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Preface

This book describes the manifestations of the isotope effect in all branches of
physics: nuclear, atomic and molecular as well as condensed matter and its
applications in human health and medicine, geochronology, industry, research in
academic and applied fields. This book is intended both as a tutorial and as a
reference. It is a concise introduction to isotopetronics, developing the basic
elements of this new branch of nanoscience. The problem of the enigma mass in
microphysics is briefly discussed.

The science of the nuclear, atoms and simple molecules and the science of
matter from microstructures to larger scales, are well established. A remaining,
extremely important, size—related challenge is at the atomic scale—roughly the
dimensional scales between 1 and 10 molecular sizes—where the fundamental
properties of materials are determined and can be engineered. This field of
science—isotopetronics—is a broad and interdisciplinary field of emerging
research and development. Isotopetronics technology is concerned with materials,
structures and systems whose components, as in nanoscience, exhibit novel and
significantly modified physical, chemical and biological properties due to their
small sizes. A principal goal of isotopetronics technology is to control and exploit
these properties in structures and devices at atomic and molecular levels. To
realise this goal, it is essential to learn how to fabricate and use these devices
efficiently. Practical implementations of isotopetronics science and technology
have great importance, and they depend critically on training people in these fields.
Thus, modern education needs to address the rapidly evolving facets of isotope-
tronics science and applications. With the purpose of contributing to education in
the isotopetronics as a new branch of nanoscience I present this book providing a
unifying framework for the basic ideas needed to understand recent developments
underlying isotopetronics science and technology, as applied to nanoelectronics
and quantum information. Quantum information is a field which at present is
undergoing intensive development and, owing to the novelty of the concepts
involved, it seems to me it should be as interest to a broad range of scientists
beyond those actually working in the field. I have tried to present a simple and
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systematic treatment of the isotopetronics, such that the reader might understand
the material presented without the need for consulting other books.

With numerous illustrations, this book will be of great interest to undergraduate
and graduate students taking courses in mesoscopic physics or nanoelectronics as
well as quantum information, and academic and industrial researches working in
this field.

The references I cite are those with which I am most familiar and which have
helped us understand the subject as presented here. While there has been no attempt
to give credit to each contributor, I have tried to cite the original papers, which
brought new and important results (methods) to the isotope effect applications in all
branches of microphysics.

Tallinn Vladimir G. Plekhanov
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Chapter 1
Introduction

The aim of this book is to outline the basic physical concepts and device applica-
tions related to isotope effect in all the branches of microphysics [1]—new direction
of nanoscience (subnanoscience). The experience of the past shows that through-
out constant technology improvement microelectronics has become more reliable,
faster, more powerful and less expensive by reducing the dimensions of integrated
circuits. As demonstrated in this book, when the dimensions of a solid are reduced
to the atomic size, new physical properties due to quantum effects become apparent.
These novel properties are manifestated in various ways, first we should indicate
low-dimensional structures in isotope-mixed solids (quantum wells, wires, dots).
Besides that we should underline the specific dependence of elastic thermal and
vibrational properties of bulk isotope-mixed materials as well as low-dimensional
structures from such materials. In the last two decades the unique properties of iso-
topes are used in the quantum information processing devices as well as in developing
of processors of the quantum computers [2].

In the last four decades we have witnessed a remarkable progress in the
development of epitaxial crystal growth techniques such as molecular beam epi-
taxy (MBE), metal-organic chemical vapor deposition (MOCVD) and their vari-
ous variations such as chemical beam epitaxy (CBE), atomic layer epitaxy (ALE),
etc. which have allowed the growth of quality semiconductors (insulators), their
alloy and heterostructures (see, e.g. [5, 6]). A variety of interesting structures,
such as quantum wells, quantum wires and quantum dots, has been fabricated
with abrupt changes in composition and/or doping characteristics and their struc-
tural, electronic and optical properties have been investigated in considerable detail
(see, e.g. [3–12]). Many of these structures, especially those based on quantum wells,
have found important applications in a number of electronic and opto-electronic
devices such as high-electron mobility transistors, lasers, light-emitting diodes
(LEDs), photodetectors, spatial light modulators [5, 8, 12]. The use of these devices
in opto-electronics, quantum information, for example, has literally revolutionized
these fields during the last two decades. Before we study the effects of reduced
size and dimensionality on the properties of solids, we review in first chapters those
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concepts of isotopes and solids which are essential for understanding the behaviour
of quantum nanostructures. For instance, the behaviour of electrons in a quantum
well is very different from the case of bulk solids if their motion is across the potential
barriers confining the quantum well, but is very similar if the motion is parallel to the
interfaces [3, 4, 7].

It is increasingly clear that quantum mechanical principles are not just exotic
theoretical statements but fundamental for a new technology of practical informa-
tion processing [2, 13]. Quantum communication, quantum cryptography as well as
quantum teleportation represent exciting new arenas which exploit intrinsic quan-
tum mechanical correlations [14–16]. In the first step we should analyse the exciton
in quantum dot, it possible as qubit in assembly of quantum dots in isotope-mixed
crystals [2].

As we know, at present time only three particles, the proton, the electron and the
photon, are stable. Another particle, the neutron, is stable when it is bound within
a nucleus, and is unstable with life time of 887 ± 2 s when it is free. Since nuclei
are involved in a wide variety of applied and pure research, nuclear physics overlaps
with a number of other fields of physics: particles; astrophysics; stellar evolution,
etc. Therefore, the primary aim of nuclear physics is to understand the force between
nucleons, the structure of nuclei and how nuclei interact with each other and with
other subatomic particles. These three questions are, to a large extent, related with
each other. Modern experimenters can create such nuclei using artificially induced
fusion or nucleon transfer reactions, employing ion beams from different sources.
Beams with even higher energies (e.g. from accelerator) can be used to create nuclei
at very high temperatures, and there are signs that these experiments have produced
phase transition from normal nuclear matter to a new state, the quarks condensate, the
quark-gluonplasma, in which the quarks mingle with one another, rather than being
segregated in triplets as they are in neutrons and protons. If in the nuclear physics the
meaning of isotope is establishing [1] then application isotope effect in atomic and
molecular physics allows to get the results, which are difficult to overestimate so far as
owing to this results it was to construct the “building” of the science of the twentieth
century the quantum mechanics. In the last fifty years the isotope effect is one of the
modern and power methods to investigation of structure and properties of solids. This
conclusion supports the numerous reviews and first monographs dedicated to isotope
effect of stable and radioactive isotopes. Moreover, it is obviously a leading role of
the isotope physics in the study of the nature-nuclear interactions and reconstruction
of nucleogenesys process in the Universe which could be explained as the observable
in nature relative to spreading of chemical elements. Such wide field of isotope
applications stimulates necessity for examination and critical analysis from one point
of view the microscopical nature of isotope effect. Such approach to isotope physics
allows to make known not only the intrinsic contradiction inherent in this area of
physics but also determine the borders of the effect.

It is well known [17] that reflectance and absorption spectra of different solids
often show structure for photon energies just below the energy gap, where we might
expect the crystal to be transparent. This structure is caused by the absorption of
photon with the creation of a bound electron - hole pair. An electron and a hole may
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be bound together by their attractive Coulomb interaction [18–20], just as an electron
is bound to a proton to form a neutral hydrogen atom. The bound electron–hole pair is
called by exciton [17]. An exciton can move through the crystal and transport energy;
it does not transport charge because it is electrically neutral. This task was first studied
by Wannier–Mott [18, 19] and later by Slater [20] who showed that if one assumes
that the electron and hole wavefunctions are extended over many lattice constants,
the exciton can be described as consisting an electron and a hole with effective band
masses m∗

e and m∗
h , respectively, coupled together with coulomb potential screened

by the static dielectric constant ε0 [21]. In the Wannier–Mott model, the Schrödinger
equation for the exciton is resolved into the function of a hydrogen-like atom whose
effective charge is Ze = e/ε0 (ε0 being the dielectric constant of medium), and the
energies of the exciton states are described by the hydrogen-like expression of the
form (see, e.g. [22])

E(
−→
k ) = Eg − μe4

2�ε2
0n2

+ �
2−→k 2

2(m∗
e + m∗

h)
, (1.1)

where
−→
k is the quasi-momentum of the exciton; μ, n are its reduced mass and

principal quantum number and the translational mass of the exciton (M) is equal to
the sum of the effective masses of electron (m∗

e ) and hole (m∗
h). By analogy with

formula of the binding energy of an electron in a hydrogen atom on the nuclear mass

(MN )(Ryd = 2π2 me4

�3c(1+m/MN )
), the binding energy of exciton Eb = − μe4

2�ε2
0n2 is

practically independent of the nuclear mass. Hence, we come to the natural conclusion
that there is no isotopic effect in a frozen crystal lattice on the levels of the Wannier–
Mott exciton [23]. This simplified treatment, however, does not take into account
the exciton–phonon interaction, which to a certain extent is nonadiabatic (see, for
example [24]). The constant of exciton–phonon interaction depends on the frequency
of phonons and hence on the mass of isotopes [1]. The isotopic dependence of
the binding energy of large-radius exciton was observed experimentally with LiH
and LiD crystals in Ref. [25], where the reflection spectra of these crystals at low
temperature were measured for the first time (see, also [25]). As will be shown below,
the discovered dependence of Eb on the isotopic composition of the lattice has opened
unique opportunities for the use of excitons in the characterisation of bulk isotope
mixed crystals as well as quantum low-dimensional structures in such systems [2].

This book comprises of six chapters. Chapter 2 begins by reviewing the present
state of the modern picture of isotopes. This chapter introduces the reader with
physical base of isotopes and describes its manifestations in nuclear physics. The
origin of the mass is briefly discussed in this chapter too. Chapters 3 and 4 are devoted
to description of the manifestations of the isotope effect in atomic and molecular
physics as well as in condensed matter. Although these manifestations vary, they
have one common feature—all depend on mass. Such view allows to see the success
and failure as well as the borders of the isotope effect. Chapter 5 describes the effects
related to isotopic disorder in solids: diffusion and thermal properties.

http://dx.doi.org/10.1007/978-3-642-28723-7_2
http://dx.doi.org/10.1007/978-3-642-28723-7_3
http://dx.doi.org/10.1007/978-3-642-28723-7_4
http://dx.doi.org/10.1007/978-3-642-28723-7_5
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The objective of the second part (Chap. 6) is to expose the reader to the
traditional applications of stable and radioactive isotopes. In the first part of this
chapter we describe stable isotope applications in neutron transmutative doping
(NTD) of semiconductors as well as in optical fibre. There is a brief description
about the new nuclear technology for the preparation of the fibre. In the second part
of this chapter, the reader can find description of the applications of radiactive iso-
topes: human health and medicine, geochronometry, solid state, etc. Throughout this
book, the author interweaves experimental results with the appropriate theoretical
formalism.

From the immense volume of the literature concerned with isotopes in condensed
matter and their applications, we primarily selected those reviews and monographs
which contain extensive references.
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Chapter 2
Sub-Nucleonic Structure and the Modern
Picture of Isotopes

2.1 History and Overview

Investigations of the atomic nucleus, and the fundamental forces that determine
nuclear structure as is well known offer fascinating insights into the nature of the
physical world [1–10]. We all known well that the history of the nuclear physics
dates from the latter years of the nineteenth century when Henry Becqeurel in 1896
discovered the radioactivity. He was working with compounds containing the element
uranium. Becqeurel found that photographic plates covered to keep out light became
fogged, or partially exposed, when these uranium compounds were anywhere near
the plates. Two years after Becquerel’s discovery, Pierre and Marie Curie in France
and Rutherford in England succeeded in separating a naturally occurring radioactive
element, radium (Z = 88), from the ore. It was soon revealed that there are three,
distinctly different types of radiation emitted by radioactive substances. They were
called alpha (α), beta (β) and gamma (γ ) rays—terms which have been retained in
ours days. When a radioactive source was placed in a magnetic field, it was found that
there were three different activities, as the trajectories of some of the rays emitted
were deflected to one direction, some to the opposite direction and some not affected
at all. Subsequently it was found that α-rays consist of positively charged 4He nuclei,
β-rays are made of electrons (positrons) and γ -rays are nothing but electromagnetic
radiation that carries no net charge. The existence of the nucleus as the small central
part of an atom was first proposed by Rutherford in 1911. Rutherford proposed that
the atom does consist of a small, heavy positively charged centre surrounded by
orbiting electrons which occupy the vast bulk of the atoms volume. The simplest
atom—hydrogen—consisted of a proton and a single orbital electron. Later, in 1920,
the radii of a few heavy nuclei were measured by Chadwick and were found to be in
the order of 10−14 m, much smaller than the order of 10−10 m for atomic radii (for
details, see e.g. [4–9]).

The building blocks of nuclei are neutrons and protons, two aspects, or quantum
states, of the same particle, the nucleon. Since a neutron does not carry any net elec-
tric charge and is unstable as an isolated particle (see, below), it was not discovered

V. G. Plekhanov, Isotopes in Condensed Matter, Springer Series in Materials Science 162, 7
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8 2 Sub-Nucleonic Structure

Table 2.1 Fundamental interactions

Interaction FQ Mass Range (m) RS Spin T C-S (m2) TTS (s)

Strong Gluon 0 10−15 1 1 10−30 10−23

Weak W∓; Z 81; 93 GeV/c2 10−18 10−5 1;1 10 −44 10−8

Electromagnetic Photon 0 ∞ α = 1/137 1 10−33 10−20

Gravity Graviton 0 ∞ 10−30 2 – –

Here FQ field quant, RS relative strength, TC-S typical cross-section, TTS typical time scale

until 1932 by Chadwick, whose existence has been anticipated by Rutherford as
early as 1920. Since only positive charges (protons) are present in nucleus, the elec-
tromagnetic force inside a nucleus is repulsive and the nucleons cannot be held
together unless there is another source of force that is attractive and stronger than
Coulomb’s (see, also [10]). Here we have our first encounter with strong interaction
(see, also Table 2.1). In 1934 Hideki Yukawa proposed the first significant theory of
the strong force to explain how the nucleus holds together. As we know, with Fermi
and Yukawa’s papers the modern model of the atom was complete [2–6].

Studies of the structure of the nucleus have shown that it is composed of protons
and neutrons, and more recently studies [11–14] of very high energy collisions have
shown that these protons and neutrons are themselves composed of elusive particles
called quarks. Particle physics deals with the world of the quarks and all other
particles still thought to be fundamental. One may argue that, since nuclear force is
only one aspect of the strong interaction between quarks, all we need therefore to
do is to understand quantum chromodynamics (QCD)1 (for details see [12–15] and
below). The structure of neutrons and protons is discerned only at very high energies
(see, e.g. [15]) and, for all practical purpose concerning nuclear structure, research
and nuclear physics applications in the modern world, the neutron–proton model of
the nucleus is entirely adequate.

Thus, our present knowledge of physical phenomena suggests that there are four
types of forces between physical objects:

1. Gravitational;
2. Electromagnetic;
3. Strong and
4. Weak.

Both gravitational and electromagnetic forces are infinite in range and their inter-
action strength diminishes with the square of the distance of separation. Clearly,
nuclear force cannot follow the same radial dependence. Being much stronger, it
would have pulled the nucleons in different nuclei together into a single unit and
destroy all the atomic structure we are familiar with. In fact, nuclear force has a

1 QCD is the modern theory of the strong interaction. QCD, the theory of quarks, gluons and their
interactions, is a self-contained part of the Standard Model (see below) of elementary particles.
Historically its route is in nuclear physics and the description of ordinary matter—understanding
what protons and neutrons are (and their structure) and how they interact. Nowadays QCD is used
to describe most of what goes at high-energy accelerators.
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very short distance. As we know at present time, only three particles, the proton, the
electron and the photon, are stable. Another particle, the neutron, is stable when it
is bound within a nucleus, and is unstable with life time of 887 ± 2 s when it is free
(for details see, also [11–14]). Since nuclei are involved in a wide variety of applied
and pure research, nuclear physics overlaps with a number of other fields of physics:
particles; astrophysics; stellar evolution, etc. Therefore, the primary aim of nuclear
physics is to understand the force between nucleons, the structure of nuclei and how
nuclei interact with each other and with other subatomic particles. These three ques-
tions are, to a large extent, related with each other. Much of the current research
in nuclear physics (see, e.g. [1–10]) relates to the study of nuclei under extreme
conditions such as high spin and excitation energy. Nuclei may also have extreme
shapes (for instance similar to that American footballs) or extreme neutron-to-proton
ratios. Modern experimenters can create such nuclei using artificially induced fusion
or nucleon transfer reactions, employing ion beams from different sources. Beams
with even higher energies (e.g. from accelerator) can be used to create nuclei at very
high temperatures, and there are signs that these experiments have produced phase
transition from normal nuclear matter to a new state, the quarks condensate, the
quark-gluon plasma, in which the quarks mingle with one another, rather than being
segregated in triplets as they are in neutrons and protons.

If in the nuclear physics the meaning of isotope is establishing one [7, 9, 10, 15],
then application of isotope effect in atomic [16–19] and molecular [20–22] physics
allows to get the results, which are difficult to overestimate so far as owing to this
results it was to construct the “building” of the science of the twentieth century—
the quantum mechanics. In the last 50 years the isotope effect is one of the modern
and power methods used in investigation of structure and properties of solids. This
conclusion supports the numerous reviews (see, e.g. [23–25]) and first monographs
[26, 27, 29] dedicated to isotope effect of stable isotopes. In the last years, more
and more investigations of solid-state physics are conducted by using radioactive
isotopes, which give evidence of already comprehensive list of references (see, for
instance [28, 30, 31]). It is a well known fact that large and successful application
of the radioactive elements in medicine [32–35], the direction in isotope physics,
is more finance supportive in different states (see, for example, [36] and references
therein). Moreover, it is obviously a leading role of the isotope physics in the study
of the nature–nuclear interactions and reconstruction of nucleogenesys process in
the Universe [37–40] which could be explained as the observable in nature relative
to spreading of chemical elements.

Such wide field of isotope applications stimulate necessity for examination and
critical analysis from point of view of the microscopical nature of isotope effect.2

2 With the aim of the ground of nature of isotope effect, a detailed analysis of the neutron and proton
structure and their mutual transformation in the weak interaction process was conducted. Note that
the main characteristics of isotope effect—the mass of free particles (proton and neutron)—does
not conserve in the weak interaction process. This contradiction is removed although partly if we
take into account the modern presentation [42–44] that the mass of proton (neutron) is created
from quark condensate (not from constituent quarks [15, 44]) which is the coherent superpo-
sition of the states with different chirality. Thus the elucidation of the reason of origin of the nucleon
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Table 2.2 The basic properties of the atomic constituents

Particle Charge Mass (u) Spin (�) Magnetic moment (JT−1)

Proton e 1.007276 1/2 1.411×10−26

Neutron 0 1.008665 1/2 − 9.66×10−27

Electron −e 0.000549 1/2 9.28×10−24

Such approach to isotope physics allows to make known not only the intrinsic
contradiction inherent this area of physics but also determine the borders of the
effect. A step-by-step comparison with existing theoretical models not only reveals
the degree of agreement (or disagreement) but also provides a new impulse for
both the development of new theoretical ideas and for conducting new experiments
(see, also [41]).

2.2 The Structure of Atomic Nucleus

An atom consists of an extremely small, positively charged nucleus (see Fig. 2.1)
surrounded by a cloud of negatively charged electrons. Although typically the nucleus
is less than one ten-thousandth the size of the atom, the nucleus contains more than
99.9% of the mass of the atom. Atomic nucleus is the small, central part of an
atom consisting of A-nucleons, Z-protons and N-neutrons (Fig. 2.2). The atomic
mass of the nucleus, A, is equal to Z + N. A given element can have many different
isotopes, which differ from one another by the number of neutrons contained in
the nuclei [58, 59]. In a neutral atom, the number of electrons orbiting the nucleus
equals the number of protons in the nucleus. As usual, nuclear size is measured in
fermis (1fm = 10−15 m, also called femtometers). The basic properties of the atomic
constituents can be read in Table 2.2.

As we can see from this table, protons have a positive charge of magnitude e =
1.6022 × 10−19 C (Coulomb’s) equal and opposite to that of the electrons. Neutrons
are uncharged. Thus a neutral atom (A, Z) contains Z electrons and can be written
symbolically as A

Z XN (see also Fig. 2.2). Here X is chemical symbol and N is neutron
number and is equal N = A − Z.3 The masses of proton and neutron are almost the
same, approximately 1836 and 1839 electron masses (me), respectively. Apart from
electric charge, the proton and neutron have almost the same properties. This is why
there is a common name of them: nucleon. Both the proton and neutron are nucleons.

(Footnote 2 continued)
mass is taken down to elucidation of the reason to break down the chiral symmetry in Quantum
Chromodynamics [45–56].
3 Nuclei with the same N and different Z are called isotones, and nuclides with the same mass
number A are known as isobars. In a symbolic representation of a nuclear specie or nuclide, it
is usual to omit the N and Z subscripts and include only the mass number as a superscript, since
A = N+Z and the symbol X represents the chemical elements.
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Fig. 2.1 Structure within the atom. If the protons and neutrons in this picture were 10 cm across,
then the quarks and electrons would be less than 0.1 mm in size and the entire atom would be about
10 km across (after http://www.lbl.gov/abc/wallchart/)

Fig. 2.2 Atomic
nomenclature

We know well that the proton is denoted by letter p and the neutron by n. Chemical
properties of an element are determined by the charge of its atomic nucleus, i.e. by
the number of protons (electrons). It should be added that although it is true that the
neutron has zero net charge, it is nonetheless composed of electrically charged quarks
(see below), in the same way that a neutral atom is nonetheless composed of protons
and electrons. As such, the neutron experiences the electromagnetic interaction. The
net charge is zero, so if we are far enough away from the neutron that it appears to
occupy no volume, then the total effect of the electric force will add up to zero. The

http://www.lbl.gov/abc/wallchart/
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Fig. 2.3 Comparison between charge (ρch) and magnetization (ρm) for the proton (a) and neutron
(b). Both densities are normalized to

∫
drr2ρ = 1(r) (after [62–64])

movement of the charges inside the neutrons does not cancel, however, and this is
what gives the neutron its non-zero magnetic moment.

Each of the atomic constituencies, a spin 1/2 in units of �(=h/2π) and is an exam-
ple of the class of particles of half-integer spin known as fermions. Fermions obey
the exclusion principle of Pauli (see, e.g. [9]), which determines the way electrons
can occupy atomic energy states. The same rule applies, as will be shown below, to
nucleons in nuclei. Associated with the spin is a magnetic dipole moment. Compared
with the magnetic moment of electron, nuclear moment is very small. However, they
play an important role in the theory of nuclear structure. It may be surprising that
the uncharged neutron has a magnetic moment. This reflects the fact that it has an
underlying quark substructure (see, e.g. [60]), consisting of charged components.
Electron scattering off these basic nuclear constituents (proton and neutron) makes
up for the ideal probe to obtain a detailed view of the internal structure. A very
detailed analysis using the best available data has been carried out recently by Kelly
[61]. These data originate from recoil or target polarizations experiments (see, also
[62–64]). In Fig. 2.3, the proton charge and magnetization distribution are given.
What should be noted is the softer charge distribution compared to the magnetic one
for proton. These resulting densities are quite similar to Gaussian density distribu-
tions that can be expected starting from quark picture (for details, see below) and,
at the same time more realistic than the exponential density distributions [61]. The
neutron charge and magnetization are also given in Fig. 2.3. What is striking is that
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Table 2.3 Sample values of
nuclear magnetic dipole
moments (after [65])

Nuclide μ(μN )

n − 1.9130418
p + 2.7928456
2H(D) + 0.8574376
17O − 1.89379
57Fe + 0.09062293
57Co + 4.733
93Nb + 6.1705

magnetization distribution resembles very closely the corresponding proton distri-
bution. Since scattering on neutrons normally carries the larger error (see, e.g. [6,
7]), the neutron charge distribution is not precisely fixed. Nonetheless, one notices
that the interior charge density is balanced by a negative charge density, situated at
the neutron surface region, thereby making up for the integral vanishing of the total
charge of the neutron.

We may recall from atomic physics that the quantity e�/2m is called magneton.
For atomic motion we use the electron mass and obtain the Bohr magneton μB =
5.7884×10−5 eV/T. Putting in the proton mass we have the nuclear magneton μN =
3.1525×10−8 eV/T. Note that μN � μB owing to the difference in the masses, thus,
under most circumstances atomic magnetism has much larger effects than nuclear
magnetism. Ordinary magnetic interactions of matter (ferromagnetism, for example)
are determined by atomic magnetism.

We can write
μ = gl lμN , (2.1)

where gl is the g-factor associated with the orbital angular momentum l. For protons
gl = 1, because neutrons have no electric charge; we can use Eq. (2.1) to describe the
orbital motion of neutrons if we put gl = 0. We have thus been considering only the
orbital motion of nucleons. Protons and neutrons, like electrons, as above mentioned
above also have intrinsic or spin magnetic moments, which have no classical analog
but which we write in the same form as Eq (2.1):

μ = gssμN , (2.2)

where s = 1/2 for protons, neutrons and electrons (see Table 2.2). The quantity gs

is known as the spin g-factor and is calculated by solving a relativistic quantum
mechanics equation (see, also [9]). For free nucleons, the experimental values are far
from the expected value for point particles: proton—gs = 5.5856912 ± 0.0000022
and neutron—gs = 3.8260837 ± 0.0000018. Table 2.3 gives some representa-
tive values of nuclear magnetic dipole moments according [65]. The next non-
vanishing moment is the electric quadrupole moment. The quadrupole moment eQ
of a classical point charge e is of the form e(3z2 − r2). If the particle moves
with spherical symmetry, then (on the average) z2 = x2 = y2 = r2/3 and the
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Table 2.4 Some values of
nuclear electric quadrupole
moments (after [65])

2H(D) + 0.00288
17O − 0.02578
59Co + 0.40
63Cu − 0.209
133Cs − 0.003
161Dy + 2.4
176Lu + 8.0
209Bi − 0.37

quadrupole moment vanishes (for details, see [8]). Some examples of the values of
nuclear electric quadrupole moments are presented in Table 2.4.

Inside a nucleus, neutrons and protons interact with each other and are bound
within (as mentioned above) the nuclear volume under the competing influences
of attractive nuclear and repulsive electromagnetic forces. This binding energy has
a direct effect on the mass of an atom. It is therefore not possible to separate a
discussion of nuclear binding energy; if it were, then nucleon would have masses
given by Zm p + Zmn and the subject would hardly be of interest.

As it is well known, in 1905, Einstein presented the equivalence relationship
between mass and energy: E = mc2. From this formula, we see that the speed of
light c is very large and so even a small mass is equivalent to a large amount of energy.
This is why in nuclear physics it is more convenient to use a much smaller unit called
mega electron volt (1 MeV = 1.602×10−13 J). On the atomic scale, 1u is equivalent
to 931.5 MeV/c2, which is why energy changes in atoms of a few electron-volt cause
insignificant changes in the mass of atom. Nuclear energies, on the other hand, are
millions of electron-volts and their effects on atomic mass are easily detectable.
For example, the theoretical mass of 35

17Cl is 17×1.00782503+18× 1.00866491 =
35.28899389 amu. Its measured (see below) mass is only 34.96995 amu. Therefore,
the mass defect and binding energy of 35

17Cl are

� = 0.32014389 amu.

EB = 0.32014389×931.5
35 = 8.520 MeV/nucleon

(2.3)

and in common sense the binding energy is determined by next relation

EB = Zm p + Nmn − B/c2, (2.4)

where B/c2 is the actual nuclear mass.
As we can see below, the binding energy of the atoms of most elements have

values ranging from about 7.5 to 8.8 MeV [2–5]. The binding energy per nucleon
rises slightly with increasing mass number and reaches a maximum value for 62Ni.
Thereafter the binding energies decline slowly with increasing mass number. The
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Fig. 2.4 A mass-spectrum
analysis of krypton. The
ordinates for the peaks at mass
positions 78 and 80 should be
divided by 10 to show these
peaks in their true relation to
the others (after [5])

binding energies of the atoms of H, He, Li and Be are lower than the binding energies
of the other elements (see, also Fig. 2.5 below).

The measurement of nuclear masses occupies an extremely important place in
the development of nuclear physics. Mass spectrometry (see, e.g. [66, 67]) was
the first technique of high precision available to the experimenter, and since the
mass of a nucleus increases in a regular way with the addition of one proton or
neutron. In mass spectrometers, a flux of identical nuclei (ions), accelerated (see, e.g.
Fig. 3.13 in [14]) to a certain energy, is directed to a screen (photoplate) where it
makes a visible mark. Before striking the screen, this flux passes through magnetic
field, which is perpendicular to velocity of the nuclei. As a result, the flux is deflected
to certain angle. The greater mass, the smaller is the angle. Thus, measuring the
displacement of the mark from the center of the screen, we can find the deflection
angle and then calculate the mass. The example of a mass-spectrum of a different
isotopes of krypton is shown in Fig. 2.4. From the relative areas of the peaks it can
be determine the abundance of the stable isotopes of krypton (for details see [65]).

Relative masses of nuclei can also be determined from the results of nuclear
reactions or nuclear decay. For example, if a nucleus is radioactive and emits an
α-particle, we know from energy conservation that it mass must be greater than that
of decay products by the amount of energy released in the decay. Therefore, if we
measure the latter, we can determine either of the initial or final nuclear masses if one
of them is unknown. An example of this is presented briefly below. At present we
shall illustrate some typical reactions, bridging the gap between “classical” methods
and the more advanced “high-energy” types of experiments (see, also [7, 61]).

The possible, natural decay processes can also be brought into the class of reaction
processes with the conditions: no incoming light particle α and Q>0. We list them
in the following sequence:

α - decay:

A
Z XN →A−4

Z−2 YN−2 +4
2 He2. (2.5)
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Fig. 2.5 The binding energy per nucleon B/A as a function of the nuclear mass number A
(after [41])

β - decay:

A
Z XN →A

Z−1YN+1 + e+ + νe (p → n-t ype) (2.6)

A
Z XN →A

Z+1YN−1 + e− + νe (n → p-t ype) (2.6′)

A
Z XN+e− + e− →A

Z−1YN+1 + νe (e−-capture). (2.6′′)

Here e−, e+, νe and νe are electron, positron, neutrino and antineutrino.
γ - decay:

A
Z X∗

N →A
Z XN + hν. (2.7)

Here X∗ is excited nuclei.
Nuclear fission:

A
Z XN →A1

Z1
YN1 +A2

Z2
UN2 + x × n. (2.8)
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Table 2.5 Masses of electron, nucleons and some nuclei (after [41])

Particle Number of Protons Number of Neutrons Mass (MeV)

e 0 0 0.511
p 1 0 938.2796
n 0 1 939.5731
2
1H 1 1 1876.14
3
1H 1 2 2808.920
3
2He 2 1 2808.391
4
2He 2 2 3728.44
7
3Li 3 4 6533.832
9
4Be 4 5 8392.748
12
6 C 6 6 11174.860
16
8 O 8 8 14895.077
238
92 U 92 146 221695.831

Since mass and energy are equivalent (see Einstein formula above), in nuclear physics
it is customary to measure masses of all particles in the units of energy (MeV).
Examples of masses of subatomic particles are given in Table 2.5.

As it was noted above, nuclear binding energy increases with the total number
of nucleons A and, therefore, it is common to quote the average binding energy per
nucleon (B/A) The variation of B/A with A is shown in Fig. 2.5. Several remarkable
features are immediately apparent. First of all, the curve is relatively constant except
for the very light nuclei. The average binding energy of most nuclei is, to within
10%, about 8 MeV per nucleon. Second, we note that the curve reaches peak near
A = 60, where the nuclei are most tightly bound and light and very heavy nuclei
contain less bound nucleons. Thus, the source of energy production in fusion of light
nuclei or fission of very heavy nuclei can be a source of energy [13, 14].

While concluding this paragraph we should remember that it is often stated 56Fe is
the most tightly bound nucleus, but this is not correct since 62 Ni is more bound by a
difference of 0.005 MeV/nucleon (for details see [68, 69] and references therein). In
conclusion, it is very interesting to note that one cubic millimeter of nuclear material,
if compressed together, would have a mass around 200,000 tonnes. Neutron stars are
composed of such material.

As shown above nuclei vary from about one to a few fermis in radius. Recall that
the Bohr radius of hydrogen is in the order 10−10 meters , so the nucleus at present
time, despite its small size the nucleus has about, as was noted above, 99.9% of the
mass of the atom (see, also [2, 3]). Electron scattering off nuclei is, for example,
one of the most appropriate methods to deduce radii. The results of this procedure
for several different nuclei are shown in Fig. 2.6. One remarkable conclusion is
obvious—the central nuclear charge density is nearly the same for all nuclei. Nucleons
do not congregate near the center of the nucleus, but instead have a fairly constant
distribution out to the surface. The conclusion from measurements of the nuclear
matter distribution is the same [70, 71]. Under this assumptions of saturation and
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Fig. 2.6 The radial charge
distribution of several nuclei
determined from electron
scattering. The skin thickness
value t is roughly constant at
2.3 fm. The central density
changes very little from the
lightest nuclei to the heaviest
(after [70, 71])

charge independence each nucleon occupies an almost equal size within the nucleus.
Calling r0 an elementary radius for a nucleon in the nucleus, a most naive estimate
gives for the nuclear volume

V = 4/3πr3
0 A (2.9)

or
R = r0A1/3. (2.10)

This relation describes the variation of the nuclear radius, with value of r0 � 1.2
fm when deducing a “charge” radius and a “value of r0 � 1.4 fm for the full matter”
radius (see also Figs. 3.5 and 3.9 in [5]). In a simple way the nuclear radius is defined
as the distance at which the effect of the nuclear potential is comparable to that of
the Coulomb’s potential (see Fig. 2.7).

We should indicate another way to determine the nuclear charge radius from
direct measurement of the Coulomb’s energy differences of nuclei. Consider, for
example, 3

1H2 and 3
2He1. To get from 3He1 to 3H1 we must change a proton into a

neutron. As we know, there is strong a evidence which suggests that the nuclear force
does not distinguish between protons and neutrons. Changing proton into a neutron
should therefore not affect the nuclear energy of the three nucleon system: only the
Coulomb’s energy should change, because the two protons in 3He1 expexperience
a repulsion that is not present in 3H. The energy difference between 3He and 3H is
thus a measure of the Coulomb’s energy of the second proton, and the usual formula
for the Coulomb’s repulsion energy can be used to calculate the distance between
the protons and thus the size of the nucleus.

The interactions between two nucleons (NN) is one of the central questions in
physics and its importance goes beyond the properties of nuclei. Nucleons can com-
bine to make four different few-nucleon systems, the deuteron (p + n), the triton
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Fig. 2.7 Coulomb’s potential
used for defining the nuclear
radius R

(p + 2n), the helion (2p + n) and the α-particle (2p + 2n) (see, e.g. [72–75]).
These particles are grouped together because they are stable (excluding from the
radioactive triton which has a half-life of about 12 years and so may be treated as
a stable entity for most practical purpose), have no bound excited states (except the
α-particles which has two excited states at about 20 and 22 MeV) and are frequently
used as projectiles in nuclear investigations. The absence of stable particles of mass
of five provides a natural boundary between few-nucleon systems and heavier nuclei
[38–40, 74]. Few nucleon systems provide the simplest systems to study nuclear
structure. The deuteron provides important information about the nucleon–nucleon
interaction.

Even before describing any further experimental and theoretical results to study
the force between two nucleons, we can already guess at a few of the properties of
the N–N force:

1. At short distances it is stronger than the Coulomb’s force; the nuclear force can
overcome the Coulomb’s repulsion (see also Fig. 2.7) of protons in the nucleus.

2. At long distances, of the order of atomic sizes, the nuclear force is negligibly
feeble. The interaction among nuclei in a molecule can be understood based only
on the Coulomb’s force.

3. Some fundamental particles are immune from the nuclear force. At present time
we have not any evidence from atomic structure, for example, that electrons feel
the nuclear force at all.

4. The N–N force seems to be nearly independent of whether the nucleons are
neutrons or protons. As is well known this property is called charge independence.

5. The N–N force depends on whether the spins of the nucleons are parallel or
antiparallel.

6. The N–N force includes a repulsive term, which keeps the nucleons at a certain
average separation.
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Table 2.6 Table of main
families of particles

Family Particle Fundamental

Lepton Electron Yes
Lepton Neutrino Yes
Hadron Proton No
Hadron Neutron No
Hadron Delta No
Hadron Sigma No
Hadron Many More

7. The N–N force has a noncentral or tensor component. This part of the force does
not conserve orbital angular momentum, which is a constant of the motion under
central forces.

We should add that with knowledge of the N–N interaction provided by p–p and
p–n scattering and by the deuteron [76–78] one can try to calculate the properties
of the triton and the helion. The principal properties of few-nucleon systems are
summarized in Table 2.6.

Deuteron. The deuteron is a very unique nucleus in many respects. It is only
loosely bound, having a binding energy much less than the average value (≤8 Mev
[38–40]) between a pair of nucleons in all other stable nuclei. We have seen in Eq.
(2.4) that the binding energy EB of a nucleus is given by the mass difference between
the neutral atom and the sum of the masses of free neutrons and protons in the form
of hydrogen atoms. For a deuteron, as we can see from Table 2.5, the mass Md is
1876.1244 Mev/c2. The binding energy is then the difference between Md and the
sum of those for a neutron mn and a hydrogen atom mH (=mp) : mnc2 = 939.565;
mH c2=938.7833 MeV and mn + mH = 1878.3489 MeV. We can write according
Eq. (2.4): EB = mn + mH − Md = 2.224 MeV. A more precise value, EB =
2.22457312 MeV is obtained from radioactive capture of a neutron by hydrogen. In
this reaction p(n, γ )d, a slow neutron is captured by a hydrogen atom followed by
the emission of a γ -ray (for details see [79]).

To simplify the analysis of the deuteron binding energy, we will assume that we
can represent the N–N potential of 3-D square well, as shown in Fig. 2.8

V (r) = −V0, for r < R (=2.1fm)

= 0, for r > R. (2.11)

This is of course an oversimplification, but is sufficient for at least some qualitative
conclusions. In Eq. (2.11) r represents the separation between the proton and the
neutron, so R is in effect a measure of the diameter of the deuteron (Fig. 2.9). If we
express the energy, corresponding to the ground state value E = −EB , the Schrodinger
equation becomes for the 1-D, radial problem with zero angular moment, just like
the lowest energy state of hydrogen atom.
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Fig. 2.8 The spherical
square-well potential, adjusted
to describe correctly the bind-
ing energy EB of the deuteron.
The full depth is also given
and amounts to V0 =U=38.5
MeV (after [41])

d2u

dr2 + k2u = 0, r < R (see, Fig. 2.8)

d2u

dr2 − α2u = 0, r > b, (2.12)

defining

k2 = mn

�2 (u − EB), α2 = mn

�2 EB (2.13)

and using the radial solution
u(r) = r R(r). (2.14)

Approximate solutions in the two regions became

u(r) = Asinkr, r < R and
u(r) = Be−α(r−R) r > b.

(2.15)

Matching the logarithmic derivatives at r = R gives

kcotankr = −α (2.16)

and matching the wave functions at r = R gives
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Fig. 2.9 The deuteron wave
function for R=2.1 fm (after
[5])

AsinkR = B. (2.17)

These two relations lead to the condition

k2A2 = (k2 + α2)B2. (2.18)

The normalization of the wave function 4π
∫

u2(r)dr = 1 becomes

A2

2k
(2k R − sin2k R) + B2

α
= 1

2π
. (2.19)

Eliminating A2 from the last two equations, gives the value for B as

B �
√

α

2π
e−αR/2. (2.20)

Knowing the binding energy EB [see, Eq. (2.13)], we can determine the value α =
0.232 fm−1. A best value for R can be determined from proton–neutron scattering
(see, e.g. [72–74]) as R = 1.93 fm. This then gives u = 38.5 MeV. One can show
that this value of u and the value for R just give rise to a single, bound 1s state, all
other higher-lying 1p, 1d, 2s being unbound. Since we also have

A � B (2.21)

we obtain the final wave functions

u(r) =
√

α
2π

e−αR/2sinkr, r < R and

u(r) =
√

α
2π

e−αR/2e−αr r > b
(2.22)

A potential which gives a satisfactory account of the properties of the deuteron
given in Table 2.7 is shown in Fig. 2.10. We should add that in all deuteron potentials
the tensor term is a very sizeable part of the two-nucleon potential, and is charac-
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Fig. 2.10 The potential for
deuteron triplet states with
even L. the distance is in units
of deuteron radius R = 4.31 fm
(after [80])

terised by a somewhat larger range than the central potential (see Fig. 2.10) being
appreciably different from zero even when the central potential is already negligible.

Proton–proton and proton–neutron interactions. Most of the present theories (see,
also [74] and references therein) of nuclear structure and nuclear reactions are based
on the assumption that nuclear properties depend mainly on two-body interactions
between its constituents. Three-body forces or many-body forces are expected to
play only a minor role.4 It is thus of paramount importance to describe as accurately
as possible the two-nucleon interaction. At the fundamental level this interaction is a
consequence of the quark structure of the nucleons and should be described by QCD
[75] in terms of the quark-gluon field (see, also [54–56, 72, 82]).

However this approach is still in its infancy and therefore we are still far from
solution. There are also many indications [72, 73] that at interaction energies below
a few hundred MeV it is possible to describe the N–N interaction in terms of the
exchange of various types of mesons [83–86].

4 If the two-body potential has an average strength of 20 MeV, then the three-body one would have
a strength of about 1 MeV. We should add that all models have a one-pion exchange character
at long range, which gives rise to a spin–spin central potential and a tensor term ( for details see
[60, 81]).
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In principle there are four types of scattering measurements involving two nucle-
ons that can be carried out. The scattering of an incident proton off a proton (pp-
scattering) is the simplest one of the four from an experimental point of view, as it
is relatively easy to accelerate protons and to construct targets containing hydro-
gen. For neutron scattering, there are two major sources for incident beam. At
low energies, neutrons from nuclear reactors may be used. At higher energies, one
can make use of neutrons produced by a beam of protons, for instance, through
a (p, n) reaction on a 7Li target. However, both the intensity and the energy resolu-
tion of neutron beams obtained in these ways are much more limited than those for
proton beams. As a result, neutron scattering is, in general, a more difficult exper-
iment than those with protons. In addition to pp- and np-measurements, one can,
in principle, carry out pn- and nn-scattering experiments as well. Here, instead of
using protons as the target, a neutron target is used. As we know, free neutrons are
unstable (see above), with a half-life in the order of 10 min. It is therefore impossible
to construct a fixed neutron target, in contrast to protons where material consisting of
hydrogen may used. There are, in principle [84, 85], two methods of getting around
this limitations. One way is to carry out a colliding beam experiment. In place of a
target fixed in the laboratory, a second neutron beam is used and, instead of having
an incident beam scattering from a fixed target, two beams of particles are directed
towards each other. Scattering takes place when the particles in the two beam col-
lide. To be practical, such an experiment requires high intensities in both beams, and
currently highly intense beams of neutrons are not easily available. The other way
is to simulate a fixed neutron target using deuterium. Since the deuteron is a loosely
bound system of a neutron and a proton, the desired pn- or nn-scattering results can
be obtained by carrying out the corresponding pd- or nd-scattering experiments. The
contribution due to protons in the deuterium target may be removed by subtracting
from the measured values the corresponding results obtained in pp- or np-scattering.
The information obtained from pn- and nn-scattering may not be different from that in
np- and pp-scattering. For example, the only difference between pn- and np-scattering
is whether the neutron or the proton is the target. Under time-reversal invariance, these
two arrangements are expected to give identical results. As early to simplify the nota-
tion, we shall use the symbol NN from now on to represent a system of two nucleons,
as early, when there is no need to differentiate between neutrons and protons and the
symbol np to represent both np- and pn-unless further distinction is required by the
occasion. Futhermore, we shall assume that Coulomb’s contribution where present,
has already been taken out and we can therefore ignore it in the discussion.

The quantity measured in a scattering experiment is the number of counts reg-
istered by a detector (θ, ϕ) (see, e.g. [68]). The counting rate depends on the solid
angle subtended by the detector at the scattering centre, the intensity of the incident
beam, the number of target nuclei involved and the differential cross-section dσ/d�.
Naturally, our primary interest is in dσ/d�, a function of the bombarding energy as
well as the scattering angle. For simplicity we shall consider first only elastic scat-
tering, and as a result, the wave number k in the centre of mass of the two particles
has the same magnitude before and after the scattering. The differential scattering
cross-section at angles (θ, ϕ) is given by next equation
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Fig. 2.11 Schematic diagram
of a scattering arrangement.
The scattering angle θ is

between wave vector
−→
k ,

along the direction of the

projectile, and
−→
k ′, that of

the scattered particle. The
result is independent of the
azimuthal angle 
 unless the
orientation of the spin of one
of the particles involve d is
known (details see in text)

dσ

d�
(θ, ϕ) = | f (θ, ϕ)|2 . (2.23)

Here f (θ, ϕ) is the scattering amplitude. As shown in Fig. 2.11 the geometry
of 0-scattering arrangement is such that it is coordinate system at the centre of the
scattering region and takes the direction of the incident beam as the positive direction
along the z-axis. The incident wave vector

−→
k and the scattered vector

−→
k ′ define a

plane, the scattering plane.
For a central potential, the relative angular momentum

−→
l between the two scat-

tering nucleons is a conserved quantity. Under such conditions, it is useful to expand
the wave function as a sum over the contributions from different partial waves, each
with a definite l-value

�(r, θ) =
∞∑

l=0

alYl0(θ)Rl(k, r). (2.24)

Here al is the expansion coefficients. Only spherical harmonics Ylm(θ, ϕ) with
m = 0 appears in the expansion since, in the absence of polarization, the wave
functions is independent of the azimuthal angle 
. We have explicitly included the
wave number k in the arrangement of the radial wave function Rl (k, r) so as to
emphasise the dependence of energy.

For a free particle, V = 0, and the radial wave function reduces to

Rl(k, r) → 1

kr
sin

(

kr − 1

2
lπ

)

, (2.25)

where k = √
2μE/� and jl(ρ) is the spherical Bessel function of the order l. If only

elastic scattering is allowed by the potential, the probability current density in each
partial-wave channel is conserved. The only effect the potential can have on the wave
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function is a change in the phase angle. In other words

Rl(k, r)(scatt/r → ∞) → 1

kr
sin

(

kr − 1

2
lπ + δl

)

, (2.26)

where δl is the phase shift in the lth partial-wave channel.
After that, the scattering amplitude may be expressed in terms of δl as

f (0) =
√

4π

k

∞∑

l=0

√
2l + 1eiδi sinδlYl0(θ). (2.27)

In such case the differential scattering cross-section may be written in terms of the
phase shift

dσ

d�
= 4π

k2

∣
∣
∣
∣
∣

∞∑

l=0

√
2l + 1eiδi sinδlYl0(θ)

∣
∣
∣
∣
∣

2

. (2.28)

The scattering cross-section, the integral of dσ
d�

over all solid angles, becomes

σ =
∫

dσ

d�
d� = 4π

k2

∞∑

l=0

(2l + 1)sin2δl(k). (2.29)

Decomposition into partial waves is a useful way to analyse the scattering results for
a given bombarding energy. In particular, only a few of the low-order partial waves
can contribute to the scattering at low energies, as shown in Fig. 2.12. For realistic
nuclear potential, the orbital angular momentum is not conserved.

Since we are dealing with identical fermions, the scattering of two nucleons can
take place only in a state that is totally antisymmetric with respect to a permutation
of the two particles, in the same way as for deuteron. For pp-sattering, we have T = 1
5 and the two nucleons are symmetric, as for their total isospin wave function [60]
is concerned. If the intrinsic spins of the two protons are coupled together to S = 0
(antisymmetric state) and, as a result only even l-values are allowed. For S = 0, we
have J = l (we remind that

−→
J = −→

l + −→
S ), and the partial waves for the lowest two

orders of pp-scattering are 1S0 (l = 0) and 1D2 (l = 2). The phase shifts extracted
from measured pp-scattering data for these two partial waves of bombarding energy
less than 300 MeV, in the laboratory are shown in Fig. 2.13 as illustrative examples
(for details see [87]). Only the real part of the phase shift is given. At laboratory
energy less than 300 MeV, contributions from inelastic scattering are still relatively

5 In 1932 Heisenberg suggested [90] on the basis of the approximate of the proton and neutron
mass (see also Table 2.2) that these particles might be considered as two different charge states of
a single entity, the nucleon, formally equivalent to the up and down states of a spin 1/2 particle. To
exploit this hypothesis the nucleon wave function in addition to a space and a spin component also
has an isotopic spin (isospin) component (see, also e.g. [7]).
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Fig. 2.12 The effect of a scattering potential is to shift the phase of the scattered wave at points
beyond the scattering regions, where the wave function is that of a free particle (after [6])

unimportant and the imaginary parts of the phase shifts extracted from measured
scattering cross-section are small (see Table 2.8).

By the same token, partial waves for triplet (S = 1) pp-scattering have odd
l-values. The lowest order in this case is a p-wave (l = 1). When l = 1 is coupled
with S = 1, three states with J = 0, 1, 2 are produced. The phase shifts for two of
the triplet of states, 3P0 and 3P1, are also shown in Fig. 2.13a. There is no admixture
between the two J = 0 states 3P0 and 1S0, as they are of different parity. As a result
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Table 2.7 Properties of nucleons and few-nucleons systems

Particle Symbol Spin Parity BE(MeV) MM (μ0) QM(fm2) RMS CR(fm)

Proton p 1/2 + 2.79284739±6 × 10−8 0.88
Neutron n 1/2 + −1.9130428 ±5 × 10−7

Deuteron 2H 1 + 2.2246 0.8574376±4×10−7 0.288±10−3 1.963
Triton 3H 1/2 + 8.482 2.978960±10−6 1.63±0.03
Helion 3He 1/2 + 7.718 −2.127624±1.12 × 10−6 1.97±0.0015
Alpha 4He 0 + 28.28 1.671±0.014

Here BE binding energy, MM magnetic moment, QM quadrupole moment; RMS CR RMS charge
radius

Table 2.8 Nucleon–nucleon
scattering length (a) and
effective range (re)

s = 0; T = 1 (fm) s = 1; T = 0 (fm)

pp: a −17.1±0.2
pp: re 2.794±0.015
nn: a −16.6±0.6
nn: re 2.84±0.03
np: a −23.715±0.15 5.423±0.005
np: re 2.73±0.03 1.73±0.02

we find that both l and S are good quantum numbers here by default (for details see
[89] and references therein and Table 2.8).

The np-system may be coupled together to either isospin T = 0 or T = 1. For
T = 0 the two nucleons are antisymmetric in isospin. In this case the S = 0 states must
have odd l-values in order to be antisymmetric in the total wave function. The lowest
order partial wave here is l = 1 and the phase shifts for 1P1-scattering extracted from
experimental data are shown in Fig. 2.13c. In order for p-wave np-scattering to be
in the S = 1 state, it is necessary for the total isospin to be T = 1. The phase shift in
this case is expected to be identical to those found in pp-scattering, if nuclear force
is charge independent and Coulomb’s effects are removed. An examination of the
two sets of empirical p-wave phase shifts, 3P0 and 3P1 given in Fig. 2.13b, shows
that they are only slightly different from corresponding values given in Fig. 2.13a
for pp-scattering. It is not clear whether the small differences come from the way
the phase shifts are extracted from experimental scattering cross-section or they are
indications of a weak charge dependence in the nuclear force (see, also Fig. 2.14).

The other T = 0 phase shift in the np-system, shown in Fig. 2.13c, is for triplet
(S = 1), even l-scattering. This is the first time we encounter a mixing of different
l-partial waves. Until now, each phase shift has been characterised by a definite l-
value (as well as J- and S-values) even though the orbital angular momentum is not
fundamentally a good quantum number. Mixing of different l-partial waves has not
taken place because of parity and other invariance conditions; however, the tensor
force can mix two triplet of the same J but different in l by two units (l = J±1) (see
also [89]).
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Fig. 2.13 Real part of NN-
scattering phase shifts in
degrees for low-order partial
waves [87]: a pp-scattering
with contribution from the
Coulomb’s potential removed.
b isovector np-scattering, and
c isoscalar np scattering. Filled
circles in the 1S0 and 3S1
phase shifts of np-scattering
are the calculated results using
a Paris potential (after [88])

Our present knowledge of nuclear physics suggests that there are two main fam-
ilies of particles leptons and hadrons (baryons and mesons). The hadrons were first
thought to be elementary like the leptons, but soon a very large number of hadrons
were discovered, which suggest that they are not elementary (see, also [5, 70, 71,
91–93]). As we can see from Table 2.6 the leptons are fundamental particles, but
hadrons are not. They are made up of quarks [94, 95] (for details see below). The
hadron found in normal matter are the proton and the neutron. Quarks are one of the
two basic constituents of matter which is described QCD. QCD [54–56, 96, 97] is
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Fig. 2.14 Very small changes
in the NN wave function near
r = R can lead to substantial
differences in the scattering
length when the extrapolation
is made (after [10])

Table 2.9 Characteristics of the quarks

Flawor Electric charge (e) Mass (GeV/c2)

u—up + 2/3 0.004
d—down − 1/3 0.008
c—charm + 2/3 1.5
s—strange − 1/3 0.15
t—top + 2/3 176
b—beaty (bottom) − 1/3 4.7

the theory of the strong interaction, a fundamental force describing the interactions
of the quarks and gluons found in nucleons such as the proton and the neutron. QCD
is an important part of the Standard Model (SM)6 of particle physics (see, also [96,
97]). In the present SM [54–56] there are six “flowers” of quarks (see, below Table
2.9) most familiar baryons are the proton and neutron, which are each constructed up
and down quarks [82, 98, 91]. Quarks are observed to occur only in combination of
two quarks (mesons), three quarks (baryons), and the recently discovered with five
quarks (pentiquarks [82]).

(a) Quarks. We now know that all the known properties of the hadrons (their
quantum numbers, mass, charge, magnetic moment), their excited states and their
decay properties (see, also below) may be explained by assuming that the mesons
are made of quark–antiquark pairs, the baryons of three quarks and the antibaryons
of three antiquarks [82, 96, 97]. To obtain this picture we need six quarks: up(u),
down (d), charm (c), strange (s), top (t) and bottom (beauty) (b) (see Table 2.9).
These six particles may be arranged according to their masses into three pairs, with
one number of each pair having a charge +2/3e and the other −1/3e as shown in
Table 2.9.Since quarks have not been observed in isolation, they appear either as
bound quark–antiquark7 pairs in the form of mesons or bound groups in the form of

6 As is well known, the Standard Model [48–52, 54–56, 97, 81, 100] is a unified gauge theory
of the strong, weak and electromagnetic interactions, the content of which is summarised by the
group structure SU(3)× SU(2)× U(1), where SU(3) refers to the theory of strong interactions,QCD,
and latter two factors [SU(2)× U(1)] describe the theory of electroweak interactions. Although the
theory remains incomplete, its development represents a triumph for modern physics (for details
see [100] and below).
7 The first question that occurs is whether the quarks actually exist inside the hadrons or whether
they are merely a convenient mathematical ingredient leading to the geometrical symmetry [7]. A
substantial clue in this direction is obtained in deep inelastic scattering from nucleons [11–13]. The
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Fig. 2.15 Building blocks of matter, fermions have three quarks qqq and antiquarks qqq as well
as bosons are quarks and antiquarks

baryons (see, also Fig. 2.15)—the name assigned to them, up, down, strange, etc., are
only mnemonic symbols to identify of different species. The word “flavour” is used,
for convenience, to distinguish between different types of quark. Besides flavour,
quarks also come in three different colours, for example, red, green and blue. Colour
and flavour are quantum-mechanical labels, or in other words, quantum numbers,
very similar to spin and parity. Since there are no classical analogous to flavour and
colour degrees of freedom, there are no observables that can be directly associated
with them. In this respect, they are similar to the parity label of a state which must
be observed through indirect evidence.

Now we know that colour charge is the charge associated with strong interaction.
Colour is whimsically named attribute of quarks and gluons [109] that cannot be
seen. Gluons have one colour and one anticolour [110, 111]. There are, however,
only eight types of gluons [5], not nine as we might expect. Quarks and gluons are
only found inside hadrons. The quarks inside a hadron are bathed in a sea of gluons

nucleon appears to be made up of to regions in the asymptotic-free regime [100–102] and the outer
region of the meson cloud where pions and other heavy mesons can exist (see, also [103–108]). A
number of early results on the internal proton structure became accessible through highly inelastic
electron scattering carried out at the Stanford Linear Accelerator centre (SLAC). Later work of
Kendell et al. [11–13] helped to identify these structures with quarks inside the proton (for details
see also [109]).
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(and additional quark–antiquark pairs) that are responsible for the binding forces in
the hadron. Quarks continually emit and absorb gluons. Colour charge is conserved
in every such process. The colour mathematics always work out so that at any instant
the entire hadron system is colour neutral.

For quarks, the interaction is very strong at low energies where nuclear physics
operates and where most of the experimental observations are made. Because of what
is generally known as asymptotic freedom [100, 102], the quark–quark interaction
is weak only at extremely high energies. As a result, perturbational techniques apply
to QCD only at such extremes, far beyond the realm of nuclear physics and low-
lying hadron spectroscopy. Since quarks are not observed in isolation, their mutual
interaction must have a component that grows stronger as the distance of separation
between them increases. This is opposite to our experience in the macroscopic world,
where interactions, such as gravitational and electromagnetic, grow weaker as the
distance of separation between the interacting objects is increased (and the relation
is given by the inverse square low).

From the above text it has become clear that protons and neutrons are no longer
considered as elementary (see, also Fig. 2.15) but are composed of quarks in a
bound state. The binding forces are quite distinct from electromagnetic, gravitational
forces: at very short distance, the quarks appear to move freely but, with increasing
separation, the binding forces increase in strength too. So it is not possible to separate
the nucleon into its constituent quarks.8 From this picture is followed that quarks are
to be able to exist only in combination with other quarks (baryons) or with antiquarks
(mesons) [60, 109]. This picture has also modified our ultimate view of a system
of densely packed nucleons. For composite nucleons, interpenetration will occur if
the density is increased high enough and each quark will find many other quarks
in its immediate vicinity (see Fig. 2.16). The concepts of a nucleon and of nuclear
matter become ill-defined at this high-energy limit and a new state of matter might
eventually be formed: a quark plasma whose basic constituents are unbound quarks
[81, 110, 111]. Starting with the matter of vanishing baryon density, the energy
density of a non-interacting gas of massless quarks and gluons is (see, also [118,
119])

E � 12T4, (2.30)

Where T is temperature. Just like in the Stefan–Boltzman for a proton gas, the
numerical factor in (2.30) is determined by the number of degrees of freedom of the
constituent particles: their spins, colours and flavours. The energy density for quarks
plasma via computer simulations is obtained in [81]. The transition temperature from
the mesonic regime to the plasma regime is around 200 MeV which means an energy
density of at least 2.5 GeV fm−3 in order to create a quark-gluon plasma.

As is well known, the neutron decay was thus written

8 As we know, nonrelativistic quark model use constituent quark masses, which are of order 350
MeV for u- and d-quarks. Constituent quark masses model the effect of dynamical chiral symmetry
breaking are not related to the quark mass parameters mq of the QCD Lagrangian.
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Fig. 2.16 Comparison of
a collection in hadronic or
nuclear matter phase and
within quark-gluon plasma
description (after [110, 111])

n → p + e− + ν̃e, (2.31)

where ν̃e is an electron antineutrino. This decay illustrates some of this conservation
lows which govern particle decays.

The proton in the product satisfies the conservation of baryon number, not the
emergence of the electron unaccompanied would violate conservation of lepton num-
ber. The third particle must be an electron antineutrino to allow the decay to satisfy
lepton number conservation The electron has lepton number 1 and the antineutrino
has lepton number −1. However, a proton bound in a nucleus may also transform into
neutron by emitting a positron and a neutrino. This process is a bound as β+-decay
and discussed in any textbooks (see, e.g. [6, 7]). Also for this transformation the
above consideration holds and the proton transformation into a neutron was written

pbound → n + e+ + νe, (2.32)

where νe is an electron neutrino. In conclusion of this part, we should note, that the
lepton number conservation rule is applied to all cases it is found to work.

As we known well, at present time all hadrons are subdivided into two classes
baryons and mesons (see Fig. 2.15). Baryons are distinguished by the fact that they
are fermions, particles that obey Fermi-Dirac statistics. Because of this property, two
baryons cannot occupy the same quantum-mechanical state. The fact that baryons are
fermions implies that quarks must also be fermions, as it is impossible to construct
fermions except from odd numbers of fermions. Furthermore, if we accept that a
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quark cannot exist as a free particle, the lightest fermion in the hadron family must
be made of three quarks (see also Fig. 2.15). Among the baryons, we are mostly
concerned with the lightest pair, the neutron and the proton. From charge conservation
alone, it can be deduced that a proton carrying a charge +e, must be made of two
u-quarks, each having a charge of 2/3e (Table 2.9), and one d-quark, having a charge
of −1/3e. The quark wave function of a proton may be represented as

| p >=| uud >. (2.33)

Similarly, the quark wave function of a neutron is

| n >=| udd > (2.34)

so that the total charge of a neutron in units of e is 2/3 − 1/3 − 1/3 = 0.
Boson particles obeying Bose–Einstein statistics may be made from even number

of fermions. This means that mesons are constructed of an even of quarks. Since, on
the one hand, bosons can be created or annihilated under suitable conditions and, on
the other hand, the number of quarks is conserved in strong interaction processes, a
meson must be made of an equal number of quarks (see, also Fig. 2.15). The simplest
meson is, therefore made of quark–antiquark. For example, pions (π), the lightest
members among the mesons, are made of a quark, either u or d and an antiquark,
either u or d (see, e.g. [109]).

