconducting state, the magnetoelectric effect involves dissi-
pationless supercurrent, and, in fact, is related to static and thermodynamic properties
rather than non-equilibrium transport.

8.3.1 Normal State

The magnetoelectric effect in the normal metal was originally discussed by Levitov
et al. [13, 14]. We explain this effect in the case of cubic systems without mirror
symmetry. When an electric field is applied, the antisymmetric SO interaction gen-
erates the magnetization,

M=TE. (8.7)

Here the magnetoelectric-effect coefficient 7 is a tensor. For cubic symmetry, T is
a pseudoscalar, (1), = 73, with u, v = x,y, z. As an inverse effect, an AC
magnetic field gives rise to the charge current flow,

dB
J= —TE. (8.8)
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Equations (8.7) and (8.8) have opposite signs because the entropy generations dS =
(J-E—M-B)dt /T under these equilibrium processes must be nonzero. Note that
the inverse effect (8.8) involves dissipation due to current flows, and thus requires
dynamical magnetic fields which supply the system with energy.

The physical origin of these effects are easily understood as follows. When the
charge current flows along the p-axis (u = x, y, z), the Fermi surface is deformed
into asymmetric shape, and because of the SO interaction which couples momentum
of electrons with spins, the deformation of the Fermi surface yields imbalance of
distributions of up-spins and down-spins, giving rise to magnetization along the
same axis. Conversely, an applied magnetic field in the p-direction changes the
distribution of spins, which also deforms the Fermi surface asymmetrically, leading
to the charge current.

It should be noticed that Eq. (8.8) does not include contributions from magnetiza-
tion current JM = ¢V x M. The magnetization M = T E is related to the AC mag-
netic field viaVx E = —c~'9B/dt. Then, we obtain JM = ¢V x M = —TdB/d:.
The total current induced by the AC magnetic field is

o=+ 7" = B (8.9)
dt
The charge current is doubled by the magnetization current.

The magnetoelectric effect is possible also for the case of tetragonal systems
with the Rashba-type SO interaction. However, in this case, only the off-diagonal
components of the magnetoelectric-effect coefficient 7}, with (u, v) = (x,y) or
(y, x) are nonzero. Because of broken inversion symmetry along the z-direction, the
Onsager relation for 7, is Ty = —7y.. Thus, Egs. (8.7) and (8.8) are changed to

Mu = _TMva (8.10)
J,=-T, dB, (8.11)
T :

For this definition of 7,,, the entropy generations 4. is nonzero. Since the sign of
Eq.(8.10) is negative in contrast to the positive sign in the case of cubic systems
(8.7), the magnetization current partially cancels the magnetoelectric-effect current;
ie. J+JM = —cTyy(0cE;, 0yE;, —0y Ex — 0y Ey). Thus, when these gradients of
an electric field are zero, the current induced by the magnetoelectric effect vanishes. !

The magnetoelectric-effect coefficient in the normal state 7, is calculated by
using the standard linear response theory based on the Kubo formula,

1 .
Tun (@) = — K2 (100) i oo, (8.12)

1T ‘
KN F(ion) =/ dt(Te{S, () J,(0)})e' . (8.13)
0

1" The argument in Ref. [20] on the additive contribution of magnetization currents for the case of

the Rashba model (Eq. (8.86) in Ref. [20]) is not correct.
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Here S,, and J, are, respectively, the total spin and the total current defined by

Su=uB Y clouck. (8.14)
k
Ju=e> ¢ tucr, (8.15)
k
with
eu = Ok, (e + a0 - Lo(k)). (8.16)

Here we put the g factor equal to 2. In the case that electron-electron interaction is
negligible, and mean free path is determined by scattering due to impurities, 7, is
easily calculated by using the Green function formalism;

KN Giwn) = epsT D > trlo, Gk, em + o) 00 G (k, )], (8.17)

&m k

where the single-electron Green function in the absence of the Coulomb repulsion
Uis

. 1 o (k) -
Gt =3 O G ke, (8.18)
=%

1
Ge(k,em) = 5

; ) (8.19)
iem — &kr +isgn(en)Y;

with exr = & + ta|Lo(k)|, éo(k) = Lok)/|Lo(k)|, and y, the quasiparticle
damping. &, and w, are, respectively, fermionic and bosonic Matsubara frequencies.
If we assume a spherical Fermi surface, Y}, is~eupmaf/vp where £ is a mean
free path of an electron.

By using more elaborated analysis based on the Fermi liquid theory, we can take
account of electron correlation effects on 7}, which may be important for heavy
fermion NCS. According to this analysis, we obtain a simple relation among Y,
the specific heat coefficient y, and the resistivity p: [19]

us akp y akp
. a—._

Yy ~ .
" evip Er p Er

(8.20)

In general, for heavy fermion systems, the resistivity is given by p ~ pg+AT?, with
po aresidual resistivity and A a constant factor oc 2. At sufficiently low temperatures,
for clean systems, T}, can become large.

We now estimate the order of the magnitude of these effects. We assume that the
Fermi velocity is v; ~ 10° cm/s, which corresponds to the mass enhancement of
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order ~ 100, i.e. a typical value for heavy fermion systems, and that the SO splitting
is sufficiently large, e.g. akr/EF ~0.1. To consider the magnetization induced by
an electric field, we assume that the charge current density is J ~ 1 A/cm?. Then,
the induced magnetization is estimated as, M = T E ~ ug(akr/Er)(J/evy)
~ 1 Gauss, which is experimentally measurable. To evaluate the charge current
induced by an AC magnetic field we assume that an AC magnetic field B =
By cos(wt) with By ~ 100 Gauss, and @ ~ 100 kHz is applied, and the normal resis-
tivity is p ~ 10 «£2 - cm. Then we obtain the charge current, / = =27 (dB/dt) ~
up(akrp/Er)(dB/dt)/(evyp) ~1 mA/cm?. This magnitude is also experimentally
accessible. However, in this case, it is required to discriminate between the cur-
rent due to the magnetoelectric effect and the usual eddy current induced by the
time-dependent magnetic field. For cubic systems, the current induced by the mag-
netoelectric effect is parallel to the direction of the applied magnetic field, and hence
perpendicular to the eddy current. These two currents are distinguished by this direc-
tional dependence.

8.3.2 Superconducting State

Magnetoelectric effects in the superconducting state we shall discuss involve equi-
librium dissipationless supercurrent in contrast to the non-equilibrium transport in
the normal state discussed in the previous section. We shall see that there exist an
extra contribution to the supercurrent induced by the Zeeman magnetic field, and
conversely, an extra bulk magnetization induced by the supercurrent flow. These
phenomena were originally predicted by Levitov et al. and Edelstein [10, 11, 12, 13,
17,18, 19, 20, 21, 22]. This mentioned supercurrent is an additional contribution to
the ordinary one which is due to finite phase gradients. Its physical origin is also the
asymmetric deformation of the Fermi surface due to an applied Zeeman magnetic
field as in the case of the normal state. However, in the present case of a static Zeeman
field, no net current can arise in the normal state because of the cancellation between
the contributions due to the changes in the occupation numbers versus the quasi-
particle dispersion. A net finite contribution arises only within the superconducting
state where this cancellation is no longer perfect [11, 16]. For the realization of this
supercurrent flow induced by Zeeman magnetic fields, a system must allow a bulk
current flow without dissipation. One example of such a system may be realized by
attaching leads made of superconductors to the sample. Without leads to the outside,
the current from phase gradient and the magnetoelectric effect must sum to be zero
in the ground state and the system must develop instead a finite phase gradient and
therefore be in the “helical state” [24].

To explain the magnetoelectric effects, we first exploit the Ginzburg-Landau (GL)
theory, and later, we will present microscopic analysis. The GL free energy for
superconductors without inversion symmetry was derived by Edelstein, Samokhin,
and Kaur et al. [15, 26, 24], which reads,
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B

2 4 1 2
Fs—Fy=alY|"+ Z|¥["+ —I|D, V|
2 2my

K
+ =B, (¥(D,¥)* + D, W)

2eng
B? XM;LB,ZL
- _ , 8.21
+ o > (3.21)
where a = ao(T — Teo), Dy = —hV, — 2eA,/c, A, is a vector potential,

B = V x A, M is a magnetization density, and ng is a superfluid density. The
forth term of Eq.(8.21) with the coefficient K, stems from the antisymmetric SO
interaction, and is the origin of the magnetoelectric effects. Differentiating the free
energy with respectto A and B, we obtain the following relations for the supercurrent
density J® and the magnetization density M, [17]

Jh = T8+ KBy, (8.22)
My = =Ky ATS + MZ2e, (8.23)

where J Sia is the usual diamagnetic supercurrent given by J ;}ia =(hV,p—2eA,/c)/
(2eA) with ¢ the phase of the order parameter ¥, and A~ = 4¢?|¥|?>/m. The
last term of Eq. (8.23), M gee, is magnetization due to the usual Zeeman effect. Also,
we have put |¥|? = n,. The second term of the right-hand side of Eq.(8.22) is the
supercurrent due to the magnetoelectric effect, and the first term of the right-hand
side of (8.23) is the magnetization induced by the supercurrent flow.

The structure of KCy, is constrained by the symmetry requirement as described
below:

1. Tetragonal systems with C4, symmetry—In this case, the systems are invariant
with respect to the reflection x — —x (or y — —y). Under this reflection, the
current J, (Jy) changes its sign, while By (By) does not. Thus, this symmetry
and Eq.(8.22) imply that —KCyx = K,y = 0. (Also, K, = 0.) Also, under
the reflection x — —x, J, is invariant, while B, changes its sign. This implies
K. = 0. Furthermore, the systems are invariant under the 7 /2-rotation around
the z-axis, i.e. x — —y, y — x. This leads to K, — —K,; = K.y, and
Kyz = —Ky; = =Ky = Kx; = 0. Only Kyy = —K,, is nonzero. This case is
relevant to CePt3Si (space group P4mm), and CeRhSi3, CelrSiz (I4mm).

2. Cubic systems without mirror symmetry—For cubic systems, if we take © and
v as the principal axes of the crystal structure, K, , = K38,, holds; i.e. the
supercurrent induced by the magnetoelectric effect is

J =KB. (8.24)

Since the left-hand side is a polar vector whereas the right-hand side is an
axial vector, K is a pseudoscalar. For cubic systems without mirror symmetry
(O symmetry), K is nonzero. This case is realized in Lir(Pd;_,Pt,)3B (space
group P4332).
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3. Cubic systems with mirror symmetry—An example of the crystal structure for this
case is that with 7; symmetry. The SO interaction is the Dresselhaus type [25].
Equation (8.24) is still applicable to this case. However, since the pseudoscalar
should vanish in the presence of mirror symmetry, = 0 and thus the magneto-
electric effect is absent.

It is noted that the above lists are by no means exhaustive. The same symmetry
constraint is also applicable to the magnetoelectric-effect coefficient in the normal
state 77, discussed in the previous section.

In the case of the Rashba SO interaction, the paramagnetic supercurrent induced
by Zeeman fields is partially canceled with magnetization current JM = ¢V x M.
This was first pointed out by Yip in the case of the Rashba interaction [18]. To see
this, using Eqgs. (8.22), (8.23), and the relation V x Jdia = —B/cA, we write down
the total current,

Js+Tu=J%+cV x Mzee
+ K A(=9, T8, =0, 8 0, T8 + 9, T8, (8.25)

The last term of the right-hand side of (8.25) is the paramagnetic supercurrent. In
the complete Meissner state and in the thermodynamic limit, this term vanishes,
and thus there is no paramagnetic supercurrent. Yip pointed out that because of this
cancellation, the penetration depth is symmetric under the transformation z — —z
[18]. However, in finite systems, or in the mixed state, the last term of (8.25) gives
nonzero contributions to the magnetoelectric effect.

In the case of cubic systems without mirror symmetry, the cancellation between the
paramagnetic supercurrent and the magnetization current does not occur, and instead,
these currents contribute additively for the magnetoelectric effect, as elucidated in
[20, 21, 22]. This is due to the fact that the magnetoelectric-effect coefficient is a
pseudo scalar K., = K8y, as explained in the previous section for the case of the
normal state.

The magnetoelectric effect coefficient K, can be calculated by using a linear
response theory as in the case of the normal state. Since the magnetoelectric effect in
the superconducting state is a static and thermodynamic phenomenon, the coefficient
IC,wv is given by a static correlation function,

Kyw = K)(0). (8.26)
Here the expression of K /%E is the same as Eq. (8.13), but is evaluated in the super-
conducting state. For the case without electron-electron interaction, /C,,, is calculated
from

1 ~ 4 NA
Kuv = —epnT 3 Strl8,G(k, en) Vo Gk, en)]. (8.27)
n.,k
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where
A o 0
Su = ( 0 —of ) : (8.28)
"
N Vv 0
Vi :( N ) (8.29)
v 0 -0,

with U, defined by Eq. (8.16), and é (k, ep) is the single-electron Green function for
the model (8.2) with the pairing term (8.5), defined by

5 Gy(k, &) F(k, ey)
k,en) = - . , 8.30
O &n) (FT(k’ En) —Gé(—k, _Sn)) ( )
with
. 1+ tLok) - o
Golkoen) = D ——T=Gur (k. ), (8.31)
7==+1
A 1+ tLok -0,
e = Y R Do ke, (8.32)
T==+1
ie+e¢
Gyr(k, £n) = —— e (8.33)
(ie +iyrsgne)s — Ej,
A
Fe(k, e,) = ke (8.34)

(ie + iyesgne)> — EZ.

Here Egr = /&2, + A2, Az = Ag(k) + 7| Lo(k)| A (), and Ay (k) is the BCS
gap for spin-singlet (spin-triplet) pairs.

Using the Fermi liquid theory, we can take account of electron correlation effects
in Eq. (8.26). The most important electron correlation effect appears in the response
to a Zeeman magnetic field, i.e. the renormalization of g-factor by effective mass
enhancement. In the case with a spherical Fermi surface, up to the first order in
akr/E F, the magnetoelectric coefficient is simplified as,

eBna

Ky = o2
my 87T3ZEF

(8.35)
where n; is the superfluid density. /C,,,, is amplified by the mass enhancement factor
1/z. This feature is in contrast to the electron correlation effect on a conventional
diamagnetic supercurrent which is suppressed by the factor z. As a result, the mag-
netoelectric effect in the superconducting state is much more enhanced in heavy
fermion systems with large effective mass than in weakly correlated metals. In the
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derivation of Eq. (8.35), we assumed that there is no strong ferromagnetic spin fluc-
tuations. If the system is in the vicinity of ferromagnetic criticality, there is additional
enhancement of K, due to spin fluctuations. the magnetoelectric effect is enhanced
by spin fluctuations.

We now discuss the feasibility of experimental observations of these effects.
We use material parameters suitable for heavy fermion systems. Then, assuming
akp/Efr ~ 0.1, the electron density n ~ 1022 cm™3, the mass enhancement factor
1/z ~ 100, and vy /vy, ~ A/EF ~ 0.01, we estimate the magnitude of the bulk mag-
netization induced by the supercurrent as M ~ /LBn(akF/EF)(vs/v})/(8ﬂ3z) ~
0.1 Gauss. The experimental detection of this internal field may be possible. For the
above conditions, the magnitude of the paramagnetic supercurrent is also accessible
to usual experimental measurements. It should be emphasized again that to detect the
paramagnetic supercurrent, one needs to prepare a circuit in which the bulk current
flow without dissipation is possible.

8.4 Anomalous Hall Effect

In this section and the next section, we mainly consider transport phenomena in
the normal state. The anomalous Hall effect is the Hall effect that is not due
to Lorentz force but caused by SO interactions combined with spin polarization
raised by an external magnetic field or a spontaneous magnetization in ferromagnets
[1]. This effect has been explained in terms of two different mechanisms; (1) intrin-
sic mechanism due to bulk SO interaction, (2) extrinsic mechanism due to impurity
SO scattering. Here, we are concerned with the former effect due to antisymmetric
SO interactions. In the case of the Rashba SO interaction, this effect is intuitively
understood as follows. When an electric field applied along the y-axis induces the
current flow along this direction, deforming the Fermi surface into an asymmetric
shape, the distribution of spins, which is constrained to be perpendicular to the Fermi
momentum by the Rashba SO interaction, becomes anisotropic. A magnetic field H,
applied along the z-axis gives rise to torque which rotates spins around the z-axis.
Because of the anisotropic distribution of spins and the SO interaction, the rotation
of spins accompanies the rotation of the asymmetrically deformed Fermi surfaces
on the xy-plane. As a consequence, the net current along the x-axis occurs. The Hall
current in this situation is carried by electrons with anomalous velocity associated
with the SO interaction. The origin of the anomalous velocity is also understood in
terms of Berry-phase effects due to the SO interaction [4]; i.e. the modulation of the
Bloch wave function |u (r)) due to the SO coupling gives rise to the Berry curvature
defined by %eaﬂy Hé;% | a%) — (337” | a%)], which plays a role similar to a magnetic
field, i.e. a curvature of the gauge field, yielding the transverse force on moving elec-
trons. In the case of the Rashba interaction, the anomalous velocity, vA = a(r X )
with n = (0, 0, 1), is perpendicular to the z-axis. Thus, the anomalous Hall effect is
possible only for magnetic fields along the z-axis.
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The anomalous Hall conductivity nyHE can be computed from the Kubo formula
for an anomalous-current correlation function. For general forms of SO interactions,
the expression for Jf;HE is quite involved. However, in the case that, for all k on
the Fermi surfaces, the SO split of electron bands «|L¢(k)| is nonzero and suffi-
ciently larger than the magnitude of quasiparticle damping, the expression is much
simplified. We also ignore the Coulomb repulsion between electrons, U = 0, for sim-
plicity. Then, the anomalous Hall conductivity for the model (8.2) with the Rashba
SO interaction and a magnetic field H; parallel to the z-axis is given by, [19]

Re o AHE - dLoyx IL Loy DL
Ly Y f (¢ke) ( ox Loy Loy Ox). (8.36)
=1+ k

H, 2alLo(k)P \ 0k, 0k, Ok, o0k,

In this derivation, we have ignored orbital motions of electrons due to the coupling
with a vector potential, which are not important for the anomalous Hall effect. In
Eq.(8.36), the quasiparticle damping y; does not appear, and thus, the Hall current
is dissipationless in the sense that it does not involve any relaxation mechanisms.
Equation (8.36) is derived assuming «|Lg(k)| > k. In the case that for a certain
k, the SO split vanishes, the factor «|L(k)| in the denominator of Eq.(8.36) for
this wave number k is replaced with quasiparticle damping yy, regularizing possible
divergences of (8.36). In this case, the Hall effect is dissipative in the sense that
momentum dissipation mechanisms play an important role.

According to an analysis based on the Fermi liquid theory, in the case with
Coulomb repulsion U # O, UQ,HE is enhanced by the mass renormalization
factor 1/z. This is because that the magnetic field H; couples to the anomalous veloc-
ity through the Zeeman effect, and the paramagnetic effect is enhanced by the mass
renormalization effect due to electron correlation. More precisely, the enhancement
of cerHE due to electron correlation effects is associated to the enhancement of the
van-Vleck-like spin susceptibility which is governed by transitions between the SO
splitbands [19]. For heavy fermion systems, this factor is of the same order as the mass
enhancement factor 1/z ~ 100 ~ 1000, and thus, the anomalous Hall conductivity
can be significantly large. For instance, let us assume the resistivity p ~ 10 £ £2 - cm,
the mass enhancement factor 1/zx; ~ 100, the Fermi velocity v} ~ 10° cm/s, and
the carrier density n ~ 1022 cm—3. Then, the ratio of nyHE ~¢? usB/ (hzv;’;z) to the
normal Hall conductivity a}c\;HE is estimated as nyHE / U;\)’,H E
Hall effect overwhelms the normal Hall effect.

An analogous Hall effect for heat current is also possible. The anomalous Hall

conductivity for heat current is expressed as, [19]

~40. The anomalous
1
AHE 2 D7 @©—17(1
K HE = F(L;y) — ZLgleng L), (8.37)
nv

where L,(PB is equal to the conductivity tensor oy, and, in the absence of electron
correlation, U = 0, for the Rashba model,
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ZEN . S 3 ZUk)"eke) (Lo Loy _ Loy Do
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(8.38)

with m = 1, 2. In the case with electron correlation effects, U # 0, L%)AHE is
enhanced by the mass renormalization factor 1/z.

It should be noted that in Eqgs. (8.36) and (8.38), electrons away from the Fermi
surface give dominant contributions to the anomalous Hall conductivity. This feature
is in accordance with the fact that the magnetic response against the magnetic field
along the z-axis is governed by the van-Vleck-like term. This observation leads us
to an interesting implication for the superconducting state. In the superconducting
state, the Hall effect for heat current is possible at finite temperature, and when the
superconducting gap is much smaller than the size of the SO splitting, the thermal
anomalous Hall conductivity is not affected by the superconducting transition. Fur-
thermore, even in the limit of zero temperature, K)/C\yHE /(T H;) is nonzero, and behaves
like in the normal state, even though the quasiparticle density is vanishingly small.
The experimental detection of this effect is an intriguing future issue.

8.5 Spin Hall Effect

The SO interaction gives rise to a transverse spin current under an applied longi-
tudinal electric field even in the absence of external magnetic fields. This effect
is called the spin Hall effect [8, 9, 10, 27, 28, 29, 30, 31]. The origin of the spin
Hall effect is deeply related to the existence of the anomalous Hall effect. [7, 8]
To explain this phenomenon, we consider the Rashba model again. Suppose that a
longitudinal electric field E, along the x-direction and a magnetic field H, along the
z-direction are applied to a system, and there is a nonzero anomalous Hall current;
ie. JAHE /o — (nyvp+nyvy)) = nT;ﬂ” (vp+vy) + "¢;"¢ (v4 —vy) # 0 with np()
density of electrons with up (down) spin and v4(y) velocity of electrons with up
(down) spin. On the other hand, in the absence of the magnetic field, J AHE st
be zero, and also there is no spin magnetization, i.e. n4 — n, = 0, which leads
to vy + vy = 0. As a result, for H, = 0 and E, # 0, there is a nonzero spin
Hall current JSHE /pp = nyop — nyv, = 5% vy — v)) # 0, while the charge
Hall current is zero, JAHE = 0. From a different point of view, the origin of the
spin Hall effect is understood in terms of spin torque raised by the SO interac-
tion [9]. The applied electric field E, # 0 changes the x-component of momen-
tum of electrons by Ap, = eEAt. This raises the change of the SO interac-
tion, oo - (Apx x VV). Since the SO interaction can be regarded as an effective
Zeeman effect which depends on the direction of momentum, this change gives
rise to torque of spins along Ap, x VV. For the Rashba model, the x-component
of electron spins for p, > 0 is opposite to that for p, < 0, and thus the spin
torque yields the positive (negative) z-component of spins for p, > 0 (p, < 0),
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leading to the spin Hall current along the y-direction. Recently, the existence of
the spin Hall effect in the Rashba model has been extensively investigated by sev-
eral authors [9, 10]. For the Rashba model with broken inversion symmetry along the
z-axis, the in-plane spin current with the magnetization in the z-direction is
considered. Then, the spin Hall conductivity is defined as,

1 .
oy = lim — K3 Gwn)liw, > wio. (8.39)
0o—0 1w
SHE . _ yr k¥4 iw,T
K5 (jw,) = dt(TAJ*(x) Iy (0)}) e T (8.40)
0

Here the total spin current J3< is,

gHUB ~ N
JE = o Zcz(vkxovZ + 0% Vgx ) Chs (8.41)
X

with g the g-factor.

To obtain an explicit formula for the spin Hall conductivity, we assume again that
a|Lo(k)| > yx is satisfied for all k. Then, in the absence of electron correlation,
U = 0, a straightforward calculation yields,

SHE _ egHB vf (&ke) 8£0x dLoy
Ixy = Zz2a|£o(k)|3 x( 0>(k) — Lox (k) o, ) (8.42)

where v, = 0O, ek. As in the case of the anomalous Hall conductivity (8.36),
quasiparticle damping does not appear in the expression (8.42), which indicates
that the effect is dissipationless. In the case of a two-dimensional electron gas model
with the Rashba interaction Lo = (ky, —ky,0) and g = k2 /2m, when the Fermi
level crosses both of two SO split bands, the spin Hall conductivity calculated from
(8.42) is

¢giB
= (8.43)

Remarkably, its value is universal, and independent of any parameters specific to
the system such as the SO coupling « and electron density [9]. However, this by
no means implies that oSHE £ 0 even for oo — 0. It should be noted that the above
result is obtained under the assumption that the SO split is much larger than the
quasiparticle damping. As o — 0, the quasiparticle damping which should appear in
the denominator of (8.42) becomes important, leading to oSHE — 0 [27]. In more
general cases where the SO interaction is not the Rashba type and the Fermi surface is
not spherical, the magnitude of O‘XS}HE depends on the detail of the electronic structure
and is not universal.

