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Preface to the Second Edition

Everything the Power of the World
does is done in a circle. The sky is
round and I have heard that the earth
is round like a ball and so are all the stars.
The wind, in its greatest power, whirls.
Birds make their nests in circles,
for theirs is the same religion as ours.
The sun comes forth and goes down
again in a circle. The moon does the
same and both are round. Even the
seasons form a great circle in their
changing and always come back again
to where they were. The life of a man
is a circle from childhood to childhood.
And so it is everything where power moves.

Black Elk (1863–1950)

Nonlinear phenomena represent intriguing and captivating manifestations of nature.
The nonlinear behavior is responsible for the existence of complex systems, catas-
trophes, vortex structures, cyclic reactions, bifurcations, spontaneous phenomena,
phase transitions, localized patterns and signals, and many others. The importance
of studying nonlinearities has increased over the decades, and has found more
and more fields of application ranging from elementary particles, nuclear physics,
biology, wave dynamics at any scale, fluids, plasmas to astrophysics. The soliton
is the central character of this 167-year-old story. A soliton is a localized pulse
traveling without spreading and having particle-like properties plus an infinite
number of conservation laws associated to its dynamics. In general, solitons arise
as exact solutions of approximative models. There are different explanation, at
different levels, for the existence of solitons. From the experimentalist point of view,
solitons can be created if the propagation configuration is long enough, narrow
enough (like long and shallow channels, fiber optics, electric lines, etc.), and the
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viii Preface to the Second Edition

surrounding medium has an appropriate nonlinear response providing a certain type
of balance between nonlinearity and dispersion. From the numerical calculations
point of view, solitons are localized structures with very high stability, even against
collisions between themselves. From the theory of differential equations point of
view, solitons are cross-sections in the jet bundle associated to a bi-Hamiltonian
evolution equation (here Hamiltonian pairs are requested in connection to the
existence of an infinite collection of conservation laws in involution). From the
geometry point of view, soliton equations are compatibility conditions for the
existence of a Lie group. From the physicist point of view, solitons are solutions
of an exactly solvable model having isospectral properties carrying out an infinite
number of nonobvious and counterintuitive constants of motion.

The progress in the theory of solitons and integrable systems has allowed the
study of many nonlinear problems in mathematics and physics: nonlocal interac-
tions, collective excitations in heavy nuclei, Bose–Einstein condensates in atomic
physics, propagation of nervous pulses, swimming of motile cells, nonlinear oscilla-
tions of liquid drops, bubbles, and shells, vortices in plasma and in atmosphere, tides
in neutron stars, only to enumerate few of possible applications. A number of other
applications of soliton theory also lead to the study of the dynamics of boundaries.
In that, the last three decades have seen the completion of the foundation for what
today we call nonlinear contour dynamics. The subsequent stage of development
along this topic was connected with the consideration of an almost incompressible
systems, where the boundary (contour or surface) plays the major role.

Many of the integrable nonlinear systems have equivalent representations in
terms of differential geometry of curves and surfaces in space. Such geometric
realizations provide new insight into the structure of integrable equations, as well
as new physical interpretations. That is why the theory of motions of curves and
surfaces, including here filaments and vortices, represents an important emerging
field for mathematics, engineering and physics.

The first problem about such compact systems is that shape solitons, which
usually exist in infinite long and shallow propagation media, cannot survive on a
circle or sphere. That is because such compact manifolds cannot offer the requested
type of environment (long and narrow), even by the introduction of shallow layers
and rigid cores. However, there is another basic idea which supports, in a natural
way, the existence of nonlinear solutions on compact spaces. Because of its high
localization, a soliton is not a unique solution for the partial differential system. Its
position in space is undetermined because, far away from its center, the excitation
is practically zero. On the other hand, all linear equations provide uniqueness
properties for their solutions. It results that strongly localized solutions, and almost
compact supported solutions can be generated only within nonlinear equations.
There is an exception here: the finite difference equations with their compact
supported wavelet solutions, but in some sense a finite difference equation is similar
to a nonlinear differential one.

Despite the many applications and publications on nonlinear equations on
compact domains, there are still no books introducing this theory, except for several
sets of lecture notes. One reason for this may be that the field is still undergoing a
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major development and has not yet reached the perfection of a systematic theory.
Another reason is that a fairly deep knowledge of integrable systems on compact
manifolds has been required for the understanding of solitons on closed curves and
compact surfaces.

The goal of the second edition of this book is to analyze the existence and
describe the behavior of solitons traveling on closed, compact surfaces or curves.
The approach of the physical problems ranging from nuclear to astrophysical scales
is made in the language of differential geometry. The text is rather intended to
be an introduction to the physics of solitons on compact systems like filaments,
loops, drops, etc., for students, mathematicians, physicists, and engineers. The
author assumes that the reader has some previous knowledge about solitons and
nonlinearity in general. The book provide the reader examples of systems and
models where the interaction between nonlinearities and the compact boundaries
is essential for the existence and the dynamics of solitons.

We focused on interesting and recent aspects of relations between integrable
systems and their solutions and differential geometry, mainly on compact manifolds.
The book consists of 17 chapters, a mathematical annex, and a bibliography. First
part contains the fundamental differential geometry and analysis approach. To
render this book accessible to students in science and engineering, Chap. 2 recalls
some basic elements of topology with emphasis on the concept of being compact.
In Chap. 3 we review the representation formulas for different dimensions. The
formulas express how a lot of information about the evolution of differentiable
forms and fields inside a compact domain can be recovered only from its boundary.
Chapter 4 introduces the reader to the calculus on differentiable manifolds, vector
fields, forms, and various types of derivatives. We take the reader from map all the
way to the Poincaré lemma. Next we introduce different types of fiber bundles,
including the Cartan theory of frames, and the theory of connection and mixed
covariant derivative (for immersions). Without always presenting the proofs, we
tried though to keep a high level of rigorousness (relying on classical mathematical
textbooks) all across the text while we still introduce intuitive comments for each
definition or affirmation. Chapter 5 lays the basis for the differential geometry of
curves in R3. We devote here special sections to closed curves and curves lying on
surfaces. Complementary, in Chap. 6 we introduce elements of differential geometry
of the surfaces with applications to the action of differential operators on surfaces.
In Chap. 7 we derive the theory of motion of curves, both in two-dimensions, and
in the general case. We devoted a section on the axiomatic deduction of the theory
of motions based on differentiable forms and Cartan connection theory. We relate
these motions with soliton solutions and find the nonlinear integrable systems that
can be represented by such motions of curves. In Chap. 8 we discuss the theory of
motion of surfaces, and we also relate it to integrable systems.

The second part of the monograph contains an exposition of the basic branches of
nonlinear hydrodynamics. The working frame of hydrodynamics is the main content
of the first part of the monograph, namely Chap. 9. In Chap. 10 we discuss problems
on surface tension effects and representation theorems for fluid dynamics models.
Chapter 11 concentrates with one-dimensional integrable systems on compact
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intervals, and their periodic solutions. Chapters 12 and 13 deal with nonlinear shape
excitations of two-dimensional and three-dimensional liquid drops and bubbles.
Chapter 14 is devoted to various applications of three-dimensional nonlinear drops,
and also to compact supported solitons.

In the third part of the book, as a final goal for the first two parts, we present
additional physical applications of nonlinear systems and their soliton solutions
on various systems of different scales. In Chap. 15 we study the vortex filaments
and other one-dimensional flows. In Chap. 16 we describe microscopic applications
like elementary particles as solitons, instantons, exotic shapes in heavy nuclei,
exotic radioactivity and quantum Hall drops. Chapter 17 deals with macroscopic
applications like magnetohydrodynamic plasma systems, elastic spheres, nonlinear
surface diffusion and neutron stars.

The book is closed by a mathematical annex including a section on nonlinear
dispersion relations and their use for nonlinear systems of partial differential
equations.

A legitimate question of the potential reader would be: “Why one more book on
solitons?” First of all we have to acknowledge the importance of the interactions
between compact boundary manifolds and the dynamics of particles and fields
in mathematical in physical models. Historically the solitons are observed in sort
of “infinite” systems like infinite long lines or curves, planes or open surfaces,
or unbounded space. However, there is more and more evidence of the existence
solitons or of localized patterns (like vortices) in compact lower dimensional spaces,
like closed curves and/or surfaces. As examples, we can mention the unprecedent
information technology advances in optical communication (light bullets and ultra-
short optical pulses), solid-state spectroscopy, ultra-cold atom studies, soliton
molecules, spinning solitons, quantum computers, spintronics and mass memory
systems, femtosecond laser pulses, mesoscopic superconductivity, etc. Conse-
quently, the reasons for writing this book are generated by a constantly increasing
number of new challenges, vivid topics and hundreds of published articles.

If a substantial percentage of users of this book feel that it helped them to enlarge
their outlook in the intersection between the fascinating worlds of nonlinear waves
and compact surfaces and closed curves, its purpose has been fulfilled.

While writing the second edition of this book I have greatly benefited from
discussions with my colleagues. I am particularly grateful to Ivailo Mladenov,
Thiab Taha, Annalisa Calini who provided an inspirational and valuable help in
the elaboration of this second edition. I am glad to mention the useful help from
two of my students, Harry Wheeler and Tamika Thomas. For the best advices and
uninterrupted encouragement I am indebted to my family.

Andrei Ludu
Daytona-Beach, Florida

December 2011
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Part I
Mathematical Prerequisites

In the first part of this book we study the topological, geometrical and algebraical
prerequisites needed in the investigation of solitons traveling on bounded or compact
manifolds. After introducing some basic elements of topology, with emphasis on
compact spaces, we present the influence of boundary of a manifold over its interior
points. We enumerate the representation theorems, namely those formulas, and
their applicability ranges, providing the values of functions everywhere inside their
domains of definition if their values on the boundaries are known. Further on, we
introduce some elements of differential geometry on manifolds (vector fields, forms,
derivatives) culminating with the Poincaré Lemma. A certain amount of space is
devoted to the theorems of existence and uniqueness, both from the point of view of
differential equations and from the point of view of geometry.

Many of the integrable equations of nonlinear science have essentially equivalent
realizations in terms of differential geometry of curves and surfaces in space.
Such geometric realizations provide new insight into the structure of integrable
equations, as well as new physical interpretations. Therefore, we dedicate the last
chapter of this part to the theory of motion of curves and surfaces. This theory also
contains important tools in the study of forthcoming applications like kinematics
and dynamics of filaments, interfaces, vortices, liquid boundaries of drops, bubbles,
shells, nuclear surface, etc.



Chapter 1
Introduction

1.1 Introduction to Soliton Theory

Nonlinear evolution equations describe a variety of physical systems, at different
scales from elementary particle models, to atomic and molecular physics, including
fields like super-heavy nuclei, cluster radioactivity, atomic clusters, quantum hall
drops, nonlinear optics, plasma and mesoscopic superconductor vortices, complex
molecular systems, solid state, localized excited states, and Bose–Einstein con-
densates. At lab scale we have examples from fluid dynamics, pulses in nerves,
swimming of motile cells and electric lines. Larger scale applications are related
to tides in neutron stars or impact of stellar objects. It is of particular interest to
examine the dynamics of localized solutions on compact domain of definitions like
closed segments, closed curves, or closed surfaces, in one word on the boundaries
of some compact domains.

The most useful nonlinear systems are of course the integrable ones, i.e. those
solvable by inverse scattering. These particular systems have soliton solutions
and infinite number of conservation laws. The traditional nonlinear systems,
Korteweg-de Vries, modified Korteweg-de Vries, sine-Gordon, Schrödinger non-
linear equation and Kadomtsev-Petviashvili, were investigated in numerous works
and books (see for example the following books and the references listed herein
[2, 67, 71, 78, 79, 135, 169, 311]). In addition to these equations, there are other
numerous other examples of integrable evolutionary systems in one ore more space
dimensions. As a general property, all these systems have at least one dimension
much larger than the other ones. For example, all models based on the two-
layer configuration need the approximation of long channels, or long lines. In
the present book we do not elaborate on such “long-scale” systems, and we do
not review them in detail. We rather focus on compact physical systems modeled
by nonlinear evolution equations. Some solutions derived in long systems may
exist in the compact ones. The cnoidal waves which are periodical, or compact
supported solutions. Some other solutions may be specific only to the compact

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 1,
© Springer-Verlag Berlin Heidelberg 2012
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4 1 Introduction

systems, like we noticed in the theory of nonlinear oscillations of two-dimensional
drops.

A nonlinear evolution system is a system of partial differential equations in
variables time plus several space dimensions having the form

@u

@t
D F.x; t; u; u.0; Qp//;

where u.t; x1; : : : ; xn/ is a complex vector function defined on a domain in R�D �
R�Rn, and where in the RHS the arbitrary functionalF depends on the coordinates
and derivatives of the function at spatial coordinates only ( Qp is a multiple index with
n components). A solitary wave solution of the nonlinear evolution equation is a
solution with the asymptotic form at t ! ˙1, u ! u1.t; x1; : : : ; xn/ D f .x1 �
V 1t; : : : ; xn�V nt/, with arbitrary constant velocities V i in all space directions. The
definition does not exclude standing traveling waves with the same above form at all
moments of time. A soliton is a solitary wave solution of a nonlinear evolutionary
system which asymptotically preserves its shape and velocity against interactions
with any other (linear or nonlinear) solutions of the same system, or against any
other type of localized disturbance ı.t; x1; : : : ; xn/ [2,67,71,79,135,169,242,311].

We define a conservation law of the nonlinear evolution system, a triple
.T .t; xi ; u; u.k; Qp//;X.t; xi ; u; u.k; Qp//; �/, where the function T is the conserved
density, the vector .Xi/ is the flux, and � is a linear first order partial differential
continuity equation of the form

� ) dT

dt
Cr �X D 0;

where the first term is the total time derivative, and T is such that

d

dt

Z
D

T .t; xi ; us; u
.k; Qp/
s /dnx D 0;

for any solution us of the nonlinear evolution equation.

1.2 Algebraic and Geometric Approaches

There are two exact mathematical approaches to a science problem: algebraic
and geometric. Sometimes they provide similar results, but sometimes they reveal
different features or relationships of the same object. Matrices represent a nice
example of situation providing different results if we apply the geometrical or the
algebraical approaches. For example, let us look at two 5 � 5 Heisenberg matrices
(square matrices with entries 0; 1)
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0
BBBBB@

0 0 1 0 1

0 1 0 1 1

1 1 0 0 1

1 0 1 1 0

0 1 1 0 0

1
CCCCCA

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 �1 0 0
0 0 0 1 0

0 0 0 0 1

1
CCCCCA

The left one has no interesting geometrical feature, while its determinant is 5 which
is the maximum possible value for such a Heisenberg 5 � 5 matrix since there
are very few such maximal determinant matrices of this type. On the other hand,
the matrix to the right in the above figure has a nice symmetrical structure but
its determinant is �1, which algebraically is very common. These are differences
between the algebraic and geometric points of view. Topological invariants, for
example the Euler characteristics, or the rank of homotopy groups are calculated
algebraically. The characteristics of curves, especially of loops, can be analyzed in
terms of group theory, too. On the other side, the best efficiency of using groups and
algebras is met when these algebraic objects have additional differentiable structure,
and become geometrical objects like Lie groups, and fields defined on surfaces.
When we study a physical problem we like to reveal both its algebraic and its
geometric interpretation. Compacts systems, especially nonlinear compact systems
like dynamical drops, closed shells, closed loops, etc., take profit of such dualities,
because their differential structures are altered by periodic boundary conditions, by
non-zero curvatures, or by the coupling between different terms of different orders
or scales.

Another problem related to nonlinear compact systems is the need for compact
supported solutions. Solitons have long tails which are not convenient for compact
domains, unless one works in some approximations where the tail can be neglected
to a certain extent. However, such pseudo-periodicity conditions introduce strong
instabilities. Cnoidal waves type of solutions are better for compact domains
because, on one hand, they can overlap over the same pattern by periodicity,
and on the other hand, they offer enough exoticism in their shapes to match
traveling isolated excitation like bumps or kinks. Nevertheless, a nonlinear system
can generate even more localized solutions, like the compact supported solitons
(e.g. compactons or peakons where the internal nonlinear dispersion structure can
provide compactification of solutions). A nonlinear system is the natural frame for
compact solutions, and a geometrically compact nonlinear system can take profit of
that. On the contrary, a linear system has all its solutions uniquely determined by
its initial conditions, so there is no freedom for a compact object to be placed in
different initial positions, with the same effect on the general solution, like in the
nonlinear cases.

There is, however, one exception. The multi-scale finite-difference linear systems
like fractals or wavelets. These types of functions bring another interesting situation
related to compact nonlinear problems: the hidden connection between nonlinear
differential equations and finite-difference equations, via the infinite system of
ordinary differential equations that represent both of them in some special cases.
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In order to illustrate this point of view we mention the family of functions f˛.x/ D
tanh.˛x/ with the property f1.x/ � f1.x � 1/ ! 2˚H.x/, where ˚H.x/ is the
Heaviside scaling function defined 1 on Œ0; 1	 and 0 in the rest of the real axis. On
one hand f˛ is a solution of a nonlinear equation f

0

˛ � ˛2f 2
˛ � ˛2 D 0, and on

another hand, the limit f1.x/ fulfils the two-scale finite difference linear equation
f1.x/ D f1.2x/C f1.2x � 1/.

1.3 A List of Useful Derivatives in Finite Dimensional Spaces

Throughout the chapters of this book we use calculus on finite dimensional mani-
folds, differential forms, and integral invariants. Why do we need so many diverse
geometric objects for our applications? In the spirit of justifying the necessity of
these mathematical tools we illustrate with a simple example about derivatives. In
the following calculations we use several types of derivatives, among which we
enumerate:

1. The partial derivative (in local coordinates)
2. The differential of a map
3. The directional derivative
4. The exterior derivative of a form
5. The Lie derivative of a geometrical object
6. The covariant derivative
7. Pseudo-differential operators

In the following we try to remember about their different ways of action and
differences between them, so that the reader can figure out if they are useful or not.

1. The partial derivative
These derivatives transform a scalar function (a 0-form) into a vector field (the
dual of a 1-form), namely the gradient rf . We can build all sorts of symmetric
or skew-symmetric linear combinations of partial derivatives acting on vectors
or scalar fields (curl, divergence, Laplace operator, etc.), operators that form the
object of vectorial analysis.

2. The differential
The generalization of the partial derivative to calculus on manifolds is provided
by the differential of a map. It is a generalization of the gradient operator. In
local coordinates the differential of a map is the Jacobian matrix of that map. If
we map a manifold into itself F WM !M we have actually a transformation or
a flow of the points of M . These motions of points in M are integral curves of
some vector field tangent to M . Then, the differential of this map measures the
change of the position of the points along this transformation vector field.

3. The directional derivative
It measures how a certain local quantity Q changes along a given direction v,
i.e. DvQ of Q along v. In the case of real three-dimensional manifolds the
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directional derivative reduces to the scalar product between the gradient and a
given direction.

4. The exterior derivative
In R

3 we have a hierarchy, called de Rham complex

0$ 1$ 2 ' 1$ 3 ' 0:

A differentiable covariant tensor field, i.e. a k-form ! can be mapped into a
higher order form by repeated differentiation. However, the partial derivative will
never produce the cyclic type of de Rham hierarchy, like the fact that the “curl”
of a “gradient” is zero and the “divergence” of the “curl” is zero, and so on. The
most important result of the exterior derivative is contained in the Stokes theorem
and Poincaré lemma.

5. The Lie derivative
It is the operator which in effect tells us the infinitesimal change of the geometric
object ! when moved along integral curves of a given field v, from one point x
to a new point x0. The idea is to take the value of !.x0/ at the new point, to pull
it back towards the initial point x by using the dual F � (or co-differentiation),
and then compare the two values F �.!.x0// v !.x/. An example illustrates
the importance of the Lie derivative. Let us have a fluid described in cartesian
coordinates, and its volume element dx dy d z. How does the volume element
change along the flow? If the flow is described by the Lagrangian trajectories
of the fluid, i.e. curves of tangent field V , then the directional derivative of the
volume element along V is zero. However, the Lie derivative of the associated
volume form ˝vol D dx ^ dy ^ d z is � v which is not zero, and we have
v.˝vol / D r � v, where the exterior product operation ^ will be defined in
Sect. 4.2. Actually, it is a known fact that the volume is preserved during the
flow only if the field v is solenoidal.

6. The covariant derivative
When differentiating along a surface, the “inhabitants of the surface” can only
see that part of the derivative lying in the tangent plane. Given a vector field
v the covariant derivative rv is the projection of the directional derivative on
the tangent space. As opposed to the Lie derivative which needs a vector field
to exists, the covariant derivative can be defined only locally if we know the
direction at a point, because we take profit of the connection.

7. The covariant exterior derivative
Instead of the regular exterior derivative applied to a k-form with scalar
components, we have a Lie algebra (of contravariant vectors) valued k-form. In
this case the partial derivative with respect to the coordinates of the components
of the form is substituted with the covariant derivative of the contravariant vector
new components.

8. Pseudo-differential operators
One can define the inverse of a differential operator as a formal series of partial
derivatives with differential functions as coefficients
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1X
nD�1

Cn.f .x//Dx:

We can present these observations in the diagram below, where by F we denoted
a differential map between manifolds, and by ! a k-form or a vector field.

d!

Exterior
�����! D!

Absolutex??
dF.v/

action �����
on v

dF

Differential??y
x??

the same
@
@x

Partial
�����!

D�1
Pseudo

-differentialx??
??y

Dv.F /
action �����
on F

DvF

Directional
�����! v.!/

Lie
action�����!
on w

Œv;!	
??y

??y
rv!

Covariant
�����! v.w/ D

rvw � rwv??y
Covariant exterior

derivative

In addition to these types of derivatives working in finite dimensional spaces (and
sometimes called “horizontal” derivatives [242]) we scientists occasionally need the
so-called functional derivative, working as a generalization of the directional deriva-
tive except in infinite dimensional spaces. An example is given by the variational
derivative whose action on a functional measures the infinitesimal variations of this
functional when arbitrary small changes are applied to the dependent variables. If
the working space has some topological and algebraic structures, the functional
derivative can be defined more formally as either a Fréchet derivative (in Banach
spaces) or a Gâteaux derivative (in locally convex spaces). Even if in this book
we discuss deformations and motions of curves and surfaces we will not use in
the following the functional derivative formalism. This happens mainly because we
investigate these deformations from a more general aspect (the geometric one) than
the restricted Lagrangian point of view.



Chapter 2
Mathematical Prerequisites

Before entering in the field of nonlinear waves on closed contours and surfaces
we need to recall some useful mathematical concepts. The cnoidal waves, solitary
waves, and solitons are solutions of nonlinear equations that could be partial differ-
ential (PDE), integro-differential, finite difference-differential, or even functional
equations. They describe the evolution of the wave solutions in space and time.
These nonlinear equations are usually coupled with linear or nonlinear boundary
conditions (BC), initial conditions, or asymptotic conditions. The properties of
solutions are dependent on the topological and geometrical structure of the space
on which they are defined. In the following we assume for the reader to be familiar
with the general concept of group, Abelian group, quotient group, rank of a group,
and group homomorphism.

2.1 Elements of Topology

In this section we introduce some elements of topology related to the idea of
boundary [68, 160, 274, 291, 344]. Some working theorems are very important and
their generality raises sometimes the question: “how is this possible?” The following
few sections try to reveal a little bit of the insights of such properties. When we
investigate a space from the topological point of view, the basic questions are: how
large, how dense, how tight, or how fuzzy is such a space? In Table 2.1, we present
how topology addresses these questions. A topological space .X; �/ is a set X and
a family X;; 2 � � PX of open sets stable against finite intersection and arbitrary
reunions. The complement of any open set is closed. To any point x 2 X we can
associate a family V of neighborhoods of x, V.x/ 2 V defined by the property
V.x/ 2 V if 9A 2 �; x 2 A � V.x/. A family of open sets in .X; �/ is called base
if any open set of the topology is a reunion of sets in that family. A point x 2 X is
called adherent if 8V.x/; V .x/ \ A ¤ ;.

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 2,
© Springer-Verlag Berlin Heidelberg 2012
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Table 2.1 Properties of topological spaces

Question Topological property (or invariant)

How large? Compactness
How fuzzy? Separation
How many pieces? Connectedness
How complicated? Separability
How much measurable? Metric space

A closed set contains all its adherent points. An adherent point is the rudiment of
the concept of limit. We need the following definitions:

int A D VA D fx 2 Aj exists D 2 �; x 2 D � Ag; interior of A;

A D A[ fx 2 X jx adherent point to Ag; closure of A;

@A D A� int A; boundary of A:

The open property of a set is relative to the topology of the space. For example,
the real interval .a; b/ is open in the usual metric topology on R, but it is neither
open nor closed in the plane R2, while a loop is closed both in R

2 and R
3. A family

B˛ 2 B � � with the property that 8D 2 �;D D [B˛ is called a base. A set
A � X with the property A D X is called dense in X . A space with countable
base is called separable. A topological space which is also a vector space such that
the algebraic operations with vectors and scalars are continuous in the topology is
a linear topological space. The space C0Œ0; 1	 of continuous real functions defined
on Œ0; 1	, for example, is separable because any such function can be the limit of a
countable sequence of polynomials. Any harmonic complex function defined on the
surface of the unit sphere in R3 can be expressed as a series of spherical harmonics
Ylm, so this space is separable, too.

A function defined on X with values in Y is continuous if the inverse image of
any open set in Y is an open set in X . A bijective continuous function is called
homeomorphism. Topological spaces are classified as modulo homeomorphisms
and topological invariants (properties preserved by homeomorphisms). Topological
properties of a space X can be investigated by choosing a test topological space S
(known one) like Rn or C0.X/, and building homeomorphisms hom W S ! X .
When the image of a topological invariant in S is not anymore a topological
invariant in X we know that X moved from a certain homeomorphism class into
another [235]. The set of all homeomorphisms between two topological spacesX; Y
is denoted by Hom.X; Y /. The property of homeomorphism, like any topological
property, can be loosen up by using instead the property of local homeomorphism.
A function is a local homeomorphisms if for any point of its domain of definition
there is an open neighborhood of that point on which the restriction of this function
is a homeomorphism onto its image. Obviously, homeomorphism implies local
homeomorphism.
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Definition 1. A covering map from a topological space C to another topological
space X is a continuous surjective map cov W C ! X such that 8c 2 C and 8U.c/
an open neighborhood of c we have cov�1.U / D S

˛ V˛ , V˛
T
Vˇ D ; a disjoint

union of open sets in C , and cov 2 Hom.V˛; U /.

The “larger” space C is called the covering space, and the space X is called the
base space. Traditional examples of covering maps are projecting a helix to its base
circle, or by wrapping a plane around a cylinder.

2.1.1 Separation Axioms

The uniqueness property of solutions of a nonlinear partial differential system is
not only important in itself, but it also provides the freedom to build solutions
by any available methods. Uniqueness is mainly controlled by two mechanisms.
One is related to the boundary, initial, asymptotic, regularity, or normalization
conditions. The second is related to the internal constrains of the spaces for variables
and parameters. Uniqueness is very strongly related to the topological property of
separation. In topology there are several more refined definitions for the concept
of separation [68, 160, 291, 344]. The various forms of separations, i.e., separation
axioms introduce different types of topological spaces:

– P1. x ¤ y. This is the weakest separation criterium.
– P2. V.x/ ¤ V.y/, the two points x and y do not have the same families of

neighborhoods: they are topologically distinguishable.
– P3.A\B D ;, each set is disjoint from the other’s closure; the sets are separated.
– P4. 9V.x/\V.y/ D ;, points separated by disjoint neighborhoods. This form of

separation is the most used in analysis, since it makes the transition from points
to open sets.

– P5. 9V.x/ \ V.y/ D ;, points separated by disjoint closed neighborhoods.
– S. A \ B D ;, disjoint sets.
– PS. x … A, the element does not belong to the set.
– F . 9f 2 C0.X/; f .
1/ ¤ f .
2/. There is a continuous function on X which

takes distinct values in two disjoint quantities 
 that can be points and/or sets.
This last form of separation is very useful when working with spaces of functions,
e.g., in the Weierstrass approximation theorem.

According to the separation axioms there are four types of topological spaces:

1. Regular (R).
A topological space is Kolmogorov (or T0) if P1 ! P2, i.e., the space is
such that any two distinct points have different families of neighborhoods (are
topologically distinguishable). A topological space is symmetric (orR0) if P2 !
P3, i.e., the space is such that any two topologically indistinguishable points
have a disjoint neighborhood with respect to the other point (separated) (see
Fig. 2.1). A stronger separation axiom defines X as a preregular space (or R1)
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xA

V(x)V(A)

Normal separation

xY

V(x)V(y)

Hausdorff separation

xY

V(x)V(y)

Regular separation

Fig. 2.1 Forms of separation axioms: regular, Hausdorff, and normal. Loops represent neighbor-
hoods

if P2 ! P4, i.e., any two topologically indistinguishable points have disjoint
neighborhoods. This axiom can be enhanced even more if we ask that any point x
and disjoint closed set C , x … C are separated by a continuous function, namely
if PS ! P4, and the space is called regular. As application, for example, any
topological vector space is regular [160].

2. Hausdorff (H).
A topological space is Hausdorff separated (H or T2) if P1 ! P4, i.e., its distinct
points are separated by disjoint neighborhoods (see Fig. 2.1). The Hausdorff
separation is the most used one in analysis and operator theory. For example,
to build a Banach (commutative) algebra of functions defined on a base space X ,
we need this space to be Hausdorff (and compact). A very important application
of H spaces is related to their property that the intersection of all closed
neighborhoods of any point reduces to that point, 8x 2 X;\V.x/ D x. This
property is actually the basis of the uniqueness of the limit for the convergent
sequences in H spaces. Moreover, this property plays the essential role in
the proof of the Cauchy integral representation formula. There is interference
between separation and compactness properties: the image of a compact through
a continuous function f W E ! F is compact, only if F is Hausdorff. The
separation property is requested because we need to label the sets of a finite
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covering of E (produced by reciprocal images of an open covering of F ) by
elements in E . So, if F is not separated, the images of two distinct such
elements may belong to the same open set in F , which destroy the construction.
As an example, the topology induced by a family of seminorms is in general
Hausdorff.

Since the Hausdorff property is so essential to the uniqueness of solutions of
equations, we give the following example of a non-Hausdorff space. Let us con-
sider in R

2 the sets A1 D f.x; 0/jx 2 Rg and A2 D f.x; 1/jx 2 Rg, and let us
introduce an equivalence relation � between the points .x; y/ 2 A D A1 [ A2
defined by .x; y/ � .x0; y0/ if x D x0 and y D y0 or x D x0 < 0 and y ¤ y0. We
organize the quotient set X D A= � as a topological space with the canonical
interval topology on R. The points .0; 0/ and .0; 1/ in X are distinct but have no
disjoint neighborhoods.

3. Normal (N).
In a normal topological space, any two disjoint closed sets are separated by
neighborhoods, i.e., S ! P4, or 8A\B D ;, 9V.A/\V.B/ D ; (see Fig. 2.1).
For a Hausdorff space, this request becomes the Tietze–Uryson lemma. A
topological space with the topology induced by a metric is normal, and a compact
space is also normal [291]. Normal spaces are important in problems related to
the partition of unity. Partitions are important in the theory of prolongation of
continuous functions.

4. Completely separated (C).
Here the separation criterium is the function separation. There are already
several types of topological spaces completely separated as follows: completely
Hausdorff spaces (CH or completely T2) where P1 ! F , completely regular
spaces (CR) where P5 ! F , and completely normal (CN) where P3 ! P4. We
also have perfectly normal spaces (PN) if S ! F , etc.

In addition to these types of topological spaces, there are other spaces where
separation is defined by combining different forms of separation. In Figs. 2.2 and
2.3, we represent some of the interconnections between all these spaces.

2.1.2 Compactness

The compactness property of a topological space (or set) tells if this space is
“bounded” in some sense, without having a metric or a distance available. The
compactness property is actually more powerful than boundedness, since the latter
is not preserved by homeomorphisms. A topological space is a compact space if
every open covering has a finite subcovering. In metric spaces (see Sect. 2.1.6)
compact is equivalent with closed and bounded. Actually, it is easier to understand
the concept of noncompact. The real axis is noncompact because if we cover it with
the intervals .n; nC 1/ and ..2nC 1/=2; .2nC 3/=2/, n integer, and we eliminate
any of them the axis has at least one point uncovered. A compact Hausdorff space
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Fig. 2.2 Relationships between separation axioms presented in a Venn diagram. Part 1: the normal
spaces are not included here. Circles represent classes of spaces fulfilling separation axioms,
together with their inclusion and intersection properties. Each space is identified by an abbreviation
(HDHausdorff) and the text shows the corresponding axiom of separation. The shaded area
represents the regular Hausdorff (T3) space. The two inside ovals represent topological spaces
where the separation axioms involve functional separation (definition F)

is usually called a compact, and a compact metric space is called compactum.
An example of a compactum is any finite discrete metric space. A continuum
is a connected compactum. The image of a compact set through a continuous
function into a Hausdorff space is a compact set. As an immediate consequence,
a continuous function defined on a compact space is bounded and has a maximum
and a minimum.

Although compactness is a global property of a space, it can also be obtained
starting from local level. We define a weaker request for compactness, i.e., a
local compact space as a Hausdorff topological space with the property that any
element has at least one compact neighborhood. A local compact space X can
always be submerged into a larger topological compact space QX such that X @ QX
and QXnX D ! (Alexandroff’s compactification). The extra element ! is called
the point at infinity. In the case of R2 ' C, C [ ! D QC is called the extended
complex plane. A local compact linear topological space has finite dimension. There
are also refinements of the compactness property, like precompact, paracompact,
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Fig. 2.3 Relationships between separation axioms in a Venn diagram, Part 2: the normal spaces are
included. This figure is a zoom in of Fig. 2.2, and the space CRH has the same signification. The
thicker boundaries represent topological spaces where the separation axioms involve functional
separation (definition F)

relatively compact, countable compact, etc., but we do not need these concepts
in our book. Basically, they occur whenever we relax one of the three properties
defining compactness [68, 160, 291] (see Fig. 2.4).

An open map is a function between two topological spaces which maps open sets
to open sets. Likewise, a closed map is a function which maps closed sets to closed
sets. The open or closed maps are not necessarily continuous. A continuous function
between topological spaces is called proper if inverse images of compact subsets are
compact. An embedding between two topological spaces is a homeomorphism onto
its image.

2.1.3 Weierstrass–Stone Theorem

How is it possible for the Taylor series to exist? That is, how is it possible to know
all the values of a continuous function from just knowing a countable sequence of
number, the coefficients of the Taylor series. The answer is related to the separation
axioms and it is the Weierstrass–Stone theorem. This theorem is also the answer for
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Fig. 2.4 Relation between different categories of compactness and their implications

the questions in Sect. 2.2, namely how is possible to find the values of a function in
an n-dimensional domain, knowing only the values of the function in the (n� 1)-
dimensional boundary? Weierstrass proved that a real function defined on Œ0; 1	
is the uniform limit of a series of polynomials. Later on Stone explained that the
essential property of the polynomials that allow such a perfect approximation is that
they form an algebra.

Theorem 1 (Weierstrass–Stone). A subalgebra A of the Banach algebra of
C0.X/ continuous real functions defined on a Hausdorff compact space X , is
dense in C0.X/ if and only if:

1. 1 2 A.
2. 8x ¤ y 2 X , 9f 2 A such that f .x/ ¤ f .y/.
The first condition actually requires 8x 2 X , 9f 2 A such that f .x/ ¤ 0.
We meet this condition if we try to generate a Hausdorff linear topological space.
The algebraic structure of the functions A is required to have included in A the
elements Sup.f; g/ and Inf .f; g/ for 8f; g 2 A. The second condition requires that
the algebra A “separates” points in X , in the sense of the F form of separation, like
in the case for example whenX is a completely regular Hausdorff (CRF) space. For
details about the proof and Banach algebras one can consult, for example, [160] and
references cited therein at page 516. Basically the idea is that any real continuous
function defined on a Hausdorff compact X can be infinitely well approximated
with other functions selected from a closed subalgebra of C0.X/.