2.3 Big Bang and Stellar Nucleosynthesis: Origin of Elements

The nuclear and particle physicists, the early Universe, represents the ultimate parti-
cle accelerator in which energies and densities of particles were beyond what we can
ever hope to achieve with artificially constructed accelerators. Most modern views of
cosmology are in agreement with the idea that the Universe began with an explosion,
or “Big Bang” some 10–20 billions years ago. The uncertainties in the models are
connected mostly with the very beginning of time, within the first fraction of a second
or so. At the end of approximately the first 3 min. [112], and three-fourth of the baryon
mass in the Universe is in the form of protons and the rest in the form of 4He (see,
e.g. [38–40]) Traces of deuteron, 3He, and 7Li are also present but their abundances
are down by several orders for deuteron and 3He and 10 orders for 7Li (see, also
Fig. 2.17).

Gamow [114–116] and Alpher and others [117] attempted to explain the relative
abundance of all elements and isotopes from neutrons, following the hypothetical
explosion which marked the beginning of the Universe (see, also [118, 119]). We
now place this event ∼1.5 × 1010 years ago. After that a number of modifications
were made to the original theory. The first was made by Hayashi [120], who noted
that at the high temperatures in the very early Universe, ther should be an equilibrium
between protons and neutrons. The second modification was suggested by Fermi and
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Fig. 2.17 Schematic curve of atomic abundance as a function of atomic weight based on data of
Sues and Urey [113]. This author have employed relative isotopic abundance to determine the slope
and general trend of the curve (after [113])

Turkevich [118, 119], who noted that lack of stable nuclei at mass 8 prevented the
formation of carbon. As a result, this theory was neglected until the mid 1960s. Today
the picture of the Big Bang is generally accepted, and forms on essential part of our
understanding of the abundance of the elements (see [38]). The strongest facts in
favour of the Big Bang theory are:

1. The relative abundance of the light elements [74].
2. The microwave background, which is remnant of the photon field of the Big Bang

[121, 122].
3. The agreement of the ages of the oldest stars with the age of Universe.

The most convincing evidence for the Big Bang was provided by the discovery of
the microwave background [121, 122]. Strong additional support for the Big Bang
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model came from the conclusion by authors [124]. For review and history of this
question see [125].

Temperature and densities in the Big Bang model are shown in Fig. 2.18. As the
expansion began, temperature was too high to allow complex nuclei to survive. About
100s after the start of the Big Bang, T 〈1.3× 109 K (equivalent to an energy of 110
keV) (see, also [5, 8]). Then complex nuclei could survive, so the nucleosynthesis of
light elements occur [74]; this is sometimes referred to as the era of nucleosynthesis.
The modern theory of this process is referred to as standard Big Bang nucleosynthe-
sis. About 3,000 years later, the expanding material cooled below ∼103 K, so that
hydrogen ions could recombine.

As was shown above, free neutrons decay into protons with a half-life of about
10 min. For a neutron to survive much longer time periods, it must be captured by
other nucleons to form a bound nucleus. Since most of the nucleons in the Universe
are in the form of free protons and neutrons at this stage, the most likely candidate
to be formed is the deuteron, a bound nucleus made of a proton and a neutron.
Unfortunately the binding energy of a deuteron is very small and this constitutes
the major bottleneck in preserving primordial neutrons from β-decay. Because of
the short range of nuclear force, bound nuclei can be made from free neutrons and
protons only through random collisions that bring some of them into close contact
with each other. The probability of such encounters drops drastically for three or
more particles. This leaves us with deuteron as the only likely bound system that
can be made in any significant amount. On the other hand, the small binding energy
means that deuterons can also be destroyed easily in random collisions with other
particles. The most likely event is with photons, as there is something like 109 for each
nucleon. For this reason, photodisintegration constitutes an important sink for any
deuterons created when the temperature is still sufficiently high. On further cooling,
some deuterons can exist long enough to capture a proton to form 3He. In turn, 3He
can capture a neutron and transform it into 4He. When we see that one temperature
is sufficiently low for deuterons to last long enough to undergo proton and neutron
captures, free neutrons are transformed into bound ones and the total number in the
Universe stays more or less constant until start of stellar nucleosynthesis at much
later stages in the evolution of our Universe.

As we know, nuclei of mass 8 are a bottleneck [126]. Two helium nuclei fuse to
form 8Be, but the next step, the fusion of 8Be with a third helium nucleus is rare,
since 8Be is unstable with a half-life of �10−16 s. Thus to form carbon, three helium
nuclei must react [41]. This is not possible in the Big Bang because of rapid expan-
sion [39, 40]. Thus because of the instability of 8Be, all nuclei heavier than 7Li must
have been produced in stars. As will be shown below, carbon is formed from three
helium nuclei (α-particles) in the interior of higher-mass stars, where high densities
and temperatures are present for ∼106 years. Von Weizsäcker [127] and Bethe [128]
proposed a quantitative scheme by which the Sun produced energy. This process is
the so-called CNO (carbon–nitrogen–oxygen) cycle (see, also [129, 130]). In this
process, carbon acts as a catalyst; in equilibrium the net effect is the conversion
of hydrogen into helium. Later a cycle involving the fusion of protons to produce
helium, the p–p cycle [38] was found to be effective in lower-mass stars [39, 40]
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Fig. 2.18 A simplified presentation of the temperature and density relations in the homogenous
Big Bang. The scale on the right vertical axis refers to the two upper curves for the photon and
matter densities. The scale on the left vertical axis refers to the lowermost curve, which describes
the temperature of the photon field. The remnant photon field of the Big Bang is a black body
characterised by TBG = 2.75(1 + z). The production of the light elements occurred when the
temperature fell below 2 × 109 K. This was the age of nucleosynthesis in the Big Bang. Following
this time, the expansion allowed further cooling so that Big Bang nucleosynthesis came to an end.
Matter continued to be ionized until the temperature fell below ∼ 103 K. When the ions recombined
matter became neutral and photons and matter decoupled. Following this was a period before stars
and galaxies formed, the so-called ‘dark age’. It is currently believed that star formation began at
z ∼ 5. The temperature contribution shown is the result of only the Big Bang contribution. Star
formation will raise the temperature and perhaps re-ionize the Universe at z ∼ 5 (after [129, 130]

In stars, the material becomes inhomogeneous since deeper in the interior the pres-
sures and temperatures must be larger. In a similar way, the centres of stars more mas-
sive than the Sun must be hotter than the centre of the Sun; heavier elements are pro-
duced in higher-mass stars which have larger central temperature [39, 40, 125, 126].
To produce the nuclei of heavier elements by fusion, the larger Coulomb’s repulsive
forces must be overcome. These can only be produced in the centres of larger mass
stars. Thus, only higher-mass stars can enrich the interstellar medium with nucle-
osynthesis products such as carbon, oxygen, neon or silicon. The exact yields of such
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Table 2.10 Characteristics of the leptons

Flawor Electric charge (e) Spin Mass (Gev/c2)

νe—electron neutrino 0 1/2 <7×10−9

e−—electron −1 1/2 0.000511
νμ—muon neutrino 0 1/2 <0.00027
μ−—muon (mu - minus) −1 1/2 0.106
ντ —tau neutrino 0 1/2 <0.03
τ−—tau (tau - minus) −1 1/2 1.771

material are not certain since the product yields of such explosive processes depend
on many details (for details, see [39, 40]).

When the hydrogen fuel is used up in a star, production of nuclear energy from
fusing protons into 4He stops and the temperature drops [129, 130]. Helium burning
requires a temperature in the order of 108 K. Since 8Be is unstable and lives only
∼10−16 s, the conversation takes place mainly through the triple-α reaction

4He +4 He +4 He −→ 12C + γ. (2.35)

The 12C produced can capture another α-particle to make 16O,

4He +12 C −→ 16O + γ. (2.36)

In (2.35) and (2.36) γ is a electromagnetic radiation. Further α-particle capture
produces even heavier nuclei. However, as we move to heavier and heavier nuclei,
the Coulomb’s barrier increases in height. This calls for higher temperatures that
can come only from further gravitational contraction, as shown in Table 2.10. Since
this is more likely to take place first at the centre, the inner parts of the star go to
higher temperatures and densities, and evolve faster through different stages, than
those outside.

The release of fusion energy stops at A≈56, where the binding energy per nucleon
peaks in value (see above). This takes place first in the stellar core and most of the
nuclei are in the form of 56Fe and 56Ni the two most stable A = 56 isobars. Further
evolution of the star depends even more critically on its total mass than any of its
early stages. If the value is more than 8 times the solar mass [39, 40] there is enough
gravitational energy left in the core in the core at the end of fusion to turn the star
into a supernova.

When all the available 4He in the central part of a star is used up, the core goes
through another stage of gravitational contraction and rise in temperature. When
T ∼ 109 K, corresponding kT ∼ 100 keV, reactions involving the conversion of any
12C remaining after helium burning become possible, such as
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12C +12 C −→ 24Mg + γ

−→ 23Na + p

−→23 Mg + n

−→20 Ne + α

−→16 O + α + α. (2.37)

The time span for the carbon burning phase is several orders of magnitude shorter
than that for helium.

At even higher temperature, 2 to 3 × 109 K, it is possible to convert 16O into
heavier elements, for example.

16O +16 O −→ 32S + γ,

−→ 31P + p

−→ 31S + n

−→28 Si + α

−→24 Mg + α + α. (2.38)

When the temperature is between 3 and 4 × 109 K, conversion of two 29Si to one
56Ni becomes possible.

Supernovas hold a special place in nucleosynthesis because of the heavy elements
they produce. Since binding energy per nucleon decreases beyond A∼56, it takes
energy to create elements that are heavier (for details see [39, 129, 130]).

2.4 Isotope Effect in Nuclear Physics

In this section we will describe the influence of neutrons on the charge distribution.
This influence has been studied using isotopic shift, the difference in the charge
distributions of nuclei with the same number of protons but a different number of
neutrons. If charge distribution in a nucleus is independent of neutrons, we expect
the isotopic difference to be negligible. The measured results (see, e.g. [131–138])
indicate that, in general, the shifts are small but nonzero. Isotope shift (of spectral
lines) can be divided into two classes that caused by the mass effect and that resulting
from the field effect–volume effect. The mass effect consists of two parts, normal
and specific, and results from the nucleus having a finite mass (see, also [41]). The
normal mass effect can be calculated exactly, while the specific (for details see, also
Chap. 4) mass effect present in spectra of atoms with more than one electron is very
difficult to calculate precisely. Both of this effects decrease with increasing Z. The
field effect, which increases with increasing Z, arises because of the deviation of
the nuclear electric field from a Coulomb’s field and can be used to study details of

http://dx.doi.org/10.1007/978-3-642-28723-7_4
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Table 2.11 The root-mean-square radius (〈r2〉1/2) for detailed calcium isotopes

Nucleus 40Ca 42Ca 44Ca 48Ca

〈r2〉1/2 (fm) 3.4869 3.5166 3.5149 3.4762

nuclear structure. This is probably the most important consequence of isotope shift
studies.

Thus in the very light elements the mass effect dominates and can account quali-
tatively for the observed shifts. In the heaviest elements the mass effect is negligible
and the field effect can roughly account for the observed shift. In the element of
intermediate mass the two effects are comparable. As a result, the shifts observed are
small because the mass and field effects within the levels are often in such a direc-
tion as to oppose one another. In order to use the field effect in the demonstration of
nuclear properties, it is necessary that the contribution of the mass and field effects
to be observed shifts be known.

Isotope effect in calcium isotopes. The isotopic shift data [131], obtained from
electron scattering, are summarized in Table 2.11. As we can see, the difference in
the root-mean-square radius

〈
r2

〉1/2
between the isotopes given in Table 2.11 are

quite small. However, the good accuracies achieved in the measured values indicate
a genuine difference among them. Since the radius decreases by 0.01 fm in going
from 40Ca to 48Ca, it means that the addition of neutrons to calcium isotopes reduces
the size of the charge distribution of the same 20 protons when neutron number is
increased from 20 to 28. If we take the simple view that charges were distributed
evenly throughout the nuclear volume, the charge radius should have increased by
6% based on simple R = r0A1/3 relation. This is found to be true in the case of
48Ti [131], a nucleus with two more protons and six more neutrons than 40Ca. Here,
the size of the charge distribution in increased by 0.1 fm for 48Ti not far from the
expectation of an A1/3 dependence, instead of decreasing for 48Ca. There are two
possible explanations for the decrease in the charge radius with increasing neutron
number among even calcium isotopes. The first is that addition of neutrons makes the
protons more tightly bound and, hence, the charge radius is smaller. This is, however,
not true for nuclei in general (see, e.g. [5, 9]). A second explanation is based on the
charge distribution within a neutron (see, Fig. 2.3). One possible model for the charge
distribution in a neutron is that the central part is positive and the region near the
surface is negative, as shown in Fig. 2.3. The detailed charge distribution is not well
known, because of the difficulty in measuring the small charge form-factor (see, also
[132–134]). However, a small excess of negative charge in the surface region can
produce about a third of decrease in the charge radius in going from 40Ca to 48Ca,
as suggested by the authors of paper [142]. The other two-thirds may be attributed
to the spin dependence in interactions of protons with other nucleons in the nucleus
(see, e.g. [72, 73, 84, 85]). Regardless of the exact cause of the isotopic shift among
calcium isotopes, it is clear that neutrons have a definite influence on the measured
charge distribution of a nucleus (for details see [131–137]). The same effect can also
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observed in other measurement, for example, such as the energy scattering of X-rays
from muonic atoms [139–141].

Isotopic shift in muonic atoms. As was shown above, a muon is a lepton with
properties very similar to an electron. For this reason, it is possible to replace one
of the electrons on an atom by a (negative) muon to form muonic atom. However,
since the mass of a muon is 209 times larger than that of an electron, the radii of the
muonic orbits are much smaller than those of electrons.

According atomic physics (see, e.g. [139]) hydrogen-like atom with Z protons in
the nucleus and only a single electron outside, the radius of the nth orbit is given by

rn(e
−) = n2

�
2

α�cZme
(2.39)

Here, me is the mass of an electron, α is the fine structure constant. For hydrogen
atom (Z = 1), the ground state (n = 1) radius is well known Bohr radius (see, also
[139]);

a0 = �

αcme
= 5.29×10−11 m. (2.40)

Using (2.40), we can obtain the analogous results for a muonic atom by replacing
me by mμ

rn(μ
−) = a0

n2me

Zmμ

. (2.41)

Using a muon mass mμ = 106 MeV/c2, we obtain for a heavy nucleus, such as 208Pb
(Z = 82) the radius of the lowest muonic orbit

r1(μ
−) � 3.1×10−15 m (2.42)

or 3.1 fm. This is actually smaller than the value of 7.1 fm for the radius of 208Pb,
estimated using R = r0A1/3 with r0 = 1.2 fm [8]. A more elaborate calculation [140]
shows that the muon spends inside a heavy nucleus. Being very close to the nuclear
surface, the low-lying muonic orbits are sensitive to the detailed charge distribution
of the different isotopes. The resulting changes in the energy levels may be observed
as shifts in position of lines. Detailed investigation of isotopic shift was done on the
different isotopes of Fe in paper by Shera et al. [140]. Muonic X-ray spectra from
three isotopes of Fe obtained in this chapter are shown in Fig. 2.19. The isotope shift
is large compared with isotope shift of electronic X-rays, which is typically 10−2 eV
per unit change in A.
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Fig. 2.19 Typical spectra showing the muonic 2p–1s X-ray doublet for three isotopes of Fe. The
two peaks show the 2p3/2 → 1s1/2 and 2p1/2 → 1s1/2 transitions in the ratio 2:1 determined by
the the statistical weight (2 j + 1) of the initial initial state. The isotope shift can clearly be seen as
the change in energy of the transitions (after [140])

2.5 The Origin of the Mass

As we know well, that in a nucleus the protons and neutrons, collectively known as
nucleons, are bound together by the strong nuclear force. At a fundamental level these
interactions are described by Quantum Chromodynamics (QCD), a theory of quarks
and gluons carrying colour charges that are asymptotically free at short distances.
However, the quarks and gluons in a nucleus are very far from being asymptotically-
free. Instead they comprise individual, colourless nucleons, which largely retain their
identity in the many-body system. The colour-singlet nucleons are then bound to each
other by what can be thought of as ‘residual’ QCD strong interactions. This sketch
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of nuclear dynamics from the QCD point of view—brief as it is—makes it clear
that from this standpoint the nucleus is an incredibly complicated, nonperturbative,
quantum-field-theoretic, infinite-body problem.

Understanding the nucleon mass and its dependence of light quark masses is
clearly one of the most fundamental issues [43, 47, 140] in nuclear and particle
physics (see, also [143–152]). A key question concerns the origin of the nucleon mass:
how do almost massless u and d quarks and massless gluons cooperate dynamically
to form a localized baryonic compound with a mass of almost 1 GeV? An equally
fundamental issue is the origin of the nucleon spin: how is the total angular momen-
tum of the nucleon in its rest frame distributed between its quarks and gluons and in
turn between their spin and orbital angular momentum? We will not discuss the last
question here further (for details, see e.g. [152, 153]).

As we all know, almost all of the mass of the visible Universe is determined by the
mass of the sum of the masses of nucleons in the cosmos. The gluonic energy density
in the presence of three localized valence quarks obviously plays a decisive role in
generating the nucleon mass [47, 149]. Basic QCD symmetries and the corresponding
conserved currents as a guiding principle to construct effective Lagrangians which
represent QCD at low energies and momenta. A rapidly advancing approach to deal
with non-perturbative QCD is Lattice Gauge Field Theory (see, e.g. [154–160]).
Considerable progress is being made solving QCD on a discretised Euclidean space–
time lattice using powerful computers (for details, see [150, 151] and references
therein). Lattice QCD has progressed to the joint that it can give reliable results
concerning this issue, but with input quark masses still typically in order of magnitude
larger than the actual current quark masses entering the QCD Lagrangian. Combining
CHPT with lattice QCD has thus become a widely used routine in recent years (see,
e.g. Fig. 2.1 in [150, 151]).

To better understand the origin of the mass we should analyse the QCD conden-
sates. In QCD by condensates there are the vacuum mean values < 0 | Q | 0 > of
the local (i.e. taken at a single point of space-time) operator Qi (x) which are due
to non-perturbative effects. When determining vacuum condensates one implies the
averaging only over non-perturbative fluctuations. If for some operator Qi the non-
zero vacuum mean value appears also in the perturbation theory, it should not be
taken into account in determination of the condensate. In other words when deter-
mining condensates the perturbative vacuum mean values should be substracted in
calculation of the vacuum averages. As we know, the perturbation theory series in
QCD is asymptotic series. So, vacuum mean operator values appear due to one or
another summing of asymptotic series. The vacuum mean values of such kind are
commonly to be referred as vacuum condensates [161]. The non-zero value of quark
condensate means the transition of left-hand quark fields into right-hand ones and is
not small value would mean to chiral symmetry violation in QCD. Quark conden-
sate may be considered as an order parameter in QCD corresponding to spontaneous
violation of the chiral symmetry [154–160].

For quark condensate <0 | qq | 0> (q = u, d are the fields of u and d quarks)
there holds the Gell-Mann-Oakes-Renner (GMOR) relation [162]
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< 0 | qq | 0 >= −1

2

m2
π f 2

π

mu+md
. (2.43)

Here mπ , fπ are the mass and constant of π+-meson decay (mπ = 140 MeV, fπ =
92–131 MeV for different authors), mu and md are the masses of u- and d-quarks.
Relation (2.43) is obtained in the first order of mu, md , ms (for its derivation see, e.g.
[45]). To estimate the value of quark condensate one may use the values of quark
masses mu + md = 13 MeV [163]. Substituting these values into (2.43) we get for
quark condensate

< 0 | qq | 0 >= −(0.23 GeV)3 � −1.6 fm−3, (2.44)

This condensate is a measure, as note above, of spontaneous chiral symmetry break-
ing. The non-zero pion mass, on the other hand, reflects the explicit symmetry
breaking by the small quark masses, with m2

π ∼ mq . It is important to note that
mq and < 0 | qq | 0 > are both scale-dependent quantities. Only their product
mq < 0 | qq | 0 > is scale independent, i.e. invariant under the renormalisation
group.

The appearance of the mass gap � ∼ 1 GeV in the hadron spectrum is thought
to be closely linked to the presence of chiral condensate < 0 | qq | 0 > in the QCD
ground state. Ioffe formula [164], based on QCD sum rules, connects the nucleon
mass MN directly with quark condensate in leading order

MN = −
[

8π2

�2
B

< 0 | qq | 0 >

]1/3

+ · · · (2.45)

where �B ∼ 1 GeV is an auxiliary scale (the Borel mass [150, 151]) which sepa-
rates “short” and “long” distance in the QCD sum rule analysis. While Ioffe’s formula
needs to be improved by including condensates of higher dimensions, it nevertheless
demonstrates the close connection between dynamical mass generation and spon-
taneous chiral symmetry breaking n QCD. Taking into account the value of quark
condensate from Eq. (2.44) we get for MN

MN = 986.4 MeV (2.46)

The obtained value of MN differs from experimental meaning of MN = 940 MeV
on the 5%. For nuclear physics, Eqs. (2.45–2.46) give important hint: the change of
the quark condensate with increasing baryon density implies a significant reduction
of the nucleon mass in the nuclear medium.

In the chiral effective theory, the quark mass dependence of MN translates into
dependence on the pion mass at leading order. The systematic chiral expansion [155–
160] of the nucleon mass gives an expression of the form
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MN = M0 + cm2
π + dm4

π − 3π

2
g2

Amπ

(
mπ

4π fπ

)2
(

1− m2
π

8M2
0

)

+ · · · (2.47)

where the coefficients c and d multiplying even powers of the pion mass include low-
energy constants constrained by pion-nucleon scattering. Note that the coefficient d
also involves a logmπ term.

In conclusion of this section we should note the fact md is larger than mu by
a few MeV implies that the neutron is heavier than the proton by a few MeV.
As is well known, the experimental neutron–proton mass difference of Mn− Mp =
1.2933317 ± 0.0000005 MeV [68, 94] receives an estimated electromagnetic con-
tribution of [143] Mn− Mp |em = − 0.76 ± 0.30 MeV and the remaining mass
difference is due to a strong isospin breaking contribution Mn − Mp |d−u = 2.05
± 0.30 MeV. Recently Bean et al. [152] have performed the first lattice calculation
of the neutron–proton mass difference arising from the difference between the mass
of the up and down quarks (see, also [165–168] and find Mn − Mp |d−u= 2.26 ±
0.57 MeV). This value is in good agreement with the experimental result quoted.
Concluding we should note, that we do not know why the observed mass pattern
(Mn, Mp, mu , md etc.) looks like this, but nuclear physics can analyse the conse-
quence of this empirical fact.

2.6 New Physics Beyond the Standard Model

A major challenge for physics today is to find the fundamental theory beyond the
Standard Model [47] (the “Theory of everything”). In a nutshell, the standard model
(SM) is a unified gauge theory of the strong, weak and electromagnetic interactions,
the content which is summarised by the group theory

SU(3)C×SU(2)L×U(1)Y (2.48)

where the first factor refers to the theory of strong interactions, or Quantum Chro-
modynamics (QCD) [149, 155–160], and the latter two factors describe the theory
of electroweak interactions (see, also [42, 48–52, 99, 169]). However, we have the
difficulty that the vast majority of the available experimental information, at least
in principle [170–174], explained by the SM (see, also [175]. Also, until now, there
has been no convincing evidence for existence of any particles other than those of
the SM and states composed of SM particles. All accelerator physics seems to fit
well with the SM, except for neutrino oscillations [42]. Apart from neutrino masses
and mixing angles the only phenological evidence for going beyond the SM comes
from cosmology and astrophysics [176–182]. It is well known that the pure SM pre-
dicts a too low value for the baryon number resulting from the Big Bang [1]. Apart
from these astrophysical problems, there is only very weak experimental evidence
for effects which do not match the SM extended to include neutrino mass as well
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as hierarchy of elementary particles mass, etc. From these standpoints, the SM has
been an enormously successful theory. Nevertheless, there exist many reasons for
believing that the SM is not the end of the story. Perhaps the most obvious is the
number of independent parameters that must be put in by hand. For example, the
minimal version of the SM has 21 free parameters, assuming massless neutrinos and
not accounting electric charge assignments [48–52]. Most physicists believe that this
is just too much for the fundamental theory. The complications of the SM can also
be described in terms of a number of problems, which we list briefly below.

1. Coupling Unification.
There exists a strongly held belief among particle physicists and cosmologists
that in the first moments of the life of the Universe, all forces of nature were
“unified”, that is they all fit into a single gauge group structure whose interaction
strengths were described by a single coupling parameter, gu (see, Fig. 2.2. in
[43]). As we can see from this figure, that the three SM coupling almost meet at
a common point around 3×1016 GeV.

2. The Hierarchy Problem.
As we know, all matter under ordinary terrestial conditions can be constructed
on the fermions (νe, e−, u, d) of the first family (see Table 2.9). Yet we also
know from laboratory studies that there are two families (νμ,μ

−, c, s) and
(ντ , τ

−, t, b) that are heavier copies of the first family with no obvious role
in nature. The SM gives no explanation for the existence of these heavies fam-
ilies. Futhermore, there is no explanation or prediction of the fermion masses,
which over at least five orders of magnitude:

MW,Z ∼ mtop � mb � mτ � me � mν . (2.49)

How does one explain this hierarchy of masses? The SM gives us no clue as to
how to explain the hierarchy problem. Really, the problem is just too complicated.
Simple grand unified theory (GUT ) does not help very much with this (for details
see e.g. [48–52] and references therein). We should repeat that the non-vanishing
neutrino masses and mixings are direct evidence for new physics beyond the SM.

3. Discrete Symmetry Violation.
By construction, the SM is maximally parity-violating, it was built to account
for observations that weak c.c. processes involve left-handed particles (or right-
handed antiparticles). But why this mismatch between right-handness and left-
handness? Again no deeper reason for the violation of parity is apparent from
the SM. It would be desirable to have answer to this question, but it will take
some new framework to provide them.

4. Baryon Asymmetry of the Universe.
Why do we observe more matter than antimatter? This is problem for both
cosmology and the SM.

5. Graviton Problem.
Gravity is not fundamentally unified with other interactions in the SM, although
it is possible to graft on classical general relativity by hand. However, this is not
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a quantum theory, and there is no obvious way to generate one within the SM
context. In addition to the fact that gravity is not unified and not quantised there is
another difficulty, namely the cosmological constant (for details, see [176–182]
and references therein). The cosmological constant can be thought of as energy
of the vacuum. The energy density induced by spontaneous symmetry breaking
is some ∼120 orders of magnitude larger than the observational upper limit.
This implies the necessity of severe fine-tuning between the generated and bare
pieces, which do not have any a priori reason to be related (see, also [183–185]).

6. Quantisation of Electric Charge.
The SM does not motivate electromagnetic charge quantisation (for example, for
quarks), but simply takes it as an input. The deeper origin of charge quantisation
is not apparent from the SM (for the details, see also [185, 186]).
To summarize, despite the triumphant success of the SM, there exist conceptual
motivations for believing that there is something more that the high energy desert
is not so barren after all.
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Chapter 3
Early Spectroscopic Studies of Isotopes

3.1 Some General Remarks

The interpretation of atomic isotope shifts relies partly on the knowledge of nuclear
structure. Conversely it can provide some information on the structure nuclei. This
relation between the two fields has been for many years the main reason for the
interest in isotope shifts of optical (electronic) transition (see, e.g. reviews and
monographs [1–14]).

The word “atom” introduced by Democritus more than 2,400 years ago in Greek
means “inseparable”. The discovery in the twentieth century of complex inner struc-
ture of an atom, in fact, has led to emergence of the main branch of physics describing
the structure of a microscopic world, i.e. quantum mechanics, which, in its turn has
stimulated the development of many other domains of physics, neighbouring sci-
ences and technologies. Atomism as understood by modern science was first discov-
ered for matter, then for electricity and finally for energies. The atomism of matter,
the recognition of the fact that all the chemical elements are composed of atoms,
followed from chemical investigations. Only whole atoms react with one another.
The first atomic model (at the beginning of nineteenth century) assumed that the
atoms of all elements are put together out of hydrogen atoms. As a heuristic princi-
ple this hypothesis finally led to a scheme for ordering the elements based on their
chemical properties, the periodic system of D.I. Mendeleev. More about this subject
may be found in introductory textbooks on chemistry [15]. Continuous investigations
of gases in the course of the nineteenth century led to the atomism of heat, that is,
to the explanation of heat in general and of the thermodynamic laws in particular
as consequences of atomic motion and collisions. The atomism of electricity was
discovered in nineteenth century by the English scientist M. Faraday. Based on the
quantitative evaluation of exceedingly careful measurements of the electrolysis of
liquid, M. Faraday concluded “There are ‘atoms’ of electricity”. These “atoms” of
electricity—the electrons are bound to atoms in matter.

The discovery of the atomism of energy can be dated exactly: on December 14,
1900 (see, e.g. [16]) M. Planck announced the derivation of his laws for black body

V. G. Plekhanov, Isotopes in Condensed Matter, Springer Series in Materials Science 162, 53
DOI: 10.1007/978-3-642-28723-7_3, © Springer-Verlag Berlin Heidelberg 2013



54 3 Early Spectroscopic Studies of Isotopes

radiation in a lecture before the Physical Society in Berlin. In order to derive these
laws, M. Planck assumed that the energy of harmonic oscillators can only take on
discrete values—quite contradictory to the classical view, in which the energy values
form a continuum. This date can be called the birth date of quantum theory .

Our knowledge of the structure of atoms was influenced strongly by the investi-
gation of optical spectra [17, 18]. The most important sources of information about
the electronic structure and composition of atoms are spectra in the visible, infrared
(IR), ultraviolet (UV) frequency ranges [19]. Optical spectra are further categorised
as line, band and continuous spectra [17]. Continuous spectra are emitted by radi-
ant solids or high-density gases. Band spectra consist of groups of large numbers
of spectral lines which are very close to one another. They are generally associated
with molecules [20–22]. Line spectra, on the other hand, are typical of atoms [2–4].
They consist of single lines, which can be ordered in characteristic series.

The founders of spectroscopic analysis, Kirchhoff and Bunsen, were the first to
discover in the mid-nineteenth century that each elements possesses its own char-
acteristic spectrum. Hydrogen is the lightest element, and the hydrogen atom is the
simplest atom, consisting of a proton and an electron. The spectra of hydrogen atom
have played an important role again and again over the last (twentieth) century in the
development of our understanding of the laws of atomic structure and the structure
of matter.

The emission spectrum of atomic hydrogen (Fig. 3.1) shows three characteristic
lines in the visible region at 6,563, 4,861 and 4,340 Å (Hα , Hβ , Hγ , respectively).
As we can see from Fig. 3.1, the most intense of these lines was discovered in 1853
by Angström; it is now called the Hα line. In the near UV region, these three lines
are followed by a whole series of further lines, which fall closer together in a regular
way as they approach a short-wavelength limit (H∞). During this period empirical
regularities in line spectra were being found. The best known of these was Balmer’s
simple formula (1885) for the wavelengths of the visible lines of the hydrogen spec-
trum. For the wavenumbers (ν = 1/λ) of the lines we write the Balmer formula

ν = RH

(
1

22 − 1

n2

)

(3.1)

where n-integer and equals n = 3, 4, 5, . . . . The quantity RH is called the Rydberg
constant and has the numerical value RH = 109677.581 cm−1 [19]. The series
limit is found for n −→ ∞ to be ν = RH /4. This empirical discoveries of spectral
regularities reach their culmination in the clear establishment of the Ritz combination
principle. This came in 1898 after a decade of important work on the study of spectral
series [18]. According to this result each atom may be characterised by a set of
numbers called terms (RH /4), dimensionally like wavenumbers, such that the actual
wavenumbers of the spectral lines are given by the differences between these terms.
A comparison of the calculated obtained from the Balmer formula (Eq. 3.1) with
the observed lines [18] shows that the formula is not just a good approximation:
the series is described with great precision. The combination principle suggests the
existence of lines given more generally by
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Fig. 3.1 Balmer series in the
hydrogen emission spectrum.
The convergence of the lines to
the series limit H∞ is clearly
seen

ν = RH (
1

m2 − 1

n2 ), (3.2)

where m < n being integer. The numbers m and n are called principal quantum num-
bers. For m = 3 and n = 4, 5, 6, . . . the lines fall in the IR. Paschen found them at
the predicted places. Lyman also found in the UV three lines corresponding to m = 1
and n = 2, 3, 4, . . .. Table 3.1 contains some of the lines from the first four series
and thus illustrates the Ritz Combination Principle. As we can see, the difference of
the frequencies of two lines in a spectral series is equal to the frequency of a spectral
line which actually occurs in another series from the same atomic spectrum. For
example, the frequency difference of the first two terms in the Lyman series is equal
to the frequency of the first line of the Balmer series. To concluding this paragraph
we should repeat that the frequencies (or wavenumbers) of all spectral lines can be
represented as differences of two terms of form R/n2. These are just the energy
levels of the electron in a hydrogen atom. The model of the hydrogen atom consisted
of an electron and proton describing orbits about their centre of mass according to
classical mechanics under their mutual attraction as given by the Coulomb inverse-
square law. The allowed circular orbits were determined simply by the requirement
(an additional postulate of quantum theory [25]) that the angular momentum of the
system be an integral multiple of � = h/2π . This condition yields an equation from
which R∞ can be calculated (for details see [19])

R∞ = m0e4

8ε2
0�3c

. (3.3)

From (3.3) we can find for the Rydberg constant R∞ the numerical value

R∞ = (109737.318 ± 0.012)cm−1. (3.4)

This may be compared with empirical value in (3.1). In hydrogen model R is just the
ionisation energy of the ground state of the atom with n = 1. Next part of our review
gives an account of what can be understood in experimental isotope shifts before
(or without) separating the two types of contributions (mass- and field-shift), in
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Table 3.1 The wavelength of some lines of the various spectral series in hydrogen

n/m Lyman Balmer Paschen Bracket

2 1,216 Å
3 1,026Å 6,563Å
4 973Å 4,861Å 18,751Å
5 950Å 4,340Å 12,818Å 40,500Å
Year of discovery 1906 1885 1908 1922

The series with m = 3 was observed in 1924 by Pfund; it begins with a line of λ = 74, 000 Å , but
is not shown in the table

other words, the way in which the isotopes shift changes from one level to the other
in a given spectrum. As will be shown below the latter problem is purely problem of
atomic structure.

3.2 Motion of the Nucleus: Atomic Isotope Shift

The spectroscopically measured quantity RH (Sect. 3.1) does not agree exactly with
the theoretical quantity R∞ [23]. The difference is about 60 cm−1 [18]. The reason
for this is the motion of the nucleus during revolution of the electron, which was
neglected in the above model calculation. As we remember, this calculation was
made on the basis of an infinitely massive nucleus. Now we must take the finite mass
of nucleus into account [17].

As we know from classical mechanics, the motion of two particles, of masses m
and M and at distance r from one another, takes place around the common centre of
gravity. If the centre of gravity is at rest, the total energy of both particles is that of a
fictitious particle which orbits about the centre of gravity at a distance r and has the
mass

1

μ
= 1

m
+ 1

M
; μ = m M

m + M
(3.5)

referred to as the reduced mass. Replace the mass of the orbiting electron, m0 by μ

and obtain, in agreement with experiment

R = R∞(
1

1 + m/M
) (3.6)

Here m = m0—the mass of the orbiting electron, and M, the mass of the nucleus.
The energy corrections due to motion of the nucleus decrease rapidly with increasing
nuclear mass (Table 3.2). This observation makes possible a spectroscopic determi-
nation of the mass ratio M/m0

Mproton/melectron = 1836.15. (3.7)
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Table 3.2 Energy corrections for motion of the nucleus for the Rydberg numbers of several
one-electron atoms

Atom H(1H) D(2H) T(3H) He+ Li2+

A 1 2 3 4 7
−	E

E · 104 5.45 2.75 1.82 1.36 0.78

Fig. 3.2 β lines of the Balmer
series in a mixture of equal
parts hydrogen and deuterium.
One sees the isotope effect,
which is explained by motion
of the nucleus

Due to the motion of the nucleus, different isotopes of the same element have slightly
different the frequency of spectral line. This so-called isotope displacement to the
discovery of heavy hydrogen with the mass number A = 2 (deuterium). It was found
that each line in the spectrum of hydrogen was actually double. The intensity of
the second line of each pair was proportional to the content of deuterium [1, 24].
Figure 3.2 shows the Hβ line with the accompanying Dβ at a distance of about 1 Å
in a 1:1 mixture of the two gases. The nucleus of deuterium contains a neutron in
addition to the proton. There are easily measurable differences in the corresponding
lines of the H and D Lyman series:

RH = 109677.584cm−1; RD = 109707.419cm−1. (3.8)

The more precisely the differences in hydrogen–deuterium 1s–2s isotope shift
was done recently by Huber et al. [26]. These authors exceeds the accuracy of earlier
experiment by more than 2 orders of magnitude. Figure 3.3 shows the frequency
chain that has been described in part in [27], where an absolute measurement of the
1s–2s frequency has been reported. Authors [26, 27] determine the isotope shift by
fitting a pair of parallel lines to the hydrogen and deuterium data, thus accounting for
a linear frequency drift of the standard. After averaging of 10 measurements line the
one shown in Fig. 3.4, these authors obtained the experimental result for the 1s–2s
H–D isotope shift
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Fig. 3.3 Experimental 1s–2s spectra in hydrogen and deuterium as measured relatively to selected
modes of the optical comb generator (after [27])

Fig. 3.4 Alternating
measurements of the
1s–2s transition frequency
in hydrogen and deuterium
(after [27])

	 fexp = 670994334.64 (15) kHz (3.9)

The uncertainty of 150 kHz is dominated by the frequency fluctuations of the
CH4-stabilised He–Ne standard. At the precision level the theoretical contributions
to the isotope shift must be reanalysed. Most of the H–D isotope shift of the 1s–2s
interval is caused by the different masses of the nuclei (for details see, also [26]).

3.3 Separation of Mass- and Field-Shift Contributions

Before the early 1960s, for scientists interested in atomic isotope shift, the Periodic
Table was implicitly divided into three regions (see, e.g. [1, 4]):

(1) The light elements, with approximately Z ≤ 30, where mass isotope shift only
was considered to be present;

(2) The heavy elements (Z ≥ 58), with field isotope shift only, and;
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(3) Between these two regions, namely, beyond the 3d series and before the 4f
series, medium-weight elements with small isotope shifts, difficult to measure
accurately.

Thus mass- and field-shift effects were considered almost independently. For
mass-shift effects, the paper by Vinti [29] was a reference: it essentially indicates the
formal way in which the mass isotope shift changes from one pure Russel - Saunders
(RS) term to another [17]. For field isotope shift , the basic papers were by Rosenthal
and Breit [30] and Racah [31], both of which considered the case of multielectronic
atom: in the case of multielectronic spectra, the field-shift was considered inside a
given configuration, and the way it changes from one configuration to another was
described through the use of “screening factor” introduced by authors of paper [32].

So, the isotope shift of an optical transition is the sum of two terms: the mass
effect and the field effect. If only one isotope pair is available, the experiment only
yields this sum but not the respective contributions of the two effects. The situation
is then much less favourable than for hyperfine structure (see, e.g. [2, 3]), because,
in this latter case, the Casimir formula allows a separation of the magnetic-dipole
and electric-quadrupole contributions [33, 34]. Unfortunately, if the mass effect
and field effect contributions cannot be separated, the theoretical interpretations of
experimental result necessary remain rather crude (please compare [35]).

3.3.1 Mass Isotope Shift

The theory for a nucleus of finite mass in an N-electrons has been considered for the
first time by Hughes and Eckart [28]. The correction to the atomic energy levels due
to the nuclear mass motion is given in the non-relativistic limit by the kinetic energy
of the nucleus due to its motion about the centre of mass of the atom [17]

	E = 1

2M
(
∑

i

−→pi
2 +

∑

i �= j

−→pi · −→p j ) (3.10)

Here M is the nuclear mass and −→pi —the momentum of the ith electron. The sum
is over all the electrons in the atom. The effect of the square terms on the total
energy can be evaluated exactly by taking them together with the corresponding
kinetic energy terms of the electrons, giving the well-known reduced mass correction
(see Eq. (3.5). The consequent term and line shifts can be simply calculated, and are
referred to as “normal mass shifts” (NMS) [1]. Usually it will be assumed that the
normal effect has been allowed for in all shifts discussed (see, e.g. [5–7]). Shifts
arising from the second term are called “specific mass shifts” (SMS) [28]. The term
contains cross products of the momenta of different electrons and is not susceptible
of exact calculation, though in light elements results in moderate agreement with
experiment have been obtained [1, 4]. For the heavier elements, many electrons
are involved and the calculations become rapidly more complex [14]; no simple
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rules appear to exist which would allow even the crudest estimates of SMS for such
elements. Generally, therefore plausibility arguments or semi-empirical methods are
used [4].

In the region of the medium-heavy elements, semi-empirical methods for SMS
have been applied, though it appears that such allowance should often be made also
in heavier elements [14]. The total observed shift can be written

	Etotal = 	ENMS = 	ESMS + 	EFS, (3.11)

where the values of 	E apply to the differences in the upper and lower levels involved
in a transition, i.e. they refer to line shifts. From (3.11), a relation between the mass
shifts in different lines of an element may be obtained. We use the symbol m for
the SMS in a line on the addition of one neutron and put 	Etotal − 	ENMS = T .
Then the values of T between two isotopes with neutron numbers N and N’ for two
spectral lines (suffixes 1 and 2) are given by

T N ,N ′
1 = (N ′ − N )m1 + F1C N ,N ′ ;

T N ,N ′′
2 = (N ′ − N )m2 + F2CN,N’. (3.12)

Here F, C are positive constant and functions of size and shape of the nucleus
[5–7]. In the last equations it was assumed that m for a heavy elements independent
of N. We should not, that the slight dependence can, of course, be taken into account,
but (3.12) is sufficiently accurate for most purposes [14]. The superscript N, N ;
denotes dependence on these quantities, the Z dependence has been omitted to make
the formulae less cumbersome, since the argument concerns only one element. From
(3.12) we have

T N ,N ′
1 = T N ,N ′

2
F1

F2
+ (N ′ − N )(m1 − m2

F1

F2
). (3.13)

Thus, if two or more corresponding shifts are measured in each of two lines of an
element, F1/F2 can be found and also (N ′ − N )(m1 − m2

F1
F2

). King [4] suggested
simply plotting the shifts in one line against the corresponding shifts in another, first
dividing each shift by (N ′ − N ). Then the points should lie on a straight line (Figs. 2,
3 in [14]), and the slope and intercept are F1/F2 and (m1−m2

F1
F2

) respectively. What-
ever the number of lines for which results are available, it is, of course, impossible
by this method to determine any of the mass shift uniquely, however, plausibility
arguments based on the nature of the specific mass effect can be used to make esti-
mates, and the greater the number of lines for which the total shifts are known, the
more restricted becomes the range of reasonable values of the contributions of the
specific shifts. Further, as King [4] pointed out, if the mass shift could be computed
for one line, the procedure described enables it to be found for the others from the
experimental results (for details see [14]).
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3.3.2 Field Isotope Shift

In optical and electronic X-ray transitions the field shift is very nearly proportional1

〈r2〉1/2 and it is convenient to express this in terms of a “standard shift” based on
an equivalent uniform charge density of radius Req = r0 A1/3 fm. This standard
unit of isotope shift does not have a fundamental significance but does represent
approximately the overall variation of Req for stable nuclei. Because a change in
neutron number is either a more towards or away from the region of stability there
is no reason to expect isotope shifts to be the same as the standard shift and in fact
they are usually smaller [5–7].

a) Isotope shift in optical spectra. The nuclear electrostatic potential acting on the
electron depends on the nuclear charge distribution; if this changes from one
isotope to another, the energy of an electron which penetrates the nucleus will
also change in the two cases. In the early works [30, 31], spherically symmetrical
nuclear charge distributions of simple form were assumed, and the values E f ield

and 	E f ield were calculated by perturbation treatment, recognised and allowed
for to some extent the results of [30], led to evaluation of 	E f ield by more
rigorous methods [1]. The foundation for this latter work was laid by the author
of paper [37]. He considered the solutions to the radial Dirac equation for the
electron: (1) with the nuclear charge assumed concentrated at a point, and (2)
with extended nuclear charge distribution (for details see [18]). The modern
description of the field isotope shift have the next form:

	EN ,N ′
f ield = Fiλ

N ,N ′
. (3.14)

and

λN ,N ′ = δ〈r2〉N ,N ′ + C2

C1
δ〈r4〉N ,N ′ + C3

C1
δ〈r6〉N ,N ′ + . . . (3.15)

λ is the nuclear parameter [9–11] and Fi = Ei f (z)-electronic factor. Values
of f(z) calculated from the isotope shift constants are given in Table II of [9–
11]. The ratios Cn/C1 have been calculated by Seltzer [36]. The procedure of
the evaluation of λ was as follows [9–11]: first the SMS were estimated, either
according to above formula of from King plots [4] of the optical isotope versus
results from muonic isotope shifts [38] or electronic X-ray shifts [1, 13, 14].

b) X-ray isotope shift. As was shown above, atomic isotope shifts are measured in
both optical and X-ray spectra (Fig. 2.19 of Chap. 2). Since the Coulomb potential
at the nucleus is so much larger than the binding energy, the s-wave function
is largely independent of the principal quantum number. For instance, as was
shown by Seltzer [36], the change in C2/C1 [Eq. (3.15)] is going from 1s to 2s
amounts to only a few tenths of percent. Beyond the 2s level, there is very little

1 The standard shift calculated on the basis of 〈r2 〉1/2 dependence can be corrected by dividing by
the quantity [1 + 1.2 · 10−5Z2]. This correction takes into account the effect of 〈r4〉 and 〈r 6〉 terms
and is based on the results of Seltzer [36].

http://dx.doi.org/10.1007/978-3-642-28723-7_2
http://dx.doi.org/10.1007/978-3-642-28723-7_2
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further change. C2/C1 for a p1/2 level is within a few percent of C2/C1 for a
s1/2 level (4% for Z = 80 [36]). This means that both atomic optical and X-ray
isotope shifts measure the same parameter λ. Moreover, the largest contributions
in heavy atoms to the energy shift observed on going from one isotope to another
comes from the modification of the nuclear charge distribution. The total mass
shift for K X-ray transitions is usually less than a few percent of the total isotope
shift [39, 40]. The SMS for optical transitions in heavy atoms is usually neglected.
Unlike the X-ray case, the SMS in optical transitions can be a large part of the
total isotope shift (for details see [39–41]).

3.4 Vibrations in a Diatomic Molecule

Since a diatomic molecule has two atoms and must be linear, it has one degree of
vibrational freedom. By convention the z- axis is placed coincident with the molecular
axis. Movement of the atoms in the x- and y-directions can then be dismissed as
molecule rotations. Let us choose a diatomic molecule AB whose atoms have mass
mA (coordinate z A) and m B(zB). Moreover, let us now suppose that the atoms are like
metal balls and the bond between them is like a simple spiral spring (see, e.g. Fig. 27
of [42]). If we then allow the distance between A and B to change by a quantity
q = (z

′
A − z

′
B) − (z A − zB), while keeping the centre of mass at the origin of axes,

we could say that the force (F) exerted by the spring on the particles is related to q
by (see, e.g. [43])

F = f q (3.16)

This is to say the spring obeys Hook’s law (linear approximation), and we shall
see that this analogy is a good one. The force exerted by the spring will cause the
atoms to return to their original positions. If we denote the velocity with which do
so by dq/dt and the acceleration by d2q/dt2 we may apply Newton’s second law of
motion and equate the force with mass times an acceleration. At this point we shall
write the reduced mass M (M = m Am B

m A+m B
)

− f q = M
d2q

dt2 (3.17)

This is a second order differential equation which may be solved by making the
substitution

q = Acos(2πνt + ρ), (3.18)

where ν is a frequency, ρ is a phase factor and A - a maximum vibration amplitude.
Then we have

d2q

dt2 = −4Aπ2ν2 cos(2πνt + ρ) = −4π2ν2q. (3.19)
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Substituting this back into Eq. (3.17) we obtain

(−4π2ν2 M + f )q = 0 (3.20)

and assuming q �= 0, we have

ν = 1

2π

√
f

M
(3.21)

This equation is the equations of simple harmonic oscillators.
In the last Eq. (3.21) f is proportionality constant. This proportionality constant is

known as a force constant. It could be defined in terms of Hook’s law (Eq. (3.16)),
but this is not convenient. Alternatively it may be defined in terms of the vibrational
potential energy [19]. Before considering the quantum mechanics of the vibrations
in a diatomic molecule, we must first discuss two assumptions that are implicit in
the treatment so far: that classical mechanics provides an adequate description of a
vibrating molecule, and that Hook’s law is valid. The term molecular coordinate is
one which we shall meet below in various forms. Unlike the Cartesian coordinates a
molecular coordinate does not define the position of the atoms absolutely, but defines
the change in coordinates from some initial position. Thus, q defined the change in
bond length in the diatomic molecule, but did not define the actual bond length. The
term coordinate will be understood to define some change in the molecular config-
uration. The origin of this coordinate system is given by the average or equilibrium
position of the atoms in the molecule, ignoring translation and rotation (for details
see, e.g. [21]).

Perhaps the most surprising thing about molecular vibrations is that the fre-
quencies of vibration may be correctly calculated by means of classical mechanics.
Intuitively one feels that this is due to the wave nature of the vibrations. However,
quantum mechanics does provide greater inside into aspect other than the frequen-
cies. To simplify our discussion we will only consider the simplest case, the harmonic
oscillator [43].

The wave equation for a one-dimensional oscillator such as a diatomic molecule
is [44]

d2�

dq2 + 8π2 M

h2 (E − V )� = 0, (3.22)

where E is the total vibration energy. In the harmonic oscillator the potential energy
V is given as 1

2 fq2 and the wave equation becomes

d2�

dq2 + 8π2 M

h2 (E − 1

2
f q12)� = 0. (3.23)

The solution of this equation is given in most texts on quantum mechanics
(see, e.g. [25]). Thus the energy E is given as
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E = (n + 1

2
)

h

2π

√
f

M
(3.24)

where n is a quantum number that may take the values 0, 1, 2, 3,. . . . Therefore when
the molecule changes from one vibrational state to the next nearest by one the change
in energy is given by

	E = h

2π

√
f

M
, (3.25)

and since 	E = hν, the frequency of a photon associated with this change is

ν = 1

2π

√
f

M
, (3.26)

which is the same result as given by classical mechanics. It can then be shown that
in the general case classical and quantum mechanics give the same answer for the
vibration frequencies; hence we are fully justified in using classical mechanics to

calculate them [20]. If n = 0 in Eq. (3.24) the molecule has an energy of h
4π

√
f

M .

This energy is known as the zero point energy and has no counterpart in classical
mechanics [25].

For a diatomic molecule we may expand the vibrational potential energy as a
Maclaurin series about the position of minimum energy, V0 [45, 46]

V = V0 + (
dV

dq
)0q + 1

2
(
d2V

dq2 )0q2 + 1

6
(
d3V

dq3 )0q3 + 1

24
(
d4V

dq4 )0q4 + · · · (3.27)

The subsript zero indicates the position of minimum potential energy, so that
( dV

dq )0 = 0. The quantity V0 is a constant independent of q and may be ignored
since it does not affect the vibrational frequencies. We have already met the force

constant definition f = d2V
dq2 , so we may rewrite the potential energy as

V = 1

2
f q2 + 1

6

(
d3V

dq3

)

0
q3 + 1

24

(
d4V

dq4

)

0
q4 + · · · (3.28)

The calculations in the previous text were based on the approximation that the
terms in power of q higher than two may be ignored. Of course the true potential
energy of a molecule must be more complex, if only because for large values of q the
molecules must dissociate. Figure 3.5 shows scheme of the potential energy of typical
diatomic molecule as a function of q, while the dotted line is the parabola calculated
for V = 1

2 fq2. The true curve is steeper than the parabola at small internuclear dis-
tances, because of the interatomic repulsion energy, but at large internuclear distance
the true potential energy tends asymptotically to a constant value, the dissociation
energy Q. Near the equilibrium internuclear separation (q = 0) the parabola is quite
a good approximation to the potential energy. For this reason,the approximation
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Fig. 3.5 The potential energy
curve of typical diatomic
molecule (solid line) as a
function of internuclear dis-
tance. The broken line and
dotted curves are those of the
quadratic and cubic functions
that give the best approxi-
mation to the curve at the
minimum

V = 1
2 fq2 is quite good. Taking V = 1

2 fq2 is known as the harmonic approxi-
mation [20], and the potential energy is said to be quadratic. The force constant f
defined as d2V

dq2 is said to be quadratic force constant. The addition of the cubic term in
Eq. (3.27) gives a better fit with the true potential energy curve at the minimum and
may be used in accurate work. However, the equations of motion obtained by using
a cubic term in potential energy are not easy to handle.

One approximate solution to the Schrödinger equation that may be found to
express the energy in terms of the harmonic frequency νe and an anharmonic constant
xe, thus (see, e.g [46])

E = hνe(n + 1

2
) − hνe Xe(n + 1

2
)2 (3.29)

Therefore, if two transitions corresponding, to 	n = 1 and 	n = 2, can be observed
both νe and xe may be calculated. The quantity νe may be regarded as the frequency
the molecule would have if it was a harmonic oscillator, so that xe supplies a means
of adjusting the observed frequency. In practice, then, the observed frequencies are
adjusted to give the harmonic frequencies and the theory of the harmonic oscillator
is then applied [22, 45]. It is conventional to express harmonic frequencies cm−1,
and to give them the symbol ωe, where ωe = νe/c and c is the velocity of light.
Anharmonic affects molecular vibrations in two important ways [20]. Firstly, the
selection rule (see, also below) derived for the harmonic oscillator, 	n = ±1,
ceases to be a rigorous selection rule, and transitions with, for example, 	n = ±2
become allowed. Secondly, the vibrational energy levels are not spaced apart equally
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by the quantity hν. Thus, not only may it be possible to observe a transition with
	n = ±2, but this transition will not have exactly double the frequency of the
transition for which 	n = ±1 (see, e.g. Fig. 48 in [20]).

3.4.1 Raman and IR Spectra of Molecules

Vibrational spectroscopy involves the use of light to probe the vibrational behavior of
molecular systems, usually via an absorption and light scattering experiment. When
light interacts with matter, the photons which make up the light may be absorbed or
scattered, or may not interact with the material and may pass straight through it. If the
energy of an incident photon corresponds to the energy gap between the ground state
of a molecule and an excited state, the photon may be absorbed and the molecule
promoted to the higher energy excited state. It is this change which is measured in
absorption spectroscopy by the detection of the loss of that energy of radiation from
the light. However, it is also possible for the photon to interact with the molecule and
scatter from it. In this case there is no need for the photon to have an energy which
matches the difference between two energy levels of the molecule. The scattered
photons can be observed by collecting light at an angle to the incident light beam,
and provided there is no absorption from any electronic transitions which we have
similar energies to that of the incident light. This process is called the process of
Raman scattering.

Figure 3.6 illustrates one key difference between IR and Raman scattering. As
described above, IR absorption would involve direct excitation of the molecule from
state m to state n by a photon of exactly the energy difference between them. In
contrast, Raman scattering uses much higher energy radiation and measures the
difference in energy between n and m by subtracting the energy of the scattered
photon from that of the beam.

Before it will demonstrate IR and Raman spectra of some molecules, we should
say about selection rule for these processes. As we all know, a triatomic molecule
will have three modes of vibrations. They are symmetrical stretch, a bending or
deformation mode and an asymmetrical of water (H2O) shown in Fig. 3.7. These
diagrams use spring and ball models. The spring represents the bond or bonds between
the atoms. The stronger the bond has the higher frequency. The balls represent the
atoms and the heavier they are the lower the frequency [see Eq. (3.21)]. Thus, it is clear
that strong bonds and light atoms will give higher frequencies of vibration and heavy
atoms and weak bonds will give lower ones. This simple model is widely used to
interpret vibrational spectra. If either molecule vibrates, the electron cloud will alter
as the positive nuclei change position and depending on the nature of the change, this
can cause a change of dipole moment or polarisation. In these triatomic molecules,
the symmetrical stretch causes large polarisation changes and hence strong Raman
scattering with weak or no dipole change and hence weak or no IR absorption. The
deformation mode cause a dipole change but little polarisation change and hence
strong IR absorption and weak or nonexistent Raman scattering.
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Fig. 3.6 Idealised model of Rayleigh scattering and Stokes and anti-Stokes Raman scattering. Here
νv is vibration frequency of molecule

Fig. 3.7 Spring and ball
model—three modes of
vibration for H2O

Figure 3.8 shows a comparison of the IR and Raman spectra for benzoic acid
(see, e.g. [47] and references therein). The x-axis is given in wavenumbers for
which the unit is cm−1. For IR absorption each peak represents an energy of radi-
ation absorbed by the molecule. The y-axis gives the amount of the light absorbed
(% - unit) and is usually shown with the maximum absorbance as the lowest point
on the trace. Raman scattering is presented only as the Stokes spectrum and is given
as a shift in energy from the energy of the laser beam. This is obtained by subtract-
ing the scattered energy from the laser energy. In this way the difference in energy
corresponding to the ground and excited vibrational states (n and m in Fig. 3.6).
This energy difference is what is measured directly by infrared. The scattering is
measured as light detected by the spectrometer and the maximum amount of light
detected is the highest point on the trace. Strictly speaking, Raman scattering should
be expressed as a shift in energy from that of the exciting radiation and should be
referred to as 	 cm−1 but it is often expressed simply as cm−1.
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Fig. 3.8 IR 1 and Raman spectra 2 of benzoic acid

3.4.2 Isotope Shift in Molecular Frequencies

The study of the spectra of molecules in which one or more of their atoms are
substituted by the corresponding isotope can often furnish information about the
structure of the molecule which cannot at all, or only with difficulty, be obtained in
any other way. This is especially true for those molecules in which a hydrogen atom
is replaced by its heavy isotope deuterium, because for this substitution the relative
change in the masses is so much greater than for all other isotopic substitutions.
In order to make full use of the material which can be obtained in this way it is
necessary to know exactly the changes which must be expected in the structure of
the corresponding energy levels and wave functions.

When an atom of a molecule is replaced by an isotopic atom of the same element,
it is assumed that the potential energy function and configuration of the molecule
are changed by negligible amount (see, e.g. [28]). The frequencies of vibration may,
however, be appreciably altered because of the change in mass involved (Eq. (3.21)).
This especially, as defined above, true if hydrogen is the atom in question because
of the large percentage change in mass. This shift or isotopic effect is very useful
for several purposes. In the first place it may be used to help assign spectral lines to
modes of vibration. Thus a normal mode of vibration in which the hydrogen atom
in question is oscillating with a large relative amplitude will suffer a greater isotopic
change in frequency then a normal mode in which a small relative amplitude. In the
limiting case in which only hydrogen atoms are moving, replacement of all of them
by deuterium atoms should decrease the corresponding fundamental frequency by the
factor 1/

√
2, this being the square root of the ratio of masses. The totally symmetric

(A1) vibration of methane [47] is an example of this situation [46]. For CH4, the
frequency is 2914.2 cm−1 which decrease to 2084.2 cm−1 for the case CD4. The ratio
ωCD4 /ωCH4 thus has experimental value of ρ = νi/ν = √

μ/μi = 0.715, compared
to a theoretically expected value of 0.707 [49]. The discrepancy is attributed to the
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fact that the observed frequencies are influenced by cubic and quartic terms in the
potential energy (see above Eq. 3.27), so that the vibration is nor strictly harmonic
as has been assumed in the theoretical development (for details, see [48]).

As was pointed out above, the potential energy functions of two isotopic molecules
are identical to a high degree of approximation since they depend only on the motions
of the electrons and the Coulomb repulsion of the nuclei [29]. The latter, of course, is
entirely independent of these masses (see below). Not only the form of the potential
curves, but also the relative positions of the potential curves of different electronic
energies Ee are the same for two isotopic molecules [50]. The mass difference affects
only, as noted above, the vibrational and rotational energy of the molecule in each
electronic state. Restricting our considerations to the non-rotating molecule, we have
for the band systems of two isotopic molecules, neglecting cubic and higher terms
(in Eq. (3.27))

ν = νe + ω′(v′ + 1

2
) − ω′

ex ′
e(v

′ + 1

2
)2 − [ω′′

e (v” + 1

2
) − ω′′

e x”e(v” + 1

2
)2 (3.30)

and for isotope molecule

ν′ = νe + ρω′(v′ + 1

2
) − ρ2ω′

ex ′
e(v

′ + 1

2
)2

−[ρω′′
e (v” + 1

2
) − ρ2ω′′

e x”e(v” + 1

2
)2]. (3.31)

Here νe is the difference in energy of the minima of the potential curves of the two
electronic states involved which is the same to a very good approximation for the
two isotopic molecules (see, however [32]). In the last two formula (3.30) and (3.31)
one and two stroke label the upper and lower states. The Eqs. (3.30) and (3.31) can
be written in the approximation form

ν = νe + νv; νi = νe + ρνv (3.32)

Following to the quantum mechanical formulae (3.30, 3.31) do give a shift for the 0–0
band, owing to the fact that the zero-point vibration energies in the upper and lower
states, in general, have different magnitudes and are different for the two isotopic
molecules. A shift of the 0–0 band is directly observed in many isotope molecules
(see, e.g. [29, 50]). Thus the existence of zero-point vibration is proved.

a)Isotope effect in water molecule. Before to describing this effect we should
remind the symmetry of the vibrations of water (see Fig. 3.7). We reproduce the C2v

point group (see, e.g. [52]) in Table 3.3 which would be correct point group for a
single molecule of water. In this table, the symmetry elements are shown across the
top. The first column contains a series of letters and numbers. The first one we see is
A1. This is a way of describing a vibration, or for that matter an electronic function. It
describes what happens to the vibration with each symmetry element of the molecule.
These symbols are called irreducible representations and the top line always contains
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Table 3.3 The symmetry
elements of the C2V point
group (see, e.g. [46])

C2V E C2 σV (xz) σV (yz)

A1 1 1 1 1 z x2; y2z2

A2 1 1 -1 -1 Rz xy
B1 1 -1 1 -1 x, Ry xz
B2 1 -1 -1 1 y,Rx yz

the one which refers to the most symmetrical vibration in terms of its behavior when
it is rotated or reflected by the symmetry operations. In higher symmetry point groups
[52] where there is a centre of symmetry, there would also be a g or a u subscript.
There are four possible letters, A,B, E and T. A and B mean that the vibration is singly
degenerate. E means it is doubly degenerate and T means it is triply degenerate. In
the C2v point group all vibrations are singly degenerate. A is more symmetric than
B. Across the line from the symbols representing the irreducible representations,
there are a series of numbers for each. The numbers are either 1 or −1 and 1 is more
symmetric than −1. For example, in the Table 3.3, an A1irreducible representation
gives the value of 1 for every symmetry element. Figure 27 of [23] shows three
vibrations of water. For the stretching vibration, when the molecule is rotated about
C2 axis, the direction of the arrow representing a vibration does not change. This is
the highest symmetry and is denoted as 1. In the asymmetric stretching vibration the
sign of the arrow is reversed for C2 and one plane. When this happens this is given the
number −1. Thus, this last vibration belongs to a lower symmetry representation.
It is conventionally given the irreducible representation B1. The main advantage
of this assignment is that these tables also contain information that enables us to
work on whether the vibration will be allowed by symmetry or not. For IR, this is
done by multiplying the irreducible representation of the vibration by the irreducible
representation of x,y or z which is given in the end column of the point group Table
3.3 in most, but not all, layouts. These correspond to three Cartesian coordinates
of the molecule and are irreducible representation of the dipole operator. A similar
approach is adopted for Raman scattering but in this case we look for the more
complex quadratic functions x2,y2z2xy, x2 − y2 etc., in the Table 3.3 and these are
multiplied by the symmetry representation of the vibration.