When the quasiparticle damping is governed by impurity scattering, o
partially cancelled with current vertex corrections due to impurity scattering Wthh

SHE
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are related to the single-electron selfenergy (the quasiparticle damping) via the Ward-
Takahashi identity. In particular, this cancellation is perfect, of’yHE = 0, in the case
of the Rashba model with L£o(k) = (ky, —ky, 0) even when the SO split is much
larger than the scattering rate. However, this complete cancellation is accidental, and
does not hold for general forms of SO interactions [32]. Thus, to calculate GXSVHE
correctly, one needs to take account of both the detail band structure and scattering
processes which govern the quasiparticle damping.

According to a precise analysis based on the Fermi liquid theory, the spin Hall

conductivity JSyHE is not affected by electron correlation effects, but determined

X
solely by the band structure, in contrast to the anomalous Hall conductivity discussed
before. This is simply due to the absence of paramagnetic effects (Zeeman fields)
for the spin Hall effect [19].

The experimental observations of the spin Hall effect were successfully achieved
for semiconductors [30, 31]. In these experiments, spin polarization at the edges of
samples due to spin currents under an applied electric field was detected by optical
measurements. Unfortunately, experiments for NCS have not been achieved so far,
partly because it is difficult, up to now, to synthesize single crystals of NCS with a
size large enough to make the detection of the spin Hal effect feasible.

8.6 Quantum (Spin) Hall Effect in the Superconducting State:
Topological Transport Phenomena

The subject in this section is conceptually different from the bulk transport phe-
nomena considered in the previous sections. Here, we discuss transport phenomena
raised by nontrivial topological structures of the many-body Hilbert space. As men-
tioned before, the anomalous Hall effect and the spin Hall effect are also related to
a topological property: nonzero Berry curvature in momentum space. However, the
topological transport phenomena discussed here are distinct from these Hall effect
in that transport currents are carried not by bulk quasiparticles, but by edge excita-
tions which exist on boundaries of systems. Such transport phenomena occur in the
case that there are both a bulk excitation energy gap and gapless edge excitations.
The studies on topological transport phenomena were initiated in the celebrated
paper by Thouless et al., in which the topological explanation for the quantum Hall
effect realized in two-dimensional electron gas in a strong magnetic field was pre-
sented [33]. In the quantum Hall state, there is a bulk energy gap due to the Landau
quantization of the energy band, and Hall currents are mainly carried by gapless edge
states, which propagate along one direction only, and are topologically protected from
perturbations such as disorder [34, 35]. Here, the topological protection means that
the existence of edge states is closely related to a nonzero topological number, i.e.
the first Chern number ncy, for the U(1) bundle corresponding to the wave function.
That is, the U(1) phase of the wave function is not smooth in the entire (magnetic)
Brillouin zone, and there is a jump of the phase somewhere in the k-space, which
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leads to the nonzero Berry curvature, and the nonzero Chern number. As a result,
the edge states are stable against any local perturbations which can not change the
topology of the Hilbert space. The modulus of the Chern number represents the total
number of the edge modes. The Hall conductivity is expressed in terms of the Chern
number as oyy = (ez/h)nCh [33].

It was pointed out by several authors that a similar phenomenon is possible in
chiral p 4 ip superconductors, in which there is a gapless edge mode, which prop-
agates along only one direction, reflecting broken time-reversal-symmetry in chiral
superconductors [36, 37].

For a certain class of insulators with time-reversal symmetry, there exists another
topological transport phenomenon, which is associated with spin currents, and called
the quantum spin Hall effect; i.e. in a certain class of insulators with a bulk energy
gap, a spin Hall current is induced by a longitudinal electric field [38, 39, 40, 41].
In this state, the Chern number is zero, because of time-reversal symmetry. How-
ever, instead, this state is characterized by another topological number called the Z;
topological invariant [38]. These insulators are called the Z; topological insulators.

As there is the close relation between the quantum Hall state and chiral p + ip
superconductors mentioned above, there is also parallelism between Z; insulators
and s + p-wave NCS [44, 45, 46, 47]. Moreover, in the case with a magnetic field,
the s + p-wave NCS also exhibit a topological phase in analogy with the quantum
Hall state characterized by the nonzero Chern number. In the following, we discuss
these topological phenomena realized in NCS.

8.6.1 Z, Insulator and Quantum Spin Hall Effect

Before considering NCS, we briefly summarize the fundamental properties of the
Z» insulator relevant to the discussion on NCS. The Z, insulator possesses a bulk
excitation energy gap which separates the ground state from excited states. In contrast
to the quantum Hall state where the bulk gap is due to the filled Landau level, the bulk
gap of the Z; insulator is a band gap, or a gap generated by some symmetry-breaking
of the system which preserves time-reversal symmetry. The most important feature
of the Z; insulator is the existence of two gapless edge modes which propagate in
the opposite directions, and carry, respectively, up-spin and down-spin. This leads
to a nonzero spin current flowing on the edge without net charge current flow. As a
result of it, the quantum spin Hall effect occurs; i.e. an applied electric field parallel
to the edges gives rise to spin Hall current traverse.

The Z; insulator is regarded as a pair of two quantum Hall states in which
magnetic fields are applied in the opposite directions, and time-reversal symme-
try is preserved in the whole system. For a while, we assume that the total spin
is conserved. Then, the two quantum Hall states are, respectively, associated with
spin up and spin down states. In such a system, each of two quantum Hal states pos-
sesses nonzero Chern numbers with the same magnitude but different signs. Thus, the
total Chern number is zero. However, there are another topological numbers which
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characterize the topological phase [38, 42, 43, 48, 49]. Let us consider the case that
there are m gapless edge modes (m > 1) for each spin state (i.e. the total number of
edge modes is 2m), and that the spin-resolved Chern number (Chern number for each
spin state) is m. All of these gapless edge modes are not necessarily topologically
protected. For instance, two edge modes in the same spin state may propagate in the
opposite directions. In this situation, the two gapless edge modes are backscattered
by non-magnetic impurity, and become gapful. Thus, for the case of even m, the
system is not topologically-protected. When m is odd, there is, at least, one gapless
edge mode which is stable against disorder, characterizing the topological phase.
This implies that as long as the topological nature is concerned, there are only two
states; i.e. topologically trivial or non-trivial. These two states are classified by the
parity of spin-resolved Chern number m. Originally, the topological number which
characterizes this topological phase was introduced by Kane and Mele by using the
Pfaffian of a matrix M, (k) = (uk.m|®luk ) where |uy ,) is the Bloch state with
a wave vector k and a band index n (n = 1,2, ..., N), and © is the time reversal
operator [38]. Note that each Bloch function |ug ,) is tWwo component spinor which
consists of the Kramers doublet, and that M,,,, (k) is a 2N x 2N matrix. The total
number v of zeros of the Pfaffian Pf[ M (k)] in half the Brillouin zone which includes
only one of k and —k discriminates between the topological phase and trivial insu-
lators. For the Z, topological insulator, v = 1 (mod 2), and for trivial insulators,
v = 0 (mod 2). Later, it turned out that the Z, invariant is equivalent to the parity of
the spin-resolved Chern number [50, 42].

In the above explanation, we consider the case that the spin projection §; is a
good quantum number. However, the concept of the Z, invariant is more general
and applicable also to the case without spin conservation, as long as time-reversal
symmetry is preserved and there is the Kramers degeneracy. Actually, in microscopic
models for the Z, insulator proposed so far, SO interactions which violate spin
conservation play important roles to stabilize the topological phase [38, 39, 40, 41].
When the total spin is not conserved but time reversal symmetry is still preserved,
the above argument is valid if we replace the spin-up and spin-down states with the
Kramers doublet. The stability of two gapless edge modes which form the Kramers
doublet is ensured by the nonzero Z, invariant. More precise arguments on the
relation between the gapless edge modes and topological numbers, and effects of
electron-electron interaction are given in Refs. [50, 51].

8.6.2 Z, Topological Phase in Noncentrosymmetric
Superconductors

As mentioned before, there is parallelism between Z; insulators and s + p-wave
NCS in the absence of magnetic fields [44, 45, 46, 47]. To explain this point, we
consider 2D NCS with the Rashba SO interaction defined on a square lattice. We
assume the d-vector of the p-wave pairing is compatible with the Rashba interaction,
i.e.d o (sinky, —sink,, 0). We also allows for the admixture of the s-wave pairing.
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In two dimension, the superconducting gaps in the two SO split bands have no nodes
provided that the p-wave gap A, (k) is not equal to the s-wave gap A, (k) for any k
on the Fermi surfaces. To clarify the topological nature of this system, we consider
the energy spectrum of edge states in the case that the geometry of the system is a
cylinder with open boundaries at x = 0 and x = L [44]. According to the numerical
analysis for this system, when A, (k) > A (k) is satisfied on the Fermi surfaces,
two gapless edge modes on each boundary emerge [44, 46]. The two gapless edge
modes on the same boundary are, respectively, associated with the two SO split bands
which constitute the Kramers doublet, and propagate in the directions opposite to
each other. This state is characterized by the Z, topological number, in analogy with
the Z, insulators [44, 46]. In this phase, each of superconducting states realized in
two SO split bands is similar to a chiral p 4 ip superconducting state with different
chirality. Actually, the Hilbert space of this phase can be deformed into a topologically
equivalent one which is a product of the spaces of a chiral superconductor with
Dx + ipy gap symmetry and that with p, — ip, gap symmetry. The deformation
into a topologically equivalent phase is possible when bulk excitation gaps are not
closed by this deformation. In the case that A, (k) > A (k) is fulfilled on the Fermi
surfaces, we are able to change the magnitudes of As(k) and the SO coupling o
continuously to zero without closing the bulk superconducting gap. In this state,
because of time-reversal symmetry, the Chern number is zero, and there is no charge
Hall current flowing on the edge. However, a spin current carried by the edge states
exists, which gives rise to the spin Hall effect, in analogy with the Z, insulator.

8.6.3 Analogue of Quantum Hall State in the Case
with Magnetic Fields

We consider again the 2D Rashba superconductors with s 4+ p-wave pairing gaps
satisfying the condition A, (k) > A, (k) on the Fermi surfaces. In the case with a
magnetic field, a topological state similar to the quantum Hall state is realized for
a particular electron density [44]. When the Fermi level crosses the I" point in the
Brillouin zone, and a magnetic field is applied to the system, a gap opens at the I point.
If the magnetic field is smaller than an upper critical field of the superconducting state,
one gapless edge mode associated with the band at the I" point disappears, leaving
only one gapless edge mode. This chiral edge state is analogous to the quantum Hall
effect state. However, in contrast to the quantum Hall effect state, this gapless edge
state does not carry a charge current, because the quasiparticles in the edge state are
Majorana fermions; i.e. the antiparticles of them are equivalent to themselves. The
Majorana edge state may be probed by thermal transport measurement.

The existence of the gapless edge mode is deeply related to the existence of a
zero energy mode in a vortex core which is also described by a Majorana fermion, as
clarified by analysing the Bogoliubov-de Gennes equations [52, 44]. In fact, when the
geometry of the system is a disk with a closed boundary, and there is no vortex core
in the system, i.e. the geometry of the system is simply-connected, the edge mode
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has an excitation gap of order 1/L where L is the perimeter of the closed system. In
contrast, when there is a single vortex with odd vorticity in the bulk system, the edge
mode becomes gapless, and simultaneously, a zero energy state in the vortex core
appears. In this sense, the gapless edge mode is a concomitant of the zero energy
vortex core state. A quasiparticle on the edge in the gapless case is also a Majorana
fermion. This implies that a Majorana fermion can not exist in isolation, but should
always accompany a Majorana partner, with which it forms a complex fermion.

The chiral Majorana edge state is also realizable even in a purely s-wave Rashba
superconducor with Ag # 0 and A, = 0, provided that the Zeeman energy due to a
magnetic field A is larger than the s-wave gap Ay, i.e. up H > Ay, and that the Fermi
level is located within the energy gap around k ~ 0 generated by the Zeeman effect
[53, 54]. There are several proposals for the realization of this system, which utilize,
e.g., ultracold fermionic atoms, heavy fermion superconductors, and semiconductor
heterostructures [53, 54, 55, 56].

8.6.4 Accidentally Protected Spin Hall State Without
Time-Reversal Symmetry

In the case with a magnetic field, because of broken time reversal symmetry, the
topological characterization in terms of the Z, number is not applicable. However,
even in such a situation, a pair of two gapless edge modes which carry a spin current
is stable for the 2D Rashba superconductors with the condition A, > Ay, pro-
vided that the magnetic field is perpendicular to the direction along which the edge
modes propagate [44]. In this phase, both the Z; number and the Chern number
are zero. However, there is another topological number which ensures the stability
of this phase. This topological number is a winding number defined for particular
symmetry points in the Brillouin zone inherent in the Rashba model [44]. In this
sense, the stability of this phase is accidental, and fragile when there is a magnetic
field component parallel to the propagating direction of the edge modes.

8.6.5 Topological Transport Phenomena

The transport phenomena associated with edge states can be experimentally detected
by using the measurements for a system with a Hall bar geometry as considered
before for the case of the quantum Hall effect in two-dimensional semiconductors
[57]. In superconducting systems, instead of charge currents in semiconductors, the
measurement of a heat current is useful for the detection of quasiparticle contri-
butions to transport phenomena. In the topological phases mentioned above, heat
currents are mainly carried by gapless edge states, and hence the thermal conduc-
tivity exhibits power law behavior ox 7' as a function of temperature, in contrast to
the bulk contributions to the thermal conductivity which should decay exponentially
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at low temperatures ~ exp(—A/T) in the superconducting state with full gap A.
A more drastic effect characterizing the existence of edge states is a non-local trans-
port phenomenon. In a Hall-bar geometry in which two terminals (1 and 2) are
attached to one of two longer edges and another two terminals (3 and 4) are attached
to the other longer edge, the temperature gradient between the terminals 1 and 3 gives
rise to a heat current flowing between the terminals 2 and 4. This non-local transport
can not be explained if one considers only the contributions from bulk quasiparticles,
when the distance between the terminals 1, 3 and the terminals 2, 4 is sufficiently
large. The detection of this effect may be a direct evidence for the existence of
edge states governing low-energy transport. The experimental verification of these
phenomena has not been achieved so far for NCS. The exploration for the topological
superconducting state in NCS is an interesting and important future issue.

8.7 Conclusions

The antisymmetric SO interactions inherent in noncentrosymmetric systems are
sources of remarkable transport phenomena both in the superconducting state and in
the normal state, which are characterized by nontrivial coupling between charge and
spin degrees of freedom. Although experimental verification of these phenomena in
noncentrosymmetric superconductors is not yet achieved, it is naturally expected that
some of them related to the paramagnetic effect such as the anomalous Hall effect
and magnetoelectric effects are enhanced in strongly correlated electron systems,
and their experimental detections may be feasible.

The antisymmetric SO interactions are also origins of topological order and topo-
logical transport phenomena such as the quantum spin Hall effect. In noncentrosym-
metric superconductors under certain circumstances, topological phases akin to Z»
topological insulators can be realized.
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Chapter 9
Effects of Impurities in Non-centrosymmetric
Superconductors

K. V. Samokhin

Abstract Effects of disorder on superconducting properties of noncentrosymmet-
ric compounds are discussed. Elastic impurity scattering, even for scalar impurities,
leads to a strongly anisotropic mixing of the electron states in the bands split by the
spin-orbit coupling. We focus on the calculation of the critical temperature T, the
upper critical field H.2, and the spin susceptibility x;;. It is shown that the impurity
effects on the critical temperature are similar to those in multi-band centrosymmet-
ric superconductors. In particular, Anderson’s theorem holds for isotropic singlet
pairing. In contrast, scalar impurities affect the spin susceptibility in the same way
as spin-orbit impurities do in centrosymmetric superconductors. Another peculiar
feature is that in the absence of inversion symmetry scalar disorder can mix singlet
and triplet pairing channels. This leads to significant deviations of the upper crit-
ical field from the predictions of the Werthamer-Helfand-Hohenberg theory in the
conventional centrosymmetric case.

9.1 Introduction

The discovery of superconductivity in the heavy-fermion compound CePt3Si
(Ref. [1]) has stimulated considerable interest, both experimental and theoretical,
in the properties of superconductors whose crystal lattice lacks a center of inversion.
The list of noncentrosymmetric superconductors has been steadily growing and now
includes dozens of materials, such as Ulr (Ref. [2]), CeRhSi3 (Ref. [3]), CelrSij
(Ref. [4]), Y2C3 (Ref. [5]), Lio(Pd;—,, Pt,)3B (Ref. [6, 7]), and many others.

A peculiar property of noncentrosymmetric crystals is that the spin-orbit (SO)
coupling of electrons with the crystal lattice qualitatively changes the nature of the

K. V. Samokhin (<)

Department of Physics, Brock University, St. Catharines,
Ontario, L2S 3A1 Canada

e-mail: kirill.samokhin @brocku.ca

E. Bauer and M. Sigrist (eds.), Non-centrosymmetric Superconductors, 269
Lecture Notes in Physics 847, DOI: 10.1007/978-3-642-24624-1_9,
© Springer-Verlag Berlin Heidelberg 2012



270 K. V. Samokhin

Bloch states, lifting the spin degeneracy of the electron bands almost everywhere in
the Brillouin zone. The resulting nondegenerate bands are characterized by a complex
spin texture and a nontrivial wavefunction topology in momentum space [8]. This
has profound consequences for superconductivity, including unusual nonuniform
superconducting phases, both with and without magnetic field [9-14], magnetoelec-
tric effect [15—19], and a strongly anisotropic spin susceptibility with a large residual
component at zero temperature [ 16, 20-22]. These and other properties are discussed
in other chapters of this volume.

In this chapter we present a theoretical review of the effects of nonmagnetic
impurities in superconductors without inversion symmetry. In Sect. 9.2, the disorder-
averaged Green’s functions in the normal and superconducting states are calculated.
In Sect.9.3, the equations for the superconducting gap functions renormalized by
impurities are used to find the critical temperature 7,.. In Sect. 9.4, the upper critical
field H, is calculated for arbitrary temperatures. In Sect. 9.5, we calculate the spin
susceptibility, focusing, in particular, on the effects of impurities on the residual
susceptibility at 7 = 0. Section 9.6 contains a discussion of our results. Throughtout
this chapter we use the units in which kg = h = 1.

9.2 Impurity Scattering in Normal and Superconducting State

Let us consider one spin-degenerate band with the dispersion given by &o(k), and
turn on the SO coupling. The Hamiltonian of noninteracting electrons in the presence
of scalar impurities can be written in the form H = Hy + Hjy, where

Ho =Y [e0(k)dap + ¥ (k)0 uplay,axp. 0.1)
k.,af

o, B =1, | is the spin projection on the z-axis, >, stands for the summation over the
first Brillouin zone, ¢ are the Pauli matrices, and the chemical potential is included
in go(k). The “bare” band dispersion satisfies eo(—k) = eo(k), eo(g’lk) = ¢go(k),
where g is any operation of the point group G of the crystal. The electron-lattice SO
coupling is described by the pseudovector y (k), which has the following symmetry
properties: y (k) = —y(—k), gy(g'k) = y (k). Its momentum dependence cru-
cially depends on G, see Ref. [8]. For example, in the case of a tetragonal point group
G = Cyy, which is realized, e.g., in CePt3Si, CeRhSi3, and CelrSi3, the simplest
expression for the SO coupling is y (k) = yo(kyX — k.J), which is also known as
the Rashba model [23]. In contrast, in a cubic crystal with G = O, which describes
Lip (Pd{_,,Pt,); B, we have y (k) = yok.
The impurity scattering is described by the following Hamiltonian:

Hipp = / Er Y UYL ) Ye(r). 92)
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The impurity potential U (r) is a random function with zero mean and the correlator
UarDUT2))imp = nimpU§8(r1 — r2), where n;,,, is the impurity concentration,
and Uy is the strength of an individual point-like impurity.

The Hamiltonian (9.1) can be diagonalized by a unitary transformation ag, =
>, Uar(k)cg)., where A = = is the band index (helicity), and

/ 1 oy tiyy Yz
Uy = — [l = A=, (9.3)
«/— V2 JYE+v? I
with the following result:

H=2> &y (94)

k A==%

The energy of the fermionic quasiparticles in the Ath band is given by &, (k) =
eo(k)+ M|y (k)|. This expression is even in k despite the antisymmetry of the SO cou-
pling, which is a manifestation of the Kramers degeneracy: the states |[kX) and | —kA)
are related by time reversal and therefore have the same energy. In real noncentrosym-
metric materials, the SO splitting between the helicity bands is strongly anisotropic.
Its magnitude can be characterized by Esp = 2 maxy |y (k)|. Forinstance, in CePt3Si
E 5o ranges from 50 to 200 meV (Ref. [24]), while in Li;Pd3B it is 30 meV, reaching
200 meV in LipPt3B (Ref. [25]).
In the band representation the impurity Hamiltonian (9.2) becomes

1 i
Hinp = %] ; Uk — Kywyu (k, K)e), e, 9.5)

where 7 is the system volume, U (q) is the Fourier transform of the impurity poten-
tial, and w(k, k') = a7 (k)ii(k’). We see that the impurity scattering amplitude in the
band representation is momentum-dependent, even for isotropic scalar impurities,
and also acquires both intraband and interband components, the latter causing mixing
of the helicity bands. In the case of a slowly-varying random potential, keeping only
the forward-scattering contribution U(g) ~ &40, one obtains: wy,/(k, k) = 8),/,
i.e. the bands are not mixed.

The electron Green’s function in the helicity band representation is introduced in
the standard fashion: G,/ (k, 7; k', /) = —<TerA(T)CLN(T/)>- In the absence of
impurities, we have G,/ (k, w,) = S /liw, — &0 (k)], where w, = 2n+ )T
is the fermionic Matsubara frequency.

We will now show that the impurity-averaged Green’s function remains band-
diagonal. The disorder averaging with the Hamiltonian (9.5) can be performed using
the standard methods [26], resulting in the Dyson equation of the form G =
GO — 3%, where G is the average Green’s function and 3 is the impurity self-energy,
see Fig.9.1. In the Born approximation, taking the thermodynamic limit »* — oo,
we have
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Fig.9.1 The impurity self-energy in the band representation. The dashed line corresponds to
Nimp Ug, the vertices include the anisotropy factors w (k, k), and the solid line is the average Green’s
function of electrons in the normal state. It is shown in the text that the self-energy is nonzero only
if Af = Ag and Ay = A3

R 3K A R .
>k, wy) :n,-m,,Ug/Ww(k, KYG(K', wp)W(k', k). (9.6)

Seeking a solution of the Dyson equation in a band-diagonal form, G ;s = G3.8,,
the integrand on the right-hand side of Eq. (9.6) can be written as follows:

G-‘r(k/’ wn) + G—(k/v wn) A
70
2
G (k', ) — G_(K', @)
+ 3 Y

GG, )i (K =

K",

where 7; are the Pauli matrices, and y = y/|y|. The second line in this expression
vanishes after the momentum integration, therefore f](k, wy) = X (w,)To. The real
part of the self-energy renormalizes the chemical potential, while for the imaginary
part we obtain: Im¥ (w,) = —I'signw,. Here I' = mnjy, UgNF is the elastic
scattering rate, with Ny defined as follows: Ny = (N4 + N_)/2, where N, =
Ve > « 816 (k)] is the Fermi-level density of states in the Ath band. Thus we arrive
at the following expression for the average Green’s function of the band electrons:

IRV,
Gk, wy) = - &

. 9.7
iw, — & (k) +il'sign w, ©-7

This derivation is valid under the assumption that the elastic scattering rate is small
compared with the Fermi energy e, which justifies neglecting the diagrams with
crossed impurity lines in the self-energy in Fig.9.1.

9.2.1 Impurity Averaging in Superconducting State

In the limit of strong SO coupling, i.e. when the band splitting exceeds all super-
conducting energy scales, the Cooper pairing between the electrons with opposite
momenta occurs only if they are from the same nondegenerate band. The pairing
interaction in the strong SO coupling case is most naturally introduced using the
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basis of the exact band states [20, 24, 27], which already incorporate the effects of
the crystal lattice potential and the SO coupling. The total Hamiltonian including the
pairing interaction is given by H = Ho + Hjup + H;y,, where the first two terms are
given by Egs. (9.1) and (9.5) respectively, and the last term has the following form:

1 .
Hing = 52 2 2 Vi k ey g el sewivciorgr. 9O8)
kk'q 2

Physically, the pairing interaction is mediated by some bosonic excitations, e.g.
phonons, and is effective only at frequencies smaller than a cutoff frequency w,,
which has to be included in the appropriate Matsubara sums. Alternatively, the cutoff
can be imposed on the momenta in Eq. (9.8), as in the original Bardeen-Cooper-
Schrieffer (BCS) model. The diagonal elements of the pairing potential V;, describe
the intraband Cooper pairing, while the off-diagonal ones correspond to the pair
scattering from one band to the other.