2.1 Elements of Topology 17

The Weierstrass–Stone theorem tells us that any vector-valued continuous
function, no matter how complicated it is, can be infinitely well approximated with
simpler functions g˛ (where ˛ is a label), as long as these simpler functions form
a Banach algebra A, i.e., A 3 g˛ ! f . Moreover, if A is a separable space (to
be defined later), then we have a countable basis of continuous functions, ˛ ' n,
and consequently we can express f , for all x 2 X , by a (maximum) countable
set of coefficients associated with f approximating series. Since A is an abstract
Banach algebra which F separates X , there is freedom to choose its elements,
i.e., such a richness of examples: Taylor polynomials, orthogonal polynomials,
trigonometric series, etc. The Weierstrass–Stone theorem can be equally applied
to complex functions, with an additional request: 8g 2 A; g 2 A, where g is the
complex conjugation.

We have two important corollaries. The space of polynomials defined on a
compact C 2 R

n with coefficients in a seminormed vector space V is dense in the
space of continuous bounded functions defined on C with values in V. The second
corollary of the Weierstrass–Stone theorem allows us to approximate any complex
vector-valued continuous function defined on the unit complex circle S1 � R

2

with trigonometric polynomials [291, Chap. XXII]. This corollary has important
consequences for differential systems on closed curves and surfaces. Namely

Lemma 1. Trigonometric polynomials with coefficients in V are a dense set in
ff W R! Vjf continuous; periodicg.

2.1.4 Connectedness, Connectivity, and Homotopy

A topological space X is connected if it is not the disjoint reunion of two or more
nonempty open sets. Connected spaces have a very interesting property: the only
sets with empty boundary are the total space and the empty set. We can introduce a
stronger type of connectedness through the concept of arc or path. Let x; y 2 X be
two arbitrary points in a topological space. We have

Definition 2. A path from x to y is a continuous map � W Œ0; 1	 ! X such that
� .x/ D 0; � .y/ D 1. An arc from x to y is a path which is also a homeomorphisms
onto � Œ0; 1	.

So, an arc is a path which has also a continuous inverse.

Definition 3. The topological space X is pathwise-connected (or arcwise-
connected) if any two of its points can be joined by a path (by an arc).

Some authors do not make a difference between path and arc in this context, and
many references use the term path-connected instead of pathwise-connected, etc.
Every path-connected space is connected, but not conversely. A traditional example
is the graphics of the real function sin.1=x/ which is in one-piece in R

2 but there
is no path between the points .�1=�; 0/ and .1=�; 0/ of its graphics. Any path-
connected Hausdorff space is also arc connected, so again we want to emphasize
the importance of axioms of separation. Connectedness is a topological invariant.
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Finally, there is third type of criterion for connectedness. If any loop (closed
smooth path) in the space is contractible to a point (can be smoothly deformed to
a point) the space is called simply connected or 1-connected. Such a space is in
one piece (connected) and has no “holes.” The space is n-multiply connected if it
is (n � 1) multiply connected and if every map from the n-sphere into it extends
continuously over the (nC 1)-disk. By sphere we mean here just the boundary of a
sphere, for example in an n-dimensional normed space the (n � 1)-sphere is the set
fx= jjxjj D Rg. The (n�1)-dimensional sphere is the boundary of an n-dimensional
disk. The n-connectedness property is a generalization of pathwise connectedness,
from paths to higher dimension surfaces.

Let X be a space and a function f W X ! X . An element xf 2 X is a fixed
point for the application f if f .x/ D x. Also, a set A � X is an invariant set
if f .A/ � A. Any continuous function defined on a real interval Œa; b	 has at
least one fixed point. The fixed point theorems [52] are successfully applied in
field theory, biological problems and logistic equations, dynamics of population
[327], and in mathematical economics. One of the most important applications is
about iterated maps [93, 94]. A theorem due to Tikhonov [160, 312], enounces that
compact and convex sets in a Hausdorff local convex space have the fixed point
property.

If all the closed smooth curves (loops) in X can be continuously deformed one
into another, we call this property homotopy. More rigorous

Definition 4. Let ˚ W Œ0; 1	 ! M , and � W Œ0; 1	 ! M be piecewise smooth
closed paths on a manifold M . A homotopy from ˚ to � is a continuous function
� W Œ0; 1	2 ! M such that 8t 2 Œ0; 1	; �.0; t/ D ˚.t/, �.1; t/ D �.t/, and 8s 2
Œ0; 1	, the path �.s; t/ parameterized by t is closed and piecewise smooth.

All loops in X belong to the same equivalence class with respect to homotopy
equivalence relation, so the group generated by the homotopy classes of X via the
composition of curves is trivial identity. We call this group, homotopy group of X ,
and we denote it with �1.X/. In algebraic topology one can prove that the groups
of homotopy are topological invariants [235, 242].

An interesting result combining some of the concepts we introduced so far is this:
any local homeomorphism from a compact space to a connected space is a covering,
see Definition 1. The proof of this theorem is based on the fact that the local
homeomorphism still preserves the property of being open, and the compactness
of C insures that we can always choose a finite sub-cover from any open cover of it.
Being finite, we can always choose its neighborhoods small enough to be pairwise
disjoint, so all the conditions of being a covering map can be accomplished.

2.1.5 Separability and Basis

A metric space is separable if it has a countable dense subset Y , Y � X; NY D X ,
where NY is the closure of Y , i.e., Y and all its adherent points (the boundaries).
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Usually, the set Y is called basis, and if X is separable, members of Y can
approximate any x 2 X as closely as we like. One of the Weierstrass theorems
shows that the set of polynomials is a dense set in C0.Œ0; 1	/, so continuous real
functions on a compact space can be approximated with polynomials to the best
extent.

2.1.6 Metric and Normed Spaces

Metric spaces deal with completeness property. A metric topological space .M; �; d/
is a topological space .M; �/ endowed with a positive symmetric function d W
M � M ! R

C called distance, fulfilling the triangle inequality 8x; y; z 2
M;d.x; z/ 	 d.x; y/ C d.y; z/, and d.x; y/ D 0 $ x D y. In a metric space M
we can define an open ball (or disk) of center x0 2 M and radius R 2 RC
as B.x0IR/ D fxjd.x; x0/ < Rg. Any metric space is Hausdorff, by inheriting
from the common real topology. In a metric space we can define bounded sets,
if they can be enclosed in a certain ball. A compact metric space is separable.
A linear space where we defined a nonnegative real function (a norm) jj �jj which
is positively homogenous, subadditive and is zero only in the origin of the linear
space is a normed space. A normed space is a metric space with the relation
d.x; y/ D jjx � yjj, and consequently has all the properties of metric spaces.
In a normed space the topology is normed induced and we have convergency in
norm (the strong convergency). Any metric space M can be completed to M by
adding to M the limits of all its Cauchy sequences. In a complete metric space all
Cauchy sequences are convergent to a certain, unique limit. In a compact metric
space any sequence contains a convergent subsequence. A complete normed linear
space (where the metric is induced by a norm defined in the linear space) is called a
Banach space.

A complex bilinear continuous symmetric form defined on a linear vector space
< �; � >W V ! C is called a scalar or inner product. A space together with a scalar
product, .X;< �; � >/ is Euclidean. For example on the linear topological space of
integrable (in what ever sense integrability is needed) functions defined on a space
X we define the scalar product

< f; g >D
Z
X

f .x/g�.x/dx;

with g� complex conjugated. The scalar product induces a norm, and obviously a
distance jjf jj D p

< f; f >; d.f; g/ D p
< f � g; f � g >. A Hilbert space is

a complete Euclidean space. The scalar product can measure the property of being
orthogonal which generalizes the linear independence property in a geometric way.
A maximal linear independent set of elements in X is a basis in X , and if X is
Euclidean and the basis elements are mutually orthogonal and of unit norm, it is
called orthonormal basis. Special functions, like orthogonal polynomials, spherical



20 2 Mathematical Prerequisites

harmonics, etc. (Sect. 18.3), form orthonormal bases in spaces where the integral of
the square magnitude of the functions are finite, L2.X/.

The key theorem about representation of functions is the following:

Theorem 2. Every separable Hilbert space Hs has a countable orthonormal basis
BN � Hs , i.e., NBN D Hs .

The following chapters, and all representation formulas theory, are entirely based
on this result. It means that on a Hilbert space, any element can be approximated as
good as we want with elements from this countable (discrete) basis. As strange
as it may look, there are nonseparable Hilbert spaces in physics. For example
in canonical quantum gravity, the space of functions defined on connections, A,
modulo gauge transformationsG, L2.A=G/, is nonseparable [179].

2.2 Elements of Homology

The meaning of homology will become more transparent when we will use it in the
Poincaré Lemma, and in compact boundary representation formulas (Sect. 3.1.4).
For reference on the topics we suggest the bibliography [112, 235]. An oriented
p-simplex, p > 0 integer, in R

n is generated by an ordered system of pC 1 vectors,
and it is the p-dimensional manifold

�p D Œv0; : : : ; vp	 D
(

v 2 R
n j

pX
iD0

tivi ;
pX
iD0

ti D 1
)
:

Basically, the generalization of a segment (1-simplex), a triangle (2-simplex), and
a tetrahedron (3-simplex) is to higher dimensions. A p-simplex is topologically
homeomorphic with a p-ball. The subset t i D 0 is an (p � 1)-plane, or face,
and the end points of the vectors are the vertices. A simpliceal complex is a set
K of simplexes constructed such that all their faces also belong to K , and any
two simplexes in K are either disjoint, or their intersection is a common face of
each of them. A topological space homeomorphic to a simpliceal complex is called
triangulated. In the following we work only on these triangulated spaces. Based
on the triangulation K of a given manifold we can construct the Abelian groups
Cp.K/, p D 0; : : : ; n freely generated by the oriented p-simplexes of K , with
integer coefficients, called the group of chains (not to be confounded to sets of
continuity of order k !). We define the linear boundary operators as

@p W Cp.K/! Cp�1.K/; (2.1)

with the action @p�p D Pp
jD0.�1/j Œv0; : : : ; vj�1; vjC1 : : : ; vp	 creating thus a

(p � 1)-simplex. It is easy to verify that the boundary operator is a group homo-
morphism, @0cp D 0, and

@p�1@p D 0; (2.2)
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which is the central property of homology, and somehow the main philosophy of the
compact surfaces, contours, boundaries in general:

The boundary of a boundary is the empty set.
The immediate consequence in cohomology is that
the external derivative of order two is always zero.

Like we mention in Chap. 1, again a pure algebraic property like skew-symmetry
of @p provides a deep geometrical result. The kernel of the boundary operator,
Zp.K/ D Kerr.@p/, is a subgroup of the group of chains, namely the group of
boundary-less chains which are called p-cycles. Also the image of the boundary
operator is called the group of the p-boundaries Bp.K/ D @pC1.CpC1.K//. So,
basically we have for each p the following succession of (normal) subgroups:
Bp � Zp � Cp. It is easy to notice that we can construct the quotient (factor)
groupsCp.K/=Zp.K/, Cp.K/=Bp.K/ andZp.K/=Bp.K/, and we have the group
homomorphismZp � Cp.K/=Bp�1.K/. The quotient group

Hp.K/ D Zp.K/=Bp.K/; (2.3)

namely the homology group of order p ofK . This factorization of p-cycles modulo
p-boundaries over K introduces an equivalence relation in the group of cycles. In
other words, two p-cycles ofK are homologous if their difference is a p-boundary.
Being Abelian freely generated, all the homology groups are isomorphic with some
Z
n group. The rank of Hp group counts the number of p-dimensional holes of K .

The rank of a group is smallest cardinality of its generating set. For example,
H0.Sn/ � Hn.Sn/ � Z and Hp.Sn/ � f0g for p ¤ 0; n. A T2 � R

3 torus
has the homology described by H0.T1/ � Z, H2.T1/ � Z

2, H3.T1/ � Z, and
Hp.T1/ � f0g for the rest of p.

We define the Euler characteristic  of K the expression

.K/ D
nX

pD0
.�1/p rankHP .K/; (2.4)

which is one of the essential topological invariants for the Gauss–Bonnet formula
(see Theorem 20) applied to closed Riemannian manifolds and for the Euler–
Poincaré formula. For example .S1/ D 0; .S2/ D 2; .T1/ D 0; .T2/ D �2,
etc. The Euler characteristic defines the genus g of a closed orientable surface by
g D .2� /=2, which can be loosely understood as the number of “handles” of the
surface.

2.3 Group Action

LetX be a topological space andG a topological group (that is a group which is also
topological space and the two structures are reciprocal compatible). We say that G
acts on X (from the left) if there is a continuous map m W G �X ! X such that
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1. m.g;m.h; x// D m.gh; x/ for g; h 2 G; x 2 X
2. m.e; x/ D x, for x 2 X
The entity .X;G;m/ is called a G-space. For an efficient introduction in the theory
of group actions from the differential geometry point of view we recommend the
text [81], while for more technical details and applications we recommend [242].
We have the following definitions. The set Gx D fg 2 Gjm.g; x/ D xg is called
isotropy group of x (or stabilizer subgroup of x). The set Ox D fm.g; x/jg 2 Gg is
called the orbit of x. The set of all orbits is denotedX=G and it is called orbit space
and it is a topological space through the quotient induced topology with respect to
the canonic projection x ! Ox.

• The action of G on X is free if the isotropy group is trivial for all x.
• The action of G on X is proper if the map � W G � X ! X � X given by
.g; x/! .x;m.g; x// is a proper function.

• The action of G on X is transitive if it possesses only a single group orbit, i.e. if
all elements are equivalent. The G-space .X;G;m/ is a homogeneous space if G
acts in a transitive way.

The principal homogeneous space (or torsor) of G is a homogeneous space X such
that the isotropy group of any point is trivial. Equivalently, a principal homogeneous
space for a groupG is a topological spaceX on whichG acts freely and transitively,
so that for any x; y 2 X there exists a unique g 2 G such that m.g; x/ D y.
If X is a G-space with proper action the quotient space X=G is Hausdorff. All
these properties and definitions can be extended if the space X is a differentiable
manifold, and G is a Lie group acting on X , case in which the structure .X;G;m/
is called a G-manifold. Moreover, if the action of G is proper and free X=G has
a differentiable manifold structure and the canonical projection X ! X=G is a
submersion.



Chapter 3
The Importance of the Boundary

How is it possible to describe any analytic or harmonic function on a compact set
in terms of much simpler “construction blocks” like polynomials? Or, how is it
possible to know the values of a function inside a compact domain, by knowing
only its values on the boundary? Well, these simplifications are possible because the
“bricks” are actually organized in complicated and versatile structures. For example
the B� algebras. And in addition, the compact domains are certainly among the
simples ones, being always reducible to finite reunions. Actually, a complicated
structure like a B� algebra, defined by 24 axioms (out of which 13 axioms on
commutative algebras, five axioms on norm, one for completeness, and five more
specific axioms) can be realized by continuous functions defined on a compact
set. It is not the only example. The space l1 of complex sequences with norm
given by the sum of the modules of the terms is isomorphic with the algebra of
functions whose Fourier series is absolutely convergent. Also, a compact Hausdorff
space, with topology induced by distance, is homeomorphic with a compact subset
of Œ0; 1	N. Any two separable Hilbert spaces are isomorphic, and so on. These
similarities bring a unifying point of view: objects of apparently distinct nature,
like Weierstrass–Stone theorem on function approximation, Wiener theorem on
absolutely convergent Fourier series, spectral expansion of self-adjoint operators,
the theorems of Tikhonov, Stone– LCech, or the fixed-point theorem of Brouwer,
the Cauchy formula on complex functions, the Green representation theorem, the
Poincaré Lemma, etc. actually provide the same fundamental truth: simplification
by approximation is possible on compacts.

3.1 The Power of Compact Boundaries:
Representation Formulas

The most fascinating analytical properties of compact boundaries embedded in
differential manifolds are the representation formulas. We present in the following
a review on the most important representation formulas for different dimensions of
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24 3 The Importance of the Boundary

the boundary. The general problem is the following: we have a domainD 2 R
n, and

its boundary @D, in our case a compact surface. The representation formulas allow
calculation of the values of a smooth and harmonic function (usually is enough to
be of class C2.D/, and the exact definition for harmonic will be specified for each
dimension in particular) defined on ND (closure of D) in all points of the interior
of D,

R
D D D @D, if we only know the values of the function, and of its partial

derivatives, on the boundary @D. For n D 1 this representation is called Taylor
series, for n D 2 is called Cauchy integral formula, for n D 3 it is called Green
identity, etc., and in general all these are the expression of the Poincaré Lemma and
the generalized Stokes theorem.

3.1.1 Representation Formula for n D 1: Taylor Series

If n > 0 is an integer and f W Œa; x	 � R ! R is Cn.Œa; b	/ and CnC1.a; b/
function, then

ˇ̌
ˇ̌f .x/ �

nX
kD0

.x � a/k
kŠ

f .k/.a/

ˇ̌
ˇ̌! 0; if x ! a: (3.1)

Let us retain the vital importance of the compact character of the Œa; x	 interval. In
other words, we know (with good enough precision) all the values of the function
on a continuous interval, if we know just a discrete set of values, namely the
derivatives of the function in one point. This theorem is a magic conversion of the
continuous into countable and of the global into local. The truth beyond the power
of representation of the Taylor theorem consists in the nature of the topology of both
the real axis, and the Hilbert space of continuous functions. These Hilbert spaces are
separable so they admit countable orthonormal bases by definition. From here we
can represent any continuum through an at most countable set of numbers, which is
nothing but the set of the coefficients of the Taylor series. So, in the real case, the
representation formula is a consequence of the discrete/continuous play in the real
topology. We also mention the important fact that a continuous real function on a
compact real interval is bounded and attains its bounds.

3.1.2 Representation Formula for n D 2: Cauchy Formula

Let D � C and let f W D ! C be analytic. Let z0; r such that D1.z0; r/ 

fzjjz� z0j < rg � D. For all z 2 D1.z0; r/ we have

f .z/ D 1

2�i

Z
@D1.z0;r/

f .z0/
z0 � z

d z0: (3.2)
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In other words, if the function is smooth enough on D (i.e., analytic) the values of
the function inside any domain are known if we know the values of the function on
its boundary [118, 312]. A complex function is analytic if it is differentiable and its
derivative is continuous. Actually, this further guaranties the existence of all higher-
order derivatives. A complex function f .z/ D g.z/ C ih.z/, with g; h W D ! R

is differentiable if its components fulfill the Cauchy–Riemann conditions gx D
hy; gy D �hx . The Cauchy–Riemann conditions actually can be written in vector
form as rg � rh D 0, in other words requesting the families of curves g D const.,
h D const., to be orthogonal on C. In other words, if V D .g; h; 0/ is a flow, the
Cauchy–Riemann conditions are equivalent to r � V D 0, i.e., an irrotational flow.
The Cauchy–Riemann conditions are also equivalent to the existence of the complex
derivative df=d z, or to the cancelation of the derivative with respect to the complex
conjugation of the argument, i.e., @f=@z� D 0. This last condition is equivalent to
the request for harmonicity of the components,4g D 4h D 0.

The power of the Cauchy representation formula is based on the special
properties of analytic functions. If a function f .z/ is analytic in a domain D, then
the contour integrals of f on any two homotopic loops are equal. We recall that
two curves are homotopic (see Definition 4) if they can be deformed smoothly one
into another. But what is beyond the Cauchy theorem? Actually the reason for the
existence of the powerful Cauchy integral formula is double: on one hand the special
topology of the plane, and on the other the continuity of the function. The traditional
proof begins with a very simple structure, a triangle in the complex plane. One can
prove that an analytic function on a triangle has zero integral along its boundary.
This is because one can split any triangle into four smaller triangles, and so on, like
in a fractal image. The topological limit of this construction exists, because all these
triangles are closed sets in the plane topology. So, by a repeated process of division,
we can reduce the perimeter of all these triangles to zero, and then the function,
being continuous, will be forced to cancel over this boundaries.

3.1.3 Representation Formula for n D 3: Green Formula

Let us have a domain D � R
3 with a boundary @D with smooth normal, and two

functions ˚;� 2 C2.D/. The following integral relation exists (Green’s second
identity)

•
D

.˚4� � �4˚/d3x D
“

@D

�
˚
@�

@N
� � @˚

@N

�
dA; (3.3)

where 4 is the three-dimensional Laplacian operator, and @=@n is the directional
derivative along the normal to @D, i.e., N � r. Then, if the function ˚ is harmonic
on the interior of D,4˚ D 0 then we have the Green representation formula
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˚.r/ D 1

4�

“
@D

�
1

jr � r 0j
@˚

@N 0
�˚ @

@N 0
1

jr � r 0j
�
dA0 (3.4)

for 8r 2 D. More generally, if

G.r; r 0/ D 1

jr � r 0j C h.r; r
0/; (3.5)

is the Green function associated with D and h is a harmonic function 40h D 0

when r ; r 0 2 D, then

˚.r/ D 1

4�

“
@D

�
G.r ; r 0/

@˚

@N 0
�˚ @G

@N 0

�
dA0: (3.6)

If the Green function is chosen such that GD.r ; r 0/jr02@D D 0 we have a
Dirichlet boundary problem, and if the Green function is chosen such that
.@GN =@N

0/.r; r 0/jr 02@D D �4�=S , we have a Neumann boundary problem (where
S is the area of @D). If @D is compact, then both the Dirichlet and Neumann
problems provide unique and stable solution for elliptic partial differential equations
on D, through the representation formula (3.6). These two conditions applied
independently are too much constrain for hyperbolic or parabolic partial differential
equations [64, 317]. The Green representation formula applies everywhere we
have harmonic, or almost harmonic functions. In potential theory, and hence in
potential flow, in electrostatics and magnetostatics, theory of minimal surfaces and
application in surface tension driven systems, etc.

3.1.4 Representation Formula in General: Stokes Theorem

A more accurate mathematical approach on the Poincaré Lemma, based on homol-
ogy (Sect. 2.2) and differential forms (Sect. 4.6), is done in Sect. 4.8. The gener-
alized Stokes theorem is the coronation of all the representation formulas in the
geometry of compact boundaries.

Let M be an m-dimensional manifold, and B � M , a compact, oriented
b-dimensional submanifold (see Sect. 6.4 for details on definitions), with boundary
˙ D @B . Let !p�1 be a continuous differentiable .p � 1/-form on M (Sect. 4.6).
That is a .p � 1/-covariant smooth tensor field !i1;:::;ip�1 .x/; x 2 M . Then we have

Z
B

d!p�1 D
Z
@B

!p�1; (3.7)

where d is the exterior derivative acting on forms (Definition 23). We do not
provide here the algebraic details (it can be found in Sect. 4.6) mainly because we
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are interested here to underline rather the geometric interpretation of the Stokes
theorem, as a representation. In that, let us remember that we can triangulate B and
@B (Sect. 2.2), and obtain the sequence of chain groups Cp.B/, p D 0; : : : ; m, and
we can have the boundary operator @p mapping one chain into another, like in the
upper sequence in (3.8).

: : :
@p�1 ����� Cp�1

@p ����� Cp
@pC1 ����� CpC1

@pC2 ����� : : :??y
??y

??y
: : :

dp�1�����! ˝p�1 dp�����! ˝p
dpC1�����! ˝pC1 dpC2�����! : : :

(3.8)

Now, for any given p-chain, and for any given differentiable (p�1)-form !p�1 2
˝p�1 from the cotangent bundle associated to M we can calculate the integral

Z
@pCp

!p�1; (3.9)

by decomposing the (p�1)-chain resulting from @pCp into its constituent
p-simplexes, and integrate!p�1, Lebesgue or Riemann, along each (p�1)-simplex
of @pCp. This integration is a scalar product, a bilinear functional, defined on the
(p � 1)-chain space times the space of (p � 1)-forms. Consequently, this scalar
product maps the sequence of boundary operators acting toward the left in the
upper sequence in (3.8), into a reverse sequence of operators, acting toward the
right, in the sequence of corresponding spaces of form (cotangent bundles) ˝p.
See the bottom sequence in (3.8). Consequently we are in the possession of a
splendid geometrical–algebraic tool, called the De Rham complex [112, 235], in
which spaces of simplexes dually correspond to spaces of differential forms, and
boundary operators correspond dually to exterior derivative operators, and this
duality is actually represented by the generalized Stokes theorem. Indeed, a dual
pair .@pCp; !p�1/ generates the integral in (3.9). If we move one step to the right in
the De Rham complex (3.8), the differential form !p�1 is mapped into its derivative
d!p�1 2 ˝p, and the boundary @pCp is mapped into its interior Cp . Since the
boundary operator and the exterior derivative are dual, the geometrical fact that
the boundary of the boundary is the null set has its dual into the closure property of
the exterior derivative (4.15)

@2 D f;g $ d2 D 0:
All representation formulas presented earlier, or in other sections of the book, like
Sect. 10.6, are based on this generalized Stokes equation. More details and examples
on other special types of representations, especially those used in fluid dynamics,
are provided in Sect. 10.6.
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3.2 Comments and Examples

Geometrically, the concept of compact means closed and bounded, while alge-
braically compact means finite. Another example of duality is provided by the
boundary of a boundary which is the empty space. A geometrical expression
of this theorem is the Gauss–Bonnet theorem: the total curvature is constant no
matter of smooth deformation of the surface. This geometric theorem has algebraic
consequences in integrability and differential forms, i.e., in the “PoincarJe Lemma.”
Finally, from the physical point of view, this boundary property relates to the
existence of vortices or fields without sources on compact manifolds.

An interesting property of compact surfaces is the relation between the area of
the surface and the number of dimensions of the embedding space. The area and
volume of a sphere of radius R, Sn D fx 2 E

n j X2
1 C � � � C x2n 	 R2g, in an

n-dimensional Euclidean space, like R
n, are given by

AŒSn	 D 2�
n
2

�

�
n
2

�Rn�1; V ŒSn	 D �
n
2

�

�
n
2
C 1

�Rn: (3.10)

In Fig. 3.1, we plot the area and the volume of the unit sphere (R D 1) function
of the number of dimensions n of the space. It is interesting to remark that a unit
sphere has a maximum area in a space with seven dimensions, and a maximum
volume in a space with five dimensions. It is also interesting to mention that the
ratio between the area and the volume of the unit sphere, AŒSn	=V ŒSn	 D n, is
just the dimensions of the space. In other words, when we increase the dimension
of the space, more and more points of the interior of the sphere (and in general
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Fig. 3.1 Area (white circles) and volume (black circles) of the unit sphere, plotted in arbitrary
units vs. the number of dimensions of the space
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of any closed surface homeomorphic with a sphere) are concentrated toward the
sphere surface. This is (see for example [207]) the most basic proof of existence of
equilibrium temperature. In a statistic system of many free particles, where the phase
space has a dimension of n D 2 � 3 � 1026 or larger, almost all states of bounded
energy are concentrated at the surface of a sphere of radius equal to the energy. So,
almost all particles tend to have the same equilibrium temperature. On the contrary,
in a space of any dimension, the ratio between the area and the volume decreases
with increasing of radius. So, the larger the container, the less points are next to
the surface. This fact may be an explanation of the fact that biochemical systems
that require long time of slow transformations toward a final state, perform better in
larger containers.

If we define the parameter area over volume ratio of a certain closed shape in an
Euclidean space

AOV D Area

Volume
.n; �; &/ (3.11)

where n is the number of dimensions of the space, � is a similarity parameter that
measures “how large” is the object, and & describes the shape. For n D 3 we
have AOV.3; �; &/ D C.&/=� , and for example C.sphere/ D 3, C.cube/ D 6,
C.cylinder/ D 2.1C R

h
/, and so on. For the sphere we have

AOV.n;R; Sn/ D
2�

�
n
2
C 1

�

R�

�
n
2

� D nC 2
R

; (3.12)

so the AOV for the unit sphere is proportional to the number of dimensions of
the space, and inversely proportional to the radius. That means that the larger the
dimension of the space, the larger is the set of points in the area compared to those
in the bulk.

A last interesting example is about unbounded smooth objects. Let us consider
the function f W Œ1;1/ ! R, f .x/ D x�˛ , ˛ 2 .0:5; 1/. This function has an
intriguing property. The surface of revolution produced by the rotation of the graphic
of this function around Ox, between x D 1 and1, has infinite area, but its inside
has finite volume. The infinite “funnel” obtained like that offer a paradox to the
person who would like to paint it: one needs a fine amount of paint to fill it up, but
it requests an infinite amount of paint to paint its surface.



Chapter 4
Vector Fields, Differential Forms,
and Derivatives

The following results and some of the proofs, can be found in many excellent
text books of differential geometry. For example [46] is a very readable and clear
textbook with content based on theorems and proofs for geometrical objects in R

2;3.
Shifrin is also an excellent compact and short text rich in applications. For more
abstract treatment (I was always puzzled by a book on geometry without any figures)
especially on higher than three dimension differentiable manifolds we recommend
the classic [158]. At the same level of abstraction, but more focused on specific
topics we recommend [306] especially for applications on fiber bundles, [74] for
applications concerning vector fields, and [119] for applications towards Lie groups
and transformations. In between these levels of approach we also recommend for
their wide range of action [19] for a very friendly general treatment of surfaces, or
[162] as a very pictorial book on geometry with many applications.

The reason of using calculus on manifolds and differential geometry tools
in physical applications is to solve physical problems as specific as possible in
a mathematical frame as general as possible. By enhancing the mathematical
generality of the approach one can increase the range for potential applications.
In general the first attack on a physical problem is how to choose the appropriate
working space. The next step is to choose an appropriate frame in that space.
Choosing the space is basically a matter of topology, while choosing the correct
frame is a matter of differential calculus on manifolds and differential geometry.

Topology, as theoretical physicist’s primary tool, is mainly interested in objects
whose properties are invariant under changes of the space. Topological objects
like sets, neighborhoods, or curves are being classified according to their topo-
logical properties: closeness, compactness, connectivity, separability, etc., while
topological spaces are classified by homeomorphisms. The topological properties
which do not change under homeomorphisms are topological invariants. More
specifically, if X ;Y are topological spaces, and W X ! Y is any homeomorphism
(meaning f is bijective and bicontinuous function) those topologically invariant
objects defined on X have equivalent counterparts on Y through f . Such theories
based on classes of equivalence modulo homeomorphisms are useful not only to
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investigate new objects in a given space (i.e., to check whether the new object
belongs to such an invariant topological structure against homeomorphisms), but
also to study new topological spaces. Let us exemplify. We start from a pair of
homeomorphic topological spaces .X ;Y/ and some set of objects ˘ that form a
topological invariant, i.e., ˘.X / D ˘.Y/ or h.˘.X // D ˘.Y/; h 2 hom.X ;Y/.
We choose a certain element ˛ 2 ˘.X /, and we begin to change the space Y ! Y 0,
while mapping ˛ ! f .˛/ 2 Y 0. If for a certain new space Y 0 the element f .˛/ is
not anymore in the ˘ class, then Y 0 is not homeomorphic anymore with X . For
example, let us choose X D R

3 � f0g (the punctured space) and let ˘ be the set
of loops based on some point x0 ¤ 0 in R

3 that can be smoothly deformed to
a point (contractible loops). This set is a homotopy class in X . For example the
loop ˛ D f.cos t; sin t; 0/jt 2 Œ0; 2�	g belongs to this class, because we can always
deform it to a point such that we can avoid the origin. Now, let us map this loop in the
punctured plane Y 0 D R

2 � f0g. In this space this loop is not anymore contractible
to a point, so it does not belong to the ˘ class anymore. Consequently, this map is
not a homeomorphism, and hence R3 and R

2 are not homeomorphic.
In differential geometry on manifolds we are interested in objects whose

underlying geometrical properties are independent of any particular choice of a
coordinate system. This request is very much related to the fundamental request
of congruence in geometry: figures that differ only by rigid motions are congruent.
The coordinate formulation of a certain object ˛ can change from space to space,
but the essential geometrical properties remain the same if the two spaces are
connected by diffeomorphisms (i.e., infinitely differentiable functions with infinitely
differentiable inverse). The concepts of smooth manifolds and differentiable maps
on these manifolds create the most appropriate frame for such an approach. We note
that in the following we will use the term smooth for a map (or function) which is
of class C1 (called indefinite or infinite differentiable), and we will use the term
differentiable for a map (or function) which is of class Ck; k <1.

4.1 Manifolds and Maps

The bottom model for a differentiable manifold M is a convenient topological
space (for example one fulfilling certain decent separation axioms for the sake of
the uniqueness of definitions based on limits and calculus) covered with partially
overlapping local coordinate systems that can be changed from one another in
a smooth manner. The only constraint is that both the degree of smoothness
of the local coordinate transformations (e.g., continuous of a certain class k, or
differentiable, or analytical, etc.), and the dimension of the local coordinate systems
to be the same all over the manifold. Objects, for example, that begin in one end
as a bounded two-dimensional surface (a stripe) and end up in the other end as a
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one-dimensional string, are not differentiable manifolds, though they may present a
high interest for some physical studies.

Definition 5. We define an n-dimensional real differentiable manifold to be the
pair .M;A/, where M is a Hausdorff topological space and A D f.U˛; �˛/j˛ D
1; 2; : : : g is a countable atlas formed by local coordinate maps. Each such map
consists in an open set U˛ � M and a one-to-one function �˛ W U˛ ! V˛ � R

n

onto an open connected subset V˛ of Rn, which satisfy the properties:

1. The atlas forms a countable open partition of M ,
S
˛ U˛ DM .

2. 8˛; ˇ; �ˇ ı ��1ˇ W �˛.U˛TUˇ/ ! �ˇ.U˛
T
Uˇ/ is a smooth (infinitely

differentiable C1) function.

A sketch of the definition is presented in Fig. 4.1. The coordinate charts induce in
M a topological space structure inherited from R

n. The degree of differentiability
of the overlap functions �ˇ ı �˛ determines the degree of smoothness of the man-
ifold: differentiable Ck-manifolds and smooth C1-manifolds also called analytic
manifolds. Any Euclidean space is a smooth manifold with an atlas consisting of
only one chart, the space itself U1 D R

n, and identity map �1 D 1. Another useful
example is provided by the unit n-dimensional sphere defined

Sn D f.x1; x2; : : : ; xi ; : : : ; xnC1/jxi 2 R;

nC1X
iD1
.xi /2 D 1g;

realized as a hypersurface in R
nC1. We can describe Sn as an n-dimensional real

differentiable manifold with an atlas of two charts, namely:

U1 D S2nf.0; : : : ; 0; 1/g; U1 D S2nf.0; : : : ; 0;�1/g;

Fig. 4.1 A pictorial view of a
smooth manifold
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i.e., the unit sphere minus the north and south poles. The coordinate maps

�˛ W U˛ ! R
n ' .yi /; ˛ D 1; 2I i D 1; : : : ; n;

can be defined by the stereographic projections from the respective poles

�˛.x
i / D

�
x1

1� xnC1 ;
x2

1� xnC1 ; : : :
�
; i D 1; : : : ; nC 1; ˛ D 1; 2:

It is easy to check that �1 ı ��12 W Rnnf0g ! R
nnf0g is a diffeomorphism (smooth

bijective map), given by

�1 ı ��12 .y1; y2; : : : ; yn/ D
�

y1Pn
iD1.yi /2

;
y2Pn

iD1.yi /2
; : : :

�
:

In addition to the defining atlas, one can always introduce more coordinate charts
.U; �/ keeping the requirement that they are compatible with the given charts.
This means that 8˛, � ı �˛ is differentiable on the intersection �˛.U \ U˛/. We
can expand the atlas to include all compatible charts, and in this case we call
the collection a maximal collection of charts. The maximal atlas is not any more
countable, though.

Because the maps defining the local coordinates are one-to-one with the corre-
sponding open sets in M , we can simplify the notation. While referring to certain
local coordinates on a manifold we will ignore the explicit reference to the map �˛
defining the local coordinate chart.

Definition 6. A map f W X ! Y between two smooth manifolds X; Y is smooth
(or of class C1 called infinite differentiable) if its local coordinate expression is a
smooth map in every coordinate chart, at any point of M .