Water is the main absorber of the sunlight. As we can see above, water mole-
cules (with the molecular formula H2O) are symmetric with two mirror planes of
symmetry and a 2-fold rotation axis. Its molecular diameter is about 2.74 Å [53].
The water molecule consists of two light atoms (H) and a relatively heavy atom (O).
The approximately 16-fold difference in mass gives rise to its ease of rotation and
significant relative movements of the hydrogen nuclei, which are in constant and
significant movement. As we can see from Fig. 3.7, the water molecule may vibrate
in a number of ways. In the gas state the vibrations involve combination of sym-
metric stretch (ν1), asymmetric stretch (ν3) and bending (ν2) of covalent bonds with
absorption intensity (H16

2 O) ν1:ν2:ν3 = 0.07:1.47:1 (see [53] and reference therein).
The frequencies of the main vibration of water isotopologues are shown in Table 3.4.
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Table 3.4 Main vibrations of
water isotopologues

Gas ν1, cm−1 ν2, cm−1 ν3, cm−1

H16
2 O 3657.05 1594.75 3755.93

H17
2 O 3653.15 1591.32 3748.32

H18
2 O 3649.69 1588.26 3741.57

HD16O 2723.68 1403.48 3707.47
D16

2 O 2669.40 1173.38 2787.92
T16

2 O 2233.9 995.37 2366.61

Table 3.5 Main vibrations of
liquid ordinary and heavy
water (cm−1)

Vibrations H2O D2O

Combination of ν2 + libration 2127.5 1555
ν2 1643 1209.4
ν1, ν2 and overtone of ν2 3404 2504

The dipole moments of the molecule of water change in the direction of the
movement of the oxygen atoms as shown by the arrows on the Fig. 3.7. As the H
atoms are light, the vibrations have large amplitudes. The water molecule has a very
small inertia on rotation which gives to rich combined vibrational - rotational spectra
in vapour containing tens of thousands to millions of absorption lines [22, 52]. In the
liquid rotations tend to be restricted by hydrogen bonds, giving the librations. Also,
spectral lines are broader causing overlap of many of the absorption peaks. The main
stretching band in liquid water is shifted to a lower frequency (ν3 = 3, 490 cm−1

and ν1 = 3, 280 cm−1) and the bending frequency increased ν2 = 1644 cm−1 by
hydrogen bonding (see, e.g. [53]). Isotope shift of molecular frequencies is shown
in Table 3.5. Infrared spectra of ordinary and heavy water are depicted in Fig. 27 of
Ref. [19] (see, also [55] and reference therein). In liquid water the IR spectrum is far
more complex than the vapour due to vibrational overtones and combinations with
librations (see Table 3.5). The librations depend on the movement of inertia such that
the almost doubling of the moments of inertia of D2O, relative to H2O, reduces the
frequencies by about a factor of

√
2 (see, however below).

b) Isotope effect in “fullerene” molecule. The discovery [56] of the new fullerene
allotropes of carbon, exemplified by C60 and soon followed by an efficient method
for their synthesis [57], led to a burst of theoretical and experimental activity on their
physical properties. Much of this activity concentrated on the vibrational properties
of C60 and their elucidation by Raman scattering (see, review [58]). Comparison
between theory and experiment was greatly simplified by the high symmetry (Ih),
resulting in only ten Raman active modes for the isolated molecule and the relative
weakness of solid state effect [58], causing the crystalline C60 (c–C60 Raman spec-
trum at low resolution to deviate only slightly from that expected for the isolated
molecule. Since the natural abundance of 13C is 1.11% (see [58]), almost half of all
C60 molecules made from natural graphite contain one or more 13C isotopes. If the
squared frequency of a vibrational mode in a C60 molecule with n 13C isotopes is
written as a series ω2 = ω2

(0) + ω2
(1) + ω2

(2) + ω2
(3) + · · · in the mass perturbation
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(where ω(0) is an eigenmode frequency in a C60 molecule with 60 12C atoms),
nondegenerate perturbation theory predicts for the two totally symmetric Ag modes
a first-order correction given (see, e.g. [58])

ω2
(1)

ω2
(0)

= − n

720
(3.33)

This remarkable result, independent of the relative position of the isotopes within
the molecule and equally independent of the unperturbed eigenvector, is a direct
consequence of the equivalence of all carbon atoms in icosahedral C60. To the same
order of accuracy within nondegenerate perturbation theory, the Raman polarisability
derivatives corresponding to the perturbed modes are equal to their unperturbed
counterparts, since the mode eigenvectors remain unchanged. These results lead to
the following conclusion [58]: The Ag Raman spectrum from a set of noninteracting
C60 molecules will mimic their mass spectrum if the isotope effect on these vibrations
can be described in terms of first - order nondegenerate perturbation theory. It is no
means obvious that C60 will meet the requirements for the validity of this simple
theorem. A nondegenerate perturbation expansion is only valid if the Ag mode is
sufficiently isolated in frequency from its neighboring modes. Such isolation is not,
of course, required by symmetry. Even if a perturbation expansion converges, there
is no a priory reason why second- and higher order correction to Eq. (3.33) should
be negligible. As was shown in paper [58] the experimental Raman spectrum (see
below) of C60 does agree with the prediction of Eq. (3.33). Moreover, as was shown
in quoted paper, experiments with isotopically enriched samples display the striking
correlation between mass and Raman spectra predicted by the above simple theorem.
Figure 3.9 shows a high-resolution Raman spectrum at 30 K in an energy range close
to the high-energy pentagonal-pinch Ag (3.2) vibration according to Menendez and
Page [58]. Three peaks are resolved, with integrated intensity of 1.00; 0.95; and
0.35 relative to the strongest peak. The insert of this figure shows the evolution of
this spectrum as the sample is heated. The peaks cannot be resolved beyond the
melting temperature of CS2 at 150 K. The theoretical fit [58] yields a separation
of 0.98 ± 0.01cm−1 between two main peaks and 1.02 ± 0.02cm−1 between the
second and third peaks. The fit also yields full widths at half maximum (FDWHM)
of 0.64; 0.70 and 0.90 cm−1, respectively. The mass spectrum of this solution shows
three strong peaks (Fig. 3.9b) corresponding to mass numbers 720; 721 and 722, with
intensities of 1.00; 0.67 and 0.22, respectively as predicted from the known isotopic
abundance of 13C. The authors [58] assign the highest-energy peak at 1,471 cm−1

to the Ag(2) mode of isotopically pure C60 (60 12C atoms). The second peak at
1,470 cm−1 is assigned to C60 molecules with one 13C isotope, and the third peak
at 1, 469 cm−1 to C60 molecules with two 13C isotopes. The separation between the
peaks is in excellent agreement with the prediction from Eq. (3.33), which gives
1.02 cm−1. In addition, the width of the Raman peak at 1, 469 cm−1, assigned to a
C60 molecule with two 13C atoms, is only 30% larger than the width of the other
peaks. This is consistent with the prediction of Eq. (3.33) too, that the frequency



3.4 Vibrations in a Diatomic Molecule 73

Fig. 3.9 a Unpolarised
Raman spectrum in the
frequency region of the
pentagonal-pinch mode, for a
frozen sample of nonisotopi-
cally enriched C 60 in CS2 at
30 K. The points are the exper-
imental data, and the solid
curve is a three-Lorentzian
fit. The highest-frequency
peak is assigned to the totally
symmetric pentagonal-pinch
Ag mode in isotopically pure
12C60. The other two peaks
are assigned to the perturbed
pentagonal-pinch mode in
molecules having one and
two 13C-enriched C60, respec-
tively. The inset shows the
evolution of these peaks as
the solution is heated. b The
points give the measured
unpolarised Raman spectrum
in the pentagonal-pinch region
for a frozen solution of 13C-
enriched C60 in CS2 at 30 K.
The solid line is a theoretical
spectrum computed using the
sample’s mass spectrum, as
described in the text (after
[58])

of the mode will be independent of the relative position of the 13C isotopes within
the molecule. The relative intensity between two isotope and one isotope Raman
lines agrees well with the mass spectrum ratios. Concluding this part we stress that
the Raman spectra of C60 molecules show remarkable correlation with their mass
spectra. Thus the study of isotope-related shift offers a sensitive means to probe the
vibrational dynamics of C60.

3.5 “Mass-Independent” Isotope Effect

More than the quarter of a century [59] Thiemens and Heidenreich [60] demon-
strated essentially equal effects of isotopic substitution of 18O and 17O for 16O on
the rates [61, 62] of formation of ozone by an electric discharge in oxygen (see,
also reviews [63–65]). Thiemens and Heidenreich called this observation a “non-
mass dependent” or “mass-independent”isotopic effect. The observed non-mass
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Fig. 3.10 Relationship between 17O/18O variations 18O/18O variations for terrestrial, lunar, and
meteoritic samples. Points lying along line a, with a slope of +1/2, define the trend for chemical
isotope effects; points lying along line b of +1, define a mixing line between “normal” oxygen and
an 16O-rich component. The points on line b are all from phases in carbonaceous chondrites (after
[84])

dependent oxygen isotope formation is a kinetic isotope effect [61]. The observed
effect was a remarkable deviation from the accepted theory (see, e.g. [66]) of isotope
effects, which would predict that the effect of 18O would be approximately double that
of 17O. The mechanism for the effect remains uncertain. Since that first publication,
the ozone reaction has been extensively investigated both experimentally and theo-
retically. A number of other reactions have been labelled “mass-independent” isotope
effect [63]. Mass-independent isotopic composition have been observed in O3, CO2,
N2O and CO in Earth’s atmosphere and in carbonate from a martian meteorite (see
Fig. 3.10), which suggests a role for mass-independent processes in the atmosphere of
Mars [23]. According to [64], the observed mass-independent meteoritic oxygen and
sulphur isotopic (see, also [67]) compositions may derive from chemical processes in
the presolar nebula and their distributions could provide insight into early solar sys-
tem evolution (see, also [68–71]). Although the magnitude and direction of variation
of the isotope ratios for these processes vary, they have one common feature—they
all depend on mass.

The most complete set of experimental data for oxygen isotope effects in the
photochemical formation of ozone has been obtained by the Mauersberger group
[72–74]. These authors managed to sort out rate constants (see below) for many
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reactions of labelled O atoms and/or labelled O2 molecules providing a severe test
for theory (see, also review [65]). At present time, the most successful theory in terms
of agreement with experiment is that of Marcus group [75–79], which is based on
the RRKM (Rice–Ramsperger–Kessel–Marcus) theory of recombination reactions,
and this will be described.

Quantum mechanical resonance calculations as performed by Babikov et al.
[80–82] are the ultimate tool for investigating the formation of ozone, but these
attempts are the first in the direction of “first-principle” solutions of the ozone iso-
tope effect [67]. Resonance lifetimes for large total angular momenta are required
and their determination is a formidable task. What is the impact of the shallow van
der Waals-like wells and the long-lived states they support? Do they contribute to
the stabilization process or are these states so fragile that the first collision with M
(third body) destroys them? What is the role of the excited electronic states which
correlate with ground state products? Moreover, how the vibrational energy of the
excited complex is removed by the bath atom or molecule is largely not understood.

On the basis of the assumption that any deviation from mass dependence must
reflect of a nuclear process, Hulston and Thode [83] suggested that deviations from
mass-dependent isotopic composition may be used to distinguish nuclear from chem-
ical and physical processes in meteoritic measurements [23].The observation by
Clayton et al. [84] of a non-mass dependent isotopic composition in meteoritic
substances was thus interpreted as indicating that the meteorite contained residual
primary grains from a nucleosynthesis process [68–71]. Subsequently, the authors of
the paper [60] reported a chemically produced mass-independent isotopic composi-
tion in the formation of ozone from molecular oxygen. The observed fractionation
pattern was the same as observed in meteoritic substances and thus it was suggested
that the observed isotopic composition in a meteoritic material could reflect a chem-
ical instead a nuclear process.

Gellene [85, 86] modelled the isotope fractionation based on nuclear symmetry.
In his approach, symmetry restrictions arise for homonuclear diatomic (for example,
16O16O and 18O18O) involved in the O + O2 collision because a fraction of their rota-
tional states (f-parity) correlate with those of the corresponding ozone molecule. In
contrast, in the case of heteronuclear oxygen molecules (for example, 16O18O), all of
their rotational states (e and f parity) correlate with those of the resulting ozone mole-
cule. Gellen’s model can reproduce the general features of the enrichment pattern
quite well. A number of other attempts have been made [87] to find an explana-
tion of the ozone isotope anomaly; none were able to account for the experimental
results [65].

The role of molecular symmetry was questioned by Anderson et al. [72], who
presented rate coefficients of four selected ozone formation channels. Whereas three
channels

16O +16 O +16 O + M −→16 O +16 O +16 O + M (3.34)

18O +16 O +16 O + M −→18 O +16 O +16 O + M (3.35)

18O +18 O +18 O + M −→18 O +18 O +18 O + M (3.36)
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Fig. 3.11 Pressure
dependence of the rate
constant for the reaction
O + O2 −→ O3 (after [67])

had similar rates of formation, which were consistent with a value of∼6·10−34cm6s−1

[65], the fourth channel

16O +18 O +16 O + M −→16 O +18 O +16 O + M (3.37)

resulted in a rate coefficient that was 50% higher than the other three. Here M
represents a third-body molecule as was indicated earlier. The difference in the rate
coefficients of reactions 2 and 4 was unexpected. Thus, the difference in the rate
coefficients of reactions 2 and 4 does not support an important role of symmetry in
the isotope enrichment process. Later, a similar conclusion was reached by Sahested
et al. [88, 89] who performed rate coefficient studies for the 16O–18O system on dual
channel processes, using CO2 and A as third-body molecules, but without isolating
the process contributing to the enrichments.

More detail studies [74] are shown:

(1) Molecular symmetry cannot explain the ozone enrichment process;
(2) A collision between a light oxygen atom and a heavier molecule will result in a

rate coefficient that is higher than the coefficient from reactions involving only
one isotope.

Thus, experimental results presented provide new insights into the puzzling ozone
isotope effect.

To conclude this part we should mentioned some theoretical results of Marcus
et al. recognised the fact that the ozone isotope effect in this reaction is very pressure
dependent (see, Fig. 3.11), as indeed is the rate constant for recombination of an
oxygen molecule with an oxygen atom to form ozone. The reaction may be written

O + O2 + M � O∗
3 + M (3.38)
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O∗
3 + M −→ O3 + M. (3.39)

In this reaction mechanism, the ozonemolecule initially formed with excess vibra-
tional energy (O∗

3) will revert to reactants unless it is stabilised by energy transfer by
collision with another molecule (third body), M. This is the source of the pressure
dependent of the rate constant. Marcus et al. [75–79] found two factors important in
the RKKM analysis of the isotope effect in this pressure-dependent region:

a) Zero-pointenergy difference between isotopic species in competing reactions of
asymmetrical molecules, such as

16O +16 O18O �16 O16O18 �16 O16O +18 O. (3.40)

The lower zero-point energy [61] of the heavier molecule increases the region
of phase space accessible to the transition state, favoring this channel.

b) A “non RKKM” effect that precludes certain regions of phase space to a symmet-
rical transition state, thus preventing the complete randomization of vibrational
energy distribution (for details see [64, 65]).

In addition to the formation of ozone, a number of other three-isotope systems
involving oxygen or sulphur isotopes have been found to exhibit non - mass dependent
isotope effects [63, 67]. The bright example of this situation a three-isotope system
which have 32S–33S–34S combination (see, also [90]).

Thus, in the formation of ozone from molecular oxygen by photolysis or in an
electric discharge, the kinetic isotope effects of 17O and 18O are essentially equal, in
spite of the predictions of the accepted theory. This is clearly a non-mass dependent
isotope effect.

3.6 Laser Isotope Separation

Wide employment of isotopes in such fields as atomic and thermonuclear power, fun-
damental and applied science, biology, medicine, isotopic geochronology
(see Chapter 5), agriculture, activations analysis, ecology and production of new
materials attracts increasing interest in the development of new highly efficient meth-
ods for isotope separation. As is well - known, the separation of isotopes requires
a physical process that depends on mass. In the electromagnetic method, as used
in a mass spectrograph, ions to be separated travel in circles of different radii. In
the gaseous diffusion process, light molecules of a gas diffuse through a membrane
more readily than do heavy molecules. The amount of enrichment in gaseous dif-
fusion depends on the square root of the ratio of the masses and is small per stage,
requiring a large number of stages. An alternative separation device is the gas cen-
trifuge, in which gases diffuse against the centrifugal forces produced by high speeds
of rotation.

The primary purposes for which methods of atomic vapour laser isotope separation
(AVLIS) [91–94] and molecular laser isotope separation (MLIS process [95–97]) were
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developed are to enrich natural uranium (with 0.7% 235U) for uses as reactor fuel (3%
235U) and to produce isotopically refined plutonium for use in weapons and other
applications (see, also [98–100]). Further we briefly describe the AVLIS process as
applied to uranium [101–103].

It is well-known that uranium conversion to appropriate fission fuel necessitates
the concentration of 235U from 0.7 to 3% (natural uranium contains 0.7% 235U, 0.054
% 234U and 99.3 % 238U). In AVLIS technology (see below), atomic vapour that
is natural uranium isotope mixture is obtained by electron-vacuum evaporation in a
special high-vacuum technological unit (see, Figs. 3.14 and 3.15). Then vapour passes
from the evaporation unit to flow former, where it is shaped to required, for example,
leaf-like system. Then it comes to an interaction zone with light beams produced by
a dye laser system. Usually the dye-laser system is pumped by another high-power
system of copper-vapour lasers (CVL) [98, 99]. The ionisation potential for uranium
is Uion = 6 eV [1–3]; the isotopic shift of uranium levels amounts to 0.08 cm−1

[43, 105]. Then uranium atomic vapour is photoionised in the interaction via three-
step excitation process. The spectral width of radiation, the operating wavelengths
λ1 = 6, 059 Å, λ2 = 6, 046 Å, λ3 = 5, 868 Å and average power of dye laser
beams are matched in such a way that after absorbing three sequenthal quanta of
light at special uranium atom transitions, only the required isotope would be excited
in cascade and photoionisation processes (see Fig. 3.12). as we can see from Fig. 3.12,
quanta of energy for each transition are near 2 eV. The choice of particular levels of
uranium is a rather complicated spectroscopic problem [95, 100]. Uranium possesses
a branched system of atomic levels and has many valence electrons. The wavelengths
of possible laser sources also shown in Fig. 3.12. When a CVL pumps dye lasers, all
three wavelengths of the dye lasers are chosen in the red spectral range because a
uranium atom has allowed transitions between suitable for efficient cascade excitation
in this range (590–600 nm) [96]. In the three-step scheme, an atom at the upper
autoionisation level decays into electrons and ions, that is, it is ionised. 235U isotopes
ionised in this way are extracted from the interaction zone by an electromagnetic field
and are directed to collector plates where they are neutralised and condensed as a final
product separation. One important problem with the method considered is the choice
of a photoionised scheme. It may be a two-level (Fig. 3.13), three-level (Fig. 3.13) or
four-level scheme. The choice is mainly determined by the laser source. In the case
of a two-level photoionisation of uranium it usually uses a visible and UV lasers of
appropriated wavelengths (see, also Fig. 3.13).

To avoid spontaneous emission of lasers one should employ pulse-periodic sources
of laser radiation with the pulse lying in the range 3–200 ns (excluding excitation
of metastable or Rydberg levels). The characteristic excitation time for a level is
determined by the next formula (see, also Chapter 8 in [97]):

τ = (σ�)−1, (3.41)

where σ is the absorption cross-section and � is the quantum flux. The energy of the
pulse per unit area:

W = hν�τ = hν/σ. (3.42)
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Fig. 3.12 Photoionisation of
a uranium atom with three dye
lasers (λ1, λ2, λ3)

Fig. 3.13 Photoionisation
of a uranium atom with two
lasers

The magnitude of σ is at least 10−15cm−1 even in the case of Doppler broadening.
For the characteristic quantum energy of 1 eV we have W 
 160 μJcm−2 [94]. At
the pulse repetition of 10 kHz (the typical frequency for pumping pulses) we obtain
that the required power in the range 1–2 Wcm−2. The radiation power of modern
laser source noticeably exceeds this value in UV, visible and IR spectral ranges (see,
e.g. [106, 107]).

Below we consider in more detail the AVLIS technology. As we all know the
primary goal of the AVLIS program (for instance in USA) is to develop a process
that can enrich natural (and/or tails) material at less than half the cost of any other
competing technology (in the first step-the gaseous diffusion and gas centrifuge).
As we can see from Fig. 3.14, the AVLIS process developed in USA consists of
two major subsystems: a laser system and a separator system. In the separator (see,
also Fig. 3.15), unenriched metallic uranium is vapourised by an electron beam that
creates an atomic 235U/238U vapour stream that rapidly moves away from the ura-
nium melt. At the same time, dye lasers produce beam of red-orange light precisely
tuned to the colours that will selectively photoionize 235U isotopes. Power CVL emit
beams of green–yellow light that energize the dye lasers. This configuration produces
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Fig. 3.14 Illustration of the AVLIS process. Metallic uranium is melted and vapourised. The vapour
is illuminated by visible laser light that photoionizes the selected isotope. The ion is then electro-
magnetically extracted

powerful beams of tuned red–orange light to illuminate the uranium atomic vapour
inside the separator. 235U isotopes absorb the tuned red–orange light (see Fig. 3.12),
but 238U isotopes do not. The 235U ions can then be moved preferentially by an
electromagnetic field to condense on the product collector (see, Fig. 3.15). The 238U
isotopes, which remain uncharged, pass through the collector sections to condense
on the tails collector. The separated uranium condensates are collected in metallic
form. Presently, the technology is being developed to convert the AVLIS product
to a uranium oxide form suitable for fabricating nuclear reactor fuel elements (for
details, see [100, 102]).

The second major subsystem required for the AVLIS process is the separator
system, in which the material to be isotopically enriched or purified is vapourised,
photoionised and collected separately from the nonionised or tails. vapour flow
stream. Both the collected product and tails streams condense as liquids and flow via
separate path to product and tails accumulators. To operate for reasonable processing
times, a separator system must also have provisions to continuously feed material as
it vapourised. Typically the separator system manufactured from stainless steel, the
vessel provides a high-vacuum envelope for the vapourization and collection process.
Sattelite subvessels at each end house the optical system to insert and control the
AVLIS process laser beams, which interact with the vapour stream. Since a loss of vac-
uum or a water leak can generate a vigorous reaction with liquids metals, the vessel
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Fig. 3.15 A conceptual sepa-
rator module. The uranium is
evaporated by electron beam
heating at the bottom of the
sector, and flows past the
collector near the top. The
vapour is irradiated between
the plates and the 235U is
extracted electromagnetically.
It is deposited on the collector
plates. The 238U tails are col-
lected on the roof

must also be designed to withstand moderate overpressure and release safely above a
defined pressure limit. Because the near-term applications involve radioactive and/or
toxic metals, all operations must be engineered to prevent any material release that
could be harmful or hazardous to the workers and surrounding community. Highly
engineered airflow and control systems integrated with a redundant high-efficiency
particulate filter system are a significant part of the separation system.

Most of the discussion above is very general since the geometry, materials, many
critical dimensions, and operating points for the electron gun, vapourizer evaporation
rate, extractor voltage and any other parameters needed to design an AVLIS process
separator are classified. Those having appropriate clearances to obtain more specific
information may find novel applications for the vapouriser and or material systems
developed for AVLIS (for more details see, also [102, 103].

In conclusion in this paragraph we briefly considered MLIS process. MLIS
[95, 96] has two subapproches CO2 laser-based approach and UF6 molecule-based
approach. The basic motivation of this approach was to take advantage of the high-
power CO2 laser technology developed for other applications, like metal cutting and
welding. The first scientific challenge here was to synthesise a uranium-bearing com-
pound having absorption features in the region 9.5–10.5 μm, where CO2 lasers have
several lines. First materials were U(BH)4 and UO2[(CF3CO)2CH]2 [95]. The next
step in MLIS process was connected with using UF6. The rationale of this approach
was to take advantage of the fact that UF6 had been produced and handled on an
industrial scale, and a large amount of scientific and engineering data on UF6 were
available. The difficult engineering problems are to supercool huge amount of UF6
(up to 30 K) and build 16 micron lasers operating for long durations at kilowatts of
power [96, 97].

Among the six fundamental vibrations of UF6 ν1 to ν6 only ν3 at 625.5 cm−1

and ν4 at 186.2 cm−1 are IR active (absorbing) vibrations, which can be used for
selective excitation [100]. Of these, ν3 is a better choice because of its larger isotope
shift (0.65 cm−1) and more frequency location. Sensitised multiphoton dissociation
of UF6 in SF6-UF6 mixtures was studied using TEA CO2 laser. The ν3 mode of SF6
absorbed the resonant CO2 laser photons, and the vibrational energy thus gained was
redistributed between different modes of SF6. Since ν4 mode of SF6 is close to the
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ν3 mode of UF6, rapid vibrational energy exchange took place between vibrationally
excited SF6 and UF6 molecules, and the latter got excited to the vibrational quasi-
continuum by sequential absorption of CO2 laser photons by SF6 molecules and
vibrational energy transfer. From the quasi-continuum, the UF6 molecules, by further
direct sequential absorption of CO2 laser photons got dissociated. We should add
that recently it was observed direct isotopic enrichment 10B as well 11B in the laser
ablation of B4C (BN and GaN [108]) target using nanosecond (femtosecond [108])
wide 532 nm laser beam of a Nd-YAG laser [108, 109].

On the example of the separation of uranium isotopes we described two methods
laser isotope separation: AVLIS and MLIS. In the AVLIS method, uranium vapour was
produced around 2800 K and the uranium atoms ionised using three CVL pumped
three dye-lasers. MLIS method used 16 micron TEA CO2 laser and UF 6 molecules.
The former method is more effective and uses in industrial manufacture of 235U
isotopes.
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Chapter 4
Isotopes in Solids

4.1 Elementary Excitations in Isotope-Mixed Crystals

The modern view of solid-state physics is based on the presentation of elementary
excitations, having mass, quasiimpuls, electrical charge and so on (see, e.g. [1]).
According to this presentation the elementary excitations of the non-metallic mate-
rials are electrons (holes), excitons (polaritons [2]) and phonons [3]. The latter are
the elementary excitations of the crystal lattice, the dynamics of which is described
in harmonic approximation as is well known, the base of such view on solids is the
multiparticle approach. In this view, the quasiparticles of solids are ideal gas, which
describe the behavior of the system, e.g. noninteracting electrons. We should take
into account such an approach to consider the theory of elementary excitations as a
suitable model for the application of the common methods of quantum mechanics
for the solution of the solid-state physics task. In this chapter we consider not only
the manifestations of the isotope effect on different solids, but also the new accu-
rate results, showing the quantitative changes of different characteristics of phonons
and electrons (excitons) in solids with isotopic substitution [4]. The isotopic effect
becomes more pronounced when dealing with solids. For example, on substitution
of H with D the change in energy of the electron transition in solid state (e.g. LiH )
is two orders of magnitude larger than in atomic hydrogen (see, e.g. [5]). Using ele-
mentary excitations to describe the complicated motion of many particles has turned
out to be an extraordinarily useful device in contemporary physics, and it is the view
of a solid which we describe in this chapter.

The basic Hamiltonian of our solid model is of the form [4]

H = Hion + Helectron + Helectron−ion (4.1)

where

Hion =
∑

i

p2
i

2m
+ 1

2

∑

i �= j

V (Ri − R j ), (4.2)
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Helectron =
∑

i

p2
i

2m
+ 1

2

∑

i �= j

e2
∣
∣ri−r j

∣
∣ , (4.3)

Helectron−ion =
∑

i, j

v(ri − R j ), (4.4)

Hion describes a collection of ions (of a single species) that interact through a
potential V(Ri−R j ) which depends only on the distance between ions. By ion we
mean a nucleus plus the closed-shell, or core, electrons, that is, those electrons that are
essentially unchanged when the atoms are brought together to make a solid. Helectron
presents the valence electrons (the electrons outside the last closed shell), which
are assumed to interact via a Coulomb interaction. Finally, Helectron-ion describes the
interaction between the electrons (excitons) and the ions, which is again assumed to
be represented by a suitable chosen potential.

In adopting Eq. (4.1) as our basic Hamiltonian, we have already made a number of
approximations in the treatment of a solid. Thus, in general the interaction between
ions is not well—represented by a potential V(R), when the coupling between the
closed-shell electrons on different ions begins to play an important role (see, e.g.
[6, 7]). Again, in using a potential to represent electron–ion interaction, we have
neglected the fact that the ions possess a structure (the core electrons); again, when
the Pauli principle plays an important role in the interaction between the valence
electrons, that interaction may no longer be represented by a simple potential. It is
desirable to consider the validity of these approximations in detail (for detail see,
e.g. [7]). In general one studies only selected parts of the Hamiltonian (4.1). Thus,
for example, the band theory of solids is based upon the model Hamiltonian [6, 8].

HB =
∑

i

p2
i

2m
+

∑

i, j

v(ri − R j0) + VH(ri ), (4.5)

where the R j0 represents the fixed equilibrium positions of the ions and the potential
VH describes the (periodic) Hartree potential of the electrons. One studies the motion
of a single electron in the periodic field of the ions and the Hartree potential, and
takes the Pauli principle into account in the assignment of one-electron states. In so
doing, one neglects aspects other than the Hartree potential of the interaction between
electrons. On the other hand, where one is primarily interested in understanding
the interaction between electrons in metals, it is useful to consider only Eq. (4.3),
replacing the effect of the ion cores by a uniform distribution of positive charge
[9]. In this way one can approximate the role that electron interaction plays without
having present the additional complications introduced by the periodic ion potential.
Of course one wants finally to keep both the periodic ion potential and the electron
interactions, and to include also the effects associated with departure of the ions from
the equilibrium positions, since only in this way one does not arrive at a generally
adequate description of the solid. Usually for the elementary excitations in solids first
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consider the various parts of the Hamiltonian Eq. (4.1) and then take into account the
remaining terms which act to couple different excitations.

4.2 Electronic Band Structure

The importance of the electronic theory of solids as embodied in band theory is
that it provides us with clear means of understanding how solids may be insulators,
semiconductors or metals. This depends upon whether or not it is a Fermi surface.
The existence of a Fermi surface produces metallic behavior, whereas at 0 K, if the
filled electron levels are separated from vacant ones, we have insulating properties.
If the separation is large, say ≥5 eV, the substance remains an insulator at temperature
above 0 K, whereas semiconducting properties arise if the filled and empty levels lie
within 0–2 eV of one another.
(a) LiH: LiH crystal is of NaCl structure type. The simple electronic structure of
Li+ and H− ions, having 1s2 configuration, gives LiH a special place among binary
crystals and in many aspects allows it to serve as an ideal model for ionic compounds.
The spectrum of one-electron states of crystals is determined by the solution of
Schrodinger equation for the ‘extra’ particle (hole or electron) moving in the averaged
field created by all the remaining electrons and nuclei [10]:

[

− �
2

2m
� + V (�r)

]

��k (�r) = En

(�k
)

��k (�r) , (4.6)

where the notation is conventional and V(�r ) is the periodic potential. The existing
calculation techniques differ in the method of constructing the electron potential
V(�r ), the approximation of the wave function ��k (�r), the ways of ensuring self-
consistency, the reliance on empirical parameters, etc. In particular, two factors are
especially important in case of ionic crystals: (1) the inclusion of exchange interaction
and (2) the inclusion of polarisation of the electron and ion subsystems of crystal by
the extra particle [11].

The one-electron potential of any many-electron system is nonlocal because of the
exchange interaction between the electrons. It is difficult to take this interaction into
account. Because of this, the exact potential in the band theory is often replaced by
the local potential of the form Vexchange (�r) ∝ α

[
ρ (�r)

]1/3, where ρ(�r ) is the charge
density function, and the constant α is selected in the range from 1 (Slater potential)
to 2/3 (Cohn–Sham potential) [12].

Two effects are associated with the local exchange. First, the results of calculation
depend strongly on the numerical value of α, and second, this approximation always
underestimates the values of Eg and Ev (the width of the valence band). It is the
low values of Ev obtained by many authors in the approximation of local exchange
that are responsible for the wrong conclusion concerning the inapplicability of band
theory to ionic dielectrics. These problems reflect the fundamental drawback of the



90 4 Isotopes in Solids

one-electron approximation which does not take into account the reciprocal effect
of the selected electron (hole) on the rest of the system. This effect consists in the
polarisation of the crystal by the particle, and is generally made up of two parts:
the electron polarisation (inertialess), and the lattice polarisation (inertial). In the
common optical phenomena, related to absorption or scattering of photons, the lattice
polarisation is not important, because the frequency of optical transitions is much
higher than the average frequencies of phonons. The electron polarisation is different.
The extra particle (electron, hole) is regarded by this theory as the slowest particle
in the system—in other words, all the remaining electrons adiabatically follow it.
Hence it follows that the inertialess polarisation must definitely be included in the
calculation of energy spectrum. An important feature of ionic crystals is that the
polarisation energy Ep is of the same order of magnitude as the bandwidth. Such a
correction obviously cannot be regarded as small. In the extreme case of particle at
rest, the polarisation energy can be calculated by methods of classical electrostatics
(the Mott–Littleton method [11]), or by the newer and more accurate technique
proposed by Fowler [13]. The value of Ep for AHC found by this method is 2–3 eV
for each of the quasi-particles (Ep >0 for electrons, and Ep <0 for holes). This
implies that the inclusion of electron polarisation will reduce the magnitude of Eg

by 4–5 eV [10]. By assumption, the electron bands are displaced rigidly, without
changing the dispersion law E(�k).

The simple electron structure of lithium hydride (combined with the negligibly
small spin-orbital interaction) is very helpful for calculating the band structure: all
electron shells can easily be taken into account in the construction of the electron
potential. The first calculations of band structure of lithium hydride were carried
out as early as 1936 by Ewing and Seitz [14] using the Wigner–Seitz cell method.
This method consists essentially in the following. The straight lattice is divided into
polyhedra in such a way that the latter fill the entire space; inside each polyhedron
is an atom forming the basis of the lattice (Wigner–Seitz cells). The potential inside
each cell is assumed to be spherically symmetrical and coinciding with the potential
of free ion. This approximation works well for ions with closed shells. The radial
Schrodinger equation in the coordinate function Rl (�r ) is solved within each selected
cell, the energy being regarded as a parameter. Then the Bloch function is constructed
in the form of expansion

��k(�r) =
∞∑

l=0

l∑

m=−l

Clm

(�k
)

Ylm (θ, ϕ) Rl (�r , E) , (4.7)

where �r , θ , ϕ are the spherical coordinates (with respect to the centre of the cell);
Ylm are spherical functions. The coefficients Clm(�k) and the energy E(�k) are found
from conditions of periodicity and continuity on the boundaries of the cell. If �r1 and
�r2 are the coordinates of two points on the surface of Wigner–Seitz cell, linked by
the translation vector �Rl , then the boundary conditions are [14]
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��k (�r2) = exp
(

i �k �Rl

)
��k (�r1) , (4.8)

and
∇n��k (�r2) = exp

(
−i �k �Rl

)
∇n��k (�r1) , (4.9)

where ∇n is the gradient normal to the surface of the cell. We see that the method of
cells only differs from the problem of free atom in the boundary conditions. Owing
to the complex shape of the cell, however, the construction of boundary conditions
is a very complicated task, and this method is rarely used nowadays.

The method of plane associated waves (PAW) was used for calculating the band
structure and the equation of state for LiH was used in Perrot [15]. According to this
method, the crystal potential is assumed to be spherically symmetrical within a sphere
of radius �rs described around each atom, and constant between the spheres (the so-
called cellular muffin-tin (MT) potential). Inside each sphere, like in the Wigner–Seitz
method, the solutions of Schrodinger equation have the form of spherical harmonics;
outside the spheres they become plane waves. Accordingly, the basis functions have
the form

��k (�r) = exp
(

i �k�r
)

θ (�r−�rs) +
∑

almYlm (θ, ϕ) Rl (E, �r) θ (�rs − �r) , (4.10)

where θ(x) = 1 at x ≥ 0, and θ(x) = 0 at x < 0. The coefficients alm can be
easily found from the condition of sewing on the boundary of the sphere. This is an
important advantage of the PAW method over the method of cells. The calculations of
Perrot [15] are self-consistent, and the local potential is used in the Cohn-Sham form.
The correlation corrections were neglected. The method of Corringi-Cohn-Rostocker
(CCR method), or the method of Green’s functions, was used for calculating the band
structure of LiH in Zavt et al. [16] (only concerned with the valence band) and in
Kulikov [17]. Calculation of band structure of LiH in Grosso and Paravicini [18]
was based on the wave function used in the method of orthogonalised plane waves
(OPW) of the form

��k (�r) = exp
(

i �k�r
)

−
∑

c

〈
exp

(
i �k�r

)
| Xc

〉
Xc (�r) , (4.11)

where Xc are the atomic functions of state of the skeleton;
〈
exp

(
i �k�r

)
| Xc

〉
is the

integral of overlapping of plane wave with skeleton function [19]. The method of
linear combination of local basis functions was applied to the calculation of band
structure of LiH in Kunz and Mickish [20]. This method is based on constructing the
local orbitals for the occupied atom states, based on certain invariant properties of the
Fock operator. The main feature of local orbitals is that they are much less extensive
than the atom orbitals. Importantly, the correlation correction is taken into account in
Kunz and Mickish [20]. Owing to the high polarizability of hydrogen molecules, the
correlation effect in lithium hydride is exceptionally strong. Yet another calculation of
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Fig. 4.1 Band structure of
LiH crystal as calculated:
[20]–1; [15]–2; [19]–3

Table 4.1 Calculated energy
values of some direct optical
transitions in LiH reduced to
the experimental value of
Eg = 5.0 eV

Transition 1 2 3,4 5

K1–K3 6.9 7.5 6.5 6.4
W1–W3 8.0 7.9 7.3 7.4
L1–L′

2 9.2 9.6 9.0 9.1
W1–W′

2 12.6 14.9 12.2 –
X1–X′

5 12.9 13.8 13.6 –
K1–K4 14.7 16.1 15.0 –
L1–L′

3 19.7 20.9 20.7 –
�1–�15 24.5 25.3 33.3 –

band structure of LiH was carried out in Zavt et al. [16] using the so-called method of
extended elementary cell. This approach is based on the semiempirical techniques of
the theory of molecules, and is similar to the cluster calculations. Let us add that the
cluster is selected in such a way that the quasi-molecular wave function transforms
in accordance with the group symmetry of certain wave vectors in the Brillouin
zone. This methods only yields the energy values at the points of high symmetry.
We ought to mention also Hama and Kawakami [133], where, in connection with
the study of high pressure effects on the transition NaCl–CsCI in lithium hydride,
the band structure and the equation of state of the latter are analysed in detail. The
calculated band structures of LiH are compared in Fig. 4.1. We see that the overall
picture given by various methods is generally the same, despite the vast spread of the
transition energy values (see Table 4.1). Looking at the structure of the valence band
we see that it is very similar to the s-band in the method of strong bond [10]. This is
surprising, given the strong overlap of the anion s-functions in lithium hydride. The
wave functions in this band are almost entirely composed of the Is states of hydrogen
ion. Different authors place the ceiling of the band either at point X or at point W of
the Brillouin zone. Although in all cases the energies of the states X1 and W1 differ
little (≤0.3 eV), the question of the actual location of the top of the valence band may
be important for the dynamics of the hole. Different calculations also disagree on the
width of the valence band. For example, the width of the valence band in LiH without
correlation is, according to Kunz and Mickish [20], Ev = 14.5 eV, and the value of
Ev is reduced to one half of this when correlation is taken into account. This shows
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how much the polarisation of crystal by the hole affects the width of the valence band
Ev. According to Perrot [15], the width of the valence band in LiH is 5.6 eV. The
density of electron states in the valence band of LiH was measured in Betenekova
et al. [21] and Ichikava et al. [22]. In Betenekova et al. the measurements were
carried out with a magnetic spectrometer having the resolution of 1.5 eV, whereas
the resolution of hemispherical analyser used in Ichikawa et al. [22] was 1.1 eV. From
experimental data, the width of the valence band is 6 eV according to Betenekova
et al., and 6.3 eV according to Ichikawa et al. Observe the good agreement with the
calculated value of Ev in this theory. Let us add also that the measured distribution of
the electron density of states in the valence band of LiH exhibits asymmetry typical
of s-bands (for more details see Betenekova et al. [21] and Ichikawa et al. [22]).
The lower part of the conduction band is formed wholly by p-states and displays
an absolute minimum at point X which corresponds to the singlet symmetry state
X4. The inversion of order of s and p-states in the spirit of LCAO method may be
understood as the result of the s-nature of valence band. Mixing of s-states of the
two bands leads to their hybridisation and spreading, which changes the sequence
of levels (see also [10] and references there). If we compare the structure of the
conduction band with the p-band of the method of strong bond (see, also [5]), we see
that the general structure and the sequence of levels are the same except for some
minor details (the location of L3 level, and the behavior of E(�k) in the neighbourhood
of �15). In other words, the lower part of the conduction band in lithium hydride is
very close to the valence p-band of AHC. The direct optical gap in LiH according
to all calculations is located at X point and corresponds to the allowed transition
X1–X4. The indirect transition W1–X4 ought to have a similar energy. According
to the above calculations, the energies of these transitions differ by 0.03–0.3 eV.
The different values of Eg for LiH obtained by different authors are apparently due
to the various methods used for taking into account the exchange and correlation
corrections (see above). As follows from Table 4.1, the transitions at critical points
in the low-energy region form two groups at 7–9 and 13–15 eV. Measurements of
reflection spectra in the 4–25 eV range at 5 K (Kink et al. [23]) and 4–40 eV at 300 K
throw new light on the results of calculations (see also review by Plekhanov [5]).
The singularities occurring at 7.9 and 12.7 eV in reflection spectra are associated in
the above papers with the interband transitions W1–W4 and X1–X5 respectively.

From the standpoint of dynamics of quasiparticles, an important consequence of
such band structure is the high anisotropy of the tensor of effective mass of electrons
and (especially) holes. The estimated mass of electron in the neighbourhood of X4
is, according to Kunz and Mickish [20], (me)x 
 0.3 m0 in the direction X–�, and
(me)y = (me)z 
0.8 m0 in the direction X–W. Similarly, the mass of hole in the
neighbourhood of X1 is X–� in the direction (me)x 
0.55 m0 and about the same
in the neighbourhood of W1. It is assumed that the transverse components of mh are
greater by several orders of magnitude (Zavt et al. [16]). Note also that, according to
Baroni et al. [19], the estimated masses of carriers are: mel = 0, 121; met = 0, 938;
mhl = 0, 150; mht = 4, 304 me, where the subscripts 1 and t denote, respectively, the
longitudinal (in the direction �–X) and the transverse (in the direction X–W) com-
ponents. This high anisotropy of masses of electron and hole ought to have resulted
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Fig. 4.2 A schematic picture
of bonding and antibonding
levels in a silicon dimer

in the high anisotropy of the reduced (1/μ = I/me + 1/mh) and the translation
(M = me + mh) masses of exciton. This, however, is not the case. Moreover, the
study of Plekhanov and Altukhov [24] reveals that with a good degree of confidence
one may assume that in the energy range E≤40 meV the exciton band is isotropic
and exhibits parabolic dispersion (me = 0.04 m and mh = 0.15 m). As was shown
below, the studies of exciton–phonon luminescence of free excitons and resonance
Raman scattering of light in LiH crystals [10] reveal that the kinetic energy of exci-
tons in these crystals is greater than Eb by an order of magnitude exactly because of
the very small masses of electron and hole. The latter may indicate that in the metallic
phase of hydrogen at the high pressure [10] we can expect the Dirac character of the
electronic excitations [25].
(b) Si: Semiconductors may be pure elements like Si (Ge), but may also be compounds
(like LiH), for example Zns, CdS, SiC, Cu2O and GaAs. Their properties are strongly
affected by the presence of impurities, defects or departures from exact stoichiometry.
The properties of a perfect crystal of a pure element or perfectly stoichiometric
compound are called intrinsic properties, whereas the influences of added impurities
or defects give rise to extrinsic properties.

The electronic configuration of a Si atom is 1s22s22p63s23p2 (see, e.g. [26]).
When Si atoms form a crystal it can divide their electrons into core electrons and
valence electrons as pointed out in different textbooks [7, 8, 27]. In crystalline Si
1s, 2s and 2p orbitals are completely occupied and form the core shells. The outer
3s and 3p shells are only partially filled. Electrons in these shells are called valence
electrons because they are involved in bonding with neighbouring Si atoms. The
crystal structure of Si at ambient pressure is similar to that of diamond [28]. The
tetrahedral arrangement of bonds between Si atoms (see, e.g. Fig. 4.18 in [8]) and
its four nearest neighbours can be understood if one of the electrons in the 3s shell
is promoted to the 3p shell so that the four valence electrons form hybridised sp3

orbitals. It is these valence electrons in the outermost shells of a Si atom that are
nearly free. These electrons are not affected by the full nuclear charge as a result
of screening of the nucleus by the filled core shells. In the core region the valence
electron wave functions must be orthogonal to those of the core.

Consider further the formation of a Si dimer, i.e. a diatomic molecule. Just as in
the formation of the H2 molecule, we expect the electron states to interact and form
bonding and antibonding levels (see, Fig. 4.2). As is well known, the separation into
bonding and antibonding levels is the origin of the energy gap in the band structure of
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Fig. 4.3 Electronic band
structure of Si calculated by
pseudopotential technique.
The solid and the dotted
lines represent calculations
with a nonlocal and a local
pseudopotential, respectively
(after [29])

solid Si. According to this very simple approximation, the lower four bands are filled
and the upper four bands are empty [29]. One should not worry about the detailed
shapes of these bands but accept them as solutions of the Schrödinger equation
in the assumed potential. Using the pseudopotential concept [29], the one-electron
Schrödinger equation have the next form

[
p2

2m
+ V (

−→ri )

]

�k(
−→ri ) = Ek�k(

−→ri ), (4.12)

Here �k(−→ri ) is the pseudo wave-function and V(−→ri ) is pseudopotential. The bringing
function is a good approximation to the true wave function outside the core region
and therefore can be used to calculate the physical properties of the semiconductors
which are dependent on the valence and conduction electrons only. The difference
in energy between the highest occupied and lowest unoccupied state is indicated as
1.17 eV at 0 K. It is to be noted, however, that these limiting states lie at different
points within the zone, and this minimum excitation of an electron from the valence
to the conduction band demands that it be given crystal momentum equivalent to
the difference in the

−→
k vectors; this is readily obtained in thermal excitation by the

crystal momentum available from the phonons (see, Fig. 4.3).
The energy gap characterising an intrinsic semiconductor may be determined by

optical absorption. At low temperatures there are very few carriers and the Drude
contribution to the absoptivity is absent [8] in an intrinsic semiconductor. Semicon-
ductors are therefore transparent to infrared radiation and become absorbing only
when interband transitions are excited. We might therefore expect the band gap to fix
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the threshold for interband transitions and in this way be readily determined exper-
iment [27]. This would be the case if the band gap were determined by filled and
empty states with the same reduced value of

−→
k ; the absorption of light would then

cause a “vertical” transition and give rise to a sharp edge at �ω = Eg . This is the
case for many semiconductors such as CdS, GaAs, etc.

In Si (and many other semiconductors), we have seen (Fig. 4.3) that excitation
across the minimum separation of filled and empty states demands a large change
in wave vector, and such a transition cannot be initiated by a photon unless it has
access to a source of crystal momentum. We should repeat that it is the phonons that
provide the required momentum. We write the conservation laws in the form

E f − Ei = hν + �ω f ,−→
k f − −→

ki = 0 + −→q ,
(4.13)

where −→q and ω f apply to the phonon involved in the transition. Now E f − Ei =
Eg and it is clear that the inclusion of phonons produces an absorption edge at
a somewhat lower energy, namely Eg − �ω f . These indirect or phonon-assisted
transitions produce only weak absorption compared with that associated with direct
transitions (see, e.g. Fig. 3.25 in [30]).

4.2.1 Phonons

The simplest kind of motion in solids is the vibration of atoms around the equilibrium
point. The interaction of the crystalforming particles with one another at the move of
the one atom entanglements neighbour atoms [31]. The analysis of this kind of motion
shows that the elementary form of motion is the wave of the atom displacement.
As is well known, the quantisation of the vibrations of the crystal lattice and after
introduction of the normal coordinates, the Hamiltonian of our task will be the
following relation (see, e.g. [8])

H(Q, P) =
∑

i,q

[

−�
2

2

∂2

∂ Q2(−→q )
+

1

2
ω2

j Q2
j (

−→q )

]

. (4.14)

In this relation, the sum, where every addend means the Hamiltonian of linear
harmonic oscillator with coordinate Q j (

−→q ), the frequency ω j (
−→q ) and the mass,

equals a unit. If the Hamiltonian system consists of the sum, where every addend
depends on the coordinate and conjugate its quasiimpuls, then according to quantum
mechanics [32] the wave function of the system equals the product of wave functions
of every appropriate addend and the energy is equal to the sum of assigned energies.
Any separate term of the Hamiltonian Eq. (4.14) corresponds, as indicated above,
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Fig. 4.4 Optical and acousti-
cal modes. The optical modes
lie at higher frequencies and
show less dispersion than the
acoustic modes (for details see
text)

to the linear oscillator

− �
2

2

∂2�

∂ Q2 + 1

2
ω2 Q2� = ε�. (4.15)

Solving the last equation and finding the eigenvalues and eigenfunctions and then
expressing explicitly the frequency, we will obtain for a model with two atoms in
primitive cell (with masses M1 and M2) the following equation

ω2 
 2C

(
1

M1
+ 1

M2

)

(4.16)

and

ω2 
 C

2(M1 + M2)
K 2a2. (4.17)

Taking into account that Kmax = ± π/a, where a is a period of the crystal lattice,
i.e. Kmax respond the border of the first Brillouin zone

ω2 = 2C

M1
and ω2 = 2C

M2
(4.18)

Formula (4.16) describes the optical branch of vibrations, whereas Eq. (4.17)—
acoustical branch of vibrations (see, e.g. Fig. 4.4). Usually the last formula is written
as follows:

ω =
√

α

M
, (4.19)
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where α is the so-called force constant (see, also Chap. 2). Here, early M is the mass
of vibrated atom (ion). From the preceding relation it is clear that, as in molecular
physics, in solid isotope the effect directly manifests in vibration spectrum, which
depends on the symmetry [39] measures either in IR-absorption or in Raman scatter-
ing of light. Before analysing Raman scattering spectra of different solids we briefly
consider the classical approximation of the mechanism of Raman effect [33–36].

Historically, Raman scattering denotes inelastic scattering of light by molecular
vibrations or by optical phonons in solids. In a macroscopic picture, the Raman effect
in crystals is explained in terms of the modulation of polarisability by the quasi
particle under consideration. The assumption that the polarisation depends linearly
upon the electric field strength [37] is a good approximation and is invariably used
when discussing the scattering of light by crystal excited by lasers. However, the
approximation is not valid for large strengths such as can be obtained from pulsed
lasers [38]. The polarisation may then be expressed as

P = αE + 1

2
βE2 + 1

6
γ E3 + 1

24
δE4 + . . . . . . . . . , (4.20)

where β, the first hyperpolarizability coefficient, plays an important role for large
values of E, since it is responsible for the phenomenon of optical harmonic generation
using Q-switched lasers. Isolated atoms have β = 0, since, like μ the dipole moment,
it arises from interactions between atoms. A simplified theory of Rayleigh scattering,
the Raman effect, harmonic generation and hyper Raman scattering are obtained by
setting ([38])

E = E0 cos ω0t, (4.21)

α = α0 +
(

∂α

∂Q

)

Q, (4.22)

β = β0 +
(

∂β

∂Q

)

Q, (4.23)

Q = Q0 · cos ωvt. (4.24)

Here Q is a normal coordinate, ωv is the corresponding vibrational frequency and
ω0 is the laser frequency. After that we have

P = α0E0 cos ω0t +
(

∂α

∂Q

)

Q0E0 cos ω0tcos ωvt

+ 1

2
β0E2

0 cos2ω0t + 1

2

(
∂β

∂Q

)

Q0E2
0 cos2ω0tcos ωvt. (4.25)

http://dx.doi.org/10.1007/978-3-642-28723-7_2
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Fig. 4.5 a First-order Raman
scattering spectra Ge with dif-
ferent isotope contents [40],
and b first-order Raman scat-
tering in isotopically mixed
diamond crystals 12C13

x C1−x .
The peaks A, B, C, D, E
and F correspond to x =
0.989, 0.90, 0.60, 0.50, 0.30
and 0.001 [44]

Then, after small algebra, we obtain

P = α0E0cos ω0t +
(

∂α

∂Q

)

Q0E0

[
cos(ω0 − ωv)t + cos(ω0 + ωv)t

]

+ 1

4
β0E2

0 + β0

4
E2

0cos2 ω0t + ∂β

∂Q
E2

0Q0cosωvt

+ 1

2
Q0E2

0

(
∂β

∂Q

) [
cos(2ω0 + ωv)t + cos(2ω0 − ωv)t

]
(4.26)

In last relation the first term describes the Rayleigh scattering, second—Raman
scattering, third—d.c. polarisation, fourth—frequency doubling and the last—hyper
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Raman effect. Thus the hyper Raman effect is observed with large electric field
strength in the vicinity of twice the frequency of the exciting line with separa-
tions corresponding to the vibrational frequencies. α and β are actually tensors and
β components βαβγ which are symmetrical suffixes [39].

Semiconducting crystals (C, Si, Ge, α-Sn) with diamond-type structure present
ideal objects for studying the isotope effect by the Raman light-scattering method.
At present time this is facilitated by the availability of high-quality crystals grown
from isotopically enriched materials (see, e.g. [40] and references therein). In this
part our understanding of first-order Raman light scattering spectra in isotopically
mixed elementary and compound (CuCl, GaN, GaAs) semiconductors having a zinc
blende structure is described. Isotope effect in light scattering spectra in Ge crystals
was first investigated by Agekyan et al. [41]. A more detailed study of Raman light
scattering spectra in isotopically mixed Ge crystals has been performed by Cardona
et al. [40].

It is known that materials having a diamond structure are characterised by the
triply degenerate phonon states in the � point of the Brillouin zone (

−→
k = 0). These

phonons are active in the Raman scattering spectra, but not in the IR absorption one
[42]. Figure 4.5a demonstrates the dependence of the shape and position of the first-
order line of optical phonons in germanium crystal on the isotope composition at
liquid nitrogen temperature (LNT) [43]. The coordinate of the centre of the scattering
line is proportional to the square root of the reduced mass of the unit cell, i.e.

√
M.

It is precisely this dependence that is expected in the harmonic approximation.
An additional frequency shift of the line is observed for the natural and enriched
germanium specimens and is equal, as shown in Ref. [40] to 0.34 ± 0.04 and
1.06 ± 0.04 cm−1, respectively (see, e.g. Fig. 7 in Chap. 4 of Ref. [45]).

First-order Raman light-scattering spectrum in diamond crystals also includes
one line with maximum at ωLTO(�) = 1332.5 cm−1. In Fig. 4.5b the first-order scat-
tering spectrum in diamond crystals with different isotope concentration is shown
[44]. As shown below, the maximum and the width of the first-order scattering line
in isotopically—mixed diamond crystals are nonlinearly dependent on the concen-
tration of isotopes x. The maximum shift of this line is 52.3 cm−1, corresponding
to the two limiting values of x = 0 and x = 1. Analogous structures of first-
order light scattering spectra and their dependence on isotope composition has by
now been observed many times, not only in elementary Si, and α-Sn, but also in
compound CuCl and GaN semiconductors (for more details see reviews [31, 40]).
Already a shortlist of data shows a large dependence of the structure of first-order
light-scattering spectra in diamond as compared to other crystals (Si, Ge). This is the
subject of detailed discussion in [46].

Second-order Raman spectra in natural and isotopically mixed diamond have
been studied by Chrenko [47] and Hass et al. [48]. Second-order Raman spectra in a
number of synthetic diamond crystals with different isotope compositions shown in
Fig. 4.6 are measured with resolution (∼4 cm−1) worse than for first-order scattering
spectra. The authors of the cited work explain this fact by the weak signal in the
measurement of Second-order Raman scattering spectra. It is appropriate to note
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Fig. 4.6 Second-order
Raman scattering spectra
in synthetic diamond with dif-
ferent isotope concentration at
room temperature [48]

that the results obtained in [48] for natural diamond (C13C = 1.1%), agree well with
the preceding comprehensive studies of Raman light-scattering spectra in natural
diamond [49]. As is clearly seen from Fig. 4.6 the structure of Second-order light
scattering “follows” the concentration of the 13C isotope. It is necessary to add that
in the paper by Chrenko [47] one observes a distinct small narrow peak above the
high-frequency edge of LO phonons and the concentration of 13C x = 68%. Note
in passing that Second-order spectra in isotopically mixed diamond crystals were
measured in the work by Chrenko [47] with a better resolution than the spectra
shown in Fig. 4.6. Second-order Raman light scattering spectra and IR absorption
spectra in crystals of natural and isotopically enriched 70Ge can be found in [31].

A comprehensive interpretation of the whole structure of Second-order Raman
light-scattering spectra in pure LiH (LiD) crystals is given in [10, 46, 50]. Leaving
this question, let us now analyse the behavior of the highest frequency peak after the
substitution of hydrogen for deuterium [51].
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Absorption behavior of an IR—active phonon in mixed crystals with a change
in the concentrations of the components can be classified into two main types: one
and two-mode (the review [52]). Single-mode behavior means that one always has
a band in the spectrum with a maximum gradually drifting from one endpoint to
another. Two-mode behavior is defined by the presence, in the spectrum, of two bands
characteristic of each components leading not only to changes in the frequencies of
their maxima, but mainly to a redistribution of their intensities. In principle, one and
the same system can show different types of behavior at opposite ends [53]. The
described classification is qualitative and is rarely realised in its pure form. The most
important necessary condition for the two-mode behavior of phonons (as well as of
electrons [54]) is considered to be the appearance of the localised vibration in the
localised defect limit. In the review [52] a simple qualitative criterion for determining
the type of the IR absorption behavior in crystals with an NaCl structure type has
been proposed [54]. Since the square of the TO (�) phonon frequency is proportional
to the reduced mass of the unit cell M, the shift caused by the defect is equal to

� = ω2
TO

(

1 − M

M
′

)

. (4.27)

This quantity is compared in [52] with the width of the optical band of phonons
which, neglecting acoustical branches and using the parabolic dispersion approxi-
mation, is written as

W = ω2
TO

(
ε0 − ε∞
ε0 + ε∞

)

. (4.28)

A local or gap vibration appears, provided the condition |�| > (1/2)W is fulfilled. As
mentioned, however, in [55] in order for the two peaks to exist up to concentrations
on the order of ∼0.5, a stronger condition |�| > W has to met. Substituting the
numerical values from Tables 1 and 2 of [46] into formulas (4.27) and (4.28) shows
that for LiH (LiD) there holds (since � = 0.44ω2

TO and W = 0.58ω2
TO) the following

relation:
|�| > (1/2)W. (4.29)

Thereby, it follows that at small concentrations the local vibration should be
observed. This conclusion is in perfect agreement with earlier described experimen-
tal data [50]. As to the second theoretical relation � > W, one can see from the
above discussion that for LiH (LiD) crystals the opposite relation, i.e. W > �, is
observed [55].