The pairing potential can be represented in the following form: Vi, (k, k') =
. (f)ts, (k') Vi (k, k'), see Ref. [28]. Here 1, (k) = —1,(—k) are non-trivial phase
factors originating in the expression for the time reversal operation for electrons
in the helicity bands: K|kX) = 1, (k)| — kX) [20, 27], while the components of
VM/ are even in both k and k' and invariant under the point group operations:
Vi (g 'k, g7k = V.,s (k, k). The latter can be expressed in terms of the basis
functions of the irreducible representations of the point group [29]. In general, the
basis functions are different for each matrix element. Neglecting this complication,
and also considering only the one-dimensional representation corresponding to the
pairing channel with the maximum critical temperature, one can write

Vi (k, k') = = Vs (k)¢5 (K, (9.9)

where the coupling constants V), form a symmetric positive-definite 2 x 2 matrix,
and ¢, (k) are even basis functions. While ¢ (k) and ¢_ (k) have the same sym-
metry, their momentum dependence does not have to be the same. The basis
functions are assumed to be real and normalized: (|¢; (k)|?), = 1, where the
angular brackets denote the Fermi-surface averaging in the Ath band: ((...)), =
(1/NY) 224 D86 (K.

Treating the pairing interaction (9.8) in the mean-field approximation, one intro-
duces the superconducting order parameters in the helicity bands, which have the
following form: A (k,q) = 1, (k) A, (k, q). The superconducting order parameter
is given by a set of complex gap functions, one for each band, which are coupled due
to the interband scattering of the Cooper pairs and other mechanisms, e.g. impurity
scattering. Thus the overall structure of the theory resembles that of multi-band super-
conductors [30, 31]. If the pairing corresponds to a one-dimensional representation,
see Eq. (9.9), then we have A; (k, q) = n.(q)p;. (k).

An important particular case is a BCS-like model in which the pairing interaction
is local in real space:

Hipg = =V / Syl (O] Y )Y (), (9.10)
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where V > 0 is the coupling constant. One can show [28] that in this model there is
no interband pairing for any strength of the SO coupling, the order parameter has only
one component 7, the gap symmetry corresponds to the unity representation with
¢,.(k) = 1, and all coupling constants in Eq. (9.9) take the same value: V,;, = V/2.

Let us calculate the impurity-averaged Green’s functions in the superconducting
state. To make notations compact, the normal and anomalous Green’s functions [26]
can be combined into a 4 x 4 matrix ¢ (k1, k»; 7) = —(T; Ck, (I)CZZ(O)), where

Cr = (cky., CT_ X A)T are four-component Nambu operators. Averaging with respect
to the impurity positions restores translational invariance: (¥4 (ky, k2; @p))imp =
8k, .k, (k, ), where

Gk,on)  —F(k, o) ) ©.11)

g(k, wy) = (_FA‘T(k’ wn) —éT(—k, —wn)

and the hats denote 2 x 2 matrices in the band space. The average matrix Green’s
function satisfies the Gor’kov equations, ({40_1 — Zimp)¥ =1, where

~

ion —E()  —A) ) ©.12)

1 _
Gl (k, wn) —( —ATk)  iwp+E)

and the impurity self-energy in the self-consistent Born approximation is
43K
_ 2 / / /
Eimp(ka wn) - nimpUO / Ww(k» k )g(k ) a)n)W(k ) k)s (913)

which is the Nambu-matrix generalization of Eq. (9.6). The 4 x 4 matrix W is
defined as follows: W (k, k') = diag[w(k, k'), —wT (—k’, —k)]. Itis straightforward
to show that [W7 (—k’, —k) ], = 15 (k)1 (K" Yw;, (k, k). We assume the disorder to
be sufficiently weak, so that it is legitimate to use the Born approximation. Although
there are some interesting qualitative effects in the opposite limit of strong disorder,
such as the impurity resonance states [32], these are beyond the scope of our study.

In the absence of impurities, the Green’s functions have the following form:
Gow(k,wp) = 8:Goalk, wy), and Fo,0(k, w,) = Sti(k)Fo ik, wn),
where

iw, + &, ~ A

——, Fop=—5——. (9.14)
w2 +EF 4+ |Ay 2 w2 +EF 4 A2

Goy=—

In the presence of impurities, we seek solution of the Gor’kov equations in a band-
diagonal form and require, for consistency, that the Nambu matrix components of
the self-energy are also band-diagonal. Then,

=k, wy) 212,(k,wn))_ ( 21 (wp) tk(k)z‘z(wn))
(Gateon 28 on) = (sisron "By ) ©19

where X' and X satisfy the equations
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w, —n; E , Wn),
l n 2 mp 0 (2 )3 A n
(9.16)

3o (wn) = nzmon Z/ o )3 Fk(k n).

Absorbing the real part of X into the chemical potential, we have X (w,) =
if]l(a)n), where 2:21 isoddin w,.

Solving the Gor’kov equations we obtain the following expressions for the
disorder-averaged Green’s functions:

i@y + &.(k)
G, (k, n) = — ’
PO = e 0 + Duk, o) ©.17)
Fi(k, w,) = TS

@2 + E2(k) + | Dy (k, wp)?

where @, = w,— X1 (wy) and Dy (k, w,) = A;.(k)+ X2 (wp). Substituting these into
Eqgs. (9.16), we arrive at the self-consistency equations for the Matsubara frequency
and the gap functions renormalized by impurities:

Bn = W + = pr< On > , (9.18)

V@2 + Dy (k, wy)|?

F D)\,/(k/v a)n)
D;.(k, wy) = may. (k) + = > py = , (9.19)
! 2 ; V@i + 1Dk wn)? [,
where
N
pr = o =143 (9.20)
Nfp

are the fractional densities of states in the helicity bands. The parameter § = (N4 —
N_)/(N4 + N_) characterizes the strength of the SO coupling.

9.3 Gap Equations and the Critical Temperature

The Gor’kov equations must be supplemented by self-consistency equations for the
order parameter components, which have the form usual for two-band supercon-
ductors. In particular, for a uniform order parameter, n,(q) = n,5(q), we have
2o Vi m/ =T,/ X F.(k, wp)¢; (k) (recall that the basis functions are assumed
to be real). Using Eq. (9.17), we obtain:
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Z VA}}m/ — 7y NpT Z/< ND)\(k, )P (k) > . ©21)
”  \V@Z + Dtk o) [,
These equations are called the gap equations and, together with Egs. (9.18) and
(9.19), completely determine the properties of disordered noncentrosymmetric super-
conductors in the uniform state. The prime in the Matsubara sum means that the
summation is limited to w, < w., where w, is the BCS frequency cutoff.

The superconducting critical temperature can be found from Eq. (9.21) after
linearization with respect to the order parameter components. It follows from
Eq. (9.18) that ®, = w, + I'signw, near T, and we obtain from Eq. (9.19) that
Zo(wy) = (I'/2)|wnl) 2, pr{Pa)n (here and below we omit, for brevity, the argu-
ments of the basis functions and the subscripts A in the Fermi-surface averages).
Therefore the linearized gap equations take the form >, ayny = 0, where

_ r
Vi = 080 S0t — S 0a0a{62) () Sii 9.22)

1
a 5=
AA N P

F
with Sy = 7T Y, |wa|*(Jon| + |I") . The Matsubara sums here can be easily
calculated:

1 2¢Cw, T
Sor=nT » ' =1In c—7(=),
ol ; wp + I nT (1")
where C >~ (0.577 is Euler’s constant,

PN 1 1 _ l

and ¥ (x) is the digamma function. Note that the expression (9.23) for the impurity
correction to Sop is valid if I < w., when it is legitimate to extend the summa-
tionin 27T >, [1/(w, + I') — 1/w,] to infinity and express the result in terms of
the digamma functions, see Ref. [33]. Similarly, we obtain: S, = F#(T/I")/T.
It is convenient to introduce the following notation for dimensionless coupling
constants:

8 = NrViwpi = Viu Ny 9.24)
(note that the matrix ¢ is not symmetric, in general). Then, the superconducting

critical temperature T, is found from the equation det(7y + gM ) = 0, where

c
2e* w,

M0 = =8 In

’ TC
+ (81 = St 00)) 7 (F) L 029

.
see Ref. [34].

In the absence of impurities, the second term in M}/ vanishes, and we obtain the
critical temperature of a clean superconductor:
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2 C
To= =2z, (9.26)
T
where
g+ + 8 gt — g\
g§= ++2 — + ( ++2 ) +g+-8—+ (9.27)

is the effective coupling constant. In the presence of impurities, the cases of conven-
tional and unconventional pairing have to be considered separately.

Unconventional pairing. In this case (¢,) = 0, and we obtain the following
equation for 7,:

T, T
mn=_z(=x). (9.28)
T, r

The reduction of the critical temperature is described by a universal function, which
has the same form as in isotropic centrosymmetric superconductors with magnetic
impurities [35], or in anisotropically paired centrosymmetric superconductors with
nonmagnetic impurities [29, 36]. In particular, at weak disorder, i.e. in the limit I” <
T, we have T, = T,o — w I"/4. The superconductivity is completely suppressed at
I = (/2e)Te0.

Conventional pairing. Assuming a completely isotropic pairing with ¢, = 1, we
obtain:

T, | +0.7 1
In -0 — +taZw -2, (9.29)

1. 2+ 3.F(x) +Ves + 5. F(x) + 6 F2(x) 8

where x = T, /I", and

(- —8+-) + p—(g++ — §—+) T _ detg
c] = ) Q= ——F""> 3 = ’
2 2 2
2
8§++ — 88— A
cq = (HT) +g+-g-4, cs=(cr—cyp)detg, c¢= c_%.

We see that the critical temperature depends on nonmagnetic disorder, but in contrast
to the unconventional case, the effect is not described by a universal Abrikosov-
Gor’kov function [34, 37]. At weak disorder the suppression is linear in the scattering
rate, but with a non-universal slope:

T. =T, ! 71 + e 1 (9.30)
=Tpo——|c1———|c . .
¢ <0 g ! 4 3 2/cs

In the case of strong impurity scattering, I" > Ty, weuse % (x) = In(1/x) +
O(1) at x — 0, to find that the critical temperature approaches the limiting value
given by
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C1

1
T = -—— ), 9.31
(L 2) osn

i.e. superconductivity is not completely destroyed by impurities. The explanation is
the same as in the conventional two-gap superconductors, see e.g.
Refs. [38—40]: Interband impurity scattering tends to reduce the difference between
the gap magnitudes in the two bands, which costs energy and thus suppresses 7, but
only until both gaps become equal. One can show that both the coefficient in front
of I" in Eq. (9.30) and the exponent in Eq. (9.31) are negative, i.e. T < T¢o.

In the BCS-like model (9.10) the pairing is isotropic and described by a single
coupling constant V,;» = V/2, and we have g = NgV. Although the expression
(9.26) for the critical temperature in the clean case has the usual BCS form, the
analogy is not complete, because the order parameter resides in two nondegenerate
bands, and Nr = (N4 4+ N_)/2. In the presence of impurities, the right-hand side
of Eq. (9.29) vanishes, therefore there is an analog of Anderson’s theorem: The
nonmagnetic disorder has no effect on the critical temperature.

Another important particular case, possibly relevant to CePt3Si, is the model in
which only one band, say A = +, is superconducting, while the other band remains
normal [24, 34]. This can be described by setting V. = V__ = 0. Using Eq. (9.25),
we obtain the following equation for the critical temperature:

TcO Tc
In—=c 7 |—=), 9.32
n T o ( F) (9.32)

wherecop = 1 — p4 (¢+)2 /2. At weak disorder we have T, = T.o — co(r I"/4), while
at strong disorder T, = T.o(w Teo/ eC M/ If the pairing is anisotropic but conven-
tional, then, unlike the unconventional case with (¢) = 0, the superconductivity is
never completely destroyed, even at strong disorder.

9.3.1 Isotropic Model

Finding the superconducting gap at arbitrary temperatures and impurity concen-
trations from the nonlinear gap equations (9.21) is more difficult than the calcu-
lation of 7.. We focus on the case when the pairing is completely isotropic, i.e.
¢+ (k) = ¢p_(k) = 1 and A (k) = ny. The order parameter components can be
chosen to be real, and the gap equations take the following form:

_ Dj.(wn)
S Vi = ap NFT Y et (9.33)
A'/

n )@ + D3 (wy)

We further assume that the difference between p4 and p_ can be neglected and the
pairing strength, see Eq. (9.9), does not vary between the bands: Vi, = V__ > 0.
For the interband coupling constants, we have V,_ = V__ . The gap equations have
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two solutions: n4 = n— = n and n4 = —n_ = n. In the spin representation, the
former corresponds to the singlet state, while the latter — to the “protected” triplet
state [21].

The impurity responses of these two states turn out to be very different.

N+ =n— =n.Inthiscase Dy (w,) = D_(w,) = D(w;), and Egs. (9.18) and (9.19)
take the following form:

- wp
Op =y + N ———

, D=n+T
w2+ D?

D
NG E
Introducing Z(w,) = 14 I'/\/w? + n?, the solution of these equations is D(w;,) =
Z(wp)n, @, = Z(wp)wy. Therefore, the gap equation (9.33) becomes

D U
=ag1T Y '——= =79 T ) '———, 9.34
T G T R e O
where g1 = (V44 + V4_)Np. The scattering rate has dropped out, therefore there
is an analog of Anderson’s theorem: neither the gap magnitude nor the critical tem-
perature are affected by impurities. Namely, we have T,.(I") = T,o, see Eq. (9.26)
with g = g1, while the gap magnitude at 7=0 is given by the clean BCS expression:
(T =0) =110 = (/e Tro.
Ny = —n— = 7. In this case D4 (w,) = —D_(w,) = n, and we obtain from
Eqgs. (9.18), (9.19), and (9.33):

@n=wn+T (9.35)

_en , n=ngnT » ' N — ,
TR T L e
where go = (V44 — V4_)Np. In the absence of impurities, the critical temperature
is given by the BCS expression (9.26) with g = g». If V. _ > 0 (attractive interband
interaction), then g» < g1 and the phase transition occurs into the state ny =n_.
However, if V. _ < 0 (repulsive interband interaction), then g > g and the phase
transition occurs into the state n4 = — n_. In contrast to the previous case, both
the critical temperature and the gap magnitude are now suppressed by disorder. The
former is determined by the equation (9.29), which takes the same universal form as
the Abrikosov-Gor’kov equation (9.28). Superconductivity is completely destroyed
if the disorder strength exceeds the critical value I, = (7r/ 2¢€)Tyo.

To find the gap magnitude at 7 = 0 as a function of I" we follow the procedure
described in Ref. [41]. Replacing the Matsubara sum by a frequency integral in the
second of equations (9.35), we obtain:

(0.¢]
10 1 1
In = = / do —~ : (9.36)
n) (Jw2+n2 ¢5)2+n2)

where 9 = 21 is the BCS gap magnitude in the clean case, and @ satisfies the
equation @ = w + I'®/+/@?* + n2. Transforming the second term on the right-hand
side of Eq. (9.36) into an integral over @ we arrive at the following equation:
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In % — ? —1In2x) +6(x — 1)|:ln(x +Vx2—1)

VAT
- %arctan Vxi—1-— xz—:|, (9.37)

X

where x = I'/n. This equation does not have solutions at I" > I, which is consis-
tent with the complete suppression of superconductivity above the critical disorder
strength. In the weak disorder limit, I < I, the solution is x >~ I"/2I, while at

I' - I'. wehave x >~ /I./12(I. — I').

9.4 Upper Critical Field at Arbitrary Temperature

In this section, we calculate the upper critical field H.2(T') of a disordered noncen-
trosymmetric superconductor described by the BCS-like model (9.10). We assume
a uniform external field H and neglect the paramagnetic pair breaking. The nonin-
teracting part of the Hamiltonian is given by

h=ey(K)+yK)é +U(r), (9.38)

where K = —iV + (e/c)A(r), A is the vector potential, and e is the absolute value
of the electron charge. The superconducting order parameter in the model (9.10) is
represented by a single complex function n(r). According to Sect. 9.3, the zero-field
critical temperature is not affected by scalar impurities. The critical temperature at
H # 0, or inversely the upper critical field as a function of temperature, can be found
from the condition that the linearized gap equation [V™! — T > "X (wp)n(r) =0

has a nontrivial solution. Here the operator X (wp) is defined by the kernel

1 . .
X(r.r' o) = E(trgTG(r, r'so)gGT (r, 1’ —wy)) (9.39)

imp’
where ¢ = i6,. The angular brackets denote the impurity averaging, and G(r,r'; wp)
is the Matsubara Green’s function of electrons in the normal state, which satisfies
the equation (iw, — WG(r,r'; wy) =8 —r'), with h given by expression (9.38).

The impurity average of the product of two Green’s functions in Eq. (9.39) can be
represented graphically by the ladder diagrams, see Fig.9.2 (as before, we assume
the disorder to be sufficiently weak for the diagrams with crossed impurity lines to
be negligible). In order to sum the diagrams, we introduce an impurity-renormalized

gap function D(r, wy), which a matrix in the spin space satisfying the following
integral equation:
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B, v I
M g+ g" ! g+
—_— > >

o 1) o p o o

Fig.9.2 Impurity ladder diagrams in the Cooper channel. Lines with arrows correspond to the
average Green'’s functions of electrons, ¢ = id7, and the impurity (dashed) line is defined in the
text, see Eq. (9.41)

D(r, o) = n(r)g
L L A NG O 5T (o s :
+ Enlmong d&’rug' (G(r,r ,a)n»zmpD(r s ) (G (r, 1 _wn)>lmp
+1‘U2A dS/ATG /. D GT . )
Enzmp 08 rug (G, r ’wn»zmp (r', wn){ (r.r; _wn)>lmp-
(9.40)

This can be easily derived from the ladder diagrams in Fig. 9.2, by representing each
“rung” of the ladder as a sum of spin-singlet and spin-triplet terms:

1 1 n
nimpU(%Suv‘Spa = EnimpU(%gupg;u + znimpUggupg(;w (9.41)

where g = i655. .
Seeking solution of Eq. (9.40) in the form D(r, w,) = do(r, w,)g +d(r, w,)g,
we obtain a system of four integral equations for d,, where a = 0, 1, 2, 3:

3
> [8ab — T (@m)]ds(r. @) = n(r)a0. (9.42)
b=0

Here the operators Q}ah(wn) are defined by the kernels

D (r, 1’ wp) =

27 Np tf§2<é(i‘, r'; wn))impgb(GT(r’ r’; _U)n))im[n (9.43)
with §, = g, and g, = g, fora = 1,2, 3. We see that, in addition to the spin-
singlet component dy(r, w,), impurity scattering also induces a nonzero spin-triplet
component d (r, w,). The linearized gap equation contains only the former. Indeed,
using Eq. (9.42) we obtain:

NpV r

pr) — 27> RO =IO (9.44)
n

It is easy to see that the triplet component does not appear in the centrosymmetric

case. Indeed, in the absence of the Zeeman interaction the spin structure of the

Green'’s function is trivial: Gog(r, r'; w,) = 80 G (r, r'; wy). Then it follows from

Eq. (9.43) that @ (wn) = 8ap @ (), therefore dy = (1 — I'%)"'n and d = 0.
The next step is to find the spectrum of the operators %b (wy). At zero field, the

average Green’s function has the following form:
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Golk, wn) = D T (k)G (k, o), (9.45)
A=+

where IT;, = (1 + A76)/2 are the helicity band projection operators, and G, (k, wy,)
are the impurity-averaged Green’s functions in the band representation, see Eq. (9.7).
At H # 0, wehave (G(r,r'; 00))imp = Go(r — r'; w,) expllie/c) f,” Adr],
where the integration is performed along a straight line connecting r and r’ [42].
This approximation is legitimate if the temperature is not very low, so that the Landau
level quantization can be neglected. It follows from Eq. (9.43) that %b(wn) =
Yar(q, “’”)|q»D’ where D = —iV + (2¢/c)A and

1 dk
Yap(q, wy) = m 2n)3

Substituting here expressions (9.45) and calculating the spin traces, we obtain for
the singlet-singlet and singlet-triplet contributions:

g Gotk + ¢, 086Gl (—k, —w,).  (9.46)

Y, —12 < ! > (9.47)
W24 PA\lonl + T + ivyk)g signan /2]’ '

1 yi (k) >
Yoi=Yo== ) X - , 9.48
or= S0 2; pk<|wn|+1’+iv,\(k)q sign w, /2 ©.48)
where v, = 0§, /0k is the quasiparticle velocity in the Ath band. We see that the
singlet-triplet mixing occurs due to the SO coupling and vanishes when p, = p_ =1
and vy = v_ = vp. The triplet-triplet contributions can be represented as follows:

_ v 2
Yij _Yl.j +Yij , Where

1 i (k)y; (k)

) YilK)Y;

Y. == E , 9.49
ij 2 ~ pk<|a)n|+1“+iv;\(k)q signa)n/2> ©49)

and

1 A’k
() ~ A . ~
Y= 2ANF ;/ ) Gij — Vivj —ireijy) Gk + q, 0,)G_y(—k, —wy).

(9.50)
The singlet impurity scattering channel, which is described by the first term in
Eq.(9.41), causes only the scattering of intraband pairs between the bands. In contrast,
the triplet impurity scattering can also create interband pairs, which are described
by Yi(f).
It is easy to show that if the SO band splitting exceeds both w. and I', then the
interband term in Y;; is smaller than the intraband one. Let us consider, for example,
isotropic bands with &4 (k) = eo(k) & y. Neglecting for simplicity the differences
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between the densities of states and the Fermi velocities in the two bands and setting
q = 0, we obtain from Eq. (9.49) and (9.50):

51']' _
3(jwal + 1)

28;; _

3(|lwa| + D)1 +12) —

1
Yi(j )(0, wy) = Yintra(@n)ij,

2
Y20, w,) =

Yinter (wn)aij s

where r(w,) = y/(lw,| + I'). Due to the BCS cutoff, the maximum value of w, in
the Cooper ladder is equal to w,, therefore rpi;, ~ Eso/max(w., I'). We assume
that this ratio is large, which is a good assumption for real materials, therefore

Yier(wn) 2 [max(‘”“ F)T <1, 9.51)

n Yingra(wp) B 1+rr?1in Eso

at all Matsubara frequencies satisfying |w,| < w,.
Thus the interband contributions to the Cooper ladder can be neglected, and we
obtain:

(9.52)

| k) 45K
Ya yWnp) = = — — s
- on) 2ZA:p*<|wn|+r+m<k>qslgn el

where A; o(k) = 1 and A, (k) = Ay, (k) for a =1, 2, 3. Making the substitution
q — D, we represent %, as a differential operator of infinite order:

o]

Duptoon) = 5 / du e 17 o, (Al A e~ 0 0PIz /2)
2 ) >
. (9.53)
In order to solve Eq. (9.42), with the operators %, (w,) given by expressions
(9.53), we follow the procedure described in Ref. [43, 44]. Choosing the z-axis
along the external field: H = Hz, we introduce the operators ax = £y (Dy +

iDy)/2, and a3 = £y D,, where £y = +/c/eH is the magnetic length. It is easy to
il

check thatay = a’ and [a_, ay] = 1, therefore a4 have the meaning of the raising

and lowering operators, while az = a; commutes with both of them: [a3, a+] = 0.

It is convenient to expand both the order parameter n and the impurity-renormalized
gap functions d, in the basis of Landau levels |N, p), which satisfy a|N, p) =
VN FIIN + 1, p),a_|N, p) = /N|N — 1, p), and a3|N, p) = p|N, p), where
N = 0,1, ..., and p is a real number characterizing the variation of the order
parameter along the field. We have

nr) =D anp(rIN. p),  da(r,op) =D dy ,(@,)(rIN, p).  (9.54)
N,p N.,p

According to Eq. (9.42), the expansion coefficients can be found from the following
algebraic equations:
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> [Basbrnbpy = TN, plFan@n)IN's p) | @n) = Sagtin e (9.59)
N',p'.b

Substituting the solutions of these equations into

1 d/?/ (wp) — IN,p
e —nT (ALY AL 0, 9.56
NN Z - (9.56)

see Eq. (9.44), and setting the determinant of the resulting linear equations for ny
to zero, one arrives at an equation for the upper critical field.

9.4.1 H,»(T) in a Cubic Crystal

In the general case, i.e. for arbitrary crystal symmetry and electronic band structure,
the procedure outlined above does not yield an equation for H.»(T) in a closed form,
since all the Landau levels are coupled. In order to make progress, we focus on the
cubic case, G = O, with a parabolic band and the SO coupling given by y (k) = yok.
As for the parameter 8, which characterizes the difference between the band densities
of states, see Eq. (9.20), we assume that

be L8] = 1, (9.57)

where 8§, = max(w¢, I")/er < 1. While the first inequality follows from the condi-
tion (9.51), which ensures the smallness of the interband contribution to the Cooper
impurity ladder, the second one is always satisfied, with |§] — 1 corresponding to
the rather unrealistic limit of extremely strong SO coupling.

In order to solve the gap equations, we make a change of variables in the triplet
component: d+ = (d| £id)/ V2. Then, Eq. (9.42) take the following form:

L=T%0  —T'%s —T'%_- —TI'%.\ [do

~ N n

—TI'%ys 1-T'%s —T'%. —T'%y d3 0
IS S - A = , (9.58)

—F%+ —F%+ 1-Ir —Ffo‘w_;_ d+ 0

—I'%. -I'#%. -I%Z 1-rz) \d- 0

where
G B PR COp 059
P 11+ 22’ 5'32¢= 11 1412 — 22’

2 2

with @Aab = @Aba given by Eq. (9.53).