In other words, 8x 2M , 8.U˛; �˛/ such that x 2 U˛, and 8.Uˇ; �ˇ/, we have

�ˇ ı f ı ��1˛ W �˛.U˛ \ f �1.Uˇ// � R
m ! R

m

is smooth. This definition can be also expressed as the diagram:

U˛ �����!
f

Uˇ

�˛

??y
??y�ˇ

�˛.U˛/ �������!
�ˇıf ı��1

˛

�ˇ.Uˇ/

(4.1)

Definition 7. Let dim.X/ D n and dim.Y / D m, and f W X ! Y a differentiable
map. The rank of f at x 2 M is the rank of the Jacobian matrix expressed in
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convenient local coordinates .xi /; .yj D f j .x//:

rank .f / 
 rank .J / D rank

0
BBB@

@f 1

@x1
@f 1

@x2
� � � @f 1

@xn

@f 2

@x1
@f 2

@x2
� � � @f 2

@xn

� � �
@f m

@x1
@f m

@x2
� � � @f m

@xn

1
CCCA
m�n

A maximal rank map on a set A � X is a smooth function having its
rank D min.n;m/ for each x 2 S .

There is another definition of the differential of the map in more geometrical
terms [4]. This definition is valid for maps defined on real vector spaces, but it can
be easily extended to manifolds by the local diffeomorphism provided by the atlas.
Two functions f; g W X ! Y , where X; Y are vector spaces over R of dimensions
nX; nY , respectively, are tangent at x0 2 X if

lim
x!x0

jjf .x/ � g.x/jj
x � x0 D 0: (4.2)

Then we can define the differentialDf W X ! L.X; Y / as the map Df.x/ with the
property that the function g.x/ D f .x0/C L.x0/.x � x0/ is tangent to f . Here L
is the space of linear maps on X � Y , i.e., nx � nY matrices. In other words, the
differential of f at x is given by the first-order terms in the Taylor expansion of
f at x.

In Sect. 2.1.2 we defined embedding for topological spaces. For differential
manifolds we define a submersion as a differentiable map f W M ! N

between differentiable manifolds whose differential is everywhere surjective. An
immersion is a differentiable map between differentiable manifolds whose derivative
is everywhere injective (an immersion does not need to be injective itself). The
concepts of submersion and immersion are dual to each other. That is they are
maximal rank maps such that if dim.M/ <dim.N / we have an immersion, while
if dim.M/ >dim.N / we have a submersion. A stronger constraint is the smooth
embedding which is an injective immersion and a topological embedding (i.e.
homeomorphism onto its image) at the same time. An immersion (submersion) maps
the coordinates in a faithful way, while an embedding is in addition topological or
geometrical structure preserving.

4.2 Differential and Vector Fields

In Euclidean geometry we investigate spaces by using vectors (as subspaces of
directions), we generalize vectors to tensors, and then to tensorial fields. In a similar
matter, we can enrich the structure of a differentiable manifold with the help of
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curves defined on it. A curve defined on a differentiable manifold defines a direction,
and a collection of such curves defines a linear space. Indeed, let us suppose that
� W I ! X is a differentiable(Ck map) curve defined on the open I � R with
values in a smooth n-dimensional manifold X . In the following we will call such a
curve a parameterized curve. In local coordinates the curve is defined by n smooth
differential functions �.t/ D .x1.t/; : : : ; xn.t// of the real variable t 2 I . At each
point x D �.t/ the curve has an n-dimensional unit tangent vector defined by the
derivative � 0.t/. In local coordinates we use to denote this tangent vector as

v D � 0.t/ D
�
dx1

dt
; : : : ;

dxn

dt

�
D

nX
iD1

dxi

dt

@

@xi
;

where we formally use the symbols @=@xi to represent a local basis for the
components of this tangent vector in x.

Definition 8. The collection of all tangent vectors to all possible parameterized
curves passing through a given point x 2 X is called the tangent space to X at x,
and it is denoted TxM .

The tangent space is isomorphic with an n-dimensional real vector space through
the canonical application � W TxX ! R

m, �x.
i .x/ @
@xi
/ D .
i /. The collection of

all tangent spaces corresponding to all points of X is called tangent bundle and it is
denoted as

TX D [x2XTxX:
By the property of overlapping and differentiability of charts in the atlas, all the
tangent spaces on a manifold can be smoothly connected.

Definition 9. A differentiable function v W X ! TxX is called a vector field on the
smooth manifold X .

In local coordinates v.x/ D Pn
iD1 
i .x/ @

@xi
where 
i .x/ are n differentiable real

functions. A simple example is provided by the gradient field 8i; 
i D 1 defined
on the Euclidean space X D R

n, i.e., r D Pn
iD1 @

@xi
. Any parameterized curve

on a differentiable manifold has an associated vector field generated by its tangents
existing in the tangent bundle. Conversely, for any vector in the tangent space at a
point, we can define a unique parameterized curve (the integral curve or the flow)
that passes through this point, and has its tangent equal to this vector. A vector field
v is singular (non-singular) at a point x if v.x/ D 0 (v.x/ ¤ 0).

Definition 10. Let X be a differentiable manifold, I � R open, and v 2 TX a
differentiable vector field on X . An integral curve of v at x 2 X is a parameterized
curve �.u/ W I ! X such that v.�.u// D � 0.u/ for each u 2 I .

We present in Sect. 4.3 a proof of the theorem of existence and uniqueness
of integral curves for a particular case. For the general proof, especially related
to dynamical systems applications we recommend [4, 68, 235, 242] books.
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In Sect. 9.6.1 we present a local version of the theorem of existence and uniqueness
of integral curves related to hydrodynamical systems.

An integral curve can be also interpreted as a one-parameter local group of
transformations on X .

Definition 11. A set of vector fields S defined on a smooth manifold X is rank-
invariant if the dimension of the linear space spanned by S along the flow of any of
the vectors v 2 S is constant.

In the following we will use the mute convention for summation.

Definition 12. For a given vector field v D .
i / defined on a differentiable manifold
X , and a differentiable function f W X ! R

m we define the action of v on the
function f in local coordinates by

v.f /.x/ D 
i @f
@xi

:

The quantity v.f / can be viewed as a linear operator acting on f , or as a function
defined on the manifold X with values in R

m, which generalizes the concept of
derivative along a given direction. In some books this operator is also called the
directional derivative (for example [299]) and is written as

Dvf .x/ D rf .x/ � v:

The above formula is obtained if we consider a parameterized curve � on X and we
identify � 0.x.t// D v 2 R

m. Then .f ı �/0.x.t// D rf .x/ � v.

Definition 13. Any differential map f W X ! Y induces a linear map

df W TxX ! Tf.x/Y;

called the tangent map (or the differential map) and defined by the diagram

TxX �����!
df

Tf .x/Y

�x

??y
??y�f .x/

R
n �����������!

.�ıf ı��1/0.�.x//
R
m

(4.3)

where n D dim.X/,m D dim.Y /. That is df D ��1f .x/ ı .� ıf ı��1/0.�.x//ı �x.

Alternative notations for the tangent map are T� [242] or f�. There are three possible
interpretations of the tangent map.
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Fig. 4.2 The tangent map

The first one is related to curves: any parameterized curve �.t/ on X is mapped
by f into a parameterized curve Q�.t/ D f .�.t// on Y . Thus, f induces a map from
the tangent vectors to � at x to the corresponding tangent vectors to Q� at f .x/ (see
also Fig. 4.2). The second interpretation of the tangent map is defined in terms of its
action on tangent vectors v D .
i / 2 TxX in the local coordinates:

df .v/ D 
i @f
j

@xi
@

@yj
2 TyDf .x/Y; (4.4)

where .xi / and .yj / are local coordinates in X and Y , respectively. In this context,
the tangent map is the Jacobian matrix of the map f at x, acting as a linear
transformation on the tangent vectors. If f.1; 0; : : : ; 0/; : : : ; .0; : : : ; 0; 1/g is a local
basis in TxX , then df transforms it into a basis in Tf.x/Y of the form f @f

@x1
; : : : ;

@f

@xn
g.

The third interpretation of the tangent map is in terms of the action of a vector
field. In this context, if we have f .x/ D .f 1; : : : ; f m/.x/, then the action of the
tangent map on a tangent vector, df .v.x// D v.f j .x// @

@yj
, is nothing but the action

of this vector, considered as a vector field in the tangent bundle, over the components
of f in a local basis in Y . In other words, the tangent map is the directional
derivative df .v/ D Dvf .x/. Consequently, we write here one of the most useful
equations in the differential geometry of surfaces, namely the relation between the
tangent map of a map f , the action of a vector field v, and its directional derivative

df .v/ D Dvf .x/ D v.f /: (4.5)

Let us have a differentiable manifold X of dimension n. At every point x 2X
we can define the dual of the tangent space, the cotangent space T �x X . The
space of skew-symmetric covariant tensors of rank 1 on X is a linear subspace
˝1T �x X � T �x X of the cotangent space. Its elements are called 1-forms, !.x/.
In local coordinates .xi / the 1-form is denoted ! D !idxi , where the dxi form an
abstract skew-symmetric local basis for the cotangent space. The 1-form is precisely
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defined by its action of differential vector fields

.!I v/ D
�
!j dx

j I 
i @
@xi

�
D

nX
iD1

!i 

i 2 C:

This definition can be generalized to differentiable k-forms, namely skew-symmetric
covariant tensor fields of rank 0 6 k 6 n defined on X , ! D !i1i2:::ikdx

1 ^ dx2 ^
� � � ^ dxk . Here the ^ “exterior” product represents the skew-symmetric property.
The space of k-forms is denoted ˝kT �x X D T �x ˝ T �x ˝ � � � ˝ T �x , k times (or
simply denoted ˝kT �x ). It has dimension dim .˝kT �x X/ D nŠ=.kŠ.n � k/Š/. The
local basis at x, dx1 ^ dx2 ^ � � � ^ dxk , has the properties:

1. dx1 ^ dx2 ^ � � � ^ dxk D 0 if two indices are equal.
2. Permutation of two indices changes the sign.
3. The expression dx1 ^ dx2 ^ � � � ^ dxk is linear.

In general, the local basis of differentials for a k-form is a generalized cross-product
in more than three dimensions. A 0-form is a differentiable function onX , a 1-form
is a covariant vector field, and a maximal dimension n-form is the volume element.

The properties of differentiable forms make them extremely useful and valuable
for all sorts of geometry problems. In some applications we can generalize the above
(traditional) representation of differential k-forms in terms of skew-symmetric k�k
matrices of complex numbers. We can construct, for example, k�k skew-symmetric
matrices with entries taken from a contra-variant tensor field. For example, we can
write the object !ijkdx

i ^ dxj where i; j; k D 1; : : : ; n which is a contra-variant
vector with respect to the superscript i , and a 2-form with respect to j; k.

Let us have a differentiable map between two manifolds f W X ! Y .

Definition 14. The dual map of the tangent map at x, i.e., df � W Tf.x/Y ! TxX ,
is called the pull-back (or codifferential) of f . One generalizes the pull-back to
k-forms by ˚� W ˝kT �f .x/Y ! ˝kT �x X namely

!
0

i1;i2;:::;ik
D !j1;j2;:::;jk

@f j1

@xi1

@f j2

@xi2
: : :

@f jk

@xik
(4.6)

The pull-back relates to the tangent map between X and Y by the following
expression

.!I df .v/ D .f �.!/I v/; (4.7)

meaning that k-forms in Y act on the derivative df .v/ of the vector field v on X in
the same way as the pull-back f �.!/ of the forms in X act on vector fields v on X ,
see Fig. 4.3.
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Fig. 4.3 We show two vector fields v;w and a point x 2 X which are mapped into f .x/ 2 Y , and
into evx 2 X by the flow box of v, respectively (we choose � D 1 in this figure). The differential
of the vector field acts in agreement with the pull-back. The shaded rectangles represent a k-form
at x and at f .x/

4.3 Existence and Uniqueness Theorems: Differential
Equation Approach

We showed that a vector field on a manifoldM is a mappingM ! TM that assigns
to each point x 2 M a vector in TxM . A vector field may be interpreted alternatively
as the first-order system of partial differential equations (PDEs), i.e., a dynamical
system [4].

In the following we introduce an important result from the theory of first-order
PDEs, namely the fundamental theorem of existence and uniqueness of solutions
under Cauchy conditions. Actually, we present here the general version for a system
of coupled, nonlinear PDE of order 1 depending on two independent variables
(to have a pictorial geometrical interpretation in terms of surface geometry). The
extension of this theorem to many dimensions is a simple technical extension, and it
does not introduce any new special insights. We begin with the fundamental theorem
for one PDE in one unknown function f .u; v/ depending on two independent
variables.

Definition 15. For a given function defined on the open sets F W U � V � W �
R
2 �R

2 �R! R, we define a partial differential equation (PDE) of order one, the
equation

F.u; v; fu; fv; f / D 0: (4.8)

The function f .u; v/ W U ! R is called a solution of this PDE if the expression
F.u; v; @f .u; v/=@u; @f .u; v/=@v; f .u; v// 
 0 transforms the PDE, F D 0, into an
identity on U .

Definition 16. We call the Cauchy problem (or Cauchy condition) associated to the
function f .u; v/ and the PDE, the following set of three quantities:

1. A vector function a.�/ W I � R! U � R
2.

2. A real function �.�/ W I � R! W � R.
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3. A constant vector b0 2 V and a number �0 2 I , and four constraints between the
solution f and (4.8).

4. F.a.�0/;b0; �.�0// D 0.
5. d�

d�
.�0/ D b0 � da

d�
.�0/.

6. f .a.�// D �.�/.
7.

�
@f

@u .a.�0//;
@f

@v .a.�0//

�
D b0.

Theorem 3. The Cauchy problem a; � 2 C2.I / for the PDE equation F.u; v; fu;

fv; f / D 0, with the supplementary restriction

ˇ̌
ˇ̌
ˇ
 
@F
@u

du
d�

@F
@u

dv
d�

@F
@v

du
d�

@F
@v

dv
d�

!ˇ̌
ˇ̌
ˇ D 0

has a unique solution f .u; v/ 2 C2.V.a.�/// on a neighborhood V.a.�//, fulfilling
the Cauchy conditions (1–4) from the Definition 16.

We do not give the proof of Theorem 3 here (the reader can find a detailed proof
of this theorem in [120]). We just introduced here Theorem 3 to comment on the
geometrical interpretation in terms of surfaces.

We consider the independent variables .u; v/ 2 U as parameters, and the solution
f W U ! R of the PDE (4.8) as a parameterized surface S , r.u; v/ 2 R

3, defined
by the graphics f .u; v/ (see Fig. 4.4).

The PDE (4.8) is integrable if there are solutions (i.e., surfaces) passing through
every point of the working space U � W � R

2 � R � R
3. The PDE defining

equation, F.u; v;b0; f / D 0, provides a relationship between any given point r D
.u; v; f / 2 U �W , in the working space, and a vector b0 2 V defined in some two-
dimensional abstract vector space. Actually, the mathematical expression of (4.8)
says that given a point .u; v; f / 2 U � W and one component of a vector in V
(fu), we can get the other component fv.u; v; f; fu/. In local flat coordinates the
geometric meaning is even simpler.

A solution f .u; v/ of (4.8) is a surface S parameterized by the local (flat)
coordinates .u; v/. We introduce a map from V to T.u;v;f /R3 defined by

V � b D .fu; fv/!
f.1; 0; fu/; .0; 1; fv/;

.�fu ;�fv;1/p
1Cf 2u Cf 2v

g D fru; rv;N g

Fig. 4.4 The PDE solution
f .u; v/ as a parameterized
surface S

v
u

U

z=f(u,v)

S
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which provides the Darboux trihedron associated to the parametrization .u; v/. In
this geometric picture, the integrability of the PDE means that we have a relation
which associates for any point and direction, a plane passing through that point
and through that direction. This plane is actually the tangent plane to the graphics
of the solution f , at the point .u; v/. That is, we can write (4.8) in the form
fv D fv.u; v; fu; f /, and hence associate to any point .u; v; f /, and to any direction
.1; 0; fu/, the other direction .0; 1; fv/.

The Cauchy conditions (1–3) from Definition 16 assure uniqueness of the
solution, and show how to actually construct it. The Cauchy conditions consist
in a parameterized curve ˛ W I ! U in the space of the parameters, defined by
a.�/ D .u.�/; v.�//, and a parameterized curve defined by �.�/. In the following
we assume that the parameter � is the arc-length along ˛. The curve � defined by
.u.�/; v.�/; �.�// 2 U � W lies in the surface-solution S , by Cauchy condition
(6), because if f is solution, then f ı a.�/ D �.�/. The Cauchy conditions (4,5,7)
provide that the two components of the vector b0 are actually the components of
the unit tangent of the curve � expressed in the basis associated with the .u; v/
parametrization at the point .u.�0/; v.�0/; f .u.�0/; v.�0///. Indeed, on one hand
d�=d� is the third component of the unit tangent dr=d� D Dar . On the other hand

Dar D u�.1; 0; fu/C v�.0; 1; fv/ D .u�; v�; u�fu C v�fv/:

Consequently, if relation (5) from Definition 16 holds, then d�=d� D b0 � .u�; v�/,
and b0 is actually equal to .fu; fv/.

Now, we go for the geometrical interpretation of the existence and uniqueness
theorem. The basic idea is simple: If we can build a plane passing through an
arbitrary point of the space, we can smoothly extend this plane to an infinitesimal
surface on a neighborhood of that point. The rest of the surface is just analytic
continuation. A plane is generated by two directions. In the neighborhood of the
given Cauchy curve � , we have one direction provided by the unit tangent of
the curve, and the other direction provided by the PDE equation (starting with the
coordinates of the point and the tangent direction). This will build the whole surface,
hence the solution.

Indeed, the PDE equations tell us that for any point .u; v; f / 2 U �W , and for
any direction through this point, .1; 0; fu/, we are given a whole plane through this
point and this direction. The solution f .u; v/ is the surface having this plane as a
tangent plane at any .u; v; f .u; v//. In addition, the Cauchy condition provides that
from any given parameterized curve � W I ! U � W (provided by a and � ), and
the knowledge of the tangent plane in one of its points (generated by fb0; d�=d�g�0
at �0), the surface built from the PDE as shown above, and containing the curve � ,
is unique.

In other words, we have a parameterized curve a in the parameter space U , and
we lift it to a curve in the whole space U � W . We want to find the surface that
contains this curve, and has a prescribed tangent plane in one of the points of this
curve (see Fig. 4.5). In addition, we can build the tangent plane to this surface at any
point, if we just know one direction of this plane at that point. Now, it is obviously
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Fig. 4.5 The Cauchy
condition for a
two-dimensional first-order
PDE

how the surface of the solution is built. The curve � is part of this surface, and the
unit tangent of � is in the tangent plane of the surface. In any of the points of � ,
.u.�/; v.�/; �.�//, we have one tangent direction .u�; v�; ��/, and the PDE provides
the other direction, so we can built a tangent plane to the surface in any point of the
curve � . Then, by analytic continuation, we can extend the surface from � toward
the whole domain of F .

In the following we provide the general theorem for existence and uniqueness of
solutions for (nonlinear) PDE of orderm.

Theorem 4. If the PDE equation of orderm for f .x1; : : : ; xn/ W D � R
n ! R can

be written in the explicit form

@jmjf
@x
jmj
1

D F
�
x1; : : : ; xn; u;

@f

@x1
; : : : ;

@jmjf
@x

m1
1 : : : @x

mn
n

�
;

with jmj D m1Cm2C �Cmn, such that the derivative @jmjf=@xjmj1 does not occur
anymore in the RHS of the above expression, then the Cauchy problem

f .x/jx1Dx01 D g0.x2; : : : ; xn/;
@f

@x1

ˇ̌
ˇ̌
x1Dx01

D g1.x2; : : : ; xn/; : : :

: : : ;
@jmj�1f
@x
jmj�1
1

ˇ̌
ˇ̌
x1Dx01

D gm�1.x2; : : : ; xn/;

attached to this equation has one unique analytic solution f .x1; : : : ; xn/ W
V.x01 ; : : : ; x

0
n/ ! V.u0/, if the function F is analytic on a neighborhood of

the point .x02 ; : : : ; x
0
n; u0; : : : /, and the functions g1; : : : ; gm�1 are analytic on a

neighborhood of .x02; : : : ; x
0
n/.

We can generalize the integrability concept for a general manifold.

Definition 17. Let S D fv1; v1; : : : ; vng be a finite set of n vector fields defined on
a smooth manifold X . We call integral submanifold of S a submanifold Y � X

whose tangent space TpY is spanned by the system S at every point p 2 N . The
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system at every point S is integrable if through every point p 2 X there passes an
integral submanifold.

Definition 18. A finite system of vector fields S D fv1; v2; : : : ; vn; g, defined on a
smooth manifold X , is in involution if it is algebraically closed under commuting
relation, i.e., if 8p.x/ 2 X;8i; j D 1; : : : ; n

Œvi ; vj 	 D
nX

kD1
ckij .x/vk;

where ckij .x/ are differentiable real functions onX , and Œ; 	 is the Lie bracket defined
by the action (see Definition 12) of two differential vector fields on functions f W
M ! R

Œv;w	f D v.w.f //� w.v.f //:

If the manifold X is only differentiable Ck , and the vector fields are differentiable
of class Ck�1, then the Lie bracket is differentiable of class Ck�2. In coordinates the
Lie bracket has the specific action

Œv;w	 D
�

vj
@wi

@xj
� wj

@vi

@xj

�
@

@xi

Of course, if the vector fields generate an n-dimensional Lie algebra LS � TpY at
every p 2 X , they are in involution. The concept of involution can be generalized to
an infinite system of vector fields S1 by asking 8v;w 2 S1, we have Œv;w	 2 S1.

Theorem 5. Frobenius theorem. A finite system of vector fields defined on a smooth
manifold S is integrable if and only if it is in involution. If the system of vector fields
is infinite, it has to fulfill in addition the rank-invariant condition, see Definition 11.

For a proof of the theorem the reader can see [242, Chap. 1] and references herein.
The dimension of the integral manifold is equal to the dimension of the linear space
spanned by S at any point on X , which does not prevent this dimension to change
from point to point. We can check the theorem by choosing a parameterized surface
in the so-called local flat coordinates r D .x; y; h.x; y//. For any differentiable
function f W R3 ! R we have the action

ru.rv.f .x; y; z/// D
�
@x C @h

@x
@z

��
@y C @h

@y
@z

�
:

It is easy to verify that the two tangent vector fields along the local coordinates fulfill
Œru; rv	 D 0.

Next important concept for integrability and symmetry of dynamical systems is
the Lie algebra.
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Definition 19. A Lie algebra is a vector space g together with a bilinear operation
Œ�; �	 W g� ! g, called Lie bracket or commutator, satisfying the axioms:

1. Œa;b	 D �Œb; a	, skew-symmetry
2. Œa; Œb; c		C Œc; Œa;b		C Œb; Œc; a		 D 0, Jacobi identity

8a;b; c 2 g.

The dimension n of the Lie algebra is the dimension of the vector space. Usually,
the Lie algebras in use for physics are finite dimensional, but there are exceptions
especially in field theory. An algebra homomorphism from g into a Lie algebra
of square matrices is a representation of the Lie algebra. A Lie algebra is uniquely
determined by the basis fvigiD1;:::;n of its vector space, and by its structure constants
ckij D �ckj i defined by

Œvi ; vj 	 D ckij vk:

Usually, the above relation is given in tabular form, i.e., the commutator table of
the Lie algebra. If a Lie algebra is generated by vector fields v 2 TM defined on
the tangent space of a differentiable manifoldM , we can introduce the exponential
map as a one-parameter smooth transformation exp.�v/ W M ! M and we call the
subset fexp.�v/xjx 2 M; � 2 .��max; �max/ � Rg the orbit of the one-parameter
local Lie group generated by v. Obviously exp.0v/ D Id. Conversely,

TM 3 vx2M D d

d�

ˇ̌
ˇ̌
�D0

exp.�v/x; 8v 2 g;

is the Lie equation. Namely, given the (exponential) one-parameter Lie group of
transformations based on some initial point x 2 M , the tangent vector to the curve
exp.�v/x �M at � D 0 is the infinitesimal generator of the transformation.

4.4 Existence and Uniqueness Theorems: Flow Box Approach

For a differential vector field v on the differential manifold X we define an integral
curve �.�/ W I ! X a parameterized curve whose tangent vector at any point
coincides with the value of v at the same point

� 0.�/ D v.�.�//:

In local components these equations define a system of ordinary differential
equations, where the integral curve is the solution. The existence and uniqueness of
such an integral curve is guarantied locally by the general existence and uniqueness
theorem (Theorem 4) exemplified in Sect. 4.3 [4,68,242]. However, this theorem is
local and in general does not assure the existence of a global integral curve. To have
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an intuitive geometrical picture about integral curves, we discuss here the concept
of “flow box” introduced in [4, Chap. II].

Definition 20. Let us have a differentiable manifold M . The flow box of a vector
field v at x 2 X is a unique triple .V .x/; a; fF�g�2.�a;a// where V.x/ is an open
neighborhood of x, a > 0 and F� is a continuous family of differentiable functions
F� W V.x/! X such that:

1. For any y 2 V.x/, F�.y/ considered as a function of � 2 .�a; a/ is an integral
curve of v, i.e., @F�.y/=@� D v.F�.y//.

2. For any � 2 .�a; a/, the mapping F�.x/! F�.V.x// is a diffeomorphism.

In other words, at any point of X , and for a given “size” a of the flow box, we can
find local integral curves filling up a neighborhood and mapping it diffeomorphic
along X .

The existence of a flow box at any point is guaranteed by the general theorem
of existence and uniqueness theorem (Theorem 4) applied on the homeomorphism
provided by the charts overlapping V.x/, Fig. 4.6.

Theorem 6. For any given vector field v on a manifold X , and for any x 2 X
there is a flow box of v in X . This flow box .V .x/; a; F�/ is unique in that any
other flow box of the same point .V 0.x/; a0; F 0

�0/ has F� D F 0�0 on V.x/ \ V 0.x/ �
Œ�a; a	 \ Œ�a0; a0	.
In order to prove this theorem we notice that the uniqueness results from the fact
that any two integral curves �1.�/; �2.�/ of the same field, at x, are equal on the
intersection of their domains of definition. Indeed, let be � D f� 2 .�a; a/j
�1.�/ D �2.�/g � Domain.�1/\Domain.�2/. By the definition� is closed (being
obtained as the kernel of a continuous function). Also, for any � 2 � there is a
neighborhood .� � �; � C �/ contained in a chart .U; �/ of X such that the curves
�.�i .� C t//, jt j < �, i D 1; 2 agree for t D 0. Again, by the general theorem
of existence and uniqueness theorem (Theorem 4), it results that the two curves,
and consequently their inverse images agree on the whole neighborhood .� � �;

Fig. 4.6 Flow box generated
by a vector field

V(x)

Integral curves

X



4.5 Compact Supported Vector Fields 47

�C �/. Consequently this neighborhood is contained in�, so � is also open. Since
.�a; a/ is connected, it results that � D .�a; a/.

We have a comment about the size a of the flow box which gives a measurement
of the degree of locality of the integral curves. From the very beginning the domain
of definition of all integral curves is set to the same interval .�a; a/, contrary to the
habit in differential geometry (where the parametrization of the curve is not essential
and can be changed). Such fixed domain is needed to keep simple the proof for the
uniqueness of the flow box vs. change of parametrization. This standard domain of
definition does not introduce any limitation when we speak about maximal integral
curves because we introduce this concept in a different way. That is, we defined
the set Dv D f.x; �/j there is an integral curve passing through this pointg � X �
R. The vector field v is complete if Dv D X � R. For a complete vector
field any integral curve can be extended so its domain becomes .�1;1/. For
example, the velocity field of a potential flow past a rigid obstacle is not complete,
because there are stream lines ending at stagnation points.

The set Dv can be partitioned by the unique mapping Fv W Dv ! X (the integral
of v), constructed such that the curves �! Fv.x; �/ are integral curves at x, for all
x 2 X . Now we define a maximal integral curve to be �! Fv.x; �/. If, in addition
v is complete, the function Fv is called flow of the vector field v. The collection
of all maximal integral curves for a given vector field is called a foliation of X ,
where the maximal integral curves themselves are called leaves of the foliation.
Because of the properties of the flow box, and the transitive action of Fv on X , the
family Fv.x; �/ is called one-parameter local group of diffeomorphisms (for exact
definition see for example [242]). If X is complete this family becomes a Lie group
of diffeomorphisms acting on X . In terms of group theory the vector field is called
group infinitesimal generator.

4.5 Compact Supported Vector Fields

The flow box plays an interesting role when the vector field has compact support
[4]. Let us assume thatX is compact and v is a vector field defined onX . For x 2 X
let us consider a maximum integral curve � through x, and let its domain be .�b; b/
with b < C1. We can always find a sequence bn ! b such that (by compactness
and Hausdorff property ofX ) �.bn/ is convergent to some unique point xb 2 X . We
can construct a flow box .V .xb/; a; F /, and for n larger than a certain limit �.bn/
points lie in V.xb/. Consequently � can be extended beyond b, and so on to infinity,
and minus infinity. It gives the following result:

Lemma 2. Any vector field defined on a compact manifold is complete. Moreover,
vector fields with compact support are complete.

The flow box is the main tool in the introduction of the Lie derivative, and it is useful
for handling differential equations and global invariance.
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4.6 Differential Forms and the Lie Derivative

IfX is an n-dimensional differentiable manifold and xi ; i D 1; 2; : : : ; n are the local
coordinates, we can express formally the vector field v.x/ 2 TxX in components

v D vi .x/
@

@xi
; (4.9)

and its action on functions f W X ! R becomes

v.f /.x/ D vi .x/
@f

@xi
: (4.10)

We can express formally the flow box diffeomorphisms F� from Definition 20 as

F�.x/ D e�vx; (4.11)

also called the exponentiation of the vector field, or exponential map [46, 242],
because of the structure of its formal differential equation (Lie equation)

dF�.x/

d�

ˇ̌
ˇ̌
�D0
D v.x/:

In reverse, for a given diffeomorphism � W X ! X , the vector field whose
exponential provides this transformation (if it exists) is called the infinitesimal
generator of �. The set fF�.x/g�2.�a;a/ represents a one-parameter local
Lie group of transformations acting on V.x/. It is useful to mention the
action of the vector field on differentiable functions defined on X . By using the
formal Taylor series for f we have

f .e�vx/ D
X
k�0

�k

kŠ
vk.f /.x/: (4.12)

The value of the function in the transformed point is obtained by repeated action of
the vector field on the function at x

x
f�����! f .x/??y� vk

??y
e�x

f�����! f .e�x/:

The generalization of a function, or of an infinitesimal surface or volume element,
is the differential k-form (defined in Sect. 4.2 and simply called k-forms in the
followings) defined as a differential skew-symmetric covariant tensor field on X ,
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with entries in the k-times exterior product of the cotangent space of the n-
dimensional manifold X [235, 242]

! D
nX

i1 < i2 < � � � < ik
i1 : : : ik D 1

!i1i2:::ik .x/ dx
i1 ^ dxi2 ^ � � � ^ dxik 2 ˝kT �x X;

which can be written in a simpler form

! D 1

nŠ
!i1i2:::ik dx

i1 ^ dxi2 ^ � � � ^ dxik ;

because the quantities !i1i2:::ik form a skew-symmetric tensor. For a set of k vector
fields on X we have the action of the k-form on these fields given by

.!I v1; : : : ; vk/ D !i1i2:::ikvi11 : : : v
ik
k ; (4.13)

where we use the dummy index summation convention.

Definition 21. A k-form ! and an r-form � can be combined into a new .k C l/-
form by the exterior product, through the ^ operation

! ^ � D
nX

i1 < � � � < ik
i1 : : : ik D 1

X
.j /2P.i/

.�1/�!
j1 : : : jk
<

�
jkC1 : : : jkCr

<

dxi1 ^ � � � ^ dxikCr ;

where the symbol<means that the lower indexes are taken in increasing order, P.i/
means all the k C l permutations of the i indexes, .j / D .j1; : : : ; jkCr / is a multi-
index, and � is the signature of each permutation in the sum. The exterior product is
linear, distributive, and the pull-back map is linear under the exterior product, and
! ^ � D .�1/kr� ^ !. For example, if !; � 2 ˝1 D T �X are 1-forms on the
n-dimensional differentiable manifoldX we have

! ^ � D .!i�j � !j �i /dxi ^ dxj ; i; j D 1; 2; : : : ; n:

Here is another example for ! a 2-form, and � a 1-form

! ^ � D .!12�3 � !13�2 C !23�1/dx1 ^ dx2 ^ dx3:
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Definition 22. We define the interior product between a vector field and a k-form
! the .k � 1/-form

.v ? !/i1:::ik�1
D

nX
l D 1

l ¤ i1 : : : ik�1

vl!
l I i1 : : : ik�1

<

:

For example @x ? dx ^ dy D dy. The action of the interior product is given by

.v ? !I v1; : : : ; vk�1/ D .!I v; v1; : : : ; vk�1/: (4.14)

The last operator we need for our purposes is the exterior derivative.

Definition 23. For any k-form ! we define the linear operator d W ˝kT �x X !
˝kC1T �x X acting on ! and producing a .k C 1/-form

d! D
X
i;I

@!I

@xi
dxi ^ dxI ;

where I is the increasing ordered multilabel defining ! components.

The exterior derivative is linear, commutes with the pull-back map, and – most
importantly – has the closure property

d.d!/ D d2! D 0: (4.15)

We conclude this series of definitions with a set of useful relations between all these
operators. In the following ! is a k-form, and � is an r-form, k; r 	 n, and v is a
vector field:

v ? .! ^ �/ D .v ? !/ ^ � C .�1/k! ^ .v ? �/: (4.16)

d.! ^ �/ D d! ^ � C .�1/k! ^ � (4.17)

v ? .! ^ �/ D .v ? !/ ^ � C .�1/k! ^ .v ? �/: (4.18)

For a given vector field v.x/ on X and a certain geometrical object !.x/ defined
on X (like another vector field or a k-form), it is natural to ask how does ! changes
along the integral curves of v. Since at different points e�vx, the quantity !.x/
takes values in different spaces of a fiber bundle ˝X over X (example the tangent
bundle TX , cotangent bundle T �X , tensor bundle T jk X , etc.) we have to compare
the values of !.x/ 2 ˝xX with the pulled-back values of !.e�vx/ 2 ˝e�vx . This
technique is known under the name of the Lie derivative.
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Definition 24. We introduce the Lie derivative of ! at x 2 X , with respect to v, as
the expression v.!/ defined by

v.!/jx D lim
�!0

˚�� .!jexp.�v/x/� !jx
�

D
�
d˚�� .!jexp.�v/x/

d�

�
�D0

;

where ˚�x D e�vx and ˚�� is the pull-back of ˚ between the corresponding tensor
spaces (Definition 14).

For example the Lie derivative of a function v.f / is nothing but the expression
(4.10). The Lie derivative of a vector field w is

v.w/ D Œv;w	: (4.19)

In general the Lie derivative of a k-form ! D !i1;i2;:::;ik dx
i1 ^ dxi2 ^ � � � ^ dxik 2

˝kX is
v.!/ D v.!i1;i2;:::;ik /dx

i1 ^ dxi2 ^ � � � ^ dxik

C
kX

jD1
!i1;i2;:::;ij ;:::;ik dx

i1 ^ � � � ^ v.dxij / ^ : : : dxik ; (4.20)

where we can use the formula v.dxij / D dvij D .@vij =@xk/dxk from (4.9). For
example if k D 2 we find the Lie derivative of a 1-form by knowing its action on
vector fields

.v.!/Iw/ D v.!Iw/ � .!I Œv;w	/ (4.21)

In components, on X D R
2 we can write the Lie derivative of a 2-form by using

v.x; y/ D 
.x; y/.@=@x/C �.x; y/.@=@y/, ! D !12dx ^ dy and we have

v.!/ D
�


@!12

@x
C �@!12

@y
C !12

�
@


@x
C @�

@y

��
dx ^ dy:

A very useful application of Definition 24 and (4.19) and (4.20) is provided in
Sect. 9.2.6 where we introduce the concept of covariant (or convected, convective,
material) time derivative related to the Eulerian–Lagrangian frame transformations
in hydrodynamics.