Following the results of [56], in Fig. 4.7 we show the Second-order Raman scat-
tering spectra in mixed LiHx D1−x crystals at room temperature. In addition to what
has been said on Raman scattering spectra at high concentration [56], we note that as
the concentration grows further (x > 0.15) one observes in the spectra a decreasing
intensity in the maximum of 2LO (�) phonons in LiD crystal with a simultaneous
growth in intensity of the highest frequency peak in mixed LiHx D1−x crystals. The
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Fig. 4.7 Second-order
Raman scattering spectra
in the isotopically mixed
crystals LiHx D1−x at room
temperature: 1-x = 0; 2-0.42;
3-0.76; 4-1. The arrows point
out a shift of LO(�) phonons
in the mixed crystals [50]

nature of the latter is in the renormalisation of LO(� ) vibrations in mixed crystal [55].
Comparison of the structure of Raman scattering spectra (curves 1 and 2 in Fig. 4.7)
allows us, therefore, to conclude that in the concentration range of 0.1 < x < 0.45
the Raman scattering spectra simultaneously contain peaks of the LO(�) phonon of
pure LiD and the LO(�) phonon of the mixed LiHx D1−x crystal. For further con-
centration growth (x > 0.45) one could mention two effects in the Raman scattering
spectra of mixed crystals. The first is related to an essential reconstruction of the
acoustooptical part of the spectrum. This straightforwardly follows from a compar-
ison of the structure of curves 1–3 in Fig. 4.7. The second effect originates from a
further shift of the highest frequency peak towards still higher frequencies, related
to the excitation of LO(�) phonons. The limit of this shift is the spectral location of
the highest frequency peak in LiH. Finishing our description of the Raman scatter-
ing spectra, it is necessary to note that a resonance intensity growth of the highest
frequency peak is observed at x > 0.15 in all mixed crystals (for more details see
[51]).

One more reason for the discrepancy between the theory and the results of the
experiment may be connected with not taking into account in theory the change of
the force-constant at the isotope substitution of the smaller in size D by H ion [57].
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We should stress once more that among the various possible isotope substitution, by
far the most important in vibrational spectroscopy is the substitution of hydrogen by
deuterium. As is well known, in the limit of the Born–Oppenheimer approximation
the force-constant calculated at the minimum of the total energy depends upon the
electronic structure and not upon the mass of the atoms. It is usually assumed that
the theoretical values of the phonon frequencies depend upon the force-constants
determined at the minimum of the adiabatic potential energy surface. This leads to
a theoretical ratio ω (H)/ω (D )of the phonon frequencies that always exceed the
experimental data. Very often anharmonicity has been proposed to be responsible
for lower value of this ratio. In isotope effect two different species of the same atom
will have different vibrational frequencies only because of the difference in isotopic
masses. The ratio p of the optical phonon frequencies for LiH and LiD crystals is
given in harmonic approximation by:

p = ω (H)

ω(D)
=

√
M(LiD)

M(LiH)

 √

2 (4.30)

while the experimental value (which includes anharmonic effects) is 1.396÷1.288
(see Table 1 in Ref. [57]). In this table there are the experimental and theoretical
values of p according to formula (4.30), as well as the deviation δ = PTheory−pexp

ptheory
of

these values from theoretical ones. Using the least squares method it was found the
empirical formula of ln(δ%) ∼ f (ln[ ∂E

∂M ]) which is depicted in Fig. 4.8. As can be
seen the indicated dependence has in the first approximation a linear character:

ln(δ%) = −7.5 + 2ln

(
∂E

∂M

)

. (4.31)

From the results of Fig. 4.8, it can be concluded that only hydrogen compounds
(and its isotope analog-deuterium) need to take into account the force-constant
changes in isotope effect. It is also seen that for semiconductor compounds (in
Fig. 4.8-points, which is below Ox line) the isotope effect has only the changes
of the isotope mass (for details see [57]).

Thus, the experimental results presented in this section provide evidence of, first,
strong scattering potential (most importantly, for optical phonons) and second, the
insufficiency of CPA model for a consistent description of these results [48].

4.2.2 Electronic Excitations

Isotopic substitution only affects the wavefunction of phonons; therefore, the energy
values of electron levels in the Schrödinger equation ought to have remained the same.
This, however, is not so, since isotopic substitution modifies not only the phonon
spectrum, but also the constant of electron-phonon interaction (see above). It is for



4.2 Electronic Band Structure 105

Fig. 4.8 The dependence of
ln(δ%)∼ f[ln( ∂ω

∂M )]: points
are experimental values and
continuous line-calculation on
the formula (4.31) [57]

this reason that the energy values of purely electron transition in molecules of hydride
and deuteride are found to be different [58]. This effect is even more prominent when
we are dealing with a solid [60]. Intercomparison of absorption spectra for thin films
of LiH and LiD at room temperature revealed that the longwave maximum (as we
know now, the exciton peak [59]) moves 64.5 meV towards the shorter wavelengths
when H is replaced with D. For obvious reasons this fundamental result could not
then receive consistent and comprehensive interpretation, which does not belittle
its importance even today. As will be shown below, this effect becomes even more
pronounced at low temperatures [31].

The mirror reflection spectra of mixed and pure LiD crystals cleaved in liquid
helium are presented in Fig. 4.9. For comparison, in the same diagram we have also
plotted the reflection spectrum of LiH crystals with a clean surface. All spectra have
been measured with the same apparatus under the same conditions. As the deuterium
concentration increases, the long-wave maximum broadens and shifts towards the
shorter wavelengths. As can clearly be seen in Fig. 4.9, all spectra exhibit a similar
long-wave structure. This circumstance allows us to attribute this structure to the
excitation of the ground (Is) and the first excited (2s) exciton states. The energy
values of exciton maxima for pure and mixed crystals at 2 K are presented in Table 4.2.
The binding energies of excitons Eb, calculated by the hydrogen-like formula, and
the energies of interband transitions Eg are also given in Table 4.2.

Going back to Fig. 4.9, it is hard to miss the growth of �12, [61], which in the
hydrogen-like model causes an increase of the exciton Rydberg with the replacement
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Table 4.2 Values of the energy of maxima (in meV) in exciton reflection spectra of pure and mixed
crystals at 2 K, and energies of exciton binding Eb, band-to-band transitions Eg (after [5])

Energy, meV LiH LiH0.82D0.18 LiH0.40D0.60 LiD 6LiH (78 K)

E1s 4950 4967 5003 5043 4939
E2s 4982 5001 5039 5082 4970
Eb 42 45 48 52 41
Eg 4992 5012 5051 5095 4980

Fig. 4.9 Mirror reflection
spectra of crystals: 1-LiH;
2-LiHx D1−x ; 3-LiD; at 4.2 K.
4-source of light without
crystal. Spectral resolution of
the instrument is indicated on
the diagram (after [61])

ofisotopes (see Fig. 90 in [31]). When hydrogen is completely replaced with deu-
terium, the exciton Rydberg (in the Wannier–Mott model) increases by 20% from 40
to 50 meV, whereas Eg exhibits a 2%increase, and at 2÷4.2 K is �Eg = 103 meV.
This quantity depends on the temperature, and at room temperature it is 73 meV,
which agrees well enough with �Eg = 64.5 meV as found in the paper by
Kapustinsky et al. Isotopic substitution of the light isotope (32S) by the heavy one
(34S) in CdS crystals [62] reduces the exciton Rydberg, which was attributed to the
tentative contribution from the adjacent electron bands (see also [10] and references
therein), which, however, are not present in LiH. The single-mode nature of exciton
reflection spectra of mixed crystals LiHx D1−x agrees qualitatively with the results
obtained with the virtual crystal model (Elliott et al. [52]; Onodera and Toyozawa
[63]), being at the same time its extreme realisation, since the difference between
ionisation potentials (�ζ ) for this compound is zero [64]. According to the virtual
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crystal model, �ζ = 0 implies that �Eg = 0, which is in contradiction with the
experimental results for LiHx D1−x crystals. The change in Eg caused by isotopic
substitution has been observed for many broadgap and narrow-gap semiconductor
compounds (see also below).

All these results are documented in Table 22 of Ref. [31], where the variation of Eg ,
Eb, are shown at the isotope effect. We should highlight here that the most prominent
isotope effect is observed in LiH crystals, where the dependence of Eb = f (CH) is
also observed and investigated. To end this section, let us note that Eg decreases by
97 cm−1 when 7Li is replaced with 6Li.

Further, we will briefly discuss the variation of the electronic gap (Eg) of semi-
conducting crystals with its isotopic composition. The last time the whole raw
semiconducting crystals were grown. These crystals are diamond, copper halides,
germanium, silicon, CdS and GaAs. All numerated crystals show the dependence of
the electronic gap on the isotope masses (see, reviews [31, 40]).

Before we complete the analysis of these results we should note that before these
investigations, studies were carried out on the isotopic effect on exciton states for a
whole range of crystals by Kreingol’d et al. [65]. First, the following are the classic
crystals Cu2O [65, 66] with the substitution 16O → 18O and 63Cu → 65Cu. Moreover,
there have been some detailed investigations of the isotopic effect on ZnO crystals,
where Eg was seen to increase by 55 cm−1 (16O → 18O) and 12 cm−1 (at 64Zn →
68Zn) [67, 68]. In [62] it was shown that the substitution of a heavy 34S isotope
for a light 32S isotope in CdS crystals resulted in a decrease in the exciton Rydberg
constant (Eb ), which was explained tentatively by the contribution from the nearest
electron energy bands, which however are absent in LiH crystals (for details see
[10]).

More detailed investigations of the exciton reflectance spectrum in CdS crystals
were done by Zhang et al. [69]. Zhang et al. studied only the effects of Cd substitu-
tions, and were able to explain the observed shifts in the band gap energies, together
with the overall temperature dependence of the band gap energies in terms of a
two-oscillator model provided that they interpreted the energy shifts of the bound
excitons and n = 1 polaritons as a function of average S mass reported as was noted
above, earlier by Kreingol’d et al. [62] as shifts in the band gap energies. However,
Kreingol’d et al. [62] had interpreted these shifts as resulting from isotopic shifts of
the free exciton binding energies (see, also [61]), and not the band gap energies, based
on their observation of different energy shifts of features which they identified as the
n = 2 free exciton states (for details see [62]). The observations and interpretations,
according to Meyer at al. [70], presented by Kreingol’d et al. [62] are difficult to
understand, since on the one hand a significant band gap shift as a function of the S
mass is expected [69], whereas it is difficult to understand the origin of the relatively
huge change in the free exciton binding energies which they claimed. Very recently
Meyer et al. [70] reexamined the optical spectra of CdS as a function of average
S mass, using samples grown with natural Cd and either natural S (∼95% 32S), or
highly enriched (99% 34S). The authors observed shifts of the bound excitons and
the n = 1 free exciton edges consistent with those reported by Kreingol’d et al. [62],
but, contrary to their results, Meyer et al. observed essentially identical shifts of the
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Fig. 4.10 a Reflection spec-
tra in the A and B excitonic
polaritons region of CdnatS
and Cd34S at 1.3 K with inci-
dent light in the

−→
E ⊥ −→

C .
The broken vertical lines con-
necting peaks indicate mea-
sured enrgy shifts reported in
Table 4.3. In this polarisation,
the n = 2 and 3 excited states
of the A exciton, and the
n = 2 excited state of the B
exciton, can be observed. b
Polarised photoluminescence
spectra in the region of the
An=2 and An=3 free exciton
recombination lines of CdnatS
and Cd 34S taken at 1.3 K with
the

−→
E ⊥ −→

C . The broken ver-
tical lines connecting peaks
indicate measured enrgy shifts
reported in Table 4.3 (after
[70])

free exciton excited states, as seen in both reflection and luminescence spectroscopy.
The reflectivity and photoluminescence spectra in polarised light (

−→
E ⊥ −→

C ) over the
A and B exciton energy regions for the two samples are depicted in Fig. 4.10. For the−→
E ⊥ −→

C polarisation used in Fig. 4.10 both A and B excitons have allowed transi-
tions, and therefore reflectivity signatures. Figure 4.10 also reveals both reflectivity
signatures of the n = 2 and 3 states of the A exciton as well that of the n = 2 state
of the B exciton.

Meyer et al. summarised the energy differences �E = E (Cd34S)−E (CdnatS), of
a large number of bound exciton and free exciton transitions, measured using pho-
toluminescence, absorption and reflectivity spectroscopy, in CdS made from natural
S (CdnatS, 95% 32S) and from highly isotopically enriched 34S (Cd34S, 99% 34S)
(see Table 4.3). As we can see, all of the observed shifts are consistent with a sin-
gle value, 10.8±0.2 cm−1. Several of the donorbound exciton photoluminescence
transitions, which in [70] can be measured with high accuracy, reveal shifts which
differ from each other by more than the relevant uncertainties, although all agree
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Table 4.3 The energy shifts of all of the transitions studied in [70] are given in terms of the Cd34S
minus the CdnatS energy, �E

Transition Method �E (cm−1)

I2 PL 10.6 ± 0.1
Iz
2 PL 11.1 ± 0.1

Ia
2 PL 10.6 ± 0.1

An=1 (�6) A‖ 10.8 ± 0.2
An=1 (�L

5 ) PL 11.0 ± 0.2
An=1 (�L

5 ) R⊥ 10.9 ± 0.2
An=2 PL‖ 11.3 ± 0.4
An=2 PL⊥ 11.1 ± 0.4
An=2 R⊥ 10.2 ± 0.5
An=3 PL‖ 11.8 ± 1.1
An=3 PL⊥ 10.9 ± 0.6
An=3 R⊥ 10.7 ± 0.6
Bn=1(�1) R‖ 10.9 ± 0.3
Bn=1(�L

5 + �T
5 ) R⊥ 10.6 ± 0.4

Bn=2 R‖ 9.4 ± 1.2
Bn=2 R⊥ 9.8 ± 1.2
Cn=1(�1) R‖ 15 ± 6
Cn=1(�5) R⊥ 14 ± 5

The methods used were photoluminescence spectroscopy (*PL) and reflection spectroscopy (R).
For measurements made using polarised light, the ‖ or ⊥ specifies the orientation of the E vector
versus the c axis

with the 10.8±0.2 cm−1 average shift. These small differences in the shift energies
for donor bound exciton transitions may reflect a small isotopic dependence of the
donor binding energy in CdS. This value of 10.8±0.2 cm−1 shift agrees well with
the value of 11.8 cm−1 reported early by Kreingol’d et al. [62] for the Bn=1 transition,
particularly when one takes into account the fact that enriched 32S was used in that
earlier study, whereas Meyer et al. have used natural S in place of an isotopically
enriched Cd32S.

The authors of [70] conclude that all of the observed shifts (see Table 4.3) arise
predominantly from an isotopic dependence of the band gap energies, and that the
contribution from any isotopic dependence of the free exciton binding energies is
much smaller. On the basis of the observed temperature dependencies of the excitonic
transitions energies, together with a simple two-oscillator model, Zhang et al. [69]
earlier calculated such a difference, predicting a shift with the S isotopic mass of
950μeV/amu for the A exciton and 724μeV/amu for the B exciton. Reflectivity and
photoluminescence study of natCd32S and natCd34S performed by Kreingol’d et al.
[62] shows that for anion isotope substitution the ground state (n = 1) energies of both
A and B excitons have a positive energy shift with rate of ∂E/∂MS = 740 μeV/amu.
Results of Meyer et al. [70] are consistent with a shift of ∼710μeV/amu for both A
and B excitons. Finally, it is interesting to note that the shift of the exciton energies
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with Cd mass is 56μeV/amu [69], an order of magnitude less than found for the
S mass.

The present knowledge of the electronic band structure of Si stems from
experimental observation of electronic transitions in transmission, reflectivity, or
cyclotron resonance, on the one hand, and theoretical calculations, e.g. those based
on pseudopotential or

−→
k × −→p methods (for details see [71–77] and references

therein). In this manner it has been established that the fundamental, indirect band
gap of Si occurs between the �+

8 valence band maximum and the �0 conduction
band minima along (100).

Recently, Lastras-Martinez et al. [73] performed ellipsometric measurements on
isotopically enriched 28Si and 30Si and deduced the isotopic dependence of E1 from
the analysis of the data in reciprocal (Fourier inverse) space. However, these measure-
ments did not resolve [67] the nearly degenerate E′

0 and E1 transitions and the isotopic
shift was assigned solely to the stronger E1 transitions (see, however, Fig. 4.11). We
should add that in [75–77] very recently was studied the dependence of indirect
band gap in Si on the isotopic mass. Photoluminescence and wavelength-modulated
transmission spectra displaying phonon assisted indirect excitonic transitions in iso-
topically enriched 28Si, 29Si, 30Si as well as in natural Si have yielded the isotopic gap
Egx which equals 1213.8±1.2 meV. This is purely an electronic value in the absence
of electron–phonon interaction and volume changes associated with anharmonicity
(for details see [75–77] and below).

Returning to Fig. 4.11, we can see that the spectrum contains two characteric signa-
tures, attributed to the excitonic transitions across the E′

0 and E 1 gaps. Isotopic depen-
dence of the E′

0 and E1 is displayed in Fig. 4.11, where the photomodulated reflectivity
spectra of 28Si, 29 Si, and 30Si are shown for the spectral range 3.3≤E≤3.58 eV.
The E′

0 and E1 excitonic band gaps determined in paper [75–77] from the line-shape
analysis. Linear least-squares fit yielded the corresponding isotopic dependences E′

0
= (3.4468−0.3378M−1/2) eV and E1 = (3.6120−0.6821M−1/2) eV. In conclusion,
we should note that the spin-orbit interaction depends on Ge in contrast to that in Si
[75–77].

As is well known, the fundamental energy gap in silicon, germanium and dia-
mond is indirect (see, e.g. [72] and Fig. 4.3). While the conduction band minima in
Si and diamond are located at the � point along 〈100〉, with �6 symmetry, those
of germanium with L+

6 symmetry occur at the 〈111〉 zone boundaries [75–77]. The
onset of the absorption edge corresponds to optical transition from the �+

8 valence
band maximum to the L+

6 conduction band minima in Ge, and the �6 in Si and
diamond; for wavector conservation, these indirect transitions require the emission
or absorption of the relevant phonons. In Si and C, transverse acoustic (TA), longi-
tudinal acoustic (LA), transverse optic (TO) or longitudinal optic (LO) phonons of
� symmetry must be simultaneously emitted or absorbed. In Ge (see, also above),
the wavector conserving phonons are TA, LA, TO or LO phonons with L symme-
try. At low temperatures, these indirect transitions are assisted by phonon emission.
In this case we should expect at low temperatures four excitonic derivative signa-
tures at photon energies Egx +�ω−→q , j in modulated transmission experiments and in
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Fig. 4.11 (a) Signatures of
the E′

0 and E1 excitonic band
gaps of 28Si observed (dots) in
photomodulated reflectivity.
The solid line is a theoretical
fit using the excitonic line
shape. (b) Photomodulated
reflectivity spectra of isotopi-
cally enriched Si exhibiting
isotopic shifts of the E′

0 and
E1 gaps (after [75–77])

(a)

(b)

photoluminescence at the photon energies Egx − �ω−→q , j . Here Egx is the excitonic
band gap and j corresponds to a wave vector preserving phonon (see, also formula
(4.13)). In Fig. 4.12a the photoluminescence and wavelength—modulated spectra of
30Si M = 2.81 amu) are displayed; the labels n = 1 and 2 designate the ground
and the first excited states of the indirect TA and and TO excitons. From the ener-
gies of the photoluminescence and wavelength-modulated excitonic signatures in all
isotopic specimens [75–77] cited authors deduce Egx as well as the energies of the
participating TO, LO and TA phonons, shown in Fig. 4.12b as function of M −1/2. The
excitonic band gap data are fitted well with expression Egx (M)= Egx (∞)−CM−1/2,
yielding Egx (∞) = (1213.8 ± 1.2)meV and C = (313.7 ± 5.3)meV/amu. A linear
fit in M can be made over small range of available masses (see, Fig. 4.12b) with a
slope (∂Egx /∂M)P,T 1.01 ±0.04 meV/amu, which agrees with the results of bound
exciton photoluminescence of Karaiskaj et al. [74]. The experiments in [75–77] also
indicate that separation of the n = 2 and n = 1 excitons is isotope mass independent,
implying, according to these authors, the excitonic binding energy is independent on
isotope mass within experimental error. In concluding this part we should note that
recent high-resolution spectroscopic studies of excitonic and impurity transition in
high-quality samples of isotopically enriched Si have discovered the broadening of
bound exciton emission (absorption) lines connected with isotope-induced disorder
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Fig. 4.12 a Photoluminescence (PL) and wavelength-modulated transmission (WMT) spectra of
isotopically enriched 30Si recorded at 20 K; b The excitonic indirect band gap and the associated
phonon energies as a function of M (after [75–77])

as well as the dependence of their binding energy on the isotope mass [74–77]. The
last effect was earlier observed on the bound excitons in diamond [78, 79], and earlier
on the free excitons [80] in LiHx D1−x mixed crystals (see, e.g. [81] and references
therein).

4.3 Phonon Spectra of Solids: Indicator of their Isotope Purity

4.3.1 Thermal Conductivity

In insulators and semiconductors (at T < θD) the thermal conduction is effected
by phonons, predominantly acoustic ones [82]. Thermal conductivity of crystals has
been the subject of many experimental and theoretical studies (see, e.g. reviews and
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monographs [9, 82–88]). The first experimental results (see, e.g. [91]) have already
pointed out the existence of maximum of the thermal conductivity coefficient km at
about T ≈ 0.05 θD , where θD is the Debye temperature. The growth of k at low tem-
peratures has been related to phonon scattering due to Umklapp (U-)—type processes
[31, 87]. In the vicinity of km thermal conductivity is quite sensitive to impurities
and defects in the specimen. The scattering of phonons dynamic isotope disorder
is independent of temperature and lattice anharmonicity. The role of isotopes as an
additional channel of phonon scattering and their influence on thermal conductivity
were first theoretically studied by Pomeranchuk [89] in 1942, and were experimen-
tally studied using Ge in 1958 [90]. According to the results of the latter reference,
for a Ge specimen (having 95.8% 74Ge), a 3-fold growth of the thermal conductivity
coefficient as compared to the specimen of germanium with natural isotope composi-
tion was observed. Later, the influence of isotopes on diamond thermal conductivity
was studied many times [91–93].

It is generally assumed ([31]) that at not too high temperatures, the dominant
interact among phonons involve three phonons. In a “normal” (N-) process the wave
vectors −→q of the phonons are conserved and such a process tends to restore a dis-
turbed phonon distribution to one which can be described as a displaced Planck
distribution (see, e.g. Fig. 5.2 in [83]) which is unaffected by N-processes and cor-
responds to a heat flow. By themselves, therefore, N-processes would not lead to a
thermal resistance.

In Umklapp (U-)—process [87] the wave vectors are not conserved and, as in
other resistive processes, they tend to restore a disturbed phonon distribution to the
equilibrium Planck distribution which corresponds to zero heat flow, and thus lead to
a finite conductivity (for more details, see, review [31]). The Debye expression [94]
for the conductivity k(T) is derived from an adoptional of the simple kinetic theory

k(T) = 1

3

〈
vph

〉
�ph(T)C p(T), (4.32)

where
〈
vph

〉
is an average phonon velocity, �ph(T) their mean free path and Cp(T)

the corresponding specific heat (for diamond see [95]). A theory of k(T) requires
basically the calculation of

�ph(T) = τph(T)
〈
vph

〉
(4.33)

a rather formidable task since several scattering mechanisms (normal-, u- processes,
boundary of sample, isotope scattering) [96] contribute to determining the mean
free path. In formula (4.33) τph(T) is the phonon relaxation time; the simplest
of these mechanisms, and the one that can be varied for a given material of the
acoustic phonons by isotopic mass fluctuations. This scattering is equivalent to
Rayleigh scattering (of photons) at point defect. Within Debye approximation,
we will have
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Fig. 4.13 Thermal conduc-
tivity of natural abundance
(1.1% of 13C) diamons (lower
squares), isotopically enriched
(0.1% 13C) diamond (upper
squares), together with the
low-temperaturw data (cir-
cles) and high-temperature
data. The solid curves are
the result of fitting the Call-
away theory [86] to the data,
using tha same set fitting para-
meters. The inset shows the
calculated thermal conductiv-
ity corresponding to 1, 0.1,
and 0.001% 13C concentration
according to Callaway theory
(after [93])

k(T ) = kB

2πν

(
kB

�

)3

T 3

θD
T∫

0

τ(x)
x4ex

(ex − 1)2 dx . (4.34)

In the latter expression kB is the Boltzmann constant. Klemens [82] was the first to
try to take the role of N-processes into account. Using perturbation theory Klemens
[82] developed the following expression for the scattering rate τ−1

isotope:

τ−1
isotope = x(x − 1)V0

4π
〈
vph

〉3

(
�M

M

)2

ω2, (4.35)

where V0 is a volume per atom (for diamond 5.7 ×10−24 cm3) and ω is phonon
frequency. Callaway approach [86] successfully introduces normal phonon scattering
(τ−1

N ) and resistive scattering (τ−1
R ) (see formula (4.51) in [31]).

Figure 4.13 presents the results of Wei et al. [93]. The solid curves are the result of
fitting the Callaway theory [86], using a single set of fitting parameter. In their paper,
Wei et al. have measured a record thermal conductivity of 410 Wcm−1K−1 at 104 K
for a 99.9% 12C enriched diamond. These authors predict that a 99.999% 12C dia-
mond should have a peak value of thermal conductivity exceeding 2,000 Wcm−1K−1,
at about 80 K, assuming, of course, that it is not limited by point defect scattering
mechanisms other than minority isotopes. Similar results have very recently been
reported by Olson et al. [92]. We should stress that none of the currently existing
theories accurately takes into account all the possible scattering processes.
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Thermal conductivity studies have also been performed on very highly enriched,
ultra-pure 70Ge (see, reviews [31, 40]). The maximum value of km = 10.5 kWm−1K−1

was observed, in the vicinity of T = 16.5 K, for the 70Ge specimen of 99.99%
purity, which is significantly higher than the value for sapphire (6 kWm−1K−1 around
Tm = 35 K) and comparable to the value of silver (11 kWm−1K−1 near Tm = 15.4 K).
Comparison of experimental results shows [97] that, at its maximum (see, e.g.
Fig. 6a [46]), the thermal conductivity of the 70/76Ge (91.91%) specimen is 14 times
less than that of 70Ge (91.91%). An increase in k reaches, however, only 30% at
T = 300 K (see, also [31, 40]).

The thermal conductivity of monoisotopic and isotopically mixed specimens of
silicon crystals has been studied in [98–101]. Since the most detailed results have
been obtained by the authors of [100], we restrict ourselves to their consideration. It is
well known that natural silicon consists of three isotopes: 28Si (∼92%), 29Si (∼5%),
and 30Si (∼3%). The use of monoisotopic silicon (for example 28Si) can substantially
reduce the value of dissipated energy scattered in electronic elements made of silicon
(e.g. in the memory of electronic computers [102]). The resulting studies of the
thermal conductivity of monoisotopic and isotopically mixed crystals are shown in
Fig. 4.14. According to the results presented in Fig. 4.14, for SI284 specimen k =
237(8) Wm−1K−1 at 300 K, whereas for the SINI (natural Si) specimen it is equal to
150 Wm−1K−1. This means that at 300 K the thermal conductivity of a monoisotopic
28Si specimen grows, as compared to the natural silicon, by 60% (later-10%, see,
erratum). At the same time, at about 20 K (in the vicinity of the maximum of the silicon
thermal conductivity curve) k reaches the value of 30, 000±5, 000 Wm−1K−1, which
is 6 times higher than the value k = 5140 Wm−1K−1 for natural specimen (see, also
[84]).

The thin solid and dashed lines in Fig. 4.14 correspond to the results of theoretical
computations of thermal conductivity for monoisotopic specimen SI284 and for a
specimen with natural silicon isotope composition. In these calculations, the model
of the Ge thermal conductivity developed in [97] with modified Debye temperature
and phonon mean free path has been used. For fitting, the authors have used the
low-temperature results, where the thermal conductivity is described by the T3 law.
Calculations presented in Fig. 4.14 were performed, for the natural specimen, for
free mean path it equals 5.0 mm (dashed line). For comparison, let us point out that
in Ref. [98] the analogous quantity was equal to 5.7 mm, and for isotopically pure
SI284 specimen the corresponding value was 14.0 mm (thin solid line). As seen
from Fig. 4.14, there is agreement between theory and experiment, which has also
been mentioned by the authors of [100] themselves. They have also pointed out good
agreement between their experimental results and calculations made in [103], except
for the domain of U-processes. Besides, Ruf et al. have mentioned an unsatisfactory
agreement between theory and experiment in the domain of high-temperatures (300–
400 K), especially for the specimen with natural isotope composition. They think that
this disagreement can occur due to fundamental reasons that require further study.
In particular, taking into account the fine structure of the nonequilibrium phonon
distribution function could bring theoretical and experimental results much closer.
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Fig. 4.14 Thermal conductivity of the highly isotopically enriched 28Si sample SI284 (filled circles)
and the natural Si reference SINI (open circles). The filled and open triangles are other measurements
for highly isotopically enriched 28Si and natural Si, respectively (from Ref. [84]); “plus” symbols
denote the “standard” curve for natural Si (from [84]). The thin solid and dashed lines are the
theoretical results of [98] for 28Si and natural Si, respectively. The thick solid line has been calculated
with the same theory using the actual mass variance g2 of sample SI284 (see, also Table 4.4) (after
[100])

Table 4.4 Comparison of the effect of isotopic scattering on the thermal conductivity of natural
Ge, Si and diamond at 300 K

% increase in k θ � × 10−4

Ge 30 376 5.80
Si 60 658 2.01
Diamond 50 1860 0.76

The % increase in k is the increase of the thermal conductivity of the nearly isotopically pure sample

compared to the natural sample. The isotope is defined as g = ∑
i fi

(
�Mi

M

)2
(after Asen-Palmer

et al. [97], Capinski et al. [99] and Ruf et al. [100])

A qualitative comparison of the influence of the isotope effect on the thermal of
germanium, silicon and diamond is given in Table 4.4.

In conclusion we should remark that until recently all theories on thermal con-
ductivity had a strongly phenomenological flavour, making use of the relaxation
time approximation. In recent years, considerable progress towards an ab initio the-
ory has been made [103, 104]. These authors used two- and three-body potentials
obtained by fitting phonon dispersion relations and related the anharmonic proper-
ties with a single average Grü neisen parameter. In this manner they determined the
third-order coupling coefficients for all possible three-phonon combinations. They
then solved iteratively the Boltzmann equation for phonon transport without using
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the relaxation-time approximation. A scattering time must, however, still be used to
describe boundary scattering in the lowest temperature region. In this manner they
reproduced rather well the thermal conductivities of Ge, Si and diamond and the
observed isotope effects (for details see [103, 104]).

4.3.2 Isotope-Induced-Disorder Raman Scattering

The frequencies of vibrational modes in a solid depend on the interatomic forces
and the atomic masses. By changing the mass of atoms by isotopic substitution
the frequencies of modes are changed in a small but characteristic way that can be
monitored by Raman spectroscopy. In isotopically pure crystals the width �0 of the
Raman line is determined—apart from experimental resolution—by the phonon life-
time which is governed by the spontaneous anharmonic decay into phonon of lower
energy [82]. In an isotopically disordered material an additional contribution �isotope
to the linewidth comes from the elastic scattering of phonons via mass fluctuation
and has been observed for many semiconductors (see, review [40] and reference
therein). Line shift and line broadening are theoretically obtained as real and imag-
inary parts of a complex self-energy which can be calculated in the framework of
a coherent potential approximation (CPA) in the case of weak phonons scattering
[31]. This theory describes, for example, frequency shift and line broadening very
well in isotopically disordered diamond [105], Ge [106] and α-Sn [107]. A mass per-
turbation theory of the harmonic lattice dynamics for calculating �isotope has been
developed by Tamura and applied to Ge [108], GaAs and InSb [109]. For the com-
plex self-energy of the Raman phonon of asemiconductor with diamond structure,
the Second-order term (n = 2) contains the real part [110, 31]

�2(ω, x) = g2(x)

4
ω

(
1

6Nc

) ∑

i

ωi
ω − ωi

(ω − ωi )2 + γ 2 (4.36)

and the imaginary part (see, also [108, 109])

�2 (ω, x) = g2(x)

4
ω

(
1

6Nc

) ∑

i

ωi
γ

(ω − ωi )2 + γ 2 . (4.37)

In the last two formula Nc is the number of unit cells. For γ → 0 Eq. (4.36)
simplifies to a sum over δ-functions, which represents the one - phonon density of
state ρ(ω) (compare to [109]),

�2 (ω,x) = �iso = τ−1
iso = π

6
ω2g

∣
∣−→e ∣

∣ ρ (ω) . (4.38)

From this relation we can see, that �iso depends on three factors:
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(i) the relative mass variance g2;
(ii) the phonon density of states ρ(ω) at the frequency ω of the Raman mode, and

(iii) a relevant phonon eigenvector −→e .

In modern language, as above, phonons are referred to as quasiparticles, with a
complex self-energy � = �r + i�i induced in insulators (semiconductors) by anhar-
monic phonon–phonon interactions and in crystals with several isotopes of a given
element also by isotopic mass disorder. In metals and heavily doped semiconductors
one must also take into account the self-energy which corresponds to the interaction
of the phonon with the conduction electrons. The purpose of this section is to discuss
the isotopic disorder contributions to the self-energy of phonons, in the first step
in semiconductors of the tetrahedral variety with special emphasis on the quantum
effects observed at low temperatures (especially in diamond—where isotopic effects
dominates over the anharmonic ones—as well as in germanium where anharmonic
effects are larger [31]).

The definition of the average mass m = ∑

i
ci mi implies that g1 = 0. In fur-

ther discussion, we display a compilation of the disorder-induced self-energies for
the Raman phonons of elemental and compound crystals (diamond, Si, Ge, α-Sn
and LiHx D1−x , 6H-Sic polytype) which have been obtained either by Raman spec-
troscopy or from theoretical calculations by several research groups during the last
two decades. Raman studies that address the variation of the self-energy with the
isotopic composition have been conducted for LiHx D1−x (see, for example review
[55]), diamond [44, 105, 111, 112], and Si [113]. The coherent potential approx-
imation (CPA) has been employed for diamond [105, 111] and Si [113], while ab
initio electronic structure-based calculations have been performed for diamond and
Ge [114].

Figure 4.15 displays the Raman frequencies of diamond versus the 13C concen-
tration. The points (open symbols) represent experimental values. The dashed curve
represents the approximately linear dependence expected in the VCA. The upward
curvature of the experimental data (with respect to the VCA line) clearly demon-
strates the existence of an isotopic-disorder-induced self-energy as emphasised by
the solid line, which is a fit with Eq. (2.39) for n = 2, 3 of Ref. [31]. It is difficult to
see with the naked eye in Fig. 4.16 the asymmetric behavior versus x , which may arise
from third-order perturbation terms. The asymmetry appears, however, rather clearly
when the difference between the measured (or the calculated) behavior and the VCA
line is plotted, as shown in Fig. 4.16. In this figure, the solid line also represents the
fit to all experimental data, the dot–dashed line represents CPA calculations while
the dotted line is a fit to the asterisks which indicate points obtained in the ab initio
calculations [7, 41]. All data in Fig. 4.16 show a similar asymmetric behaviour, with
a maximum of �dis (x) at x ≈ 0.6. These results allow us to conclude that the real
part of the self-energy due to isotopic disorder is well understood for these systems,
including the superposition of second-order and third-order perturbations terms in
the case of the diamond. A Similar degree of understanding has been reached for
�dis (x) as shown in Fig. 4.17. The x position of the maxima of �dis and �dis deter-
mined from the experimental data agree with those obtained by perturbation theory
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Fig. 4.15 Raman shift of iso-
topically disordered diamond.
The open symbols represent
experimental values [44, 105,
111, 112]. The dashed line
indicates the harmonic scal-
ing of the phonon frequency
within the VCA (ω ∼ m−1/2).
The solid line corresponds
to a fit with Eq. (2.40) for
n = 2, 3 of Ref. [31] to all
experimental data, added to
the VCA scaling (after [110])

(Eq. (2.42) of Ref.[31]) and also with the CPA and ab initio calculations (for details
see [110]). Concerning the other elemental semiconductors, detailed experimental
results with sufficient values of x to reach quantitative conclusions of the type found
for diamond, are only available for Si. These data for Si are shown in Figs. 4.18 and
4.19 (filled circles) together with the results of CPA calculations (filled squares).
The latter show for �dis a clear asymmetry with a maximum at xmax,� ≈0.56. The
quality and the number of the experimental points are not sufficient to conclude
that an asymmetry exists but they cannot exclude it either. The measured absolute
values of �dis almost (not quite) agree within error bars with the calculated ones.
The corresponding experimental; values of �dis (x) (see Fig. 4.19) are about a factor
of 2 lower than the calculated ones, although both show the asymmetric behavior
(xmax,� ≈0.62) predicted by theory. The reason for the discrepancy between the cal-
culated and measured �dis is to be sought in the mechanism responsible for it in Si
[96]. Within harmonic approximation �dis = 0 for Si, Ge and α-Sn, because the
Raman frequency is at the maximum of the spectrum and thus corresponds to zero
density of one-phonon states. The rather small, but not negligible, observed value of
�dis results from DOS induced at the � point by the anharmonic interactions respon-
sible for the linewidths of the isotopically pure crystals. Thus, the widths observed
for Si, as well as for Ge and α-Sn, correspond to fourth-order (twice disorder and
twice anharmonicity) and higher order terms.
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Fig. 4.16 Disorder-induced
shift of the Raman phonon
of diamond as a function of
the 13C concentration. The
open symbols are Raman
experimental data, whereas
the asterisks correspond to
ab initio calculations [40,
114, 115]. The solid line
is a fit with Eq. (2.40) for
n = 2, 3 of Ref. [31] to all
experimental data. The dotted
and dot–dashed lines represent
the fits to theoretical values
obtained from ab initio and
CPA calculations, respectively
(after [110])

As was shown in [109, 110], the isotope effects of a disordered sublattice in a
compound is different from that for the corresponding monatomic crystal. Widulle
et al. apply Eqs. (2.50a) and (2.50b) of Ref. [31] to the Raman spectroscopic results
on a variety of natSi12C1−x

13Cx polytypes, recently reported by Rohmfeld et al.
[116]. They have performed a fit Eq. (2.40) for n = 2, 3 of Ref. [31] to the linewidths
of the transverse optic (TO) modes of the 6H-SiC polytype measured in [116] for
13C concentration ranging from x = 0.15 to 0.40 Fig. 4.20). The fit performed in
Ref. [116] was based on the asymmetric curve obtained by CPA calculations for
diamond [105]. This curve was first fitted to the data points of the TO (2/6) mode and
further adjusted to the TO (0) and TO (6/6) modes by multiplication with the constant
eigenvectors. Instead, authors [110] have considered each TO mode separately and
performed fits with Eq. (2.40) for n = 2, 3 of Ref. [31] in the same manner as
for elemental semiconductors (see above). Widulle et al. used, however, parameters
appropriate to SiC, not to diamond. In this way, they conclude that the behavior of
�dis versus x is asymmetric (Fig. 4.20). This fact cannot, according to Widulle et al.,
be derived from the data of the results paper [115]. The latter can be fitted equally
with either a symmetric or an asymmetric curve.

As has been mentioned many times, the isotopic disorder in the crystal lattice
lifts the forbiddenness imposed by the quasiimpuls conservation law, thus allowing
a contribution to the half-width of the scattering line from other phonons from the
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Fig. 4.17 Disorder-induced
broadening of the Raman
phonon of diamond as a func-
tion of the 13C concentration.
The filled circles have been
obtained from the Raman data
by taking into account the
corresponding instrumental
resolutions and substracting
the anharmonic broadening
�anh ≈2 cm−1 (FWHM). The
solid line is a fit with Eq. (2.40)
for n = 2, 3 of Ref. [31] to
these points. The dotted and
dot–dashed lines are the cor-
responding fits to the values
obtained from ab initio [114,
115] and CPA [105] calcu-
lations, respectively (after
[110])

domain with the maximum density of states, especially from the TO branches of Ge.
The two structures observed in the spectrum of first-order Raman scattering near 275
and 290 cm−1 correspond to the maximum of the density of states of TO phonons
(see [40] and references therein), which become active because of the violation of
the quasi—momentum conservation law by the isotopic disorder in the crystal (see,
for instance Fig. 20 in [46]). The effect of the development of an additional structure
in Raman scattering spectra was observed relatively long ago [117] in isotopically
mixed LiHx D1−x (Fig. 4.21). The effects caused by isotopic disorder in the crystal
lattice in isotopically mixed are analogous to those described above (see, also [46]).
There exist, however, principal differences. In contrast to Ge and C, in which the first-
order spectra exhibit a one-mode character, the Second-order spectra of LiHx D1−x

crystals have one- and two-mode characters for LO(�) phonons, and also contain a
contribution from the local excitation at small values of x. Figure 4.21 demonstrates
the dependence of the half-width of the line of LO(�) phonons in light-scattering
spectra on the concentration of isotopes. One clearly sees a substantial growth (by
factor 2–4) of the half-width of the line with increasing concentration of isotopes, as
well as the existence of a short-wavelength structure that has already been related in
Ref. [117] to the excitation of TO phonons in isotopically disordered crystal lattice
(for more details see [118]).

To conclude this part of this chapter, we should note that in contrast elemental
semiconductors, where isotope scattering potential is weak, in the caseisotope-mixed
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Fig. 4.18 Disorder-induced
broadening of the Raman
phonon of Si as a function of
the 30Si concentration [113].
The solid line is a fit with
Eq. (2.40) for n = 2, 3 of
Ref. [31] to the experimental
data. The dot–dashed line
represents the corresponding
fit to the values obtained from
CPA calculations (after [110])

crystals LiHx D1−x isotope scattering potential is very strong and CPA approximation
in such simple version does not describe the Raman spectra of these crystals.

4.4 Effects of Isotope Randomness on Electronic Properties and
Exciton Transitions

As follows from Fig. 4.9, excitons in LiHx D1−x crystals display a unimodal character,
which facilitates the interpretation of their concentration dependence. Figure 4.22
shows the concentration dependence of the energy of interband transitions Eg . Each
value of Eg was found by adding together the energy of the long-wave band in the
reflection spectrum and the binding energy of the exciton. The latter was found from
the hydrogen-like formula using the experimental values of the energies levels of 1s
and 2s exciton states. We see that the 100% replacement of hydrogen with deuterium
changes Eg by �Eg = 103 meV at T = 2 K(see, e.g. [61]). This constitutes 2%
of the energy of the electron transition, which is two orders of magnitude greater
than the value corresponding to the isotopic replacement of atomic hydrogen with
deuterium reported earlier [119].

The nonlinear concentration dependence of Eg can be sufficiently well approxi-
mated with a second order polynomial
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Fig. 4.19 Disorder-induced
broadening of the Raman
phonon of Si as a function of
the 30Si concentration [113].
The solid line is a fit with
Eq. (2.40) for n = 2, 3 of
Ref. [31] to the experimental
data. The dot–dashed line
represents the corresponding
fit to the values obtained from
CPA calculations (after [110])

Eg (x) = Eb + (Ea − Eb − b)x − bx2, (4.39)

where Ea , Eb are the values of Eg for LiD and LiH respectively, and b is the curvature
parameter equal to 0.046 eV. This result generally agrees with the published data (see
also Elliott and Ipatova [120] and references therein). For comparison let us indicate
that in the case of isotopic substitution in germanium the energy Eg depends linearly
on the isotopic concentration for both direct (E0, E0 + �0, E1 + �1) and indirect
electron transitions [121]. Unfortunately, today there is no information about the
form of the function Eg ∝ f (x) for isotopic substitution in C, ZnO, CdS, CuCl,
Cu2O, GaAs,GaN, Si, etc., crystals, although, as noted above, the values of Eg have
been measured for isotopically pure crystals. However, we should add that isotopic
substitution in Ge leads not only to the shift of the luminescence spectrum, but also
to the nonlinear concentration dependence of the emission line half-width, as in the
case of lithium hydride (see, below) was attributed to isotopic disordering of the
crystal lattice [122].

According to the results depicted in Fig. 4.9, the addition of deuterium leads not
only to the short-wave shift of the entire exciton structure (with different rates for
Is and 2s states [61]), but also to a significant broadening of the long-wave exciton
reflection line. This line is broadened 1.5–3-fold upon transition from pure LiH to
pure LiD. The measure of broadening was the halfwidth of the line measured in the
standard way [123, 124] as the distance between the maximum and the minimum in
the dispersion gap of the reflection spectrum, taken at half-height. The concentration
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Fig. 4.20 Disorder-induced
broadening of the Raman
modes of the 6H-SiC polytype
versus the 13C concentration
of the carbon sublattice. The
data are taken from [116] the
solid lines represent fits with
Eq. (2.40) for n = 2, 3 of
Ref. [31] to the data points
that correspond to the TO(0),
TO(2/6) and TO(6/6) phonon
modes (after [116])

dependence of the halfwidth (�ER) of the long-wave band in the exciton reflection
spectrum at 2 K is shown in Fig. 4.23. Despite the large spread and the very limited
number of concentrations used, one immediately recognises the nonlinear growth
of �ER with decreasing x. A similar concentration dependence of �ER in the low-
temperature reflection spectra of solid solutions of semiconductor compounds A2B6
and A3B5 has been reported more than once (see e.g. the review [120] and references
therein). The observed broadening of exciton lines is caused by the interaction of
excitons with the potential of large-scale fluctuations in the composition of the solid
solution. Efros and colleagues [125] used the method of optimal fluctuation [126] to
express the formula for the concentration dependence of the broadening of exciton
reflection lines:

�ER = 0.5α

[
x (1 − x)

Nrex

]1/2

. (4.40)

where α = dEg/ dx; rex is the exciton radius which varies from 47 A to 42 Å upon
transition from LiH to LiD [5]. The value of coefficient α was found by differentiating
Eq. (4.39) with respect to x—that is, dEg/dx = α = Ea − Eb − b + 2bx . The results
of calculation according to Eq. (4.40) are shown in Fig. 4.23 by a full curve.

The experimental results lie much closer to this curve than to the straight line
plotted from the virtual crystal model. At the same time it is clear that there is only
qualitative agreement between theory and experiment at x > 0.5. Nevertheless, even
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Fig. 4.21 Dependence of
the half-width of the line of
2LO(�) phonons in Raman
scattering spectra of (2) the
pure crystal LiH and (3) LiHx
D1−x . Curve (1) shows the
profile of the line of exciting
light (after [46])

Fig. 4.22 Energy of band-to-
band transitions Eg as func-
tion of isotope concentration
in mixed crystals LiHx D1−x
at 2 K: 1–linear dependence
of Eg on x in virtual crys-
tal model; 2–calculation
according to Eq. (4.39), points
derived from reflection spectra
indicated by croses, and those
from luminescence spectra by
triangles (after [61])

this qualitative analysis clearly points to the nonlinear dependence of broadening on
the concentration of isotopes, and hence to the isotopic disordering. Since isotopic
substitution only affects the energy of optical phonon, and, as a consequence, the
constant exciton–phonon interaction (in the first place, the Fröhlich interaction g2

F),
the nonlinearity of functions �Eg ∝ f (x), �ER ∝ f (x) is mainly related to the
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Fig. 4.23 Concentration
dependence of half-width of
the lineof ground state of exci-
ton in mirror reflection spec-
tra at 2 K: 1–approximation
of virtual crystal model;
2–calculation according to
Eq. (4.40); experimental
points indicated by croses
(after [61])

nonlinear behavior of g2
F ∝ f (x). In this way, the experimental study of the con-

centration dependence of the exciton–phonon interaction constant may throw light
on the nature and mechanism of the large-scale fluctuations of electron potential in
isotopically disordered crystals [118].

A principal matter for further theoretical development is the question concerning
the effect of crystal lattice disordering on the binding energy EB of Wannier-Mott
exciton [81]. This problem has been treated theoretically in the papers of Elliott et al.
[127, 128], where they study the effect of weak disordering on EB (the disordering
energy is comparable with EB). The binding energy indicated in the papers was
calculated under the coherent potential approximation by solving the Bethe–Salpeter
equation [129] as applied to the problem of Wannier–Mott exciton in disordered
medium. One of the principal results of this paper [127] is the nonlinear dependence
of EB on the concentration. As a consequence, the binding energy EB at half-and-
half concentrations is less than the value derived from the virtual crystal model.
The exciton binding energy is reduced because the energy Eg is less owing to the
fluctuation smearing of the edges of the conduction and valence band. This conclusion
is in qualitative agreement (although not in quantitative agreement, the discrepancy
being about an order of magnitude [127] with the experimental results for the mixed
crystal GaAs1−x Px with x = 0.37, where the reflection spectra exhibited two exciton
maxima (see also Fig. 4.9) used for finding the value of Eb (see Nelson et al. [130]
and references therein). Let us add that the pivotal feature of the model of Elliott
et al. is the short-range nature of the Coulomb potential (for more details see [32]).

Before the comparison of our experimental results with the theory developed by
Elliott and Kanehisa, it would be prudent to briefly review the main properties of their
theoretical model. According to Ref. [127] this model considers an exciton with a
direct gap of a semiconductor alloy. Such a system consists of an electron (particle 1)
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in the conduction band (c) with mass mc and a hole (particle 2) in the valence band
(v) with mass mv. The problem of the exciton in disordered systems is to solve the
Hamiltonian

H = −→p 2/2mc + −→p 2/2mv + u(
−→r1 − −→r2 ) + Vc(

−→r1 ) + Vv(
−→r2 ), (4.41)

with both the Coulomb interaction u and the potential Vv due to disorder (ν = c, v).
Reference [127] neglected disorder–induced interband mixing. As it is well known, in
place of the electron-hole coordinates, (−→r1 , −→p1) and (−→r2 , −→p2), one may introduce the
centre-of-mass and relative coordinates, (

−→
R ,

−→
P ) and (−→r , −→p ) to rewrite Eq. (4.41)

as

H = −→p 2/2mr + u(
−→r ) + −→

P 2/2M + Vc(
−→
R + mv

−→r /M) + Vv(
−→
R − mc

−→r /M),

(4.42)
where mr and M are the reduced and total masses, respectively. Because of the random
potential, the translational and relative degrees of freedom cannot be decoupled. This
is essentially difficult when considering the two-body problem in a disordered system
[131]. However, when the exciton state in question is well separated from other states
so that the energy spacing is much larger than the translational width and disorder,
one can forget about the relative motion and just apply any single-particle alloy theory
(see, e.g. Ref. [132] and references therein) solely to their translational motion. For
each exciton state the translational part of Hamiltonian in this case is

Ht = −→
P 2/2M + V̄c(

−→
R ) + V̄v(R̄). (4.43)

Here, V̄c and V̄v are averages of Vc and Vv. This approach is very similar to the
Born-Oppenheimer adiabatic approximation. Such situations hold in some mixed
alkali halide crystals and probably A2B6 crystals. On the contrary, when the exciton
binding energy is comparable to the disorder energy, the adiabatic approximation
breaks down, and it is essential to take into account the effect of disorder on both the
translational and relative motions. This is the case with the Wannier-Mott exciton in
A3B5 alloys, for which the Elliott and Kanehisa model was developed. In this case
the solution task is to start from the independent electron and hole by neglecting u
in Eq. (4.42) and then to take into consideration the Coulomb interaction between
the average electron and average hole. A further simplified approach adopted in
the literature [132] in solving the Bethe–Salpeter [129] equation is to suppose a
free-electron-like one particle Green’s function with a built-in width to allow for
the random potential due to disorder. In the cited theoretical model, the average (or
“virtual crystal”) gap is given by

Evc
g (x) = E0 + (δc − δv)(x − 1/2), (4.44)

where E0 is average gap, δc, δv are the values of the fluctuation broadening of the
conduction and valence bands, respectively. Reference [127] also assumed the Hub-
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bard density of states for both the conduction and valence bands with width Wc and
Wv, respectively, as well as similar dispersion in both bands. With this assumption
the exciton binding energy has been calculated according to the CPA model (see,
also [52]). It should be added here that the key feature of the model developed in
Ref. [127] is the short-range nature of the Coulomb potential.

The data from Table 4.2 and other published sources [32, 61, 118] were used
for plotting the energy EB as a function of isotopic concentration x in Fig. 4.24.
The values of binding energy EB were calculated using the hydrogen-like formula
(see below) with the energies of exciton levels of 1s and 2s states being found from
the reflection spectra (see Fig. 4.9). Theoretical description of the binding energy of
Wannier–Mott excitons as a function of x was based on the polynomial derived by
Elliott and coworkers [127]:

Eb = Ecrys
b − Ebow

[
1 − W

2U 0

]

− Eeff , (4.45)

Eeff = x(1 − x)
δcδv

W
, (4.46)

Ecrys
b = U0 + W

2U 0
− W. (4.47)

where W = Wc + Wv, and Wc and Wv are the widths of the conduction band and the
valence band which are equal to 21 eV [133] and 6 eV [21, 22] respectively. Here
Ebow is the curvature parameter found from the function Eg ∝ f (x); δc and δv are the
magnitudes of the fluctuation smearing of the valence band and the conduction band
edges, δc = 0.103 eV and δv = −0.331 eV. As follows from Fig. 4.24, these values
of the parameters give a good enough description of the nonlinear dependence of
the binding energy of Wannier-Mott exciton in disordered medium. This agreement
between theory and experiment once again proves the inherent consistency of the
model proposed by Kanehisa and Elliott, since the isotopic substitution affects the
short-range part of the interaction potential (see, also [134, 135]).

In this way, the nonlinear dependence of the binding energy of Wannier-Mott
exciton is caused by isotopic disordering of the crystal lattice. As is seen from
Fig. 4.24 the exciton binding energy decreasing (relative linear law (VCA)-see dashed
line in Fig. 4.24) in the vicinity of the middle meaning concentration really calls
out the fluctuated broadening of the edge of the conduction and valence bands.
In accordance with the theoretical model the last reason gives rise to the reduced Eg
and thereby the shallowing of the exciton levels and, respectively, the reduction of
Eb (for more details see [81, 118]).
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Fig. 4.24 Concentration
dependence of binding energy
of Wanier–Mott exciton;
1–approximation of vitual
crystal model; 2–calculation
according to Eq. (4.45): exper-
imental points indicated by
triangles (after [118])

4.5 Zero-Point Field Energy

4.5.1 Zero-Phonon Vibration Energy in Solids

The short history of zero-point vibration energy can be found in Rechenberg’s paper
[136]. According to Rechenberg, M. Planck used this conception at a Berlin meeting
of German Physical Society in 1911 [137] after which it was used numerously (see,
e.g. [94, 138, 139]). For the first time in solid state physics the conception of zero-
point vibration energy probably was used by Fan [140] and for the interpretation of
experimental results by Kreingol’d et al. [65, 66, 68], Cardona et al. (see, e.g. [141,
40]) as well as Agekyan et al. [41]. The classical definition of this conception have
proposed by Baym [142]…. “ The minimum amount of kinetic energy coming from
the uncertainty principle is called zero-point energy” (see, also [143, 144]).

The effect of changing the atomic mass M is to change the phonon frequencies ω

according to Eq. (4.19)

ω =
√

α

M
, (4.19′)

where α is a force constant characteristic of the phonon under consideration (see
above). The change in atomic mass implies, at low temperatures (see below), a change
in the average atomic displacement for each phonon mode. In the case of one atom
per primitive cell the mean squared phonon amplitude 〈u2〉 is given by [126]:
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〈u2〉 =
〈

�
2

4Mω
[1 + 2nB(ω)]

〉

=
〈

�

4M1/2α1/2 [1 + 2nB(ω)]

〉

, (4.48)

where nB(ω) is the Bose–Einstein statistical factor, ω is the frequency of a given
phonon and 〈…〉 represents an average over all phonon modes. The average in r.h.s.
of Eq. (4.48) is often simplified by taking the value inside 〈…〉 at an average frequency
ωD which usually turns out to be close to the Debye frequency. We should distinguish
between the low temperature (�ω�kBT) and the high temperature (�ω�kBT) limits
and see:

(�ω � kB T ), 〈u2〉 = �

4MωD
∼ M−1/2 independent of T and

(�ω � kB T ), 〈u2〉 = kB T

2Mω2 ∼ T independent of M. (4.49)

Using Eq. (4.49) we can find from the latter equations that 〈u2〉, the zero-point vibra-
tional amplitude, is proportional to M−1/2 at low temperatures: it thus decreases with
increasing M and vanishes for M → ∞. For high T, however, we find that 〈u2〉 is
independent of M and linear in T (for details see [135] and references therein).

The temperature and isotopic mas dependence of a given energy gap Eg(T, Mi )
can be described by average Bose–Einstein statistical factor nB corresponding to an
average phonon frequency θi as [73, 141, 145]

Eg(T, Mi ) = Ebar − ar

(
Mnat

Mi

)1/2

[1 + 2nB] , (4.50)

where nB = 1/[exp
(

θi
T

)
− 1] and Ebar and ar the unrenormalised (bare) gap and

the renormalisation parameter, respectively. In the low-temperature limit, T � θi ,
Eq. (4.50) reduces to

Eg(T, Mi ) = Ebar − ar

(
Mnat

Mi

)1/2

(4.51)

Here, Eg(T, Mi ) is independent of temperature and proportional to (1/Mi )1/2,
whereas ar is the energy difference between the unrenormalised gap (Mi → ∞) and
the renormalised value [140, 146].

In the high-temperature limit, T � θi and Eq. (4.51) can be written as

Eg(T, Mi ) = Ebar − 2T
ar

θ
, (4.52)

and Eg(T, Mi ) is independent of Mi [31]. The extrapolation of Eq. (4.52) to T = 0 K
can be used to determine the unrenormalised gap energy Ebar, i.e. the value that cor-
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Fig. 4.25 Temperature
dependence of the indirect
gap of silicon. The points are
experimental, the solid curve
represents a single Einstein
oscillator fit to the experi-
mental points. The dashed
line represents the asymptotic
behavior at high temperature:
its intersept with the vertical
axis allows us to estimate the
bare gap and thus the zero-
point renormalisation due toe
electron–phonon interaction
(after [40])

responds to atoms in fixed lattice position without vibrations (frozen lattice [119]),
from the measured temperature dependence of Eg(T) in the high-temperature (i.e.
linear in T) region. Figure 4.25 shows the indirect gap dependence of silicons of the
T [96]. It is important to note that the experimental T range of Fig. 4.25 (confined
to T < θ ) does not suffice to determine the asymptotic behavior for T −→ ∞.
The experimental range is usually limited (to 300 K in Fig. 4.25) by the broad-
ening the optical spectra with increasing T. As already mentioned, the zero-point
renormalisation of a gap can also be estimated from the corresponding isotope effect.
In the case of Eind for silicon, a gap shift of −1.04 meV/amu is found for T � θ [40].
On the basis of Eq. (4.52), the isotope effect leads to a renormalisation of 60±1 meV
for the Eind in silicon, in reasonable agreement with the value ∼57 meV found from
the Eind (T) asymptote. The isotope shift, and the corresponding zero-point renor-
malisation, have also been determined for the indirect gap of Ge (see Fig. 4.26). They
amount to (at T 
 6 K): isotope shift equals 0.36 meV/amu, renormalisation equals
−53 meV. The value of −370 meV found for the zero-point renormalisation of Eind
in diamond (see, Fig. 4.27) can be used to obtain the dependence on isotopic mass
by means of the M−1/2 rule Eq. (4.51) [40]

dEind(0)

dM
= 1

2
× 370 × 1

13
= 14.2 meV/amu. (4.53)

The last value is in excellent agreement with the value estimated above. A recent
semiempirical LCAO calculation results in a renormalisation of 600 meV [141],
even larger than the experimental values. The value of the exciton energy shown in
Fig. 4.27, 5.79 eV, can be compared with ab initio calculations of the indirect gap
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Fig. 4.26 Temperature
dependence of the indirect
gap measured for Ge (dots).
The solid line (through the
points and at higher tempera-
ture) represents a fit a single
oscillator. The thin line below
200 K represents the linear
extrapolation of the single-
oscillator fit to T = 0 K, used
to determine the zero-point
renormalisaton of −53 meV
(after [79])

[40], which yield an indirect gap of 5.76 eV. This value must be compared with that
from Fig. 4.27 adding the exciton binding energy (5.79 + 0.07 = 5.86 eV). This
experimental gap value according to [27] is in rather good agreement with ab initio
calculations. The agreement becomes considerably worse if the zero-point renor-
malisation of 370 meV is not taken into account (5.48 vs. 5.76) All these arguments
support the large zero-point renormalisation found for the indirect gap of diamond.

Using Eq. (4.51) can be written the difference in energy �Eg between a given
energy gap in isotopically pure material (LiH) and its isotope analogue (LiD)

�Eg = Eg(Mi ) − Eg(Mnat) = ar

[

1 −
(

Mnat

Mi

)1/2
]

. (4.54)

As can be seen from Table 4.1 and results of [145] �Eg at 2 K equals �Eg =
0.103 eV and Eg(LiH, T = 0 K ) = 5.004 eV (linear approximation and Eg(LiH, T =
300 K) = 4.905 eV then using Eq. (4.52) we obtain ar = 0.196 eV. This magnitude
is very close (approximately 84%) to the value of 0.235 eV of zero (see Fig. 4.28)
vibration renormalisation of the energy band gap in LiH crystals (for details see [45,
146]). Using Eq. (4.54) we obtain �Eg(theor)= 0.134 eV that is very close, on the
other hand, to observed experimental value equals 0.103 eV. The discrepancy between
these values may be caused by the negligible contribution of the isotopic lattice
expansion to the band gap renormalisation as well as small temperature range. We
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Fig. 4.27 Energy of the indi-
rect exciton of dimond versus
temperature. The points are
experimental. The extrapola-
tion of the linear behavior of
the fitted curve at high T as a
straight line to T = 0 K leads
to a zero-point gap renormal-
isation of −370 meV, much
larger than the accuracy of
100 meV often claimed for
full-blown ab initio calculatu-
ions (after [40])

Fig. 4.28 zero-point energy
renormalisation of exciton
state in LiH crystals (after
[96])

should add, so far LiH and LiD have different temperature coefficients dEn=1s
dT (LiH) =

0.19 meVK−1 and dEn=1s
dT (LiD) = 0.25 meVK−1 [118], we may conclude that the

isotope effect at high temperature is disappeared (Fig. 4.29) (see, also [96]).
Several groups have conducted low-temperature studies of the direct and indirect

band gaps of natural and isotopically controlled Ge single crystals. Parks et al. [121]
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Fig. 4.29 Temperature shift
of location of maximum
of 1s exciton state in the
reflection spectrum of crystals,
1 LiH; 2 LiH0.25D0.75; 3
LiD. Experimental values
are shown by points and
the calculated values by full
curves (after [61])

have used piezo- and photomodulated reflectivity spectra of four monoisotopic and
one natural Ge crystals. These techniques do not require the extreme sample thinning
which is necessary for optical-absorption measurements and the derivative nature of
the spectra emphasises the small changes. The excellent signal-to-noise ratio and the
superb spectral resolution allowed a very accurate determination of the dependence of
EDG on isotopic mass. At very low temperatures an inverse square-root dependence
accurately describes band-gap dependence EDG = E∞

DG + C√
M

.