According to Eq. (9.55), one has to know the matrix elements of the operators
@Aab(a),,) in the basis of the Landau levels |N, p). After some straightforward alge-
bra, see Ref. [45] for details, we find that %g, %3, 6’733, and & are diagonal in the
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Landau levels, while for the rest of the operators (9.59) the only nonzero matrix ele-
ments are as follows: (N, p|%)—|N+1, p) = (N+1, p|%+|N, p), (N, p|%_|N+
L, p) =(N + 1, pl#|N, p), and (N, p|Z_|N + 2, p) = (N + 2, p|Z;|N, p).
Therefore, the Landau levels are decoupled, and for n(r) = n(r|N, p) (n is a con-
stant) the solution of Eq. (9.58) has the following form:

do(r, wp) dy ,(@a)(rIN, p)
d3r,w) | | (@) (rIN, p)
di(ron) | = | a5 o rIN+ 1, p) 660
d—(r, wn) dy ,(@u){rIN —1, p)

At arbitrary magnitude of the SO band splitting, the singlet-triplet mixing makes
the equation for H.>(7") in noncentrosymmetric superconductors considerably more
cumbersome than in the Werthamer-Helfand-Hohenberg (WHH) problem [43, 44],
even in our “minimal” isotropic model. It is even possible that, at some values of
the parameters, the maximum critical field is achieved for N >0 and p #0, the
latter corresponding to a disorder-induced modulation of the order parameter along
the applied field. Leaving these exotic possibilities aside, here we just assume that
N =p=0. Then the only nonzero components of the impurity-renormalized gap
function, see Eq. (9.54), are d(()),o and d(;f 0

Itis convenient to introduce the reduced temperature, magnetic field, and disorder
strength:

T 2H r
t=—, h=

“H T ane

where Hy = @ /nég, @y = mc/eisthe magnetic flux quantum, and &y = vp /2w Ty
is the superconducting coherence length (v is the Fermi velocity). Using the expres-
sion for the critical temperature to eliminate both the frequency cutoff and the cou-
pling constant from Eq. (9.56), we arrive at the following equation for the upper
critical field h.(1):

1 L wa(l=¢pa) — (8%,
ln?_zz[an t(l—z;wn)(l—;pn)ﬂzazq,%] ©-6D

n>0
where

00 1 ) )

Wn=/ dpe—enp/ dsehPP1=s2/4,
0 0
* 0 bo1=s? h , 2 hp?(1—s5%)/4

pnz/ dpe_’“o/ ds 5 [1—5,0 (1—s )}e—ﬂ—f A (9.62)
0 0

> b h 212
qn =/ a’pe_a”p/ ds/—p(l — s2)e e (1=s/4,
0 0 4

where 6, = 2n + 1)t + ¢.
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In the clean limit, i.e. at { — 0, or if the SO band splitting is negligibly small,
ie. at 8 — 0, the WHH equation for H., in a centrosymmetric superconductor
[43, 44] is recovered. Therefore, the absence of inversion symmetry affects the upper
critical field only if disorder is present. One can expect that the effect will be most
pronounced in the “dirty” limit, in which Eq. (9.61) takes the form of a universal
equation describing the magnetic pair breaking in superconductors [46]:

LY LA B 9.63
" (§+7)‘ (5) 069

2482
= h 64
o 150 (9.64)

Here the parameter

characterizes the pair breaking strength. Note that the corresponding expression in the
centrosymmetric case is different: ocs = h/6¢. Analytical expressions for the upper
critical field can be obtained in the weak-field limit near the critical temperature:

24¢

hc2|z—>1 =

and also at low temperatures:

3¢~ €
2+ 82

heali=o = g. (9.60)
We see that nonmagnetic disorder suppresses the orbital pair breaking and thus
enhances the upper critical field.

In the general case, Hq.»(T) can be calculated analytically only in the vicinity
of the critical temperature using the Ginzburg-Landau free energy expansion. The
results for the impurity response turn out to be nonuniversal, i.e. dependent on the
pairing symmetry, the values of the intra- and interband coupling constants, and the
densities of states in the helicity bands [34].

9.5 Spin Susceptibility

In this section we calculate the magnetic response of a noncentrosymmetric super-
conductor, neglecting the orbital magnetic interaction and taking into account only
the Zeeman coupling of the electron spins with a uniform external field H:

Hzeeman = —sH Y 0upaj agp = —H D my (e, cior,  (9.67)
k.ap k0

where up is the Bohr magneton. The components of the spin magnetic moment
operator in the band representation have the following form:
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A );x _(Vx?z‘i‘i)’y)/yj_
M = KB (—(VxJ?z —iyy)/vL —Vx ’
. Vy —(yyVz —iva)/vL )
m, = A - 3
y=HE (_(Vyyz +iya)/vL _Vy
¥z vily
= 9.68
a (n/y 7 ) 0-68)

where yi = /y? + y?.

The magnetization of the system is expressed in terms of the Green’s functions as
follows: .2 = (1/Y)T X, D g s mi s ()G (k, ), where 4 (k, w,) is the
impurity-averaged 4 x 4 matrix Green’s function in the presence of magnetic field
(recall that the upper indices label the Nambu matrix components, see Sect.9.2.1). In
a weak field, we have .#; = > j Xij Hj, where y;; is the spin susceptibility tensor.
Treating the Zeeman interaction, Eq. (9.67), as a small perturbation and expanding
¢ in powers of H, we obtain:

1 / /
xij = =T 25 D (TeM; ()G (e, k' o) M (KNG K s o)), (9:69)
n k. k'

where M; (k) = diag[m; (k), —n%l.T (—k)]. The Green’s functions here are unaveraged
4 x 4 matrix Green’s functions at zero field, and the trace is taken in both the
electron-hole and helicity indices.

In the clean case, one can evaluate expression (9.69) by summing over the Mat-
subara frequencies first, followed by the momentum integration. The susceptibility
tensor can be represented as x;; = Xf; + Xi; + Xij (Ref. [22]), where

Xy = MBTZ/(Z a7 (G} +|Eol?) = ugp Ny (7, Y5) (9.70)

are the intraband contributions, determined by the thermally excited quasiparticles
near the Fermi surfaces. Here Y, (k, T) = 2 fooo d&(—0f/0E)) is the angle-resolved
Yosida function, f(e) = (€/T + 1)~! is the Fermi-Dirac distribution function,

E) (k) = \/£2 4+ |A;.(k)|? is the energy of quasiparticle excitations in the Ath band,

and, as in the previous sections, the subscripts X in the Fermi-surface averages are
omitted for brevity. The interband contribution is given by

le =—2/LBTZ/ 2 )3( ij = ViV )(G+G + RCF F )
o [ Ak b — %Y
MB/ Qr)y} |yl —— o L) — fE] (9.71)

Since x;; is determined by all quasiparticles in the momentum-space shell “sand-
wiched” between the Fermi surfaces, it is almost unchanged when the system under-
goes the superconducting transition, in which only the electrons near the Fermi
surface are affected.



288 K. V. Samokhin

-

x (T) /xp

T/Te

Fig.9.3 The clean-case temperature dependence of the transverse components of the susceptibility
for the 2D model (solid line), and of all three components for the 3D model (dashed line); xp =
ZM%NF is the Pauli susceptibility

Collecting together the inter- and intraband contributions, we arrive at the follow-
ing expression for the spin susceptibility of a clean superconductor:

Xij = Xif + wpNe Do (70 Va) ©.72)
s

At zero temperature there are no excitations (¥; = 0) and the intraband terms are
absent, but the susceptibility still has a nonzero value given by ¥;;. The temperature
dependence of the susceptibility in the superconducting state at 0 < 7 < T, is
determined by the intraband terms, with the low-temperature behavior depending
crucially on the magnitude of the SO coupling at the gap nodes. While in the fully
gapped case the intraband susceptibility is exponentially small in all directions, in
the presence of the lines of nodes it is proportional to either T or T3, depending on
whether or not the zeros of A; (k) coincide with those of y (k), see Ref. [47]. In
Fig.9.3 the temperature dependence of x;; is plotted for a Rashba superconductor
with y (k) = y, (k x Z) and a cylindrical Fermi surface (referred to as the 2D model),
and also for a cubic superconductor with y (k) = ypk and a spherical Fermi surface
(the 3D model). In both cases, the gaps in the two helicity bands are assumed to be
isotropic and have the same magnitude.

Now let us include the scalar disorder described by Eq. (9.2), or, equivalently,
Eq. (9.5). After the impurity averaging, Eq. (9.69) is represented by a sum of the
ladder diagrams containing the average Green’s functions (9.17). In contrast to the
clean case, it is not possible to calculate the Matsubara sums before the momentum
integrals. To make progress, one should add to and subtract from Eq. (9.69) the
normal-state susceptibility [26]. It is easy to show that the latter is not affected
by impurities and is therefore given by xn.i; = Xij + K3NF X, pa (Vi7;). see
Eq. (9.72). Then,
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1
Xij—xXn.ij =T 2/7 Z(( Tr M9 M9 imp— Tt MiGN MG\ )imp), (9.73)
n Kk’

where ¥y is the unaveraged 4 x 4 matrix Green’s function in the normal state with
impurities, and the Matsubara summation is limited to the frequencies |w,| < w,, at
which the gap function is nonzero.

Due to convergence of the expression on the right-hand side of Eq. (9.73), one
can now do the momentum integrals first. The second term vanishes, while the
calculation of the ladder diagrams in the first term is facilitated by the observation
that the integrals of the products of the Green’s functions from different bands are
small compared with their counterparts containing the Green’s functions from the
same band. The argument is similar to the one leading to Eq. (9.51). For example,
assuming that both the SO band splitting and the pairing are isotropic, i.e. £1 (k) =
eo(k) £y and Dy = D, we have

[deoGiG_,, 1 max(we, I') 1
max ——— = max 7757 <1,
n deQGAGA n 14y /.Qn Eso
where £2, = /&2 + |D|?. In the same way, one can also obtain estimates for the

momentum integrals containing anomalous Green’s functions:

fdsoG;LI}_;L 1 —iry/@&, max(we, I
max ~———— = max oy < 1,
n deOG)LFA no 14+y/82; Eso
deoFy F_ 1 I 2
maxfO—U = max 55 ™ [max(wc )] < 1.
n fdé‘()F)LF)L no 1+ y2/02; Eso

Thus we see that it is legitimate to keep only the same-band contributions to the
impurity ladder on the right-hand side of Eq. (9.73).
Following Ref. [22], we obtain the following expression for the spin susceptibility:

27 upNp 0X;(wy)
Xij = i+ T 2= 0 (9.74)
where X; are found from the equations
X — Z(Al,inj + AnijYj+ A3 YT = Xois
’ (9.75)

Yi — D QAL X+ As Y+ A7) = Yo
j

The notations here are as follows:
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r 7i751Da? lyyw
A]Jj:EZ <’] , A21]=_Z,0)\ l] n ,

}’l

r 77 2an + |DxI) r 717, D;
A3,ij=ZZ < I35, ; A4,ij=ZZPA o7 |

Xo,i = —uB Z:Al,inj7 Yoi = —2up ZA;UH]"
I j

and £, = /@2 + |D;|?. Due to fast convergence, the Matsubara summation in
Eq. (9.74) can be extended to all frequencies.

9.5.1 Residual Susceptibility for Isotropic Pairing

The general expression for the spin susceptibility, Eq. (9.74), is rather cumbersome.
On the other hand, application of our results to real noncentrosymmetric materials
is complicated by the lack of information about the superconducting gap symmetry
and the distribution of the pairing strength between the bands. As an illustration,
we focus on the isotropic pairing model introduced in Sect. 9.3.1. In this model, the
order parameter magnitudes in the two bands are the same, but the relative phase
can be either O or . While in the clean limit the spin susceptibility for both states is
given by Eq. (9.72), the effects of impurities have to be analyzed separately.

n+ = n— = n. Solving equations (9.75) we obtain, in the coordinate system in
which (p;p;) is diagonal, the following expression for the nonzero components of
the susceptibility tensor:

xii (T) ~2 n? 1

=1—(y )\nT ,
xp l ;w£+n2\/w£+n2+1}
where I} = (1 — (P?)T.

We are particularly interested in the effect of disorder on the residual susceptibility
at zero temperature. In this limit, the Matsubara sum in Eq. (9.76) can be replaced
by a frequency integral, which gives

X =0

=1-H+ e (%) (9.77)
xp no

(9.76)

where 19 = (7r/¢€)T, is the gap magnitude at 7 =0, and

T 1—x
] =1—-——11- arctan .,/ —— |.
1) Zx( ¢_—x +x)

While the first two terms on the right-hand side of Eq. (9.77) represent the residual
susceptibility in the clean case, the last term describes the impurity effect. In a weakly-
disordered superconductor, using the asymptotics @1(x) =~ mx /4, we find that the
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Fig.9.4 The residual susceptibility at 7 =0 vs disorder strength for n4+ = n_. The solid line
corresponds to the transverse components in the 2D case (x;; = xp and is disorder-independent),
the dashed line to the diagonal components in the 3D case

residual susceptibility increases linearly with disorder. In the dirty limit, I" > ng, we
have @1(x) — 1, therefore y;; (T = 0) approaches the normal-state value x p. For
the two simple band-structure models (2D and 3D) discussed earlier in this section,
the Fermi-surface averages can be calculated analytically, and we obtain the results
plotted in Fig.9.4.

Thus we see that, similarly to spin-orbit impurities in a usual centrosymmetric
superconductor [48], scalar impurities in a noncentrosymmetric superconductor lead
to an enhancement of the spin susceptibility at 7 = 0. Since the interband contri-
bution is not sensitive to disorder, this effect can be attributed to an increase in the
intraband susceptibilities.

n+ = —n— = n. From Egs. (9.74) and (9.75) we obtain the nonzero components
of the susceptibility tensor:

Xii (T) -1— ()912>T[T Z . 772 _ . (978)
X @+ = Ty

We note that for a spherical 3D model with (7?3) = 1/3 this expression has exactly
the same form as the susceptibility of the superfluid *He-B in aerogel, see Refs. [41]
and [49].

At T = 0, the expression (9.78) takes the following form:

xi (T =0)

2 2 r
=1—-(y7) +{y") P2 (—) , (9.79)
xp n
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Fig.9.5 The residual susceptibility at 7 = 0 vs disorder strength for n4 = —n_. The solid line
corresponds to the transverse components in the 2D case (x;; = xp and is disorder-independent),
the dashed line to the diagonal components in the 3D case

where

By (x) = 1 /ood [1 - ] !
2 X) = —_ —_ A ’
Ymin Y (y2 + 1)3/2 (yz + 1)3/2 - x<y[2>

and yuin = 0(x — 1)+/x2 — 1. The last term on the right-hand side of Eq. (9.79)
describes the effect of impurities. According to Sect. 9.3.1, superconductivity is sup-
pressed above the critical disorder strength I'. = (17/2¢€)T.o. For a given I, one
should first obtain the gap magnitude from Eq. (9.37) and then calculate @;(x). In
the weak disorder limit, we have @,(x) ~ 3mx/16)(1 — ()91.2)), i.e. the residual
susceptibility increases linearly with disorder. At I" — I, we have @3(x) — 1
and y;; (T = 0) — xp. The dependence of y;; (T = 0) on the disorder strength for
the 2D and 3D models is plotted in Fig.9.5. As in the case n4 = 7n_, the residual
susceptibility is enhanced by impurities.

9.6 Conclusions

Scalar disorder in noncentrosymmetric superconductors causes anisotropic mixing
of the electron states in the bands split by the SO coupling. The critical temperature
is generally suppressed by impurities, but this happens differently for conventional
and unconventional pairing. For all types of unconventional pairing (which is defined
as corresponding to a non-unity representation of the crystal point group, with van-
ishing Fermi-surface averages of the gap functions), the impurity effect on 7, is
described by the universal Abrikosov-Gor’kov equation. The same is also true for cer-
tain types of conventional pairing, in particular the “protected” isotropic triplet state
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with n+ = —n_. Any deviation from the Abrikosov-Gor’kov curve, in particular,
an incomplete suppression of superconductivity by strong disorder, is a signature of
conventional pairing symmetry.

The impurity-induced mixing of singlet and triplet pairing channels makes the
magnetic response of noncentrosymmetric superconductors with the SO coupling
different from the centrosymmetric case. In an isotropic BCS-like model, the upper
critical field H,, is enhanced by disorder at all temperatures, the magnitude of the
effect depending on the SO coupling strength. In general, the effect of impurities on
the slope of H, is sensitive to the pairing symmetry and the band structure.

Concerning the spin susceptibility, we found that scalar impurities in
noncentrosymmetric superconductors act similarly to spin-orbit impurities in cen-
trosymmetric superconductors, in the sense that they enhance the residual suscep-
tibility at 7 = 0. The quantitative details again depend on the band structure, the
anisotropy of the SO coupling, and the symmetry of the order parameter.

Most of the experimental work on noncentrosymmetric superconductors has been
done on CePt3Si. In this compound the Fermi surface is quite complicated and con-
sists of multiple sheets [24]. It is not known which of them are superconducting.
The order parameter symmetry is not known either, although there is experimental
evidence that there are lines of nodes in the gap [50-52]. The data on the impurity
effects are controversial. The experimental samples seem to be rather clean, with
the ratio of the elastic mean free path / to the coherence length &y ranging from 4
(Ref. [1]) to 10-27 (Ref. [53]. There are indications that 7, is indeed suppressed
by structural defects and/or impurities in some samples [52]. On the other hand, the
values of both the critical temperature and the upper critical field in polycrystalline
samples [1] are higher than in single crystals [50]. This is opposite to what has been
observed in other unconventional superconductors and also disagrees with the theo-
retical predictions, assuming that the polycrystals are intrinsically more disordered
than the single crystals. In addition, the low-temperature behaviour of the penetra-
tion depth in disordered samples is unusual [52] and cannot be explained by existing
theoretical models. In order to resolve these issues, more systematic studies of the
disorder effects in a wide range of impurity concentrations are needed.
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Chapter 10
Vortex Dynamics in Superconductors Without
Inversion Symmetry

Corneliu F. Miclea, Ana-Celia Mota and Manfred Sigrist

Abstract Inthis chapter we give an overview on some recent experimental results on
vortex dynamics in the non-centrosymmetric superconductors CePt3Si and Li> Pt3B.
In both compounds the flux creep from a metastable vortex configuration is anom-
alously slow—slower than in any other superconductor. Additionally, Li;Pt3B shows
very strong avalanche-like flux release after waiting times of several hours at
millikelvin temperatures. Since critical currents are also low, the origin of these
properties cannot be simply attributed to conventional flux pinning by defects. We
speculate that both properties might be connected with crystalline twinning of the
samples. We show that twin boundaries in non-centrosymmetric superconductors
can host states with broken time reversal symmetry which can carry fractionally
quantized flux lines. These flux lines are strongly pinned to the twin boundaries such
that they impede the usual flux motion without affecting the critical current.

10.1 Introduction

Since a few years non-centrosymmetric superconductors that lack spatial inversion
symmetry have revealed several new properties which are discussed in the various
chapters of this book. In this chapter we will focus on the vortex dynamics and
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pinning properties in such materials, that exhibit unusual behaviors not observed in
other superconductors.

Itis commonly observed in superconductors that a vortex phase in non-equilibrium
configurations moves towards equilibrium, unless vortices are prevented to move by
pinning due to defects in the material. If the pinning is strong, the critical current of
the superconductor, that is the minimal current able to move vortices, is high, and
the creep rate of vortices is low. For this reason high-field applications of supercon-
ductivity depend crucially on strong pinning. However, here we discuss the unusual
combination of extremely weak flux creep along with very weak critical currents in
the non-centrosymmetric superconductors CePt3Si and Li; Pt3B.

We study here the flux dynamics in these superconductors by observing the relax-
ation of the remnant magnetization trapped in the material in the critical state after a
magnetization cycle. In CePt3Si [1] and Lio Pt3B [2] the creep of flux lines from the
critical state, is weaker than in any other superconductor known up to date, and their
critical currents are also very low. This apparently contradictory fact indicates that
a novel pinning mechanism different from the well-known pinning by defects, such
as impurities or dislocations, may be at work in these non-centrosymmetric super-
conductors. This unusual behavior cannot simply be attributed to the antiferromag-
netic phase which coexists with superconductivity in the heavy fermion compound
CePt3Si, since the same kind of vortex behavior is found in the non-magnetic Li; Pt3 B,
considered as a weakly correlated electron system.

10.2 Measuring Setup

Susceptibility and relaxation measurements were performed in a custom-built mixing
chamber of a dilution refrigerator. In this arrangement, the sample is placed inside the
mixing chamber in contact with the He —* He dilute solution, and stays stationary in
the detection and field coils built in the walls of the mixing chamber. The schematic
structure of this arrangement is depicted in Fig. 10.1. Samples are introduced in the
measuring towers and sealed with a mixture of soap and glycerine. Residual fields
at the sample position are kept at less than 2 mOe by means of several cryoperm
shields in the helium bath. The field coils are designed to be used only in driven
mode (not persistent) and no superconducting shielding is used around them. Thus
inhomogeneities in either applied or residual fields in the cryostat have no influence
on the measurement.

For ac susceptibility measurements, an ac impedance bridge with a SQUID as a
null detector is used. The amplitude of the field can be varied in nine fixed steps from
0.07 to 33 mOe, and the excitation frequency can be chosen in four steps, from 16 to
160 Hz. For dc relaxation measurements a digital flux counter is used to record the
signal from the SQUID unit. Typically creep measurements are taken from 10s after
removing the dc magnetic field to 2 x 10*-5 x 10*s. Both flux dynamics and ac-
susceptibility are investigated in the same arrangement, in sequence, without altering
the sample position between measurements.
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Fig.10.1 Schematic of the custom built mixing chamber

Specific heat measurements were done on a custom made platform built from Ag
foil suspended on nylon wires. The platform is installed in a dilution refrigerator and
the measurements are done using a quasi-adiabatic method in the temperature range
0.050K < T < 5K and magnetic fields up to H =12T.

10.3 CePt3Si

The sample investigated was cut and polished from a single crystal prepared using
the Bridgman technique in the group of E. Bauer at TU Wien. It has a mass of 140 mg
and is 4.6 x 2.65 x 1.05 mm? in size, with the c-axis pointing along the 2.65-mm
direction. The magnetic field H was applied perpendicular to the c-axis, and in the
direction of the longest dimension. A refinement of the crystal structure of CePt3Si
from x-ray intensity data collected on a small piece cut from the same starting crystal,
shows twinning with a contribution of 87% of the main inversion twin component
[1]. In Fig. 10.2 we show the in-phase and out-of-phase magnetic susceptibility as a
function of temperature. It was measured with a field of 1.3 mOe and a low frequency
f = 80 Hz. The mid-point of the superconducting transition occurs at 7, =0.45K
with a width of AT, =0.1K. This value of the transition temperature agrees well
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with the one reported by Takeuchi et al. [3] from specific heat measurements on
a high-quality single crystal. However, this value is substantially lower than the
T, =0.75 K reported for polycrystalline CePt3Si by Bauer et al. [4]. The origin of
the difference in the superconducting critical temperature between single crystal and
polycrystalline samples is unclear so far.

In Fig. 10.3 we show specific heat data taken on another piece cut from the same
starting single crystal. The antiferromagnetic transition at Ty =2.2K, is clearly
visible. We also notice that across the antiferromagnetic transition, the ac suscep-
tibility, taken with the magnetic field perpendicular to the c-axis does not change,
since the antiferromagnetic moments in CePt3Si are aligned along the c-direction of
the tetragonal lattice [5].

Isothermal relaxation curves of the remnant magnetization, M;.,, and magnetic
susceptibility were measured on the same single crystal in the same experimental
configuration. For each curve, the specimen is first zero-field-cooled to the desired
temperature, then the magnetic field is raised to a value high enough to drive the
sample to the Bean critical state. At this point, the field is removed and after it
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reaches zero, the decay of the remnant magnetization is recorded with a quantum
flux counter for several hours. The time involved in rising and lowering the field is
controlled in each case, in order to keep eddy current heating at a minimum.

The Bean critical field H; is determined at the lowest temperature of our inves-
tigation by measuring the total remnant magnetization as function of the external
magnetic field applied as shown in the inset of Fig.10.4. In the Bean model, H;
is the maximum external field that can be completely screened from the mid-plane
of a superconducting slab. It the applied field is twice the value of Hy or higher,
the remnant magnetization reached immediately after removing the field is constant.
This means that the whole sample is penetrated by vortices.

After each decay measurement, the specimen is heated above its critical tempera-
ture 7, and the expelled flux is measured in order to determine M,..,,, at the beginning
of the decay, as the sum of the decayed flux plus the flux expelled during heating.
Values of M., as function of temperature are given in Fig. 10.4. The critical current
can be estimated from values of the Bean critical field Hy at each temperature and
the thickness of the sample perpendicular to the applied field. In the Bean model,
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flux density profiles are roughly linear in space with a slope proportional to j. [6].
We apply at all temperatures the field Hy which is determined at the lowest 7 of our
investigation, since Hy is reduced upon increasing temperature.