Another direct application of the Lie derivative, introduced in [4], is based on
the concept of flow box, see Sect. 4.4. Let v be a vector field on a manifold X , i.e.,
v.x/ 2 [y2XTyX and a flow box (see Sect. 9.3) .U.x/; ˛; F / at x. That is we have
an open neighborhood U.x/ of x, and a continuous set of homeomorphic copies
of U.x/, labeled by U�, � 2 .�˛; ˛/ � R mapped by the diffeomorphism F� W
U.x/ ! U�. Let also ! be a tensor field on X , for example !.x/ 2 [y2XT jy;iX ,
i.e., an i -order covariant and j -order contravariant tensor field. According to the
definition of the flow box (Definition 20) we can choose an arbitrary � 2 .�a; a/
and an arbitrary point, y 2 U�, and consider the value of the tensor field in that
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point, !.y/ 2 T jy;iX . Then pull-back this value into T j
F�1.y/;i

X by using the dual of

the diffeomorphismsF �1�� . We obtain a tensor F ��1�.!.y// (see Fig. 4.7). Since this
pull-back can happen for any value of � we actually built a curve !�.x/ of tensors
defined at x, lying in T jx;iX . Now we can apply the elementary concept of derivation
along a curve for this curve of tensors, and the resulting object is the Lie derivative
of an i -covariant, j -contravariant tensor at x. So we have

v.!/ D d!�.x/

d�

ˇ̌
ˇ̌
�D0

; (4.22)

see also Fig. 4.8. So, the Lie derivative is not a different mechanism of differentiation
of tensors on a manifold, but just involves a special way of choosing the curve along
which we differentiate. That is a curve induced by the vector field v, but lying in
the space of tensors over the point x (a curve in the fiber of an .i;/ tensor bundle of
base X over x). In this sense, the Lie derivative is very similar with the covariant

Fig. 4.7 The mechanics of
the Lie derivative. The thick
line is the integral curve of
the vector field v

X

U x

x F x
U

v x

v F x

x
F x

F 1 F xl l

l

l
l

l

w

w

Fig. 4.8 The result of
application of the procedure
in Fig. 4.7. The tensors over
different points along the
integral curve are pulled back
in the same tensor space,
forming a parameterized
curve of tensors which can be
differentiated

U(x)x
Integral curve

X

A curve in the

 tensor sp
ace
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derivative (see also the comment and the diagram about derivatives in Sect. 1.3). The
flow box plays the same role for the Lie derivative, as the connection coefficients
(Christoffel symbols) have for the covariant derivative (see Sect. 6.1).

The Lie derivative has the following properties with respect to the interior, and
exterior algebra of forms

v.! ^ �/ D v.!/ ^ � C ! ^ v.�/;

v.d!/ D dv.!/; (4.23)

v.w ? �/ D Œv;w	 ? � C w ? v.�/;

and the important relationship between the Lie derivative and the exterior derivative

d.v ? !/ D v.!/� v ? .d!/: (4.24)

Equation (4.24) has an elegant generalization for k-forms

.d!I v1; : : : ; vkC1/ D 1

k C 1
kC1X
iD1
.�1/i�1vi .!I v1; : : : ; Ovi ; : : : ; vkC1/

C 1

k C 1
jDkC1X
iD1;i<j

.�1/iCj

�.!I Œvi ; vj 	; v1; : : : ; Ovi ; : : : ; Ovj ; : : : ; vkC1/; (4.25)

where the first sum in the RHS term represents the regular action of vector fields on
scalar functions in the sense of Eq. (4.10), and the hat placed on a vector means that
vector should be omitted from the counting. For k D 1 this equation has the form

.d!I v;w/ D v.!Iw/ � w.!I v/� .!I Œv;w	/:

In particular this expression is very important in two cases. First one is when the 1-
form is valued in a Lie algebra of a Lie group, and the two vector fields are invariant
to this group. In this case the first two terms in the RHS are zero, and we have the
famous Maurer-Cartan equation

d! C 1

2
Œ!; !	 D 0; (4.26)

where the bracket is the Lie bracket of the Lie algebra. In the second case the form
d! C ! ^ ! represents the curvature 2-form of a linear connection, also called the
first Cartan structure equation.
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4.7 Differential Systems, Integrability and Invariants

In the following we will show how can we generalize the concept of differential
equations on differentiable manifolds, and how we can use the elegant tool of
k-forms the express the integrability conditions in the simplest way. We work on
a differentiable manifold X of dimension n.

Definition 25. A differential system of dimension m 	 n on X is a differentiable
map D which associates to any point x 2 X a vector sub-space Dx of TxX . A sub-
manifoldXD � X is an integral manifold of D if the pull-back di�.TyXD/ �Di.y/,
for any y 2 XD, where i W XD ! X is the canonical injection of XD on X .

A differential system onX is completely integrable if we have a maximal dimension
integral manifold through each point of X . In nonlinear physics, where the
differential system models some process, there is another term defining a completely
integrable system, especially when X is infinite dimensional: exactly solvable
system (or model).

Of course, there is a generalization of the Frobenius theorem (Theorem 5 of
Sect. 4.2) in the following form. The differential system D on X is completely
integrable if and only if the vector space generated by D at any point is a local
Lie algebra, that is for any point of X , and any two vector fields of this subspace
their Lie bracket also belongs to this subspace.

Among differential systems of physical interest we have the so-called total
differential systems (or Pfaffian system) which are described by simultaneous
vanishing of a number of linear independent 1-forms !j 2 ˝1T �X . We have the
following integrability theorem

Theorem 7. A total differential system of order m given by the equations !j D 0,
j D 1; : : : ; m 	 n on X is integrable if

d!j ^ !1 ^ � � � ^ !m D 0; j D 1; : : : ; m:

For example if we have a total differential system of order 1 on R
3 given by ! D

PdxCQdyCRd z D 0 the above integrability condition d!^! D 0 has the well
known form

P

�
@R

@y
� @Q
@z

�
CQ

�
@P

@z
� @R
@x

�
CR

�
@Q

@x
� @P
@y

�
D 0:

One of the most important geometrical concepts is the invariance under certain
transformations, either of coordinates or through continuous groups. Consequently
we have two basic types: invariants of a transformation � W X ! X , and invariants
of a vector field v. If the transformation is the flow or an integral curve of the vector
field, or the vector field is the infinitesimal generator of the transformation, the two
types coincide.
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LetX be a differentiable manifold,� W X ! X a differentiable map, and Y � X
a submanifold.

Definition 26. The submanifold is � -invariant if �.Y / � Y .

The definition can be extended to more than one mapping, which eventually forms
a group of applications � 2 G, in which case we call Y G-invariant.

Definition 27. An application f W X ! R
n is � -invariant if 8c 2 R

n the
submanifold fx 2 X jf .x/ D cg is � -invariant.

Let X be a differentiable manifold, v 2 TX a differentiable vector field on X ,
and Y � X a submanifold.

Definition 28. The submanifold is an invariant manifold of v if 8y 2 Y;

v.y/ 2 TyY � TyX .

In other words, a submanifold is invariant of a vector field if the restriction of this
field is tangent to the submanifold. From the uniqueness of the integral curves we
have a sufficient criterium for the invariant set.

Lemma 3. If the submanifold Y � X is an invariant manifold of v, a > 0;

y 2 Y , and � W Œ�a; a	 ! X , �.0/ D y an integral curve of v, then there is
0 < b < a such that �.Œ�b; b	/ � Y .

In addition, sufficient conditions are provided by Lemma 4.

Lemma 4. The differentiable function f W X ! R is invariant of a vector field v
on X if and only if v.f / D 0. As a corollary, if a submanifold Y � X is defined
implicitly by a set of equations ffj .x/ D 0gjD1;:::;n, then Y is invariant of v if
v.fj / D 0;8j D 1; : : : ; n.

Proof. By using (4.12) we note that if v.fj / D 0 the functions are invariants, and
conversely. ut

We make the following comment: the notation v.:::/ in general represents the Lie
derivative of a certain geometrical object. If this object is a function, like above,
its Lie derivative coincides with the action of the vector field on the function, so
there is no danger of misunderstanding. However, with respect to k-forms invariance
we deal with the Lie derivative. Let X be a differentiable manifold, v 2 TX a
differentiable vector field on X , and ! 2 ˝kT

�X a differentiable k-form defined
on X (Sect. 4.6).

Definition 29. ! is an invariant k-form of v if its Lie derivative has the property
v.!/ D 0.

Sometimes an invariant form is also called constant of motion. The invariant form
! of v has the property that it is constant along the integral curves of v. That is

@F �� .!/
@�

D 0; (4.27)
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for any flow box .V; a; F�/ of v. An invariant form ! has a series of important
properties:

1. On any oriented, compact k-dimensional submanifold Y � X with boundary @Y
we have the identity Z

@Y

F �� ! D
Z
@Y

!; (4.28)

for any � of any flow box in Y . In other words, an invariant form, considered a
volume form, conserves the volume associated with a submanifold of the same
dimension.

2. The exterior differential d! is also invariant.
3. All interior and exterior algebraic operations between invariant forms of v, or

between invariant forms and v are also invariant forms of v (for a list of such
operations see Sect. 4.6). More general, a set of invariant forms of v form a
subalgebra of ˝kT

�X , closed under the interior and exterior operations (i.e.,
d;^;|).

4. The Lie derivative v.d!/ is closed.

4.8 Poincaré Lemma

This section needs the elements of homology introduced in Sect. 2.2. It is also
related to Sect. 3.1.4 where we emphasize the importance of this lemma for compact
boundaries representation formulas, and especially for the generalized Stokes
theorem (3.7).

Theorem 8. If the manifold M is contractible to a point, then all closed forms on
M are exact.

A space is contractible is there is a deformation homeomorphism that contracts m
to one of its points. A closed form ! is a differential form with the property that
d! D 0. An exact p-form � 2 ˝p has the property that there exists a .p � 1/-form
 2 ˝p�1 such that d D �. This lemma is a generalization of the fact that on
simple connected domains a total exact differential is integrable, and its path integral
does not depend on the path. For example in R

3 the Poincaré Lemma is the cause
for the existence of the following important vector analysis relations

r � r˚ D 0; r � .r � V / D 0;

r � V D 0!; 9˚; V D r˚; r � V D 0! 9W ; V D r �W :

For example, in the classical real analysis on R
3 we can write the De Rham

sequences as follows
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˚

0 � form
dDr�����! r˚

1 � form
dDr������! r � .r˚/D0

d2D0
v

1 � form
dual vector

dDr������! r � w
2 � form

dDr������! r � .r � w/ D 0
d2D0

V

2 � form
dDr������! r � V

3 � form
:

(4.29)

4.9 Fiber Bundles and Covariant Derivative

The general idea is to decompose a topological space or differentiable manifold
E , called total space, in a Cartesian product. If E is inherently twisted this
decomposition is only possible locally and we call this space a fiber bundle. Hence
a Cartesian product is a trivial bundle. The general definition is the following
[158, 306].

Definition 30. A a fiber bundle E is a collection E.X;F; �;G/ as follows:

1. E;X;F are a topological spaces called: the bundle (or total) space, the base
space, and the standard fiber. The map � is a surjection � W E ! X called
canonic projection.

2. G is a topological group of transformation homomorphisms acting on F and
called the structure group.

3. There is a family of coordinate neighborhoods .U˛; ˚˛/ 2 U, with U˛ open
sets covering X , and ˚˛ W U˛ � F ! ��1.U˛/ homeomorphisms, such that
�˚˛ D Id X .

4. The set of all˚˛ı˚ˇ D g˛;ˇ.x/ (called transition functions) for any fixed x 2 X ,
is homeomorphic with G.

The way the coordinates are assigned to a fiber F at a point x 2 X is handled
by the structure group of homeomorphisms of F . Nevertheless, on the top of any
coordinate neighborhood ��1.U˛/, when we move along the fiber, we actually stay
on the same base point x. The inverse image ��1.x/ D Ex is called the fiber at x.

In other words a fiber bundle is a space E which can be projected onto another
(simpler) space X , which is already partitioned in open coordinate neighborhoods.
Locally,E can be expressed in terms of coordinates inX and coordinates in the fiber
F . The total space looks locally like a simple direct product between a coordinate
neighborhood and the fiber. However, globally this is not true in general. The maps
U˛�F are glued together (where the coordinate neighborhoods overlap) in different
ways acrossX . The gluing maps takingU˛�F to Uˇ�F are the transition functions
g˛;ˇ.x/. Thus, the structure group controls the gluing operations between local parts



58 4 Vector Fields, Differential Forms, and Derivatives

of the total space of the fiber bundle. The definition of the fiber bundle equally
works if the spaces E;X;F are differentiable manifolds, and the group G to be a
Lie group.

A cross-section in a bundle is a differentiable injective map � W X ! E so
that �� D Id X . A cross-section is in a way a generalization of the graphic of a
function defined on the base space with values in the fiber bundle. Different from a
regular graphic, a cross-section takes different values at different points x 2 X in
different spaces, namely homeomorphisms of the fiber.

Usually, in physics and geometry books the traditional example of fiber bundle
is the Möbius band E.S1; Œ0; 1	; �;O.2;R//, [235, 306], namely a compact two-
dimensional manifold based on a circle which locally is R

2 but globally is not a
cylinder. We present here a nontraditional example of fiber bundle. We define the
total space Ew as the set of all words 2 Ew spoken on Earth now, and we are
interested in two features: the meaning and the language to which a word belongs.
However, Ew is not the Cartesian product of the set of all meanings Fmean, and
the set of all languages Xlang because languages and meanings have different
structures. Indeed, the subsets of meanings for different languages are different for
different cultures, so meaning and language combine in a twisted way. The base
space isXlang and the projection� W Ew ! Xlang is defined by associating for any
word a unique language. The fiber Fmean is the space of all possible meanings of
all possible concepts. The local fiber ��1.language/ is the set of words of different
meanings spoken in a given language. The structure group acting on Fmean is how
the structure of meanings changes from language to language. Let us choose an open
set U˛ � Xlang of “related” languages. Then ��1.U˛/ is the set of words spoken in

this family of related languages. The mapping ˚˛ W ��1.U˛/ ! U˛ � Fmean
is defined by associating to each word a unique meaning, i.e., the map word
! .language;meaning/. The structure functions g˛;ˇ are the dictionaries needed
at the points where two different spoken languages overlap. A cross-section in Ew
is a rule by which we associate to any word from each language a meaning, and
a connection would be a way to associate to all words the same meaning. The
covariant derivative at German2 Xlang in the direction English would be to find
out how words of the same meaning change between these two languages.

Definition 31. The fiber bundle E.X;Vn.R/; �;GL.n;R// where Vn.R/ is some
n�dimensional real vector space, andGL.n;R/ is the general (real) linear group, is
a vector bundle if any x 2 X has an open neighborhoodU.x/ and a diffeomorphism
� W U.x/�Vn.R/! ��1.U.x// which is an isomorphism between Vn.R/ andEx .

In other words any local fiber Ex is isomorphic to the standard fiber vector space
F D Vn.R/, and the corresponding isomorphisms depend smoothly on x in the
base space. A typical example of vector bundle is the tangent bundle T˙ of a
parameterized differentiable surface ˙ in R3. The base space is the surface itself,
and the tangent bundle is the set of all tangent vectors at all points of the surface.
The projection is the assignment for each vector of its initial point. The fiber at
x is the tangent plane at x and is a topological vector space. Choosing a unique
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representative F D R
2, linear correspondences Ex ! F can be constructed, but

not uniquely. In this case the structure groupG is the full linear group operating on
F . A cross-section here is just a differentiable vector field over the surface.

4.9.1 Principal Bundle and Frames

Many differential geometry objects originate directly for the theory of Lie groups
and algebras. In the following g will represent an n-dimensional Lie algebra
associated to the Lie group G, and A;B; � � � 2 g. A function is called left invariant
if it commutes with the left group translations, or with their adjoint representation.
In a Lie algebra we can define two important objects which later on will become
handy in the definitions of vector bundles and connections [158]. We introduce the
property.

Definition 32. A left invariant 1-form! defined on g fulfils the equation of Maurer-
Cartan

.d!IA;B/ D �1
2
.!I ŒA;B	/ (4.30)

for any A;B 2 g,

see also (4.26). Then, we have

Definition 33. A canonical 1-form � defined on G is a left invariant g-valued 1-
form uniquely determined by the invariance relation .� IA/ D A.

As a consequence, if fe1; : : : ; eng is a basis for g we can write

� D �iei ; d�i D �1
2
C i
jk�

j ^ �k; (4.31)

where Œe i ; ej 	 D Ck
ij ek; k D 1; : : : ; n define the structure relations (constants).

A Lie groupG can act on a manifold and induce orbits, see Sect. 2.3. However, its
Lie algebra g is “local”, and it cannot act at different points on the manifold like G
does, except if the manifold is G itself. In order to globalize this locality we need to
enrich the structure of the manifold and make it a fiber bundle. In a fiber bundle there
is more “freedom”, and we will introduce vertical and horizontal displacements by
using the covariant derivative, and the connection form, respectively.

Definition 34. A principal bundle over the “base” space X with “structure” group
G is a fiber bundle P.X;G/ on which G acts freely (on the right) and X D P=G.

We note that we simplified the notation of a fiber bundle and mention in the
parenthesis only the base space and structure group. Every fiber ��1.x/ of a
principal bundle is diffeomorphic to G, and actually the base space is just the
space of all orbits of the action of G on P . For any element A 2 g we can
construct a fundamental vector field A� W X ! TX defined by 8x0 2 X;A� D
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d.etAx0/=dt 2 Tx0X , that is the vector field tangent to the one-parameter Lie
subgroups generated by A. The fundamental vector field is tangent to each fiber
at each point of P . The best example of principal bundle is the bundle of linear
frames (or simply frames) over an n-dimensional manifold X . It is the principal
bundle FX D P.X;GL.n;R// which consists of ordered bases in TxX defined at
each x, namely linear frames.

Theorem 9. If dimX=n a linear frame v 2 FX can be also understood as a linear
mapping of some canonical basis of a vector space R3 in TX , i.e. u.ei / D X i ; i D
1; : : : ; n.

Moreover, by using the natural inner product of vectors in R
n, we define the bundle

OFX D P.X;O.n;R// called bundle of orthonormal frames over X .
The bundle of frames explains how the frames at a given point of X change

under the action of a group, but does not relate this to the possible change of the
point x itself under the action of the group. In order to combine these two actions, if
the manifold X is n-dimensional we need the concept of associated vector bundle
to the principal bundle.P To construct it we begin with P.X;G/ and use a finite
dimensional vector space called standard fiber F (F in isomorphisms with some
R
n). The new vector bundle is denotedE.X;Rn; �E;GIP/, its canonical projection

is �E , and its space is nothing but the quotient space E D .P �F /=G. The tangent
bundle TX D S

x2X TxX is the associated vector bundle to the principal bundle
FX of frames. We illustrate this construction in (4.32).

Space of frames overXW Space of directions inXW
FX D P.X;GL.n;R// R

n

�����! TX D E.X;Rn; GL.n;R/; �E IFX.X//

�

??y �E

??y
X X

(4.32)

Now Theorem 9 can be better understood; the bundle P D FX consists in frames,
the bundle E D TX consists in vectors placed in frames modulo action of G. The
local character of each such element is given by the canonical projections. However,
the manifold generated by a fixed frame (at a point) and al possible vectors (at the
same point) is a fiber in TX and it is isomorphic to the generic fiberF . So, any frame
u 2 FX generates an isomorphisms ��1.x/ 3 u W F ! ��1E .x/, that is, u gives
to any abstract vector from FX a set of components and places it in a frame. The
frame u maps this abstract vector into the tangent space TX and gives it geometrical
meaning. This construction can be seen in parts of Fig. 4.10. If instead of tangent
spaces we use affine spaces constructed upon the tangent spaces, the vector bundle
of linear frames becomes the bundle of affine frames.

The quintessence of the vector/frame duality can be presented in a nut-shell by
introducing the 1-form called the canonical form � 2 ˝1.FX/ on the principal
bundle of frames FX with values in the standard fibre F (see how the canonical
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form was introduced for a Lie algebra in Definition 33 and (4.31)). The action of the
canonical form on a vector X 2 T FX is .� IX/ D u�1 ı d�.X/ 2 F .

If X is a n-dimensional affine space, then a point x 2 X is represented by
a position vector r D xiei , whose components are given in a certain frame
feigiD1;:::;n D u 2 ��1.x/ 2FX. The question is: how does this position vector
changes with dr by infinitesimally moving the frame. The answer is given by the
canonical form, that is by

dr D .� IX/ D .� i ;X/ei ; (4.33)

where X 2 TuFX describes this infinitesimal motion of the frame in the tangent
space to the bundle of frames.

4.9.2 Connection Form and Covariant Derivative

The bundle of frames does not provide a recipe of how frames transform when the
base point moves through the base space. In order to provide such a law we need an
extra construction which is the connection on X , see Fig. 4.9. A connection should
provide the infinitesimal transformation of a point in the vector bundle when we
perform an infinitesimal move in the base. Since the infinitesimal transformations
are described by vectors in the tangent space, a connection should map a point (to

TX

Pro
jec

tio
nLift

ing

VYTY
U  connection

Y
Fiber bundle

X
Particle labeling space

Fig. 4.9 From a base space X we can lift to the tangent bundle TX , and to any other fiber bundle
Y . The resulting bundle can be also lifted to its tangent bundle, and there we can define the vertical
space V Y and the connection U



62 4 Vector Fields, Differential Forms, and Derivatives

be moved) in the vector bundle to a vector in the tangent bundle to the vector bundle
(how this point transforms), map depending on a vector in the tangent space of the
base (the direction of moving).

In the following we introduce the connection in a principal bundle P.M;G/.

Definition 35. A connection � in P is the assignment of an G-invariant subspace
Hp G TpP , for any p 2 P and depending differentiable on p, called horizontal
subspace.

Let us note that a connection does not see the base space, unless specified otherwise:
it only works in the tangent space to each fiber of P . The orthogonal complement
of Hp is called vertical subspace, is denoted by Vp, and we have Tp D Vp ˚Hp .
Any vector V 2 TpP can be uniquely decomposed in two orthogonal components
V D vV C hV each in the corresponding sub space vV 2 Vp; hV 2 Hp .
A horizontal lift of a vector field on X is the unique horizontal vector field on P
such that the differential of the canonical projection on d� W TP ! TX maps it to
the initial vector field. Any parameterized curve in X , and any point p 2 P provide
a lift of this curve to a unique horizontal (with horizontal tangent vectors) curve in
P , to which it canonically projects. As an example, imagine P as the orthonormal
frame bundle over R3, and a curve in this space. At any point in the base space we
can choose a variety of frames, any frame from the local fiber. But there is only
one such frame which is also a Serret-Frenet frame for that curve, and we denote
it p0. When we move along the curve in the base space, this Serret-Frenet frame
transforms from fiber to fiber in a “parallel” way, following the lifted image of the
curve.

The existence of a connection on a principal bundle P (the Cartan connection)
allows us to “flag” elements of P and watch their evolution (when we move in the
base space along some curve) according to a certain imposed law called parallel
displacement. Obviously, any parallel displacement can only be defined along a
certain curve in the base space. We consider x0 the starting point of a parameterized
curve � � X , and its local fiber ��1.x0/ � P . Through any point p0 in this fiber we
can build a unique horizontal lift of � which canonically maps back on � . When we
move to a different point on � the intersection between the fiber over this new point
and the horizontal lift of � through p0 is a unique point of this new fiber. Doing this
transport now for various p0 2 ��1.x0/ it is like we map all points p0 of a fiber into
all the points of another fiber, and this map is parameterized by the base curve. This
mapping is actually a fiber isomorphisms, and it is called the parallel displacement
of the fibers along the given curve.

One of the most important results of differential geometry is that to each
connection we can associate a 1-form on P , g-valued as follows

Definition 36. A connection form ! of a given connection � is a differentiable 1-
form on P with values in g such that for each V 2 TpP we have .!IV / D fA 2
g j A� D vXg.
In other words, a connection form maps a vector field V on P to a Lie algebra
vector whose fundamental vector field is exactly the vertical component of V . In a
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physicist language a connection form is a vector field defined on a bundle of frames
such that its directional derivatives in any directions provide one-dimensional Lie
algebras of symmetry (flows) in the vertical component of those directions.

Definition 37. Let � be a differentiable r-form on P . We call the .r C 1/-form
D� exterior covariant derivative with action on vector fields of P given by D� D
.d�/PrH , where D is the exterior derivative (see definition 23) and PrH is the
projection on the horizontal space of the vector fields.

The exterior covariant derivative of the connection form is called curvature form
D! D ˝ , and we have the structure equation

d! D �1
2
Œ!; !	C˝; (4.34)

acting on any pair of vector fields on P . The proof is immediate and it is based on
(4.25), and on the vertical/horizontal direct sum properties. A connection is flat if
and only if its curvature form is null. In a similar manner we define the torsion form
� D D� and we have another structure equation [158, 306]

d� D �1
2
Œ!; �	C�: (4.35)

The canonical form � , the connection form !, the curvature form ˝ , the torsion
form�, and their exterior covariant derivatives fulfil two important relations

D� D ˝ ^ �; D˝ D 0; (4.36)

which are nothing but the Bianchi identities, (4.55), (4.56), expressed in the
differential forms language.

A connection defined in the bundle of linear frames is a linear connection, and if
it is defined in a bundle of affine frames it is an affine connection. On any manifold
of positive dimension there are infinitely many affine connections. The choice of
an affine connection is equivalent to prescribing a way of differentiating vector
fields which satisfies several reasonable properties (linearity and the Leibniz rule).
This yields a possible definition of an affine connection as a covariant derivative or
(linear) connection on the tangent bundle. A choice of affine connection is also
equivalent to a notion of parallel transport, which is a method for transporting
tangent vectors along curves. This also defines a parallel transport on the frame
bundle. In the bundle of orthonormal frames we have a metric induced by the action
of the orthogonal group. So, we define a Riemannian connection (or Levi-Civita
connection) a linear connection with zero torsion.

In order to build the covariant derivative of a cross section ' W X ! TX in
the X 2 TX direction we have to lift this last vector to its horizontal component
X� 2 H � TFX . Following the projections we have FX 3 u ! x D �.u/ !
'.x/ which actually defines a cross section in FX . So, we can apply the directional
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Fig. 4.10 Pictorial interpretation of the covariant derivative. We have the principal bundle of
frames FX and its projection � on top of the manifold X , and the tangent bundles to each of
these: TX , and TFX , respectively, with their projections �E; � 0. We also represented the local
fibres. At TXx D ��1

E .x/ 2 TX we have two vectors: the arbitrary direction X , and the vector
cross section '. The first one is horizontally lifted in TFX as X� and then acts upon ' generating
its covariant derivative rX�, as a new cross section (dashed line) in TX

derivative X�.'.x.u/// D rX', and this is the requested covariant derivative, see
Fig. 4.10. Basically, it is the horizontal component of the directional derivative.

In order to express the connection form ! and consequently its covariant
derivative in components we first need to define a canonical basis fei giD1;:::;n in
the standard fiber F � R

n, and a canonical basis fE ij gi;jD1;:::;n for the Lie algebra
g.n;R/. Since the canonical form � is R

n-valued, and the connection form ! is
g.n;R/-valued we have

� D �iei I ! D !ijE ij ;

while the two structure (4.35), (4.34) can be written now

d�i D �!ij ^ �j C�i

d!ij D �!ik ^ !kj C˝ij : (4.37)

Obviously, for Riemannian connections on manifolds imbedded in flat spaces the
structure equations reduce to

d� D �! ^ �; d! D �! ^ !; (4.38)



4.9 Fiber Bundles and Covariant Derivative 65

with the simple interpretation, [299], that the canonical form accounts for the
position changes at a change of frame, and the connection form accounts for the
twisting of the frames when we move the point

dr D �iei change of position;

dei D !ij ej change of frame: (4.39)

Let us assign local coordinates in the n-dimensional space X in the form x $ .xi /.
The coordinates in the tangent bundle are covariant vectors @=@xi , a frame in FX is
described by the vector fields Xi

j .x/@=@x
i , and the local coordinates in the bundle

of frames are .xi ; Xi
j /, namely a point and a basis of n-vector fields. Consequently,

a frame u 2FX is represented by the components of the basis fields u$ Xi
j which

is exactly the n � n linear isomorphism u from F onto TxX . The canonical 1-form
and the connection 1-form can be written

� D .X�1/ij dxj ei ; (4.40)

! D Œ.X�1/ikdXk
j C .X�1/ik� k

mlX
l
j dx

m	E
j
i ; (4.41)

where the connection coefficients � are the Christoffel’s symbols. The basis vectors
@=@xj in TX can be horizontally lifted to

�
@

@xj

��
D @

@xj
� � i

jkX
k
l

@

@Xi
l

;

that is we subtract from the tangent vector its vertical component, which is
represented by its connection part (! or � ). The covariant derivative acts on the
basis (covariant) vectors as follows

r@=@xj @

@xi
D � k

j i

@

@xk
: (4.42)

Equation (4.42) and the linearity of the covariant derivative direct us to the
coordinate expression of the covariant derivative of a vector field V D Vi@=@x

i

defined on X with respect to the directions of the local frame

rj Vi D @Vi

@xj
� � k

ij Vk: (4.43)

We illustrate these constructions with an example. Let us have a unit radius
spherical surface X D S2 embedded in R

3 with coordinates x1 D � 2 Œ0; �	; x2 D
� 2 Œ0; 2�/. The tangent space is TS2 generated by the basis vectors fe� ; e�g. The
bundle of the orthonormal frames OS2 has coordinates .�; �; OR.˛// where the last
one represents an element of the Lie structure groupO.2;R/, i.e. a rotation of angle
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˛ of the tangent frame around the normal to the sphere. The covariant derivatives
have the form

re� e� D 0; re�e� D e� cot �; re�e� D e� sin � cos �;

and the horizontal lift of the basis vectors is

e�� D e� � n cos �; e�� D e� � n sin � cos �:

We can check this by noticing that at � D �=2 the covariant derivatives cancel,
as well as the vertical projections, which is correct since this equatorial circle is
actually a geodesic and performs a parallel transport for the tangent vectors. If we
want to find, for example (see [299] pp. 66), how is parallel-transported a tangent
vector field we can choose a vector which is e� at an initial point, and we transport it
along a parallel to the sphere at � D �0, parameterized by t 2 Œ0; 2�/. The resulting
parallel-translating vector is

V .t/ D sin.�0/ sin.t cos �0/e� C cos.t cos �0/e�; re�V D 0:

4.10 Tensor Analysis

In the following we present in more details the covariant derivative concept in an
Euclidean manifold. Let En be an n-dimensional Euclidean space (loosely speaking
this is an inner product space that has forgotten which point is its origin) and two
orthonormal bases fei giD1;:::;n and ff j gjD1;:::;n, fulfilling the linear transformation
f j D ajkek; ajka

t
ki D ıj i , where superscript t represents the transpose. To any

point p 2 En we associate the position vector and components r D xiei D Nxjf j

with the corresponding transformation Nxj D ajkx
k . In an Euclidean space, for

linear transformations, there is no difference between contravariant and covariant
components, so there is no specific rule for placing the indices in lower or higher
position. Any n-uple of numbersAi that transforms under the same law NAi D aijAj
represents an affine vector. The definition can be extended by direct linear product
to affine tensors of any rank in En.

Fluids and curved surfaces in motion require for spaces differential manifolds
instead of just Euclidean spaces. When generalizing the above definitions to
differentiable manifolds, and to nonlinear coordinate transformations

Nxi D Nxi .x1; x2; : : : ; xn/; (4.44)

more refinements should be introduced to assure that the differentials and derivatives
of vectors and tensors are still vectors and tensors. However, for intuitive description
we use some times the background of an Euclidean space.
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We defined in Sect. 4.1 what is a transformation of coordinates in an
n-dimensional differentiable manifold X . In the followings all the transformations
will be considered differentiable functions. We define a tensor field of type .r; s/
(i.e., r-times contravariant and s-times covariant) at a point p 2 X of coordinates
x, a set of nrCs differentiable functions T .r;s/ D T .x/

i1;i2;:::ir
j1;j2;:::js

that transform under
a change of coordinates (4.44) by the law

NT . Nx/i1;:::irj1;:::js
D @ Nxi1
@xk1

� � � @ Nx
ir

@xkr

@xm1

@ Nxj1 � � �
@xmr

@ Nxjs T .x/
k1;:::kr
m1;:::ms

: (4.45)

Like in the case of vector fields, a tensor field generically denoted T .x/ is singular
at x if T .x/ D 0. For tensors of order equal or lower than 2 we can use for the
transformation a.x/! A. Nx/ the matrix notation

A.1;0/ D A D Ja; A.0;1/ D J�1a;
A.2;0/ D JaJ t ; A.0;2/ D .J�1/taJ�1; A.1;1/ D JaJ�1; (4.46)

where

J D J i:j D
@ Nxi
@xj

; J�1 D @xi

@ Nxj
is the transformation matrix, and superscript t means transposed. Note that J in
components is nothing but the differential d Nx.x/ of the coordinate transformation
(4.44).

Definition 38. An n-dimensional differential manifold X endowed with a (0,2)
type nonsingular tensor field is called Riemannian manifold.

This differentiable tensor field is called Riemannian structure or Riemannian metric
on X , and it is usually denoted by g.

The problem is that the differential of a tensor (vector) field is not anymore a
tensor field. One needs to introduce a specific type of differentiation which preserves
the tensor character, and this happens through the affine connection introduced in
Sect. 4.9.2. The differential manifold X endowed with such a structure is now an
affine-connected space and the new differential is called the covariant differential
(or the absolute differential) of a vector field A

HAj D dAj C � j

ikA
idxk; (4.47)

where � j

ik are the components of the affine connection (or simply connection
coefficients), see (4.42), (4.43). The connection coefficients transform at a change
of coordinates such that the quantities

�
j

ik � � j

ki
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form the component of a tensor of type .1; 2/ called torsion tensor. Obviously,
a symmetric connection has zero torsion. Equivalently, a covariant vector has the
covariant differential

HAj D dAj � � i
kjAidx

k: (4.48)

As we derived in Sect. 4.9 the connection allows us to introduce the covariant
derivative with the action on vector fields

rkAi D @Ai

@xk
C � i

jkA
j (4.49)

rkAi D @Ai

@xk
� � j

ikAj ; (4.50)

such that transforms a tensor of type .r; s/ into a tensor of type .r; s C 1/.
A direct way to build a connection in a Riemannian manifold, that is on a

manifold .X; gjk/ endowed with a .0; 2/ type of symmetric nonsingular tensor field
gij .x/ of class at least C1.X/, is to obtain the Christoffel’s symbols of the first kind
from the metric

�
.g/

ijk D
1

2

�
@gkj

@xi
C @gj i

@xk
� @gik
@xj

�
; (4.51)

and then calculate the Christoffel’s symbols of the second kind

�
.g/i

jk D gli� .g/

jlk : (4.52)

The Christoffel symbols of the second kind form the components of an affine
connection in X , with respect to the .0; 2/ type of symmetric tensor field g. As
a direct consequence we have

rkgij D rkgij D 0; (4.53)

which is nothing but Ricci’s Lemma for Riemannian manifolds. The Christoffel
symbols and their derivatives (second-order covariant derivatives) generate two new
tensors, namely the curvature tensor Kj

lhk (sometimes Kjlhk D gjsK
s
lhk is called

curvature tensor) and the torsion tensor Slhk , from the relations

rkrhAj � rhrkAj D Kj

lhkA
l � SlhkrlAj (4.54)

and

K
j

lhk 

@�

j

lh

@xk
� @�

j

lk

@xh
C � j

mk�
m
lh � � j

mh�
m
lk ;

Slhk 
 � l
hk � � l

kh:

The sum of the two terms in (4.54), considered as a linear operator acting on A, is
the so-called Riemann–Christoffel tensor. When an affine connection is generated
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from Christoffel symbols the torsion is zero, yet the second-order covariant deriva-
tives still does not commute. These commuting relations are called Ricci identities
[10,181]. In Riemannian manifolds (Definition 38), where the affine connection and
the Christoffel symbols are the same quantities, the (1,3) type curvature tensorKj

lhk

is denotedRjlhk , and the (0,4) curvature tensorKjlhk is denotedRjlhk , respectively.
In this case one can write two important relations called the Bianchi identities

Rjlhk CRjklh CRjhkl D 0; (4.55)

and
rmRjlhk CrkRjlmh CrhRjlkm D 0: (4.56)

The most important application of the covariant derivative is the generalization of
the “parallel” transport of vectors along curves. If A is vector field, and C a curve
of equation xi .t/, both of class C1.X/, the field is parallel transported along C if
rAj if

dAj

dt
C � j

hkA
j dx

k

dt
D 0: (4.57)

By construction, the parallel transport of a given vector field is not unique unless
�
j

hkA
h Pxkdt is an exact differential. Consequently one can say that there is no

absolute parallelism in general. For a complete study of these differential tools we
recommend any book on differential geometry which presents the calculations also
in coordinate form. For example a good selection of monographs that complete one
another could be given by [10, 19, 33, 68, 181, 235, 242].