A fit through five data points yields E∞
DG = 959 meV and C = −606 meV/amu1/2.

Written as a linear dependence for the small range of isotopic masses, Parks et al.
find dEDG/dA = 0.49 meV/amu, in perfect agreement with the results of other
researchers [40]. Parks et al. also determined the isotope mass dependence of the sum
of the direct gap and the split-off valence band (�0) and find d(EDG + �0)/dA =
0.74 meV/amu. The experimental results can be compared to the Zollner et al. [141]
calculations which are found to be of the correct order of magnitude. The theoretical
estimates for the contributions of the linear isotope shifts of the minimum, indirect
gaps which are caused by electron-phonon interaction, are too large by a factor of
∼1.7 and for the smallest direct gap they are too large by a factor ∼3.2. The analogous
results were obtained by Zhernov [147], who have criticised the approach of Cardona
et al. in estimation of zero-point renormalisation of the band gap.
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4.5.2 Origin of Zero-Point Field Energy

According to contemporary physics, the Universe is made of matter fields, whose
quanta are fermions and force fields, whose quanta are bosons. All these fields have
vacuum fluctuations and zero-point energy. Although the concepts of zero-point
energy arise in introductory courses on quantum mechanics, usually in connection
with the harmonic oscillator, it is typically brushed aside as one of the formal pecu-
liarities of quantum theory (see, above Chap. 3), and even in advanced treatises there
is seldom any discussion of its theoretical significance or experimental relevance
[148]. This paragraph is a discussion of the concept of the origin of zero-point
energy.

As is well known the quantum theory of physics predicts that the vacuum of space
in the Universe is filled with low-energy electromagnetic waves, random in phase
and amplitude and propagating in all possible directions. This is different from the
cosmic microwave background radiation (see, also above Chap. 2) and it is referred
to as the electromagnetic quantum vacuum which is the lowest state of otherwise
empty space. When integrated over all frequency modes up to the Planck frequency,
νP ∼ 1043 Hz, this represent an enormous potential source of energy with a density
of as much as ∼10111 J/cm3 which is an in excess of any other known energy source,
for example, this value is much more than the density of nuclear energy.

As we all know the concept of the zero-point energy was first in 1911 in Planck’s
so-called second theory [137] for the blackbody radiation spectrum (see, also [149]).
Planck obtained, for the average energy of an oscillator in equilibrium with radiation
field a temperature T,

u(ν) = hν

ehν/kT−1
+ 1

2
hν, (4.55)

and for the spectral energy density

ρ(ν, T)dν = 8πν2

c3

(
hν

ehν/kT−1

)

dν. (4.56)

It is interesting to note that Planck obtained, in Eq. (4.55) a temperature-
independent term 1

2 hν, suggestive of some residual energy at the temperature
of absolute zero for the oscillator energy but failed to obtain in Eq. (4.56) this
temperature-independent term for the field, which is now identified as the zero-point
field (ZPF) of the fluctuating vacuum field (see, also [150–152]). In 1913, Einstein
and Stern [139] published a paper about the interaction of matter with radiation using
a sample dipole oscillator model. These authors remarked that if such an oscillator
has zero-point energy of �ω per normal mode, then the equilibrium spectrum of
radiation is found to be the Planck spectrum

ρ(ω, T )dω = �ω3/π2c3

ehν/kT − 1
dω. (4.57)

http://dx.doi.org/10.1007/978-3-642-28723-7_3
http://dx.doi.org/10.1007/978-3-642-28723-7_2
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It is clear that Einstein and Stern had attributed the sum of the oscillator ZPF
and the field ZPF solely to that of the oscillator. Had they postulated the correct
zero-point energy of �ω

2 to both the oscillator and the field, they would have arrived
at the correct Planck spectrum with temperature-independent terms see Eq. (4.55).
As this result of Einstein and Stern indicates, there was no concept, at this point,
of the ZPF. In 1916, Nernst [153] stated that it is impossible to tell the difference
between matter and field oscillators if they are in thermal contact to attain statistical
equilibrium, and that Planck equation (4.55) should therefore hold for both matter
and field oscillators. This statement of Nernst is generally considered as the birth of
the concept of the ZPF [136, 149]).

In traditional quantum theory presented in many textbooks (see, e.g. [32]), the
basis of the ZPF is attributed to the so-called Heisenberg Uncertainty Principle.
According to this principle, A and B are two conjugate observables that we are
interested in measuring in a lab experiment and they must obey the commutation
relation [A, B] = i� (� is a Planck’s reduced constant) [154]. Their corresponding
uncertainty relation is

�A�B ≥ �

2
, (4.58)

where �A is the variance (uncertainty) of observable A and �B is that of the con-
jugate observable B. The relation Eq. (4.58) states that if one measures observable
A with very high precision (i.e. its uncertainty �A is very small), then a simul-
taneous measurement of observable B will be less precise (i.e. its uncertainty �B
is very large), and vice versa. In other words, it is not possible to simultaneously
measure two conjugate observable quantitaties with infinite precision. This mini-
mum uncertainty is not due to any correctable flows in measurement, but rather
reflects the intrinsic fuzziriness in the quantum nature of energy and matter. Substan-
tial theoretical and experimental work (see, e.g. [155] and references therein) has
shown that in many quantum systems the limits to measurement precision imposed
by the quantum vacuum zero-point fluctuations (ZPF) embodied within the uncer-
tainty principle. Nowadays, we rather see the Heisenberg Uncertainty Principle
as a necessary consequence, and therefore, a derived result of the wave nature
of quantum phenomena. The uncertainties are just a consequence of the Fourier
nature of conjugate pairs of quantities (observables). For example, the two Fourier-
wave-conjugates time and frequency become the pair of quantum-particle conjugates
time and energy and the two Fourier-wave-conjugates displacement and wavenum-
ber become the pair of quantum-particle conjugates position and momentum (for the
details, see [153]).

The Heisenberg Uncertainty Principle dictates that a quantised harmonic oscil-
lator (a photon state) can never come entirely to rest, since that would be a state
of exactly zero energy, which is forbidden. Every mode of the field must have �ω

2
(ω is the mode/photon frequency, �ω is the energy of a single mode/photon) as its
average minimum energy in the vacuum. This is a tiny amount of energy, but the
number of modes is enormous, and indeed increases as the square of the frequency.
The product of this tiny energy per mode times the huge spatial density of modes
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yields a very high theoretical energy density per volume—see above). It is for this
reason that a ZPE term is added to the classical blackbody spectral radiation energy
density ρ (ω)dω (i.e. the energy per unit volume of radiation in the frequency interval
[ω, ω + dω]) for when the absolute temperature T of oscillator system becomes 0 K
in the vacuum (see, e.g. [148])

ρ (ω) dω = ω2

π2c2

(
�ω

e�ω/kT − 1
+ �ω

2

)

dω, (4.57′)

where, as usually ω = 2πν. The first term inside the brackets is the standard blackbody
radiation energy per mode, and the second term inside brackets is the quantum zero-
point energy (ZPE) per mode. This equation is called zero-point Planck spectral
radiation energy density. From this line of reasoning, quantum physics predicts that
all space must be filled with electromagnetic zero-point fluctuation (the zero-point
field) creating a universal sea of ZPE. The density of this energy depends critically
on where the frequency of the zero-point fluctuations cease (see, e.g. [156]). Since
space itself is thought to break up into a kind of quantum foam at a tiny distance scale
called the Planck length, lP ∼ 10−35 m, it is argued that the zero-point fluctuations
must cease at the corresponding νP . If that is the case, then the ZPE density would be
108 orders of magnitude greater than the radiant energy at the centre of the Sun. That
is the extreme limit. Formally, in quantum electrodynamics (QED) the ZPE density
is taken as infinite. However, arguments based on quantum gravity considerations
yield a finite cutoff at νP (see also below). Therefore, the spectral energy density
is given by ρ (ω)dω = (

�ω3/2π2c3
)
dω, which integrates to an energy density u =

hν4
P /8π2c3 ≈ 10113 J/m3, this value was indicated above. As large as the ZPE is,

interactions with it are typically cut off at lower frequencies depending on the particle
constants or their structure (see, also, Chap. 2).

In stochastic electrodynamics (SED) the origin of the ZPF comes as a direct conse-
quence of the fundamental assumptions. SED is just the ordinary classical electrody-
namics of Maxwell and Lorentz, where instead of taking the homogeneous solutions
of the source—free differential wave equations for the electromagnetic potentials,
as done in traditional electrodynamics, one considers that (because there are many
moving charged particles in the distant Universe) there always is the presence of
a random electromagnetic background in the form of a random radiation affecting
the particles in our experiment. This new boundary condition replaces the null one
of traditional classical electrodynamics. Moreover, as the relative principle dictates
that identical experiments performed in different inertial frames and therefore have
a Lorentz—invariant energy density spectrum. But the only energy density spectrum
that obeys such a condition happens to be one that is proportional to the cubic power
of the frequency. Interestingly enough, this is exactly the same frequency dependence
as that of the QED spectral ZPF energy density presented above when in Eq. (4.57′)
we set the temperature T to zero. In SED we can then write this random radiation
in the same way as the ZPE of QED and it calls the classical electromagnetic ZPE.
Planck’s constant appears then in SED as an adjustable parameter that sets the scale

http://dx.doi.org/10.1007/978-3-642-28723-7_2
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of the ZPE spectral density. Several quantum results have been reproduced by means
of the classical SED approach (see, for example, [157–160]).

In his study of the coordinate operator in the Dirac equation (see [154] and refer-
ences therein), Schrödinger [161] discovered microscopic oscillatory motion at the
speed of light, which he called Zitterbewengung [162, 163]). While Dirac∗) argued
that such motion does not violate relativity or quantum theory, from a “classical par-
ticle point of view, these speed of light motions would seem to imply” masslessness
of the particle (see, also [160] and references therein). According to the monograph
by de la Pena and Cetto [159] the zittewrbewegung is the result of electromagnetic
quantum vacuum fluctuations acting upon a fundamentally point—like massless
charged particle.

Another curiosity of the SED approach is that it could have provided a different
method of attack to the problem of the stability of the ground-state of hydrogen
(see, e.g. [164–166]). As is well known [167], Rutherford’s discovery of the atomic
nucleus in 1911 together with Thomson’s previous discovery of the electron in 1897
led to the analogy between atomic structure and planetary orbits about the Sun. In this
naive analogy, however, electrons being charged, would radiate away their orbital
energy and quickly collapse into the nucleus. Bohr resolved the problem of radiative
collapse of the hydrogen atom (see also [167] and references therein). He recognised
that Planck’s constant, h, could be combined with Rydberg’s empirical relationship
among the spectral lines of hydrogen to solve the problem of atomic stability by
postulating that only discrete transitions are allowed between the states whose angular
momenta are multiplies of �. The ground state of the hydrogen atom would then have
angular momentum mva0 = �, or equivalently mω0a2

0 = �, and would be forbidden
to decay below this orbit by Bohr’s fiat. A more complex picture quickly developed
from this that substituted wave functions for orbiting point particles, and in that
view the orbital angular momentum of the ground state is actually l = 0: the wave
function is spherically symmetric and has a radial probability distribution whose
most probable value is a0 (the expectation value being 3a0

2 ).
As with classical derivation of the blackbody function made possible by the

assumption of a real ZPF, modern SED analysis of the Bohr hydrogen atom has
yielded a suggestive insight. A simple argument assuming strictly circular by Boyer
[157, 158] and Puthoff [164] indicated that while a classically circularly orbiting
electron would indeed radiate away energy, if one takes into account the ZPF as a
source of energy to be absorbed, then it is at the Bohr orbit, a0, that a condition of bal-
ance would take place in absorbed and emitted power such that 〈Pabs〉circ = 〈Prad〉circ.
In other words, a classicaly orbiting and radiating electron would pick up as much
energy as it loses, and thus be energetically stabilized [168]. In the analyses a strong
assumption was introduced, namely that the electron moves around the nucleus along
strictly circular orbit.

Finally, it is seen that a well defined precise quantitative argument can be made that
the ground state of the hydrogen atom is defined by a dynamic equilibrium in which
collapse of the state is prevented by the presence of zero-point fluctuations of the
electromagnetic field. This carrier with it the attendant implication that the stability of
matter itself is largely mediated by ZPF phenomena in the manner described in cited
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papers, a concept that transcends the usual interpretation of the role and significance
of ZPF of the vacuum electromagnetic field. We should add that a detailed description
of the correspondence between SED and QED treatments for linear dipoles-plus-
radiation-field systems can be found in Ref. [169].

(*) In the Dirac theory of the electron, the velocity operator has eigenvalues
of ±c. The motion of an electron thus consists of two components: some average
motion-specific physical circustance plus an inherent highly oscillatory component
whose instaneous velocity ±c which Schrödinger named Zitterbewegung [162, 163].
The amplitude of this zitterbewegung oscillation is on the order of the Compton
wavelength. From the perspective of ZPF—inertia theory, the ZPF can induce such
speed-of-light fluctuations since at this level the electron would be a massless point-
charge. It is the Compton wavelength size electron cloud that acquires the measured
electron inertial mass of 512 keV in energy units via next relationship mzp = �z�ωC

2πc2 ,
where �z represents a damping constant for zitterbewegung oscillations which is
equal �z = 6.25 × 10−24s. This is an example of an SED interpretation of an
apparent quantum phenomenon. The quantum size of the electron is its Compton
wavelength. The SED interpretation would be one of a massless point charge driven
by the ZPF to oscillate at ±c within a Compton wavelength-size region of space.

4.5.3 Inertia and Gravitation in the Zero-Point Field Model

Inertia as formulated by Galileo (ca 1638) was simply the property of a material
object to either remain at rest or in uniform motion in the absence of external forces.
In his first law of motion, Newton (ca 1687) merely restated the Galilean proposition;
however, in his second law, Newton expanded the concept of inertia into fundamental
quantitative property of matter (see, e.g. [170] and references therein). By proposing
a relationship between external force acting upon an object and change in that object’s
velocity (according the second law), he defined and quantified the property of inertial
mass. Since the time of Newton there has been only one noteworthy attempt to
associate an underlying origin of inertia of an object with something external to that
object: Mach’s principle. Since motion would appear to be devoid of meaning in the
absence of surrounding matter, it was argued by Mach [171] that the local property
of inertia must somehow asymptotically be a function of the cosmic distribution of
all other matter. Mach’s principle has remained, however, a philosophical statement
rather than a testable scientific proposition. Thus apart from Mach’s principle, the
fact that matter has the property of inertia is a postulate of physics, and while special
and general relativity both involve the inertial properties of matter, they provide no
deeper insight into an origin of inertia as a fundamental property of matter.

Puthhoff [172] have analysed a hypothesis of Sakharov [173] that Newtonian
gravity could be interpreted as a van der Waals type of force induced by the electro-
magnetic fluctuations of the vacuum, the so-called zero-point fluctuations or zero-
point field (ZPF). In that analyses ordinary neutral matter is treated as a collection
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of electromagneticall interacting polarisable particles made of charged point-mass
subparticles (quarks). This is a reasonable approach in ZPF analyses in which an
ideal Planck oscillator for more detailed representations of matter: or, more specifi-
cally, it is a simple model in which at ultrahigh (Planckian) energies matter appears
as if formed of very small elementary constituents that respond like oscillators char-
acterised by a radiation damping constant � and a characteristic frequency ω0. The
effect of the ZPF is to induce a zitterbewegung [161–163] motion in the quark in
a manner entirely analogous to that of the bound oscillators used to represent the
interaction of matter with electromagnetic radiation by Planck [174] and others (see,
e.g. [170]). This has the consequence that the van der Waals force associated with the
long-range radiation fields generated by the quark zitterbewegung can be identified
with the Newtonian gravitational field. In the proposed model, the inertia of mat-
ter could be interpreted at least in part as a reaction force originated in interactions
between ZPF and the elementary charged constituents (quarks, electrons, etc.) of
mater [175, 176]. Indeed, Newton’s second law may be most generally written as

−→
f = d�p

dt
(4.59)

which is the limited form of the space part of the relativistic four-force:

−→
F = d�p

dτ
= γ

d�p
dt

, (4.60)

which for the case when β = ( v
c

) = 0 and γ = 1 becomes Eq. (4.59).
It is seen that the second law is a definition of force as the rate of change of

momentum imparted to an object by an agent. Having defined force, Newton’s third
law states that such a force will result in the creation of an equal and opposite
reaction force back upon the accelerating agent. This now makes the concept of
inertia a necessity: Inertia must be attributed to the accelerating object in order to
generate the equal and opposite reaction force upon the agent required by the third
law. According to [175, 176] the resistance from the vacuum is the physical basis of
that reaction force. One can interpret this as either the origin of inertia of matter or as
a substitute for the concept of innate inertia of matter. Inertia, following [175, 176],
becomes a placeholder for this heretofore undiscovered vacuum—based force which
is a necessary requirement of Newton’s third law. Force is then seen to be primary
concept, inertia is not. The inertia of protons and neutrons would arise via ZPF
scattering at the level of the individual quarks. Moreover, it appeared that Newton’s
equation of motion (

−→
f = m−→a ) could be inferred from Maxwell’s equation as

applied to the ZPF, i.e. SED version of the quantum. If correct proposed model by
Puthoff, Rueda and Haisch, then their concept would substitute for Mach’s principle
and imply that no further mass-giving Higgs-type fields may be required to explain
the inertia of material objects.

If inertia is a electromagnetic phenomenon involving interactions between charge
and the ZPF, then gravitation must be a similar phenomenon [175, 176]. The mere
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existence of a ZPF would not necessarily generate gravitation or space-time curva-
ture. Indeed, preliminary development of a conjecture of Sakharov [173] by Puthoff
[172] indicates that the ZPF in and of itself cannot be a source of gravitation (for
the details see [177]). Expressed in the simplest possible way, all matter at the level
of quarks and electrons is driven to oscillate (zitterbewegung in the terminology of
Schrödinger) by the ZPF. But every oscillatimg charge will generate its own minute
electromagnetic fields. Thus any particle will experience the ZPF as modified ever
so slightly by the fields of adjacent particles and that is gravitation [175, 176]. It is
a kind of long-range van der Waals force. It should be added, the Einstein E = mc2

relationship between mass and energy will also be cast in a different light. As it
now stands this formula seems to state that one kind of “thing”, namely energy, can
mysteriously be transformed into a totally different kind of “thing”, namely mass ….
and vice versa. It is proposed instead that the E = mc2 relationship is a statement
about the kinetic energy that the ZPF fluctuations induce on the quarks and elec-
trons constituting matter [172]. In the quantum vacuum inertia hypothesis, inertial
and gravitational mass are not merely equal, they prove to be the identical thing.
According [175, 176] both mass and wave nature of matter can be traced back to
specific interactions with electromagnetic ZPF and possible the other bosonic vac-
uum fields. The Cited authors suggest that it is premature to take a firm stand against
the reality of the zero-point radiation field and its associated energy on the basis of
cosmological arguments, especially given the possible relation between vacuum, or
zero-point, radiation and dark energy.

4.5.4 Vacuum Energy Extraction

In this paragraph we briefly consider the possible employment of zero-point field
energy. The concept “engineering the vacuum” was first introduced by Nobel Laure-
ate T.D. Lee in his book “Particle Physics and Introduction to Field Theory” (see also
[178]). As stated there…. “The experimental method to alter the properties of the vac-
uum may be called vacuum engineering………If indeed we are able to alter the vac-
uum, then we may encounter some new phenomena, totally unexpected”……Recent
studies have indeed shown this to be the case [179, 180].

As utopian as such a possibility may seem, physicist Forward [181] demon-
strated prof-of-principle in a paper “Extreme Electrical Energy from the vacuum by
Cohesion of Charged Foliated Conductor”. His approaches exploited a phenomenon
called the Casimir effect [182]—an attractive quantum force between closely spaced
metal plates. The Casimir force recently measured with high accuracy by Lamore-
aux (see, review [143, 144]—derives from partial shielding of the interior region of
the plates from background ZPF of the vacuum electromagnetic field. As shown by
Milonni et al. [183], this shielding results in the plates being pushed together by the
unbalanced ZPE radiation pressures. The result is a corollary conversion of vacuum
energy to some other form such as heat [184]. With regard to the extraction of energy
from the vacuum fluctuation energy reservoir, there are no energetic or thermody-
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namic constraints preventing such release under certain conditions (see, e.g. [184]).
Analyses of the scientific literature suggest that such mechanism are already opera-
tive in Nature in the “powering-up” of cosmic rays [185] or as the source of energy
release from supernovas [186] and gamma-ray bursts [187].

Below we shall briefly list a few possibilities of the vacuum energy extraction:

(1) An early one of interest is based on the idea of a Casimir force pinch effect in
non-neutral plasmas.

(2) Another intriguing possibility is provided by the phenomenon of sonolumines-
cence-bubble collapse in an ultrasonically-driven fluid which accompanied by
intense, subnanosecond light radiation.

(3) Yet another proposed for ZPE extraction is described in a patent [188]. The
approaches proposed the use of resonant dielectric spheres—slightly detuned
from each other—to provide a beat frequency downshift of the more energetic
high-frequency components of the ZPE to a more easily captured form.

(4) Next approaches utilising microcavity techniques to perturb the ground state
stability of atomic hydrogen. It is based on the paper by Puthoff [164], where he
puts forth the hypothesis that the nonradoative nature of the ground state is due
to a dynamic equilibrium in which radiation emitted due to accelerated electron
ground state motion is compensated by absorption from the ZPE.

(5) Turtur ([180] and references therein) have described the mechanical rotor which
converts vacuum energy (ZPE) into mechanical energy using an electrostatic
principle.

(6) The idea of the vacuum as a quantum state with ZPE and fluctuations of physical
consequence is now commonplace, with implications ranging from optical com-
munications [31, 148, 189] to quantum chromodynamics to inflationary models
of the Universe (see, also Chap. 2).
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Chapter 5
Effects Related to Isotopic Disorder in Solids

5.1 Introduction

Interest in diffusion is as old as metallurgy or ceramics. The first measurement of
diffusion in the solid state was made by Roberts-Austen [1]. Many measurements,
especially of chemical diffusion in metals, were made in the 1930s; the field was
reviewed by Jost [2] and Seith [3]. Diffusion research increased after World War
II; the increase was motivated by the connection among diffusion, defects and radi-
ation damage and helped by the availability of many artificial radiotracers. These
researchers were the first to attempt to identify the basic underlying atomistics mech-
anisms responsible for mass transport through solids by a quantitative investigations
and theoretical analysis of the activation energies required for diffusion by exchange,
interstitial and vacancy mechanisms in solids. Prior to this time, there had been lit-
tle concern with treating diffusional phenomena on a microscopic basis, and most
research was concerned with fairly crude observation of overall bulk transfer
processes at junctions between regions with strong compositional differences. It
was at this time that suggestions on how to carry out high precision, highly repro-
ducible diffusion experiments were first put forward [4, 5]. The three major factors
that determine the quality of a diffusion measurement are

(1) the method used,
(2) the care taken in the measurement and
(3) the extent to which the material is specified.

The most accurate method has, in general, been considered to be radiotracer sec-
tioning [5], and most of this article is devoted to this method, especially to points
for which special care must be taken; these are the measurement of temperature,
the accuracy of sectioning and the reproducibility of counting the radioactivity. The
importance of specifying the material cannot be overstated. The measured diffu-
sion coefficient depends on the chemistry and structure of the sample on which
it is measured. Impurities, non-stoichiometry of compounds, grain boundaries and
dislocations can give apparent values of the diffusion coefficient that are different
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from, and usually larger than, the true value [6, 7]. The objective of this chapter is
to describe some experimental results as well as their theoretical analysis that are
received in last decade. We have organized the chapter around general principles that
are applicable to all materials, and then listed the particulars. The materials we con-
sider are mainly inorganic solids, especially semiconductor and insulator materials.
The effects of pressure on diffusion is omitted. Previous reviews covering mainly
metals and inorganic materials have been given by Tomizuka [5], Crawford et al. [7]
and last two book of Academic Press [8, 9]. Besides indicated books we should note
the new books on diffusion processes [10–12].

For measurable diffusion to take place a gradient of some kind is necessary.
Diffusion is a consequence of the hopping motion of atoms through a solid. The
diffusion coefficient D is defined in Fick’s first law [12],

�J == −D �∇C + C �V , (5.1)

where �J is the flux of atoms, C their concentration and �V the velocity of the centre
of mass, which moves due to the application of a force such as an electric field or a
thermal gradient [13]. A number of different diffusion coefficients exist, e.g. for the
diffusion of a radioactive tracer in a chemically homogeneous solid in the absence
of external forces,

�J ∗ = −D∗ �∇C∗, (5.2a)

where the asterisk denotes the radioactive species. For diffusion in a chemical gra-
dient,

�J = −D �∇C, (5.2b)

where D̃ is the interdiffusion or chemical diffusion coefficient. Any of these equations
can be combined with the equation of continuity

∂C/∂t = −�∇ · �J (5.3)

to yield Fick’s second law

∂C/∂t = �∇ · (D∇C), (5.4a)

where the mass flow term has been omitted. For a tracer in a homogeneous system,

∂C∗/∂t = −�∇∗ · �∇2C∗. (5.4b)

Equations (5.4a) and (5.4b) describe the types of diffusion experiments discussed in
this chapter.

The tracer diffusion coefficient is given also in the atomistics form

D∗ = γa2� f, (5.5)
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where γ is a geometric factor, a the jump distance, � the atomic jump frequency
and f the correlation factor [14]. It is thus possible, in principle, to measure D∗ by
measuring � in a resonance experiment of some kind [15].

We are concerned here with diffusion measurements where the diffusion coeffi-
cient is obtained via Fick’s second law, i.e. from a solution of the diffusion equation
[16]. Fick’s second law is used rather than his first because concentrations are easier
to measure than fluxes and because of D in the solid state is so small that the required
steady state is seldom reached. In order to obtain a solution of the diffusion equation,
the initial and boundary conditions (IC and BC) must be known. The IC corresponds
to the distribution of the diffusing substance in the sample before the diffusion anneal,
and the BC describes what happens to the diffusing substance at the boundaries of the
sample during the diffusion anneal. If the experimental IC and BC correspond to the
mathematical conditions, the mathematical solution to the diffusion equation C(x, y,
z, t) will describe the distribution of the diffusing substance as a function of position
in the sample and of annealing time. The diffusion coefficient is finally obtained by
fitting the experimentally determined C(x, y, z, t) to the appropriate solution of the
diffusion equation with D as a parameter.

Most laboratory experiments are arranged so that diffusion takes place in one
dimension. The solution of the diffusion equation is then C(x, t). One most often
determines C(x) at constant t, i.e. the concentration distribution along the diffusion
direction after a diffusion annealing time t. It is also possible to determine C(t) at
a constant x (e.g. the concentration at a surface) or

∫ ∫
C(x, t)dx dt (e.g. the weight

gain of a sample as a function of time). The IC, BC and solutions to the diffusion
equation (for D = const.) for some common geometries are described below. These,
and solutions for other cases, are given by Crank [14] and Carslaw and Jaeger [17].

(1) Thin Layer or Instantaneous Source Geometry (Fig. 5.1a). An infinitesimaly thin
layer (�(Dt)1/2) of diffusing substance is deposited on one surface of a semi-
infinitive ( �(Dt)1/2) solid. The initial conditions is

C(x, 0) = Mδ(x), (5.6)

where δ is the Dirac delta function and M the strength of the source in atoms per
unit area. The boundary condition is

∂C(0, t)/∂t = 0, (5.7)

i.e. there is no flux through the surface. The solution is

C(x, t)(M/
√

πDt)exp(−x2/4Dt). (5.8)

One determines C(x) for constant t.
(2) Thick Layer Geometry (Fig. 5.1b). Similar to the above, except that the layer

thickness h is of the order of the diffusion distance: IC: C(x, 0) = C0, h ≥ x ≥ 0
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Fig. 5.1 Concentration dis-
tributions for different initial
conditions. Dotted line is for
t = 0, solid line is for a finite
t. a Thin-layer geometry [case
(1)]; b thick layer geometry
[case (2)]; solid curve for
Dt = h2; c infinite couple
[case (3)] (after Crank [14]

C(x, 0) = 0, x > h. (5.7a)

BC : ∂C(0, t)/∂x = 0 (5.8a)

Solution:

C(x, t) = C0

2

[

erf

(
x + h

2
√

Dt

)

− erf

(
x − h

2
√

Dt

)]

, (5.9)
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where

erf(λ) = 2√
π

λ∫

0

exp(−η2)dη. (5.10a)

Measure C(x) for constant t. Note:

erfc(λ) ≡ 1 − erf(λ). (5.10b)

item [3] Infinite Couple (Fig. 5.1c). A sample of uniform concentration C0 is
welded to a sample of uniform concentration C1. The weld plane is situated at
x = 0. Couple containing a volatile.

IC: C(x, 0) = C1, x < 0

C(x, 0) = C0, x > 0. (5.11)

Solution:

C ′(x, t) ≡ C(x, t) − C0

C1 − C0
=

[

1 − erf

(
x

2
√

Dt

)]

(12). (5.12)

Measure C(x) for constant t.
(4) Vapour-Solid Couple. A semi-infinite couple containing a volatile component

component is placed into a dynamic vacuum at t = 0:

IC: C(x, 0) = C0, x > 0 (5.13a)

BC: C(0, t) = 0, t > 0. (5.13b)

Solution:
C(x, t) = C0erf(x/2

√
Dt). (5.14a)

Exposing a sample initially devoid of volatile component to a vapour of the
volatile component at a pressure in equilibrium with C0 gives the analogous
mathematics:

IC: C(x, 0) = 0, x > 0, (5.14b)

BC: C(0, t) = C0, t > 0. (5.15a)

Solution:

C(x, t) = C0

[
1 − erf(x/2

√
Dt

]
= C0erfc(x/2

√
Dt). (5.15b)
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The same equations apply to isotopic exchange between solid and vapor. Measure
either C(x) at constant t or integral weight gain (loss)

∫ ∞
0

∫ t
0 C(x, t)dt dx .

(5) Grain Boundary Diffusion. The mathematics in this case is more complicated
[12], owing to the coupled lattice diffusion, but one still measures C(x) at
constant t.

(6) Exchange experiment [9]. This technique is used for materials for which a
massive sample cannot be prepared. It involves diffusion exchange between an
assembly of powder and a gas of limited volume, from which very small aliquots
are drawn at different times.
In the first three sample configurations two bodies of widely different composi-
tion are brought into contact. The assumption implicit in the BC is that diffusing
material passes across the resulting interface without hindrance, i.e. it is not held
up by surface oxides, low solubility, chemical reactions, etc. Nonfulfilment of
this condition leads to deviation of the experimental C(x) from solution of the
diffusion equation [18].
In the vapour-solid couple and the exchange experiment, the assumption implicit
in the BC is that the surface of the solid equilibrates with the gas phase instan-
taneously. However, optical measurements of the change of the surface con-
centration at low temperature have indicated that the attainment of solid–gas
equilibrium can be a slow process [12, 18].
In this connection we should add that the thin geometry has several advantages.
The thin layer can be deposited without straining the sample, which is essential
for single crystal samples. A thin layer also allows the use of highly specific
radioisotopes, and thus measurements of diffusion without a chemical gradient.
Diffusion under large chemical gradient can lead to deformation of the sample
and generation of defects [3, 13]. For the above reasons, the thin layer geometry
is most often used in experiments in which diffusion is measured in order to study
the fundamentals of diffusion and defect behaviour in solids. Such experiments
usually concern diffusion as a function of temperature, pressure or concentration,
and small differences in D are imported, in contrast to engineering experiments
in which the magnitude of the penetration of one material into another is of
interest.
It should be noted that all the solutions to the diffusion equation considered above
are expressed in terms of the dimensionless variable x/(2

√
Dt). The length

2
√

Dt is a kind of mean penetration distance, and this has to be in the same
order of magnitude as the characteristic distance associated with an experiment.
For sectioning experiment, the characteristic distance is the section thickness.
For ion-beam depth profiling, it is the ion range, etc. [19].
In the ordinary thin-layer sectioning experiment, one wishes to measure diffusion
over a drop in specific activity C of ∼103; any effects due to diffusion along short
circuiting paths are likely to show up as curvature in the penetration plot over
such a range, while they may not be visible if the measurement is only over
the factor of 6 in C [3]. Usually 20 sections suffice to define a penetration plot;
from Eq. (8), the section thickness required to get a drop of 103 in C over 20
sections is
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θ ≈ √
Dt/3.8. (5.16)

A preliminary estimate of D is useful in planning an experiment.
If the isotope decays significantly during the time of the experiment, more
radioisotope has to be deposited. Under the conditions of θ ≈ √

Dt /3.8, the
specific activity drops by a factor of ∼2 per section at the 20th section. These
last points on the penetration plot have the greatest weight in determining D, so
the counting statistics must be maintained and the penetration plot extended as far
as possible. This implies the use of an intense source of radioisotope; on the other
hand, too much activity poses an unnecessary health hazard as well as increasing
the dead-time correction. The radiotracer may rapidly reach the side surfaces
of the sample by surface diffusion or evapouration, and then diffuse inward.
To keep the diffusion one dimensional, one removes ≈6

√
Dt from the sides of

the sample before sectioning.

5.2 Self-Diffusion Process

As it is well known, in all diffusion mechanisms the atoms under consideration have
to carry out jumps between different sites [20]. If the extreme case of coherent tun-
neling [21] is left aside, the diffusional jumps are assisted by the thermal movement
of the atoms. In the standard situation the jump rate is entirely determined by the
temperature T (apart from the effects of hydrostatic pressure, which may be incorpo-
rated by formulating the theory in terms of enthalpy and Gibbs free energy). For the
purposes of the present chapter, we may in the first approximation disregard quan-
tum mechanical contribution to the diffusity (naturally excluding the self-diffusion
in LiH), so that in cubic crystals the diffusion coefficient under standard conditions
may be written as an Arrhenius expression

Dα = Dα0exp(−HM
α /kT ), (5.17)

with the preexponential factor

Dα0 = gαa2
0να0exp(SM

α /kB). (5.18)

Here HM
α denotes the enthalpy and SM

α the entropy of migration, a0 the lattice con-
stant, να0 the attempt frequency, kB has its usual meaning as Boltzmann’s constant
and gα is a factor that takes into account the geometry of the crystal structure and
the atomistics details of the different process. The subscript α refers to the defect
species controlling the diffusion process, i.e. in the case of the direct interstitial
mechanism it indicates the chemical nature, geometrical configuration, etc., of the
interstitial involved, whereas in the case of indirect diffusion it characterises the
intrinsic defects acting as diffusion vehicles. In the latter case, we should write β
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instead of α if we wish to indicate that these intrinsic defects are monovacancies or
monointerstitials.

The tracer self-diffusion coefficient, i.e. the diffusity of radioactive self-atoms
under thermal-equilibrium conditions is given by [20]

DT =
∑

β=I,V

fβ DSD
β =

∑

β=I,V

fβ DβCeq
β , (5.19)

where
Ceq

β = exp(SF
β /k)exp(−HF

β /kB T ) (5.20)

is the concentration of self-interstitial (β = I) and monovacancy (β = V) in thermal
equilibrium. As it is clear, in Eq. (5.19), contributions by clusters of I or V are
neglected. The fβ denote correlation factors, DSD

β ≡ DβCeq
β contributions to the

uncorrelated self-diffusion coefficient
∑

β=I,V DSD
β and SF

β and HF
β entropies and

enthalpies of formation, respectively. Insertion of Eqs. (5.17), (5.18) and (5.20) into
Eq. (5.19) yields

DT =
∑

β=I,V

DT
β =

∑

β=I,V

fβgβa2
0νβ0exp(−GSD

β /kT ) =
∑

β=I,V

DT
β0exp(−HSD

β /kT )

(5.21)
with the preexponential factors

DT
β0 = fβgβa2

0νβ0exp(−HSD
β /kT ) (5.22)

and the Gibbs free energy of self-diffusion

GSD
β = HSD

β − TSSD
β (5.23)

the self-diffusion enthalpy
HSD

β = HF
β + HM

β (5.24)

and the self-diffusion entropy

SSD
β = SF

β + SM
β (5.25)

The diffusion coefficient Ds of foreign substitutional atoms in thermal equilibrium
may be derived from Eqs. (5.19) or (5.21) by inserting factor hβ under the summation
signs. These factors account for the interaction between the intrinsic thermal equi-
librium defects and the substitutional atoms. They depend on temperature and the
atomic fraction of the substitutional atoms, unless this is small compared to unity.
For more detailed and complete discussion in this field we refer the reader to reviews
by Frank et al. [13, 20].
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Fig. 5.2 Comparison
between the self-diffusivities
of the cubic semiconductors
Ge and Si [20], the trigonal
semiconductors Te [23, 24]
and Se [25] and the typical
metals Cu, Ag, Au (after [20])

Compared with metals, self-diffusion in semiconductors is a very slow process.
For the elemental semiconductors this is illustrated in Fig. 5.2, in which the self-
diffusivities of the cubic semiconductors Si and Ge and of the trigonal semiconductors
Te and Se are compared with those of typical metals such as Cu, Ag and Au on a
temperature scale normalised to the melting temperature Tm . Figure 5.2 reveals the
following differences between metals and semiconductors, already emphasised by
Seeger and Chik [22].

(1) Near the melting temperatures the self-diffusion in semiconductors is several
orders of magnitude slower than in typical metals.

(2) At lower normalised temperatures the ratio of the self-diffusivities of metals and
semiconductors becomes even larger.
Generally speaking, the origin of these differences lies in the homopolar bonding
of the semiconductors (for details see [12, 16] and references therein).
As it is well known, the conventional and well-established techniques of deter-
mining the tracer self-diffusion coefficient DT based on studying the redistrib-
ution of radioactive or stable tracers initially deposited on the specimen surface
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of serial sectioning methods. In the case of radioactive isotopes, the redistribu-
tion may be investigated with radiation detection methods; for stable isotopes,
secondary ion mass spectroscopy (SIMS) may be used (see also below).

5.2.1 SIMS Technique

The most complete description of the experimental technique for study of the dif-
fusion processes in solids may be found in the excellent review by Rothman [18].
Here, we briefly discussed the peculiarity of sputtering and SIMS techniques.

We define microsectioning as the cutting of sections a few hundred nms or less
in thickness, so that the surface on which the tracer is deposited, the “front” surface,
is not necessarily flat on the scale of

√
Dt , and so the thickness of the individual

sections are not determined separately [9, 12]. The isoconcentration contours then
follow the contour of the front surface, and one must remove sections parallel to this
non-flat surface, rather than parallel to a flat surface. If this condition is met and if
the indulations in the front surface are gentle (radius of curvature ρ � √

Dt), one
can treat the sections as if they were flat [8].

In sputtering, material is removed by ion bombardment owing to the transfer of
momentum from the bombarding ions to the atoms of the targets. A depth profile
can be constructed by 1) analysing the sputtered-off material in a mass spectrometer
(SIMS), 2) collecting and analysing the sputtered-off material, 3) determining the
concentration of the diffusing material in the remaining surface by, e.g. Auger elec-
tron spectroscopy [26, 27], or 4) counting the residual activity of the entire sample
[27]. As a rule, noble gas ions, especially Ar+, are accelerated to a few hundred eV or
more, with current densities ≤1mA cm−2. This is called physical sputtering, in con-
trast to bombardment with reactive ions, which is called chemical sputtering. Typical
removal rates are of the order of 10 nm min−1 for 1 mA cm−2 of 500 eV Ar+ ions.
There are two excellent reviews of the subject of sputtering [28, 29], and the reader
is referred to these for an understanding of the process. All equipment for sputtering
includes a vacuum chamber, pumping equipment and a controlled gas leak such as a
micrometer needle valve. A high-speed pumping system is needed as gas is passed
continuously and there are bursts of desorbed gases to cope with. Cold-trapped diffu-
sion pumps, cryopumps or turbopumps have all been used. All sputtering equipment
has a gaseous discharge in it. Common glow discharges are not suitable, as too high
a gas pressure is required, with resulting low mean-free paths and back diffusion of
the sputtered atoms. Therefore, either an ion gun or a rf power source is used. Two
types of ion sources have been used in sectioning experiments, the custom-modified
duoplasmatron of Maier and Schule [20], and a commercially available Kauffman-
type gun [30, 31]. Almost any ion source used in ion milling should be usable The
main requirement is that the source put out ion currents ≥1mA cm−2 at ∼1kV over
∼4 cm2 area in a reasonably uniform beam (±10% except at the very edge), and that
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Fig. 5.3 Schematic diagram
of crater caused by sput-
tering in a SIMS apparatus
(after [20])

the current stay constant over a period of several hours. The length of a run is limited
by life of the filament. In addition to the ion source, chamber, pumps and valving,
one needs a collector and a sample holder. These are usually custom made. Designs
have been given by Gupta and Tsui [32] and for rf systems as well as Mundy and
Rothman [31] for ion gun systems. The collector is either a carousel, with six Al
planchets, which allow six sections to be taken before the chamber is opened [33],
or a device like a cameras back, on which poleester film is rolled; the latter allows
32 sections to be taken.

In the SIMS technique, the sample is bombarded by reactive ions, and the
sputtered-off molecules are ionized in a plasma and fed into a mass spectrome-
ter. The mass spectrum is scanned and the ion current for tracer and host atoms can
be recorded simultaneously. The beam is swept over the sample and, in effect, digs a
crater, the bottom of which is more or less flat; an aperture prevents ions originating
from the edges of the crater from reaching the mass spectrometer (Fig. 5.3). The
penetration plot is constructed from the plots of instaneous tracer/host atom ratio
versus sputtering time and distance of sputtering time. The distance is obtained by
using interferometric measurement of the total crater depth under the assumption
that material is removed uniformly as a function of time. Large changes of chemical
composition along the diffusion direction can invalidate that assumption. The lim-
itations of the SIMS technique have been discussed by Liebl [33] and Reuter and
Baglin [34], and a detailed description of its application to diffusion has been given
by Macht and Naundorf [16, 35]. The major disadvantage of SIMS is its cost. The
SIMS apparatus is commercially made [18] but represents a large capital investment.
Not withstanding the cost of the apparatus careful controls must be applied to the
measurements and artefacts [36] must be avoided.

If the entire of the sample is a section the depth of material removed is best
determined by weighing on a microbalance. With care, a sample can be weighed
to ±3μg, which corresponds to ±150 nm for cross-sectional area of 0.1 cm2 which
is about the minimum useful area, and a density of 2 g cm−3. For larger areas or
densities, even better sensitivities are obtained, down to perhaps ±10 nm [18].
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5.2.2 Self-Diffusion of Li and H in LiH Crystals

Self-diffusion is the migration of constituent atoms in materials. This process is
mediated by native defects in solids and thus can be used to study the dynamics
and kinetics of these defects. The knowledge obtained in these studies is pivotal
for the understanding of many important mass transport processes such as impurity
diffusion in materials. Self-diffusion of D(H) and Li in LiH crystals is studied in
papers [37–40], respectively. As was above shown the gas–solid isotope exchange
method has been used for the measurement of self-diffusion coefficients in solids [36].
Two papers [37, 38] have reported on a thermogravimetric study of the pressure and
temperature dependence of diffusion coefficient of the deuteride ion in LiH crystals.
As it is well known, in this method a crystal of the compound of interest is equilibrated
in a furnace with a gas usually containing an isotopic species of the diffusant. The
weight change of the crystal due to the permutation process from the gas to the solid
is then monitored as a function of time. By assuming that the mass uptake is due to
the isotopic exchange process with deuterium gas and subsequent diffusion of the
deuteride ion into the crystal and that the rate of the exchange process is diffusion
controlled, the mass gain of the crystal was calculated from solution of Fick’s law.
The best least squares fit of the data obtained in papers [37, 38] to one–dimensional
and three-dimensional models was used to find the diffusion coefficients and the
activation energy for the deuteride ion.

According to [37] solution of Fick’s second law [13]

∂C/∂t = ∂2C/∂x2 (5.26)

subject to the boundary conditions

C(x, 0) = 0

C(0, t) = Cs, (5.27)

where Cs is the surface concentration of the diffusing species and lim C(0, t)→ 0,
x → 0 gives, for Q, the total amount of diffusing substance which has entered the
solid at time t,

Q = 2AsCs(D/π)1/2t1/2 + B, (5.28)

where As is the total surface area of the crystal, D is the diffusion coefficient and B
a constant that accounts for the initial condition that Q �= 0 at t = 0. Q is expressed
as the ratio of the number of moles of deuteride ion diffusing to total moles of LiH
contained in the crystal.

Equation (5.28) may be written as

Q = C ′t1/2 + B, (5.29)

where C ′ is defined as
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Fig. 5.4 Q as a function of
time for data of samples 9,
10 and 13. The solid curves
are the best least squares fit of
Eq. (5.29) to the experimental
data (after [38])

Table 5.1 Summary of one-dimensional semi-infinite solid data (after [38])

Sample, No. T ◦C C ′ × 103, min−1 C ×104g cm−2min−1/2 Ea , kcal

8 550 4.74 3.96 22.7±2.8a

9 524 4.37 3.49 22±2b

10 500 2.80 2.52
11 450 1.50 1.53
12 410 1.37 0.96
13 399 1.09 0.86
a Ea as found from the best least squares fit of Eq. (28) to C with θ = 0.80. The error reported is
the 95% confidence level fit to the data. b Ea from Ref. [12]

C ′ = 2AsCs(D/π)1/2. (5.30)

With the assumption that the surface coverage Cs can be written in terms of an
adsorption isotherm, θ, C ′ was rewritten as

C ′ = 0.8748(Asθ/ρV )D1/2, (5.31)

where ρ is the density of LiH at a given temperature, V is the volume of the crystal and
the constant includes the necessary factors for consistency of units. Rearrangements
gives

C = C ′(As/ρV )−1 = 0.8748θD1/2. (5.32)

The values for C ′ were found from the fit of Eq. (5.29) to the data at each temperature
(Fig. 5.4). All fits were exceptionally good (Table 5.1). Values of C calculated from
C ′ by using the relation given in Eq. (5.26) are also given in Table 5.1.

Equation (5.32) may be written in the form
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Fig. 5.5 Temperature depen-
dence of self-diffusion coeffi-
cients Li (1, 3) and H (2, 4–6)
in LiH single crystals; 1, 2
[39, 40]; 3, 6 [37]; 4, 5 [38]
(after [12])

C = 0.8748θD1/2
0 e−Ea /2RT (5.33)

by substituting for D,
D = D0e−Ea /2RT , (5.34)

where D0 is a constant and Ea the activation energy.
According to Eq. (5.33), the temperature variance of C is determined by the expo-

nential term involving temperature and the temperature dependence of the fractional
surface coverage θ. If θ is known as a function of temperature, C may fit to Eq. (5.33)
to give D0 and the activation energy. Lacking knowledge of the exact variation of θ
with temperature, Eq. (5.33) may be rewritten in the more convenient form

C/θ = 0.8748D1/2
0 e−Ea /2RT (5.35)

and θ assumed to vary with temperature according to the expected behaviour out-
lined above. The quantity C/θ was next calculated using θ = T/(b + T ) and the
fit of the data to Eq. (5.29) found, giving the activation energy as 22.1±3.0 kcal.
and D0 as 4.01 × 10−3cm2s−1. The activation energy thus found is in good agree-
ment with the value obtained by Funkee and Richtering from NMR measurements,
22±2 kcal. [16].

In three-dimensional bulk diffusion model the solution to Fick’s law [14] for a
finite solid has the next relation

Q = θ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 −
[ ∞∑

u=0

8
(2u+1)2π2 exp

(−(2u+1)2π2 Dt
4a2

)]

×
[ ∞∑

v=0

8
(2u+1)2π2 exp

(−(2v+1)2π2 Dt
4b2

)]

×
[ ∞∑

w=0

8
(2w+1)2π2 exp

(−(2w+1)2π2 Dt
4c2

)
+ B

]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (5.36)
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Table 5.2 Comparison of tracer diffusion coefficients as found from one- and three-dimensional
models (after [38])

Sample No. T ◦ C 1 − Da × 109cm2 s−1 3 − Db × 109cm2s−1 3 − Dc

8 550 5.8 8.7 0.2±0.1
9 524 3.7 5.3
10 500 2.3 3.4
11 450 0.84 1.1
12 410 0.34 0.41
13 399 0.26 0.31
a Calculated from Eq. (5.28). b Calculated from Eq. (30). 3 − Dc is the data from Ref. [39, 40]

Fig. 5.6 Arrhenius plot of
the diffusity of D− in LiH
in the temperature region
400−550◦C for θ = 0.8.
The activation energy as
determined from this plot is
24.3±2.6 kcal (after [38])

where the symbols are as previously defined and 2a, 2b and 2c are the dimensions
of the crystal in the x, y and z directions. The best fit of the experimental data
of papers [37, 38] gives for the diffusion coefficient as a function of temperature,
D = 2.41×10−2e−24.3×103/RT cm2s−1. The diffusion coefficient for deuteride ion
in lithium hydride at 465◦C reported in paper [37] to have been found from three-
dimensional model was (1.9 ± 0.6)×10−9cm2s−1 (Fig. 5.5). The diffusion coefficient
calculated from Eq. (5.36) was 1.6 × 10−9cm2s−1. A comparison of tracer diffu-
sion coefficients as calculated from one- and three- dimensional models is given in
Table 5.2, and a plot of—logD versus 103/T is given in Fig. 5.6.

The activation energies for various migrating species have been theoretically cal-
culated by Dellin et al. [41]. They find activation energies for interstitial H− diffusion
to lie in the range 11.5 to 23 kcal. while activation energy for H−vacancy migration
is calculated to be 2.3 kcal. From these calculations interstitial H−migration would
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Table 5.3 Self-diffusion data for germanium and silicon (after [20])

Element DT
0 (104 m2s−1) HSD (eV) Temperature range (K) Technique

Ge 7.7 2.95 1039–1201 SG
32 3.1 1023–1143 SG
44 3.12 1004–1188 SM + GM
10.8 2.99
24.8 3.14 822–1164 SS
13.6 3.09 808–1177 SS
1.2 × 10−3 3.05 543–690 SIMS

Si 1800 4.77 1473–1673 HL
1200 4.72 1451–1573 CS
9000 5.13 1373–1573 ES
1460 5.02 1320–1660 SS
8 4.1 1173–1373 R
154 4.65 1128–1448 SIMS,30 Si
20 4.4 1103–1473 R

SG sectioning by grinding; SAM Steigmann’s method; GM Gruzin’s method; SS sectioning by
sputtering; HL hand lapping; CS chemical sectioning, n activation of 30Si; ES electrochemical
sectioning; R (p,γ); resonance of 30 Si

seem possible based on the activation energy of about 24 kcal. found by Spencer
et al. [38]. However, Dellin et al. [41] in agreement with Pretzel et al. [42] find
that interstitial H− is an unstable species in LiH and thus could not be the diffusing
species.

To the conclusion of this part, we should indicate once more that the activation
energy found by Spencer et al. [38] ∼24 kcal. is in excellent agreement with the
22 kcal. determined for H− self-diffusion in LiH by NMR [12]. This agreement, plus
the consistencies of previous work [37] , makes D− vacancy migration still the most
likely species and mode of migration [39, 40].

5.2.3 Self-Diffusion in Si and Ge

In intrinsic germanium the temperature dependence of the tracer self-diffusion coef-
ficient of the radioactive isotope 71Ge has been measured by several groups [43–46]
by means of different techniques (Fig. 5.7). With the exception of the latest exper-
iments, precision grinding techniques were used to remove sections with thickness
of the order of 1 μm from the diffusion zone of the annealed specimens. As a conse-
quence, the temperature range covered by the earlier experiments is rather limited.
By means of a sputtering technique for serial sectioning [46] have been able to extend
the range of self-diffusion studies in Ge to diffusivities as low as 10−22 m2s−1.

The overall agreement between Ge self-diffusion data of different authors is good.
In the region of overlap a small difference between the data of Vogel et al. [46] and
those of the earlier workers may be seen. We tend to attribute this to problems in
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Fig. 5.7 Tracer self-diffusion
coefficient of Ge as a function
of temperature: (�) [43]; (�)
[44]; (�) [46]; (•) [46]; x [46]
(after [20])

determining small diffusion coefficients during the earlier work. In the work of
Valenta and Ramasastry [44], the condition δ � √

DT t (δ-thickness of the deposited
tracer layer) was not always fulfiled. Since, nevertheless, these authors used the thin-
film solution of the diffusion equation to deduce tracer diffusion coefficients, the
obtained values are likely to be somewhat larger than the true DT values. As may be
seen in Fig. 5.7, the temperature dependence of the DT data of GE is well described
by an Arrhenius law ( the preexponential factors DT

0 and the self-diffusion enthalpies
HSD obtained from measurements of different authors are compiled in Table 5.3).
Seeger and Frank [47] argued that this result may be accounted for in terms of an indi-
rect self-diffusion mechanism involving one type of intrinsic defect. Guided by fur-
ther observations, they suggest that it is the vacancy mechanism [20] that controls self-
diffusion in Ge. Table 5.3 shows that the preexponential factor DT

0 of Ge is consider-
ably larger than the DT

0 values typical for metals (10−6 m2s−1 � DT
0 � 10−4 m2s−1)

[20]. Arguing that for an ordinary mechanism the product fvgva2
0νv0 in Eq. (5.16)

for DT
v0(≡DT

0 ) should be of the same order of magnitude for Ge and metals, Seeger
and Frank [47] interpreted the large DT

0 value of Ge in terms of a large self-diffusion
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Fig. 5.8 Schematic of the
isotope heterostructure used
by Fuchs et al. (after [48])

entropy of the vacancy in Ge, SSD
v ≈10 k. They suggested that this large SSD

v value
arises from a spreading out of the vacancy over several atomic volumes.

As we can see from Table 5.3 the published value of fundamental quantities such
as the diffusion coefficient vary by several orders of magnitude for various authors
[20, 47]. Such a spread in the experimental data makes it difficult to determine con-
clusively the underlying physical processes. Reliable diffusion data are therefore
crucial to clarify the diffusion mechanisms and to accurately determine the corre-
sponding material parameters. The conventional technique (Table 5.3) to determine
the self-diffusion coefficient DSD in semiconductors is to deposit s thin layer of
radioactive tracer on the surface of the crystal (e.g. 71Ge; 31Si). In a subsequent
annealing step the tracers diffuse into the crystal. The depth profile of the tracer
atoms is then determined by serial sectioning and measurements of the correspond-
ing radioactivity. There are several experimental difficulties arising from this method
[48].

(1) Traditionally, lapping and grinding was used for the serial sectioning. This
requires that the mean penetration distance (DSDt)1/2 of the tracer atoms during
the time t of a diffusion anneal has to be in the μ m range. Especially in silicon,
the large distance and the short half-life (2.6 h for 31Si) limit this method to be
applicable only to higher temperatures (larger DSD). Germanium is more conve-
nient in this respect (the half-life period of 71Ge is 11.2 days), but it was not until
microsectioning technique (e.g. sputtering) was invented that the measurements
could be extended to lower temperatures in recent years [49–53].

(2) Surface effects such as oxidation, contamination, strain, etc. might influence the
tracer diffusion substantially (e.g. through the formation of intrinsic defects).
Fuchs et al. [48] recently reported results of a very accurate method to measure
the self-diffusion coefficient of Ge which circumvents many of the experimental
problems encountered in the conventional methods. These authors used ger-
manium isotopic heterostructures (stable isotopes), grown by molecular-beam
epitaxy (MBE). As it is well known, isotope heterostructures consist of layers
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of pure (e.g. 70Ge, 74Ge) or deliberately mixed isotopes of a chemical element.
Figure 5.8 shows the schematic of the particular samples used by Fuchs et al.
[48]. At the interface only the atomic mass changes, while (to first order) all
the other physical properties stay the same. In the as-grown samples, this inter-
face is atomically flat with layer thickness fluctuations of about two atomic ML
(for details see [54]). Upon annealing, the isotopes diffuse into each other (self-
diffusion) with a rate which depends strongly on temperature. The concentration
profiles in paper [48] were measured with SIMS, after pieces of the same samples
have been separately annealed at different temperatures. This allows an accurate
determination of the self-diffusion enthalpy as well as the corresponding entropy.
The isotopic heterostructures are unique for the self-diffusion studies in several
aspects [16].

(1) The interdiffusion of germanium isotopes takes place at the isotopic interface
inside the crystal, unaffected by possible surface effects (e.g. oxidation, impu-
rities and strain) encountered in the conventional technique.

(2) One sample annealed at one temperature provides five more or less independent
measurements (Ge consists of five stable isotopes). Their initial respective con-
centrations vary for the different layers of the as-grown isotope heterostructure.
After annealing, the concentration profile of each of the five isotopes can be
analysed separately to obtain five data points for each annealing temperature.
The samples were cut into several pieces. One piece was kept in paper [48] for
reference (as-grown), they were separately annealed at five different tempera-
tures (543, 586, 605, 636 and 690◦C). The temperature controller permitted a
variation of the temperature of 1−2◦C. The recording of the concentration depth
profiles of all five stable Ge isotopes was performed with SIMS. The oxygen
primary beam had an impact energy of 8 keV per incident ion. The beam was
rastered over a square area of about 200µm in size and the detected secondary
ions extracted from the central 30µm diameter region of the crater. The preci-
sion of the SIMS data was estimated to be within ±5%. The depth resolution
of the system was determined from profiles taken from the as-grown samples
with an atomically flat interface. What theoretically should be a step function
in the concentration profile appeared as a slope of about 4 nm per decade of the
measured atomic fraction at the leading edge of a layer, and about 16 nm per
decade at the falling edge [48, 53].

As it is well known, diffusion in the crystals occurs through jumping thermally
activated between different sites in the lattice [6, 7]. In principle, there are many
possibilities for such jumps (substitutional or interstitial sites, vacancies, etc. [9].
In Ge crystals, however, it is known that the only process of significance for the
migration of germanium atoms is through the vacancy mechanism [53]. In this case
the self-diffusion coefficient DSD can be written as as Arrhenius expression [48]
(Eq. (5.22))

DSD = g f a2ν0exp

[−GSD

kB T

]

= D0exp

[−HSD

kB T

]

(5.37)
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where GSD is the Gibbs free energy of self-diffusion,

GSD = HSD = TSSD, (5.38)

HSD is the self-diffusion enthalpy, and the preexponemntial factor

D0 = g f a2ν0exp

[
SSD

kB

]

(5.39)

contains the self-diffusion entropy SSD, the correlation factor f (f = 1/2 for the
vacancy mechanism in the diamond lattice [6], the attempt frequency ν0, the geomet-
ric factor g (g = 1/8 for vacancies in Ge and the lattice constant a; k is Boltzmann’s
constant (part 4.2) The enthalpy HSD and the entropy SSD depend on the formation
(subscript F) as well as the migration (subscript M) of the vacancy:

HSD = HSD
F + HSD

M and SSD = SSD
F + SSD

M (5.40)

The quantity which we can extract from the data of paper [48] is primarily the self-
diffusion coefficient DSD as a function of annealing temperature T. This was done
in citing paper by fitting of experimental depth profiles to theory, with DSD being
the only fitting parameter. Equation (5.31) then allows to determine the self-diffusion
enthalpy HSD, and the self-diffusion entropy SSD is deduced using Eq. (5.40). Solving
Fick’s diffusion equation for the specific geometry of samples used in indicated paper
(Fig. 5.8), these authors obtain the atomic fraction ci of a given germanium isotope
i in terms of error functions (erf) (Eq. 5.36):

ci (x) =
{

c0,I
i − c0,II

i

2
erf

[
h/2 + x

2
√

DSDt

]

+ c0,I
i

}

+
{

c0,II
i − c0,III

i

2
erf

[
h/2 − x

2
√

DSDt

]

+ c0,III
i

}

(5.41)

where h is the layer thickness (110 or 200 in Ge samples, see Fig. 5.8), and c0,I
i , c0,II

i

and c0,III
i are the initial concentrations of the isotope i in the enriched 74Ge layer,

in the enriched 70Ge layer, and in the substrate, respectively. Figure 5.9 shows the
profiles of all five isotopes of an annealed sample (586◦C for 55,55h), together with
a fit of the data to Eq. (5.41). For clarity only the fit to the 70Ge profile is shown, but
other profiles can be independently fitted as well. The excellent quality of the fit over
four orders of magnitude displays the remarkable accuracy of the method used by
Fuchs et al. As a reference, the corresponding concentration profiles for as-grown
samples are displayed in Fig. 5.10. The annealing time was purposefully chosen such
that the plateaus in the annealed samples (around 300 and 100 nm) correspond to the
original concentrations in the isotopically enriched layers.
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Fig. 5.9 Experimental depth
profile of the atomic fraction
of 70Ge, 72Ge, 73Ge, 74Ge and
76Ge (symbols) of a diffusion-
annealed sample (annealed at
586◦C for 55.55 h). The solid
line is a fit of the 70Ge data of
Eq. (35). For clarity, only the
fit to the 70Ge data is shown
(after [48])

The values for the self-diffusion coefficient DSD obtained at 543, 586, 605, 636
and 690◦C are presented in an Arrhenius plot in Fig. 5.11. The lines in Fig. 5.11
represent the results of previous authors [9]. The variation in DSD obtained from
different groups is comparable with the scatter of the data within the work of each
of the publications. Fitting the experimental values of DSD to Eq. (5.31) Fuchs et al.
obtain the self-diffusion enthalpy HSD equals 3.0(5) eV. As can see from Table 5.3
this is in excellent agreement with the previously published values of 2.95–3.14
eV. The value of experimental preexponential factor D0 is 1.2 × 10−3m2s−1. This
compares to previously published values of (0.78 − 4.4) × 10−3m2s−1. Converting
D0 into the self-diffusion entropy SS D through Eq. (5.39) they obtain SSD≈9 k (using
ν0 = 8 × 1012s−1 and a = 0.565 nm). The self-diffusion entropy for Ge is larger
than for metals (2–4) k. As an explanation, Seeger and Frank [48] invoked the idea of
extended (spread-out) defects have proposed that vacancy in Ge is strongly relaxed
[53].