Figure 10.5 shows typical decays of the remnant magnetization of the CePt3Si
specimen at different temperatures. In the inset, a decay at 100 mK is shown in another
scale to illustrate the flux expulsion on heating above T,.. The logarithmic decays
are extremely weak. For example, at T = 200mK, only 0.6% of the trapped flux
has decayed after 10* s. Common knowledge would suggest that this low creep rate
implies a very high critical current resulting from strong vortex pinning. However,
the critical current in CePt3Si is very low too, as will be discussed later on. In
Fig. 10.6 the normalized creep rates, S = |9 In(M,;,) /0 In(2)| for CePt3Si are given
in linear scale. We notice that they do not extrapolate to zero as expected for thermally
activated creep according to the Kim-Anderson theory. This could be a sign that a
small contribution originates from quantum tunneling of vortices.

10.4 Li,Pt;B

The polycrystalline specimen investigated was synthesized in an arc furnace utilizing
a two-step process similar to that outlined by Badica et al. [7, 8]. For the magnetic
measurements, a 0.225-mm thin slice, was cut and polished. The magnetic field
was applied perpendicular to its smallest dimension. From ac susceptibility data
taken with a field of 3 mOe at a frequency f =80 Hz (Fig. 10.7) we determined the
midpoint of the superconducting transition of the Li;Pt3B sample at 7, =3.07K
with a transition width of AT, =0.240 K. In the inset of Fig. 10.7 we show electrical
resistivity, p data around the superconducting transition measured using a standard
four-wire configuration in a 3He cryostat. p(T) reaches zero at T =3.05K with a
transition width of AT, =55mK in close agreement with the susceptibility data.
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Fig.10.10 Relaxation decays at different temperatures

From T =60K to just above T, the resistivity revealed typical metallic behavior
with a resistance ratio RRR =2.

Vortex dynamics in LipPt3B was investigated in the temperature range 0.1 K <
T < 2.8K, inasimilar way as described previously for CePt3Si. In Fig. 10.8 we show
data of M,.,, as function of T and in the inset, M,.,, at T =0.100K as a function
of cycling fields. For this specimen, the Bean critical state at 7 =0.100 K is estab-
lished at a magnetic field H; = 100 Oe. In this sample M,.;,, decreases monotoni-
cally upon increasing temperature following roughly a parabola which reaches zero at
T =3.1K, in agreement with the susceptibility, specific heat and resistivity measure-
ments.

Figure 10.9 shows a relaxation decay of the remnant magnetization from the Bean
critical state at T = 0.4K. The decay was measured for about 1.8 x 10* s. At that time
the sample was heated above 7, in order to account for the remaining flux which
had not decayed in the first 1.8 x 10*s. In the inset we show the same data in an
expanded scale. In the first 2.4 x 103 s the creep has a clearly defined logarithmic
time dependence with only about 0.5% of the total flux creeping out of the sample.
Around 2.4 x 103 s, an abrupt change in the logarithmic creep rate occurs, with a
logarithmic slope which is about four times higher. Indeed it seems as if at that time
vortices had overcome some barrier allowing flux lines to escape at a faster rate. We
observed clear avalanche-like behavior at all temperatures, except for relaxations
much below 7 =0.400 K and above T=2 K as can be seen in Fig. 10.10. In some
cases the logarithmic creep rate caused by the avalanche is up to 10 times higher
than the initial creep rate at the same temperature. These increased creep rates are
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also much higher than initial creep rates at temperatures close to 7. This fact rules
out an increase of the temperature of the sample as the origin of the avalanches.
Concerning the lack of avalanches at 7 = 2 K and above, we notice that on increasing
the temperature the flux vortex density is reduced causing the different behavior. At
temperatures much below 7 ~ 0.4 K, vortices move so slowly that our time of
observation might not be sufficient to detect an avalanche.

A comparison of initial relaxation rates of the two non-centrosymmetric supercon-
ductors CePt3Si and Li; Pt3B with two heavy fermion superconductors, UBeq3 (time
reversal invariant phase) and PrOssSby; (time reversal symmetry breaking phase)
[9] is shown in Fig. 10.11. In this figure we notice that the initial relaxation rates of
Li;Pt3B and of CePt3Si are very similar. However, they are by more than a factor
of 10 lower than the creep rates of UBej3 and about a factor of 4 lower than the
rates of PrOs4Sby,. It has been suggested [10] that the slow creep rate of PrOs4Sbi2
might be connected with the apparent violation of time reversal symmetry in the
superconducting state inferred from zero-field SR experiments [11].

It is interesting to relate the creep rates to the critical current. We can obtain a
rough estimate of the critical current from the values of the Bean critical field H;
and the smallest dimension, d of the sample perpendicular to the field. In this model,
the critical current is related to H by the expression Hy = (1/2) j./d. A comparison



306 C. F. Miclea et al.

T =300 mK

2|
1:5x10 -+ 1.5x10°

2
1.0x10” | 4 1.0x10° ¢~

12In(M) / 3 In(t)]

j (A/m

5.0x10° - 4 5.0x107

0.0

UBe .  LiPtB CePt,Si

13

Fig.10.12 Comparison of the normalized relaxation rates S = |9 In(M,.,,)/d In(t)| (left solid bar)
and the critical currents (right dashed bar) at T = 0.3 K for different compounds

of the creep rates and critical currents at 7 =300 mK for the same superconductors
shown in Fig. 10.11 is given in Fig. 10.12.

In our comparison, UBe;3 has a high creep rate accompanied by a relatively
large critical current. PrOs4Sb1, whose superconducting phase breaks time reversal
symmetry, has a critical current comparable to UBe 3 but a low creep rate. In contrast,
the non-centrosymmetric heavy fermion superconductor CePt3Si looks highly anom-
alous with a very weak creep rate as well as very small critical current. The critical
current in LioPt3B is not as low as in CePt3B but still low considering its very
low creep rate. One possible reason for the relatively enhanced critical current in
Li;Pt3B might be the fact that the samples of UBe3, PrOs4Sb;> and CePt3B were
single crystals, while samples of LiPt3B are here polycrystalline.

10.5 Are Twin Boundaries the Origin of the Anomalous
Vortex Dynamics?

In this section we would like to consider a particular aspect of non-centrosymmetric
superconductors which is possibly relevant for the understanding of the experimental
findings on their vortex dynamics. A crystal lattice without inversion center can be
reached from a centrosymmetric crystal by displacing certain atoms, e.g. moving
certain atoms out of a symmetry plane and so destroying the mirror symmetry of this
plane, as depicted in Fig. 10.13.

Since there are in this case two ways of displacing these atoms, up or down, there
are two degenerate forms of the same non-centrosymmetric crystal, related by the
mirror operation at the plane (Fig. 10.13). It is, thus, possible to encounter twinning
in such a crystal, i.e. both “twin domains” are present separated by twin boundaries.
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Fig.10.13 Degenerate twins of non-centrosymmetric tetragonal crystal. The red atom can be moved
up or down along the c-axis to remove the mirror symmetry with respect of the basal plane. The
blue shaded plane marks the twin boundary between domains of the two twin crystals

10.5.1 Twin Boundary States

The superconducting phase is strongly influenced by the antisymmetric spin-orbit
coupling induced by the non-centrosymmetricity of the crystal. We may now ask how
the superconducting state is changed at a twin boundary (see Chapter by Mineev and
Sigrist in this book). The pairing state in the non-centrosymmetric superconductor
has mixed parity and may be expressed through a gap function which, in the simplest
case, can be given by

Ax={y &) +dk)-&}i6y (10.1)

where (k) is an even function of Kk, the even-parity component, and d(k) o
¥ (K)y (k), as an odd function of kK, is the odd-parity component. Here y (k) is the
vector entering the anisotropic spin-orbit coupling in the Hamiltonian: 3 ¢y (k)-

ass/cltscks/. We may assume a situation like in CePt3Si with the point group Cay,
which has two types of domains, characterized by a Rashba-type spin-orbit coupling
of opposite sign. In the two twin domains, A and B, the mixed-parity state is then
different,

A o= {y (&) +dk) -6} id, (10.2)
and
Axp =€ {y (k) —d(k) - 6}i6y. (10.3)

The relative sign between the even- and odd-parity components of A4 and Ap is
opposite. Through the twin boundary the two gap functions have to change smoothly
into each other over a length scale comparable to the coherence length. The phase
¢a.p plays an important role when the two gap functions are matched at a twin
boundary. The matching conditions are influenced by the relative magnitude of the
even- and odd-parity components. The phase difference ¢ = ¢p — ¢p4 between two
twin domains is ¢ =0, if the even-parity component is dominating ({|¥ (K)|)x >
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Fig.10.14 Schematic phase
diagram of matching phase
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Reo = (1d(K) i/ (19 )]
The range of the twin
boundary state violating
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the temperature

(ld(k)|)k), and ¢ =, in the opposite limit. The question arises how the phase ¢
evolves, if we change continuously between the two limits. Iniotakis et al. have shown
[12] that in a certain range ¢ changes continuously between 0 and 7, as shown in
the phase diagram in Fig. 10.14. This leads to a special twin boundary state with
¢ # 0, m, which breaks time reversal symmetry. Therefore we find two degenerate
states in this case, connected by the time reversal operation, ¢ =y and ¢ = —y (0 <
y < 7).

On such a twin boundary it is possible to create a line defect separating the
two types of twin-boundary states. It can be shown that such a line defect carries
a magnetic flux which is different from a multiple of a standard flux quantum
@y =hc/2e:

¢ 14

—=n+£ = (10.4)

Dy T
where the sign depends on which of the two line defects we are looking at (y —
—y or —y — y). It is obvious that two neighboring line defects are of opposite
type such that the total flux

O =) + &y = [n + g Yy — g} —®o(ny +12).  (10.5)

adds up to an integer multiple of @q [10]. Thus, conventional vortices could decay
on such a twin boundary into two fractionally quantized vortices with 0 < @1, @, <
@ and @ + Py = Dy.



10 Vortex Dynamics in Superconductors Without Inversion Symmetry 309

10.5.2 Influence on Vortex Dynamics

The described fractional vortices can only exist at twin boundaries and can only
be removed by recombining into conventional vortices. A twin boundary decorated
with many fractional vortices would then act as a fence preventing vortices from
easy passage. It has been argued that such a configuration could be a severe imped-
iment to flux motion [12]. Flux lines encircled by such twin boundaries would be
prevented from escaping. Thus the flux creep should be small in samples with a large
density of twin boundaries. On the other hand, the critical current density j. which
is connected with the slope in the Bean profile of the vortex distribution is governed
by the standard vortex pinning by defects and is, thus, unrelated to the barrier effect
of the twin boundaries. Estimates of the critical current based on the value of the
remnant magnetization may overestimate j., since twin boundaries would keep more
flux inside the superconductor than predicted based on the simple Bean profile.

These arguments would essentially be sufficient to explain the basic experimental
findings in CePt3Si which has low flux creep and small critical current, two features
only seemingly in conflict. In Li; Pt3B there is an additional effect, i.e. the avalanche
of flux decay after a certain longer period of time. Does the fence of fractional flux
lines on twin boundaries allow for such an effect? Actually, we can argue that the
barrier effect of the twin boundary depends on the density of vortices piling up on
one side. This density also determines the density of the fractional flux quanta. For
a sufficiently high density, the fractional vortices approach each other close enough
to recombine and so loose their strong pinning. Then the barrier opens and allows a
large amount of flux to escape suddenly.

Such a condition may not be realized immediately after the external field has been
turned off and a Bean critical state is reached which decays slowly in time. Only if
the encircled flux lines have rearranged themselves after some time in a way that the
density of vortices at the barriers has increased sufficiently, then the flux lines will
suddenly be able to escape through the barrier. Obviously this effect needs a high
density of vortices as it can be reached more easily at low temperatures with a high
remnant magnetization. This may be the reason that the avalanche feature disappears
at higher temperatures in Li; Pt3B.

A similar type of scenario was in the past suggested for superconductors with
broken time reversal symmetry, where fractional vortices can appear on domain
walls separating superconducting phases of opposite chirality and leading to a similar
quench of the flux creep rate without affecting the critical current [10]. Such effects
have been reported for Uj_,Th,Bej3 (0.2 < x0.45) and UPt3 which both show a
superconducting double transition where it is assumed that time reversal symmetry
is broken at the second transition coinciding with a drastic decrease of creep rate
[13, 14]. In contrast, in UBe 3, which does neither have a second transition nor signs
of broken time reversal symmetry, no unusual drop of the flux creep rate has been
observed.
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10.6 Conclusion

The anomalously low flux creep rate in Li;Pt3B and CePt3Si which, counterin-
tuitively, is not correlated with a large critical current, is an extraordinary feature
observed in the two non-centrosymmetric superconductors CePt3Si and LirPt3B.
Note that in CePt3Si superconductivity coexists with antiferromagnetic order whose
influence, if any, on vortex pinning is not clear so far. On the other hand, the novel
flux dynamics in Li;Pt3B cannot be attributed to any magnetic order coexisting with
superconductivity. In this chapter we addressed the question whether the origin of this
extraordinary behavior is specific to non-centrosymmetric superconductors. Obvi-
ously the traditional pinning of individual vortices at impurities and other lattice
defects would not be sufficient to account for the whole set of properties. Twin
boundaries which should in principle be present in non-centrosymmetric crystals
may provide a possible consistent explanation through novel flux line defects sitting
on twin boundaries. This scenario is speculative and has not been tested directly
so far. One type of test could be the direct observation of fractional vortices on
twin boundaries. Another test could address the sample “quality” in the sense that
one would influence the presence or the density of twin boundaries. This is more
difficult in the case of non-centrosymmetric crystals, as twin domains do not directly
couple to uniform uniaxial strain. The definite understanding of the anomalous vortex
dynamics indeed needs additional experiments.
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Chapter 11
Properties of Interfaces and Surfaces in
Non-centrosymmetric Superconductors

Matthias Eschrig, Christian Iniotakis and Yukio Tanaka

Abstract Tunneling spectroscopy at surfaces of unconventional superconductors
has proven an invaluable tool for obtaining information about the pairing symmetry.
It is known that mid-gap Andreev bound states manifest themselves as zero-bias
conductance peaks in tunneling spectroscopy. The zero-bias conductance peak is
a signature for a non-trivial pair potential that exhibits different signs on different
regions of the Fermi surface. Here, we review recent theoretical results on the spec-
trum of Andreev bound states near interfaces and surfaces in non-centrosymmetric
superconductors. We introduce a theoretical scheme to calculate the energy spectrum
of a non-centrosymmetric superconductor. Then, we discuss the interplay between
the spin-orbit vector field on the Fermi surface and the order parameter symmetry. The
Andreev states carry a spin supercurrent and represent a helical edge mode along the
interface. We study the topological nature of the resulting edge currents. If the triplet
component of the order parameter dominates, then the helical edge mode exists. If,
on the other hand, the singlet component dominates, the helical edge mode is absent.
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A quantum phase transition occurs for equal spin singlet and triplet order parameter
components. We discuss the tunneling conductance and the Andreev point-contact
conductance between a normal metal and a non-centrosymmetric superconductor.

11.1 Introduction

In this chapter, we will discuss the surface and interface properties of non-centro-
symmetric superconductors [47] focusing on the Andreev conductance. Since the
early sixties tunneling spectroscopy has played an important role in gathering infor-
mation about the gap function of conventional superconductors [1]. In the context of
unconventional superconductivity tunneling spectroscopy appeared as an important
tool to probe the internal phase structure of the Cooper pair wave functions [2, 3]. Sur-
face states with sub-gap energy, known as Andreev bound states (ABS) [4-8] provide
channels for resonant tunneling leading to so-called zero-bias anomalies in d1/dV .
Zero-bias anomalies observed in high-temperature superconductors showed the pres-
ence of zero-energy bound states at the surface, giving strong evidence for d-wave
pairing [2—6]. Similarly the tunneling spectrum observed in Sr;RuQy is consistent
with the existence of chiral surface states as expected for a chiral p-wave super-
conductor [9-12]. Zero bias conductance peaks due to Andreev bound states have
been observed in numerous experiments, e.g. in high-7; cuprates [13—17], SroRuO4
[18-20], UBej3 [21], CeColns [22], the two dimensional organic superconductor « -
(BEDT-TTF),Cu[N(CN);]Br [23] and PrOs4Sb, [24]. Andreev bound states have
also been observed in the Balian-Werthammer phase of superfluid He [25]. The
study of Andreev bound states in unconventional superconductors and superfluids
has emerged as an important phase sensitive probe.

In Sect. 11.2 we present the theory for Andreev spectroscopy using Bogoliubov
wave function technique in Andreev approximation. Starting with superconductors
exhibiting d-wave or p-wave pairing, we proceed with non-centrosymmetric super-
conductors. In Sect. 11.3, we develop the theoretical tools for describing Andreev
spectroscopy in non-centrosymmetric superconductors in the framework of Nambu-
Gor’kov Green’s functions within the quasiclassical theory of superconductivity.

11.2 Andreev Spectroscopy in Unconventional Superconductors

11.2.1 Andreev Conductance in s- and d-Wave Superconductors

We discuss first the example of zero-bias resonant states at the interface of a normal
metal/spin-singlet d-wave superconductor junction. In general, the pair potential can
be expressed in terms of two coordinates, x and x’, as A(x, x”). In uniform systems it
only depends on the relative coordinate x — x’, and a Fourier transform with respect
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to this relative coordinate yields A (k) with relative momentum k. For illustrative
purposes, we assume in the following a cylindrical Fermi surface and concentrate
on two-dimensional systems. The pair potential for spin-singlet d-wave pairing is
A(0) = Agcos(20), with €? = (k, + iky)/| k |, while the corresponding spin-
singlet s-wave pair potential is isotropic, A(6) = Ag. The bulk quasiparticle density
of states normalized by its value in the normal state is given by
T
1 E
pB(E) = —/depo(E,Aw)), po(E.2®)) = - (L
) JE? — A} cos?(20)

For a spin-singlet d-wave superconductor this quantity behaves linearly at low
energies, p(E) « |E|. As shown below if the angle between the interface nor-
mal and the lobe direction of the d-wave pair potential has a nonzero value o with
0 < a < m/2, then the resulting tunneling conductance has a zero bias conductance
peak.

The Andreev conductance, oT(E), for a normal metal/insulator/spin singlet
s-wave superconductor junction is described by the model of Blonder, Tinkham,
and Klapwijk (BTK) [26]. Within this model, oT(E) at zero temperature is given by

or(E) x 3 (14 [a(E.0) P = | b(E.6) ) (11.2)

wherea(E, 0), and b(E, 0) are probability amplitude coefficients for Andreev reflec-
tion and for normal reflection, respectively. We apply the BTK model in the following
to the case of spin-singlet d-wave pairing.

We assume that the Fermi energy Er is much larger than | A(6) |, such that the
Andreev approximation can be applied to the Bogoliubov wave functions. For sim-
plicity, we also assume equal effective masses and Fermi momenta in the normal
metal and in the superconductor. The spatial dependence of the pair potential is cho-
sentobe A(0)® (x) (with the Heaviside step function ®). The insulating barrier at the
atomically clean interface is modeled by a §-function potential, V (x) = H§(x). Since
the momentum parallel to the interface is conserved, the two component Bogoliubov
wave function is given in Andreev approximation by

Lt+(9, Xx)
v4(0, x)

) exp(ikpx cos0) + (z_((z’ ;; ) exp(—ikgpx cos6)

(11.3)

(0, x) =(

where u (6, x) and v; (6, x) with j € {+, —} obey the Andreev equations

ih?ojkpcos6 d
Euj(0,x) = — [-—d— — HO() |u; (6. ) + A©G)O v, 0, %),
m X
ihzajkpcose d N
Ev;(9,x) =[—d— - H8(x)] vi(@,x)+ AT(0,)0x)u; @, x),
X
(11.4)
withoy = 1,04 =0, and o = —1,0_ = m — 6. For a d-wave superconductor

the corresponding effective pair potentials A(64) are given by
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AB+) = Agcos(20 —2a), A(H-) = Apcos(20 + 2a), (11.5)

where the angle between the interface normal and the lobe direction of the d-wave
pair is «. The wave functions u (0, x) and v4 (6, x) resulting from Eqs. (11.4) are
obtained from the ansatz

((1) ) exp(idx) +a(E,0) ((1) ) exp(—idx) x <0,

(u+(9,x) ) _
v (0, x) N V(E+Q4)/2E .
c(E,0) (exp(—i¢+) E Q+)/2E) exp(i YL x) x>0,

(11.6)
(u @. 1) b(E,0) ((1)) exp(—idx) x <0,
v_(G:x) ) - exp(ip_)/(E — Q_)/2E .
d(E,Q)(\/m )exp(zYx) x>0,
(11.7)

where we used the abbreviations
Em 24m . A(O1)
§= ——, == Q4+=,/E2—A264), = .
hkg cos 6 Ve hkg cos 6 * (6£), expligs) | AOx) |
(11.

With the help of appropriate boundary conditions,

W0, x) [x=0_= W(0, x) |x=0,

_2quj(9 )
x:Of_ h? *

L w6, Ly,
— X - — X
dx x=04 dx

(11.9)

XZOJr
one obtains a(E, 0), b(E, 09), c(E, 0), and d(E, 0). The resulting conductance is

(/7,40 D@)ow (E, 0) cos )

oT(E) =
' ( [/, d6D(®) cos 9)

)

with the angular resolved Andreev conductance
14+D@®) | Ty | —R®) | T4 T |
| 1= ROT4T—expli(p- — )1 1>

where 'y = (E — §24)/|A(6+) |. The quantities D(0) and R(6) above are trans-
mission and reflection probabilities given by

orR(E, 0) =

(11.10)

D) =4cos’0/(4cos’ 0 + Z%), R@O)=1— D),

with injection angle 6 and Z = 2m H /h?kg [2]. Choosing A(6+) = Aq reproduces
the BTK formula for an s-wave superconductor. Typical line shapes of or(eV') with
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Fig.11.1 a Andreev conductance for an s-wave superconductor for various barrier heights,
aZ =0, bZ =1andc Z = 5. b Andreev conductance for a d-wave superconductor for
Z =5, and various surface alignment angles, aa = 0, b o = 0.1257 and c « = 0.257

eV = E for s-wave and d-wave superconductors are shown in Fig. 11.1. The d-wave
case is shown in Fig. 11.1(b). As can be seen there, if the angle o deviates from
0, the resulting d//dV has a zero bias conductance peak (ZBCP) (curves b and c¢);
the only exceptional case is @ = 0, as shown in curve a. The width of the ZBCP is
proportional to D, while its height is proportional to the inverse of D. The origin of this
peak are mid-gap Andreev bound states (MABS). The condition for the formation of
Andreev bound states at the surface of an isolated d-wave superconductor (D — 0)
is expressed by

1 =T T_expli(p— — o)1 (11.11)
Atzeroenergy 'y I'_ = —1issatisfied, and consequently a MABS appears, provided
exp [i(¢+ — ¢—)] = —1. For this case, on the superconducting side of the interface

the injected electron and the reflected hole experience a different sign of the pair
potential. For « = 7 /4, there is a MABS independent of the injection angle. In this
case, the energy dispersion of the resulting ABS, Ey, is given by

Ey =0. (11.12)

Finally, we comment on the effects of order-parameter suppression near a surface
or interface in a d-wave superconductor. In Fig. 11.2 we reproduce a self-consistent
solution for a layered d-wave superconductor, showing that a strong order-parameter
suppression is always present for « = /4, whereas for « = 0 in the tunneling limit
the order-parameter suppression can be neglected. The corresponding local density
of states at the interface is shown in Fig. 11.2(b) and (d). The interface is modeled
by a §-potential as above, with a transmission D(0) = Dy cos? @ /(1 — Dy sin? 0),
and the parameter Dy is related to Z via Do = 1/[1 + (Z/2)2].
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Fig.11.2 a, c order parameter amplitude and b, d local density of states at the interface for a layered
d-wave-superconductor/normal-metal junction. a,ba = 0, ¢,d « = 7 /4. The interface is at x = 0.
The curves are for the indicated transmission coefficients Dy. The temperature is 7 = 0.37, and
the mean free path ¢ = 10&. After Ref. [27]

11.2.2 Andreev Conductance in Chiral p-Wave Superconductor

In this section, we discuss the Andreev conductance of a normal metal/chiral p-wave
superconductor junction. There is evidence supporting the realization of spin-triplet
pairing with broken time reversal symmetry in the superconducting state of SroRuOj4
[28, 29, 30, 31, 32, 33, 34, 35, 36]. A possible pairing symmetry is given by two-
dimensional (in the k, — ky plane) chiral p-wave pairing, where the pair potentials
are givenby Ay 4 = A | =0, A4 = Ay 4 = Agexp(if). In the following, 6 is
measured from the interface normal. In the actual sample, the presence of chirality
may produce chiral domain structures. A recent experiment is consistent with the
presence of chiral domains [37]. Also, there are several theoretical proposals to detect
chiral domain structures [38, 39]. Here, for simplicity, we consider a single domain
chiral p-wave superconductor.