4.11 The Mixed Covariant Derivative

This section is in direct relation with the Sects. 6.3 and 6.5. In this section we
treat the general n-dimensional case, without going into much details. In Sect. 6.3
we investigate specifically two-dimensional surfaces embedded in R

3 and we go
deeper in consequences for the surface differential operators, which themselves are
analyzed in detail in Sect. 6.5.

The covariant derivative introduced in (4.49) and (4.50) does not work in the
case of mappings between manifold of different dimensions, like in the case of
a two-dimensional surface embedded in a three-dimensional space. For example,
M � N is a submanifold of dimension m of the manifold N of dimension n > m.
The submanifoldM is an embedding, defined by the equations xi D xi .u˛/, where
u˛ are the local coordinates in N , and xi are the local coordinates in M . If we have
m D n � 1, then M is a hypersurface in N . We introduce the Jacobian matrix
associated to the mappingM ! N by

Bi
˛ D

@xi

@u˛
; i D 1; : : : ; n; ˛ D 1; : : : ; m: (4.58)
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In both these manifolds we can introduce transformations of coordinates indepen-
dently, namely Qxi D Qxi .xj / and Nu˛ D Nu˛.uˇ/. The B matrix is a contravariant
tensor relative to the change of coordinates in N , and it is a covariant tensor relative
to the change of coordinates in M . In addition, we can always define a tensor field
Y i˛ .u/ onM which is also of .1; 0/ type of tensor with respect to N , and .0; 1/ type
with respect to M . However, neither the derivatives nor the covariant derivatives of
Y i˛ are tensors. To construct a tensor quantity by differentiation from such a mixed
object, we need to introduce the mixed covariant derivative. That is

erˇY j˛ 
 @Y
j
˛

@uˇ
� � �

˛ ˇY
j

� C � j

h kY
h
˛ B

k
ˇ ; (4.59)

where � are the Christoffel symbols of the corresponding manifolds (4.52).
The mixed derivative (4.59) is tensor field of type .1; 0/ with respect to the
transformation of coordinates in N , and tensor field of type .0; 2/ with respect to
the transformation of coordinates in M .

We can apply the mixed covariant derivative to the B matrix, and the resulting
tensor is of some importance in the geometry of the embedded surface. We define
the mixed tensor of .1; 0/� xi type and .0; 2/� u˛ type as

H
j

˛ ˇ D erˇBj
˛ 
 rˇBj

˛ � � �
˛ ˇB

j

� C � j

h kB
h
˛B

k
ˇ ; (4.60)

where the two � are Christoffel symbols, each defined in another manifold (being
Riemannian, in the two manifolds the Christoffel symbols coincide with the affine
connection). With the help of these tensor one can enunciate the famous Equation
of Gauss

K˛ˇ�� D KljhkB
l
˛B

j

ˇB
h
�B

k
� C ajh.H j

˛ �H
h
ˇ � �H j

˛ �H
h
ˇ � /: (4.61)

This theorem expresses the curvature tensor of the subspace M in terms of the
curvature tensor of the embedding space N , and the mixed covariant derivatives of
the Jacobian matrix. For hypersurfaces m D n � 1, there is a great simplification
of (4.61), because one can define a unique normal at each point of M . For such a
situation one can also define a 2-form called the generalized second fundamental
form on M . For n D 3 case, see Chap. 6. This form ˘˛ˇdu˛duˇ is defined from

erˇBj
˛ D ˙Nj˘˛ˇ; (4.62)

where Nj is the normal to M in xj coordinates. Consequently, for the Riemannian
hypersurfaces case Equation of Gauss becomes

K˛ˇ�� D KljhkB
l
˛B

j

ˇB
h
� B

k
� C˘˛�˘ˇ� �˘˛�˘ˇ� : (4.63)

The second fundamental form is responsible for the principal directions in M , i.e.,
its eigenvectors. The coefficients of the characteristic polynomial associated to this
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eigenvector–eigenvalue problem are related to the curvatures of M . For example,
the coefficient of the free term in the characteristic polynomial det.˘ˇ

˛ � �ı˛ˇ/ D 0,
denotedH.1/ is the mean curvature and the coefficient of the highest power, denoted
H.n�1/ is the Gaussian curvature. We also mention the relations

H.n�1/ D .�1/n�1 det˘˛
ˇ D .�1/n�1

det˘˛ˇ

deta˛ˇ
: (4.64)

For the dynamics of fluid surfaces case, n D 3, we have

H.2/ 
 K D det˘˛ˇ

deta˛ˇ
; (4.65)

and since the only nonzero component of K˛ˇı� is K1212, we have

K D K1212

deta
: (4.66)

4.12 Curvilinear Orthogonal Coordinates

The expression of the differential operators in arbitrary curvilinear coordinates is
the best illustration of how the covariant derivative works. A curvilinear coordinate
system is defined by three regular (differentiable and locally invertible) transforma-
tion functions of the Cartesian coordinates of a three-dimensional Euclidean space
xi .q˛/ W D � R

3 ! C � R
3, i; ˛ D 1; 2; 3. We define as Lamme coefficients the

functions

H.q/˛ D
ˇ̌
ˇ̌ @r
@q˛

ˇ̌
ˇ̌ D

vuut 3X
iD1

�
@xi

@q˛

�2
; (4.67)

and the metrics coefficients

g˛;ˇ D @r

@q˛
� @r
@qˇ

; (4.68)

and we note that g D det.g˛;ˇ/ D Q3
˛D1 H2

˛ and H˛ D pg˛˛ without summation.
The unit tangent vectors to each of the three coordinate curves r.q˛/ are

e˛ D @r

@q˛

ˇ̌
ˇ̌ @r
@q˛

ˇ̌
ˇ̌�1 D 1

H˛

@r

@q˛
w.s. (4.69)

The curvilinear coordinates are orthogonal if at each point of space g˛ˇ D 0 for
˛ ¤ ˇ. If the curvilinear coordinates are orthogonal we have at each point of space
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two orthonormal frames: the Cartesian frame fei g and the curvilinear frame fe˛g,
so any contravariant vector defined in the space A.r/ 2 TR3 has two sets of
components

A D Aiei D A˛e˛;

with the transformation law

Ai D @xi

@q˛
A˛:

The same definition occurs for covariant vectors A D .Ai /. With the definition of
the unit vectors, the Lamme coefficients can be understood as cosines of the angles
between the Cartesian and new basis vectors [10].

We want to make a comment. In many works, when one changes the coordinates,
especially in abstract spaces, it may happen that the new coordinates are not
normalized, i.e., the new basis is not normalized like in (4.69). In this situation,
in addition to the geometrical separation in contravariant and covariant vectors,
A˛ D g˛ˇA

ˇ, we need to make distinction between “normalized” (or physical)
components (components defined in a orthonormal frame) and “not normalized”
components (defined in a frame which is just orthogonal). We have the relations
A˛norm D H˛A

˛ and Anorm;˛ D H�1˛ A˛ without summation. It is interesting
to note that the normalized components lose their contravariant/covariant identity.
Indeed, A˛norm D A˛;norm. There are reasons for using one or the other definition:
normalized components are more physical from the point of view of units, but
they do not form anymore the components of a contravariant/covariant vector. For
example the gradient in curvilinear coordinates

.r˚/˛ D @˚

@q˛
;

is a covariant vector, while its “normalized” components

.r˚/˛;norm D 1

H˛

@˚

@q˛
;

do not form a covariant vector anymore. There is a certain deal of confusion
from these conventions. For example, the divergence of a contravariant vector in
nonnormalized components reads

r �A D 1p
g

@

@q˛
.
p
gA˛/;

and it is a scalar field. The same divergence can be expressed in terms of the
normalized coordinates (like it is defined for example in [10, 33])
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.r �A/norm D 1p
g

@

@q˛

�p
g

H˛

A˛norm

�
;

and it is not any more a scalar, and the same happens with the curl, etc. The
explanation is that by normalization we apply the action of a dilation local group
of transformations, which (being local) interferes with the contravariant/covariant
character.

Gradient

The gradient of a scalar field ˚.r.q// is defined as the covariant derivative, and it is
a covariant vector

r˛˚ D @˚

@q˛
: (4.70)

Its contravariant components are

r˛˚ D g˛ˇ @˚
@qˇ
D 1

H2
˛

@˚

@q˛
w.s.: (4.71)

The normalized components of both covariant and contravariant gradient coincide
(though in this form they are not anymore the components of a vector), and these
are the components usually provided in mathematical physics books [10, 33]

.r˛˚/norm D .r˛˚/norm D 1

H˛

@˚

@q˛
; (4.72)

or in explicit component notation

.r˚/norm D
3X

qD1

1

Hq

@˚

@qq
eq; (4.73)

where ej are the local basis unit vectors.

Divergence

For any contravariant vector field A.r.q// the divergence is obtained by applying
the covariant derivative and contracting over the indices

r �A D r˛A˛ D 1p
g

@
p
gA˛

@q˛
: (4.74)

In terms of the local curvilinear frame divergence reads

r �A D 1

H1H2H3

3X
˛D1

@.V ˛HˇH�/

@q˛
; f˛; ˇ; �g 2 P3; (4.75)
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where P3 is the set of permutation of 3. Equally, for a covariant vector we have

r �A D g˛ˇrˇA˛ D 1p
g

@
p
gH2

˛A
˛

@q˛
: (4.76)

Both normalized and unnormalized components provide the same expression.

Curl

The curl is an absolute contravariant vector and it is defined as the skew-symmetric
linear combination of the components of the covariant derivative

.r �A/˛ D �˛ˇ�rˇA� D �˛ˇ� g�ırˇAı; (4.77)

where �˛ˇ� are the Levi–Civita symbols. In terms of the local curvilinear frame curl
reads

r �A D
3X

˛D1

1

HˇH�

�
@.A�H�/

@qˇ
� @.A

ˇHˇ/

@q�

�
e˛; fˇ; ˛; �g 2 P3: (4.78)

Laplacian

The Laplacian (also called Laplace–Beltrami operator) in curvilinear coordinates is
the contraction of the double covariant differentiated scalar

4˚ D g˛ˇr˛rˇ D 1p
g

@

@qˇ
.
p
gg˛ˇ

@˚

@q˛
/: (4.79)

For example, in spherical coordinates we have [33]

A D Arer C A�e� C A�e� I er D .sin � cos�; sin � sin �; cos �/I
e� D .cos � cos�; cos � sin �;� sin �/I e� D .� sin �; cos�; 0/:

(4.80)

The operators are

r˚ D @˚

@r
er C 1

r

@˚

@�
e� C 1

r sin �

@˚

@�
e�

r �A D 1

r2
r �A D 1

r2
@.r2Ar/

@r
C 1

r sin �

@.sin �A�/

@�
C 1

r sin �

@A�

@�

r �A D 1

r sin �

�
@.sin �A�/

@�
� @.A

�/

@�

�
er C

�
1

r sin �

@.Ar/

@�
� 1
r

@.rA�/

@r

�
e�
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C
�
1

r

@.rA�/

@r
� 1
r

@.Ar/

@�

�
e�

4˚ D 1

r2
@

@r

�
r2
@˚

@r

�
C 1

r2 sin �

@

@�

�
sin �

@˚

@�

�
C 1

r2 sin2 �

@2˚

@�2
: (4.81)

4.13 Special Two-Dimensional Nonlinear Orthogonal
Coordinates

For some practical applications one needs to build some special orthogonal coor-
dinates which provide the differential operators, or at least the solutions, to look
simpler. This chapter is a mathematical one, but we make an exception and give
here a physical, even experimental motivation: in a surface wave tank, or water
soliton tank the experimentalist faces the problem to generate a wave of a given
initial profile, some times it may be required to have even an initial soliton profile.
In principle this could be done by using conducting liquids (salted water, mercury)
and try to shape the initial surface by applying an electric field upon the liquid, then
turn it off and release the wave. To provide such help, we introduce the so-called
plane soliton coordinates (Fig. 4.11). They are defined implicitly by their coordinate
curves in the Euclidean plane .x; y/. For topological soliton shapes (tanh), we have
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Fig. 4.11 Soliton coordinates in 2-dimensions. The coordinate curves match soliton shapes. Left:
topological solitons represented by the tanh function. Right: Non-topological solitons represented
by the square of the function sech
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.x; y/! .˛; ˇ/

y˛.x; ˛/ D tanh.x/C ˛;

yˇ.x; ˇ/ D �x
2
� sinh.2x/

4
;

and for nontopological soliton shapes (sech), we have .x; y/! .
; �/

y
.x; 
/ D 

�
1C sech2

x




�
;

y�.x; �/ D �

2

�
1

2
cosh2

2x

�
C ln

�
sinh

�ˇ̌
ˇ̌x
�

ˇ̌
ˇ̌
��
:

4.14 Problems

1. Find what is the difference between the contravariant and covariant components
of a vector at an infinitesimal transformation of coordinates. Use for example a
model of an infinitesimal transformation in the form

x D q1; y D q2; z D q3 C �h.q1; q2/;

with 0 < �  1 and h is a bounded differentiable function. Prove that
A1 ! A1 D A1 C �hxA3 C O2.�/, etc. Find the g˛ˇ matrix, the determinant
g, and prove that the Christoffel symbols are in O2.�/. Prove that with respect to
the covariant derivative only the z component changes, and only the horizontal
derivatives are affected. In other words only the action of the parallel gradient on
normal components is affected.

2. We have a differential vector field v defined on an n-dimensional differential
manifold. Find the action of the Lie derivative on a contravariant tensor of rank
.k; 0/; k > 1with respect to v. Generalize to T .k;p/; kCp � n. Hint: Begin from
(4.19) and (4.20), and use T .2;0/ D T ij .@=@xi /.@=@xj /.

3. Prove that Œf v; gw	 D fgŒv;w	C f .v.g//w � g.w.f ///v.
4. Prove (4.23), (4.24).
5. Let r W U ! M be a parametrization of a Riemannian manifold M with

coordinates .u1; u2; : : : ; un/, and define a local basis in T �M by xi D @=@ui .
Show that the covariant derivative, and the Christoffel coefficients are entirely
determined if we know the values of the covariant derivative on these basis vector,
i.e. rxj xi .
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6. Starting from the spherical coordinates .r; �; '/ in R
3 we introduce the so called

dipole coordinates .a; b; '/ by the relations

a D r

sin2 �
; b D r2

cos �
; ' D ':

Prove they are non-singular and orthogonal coordinates (in what range of
parameters). Find the expression of the Laplace operator in dipole coordinates.
Find, as a physical application, the expression of the magnetic potential A

generated by a point-like magnetic dipole placed at the origin of the axes.
7. For the dipole coordinates defined above show that in the approximation r � a

(which is equivalent to the approximation r2=b << 1) the Laplace operator
becomes linear and has the form

4 � @2

@a2
C 4

a

@

@a
C b2

a6
@

@b

�
b2
@

@b

�
C 1

a2
@2

@'2
:

Show that the Schrödinger equation for a free particle in dipole coordinates, in
the above approximation, can be reduced by a simple conformal transform to the
Heun differential equation [199, 275].

8. Gaetano Vilasi Lemma. For two differential vector fields X ;Y on a Riemannian
manifold find a linear relation between the covariant derivative, the Lie derivative
and the exterior derivative of a 1-form.



Chapter 5
Geometry of Curves

In this chapter we introduce elements of the differential geometry of curves in an
Euclidean space with three dimensions. We begin with the Serret-Frenet equations
and their consequences and we devote a section on results related to closed curves.

5.1 Elements of Differential Geometry of Curves

In the following we use the traditional definition of a parameterized curve from
[46, 162, 299].

Definition 39. A parameterized differentiable curve is a differentiable (class Ck)
map r.u/ from the open real interval u 2 I D .a; b/ � R into R

3. If k D 1 the
parameterized curve is called smooth.

In the next chapters we will simply call the parameterized differential curves just
parameterized. Occasionally, we will use for the domain of a parameterized curve
I D Œ0; l	; l > 0, without any loss of generality. The set r.I / � R

3 is the trace of
the curve.

Definition 40. The point P D r.u/, u 2 I is a regular point if r 0.u/ ¤ 0. If all
the points of a curve are regular the curve is regular. A curve is simple if the map
r W I ! r.I / is an injection.

For example, a one-turn helix is a simple curve, but if it winds more than one turn it
is not simple anymore.

We consider a continuous family of parameterized differential curves denoted
r.u; ˇ/ where each curve of the family is parameterized by u 2 .0; umax/ � R,
and different curves in the family are assigned different values of the parameter
ˇ 2 R. Later on, this ˇ parameter will be associated with time, and the mappings of
curves for different values of ˇ will be associated with their deformation and motion
in time. Among different possible parameterizations of a curve, there is always

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 5,
© Springer-Verlag Berlin Heidelberg 2012
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one unique representative parametrization with important geometrical significance
called the natural parametrization along the curve. In Euclidean geometry, the
natural parametrization is accomplished by referring a curve to its arc-length as
a parameter. In order to obtain this special parametrization we define the metric on
the curve

g.u; ˇ/ D
3X
iD1

@xi

@u

@xi

@u
D ru � ru; (5.1)

where � represents the scalar, or dot product, and the subscript represents partial
derivative. The arc-length s of a curve is defined by

s.u; ˇ/ D
Z u

0

p
g.u0; ˇ/du0; (5.2)

and now we can use either .u; ˇ/ or .s; ˇ/ as coordinates for a point on the curve.
At every point of the curve we can define an orthonormal frame constructed by
the vectors: t;n;b called the unit tangent, the principal normal and the binormal,
respectively. This local orthonormal frame is called the Serret-Frenet trihedron
(or frame). These vectors are defined by the corresponding Serret-Frenet formulas

t D @r

@s
D g� 1

2
@r

@u

@t

@s
D �n

@n

@s
D ��t C �b

@b

@s
D ��n: (5.3)

In all these expressions, we mean by differentiation with respect to s, the partial
differentiation, i.e., @. /=@s 
 Œ@. /=@s	ˇDconts.. We note one important feature
of the parametrization by the arc-length: the derivative of the position vector with
respect to s is automatically normalized, jjtjj D 1, while the normalization of the
other two Serret-Frenet vectors is by construction. The two functions

�.s; ˇ/ D
ˇ̌
ˇ̌
ˇ̌
ˇ̌@t
@s

ˇ̌
ˇ̌
ˇ̌
ˇ̌; �.s; ˇ/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌@b
@s

ˇ̌
ˇ̌
ˇ̌
ˇ̌

are the curvature and the torsion, respectively. The Serret-Frenet local frame
together with the curvature and torsion of a curve form the intrinsic geometry of
the curve. The three vectors fulfill the relations

n D b � t; b D t � n; t D n � b: (5.4)
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The relations fulfilled by the three vectors can also be written in matrix form

0
@ ts

ns

bs

1
A D

0
@ 0 � 0

�� 0 �

0 �� 0

1
A
0
@ t

n

b

1
A (5.5)

Each of the three mutually orthogonal coordinate planes determined by the Serret–
Frenet trihedron has a name: the plane generated by b and n is the normal plane, the
plane generated by b and t is the rectifying plane, and the plane generated by t and
n is the osculating plane. If we reduce the family ˇ of curves to only one curve, and
we know its curvature and torsion as function of s, we understand (5.3) as a linear
ODE system. This expresses the fact that if � ¤ 0; � ¤ 0 the three unit vectors form
a local orthonormal basis in R

3. If we write (5.3) in components with respect to a
fixed orthogonal coordinate system fei giD1;:::3, this ODE system of nine equations
reads

t is D �ni
nis D ��t i C �bi
bis D �� ni ; i D 1; : : : 3 (5.6)

The Serret–Frenet system has three first integrals in the form

.t i /2 C .ni /2 C .bi /2 D const.; i D 1; : : : 3: (5.7)

To prove (5.7) we multiply, for a fixed i , each of the three equations in (5.6) with
the same component of the vector in the LHS, nondifferentiated, like t i t is D �t ini ,
etc. By adding these relations we obtain t i t is CninisCbibis D 0 (without summation
over i ), and if we integrate once the resulting relation is (5.7). The three constants of
integration are 1 if we choose a particular coordinate system having its axes parallel
to the Serret–Frenet unit vectors for some particular s.

A curve is plane (two-dimensional) if and only if its torsion is zero. In such a
situation, the Serret-Frenet relations reduce to

t D @r

@s
;
@t

@s
D �n:

@n

@s
D ��t; � D 0: (5.8)

In the following we give some examples.

Definition 41. A curve � is called a helix if its tangent lines make a constant angle
with a fixed direction.

Proposition 1. A curve � is a helix if and only if �=� Dconst.
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The general form of a helix is

r.s/ D
�p

b2 C c2
c

Z
sin �.s/ds;

p
b2 C c2
c

Z
cos �.s/ds;

b

c
s

�
;

where �=� D b=pb2 C c2. In a similar way we have

Proposition 2. The parameterized curve � is a helix if and only if the normal lines
(i.e., the lines containing n.s/ and passing through � ) are parallel to a fixed plane,

and

Proposition 3. The parameterized curve � is a helix if and only if the binormal
lines (i.e., the lines containing b.s/ and passing through � ) make a constant angle
with a fixed direction.

In particular, if both the curvature and the torsion are constant we call � a cylindric
helix. The cylindric helix depends on two parameters: the radiusR of the base circle
and the “pitch” b . By denoting the parameter along the curve u D �, the circular
helix is defined by the equation

r D .R cos.�/; R sin �; b�/; (5.9)

has the metrics g D R2 C b2 and the arc-length ds D pR2 C b2d�. The Serret–
Frenet frame is

t D 1p
R2 C b2 .�R sin �;R cos�; b/;

n D .� cos�;� sin �; 0/

b D 1p
R2 C b2 .b sin �;�b cos�;R/: (5.10)

The curvature and torsion are � D R
R2Cb2 and � D b

R2Cb2 , and we note that
the circular helix is the only three-dimensional curve with constant curvature and
constant torsion. For b D 0 it reduces to a circle, and for R D 0 it reduces to a line.

Another way to express the curvature (the torsion) of a parameterized curve as a
function of the first two (three) derivatives is

�.u; ˇ/ D jru � ruuj
jrj3

�.u; ˇ/ D .ru � ruu/ � ruuu

jru � ruuj2 : (5.11)
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In the case of plane curves, (5.8) there are interesting integral properties. We have

r.L; ˇ/ � r.0; ˇ/ D
Z L

0

t.s0; ˇ/ds0 (5.12)

and this expression is zero for a closed curve. Another important quantity for a
closed plane curve is its rotation index �.s; ˇ/, defined as � D @�=@s. We have

�.L; ˇ/ � �.0; ˇ/ D
Z L

0

�.s0; ˇ/ds0 D 2�N; (5.13)

where N is the Euler–Poincaré characteristic of the domain having the curve as its
boundary. For a convex plane domain N D 1 (Santalo theorem). It is also easy to
check that the area of a plane closed curve is

A D 1

2

Z L

0

r � tds D
I
g
1
2 r � tdu: (5.14)

Indeed, for a differentiable curve, the area of an infinitesimal sector of curve
subtended by r.s C ds; ˇ/ � r.s; ˇ/ D t.s; ˇ/ds is r � tds=2. The origin of the
coordinates does not matter since a translation of a fixed vector does not contribute
to the closed integral.

In the two-dimensional case, the curvature given as a function of the arc-length
� D �.s/, and the initial condition r.0/ defines a curve completely. One can
integrate the parametric equations of the curve and obtain the solutions in terms
of the Fresnel integrals

x.s/ D
Z s

0

cos

�Z s0

0

�.s00/ds00
�
ds0 C x0;

y.s/ D
Z s

0

sin

�Z s0

0

�.s00/ds00
�
ds0 C y0: (5.15)

In the following we elaborate on parameterized curves of class k � 3 with
nonzero vanishing curvature. Actually, the set of points that describes the curve is
an equivalence class in the set of allowable parameterizations, i.e., the set of C3.I /
functions from the interval I into the real space R

3.
Every intrinsic or geometric property of a curve should not depend on its

parameterizations. However, there is a specific representation of a given curve that
has different structures for different parameterizations, and it is called the spherical
images of the curve. We can assume that the three unit vectors of the moving
Serret-Frenet trihedron can undergo a parallel displacement toward the origin O
of the Cartesian coordinate system in R

3. While bonded to the origin, when the
chosen parameter along the curve describes it, the three ending points of these unit
vectors lie on the surface of the S2 sphere, and describe themselves three curves



84 5 Geometry of Curves
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Fig. 5.1 Spherical images (upper row) of some curves (lower row): circular helix .x; sin.x//,
plane curve .x2; sin.x2//, same sine, and function, which is the same set of points, but a different
parametrization, modulated sech function (breathing NLS soliton), and torus

named indicatrices, or spherical images of the curve. These are the tangent, principal
normal, and binormal indicatrix. In Fig. 5.1 we have chosen some traditional curves
(upper row) and in the lower row we show the corresponding indicatrices. For a
circular helix the spherical images are three parallel circles. We have always closed
curves for the spherical images, when the original curve is periodic. For plane
curves, one of the indicatrix is a vertical axis, and the other two indicatrices form two
horizontal plane curves. For example in the case of the graphics of a sine function,
i.e., the curve given by the parameterizations .x; sin.x//, the spherical images look
like in the second column of Fig. 5.1 However, the same curve, parameterized
differently, e.g., .f .x/; sin.f .x/// for f .x/ an arbitrary real homeomorphism, the
spherical images look totaly different.

The linear arc elements of the indicatrices fulfill the Lancret formula

dsn D
q
ds2t C ds2b; (5.16)

where ds2t D ts � tsds2, etc.
The most important result for the differential geometry of curves is the possibility

of characterizing the curve in a manner independent of the coordinates, except
for the position of the curve in space, i.e., to find representations of the curve
invariant to all possible congruent transformations. So we are looking to construct
representations of the curve with quantities and parameters independent of the
choice of coordinates, but depending only on the geometric shape of the curve.
Any set of two independent functional relations between s; �, and � are called the
natural or intrinsic equations of the curve. Actually, if the curvature and torsion are
continuous functions of s on a given interval, they generate an arc of curve, uniquely
determined modulo its position in space. Consequently, any invariant with respect
to congruent transformation of the space is expressible in terms of the curvature and
torsion.
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Theorem 10. Let �.s/ and �.s/ be C0Œ0; a	 functions of the real variable s. Then
there is one and only one arc r.s/ of a curve, determined up to a direct congruent
transformation.

The proof of the theorem is based on the theorem of existence and uniqueness of a
linear system of differential equations. There is a simple and intuitive presentation of
Theorem 10, beyond its traditional analysis in terms of the existence and uniqueness
of the solution of linear ODE system of equations with variable coefficients and
given initial data. This intuition is based on the so-called canonical representation
of a curve, which is just the description of the shape of the curve in the neighborhood
of any of its points. Let us assume we have curves of class k � 3 and we expand the
equation of the points of this curve in Taylor series, up to the third order

r.s/ D r.0/C
3X

kD1

sk

kŠ

dkr

dsk
CO.4/: (5.17)

From the Serret–Frenet equations we have

r s D t; rss D ts D �n; r sss D �sn � �2t C ��b: (5.18)

Since we can always choose the Cartesian frame such that its origin coincides with
the beginning point s D 0 of the curve, and such that t.0/ D .1; 0; 0/;n.0/ D
.0; 1; 0/;b.0/ D .0; 0; 1/, we can write (5.18) in the form

r.s/ D
�
s � �

2
0s
3

6
;
�20s

2

2
C P�0s

3

6
;
�0�0s

3

6

�
CO.4/; (5.19)

where �0 D �.0/, etc. Equation (5.19) proves that on an infinitesimal interval any
curve of class k � 3 can be sufficiently well approximated with polynomials in s
with coefficient uniquely determined by the curvature and torsion around that point.
It is interesting to mention that in a neighborhood of any of its points, a k � 3 class
curve can be represented with approximation as a parabola in the osculating plane,
a cubical function in the rectifying plane, and a semicubical parabola in the normal
plane.

In the following we find useful to introduce elements of the theory of contacts
between curves and curves and surfaces.

Definition 42. A curve r� .s/ of classmC 1 has a contact of orderm with another
curve r� �.s�/ of the same class, at a point P0, if r

.k/
� .sP0/ D r

.k/

� �.s
�
P0
/ for k D

1; 2 : : :m and r
.mC1/
� .sP0 / ¤ r

.mC1/
� � .s�P0/.

This definition can be further extended for the contact between a curve and a surface:

Definition 43. A curve � of class m C 1 has a contact of order m with a surface
˙ at a point P0 if there exists at least one curve � � on ˙ that has contact of order
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m with � at P0, and there does not exist a curve on˙ that has higher-order contact
than m with � at P0.

It is interesting to mention that a curve has at least contact of second order with its
corresponding osculating plane. The proof is immediate since the osculating plane at
s0 is spanned by the vectors rs.s0/ and r ss.s0/, so up to the second-order derivative,
the Taylor approximation of the curve lies in this plane. These definitions provide a
very interesting geometrical characterization of the contact of a curve with a surface:

Theorem 11. Let be � a curve of class k � mC1 that has contact of orderm with
a surface ˙ of class k at point P0. If m is even then � punctures ˙ at P0, if m is
odd, there is always a neighborhood of P0 such that � lies on one side of ˙ in this
neighborhood.

In order to prove this theorem we notice that the surface is of class greater or equal
than m C 1, we can choose a neighborhood V.P0/ in R

3 such that on V.P0/ the
surface can be represented by a function F.r/ D 0, and such that F is positive on
one side of ˙ and negative on the other side of ˙ . Since the contact is of order m,
the first nonzero Taylor term of F.r.s// D F.r� .s// on V.P0/ is proportional to
smC1 and to themC1 derivative of F with respect to s. Because thismC1 derivative
is continuous, and nonzero in P0, the sign of F.s/ is uniquely determined by smC1,
which proves the theorem.

5.2 Closed Curves

A regular parameterized curve r.u/, u 2 Œ0; l	 is considered closed if as many as
possible of the derivatives of its equation with respect to the parameter agree at
0 and l . For curves in the Euclidean space we have a more rigorous definition: a
closed curve is a regular parameterized curve r.u/ W Œ0; l	 � R ! R

3 with the
property that it has a smooth intersection at t D 0 and t D l , namely r .k/.0/ D
r.k/.l/;8k D 0; 1; : : : . In practice, and especially for numerical calculations, we
can relax this definition and use instead the following criteria

r.0/ D r.l/

�.0/ D �.l/
�.l/� �.0/ D 2�N; N D integer: (5.20)

A closed curve � � R
3 is a differential immersion � W S1 ! R

3. The points
of R3 where the curve has self-intersections (that is for x ¤ y we have �.x/ D
�.y/) are also called double points or crossing points. If there are no three distinct
points of Œ0; l	 having the same image the closed curve is called self-transverse, that
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is all self-intersection points. The curve in Fig. 5.3 is self-transverse and it has 4
self-intersections.

A closed plane curve (� W Œ0; l	 ! R
2) is simple if its self-intersections are at

0 and l , only. Obviously, a curve without any intersection is not necessarily simple
(like in the case of a helix with more than one turn). For a closed regular plane curve
� we can define the following special elements:

Definition 44. • A loop of � is any restriction of � to a closed sub-interval
Œl1; l2	 j Œ0; l	 such that � jŒl1;l2/ is injective and �.l1/ D �.l2/.

• A vertex is a point x 2 Œ0; l	 where �.x/ D 0.

A simple closed convex curve has at least four vertices (the four-vertex theorem)
[46]. A closed plane curve with n self-intersections has maximum 2n loops case in
which is called maximally looped [47].

In the following, we present some global theorems for closed plane curves whose
proofs can be found in [46, 162, 299] for example. An important global invariant
for a closed plane curve is its winding number (also called index) relative to a
point. Basically, this number describes the number of turns performed by a vector
originating at a fixed point p0 while its end covers the curve. The best approach
is to use the concept of covering map cov W C ! X between two topological
spaces, see Definition 1. For any closed parameterized curve �.t/ W Œ0; l	 ! X ,
�.0/ D �.l/ D p0 in the topological space X we define a lifting of � any
closed curve Q� � C with the property � D cov ı Q� . It can be easily proved
that there is a unique lifting of � which contains a given point Qp0 2 C and
cov. Qp0/ D p0. Moreover, if the base spaceX is arcwise-connected (which we know
it is stronger than just connected) there is a one-to-one correspondence between the
sets fcov�1.p/jp 2 Xg and fcov�1.q/jq 2 Xg, p ¤ q which actually means
that card fcov�1.p/jp 2 Xg is the number of sheets of the covering map, and this
number is independent of the choice of the point p. The lifting procedure preserves
homotopy, meaning that any two lifted curves are homotopic.

In the following we choose a covering map from the real axis to the unit circle
defined by

cov W R! S1; cov.x/ D .cos x; sin x/ D p 2 S1; (5.21)

presented in Fig. 5.2. Let � W Œ0; l	 ! S1 and �.0/ D �.l/ D p 2 S1 a closed
arc � in the unit circle. Since S1 is arcwise-connected there is a unique lifting Q�
of � defined by Q� W Œ0; l	 ! R such that if x 2 R then cov.x/ D p, that is
cov. Q�/ D �. From here it results that cov. Q�.0// D cov. Q�.l// which means that 2�
divides Q�.0/� Q�.l/. In this way we have

Definition 45. The degree of the map � defined as above is the number

deg � D Q�.l/ � Q�.0/
2�

�
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Fig. 5.2 The covering map
from (5.21). For each x 2 R

we construct the
two-dimensional vector of
components .cos x; sinx/ and
project it onto the unit circle

R

S1

cos x

sin x

x

0 P

The degree of the map � is independent of the choice of the points x; p. Based on
Definition 45 we can generalize the index characterization to arbitrary closed plane
curves � of equation r.t/ W Œ0; l	! R

2 and we can introduce

Definition 46. The winding number (or index) of a plane close curve � � R
2

relative to a point p0 2 R
2 is the degree of the map

ind � D deg r.t/ � p0
jr.t/ � p0j � (5.22)

As an example we choose a fivefold circle in polar coordinates of the form r D
1 C sin.�=5/ and three reference points. For each such point we calculated the
winding number by evaluating the arg function for the fraction in the RHS of (5.22).
The number of singularities of this arg provides exactly the winding number. This
example is presented in Fig. 5.3 where the three reference points are chose at the
center of each little frame. Inside each frame we plot the arg function, and we can
count the number of singularities (spikes in the frames) associated to the winding
number relative to that point.

An important result of the theory of closed plane curves is the Jordan curve
theorem , which basically says that such a curve divides the plane in two disjoint
regions.

Theorem 12. If r.u/ W Œ0; l	 ! R
2 is a plane, regular, closed, and simple curve,

then the region obtained by eliminating the curve from the plane (i.e., R2�r.Œ0; l	/)
has exactly two connected components, and r.Œ0; l	/ is their common boundary.

In other words every regular closed plane curve without self-intersections separates
its plane in two disjoint regions. The crucial point of the proof is to show that the
difference between winding numbers of the curve relative to two points placed on
different sides of the curve is not zero. We choose the two points close enough to
this curve such that we can approximate the curve with a polygonal line. Then, by
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Fig. 5.3 A plane closed curve and three little frames whose centers are located at three reference
points. In each frame we plot the complex argument of the winding number function from (5.22).
The number of singularities recorded in each of the three framed graphics is exactly the winding
number of the curve relative to the point at the center of the corresponding frame

using homotopy (smooth deformations), and by knowing that the winding number is
constant in each connected component of a set, we prove that we have two disjoint
components.

The region of the plane bounded by � is called interior of the curve and it
is homeomorphic with the open unit disc in R

2. We have a simple closed curve
positively oriented if we choose its parameter such that when we move along the
curve and the parameter is increasing, we have the interior of the curve to the left.