Finally, we want to mention the effect of the isotopic mass on the self-diffusion
coefficient [10, 11]. The many-body treatment of atomic jump processes leads to an
expression for the strength of the isotope effect in terms of the correlation factor f
of Eq. (5.33) and the fraction �K of the kinetic energy which is associated with the
motion in the jump direction [10, 53].
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Fig. 5.10 Experimental depth
profiles of the same sample as
Fig. 5.9, but before annealing
(after [48])

[
DI
DII

]
− 1

[
mII
mI

]1/2 − 1
= f �K . (5.42)

In the previous Ge self-diffusion experiments, Campbell [45] found f�K values
between 0.26 and 0.30, which translates into a ratio of D70Ge

SD /D74Ge
SD between 1.007

and 1.008 [11, 55]. This small difference, however, is below the precision of the
Fuchs et al. work. When fitting the experimental depth profilies to Eq. (5.41), they
could indeed not detect any appreciable difference between the different isotopes.
In addition, such small deviations would be insignificant in the Arrhenius plot (loga-
rithmic scale of DSD in Fig. 5.11) for the determination of the self-diffusion enthalpy
HSDand entropy SSD.

Very recently Bracht et al. [56] have reported the diffusion of boron, arsenic
and phosphorous in silicone isotope multilayer structures at temperatures between
850◦C and 1100◦C [52, 53]. The diffusion of all dopants and self -atoms at a given
temperature is modelled with the same setting of all native point defect-related para-
meters. As an example, on Fig. 5.12 the concentration profiles of 31Si along with
the corresponding 30Si profiles measured with SIMS after diffusion are shown. The
diffusion of P in the isotope structure leads to an I (interstitial) supersaturation and
V (vacancy) undersaturation and therewith suppresses the contribution of vacancies
in P and Si diffusion compared to the diffusion of As. This increases the sensitivity
of the P and Si profiles to negatively charged self-interstitial (Fig. 5.12). The demand
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Fig. 5.11 Arrhenius plot of
the self-diffusion coefficient
as a function of temperature.
Data of Fuchs et al. [48] agree
favorably well with the most
recent data [52, 53]. The older
data might be less accurate
[12] (after [48])

to describe the diffusion of all dopants and the corresponding Si profiles at a given
temperature with the same energy levels of the native-point defects led to the conclu-
sion that negatively charged vacancies rather than negatively charged self-interstitial
dominate under n-type doping. Successful modelling of the simultaneous P and Si
diffusion requires a contribution of a singly positively charged mobile P defects to P
diffusion [52, 53, 57].

5.3 Isotope Dependence of Thermal Expansion Coefficient

It is well known that in real solids the forces between atoms are not truly harmonic.
The higher the temperature, the more phonons that are excited and the more pro-
nounced the effects of anharmonicity [59]. This leads to changes in the equilibrium
separation of the atoms. The lattice therefore expands. Thermal expansion arises as
a direct result of the asymmetrical dependence of potential energy on atomic separa-
tion, i.e. anharmonicity [59]. It is therefore not so surprising that the variation of the
coefficient of thermal expansion with temperature parallels that of the heat capacity
(details see below). When discussing the thermal behaviour of solids, it is important
to remember that the energy content of the lattice resides in the phonons and not in
particular atoms [60]. This may seem paradoxical, but the point is that we cannot
convey thermal energy to a particular atom (we exclude the case of isolated impurity
atoms). We cannot cause an atom to vibrate without exiting a collective oscillation, a
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Fig. 5.12 SIMS concentration profiles of 31P and 30Si after annealing of the P-implanted Si isotope
structure at temperatures and times indicated in the figures. The solid line in a–f represent theoretical
best fit. The lower dashed lines show the corresponding super-and undersaturation of self-interstitial
and vacancies, respectively. The upper dashed line in d is the Si profile that is expected in the case
Si diffusion proceeds under intrinsic and thermal-equilibrium conditions (after [56])

phonon [61]. In a pure crystal, and within the harmonic approximation, two or more
phonons may pass through one another without interaction. At the surface of the
sample these phonons would be reflected and continue to exist in unchanged form.
But in real solids we find imperfections and anharmonicity, which cause phonons
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to interact, to be scattered and to decay. Phonons therefore have finite lifetime and
we must think of phonon wave packets with particle-like properties. These phonons
behave very much like particles in a gas: they constantly interact (collide) and in
a kinetic equilibrium at a given temperature. That this is the case is particularly
evident in the thermal conductivity (see below). In insulators and semiconductors
(non-metals) heat is conducted solely by the phonons and one might expect thermal
energy to be transported at a speed corresponding roughly to that of sound. This
may be the case in nearly perfect single crystals at very low temperatures [62, 63].
However, the mutual interactions of phonons lead to mean free paths of order 100 Å,
and the phonon gas therefore conducts heat in a similar manner to an ordinary gas.
The energy diffuses through the gas and this is a slow process. We should recall, that
Debye, long before the concept of the phonon was developed, applied the results of
simple kinetic gas theory to solids with remarkable qualitative success [64].

5.3.1 Thermal Expansion Coefficient

Thermodynamical examination of the question about the thermal expansion of solid
is leading to the expression [65]

(
∂V

∂T

)

P
= −

(
∂S

∂P

)

T
, (5.41)

here S is entropy and P is the pressure. To transform (5.41), we have

(
∂V

∂T

)

P
= −

(
∂S

∂V

)

T

(
∂V

∂P

)

T
, (5.42)

or
β

χT
=

(
∂S

∂V

)

T
, (5.43)

where χT = − 1
V

(
∂V
∂P

)

T
is the isothermal compressibility [66].

So far the heat capacity at the constant of volume

CV = 1

T

(
∂S

∂T

)

V
(5.44)

in such case from (5.43) it is followed

β = −CV χT

T

(
∂T

∂V

)

S
(5.45)

or in different form
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β = −CV χT

T

(
∂lnT

∂ ln V

)

S
, (5.45′)

where

γ = −
(

∂lnT

∂lnV

)

S
. (5.46)

Here γ characterises the change of the solid temperature at the adiabatic volume’s
change. For the first time the relation (5.46) was obtained by Gruneisen [65]. Based
on the one atom solid Grüneisen derived the fundamental law, and connected the
thermal expansion coefficient with others thermodynamical meanings.

Grüneisen is based on the expression of the free energy in the Debye’s [64]
approximation

F = U0 + 3RT 3

(
T

�

)3
θ/T∫

0

f (x)x2dx = U0 + 3RT

[

f

(
T

θ

)

− 1

3
D

(
T

θ

)]

,

(5.47)
where

f (x) = ln
[
1 − exp (−x)

]
(5.48)

and

D(x) = 3

x3

x∫

0

ξ3

eξ−1
. (5.49)

Here U0 is the energy of zero-point vibrations which is the function of the volume
only. Taking into account expression (5.50)

P = −
(

∂F

∂V

)

T
(5.50)

then from (47) we get

P = −
(

∂U0

∂V

)

T
− 1

θ

(
∂θ

∂V

)

T
3RTD

(
θ

T

)

. (5.51)

Using the expression for the inner energy in the Debye approximation E = 3RTD( θ
T ),

we obtain

P +
(

∂U0

∂V

)

V = − ∂lnθ

∂lnV
E = γE, (5.52)

where the value of

γ = − ∂lnθ

∂lnV
(5.53)
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is known as Grüneisen’s parameter, characterised the change of the Debye’s tem-
perature with the change of the volume. Differentiating expression (5.51) on T at
V = const. we will have (

∂P

∂T

)

V
V = γCV . (5.54)

From Eq. (5.54) and using the thermodynamical relations we have

(
∂P

∂T

)

V
= −

(
∂V
∂T

)

P(
∂V
∂P

)

T

(5.55)

and in the final form, we obtain

1

V

(
∂V

∂T

)

P
= γ

CV

V

[

− 1

V

(
∂V

∂P

)

T

]

or β = γ
CV

V
χT . (5.56)

The expression (5.56) is named the relation of Grüneisen and links the thermal
expansion coefficient (β) with Grüneisen’s parameter (γ) and other thermodynamical
meanings (here V is a molecular volume).

The temperature dependence of the thermal expansion coefficient may be estab-
lished from relation (5.56). Since γ (its meaning vibrates in the range 1 ÷ 3) in
the Grüneisen approximation from the temperature is not dependent and χT and V
are the weak temperature functions, so temperature pace of the thermal expansion
coefficient will determine the temperature’s pace of the specific heat. It means that
at T = 0 Kβ aspires to zero also. At high temperature β aspires to constant value.

According Landau and Lifshitz [65] the thermodynamical potential at low tem-
perature is expressed as:

� = �0 (P) − π2T 4V0 (P)

30 (�v̄)3 , (5.57)

where �0 (P) is not dependent on the temperature part of the thermodynamical
potential, v̄ = v̄ (P) is the velocity of the sound. Expressing through volume the
thermodynamical potential

V = ∂�

∂P
= V0 (P) − π2T 4

30�3

∂

∂P

(
V0

v̄3

)

(5.58)

we will obtain the following expression for the thermal expansion coefficient:

β = − 2π2T3

15�3V0

d

dp

(
V0

v̄3

)

. (5.59)
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Fig. 5.13 Comparison the
experimental results with
calculation one for C, Si and
Ge. (1) theory [71]; (2)–(4)
experimental results according
to (2) [67]; (3) [68]; and (4)
[69] (after [70])

From this relation it is evident that at the low temperatures the coefficient of the
thermal expansion is proportional to the cube of absolute temperature.

At the high temperatures the thermodynamical potential has next form

� = �0 (P) − CV T lnT + CV T ln�v̄ (P) , (5.60)

and analogous for preceding one for β, we have

β = CV

V0v̄

dv̄

dP
(5.61)

From the last relation it can be seen that the sign of β will be determined by the sign
of d v̄

dP .
As an example in the Fig. 5.13 it displays the temperature dependence of β for

the well known semiconductors C, Ge and Si.
From this picture it can be seen that there is no bad agreement between the theory

and experiment, although as a rule that is not observed [80]. The experimental data
on the temperature dependence of the thermal expansion coefficient in the wide
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Fig. 5.14 Linear thermal
expansion of LiH(7LiD) (after
[75])

temperature range are shown that in low temperature range the β is decreased more
quickly at the decreasing temperature than this is following from the Grüneisen
low and in the high temperature range is continuing slow growth [73, 74]. As an
example of above mentioned, α linear coefficient is essentially linear with T at higher
temperature. More precisely and in more temperature range thermal expansion of
LiH was investigated by Jex [75]. His results are displayed in Fig. 5.14, where we
can see that the experimental results agree very well with calculated ones.

The mean Grüneisen constant of 7LiD and 7LiH is depicted in Fig. 5.15. It can be
seen that in the wide temperature range the value of γ is almost constant, that is one
more to indicate on the weak dependence γ from temperature, but γLiH > γLiD in the
temperature range 100 ≤ T ≤ 300 K [76].

The pressure and temperature derivatives of the elastic moduli of single crystal LiH
have been determined at room temperature by Gerlich and Smith [77]. Figure 5.16
presents the Gerlich and Smith’s results of the variation the natural velocity with
pressure, for sound waves propagating in the [100] direction. The dots are the exper-
imental data points, while the straight lines are a linear least square fit to them.

From the slopes of the lines, (ρ0v2)ı
P=0 may be evaluated, where v is the natural

velocity, P the pressure, ρ0 zero pressure density and ı designates differentiation with
respect to pressure. The values of (ρ0v2)ı

P=0 thus determined are shown in Table 5.4.
Since the specimen with [110] parallel faces much longer than the one with [100]

faces, and as the echo pattern for the former was much superior to the one with the
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Fig. 5.15 Mean Grüneisen constant of a 7LiD and b 7LiH (after [75])

Table 5.4 Values of (ρ0W 2)P = 0′ for the three propagation modes in the 〈110〉 direction (after
[77])

Mode C ′
11 C ′ C44

(ρ0W 2)P = 0′ 6.21±0.07 3.65±0.04 1.57±0.07

Table 5.5 Pressure derivatives of the second-order elastic moduli (after Gerlich and Smith [77])
∂C′

11
∂P

∂C′
∂P

∂C44
∂P

∂C11
∂P

∂C12
∂P

∂Bs

∂P

7.17±0.07 3.94±0.04 2.06±0.07 9.05±0.18 1.17±0.18 3.80±0.15

[100] faces, the latter being quite poor, only the [110] propagation data were used for
evaluating the pressure and temperature derivatives of the elastic moduli. The results
of the pressure derivatives of Cı

11, Cı and C44 corrected for the misalignment in the
propagation direction (Fontanella and Schuele [78]), together with their associated
errors, are shown in Table 5.5.

It is interesting to note that pressure derivative of the bulk modulus, ∂BS/∂P, is
relatively small, some magnitude as in AHC [79]. Hence under high compressive
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Fig. 5.16 Natural velocity as a function of the pressure for the 〈110〉 propagation direction
(after [77])

Table 5.6 Athermaly extrapolated 0 K values of the elastic moduli. (Units 1011dyn./cm2) (after
Gerlich and Smith [77])

C ′
11 C ′ C44 C11 C12

9.630 3.338 5.093 7.875 1.199

stress, LiH will not stiffer up too much, making it more susceptible to fusion. Table 5.1
of Ref. 79 presents the values of the temperature derivatives of the above elastic
moduli, as well as results of Haussuhl and Skorczyk [81] and Table 5.6 presents the
thermal 0 K values of the elastic moduli. From the pressure derivatives of the elastic
moduli, and the room and low temperature values of the latter, the mode Grüneisen
parameters in any crystalline direction, as well as the low and high temperature
limiting values of the Grüneisen constant γL and γH may be evaluated.

The mode Grüneisen parameters for some crystalline directions of high symmetry
are shown in Fig. 5.17. Here 1 denotes the longitudinal mode, 2 and 3 the fast and
slow shear modes respectively. The values of all three mode Gr üneisen parameters
vary strongly with crystalline direction, due to the fact that the reciprocal of the
elastic stiffness and the pressure derivatives of the latter vary in opposite sense. The
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Fig. 5.17 Mode Grüneisen
parameters for some crys-
talline directions of high
symmetry (after Gerlich and
Smith [77])

Table 5.7 Elastic and
thermal Gruneisen constants
(after Gerlich and Smith [77])

γL γH

Elastic data 1.21 1.12
Thermal data 1.28 (300 K)

values of γL and γH, together with the values of the room temperature Grüneisen
constant, obtained from thermal expansion data, are shown in Table 5.7. As can be
seen, γL and γH are quite close in magnitude, and agree well with thermal data.

5.3.2 Isotope Influence on the Linear Thermal
Expansion Coefficient

Ubbelohde [82] pointed out in 1936 that the substitution of one isotope for another,
in a solid chemical compound, will lead to differences in the rotational and vibra-
tional frequencies of the molecules, without producing any significant change in
the structure of the potential energy of the solid. These substitutions cause changes
in the lattice constant, a, and in the coefficient of thermal expansion, α, of the solid.
The influence of isotopic composition on the thermodynamic properties of substances
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Table 5.8 α, s × 106 for isotopic LiH (after Anderson et al. [83])

Isotopic composition −190−25◦C 25−140◦C 140−240◦C
6LiH 21.0 ± 0.3 34.4 ± 0.8 50.0 ± 1.0
7LiH 19.8 ± 0.4 37.4 ±0.4 53.3 ± 0.6
6LiD 24.0 ± 1.0 38.4 ± 1.8 54.3 ± 1.0
7LiD 24.8 ± 0.4 42.9 ± 1.0 55.0 ±1.4
7LiT 26.4 ± -0.5

is usually considered to be manifestation of the quantum nature of matter. At high
temperatures in the classical limit any mass effect on thermodynamic quantities dis-
appears and hence any quantum isotopic effect vanishes [65]. The dependence of the
thermal expansion coefficient α from the temperature T in many cases is dictated by
the temperature behaviour of the specific heat (see below). It is explained that usually
the integral coefficient of Grüneisen γ is weak dependence from T. There have been
several investigations of the isotope effect on the lithium hydride [75, 83]), KCN [84]
and Ge [78, 80, 85, 87]. Table 5.8 lists the measured coefficient of thermal expansion
of LiH and its isotope analogue over the temperature ranges −190◦−240◦C [83].
Here, contrary to the effect found with lattice constants (for more details see below)
the heavier isotopes have the larger coefficient of thermal expansion. Table 5.9 lists
the ratios of the α′s for these same temperature intervals. Several points should be
emphasised about Tables 5.8 and 5.9. There is a definite discrepancy in α for 6LiH
compared to α for 7LiH in the −190◦−25◦C range. There is no reasonable expla-
nation for the higher value of 6LiH over 7LiH [88]. It would be expected that the
difference would be small due to the closeness of the reduced masses (μ) of 6LiH
and 7LiH; however, the reversal appears to be anomalous. Table 5.9 shows that for
any given combination the ratio αlight/αheavy approaches 1 as the temperature is
increased. Again, all ratios should be exactly one if no isotope effect were present.
The greater the relative mass differences between isotopes under study, the lower
the ratio αlight/αheavy.

This is especially noticeable in comparing the data for 6Li and 7Li it is seen
the ratios are all close to one, indicating very little effect. Theoretical estimation
of the ratio αLiH/αLiD at 298 K is 0.80 and experimentally, the value αLiH/αLiD for
the −190−25◦C was 0.81. This value approaches 1.0 at the higher temperatures. The
Debye theory predicts a larger heat capacity for the heavier element (Cheavy > Clight)
than the Grüneisen relation α = γCV/3χTV; it is expected that αheavy > αlight.
This difference in physical properties resulting from isotopic substitution becomes
much less pronounced as the temperature is increased, and should eventually become
negligible [89]. These results are shown in the Fig. 5.18. For comparison, in the
Fig. 5.18 the results of measurements of the linear thermal expansion coefficients for
two samples Ge: natGe and 70Ge (99.99%) [86, 87] are shown. It can be seen from
this figure that the difference �α for two samples Ge one order less than �α in case
of LiH and LiD. In conclusion of this part we should mention once more the results
of measurements of �α for KCN of different isotopic composition. The precise
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Fig. 5.18 The temperature
dependence of the factor
�α = αc (Mc1) − αc (M c2),
where Mc1 = 72.59

(
natGe

)

and Mc2 = 70
(

70Ge
)
. The

full line is the theory, and dots
are experiments (after [74])

measurements are shown to have no evidence of influence of isotopic composition
on the thermal expansion coefficient or the compression isotherms [84].

5.4 Heat Capacity and Debye Temperature

5.4.1 The Lattice Theory of Heat Capacity

Specific heat data are probably the oldest source of information about phonons in
crystal lattices and were, in fact, one of the sources of the original paradoxes that led
to the development of modern quantum theory. The nonconstancy of the specific heats
of crystals as a function of temperature was not explicable by classical theory [59].
The term specific heat is customarily used as a synonym for heat capacity per gram.
In most theoretical calculations the heat capacity per gram molecule is the natural
quantity to calculate, since this then refers to the properties of a fixed number of
particles.

The heat capacity of a solid is measured as Cp =
(

�Q
�T

)

p
where �Q is the heat

input, �T the change in temperature and p is the pressure, which is constant. The
The heat capacity which is obtained from most theoretical calculations is Cv, that

pertaining to constant volume, which is equal to
(

∂E
∂T

)

v
, where E is the internal

energy and V the volume. The assumption is made here that the internal energy is
a function of two parameters only, in this case T and V, though the concept of heat
capacity can be generalised to include other parameters. A relation linking Cp and
Cv can be obtained from general thermodynamical considerations [90, 91]

C p − Cv = β2V T/κ. (5.62)
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The main features of thermal motion in a solid can be explained based on the
temperature dependence of the heat capacity. The heat capacity per mole of substance
is defined as the energy that should be supplied to a mole of the substance in order
to increase its temperature by 1 K. Therefore, as pointed above, the heat capacity at
constant volume equals

Cv = (∂E/∂T )v, (5.63)

i.e. as the energy of a system changes by ∂E , its temperature changes by ∂T . From
the point of view of classical statistics, for each degree of freedom of the system,
there is an energy equal to kBT/2. According to the law of uniform distribution of
the energy over degrees of freedom, the average energy of such a system is equal to
the production of the number of degrees of freedom by kB T/2. As is known [59],
this result, which is valid for ideal gases, can also be applied to systems of inter-
acting particles when the interaction forces are harmonic, i.e. obey Hooke’s law. In
this case, we will consider the model crystalline lattice consisting of N atoms, which
execute small vibrations near equilibrium positions in sites. Each atom vibrates inde-
pendently of its neighbors in three mutually perpendicular directions, i.e. it has three
independent vibrational degrees of freedom. In the harmonic approximation, such an
atom can be represented by a set of three linear harmonic oscillators. As the oscillator
vibrates, its kinetic energy periodically transforms to the potential energy and vice
versa. Because the kinetic energy (which is exactly equal to the potential energy)
equals kB T/2, the average total energy of the oscillator, which is equal to a sum of
the kinetic and potential energies, is kB T . Therefore, the total energy of a crystal
consisting of N atoms is

E = 3NkB T . (5.64)

Thus, the molar heat, which is defined as the energy required to increase the temper-
ature by 1 K, is equal to

Cv = 3NkB = 3R, (5.65)

where R is the molar gas constant [R = 8.314J/(mol.K)]. Expression (5.65) is the
well-known Dulong and Petit’s law. Note that this law is valid for many insulators and
metals at sufficiently high temperatures. However, at sufficiently low temperatures,
none of the substances obey this law. According to the experimental data, the heat
capacity Cv at low temperatures is proportional to T 3. This dependence cannot be
explained within the framework of the classical model, and one must use the concepts
of quantum statistics to explain it. The dependence of Cv is explained in the Einstein’s
model using two assumptions: a solid is represented by a set of identical harmonic
oscillators, which oscillate independent of each other with the same frequency in three
mutually perpendicular directions, their energy being quantized according to Planck
[90, 91]. Thus, the problem is reduced to the calculation of the average vibrational
energy of an atom along one of the three mutually perpendicular directions. The total
thermal energy of the system is obtained by multiplying the result by 3N. According
to the definition of the average value,
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〈E〉 =
∑∞

n=o n�ωe−n�ω/(kB T )

∑∞
n=o e−n�ω/(kB T )

, (5.66)

where e−n�ω/(kB T ) is the Boltzmann factor, which determines the state of the sys-
tem with energy �ω; and the number of oscillators that oscillate with energy is
proportional to e−n�ω/(kB T ). By introducing a new variable x = −�ω/(kBT), after
transformation (5.66), we obtain

〈E〉 = �ω
d

dx
ln

(
1 + ex + e2x + · · ·

)
= �ω

ex − 1
. (5.67)

By returning to the previous variable, we obtain

〈E〉 = �ω

e�ω/(kB T ) − 1
. (5.68)

Thus, the total energy related to vibrations of N atoms in the lattice is

E = 3N
�ω

e�ω/(kB T ) − 1
. (5.69)

For kT �1, i.e. at high temperatures, by expanding the exponential into a series
e�ω/(kB T ) − 1 = 1 + �ω

kB T + · · · − 1 ∼= �ω
kB T , we obtain

E = 3NkBT and Cv = 3Nk B, (5.70)

i.e. Dulong and Petit’s law. However, the result obtained in the low-temperature
limit, when �ω � kBT and e�ω/(kB T ) � 1, is new. In this case, we have E =
3N�ωe−�ω/(kB T ) and Cv ∼= NkB( �ω

kB T )2e−�ω/(kB T ). Therefore, Cv exponentially
decreases with decreasing temperature. The heat capacity calculated in the Einstein
model decreases with decreasing temperature faster than in reality (the −T 3 law).
As it is well known, the discrepancy between experimental data and the Einstein
theory results from the assumption that each individual atom executes harmonic
oscillations with a frequency of ω independent of the rest of the atoms. Having
retained the main idea of Einstein, Debye introduced an additional assumption that
harmonic oscillators oscillate with different frequencies and their energy is quantized
according to Planck. The total elastic energy at a temperature of T is equal to the
integral over ω from the energy of the oscillator with a frequency of ω multiplied by
the number of oscillators (phonon modes) per unit frequency interval:

E = 9NkB T
(

θ
T

)3

ωD∫

0

x3dx

ex − 1
. (5.71)
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where x = �ω/(kB T ), and θ = �ωD /kB . Expression (5.71) is called the interpola-
tion Debye formula, and

D(θ/T ) = 3

(θ/T )3

ωD∫

0

x3dx

ex − 1
(5.72)

is the Debye function. Expression (5.71) is interesting, because the energy and,
hence, the heat capacity [see Eq. (5.67)] is expressed at any temperature via a single
parameter θ, which is called the characteristic temperature of a solid or the Debye
temperature. Its physical meaning, as is known, is that kB T = �ωD represents a
maximum quantum of vibrational energy of a lattice [72, 92]. This quantity is the
only parameter that takes into account the type of a substance, and its value varies
from 100 to 2000 K for different substances [62]. The high value of the Debye
temperature is well explained by high rigidity of the interatomic bonds. The Debye
function D(θ/T) cannot be calculated explicitly; however, the analytic expressions
for the energy and heat capacity can be obtained in the limiting cases of low and high
temperatures.

(a) High temperatures, i.e. kB T � �ω or x < I in (5.71). In this case, the denomina-
tor in the integrand can be expanded into a series to obtain ex − I ≈ I +x− I = x .
Then, expression (5.71) will take the form

E = 〈Ea〉 = 9NkBθ

(
T

θ

)4
ωD∫

0

x2dx = 3RT . (5.73)

Therefore, the heat capacity Cv = 3R, i.e. it is independent of temperature and
changes according to Dulong and Petit’s law.

(b) Low temperatures, i.e. �ω � kB T or x �1. In this case, the upper integration
limit in (5.73) can be set ∞. Then, the result of integration is independent of
temperature, and the exact value of the integral is

∞∫

0

x3dx

ex − 1
= π4

15
and E = 3π4 NkBθ

5

(
T

θ

)4

. (5.74)

The latter expression is exact at low temperatures, and it adequately describes the
temperature dependence of energy. In this case, the heat capacity Cv = γT 3. This
dependence well agrees with experimental data within the narrow temperature
range (near 0 K). Microscopic calculation based on the phonon formalism also
gives (5.71) [60, 61]. Therefore, one can conclude that the concept of phonons
permits the use of mathematical ideas and procedures applicable to common real
particles [93].
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Fig. 5.19 The temperature dependence of the Debye temperature θD for 7LiH (a) and 7LiD (b)
(after [97])

5.4.2 Different Method of θD Determination

The definition of a θD value is that it is equal to �ω/kB , where ω is either a character-
istic frequency or some average frequency [92]. A great deal of confusion has been
caused by the assumption that θD values derived from different physical properties
of a solid should be equal. Such an assumption may have been justified in the early
stages of specific heat theory, but it has long outlived its usefulness. It would seem
advisable to restrict the term θD to the representation of specific heat data only, since
θD is not a constant, it is worthwhile on occasion to indicate the temperature or
temperature range. In all other cases θD values should be labelled in such a way that
their origin is made evident. The simplest case is that of θD (elastic—[80]), i.e. the
θD value derived from the elastic constants of a solid. This is equal to θD if both are
measured at sufficiently low temperatures. Otherwise they are not in general equal,
though it may be possible to derive a relation between them at other temperatures
for a theoretical lattice model.

5.5 Effect of the Isotopic Composition of a Crystal Lattice
on the Specific Heat

The early low-temperature specific heat was measured by Gūnther from room tem-
perature down to 74 K [94]. First detailed measurements of the specific heat of
lithium hydride in a wide temperature range from 3.7 to 295 were performed by
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Fig. 5.20 The specific heat
CP of 7LiH (◦) and 7LiD (•)
at low temperature (after [97])

Kostryukov in 1961 [95]. In this paper, the unusual behaviour of specific heat was
observed between 10 and 20 K. As is shown above, at low temperatures, the heat
capacity at a constant volume is Cv ∼ γT 3. Kostryukov observed strong deviations
from the T 3 law, which were dependent on the sample prehistory, and explained them
by the presence of free molecular hydrogen in lithium hydride. However, by using a
special experimental procedure, Kostryukov managed to obtain more reproducible
results that only slightly deviated from the T 3 dependence. Based on these results
cited author estimated the Debye temperature of lithium hydride to be θD = 860K
(Table 5.2 in review of Plekhanov [96]). Later, Yates et al. [97] carefully studied the
low-temperature (5 < T < 320 K) specific heat of lithium hydride. In this paper, the
effect of the isotopic substitution (H → D) on the specific heat was studied for the first
time (Fig. 5.19). Yattes et al. high-purity and high-stoichiometric samples were inves-
tigated (the total content of impurities <2 × 10-5). The Cp(T) dependence measured
by Yates et al. at T > 30 was used for calculating the Debye temperature from the
relation Cv = const. (T/θD)3. The value of θ determined in this way, as was shown
above, depends on the temperature. It is known that this dependence is explained by
the deviation of the postulated Debye spectrum from a real phonon spectrum. The
values of θD found from the extrapolation of θD(T ) to T = 0 (Fig. 5.19) are equal to
θD(LiH) = 1190±80 and θD(LiD) = 1030±50 K. One can see that the value of the
Debye temperature for LiH obtained by Yates et al. is higher than that obtained by
Kostryukov. In addition, data on the Debye temperature show that this temperature
decreases with increasing isotope mass in accordance with the theory. Comparison
of Debye temperatures calculated from elastic constants(θD = 1083 − 1135 K at
300 K) [77, 98] and calorimetric data (θD = 1190 ± 80 K at 0 K) [97] shows that
they are in agreement, especially for LiH crystals. Note the strong temperature depen-
dence of the Debye temperature of LiD crystals, which has not yet been adequately
explained. It is likely that the Debye temperature of diamond also strongly depends
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on temperature [66, 93]. Figure 5.20 displays interesting features in the results below
25 K.Associating the term anomaly with a situation in which the heat capacity rises
with diminishing temperatures, the results for 7LiH and 7LiD will each be seen to
contain anomalies, having peaks at temperatures of 11.1±0.2 K and 12.8 ± 0.2 K,
respectively. The results of Fig. 5.20 can be little doubt that the peaks observed in the
specific heats of the two compounds at low temperatures do not arise from spurious
origins, and that they are truly characteristic of the compounds. When they occur in
dielectric crystals, anomalies of this type are most commonly caused by movements
of atoms, and in this case it seems likely that such a rearrangement takes place in the
region of 11.1K in the case of 7LiH and in the region of 12.8K in the case of 7LiD.
Accordingly cited authors [97] observed λ-type anomaly of the heat capacity and
concluded that this anomaly in the temperature dependence of C p(T) is related to
some phase transition. Indeed, Schumacher in the early 1960s had already predicted
[99] that lithium hydride should undergo a phase transition in the pressure range
between 3 and 4 kbar. Later Berggren [100], by using a simple qualitative model,
found that the binding energy in LiH with the structure of CsCl type is higher than
with the NaCl structure. Based on these results, the authors [97] assumed that anom-
alies observed in LiH are related to the polymorphic transition from NaCl structure
to CsCl structure. However, attempts to find this transitions, which were made in sev-
eral papers [101–104] by using an external pressure of up to 330 kbar [105], failed.
Note here that the CsCl −→ NaCl phase transition was also not found in a recent
paper [105], where the effect of the external pressure on CsH was investigated. Note
also that numerous experimental studies on reflection spectra in exciton region and
Raman spectra [66, 93] in these crystals did not reveal noticeable anomalies in the
above temperature range [72].

In recent years, analogous investigations were performed on semiconducting crys-
tals [106, 107]. Figure 5.21 displays the molar heat capacity of the three investigated
Ge isotope samples, again in a plot of C p(T )/T 3 against T (Fig. 5.21, lower panel),
as well as in the representation of the corresponding calculated Debye temperature
θD as a function of temperature T (upper panel). Molar heat capacity and Debye
temperature show the characteristic low temperature behaviour known from Ge and
other solids [107]. Most typical is the strong minimum of θD(T) around 20K, as a
typical for diamond structure, due to the serious departure from the Debye approxi-
mation. Anharmonic effects become important only for T > θD(0)/3, where θD(T )

saturates and starts to decrease with increasing T [107]. Calculations for the differ-
ence �Cisotope between the values of molar heat capacity of the isotopes show that
�Cisotope increases with temperature since C p(T ) increases most strongly for the
material with the greatest molar mass (compare, please with LiH data). �Cisotope
reaches a maximum around θD(0)/4 (≈90 K for Ge) and at the limit of high temper-
atures, it approaches zero [80, 108].
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Fig. 5.21 Molar heat capacity
CP (T) of the three measured
crystal samples: 70/76Ge (+),
natGe (circles connected by
a thin line) and 70Ge (�):
plot of CP/T 3 against T
(lower panel), and (upper
panel corresponding Debye
temperature θD as a function
of temperature T. The insert
shows a magnification of the
plot in the lower panel (after
[106])

5.6 Dependence of the Lattice Constant on Isotopic Composition
and Temperature

5.6.1 Background

The lattice parameter at any given temperature is determined by three different con-
tributions. First and most obvious is the size of the atomic radii and the nature of
the chemical bonding between them, which are most important in determining inter-
atomic spacings and crystal structure. Second is the effect of temperature on the
distance between atoms which normally produces a volume expansion with increas-
ing temperature. Finally, there is the effect of the zero-point displacement, which is
a purely quantum effect no classical analogue. This last contribution results from
the fact that the lowest energy state of the system, the zero-point energy, generally
corresponds in an anharmonic potential to an atomic displacement somewhat larger
than that associated with the potential minimum. Since the zero-point displacement
is usually a small contribution to the lattice parameter at 0 K, its contribution if often
ignored, particularly since its magnitude is difficult to determine experimentally. An
important exception (see below), however is the crystals which are isotopic variants
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of lithium hydride. Since they are chemically identical, the contribution to the lattice
parameters due to the atomic radii and chemical bonding may be taken as constant
in all of them. Consequently, the differences in the lattice parameters at various
temperatures may be attributed solely to differences in the thermal expansion and
the zero-point displacement. As it happens, these differences are relatively large in
these crystals mostly because of the large relative differences in the atomic masses
in the three isotopic forms of hydrogen, and the relatively large changes which these
produce in the anion–cation reduced masses [76]. The first paper devoted to the
calculation of a change in the molecular volume upon isotopic substitution was the
paper of London [109], which has now become classic. He started with an expression
for the free energy using the Einstein free energy function to reach the expression

M

V

dV

dM
= γβ

V
[U − E0 − TCv]

[
d ln ν

d ln M

]

, (5.75)

where, V is molecular volume, M is the atomic mass,γ is Gruneisen constantγ = αV
βCv

,
α is the volume expansion coefficient, β is compressibility, Cv is the molar specific
heat, E0 is the potential energy, ν is the phonon frequency and U is the total energy.

For monoatomic solids
d ln ν/d ln M = −1/2 (5.76)

and dV/dM can be expressed through a Debye function with characteristic temper-
ature θD . At high temperatures, one can express Debye function by a power series
in (θD/T )2. Then Eq. (5.75) becomes

M

V

dV

dM
= − 1

20
αT (θD/T )

[

1 + 11

420
(θD/T )2 + · · · · ·

]

(5.77)

and at absolute zero
M

V

dV

dM
= − 9

16

γβ

V
RθD. (5.78)

Here R is the gas constant.
For diatomic cubic crystal with atomic masses M and m, we have [92]

ν2 ∼
(

1

M
+ 1

m

)

(5.79)

Therefore
d ln ν

d ln M
= −1

2

1
(
1 + M

m

) (5.80)

which leads to
M

V

dV

dM
= − 1

20
αT (θD/T )2 1

1+ M
m

. (5.81)
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Fig. 5.22 Temperature
dependence of the lattice
constant of 1 LiH; 2 LiD; and
3 LiT crystals. Experimental
data are taken from Smith and
Leider [113] and Anderson
and co-workers [83]. The solid
line is theoretically calculated
(after Plekhanov [96])

As pointed out by London, in order to obtain more accurate results one should have
a detailed knowledge of the frequency spectrum since ν is not dependent on M
in a simple fashion. The values predicted by London’s analysis are in reasonable
agreement with the experimental findings [109].

5.6.2 Lithium Hydride

Various investigators [83, 88, 96, 110] experimentally and theoretically examined the
effect of isotope substitution on the lattice parameter of the LiH crystals [111, 112].
These investigations demonstrate that the isotope effect on the lattice parameter and
coefficient of thermal expansion shows a definite trend in which the lighter isotopes
produce larger lattice parameters and smaller coefficients of thermal expansion than
the heavier isotopes. The effects are more pronounced when lighter element is sub-
stituted and at low temperatures. Closely related to the molar volume is the thermal
expansion [89]. Table 5.11 gives values of lattice constants and thermal expansion
coefficients for isotopic LiH [82, 83, 88, 96, 113]. The data indicate that the iso-
tope effect, e.g. lighter isotopes having larger lattice constants, is reduced at higher
temperatures. Heavier isotopes have larger thermal expansion coefficients. Similar
findings were reported also by other workers [96, 111, 114, 115]. These findings
are expected since Debye theory predicts a larger heat capacity (see, also above) for
heavier isotopes, and then from the Gruneisen relation (Eq. (5.56)),

α = γCv/3βV, (5.82)

one can obtain αheavy > αlight.
After classical London’s paper [109], later in of Anderson et al. [83], a simple

empirical expression that related changes in the reduced mass μ of the unit cell and
in the lattice constant a upon isotopic substitution was suggested:

a = Aμ + B, (5.83)
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Table 5.9 Ratio of α,s for isotopic LiH (after Anderson et al. [83])

Ratio −190 − 25◦C 25 − 140◦C 140 − 240◦C
αH
αD

for 6Li 0.879 0.896 0.921

αrm H
αD

for 7Li 0.805 0.872 0.969

α
(6Li

)

α(7Li)
for H 1.060 0.920 0.982

αH
αT

for 7Li 0.750

αD
αT

for 7Li 0.932

where A and B are constants, which are, however, dependent on temperature. This
relation can be readily obtained taking into account a linear temperature dependence
of the lattice constant, which is typical for high temperatures. The nonlinear temper-
ature dependence of the lattice constant of LiH and LiD crystals [83, 113] observed
in experiments (Fig. 5.22) can be described by the second-degree polynomial

�a

a
=

√
μLiD − √

μLiH√
μLiHμLiD

[
A + B(T − T0) + C(T − T0)2

]
, (5.83′)

where �a = aLiH − aLiD, I/μLiH = 1/MH + 1/MLiT = 25◦C, and θ = 1080 K
is the Debye temperature of a LiH crystal. The values of constants A , B and C
determined by the method of least squares, are presented in Table 5.11. For compar-
ison, the values of these constants, calculated in a similar way for diamond, silicon,
and germanium [116], are also given. The value of temperature T = 810 K, at
which the lattice constant is the same for LiH and LiD crystals, was found from
theoretical calculations. The lattice constant is equal to 4.165 Å. This means that
the temperature dependence a(T) in LiD crystals (a heavy isotope), which have a
smaller Debye temperature, is stronger than in LiH crystals. This general conclusion
is valid for a broad class of compounds, from an ionic LiH crystal to a covalent ger-
manium crystal. It follows from theoretical calculations (Fig. 5.22) that for T > 810,
the lattice constant of LiD crystals is larger than that of LiH crystals. This agrees
qualitatively with the results of microscopic calculations of the temperature depen-
dence of a change in the unit cell upon isotopic substitution, according to which
aLiH = aLiD at −900–950 K [111]. The change in the lattice constant upon isotopic
substitution is mainly determined by the anharmonicity of vibrations, which results
in the dependence of the distance between atoms on the vibration amplitude, i.e. on
the mean vibrational energy. It is well known that the vibrational energy depends
not only on temperature, but also on the isotopic composition as well. Therefore, to
take into account the thermal expansion of a crystal lattice, one should consider the
effect of anharmonic terms in the expression for potential energy of pair interaction
between atoms at temperature T [93].



5.6 Dependence of the Lattice Constant on Isotopic Composition and Temperature 195

Table 5.10 Lattice constants and thermal coefficients for isotopic LiH (after Anderson et al. [83])

Material Lattice constants, −190◦C 25◦C 140◦C 240◦C
6LiH 4.066 4.0851 4.1013 4.1218
7LiH 4.0657 4.0829 4.1005 4.1224
6LiD 4.0499 4.0708 4.0888 4.1110
7LiD 4.0477 4.0693 4.0893 4.1119
7LiT 4.0403 4.0633 – –
Material Thermal expansion coefficient α × 106

−190−25◦C 25−140◦C 140−240◦C
6LiH 21±0.3 34.3±0.8 50±1.0
7LiH 19.8±0.4 37.4±0.4 53.3±0.6
6LiD 24.0±1.0 38.4±1.8 54.3±1.0
7LiD 24.8±0.4 42.9±1.0 55.0±1.4
7LiT 26.4±0.5 – –

Table 5.11 Values of coefficients of polynomial (5.83′) describing the temperature dependence of
the lattice constant upon isotopic substitution of a mass (after Plekhanov [96])

Substance A ×103 B × 106 C × 109

LiH 55.4 −55.54 −102.8
C −5.48 3.55 8.21
Si −1.60 3.94 −6.90
Ge −0.72 2.27 −6.40

5.6.3 Germanium and Silicon

Among semiconducting crystals the Ge crystal was the first for which the dependence
of the lattice constant on an isotope effect was investigated both theoretically and
experimentally [116–118]. In the very first paper [117] this dependence was experi-
mentally studied in a highly perfect crystal of natural isotopic composition (average
M = 72.59) and the second crystal was isotopically enriched, containing 95.8% of
74Ge (average M = 73.93). Using the following equation (analogous Eq. 5.84) for
the relative changes in the lattice constant a with isotopic mass at low temperature

(e
− �ω

kBT �1)
�a

a
= − C

a3

�M

M

(

γ0�ω0 + 3

4
γakBθD

)

, (5.84)

where γ0 = 1.12 and γa = 0.40 are the Gruneisen parameters for optical and
acoustical phonon modes in Ge, θD = 374 K is the Debye temperature and
�ω0 = 37.3 meV. Buschert et al. evaluated the Eq. (5.84) for a 95.8 % enriched 74Ge
crystal in comparison with a natural crystal. Equation (5.84) predicts 12 × 10−6 and
6 ×10−6 reduction in a for T = 0 and T = 300 K, respectively. Buschert et al.
[117] experimentally found reductions of 14.9 and 6.3 ppm at 77 K and T = 300 K,

http://dx.doi.org/10.1007/978-3-642-30325-8_5
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respectively. The agreement between calculated and measured values is very good
considering the uncertainties of the Gruneisen parameter values used in the theory.
After this paper [117] two theoretical papers were published [116, 118] where were
studied the isotope effect and its temperature dependence. In the paper of Pavone
and Baroni [116] the dependence of the lattice constant of C, Si and Ge upon their
isotopic purity using the first-principles calculations, performed by treating nuclear
vibrations by density-functional perturbation theory. The main results of this paper
was depicted in Fig. 5.23. The values of the constant A, B and C (Eq. (5.81)) as fitted
to theoretical data for the three materials studied in the paper of Pavone and Baroni
[116] as well as for LiH [96] are reported in Table 5.11. Noya et al. [118] studied
the dependence of the lattice parameter upon the isotope mass for five isotopically
pure Ge crystals by quantum path-integral Monte Carlo simulations. The interatomic
interactions in the solid were described by an empirical of the Stillinger-Weber type.
At 50 K the isotopic effect leads to an increase of 2.3 × 10-4 Å in the lattice parame-
ter of 70Ge with respect 76 Ge. Comparison of the simulation results with available
experimental date for 74Ge [117] shows that the employed model provides a realistic
description of this anharmonic effect. It was shown by Noya et al. that the calcu-
lated fractional change of the lattice parameter of 74Ge with respect to a crystal
whose atoms have the average mass of natural Ge amounts to �a

a = −9.2 × 10−6

at T = 0 K, that is almost in agreement with results of Buschert et al. [114]. More
detailed investigations of the crystal lattice constants of Ge was performed by Ma
and Tse [120]. The temperature dependence of the equilibrium lattice constants for
five isotopically pure Ge crystals and naturally occurring Ge were calculated from
ab initio electronic theory within quasiharmonic approximation (Figs. 5.24, 5.25).
At very low temperature (close to 0 K) the inclusion of zero-point motion is shown
to account quantitatively for observed differences in the lattice constants between
the isotopes (Fig. 5.25). The discrepancy between the theoretical and experimental
thermal expansion on 73Ge isotope alone is unlikely to provide a satisfactory expla-
nation of this discrepancy. The cited authors thought that perhaps the nuclear spin
(for 73Ge − I = 9/2) may have a subtle effect on the phonon property of this
crystal affecting the thermal expansion [120].

5.6.4 Diamond

The isotopic dependence of the lattice constant of diamond has also attracted interest
in connection with the above thermal properties (see above part of thermal conduc-
tivity). Banholzer et al. [121] reported the lattice constant of natural and 13C diamond
by X-ray diffraction using the powder samples and single crystals. Holloway and co-
workers [114, 115] examined the influence of the isotope ratio on the lattice constant
of mixed crystals of 13C12

x C1−x by single-crystal X-ray diffractometry. According
their results, the lattice constant, as in case of LiH [122], decreased linearly with 13C
content according to the expression
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Fig. 5.23 Dependence of the equilibrium lattice constant of C, Si and Ge upon
temperature for different isotopic masses. The temperature is given in units of T ∗
[
T ∗ (C) = 1941 K, T ∗ (Si) = 744 K, T ∗ (Ge) = 440

]
. The arrows indicate the room temperature

(25◦C). The lattice constants are in units of the zero-temperature lattice constants at the natural
isotopic compositions (aC = 6.71; aSi = 10.23; and aGe = 10.61 a.u.). Note the different units in
three panels, which are indicated by the vertical bars (after Pavone et al. [116])

a(x) = 3.56714 − 5.4 × 10−4x. (5.85)

The fractional difference�a/a between both end compositions is −1.5×10−4. The
lattice constants of the five samples of the mixed-diamond with different isotopic
compositions were studied in the paper of Yamanaka et al. [123]. In this paper it
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Fig. 5.24 Temperature
dependence of the calcu-
lated lattice parameter for
70Ge. The inset shows details
at low temperature below 53
K. The solid line is the cal-
culated results in [119] (after
[120])

Fig. 5.25 Plots of Y =
[a(M) − a(70)]/a(70) with
temperature (after [120])

was shown that the standard deviations of the lattice constant were in the range of
5 ÷ 9 × 10−5 Å. The lattice constant is varied (Fig. 5.26) with the isotope ratio and
it can be expressed in quadratic form as

a(x) = 3.56712 − 9.0 × 10−4x + 3.7 × 10−4x2, (5.86)

where x =
[

13C
12C+13C

]
.

This expression is in contrast to linear relation reported by Holloway and cowork-
ers [114, 115]. A linear relation between the lattice constant and isotope ratio would
be somewhat puzzling, because compressibility and Gruneisen parameter are not the
same for different isotopes [96].
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Fig. 5.26 Isotope dependence
of the lattice constant of
diamond. The curved line
shows the quadratic (Eq.
(5.86)), which fits to solid
circles obtained by Yamanaka
et al. The straight line fits to
open squares those obtained
by Holloway et al. [114, 115]
(after Yamanaka et al. [119])

In conclusion of this section we should stress the premier role of the anharmonic
effect in the dependence of a on the isotopic effect. Really, as was pointed out
by Vogelgesang and coworkers [124] the concentration-dependent lattice parameter
incorporating zero-point motion in combination with anharmonicity, deduced from
Eq. 2.43 of Ref. [80]

a(x) = a12 − �g1
(
6k3

1 M12
) 1

2

[

1 −
(

M12

Mx

)1/2
]

(5.87)

with Mx = (1 − x) M12 + x M13. A comparison of Eq. (5.87) with the date of Hol-
loway et al. for a(x) and k1 = 3Bsa = 4.76 × 105 dyn/cm for natural diamond yields
g1 = (4.5 ± 0.4) × 1014 erg/cm3. Yamanaka’s et al. results analyzed in the same
manner yields g1 = (4.7 ± 0.4) × 1014 erg/cm3, i.e. very close to the Holloway’s
date.

5.6.5 Compound Semiconductors: GaAs, ZnSe

These compounds were studied in the papers of Garro et al. [125] and Debernardi
and Cardona [126]. In binary semiconductors, the calculations of the dependence
of volume (or lattice parameter) on isotopic masses is more complicated. It is not
possible to write the relative variation of the crystal volume as a simple function
of the relative variation of the mass. Phonon frequency depends differently on the
two masses, and this dependence has to be known, together with the corresponding
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Gruneisen parameter for all phonon modes, in order to calculate the dependence of
the lattice constant on the isotopic masses. For ZnSe Garro et al. have employed an
11-parameter rigid-ion model (RIM, [66, 127]) at two different unit-cell volumes to
obtain the Gruneisen parameters. Due to the absence of a similar dynamical model for
GaAs (note, that the only stable As isotope is 75As), an estimation of the variation of
its lattice parameter with Ga and As masses has been performed by interpolating ZnSe
and Ge results. In order to connect the change in volume with phonon parameters
Garro and co-workers used the Helmholtz free energy F, which is related for a system
of independent oscillators (phonons) through a partition function [116]. In terms of
the energy of individual oscillators, F can be written as

F =
∑

v,−→q

{
1

2
�ων

(−→q ) + kT ln
[
1 − exp

(−�ων

(−→q )
/kT

)]
}

. (5.88)

The volume of a sample is related to the bulk modulus through
(

�V
V

)
T = −�p

Bs
,

while p can be written as p = (
�F
�V

)
T . Using these expressions, we can write

V = V0 + 1

Bs

∑

v,−→q
�ων

(−→q )
γν

(−→q )
[

nB
(
ων

(−→q )) + 1

2

]

, (5.89)

where it has introduced the mode Gruneisen parameters γν

(−→q )
defined as γν

(−→q ) =
− ∂lnων

∂ ln V and nB
(
ων

(−→q ))
is the Bose–Einstein factor. In the last equation, V0 repre-

sents the crystal in the limit of infinitive masses. In terms of the lattice constant of
the conventional unit cell (a0 in the limit of infinitive masses) for zinc-blend-type
materials last equation can be written as

a (M1,M2) − a0

a0
= 4�

3Bsa3
0

∑

v,−→q

[

ων

(−→q )
γν

(−→q ) [nB
(
ων

(−→q )) + 1

2

]

, (5.90)

where a(M1, M2) is the lattice constant for a finite mass of atoms 1 and 2 in the
primitive cell at a given temperature. Here we are interested in the change of the

lattice parameter when one of the atomic masses changes
(

∂ ln a
∂M k

)
and in the low

temperature limit in which nB ≈ 0. If we change the mass of atom k(k = 1; 2) from
Mk to Mk + �Mk, the relative change in the lattice parameter is

a (Mk + �Mk) − a(Mk)

a (Mk)
� [a (Mk + �Mk) − a0] − [a (Mk) − a0]

a0

� 2�

3Bsa3
0

∑

v,−→q
�k

[
ων

(−→q )
γν

(−→q )]
. (5.91)
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�k
[
ων

(−→q )
γν

(−→q )]
is the mean difference of the quantity in brackets evaluated

at two different isotopic masses. As was shown by Garro et al. this term is usually
negative for an increase in either of the masses. Thus it can be understood as an
‘isotopic concentration’ of the lattice parameter.

The calculation of Eq. (5.91) requires an integration over the whole Brillouin zone.
For this reason, it is convenient to define the ‘lattice spectral function’.

�(M1, M2; �) = 2�

3Bsa3
0

∑

v,−→q
�γν

(−→q )
δ
[
� − ων

(−→q )]
(5.92)

which represents the spectral dependence of the changes in lattice parameter induced
by a mass configuration M1 and M2. In terms of Eq. (5.92), Eq. (5.91) becomes

�ka

a
=

�max∫

0

d��k�(M1, M2;�) . (5.93)

Garro et al. calculated the spectral functions to two different isotopic masses of Zn.
These authors compared the results of ZnSe with those of Ge obtained by Pavone
and Baroni [116], it was noted that the effect of changing both masses in the unit
cell is nearly the same for both materials. However, for Ge the two atoms contribute
equally, while for ZnSe the contributions of the anion and the cation are rather asym-
metric. The dependence of the GaAs lattice parameter on the Ga and As masses has
been obtained by linear interpolation of the values found for Ge and ZnSe because
of the less extensive knowledge of Gruneisen parameters for GaAs than for ZnSe.
Debernardi and Cardona [126] have described an efficient way to compute the deriv-
atives of the lattice constant with respect to the mass in polar semiconductors. It is
necessary to point out at the absence of the isotopic effect for the lattice constant in
KCN crystals [84].
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Chapter 6
Traditional Application of Stable
and Radioactive Isotopes

6.1 Background

This chapter reviews the applications of isotopetronics in different modern technolo-
gies and science. It is briefly describes the application of stable isotopes. This chapter
describes the new reactor technology-neutron transmutation doping (NTD), capture
of thermal neutrons by isotope nuclei followed by nuclear decay produces new
elements, resulting in a number of possibilities for isotope selective doping of solids.
The importance of this technology for studies of semiconductor doping as well as
metal-insulator transitions and neutral impurity scattering process is underlined. The
introduction of particle irradiation into processing of semiconductor materials and
devices creates a new need for additional understanding of atomic-displacement-
produced defects in semiconductors. It is shown that measurement of decay rates of
induced radioactivity and the system of clearance and certification such as to allow
the solids to be internationally transported as “Exemt Material”, as defined in IAEA
Regulations, are dealt with. There is a short description of the theory and practice
of semiconductor lasers. The discovery of the linear luminescence of free excitons
observed over a wide temperature range has placed lithium hydride, as well as crys-
tals of diamond in line as prospective sources of coherent radiation in the UV spectral
range. For LiH, isotope tuning of the exciton emission has also been shown. It was
shown that use of the neutron transmutation doping of materials allows new kinds
of technology for producing optical fibres. This chapter contains a brief description
of many traditional (e.g. human health, geochronology, etc.) and new applications
(memory and quantum information) in technology and science. The main customers
of isotopes are pharmaceutical and biomedical industries. They use them for diag-
nostic purposes, such as markers of products whose final bodily destination is known.
For instance 13C, with a nuclear magnetic moment can be applied to studies with
NMR scanners. 18F is effectively used in Positron Emission Tomography (PET).

The material of this chapter stresses the perspective of new directions of
nanotechnology—isotoptronics.

V. G. Plekhanov, Isotopes in Condensed Matter, Springer Series in Materials Science 162, 207
DOI: 10.1007/978-3-642-28723-7_6, © Springer-Verlag Berlin Heidelberg 2013
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6.2 The NTD Process: A New Reactor Technology

The neutron transmutation doping (NTD) process involves the cooperation of semi-
conductor materials specialists, device producers, radiation damage and defect spe-
cialists and reactor personnel. Of all possible interactions among these groups, those
with the reactor community have traditionally been the weakest. Reactor personnel
have, therefore, had the greatest learning curves to overcome. It is to the credit of both
the reactor community and the semiconductor industry that these difficulties have
been overcome so readily in the few years since 1975 when NTD silicon first appeared
on the market. The transmutation doping process simply involves irradiation of an
undoped semiconductor with a thermal neutron flux. The major advantages of the
NTD process are illustrated schematically in Fig. 6.1. The homogeneity in NTD-Si
is a result of a homogeneous distribution of silicon isotopes in the target material and
the long range of neutrons in silicon. Doping accuracy is a result of careful neutron
flux integration. The material improvements offered by the NTD process form the
basis for semiconductor device improvement (for details see [1]).

As is well known, research reactor facilities provide the best source of thermal
neutrons for this purpose at present (see e.g. [2–5]). These reactors are ideally suited
for such projects because they have usually been constructed with sample irradiation
as one of the prime design requirements. Although these reactor facilities provide a
source of thermal (E∼0.025 eV) neutrons, this thermal flux is always accompanied
by a fast neutron component which is not useful in providing doping transmutations,
but does produce radiation damage (displacements of atoms from their normal lat-
tice sites) which must be repaired by annealing, the process of heating the irradiated
material to temperatures sufficiently high that the irradiation produced defects
become mobile and can removed.

To understand the process further, we must be concerned with the interactions of
neutrons, both thermal and fast, with the target material to be doped. Because neutrons
are neutral particles, their range of penetration in most materials is usually very
long. They interact only very weakly with atomic electrons through their magnetic
movements. Being neutral, neutrons see no Coulombic barrier at the target nuclei
and, therefore even very slow neutrons may reach into the nucleus without difficulty.
In fact, the slower the neutron velocity, the greater is the time of interaction between
the neutron and the target nucleus. We, therefore, expect the probability of neutron
capture by the target nuclei to be enhanced at low neutron energies.

This interaction is described in terms of a capture cross-section, σc, where the
number of captures per unit volume, N, is given by

N = NT σc�, (6.1)

where NT is the number of target nuclei per unit volume, σc the capture cross-section
and � = φt is the influence (flux times time) given in n/cm2. Figure 6.2 shows the
capture cross-section as a function of neutron energy for silicon as averaged over
all three stable silicon isotopes [6]. Similar behaviour is found individually for each
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Fig. 6.1 Advantages of NTD process. Histogram of irradiation target accuracy obtained for com-
mercial sample lot at NURR. Insert is a schematic representation of spreading resistance traces
across a wafer diameter for conventionally doped and NTD Si (after [6])

silicon isotope. It can be seen in Fig. 6.2 that for low energies:

σc ∼ E−1/2 ∼ 1/V . (6.2)

For a given nuclear radius, (1/V) is proportional to the interaction time. Therefore,
the cross-section represents a probability of interaction between the nucleus and
neutron.

After neutron capture, the target nucleus differs from the initial nucleus by the
addition of the nucleon and is a new isotope in an excited state which must relax by
the emission of energy in some form. This emission is usually in the form of electro-
magnetic radiation (photons) of high energy usually called gammas (see e.g. [9] and
references therein). The time for decay of this excess energy by gamma emission
can be very short (prompt gammas) or can take an appreciable time in which case a
half-life a factor of two, can be measured. The gamma emission spectrum is charac-
teristic of the nuclear energy levels of the transmuted target nuclei and can be used
as a powerful trace substance technique called neutron activation analysis (NAA),
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Fig. 6.2 Neutron capture cross-section as a function of neutron energy for natural silicon (after
[6])

to detect quantitavely impurity levels as low as 109 atoms/cm3 [10]. A typical trace
substance NAA gamma spectrum is shown in Fig. 6.3. Each emission line is charac-
teristic of a particular nuclear transition of a particular isotope. The absorption of a
neutron and the emission of gammas is represented by the notation:

AX (n,γ )A + 1X , (6.3)

where (n, γ ) represents (absorption, emission), A is the initial number of nucleons
in the target element X before neutron absorption while A + 1 is the number after
absorption. It is possible for the product isotope A + 1X to be naturally occurring
and stable. In many cases, however, the product isotope is unstable. Unstable iso-
topes further decay by various modes involving the emission of electrons (β-decay),
protons, α-particles, K-shell electron capture or internal conversion until a stable iso-
topic state is reached (for details see, e.g. [12]). These decays produce radioactivity
and can be characterised by their half-lives T1/2. In the case of silicon, three stable
target isotopes are transformed by (n, γ ) reactions [7, 8] as follows:

(92.3%)28Si(n, γ )29Si, σc = 0.08 b;
(4.7%)29Si(n, γ )30Si, σc = 0.28 b;
(3.1%)30Si(n, γ )31Si →31 P + β−, σc = 0.11 b; (T1/2 = 2.62 h). (6.4)

The relarive abundance of each stable silicon isotope is shown in parenthesis
(see also [9]). The cross-sections are expressed in barns (1 barn=10−24cm2). The
first two reactions produce no dopants and only redistribute the relative abundances
slightly. The third reaction produces 31P, the desired donor dopant [13, 14], at a
rate of about 3.355 ppb per 1018nthcm−2 [4]. This production is calculated using
Eq. (6.3), the 30Si (NT ∼= 5 × 1022 Si·cm−3× 0.031).
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Fig. 6.3 Typical neutron activation analysis (NAA) gamma-ray spectrum to search for trace sub-
stances deposited on an air filter after 1 min. irradiation at MURR (after [10])

In addition to the desired phosphorus production reaction and its relatively short
half-life for β− decay, the reaction

31P(n, γ )32P →32S + β−, σc = 0.19 b (T1/2 = 14.3 d) (6.5)

occurs as a secondary undesirable effect. The decay of 32P is the primary source
of radioactivity in NTD float fine Si. Of course, any undesirable trace impurities in
the silicon starting material can lead to abnormally long half-life activities which
may require that material be held out of production until exempt limits are reached.
These factors have stimulated on the subject of radiation protection. Once the dopant
phosphorus has been added silicon ingot by transmutation of the 30Si isotope, the
problems remain to make this radiation damaged and highly disordered material
useful from an electronic device point of view. Several radiation damage mechanisms
contribute to the displacement of the silicon atoms from their normal lattice position
(details see below). These are:

1. Fast neutron knock-on displacements;
2. Fission gamma induced damage;
3. Gamma recoil damage;
4. Beta recoil damage;
5. Charged particle knock-on from (n,p); (n,α) etc reactions (for details see [9])

Estimates can be made of the rate at which Si atom displacements are produced by
these various mechanisms, once a detailed neutron energy spectrum of the irradiation
is known, and these rates compared to the rate at which phosphorus is produced.