Since the z-component of the Cooper pair spin is zero, we can also use Eq. (11.10)
to obtain the Andreev conductance for normal metal/chiral p-wave superconductor
junctions. Before discussing the Andreev conductance, we first consider the bulk
local density of states (LDOS) of a chiral p-wave superconductor. In contrast to the
spin-singlet d-wave pairing case, po(E, A(0)) in Eq.(11.1) is given by

po(E, A®)) = E/\/ E2 — A}.

It has a fully gapped density of states as in the spin-singlet s-wave case.
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Fig.11.3 a Andreev conductance ot for a chiral p-wave superconductor, for various barrier heights,
aZ=0,bZ =1andc Z = 5. b Andreev conductance for a chiral p-wave superconductor in the
presence of a magnetic field for Z = 5. The magnetic fields for the various curves are a H = 0,
bH=02Hyandc H =0.4Hy,d H =—-0.2Hyand e H = —0.4H)

We now discuss the condition when an ABS is formed at the surface of an isolated
chiral p-wave superconductor. The bound-state condition is given by [9, 10, 11]

E+,E?2—A}=— (E— EZ—Ag) exp(—2i0), (11.13)

showing that the bound-state level Ej, satisfies
Ev(0) = Agsiné. (11.14)

Note that the ABS has a dispersion different from that in the d-wave case with
o = m /4. The presence of the edge state with a dispersion induces a spontaneous
dissipationless current.

As in the previous section we consider the Andreev conductance oT(E) in a
normal metal/chiral p-wave superconductor junction, which is shown in Fig. 11.3(a).
As can be seen, for Z = 0, the line shape of the conductance is identical to that of a
spin-singlet s-wave superconductor (see curve a), whereas with increasing Z a zero
bias conductance peak emerges (curves b and c). The resulting ZBCP is broad in
contrast to the spin-singlet d-wave case due to the fact that the position of the ABS
depends on the injection angle 6 according to Eq.(11.14) [9, 10]. The presence of
the ABS has been confirmed by tunneling experiments [18-20].

Next we consider the situation where a magnetic field H is applied in z-direction,
perpendicular to the two-dimensional superconducting planes, which induces a
shielding current along the interface (we consider the interface normal in x-direction).
When the penetration depth for the chiral p-wave superconducting material is much
longer than the coherence length, the vector potential can be approximated as
A(r) =[0, Ay(x), 0] with Ay(x) = —AnH exp(—x/Anm), where Ap, is the penetra-
tion depth. In the following we consider the situation where Landau level quantization
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can be neglected. Then the quasiclassical approximation can be used. The applied
magnetic field shifts the quasiparticle energy E to E + HAgsin¢/Hy with Hy =
h/ (26712& Am)and & = h2 kg /(mmAp) [40]. The resulting tunneling conductance for
various magnetic fields is plotted in Fig. 11.3(b). As is seen, or(E) is enhanced for
positive H, while it is reduced for negative H. This can be roughly understood by
looking at the bound-state levels. In the presence of H, the bound-state energy can
be expressed by

En(0) = Ao(1 — H/Hy) sin® ~ Ag(1 — H/Ho)ky/ k. (11.15)

The contribution of the Andreev bound state to the conductance enters via a term
8(E — Ev(0)), which is proportional to 1/|dE,(0)/dé)|. It is clear that the slope of
the dispersion around 6 = 0 is reduced for positive H, leading to an enhancement of
the numerator in Eq. (11.10) around 6 = 0, where the bound states are close to zero
energy. On the other hand, for negative H, the height of the ZBCP is reduced since
the slope of the curve of E}, around zero energy becomes steeper [12].

In p-wave superconductors self-consistency of the order parameter and impurity
effects can be of importance. In Fig. 11.4 we show self-consistent order parameters
and Andreev spectra at a surface of a layered p-wave superconductor. In addition to
the bulk k, +ik, component a subdominant k, — ik, component is stabilized within
a few coherence lengths (&) = vp/2m kg T;) near the surface. The full lines are results
assuming a mean free path of £ = 10§, everywhere. When replacing the mean free
path in a surface layer (gray shaded region in Fig. 11.4) by £ = 0.3&(, we obtain the
results shown as dashed lines. In contrast to the first case, for the second case both
order parameter components are strongly suppressed near the surface. The presence
of an increased scattering in a surface layer also modifies the form of point contact
spectra and the tunneling conductance as seen in the insets of Fig. 11.4. In contrast
to the surface density of states which for a clean surface is constant in energy, the
tunneling conductance shows a broad peak similar as in Fig. 11.3, which is however
reduced in height for a self consistent order parameter [42].

Finally, we would like to comment on the observation that the above edge state is
topologically equivalent to that of a quantum Hall system. In a quantum Hall system
it is established that the edge channel supports the accurate quantization of the Hall
conductance oy, which is related to a topological integer [43, 44]. In the edge state of
a chiral p-wave superconductor, such a topological number can be also defined [45,
46]. For this case, the edge state is topologically protected by the bulk energy gap
Ag. The topological properties of the electronic states have been attracting intensive
interest in condensed matter physics. In Sect. 11.2.3.3 we will return to this question
in connection with non-centrosymmetric superconductors. Before that, we discuss
in the following section theoretical predictions for the Andreev conductance spectra
for non-centrosymmetric superconductors.
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11.2.3 Andreev Conductance in Non-centrosymmetric
Superconductors

Non-centrosymmetric superconductors such as CePt3Si are a central topic of
current research [47, 48]. Two-dimensional non-centrosymmetric superconductors
are expected, e.g., at interfaces and/or surfaces due to a strong potential gradients.
An interesting example is superconductivity at a LaAlO3/SrTiOj3 interface [49, 50].
In non-centrosymmetric materials spin-orbit interaction becomes very important.
Frigeri et al. [48] have shown that the (p, = ipy)-pairing state has the highest
T, within the triplet channel in CePt3Si. It has been shown that singlet (s-wave)
and triplet (p-wave) pairing is mixed, and several novel properties related to that
mixing, such as a large upper critical field beyond the Pauli limit, have been focused
on [48]. On the other hand, a pure (p, = ipy)-pairing state has been studied as a
superconducting analogue of a quantum spin Hall system [51-53]. Therefore, it is
an important and urgent issue to study the spin transport properties of the NCS
superconductors from a topological viewpoint.

In this section, we discuss charge and spin transport in non-centrosymmetric
superconductors [54]. We concentrate on non-centrosymmetric superconductors with
time-reversal symmetry, where a spin-triplet (p, £ipy)-wave and a spin-singlet
s-wave pair potential can mix with each other, similar as discussed in the last section.
We show that when the amplitude of the (px £ip,)-wave component is larger
than that of the s-wave component, then the superconducting state belongs to a
topologically nontrivial class analogous to a quantum spin Hall system, and the
resulting helical edge modes are spin-current-carrying Andreev bound states that
are topologically protected. Below, we study Andreev reflection [55] at low energy,
which is determined mostly by the helical edge modes, and find the spin polarized
current flowing through an interface as a function of incident angle. When a magnetic
field is applied, even the angle-integrated current is spin polarized.
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11.2.3.1 Andreev Bound States

We start with the Hamiltonian of a non-centrosymmetric superconductor

> _ H (k) A (k)
= (—A* (-k) —H* (—k))

with H(k) = & + g(k) - 0, g(k) = A(Xky — yky), & = hzkz/(Zm) — u. Here,
u, m, o and A denote chemical potential, effective mass, Pauli matrices and coupling
constant of Rashba spin-orbit interaction, respectively [48]. The pair potential A (k)
can be decomposed into triplet and singlet parts,

Alk) =[d(k) - o + Y (K)]io,. (11.16)

We consider here d (k) = A, (xk, — yky)/ | k | for the spin-triplet component [48],
and ¥ (k) = A, for the spin-singlet component, with A, > 0 and Ay > 0. The
superconducting gaps Ay = A, + Ay and Ay =| A, — A, | open for the two spin-
split energy bands, respectively, in the homogeneous state [56]. As we show below,
surface states are crucially influenced by the relative magnitude between A, and A;.
Let us consider the wave functions, focusing on those for ABS localized at the
surface. Consider a two-dimensional semi-infinite superconductor for x > 0 where
the surface is located at x = 0. The corresponding wave function is given by [57]

Ws(x) = e [Cllﬂle”’“x + coype It 4 c3yrze’ 4 641//46_1%)6] ’

qj.; = kj; + (kj/kfx)\/(Ez — AD/(AE 4202/ m), (11.17)

with j € {1,2}, and k]jc':kj;:ij for|ky| < k; and k;; = —k;, = kjx for |ky| >
k;. Here,

ki) = Fmr/R2 + \/(m,\/ﬁZ)Z + 2mu/h? (11.18)

are the Fermi momenta of the small (large) Fermi surface (the upper sign holds for
k1), and kj, = (ka. — k%)l/ 2 denotes the x component of the Fermi momentum k ;.
The wave functions are given by

uj V1 uy 1%

. -1 L~ —1 . o—1 c~—1
—ioy Uup —ia, V] 10, U i, V)

Y = . _11 Yo = .~_11 Y3 =1 . 2_1 s = . ~2_1
o vy oy up iya, v iyd, uy

V1 ui -y —yuz

with ¥ = sgn(A, — Ay). In the above,

ujz\/(E—l— /EZ—A?)/ZE, UJ»:\/(E—,/Ez—Aﬁ)/zE, (11.19)
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and o = (k| —iky)/ki, o0 = (ky, —iky)/ka, @1 = (—k;, —iky)/ky, and 6o =
(—k,, — iky)/k>. Finally, E is the quasiparticle energy measured from the Fermi
energy. By postulating Wg(x) = 0 at x = 0, we can determine the ABS.

The bound-state condition can be expressed by

\/(A?—Ez)(A%—Ez) = ;—E(E%ymm), (11.20)

cos2[$(61—62)]
1 for 6. <| 62 |<m/2,

sin[ 3 (61462)]
- [ for |6y |< 6c G121

with ¢ < 1, cos0) = ki / k1 and cos 0y = ko, /k>. The critical angle 0, is defined as
arcsin(ky/ k). For A = 0, Eq. (11.20) reproduces the previous results [56]. As seen
from Eq. (11.20), a zero energy ABS is only possible for | 6, |< 6. and y = 1, i.e.
A, > A;. This ABS corresponds to a state in which a localized quasiparticle can
move along the edge. The energy level of this edge state depends crucially on the
direction of the motion of the quasiparticle. The inner gap edge modes are absent
for large magnitude of ky, i.e. large 6. In this case, k1, becomes a purely imaginary
number due to the conservation of the Fermi momentum component parallel to
the surface. The parameter regime where the edge modes survive is reduced with
increasing A. However, as far as we concentrate on normal injection, the edge modes
survive as midgap ABS [2, 5] irrespective of the strength of A. If we focus on the
low-energy limit, the ABS energy can be written as

A2\ ki +k
E=xa,(1-20 )85, (11.22)
Ap 2k1ko

with Ay < A, for any A with small magnitude of ky. For Ay > A, the ABS
vanishes since the value of right hand side of Eq. (11.20) becomes negative due to
the negative sign of ¥ for | E |[< Ajand | E |< As.

It should be remarked that the ABS under consideration does not break time
reversal symmetry, since the edge currents carried by the two partners of the Kramers
doublet flow in opposite directions. Thus they can be regarded as helical edge modes,
with the two modes related to each other by a time reversal operation.

11.2.3.2 Charge and Spin Conductance

Now we turn to transport properties governed by the ABS in NCS superconductors
[58-61]. First, we point out that the spin Hall effect, i.e., the appearance of the
spin Hall voltage perpendicular to the superconducting current, is suppressed by
the compressive nature of the superconducting state by the factor of (kpim) 2 (kg:
Fermi momentum, Ap: penetration depth) [45, 46]. Instead, we will show below
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that spin transport through the junction between a ballistic normal metal at x < 0
and a NCS superconductor, i.e., through a N/NCS junction, can be enhanced by the
Doppler effect during Andreev reflection. The Hamiltonian }ﬁ; of N is given by
putting A(k) = 0 and A = 0 in %% We assume an insulating barrier at x = 0,
expressed by a delta-function potential U§(x).

The quantities of interest are the angle-resolved spin conductance fs(6) and
charge conductance fc (@) defined by [62]

1
Fs®) =5[22 500 aop I = 1 by p )] 050, (11.23)
o,p
1
fe®) =[1+3 > (as, > = 1 bo,y ] cost, (11.24)
o.p

where s, = +(—)1 for p =1 ({), and 6 denotes the injection angle measured from
the normal to the interface. Here, b, , and a,,, witho, p € {1, |} are spin-dependent
reflection and Andreev reflection coefficients, respectively. These coefficients are
determined as follows. The wave function for spin o in the normal metal Wn(x) is
given by

UN(X) = expikpy [ (Wis + D ao.pVap) explikexx) + D bo.pVbp exp(—ikpx)]
p=m11 p="4

with "y =" ¥y = (1,0,0,0), "y, =" ¢, = (0,1,0,0)," Yay = (0,0, 1,0),
and T‘ﬁai = (0,0,0,1). The corresponding Ws(x) is given by Eq.(11.17). The
coefficients a5, and b, , are determined by postulating the boundary condition
WN(0) = Ws(0), and

hvsxWs(0) — Avny WN(0) = —2iUT3Ws(0)

with idsnyx = BI:IS(N) /dk,, and the diagonal matrix 73 given by 73 = diag(1, 1,
-1, —-1).

The resulting angle-averaged charge conductance (Andreev conductance) is given
by

/2 /2
oc =oT = ( - fc(9)d9) /( - ch(Q)dQ) . (11.25)

We plotin Fig. 11.5 the charge conductance for various ratios Ay /A, in the presence
of a splitting of the Fermi surface [54]. For Ay < A,,or(eV) has a zero-bias
conductance peak (ZBCP) due to the presence of the helical edge modes (curves a
and b in Fig. 11.5). For A; = A, due to the closing of the bulk energy gap, the
resulting o(eV) is almost constant. For Ay > A, op(eV) has a gap like structure
similar to a spin-singlet s-wave superconductor.

Next, we focus on the spin conductance. First we consider a pure spin-triplet
(px £ipy)-wave state. In Fig. 11.6, the angle-resolved spin conductance is plotted as
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Fig.11.5 The Andreev 3 . :
conductance ot for an NCS
superconductor with
2mi/kph? = 0.1 and Z = 5.
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Fig.11.6 Angle-resolved spin conductance for an NCS superconductor for Z = 5. a pure (p, £
ipy)-wave case with Ay = 0; b Ay = 0.3A,. The curves are for Akg = 0.1 and various voltages,
aeV =0.1A,,beV =—-0.1A, andc eV = 0.6A,. From Fig. 11.2 of Ref. [54]

a function of injection angle 6 and bias voltage V with E = eV. Note here that the k
isrelated to 0 as ky = kg sin 0. It is remarkable that the spin conductance has a non-
zero value although the NCS superconductor does not break time reversal symmetry.
The quantity fs(@) has a peak whenever the angle 6 or the momentum component ky
corresponds to an Andreev bound-state energy E in the energy dispersion. With this
condition, the spin-dependent Andreev reflection results in a spin current. Besides
this property, we can show that fg(0) = — fs(—6) is satisfied. By changing the sign
of eV, fs(0) changes sign as seen in Fig. 11.6(a). Next, we look at the case where
an s-wave component coexists. We calculate the spin conductance similar to that
for the pure (p, & ipy)-wave case. For Ay < A, where helical edge modes exist,
[fs(6) shows a sharp peak and fs(0) = — fs(—0) is satisfied [see Fig. 11.6(b)]. These
features are similar to those of the pure (py &ipy)-wave case. On the other hand, for
Ay > A, where the helical edge modes are absent, sharp peaks of fs(6) as shown
in Fig. 11.6 are absent.
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We have checked that there is negligible quantitative change, i.e., less than 0.5%
change of the peak height, by taking the A = 0 limit compared to Fig. 11.6. In this
limit, for the pure (p, £ ipy)-wave state, fs(6) is given as follows

—8RD?sin(20) sin(2¢) cos(h)
| 4[sin?(0) — sin®(¢)] + D[2cos(20) — (1 + R) exp(—2i¢p)] |2

for | E |< Ap and fs(0) = 0 for | E |> A, with sing = E/A,. The
transparency of the interface D is given as before by 4 cos? 8/(4 cos? § 4+ Z2), with
the dimensionless constant Z = 2mU/h*kg. The magnitude of fs(0) is largely
enhanced at E = + A, sin 0 corresponding to the energy dispersion of the ABS. The
origin of the nonzero fs(6) even for A = 0 is due to spin-dependent Andreev bound
states. We have checked that even if we take into account the spatial dependence of
the (py & ipy)-wave pair potential explicitly, the resulting fs(6) does not change
qualitatively [58].

Summarizing these features, we can conclude that the presence of the helical edge
modes in NCS superconductors is the origin of the large angle dependent spin current
through normal-metal/NCS superconductor junctions. However, the angle-averaged
normalized spin conductance becomes zero since fs(0) = — fs(—6) is satisfied.

Magnetic field offers an opportunity to observe the spin current in a more acces-
sible way, where the time reversal (T) symmetry is broken by the shielding current
at the interface. Here we consider the angle-averaged normalized spin conductance
os and charge conductance o¢ as a function of magnetic field. The spin conductance
is given by [62]

/2 /2
os = ( fs(0) d@) /( /2 Ine(9) d@) , (11.26)

—/2 -

where fnc(0) denotes the angle-resolved charge conductance in the normal state with
A, = A; = 0. We consider a magnetic field H applied perpendicular to the two-
dimensional plane, which induces a shielding current along the normal-metal/NCS
superconductor interface. When the penetration depth of the NCS superconductor is
much longer than the coherence length, the vector potential can be approximated as
described in Sect. 11.2. As in the case of a chiral p-wave superconductor, the applied
magnetic field shifts the quasiparticle energy E to E + H A sin6/Hy. For typical
values of £ ~ 10 nm, Ay, ~ 100 nm, the magnitude of Hy is of the order of 0.2 Tesla.
The order of magnitude of the Doppler shift is given by H A,/ Hy. Since the Zeeman
energy is given by up H, the energy shift due to the Doppler effect is by a factor
kpAm larger than that due to the Zeeman effect. Thus, we can neglect the Zeeman
effect in the present analysis. This is in sharp contrast to quantum spin Hall systems
where the Zeeman effect is the main effect of a magnetic field, which opens a gap in
the helical edge modes and modulates the transport properties [63]. The enhanced
spin current due to Doppler shifts is specific to the superconducting state, and is not
realized in quantum spin Hall systems.



11 Properties of Interfaces and Surfaces 327
11.2.3.3 Topological Aspects

We now focus on the topological aspect of non-centrosymmetric superconductors.
Recently, the concept of the quantum Hall system has been generalized to time-
reversal (T) symmetric systems, i.e., quantum spin Hall systems [64—68]. A quantum
spin Hall system could be regarded as two copies of a quantum Hall system, for up
and down spins, that are characterized by opposite chiralities. In the generic case,
however, a mixture of up and down spins occurs due to spin-orbit interaction, which
necessitates a new topological number to characterize a quantum spin Hall system
[64, 65, 67, 68]. In quantum spin Hall systems, there exist helical edge modes,
i.e., time-reversed partners of right- and left-going one-dimensional modes. This
has been experimentally demonstrated for the quantum well of the HgTe system by
measurements of the charge conductance [63].

As shown in Fig. 11.6, to discuss the topological nature of the helical edge modes,
itis sufficient to consider the pure (p, &ipy)-wave state. Here, we give an argument
from the viewpoint of the Z;, (topological) class [64, 65], why the superconducting
state with A, > A has an Andreev bound state. We commence with a pure (p, &
ipy)-wave state without spin-orbit interaction, i.e. A = 0. The spin Chern number
[67, 68] for the corresponding Bogoliubov-de Gennes Hamiltonian is 2. Turning on
A adiabatically leaves the time reversal T-symmetry intact and keeps the gap open.
Upon this adiabatic change of A, the number of the helical edge mode pairs does not
change. The reason is that this number is a topological number and consequently
can only change by integer values. We now increase the magnitude of Ag from
zero. As far as A, > Ay is satisfied, the number of helical edge modes does not
change. However, if A exceeds A, the helical mode disappears. In this regime,
the topological nature of the superconducting state belongs to a pure s-wave state
with A = 0. It is remarkable that just at A; = A, one of the two energy gaps for
quasiparticles in the bulk closes. At precisely this point a quantum phase transition
occurs.

In the following, we discuss the pure (p, % ipy)-wave case in more detail. In
Fig. 11.7, the spin conductance og and charge conductance oc normalized by the
charge conductance in the normal state are plotted. It should be noted that og becomes
nonzero in the presence of a magnetic field H (see curves b, c and d), since f5(0) is
no more an odd function of 6 due to the imbalance of the helical edge modes. For
A = 0, the corresponding helical edge modes are givenby E = A, (1 — H/Hp) sin 0
and E = —A,(1 + H/Hp)sinf. As seen from the curves b and c, the sign of og
is reversed when changing the direction of the applied magnetic field. On the other
hand, the corresponding charge conductance has different features. For H = 0, the
resulting line shape of o is the same as that for a chiral p-wave superconductor (see
curve a of right panel) [56, 57, 59]. As seen from curves b and c in the right panel,
oc does not change with the direction of the magnetic field.

In summary, we have clarified the charge and spin transport properties of non-
centrosymmetric superconductors from the viewpoint of topology and Andreev
bound states. We have found spin-polarized current flowing through the interface
that depends on the incident angle. When a weak magnetic field is applied, even the
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Fig.11.7 Angle-averaged spin conductance and charge conductance as a function of eV for Akg =
0.1p. The various magnetic field values are a H = 0, b H = —0.2Hyp, ¢ H = 0.2Hp, and d
H = —0.4Hy. Curves b and c of the right panel are identical. From Fig. 11.2 of Ref. [54]

angle-integrated current is largely spin polarized. In analogy to quantum spin Hall
systems, the Andreev bound states in non-centrosymmetric superconductors corre-
spond to helical edge modes. Andreev reflection via helical edge modes produces
the enhanced spin current specific to non-centrosymmetric superconductors.

11.3 Quasiclassical Theory of Superconductivity
for Non-centrosymmetric Superconductors

11.3.1 Quasiparticle Propagator

Electronic quasiparticles in normal Landau Fermi liquids are restricted in phase space
to a region that comprises only a small part of the entire electronic phase space [69,
70]. It consists of a narrow (compared to the Fermi momentum pr) shell around
the Fermi surface, and a small (compared to the Fermi energy EFf) region around
the chemical potential. Quasiparticles are characterized by their spin and charge,
and their group velocity is the Fermi velocity, vg(pr). Quasiclassical theory is the
appropriate framework to describe such a system. It consists of a systematic classi-
fication of all interaction processes according to their relevance, i.e. their smallness
with respect to an expansion parameter SMALL [71-75]. This expansion parameter
assumes the existence of a well defined scale separation between a low-energy scale
and a high-energy scale.

Superconducting phenomena are governed by the low-energy scale. That means
that the energy scales determined by the energy gap A and the transition temperature
T, are small. In contrast the energy scales determined by the Fermi energy Ef or
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the Coulomb repulsion Uc are large energies. Disorder can be described within the
quasiclassical approximation as long as the energy associated with the scattering
rate, h/t, is classified as a small energy. A systematic classification shows that
a consistent treatment of disorder requires the #-matrix approximation. Localization
effects due to disorder are beyond the leading-order precision of quasiclassical theory.
Associated with the energy scales are small and large length scales. For example the
superconducting coherence length &y = hwvg/2mkgT;, and the elastic mean free path
¢ = vgt are large compared to the lattice constant a and the Fermi wave length
Ar = h/pr.

This separation in energy and length scales is associated with a low-energy region
in phase space, that includes low quasiparticle energies ~A, kg T, and a momentum
shell around the quasiparticle Fermi momentum pg of extent §p ~ A /|vg(pr)|. The
phase-space volume of this low-energy region, divided by the entire phase-space
volume, is employed for a systematic diagrammatic expansion of a Dyson series
within a path-ordered Green’s function technique (e.g. Matsubara technique for the
Matsubara path, Keldysh-Nambu-Gor’kov technique for the Schwinger-Keldysh
path). Within the framework of Green’s function technique, all diagrams in a
Feynman diagrammatic expansion can be classified according to their order in this
expansion parameter, which is denoted as SMALL. The leading-order theory in this
expansion parameter is called the “Quasiclassical Theory of Metals and Supercon-
ductors” [71-78].

The possibility to define a quasiparticle Fermi surface around which all quasi-
particle excitations reside is a requirement for the quasiclassical theory to work. Its
presence ensures that the Pauli principle is still effective in placing stringent kinetic
restrictions on the possible scattering events. It is essential to note that such a defin-
ition need not be sharp, i.e. the theory is not restricted to normal Fermi liquids with
a jump in the momentum distribution at zero temperature. Thus, the theory includes
superconducting phenomena as well as strong-coupling metals. It is convenient to
introduce a local coordinate system at each momentum point of the Fermi surface
PrE, with a variation along the surface normal, i.e. in direction of the Fermi veloc-
ity ve(pg), that is determined by a variable &, (this variable is zero at the Fermi
momentum), and a tangential variation along the Fermi surface at constant &,.
A consistent approximation requires to consider the Fermi velocity constant across
the low-energy momentum shell, and thus the local coordinate system stays an orthog-
onal system as long as &, varies within this momentum shell, and furthermore, &,
stays small within this momentum shell. The coordinate &, around each Fermi surface
point p varies then approximately as &, ~ vg(p — pE).