Theorem 13. For any simple closed plane curve � of length L and area of the
region bounded by � , A we have

L2 	 4�A;

where equality holds if � is a circle.
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The proof of this theorem is based on the fact that such a curve is always contained
within a strip bounded by two parallel lines. We can also fit between these parallel
lines a circle. By comparing A and L with the area and the perimeter of this circle,
last ones depending on the diameter, which is also the distance between the parallel
lines, we obtain the requested inequality.

Definition 47. For a curve r.u/ W Œ0; l	 ! R
3 with curvature �.s/, we define its

total curvature Z l

0

j�.s/jds:

Theorems 14 and 15 are the most important tools in the differential theory of closed
curves. The Fenchel’s and Fary–Milnor theorems are for closed curves what Bonnet
theorem is for compact surfaces (see Theorem 20).

Theorem 14 (Fenchel’s Theorem). The total curvature of a simple closed curve is
larger or equal to 2� Z l

0

�ds � 2�;

where the equality holds if and only if the curve is a plane convex curve.

A plane curve is convex if its trace lies entirely on one side of any of the closed
half-plane determined by the tangent line at any of the points of the curve. A circle,
or a parabola are convex curves, while the graphics of the “sin” function is not
convex. The proof is constructive. We build around the curve a tube of radius �,
i.e., a parameterized surface r˙.s; v/ D r.s/ C �.n cos v C b sin v/, with n;b the
normal and binormal vectors of ˛. We choose � small enough such that the tube
does not self-intersect. If the curve r.s/ is a simple closed curve, then the tube is
homeomorphic to a torus. We notice that the Gaussian curvature K and the area
element dA of the tube surface have the property

“
Œ0;l	�.v1;v2/

KdA D �
Z l

0

Z v2

v1

� cos v

�.1 � �� sin v/

p
EG � F 2dsdv

D
Z l

0

�.s/ds.sin v1 � sin v2/:

We can choose the angles v1;2 such that the unit normal of the tube in this range
of v covers the entire unit sphere S2, and also K > 0 in this range. Indeed, this
is possible because we can approach the tube with a plane coming from infinity,
from any direction in R

3. The first point of the tube encountered by this plane has
positive Gaussian curvature (is an elliptic point). So, if we apply the Gauss–Bonnet
Theorem 20 forK we obtain the requested inequality for the total curvature of r.s/.

If the curve r.s/ is closed but knotted we have the following.
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Theorem 15 (Fary–Milnor Theorem). The total curvature of a knotted simple
closed curve is greater or equal to 4� .

By taking profit of the integral formulas for surface differential operators we
can obtain two useful relations for closed curves. Let ˙ be a regular parameterized
surface and D � ˙;� D @D, and r˙ be the surface gradient operator defined in
Sect. 6.5. From the surface divergence integral theorem (6.61), by using the fact that
r˙ � r D 0, we obtain

I
�

r � tds D 0; (5.23)

I
�

t? � rds D 2
“

D

H.N � r/dA: (5.24)

In these equations r is the position vector, N is the unit normal to˙ , and t? D N�t

belongs to the Darboux frame associated to ˙;� .
The theory of closed curves is not closed. There are still open questions, and a

simple theorem to provide an analytic differential criterium for closeness in terms
of curvature and torsion does not exist in general. Some more information on the
topics can be found in [47, 62, 221, 225, 339].

5.3 Curves Lying on a Surface

We will see in Chap. 6, where we study the geometry of surfaces, that in a way
a surface is a reunion of curves, so it is natural to study the geometry of surfaces
starting with, and through the methods of the geometry of curves. However, in this
section we consider the (non-flat) surface as given and fixed, and we look at the
behavior of curves lying on this surface. In particular closed curves on surfaces
are the most important since they are related to the homotopy and the homology
of the surface. The first interesting observation is that two important theorems
holding true for closed plane curves do not hold in the case of non-flat surfaces:
the Jordan curve theorem (Theorem 12) and the four-vertex theorem.

The Jordan theorem is not valid anymore if R2 is substituted with an arbitrary
surface [47]. Indeed, a circle laying on a torus T1 divides its surface in either
S1
Sfpg (where p is a point on the torus) like in the plane case, or just puts it into

homotopy with S1, depending on where the curve is placed. For example, we present
a double self-intersecting closed curve lying on a torus in Fig. 5.4; it is impossible
to map the same figure in the plane because the order of increasing value of the
parameter at the self-intersections is not the same.

Likewise,the four-vertex theorem for curves in R
3 shows, [62], that simple closed

curves lying on strictly convex surfaces in space exist only if their torsion does not
vanish. Points of null torsion are actually third order singularities for the equations
of curves in space. This observation brings an understanding of the relation between
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Fig. 5.4 A closed curve on a
torus. The order of the values
of the parameter at the two
self-intersecting points is not
the same as the order of the
same points for the same
curve on R

2

Fig. 5.5 A twisted
.1; 3/-closed curve of
nonvanishing torsion
on a torus

singularities of orderm 	 3 (the derivatives of orderm of the equation of the curve
are linear dependent) of closed curves lying on surfaces, and the convexity of that
surface. The four-vertex theorem can be generalized in R

3 as follows:

Theorem 16. A simple closed curve lying on a strictly-convex surface has at least
four points of vanishing torsion (vertices).

A good example of a non-strictly convex surface is provided by the torus T1.
We define a .q; p/-curve winding on the surface of the torus as a regular closed
curve that “spirals” around the torus p times in the vertical sense, and q times in
the horizontal sense. There is an exact relation between the large radius of the torus
(the small radius is kept 1) and the ratio p=q which guarantees a curve a twisted
character. Basically, for a given ratio a twisted .q; p/-curve exists on a torus only
for a finite interval of the large radius. In Fig. 5.5 we present a twisted .1; 3/-curve
of equation

x C iy D Œ2C cos.9 sin t/	e3i sin t ; z D sin.9 sin t/;
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Fig. 5.6 A non-twisted
.2; 3/-closed curve on a torus
has always points of null
torsion

and in Fig. 5.6 we present a trefoil .2; 3/-curve on the same torus, of equation

x D .2C cos.3t// cos.2t/; y D x D .2C cos.3t// sin.2t/; z D sin.3t/:

A regular closed curve � defined by r.u/ W Œ0; l	 ! S2 lies on the unit sphere
S2 � R

3 if and only if Z L

0

�.s/ds D 0; (5.25)

where � is the torsion of � and s is the arc-length. The proof consists in noticing
that, if � is the angle between the principal normal of � , n, and the unit normal to
the sphere, N , i.e., cos � D N � n, we have

d�

ds
D � � �g;

where �g is the geodesic torsion (see Definition 59). Because the curve is closed and
regular we have Z L

0

�ds �
Z L

0

�gds D 2�n;

where n is integer. However, all curves lying on a sphere are lines of curvature, so
their geodesic torsion is zero. Knowing that n is a topological invariant, and since
all closed curves lying on a sphere are homotopic to a point, we have n D 0, which
proves the affirmation.

Also, a curve lying on a sphere fulfills the following relation

�
1

�

�2
C
�
@

@s

1

�

�2�
1

�

�2
D const.
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The proof is based on the constant distance between the center and the curve, and
from here the relation r � t D 0.

We mention another useful property of a curve lying on a sphere [339]. If we
have a regular closed curve on ˇ defined by rˇ.t/ W S1 ! S2 with r 2 C2.S1/,
having its geodesic curvature (see (6.19)) positive, and fulfilling the property

Z
S1

rˇ � drˇ D 0;

then there is a closed space curve r� W S1 ! S2 with positive curvature, and constant
torsion whose binormal indicatrix (the unit binormal vector of a curve understood
as a map from S1 to S2) is ˇ. Once we find ˇ with the properties requested above,
the constant torsion curve can be obtained by the integration

r� .t/ D
Z

rˇ � drˇ

dt
dt:

Curves of constant torsion are important for biology in the study of stiff polymer
chains, elastic properties of DNA, structure and dynamics of axonemal cells, and
for motile cells swimming by the use of flagella or cilia. For example, the axoneme
is a quasi-rigid, quasi-flexible structure of almost parallel microtubules that can
bend, and hence can generate motions and swimming by their relative sliding
and shearing. The torsion of an axoneme can reduce or cancel the relative slide
between the elements and then can annihilate the bending. In this way twisting in
an axonemal system can work like a system of shifting gears. For the same reason
braided steel cables are used in constructions and bridges since they have very soft
bending rigidity.

5.4 Problems

1. Show that there exists at least one closed regular curve in R
3 with positive

curvature and constant torsion.
2. Show that simple closed curves in R

3 with nonzero torsion everywhere, lying on
strictly convex surfaces (i.e.,K > 0;H > 0 everywhere) do not exist. A counter
example would be a spiral on a torus.

3. Prove that for any closed knotted curve in R
3 there is a plane that intersects the

curve in at least six points.
4. The Euler equations for “elastica” (that is curves in R

3 describing ideal elastic
rods of constant length with clamped or hinged boundary conditions at their ends)
have the form

2�ss C �3 � 2��2 D 0; �2� D constant;
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in terms of the curvature and torsion in the arc-length parametrization. Find
particular elastica solutions in terms of Jacobi elliptic functions. Show that planar
elastica solutions belong to only three classes: one class with non-vanishing
curvature, another whose curvature has alternating signs, and last class with
constant curvature.

5. Let us have a fixed closed plane curve and a moving segment of constant length
which keeps its ends on this curve. Prove that the area between this curve and
any curve described by a point rigidly attached to this segment is constant, and
depends only on the product of the distances from this point to the ends of the
segment. Also prove that this second curve is also closed (A. D. Risteen, Annals
of Mathematics 1887).

6. A convex curve is a plane curve with the property that any straight line which
intersects this curve, intersects it at most in two points. Prove that a convex curve
has no self-intersections.

7. Prove that if a parameterized curve � , which is not a helix, has its curvature
and torsion fulfilling the relation C1�.s/ C C2�.s/ D C3 for all s and with Ci
constants, then there is one and only one other curve Q� having the same normal
lines as � (if � has the above property is called a Bertrand curve, and Q� is its
Bertrand mate).

8. Show that for a plane closed curve r W S1 ! R
2 with n self-intersections and

more than n loops, n must be odd.
9. In Sect. 5.3 a .q; p/�closed curve in R

3 is defined as a curve that spins p times
in the vertical sense, and q times in the horizontal sense. Find a rigorous
mathematical definition for such .q; p/-curves.



Chapter 6
Geometry of Surfaces

There are two main differences between the theory of regular curves and regular
surfaces in three-dimensional Euclidean spaces. On one hand, smooth curves are
mappings (i.e., �.s/ W I ! R

3), while regular surfaces are submanifolds. On the
other hand, all curves have the natural arc-length parameter, while surfaces do not
have a natural parametrization. Moreover, curves are uniquely defined (up to a rigid
motion) by two real functions (curvature and torsion), while surfaces are defined
uniquely up to rigid motions by six real functions (E;F;G; e; f , and g).

Definition 48. S � R
3 is a regular surface if for any of its points p 2 S we can

define locally (in a neighborhood of p) a regular, differentiable homeomorphism
between an open set U 2 R

2 and S . That is, 8p 2 S;8V.p/ 2 V.p;R3/ we have
9r W U ! V.p/ 2 S such that:

1. r is differentiable.
2. r is a homeomorphism.
3. drq W R2 ! R

3; q 2 U has maximal rank.

See also Fig. 6.1. The last requirement is equivalent that the tangent map drq at q
is one-to-one, or, equivalently, its Jacobian has rank 2.

Definition 49. A parameterized surface is a differential map r 2 Diff .U;R3/, with
U 2 R

2.

The map rq is regular if drq is one-to-one at any point q 2 U . For a regular
parameterized surface S , the curves u D u0; v 2 R and v D v0; u 2 R

2 in U
are mapped by r into the coordinate curves r.u0; v/ and r.u; v0/, respectively. The
tangent plane to S at p D .u0; v0/ is defined as the subspace of R

2 generated
by ru; rv, evaluated at .u0; v0/. Here subscripts mean differentiation with respect
to the parameters. The tangent map of r.u; v/ takes values in the tangent plane,
drq 2 TpDr.q/S . Actually, as we underlined in Definition 48, according to the
second interpretation of the tangent map, dr maps the canonical basis .u; v/
from U into a local basis in S , fru; rvg. Let us have a curve in the arc-length
parametrization. Then, in the local basis ru; rv of Tr.u;v/S , the values of the tangent

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 6,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 6.1 Regular surface
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Fig. 6.2 The tangent map dr.t/. Let r W U � R
2 ! S � R

3 be a differential map representing
a regular surface. Let �.s/ � U be a regular parameterized curve with tangent t.s/, where s is �’s
arc-length parameter. In a local basis of the tangent space Tr.u;v/S , the tangent map dr.t.s// has
the same components .us ; vs/ as the unit tangent t.s/ has in T.u;v/U , i.e., dr.t/ D ruus C rvvs . In

terms of R3 coordinates (xi ; i D 1; 2; 3), dr.t/ D @xi

@�j
d�j

ds
with �j D .u; v/

map dr.t.s// have the same components .us; vs/ as the t.s/ has in T.u;v/U , i.e.,
dr.t/ D ruus C rvvs (see Fig. 6.2).

We mention that different parameterizations around p span the same tangent
plane (for a proof see [299]). We denote the components of any vector lying in the
tangent space of S at p, w 2 TpS , as w D .a; b/ D aru C brv. For example, the
unit tangent vector to a regular parameterized curve ˛ on S looks like

t D d�

ds
DD dr

ds
.u.s/; v.s// D ruus C rvvs;

where s is the arc-length parameter along � .

Definition 50. S is orientable if it admits a differential vector field of unit normal
vectors defined on the whole surface. By choosing such a field one chooses an
orientation for S .

The traditional choice for the unit normal vector field is

N .u; v/ D ru � rv

jru � rvj �
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Fig. 6.3 Upper row: the two coordinate charts that form the atlas for the Möbius strip. Lower
row left: the intersection of the two coordinate charts is not connected, but it has two connected
components. Lower row right: the unit normal is not well defined; it has two possible orientations
in the same point

Such a field does not exist on not-orientable surfaces, like in the case of a Möbius
strip (for example, see Fig. 6.3).

6.1 Elements of Differential Geometry of Surfaces

The first fundamental form on a parameterized surface is the equivalent of the
metrics in the case of a curve.

Definition 51. At every point p D r.u; v/ of a regular surface, we can define a
symmetric second-order tensor field, the first fundamental form on S , gp W U !
Diff .S;R/ whose action on tangent vectors V D .a; b/;U D .c; d / 2 TpS is
defined as

gp.V ;U / D Eac C F.ad C bc/CGbd D
�
E F

F G

��
V

U

�
;
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where

E.u; v/ D ru � ruI F.u; v/ D ru � rvI E.u; v/ D rv � rv:

Actually the first fundamental form represents the metrics of a curve � on S ,

ds2 D Eu2t C 2F utvt CGv2t ;

and consequently the norm of any tangent vector V D .a; b/ in the local coordinates
jjV jj2 D V � V D Ea2 C 2Fab CGb2. We also remember the formula

EF �G2 D jru � rvj2 D det

0
@ j j jru rv N

j j j

1
A
2

:

Let us discuss more on the properties of the first fundamental form. Let us choose
a regular curve �.s/ 2 S , in its arc-length parameterization s. This curve is the
image of a curve lying in the space of parameters, namely �0 D ��1 � U . If we
choose the arc-length s0 parameterization for the �0 curve, the question is: what
parameterization induces this arc-length parameterization s0, on � , different from
s? We can calculate g and t for �

g� .s0/ D @�

@s0
� @�
@s0
D @r

@s0
� @r
@s0
D .ruus0 C rvvs0 /

2; (6.1)

which is a quadratic formEu2s0C2FEus0vs0CGv2s0 D g.us0 ; vs0 /. This last relation
should be the definition of the second fundamental form, which acts g W TS ! R,
while the expression defined in this relation acts on vectors .us0 ; vs0 / 2 T U .
The salvation comes from the fact that .us0 ; vs0 / are also the components the
vector @r

@s0
in the local basis fru; rvg. Consequently, we can introduce a canonical

isomorphism iso W T.us0 ;vs0 /U ! Tr.us0 ;vs0 /
S by using the local basis defined by the

parameterization of S in TS . The unit tangent of the curve � 2 S is

t˛ D ruus0 C rvvs0p
g.us0 ; vs0 /.s0/

D � 0;

and we can define the action of the directional derivative upon a differential function
defined on S

D� 0f D .t� � ru;v/f .u; v/ D 1p
g
.us0fu C vs0fv/:

We also have g.ru/ D g.1; 0/ D E and g.rv/ D g.0; 1/ D G. So far
g D gŒE; F;G	 is a quadratic form defined on TS . It depends on three functions,
while a metric depends only on one function. In conclusion, the interpretation of
the first fundamental form in terms of curve properties is the arc-length ds˛ Dp
g.u.s0/; v.s0//ds0. The interpretation in terms of a quadratic form defined on the

tangent space v 2 TS is g.v/ D jvj2 in the basis fru; rvg.
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For any quadratic form Q W V ! R
1, there is an associate symmetric bilinear

form B W V! R
1 defined by

B.u; v/ D 1

4
.Q.uC v/ �Q.uC v//:

Consequently, we can extend g to a symmetric bilinear form

g.u; v/ D 1

4
.E.u1 C v1/

2 C 2F.u1 C v1/.u2 C v2/CG.u2 C v2/
2

�E.u1 � v1/
2 � 2F.u1 � v1/.u2 � v2/�G.u2 � v2/

2/;

such that the first fundamental form g W TS � TS ! R (or more precisely 8p 2
S; gp W TpS � TpS ! R) is defined as

g.u; v/ D Eu1v1 C 2F.u1v2 C u2v1/CGu2v2:

The geometric significance of the form is in terms of the scalar product in any TpS .
In the fru; rvg basis, we have u �p v D gp.u; v/ with matrix representation

gp D
�
E F

F G

�
; (6.2)

so v D v˛e˛ D gp.v; e˛/e˛ . We have g.ru; ru/ D E , g.rv; rv/ D G, and
g.ru; rv/ D F . Also,

p
detgp D

p
EG � F 2 D jjru � rvjj.

Definition 52. For a regular parameterized surface r W U ! S , we define the area
of a bounded region of R D r.Q/ � S , with Q 2 U by the expression

A.R/ D
“
Q

jru � rvjdudv D
“
Q

p
EG � F 2 du dv:

The first fundamental form is also called the metric of the surface. If the surface
is deformable, the surface equation depends smoothly on a parameter � that could
be the time (moving surfaces) or just the label for a family of smooth surfaces, r D
r.u; v; �/. In this case, it could be interesting to calculate how the first fundamental
form gp does change with this parameter. That will provide information on how
the elementary area and the arc-length change when we change �. We consider
(6.2) as defining the covariant components of the rank 2 tensor gp D g˛ˇ in a two-
dimensional Euclidean space, ˛; ˇ D 1; 2. The associated contravariant tensor (the
dual) will be

g˛ˇ D 1

EG � F 2

�
G �F
�F E

�
: (6.3)
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From here we have g˛ˇgˇ� D ı˛� , and if we differentiate this identity with respect
to � we have

dg˛ı

d�
D �g˛ˇgı� dgˇ�

d�
� (6.4)

Moreover, if g D detg˛;ˇ , we can obtain by straightforward calculations the
interesting relation

dg

d�
D gg˛ˇ dg˛ˇ

d�
� (6.5)

Definition 53. The map

N W S ! S2 � R
3;

is called the Gauss map.

The tangent map of the Gauss map

dN W TpS ! TN .p/S2;

is a linear self-adjoint operator. We have:

U � R
2 �����!

r
S � R

3
N .p/DN .r.u;v//����������!
D ru�rv

jru�rvj

S2 � R
3

??y
??y

??y
T .U / ' R

2 �����!
dr

Tp.S/ ' R
2 �����!

dN
TN .p/S2 ' R

2

(6.6)

The expression of the tangent map of the unit normal in components is

dN .r/.
/ D @N

@xi

i D @N

@u

u C @N

@v

v;

and the same expression is obtained if we use the tangent map. The tangent map of
the unit normal has an interesting property. Let � be a parameterized curve on S .
The action of dN on an arbitrary vector � 2 TpS is given by the action of the �

vector field:
dN .�/ D �ŒN 	 D D�N :

In some loose sense, a smooth parameterized surface is a continuous collection
of smooth curves, so it is natural to understand the properties of the surface by
looking at the curves that can lie on it. In that, let us take a plane generated by a
certain tangent vector � and by the unit normal N , and choose a curve � lying in
the intersection of this plane with the surface. Of course we have � D � 0. By using
(4.5), we can compute

� 0 �D� 0N D � 0 � .N ı �/0:
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On the other hand, the tangent to the curve is in the tangent plane to the surface,
hence it is perpendicular on the unit normal, so we can write � 0 � N D �� �N 0 D
�� � .N ı �/0. So, from this equation and the equation above we find

� 0 � .N ı �/0 D �� 00 �N D �n �N D ˙�;

where � is the curvature of the curve � lying in the normal plane to S . Of course,
the scalar product � is taken in the sense of the first fundamental form. This is an
interesting relation between the curvature of such a “normal” curve, its tangent and
the unit normal to S (again, we speak here about a curve lying in the intersection
of the surface with the plane generated by the tangent � 0 to the curve and the unit
normal N ). In this situation the rate of change of the unit normal of S in the direction
of the tangent to the curve (directional derivative), projected upon the tangent, is
nothing but plus or minus the curvature of the curve:

� 0 �D� 0N D ˙�: (6.7)

We can generalize this quadratic form to a bilinear form w �DvN , defined on the
tangent plane.

Definition 54. The symmetric bilinear form˘p W TpS � TpS ! R defined in any
point p of the surface S by

˘p.w; v/ D w � dN p.v/ D v � dN p.w/

is called second fundamental form of the surface.

The explicit form of the second fundamental form can be derived from its action on
tangent vectors to curves v D � 0 D .us; vs/:

˘.� 0;� 0/ D eu2s C 2f usvs C gv2s ;

where

e.u; v/ D N � ruu D �N u � ru;

g.u; v/ D N � rvv D �N v � rv;

f .u; v/ D N � ruv D �N u � rv D �N v � ru;

with the properties

N � ru D N � rv D 0:
Definition 55. For a regular curve � � S , we define the normal curvature at p, the
number �n.p/ D �.p/ cos � , evaluated at p, where � and n are the curvature and
the principal normal of � at p 2 S , and cos � D n.p/ �N .p/.

In other words, the normal curvature of a curve � is the projection of the vector
�n over N at p. All regular curves that intersect S at p and have their tangent
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vectors in the tangent plane of S at p have the same normal curvature. We also have
˘p.v; v/ D �n.p/ if v 2 TpS and jvj D 1.

Definition 56. Being a self-adjoint linear operator, Dv.N / D dN .v/ (also called
the shape operator) has two real eigenvalues, traditionally denoted ��1;2.p/, called
principal curvatures of S at p. The corresponding eigenvectors are called principal
directions, and they are orthogonal.

A curve is called line of curvature if its tangent vector at each point is a principal
direction. The principal curvatures at p are actually the minimum and maximum
values of the normal curvature at p and �1.p/ < ˘p.S1 � TpS/ < �2.p/. We have

Theorem 17. If � � S is a regular connected curve, and if it is a line of curvature
on S , then

dN

ds
D ��n.s/d�

ds
;

where s is the arc-length parameter along � .

The tangent map of the Gauss map has three important properties:

1.

dN D
���1 0

0 ��2
�

in the basis of the principal directions.
2.

det.dN p/ D �1�2 D K; (6.8)

where K is called the Gaussian curvature.
3.

� Tr.dN p/

2
D �1 C �2

2
D H; (6.9)

where Tr is the trace operator, and H is called the mean curvature.

We can also express the Gaussian (6.8) and mean curvatures (6.9) in terms of the
coefficients of the first and second fundamental forms:

H D 1

2
.�1 C �2/ D 1

2

eG � 2fF C gE
EG � F 2

; (6.10)

K D �1�2 D eg � f 2

EG � F 2
� (6.11)

A simple interpretation of the two curvatures is the following. When Gaussian
curvature in a point is positive, the point is called elliptical, and all curves on S
passing through such a point are locally contained in one side only of the tangent
plane through this point (or the principal normals to these curves all point toward
one side of the tangent plane). A “point-like” particle would have a stable position
of equilibrium in such a point, so elliptical points are good “confiners.” The sign
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of H does not matter for such elliptical points, though H measures the degree
of asymmetry in stability of such a confinement, between the principal directions.
For example if one of the principal curvatures k1 is very small, and the other
one is very large k2 >> k1, the Gaussian curvature is small, showing a weak
confinement (the particle can escape along the principal direction associated with
k1); but H D k1 C k2 ' k2 is still large, showing a high asymmetry in the two
directions. If both principal curvatures are small, and the surface is almost planar,
hence not at all confining in any direction, both K and H are small, showing little
confinement, and also little asymmetry in the two directions.

Points with negative K are hyperbolic and they describe somehow unstable
equilibrium points in a potential energy picture. This point is also called a saddle
point. The particle is confined along one direction, but it is highly unstable along
the perpendicular direction. In this case, the sign of H decides if the point is more
like stable or unstable (which of k1;2 is larger). Parabolic points have one direction
of indifferent equilibrium, and one of stable equilibrium. A regular surface S where
H D 0 is a minimal surface.

The Gaussian curvature K represents the factor by which the Gaussian map N

distorts a principal infinitesimal area on S , as it maps on the sphere S2. Indeed, if
we have an infinitesimal curvilinear rectangle on S at p of area a, with sides along
the principal directions, then the image of this rectangle under the Gauss map is also
a rectangle of area K D �1�2a (interpretation due to Gauss).

Theorem 18. The Gaussian curvature is determined by only the first fundamental
form. That is K can be computed from just E;F;G and their partial derivatives up
to order 2.

For a sphere of radius R in R
3 parameterized by .�; �/ D .u; v/ the above

coefficients are:

r.u; v/ D R.sin u cos v; sin u sin v; cos u/;

ru D R.cos u cos v; cos u sin v;� sin u/;

rv D R.� sin u sin v; sin u cos v; 0/;

E D R2; F D 0;G D R2 sin2 u;

e D �R; f D 0; g D �R sin2 u;

and

K D 1

R2
; H D � 1

R
:

We notice that we choose the unit normal of the sphere to be directed outside,
along the radius vector. For this reason the principal curvatures are negative,
and so is H . The Gaussian curvature does not depend on the orientation of
the surface. For a torus, for example, we have r.u; v/ D ..a C R cos u/ cos v;
.aCR cos u/ sin v; R sin u/:

E D R2; F D 0; G D .aC r cos u/2; e D �R; f D 0; g D � cos u.aCR cos u/
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and

K D cos u

R.aCR cos u/
; H D � aC 2R cos u

2R.aCR cos u/
:

From the differential geometry of surface point of view, we can relate the
six functions E;F;G; e; f; g, and K with the components of the derivatives r i;j
expressed in the ru; rv basis. These are the famous Gauss and Codazzi equations.
More general, from the general differential geometry point of view, these relations
introduce the Christoffel symbols, and further relate the second-order derivatives
of the surface equation to the covariant derivative. For fluid surface dynamics
these relations are very important because they help mapping Euclidean three-
dimensional vectors of the embedding space R

3 to two-dimensional vectors in
the tangent plane of the surface, hence facilitating the construction of momentum
conservation theorems for fluid surfaces (see for example Sects. 8.3 and 8.4).

In surface theory the Christoffel symbols are introduced simply by calculating
the second-order derivatives of the equation of the surface, namely

ruu D � u
uuru C � v

uurv C eN ;

ruv D � u
uvru C � v

uvrv C fN ;

rvv D � u
vvru C � v

vvrv C gN : (6.12)

Example of Christoffel symbols for common surfaces can be seen in [46, 299]. The
Christoffel symbols fulfill two sets of important equations: the Codazzi equations

ev � fu D e� u
uv C f .� v

uv � � u
uu/ � g� v

uu;

fv � gu D e� u
vv C f .� v

vv � � u
uv/� g� v

uv; (6.13)

and the Gauss equations

EK D .� v
uu/v � .� v

uv/u C � u
uu�

v
uv C � v

uu�
v

vv � � u
uv�

v
uu � .� v

uv/
2;

FK D .� u
uv/u � .� u

uu/v C � v
uv�

u
uv � � v

uu�
u

uv;

FK D .� v
uv/v � .� v

vv/u C � u
uv�

v
uv � � u

vv�
v

uu;

GK D .� u
vv/u � .� u

uv/v C � u
vv�

u
uu C � v

vv�
u

uv � .� u
uv/

2 � � v
uv�

u
vv (6.14)

Proofs of these equations can be found in [46, 299]. Based on the Codazzi–Gauss
(6.13) and (6.14), we can use the fundamental theorem of surfaces.

Theorem 19. Two parameterized surfaces r1; r2 W U ! R
3 are congruent (i.e.,

differ by a rigid motion) if and only if g1 D g2 and˘1 D ˙˘2.

This is the equivalent of the fundamental theorem of curve geometry (Theorem 10)
introduced in Sect. 5.1. There is an existence version of the fundamental
theorem (for example [299, Chap. 2.3]). Given the six differentiable functions
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E;F;G; e; f; g W U ! R with E > 0 and EG � F 2 > 0, and satisfying (6.13) and
(6.14), there exists a (locally) parameterized surface r.u; v/ with the respective g
and˘ .

6.2 Covariant Derivative and Connections

The following calculations on two-dimensional surfaces embedded in R
3 are based

on the concepts of covariant derivative, Christoffel symbols, and connections that
have been introduced for general differential manifolds in Sect. 4.10. An useful
operator acting on a surface S is the covariant derivative of a vector field Y along
another vector field X , namely

rX Y D DX Y �N .N �DX Y /: (6.15)

The covariant derivative of Y with respect to X at p 2 S represents the
directional derivative of Y with respect to X (DX Y ), projected onto TpS . The
covariant derivative becomes more important if the field X is the unit tangent
to a curve � �S . For a parameterized curve along S , X D t� D � 0, the covariant
derivative along � of the unit normal to the surface N is nothing but its directional
derivative along � , r� 0N D D� 0N 2 TS . The covariant (or directional) derivative
of the unit normal along � can be decomposed in terms of the local basis fru; rvg.
More interestingly, we can decompose this derivative along the unit tangent � 0 D t,
and along the perpendicular t? to the unit tangent, defined by t? � t D 0; t? 2 TpS .

dN .� 0/ D D� 0N D r� 0N D �nt C �gt?; (6.16)

where �g is the geodesic torsion of the curve � , defined as

�g D dN

ds
.0/ � t?p D .D� 0N / � t?p : (6.17)

So, the covariant derivative of the unit normal along a curve is the sum of the normal
curvature (�n.� 0/ D ˘.� 0/) times the unit tangent, and the geodesic torsion times
the direction orthogonal to the unit tangent, into the tangent plane. This property of
the unit normal is called parallel transport along � .

In general if the covariant derivative of a vector field is zero along a curve, we
say that this field is parallel transported along that curve. In general, the covariant
derivative of a tangent vector field also contains a component along the unit normal
of the surface. We also mention another property: if a curve belonging to a surface
has its geodesic torsion zero, then its unit tangent is always along the local principal
direction, and conversely. We call such curves lines of curvature. For example, the
intersecting curves between a system of (triple) orthogonal curvilinear coordinates
are lines of curvature.



108 6 Geometry of Surfaces

Definition 57. A parameterized curve � in a surface S is a geodesic if its tangent
vector is parallel along the curve.

For any point p 2 S and any direction v 2 TpS , there is � > 0 and a unique
geodesic �.s/ W .��; �/! S such that �.0/ D p and � 0.0/ D v. The most important
property is that geodesics are locally distance minimizing. This property is valid in
general only locally. This happens because for an arbitrary surface, even regular and
connected, either the existence of a geodesic through any point, or its property to be
the minimum distance between two given points, are not mandatory. Parameterized
geodesic curves could be distance-minimizing curves in a global sense (over the
whole surface) depending on the surface. If a geodesic passing through an arbitrary
point of a regular surface p 2 S can be indefinitely extended on S , in any direction
of TpS , S is called a complete surface. On a complete surface a geodesic defined
locally can be extended “for all time” (this is the famous Hopf–Rinow theorem, see
[46,299]). Imagine a punctured sphere without North pole S2 fN g and a great circle
(i.e., a geodesic curve on the sphere) that passes through this point. This geodesic
curve also passes through the South pole. Points very close to N can be joined by
smaller arcs than the geodesic curve joining them through South. This is an example
of a not complete surface.

Definition 58. A regular connected surface S is extendable if it is a proper subset
of another regular connected surface QS , S ¨ QS . A regular connected surface S is
complete if 8p 2 S , 8� W .0; �/! S parameterized geodesic with �.0/ D p, there
is an extended parameterized geodesic Q� W R! S , Q� j.0;�/ D � .

A complete surface is nonextendable. A closed surface is complete, and a compact
surface, being closed, is also complete. A complete surface which is not closed is for
example an asymptotic convergent cylindric spiral (see Fig. 6.4). A parameterized
minimal surface, in an isothermal parameterization, is nonextensible surface, with-
out being complete. In general, given any oriented regular surface S and arc-length
parameterized curve �.s/ lying on S , we can build at any pointp D �.s/ 2 S a local
trihedron, called the Darboux trihedron (or frame). This right-handed orthonormal
frame is more natural when working with curves lying on surfaces, than the Serret–
Frenet frame.

Definition 59. The Darboux frame (Fig. 6.5) is defined by the unit tangent of �
t.s/ D � 0.s/, t?.s/ D N .s/ � t.s/, and the unit normal to the surface, N .s/ by

@

@s

0
@ t

t?
N

1
A D

0
@ 0 �g �n

��g 0 �g
��n ��g 0

1
A
0
@ t

t?
N

1
A ;

where �n.s/ is the normal curvature, �g.s/ is the geodesic torsion, and �g.s/ is the
geodesic curvature.

The normal curvature was introduced in Definition 55, and the two geodesic
coefficients were involved in (6.16). The geodesic curvature can be understood even
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Fig. 6.4 Relations between
classes of surfaces
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better if we decompose the curvature vector (i.e., the rate of change of the tangent
along the curve) �n along the two orthogonal directions in the tangent plane to S

d t

ds
D �n D .�n � t?/„ ƒ‚ …

�g

t? C .�n �N /„ ƒ‚ …
�n

N : (6.18)

Again, the coefficient of the normal component is the normal curvature from
Definition 55 and Theorem 17. The tangent component which defines the geodesic
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curvature, i.e., in the t? direction, is obviously related to the covariant derivative of
the unit tangent along the curve, so we have

jrt tj D j�gj; (6.19)

which guaranties �g D 0 in parallel transport. Obviously geodesic curves have zero
geodesic curvature. There is also an interesting integral consequence of this fact. If
we integrate the geodesic curvature on a domain of the surface (from (6.60)) and by
applying the circulation theorem (6.64), we obtain

“
D

�gdA D
“

D

N � .r˙ � t/dA D
I
@A

tdr D 0;

where r˙ is the surface gradient, and t and N have their usual interpretations.
That is

Proposition 4. The surface integral of the geodesic curvature over any domain is
zero.

Equations (6.18) and (6.19) imply �2 D �2n C �2g and we have

�g D d'

ds
;

where ' is the angle made between t and a parallel direction to the curve
[46, Chap. 4.4].

6.3 Geometry of Parameterized Surfaces Embedded in R
3

This section is in direct relation with Sects. 4.11 and 6.5. Section 4.11, for example,
analyzes the same hybrid tensors and their covariant derivative, but in the general
n-dimensional case. In this section we restrict our analysis only to two-dimensional
surfaces embedded in R

3. The study of embedded surfaces in Euclidean spaces,
and how the differential operators map from one space to the other, is necessary
for setting correct balance equations and boundary conditions for fluid surfaces.
Let us have a parameterized surface ˙ defined by the regular change of coordinate
functions r.u; v/ D .xi .u˛/; ˛ D 1; 2; i D 1; 2; 3. We introduce the mixed Jacobian
matrix

B D Bi
˛ D

@xi

@u˛
; (6.20)

which is a hybrid tensor. This tensor is nothing but the T˙ basis fru; rvg introduced
earlier, written in a consistent covariant form. A contravariant surface vector A˛ is
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a vector field defined on T˙ that changes its components at a coordinate change
u˛ ! Qu˛ like

QA˛ D @Qu˛
@uˇ

Aˇ: (6.21)

Examples of contravariant vectors are the tangent vectors to curves lying in ˙ . The
first fundamental form (the metric tensor) on ˙ is represented by .0; 2/-type of
tensor defined on˝2.T˙/ (Sect. 4.2, definition 38), and it has the expression

g˛ˇ D
�

ru � ru ru � rv

rv � ru rv � rv

�
D
�
E F

F G

�
; (6.22)

and we have

ds2 D Bi
˛B

i
ˇdu˛duˇ D g˛ˇdu˛duˇ D Edu2 C 2FdudvCGdv2

and also g˛ˇgˇ� D ı�˛ where ı is the Kronecker symbol. Another useful equation is

g˛ˇ D Bi
˛B

i
ˇ: (6.23)

The contravariant components of the metric tensor are

g˛ˇ D 1

EG � F 2

�
G �F
�F E

�
; (6.24)

and both covariant and contravariant metric tensors are used to lift or lower indices
of various tensors.