The number of displaced atoms per unit volume per second, ND , is estimated
from the equation

dND/dt = NT σφν, (6.6)
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where NT is the number of target atoms per unit volume, φ is the flux of damaging
particles and ν is the number of displacements per incident damaging particle. The
cross-section for gamma induced displacements in silicon is small while the cross-
sections for (n,p); (n,α), etc., are of the order of millibarns and have thresholds in
the MeV range. The fast neutron knock-on displacements can be calculated from the
elastic neutron scattering cross-section once the reactor neutron energy spectrum is
known. Estimates of fission spectra and graphite moderated fission spectra can be
found in the literature [15].

Even if the fast neutron damage could be completely eliminated, the recoil dam-
age mechanisms, which are caused by thermal neutron capture, still would produce
massive numbers of displacements compared to the number of phosphorus atoms
produced. In the case of gamma recoil, a gamma of energy �ω carries a momentum
�ω/c which must equal the Si isotope recoil momentum MV. The recoil energy

ER = 1

2
MV2 = 1

2

(�ω)2

MC2 (6.7)

is, therefore, departed to the silicon atom of mass M for each gamma emitted. An
average overall possible silicon isotope gamma emission and cross-sections yields
an average recoil energy of 780 eV [16] which is significantly higher than the Si
displacement energy. A similar effect is encountered for 31Si β− decay. The β−
carries a momentum

p = 1

c

√
E2

β − (
m0c2

)2 ≡ MV. (6.8)

Therefore,

ER = 1

2
MV2 = 1

2

[

E2
β−

(
m0c2

)2
] / (

Mc2
)

. (6.9)

For a β− emitted with an energy of 1.5 MeV, ER = 33.2 eV or roughly twice the
displacement threshold.

From the above considerations, a very crude estimate of the number of displace-
ments per phosphorus atom produced can be made. The results of the estimation
are shown in Table 6.1. While the absolute numbers of displacements should not
be taken literally, the relative magnitudes of the amounts of damage produced by
these various mechanisms are probably orders of magnitude correct. An inspection
of Table 6.1 indicates that the gamma recoil mechanism is significant relative to the
quantity of phosphorous produced even in highly moderated reactors. We are led to
the inescapable conclusion that transmutation doping will always produce significant
amounts of radiation damage which must be repaired in some way. These defects
introduce defect levels into the band gap which cause free carrier removal and a
reduction in carrier mobility and minority carrier lifetime (see, e.g. [16]).

The defects produced by neutron irradiation are removed by thermal annealing
as discussed previously. It is at this point in the process where disagreement as to the
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Table 6.1 Number of displaced silicon atoms per phosphorus produced for various damage
mechanisms shown for an in-core fission spectrum and a graphite moderated spectrum (after [6])

Damage particle/ Position In core In pool

Fast neutron 4.06 ×106 1.38 ×104

Fission gamma 3.64 ×103 36.4
Gamma recoil 1.29 ×103 1.29 ×103

Beta recoil 2.76 2.76
Total DISP/(P) 4.06 ×106 1.51 ×104

best procedure is likely to be the greatest. The spectrum of possible defect structures
and their energetics is impressively large and incompletely understood. Therefore,
annealing procedures according to Meese [6] will be based on art rather than on exact
science. They will also tend to become proprietary for this reason.

This is unfortunate since it is precisely in this area that fundamental knowledge
is needed to produce the best possible product. Although carrier concentration and
mobility recovery are easily obtainable by various annealing procedures, minority
carrier lifetime recovery is very elusive at present.

So, neutron transmutation offers both advantages and disadvantages over con-
ventionally doped silicon (for details see [9]).
Advantages

1. Precision target doping ( =1% or better).
2. Better axial and radial uniformity.
3. No microresistivity structure.

Disadvantages

1. Irradiation costs.
2. Reduction in minority carrier lifetime.
3. Radioactive safeguards considerations.

The steady growth of the NTD-silicon (and others NTD-semiconductors) market
suggests (see also below) that the advantages are outweighing the disadvantages. We
should add that the reactor facilities in details have been reviewed in [7, 8].

6.3 Experimental Results

6.3.1 Ge

As was noted above, neutron transmutation (NT) is especially intriguing for semicon-
ductors for several reasons. First, the NT process can create new elements removed
by just one atomic number. Considering for the moment the elemental group-IV
semiconductors Ge and Si, this means that the donors As and P will be created,
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respectively, following neutron capture and β-decay of isotopes of these semicon-
ductor elements. The new elements are, of course, the prototypical donors. Neutron
capture leads to NTD. Second, the number of new atoms A+1

Z+1N created is simply
(see also above)

A+1
Z N = nσn

A
Z N, (6.10)

where n being the total neutron fluency (cm−2), σn the cross-section for thermal neu-
tron capture (cm2), and A

Z N the atom concentration of the specific isotope in the given
isotope mixture (cm−3) (either natural or man made). Considering that the values
of σn lie in the 10−23 ÷ 10−24cm−2 range (see above), it recognises that very large
neutron fluences are required to transmute a significant number of atoms of one ele-
ment into another. Whereas this may pose problems to fulfil the medieval alchemist’s
dream, it is perfectly suited for the person who wants to dope semiconductors. With
the thermal neutron fluences available in modern nuclear reactor (see also [7, 8]) one
can dope Ge up to the metal-insulator (MI) transition (2–3 × 1017 cm−3 ) while Si
can be doped with phosphorus to several times 1015 cm−3 [17]. As will be shown
below this is due to the small atom concentration of 30

14Si and the modest value of
the thermal capture cross-section. Third, there are elements that have light isotopes
which upon neutron capture transmute to a lower Z element either by electron cap-
ture or by positron decay. In this case acceptors are created. A classical case is the
transmutation of 70

32Ge into 71
31Ga.

The main advantage of the NTD method, as we know at present, is the precision
doping which is connected with the linear dependence of concentration of doping
impurities on the doze of neutron irradiation. Such dependence is numerous observed
in the different experiments (see, e.g [18–22]). As an example, in Fig. 6.4 there
is shown the dependence of the concentrations doped phosphorus on the doze of
irradiation the Si crystal in nuclear reactor. This dependence was measured with the
help of Hall effect. However, at the large doze of neutron irradiation there is observed
the nonlinear dependence. In Fig. 6.5 is shown the results of paper [24] where it was
observed the deviation from linear law at the large doze of neutron irradiation of the
sample of 74Ge which was annealed after irradiation at T = 460◦C during different
time (see also caption of Fig. 6.5). A more amazing effect was observed at the second
irradiation of the samples of 74Ge previously strong doped with As by NTD method.
Instead, expectable increase of the concentration free charges (electrons) n there is
observed with the decreased n. This decrease was directly proportional to the neutron
irradiation doze of 74Ge crystals. Both effects are details analysed in papers [21, 24].

The transmutation of the stable germanium isotopes via capture of thermal neu-
trons is well understood. Table 6.2 contains all the information relevant to NTD
of germanium. Haller et al. [18] quoted the values of the thermal neutron capture
cross-section σn of three sources [25–27]. The information of Table 6.2 permits the
computation of the acceptor and donor concentrations for a known neutron exposure.
Not only are these concentrations important but the ratio of the sum of all minority
dopants (donors) and the sum of all majority dopants (acceptors), i.e. the compen-
sation K, is crucial for the low temperature conduction. For the case of germanium,
one obtains K from the following equation (see also [18])
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Fig. 6.4 The dependence of
the phosphorus atoms con-
centration on the neutron
irradiation doze of Si crystals
and followed annealing at
800◦C during 1 h. The depen-
dence was measured by Hall
effect (after [23])

Fig. 6.5 The dependence
of the concentration of free
electrons in 74Ge NTD on
the irradiation of the thermal
neutron doze and followed
annealing at 460◦C during 24
(1), 50 (2) and 100 (3) h. (after
[24])

Table 6.2 Characteristics of the transmutation process of germanium (after [18])

Isotope Abundance (%) NCCS (barn) NCDR Dopant Type
70
32Ge 20.5 3.4; 3.2; 3.25 70

32Ge(n, γ ) →71
32 Ge →71

31 Ga p
72
32Ge 27.4 0.98; 1.0; 1.0 72

32Ge(n, γ ) →73
32 Ge

73
32Ge 7.8 14.0; 14.0; 15.0 73

32Ge(n, γ ) →74
32 Ge

74
32Ge 36.5 0.62; 0.5; 0.52 74

32Ge(n, γ ) →75
32 Ge →75

33As n
76
32Ge 7.8 0.36; 0.2; 0.16 76

32Ge(n, γ ) →77
32 Ge →77

33As →75
34Se n

NCCS = Neutron Capture Cros-Sections; NCDR = Neutron Capture and Decay Reactions

K = ( ∑
donors·cm−3)/

( ∑
acceptors·cm3) = (NAs + NSe)/NGa . (6.11)

The substitutional selenium impurities are double donors providing two electrons
for compensation. Therefore, they are counted twice in the sum of donors. Using
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the different values for σn , one finds K ranging from 0.322–0.405 for crystals with
negligible initial donor and acceptor concentrations. It would be of great help for both
the basic understanding of the hopping conduction [28] as well as for application of
neutron-transmutation-doped germanium as, for example , bolometer material [18], if
these cross-sections could be accurately evaluated in one or more well-characterised
nuclear reactors (see above).

In order to obtain the above K values and thus take full advantage of NTD, Haller
et al. chose the purest available Ge crystals as a starting material. Germanium is, in
this respect, ideally suited for NTD because it can be purified at present time down to
concentrations of �1011cm−3 (see e.g. [29]). Such low concentrations are negligible
when compared with the dopant concentrations after NTD in the low 1016cm−3

range. According to [18] the concentrations of electrically inactive impurities such as
hydrogen, carbon, oxygen and silicon can be as high as 1014cm−3. Of all the isotopes
of these impurities only 30

14Si transmutes to an electrically active impurity, phosphorus,
a shallow donor. With only one silicon atom in every 4.4×108 germanium atoms and
only 3% os all silicon atoms being 30

14Si which has a neutron capture cross-section
much smaller than the germanium isotope cross-sections, Haller et al estimate that
less than one phosphorus donor is produced for every 1011 gallium majority acceptors
during the NTD process. These authors concluded that ultra-pure germanium crystals
are virtually perfect starting material. For the NTD study, they have chosen an ultra-
pure germanium single crystal which they have grown at the crystal growth facility
described early (see also [18, 29] and references therein).

The measured resistivities (ρ) in [18] are presented in Fig. 6.6. The results of these
measurements yield the mobility μ:

ρ = (pμe)−1, and

RH = (pe)−1and

μ = RH /ρ, (6.12)

where p is free hole concentration, e is charge of the electron and RH is the magnitude
from Hall measurement.

The mobility values are only useful down to the temperature where hopping con-
duction sets in. The mobility values agree well with published values for melt-doped
material in the temperature range above the hopping regime. This indicates that
the concentration of residual radiation damage or other free-carrier scattering cen-
tres must be very small. Figure 6.6 shows the log (resistivity) versus 1000/T depen-
dence for six NTD germanium samples. The number next to each curve corresponds
to the acceptor (gallium) concentration in each sample. For comparison Haller et
al. have also measured gallium-doped germanium samples which have extremely
small values of K. These so-called uncompensated samples were cut from crystals
which were doped in the melt and were grown in the ultra-pure germanium crystal-
growing equipment, and not NTD doped. The compensating donor concentration in
these crystals is estimated to be less than 1011–1012cm−3. The resulting K is of the
order of 10−4–10−5. The resistivity-temperature dependence of these NTD samples
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Fig. 6.6 Resistivity as a function of 1000/T for NTD and uncompensated germanium samples.
Each curve is labelled by the gallium concentration obtained by either NTD or melt doping (after
[18])

is characterised by three regimes. At high temperatures (room temperature down to
about 50 K), the resistivity decreases because the carrier mobility increases. Below
about 50 K carrier freeze out begins and reduces the free hole concentration rapidly.
The slope of the freeze out in highly compensated material as proportional to the
acceptor binding energy EA −EV � 11 meV. At still lower temperatures, the appear-
ance of hopping conduction causes the resistivity to increase only very slowly. All
six NTD germanium samples show these three resistivity regimes very clearly. The
low-compensated samples show different log(ρ) versus 1/T dependences. A third
conduction mechanism has been proposed for such material [30]. It is based on the
idea that carriers can “hop” from neutral to a neighbouring neutral acceptor thereby
forming a positively charged acceptor. The NTD process in high-purity germanium
leads to a fixed compensation which in turn results in a certain slope of the log(ρ)

versus 1/T dependence for a given neutron exposure.
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6.3.2 Metal-Insulator Transition

In the next part of this paragraph we briefly discuss the metal-insulator transition
(MIT) [28, 31–33] in transmuted Ge. In the literature there is an intensive debate
whether MIT is a phase transition of first or second order and what are the experi-
mental conditions to obtain it at finite temperatures and in a real (disordered) system
(see, e.g. [19, 20, 22, 34]. If the MIT is as second order phase transition a further
challenge is the solution of the so-called puzzle of the critical index, μ for the scaling
behaviour of the metallic conductivity near the MIT, i.e. just above the critical impu-
rity concentration Nc and as small compensation, K. According to the scaling theory
of the MIT for doped semiconductors [32, 33], the conductivity at zero temperature
σ(0) = σ(T → 0), when plotted as a function of impurity concentration N, is equal
to zero on the insulating side of the MIT and remains finite on the metallic side,
obeying a power law in the vicinity of the transition,

σ(0) ∝ [(
N/Nc

) −1
]μ

, (6.13)

where Nc is the critical impurity concentration of the given system and μ is the crit-
ical currently, conductivity exponent. The value of μ, determined experimentally,
is compared with theoretical predictions. μ ≈ 0.5 has been obtained with nomi-
nally uncompensated semiconductors (Si : P [35], Si :As [36–38], Ge : As [39], Si
: B [40]) while μ ≈ 1 has been found with compensated semiconductors (Ge : Sb
[41], Si : P,B [42], Ge : Ga, As [43]) and amorphous alloys [43–46]. Exceptions
are uncompensated Ge : Sb with μ ≈ 1 [7, 8] and Gax Ar1−x amorphous alloys
with μ ≈ 0.5 [47, 48]. As was shown in [19] the value μ ≈ 0.5 obtained with sim-
ple systems like uncompensated semiconductors turns out to be inconsistent with
theoretical prediction [31–33, 46]. In his original theory Mott considered only the
electron–electron (e− −e−) interaction (Mott transition) and predicted a discontinu-
ous transition of σ (0) at Nc [49]. Although there is much evidence for the importance
of e− −e−-interactions, no experimental observation of such an abrupt transition has
been reported. Anderson’s ideas of MIT is based solely on the disordered potential
arising from randomly distributed dopants (Anderson transition) [50]. This led to
the development of the well known “scaling theory” which predicted μ ≈ 1 for 3D
systems (see also [32, 33] and references therein). More recently, higher order cal-
culations of the scaling theory (exclusively with disorder and no interactions) predict
μ ≈ 1.3 [51, 52], and more importantly, this value is shown to be independent of
time reversal invariance [53] and of strength of spin-orbit interactions [54] (see also
[20]). It is therefore clear that the effect of disorder alone cannot explain the exper-
imental results of μ ≈ 0.5 or 1. Chayes et al. combined the theories of Mott and
Anderson and successfully set the lowest limit μ>2/3 [55]. This result permits μ ≈ 1
obtained with compensated semiconductors and amorphous alloys. However, there
still is no theory which convincingly explains μ ≈ 0.5 found for uncompensated
semiconductors.
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Even with today’s advanced semiconductor technology, melt-doping of bulk semi-
conductors always leads to inhomogeneous dopant distributions due to impurity seg-
regation and striation during crystal growth [34]. In [19, 34] these difficulties have
been overcome by applying the NTD technique to a chemically pure, isotopically
enriched 70Ge [19] and 74Ge [34] crystals. The 70Ge crystal of isotopic compo-
sition

[
70Ge

]
= 96.2 at. % and

[
72Ge

]
= 3.8 at. % was grown in [19] using the

Czochralski method developed for ultra-pure Ge [29]. The as-grown crystal was free
of dislocations, p-type with an electrically active net-impurity concentration less
than 5×1011cm−3. In [34] was used isotopically engineered germanium which was
grown from pure 74Ge, enriched up to 94%, or by addition of a controlled portion of
Ge with natural isotopic content to the 74Ge material. In this way, both the doping
as well as the compensation are very homogeneous due to the NTD and the com-
pensation by controlled mixtures of 74Ge and 70Ge which transmute to 75As donors
and 71Ga acceptors. Four series of n-type NTD-Ge with different K were grown
[29]. The values of K are proportional to the product of the isotopic abundance and
the thermal neutron cross-section of all isotopes producing impurities (see above):
K = NGa/(NAs + NSe), whereas the impurity concentration is additionally propor-
tional to the irradiation doze. A very small fraction of 72Ge becomes 73Ge which is
stable, i.e. no other acceptors or donors are introduced. Use NTD since it is known [1,
56] to produce the most homogeneous, perfectly random dopant distribution down
to the atomic level. Figure 6.7 shows the temperature dependence of the resistivities
(ρ) of 14 insulating samples in the range N = 0.16 − 0.99Nc for NTD70Ge : Ga
crystals. The analogueous picture for NTD74Ge : Ga is shown in Fig. 6.8. All curves
become linear only when lnρ is plotted against T−1/2 in good agreement with theory
of variable range hopping conduction for strongly interacting electrons [28]:

ρ = ρ0exp (T0/T)1/2 , (6.14)

where ρ0 is a prefactor and T0 is given by

T0 ≈ 2.8e2/k(N)ξ(N), (6.15)

where k(N) and ξ (N) are the dielectric constant and localisation length depending
on N, respectively. Moreover, k(N) ∝ [Nc/ (Nc − N)]s and ξ(N) ∝ [Nc/ (Nc−N)]ζ

as N approaches Nc from the insulating side so that T0 becomes [28]

T0 = A [(Nc−N) Nc]α . (6.16)

Here, α = s + ζ is to be determined experimentally [19].
Figure 6.9 shows the dependence of T0 as function of Nd = n/ (1 − K) for different

K of 74Ge : Ga [34]. These authors used the intersection point of these dependencies
with the x-axis as a tool for the detrmination of Nc(K) very early. The left half
of Fig. 6.10 shows the experimentally determined T0 versus [Ga] (filled diamonds)
together with the result of a three-parameter-fitting using A, Nc and α as variables
in Eq. (6.16) (solid curve) [19]. These authors deduced [Ga] using the following
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Fig. 6.7 The logarithm of the
resistivity plotted as a func-
tion of T−1/2 for 14 insulating
NTD 70Ge:Ga samples. Gal-
lium concentration from top
to bottom in units 1016 cm−3

are 3.o2; 8.00; 9.36; 14.50;
17.17; 17.52; 17.61; 17.68;
17.70; 17.79; 17.96; 18.05;
18.23 and 18.40 (after [19])

Fig. 6.8 Typical temperature
dependences of the resistivity
as a function of T −1/2 for
four samples NTD 70Ge:Ga
crystals (after [34])

equation
[

71Ga
]
(cm−3) = 0.1155 × n(cm−2) as a sample, since it was known the

precise neutron fluency used in each irradiation. The best fit of T0 with Eq. (6.16) was
obtained with the values α = 1.03 ± 0.038 and Nc = (1.855 ± 0.012) × 1017cm−3.
A much larger value of α ≈ 2 has been reported for Ge : As using only three samples
with the highest N being far from the transition 0.56Nc) [58]. In [19], it has been
obtained α = 1 with 14 homogeneously doped samples of [Ga] = 0.16−0.99Nc, all
demonstrating the lhρ ∝ T−1/2 dependence, i.e. this data set should be considered
to be the first reliable determination of the hoping conductivity exponent α for a
particular semiconductor system.
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Fig. 6.9 Determination of Nc
from the extrapolation T0 →0
in the range T0>T (after [34])

Fig. 6.10 The left side shows (70Ge) as a function of Ga concentration (diamond). The solid curve
is the best fit obtained with Eq. (6.16) ( with α ≈1). The right side shows the zero temperature
conductivity σ (circle) obtained from the extrapolation in Fig. 6.11 for the metallic samples as a
function of Ga concentration (bullet). The solid curve is the best fit obtained with Eq. (6.16) (after
[19])

Figure 6.11 shows the conductivity σ according to the results of [19] in ten metallic
samples plotted against T1/2. Extrapolation of each curve to T = 0K, i.e. the deter-
mination of the zero temperature conductivity σ (0), yields a very small error since
the dependence of σ on T for all samples is very weak. The right half of Fig. 6.10
shows σ (0) as a function of [Ga] (filled circles) together with a fit obtained by the
scaling expression Eq. (6.13) (solid curve). The values of the parameters determined
in [19] from this fit are μ = 0.502 ± 0.025 and Nc = (1.856 ± 0.003) × 1017cm−3.

This value presents μ ≈ 0.5 for uncompensated Ge : Ga semiconductors with high
confidence, since the two values of Nc obtained from the scaling of T0 [Eq. (6.16)]
and σ(0) [Eq. (6.13)] agree perfectly (for details see also [22, 34]).



222 6 Traditional Application of Stable and Radioactive Isotopes

Fig. 6.11 Conductivity plot-
ted as a function of T1/2 for
10 metallic NTD 70Ge:Ga
samples. Sold lines indicate
extrapolation to T = 0 K. Gal-
lium concentration from top to
bottom in units of 1016cm−3

are 18.61; 19.33; 20.04; 20.76;
21.47; 22.19; 22.90; 23.62;
24.50 and 26.25 (after [19])

6.3.3 Neutral-Impurities Scattering

The low-temperature mobility of free carriers in semiconductors is mainly deter-
mined by ionised- and neutral-impurity scattering. The ionised-impurity scattering
mechanism has been extensively studied (see e.g. [58] and references therein), and
various aspects of this process are now quite well understood. Scattering by neutral
impurities (see also [59]) is much less than by ionised centres, i.e. its contribution is
significant only in crystals with low compensation and at very low temperatures where
most of the free carriers are frozen on the impurity sites. The availability of highly
enriched isotopes of Ge which can be purified to residual dopant levels <1012cm−3

has provided the first opportunity to measure neutral impurity scattering over a wide
temperature range. Three Ge isotopes transmute into shallow acceptors (Ga), shallow
donors (As) and double donors (Se) (see also above):

70
32Ge + n →71

32 GeEC(t1/2=11.2days) →71
32 Ga + νe,

74
32Ge + n →75

32 Geβ−(t1/2=82.2min) →75
32 As + β− + ν̄e,

76
32Ge + n →77

32 Geβ−(t1/2=11.3 h) → β− + ν̄e +77
32 Asβ−(t1/2=38.8h) →77

32 Se+β−+ν̄e

(6.17)

The isotopes 72Ge and 73Ge are transmuted into the stable 73 Ge and 74Ge respec-
tively. Controlling the ratio of 70Ge and 74 Ge in bulk Ge crystals allows fine-tuning
of the majority—as well as the minority carrier concentration. Currently, this is the
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Fig. 6.12 Temperature dependence of the carrier mobility of (a) p-type and (b) n-type NTD Ge
crystals (after [60, 61])

best method to vary the free-carrier concentration independently from compensa-
tion ratio. As opposed to other doping methods, NTD yields a very homogeneous,
perfectly random distribution of the dopants down to the atomic levels [59]. Thus,
isotopically controlled crystals offer a unique possibility to study systematically the
scattering mechanism of the charge carriers in semiconductors. Extensive Hall-effect
and resistivity measurements from room temperature down to 4.2 K yielded very
accurate free-carrier concentrations and mobilities as a function of temperature and
doping level were done in [60–63]. Itoh et al. have performed temperature-dependent
Hall measurements on four different p-type and two-different n-type Ge crystals. The
n-type crystals were obtained through NTD of isotopically enriched 74Ge, and the
p-type crystals correspondingly from NTD of isotopically enriched 70Ge. The neu-
tron cross-section for the neutron capture of the isotope for these irradiations were
determined to be σc(

70 Ge) = 2.5(5)×10−24cm2 and σc(
74Ge) = 0.6(1)×10−24cm2

by Itoh et al. [64]. To remove structural defects due to the unintentional irradiation
with fast neutrons, all samples had to be thermally annealed at 650◦C for 10 s in a
rapid thermal annealer. Hall mobility obtained from the conductivity and free-carrier
concentration data (listed in the Table 6.3) are displayed in Fig. 6.12. A magnetic
field of 3 kG was used, that is, for the temperature range of interest for the neutral
impurity scattering the high-field limit μB	1 is satisfied and the Hall mobility can
be equated with the drift mobility.

Fuchs et al. [60, 61] analysed the mobility data of Fig. 6.12 in terms of scattering
of the carriers from phonons (μ1), ionised impurities (μi ) and neutral impurities
(μn) assuming next rule

1

μ
= 1

μ1
+ 1

μi
+ 1

μn
. (6.18)
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Table 6.3 Carrier concentration of the Ge crystals used in the work of Fuchs et al. [60, 61]

p - type NA − ND ND K = ND/NA

Ge:Ga #1 3.1 ×1014 3 ×1012 9 ×10−3

Ge:Ga #2 7.7 ×1015 9 ×1013 1.2 ×10−2

Ge:Ga #3 1.7 ×1016 2 ×1014 1.2 ×10−2

Ge:Ga #4 1.0 ×1015 1.2 ×1013 1.2 ×10−2

n - type ND − NA NA K = NA/ND

Ge:As #1 3.5 ×1014 8.5 ×1012 2.4 ×10−2

Ge:As #2 1.2 ×1015 1.2 ×1013 1.0 ×10−2

Fig. 6.13 Temperature dependence of the relative contributions to the mobility. Note that
the mobility is dominated by neutral impurity scattering below 20 K (70Ge:Ga #2 crystal)
(after [60, 61])

To extract the neutral impurity scattering contribution, they subtracted
1/μ1 + 1/μi from the measured 1/μ. The relative contributions of phonon
scattering (1/μ1), ionised impurity scattering (1/μi ) and the resulting neutral impu-
rity scattering (1/μ - 1/μ1 - 1/μi ) are plotted in Fig. 6.13 (data Ge : Ga #2). For
T >80 K, phonon scattering is the dominant scattering mechanism. Comparing
Figs. 6.12 and 6.13, it becomes clear that the “dip” in the carrier mobility around
50 K is caused by scattering from ionised impurities, which dominate the scattering
of the carriers between 20 and 80 K. The flattering and saturation of the mobilities
below 20 K originate from neutral impurity scattering, which can only be observed
in crystals with very high crystalline quality and low compensation like isotopically
enriched NTD Ge crystals used in [63].

The experimental data, obtained in [63] allow these authors quantitative compar-
ison with theory. According to Erginsoy [65], the inverse relaxation time τ−1, the
scattering rate, for neutral-impurity scattering equals:
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τ−1 = 20k NN �
3

m ∗2 e2 , (6.19)

where k is dielectric constant, e is the electron charge, NN is the neutral-impurity
concentration and m* is the electron effective mass. Equation (6.19) can be consid-
ered only as a first-order approximation because the prefactor 20 is an empirically
determined constant and only the lowest s partial wave is taken into account in the
phase-shift calculation (see also [66–68]). McGill and Baron [69] have used for
τ−1

neutral the following equation:

τ−1
neutral = 4πNN �e

2km ∗ EB

∞∑

l=0

(l + 1)

4w1/2

[
3sin2 (

δ−
l − δ−

l+1

)+sin2 (
δ+

l − δ+
l+1

)]
, (6.20)

where EB is the binding energy of the scattering centres, w ≡ E/EB and E is the
incident electron energy, and δ+

l and δ−
l are the lth partial shift for the singlet and

triplet states respectively. In [69] is graphically shown the accurate τ−1
neutral as a

function of w for neutral-impurity scattering in semiconductors. This result has been
considered as an appropriate model for neutral-impurity scattering in semiconductors
and has been discussed in detail in many standard textbooks (see, e,.g. [70]).

Meyer and Bartoli reevaluated this task and obtained an analytical expression that
is essentially the same as the graphical solution of authors of [69] but covering a
wider incident-electron energy range (see also [71]):

τ−1
neutral = A(w)kNN �

3

m∗2
H e2

, (6.21)

with

A(w)= 35.2

w1/2

(
1+e−50w

) (
1+80.6W+23.7w2

)

(
1+41.3w+133w2)

⎡

⎣ 1

w
ln (1+w)−

(
1 + 0.5w − 1.7w2

)

(1 + w)3

⎤

⎦

(6.22)

Here, m∗
H is the hydrogenic effective mass given by

m∗
H = EBk2m0

EH
. (6.23)

In the last equation m0 is the electron rest mass and EH = 13.6eV is the binding
energy of hydrogen. In total-mobility calculation Itoh et al. [63] employ a stan-
dard relaxation-time approximation. This approach is valid because they are limit-
ing to low temperatures (T<25K) where the inelastic optical-phonon deformation-
potential scattering is negligible. Three scattering mechanisms are considered:
neutral-impurity, ionised-impurity and acoustic-phonon deformation-potential scat-
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tering. The neutral-impurity scattering contribution was calculated using both Eqs.
(6.19) and (6.21) so it can compare the models of Erginsoy and Meyer and Bartoli
with the experimental results of [63]. The concentration of neutral-impurity centres
as a function of temperature NN (T) in each sample is given by the next relation

NN (T ) = NM J − NM N − n(T ). (6.24)

Here, NM J , NM N and n(T) are the majority–impurity, minority–impurity and
free-carrier concentrations, respectively. For the ionised-impurity scattering, Itoh et
al. employ the Brooks-Herring expression [71, 72]:

τ−1
ion = πNI e4 (kBT)−3/2 x−3/2

(2m∗con)1/2 k1/2

[

ln

[

1+4x

a

]

− 4x/a

1 + 4x/a

]

, (6.25)

where

a = 2π�
2e2n

m∗kk2
BT2

, (6.26)

and x = E/kBT (E is the incident electron energy), m∗
con is the average conductiv-

ity effective mass, and NI is the ionised-impurity concentration. The temperature-
dependent NI in each sample is given by

NI (T ) = n(T ) + 2NM N . (6.27)

For the acoustic-phonon deformation-potential scattering [73]:

τ−1
ac = Bac (m∗conT)3/2 x1/2, (6.28)

where the constant Bac has well-established values for n- and p-type Ge as shown in
Table 6.4. Having found τ−1 of all three scattering mechanisms, Itoh et al. calculated
an average 〈τ 〉 using the Maxwell-Boltzman integration:

〈τ 〉 = 4

3
√

π

∫ ∞

0

x3/2exp(−x)

τ−1
ac +τ−1

ion+τ−1
neutral

dx. (6.29)

Finally, the total mobility μtot was given by

μtot = e 〈τ 〉 /m∗
con (6.30)

All parameters required for the mobility calculations are well known in Ge (see
Table 6.4). The only unknown material parameters at this point are sample-dependent
NM J , NM N and n(T) in Eqs. (6.24) and (6.27). All three parameters as shown below,
can be determined precisely for each sample by performing variable-temperature
Hall-effect measurements. Consequently, all mobility calculations are performed
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Table 6.4 Parameters used in the total-mobility calculations (after [63])

Ga:As (n-type) Ge:HGa (p-type)

k 16 16
m∗

con 0.12m0 0.28m0
aBac 1.08 × 10 10 g3/2K−3/2 9.50×108g3/2K−3/2

BB (theoretical) 12.5 meB b 11.2 meVc

a The values of B are determined experimentally using ultrapure n-and p-type Ge of NM J ∼ NM N ∼
3 ×1011cm−3

b M. Altarelli, W.Y. Hsu and R.A. Sabatini, J. Phys. C 10, L605 (1977)
c A. Baldareshi and N.O. Lipari, in Proc. 13th Inern. Conf. Phys. Semicond. (F.G. Fumi, ed, North-
Holland, Amsterdam, 1976) p.595

without any adjusable or scaling parameters. The experimental curves are fitted with
the following standard semiconductor statistics [74], which describes the temperature
dependence of the free-carrier concentration in semiconductors doped by shallow
majority impurities NM J and compensated by minority impurities N M N :

n(T)= 2
(
NM J −NM N

)

{
[+1

(
NM N /gNB

)
exp

(
EM J /kB T

)] +
√[+1

(
NM N gNB

)
exp

(
EM J /kB T

)]2+(
4/gNB

) (
NM J−NM N

)
exp

(
EM J kB T

)
} ,

(6.31)

where g = 1
2 (g = 4) is the spin degeneracy for a donor (acceptor), NB is the effective

conduction- (valence-) band density of states, and EM J are the experimentally deter-
mined ionization energies: 14 and 11.07 meV for As and Ga, respectively (Table 6.4).

Figure 6.13 shows the relative strength of the scattering from the ionised and
the neutral impurities. There is only a relatively small temperature region in which
the scattering from the neutral impurities dominates. This range extends to higher
temperatures as the free-carrier concentration is increased. The calculated “transition
temperatures” above which the ionised impurities are the main scattering centres
(see also [75]) compare very well with the experimental results of Itoh et al. [63]
(see also Fig. 6.14).

We now turn our attention to the low-temperature regime where mobilities are
dominated by neutral-impurity scattering. Figure 6.14 shows a direct comparison of
the experimental results with theoretical total-mobility curves calculated. For each
sample two theoretical total-mobility curves are calculated: one using Erginsoy’s
model (Eq. 6.19) and the other using Meyer and Bartoli model (Eq. 6.21). A strikingly
good agreement was obtained between the experimental and theoretical mobilities
calculated with the model of Meyer and Bartoli for all samples (see Fig. 6.14).

In order to demonstrate the importance of the homogeneous dopant distribution,
Itoh et al. have performed the same study on samples cut from Ge ; Ga crystals
grown by the conventional Czochralski method, where Ga impurities were intro-
duced to Ge melt during the crystal growth. These authors observed deviations of
the measured mobility from the theoretical calculations, which are most likely due
to inhomogeneous Ga impurity distributions in melt-doped Ge. Only the use of NTD
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Fig. 6.14 Data points represent experimentally measured carrier mobility in (a) four 74Ge:As and
(b) two 70Ge:Ga samples. For a direct comparison theoretically calculated mobility using Erginsoy’s
model (broken line) and the model of Meyer and Bartoli (solid line) is shown for each sample. The
contributions of the different scattering mechanisms to the total mobility of the 70Ge:Ga-1 sample
are shown in the upper half of (b) (after [63])

semiconductors with randomly distributed dopants allows for an accurate test of the
neutral impurity-scattering models.

6.3.4 Si

It is well known that doping of silicon single crystals by incorporation of impu-
rities from the melt during solidification in most cases leads to an inhomogeneous
distribution of impurities in the solids [3, 14, 48]. This is due to the fact that nearly
all impurities in silicon have thermal equilibrium distribution coefficients much less
than unity and that the solidification or crystal grows at each position of the interface
is characterised by a different state of thermal inequilibrium leading to distribution
coefficients that in space and time continuously change and result in a nonuniform
impurity distribution [76, 77]. In actual crystal production the nonuniformity is fur-
ther enhanced by lack of control of exactly constant melt volume and feed of the
doping impurity. The most widely used doping elements in silicon are boron and
phosphorus. Boron has a distribution coefficient between 0.9 and 1 which makes a
doping uniformity of ±10% easily obtainable (see, e.g. [48]). The thermal equilib-
rium distribution coefficient for phosphorus of approximately 0.3 leads in general to
the above-mentioned large doping variations both on a macroscale (centre to periph-
ery) and on a microscale (striations). No other n-type doping element has a larger
distribution coefficient. Fast diffusing p-type dopants (Ga, Al) are available, electron
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mobility is greater than hole mobility, and contact alloying technology is reasonable,
because n-type silicon is generally used for solid-state power devices [7, 8, 76].
With avalanche breakdown voltages being determined from areas with lower resis-
tivities, use of a conventionally doped material results in hotspot formation prior to
breakdown and very high forward voltage drop leading to excessive heat dissipation
because of a safe punch through design [13, 14, 48].

Phosphorus doping by means of NTD was suggested by Lark-Horovitz [78] and
others (see, e.g. [7, 8]) for homogeneity purposes and has been applied for high-
power thyristor manufacturing in [13, 14, 48, 79]. Hill et al. [79] demonstrated
how such a homogeneous phosphorus doping may result in a “theoretical design”
possibility for high-power components (see below).

The process used for fractional transmutation of silicon into phosphorus and
thereby performing n-type doping

30
14Si(n, γ ) =31

14 Siβ
−

2.62h →31
15 P (6.32)

was first pointed out by Lark-Horovitz in 1951 [78]. Apart from special applications
[80] and research, the above process was, however, not utilised to any extent until
the early 1970s, at which time manufacturers of high-power thyristors and rectifiers
for high-voltage direct current transmission lines, in particular, initiated usage of the
transmutation doping process [79, 81, 82]. The reasons for not using the neutron
doping method throughout the 1960s may be found in the lack of a processing
technology which could benefit from a more uniform doping, insufficient availability
of high resistivity starting material and the lack of nuclear reactors with irradiation
capacities in excess of that needed for testing fuel and materials for nuclear power
stations.

Let us, for the following discussion, assume that completely uniform neutron
doping may be accomplished. The homogeneity of the doped silicon is in this case
determined by the background doping, i.e. the distribution of impurities in the starting
material, where the net impurity concentration may be of either donor or acceptor
type. Let us further, for simplicity, consider starting material of one conductivity
type and assume complete n-type conduction after irradiation and annealing. With
CS being the net impurity concentration of the starting material and CD the resulting
donor concentration after irradiation we have, for both n- and p-type material,

Cmax
D − Cmin

D = Cmax
S − Cmin

S . (6.33)

In such case we may define

1. the homogeneity factors for the starting material (αS) and for the neutron doped
material (αD), respectively

αS = Cmin
S

Cmax
S

(6.34)

and
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Table 6.5 Values for homogeneity factor αD as function of homogeneity factor αs of starting
material and doping factor fD as defined in text (after [81])

αS/fD .1 .2 .3 .4 .5 .6 .7 .8 .9

1 .1 .2 .3 .4 .5 .6 .7 .8 .9
2 .55 .6 .65 .7 .75 .8 .85 .9 .95
5 .82 .84 .86 .88 .9 .92 .94 .96 .98
7 .87 .89 .90 .91 .93 .94 .96 .97 .99
10 .91 .92 .93 .94 .95 .96 .97 .98 .99
20 .955 .96 .965 .97 .975 .98 .985 .99 .995
50 .98 .98 .99 .99 .99 .99 .99 .996 .998
100 .991 .992 .993 .994 .995 .996 .997 .998 .999

αD = Cmin
D

Cmax
D

(6.35)

and
2. the doping factor

fD = Cmax
D

Cmax
S

. (6.36)

From this is easily derived

1 − αD = 1−αS

fD
. (6.37)

Table 6.5 summarises values of αD as a function of αS and fD. It is seen that
in order to obtain neutron-doped silicon with, for instance, a homogeneity factor
greater than 0.9, it is necessary to use a doping factor of at least 7 when starting from
“undoped” n-type material in which the homogeneity factor is typically not greater
than 0.3 when taking the microcavitations (striations) into account. Examples of such
neutron-doped silicon are shown in Figs. 6.15 and 6.16. It should be noted that in
terms of resistivity, which is often used for impurity characterisation, a doping factor
fD means use of starting material with minimum resistivity a factor fD or 2.8fD

greater than the resistivity after neutron doping for n- and p-type starting material,
respectively. The difference is due to the electron mobility being 2.8 times greater
than the hole mobility. In conclusion it should be generally noted that in order to make
neutron-doped silicon with significantly more uniform resistivity than conventionally
doped material, a doping factor fD = 5 or more should be applied.

Following Janus and Malmros [81] let us consider further the theoretical case
where a cylindrical silicon crystal is surrounded by a material with the same
neutron absorption and scattering efficiency as the silicon itself (see Fig. 6.17). Let
us furthermore assume a thermal neutron flux gradient along an x axis perpendicular
to the crystal axis with the neutrons coming from an external source. In this case the
neutron flux will have the form



6.3 Experimental Results 231

Fig. 6.15 Spreading
resistance measurements
of a thermal neutron irra-
diation doped silicon slice.
Step-length on scan 1 and
2 is 250μm and on scan 3
step-length is 50μm. Starting
material has been selected
greater than 1500�cm n-type
(after [81])

� = �0·exp
(
−x

b

)
, (6.38)

where b, the decay length, may be obtained from the formula

b = (3·σSi·σSi,t·C2
Si)

−0.5. (6.39)

σSi = 0.16·10−24cm2 is the mean of the absorption cross-sections for the three
silicon isotopes, 28 Si, 29Si and 30Si weighted with their abundances. σSi,t =
2.3·10−24cm2 is the total cross-section (absorption + scattering) and CSi =
4.96·1022cm−3 is the total number of silicon atoms in 1cm3. Hence b may be calcu-
lated as:

bsilicon = 19 cm. (6.40)

In order to improve the doping homogeneity in the cylindrical crystal this will be
slowly rotated around its axis. The time average of this flux at the distance r from
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Fig. 6.16 Typical lateral microscopic resistivity distributions in conventionally doped silicon and
in silicon doped by neutron irradiation (after [48])

Fig. 6.17 Irradiation con-
figuration. a Top view of the
facility with the cylindrical
crystal situated outside the
core rotating around its cylin-
drical axis. Arrows indicate
overall direction of neutrons.
The flux does not vary along
the cylindrical axis. b The
neutron flux is a function of
the distance from the reactor
core (after [81])

this axis is

�̄ = 1

π

∫ π

0
�0exp

[
− r

b
cost

]
dt = �0

[

1+1

4

( r

b

)2
. . .

]

. (6.41)

The ratio between the neutron dose at the periphery and at the axis of the crystal
cylinder will then be

�̄ (a)

�̄ (0)
� 1 + 1

4

( a

b

)2
, (6.42)
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where a is the crystal radius (Fig. 6.17).
For intrinsic starting material the irradiation doped silicon will thus have a homo-

geneity factor of

αD � 1 − 1

4

( a

b

)2 � 0.956 (6.43)

for an 80-mm-diameter crystal, i.e. the absorption limiting factor for the obtainable
radial variations.

In the above analysis we have neglected the effects of fast neutron moderation in
the silicon. By comparison, however, of irradiations performed in reactors with fast
neutron fluxes from 10−4 to 1 times the thermal flux and with different flux gradients,
the authors of [81] have observed no influence on the resistivity homogeneity due to
fast neutron moderation in the silicon.

In irradiated silicon crystals for semiconductor device applications only two iso-
topes 31Si and 32P are of importance in connection with radioactivity of neutron
doped material. For thermal neutron doses less than 1019 neutron/cm2, no other ele-
ments have been detected emitting radiation. Futhermore, 31Si, having a half-life of
2.62 h, decays to an undetectable level in 3–5 days. For this reason, it will be dis-
cussed the radioactivety only of the 32P isotope. Figure 6.18 pictures the 32P activity
as a function of final resistivity for a variety of thermal neutron flux levels typical
for the nuclear test reactors in use. As was shown in [81] absolute flux determination
to 1% accuracy has proven obtainable for instance by means of calorimetric boron
carbide monitors.

31
15P(n, γ )32

15Pβ−
14.3d →32

16 S (6.44)

as a secondary one with 31P concentration at each instant in time being dependent

on the neutron dose received and the time allowed for the 31
14Siβ

−
2.62h →32

15P decay.
From Fig. 6.18 it may be observed that neutron doping below 5 �· cm can be

performed only when accepting cool down periods corresponding to the 32 P halflife
of 14.3 days. The exempt limit for inactivity of 2 ×10−3μCi/g shown in the figure is
representative for most European countries, as well as being the value recommended
by the International Atomic Energy Agency (IAEA), Vienna, Austria [83]. It should
be added that careful cleaning of the silicon prior to insertion in a nuclear reactor
is vital to avoid radioactive surface contamination. For the safety of the personnel
and the end product users, a double check upon shipping from the reactor sites
and upon reception in the silicon plant, respectively, is carried out to secure that
only inactive material (below the exempt limit) is being further processed after the
neutron doping. In general, this implies shipment from the reactor not earlier than
4 days after irradiation.

The use of NTD is of particular interest to thyristor manufacturers where n-type
starting material is required for the basic p-n-p structure [75, 77]. Some advantages
for high power device design and performance include:



234 6 Traditional Application of Stable and Radioactive Isotopes

Fig. 6.18 The radioactivity
of the 32 P isotope in silicon
after 4 days of cool down
subsequent to irradiation. It
may be observed that the
activity as function of the
resistivity obtained depends
on the neutron flux used (after
[81])

1. more precise control of avalanche breakdown voltage,
2. more uniform avalanche breakdown, i.e. greater capacity to withstand

overvoltages,
3. more uniform current flow in forward direction, i.e. greater surge current capac-

ity, and
4. narrower neutral zone and therefore narrower base and lower forward voltage

drop V f .

The summary of some points concerning the preparation of NTD silicon for special
applications on an R and D scale is described in [77, 79]. The production of large
quantities of NTD silicon for power devices is described in [26]. More recently (see,
e.g [84]) the NTD technique has also been proposed for the effectual doping of P in
a-Si:H films. The results of [84] show that NTD technique is an excellent method
for doping of P in a-Si:H.

Despite intensive study over many years and considerable progress, no clear under-
standing has emerged as one of the fundamental issues regarding the MIT in doped
semiconductors and amorphous metal-semiconductor mixtures: whether and under
what circumstances the Hall coefficient diverges as the transitions are approached
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(see above for Ge). As is well known in the localised regime the spatial behaviour
of the wave functions is usually described by an exponential decay length reflecting
the spatial extent of the wave function (see e.g. [85–87]). Dai et al. recently showed
that the Hall coefficient of Si:P diverges at the transitions, as it does in Si:B [88] and
Ge:Sb [89]. The difference in the behaviour of MIT according to these authors may
be connected with a different degree of compensation. It is also possible that the MIT
is different in a persistent photoconductor, where the disorder is particularly strong
and the concentration of shallow donors is varied and controlled through illumination
(for details see also [86, 87]).

6.3.5 Other Compounds

The NTD method was used with success in a study of compound semiconductors:
GaAs [90–93] and GaP [94, 95]. NTD of GaAs is based on the following thermal
neutron capture nuclear reactions (see also [90]):

69Ga(n, γ )70Gaβ−
21.1min →70 Ge, (6.45)

71Ga(n, γ )72Gaβ−
14.1h →72 Ge, (6.46)

75As(n, γ )76Asβ−
26.3h →76 Se. (6.47)

The relative abundances of the isotopes involved in the reactions and the
cross-sections for these reactions are such that the ratio of Se and Ge concentra-
tions produced is

NSe/NGe = 1.46. (6.48)

Selenium is a typically shallow substitutional donor in GaAs with an electronic
energy level a few meV from the conduction bans edge [96]. Germanium in GaAs
is an amphoteric impurity which acts as a shallow donor (also a few meV from the
conduction band) is situated on a Ga site and as an acceptor level at EV + 0.04 eV
if situated on an As site [56]. Since, if electronically active, all of the Se atoms and
some portion of the Ge atoms are expected to act as donors, NTD of GaAs is expected
to dope GaAs more n-type. The addition of donors moves the Fermi level (EF ) away
from the valence band (EV ) to the conduction band (EC ). If a sufficiently high con-
centration of donors is added, EF will move to the upper half of the band gap and the
GaAs will be converted to n-type. Analysis of Hall effect data as a function of temper-
ature provides a means of measuring the donor content in irradiated GaAs samples.
Young et al. were thus able to compare electrically active added donor content to
the NTD-produced impurity concentrations determined from nuclear measurements.
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Table 6.6 Room temperature results for Hall effect samples of GaAs annealed 830◦C/20 min (after
[90])

Sample No NTD Dose/cm3 n(−) or P (+) in cm−3 μ, cm2V−1s−1

1,2 3.8 ×1015 + 2.3 ×1016 360
3 8.5 ×1015 + 2.4 ×1016 341
4 1.7 ×1016 + 1.9 ×1016 337
10 2.7 ×1016 + 8.6 ×1015 242
12 7 ×1016 − 1.6 ×1016 1251
20 1.5 ×1017 − 7.7 ×1016 3960
15 2.8 ×1017 − 2.3 ×1017 3631
16, 18 6.3 ×1017 − 4.9 ×1017 3110

The Hall effect analysis also allows them to determine concentrations and energy
levels (E) of impurities or defects in the p-type GaAs samples if the Fermi level in the
material moves near E at some temperature over the range of measurements. This
technique thus provides a means of identifying and measuring undercompensated
acceptor content in the samples. The low temperature photoluminescence technique
used in [90] measured donor-to-acceptor or conduction-band-acceptor luminescence.
It provides an accurate determination of the position of acceptor electronic levels in
the GaAs, permitting positive identification of impurities or defects with known lumi-
nescence lines. Identifications of lines due to specific impurities or defects can be
made using luminescence techniques regardless of the position of the Fermi level in
material. Little detailed information concerning an acceptor level can be obtained
from Hall effect if that acceptor is overcompensated. However, the presence of spe-
cific acceptors can be detected by luminescence techniques even in n-type samples.
On the other hand, luminescence data do not provide the quantitative information
obtainable from Hall effect measurements.

The results of room temperature measurement of the electrical properties of eight
annealed NTD GaAs samples are summarised in Table 6.6. The total NTD dose (NSe

+ NGe), the carrier concentration and carrier type (negative values of concentration
indicate n-type), along with carrier mobility at room temperature are indicated in
Table 22 of [90]. Note that following an NTD dose sufficient to produce 7 ×1016

atoms/cm3 is initially present in the samples. Therefore, 7 ×1016 donors/cm3 would
indeed be expected to just overcompensate the p-type material. The results presented
in Table 6.6 show that the p-type samples become progressively less p-type and the
n-type samples progressively more n-type with increasing NTD dose. Because the
donor levels in GaAs are very shallow, they remain fully ionised in the temperature
range of Young et al experiments, so that the measured electron concentration is
practically temperature independent (see Fig. 6.4 in Ref.[90]). This measured n for
each sample is approximately equal to total donor minus total acceptor concentration.

Figure 6.19 shows the measured in [90] added electrically active donor concen-
tration in eight NTD samples as a function of NSe and of (NSe + NGe) added by
transmutation as determined from nuclear activity measurements. The uncertainty in
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Fig. 6.19 Measured added
donors vs NTD produced
impurity content (after [90])

determining added donor content in the p-type samples is large because of the com-
plexity of analysing material with multiple independent acceptor levels in closely
compensated cases. The added donors can be much more accurately determined in
the more highly doped n-type samples. The results shown in Fig. 6.19 imply that all
of the selenium and a substantial fraction of the Ge atoms introduced by transmuta-
tion act as donors following the 830◦C/20 min anneal. As will be shown below from
photoluminescence measurements a fraction of Ge atoms produced by transmutation
are on acceptor rather than donor sites in GaAs samples.

Figure 6.20 shows relative luminescence spectra for the four n-type samples
respectively. The spectral positions indicated by arrows for carbon acceptor, the
Ge acceptor, and 0.07 eV acceptor correspond to donor (or band) to acceptor lumi-
nescence lines. The most important conclusion to be drawn from a comparison of
the spectra for the control and eight NTD samples is that Ge acceptors not present
in the “starting material” control sample are introduced by the NTD process. The
increase in intensity of the Ge acceptor line with increasing dose relative to both
the carbon and 0.07 eV acceptor lines indicates that Ge acceptor content increases
with increasing transmutation doping. Therefore, some of the Ge atoms produced
by NTD in these samples are acting as acceptors rather than donors. Photolumines-
cence measurement studies of the control and eight annealed NTD samples at longer
wavelengths indicate another new line present only in NTD samples at about 9450 Å.
The intensity of this line increases with increasing NTD dose.
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Fig. 6.20 Relative photolu-
minescence spectra for four
n-type NTD samples. The
four spectra are not normal-
ized with respect to each other
(after [90])

6.4 Optical Fibre

6.4.1 Optical Communication

Optical communication using fibres is a major new technology which will profoundly
impact telephone systems, computer interconnections and instrumentation (internet).
Fibre links provide several major advantages over conventional electronic commu-
nications systems. These include immunity to electromagnetic interference, thinner
and lighter cables, lower transmission losses (especially for very data rates) and
potential kilometer-long-link capabilities extending to the gigahertz region.

An optical waveguide is a dielectric structure that transports energy at wavelengths
in the infrared or visible ranges [97, 98] of the electromagnetic spectrum. In practice,
waveguides used for optical communications are highly flexible fibres composed of
nearly transparent dielectric materials. The cross-section of these fibres is small—
comparable to the thickness of a human hair—and generally is divisible into three
layers as shown in Fig. 66. The central region is the core, which is surrounded by
thecladding, which in turn is surrounded by a protective jacket. Within the core,
the refractive-index profile n can be uniform or graded, while the cladding index
is typically uniform [99, 100]. The two situations correspond to the step-index and
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Fig. 6.21 Nomenclature,
profiles and ranges of dimen-
sions for typical optical fibres,
where ρ is the core radius, λ is
the free-space wavelength of
light and � =

(
1 − n2

cl/n2
co

)
/2

(after [99])

graded-index profiles shown in the insets in Fig. 6.21. It is necessary that the core
index be greater than the cladding index [101], at least in some region of the cross-
section, if guidance is to take place. For the majority of applications, most of the
light energy propagates in the core and only a small fraction travels in the cladding.
The jacket is almost optically isolated from the core, so for this reason we usually
ignore its effect and assume an unbounded cladding for simplicity in the analysis.

As usual optical waveguides can be conveniently divided into two subclasses
called multimode waveguides (with comparatively large cores) and single-mode
waveguides (with comparatively small cores). The demarcation between the two
is below. Multimode waveguides obey the condition (see e.g. [102]) (2πρ/λ)
(
n2

co−n2
cl

)1/2 	 1, where ρ is a linear dimension in the core, e.g. the radius of the
fibre core, λ is the wavelength of light in free space, nco is the maximum refractive
index in the core and ncl is the uniform refractive index in the cladding.

As will be shown below, electromagnetic propagation along optical waveguides
is described exactly by Maxwell’s equations. However, it is well known that clas-
sical geometric optics provides an approximate description of light propagation in
regions where the refractive index varies only slightly over a distance comparable
to the wavelength of light. This is typical of multimode optical waveguides used for
communication. Thus, the most direct and conceptually simple way to describe light
propagation in multimode waveguides is by tracing rays along the core (see also
[103–105]). By using classical geometric optics, we should ignore all wave effects.
In multimode waveguides, wave effects are usually negligible [99], but there are
exceptional situations when such effects accumulate exponentially with the distance
light travels. Naturally in this cases, wave effects must be retained, since they can
have a significant influence on long waveguides. In each such situation, we mod-
ify the classical geometric optics description by taking into account the local plane
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Fig. 6.22 Reflection at a planar interface between unbounded regions of refractive indices nco and
ncl<nco showing (a) total internal reflection and (b) partial reflection and refraction (after [7, 8])

wave nature of light. The phenomenan of greatest practical interest in fibres used for
long distance communications is the spread of pulses as they propagate along the
fibre. For idealised multimode fibres, pulse spreading is easily described by classical
geometric optics. But since propagation in multimode guides is so complex simple
models and physical understanding are generally of much greater assistance than a
precise, exact analysis [105].

6.4.2 Nuclear Technology in fibre Preparation

The reflection and transmission of a plane wave, or ray, which is incident on a planar
interface between two semi-infinite, uniform media is determined by Snell’s laws
(see, e.g. [101, 106]). In Fig. 6.21, the refractive indices of the medium of incidence
and the second medium are nco (core) and ncl (cladding) <nco, respectively, and
the critical angle αc = sin−1(nclnco). Further, we denote the angles of incidence,
reflection and transmission, or refraction, relative to the normal QN (see Fig. 6.22) by
αi , αr , and αt , respectively. The incident, reflection and transmitted, or refracted, rays
and the normal QN are coplanar. If αi>αc, the incident ray in Fig. 6.22a undergoes
total internal reflection and αr = αi , but if αi<αc there is partial transmission, or
refraction, as shown in Fig. 6.22b and the angles satisfy

αi = αr (6.49)

and
ncosinαi = ncl sinαt (6.50)

Usually for the planar waveguides it is convenient to express these laws in
terms of the complementary angles of incidence, reflection and transmission, i.e.
θz = π/2 −αi = π/2 −αr and θt = π/2 −αt and the complementary critical angle
θc = π/2 − αc.
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Fig. 6.23 Isotopic fibre in
which the core and cladding
are both pure SiO2, but with a
different isotopic composition
(after [127])

One of the possible major applications of isotopic engineering are considered in
isotopic fibre-optics and isotopic optoelectronics at large (see also [106]). It is known
that for typical solids the lattice constant variations of isotopically different samples
are usually within the limits

�d

d
∼ 10−3 ÷ 10−4 (6.51)

Let us define an isotopic fibre as a structure in which core and cladding have the
same chemical content but different isotopic composition (see Fig. 6.23) The bound-
ary between different isotopic regions form an isotopic interface. The difference in
the refractive index on both sides of the isotopic interface could lead to the possibil-
ity of total internal reflection of light and, consequently, could provide an alternative
route to the confinement of light. For a quantitative estimate let us consider a bound-
ary between SiO2 (the main component of silica) where body sides are identical
chemically and structurally but have a different isotopic content—e.g. 28Si16O2 and
30Si18O2, respectively (Fig. 6.23). In the first approximation the refractive index n is
proportional to the number of light scatterers in the unit volume. From the Clausius-
Mosotti relation (see, e.g. [107]) for the refractive index one can deduce the following
proportion ( at �n << n)

�n

n
� 3c

�d

d
, (6.52)

where c is a dimensionless adjustment factor of the order of unity. Substituting
Eq. (6.51) into Eq. (6.52) we can obtain

�n

n
∼ 3×10−3 ÷ 10−4 (6.53)

Using the Snell law of light refraction we obtain the following expression for the
ray bending angle θ when light travels through the refractive boundary (see, also
Fig. 6.22)

θ � α0 − arc sin

(
n1

n2
sin α0

)

, (6.54)
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where α0 is the angle between the falling ray and the direction normal to the interface.
For a sliding ray (α0 � 90◦), which is the control case for light confinement in fibres,
the combining of Eqs. (6.53) and (6.54) leads to an estimate

θ ∼ 1.5 ÷ 4.5◦ (6.55)

Thus, the isotopic fibres in which core and cladding are made of different isotopes the
half-angle of the acceptance-cone could be up to several degrees [108]. The resulting
lattice mismatch and strains at the isotopic boundaries are correspondingly one part
per few thousand [106] and, therefore, could be tolerated. Further advancement of
this ” isotopic option” could open the way for an essentially monolitic optical chip
with built-in isotopic channels inside the fully integrated and chemically uniform
structure.

Besides that we should pay attention to the fact that composition (different iso-
topes) fluctuation are subject to the restoring force of the total free energy of the glass
system which will also seek to minimise itself. Using isotope pure materials for core
and cladding we should receive significant less Rayleigh scattering (for details see
[108]).

6.5 Radioactive Isotopes

Radioactive isotopes (RI) are radioactive atoms of common elements like carbon,
cobalt, or sodium, etc. Usually RI are located in atomic “ash” that is left behind after
uranium atoms are split in a “nuclear pile”. Some RI are produced from exposure of
common elements to powerful radiation inside a nuclear reactor during fission. Fis-
sion occurs when an atom’s nucleus splits into two or more smaller nuclei, producing
a large amount of energy. RI release radiation in the form of alpha, beta and gamma
rays. The strength of the radiation is relative to the rate whereradioactive material
decays. Because of this, different radioisotopes can be used for different purposes,
depending on their strength.

Some radioactive elements, such as radium–224, radium–226, radon 222,
polonium–210, tritium (3H), carbon–14, etc. are found in nature, but most radioac-
tive materials are produced commercially in nuclear reactors or cyclotrons (see, e.g.
[? ])—also called particle accelerators. With nuclear reactors and cyclotrons, it is
possible to make useful amounts of radioactive material safely and at low cost. Usu-
ally only one type of radionuclide can be produced at a time in a cyclotron, while
a reactor can produce many different radionuclides simultaneously. As for unstable
isotopes, there are over 1,000 some of which exist in nature, but most of which have
been created synthetically in laboratories in nuclear reactors or cyclotrons. Although
accelerators do create small quantities of lingering radioactivity, they do not pose
the staggering high-level waste and proliferation problems associated with nuclear
reactors, nor do they have any potential for catastrophic accidents of any kind, nor
are they capable of producing weapons materials in militarily significant amounts.



6.5 Radioactive Isotopes 243

It should be recognised that RI have been used in nuclear medicine, industry and
scientific research (solids).

6.5.1 Human Health

Nuclear Medicine is a branch of medicine that uses radiation to provide information
about the functioning of a person’s specific organs or to treat disease. In most cases,
the information is used by physicians to make a quick, accurate diagnosis of the
patient’s illness. The thyroid, bones, heart, liver and many other organs can be easily
imaged, and disorders in their function revealed. In some cases radiation can be used
to treat diseased organs, or tumours (see, e.g. [109]–[114]). Five Nobel Laureates
have been intimately involved with the use of radioactive tracers in medicine.

In the developed countries (26% of world population) the frequency of diagnostic
nuclear medicine is 1.9% per year, and the frequency of therapy with radioisotopes
is about one-tenth of this. In Europe there are some 10 million nuclear medicine
procedure per year. The use of radiopharmaceuticals in diagnosis is growing at over
10% per year. Nuclear medicine was developed in the 1950s by physicians with an
endocrine emphasis, initially using iodine–131 to diagnose and then treat thyroid
disease. In recent years specialists have also come from radiology, as dual CT/PET
(see below) procedures have become established.

As is well known, diagnostic techniques in nuclear medicine use radioactive trac-
ers which emit gamma rays from within the body. These tracers are generally short-
lived isotopes linked to chemical compounds which permit specific physiological
processes to be scrytinised. They can be given by injection, inhalation or orally. The
first type where single photons are detected by a gamma camera which can view
organs from many different angles. The camera builds up an image from the points
from which radiation is emitted; this image is enhanced by a computer and viewed
by a physician on a monitor for indications of abnormal conditions [115, 116].