The quasiclassical theory is obtained by defining quasiparticle propagators for
the low-energy regions of the phase space, and in combining all diagrams involving
Green'’s functions with their variables residing in the high-energy regions into new
effective high-energy interaction vertices. This process of integrating out high-energy
degrees of freedom is highly non-trivial and must be solved by microscopic theories.
In the spirit of Fermi-liquid theory it is, however, possible to regard all high-energy
interaction vertices as phenomenological parameters of the theory. In the quasiclas-
sical approximation they do not depend on any low-energy variables as temperature
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or superconducting gap, and they do not vary as function of &, as long as &, stays
within the momentum shell that harbors the quasiparticle excitations. However they
do depend in general on the position of the Fermi momentum on the Fermi surface.

In addition to introducing new effective interaction vertices the above procedure
also introduces a quasiparticle renormalization factor a®(p) ~ 1/Z(p) that is due
to the self energies of the low-energy quasiparticles moving in the background of
the high energy electrons. This renormalization leads to a modification of the quasi-
particle Fermi velocity compared to the bare Fermi velocity of the system, and to a
deformation of the quasiparticle Fermi surface compared to the bare Fermi surface.
It also determines quasiparticle weight as the residua of the quasiparticle poles in the
complex energy plane.

One has to keep these remarks in consideration when including additional inter-
action, like spin-orbit interaction or exchange interaction, in a quasiclassical theory.
First, it is important to decide if this interaction is going to be treated among the low-
energy terms or among the high-energy terms. Depending on this issue, one obtains
two different quasiclassical theories that cannot in general adiabatically be connected
with each other. Going from one limit to the other includes the un-dressing of all
effective interaction vertices and of the quasiparticles, and re-dressing with new types
of effective interaction vertices and self energies. Importantly, this dressing leads to
strongly spin-dependent effective interactions and quasiparticle renormalizations in
one limit, and to leading order spin-symmetric interactions and quasiparticle renor-
malizations in the other limit. The former case, when spin-dependent interactions are
included in the high-energy scale, leads to a complete reorganization of the Fermi
surface geometry, with in general new spin-dependent quasiparticle energy bands. In
this case, it is not sensible anymore to keep the spin as a good quantum number, but
it is necessary to deal directly with the representation that diagonalizes the energy
bands including the spin-dependent interaction. In the case of a strong exchange
energy this leads to exchange-split energy bands, and in the case of strong spin-orbit
interaction this leads to helicity bands.

The basic quantities in the theory are the quasiparticle Fermi surface, the quasi-
particle velocity, and quasiparticle interactions. Here we give a short sketch of how
they enter the theory. The bare propagator (without inclusion of exchange interaction
or spin-orbit coupling) in the quasiparticle region of the phase space has the general
structure

5
GO (pe)= —__ 11.27

where & (p) is the bare energy dispersion of the energy band (measured from
the electrochemical potential of the electrons). It does not include electron-electron
interaction effects yet, and thus determines a bare Fermi surface that does not
coincide with the quasiparticle Fermi surface defined below. The quantum number «
labels the spin. The leading-order self energy is solely due to coupling of low-energy
electrons (superscript L) to high-energy electrons (superscript H), and consequently
the corresponding self energy, ™, must be classified as a pure high-energy quantity.
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In general, when either exchange interaction or spin-orbit coupling are large energy
scales, this self-energy contribution will be spin-dependent (and will ultimately lead
to new, spin-split energy bands as explained below). The self energy X ) is, however,
slowly varying in energy on the low-energy scale and thus can be expanded around
the chemical potential,

Sog (p.8) = B35 (p. 0) +£0: 25 (p. e _,+ 0(e?). (11.28)
The second term can be combined with energy ¢ into a renormalization function

e —£0: T4y (p.0) = 23y (pe. (11.29)

such that to leading order the Dyson equation for the low-energy propagator Gg;)
reads

{28 e =160 Poas + 5 (0.0 = 2 (.00} © G (p. &) = b0y,
(11.30)

where ¥ includes all self-energy terms of order SMALL . Here, and in the follow-
ing, summation over repeated indices is implied. The ® sign accounts for possible
spatial or temporal inhomogeneities, where it has the form of a convolution product
in Wigner representation (see Ref. [71] for details). The equation holds in this form
either in Matsubara or in Keldysh representation (in which case all quantities are
2x 2 matrices in Keldysh space [88, 89]). Low-energy excitations reside in momen-
tum regions differing considerably from that for the bare propagators Eq. (11.27).

The quantities Z gg) (p) and ES;) (p, 0) can be defined such that they have real
eigenvalues. The next step is to eliminate the high-energy renormalization factor
Zgg) (p) from the low-energy theory. This is done with the help of quasiparticle
weight factors aqg(p), that are the solution of

day (P)Z,)3) (P)ay (D) = Sup. (11.31)

They exist as long as the matrix Z® (p) has non-zero eigenvalues. Then we can
define the quasiparticle Green’s function G;/QBP) as the solution of

oy (P)G ) ayp(p) = G (p, ©), (11.32)
which exists under the condition that the matrix a(p) has non-zero eigenvalues (i.e.

the quasiparticle weights are non-zero; otherwise the quasiparticle approximation
breaks down). It fulfills the Dyson equation

[a — @ (p) — 2@ (p, a)] ® G2 (p. &) = by (11.33)

with the quasiparticle dispersion
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687 (P) = 4y (1) (EV (D3, + Z10(. ) (), (11.34)
and the quasiparticle self energies

23 (P, €) = aay (D)L (P, £)ay 5(p). (11.35)

The effective (renormalized by high-energy processes) interactions vertices for the
low-energy propagators, ngg), which enter the diagrammatic expressions for the
quasiparticle self energy, have the general structure Vg, g, (¢1, p1;...; €n, Pn)- In
leading order the energy dependence of these vertices can be neglected near the
chemical potential, i.e. the arguments can be restricted to the chemical potential.
Furthermore, instead of working with G<L) and Vg, . g, the common and completely

equivalent description in terms of the quas1partlcle propagators, G(Q ) defined above,

and renormalized quasiparticle interactions, V<Q ) > given by

Vel (1. pw) = ag g (P1) - -ag,p, (P)Vir g (0. p1i..:0, pa)  (11.36)

can be used.

It is important to note that the quasiparticle self energies can be written as func-
tionals of the quasiparticle Green’s functions only in leading order in the expansion in
SMALL, which is the order relevant for the quasiclassical approximation. In this case,
the quasiparticle weights have disappeared from the theory and cannot in principle
be determined from low-energy processes that only involve quasiparticle dynam-
ics. They must be obtained from a microscopic theory by considering high energy
scattering processes, which is beyond the quasiclassical approximation.

It is obvious, that the appearance of the quasiparticle renormalization factors
renders all self energies and interactions non-diagonal in spin unless spin-dependent
interactions are small enough the be omitted from the high-energy quantities. From
the above expressions one obtains the quasiparticle Fermi surfaces by diagonalizing
the quasiparticle dispersion (here we make the summation explicit)

Zum(ms;‘?")(p) =P () Uss(p) (11.37)

with band index A, and solving the equation

£®(p)y=0— p=ph. (11.38)

The corresponding quasiparticle Fermi velocity is then given by

:p;

0

A (QP)

= — . 11.39
Ve apgk (p) ( )
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In the band-diagonal frame, the quasiparticle propagator is given by
P P P
{e =@ - = w0 D=5 (1140

where the self energy (and all interactions in the self-energy expressions) must be
transformed accordingly, e.g.

=3 (p. ) = Uy ()53 (p. £)Unp(P)™. (11.41)

In the next section this procedure is carried out for the case of strong spin-orbit
interaction, e.g. appropriate for some non-centrosymmetric materials.

11.3.2 Spin-Orbit Interaction and Helicity Representation

As discussed in Chap. 4 by V.P. Mineev and M. Sigrist, for treating a non-
centrosymmetric material it is convenient to perform a canonical transformation
from a spin basis with fermion annihilation operators ag, for spin « =1, | to the
so-called helicity basis with fermion annihilation operators cy; for helicity A = +.
This canonical transformation diagonalizes the kinetic part of the Hamiltonian,

Hin =D > 600 + g(k) - 0)ap) aygars = D D &.(k)cy; cr. (11.42)

k ap=1.1 k A==

Here, £ (k) is the band dispersion relative to the chemical potential in the absence of
spin-orbit interaction, g(k) is the spin-orbit pseudovector, which is odd in momen-
tum, g(—k) = —g(k), and o is the vector of Pauli matrices. The resulting helicity
band dispersion is

E+(k) = &(k) £ 1g(k)|. (11.43)

As is easily seen, spin-orbit interaction locks the orientation of the quasiparticle spin
with respect to its momentum in each helicity band. The Hamiltonian, Eq. (11.42),
is time-reversal invariant, however lifts the spin degeneracy.

Itis convenient to introduce polar and azimuthal angles for the vector g, defined by
(g5 9y- 92} = |g1{sin(8) cos(pg). sin(6y) sin(gg). cos(6y)} (where 0 < O < 7).
In terms of those, the transformation from spin to helicity basis, Uy, is defined
by [48]

_ cos(0g/2)  sin(fy/2)e % B
Vi = (—Sin(Gg/Z)ei‘/’g cos(ty/2) ) P T ; UknaGa-  (11.44)

Obviously, 35 Uy, o [9 (k) - 0up US55 = lg(K)|o)).
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For the superconducting state the Nambu-Gor’kov formalism is appropriate
[84—87]. The Nambu spinor, Ay = (ag4, ag, aikT, a'_k l)T transforms under the

above canonical transformation into the helical object ék = (Ck+, Ck—, cT_k 4
cT_k_)T, where

. AN Ui 0
Cr = UrAg, Ui = ( ) . (11.45)
0 Ufk

Correspondingly, one can construct 4 x 4 retarded Green’s functions in spin basis,

GO () = —i0(t — ) ({Ar, (1), AL (1) })e. (11.46)
and in helicity basis,

Gt (11, 12) = =i8(t1 = ) ({Ca (1), O, ()} = Uk Gy, (1. )T
(11.47)
where A(z) and C (#) are Heisenberg operators, the braces denote an anticommutator,
(...)  1s a grand canonical average, and 6 is the usual Heaviside step function. Anal-
ogously, advanced, Keldysh, and Matsubara propagators can be defined in helicity
representation. For dealing with superconducting phenomena it is often convenient
to introduce Wigner coordinates,

N . ~ T T
Gk, R, ¢, 1) = /(dq)(dr)e“q“fﬂck%k,%(t + 5003 (11.48)

From here, one can proceed along different lines. Either, the Dyson equation for the
full Gor’kov Green’s functions is solved, which is equivalent to the Bogoliubov-de
Gennes description in wave-function techniques. Or, the quasiclassical approxima-
tion is employed, which is equivalent to the Andreev approximation in wave-function
language. In the following section we will adopt the second line.

11.3.3 Quasiclassical Propagator

In the following, the quasiclassical theory of superconductivity [71-83] will be
employed to calculate electronic transport properties across interfaces with non-
centrosymmetric superconductors. This method is based on the observation that, in
most situations, the superconducting state varies on the length scale of the supercon-
ducting coherence length &y = hvg/2mwkpT.. The appropriate many-body Green’s
function for describing the superconducting state has been introduced by Gor’kov
[84-87], and the Gor’kov Green’s function can then be decomposed in a fast oscil-
lating component, varying on the scale of 1/kp, and an envelope function varying
on the scale of &. The quasiclassical approximation consists of integrating out the
fast oscillating component for each quasiparticle band separately:
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J(pE. R, &, 1) =/dsj, 5GP (p, R e, 1) (11.49)

where a “check” denotes a matrix in Keldysh-Nambu-Gor’kov space,[88, 89] a “hat”
denotes a matrix in Nambu-Gor’kov particle-hole space, £, = vi(p — pf), and 3
is the third Pauli matrix in particle-hole space.

The quasiclassical Green’s function obeys the transport equation [76, 77, 78]

v

ilve - VR + [ets — A — h, §lo = 0. (11.50)

Here, ¢ is the quasiparticle energy, A is the superconducting order parameter and h
contains all other self-energies and external perturbations, related to external fields,
impurities etc. The notation o combines a time convolution with matrix multiplica-
tion, and [X, y], denotes the commutator of X and y with respect to the o-product.
Equation (11.50) must be supplemented by a normalization condition that must be
obtained from an explicit calculation in the normal state [76, 77, 90],

Jog=—Iln’. (11.51)

From the knowledge of ¢ one can calculate measurable quantities, e.g. the current
density is related to the Keldysh component of the Green’s function via

. de A AK o

J(R,1) = gqNr %Trm:mg (pg, R, &, 1)), (11.52)
where ¢ = —|e| is the electron charge, and (- - - ) denotes a Fermi surface average,
which is defined by

. 11.53
~ Ne z/(Enh)3|vF| Z/(zzrh)3| Vel (19

and Tr denotes a trace over the Nambu-Gor’kov matrix.

11.3.3.1 Case of Weak Spin-Orbit Splitting

In the case of weak spin-orbit splitting the quasiclassical propagator can be obtained
in either spin or helicity representation. It is possible then to define a common Fermi
surface pr for both spin bands or, equivalently, both helicity bands. This case applies
when |g(pr)| < EFf for any Fermi momentum pg, where E¥ is the Fermi energy (in
addition to the condition that the superconducting energy scales (kg 7, and the gap A
are much smaller than Eg). Under these circumstances quasiparticles with different
helicity but with the same k=k /|k| propagate coherently along a common classical
trajectory over distances much longer than the Fermi wavelength. The transport
equation is the usual Eilenberger equation modified by a spin-orbit interaction term
[71,91]
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ihve - Vr§ + %3 — A =50, §lo = 0 (11.54)
with normalization § o § = —m21. Here, in helicity basis vso = | Gkr lo®, and in
spin basis V5o = gk - 6 73, with

A o 0 o 0

6 = (O 0*) = (0 _6(2)00(2)). (11.55)

The velocity renormalization of order |g|/Er <« 1 can safely be neglected. The
quasiparticle trajectories are doubly degenerate in either spin or helicity space, and
coherent mixing between spin states or between helicity states can take place.

11.3.3.2 Case of Strong Spin-Orbit Splitting

In the case of strong spin-orbit splitting the only possible representation for quasi-
classical theory is the helicity representation. In this case, the spin-orbit interaction
does not appear anymore as a source term in the transport equations, however does
so explicitly as the presence of well-defined helicity bands. The transport equation
takes the form

iy - VR + [et3 — A*, g1, = 0 (11.56)

with normalization condition § o § = —721. Here, the velocity is strongly renor-
malized due to spin-orbit interaction. The quasiparticle trajectories are different for
different helicity, and no coherence exists between the different helicity states. The
matrix dimension can be reduced by a factor 2 compared to the case of weak spin-
orbit splitting, and instead the number of Fermi surface sheets is increased by a factor
of 2. If measurements are made that are spin-selective, the corresponding vector of
Pauli spin matrices must be transformed according to

o3 = Uk UDs = UriraGapUsy - (11.57)

11.3.4 Riccati Parameterization

One of the main obstacles of the quasiclassical theory has been the non-linearity
that is introduced by the normalization condition. A powerful way to deal with
this problem is the choice of a parameter representation that ensures the nor-
malization condition by definition. In this representation, the Keldysh quasiclas-
sical Green’s function is determined by six parameters in particle-hole space,
yRA RA KK FK where yRA, JRA are the coherence functions, describing the
coherence between particle-like and hole-like states, whereas X, #K are distribution

functions, describing the occupation of quasiparticle states [27, 92]. The coherence
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functions are a generalization of the so-called Riccati amplitudes [92, 93, 94, 95, 96,
97, 98, 99] to non-equilibrium situations. All six parameters are matrix functions
with the dimension determined by the degeneracy of the quasiparticle trajectories,
and depend on Fermi momentum, position, energy, and time. The parameterization
is simplified by the fact that, due to symmetry relations, only two functions of the six
are independent. The particle-hole symmetry is expressed by the operation X which
is defined for any function X of the phase-space variables by

O(pg. R, z.1) = Q(—pg. R, —2*. O)*. (11.58)

Here, z = ¢ is real for the Keldysh components and z is situated in the upper
(lower) complex energy half plane for retarded (advanced) quantities. Furthermore,
the symmetry relations

yr =GN A =0T K= 60T (11.59)

hold. As a consequence, it suffices to determine fully the parameters y® and xX.
The quasiclassical Green’s function is related to these amplitudes in the following
way [here the upper (lower) sign corresponds to retarded (advanced)]:

——_ - . R,A
f]R,A::Fin((l_VOV)10(1‘|’V°V) 20—yop) oy )
2 —yoy)toy —(U—poy)ltol+yoy))
(11.60)
which can be written in more compact form as [111]
g 7\
AR,A . A
B =72 ~ ~ + 11.61
g F2mi (_y\ _g) in13, (11.61)

with the abbreviations 4 = (1 — y o 7)~! and .# = ¥ o y. For the Keldysh
component one can write [111]

g F\° (0 g 7\

~K _ . N » ~ »

g = 27”(_g _g) O(O K o G g . (11.62)
Here, the o-symbol includes a time convolution as well as matrix multiplication; the
inversion is defined with respect to the o-operation [111].

From the transport equation for the quasiclassical Green’s functions one obtains
a set of matrix equations of motion for the six parameters above [27, 92]. For the

coherence amplitudes this leads to Riccati differential equations [96, 97], hence the
name Riccati parameterization.

11.3.5 Transport Equations

The central equations that govern the transport phenomena have been derived in Ref.
[27, 92]. The transport equation for the coherence functions y (pr, R, ¢, t) are given
by
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(ihvg - VR +26)yRA =[yoAoy+Toy —yox — AIRA, (11.63)
For the distribution functions x(pr, R, ¢, t) the transport equations read

(g - Ve +ild)x® — [y o A+ TR ox® —xKo[A0y — 22
= —yRo Ko A+ ARG A £ YR o AK — uK, (11.64)

The equations for the remaining components are obtained by the symmetry relation
Eq.(11.58).

11.3.6 Boundary Conditions

The transport equations must be complemented with boundary conditions for the
coherence amplitudes and distribution functions at interfaces and surfaces [100, 101,
102, 103]. For spin-active scattering such conditions were obtained in Ref. [104].
Explicit formulations in terms of special parameterizations were given in Refs. [27,
105-110]. Further developments include strongly spin-polarized systems [111-116],
diffusive interface scattering [117] or multi-band systems [118]. We adopt the nota-
tion [27] that incoming amplitudes are denoted by small case letters and outgoing
ones by capital case letters, see Fig. 11.8. Note that the velocity direction of trajec-
tories is opposite for holelike and particlelike amplitudes as well as advanced and
retarded ones. The boundary conditions express outgoing amplitudes as a function
of incoming ones and as a function of the parameters of the normal-state scattering
matrix.

11.3.6.1 Coherence Amplitudes

The boundary conditions for the coherence amplitudes are formulated in terms of
the solution of the equation[111]

el =D S8, 0 vy o SN (11.65)
P
- R
kil = [V + D Theky 0 Py © V] - (11.66)
k1#k
(the trajectory index p runs over all incoming trajectories) for [['y .y ]R, where the

trajectory indices k, k, ki run over outgoing trajectories involved in the interface
scattering process, and the scattering matrix parameters enter only via the “elemen-
tary scattering event” [y,ék,]R’A. The quasiclassical coherence amplitude is given by
the forward scattering contribution of [Fk<_k/]R,
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Fermi surface 1

Fig.11.8 Notation for the coherence amplitudes and distribution functions at an interface. Indices
1 and 2 refer to the sides of the interface. The arrows for the Fermi velocities are for particle like
excitations. The Fermi velocity directions are given by the directions perpendicular to the Fermi
surface at the corresponding Fermi momentum. Quasiparticles move along the Fermi velocity direc-
tions (dashed lines). The components of the Fermi momenta parallel to the surface are conserved
(indicated by the thin dotted line). For each trajectory, small case letters denote coherence func-
tions and distribution functions with initial conditions from the bulk, and capital case letters denote
functions with initial conditions at the interface. The interface boundary conditions must express
all capital case quantities in terms of the small case quantities. Here, the simplest case, that involves
only one Fermi surface sheet on either side ('two-trajectory scattering’), is shown. After Ref. [27]

R =T . (11.67)
Analogous equations [111] hold for the advanced and particle-hole conjugated com-
ponents, [Fp<—p’]Ra [Fp’—>p]A’ and [Fk’—>k]A-
11.3.6.2 Distribution Functions

For the Keldysh component not only the forward scattering contribution of [y /R
is required, but also the off-scattering part

[Tr IR = [Trp — Db (11.68)

The boundary conditions for the distribution functions read [111]

gl =D SE oxk o055 (11.69)
p
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XE =D "8k + Thky 0 7 IR 0 [y 1, 15 0 [k0k + ¥y © Pyt 1
ki1,k2

= D [Tty R0 ZF o [Fiya]™, (11.70)
ki

which depends on the scattering matrix parameters only via the elementary scattering
event [xlik,]K. Analogous relations hold for X Ilf

The transport equation for the distribution function is solved by any function of
energy in equilibrium. The correct solutions in this case are

(D (el
x©® = (1 — yR7*) tanh Sy i€ = -1 - 7Ry*) tanh S
2kgT

(11.71)

(where we have made explicit the electrochemical potential u©) = 1 + g® for
excitations of charge ¢ in an electrostatic potential ®).

11.3.6.3 Case 1: One-Trajectory Scattering

In this case for each given value of parallel component of the momentum, only
one incoming and one outgoing trajectory are coupled via the boundary conditions.
The corresponding normal state scattering matrix is denoted by S and is a scalar in
trajectory space. The boundary conditions read in this case simply

[y/]R — R, yR o§R, TR = [y/]R’ (11.72)
and

T = sRoxKosh, XK =15 (11.73)

11.3.6.4 Case 2: Two-Trajectory Scattering

This is the case of scattering from two incoming trajectories into two outgoing
trajectories. Examples are reflection and transmission at an interface, or reflection
from a surface in a two-band system. The scattering matrix and the elementary
scattering events have in this case the form

S Sz R R R _GR K R K _ oA
S = (521 Szz)’ ;1" = Z Siov oS, It = Z Sijpox; 0 5.
=1,2 =1,2

(11.74)

We give the solutions for trajectory 1, the remaining solution can be obtained by
interchanging the indices 1 and 2. The boundary conditions read fori, j = 1,2
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- R - R
R =[ri+Tic20morn]Ss TR =[rh+Ticaomoysn] . (1175
The equation for the I'1 . can be solved by simple inversion,

~ —171R
TR, =[rho(—toy) '], (11.76)

and the such obtained solution introduced into the equation for '}, ; = T},
R / 1 ~ ’ \—1 ~ s 1R
Mf=[rii+rno(—foy) ooyl (11.77)
For the distribution function one needs the components Flf(_z =T'R_, and obtains

X = 1 + TR 077 o [ayy 1N 4 [p] 0 3t 0 T3

FTR o (7R o Ll oy — 1K) 0 T4 . e

We present here formulas for the special case of the zero temperature conduc-
tance when a single band system is contacted by a normal metal. We assign the
index 1 to the normal metal side of the interface and the index 2 to the super-
conducting side. The momentum for incoming trajectories on the superconducting
side of the interface is denoted by k>, and that for the outgoing trajectory on the
superconducting side by k,. For the normal side the corresponding momenta are
ki and k; (see Fig.11.8 for the scattering geometry). The projection on the inter-
face of all four momenta is equal. The corresponding incoming coherence functions
in the superconductor are y»(g) = yzR (kp, &) and p(e) = )72R (k,, ). Furthermore,
Sin=SR(ky, k2), S2o = SN (ky, k), and Sy = SK (k, k,). The Fermi velocity
for outgoing directions on the normal side will be denoted by vg; = v (k). Hav-
ing thus specified all momentum dependencies, we will suppress in the formulas
below the momentum variables. In the case under consideration, after introducing
Egs.(11.76), (11.77), and (11.78) into Eq.(11.52), we obtain after some algebra
(we omit hereafter the o sign)

G(GE:I/) = <f1vF1 [HSI2[1 + Az(S)Szz]H2 - Hilz:\z(s)Hz] >::ev 1)
+ <ﬁvF1H512[1 + A2(8)S22]J/2(8)§21H >8=—eV
where
Ax(e) = (1 - 7/2(8)322)72(8)522)_1)/2(8)522)72(8) (11.80)

and we used the notation ||A||? = %Tr(AAT) for any 2 x 2 matrix A. The sym-
bol (.. .)::ev denotes Fermi surface average only over outgoing directions, and the
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argument is to be taken at energy eV. For S = 5'22 = —+/R(H), S;p = 5’21 =

v/ D(0) (with impact angle ), Eq. (11.79) reduces to Eq. (11.10). For the tunneling
limit we can neglect the second line in Eq. (11.79), and using the relation

1
14 Az(e)S2n = 7 {M(e)+ 1} (11.81)
with the complex quantity
. —1 .
Ni(e) = [(1 ~ nE3nES) (1+ )/2(8)5227/2(8)522)]
the conductance simplifies after some re-arrangements to

Gev) 1 )
(GeN ) _ 5ReTr<nvF1 {Slzm(e\/)(su)*} >+. (11.82)

For the tunneling limit, in .45 the surface scattering matrix (i.e. for S;o = S; = 0)
can be used, for which the local density of states at an impenetrable surface is

N 1 +
208) _ SRETH{ A3(e) + S M3(e)Sh) (11.83)
Ny g 2

11.3.6.5 Scattering Matrix for Non-centrosymmetric/Normal-Metal Junction

For the case that a non-centrosymmetric material with small spin-orbit splitting is
brought in contact with a normal metal, we can use the formulas of the last sub-
section. The scattering matrix for scattering between the two helicity bands in the
non-centrosymmetric metal (index 2) and the two spin bands in the normal metal
(index 1) can be expressed in terms of the scattering matrix for scattering between
spin states on both sides of the interface. The corresponding transformation is

_ . . ). 11.84
(Sél S5 0 U S S» 0 U, ( )
Sil 5'12 1 0 St Sip 1 0

- ~ = N ~ . . 11.85
(Sél S5 0 UZ, So1 S 0 Uzk ( )

For the simple case of a spin-conserving scattering in the spin/spin representation,
the spin/helicity representation of the scattering matrix takes the form

(Sil Si2)= r tu,jT , (5;1 §iz)= g r*t*JZkT '
S Sy r*Ux —r UpUy S5 S tUL, —r UL UL

(11.86)
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where r = rgx and ¢t = g with % + [t|> = 1 are reflection and transmission
coefficients that depend on the (conserved) momentum projection on the interface.
We have chosen r real, as in quasiclassical approximation possible reflection phases
do not affect the results. The case # = 0 can be used to describe scattering at a surface.