An example of covariant vector field is the surface gradient of a function f W
˙ ! R

r˙f D
�
@f

@u˛

�
D .fu; fv/: (6.25)

The contravariant components of the surface gradient are

rf ˛ D g˛ˇrfˇ D
�
Gfu � Ffv

EG � F 2
;
Efv � Ffu

EG � F 2

�
; (6.26)

see also [338, Chap. XII] or [46, Sect. 2.5]. Sometimes in literature this operator is
also denoted rÎ, and it can be also written in the form

r˙f D rÎf D Gru � F rv

EG � F 2
fu C Erv � F ru

EG � F 2
fv: (6.27)

If the surface is isothermal (F D 0), (6.27) reduces to the well-known gradient in
some orthogonal curvilinear coordinate system

r˙f D
�
1

Hu
fu;

1

Hv
fv

�
; (6.28)
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Fig. 6.6 Mappings between three-dimensional vectors and surface vectors

where Hu;v D ru;v=jru;vj2 are the Lamme coefficients defined in Sect. 4.12. The
surface gradient fulfills < r˙f .x/; v >xD dfx.v/ D Dvf .x/ for any v 2 T˙ ,
where dfx is the differential of the mapping f taken at x, <;> is the Euclidean
scalar product on T˙ taken at x, and Dv is the directional derivative. A more
detailed analysis of this operator is done in Sect. 6.5.1.

If A.x/ D .Ai / 2 .TR3/x and a.u/ D .a˛/ 2 T˙u are an Euclidean and a
surface vector, respectively, we can map their contravariant components by

A D ruau C rvav D .Bi
˛a

˛/; (6.29)

and conversely

a D .ru �A; rv �A/ D .au; av/:

If the embedding space is just Riemannian manifold (and not Euclidean), the above
equations change and we have to use the metric on this space, too. For example,
we would have a˛ D Bi

˛Ai D Bi
˛gij A

j , and so on. The algebraic relations
between three-dimensional vectors and surface vectors are represented in Fig. 6.6.
A traditional example is the normal to the surface which is a covariant vector

Ni D 1

2g
�˛ˇ�ijkB

j
˛B

k
ˇ ; (6.30)

where the two � are the Levi–Civita symbols in the two spaces, and g D det.g˛ˇ/.
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6.3.1 Christoffel Symbols and Covariant
Differentiation for Hybrid Tensors

We investigated already such hybrid tensors in Sect. 4.11 in the general case
of m-dimensional Riemannian submanifold embedded into an n-dimensional
Riemannian manifold, both being nonflat. In this section, we continue along the
same line given in Sect. 6.3, specifically studying differential hybrid operators on
two-dimensional regular parameterized surfaces˙ embedded in R

3. Consequently,
gij D ıij and � k

ij D 0. Also, since˙ is Riemannian (has a metric defined) we know
that the affine connection on ˙ comes from Christoffel symbols, and consequently
its torsion is zero, S�˛ˇ D 0 (4.54). The Christoffel symbols on ˙ are defined as

� ı
˛ˇ D

1

2
g�ı

�
@g�˛

@uˇ
C @gˇ�

@u˛
� @g˛ˇ
@u�

�
; (6.31)

see also (4.51). Christoffel symbols are introduced on a manifold in a variety of
ways [19, 46, 119, 158, 162, 299]. One simple way to look at them is to consider a
change of coordinates in˙ from an arbitrary system of coordinates to an isothermal
system of coordinates, i.e., u˛ ! Qu˛, such that ds2 D g˛ˇdu˛duˇ D .d Qu2/2 C
.d Qu2/2 with Jacobian

J ˇ˛ D
@Quˇ
@u˛
�

Then, the Christoffel symbols are nothing but the law of derivation of the Jacobian
matrix

@J ˛ˇ

@u�
D � ı

ˇ�J
˛
ı :

Also they fulfill the relation

1

2g

@g

@u˛
D � ˇ

ˇ˛ D � ˇ

˛ˇ:

For example, for a surface parameterized by r.x; y/ D .x; y; f .x; y// we have
g D 1C f 2

x C f 2
y and

� ı
˛ˇ D

f˛ˇfı

1C f 2
x C f 2

y

�

The covariant derivative was repeatedly introduced in this text in either (4.49) and
(6.15), or even the hybrid one in general (4.59). In the case ˙ � R

3, for a hybrid
tensor Ai˛ we define a hybrid surface covariant derivative as

rˇAi˛ D
@Ai˛
@uˇ
� � �

˛ˇA
i
� : (6.32)
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It has the properties

r�g˛ˇ D r�g˛ˇ D 0: (6.33)

Let

˘˛ˇ D @2xi

@u˛@uˇ
Ni D

�
e f

f g

�
;

be the tensor associated with the second fundamental form on ˙ (from Defini-
tion 54). We can express the second-order derivatives in (6.33) in another way. From
(6.23) we have

r�g˛ˇ D 0 D .r�Bi
˛/B

i
ˇ C Bi

˛.r�Bi
ˇ/;

from where, by symmetry, we obtain

.r�Bi
˛/B

i
ˇ D 0:

Since Bi
˛ are actually the basis vectors of the tangent space for ˙ , from the above

relation it results that the hybrid surface covariant derivatives of the hybrid tensor
Bi
˛ are orthogonal to the tangent space. So, they are proportional to the normal

rˇBi
˛ � .some tensor/˛ˇN

i :

By using (6.32) in the LHS term of the above relation, we obtain

@2xi

@u˛@uˇ
D � �

˛ˇB
i
� C .some tensor/˛ˇN

i ; (6.34)

but this is just the definition of Christoffel symbols given previously (6.12). So we
infer

rˇBi
˛ D ˘˛ˇN

i ; (6.35)

or, in an equivalent form

˘˛ˇ D rˇBi
˛Ni : (6.36)

We mention a useful relation that can be obtained from (6.36)

˘˛ˇ D 1

2
p
g
��� �ijk.rˇBi

˛/B
j
� B

k
� : (6.37)

We can rewrite the important results from Sect. 6.1 in this covariant formalism. For
example, from (6.10) we have a very compact way of calculating the mean curvature

2H D g˛ˇ˘˛ˇ; (6.38)

and the Gaussian curvature

˘˛ˇ˘�ıg
ˇ�gı˛ D 4H2 � 2K: (6.39)
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6.4 Compact Surfaces

The most important result in the differential geometry of surfaces is the Gauss–
Bonnet theorem. In the following we present only a corollary of the global version
of this theorem. For the complete differential and global versions on surfaces with
boundaries, we suggest [46, 119, 162, 299].

Theorem 20 (Gauss–Bonnet Theorem). If S is an orientable compact surface,
then “

S

KdA D 2�.S/;

where K is the Gaussian curvature, and .S/ is the Euler–Poincaré characteristic
of the surface S .

In other words, the total curvature of a compact surface (i.e., a finite closed surface
without boundaries) can only be �4�.n � 1/, where the positive integer n is the
number of “handles” (or holes) of the surface. The Euler – Poincaré characteristic 
of a manifold can be calculated from the ranks of the homology groups of the surface
(Sect. 2.2) by using triangulation procedures. For details we recommend [112,235],
and for the proof we recommend [46,119,162]. The  characteristic is a topological
(homotopy) invariant. It can also be expressed in the form  D 2�2g, where g is the
genus of the surface, and it is equal to n defined above. Any surface homeomorphic
with a sphere has  D 2, the torus has  D 0, etc. In Fig. 6.7 we present an example
of a closed surface of genus g D 6. The genus can be calculated as the largest
number of nonintersecting simple closed curves on a surface that still do not separate

Fig. 6.7 Example of a surface with n D g D 6
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it into disconnected sets. The spectacular fact about the Gauss–Bonnet theorem is
that no matter how we smoothly (homeomorphic) deform a surface, its curvature
distributes itself in such a way that the total curvature does not change. For example,
for the unit sphere we have

’
S2
D 4� . If we deform the sphere such that half of it

becomes flat, we still have the same total curvature, in spite of the fact that half of the
surface reduced its curvature to zero. This is because we have big accumulation of
curvature along the sharp diameter, i.e., a region of area zero times infinite curvature.
Theorem 20 is related with Theorems 15 and 14 for curves. All these theorems
provide necessary criteria for a curve or surface to be bounded.

The question is what do we have for the converse affirmation: what criterium
should the curvature fulfill to assure compactness for the surface? The answer is
provided by another very powerful theorem. However, this theorem is valid only for
complete surfaces.

Theorem 21 (Bonnet Theorem). If the Gaussian curvature K of a complete
surface S satisfies the condition

K � ı2 > 0;

then S is compact and the diameter � of S satisfies the inequality

� 	 �

ı
:

This theorem holds if the surface is closed in the topological sense. That is, if the
surface contains all its accumulation points. Complete is just a generalization for
closed, and of course, for compact. A closed surface is complete, but the reciprocal
is not true (see Definition 58). For a proof of the Bonnet theorem we recommend
[46, Sect. 5-4].

There is a big difference between Theorem 20 for surfaces, its equivalent for
curves (Theorems 15 and 14) and Theorem 21. The first three are global, while the
last one is local.

Definition 60. For a regular curve � of equation r.s/, parameterized by arc-
length s, with nonzero curvature everywhere, and for any positive number r0 > 0,
we can define a parameterized regular surface T� , called tube of radius r0 around �
(or tubular surface), as follows

rT .s; �/ D r.s/C r0.n.s/ cos' C b.s/ sin'/;

with ' 2 Œ0; 2�	, and n;b the normal and binormal of � .

There are also a series of results valid for closed surfaces (hence also valid for
compact surfaces) related to integral theorems. We present some of these at the end
of Sect. 6.5.
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6.5 Surface Differential Operators

This section is in direct relation with Sects. 6.3 and 4.11. In this section we introduce
some of the properties and applications of differential operators defined on a surface
˙ � R

3. The reason for such a construction is the following. When working with
fluids with free surfaces, like so many examples in this book, a necessary condition
is to match the conserving quantities at the fluid boundaries, which are free surfaces.
For this reason we have to handle sometimes only the tangent components of the
conserving quantities. These tangent, or parallel, components fulfill a different type
of differential geometry than those in R

3, yet a surface geometry induced by the
R
3 geometry. The action of differential operators on surfaces was first described

in terms of differential invariants (or historically called differential parameters)
by Beltrami and Darboux, and later on developed by Weatherburn [337, 338],
Oldroyd [241], and Scriven [292]. Useful reviews of the matter can be found in
[10, Chaps. 9, 10] and [210, Chap. 1].

In the following, we are interested in expressing differential operators that can
“see” only the dependence on the point of the surface, and factorize upon the
dependence in normal direction. It is interesting to reformulate the well-known
vector analysis formulas that require zero value for the curl(grad), and div(curl)
(r � r, r � .r�/). Since the normal direction plays somehow the role of a kernel,
we expect these formulas to be still valid modulo some no-zero components along
the normal direction to the surface.

We consider a regular parameterized surface r.u; v/ W D! ˙ � R
3 with its first

fundamental form coefficientsE;F , andG, unit normal N , and mean curvatureH .
We define a scalar differential function Q̊ W ˙ ! R and ˚.u; v/ D Q̊ .r.u; v//.

6.5.1 Surface Gradient

The surface gradient was already introduced in coordinates in Sect. 6.3. We
introduce the surface gradient of ˚ to be the vector field with values in the tangent
bundle r˙˚ 2 T˙ defined by

r˙˚ D 1

EG � F 2
.G˚u � F˚v/ru C 1

EG � F 2
.E˚v � F˚u/rv; (6.40)

where subscript means differentiation, and ru;v.u; v/ form a basis in the tangent
plane T.u;v/˙ . Equation (6.40) is independent of the parameterization of the
surfaces, and in that it is a differential invariant. The functionr˙˚ defines a tangent
vector field perpendicular on the ˚ D const. lines on ˙ . Indeed, if r˙˚ j˙ D 0, it
results (throughG˚u D F˚v; E˚v D F˚u) ˚ D const:, like in the case of the full
gradient operator on R

3. Otherwise, curves with r˙˚ D 0 are called level curves.
Actually, we can define only the surface-gradient operator by
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r˙ D 1

EG � F 2

��
G
@

@u
� F @

@v

�
ru C

�
E
@

@v
� F @

@u

�
rv

�
D r1ru Cr2rv;

(6.41)

or simply .r1;r2/ in the fru; rvg basis. For orthogonal parametric curves (F D 0)
we have

r˙ D ru

E
@u C rv

G
@v;

where @u D @=@u, etc. Since

I
�

r˙ � dr D 0;

for any closed curve � � ˙ , the condition for a tangent field a W ˙ ! T˙ to be a
gradient field is I

8�
a � dr D 0:

In Fig. 6.8 we present some examples of surface-gradient fields a D r˙Ylm
.�; '/ defined on a sphere (Ylm are the spherical harmonics). It is interesting to relate
these fields with the hairy ball theorem, see problems at the end of this chapter.

6.5.2 Surface Divergence

Let a.u; v/ D a1.u; v/ru C a2.u; v/rv be a vector field in the tangent space. We
define the surface divergence acting on a vector field a

r˙a D .r1;r2/a D .rur1 C rvr2/ � a D ru � r1aC rv � r2a

D 1

EG � F 2

��
G
@a

@u
� F @a

@v

�
ru C

�
E
@a

@v
� F @a

@u

�
rv

�
: (6.42)

We have a remarkable property.

Proposition 5.
r˙ �N D �2H:

Proof. From (6.42) we have

r˙N D 1

EG � F 2
.Gru �N u � F ru �N v C Erv �N v � F rv �N u/

D �eG C Eg � 2Ff
EG � F 2

D �2H;

according to (6.11), where e; g; f are from Definition 54. ut
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Fig. 6.8 Surface-gradient
fields on sphere r˙Ylm.�; '/.
From upper left to lower right
l D 1;m D 0I l D 3;

m D �1I l D 5;

m D 3I l D 1;m D 1I
l D 3;m D 3I l D 9;m D 4

We can generalize the action of the surface divergence (6.42) to arbitrary vector
fields A D A1ru C A2rv C AnN in R

3

r˙ �A D �2HAnC 1p
EG � F 2

�
.
p
EG � F 2A1/uC.

p
EG � F 2A2/v

�
; (6.43)

where subscripts represent differentiation. For an application see Exercise 2 at the
end of the chapter.

Surface divergence is intimately related to the geodesic curvature. To verify
this we choose an orthogonal parameterization fru; rvg with F D 0 on ˙ and
normalize it to

r1 
 rup
E
; r2 
 rvp

G
:
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It is easy to obtain the relations

@r1

@u
D @

@u

�
rup
E

�
D ep

E
N � Ev

2
p
EG

r2:

@r1

@s1
D 1p

E

@r1

@u
;

where s1;2 is the arc-length along the curves v D const. and u D const., respectively.
From these last equations and from (6.18) we can write

�gjvDconst. D �
Ev

2E
p
G
:

From (6.43) we can now identify the RHS of the above equation with the relation

r˙ � r2 D 1p
EG � F 2

@

@v

p
EG � F 2

p
G

D ��g:

Since the parametric curve v Dconst. is arbitrary, we can enounce [338]

�g D �r˙ � t?; (6.44)

where we used the right-handed convention t? D N � t.

6.5.3 Surface Laplacian

We define the surface Laplacian of a scalar function in the usual way

4˙˚ D r˙ � r˙˚ D 1p
EG � F 2

��
G˚u � F˚vp
EG � F 2

�
u

C
�
E˚v � F˚up
EG � F 2

�
v

�
:

When studying the motion of a free surfaces r.u; v; t/, it is useful to have a simpler
relation for the surface Laplacian of the position vector

4˙r D 1p
EG � F 2

��
Gru � F rvp
EG � F 2

�
u

C
�
Erv � F rup
EG � F 2

�
v

�
: (6.45)

By using the Christoffel symbols � c
ab (4.51) and (4.52), we obtain the following

expression
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4˙r D Fp
EG � F 2

�
.G2� v

uu � FG� v
uv C 2F 2� u

uv � FE� u
vv �GE� u

uv/ru

C .E2� u
vv � FG� v

uu C 2F 2� v
uv � FE� u

uv �GE� v
uv/rv

C 2fF.F 2 � EG/C E2gG � eF 2G CEeG2 � gF 2E

F
N

�
; (6.46)

decomposed along the tangent fru; rvg basis and the unit normal N to the surface˙ .
Equation (6.46) is used to provide relations between the Laplacian of the position
vector r D .xi / 2 R

3 and the mean (H ) and Gaussian (K) curvatures of the
surface ˙ . For example, from (6.11) and (6.46), the Laplacian of the normal
component of the position vector is

.4˙r/n D 2HN : (6.47)

It is interesting to compare this result with (10.56)4r D 2EHN from Theorem 28.
In the full three-dimensional case, for isothermal parameterization the relation
between the Laplacian and mean curvature contains an additional factor of E .

In the case of orthogonal parameterization .u; v/ on the surface, we have F D 0
and consequently

4˙r D 2HN : (6.48)

Also we can write [338]

.4˙r/2 D 2K C
3X
iD1
.r˙ � r˙xi /2; (6.49)

and for the normal component

4˙.r �N / D .r �N /.2K � 4H2/ � 2H C 2r˙ � .Hr/: (6.50)

Another useful relation occurs if we apply (6.49) to N

N � 4˙N C .r˙ �N /2 D 2K:
In the case of minimal surfaces (H D 0) we have (from (6.50)) the special relation
4˙r D 0, and also the relation

4˙.r �N / D 2.r �N /K: (6.51)

6.5.4 Surface Curl

For a three-dimensional differential vector field A we introduce the surface curl by

r�A D 1

EG � F 2

�
ru�

�
G
@A

@u
�F @A

@v

�
Crv�

�
E
@A

@v
�F @A

@u

��
: (6.52)
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If A D A1ru C A2rv C AnN we have a very useful relation

r˙ �A D 1p
EG � F 2

�
.FA1 CGA2/u � .EA1 C FA2/v

�
N

C 1p
EG � F 2

�
.fA1 C gA2/ru � .eA1 C fA2/rv

�
Cr˙An �N :

(6.53)

The terms in the second line of (6.53) represent the tangent components of the
surface curl. There are some interesting properties

r˙ �N D 0 (6.54)

r˙ � r.u; v/ D 0 (6.55)

r˙ � .˚N / D r˙˚ �N : (6.56)

Equation (6.54) raises the question: according to the Helmholtz theorem (Theo-
rem 29) of representation in three dimensions, we know that a curl-free vector field
is the gradient of some scalar field. What happens in the case of surface curl? Does
it mean that the normal is a surface-gradient field? The answer is of course no, and it
will be proved so in Lemma 5. Basically, to be a surface gradient, the vector field has
to be tangent, in addition of being curl-free, which is not the case of the normal field.

In the following we are interested to verify if the well-known three-dimensional
relation r � .r˚/ D 0 has an equivalent in terms of surface operators. The answer
is given by:

Proposition 6. If a D r˙˚ then r˙ � a 2 T˙ . A necessary condition for

r˙ � r˙˚ D 0; (6.57)

is K D 0, i.e., the surface curl of a surface gradient is zero only on surfaces with
zero Gaussian curvature. On such surfaces (6.57) is satisfied if

E˚v � F˚u

G˚u � F˚v
D �f

g
: (6.58)

Very interesting, and contrary to the R
3 case, the surface curl of a surface

gradient is not necessarily zero, but belongs to the tangent bundle. It can be zero but
only on special types of surfaces, and for specific scalar fields only. For the proof
we use (6.53). Obviously .r˙˚/n D 0. The first part of Proposition 6 is immediate
by checking that the normal part of the curl is zero

r˙˚ D 1

EG � F 2
.G˚u � F˚v/ru C 1

EG � F 2
.E˚v � F˚u/rv;
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then
.F.r˙˚/1 CG.r˙˚/2/u � .E.r˙˚/1 C F.r˙˚/2/v D 0:

The second part of the proposition results also from (6.53) and the compatibility of
the linear system

A1f C A2g D 0
A1e C A2f D 0:

Basically, (6.58) tells that the surface curl of the surface gradient of a scalar field ˚
is zero if for any displacement .du; dv/ orthogonal to the level lines of ˚ in ˙ we
have

du

dv
D � g

f
:

In other words, the tangent vector surface gradient of ˚ makes at every point a
certain prescribed angle with the local frame fru; rvg.

The next question addresses the problem of the surface divergence of a surface
curl. For any space vector A D A1ru C A2rv C AnN we calculate

r˙ � .r˙ �A/ D 2Hp
EG � F 2

Œ.EA1 C FA2/v � .FA1 CGA2/u	

C 1p
EG � F 2

Œ.fA1 C gA2/u � .eA1 C fA2/v	; (6.59)

and we notice it is independent of An. We have

Proposition 7. If A ? T˙ , i.e., A D AnN , then

r˙ � .r˙ �A/ D 0:

In other words the surface divergence of the surface curl is zero if the vector field
is normal, but not in general. For an arbitrary vector field the equation r˙ � .r˙ �
A/ D 0 is a complicated PDE, involving Christoffel symbols and second-order
derivatives of N .

We leave the proof of this Proposition as an exercise to the reader (Hint:
use (7.55)).

Like in the case of the surface divergence, there is a relation between the surface
curl and the geodesic curvature. From (6.44), (6.69), and (6.54) we obtain

�g D N � r˙ � t; (6.60)

that is the geodesic curvature of a curve lying on ˙ is the normal component of the
curl of the unit tangent to the curve.

When the partial derivative is substituted with the covariant derivative, in all
the above surface differential operators, some of the relations between operators
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change. This happens because of the noncommutativity property of the second-order
covariant derivative (4.54).

6.5.5 Integral Relations for Surface Differential Operators

There are equivalent forms for the integral theorems of Stokes, Gauss, and Green in
terms of surface differential operators, relating integrals on domains of the surface
and line integrals around the boundaries of such domains. Like previously we denote
by A D A1.u; v/ruCA2.u; v/rvCAn.u; v/N 2 R

3 a three-dimensional differential
vector field.

We consider a domain D � ˙ with smooth boundary given by the arc-length
parameterized curve @D D � � ˙ . At any point of � we have the Serret–Frenet
trihedron ft;n;bgu.s/;v.s/, and the unit surface normal N .u; v/. We define the unit
vector tangent to the surface and normal to the curve t? 2 T˙; t � t? D 0, see
Example 7 in Sect. 6.6. A possible way to define it is t? D N�t. The direction of t?
is chosen outward from the region D enclosed by� . We have another trihedron com-
posed by ft; t?;N g. The equivalent of the Gauss divergence theorem is given by

“
D

r˙ �AdA D
I
�

A � t?ds � 2
“

D

HA �NdA; (6.61)

where dA is the infinitesimal area element. This equation is the Gauss divergence
theorem analog for surfaces. The LHS is the integral over the domain of the (surface)
divergence of a vector field A. Contrary to the three-dimensional case, where this
term is balanced only by an integral over the boundary of the domain, in the surface
case we have two terms. The first term in the RHS is indeed the “flux” of the vector
field (� curve) through the boundary, in this case in the direction t?. The second
term in the RHS is additional, depends on the surface geometry, and represents the
transfer of flux of A in the normal direction through the domain D. This term cancels
if the surface is minimal (case when the Gauss theorem for three-dimensional
domains and (6.61) are identical) fact which can be used as equilibrium criterium
for the energy balance. If, for example, we examine an incompressible flow rv D 0
and we consider ˙ a free fluid surface (so we have no normal flow across the
surface), by substituting A D v in (6.61), we obtain a zero circulation theorem

I
�

v � t?ds D
I
�

v?ds D 0; (6.62)

for any closed curve lying on the free surface. This conservation law is true even
for an arbitrary surface when we have fluid flow across it. When we assume an
orthogonal parameterization for simplicity, and from (6.43) we notice that in this
case 0 D rv D r˙vC 2Hvn, so the LHS in (6.43) cancels the second term in the
RHS, and we have again (6.62).
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Another consequence of (6.43), useful in some applications, is obtained if we
choose A Dconst.

I
�

t?ds D 2
“

D

HNdA D 2
“

D

HdA: (6.63)

The Green and Stokes integral theorems for surface differential operators have
the same form as in the full three-dimensional case. For more details the reader
can find details in the book of Weatherburn [338, Articles 120–130]. We write here
only the (geometrical) circulation theorem, also known under the name of Stokes
theorem “

D

N � .r˙ �A/dA D
I
@D

A � tds; (6.64)

where the RHS is called the circulation of the field A around the loop � D @A. An
immediate consequence of the circulation theorem is the following [338].

Lemma 5. If a tangent vector field a 2 T˙ has its surface curl tangent to the
surface, too, r˙ � a 2 T˙ , this vector is the surface gradient of a scalar function
defined on the surface.

Proof. The LHS in (6.64) is zero and by the circulation theorem the RHS is zero,
for any arbitrary loop. According to Sect. 6.5.1 the tangent field A is the gradient of
some scalar function ˚ W ˙ ! R. ut

Consequently, contrary to the three-dimensional case where the necessary con-
dition for a vector field to be the gradient of some scalar field was to have the curl
zero, in the surface case the field also needs to be tangent (see also Exercises 8 and 9
of this chapter).

6.5.6 Applications

In the following we illustrate the above propositions with examples from cylindrical,
spherical, and toroidal surfaces.

6.5.6.1 Cylindrical Surfaces

We choose an infinite right cylinder of radius R with parameterization u D ' (the
polar angle in the xOy base plane), and v D z, and we have G D 1;E D R2; F D
g D f D 0; e D R. The normal is N D .cos'; sin '; 0/, the Gaussian curvature is
obviously 0 and H D 1=.2R/. The surface differential operators are

rCyl˚ D
�
� sin '

R

@˚

@'
;

cos'

R

@˚

@'
;
@˚

@z

�
;
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rCyl �A D @A1

@'
C @A2

@z
C An

R
;

rCyl �A D
�
1

R

@A2

@'
� R@A1

@z

�
N C 1

R

@An

@z
ru C

�
A1 � 1

R

@An

@'

�
rv;

4Cyl˚ D 1

R2
@2˚

@'

2

C @2˚

@z2
:

We also check by direct calculation that rCyl � .rCyl˚/ D 0 if ˚ D ˚.z/, i.e.,
the curl of the gradient is zero on scalar fields with cylindrical symmetry only. Also,
rCyl � .rCyl �A/ D 0 only if A2 D A2.z/.

6.5.6.2 Spherical Surfaces

We have a sphere of radius R with parameterization uD � and vD', and we
have GDR2 sin2 �; EDR2; F Df D 0; eD � R; gD � R sin2 � . The normal is
N D .sin � cos'; sin � sin '; sin � cot'/, the Gaussian curvature is KD 1=R2 and
H D � 1=R. The surface differential operators are

rSph˚ D 1

R

�
cos � cos'

@˚

@�
� sin '

sin �

@˚

@'
; cos � sin '

@˚

@�

C cos'

sin �

@˚

@'
;� sin �

@˚

@�

�
;

rSph �A D 1

sin �

@

@�
.sin �A1/C @A2

@'
C 2

R
An;

rSph �A D 1

2

�
�2A1 sin' C A2 sin.2�/ cos' � 2 cos'

@A1

@'

C 2 cos' sin2 �
@A2

@�
C 2

R
sin '

@An

@�
C 2 cot � cos'

R

@An

@'

C 2

R
sin'

@An

@�
; 2A1 cos' C A2 sin.2�/ sin'

� 2 sin'
@A1

@'
C 2 sin2 � sin'

@A2

@�

C 2

R
cot � sin '

@An

@'
� 2

R
cos'

@An

@�
;A2.3C 2 cos.2�//

� 2 cot �
@A1

@'
C sin.2�/

@A2

@�
� 1

R

@An

@'

�
;
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4Sph˚ D 1

R2

�
cot �

@˚

@'
C @2˚

@�2
C 1

sin2 �

@2˚

@'2

�
:

As an example let us find the condition for a vector field a D a1ru C a2rv tangent
to a sphere to fulfill the property in Proposition 7. We have

rSph � .rSph � a/ D 2a2 cos � � 1

sin �

@a1

@'
C sin �

@a2

@�
D 0;

and this equation results in the following condition for the components of the field

@

@�
.a2 sin2 �/ D @a1

@'
:

For example, if we choose

a2 D P3;1.cos �/ cos.4'/ sin.2'/;

from the above condition we obtain the expression

a1 D d

d�

�
P3;1.cos �/ sin2 �

�Z '

cos.4' 0/ sin.2' 0/d' 0:

The field fulfilling this conditions is presented in Fig. 6.9.

6.5.6.3 Toroidal Surfaces

We set toroidal coordinates .u; v/ in the form

r.u; v/ D ..aCR cos u/ cos v; .aCR sin u/ sin v; R sin u/;

where a;R are the small and large radii of a torus. We have EDR2;GD .a C
R cos u/2; F Df D 0; gD cos u.aCR cos u/; eDR. The surface differential oper-
ators are

rtor˚ D 1

R2
@˚

@u
ru C 1

.aCR cos u/2
@˚

@v
rv;

rtor �A D � R sin u

aCR cos u
A1 C @A1

@u

C @A2

@v
� a

2 CR2 C 3aR cos uCR2 cos2 u

R.aCR cos u/2
An;

.rtor �A/n D � R

aCR cos u

@A1

@v
C aCR cos u

R

@A2

@u
� 2 sin uA2;
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Fig. 6.9 An example of a tangent vector field on the surface of a sphere fulfilling the condition of
zero divergence of the curl discussed in Proposition 7

.rtor �A/1 D cos u

R
A2 C 1

R.aCR cos u/

@An

@v
;

.rtor �A/2 D � 1

aCR cos u
A1 � 1

R.aCR cos u/

@An

@u
;

and the Laplacian

4tor˚ D � sin u

R.aCR cos u/

@˚

@u
C 1

R2
@2˚

@u2
C 1

.aCR cos u/2
@2˚

@v2
:

6.5.6.4 Closed Surfaces

There are some interesting consequences of the integral equations for the surface
operators. For example, a consequence of the divergence integral formula (6.61) is
that on a closed surface ˙ we have the LHS of (6.63) approaching zero. It results
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Proposition 8. The average value of the mean curvature vector is zero on any
closed surface “

H dA D
“

HNdA D 0: (6.65)

Other interesting relations holding on closed surfaces are

“
˙

N � .r˙ �A/dA D 0 and
“
˙

N � r˙˚dA D 0; (6.66)

for any vector or scalar field A and ˚ , respectively.

6.6 Problems

1. Find a proof for Proposition 5 by using (6.7).
2. There are some ambiguities in the notation of vector components in dif-

ferent orthogonal bases. For example let us have on a sphere S2 � R
3

parameterized by .u; v/ D .�; '/ the orthonormal basis fe� ; e'g. We have
ru D .cos � cos'; cos � sin ';� sin �/ D e' because its norm is 1. However,
rv D sin �.� sin'; cos'; 0/ D sin �e' . Now, a tangent field can be expressed
in either way a D a�e� C a'e' or a D auru C avrv, and we have the relations
a� D au, a' D sin �av. Show that

r˙a D 1

sin �

@

@�
.sin �a� /C 1

sin �

@a'

@'
:

3. A parameterization of a surface ˙ is called isometric if E D G and F D 0.
The name comes from the resulting arc-length relation ds2 D �.du2 C dv2/.
Show that we have an isometric system of coordinates .u; v/ on ˙ defined by
curves u D const. and their orthogonal complements, if and only if

4˙u

jr˙uj
is a function of u only. Hint: check [338].

4. Prove (use [338, Article 120]) that the following usual algebraic relations
fulfilled by differential operators in R

3 are also valid for surface differential
operators

r˙ � .˚A/ D r˙˚ �A C ˚r˙ �A; (6.67)

r˙ � .˚A/ D r˙˚ �A C˚r˙ �A; (6.68)

r˙ � .A �B/ D B � r˙ �A �A � r˙ �B; (6.69)

4˙.˚A/ D ˚4˙A C 2r˙˚r˙ �A CA4˙˚: (6.70)
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5. Let ˚.�; '/ be a scalar differentiable field defined on a sphere S2. Show by
direct calculation that rSph � .rSph˚/ D 0 only if ˚ D const., and compare
this result with Proposition 6 (i.e., KSph ¤ 0).

6. Prove that r˙ � 4˙r D �4H2.
7. A curve C lies on a surface r.u; v/ 2 ˙ . Prove that the unit perpendicular t?

to the tangent t of the curve, contained in the tangent plane, has the expression

t? D .F us CGvs/ru � .Eus C F vs/rv

E.G � F /us CG.F �E/vs :

8. For a minimal surface H D 0 so the surface divergence of the normal is zero.
Does it result from here that in the case of minimal surfaces the unit normal can
be expressed as a surface curl (like in the three-dimensional case)?

9. Find out: is there a surface equivalent (in terms of surface differential operators)
of the Helmholtz representation theorem?

10. For a .1; 1/-type of tensor defined on˙ � R
3 A

ˇ
˛ , prove that

r˛˛ D
1p
g

@

@u˛
.
p
gA˛/:

11. Find properties of the surface differential operators arising for the Hairy ball
theorem, i.e., there is no zero everywhere tangent vector field on the 2-sphere.



Chapter 7
Motion of Curves and Solitons

A large class of physical, chemical, and biological systems can be modeled in terms
of their contour dynamics, namely the kinematics and dynamics of their boundaries
[248, 249, 329]. In many situations (e.g., when the inside bulk has the property of
being “incompressible”) such contour representations are the most natural, and are
simpler ones. Basically, the contour dynamics approach reduces the problem to the
study of motion of curves and surfaces, especially the closed ones. In this chapter,
we focus on the analysis of the motion of curves in the three-dimensional Euclidean
space.

The study of two-dimensional contour dynamics models are important for flat
liquid droplets [137,138,270,332], quantum Hall electron droplets in high magnetic
field [340, 341], growth of dendritic crystals in a plane [32], planar motion of
interfaces (like for example oil spots surrounded by water) [147, 295], dynamics of
polymers [66,290,345], vortex structures in geophysical fluid dynamics and plasma
[110], motile cells immobilized in vitro [29], etc. Two-dimensional contours can be
plane curves or curves lying on surfaces. In the three-dimensional case, in addition
to the above mentioned fields, interesting applications can be found in the dynamics
of vortex filaments in fluid dynamics [123, 177], KdV flows on star-shaped curves
[39], DNA models [325], long and stiff polymer chains, flagellar swimming for
motile cells [30,126,176,193,324], level set method [296], and solitons in the Euler
elastica equation [227, 228].

All these applications have in common the properties of preserving global
geometric quantities like area and perimeter. Imposing global geometrical constrains
on contour dynamics leads to the occurrence of nonlinearities in the dynamical
equations. This is because, on one hand, the global constraints involve the funda-
mental forms of surfaces (or at least metrics of curves), and these forms contain
quadratic or higher-order terms as combinations of the metrics, the Serret–Frenet
and Darboux vectors and their derivatives. On the other hand, global constraints
involve strong nonlocality and long-range interactions in the system, like for
example in hydrodynamics [20, 108, 233, 248, 249, 329]. An example of global
constraint interaction from biology is the swimming of a flagellated cell. A local

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 7,
© Springer-Verlag Berlin Heidelberg 2012
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constraint applied to the free end of the flagellum, which is a bundle of filaments
attached to the cell membrane, could prevent the existence of relative shear between
the filaments in the bundle, which is the very cause of bending, twisting and hence
swimming. Since the local shear is related to the curvature, the local condition at the
end generates a global constraint: the total curvature of the bundles should be zero,
i.e., allowable shapes have to have zero total curvature.