A more recent development is Positron Emission Tomography (PET [109, 112,
117–120]) which is a more precise and sophisticated technique using isotopes pro-
duced in a cyclotron. A positron-emitting radionuclide is introduced, usually by
injection, and accumulates in the target tissue. As it decays it emits a positron, which
promptly combines with a nearby electron resulting in the simultaneous emission
of two identifiable gamma rays in opposite directions. These are detected by a PET
camera and give very precise indication of their origin. PET has the most important
clinical role in oncology, with fluorine–18 as the tracer, since it has proven to be
the most accurate non-invasive method of detecting and evaluating most cancers. It
is also used in cardiac and brain imaging [112]. This particular image shows brain
activity of a patient with Alzheimer’s disease in Fig. 6.24.

New procedures combine PET with computed X-ray tomography (CT ) scans to
give coregistration of the two images (PETCT ), enabling 30% better diagnosis than
with traditional gamma camera alone. It is a powerful and significant tool which
provides unique information about a wide variety of diseases from dementia to
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Fig. 6.24 Present picture
(PET) shows brain activity
of a patient with Alzheimer’s
disease (after [118–120])

cardiovascular disease and cancer (oncology). Positioning of the radiation source
within the body makes the fundamental difference between nuclear medicine and
other imaging techniques such as X-rays. Gamma imaging by either method described
provides a view of the position and concentration of the radioisotope within the body.
Organ malfunction can be indicated if the isotope is either partially taken up in the
organ (cold spot), or taken up in excess (hot spot). If a series of images is taken over
a period of time, an unusual pattern or rate of isotope movement could indicate mal-
function in the organ. A distinct advantage of nuclear imaging over X-ray techniques
is that both bone and soft tissue can be imaged very successfully. This has led to its
common use in developed countries where the probability of anyone having such a
test is about one in two and is rising.

Besides diagnosis, the RI is very effectively used in radiotherapy. Rapidly dividing
cells are particularly sensitive to damage by radiation. For this reason, some cancerous
growths can be controlled or eliminated by irradiating the area containing the growth.
External irradiation can be carried out using a gamma beam from a radioactive cobalt–
60 source, though in developed countries the much more versatile linear accelerators
are now being utilised as a high-energy X-ray source (gamma and X-rays are much
the same).

Internal radiotherapy is by administering or planting a small radiation source,
usually a gamma or beta emitter, in the target area. Iodine–131 is commonly used
to treat thyroid cancer, probably the most successful kind of cancer treatment. It is
also used to treat nonmalignant thyroid disorders. Iridium–192 implants are used
especially in the head and breast. They are produced in wire form and are introduced
through a catheter to the target area. After administering the correct dose, the implant
wire is removed to shielded storage. This brachitherapy (short-range) procedure gives
less overall radiation to the body, is more localised to the target tumour and is cost
effective.

Treating leukaemia may involve a bone marrow transplant, in which case the
defective bone marrow will first be killed off with a massive (and otherwise lethal)
dose of radiation before being replaced with healthy bone marrow from a donor.
Many therapeutic procedures are palliative, usually to relieve pain. For instance,
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a strontium–89 and increasingly samarium–153 are used for the relief of cancer-
induced bone pain. Rhenium–186 is a newer product for this (see, also [116, 121]).

For some medical conditions, it is useful to destroy or weaken malfunctioning
cells using radiation. The radioisotope that generates the radiation can be localised
in the required organ in the same way it is used for diagnosis—through a radioactive
element following its usual biological path, or through the element being attached
to a suitable biological compound. in most cases, it is beta radiation that causes the
destruction of the damaged cells. This is radiotherapy. Short-range radiotherapy is
known as brachytherapy, and this is becoming the main means of treatment.

Although radiotherapy is less common than diagnostic use of radioactive material
in medicine, it is nevertheless widespread, important and growing. An ideal theraeutic
radioisotope is a strong beta emitter with just enough gamma to enable imaging, e.g.
lutetium–177. This is prepared from ytterbium–176 which is irradiated to become
Yb–177 which decays rapidly to Lu–177. Yttrium–90 is used for treatment of cancer,
particularly non-Hodgkin’s lymphoma, and its more widespread use is envisaged,
including for arthritis treatment.

Iodine–131 and phosphorus–32 are also used for therapy. Iodine–131 is used to
treat the thyroid for cancers and other abnormal conditions such as hyperthyroidism
(over-active thyroid). In a disease called Polycythemia vera, an excess of red blood
cells is produced in the bone marrow. Phosphorus–32 is used to control this excess.
A new and still experimental procedure uses boron–10 which concentrates in the
tumour. The patient is then irradiated with neutrons which are strongly absorbed
by the boron, to produce high-energy alpha particles which kill the cancer. Some
examples of RI very effectively used in everyday life are presented in Table 19 of
Ref. [122].

6.5.2 Geochronology

The main data of the geochronology from which all conclusions are based are ele-
mental isotopic abundance of the radionuclides which are largely deduced from
meteorites. Meteorites are the prime source of information concerning the earliest
stage of the solar system since they have undergone virtually no physical or chemical
change since their time of formation approximately 4.6 ×109 years ago. The most
primitive meteorites are believed to be carbonaceous chondrites which are largely
heterogeneous agglomerations of particles which have undergone little heating since
their formation. Other sources of elemental abundance determinations include the
Earth, Moon, cosmic rays, Sun, and other stellar surfaces. A key result is the high
degree of isotopic homogeneity among the aforementioned sources which support
the nebular hypothesis for the formation of the solar system. The essence of the
nebular hypothesis is that the Sun, planets, comets, asteroids and meteorites formed
from a common gaseous nebula which was well mixed. The formation of our solar
system from a gaseous nebula is not precisely understood and the most extensive
work in this area can be seen in [123]. However, the recent determination of small
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variations inisotopic abundance indicates that some elements of different nucleosyn-
thetic histories were not completely mixed. The understanding of these variations is
already constraining the detailed steps of solar system formation by imposing mixing
timescales (see, e.g. [124–126]).

Although it is no surprise that determination of the age of the Earth (geochronol-
ogy) is based on physical phenomena it is less expected that this is also the case for
the chronology of a substantial part of the archaeological record. Of course on Roman
sites the layer- by-layer finds, particularly of coins with inscriptions, often permit
dating by reference to the enduring writings of contemporary authors, for example
Julius Caesar, and in any case such writings establish the basic chronology of the
period. To some extent the same is true further back in time, notably by relating to the
king-lists giving the reign durations of the Egyptian pharaohs; these lists extend back
to the First Dynasty and the earliest pyramid at about 5,000 years ago—though even
this age is not science-independent since, because of missing sections of the lists, it
is reliant on an astronomical calculation of the date of a recorded stellar event (see,
also [127]). Beyond 5,000 years ago all was conjecture until the so-called “radio-
carbon revolution” in the early 1950s [128] ; from then on the ‘deeper the older’
was replaced by ages based on the laboratory-measured half-life (5,568–5,730 years)
of 14C. Today, the main dating tool for the last 50,000 years or so is based on the
radiocarbon method [129–134] (see, also [135]). The main radioactive methods for
the periods before the time span of radiocarbon are potassium–argon, uranium-series
dating, and fission-track dating. Thermoluminescence (TL) [135–138] overlaps with
radiocarbon in the time period for which it is useful, but also has potential for dating
earlier epochs—as do optical dating [136] and electron spin resonance (EPR)—all
trapped electron dating methods that rely indirectly on radioactive decay.

The journal Radiocarbon publishes the most up-dated curves which in principle
permit the conversion of radiocarbon dates into calibrated dates. The calibration curve
(see Fig. 6.25) produced by Stuiver et al. [129, 130] combines the available data from
tree—rings, uranium–thorium dated corals, and varve-counted marine sediment, to
give a curve from 24,000 to 0 Cal BP. Calibration programs and curves can be
obtained directly from the Radiocarbon website at www.radiocarbon.org. Several
programs are now available which use a statistical methodology, termed Bayesian,
to generate probability distributions of age estimations for single 14C. The crucial
point is that in any publication it should be indicated whether or not the radiocarbon
determination has been calibrated, and if it has been, by which particular system or
curve. Radiocarbon dating by the accelerator mass spectrometry (AMS) technique
is opening up new possibilities. Precious objects and works of art can now be dated
because minute samples are all that is required. In 1988 AMS dating resolved the
long-standing controversy over the age of the Turin Shroud (Fig. 6.26), a piece of
cloth with the image of a man’s body on it that many genuinely believed to be the
actual imprint of the body of Christ. Laboratories at Tuscon, Oxford and Zurich all
placed it in the fourteenth century AD (present time), not from the time of Christ at
all, although this remains a matter of controversy. Radiocarbon looks set to maintain
its position as the main dating tool back to 50,000 years ago for organic materials.

www.radiocarbon.org
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Fig. 6.25 Calibrated radio-
carbon timescale based on
Irish oak. The straight line
indicates the ideal radiocar-
bon/calendar age timescale
(after [129])

For inorganic materials, however, TL and other, new, techniques are very useful (see
below).

The preceding techniques are nuclear in the strict sense of the world: the essence
of the dating clock is the build-up of a dauther product, as with potassium—argon
and uranium—series, or the gradual disappearance of a radioactive isotope, as with
radiocarbon. Unlike the preceding techniques luminescence dating is remarkable
in utilising a phenomena of which variants can be seen with the naked eye. There
are two variants of luminescence dating: TL and optically stimulated luminescence
(OSL), the latter also being referred to as optical dating [136]. For both variants,
the latent dating information is carried in the form of trapped electrons; these are
electrons which have been ionised by nuclear radiation and which have diffused
into the vicinity of a defect in the lattice that is attractive to electrons, for example,
such as a negative-ion vacancy, and have become trapped there (see Fig. 6.27). The
nuclear radiation is from radioelements in the sample and in its surroundings; there
is also a small contribution from cosmic rays. The more prolonged the exposure to
ionising radiation the greater the number of trapped electrons, which hence increases
with years that have elapsed since the last event at which the traps were emptied.
This setting of the clock to zero is the event dated and it can be due to the agency
of heat, as with pottery, or of light, as with geological sediment. A measure of the
number of trapped electrons is obtained by stimulation—by heat in the case of TL
and by light on the case of OSL. In either case stimulation causes the eviction of
electrons from their traps whereupon they diffuse around the crystal until some form
of recombination centre is found, such as a defect activated by being charged with
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Fig. 6.26 Part of the Turin Shroud, bearing the image of a man’s head. Radiocarbon AMS dating
has given a calibrated age range for the cloth of a 1,260-1,390 years of present time (see, however,
text)

a hole. The time spent in diffusion is very short and recombination can be regarded
as instantaneous. In the case of a luminescence centre there is emission of light, the
colour being characteristic of the type of centre. Figure 6.27 gives an indication of
the overall mechanism; it is an over-simplified representation of reality but forms a
useful basis for discussion (for details see also [133, 134]). It is presumed that there
is no shortage of activated luminescence centres and also that the radiation flux is
not sufficient to cause any significant increase in the number of centres over the age
span of the sample. An alternative to the picture given is to consider the process to
be dominated by trapped holes; however, although this may represent reality in some
cases it is irrelevant to the discussion of most phenomenan and it is convenient to
use a description based on trapped electrons (see, also [135]). A similar description
is relevant to dating by EPR except that there is then no eviction.

The basis of the evaluation of age is summarised in Fig. 6.28. The ‘natural’ signal
resulting from the natural irradiation during burial, is compared with signals, from
the sample, resulting from known doses of nuclear radiation; these are controlled by
a calibrated radioisotope source. This procedure allows evaluation of the paledose,
the laboratory dose of nuclear radiation needed to induce ‘artificial’ luminescence
equal to the natural signal. According to [135] the evaluation of age is given by
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Fig. 6.27 Energy-level representation of the thermoluminescence. i-ionisation due to exposure of
the crystal to the flux of nuclear radiation, with trapping of electrons and holes at defects, T and
L, respectively. ii-Storage during antiquity; the lifetime of the electrons in the traps needs to be
much longer than the age span of the sample in order that leakage be negligible. The lifetime is
determined by the depth E of the trap below the conduction band, and for dating purposes we are
interested in those deep enough (∼1.5 eV) for the lifetime to be the order of a million years or more.
iii-To observe thermoluminescence the sample is heated and there is a certain temperature at which
the thermal vibration of the crystal lattice causes eviction Some of these evicted electrons reach
luminescence centres, and if so, light is emitted in the process of recombining at those centres.
Alternatively, the electron may recombine at a non-luminescence centre (a “killer” centre) or be
captured by a deeper trap ( after [135])

T = Paleodose

Dose − rate
. (6.56)

The dose-rate represents the rate at which energy is absorbed from the flux of nuclear
radiation; it is evaluated by assessment of the radioactivity of the sample and its
surrounding burial material, this is carried out both in the laboratory and in the field.

At present, together with flint and calcite, the minerals of dominant interest
archaeologically are quartz and feldspar, whether from pottery (to which mineral
grains are added as temper), from sediment, or from volcanic products (see also
[134, 135]). The age range covered by the various types of sample and technique is
remarkable—from a few tens of years to around half a million. The limitation with
quartz and flint is usually due to the onset of saturation—when all traps have become
occupied; with feldspar it is more likely to be due to inadequate electron retention
in the traps Fig. 6.28.

Figure 6.29 shows an example of a TL glow-curve. A crucial feature of TL mea-
surement is suppression of so-called ‘spurious’ TL. This is not induced by radiation
and is a surface phenomenan which is not well understood-prior inter-grain friction
plays a part but there are other influences as well. Fortunately, it can be avoided
if the TL oven is flushed with high purity nitrogen or argon, after removal of air;
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Fig. 6.28 The event dating, whether in thermoluminescence dating or in optical dating, is the
setting to zero, or near zero, of the latent luminescence acquired at some time in the past. With
sediment this zeroing occurs through exposure to daylight ("bleaching") during erosion, transport
and deposition, whereas with fired materials, it is through heating. Subsequently, the latent signal
builds up again through exposure to the weak natural flux of nuclear radiation. For OSL the dating
signal is obtained by exposure of the grains from the sample to a beam of light; for TL it is obtained
by heating (after [138])

Fig. 6.29 Natural glow-curve
for burned flint from the lower
Paleolitrhic site at Belvedere,
Holland (after [135])

elimination is also enhanced by red-rejection colour filters. The glow-curve from a
sample in which there is only one trap type consists of a broad peak but in practice
several trap types are usually present in a sample and the glow-curve consists of
a number of overlapping peaks [139]. For archaeological or geological dating the
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Fig. 6.30 Radioactive
isotopes used for solid-state
physics experiments (after
[142, 143])

glow-curve region of interest is upwards of 300◦C; below this temperature the TL is
from traps that are so shallow that they will have suffered serious loss of electrons
during the centuries of burial.

6.5.3 Solid-State Physics

The first application of radioactiveisotopes in solid-state physics research dates back
to almost a century, when radioactive lead atoms were used to study self-diffusion in
lead [140]. The ‘radiotracer diffusion’ technique was born. Nowadays, it is a common
method for investigating atomic diffusion processes in solids (see, also above). Up to
now approximately 100 different radioactive isotopes have been used (see, Fig. 6.30)
in nuclear solid-state physics [141], ranging from 8 Li up to 213Fr. They are produced
by nuclear reactions in reactors or at accelerators and the doping of the host lattice is
performed either by nuclear reactions inside the material, by recoil implantation or
by diffusion or implantation after nuclear production and chemical separation. The
radioactive nuclei are used as probes of their structural or electronic environment
either in metals [144], insulators [145], semiconductors or superconductors [146]
and also on surfaces and interfaces [147–150]. However, a major part of the activity
is focused on the investigation of defects and impurities in semiconductors such as
Si, Ge, III–V or II–VI compounds (see also [151]).

The characteristic lifetimes of radioactive isotopes can be used to label and iden-
tify defect levels in semiconductors which can be detected by photoluminescence
[92] and Raman-scattering spectroscopy [152]. Magerle et al. [92] show photolumi-
nescence spectra of GaAs doped with 111In that decays to 111 Cd. 111In is isoelectronic
to Ga and hence occupies Ga lattice sites in GaAs. It decays to 111Cd with a lifetime
τ111I n = 98 h by electron capture [152]. Since the recoil energy of the Cd nucleus due
to the emission of the neutrino is much smaller than the typical displacement energy
in GaAs [7, 8], 111Cd atoms on Ga sites (CdGa) are created by the decay of 111 In on
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Fig. 6.31 Photoluminescence
spectra of undoped and 111In
doped GaAs successively
taken 4h; 7h; 12h; 22h; 2d; 4d
and 9d after doping. all spectra
are normalized to the intensity
of the (e, C) peak. In the inset,
the height ICd/IC of the (e,C)
peak in these spectra is shown
a function of time after doping
with 111In. The solid line is a
theoretical fit (see text) (after
[92])

Ga sites (111InGa) and act there as shallow acceptors. This chemical transmutation
was monitored by photoluminescence spectroscopy. Figure 6.31 shows successively
taken photolumunescence spectra from the 111In doped sample. A spectrum from the
undoped part is also shown. The photoluminescence spectrum of the undoped part
of the sample shows the features well known for undoped MBE-grown GaAs [7, 8].
The peaks FX and AX around 819 nm are due to the recombination of free and bound
excitons. The peak (e,C) at 830 nm and its LO phonon replica (e,C)-LO at 850 nm are
due to recombination of electrons from the conduction band into C acceptor states.
The recombination of electrons from donor states into C acceptor states appears as
a small shoulder on the right-hand sides of either of these two peaks. C is a resid-
ual impurity in GaAs present in MBE-grown material with a typical concentration
between 1014 and 1015cm−3 [106]. Magerle et al. determined the height ICd/IC of
the (e, Cd) peak normalised to IC as the function of time after doping. These was done
by substracting the normalised spectrum of the undoped part from the normalised
spectra of the 111In doped part. The height ICd/IC of the (e,Cd) peak remaining in
these difference spectra is displayed in the inset of Fig. 6.31. The Indicated authors
fitted these data by

ICd

IC
(t) = ICd

IC
(t =∞)

(
1 − e− t

τ

)
(6.57)

and obtained a time constant τ = 52(17) h, which is not the nuclear lifetime
τ111I n = 98 h of 111In. Evidently ICd/IC is not proportional to NCd . The photolumi-
nescence intensity ICd is proportianal to the recombination rate of excess carriers per
unit area through Cd acceptors states �nLBCdNCd , where BCd is a recombination
coefficient. The excess sheet carrier concentration in the implanted layer �nL can
be expressed in terms of the total carrier lifetime in the implanted layer τL and the
generation rate of excess carriers per unit area in the implanted layer fLG by using
the first of the two equilibrium conditions

fLG = �nL

τL
and fB G = �nB

τB
(6.58)
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The second one describes the balance between the generation rate fBG and the
recombination rate of excess carriers �nB

τB
in the bulk. The total generation rate G

is proportional to the incident photon flux and fL + fB = 1. expression for τL , the
cited authors assumed two additional recombination processes in the implanted layer:
the radiative recombination via Cd acceptors and nonradiative recombination due to
residual implantation damage, and write the recombination rate in the small single
approximation (see, e.g, [106]) as

�nL

τL
= �nL

τB
+ �nL BCdNCd + �nLBnr fnr NCd (6.59)

Here, �nL Bnr fnr NCd is the nonradiative recombination rate per unit area due to
residual implantation damage, fnr NCd is the concentration of these nonradiative
recombination centres, and Bnr is the corresponding recombination coefficient.
Hence �nL and �nB can be expressed as a function of NCd and the recombina-
tion rates through all the different recombination channels and thereby the relative
photoluminescence peak intensities can be deduced. I C is proportional to the sum
of the (e,C) recombination rates per unit area in the implanted layer and the bulk and
within this model i t can obtain

IC ∝ �nL+�nB

τC
= G

τB

τC

(
fL

1+�Cd/f Bb
+f B

)

(6.60)

Here, �Cd is the dose between 109 and 1013cm2. Thereby, τC = 1/BC NC is an effec-
tive lifetime describing the recombination probability through C acceptor states and
b is a constant defined below. With the help of Eqs. (6.58) and (6.60) can be obtained
(assuming that the detection efficiencies of both peaks are equal) the following rela-
tion between ICd/IC and �Cd :

ICd

IC
= �nL BCd NCd

(�nL+�nB) /τC
= a

1 + b/�Cd
, (6.61)

with

a = fL

fB

BCd

(Bnrfnr+BCd)

τC

τB

and b = d

fB (Bnrfnr+BCd) τB
(6.62)

This model describes quantitatively the dependence of (e, Cd) intensity of NCd

and the cited authors use it to describe the increase of ICd/IC with time in the
111In-doped sample. In [151] the authers model the change of the carrier lifetime τL

with time t in the 111In doped sample as

1

τL
= 1

τB
+ BCdNI n

(
1 − e− t

τ

)
Bnr fnr (6.63)
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where NI n = �I n /d is the initial 111In concentration, τ = τ111I n = 98.0 h is the
nuclear lifetime of 111In, and BCd , Bnr and fnr are the same constants as above.
Thereby, we assume following Magerle et al. that the same kinds of nonradiative
recombination centres are produced by In doping as by Cd doping and that the Cd
concentrations are identical to the 111In concentration profile. Taking into account
all the above we can write that

ICd

IC
= a

1 + b/�I n

(
1 − e− t

τ

)
+c/

(
e− t

τ −1
) , (6.64)

where a and b are the same constants as above and c = Bnrfnr/ (Bnrfnr+BCd) .

This c term accounts for the fact that the 111In doped sample the concentration of
nonradiative centres is not changing with Cd concentration. Magerle et al. fitted
Eq. (6.64) to the data shown in the inset of Fig. 6.31, keeping τ = 98.0h, a = 1.25
and b = 3.0 × 1011cm−2 , and obtained �I n = 4.49 × 1011cm−2 and c = 0.5
(2). This fit is shown as a solid line and agrees perfectly with the experimental data.
In the conclusion of this part it should be noted that this identification technique
is applicable to a large variety of defect levels since for most elements suitable
radioactive isotope exist (for details see [107]).

Coupling between the LO phonon mode and the longitudinal plasma mode in NTD
semi-insulating GaAs was studied in [152] using Raman-scattering spectroscopy and
a Fourier-transform infrared spectrometer. Raman spectra are shown in Fig. 6.32 for
unirradiated, as-irradiated and annealed samples. The remarkable feature is the low
intensity and asymmetric linewidth of the LO-phonon spectrum observed in annealed
samples, which are annealed above 600◦C. The behaviour is not understood by
considering the only LO phonon. We should pay attention to the electrical activation
of NTD impurities, which begin to activate electrically around 600◦C. In the long-
wavelength limit, the valence electrons, the polar lattice vibrations and the conduction
electrons make additive contributions to the total dielectric response function [7, 8]:

εT (0, ω) = ε∞ + (ε0−ε∞) /
[(

1−ω2/ω2
t

)
−ω2

pε∞/ω2
]

(6.65)

The high-frequency value (L+) of the mixed LO-phonon-plasmon modes is cal-
culated from the roots of the dielectric constant of Eq. (6.65). The frequencies of the
L+mode and of the longitudinal plasma mode ωp = (

4πne2/ε∞m∗)1/2
for various

annealing temperatures are listed in Table 6.7. Here, n is the electron concentration,
m* the effective mass in the conduction band (= 0.07m0) and ε∞(= 11.3) the optical
dielectric constant. The mixed LO-phonon-plasma mode appears around 300 cm−1

for electron concentration of (0.8-2)x1017cm−3. The phonon strength [153] for the
high-frequency mode (L+) of the interacting plasmon-LO-phonon mode is about
0.95 for an electron concentration of 1x1017cm−3, while that for the low-frequency
mode (L_) is below 0.1. Therefore, the asymmetric linewidth of the Raman spectrum
observed in the annealed NTD GaAs arises from both the LO-phonon and L+ modes,
but the L_ mode is not observed because of a very weak phonon strength. As a result,
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Fig. 6.32 Raman spectra at
room temperature taken for
the various annealing temper-
atures of (100) oriented NTD
GaAs irradiated withneutron
dozes. The coupling L+ mode
is observed at annealing tem-
perature above 600◦C (after
[151])

Table 6.7 Electron concentrations and the coupling modes of NTD GaAs (after [151])

Sample EC (cm−3) LO-phonon frequency (cm−1) L+mode(cm−1) PF (cm−1)

unirradiated 1 ∼ 2 ×107 296.6
as - irradiated a 295.6
500◦C annealed a 297.8
600◦C annealed 8.2 ×1016 296.0 299 96.4
650◦C annealed 2.2 ×1017 296.6 304 158
700◦c annealed 2.5 ×1017 296.2 305 168

the LO-phonon intensity decreases with increasing coupling, and L+ mode appears
beside the LO-phonon peak.

The absorption spectra in the various annealing temperatures for NTD GaAs
are shown in Fig. 6.33. In unirradiated samples, an absorption around 2350 cm−1

is assigned as the antisymmetric stretching vibration of CO2 arising from CO2
in an ambient atmosphere.The absorption peaks observed around 500 cm−1 are
also assigned as a two-phonon overtone scattering [153] of transverse optical
phonons (TO); these were observed at 493 cm−1 [2TO (X)] , 508cm−1 [2TO (L)],
and 524 cm−1 [2TO (�)], respectively. In as-irradiated samples, a continuous absorp-
tion extending to the higher energy was observed. Although this origin cannot be
attributed to interstitial anion clusters as discussed in neutron irradiated GaP [155,
156]. In samples annealed above 600◦C, the remarkable absorption was observed at
wave numbers below 1450 cm−1. The absorption increases with increasing annealing
temperature (see Fig. 6.33). This behaviour arises from the fre-electron absorption
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Fig. 6.33 Infrared-absorption
spectra at room temperature
taken for the various annealing
temperatures of the NTD
GaAs used for the Raman
scattering experiments (after
[153])

due to the activation of NTD impurities, which occur at annealing temperatures above
600◦C. The free-electron absorption observed is consistent with a collective motion
as a plasmon mode described in Raman-scattering studies.

Kuriyama et al. [95] studied by a photoluminescence method the transmuted
impurities Ge ans S in NTD semi-insulating Gap. In NTD GaP, Ge and S impurities
are transmuted from Ga and P atoms by (n,γ ) reactions, respectively. Ge in GaP is an
amphoteric impurity for which both the donor and acceptor states appear to be deep.
The ratio between transmuted impurities Ge and S is about 16 : 1. Unfortunately, after
the transmutation reactions, the transmuted atoms are usually not in their original
positions but displaced into interstitial positions due to the recoil produced by the
γ and β particles in the nuclear reactions. In addition, the defects induced by the
fast neutron irradiation disturb the electrical activation of transmuted impurities.
However, Frenkel type defects [155] in NTD GaP were annealed out between 200
and 300◦C, while P antisite (PGa) defects of ∼1018cm−3 annihilated at annealing
temperatures between 600 and 650◦C. Therefore, transmuted impurities, Ge and S,
would be substituted on Ga and/or P lattice sites by annealing at around 650◦C.

Figure 6.34 shows the photoluminescence (PL) spectra of unirradiated and NTD
GaP. The PL spectrum (peak 1) of unirradiated samples shows signature of the DA
pair recombination involving S donor and carbon acceptor [155]. Two (peaks 2 and
3) of the replicas occur at energies consistent with electronic transitions accompanied
by zone-centre optical phonons with energies 50.1 meV (LO�) and 100.2(2LO�).
Sulphur, silicon and carbon in GaP are the most common residual impurities [155].
In NTD-GaP the main transition energy was observed as 1.65 eV. Since Ge in GaP
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Fig. 6.34 Photoluminescence
(PL) spectra taken at 15 K for
unirradiated and NTD-GaP.
PL peaks 1, 2 and 3 in unirra-
diated GaP represent Sp − Cp
DA pair recombination, its
LO-phonon replica, and 2LO-
phonon replica, respectively.
1.65 and 1.87 eV emissions
in NTD-GaP are attributed to
GeGa − GeP complex and
Sp − Cp DA pair recombina-
tion, respectively (after [95])

is the amphoteric impurity with deep acceptor and donor levels, strong phonon
co-operation will also occur, but optical transition rates will be significant only
for associates. A Similar situation has been proposed for Si in GaP [155], form-
ing a nearest-neighbor SiGa − SiP complex. Therefore, the broad emission would be
expected to arise from a nearest-neighbor GeGa −GeP coupled strongly to the lattice.
To confirm the presence of the GeGa − GeP compose, the temperature dependence
of the half-width, W, of the broad emission was measured. If the localised electron
transitions from the excited state to the ground state of this complex centre pro-
duce the characteristics luminescence, the dependence would be appear to follow
the configuration-coordinate (CC) [106] model equation:

W = A [coth (hν/2kT)]1/2 , (6.66)

where A is a constant whose value is equal to W as the temperature approaches
0 K and hν is the energy of the vibrational mode of the excited state. In Fig. 6.35,
Eq. (6.66) has been fitted to the experimental value for NTD-GaP. For the estimation
of W, the spectrum of the 1.65 eV band was substracted from that of the 1.87 eV
band.. The value of hν used was 0.025 eV. The good fit to this equation that was
found for the GeGa −GeP centre in NTD-GaP shows the validity of applying the CC
model. The Results of [95] indicate that NTD method is a useful one for introducing
Ge donor, resulting from a fact that Ge atoms are transmuted from Ga lattice sites
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Fig. 6.35 Variation of the
half-width W with the square
root of the temperature T for
the 1.65 eV in NTD-GaP. solid
line is a theoretical fitr with
hν 0.025 eV (after [95])

Fig. 6.36 Molar mass versus
density of Si single crystal
samples. The result for the
molar volume derived from
the linear data is mSi/ρ =
12.0588207 (54) cm3mol−1

(after [161])

in GaP. The obtained results are consistent with the presence of the GeGa − GeP

complex as described earlier.
To conclude this part we briefly describe the present definition of the kilogram

with mass of a certain number of silicon atoms [165, 166]. To determine a new value
of the Avogadro constant with a relative combined standard uncertainty of 2 ×10−8,
the mass determinaed of a 1 kg 28Si sphere is crucial and should be determination
to an unprecedented level of accuracy. By this year (2009), the laboratories involved
in the International Avogadro Project (the list of the participants in this Project, see
e. g. in [160]), should be able to determine the mass of a 1 kg silicon sphere under
vacuum with combined standard uncertainty of 4μg.

The value derived from the slope of the function MSi = f(ρ) as shown in Fig. 6.36
leads to what can be considered our best knowledge for the molar volume in single-
crystal silicon [159], MSi/ρ = 12.0588207(54) cm3mol−1. The combination of this
value with the 1998 the Committee on Data for Science and Technology (CODATA)
recommended value of the Si lattice parameter [166] leads to an Avogadro constant
NA 6.0221330(27) ×1023 mol−1, a candidate for consideration in future adjustments



6.6 Low-Dimensional Devices 259

of the values of the constants by CODATA put forward by the CCM Working Group
on the Avogadro constant. This value disagrees by more than 1 part in 106 with the
CODATA 1998 recommended value for NA based on Planck’s constant as determined
mainly by watt balance experiments (for details see, also [159–166]).

6.6 Low-Dimensional Devices

6.6.1 Introduction

Nanoscience is not physics, chemistry, engineering or biology—it is all of them. The
high level of circuit integration in today’s silicon technology could not have been
achieved with III–V semiconductors. However, from the point of view of operating
speed, III–V devices show many advantages (see below), mainly due to the high car-
rier mobility, μ, and lower effective mass of electrons in III–V compounds [167, 168].
As is well known, carrier mobility in GaAs is about one order of magnitude higher
than that of silicon [169]. In fact, the electron velocity in a semiconductor under the
effect of an applied external fiel is probably the most representative parameter for the
design of high-speed advanced electronic circuits. Figure 6.37 shows the maximum
operation frequency (in GHz) of different modulation-doped field effect transistors
(MODFETs) as a function of gate length (in microns) [169]. Due to their particu-
lar characteristics, these transistors are also called high electron mobility transistors
(HENTs) [170]. For comparison purpose, Fig. 6.37 also includes typical parameters
of silicon metal-oxide-semiconductor field effect transistors (MOSFETs) as well as
GaAs MESFETs. In this picture frequency values are given at room temperature
(300 K) although these frequencies are much higher for operation temperature close
to 0 K, as a consequence of the increase in mobility at low temperature (see, e.g.
[171]). At present, MODFET devices with gate lengths about 100 nm and maximum
operation frequencies at room temperature of several hundreds of GHz are available.

Another very interesting quantum effect to take into account for the development
of advanced transistors is the so-called resonant tunnelling effect [170]. Resonant
tunnelling diodes (RTD), based on that effect, basically consist of a quantum well
surrounded by two potential barriers thin enough to allow electron tunnelling. Due
to the extremely low electron transit time through these semiconductors structures,
electronic devices based on RTDs can operate at extremely high frequencies, in the
range of 1 THz. By the addition of an RTD to a bipolar transistor or to a FET, it is
possible to built resonant tunnelling transistor (RTT ). In these transistors, the resonant
tunnel structure injects very hot electrons (i.e. electrons of very high kinetic energy)
into the transistor active region. The reduction of the characteristic device size to the
nanometric range leads to a notable reduction in the number of electrons contained
in the electric signals transferred through electronic devices. This tendency has led
to the development of the so-called single-electron transistor (SET ). As will be seen
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Fig. 6.37 Maximium oper-
ation frequencies reached
by MODFET, MESFET and
MOSFETs as function of gate
length (after [183, 184])

below, the performance of SETs is based on the Coulomb blockade effect, which is
manifested in zero-dimensional semiconductor structures-QDs (see, Chap. 5).

6.6.2 Resonant Tunnelling Diodes

As shown above, electrons in heterojunctions and QWs can respond with very high
mobility to applied electric fields parallel to the interfaces (see, also [82]). In this
paragraph, the response to an electrical field perpendicular to the potential barriers at
the interfaces will be considered. Under certain circumstances, electrons can tunnel
through these potential barriers, constituting the so-called perpendicular transport
(see, also [172]). Tunnelling currents through heterostructures can show zones of
negative differential resistance (NDR) (see, Fig. 6.37), which arise when the current
level decreases for increasing voltage (see [173]). The operation of NDR QW elec-
tronic devices is based on the so-called resonant tunnel effect (RTE), which takes
place when the current travels through a structure formed by two thin barriers with a
QW between them. The I–V characteristics of RTE devices are depicted in Fig. 6.38.
This figure also shows the representation of the conduction band of a double hetero-
junction with a QW between the junctions. The thickness of the QW is supposed to
be small enough (5–10 nm) as to have only one allowed energy level E1 (resonant
level). The well region is made from lightly doped GaAs surrounded by higher gap
AlGaAs (see, e.g. [174, 175]). The outer layers are made from heavily doped n-type
GaAs (n+ GaAs) to facilitate the electrical contacts. The Fermi level of the n+ GaAs
is represented within the conduction band, since it can be considered a degenerated
semiconductor [176].

http://dx.doi.org/10.1007/978-3-642-28723-7_5
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Fig. 6.38 Schematic representation of the conduction band of a resonant tunnel diode: a with no
valtage; (b–d) for increasing applied voltage; c -current-voltage characteristic

Let us suppose that an external voltage, V, is applied, starting from 0V. It can be
expected that some electrons tunnel from the n+ GaAs conduction band through the
potential barrier, thus resulting in increasing current for increasing voltage (region
1-2 in the I–V curve of the Fig. 6.38c). When the voltage increases, the electron
energy in n+ GaAs increases until the value 2E1/e is reached, for which the energy
of the electrons located in the neighbourhood of the Fermi level coincides with that
of level E1 of the electrons in the well (see, Fig. 6.38b). In this case, resonance occurs
and the coefficient of quantum transmission through the barriers rises very sharply.
In effect, when the resonant condition is reached, the electron wave corresponding to
the electrons in the well is coherently (see, e.g. Fig. 10.18 in [178]) reflected between
two barriers. In this case, the electron wave incident from the left excites the resonant
level of the electron in the well, thus increasing the transmission coefficient (and thus
the current through the potential barrier (region 2 in Fig. 6.38c). If the voltage further
increased (region 2–3), the resonant energy level of the well is located below the
cathode lead Fermi level and the current decreases, thus leading to the so-called
negative differential resistance (NDR) region (region 2–3 of the Fig. 6.37). Finally,
for even higher applied voltage, Fig. 6.38d, the current again rises due to the thermo
ionic emission over the barrier (region 4). RTD used in microwave applications are
based on this effect. A figure of merit used for RTD is the peak-to-valley current ratio
of their I-V characteristic, given by the ratio between the maximum current (point 2)
and the minimum current in the valley (point 3). Although the normal values of the
figure of merit are about five for AlGaAs-GaAs structures at room temperature, values
up to 10 can be reached in devices fabricated from strained InAs layers, surrounded

http://dx.doi.org/10.1007/978-3-642-28723-7_10
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by AlAs barriers and operating at liquid nitrogen temperature [174]. If RTD are
simulated by a negative resistance in parallel with a diode capacitance C and a series
resistance RS , as is the case with normal diodes, it is relatively easy to demonstrate
that the maximum operation frequency increases as C decreases. The resonant tunnel
diode is fabricated from relatively low-doped semiconductors, which results in wide
depletion regions between the barriers and the collector region, and accordingly,
small equivalent capacity. For this reason, RTDs can operate at frequencies up to
several THz, much higher than those corresponding earlier tunnel diodes which just
reach about 100 GHz, with response time under 10−13 s. Small values of the NDR , i.e.
an abrupt fall after the maximum on the I-V curve result in high cut-off frequencies
of operation. In fact, RTDs are the only purely electronic devices that can operate
up to frequencies close to 1 THz, the highest of any electron transit time device (see,
also [177]).

6.6.3 Field Effect Transistors

The previously analysed diodes are simplest electronic devices, for which the current
is controlled by the diode bias and vice versa. A useful function can be performed
mainly due to nonlinearity of current-voltage dependences. In contrast, in three-
terminal devices known as transistors, there exist the possibility of controlling the
current through two electrodes by varying the voltage or the current through third
electrode. Below, we briefly describe the field effect transistors (FETs) on the base
of the nanowires. Nanowire FETs can be configurated by depositing the nanomate-
rial onto an insulating substrate surface, and making source and drain on the ends
nanowire. Figure 6.39 illustrates this approach. There , we show a schematic diagram
of a Si-nanowire FET with the nanowire , the metal source and drain electrodes on
the surface of the SiO2/Si substrate (see, also [178]). This approach may serve as the
basis for hybrid electronic systems consisting of nanoscale building blocks integrated
with more complex planar silicon circuitry [171]. We should note that an extremely
small FET may be built on the basis of carbon nanotubes [179]. In conclusion of this
part we have noted that the nanowire devices discussed here have great potential for
applications in nano and optoelectronics.

6.6.4 Single-Electron-Transistor

The so-called single electronics [175, 180–184] which appeared in the late 1980s,
is at present a tremendously expanded research field covering future digital and ana-
logue circuits, metrological standards, sensors, and quantum information processing
and transfer [184]. The basic device, called a single electron device (SED), literally
enables the control of electrons on the level of an elementary charge (see, also [177,
178]). There are rich varieties SEDs (see, e.g. [196, 198–201]), but the operation
principle of all SEDs is basically the same. SEDs rely on a phenomenan that occurs
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Fig. 6.39 A schematic
diagram of a Si-FET with
nanowire, the metal source,
and drain electrodes on the
surface of a SiO2/Si substrate
(after [178])

Fig. 6.40 A scanning elec-
tron microscope image of a
single electron transistor (after
[186])

when electrons are to enter a tiny conducting material (Fig. 6.40). When the tiny
conducting material, or metallic “island”, is extremely small, the electrostatic poten-
tial of the island significantly increases even when only one electron enters it. For
example, for a nanometer scale island having a capacitance C of, say, 1 aF (10−18 F),
the increase in the voltage, which is e/C with e = 1.6 ·10−19 C, reaches 160 mV.
This is much larger than the thermale noise voltage at room temperature, 25.9 mV.
Coulomb repulsion prevents additional electrons from entering the island unless the
island potential is intentional lowered by an external bias. If the island potential is
lowered gradually, the other electrons can enter the island one by one with negligibly
small power dissipation (for details see [182–186] and references therein).

The single-electron transistor works as follows. The electron transfer is deter-
mined by two factors: the Coulomb charging of the dot and the quantised energy
levels in the dot (see above). If the drain is biased with respect to the source, an
electric current occurs in the regime of single-electron transfer. By applying the volt-
age to the gate and changing the QD parameters, one can change the conditions of
electron tunnelling and affect the source-drain current. Examples of modulation of
the conductance in single-electron transistors by the gate voltage are presented in
Fig. 6.41. The devices have almost the same geometry. Their dimensions are large
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Fig. 6.41 Conductance as a
function of Vg for two samples
with the same geometry (after
[183, 184])

enough to have a number of quantised levels. In Fig. 6.41 each peak in the con-
ductance corresponds to transfer of one electron, when an energy level enters into
resonance with the electron states in the contacts. Though the conductance versus
gate-voltage dependences are different, i.e. not reproducible, the peak spacing is the
same for both devices. It is determined by the change in the gate voltage required to
change the charging energy of the QDs by one electron. Figure 6.41 shows clearly
that the electric current is modulated significantly by the gate voltage. Thus, for tran-
sistors with single-electron transport, strong control of very small electric current
may be possible.

6.7 Solid-State Lasers

6.7.1 Background

As is well known, the word laser is an acronym for “light amplification by the stim-
ulated emission of radiation”, a phrase which covers most, though not all, of the key
physical processes inside a laser. Unfortunately, that concise definition may not be
very enlightening to the nonspecialist who wants to use a laser but has less concern
about the internal physics than the external characteristics. A general knowledge of
laser physics is as helpful to the laser user as a general understanding of semicon-
ductor physics is to the circuit designer. From a practical standpoint, a laser can be
considered as a source of a narrow beam of monochromatic, coherent light in the
visible, infrared or UV parts of spectrum. The power in a continuous beam can range
from a fraction of a milliwatt to around 20 kW in commercial lasers, and up to more
than a megawatt in special military lasers. Pulsed lasers can deliver much higher
peak powers during a pulse, although the average power levels (including intervals
while the laser is off and on) are comparable to those of continuous lasers.

The range of laser devices is broad. The laser medium, or material emitting the
laser beam, can be a gas, liquid, crystalline solid or semiconductor crystal and can
range in size from a grain of salt to filling the inside of a moderate-sized building.
Not every laser produces a narrow beam of monochromatic, coherent light. A typical
laser beam has a divergence angle of around a milliradian, meaning that it will spread
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to one meter in diameter after traveling a kilometre. This figure can vary widely
depending on the type of laser and the optics used with it, but in any case it serves
to concentrate the output power onto a small area. Semiconductor diode lasers, for
example, produce beams that spread out over an angle of 20–40◦ hardly a pencil-thin
beam. Liquid dye lasers emit at a range of wavelengths broad or narrow depending on
the optics used with them. Other types emit at a number of spectral lines, producing
light that is neither truly monochromatic nor coherent. Practically speaking, lasers
contain three key elements. One is the laser medium itself, which generates the laser
light. A second is the power supply, which delivers energy to the laser medium in the
form needed to excite it to emit light. The third is the optical cavity or resonator, which
concentrates the light to stimulate the emission of laser radiation. All three elements
can take various forms, and although they are not always immediately evident in all
types of lasers, their functions are essential. Like most other light sources, lasers are
inefficient in converting input energy into light; efficiencies can range from under
0.01 to around 20% [187–189].

Semiconductor lasers, like other lasers, have population inversions which lead to
stimulated emission of photons. Semiconductor laser is different from other lasers
primarily because the energy levels in semiconductors must be treated as continuous
distributions of levels rather than as discrete levels [195]. We shall assume that the
densities of states in the conduction and valence bands of the semiconductor are
known functions of energy, and that the occupations of these levels are characterised
by quasi-Fermi levels [73]. Then the probability that the state of energy E in the
conduction band is occupied by an electron is

fc (E) = 1/{1 + exp [(E − Fc) /kT]}, (6.67)

where fc is the quasi-Fermi level for the conduction band, k is Boltzmann’s constant,
and T is absolute temperature. A corresponding expression applies in the valence
band, with quasi-Fermi level fv. For a system in thermal equilibrium, the quasi-
Fermi levels are equal to each and become the Fermi level EF . In an excited system
we have Fc > fv, and we can use the separation of the quasi-Fermi levels as a measure
of the excitation. The use of quasi-Fermi levels greatly simplifies the treatment of
systems with many energy levels, or with continuous distributions of levels, because
one quantity represents the occupation probability of many levels. The concept of
quasi-Fermi level in an excited system is valid provided the scattering rate of carriers
within a band is rapid compared to the recombination rate between bands, i.e. if the
carriers within the conduction band and within the valence band rapidly establish a
quasi-equilibrium among themselves although the conduction band and the valence
band are not in equilibrium with each other For semiconductors with substantial
numbers of free carriers, carrier–carrier scattering will lead to the establishment of
quasi-equilibrium (see e.g. [191, 192]).

The original semiconductor lasers were p-n junctions prepared by diffusion of
acceptor impurities into n-type GaAs, and this is still one of the most common struc-
tures. Semiconductors with k-conserving transitions at the energy gap are strongly
favoured for lasing, but some impurity levels can lead to stimulated emission in
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indirect-gap semiconductors, e.g. [194]. All the p-n junction lasers are excited by
passing current through the p-n junction, and the excitation rate is characterised by
the current density. When a forward current flows, electrons are injected into the
p-type material and holes are injected into the n-type material, the latter to a much
smaller extent partly because of the lower hole mobility. In heterojunctions, potential
barriers play a major role in the injection of carriers [193]. The excess of electron and
hole concentrations over their equilibrium values creates a local population inversion
and leads to stimulated emission of photons at sufficiently high excitation levels. The
layer near the p-n junction where this occurs is called the active region or active layer
of the device. Figure 91. of Ref. [7] shows that the effective thickness of the active
layer in graded junction lasers increases as the current density increases. This leads
to smaller quasi-Fermi level separations and to less efficient use of the excitation for
lasing. Heterostructure lasers (see also [193]) contain built-in potential barriers for
the electrons which tend to confine them to regions of fixed width. Thus the excitation
can be used most effectively.

A second class of excitation methods involves excitation with photons [197] or
with an electron beam [196]. For optical excitation, the active layer thickness will
be of the order of 1/α, where α is the absorption coefficient of the incident photons.
For electron beam excitation, the active layer thickness will be of the order of the
penetration depth of the electrons, which is a function of their energy (see, e.g.
[198, 199]). In both cases, diffusion of carriers will add a distance of the order of
the diffusion length to the thickness given. If sufficiently thin samples are used,
the excitation state may be relatively uniform through the sample, provided surface
recombination is unimportant. The excitation rate for the externally excited structure
can be converted into an equivalent current density. For photons, the absorbed photon
flux is multiplied by the electronic charge provided that each absorbed photon gives
rise to an electron-hole pair. It should be added that values of about 3Eg are necessary
to create one e-h pair [197]. This means that the main part of the incident pump energy
is transferred to heat. This is one of the disadvantages of e-beam pumping.

With increasing excitation intensity, frequently laser action is observed in the
excitonic luminescence. However, the direct recombination of an exciton can never
give rise to laser action, because the coupled exciton–photon system corresponds
in the resonant approximation to two linearly coupled harmonic oscillators. The
equations of motion of this system do not contain the nonlinearity which is necessary
to describe laser action. The participation of a third field is required in order to
introduce the possibility of laser action [200, 201], i.e. the laser action in exciton
systems has to be a parametric process in which a pump field, a signal field and an
idler field participate.

Below, we describe a scheme for lasing action involving excitons in a pure crystal
[202, 203].

As shown above optical transitions in pure III–V compounds which can be used
for laser action are band–band transitions. In II–VI compounds (as well as LiH [106]
and etc.), the recombination process of electrons and holes via exciton states is more
favourable than the band-band transition [204–206]. During the last four decades
laser action has been obtained in II–VI compounds by electron beam bombardment
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Fig. 6.42 The onset of stimu-
lated emission in CdSe at 77 K
(after [209])

[207–211], by optical excitation [205, 212–214]. The laser transitions involve the A1-
nLO phonons, where n = 1; 2. Gain measurements [210, 211, 213] and simultaneous
measurements of the emission intensities of the A1 line (direct A-exciton recombi-
nation [205]) and the A1-LO line also confirm the statement that in CdS the A 1-LO
(A1-2LO) line starts to lase for sufficiently high pump rates (see also Fig. 6.42) (for
details see [209]). In [200, 201] Haug calculated the temperature dependence of the
maximum gain frequency at threshold. The result is simple in the low-temperature
limit (see, also [7])

�max → 3

2
kT (6.68)

and also in the high-temperature limit

�max → (3κkT/B)2/5 exp(−2�ν/5kT, (6.69)

where 2κ = 1.25·1012s−1, corresponding to losses of 100 cm−1, B = 1.55·1035

erg−3/2s−1 for CdS crystals. These limiting results have also been given by
Mashkevich et al. [214]. The typical experimental gain Ithr (T) dependence, obtained
in [213] is presented in Fig. 6.43. There are shown some spectra of stimulated emis-
sion at different temperatures. The authors of [213] indicated some contradiction of
their experimental results with theoretical description.
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Fig. 6.43 The dependence Ithr (T) and some examples of (above-threshold) lasing spectra (in the
range of A1-1LO; A1-2LO phonons) at different temperature (after [214])

6.7.2 Isotope-Mixed Bulk Lasers

As was shown in [7, 8, 215, 216] another application of isotope pure and isotope
mixed crystals that will be discussed here is related to the possibility of using an
isotopically mixed medium (e.g. LiHx D1−x or 12C13

x C1−x ) as an oscillator of coher-
ent radiation in the ultraviolet spectral range [216, 217]. To achieve this, the use
of indirect electron transitions involving, say, LO phonons was planned [200, 201,
217]. As was shown above using indirect electron transitions involving phonons to
degenerate coherent radiation in semiconductors was originally proposed by Basov
et al. (see [207, 208] and reference therein). Kulevsky and Prokhorov [212] were the
first to observe stimulated radiation using emission lines of LO phonon repetitions in
CdS crystals on two-photon excitation (see also [219]). The detection of LO phonon
replicas of free-exciton luminescence in wide-gap insulators attracted considerable
attention to these crystals (see e.g. [219]). At the same time it allowed one to pose a
question about the possibility of obtaining stimulated emission in UV (VUV) region
(4–6 eV) of the spectrum, where no solid-state sources for coherent radiation exist
yet. In the first place this related to the emitters working on the transitions of the
intrinsic electronic excitation (exciton). The last one provides the high energetical
yield of the coherent emission per unit volume of the substance.

In this part we will discuss the investigation results of the influence of the exci-
tation light density on the resonant secondary emission spectra of the free-exciton
in the wide-gap insulator LiHx D1−x (LiH1−x Fx ) crystals. The cubic LiH crystals
are typical wide-gap ionic insulator with Eg = 4.992 eV [220] with relatively weak
exciton-phonon interaction however: EB/�ωL O = 0.29 where EBand �ωL O are
exciton binding energy and longitudinal optical phonon’s energy , respectively.
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Fig. 6.44 Photoluminescence
spectra of free excitons at
4.2K: 1–LiH; 2–LiHx D1−x
and 3-LiD crystals (after
[220])

Besides, it might be pointed out that the analogueous relation for CdS, diamond
and NaI is 0.73; 0.45 and 12.7, respectively (Plekhanov [221]). Figure 6.44 depicts,
as an example, the exciton luminescence spectrum of pure (LiH and LiD) and mixed
(LiHx D1−x ) crystals at a low temperature. analogueous results for 12C13

x C1−x mixed
diamond crystals are shown in Fig. 98 of Ref [7]. A common feature of all three spec-
tra depicted in Fig. 6.44 is a phononless emission line of free excitons and its 1LO
and 2LO phonon replicas. An increase in the density of the exciting light causes
a burst of the radiation energy in the long-wave wing of the emission of the 1LO
and 2LO repetitions at a rate is higher for the 1LO repetion line [215, 216]. Further
investigations have shown [221] that with the increase of the excitation light inten-
sity at the beginning a certain narrowing can be observed, followed by widening of
the line of 2LO phonon replica with a simultaneous appearance of a characteristics,
probably mode structure. A proximity of the exciton parameters of LiH and CdS
(ZnO) crystals allowed to carry out the interpretation of the density effects in LiH
on the analoguey with these semiconducting compounds. Coming from this in the
paper [221] it was shown that for the observed experimental picture on LiH crystals
to suppose the exciton–phonon mechanism of light generation [203] is enough for
the excitons density about 1015cm−3. This is reasonable value, if the high quality of
the resonator mirror-the crystal cleavage “in situ” and relatively large exciton radius
(r = 40 Å [220]) is taken into account. To this light mechanism generation must be
also promoting a large value of the LO phonon energy (�ωL O= 140 meV). Owing
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Fig. 6.45 The dependence
of the shape of 2LO replica
line on the excitation intensity
(I0) light: 1 − 0.05I0; 2 −
0.09I0; 3 − 0.35I0; 4 − I0
(after [221])

to this the radiative transition is being realised in the spectral region with a small
value of the absorption coefficient, and thus with a small loss in resonator (for details
see also [220]) Fig. 6.45.

6.7.3 Light-Emitting Diodes and Lasers of Low-Dimensional
Structures

So far we have studied electronic nanoscale devices, i.e. a class of devices that exploits
electrical properties of nanostructures and operates with electric input and output
signals. Another class is composed of optoelectronic devices, which are based on
both electrical and optical properties of materials and work with optical and electric
signals. In this paragraph we will analyse two very important classes of optoelectronic
devices: light-emitting diodes andlasers. As will be shown below, the energy of the
electric current flowing through these diodes is transformed into light energy. These
optoelectronic devices have a huge number of applications and deserve consideration
in detail (see, also [222–225]).

Although stimulated emission [106] from the injection laser diode is very impor-
tant, practically, subthreshold operation of the diode—when only spontaneous light
is emitted—is in many cases advantageous and has a number of applications. Diodes
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Fig. 6.46 The spectra of
light-emitting semiconductor
diodes with different band
gaps (after [169])

operating with spontaneous light emission are called light-emitting diodes [224].
The important characteristic of the light-emitting diode is the spectral distribution
of emission The spectrum of emission is determined, primarily, by the electron/hole
distributions. Thus, the ambient temperature T, defines both spectral maximum and
the spectral width of emission. The peak value of the spectral distribution can be
estimated as [174, 177].

�ω = Eg + kBT

2
(6.70)

The full width at half maximum of the distribution is �ω ≈ 2kBT/� and is indepen-
dent of ω. In terms of the wavelength, λ, we obtain

�λ = [λ2
m/ (2πc) �ω]

or
�λ = 1.45λ2kBT, (6.71)

where λm corresponds to the maximum of the spectral distribution, �λ and λm are
expressed in micrometers, and kBT is expressed in eV. Figure 6.46 shows the spectral
density as a function of the wavelength for light-emitting diodes based on various
materials. For these different materials, the spectral linewidth increase in proportion
to λ2, in accordance with Eq. (6.71). From Fig. 6.46, one can see that light-emitting
diodes cover a wide spectral region from the infrared-about 8 μm for InGaAsP
alloys-to the near ultraviolet- 0.4μm for GaN. Light-emitting diodes are, indeed
very universal light sources [225].

Semiconductor lasers incorporating low-dimensional heterostructures., QWs and
QDs, are attracting considerable interest in their potential for improved performance
over QW lasers (see, e.g. [224, 225]). This prediction is based, in the single-particle
picture, on the sharper density of states resulting from the confinement of the charge
carriers in two or three directions. Among other advantages, the ideal QD and QWr
lasers would exhibit higher and narrower gain spectrum, low threshold currents, better
stability with temperature, lower diffusion of carriers to the device surfaces, and a nar-
rower emission line than double heterostructure or QW lasers (see, also [227]). The
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Fig. 6.47 a Photoluminescence spectra at 10 K of the QWr laser sample above, below and near
the lasing threshold in TE-polarisation. b Dependence on input excitation power of the PL output
power;arrows indicate the excitation powers used for the optical spectra depicted in (a). c High
resolution emission spectrum above the lasing threshold showing the Fabri–Perrot modes of the
optical cavity (after [228])

observation of lasing from excitons in optically excited V-groove GaAs/AlGaAs QWr
laser structures was described in detail in [229]. The observable emission is attributed
to the recombinations of excitons associated with the lowest energy electron- and
hole-subbbands of the QWr. Moreover, these authors show that the emission energy
remains nearly constant within the inhomogeneously broadened photoluminescence
line of the QWrs for both continuous wave (cw) and pulsed optical excitation over a
wide range of power densities. These results corroborate the important role played
by electron-hole Coulomb correlations [229, 230] in the optical emission from quasi
- 1D QWrs in the density regime of the Mott transition.

Optical emissions of the QWr laser structure are displayed in Fig. 6.47 for differ-
ent values of the optical power density below, at and above the threshold for lasing in
the QWr. Upon increasing the pump power, these authors observe a nearly constant
energy of the peak at 1.581 eV that corresponds to the optical transition e1 − h1
associated with the ground electron-hole-subband of the QWrs. A significant spec-
tral narrowing is also found as the power density is increased and crosses the lasing
threshold. This evidences the existence of amplified spontaneous emission within this
inhomogeneously broadened PL line in this density regime. The observable emis-
sion intensity varies linearly at low excitation power over three orders of magnitude
(from 0.1 to 100 mW) [229]). Above the lasing threshold (at 350 mW) the intensity
variation is again linear (see, Fig. 6.47b), indicating that the modal gain is saturated.
In Fig. 6.47c, a high-resolution emission spectrum obtained above threshold features
well-resolved Fabry-Perot modes that correspond to different longitudinal optical
modes within the inhomogeneous line of the QWr-PL. Detailed investigations of PL
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Fig. 6.48 Linearly polarised
PLE spectrum and the cor-
responding PL spectrum of
an etched QWr laser sample
at 10 K. The polarization of
the excitation is parallel tothe
wire axis. The different optical
transition en − hn are marked
by arrows (after [228])

and PLE spectra (see, Fig. 6.48) of the QWr allowed the indicated authors to conclude
that the lasing emission originates from the recombination of excitons as is the case
for the QWr-peak of the cw-PL spectrum (for details see [229]).

In QDs, as indicated above, carriers are confined in the three directions in a
very small region of space, producing quantum effects in the electronic properties.
As we can see from Fig. 6.3 of Chap. 4, the electronic joint density of states for
QD shows sharp peaks corresponding to transitions between discrete energy levels
of electrons and holes. Outside these levels the DOS vanishes. In many ways, the
electronic structure of a QD resembles that of a single atom [227]. Lasers based on
QDs could have properties similar to those of conventional ion gas lasers, with the
advantage that the electronic structure of a QD can be engineered by changing the
base material, size and shape. Next, we assume that the QDs are small enough so
that the separation between the first two electron energy levels for both electrons
and holes is much larger than the thermal energy kT. Then for an undoped system,
injected electrons and holes will occupy only the lowest level. Therefore, all injected
electrons will contribute to the lasing transitions from the E1e to the E1hh levels,
reducing the threshold current with respect to other systems with lower confinement.
The evolution of the threshold current density obtained along the years for various
laser structures is shown in Fig. 6.49. The lowest threshold currents have already
been reached for QD lasers [232]. As long as the thermal energy is lower than the
separation between the fist and second levels, the emission band in an ideal QD laser
is very sharp and does not depend on temperature (see, also [159]). Therefore, QD
lasers should have a better stability with temperature without the need for cooling.

http://dx.doi.org/10.1007/978-3-642-28723-7_4
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Fig. 6.49 Evolution of threshold current density for lasers based on different confinement structures
(after [233])

We should add that QD lasers have the narrowest spectrum and the highest gain (for
details see, also [174, 177, 225]).

6.7.4 Quantum Well Photodetectors

In principle, QWs can be used for the detection of light in any spectral region.
As we all know the optical properties to interband transitions in QWs are quite
different from those correspnding to bulk materials, since one has to consider both
the 2D optical density of states (see, Chap. 4) and the fact that excitonic absorption
is much stronger in 2D systems. With respect to intraband transitions, in contrast to
the 3D situation, 2D systems can show transitions without the necessity of involving
phonons. Intraband transitions can be among electrons (or holes) in confined states in
wells, or between confined states and the continuum (see, Fig. 6.50). These transitions
can be tailored for detection of light (IR photodetectors [170, 171]. Thus, it is in
the IR region between 2 and 20 microns,that QW photodetectors are preferably
used for example in applications of night and thermal imaging (see, also [97, 98]).
The problem with photodiodes based on band-to band transitions across the band-
gap Eg in p-n homojunctions is that they require materials with very low values
of Eg , which makes it necessary to work at cryogenec temperatures. For instance,
in the case of III–V compounds this leaves us with In As1−x SBx with x ≈ 0.5.
Some A2B6 compounds like HgCdTe can also be used in the IR, but these materials
are quite soft, difficult to process, and have large dark currents. The perspective
of QW potodetectors are isotope-mixed germanium as well as other isotope-mixed
materials. In QWs, wavelength tunability is easily implemented since the energies
of the levels in a QW can be adjusted by the fabrication parameters, in particular its
width. Figure 6.50 shows the absorption transitions suitable for IR detection for a
single QW under the action of an applied electric field, although practical devices are

http://dx.doi.org/10.1007/978-3-642-28723-7_4
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Fig. 6.50 Optical absorption transition for IR detection in a QW: a intersubband transitions; b
transion from a bound state to the continuum narrow band outside the potential wells. F is the
applied electric field

made with MQWs. In Figure 6.50a there are two energy levels in each well, the second
level being located close to the top of the barriers. The separation between levels
should be in the range 0.1–0.2 eV, which for III–V compounds implies a width of the
wells about 10 nm [170]. Sometimes, it is more effective to make use of absorption
transitions between a single level in the well and the first continuum narrow band
outside it (Fig. 6.50b). In the case of the system AlGaAs-GaAs -AlGaAs, this energy
is about 0.12 eV, and therefore, the spectral response is around 10μm [171]. The
advantage of using this scheme is that the photodetector dark current is smaller than
for the previous case in which the carriers had to leave the wells by tunnelling (for
details, see [174]).
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