In the case of a contact with a non-centrosymmetric metal with strong spin-orbit
split bands the scattering matrix has a more complicated structure. It connects in
this case three incoming with three outgoing trajectories, and the scattering at the
interface will not be spin-conserving. For this case, it does then not make sense
anymore do use a spin/spin representation, but a spin/helicity representation must
be used consistently. The scattering matrix must be obtained in agreement with the
symmetry group of the interface, and it cannot in general be related anymore to the
U matrices in a simple way.

11.3.7 Superconducting Order Parameter

For the case of weak spin-orbit splitting one expects that to leading order in the
small expansion parameters either a singlet or a triplet component nucleates. On the
other hand, any finite spin-orbit interaction leads to a mixture of spin singlet (Ay)
and triplet (A,) components [119, 120]. Consequently, the singlet or triplet states are
never pure, but they are mixed. This mixing becomes in particular prominent when
the spin-orbit interaction is strong. In this case, it does not make sense anymore to
speak about singlet or triplet components, but it is necessary to start from the helicity
basis.

In the following, we concentrate on the case of weak splitting. In this case the
triplet component is expected to be induced directly by the structure of the spin-orbit
interaction, and the spin triplet component aligns with g(k). The order parameter
matrix is in this case in spin representation given by,

AP = (A + Drg(k) - 0)ic® (11.87)
which transforms in helicity basis into
A = Ur(Ax + Drg(k) - 0)ic@UT,
= Ur(Ak + Drg(k) - 0)U Ugiac@UT, (11.88)
= (A + Drlg(o) o) U io@.

For the following, we introduce the notation

" 0 e % .
WUkl = (_e% 0 ) =—ia?. (11.89)
Note that the identities (6@)2 = 1,69 = 6@, and 6P @@ = —5@*
hold. With this notation, we can obtain the Nambu-Gor’kov space structure of the
order parameter as
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A 0 A 0 (A + Dilglo?)o@e®
A=\ ; = (3))# o (@)% )
A0 (A_g + D_glglo)* a' 9% 0
_ 0 (Ax + Drlglo®)ic@\ (ic@ 0
(A} + Dflglo®)ic®@ 0 0 —ict9x)>
(11.90)
where A_; = Ag, and D_; = Dy, and we have used 0 @*g P g@* = _53),
With AL (k) = Ag £ Dg|g| the order parameter can be cast in the form
_ A+t (k) 0
mm—( 0 ARy (k) (11.91)
% (At (k) 0
A(k) = ( 0 Ayt (—k)* ) (11.92)
with phase factors 7, (k) = —e "*%s. Note that t;(—k) = —t;(k), and |1, (k)| =

1, and AL (—k) = AL (k).

We note in passing that other possibilities to define the canonical transformation
that diagonalizes the kinetic part of the Hamiltonian exist, which differ by the relation
between particle and hole components. Using these alternative definitions (e.g. in
Refs. [48, 58]), the order parameter is purely off-diagonal instead of diagonal in
the band representation, and the symmetry relation Eq. (11.58) becomes non-trivial
(see e.g. Ref. [56]). Here, we prefer a transformation that preserves the symmetry
(11.58), and renders the order parameter above diagonal. This is a natural choice
when treating strongly spin-orbit split systems, where the order parameter should be
band diagonal.

The coherence amplitudes in a bulk system with order parameter Eq. (11.91) are
of a similar form,

[ v+k, )ty (k) 0
vk, &) = ( 0 v (k. 8)t_(k)) (11.93)
oo (P o) (k) 0

with y1 (k, &) = y+(—k, —e)*. In inhomogeneous systems helicity mixing can take
place. If this happens, the form of the coherence functions is the same band-diagonal
form as above for the case of strong spin-orbit splitting, however has the full matrix
structure for the case of weak spin-orbit splitting.
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11.3.8 Results

11.3.8.1 Andreev Bound States Near the Surface

The surface bound states are determined by the poles of the Green’s function.
Following Refs. [56, 58], we consider specular reflection, whereby the component
of k normal to surface changes sign, k — k, whereas the component parallel to the
surface is conserved. We find the amplitudes y (k, €) by integrating forward along
the incoming, k, trajectory starting from the values in the bulk, and the amplitudes
y (k, ) by integrating backward along the outgoing, k, trajectory, again starting from
the values in the bulk [27]. For the homogeneous solutions one obtains

— Az (k) As(k)*
e+i|Ar(k)? =2 e+iV] AL — &2

Note that the spin-orbit interaction in the helicity basis enters as a term propor-
tional to o, see Eq.(11.54). Consequently, this term commutes with any term
diagonal in the helicity basis, and thus drops out of the homogeneous solutions in
Eq.(11.95) (see Ref. [121] for the case of a Rashba-type spin-orbit coupling). How-
ever, this is not in general the case for non-homogeneous solutions: when helicity
mixing takes place due to impurities or surfaces and interfaces, and a fully self-
consistent solution is obtained, then the spin-orbit coupling term in Eq. (11.54) enters
through the transport equation.

The amplitudes I'y and Ik, are determined from the boundary conditions at the
surface. We consider here a simple model of a non-magnetic surface, that conserves
the spin under reflection (this assumption only holds for a small spin-orbit interaction
in the bulk material). In this case the components of ¢ in the spin basis,

Yk, &) = 7Ok, &) =

(11.95)

Gk, &) = U, gk, &)Uy, (11.96)

are continuous at the surface. This leads to a surface-induced mixing of the helicity
bands according to

U, Tk, eYU* =Tk, &) = yP"(k, &) = Ulyk, e)U*,, (11.97)

Ul Tk, )Ux = TPk, &) = 7P (k, &) = U} 7 (k, &)Uy, (11.98)

Note that these boundary conditions correspond to Eq. (11.72) with SR and SR given
by the (11.28)-components of Eq. (11.86).

We proceed with discussing the local density of states at the surface, N (¢), that
is defined in terms of the momentum resolved density of states, N (k, ¢) by

N(k,&)/Ng = —Q2n) mTr, {g(k, &)}, N(e) = (N(k,¢)), (11.99)

which can be expressed in terms of the coherence amplitudes in the following way
(here k points towards the surface and k away from it),
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N(k, &)/ Ng = ReTr;, I[l — vk, )T (K, s)]fl - 1/2] N
(11.100)

Nk, &)/Ne = ReTr [[1 = Tk, )7 k. )] =172}

We obtain I'(k, ¢) and ['(k, &) from Eqgs.(11.97) and (11.98), with y(k,¢) and
y (k, ¢) from Eqgs. (11.93), (11.94), (11.95), and (11.104).

The bound states in the surface density of states correspond to the zero eigenvalues
of the matrix

L=y, )T (ko) = 1 — y (k. &)U UL )7 (k, ) (UrUf) (11.101)
at the surface. An explicite calculation results in an equation for the Andreev bound-

state energy in terms of the surface coherence amplitudes in the helicity basis [58],

(Ut ya 7 1+ y7o)
= -, 11.102
TESR AT SN (11.102)

where we used the abbreviations y+ = y+(k, ¢) and p+ = p+(k, £). The “mixing”
factor ./ is determined by the change of g(k) — g(k) under reflection k — k at
the surface,

. 0g—0, . 0q+6, Vg—9,
sin? g2 2 4 sin? 92 2 tan? g2 A
M= e (11.103)
cos? 252 + cos? 452 tan? 2

where 0y, ¢4 and 0y, ¢4 are the polar and azimuthal angles of g(k) and g(k),
respectively. -

In general, the order parameter must be obtained self-consistently at the surface.
Helicity mixing at the surface will lead necessarily to a suppression of the order
parameter. To gain insight in the role of the order parameter suppression it is useful
to model it by a normal layer of width W next to the interface. Trajectories incident
at an angle o from the surface normal travel through a normal region of an effective
width 2Wy = 2W/ cos(oy). Thus, the surface coherence amplitudes gain a phase
factor,

21e W /vE cos(ag) 21e W /vE cos(ag)
s .

(11.104)

ya(k, &) = y2(k, &)e Pk, &) = POk, e)e

Similar as for g, we will use in the following polar and azimuthal angles for
the vector k, defined by {ky, ky, k;} = |k|{sin(6x) cos(¢g), sin(fx) sin(¢g), cos(bk)}
(where 0 < 0 < ). We also introduce the notation g = g/max(|g|). For the
order parameter, we assume isotropic Ay = A and Dy = D in Eq.(11.87), and
introduce the parameter ¢ = A/D’ where D' = D - max(|g|) [56]. In this case
A1 = D'(g £ |g|) with maximal gap amplitudes Ag = D'(g + 1).
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Fig.11.9 Local surface density of states N (¢)/ N for a Rashba superconductor, g(k) = agk X Z.
The surface is parallel to Z. The curves are for AL = Ag(g £|g(k)|)/(q + 1), with g ranging from 0
to 2. Inaand c the order parameter is assumed constant up to the surface, and in b and d a suppression
of the order parameter to zero in a surface layer of thickness W = 2&; with & = hvg/2wkg T, is
assumed. a and b is for a cylindrical Fermi surface, vg = (vy, vy, 0), and ¢ and d is for a spherical
Fermi surface. (The symbols are labels for the curves only)

In Fig.11.9 we show results for a Rashba-type spin-orbit coupling, g(k) =
ark x Z. The surface is aligned with the Z direction. In (a) and (b) we use a cylindrical
Fermi surface, for which |g(k)| = 1. In (c) and (d) the results for a spherical Fermi
surface are shown, for which |g(k)| = sin(f). The effect of a surface layer with
suppressed order parameter is illustrated in Fig. 11.9 (b) and (d), where Eq.(11.104)
with W = 2& is used, where & is the coherence length &y = hvg/2mkpT,.

For the special case ¢ = 0 we have Ay = —A_ = Agsin(fg) (we use a real
gauge). For this case, 6y = 64 = /2, and consequently, ./ = tan® Vg = cot? .
The bound states are then given by [56, 58]

€ ( 2We

— = —sin| ———
VE COS @k

+ gok) sin(6y). (11.105)
0

Numerical solution of the problem shows that the “principal” bound-state branches
&(¢r) with energies away from the continuum edge contribute the most to the sub-
gap DOS. For W # 0 the main branch eps(¢x) develops a maximum at ¥ < Ay,
which gives rise to a peak in the surface DOS near ¢*, see Fig. 11.9 (b) and (d). Fully
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self-consistent solution confirms this [58]. For ¢ — oo the order parameter becomes
insensitive to helicity mixing, i.e. the effective W decreases for increasing q.

Andreev bound states in non-centrosymmetric superconductors have unusual spin
structure [54, 58]. It is found, that the states corresponding to different branches of
Eq. (11.105) have opposite spin polarization. Since the spin polarization changes sign
for reversed trajectories, the Andreev states carry spin current along the interface.
Such spin currents exist in NCS materials because the spin is not conserved, and
consequently precession terms enter the continuity equation[122]. There are spin
currents both in the normal state and in the superconducting state. As was found in
Ref. [58], the most prominent feature is a large surface current with out of plane spin
polarization (reminiscent to that in spin Hall bars [123]) that flows along the surface,
and decays rapidly into the bulk on a Fermi wavelength scale. In addition, there is also
a surface induced superconducting spin current with out of plane spin polarization,
that adds to the background microscopic spin currents and greatly exceeds them in the
limit of small spin-orbit band splitting. This effect is in this case solely determined by
the structure of the superconducting gap. Superconducting spin currents decay into
the bulk on the scale of the coherence length and show oscillations determined by
the spin-orbit strength due to Faraday-like rotations of the spin coherence functions
along quasiparticle trajectories [58].

11.3.8.2 Tunneling Conductance

For a three-dimensional model, which for the Rashba-type spin-orbit coupling was
discussed in Ref. [56], we present in the following tunneling conductances in various
geometries. We will discuss several types of spin-orbit interaction:

0
! 0

~

y
Cav: g=n|—k |+ 0
0 kkyks (ki — k3)

A 11.106

ky (k2 — k2) ( )

Ta: g=n|k®-kp |. O: g=n
ke (k — k3)

=

O R D
<

Z

For the symmetry Cy,, corresponding to the tetragonal point group, the two para-
meters  and 1’ can both be non-zero. We will discuss below the special cases
n = 0 and n’ = 0. The case ' = 0 corresponds to a Rashba spin-orbit coupling.
The type of spin-orbit coupling we consider for the full tetrahedral point group, Ty,
is also known as Dresselhaus coupling. Finally, for the cubic point group, O, the
simplest form for g is considered here, which is fully isotropic. All the cases above
are relevant for non-centrosymmetric superconductors: Cy, for CePt3Si, CeRhSis,
and CelrSi3, T4 for Y,Cs and possibly KOs,;Og, and O for Lip (Pd;_,Pt,)3B.

The zero temperature tunneling conductance is obtained according to the formula
Eq.(11.82), which leads for a spin-inactive §-function barrier to
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GeV) (cos(ap)D(ap)N Kk, eV)) Do cos?(ag)
oo = s D) = ————
N (cos(ag)D(ag)) 1 — Dg sin” (o)

(11.107)

where o is the angle between the surface normal and k. A remark is in place here. In
principle, the interface barrier will be spin-dependent once a spin-orbit split material
is brought in contact with a normal metal. However, for the limit of small spin-orbit
splitting we can neglect the spin-dependence of the interface potential consistent
with the quasiclassical approximation. The corrections are of the same order as the
corrections for the quasiparticle velocity in this case, and are of higher order in the
parameter SMALL.

In Fig.11.10 we show the tunneling conductance G(eV)/Gn obtained from
Eq.(11.107) with Egs. (11.99)—(11.100) for various types of spin-orbit coupling, cor-
responding to that in Eq. (11.106), and for various alignments of the surface normal
with respect to the crystal symmetry directions. The tunneling parameter in this figure
is Do = 0.1. We show curves for an order parameter AL = Ag(qg = |g(k)|)/(g+ 1),
with g ranging from 0 to 2. For simplicity, we concentrate here on the assumption
that the order parameter is constant up to the surface, i.e. we use the bulk solutions
Egs. (11.93)—(11.95). For a detailed quantitative description, a self-consistent deter-
mination of the order parameter suppression near the surface must be obtained. We
also use the simplifying assumptions of a spherical Fermi surface with isotropic
Fermi velocity.

As seen from Fig. 11.10, a rich structure of Andreev bound states below the bulk
gap energy develops, which depends strongly on the alignment of the surface with
the crystal symmetry axes. In (a) and (b) a pure Rashba spin-orbit coupling k =
[lgy, —ng, 0] on a Fermi sphere is assumed. Below the critical value g = 1, a zero-
bias peak appears for tunneling in the direction perpendicular to the Z direction, i.e.
the (1,0,0) or (0,1,0) direction, however a dependence quadratic in energy appears
for tunneling parallel to the z direction, i.e. the (0,0,1) direction [56]. For ¢ > 1 the
tunneling density of states acquires a gap, as then the singlet character of the order
parameter dominates.

In Fig. 11.10 (b) and (c), we show results for a hypothetical spin-orbit coupling
of the form g = 1[0, 0, llegylgz (/2)% — 123)], that is consistent with the same point
group symmetry Dy, as the Rashba spin-orbit coupling. For this case, a sharp zero-
bias conductance peak exists for ¢ < 1 in all tunneling directions. In contrast, for
q > 1, the zero bias conductance peak only exists when tunneling perpendicular to
the z-direction, however, not when tunneling parallel to the z-direction.

In Fig.11.10 (d) we consider the cubic point group symmetry, and assume the
simplest form of a fully isotropic spin-orbit interaction of the form g = [kx, ky, kz]
Here, for g < 1 the tunneling conductance is zero at zero bias, but raises sharply
away from zero bias, showing side peaks due to Andreev bound states. At g = 1 this
structure disappears with only a pseudogap remaining. For ¢ < 1 a gap opens.

Finally, in Fig. 11.10 (e)—(g) we show results for the full tetrahedral point group
T4. We compare tunneling in (1,0,0), (1,1,0), and (1,1,1) directions. Note that in
this case, the relation (11.106) between g and k is not invariant under a rotation of
both vectors by 90 degree around the k-, Igy-, or k,-axis, but an overall sign change
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Fig.11.10 Tunneling conductance G (eV')/ Gy for various types of spin-orbit coupling correspond-
ing to the indicated symmetry groups, and for various alignments of the surface normal 7 as indi-
cated. The spin-orbit vector is of the form C4,: g = nlky, —ky, 0] + 1'[0, 0, kykyk, (k)% - k%)];
O: § = [ky, lgy, l@z] (this case is fully isotropic); Ty: g = 20ky (125 - 1212), lgy(lgzz - 12)%), l@z (12)% - l;%)],
The curves are for Ay = Ag(g £1g(k)])/(g + 1), with ¢ ranging from O to 2. The order parameter
is assumed constant up to the surface, and a spherical Fermi surface with isotropic Fermi velocity
is assumed. The tunneling parameter is Dy = 0.1. Curves are vertically shifted by multiples of 0.2
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appears; however, the conductance spectra are insensitive to this sign change. For
g < 1 there is a vanishing zero-bias conductance for tunneling in (1,0,0) direction,
and a low-energy dispersive Andreev bound-state branch for tunneling in (1,1,0)
direction. For tunneling in (1,1,1) direction, the zero-bias conductance vanishes for
g = 0, and shows a sharp zero-bias peak for 0 < ¢ < 1. For g > 1 the tunneling
conductance becomes gapped for all directions.

As can be seen from these results, studying directional resolved tunneling in non-
centrosymmetric superconductors gives important clues about the order parameter
symmetry and the type of spin-orbit interaction.

11.3.8.3 Andreev Point-Contact Spectra

Here we present results for the case of a point contact between a normal metal and
a non-centrosymmetric superconductor. We use Eq.(11.79) to calculate the spectra,
with a scattering matrix that has the form shown in Eq. (11.86). We assume isotropic
Fermi surfaces in the materials on both sides of the interface, and for simplicity use
equal magnitudes for Fermi momenta and velocities. The transmission amplitude is
modeled by that for a §-function barrier,

to cos(ag)

V1 — 13 sin® (o)

and the component of the Fermi velocity along the interface normal in direction of
current transport is ave; = vp cos(ag).

InFig. 11.11, the Andreev conductance G (eV)/ G for various types of spin-orbit
coupling and for various alignments of the surface normal 7 are shown. Here, the
transmission probability Dy = tg is varied from zero to one. We restrict here to the
case g = 0, i.e. an order parameter of the form AL = +A¢|g(k)|). Again, a spherical
Fermi surface with isotropic Fermi velocity is assumed. We also compare the case
of a surface layer with suppressed order parameter (dashed lines) with that of an
order parameter constant up to the surface (full lines). To model the order parameter
suppression, we assume a layer of thickness W = 2&y with &y = hvg/2wkg T, (dotted
lines) in which the order parameter vanishes. Thus, we use Eq. (11.104) as incoming
solutions for the coherence amplitudes. Note that for Dy = 1 the surface layer with
zero order parameter does not affect the Andreev conductance. This is due to the
fact that for perfect transmission the normal region simply extends slightly further
towards the superconductor, and within our approximation we neglect the spin-orbit
effects in interface potential.

For a larger spin-orbit coupling the interface between a normal metal and a normal
conducting non-centrosymmetric metal with strong spin-orbit interaction becomes
necessarily spin-active, as the interface potential term in the Hamiltonian must be
hermitian. Thus, a perfect transmission is not realistic in such a case. For weak spin-
orbit splitting these effects are also present, however modify the results only to order
vso/EF, or on energy scales \%O/EF.

tlog) = (11.108)
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Fig.11.11 Andreev conductance G(eV)/Gn for various types of spin-orbit coupling correspond-
ing to the indicated symmetry groups, and for the indicated alignments of the surface normal
fi. The transmission probability Dy = t& is varied. The spin-orbit vector is of the form Cg,:
g= n[lgy, —ky, 01+ 1[0, 0, l@xlgylgz(l%% — l@%)]; 0: § = [ky, Igy, IQZ] (this case is fully isotropic); T4:
§ = 20k (k2 — k2), ky(k? — k2). k- (k? — k2)]. The curves are for Ay = £A¢|g(k)|). The order
parameter is assumed constant up to the surface (full lines) or suppressed to zero in a surface layer
of thickness W = 2&p with & = hvp/2mkpT, (dotted lines). For Dy = 1 these two cases give
identical results. A spherical Fermi surface with isotropic Fermi velocity is assumed
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For lower transmission, we remark as an overall observation that the suppression
of the order parameter does not affect the value of the Andreev conductance at zero
bias. This is simply due to the fact that in the clean limit the coherence amplitudes
become effectively spatially constant for ¢ = 0. For higher bias, deviations can be
observed, that in general lead to a shift of Andreev bound states to lower bias.

We turn now to the Andreev point contact spectra for ) = 1. As can be seen, the
form of the spectrum is sensitive to the type of spin-orbit coupling, and the associated
order-parameter symmetry. For a Rashba spin-orbit coupling, Fig. 11.11 (a) and (b),
the Andreev conductance is enhanced to twice the normal conductance at zero bias,
however to a smaller value for finite bias. There is a pronounced anisotropy in the
shape of the Andreev conductance spectra. In (c) and (d) the Andreev conductance
shows a sharp kink feature at zero bias, associated with the complex nodal structure
of the spin-orbit vector. For cubic symmetry, (e), we observe an Andreev conduc-
tance resembling that of an s-wave spin-singlet superconductor. And, finally, for a
Dresselhaus spin-orbit coupling, (f)—(h), the Andreev conductance shows a behavior
similar to the case of a Rashba spin-orbit interaction, however with a less pronounced
anisotropy.

11.4 Conclusions

We have given an overview over the current status of the theoretical understanding
of Andreev bound states at the surface of a non-centrosymmetric superconducting
material, and have presented results for tunneling conductance, point-contact spectra,
and spin polarized Andreev bound-state spectra.

The new feature in non-centrosymmetric superconductors is the possible appear-
ance of spin polarized Andreev states, that carry a spin-current along the interface or
surface. The presence of such Andreev bound states that cross the chemical potential
as a function of incident angle to the surface, is a topologically stable superconduct-
ing property. Such bound states exist as long as triplet order parameter components
(in spin representation) dominate singlet components of the order parameter. When
both components are equal, the bound state at the chemical potential disappears, and
a topologically new ground state is established. The transition between the two states
is a quantum phase transition.

The spectrum of Andreev states at the surface provides valuable information
about both the structure of the superconducting order parameter and the vector field
of spin-orbit vectors on the Fermi surface. In this chapter we have concentrated on
the rich structure that appears for the limiting case of a small spin-orbit splitting of
the energy bands in the non-centrosymmetric material. In this limit, the spin quantum
number is approximately conserved during scattering from surfaces and interfaces
with normal metals, which leads to strong mixing between the helicity bands in the
non-centrosymmetric material. The opposite limit of strong spin-orbit splitting is still
largely unexplored. We have provided a theoretical basis in this chapter that allows
to treat this case as well.
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Finally, we would like to mention that interesting effects, like e.g. effects related
to the spin Hall effect, or to Berry phases associated with the change of the spin-orbit
vector along closed paths, are interesting subjects left for future studies.
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