The occurrence of nonlinearities in the contour dynamics problems involves the
connection between this dynamics and the integrable evolution equations. Indeed,
the motion of curves is intimately related to the Korteweg–de Vries (KdV), modified
Korteweg–de Vries (MKdV), and nonlinear Schrödinger equations (NLS) [2, 169].
This leads to the existence of soliton-like solutions in the motion of curves, as well
as the existence of infinite number of conservation laws that can be put into relation
with global geometric quantities. The purpose of the next sections is to describe
these relations, for the two-dimensional and three-dimensional case.

The problem of the dynamics of moving curves is not completely solved. There
are systems, especially in the world of microorganisms with very complicated
shapes, where the interaction between the two-dimensional contours (like the cell
membrane) and one-dimensional attachments (like flagella, cilia, etc.) cannot be
neglected, to understand the physics of their exquisite motility. A general model
for such type of interaction should lie somewhere between the geometry of curves
and surfaces, like for example the geometry of a .1 C �/-dimensional manifold.
Such situations occur for example while investigating the propagation of waves
created in a one-dimensional system into a two-dimensional surface, or conversely,
the motions induced in a bundle of cilia by membrane oscillations.

7.1 Kinematics of Two-Dimensional Curves

In this section we study the dynamics of two-dimensional contours from the
perspective of differential geometry of closed curves and the hierarchy of integrable
systems like KdV and MKdV systems. The association of the Serret–Frenet
equations with nonlinear integrable systems (like the cubic Schrödinger equation for
example) is somehow natural, because the Serret–Frenet equations are known to be
equivalent to a Riccati equation (see Sect. 18.2). Moreover, through an exponential
integral transformation of curvature and torsion into a complex function Hasimoto
has shown in [123] that the Serret–Frenet equations can be directly mapped into the
cubic Schrödinger equation. We mention, however, that there are possible many
other two-dimensional curve motions that are not integrable. A comprehensive
discussion about this reduction can be found in [88, 310].

We begin our studies of purely local surface dynamics with a simple model,
i.e., the motion of plane curves. Later on we will generalize the result to three-
dimensional curves. We need to use the concepts developed in Sect. 5. We consider
a differentiable (class k � 3) two-dimensional curve parameterized by u at any
moment of time t . The evolution of the shape of the curve in time is describable by
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the geometry of a family of curves, each curve parameterized by u, and labeled in the
family by t . Basically, we need to use the formalism in Sect. 18.4 and substitute the
ˇ parameter with the time t . We mention that there should be no notation confusion
between t as time parameter and t as tangent unit vector. The points of the curve
at a certain moment of time t are described by r.u; t/ or r.s.t/; t/ where s is the
natural arc-length parameter along the curve, which itself depends on time through
the metric. The metric on the curve is g.u; t/ and we associate the Serret–Frenet
trihedron, also at any moment of time t .

In this book we take into account only curve motions produced by local
interaction. Consequently, the kinematics of the curves depends only on the local
intrinsic geometrical variable of the two-dimensional curve, i.e., �.s/. This further
means that the kinematics of the curve depends on s only through �.k/.s; t/,
k D 0; 1; : : : , the derivatives of the curvature. The kinematics is described in terms
of the velocity V of the points on the curve

dr

dt
D Pr.u; t/ D U.�; �s; : : : /n.u; t/CW.�; �s; : : : /t.u; t/; (7.1)

where n; t are the unit principal normal and tangent to the curve, and .U;W / are the
normal and tangent components of the curve velocity at the point described by the
.s; t/ coordinates. These velocities are purely locally defined quantities, as stated
above. In general we will denote partial derivative with respect to t by using the
subscript t and the total derivative with a dot. In the case of .u; t/ parametrization
these two coincide, which is not the case of the .s; t/ parametrization.

Usually in literature it is vaguely mentioned that theW term in (7.1) is irrelevant,
because it is only related to a reparameterization of the curve. We provide in the
following the Epstein–Gage theorem which brings clarifications and limitations to
this observation [55].

Theorem 22. Let us consider (7.1) with the particular dependence U D U.�; �/;

W D W.�; �/, where � is the tangent angle

�.s; t/ D
Z s

�ds:

IfU;W are C3 differentiable and periodic of period 2� in � , then for any solution of
r.s; t/ of (7.1) there is a reparameterization s0 D s0.s; t/ of the curve r.s; t/, such
that

ds0

ds
> 0; s0.s; 0/ D s;

and r.s0.s; t/; t/ is a solution of the equation

dr

dt
.s0; t/ D U.�; �/n.s0; t/:
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The reparameterization function fulfills the equation

ds0

dt
D �jr.s0; t/jW.�.s0; t/; �.s0; t//:

That is, the motion of such a curve depends only on its normal velocity. However,
there are cases when the tangent speed matters. We give such an example at the end
of Sect. 7.3.

If we have a parameterized “rigid” (that is gt D 0) closed curve r.u; t/ in uniform
translation and uniform rotation, soU D Pr �n;W D Pr �t. Both components have time
variation because the motion of the points of the curve is accelerated. However, if
we eliminate the translation both components become constant. The reason for this
is that the local frame ft;ng moves together with the rigid curve. In Fig. 7.1, we
show a uniform rotated figure-8 shape.

We will now investigate the equation of motion of a two-dimensional parameter-
ized curve. The Serret–Frenet relation plus the expression (7.1) for the velocity of
the points on the curve allow us to obtain the time evolution of each quantity.

First set of relations is obtained on behalf of the commuting relations between
derivations. The position vector is at least third derivative continuous function, so
each of its partial derivative of order 2 or less commute, if we take them with respect
to the independent coordinates, i.e., u and t . Consequently, we can write

rut D .g
1
2 r s/t D 1

2
g�

1
2 gtr s C g 1

2 .rs/t

D 1

2
g�

1
2 gt t C g 1

2 t t D 1

2
g�

1
2 gt t C g 1

2 Pt; (7.2)

Fig. 7.1 A figure-8 shape in
uniform rotation. The
velocity .U;W / in the local
Serret–Frenet frame is
constant at all times
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where we used @u D g1=2@s , the Serret–Frenet equation in the plane (5.8). On the
other side, we have

r tu D g 1
2 .UnCW t/s D g 1

2 .UsnC Uns CWst CW ts/

D g 1
2 Œ.Us C �W /nC .Ws � �U /t	 ; (7.3)

where the subscript Us means total derivative of U with respect to s, that is Us D
U��s C U�s�ss , etc. Since jjtjj D 1 ! Pt � t D 0, and since in the plane t ? n it
results that Pt k n and Pn k t. Consequently, if we equate (7.2) and (7.3), we have to
equate the coefficients of Pt and t. It results

t t D .Us C �W /n (7.4)

gt D 2g.Ws � �U /: (7.5)

When the curve moves it changes its shape, but also its intrinsic geometry since
in general s D s.t/. Indeed, if we neglect the time dependence of s, and we use
commuting of derivatives in the form @t @s D @s@t instead of that one in u and t , we
would obtained instead of (7.5), Ws D �U , which is something else. This general
approach does not conserve arc-length locally, but we can always introduce this
conservation law if we request that the LHS of (7.5) to be zero.

The second set of relations is obtained from the second Serret–Frenet relations,
namely ts D �n. When we differentiate this equation with respect to time, and
transform the s-derivatives into u-derivatives through @u D g1=2@s we obtain

� 1
2
g�

3
2 gt tu C g� 12 tut D �tnC �nt : (7.6)

By using again the commutativity between derivatives, by substituting t t from (7.4),
and by using again Serret–Frenet equations we have

�1
2
g�1gt�nC .Us C �W /sn� .Us C �W /�t D �tnC �nt :

We know that nt k t, so, by identifying the coefficients of the two orthogonal
directions we have

nt D �.Us C �W /t (7.7)

�t D Uss C �2U C �sW: (7.8)

Equation (7.6) can be obtained directly form (7.4) if we differentiate with respect to
time the identity t � n and use the fact that in the plane nt is parallel to t. The time
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evolution of the arc-length s.u; t/ can be obtained directly if we differentiate with
respect to time its integral definition (5.2), and use (7.5). We obtain

st .u; t/ D W.u; t/�W.0; t/ �
Z u

0

�Uds0: (7.9)

Because s depends implicitly on time, we can write P� D d�
dt D �s Ps C �t . By using

(6.8) we have

@�

@t
D @2U

@s2
C �2U C @�

@s
W.0; t/C @�

@s

Z s

0

�Uds0: (7.10)

This partial differential equations shows that in the two-dimensional case the
curvature of the moving curve is determined only by the normal component of
the velocity and the initial value of the tangent velocity. It results that the tangent
velocity W only determines how the points parameterized by u move along the
curve, without affecting the shape, namely the tangent velocity introduces just a
reparameterization. In the diagram below we present the flowchart of procedures to
determine the two-dimensional curve motion:

�
U.u; t/;W.u; t/

� R
:::du�����!

(7.10)
�.u; t/

R
:::du�����!

(7.5)
g.u; t/

??y
??y

s.u; t/??y
??y

R
:::du��������!

(7.7);(7.8)
ft.s; t/;n.s; t/g

7.2 Mapping Two-Dimensional Curve Motion into Nonlinear
Integrable Systems

The theory of plane curves motion represents first of all a warming-up study for the
motion of the real three-dimensional curves, it has some direct applications in fluid
dynamics and in biophysics by itself, but most importantly it can be put in relation
with the theory of nonlinear integrable systems.

In the work of Nakayama et al. [233], the authors show that the Serret–Frenet
relations for plane curves, in the form (5.6), form a set of integrable evolution
equations compatible with the MKdV hierarchy [2, 169]. By compatible one
understands that both Serret–Frenet and MKdV hierarchy systems of nonlinear PDE
can be described by the same type of scattering problem, i.e., the matrix of the
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two-component linear system associated with the nonlinear equation has the same
form. The explicit form of the resulting nonlinear equation in the curvature is
obtained from (7.10) by additional choices for U . Different choices for the normal
velocity of the curve will provide different types of nonlinear equations in the
curvature. Only for some special classes of motion of curves, like for example

U.s; t/ D ��.s; t/s ; (7.11)

the dynamical equation for the curvature (7.10) becomes

�t D 3

2
�2�s C �sss; (7.12)

which is precisely the MKdV integrable system [169] with stable solitons. These
types of curves (7.11) belong to a general class sometimes called curvature-driven
curves, since they move faster in the normal direction where the curvature has larger
tangent gradient, see for example a recent mathematical study on this topics in [85].
Since solutions of (7.12) are known from the inverse scattering methods, we can
use these solutions for the curvature, integrate the corresponding Fresnel relations
(5.15) to find the shape of the curve, and implement the curve equation in (7.1) to
find the velocity of the curve. A consequence of the choice (7.11) is the existence of
the conservation law

.ln
p
g/t D

�
W C �2

2

�
s

:

If the solution generates a loop, we also have conservation of perimeter and area in
time, by the periodicity conditions. Indeed, from (7.33) and (7.40) we have

PL D �
Z L

0

�Uds D
Z L

0

��sds D 0;

PA D �
Z L

0

Uds D
Z L

0

�sds D 0: (7.13)

As an example, for the MKdV one-soliton solution of (7.12)

� D �0sech

�
�0

2

�
s � t�

2
0

4

��
(7.14)

we obtain the curve velocities

U D �20
2

sinh �0
8
.4s � �20 t/

cosh2 �0
8
.4s � �20 t/

W D �5�
2
0

2
sech2

�0

8
.4s � �20 t/: (7.15)
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t 20
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Fig. 7.2 Motion of a plane curve under an MKdV one-soliton solution in curvature. Different
paths represent the curve at different moments t D 0; : : : ; 22. At t D 0 the curve has zero curvature
everywhere, and then MKdV curvature-soliton propagates from the right to the left end of the
curve, and bends it locally. For the first 11:5 units of time the curve bents to the left and upwards,
and for later moments of time it bends back executing swimming or beats patterns

The resulting curves are always open, because asymptotically the soliton is zero. In
Fig. 7.2, we present a straight line run by an MKdV one-soliton in curvature. Such
moving shapes occur in the beats, oscillations and swimming of flagella and cilia
for microscopic organisms [30, 126, 176, 193, 195]. A richer traveling solution for
the MKdV equation is obtained by the substitution .s; t/ ! 
; @=@t ! V , and by
integrating two times (7.12) until we obtain the generic form

.�s/
2 D �1

4
�4 C V�2 C C1� C C2 D �1

4
.� � �1/.� � �2/.� � �3/.� � �4/;

(7.16)

where C1;2 are constants of integration, and the roots f1;:::;4 can be determined by
identification. This equation has the general solution

F

�
arcsin

r
� � �1
� � �2 �

�2 � �3
�1 � �1

ˇ̌
ˇ̌ .�1 � �3/.�2 � �4/
.�2 � �3/.�1 � �4/

�

D ˙

4

p
.�1 � �4/.�3 � �2/C C3; (7.17)

where F is the incomplete elliptic integral of the first kind (Sect. 18.3), and the
vertical bar represents the usual notation for the separation between the argument
and the parameter [5]. The explicit traveling solution reads

�.
/ D ACBcn. 

�
jm/

D C F cn. 

�
jm/; (7.18)
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with the modulus of the Jacobi functions

m D �F.2BF
2 � BD2 �ADF /

2.AD � BF /.D2 � F 2/
;

and the width of the solitary wave

� D
s

2DF.D2 � F 2/

ŒDF.A2 C B2/� AB.D2 C F 2/	
;

and the traveling speed

V D
�
AB

3DF
C 2A

2D2 C B2F 2 � 2ABDF
3.D2 � F 2/2

�
: (7.19)

This solution is periodic of period 4�K.m/ (Sect. 18.3). The curve � is a loop if the
tangent t is periodic modulo 2� at 0 and L

Z L

0

�.s; t/ds D 2�I;

where I is the rotation index of � .
For different choices of the parameters A;B;D;F , we can have different types

of loops, usually self-intersecting ones. For example, for very small values of F in
(7.18) the curvature represents a circle of radiusD=A plus a traveling perturbation.
In Fig. 7.3, we present a numerical integrated shape of a curve with such a curvature
soliton fulfilling the condition of closure between A;B; and D with F D 0. In
Fig. 7.4, we present the result of a numerical integration of the Fresnel integrals
for the curvature given in (7.18) with F D 0, but the curve is not closed, and
repeats itself with an angular shift at every turn toward a chaotical shape. In the

Fig. 7.3 An MKdV soliton
solution in curvature
generating a closed loop. The
frame and ticks represent the
x � y system of coordinates
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Fig. 7.4 An MKdV soliton
solution in curvature where
the periodicity (closure)
condition is not fulfilled. It
generates an open curve. The
frame and ticks represent the
x � y system of coordinates
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Fig. 7.5 A 3-D view of a
curve whose curvature
contains a MKdV
soliton–antisoliton pair
running one against the other

case of a soliton–antisoliton solution [169], when the two bumps far separated
in s, i.e., the asymptotic zone, we can approximate the solution with a sum of
two expression of the type in (7.18) shifted in s, and having different parameters
A;B;D. In Fig. 7.5, we present such a pair of MKdV soliton–antisoliton running
one into the other and annihilating for a while. Such a pair is represented by two
traveling knots of opposite chiralities. More examples of curves generated by the
MKdV model are presented in Fig. 7.6 for different values of the parameters in the
solution.

Another possible choice for the normal velocity can lead to the sine–Gordon
equation [2,78,79,169], in terms of the angle made by the tangent of the curve with
a fixed direction

�.s; t/ D
Z s

�.s0; t/ds0: (7.20)
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Fig. 7.6 Shapes generated by the solution (7.18) for the MKdV model for curvature, plotted
together with the graphics of their curvature vs. s. From left to right and toward downward the
curves are called: the first row are lemniscate (or figure-8), then hypocycloid or ratio 1:2, the
next three are hypotrochoids of different ratios, then it is a “pretzel” knot, and the last one is a
combination between a hypotrochoid and a epicycloid

To obtain the sine–Gordon equation we choose to work in the “gauge”W.0; t/ D 0.
The expression of U is given by solving an integrodifferential equation, hence the
system models a nonlocal interaction. The condition can be written in the operatorial
form

�s D
�Z s

ds0
��

@2

@s
02
C �2.s0/

�
ı.s � s0/C @�

@s
.s0/�.s0/

��2
U.s0/:
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This equation can be integrated once toward to form

�st C �
Z s

��s0ds
0 D � C C; (7.21)

and leads to the sine–Gordon equation

�st D sin �: (7.22)

A typical solution for the sine–Gordon is

�.s; t/ D 4 arctan

8̂
<̂
ˆ̂:
� exp

�
˙

�
as C t

a

�
˙ ˇ

�
as � t

a

�
p
1 � ˇ2

�
9>>=
>>;
; (7.23)

where a > 0 and �; ˇ are arbitrary constants. The resulting shape are very similar
to those presented in Fig. 7.2.

Among other possible choices for the normal velocity like U D ˙@n�=@sn, or
U D ˙@n ln �=@sn, n D 0; 1; : : : discussed in [233], some important cases are the
perimeter/area conserving systems, i.e., those forms for �; U fulfilling (7.13). The
case U D ��ss is known as the surface diffusion flow [37, 102].

A general class of normal velocities functions conserving area and length, if they
are closed, can be provided by the forms

U D �p�s; p integer: (7.24)

If we work in the gauge W.0; t/ D 0, the differential equation for � obtained from
(7.10) reads

�t D
�
1C 1

p C 2
�
�pC2�s C 1

p C 1.�
pC1/sss (7.25)

which is a modified KdV equation with nonlinear dispersion, belonging to the class
denoted K.p C 2; p C 1/ class of nonlinear PDE with compacton solutions. For
p D 0 we recover the MKdV equation. If we look for standing traveling solutions
in 
 D s � V t , (7.25) can be integrated into its potential picture form

.�
/
2 D �2.C3 C V /

p C 2 �2�p � 1

.p C 1/.p C 2/�
2 C C1�1�p C C2��2p; (7.26)

with Ci being arbitrary constants of integration. The RHS term of this equation
can be plotted as a functional of variable � like in a phase space (Fig. 7.7). This
potential picture shows the existence of two valleys, which according to the analysis
performed in [86], leads to the existence of two solitary wave solutions in curvature.
In terms of the shape of the curve, this can lead to something similar with a double
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Fig. 7.7 Potential picture for
the PDE for � associated with
area and length conservation,
U D �p�s , for several values
of p
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k

Fig. 7.8 Time evolution of
the curve generated by
U D ��s presented in the
x � y plane. The two
attractors with asymptotically
constant curvature correspond
to the two valleys in the
potential picture in Fig. 7.7.
The curve is not closed

spiral. Equation (7.26) is not integrable in general, but for some particular values of
p we can find some exact solutions. For example for p D 4, C1;2 D 0 we have


 D
p
18�4 C 5V lnŒ6�2 Cp2.18�4 C 5V /	

6
p
2�

�
� 6�2

5
� V

3�2

� ; (7.27)

see Fig. 7.8. In Fig. 7.8, we present the evolution in time of the curve determined by
(7.27) for p D 1, which is again an integrable case.

Another interesting example of curves from the MKdV hierarchy is provided by
the so-called curve-shortening equations [55], i.e., when the normal speed has the
form

U D f .�/; (7.28)
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where f is a real smooth function of curvature. Examples are f D constant, when
we have the eikonal equation, and f .�/ D � we have the so-called curvature-eikonal
flow, or curve-shortening flow (CSF). The CSF curves have interesting properties.
For example

dL

dt
D �

Z L

0

k2ds;
dA

dt
D �2�; (7.29)

showing that the CSF curves shrink under the flow and cease to exist beyond
A.0/=2� . The CSF curves also preserve convexity. The nonlinear PDE fulfilled by
the CSF curves is also an integrable evolution system, namely the cubic nonlinear
Schrödinger equation (NLS3) for an imaginary time

�t D �ss C �3: (7.30)

Such an equation is a diffusion nonlinear equation with superlinear growth with
blowup solutions in finite time. More rigorous results and numerous examples of
motions of planar curves can be found in [55].

7.3 The Time Evolution of Length and Area

For a two-dimensional curve we have two geometric global quantities of interest:
length and area of the curve. The total length of a moving curve � of metrics g.u; t/
is given by

L.t/ D
Z umax

0

g1=2.u; t/du D
Z L

0

ds: (7.31)

The change of the length in time is described by its time derivative

dL

dt
D W.umax; t/ �W.0; t/�

Z L

0

kUds; (7.32)

whereW and U are the tangent and normal velocities of the curve, respectively, and
k is the curvature. For a loop the time variation becomes simply

dL

dt
D �

Z L

0

kUds D �
I �max

0

Ud�; (7.33)

where kds D d� is the turning angle of the tangent. Equations (7.32) and (7.33)
represent a conservation law, and the normal velocity is the “flow of length” in the
turning angle representation.

For example, an interesting application is the case of “shortening” closed curves
[55], i.e., curves where the normal velocity is proportional with some positive power
� of the magnitude of the curvature U D U.k/ D U0jkj�C1. Equation (7.32)
becomes
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dL

dt
D �

I
�

jkj�C1ds;

such that the length of the curve is strictly decreasing in time. Since

Z
�

jkjds �
I
�

kds D
I
�

d� D 2�;

by using the Hölder inequality we obtain an upper bound for the negative derivative

dL

dt
	 � .2�/

�C1

L�
;

and by integrating once, we find that there is always t0 > 0 such that

t 	 L�C1.0/�L�C1.t0/
.� C 1/.2�/�C1 ;

meaning we have an upper bound of the life time of the loop, which depends only
on the initial length of the curve. Examples of such shortening curves evolution
equations are provided by the elastic energy, for example, where � D 1. Equation
(7.31) is useful for finding the expression of the change of the infinitesimal arc-
length dL D ds D g1=2du for a moving curve. During an infinitesimal amount of
time ıt we have from (7.5)

ıdL D @.dL/

@t
ıt D @

@t
g
1
2 ıtdu D

�
@W

@s
� kU

�
ıtds; (7.34)

which reads

ıdL D �kUdsıt C @W

@s
dsıt: (7.35)

Equations (7.34) and (7.35) provide the variation in time of the infinitesimal arc-
length of a moving curve, function of the local velocity of the curve. The same
equation can be written just in terms of variations

ıdL D �kıuds C ıdw;

where ıu and ıw are the normal and tangent displacements of a point on the curve,
during its infinitesimal motion. The second term on the RHS of the above equation
and (7.35) represent the contribution to the variation of the infinitesimal arc-length
due to the stretch or compression of the curve along its local tangent. This term is a
total differential, hence for loops this term is zero

ıdLloop D �kUıt: (7.36)
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Although the tangent shift term ıdw can be always canceled by using a convenient
reparameterization of the curve (see Theorem 22), there are applications where this
term plays some role. For example if we choose a finite line segment with a fixed,
and having the other end moving in an arbitrary direction with uniform motion, we
have a nonuniform extension of the length of the segment, which is described by this
tangent term. The first term in the RHS of (7.35) is usually known in hydrodynamics
literature in the approximated form

�kUds D dL0 � dL ' ı


R
dL;

where ı
 is the usual notation (in hydrodynamics books) for the infinitesimal
displacement along the normal to the curve, and R is the radius of curvature.

The area associated with a curve is defined as

A.t/ D �1
2

Z L

0

r � nds D 1

2

Z L

0

jr � tjds; (7.37)

where the equality between the two forms is guaranteed by r � n D ˙jr � nj. This
equation emerges from the integration of the area dA D r � nds=2 of an elementary
triangle generated by the infinitesimal arc-length ds and the two position vectors
from the origin of the coordinate system toward the ends of this infinitesimal arc.
The signs in front of the area expressions are related to a certain convention of
running the curve. For an arc covered CCW the area is considered positive. In the
case of a loop, (7.37) provides the area inside the loop. For an open curve, expression
(7.37) provides the sum of the areas of the surfaces bounded by the curve from 0

to L, and the two lines drawn from the origin of the coordinate system to these two
ends. These two lines may cross the curve many times, and the corresponding areas
are taken with plus or minus accordingly to the resulting sign according to the sign
convention stated above. In the case of an open curve, if we change the origin of the
coordinate systemO ! O 0 by a translationOO 0 D R, the area in (7.37) changes in
an additive way. If we have a curve lying fromO to some pointL, its area measured
fromO 0 reads

A0.OL/ D �1
2

Z L

0

r 0 � nds D A.OL/C R

2

Z L

0

nds;

where r 0 D r�R. From the definition of the turning angle of the tangent d� D kds,
and the theorem of derivation of implicit functions, we have

nds D
d t
ds

k
ds D

d t
ds
d�
ds

ds D d t

d�
ds D �rds;

and consequently
A0.OL/ D A.OL/C A4OLO 0 :
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Fig. 7.9 The infinitesimal arc-length ds on the curve � in r at moment t , transforms into the new
infinitesimal arc-length ds C ıds on the moved curved at t C dt . The infinitesimal displacement
dr can be projected onto the normal and tangent to the curve dr D ıunC ıwt. The dashed area
represents ıdA

Fig. 7.10 The infinitesimal
displacement of the curve �
with ır
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Fig. 7.11 The infinitesimal variation of the elementary swept area of a moving curve � .
Horizontal dashed area is the initial elementary area of � (OP1P ), and the total area of the figure
(OP1P2P3) is the elementary area of the shifted curve � .t C ıt/. The swept area (PP1P2P3) is
dashed with curved lines, and the residual area (OPP3) is dashed with vertical lines

Now we provide the equation for the variation of the infinitesimal area ıdA
for a curve in motion. In other words, this is the infinitesimal area swaped by an
infinitesimal arc-length during an infinitesimal interval of time of curve motion
(Figs. 7.9–7.11).
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If V represents the total velocity of the point r 2 � , we have from (6.37)

@dA

@t
D �1

2
V � nds � 1

2
r � @n

@t
ds � 1

2
r � n@g

1
2

@t
du

D �1
2
Uds C 1

2

�
@U

@s
C kW

�
r � tds C 1

2

�
kU � @W

@s

�
r � nds: (7.38)

After regrouping the terms we can write (7.38) in the form

ıdA D �Udsıt C 1

2

@

@s

�
r � .U t �W n/

�
dsıt; (7.39)

which represents the infinitesimal variation in time (ıt) of the infinitesimal (d )
element of area during the motion of the curve. For example, for a loop we have

dA

dt
D �

Z L

0

Uds: (7.40)

The same equation can be obtained in a more traditional way (without the help from
the differential geometry formulas of curve motion)

ıdA D �1
2
.r C ır/.nC ın/d.s C ıs/C 1

2
r � nds C � � � :

Let us discuss the two terms on the RHS of (7.39). The first term is the real swept
area of the moving infinitesimal arc-length of the curve, and this is the term we need
in the following calculations. The second RHS term in (7.39) is just a “residual”
area, and it is originated by the way the area is defined. When the position vector
sweeps the arc-length, the counted area also includes the area swept by this vector
itself. This is easy to understand if we simplify a little (see (7.38) and (7.39)). From
the definition of the infinitesimal area generated by an infinitesimal arc-length, the
integrand in (7.37), we notice that its time derivative contains three terms (7.38).
The first one, �ır � nds=2 is by definition �Uıtds=2, where the minus sign occurs
because the normal points in the opposite direction than the normal motion of the
curve. This part is the area of the triangle of edges: ır; .t C ıt/.ds C ıds/, and
ır C tds. That is the triangle PP2P3 in Fig. 7.10, which is just half of the needed
swept area:

ıdAPP2P3 D �
1

2
ır.s/ � .t C ıt/.ds C ıds/:

Because of the recursion-like relations (7.7) and (7.8), which describe the time
variation of the tangent and the normal, the last two terms in the RHS of (7.38)
mix together and produce the other half of the swept area (PP1P2 in Fig. 7.10)

ıdAPP1P2 D �
1

2
ır.s C ıs/ � .t.s/ds
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and a total differential

ıdAresidual D 1

2

@

@t
AOPP3dsıt:

We can illustrate this even better in Fig. 7.11. In this figure, the initial infinitesimal
area dA.t/ D dAOP1P is presented dashed with horizontal lines. The new
infinitesimal areaDA.t C ıt/ D dAOP1P2P3 is the total area presented in this figure.
The variation of the infinitesimal area, ıdA D dA.t C ıt/ � dA.t/ is of course
the area dashed with vertical and curved lines, AOPP1P2P3 . The portion dashed with
curved lines is the correct one, the swept area in the curve motion, given by the
first term in the RHS of (7.38) and (7.39). The area dashed with vertical lines is the
so-called “residual” one.

Let us test (7.39), and this last comment, with two examples. If we choose a
straight segment alongOx, moving upward along theOy axis, x 2 Œ0; L	; y D Ut ,
we can figure out that the swept area has to be Uıtds. On the other hand, (7.39)
provides ıdA D �Uıtds C .1=2/t � U tıtds D .1=2/Uıtds just half of the swept
area. This happens because it took into account the “residual” term. If we take into
account only the first term in its RHS, we obtain the correct result. Another example
can be given by a unit segment rotating with its origin fixed inO , with angular speed
!. Equation (7.39) provides

ıdA D �!sıtds C 1

2

@

@s
Œs.cos!t; sin!t/ � .cos!t; sin!t/!s � 0	ıtds D 0:

Again wrong, since the real swept area by this rotating segment is actually !sıtds.
If we retain just the first term in the equation, we obtain the correct result. The zero
result of the total infinitesimal area is produced by the fact that at any moment of
time, the area of this curve is actually zero (it is a straight segment). So its area is
constant, so its total time derivative is of course zero.

For the sake of completeness we present here another approach the infinitesimal
variation of the area swept by a moving curve, namely the variational approach. We
have

L.t C ıt/ D
Z umax

0

g
1
2 du D

Z umax

0

r
@r C ır
@u

� @r C ır
@u

du

D
�
@.xi C ıxi /

@u

@.xi C ıxi /
@u

� 1
2

: (7.41)

By variational calculation we obtain

ıL D �
Z L

0

kıxnormalds C ıW
ˇ̌
ˇ̌L
0

; (7.42)

which is in agreement with (7.32).
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7.4 Cartan Theory of Three-Dimensional Curve Motion

A moving parameterized curve �.t/ � R
3, which can be described at any moment

of time by the Serret-Frenet frames, generates a set of points˙� . Any parameterized
surface ˙ � R

3 can be described by its tangent bundle T˙ , but we need a more
sophisticated vector bundle to describe the hypothetical surface obtained through the
curve motion than the available tangent bundle T˙� . Moreover, in order to approach
a moving curve as a regular surface some restrictions should apply to this motion.
The curve should not self-intersect during the motion in order to have fulfilled the
immersion condition for a regular surface. The time dependence of the position of
any point on the curve should be a differentiable function, which requests some extra
structure relations (or compatibility equations) between the mixed time and arc-
length second order derivatives. In conclusion, the surface obtained by the motion
of the curve has to fulfil some extra constraints.

In order to define the differentiable motion of a curve in arbitrary direction, like
for example along ft.t/;n.t/;b.t/g, we have to define vector fields along the curve
that do not belong only to the tangent space of the curve T � . However, it would be
simpler if we could describe such vector fields in the moving Serret-Frenet frames.
For that we have to immerse the local Serret-Frenet frames in the frame bundle for
the affine space R3.

The immersion can be obtained by mapping different vector bundles over
orthogonal groups O.n;R/ into vector sub-bundles over orthogonal subgroups,
correspondingly. Then, the homomorphisms between different orthogonal groups
provide the requested mappings between the frame bundles. If such mappings are
constructed, by using their pull-backs, the covariant derivative in R

3 induces a
covariant derivative in the curve. This allows us to define vertical and horizontal
vector spaces for the vector bundle of the frames along the curve. Consequently we
can identify “orthogonal” spaces to the curve, and the vectors in these spaces will
provide the local directions of motion of the curve.

The imbedded parameterized curve � is a Riemannian sub-manifold of R3, and it
has a natural Riemannian connection defined on it. Let x 2 � and we have the vector
subspace relation Tx� C TxR

3. We denote by .TxR3/? the orthogonal complement
of Tx� in TxR3 which is called the normal space to the immersion � at x. We can
build the following two orthogonal frame bundles, and when we denote them we
skip from the notation the structure groups, which obviously are the corresponding
orthogonal groups. We have OF.�/ over � with canonical projection� 0, and OF.R3/
over R3 with canonical projection � . Also, we can factorize OF.R3/=� D fv 2
OF.R3/j�.v/ 2 �g which is a principal bundle of orthonormal frames over � with
symmetry group the orthogonal real Lie group O.3;R/.

We define the bundle of adapted frames OF.R3; �/ over � with symmetry group
O.2;R/ � O.1;R/. This is actually a sub-bundle of OF.R3/=� obtained through
the map i (see the diagram in (7.43)) in a natural way: it contains the frames over
R
3 which are also frames over the curve, and have one axis along the tangent

to the curve. The O.2;R/ part in the symmetry group takes care of the possible
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rotations of this frames around the curve tangent, while the O.1;R/ D f1;�1g
part describes the two possible chiralities along the curve. Mapping 3-dimensional
vectors along the curve, and in the normal plane induces two orthogonal Lie
groups natural homomorphisms h0 W O.2;R/ � O.1;R/ ! O.1;R/ and h00 W
O.1;R/ � O.2;R/! O.2;R/, which induce on their own two corresponding fiber
bundles homomorphisms which we denoted with same letters, see Fig. 7.43.

OF.R3/
������!

O.3;R/
R
3

x??j
OF.R3/=�

������!
O.3;R/

�

x??i
OF.�/ D OF.R3; �/=O.2;R/  �����

h0

OF.R3; �/ �����!
h00

OF.R3; �/=O.1;R/

O.1;R/

??y� 0 O.1;R/�O.2;R/

??y� O.2;R/

??y� 00

� � �
(7.43)

Finally, we become even more abstract and construct the vector normal bundle of �
as T .�/? D Sx2�.Tx�/? associated to the bundle of normal frames, with standard
fibre R2 and group O.2;R/. If we denote by �3 the Riemannian connection form on
OF.R3/ then the composite pull-back i�j ��3 is the connection form in OF.R3; �/.
Geometrically this connection form defines parallel displacement of the normal
space Tx�? onto the normal space Ty�? along the curve � .

In the following we express the covariant derivative for the curve. We denote
the directional and covariant derivatives in R

3 along v 2 TR3 by Dv D rv, and
we assign a basis fei g in TR3. We need the expression of the covariant derivative
ri D rei from (4.43). For imbedded manifolds the connection � simply becomes
the second fundamental form define on the submanifold ([158] Chap. VII, [299]
pp. 64, or [46] Sect. 4-4) and the result is called Gauss’ formula if V belongs
to the tangent space, or Weingarten’s formula if V belongs to the normal space,
respectively

reiV D DeiV �˘ .ei ;V /:

The vector ˘ is the vertical component of the directional derivative, usually called
the second fundamental form. It is defined on X with values in the vertical space.
We remember that ifX is a surface with unit normal n we have ˘ D ˘n, definition
54. For any two vector fields v;w 2 T � we define the covariant derivative associated
to the (natural) Riemannian connection of � at a point x 2 � , (4.43)

.rvw/x D .Dvw/x �˘ x.v;w/ 2 Tx�: (7.44)



152 7 Motion of Curves and Solitons

Here ˘ x.v;w/ 2 Tx�? is the second fundamental form (see definition 54) of � at
x, i.e. a symmetric bilinear differential form with values in the normal space to � .
The vector second fundamental form ˘ allows us to define directional derivatives
along the normal space to � at points on � .

In the following we give a practical example, in coordinates. We know we
can always choose two differential orthonormal fields of vectors 
1; 
2 (i.e. two
sections) of the normal bundle T �?. Let us also choose x0 2 � and note that
it is always possible to choose an adapted orthogonal frame with a system of
normal coordinates fy1; y2; y3g with origin in x0 such that .@=@y1/x0 spans Tx0�
and f
1 D .@=@y2/x0 ; 
2 D .@=@y3/x0g spans Tx0�

?. Let s be the arc-length in
a neighborhood U.x0/ � � and let yi D yi .s/ be the equations describing the
imbedding of U into R

3. We have the action of the second fundamental form ˘ on
tangent vectors of � given by

˘

�
@

@s

ˇ̌
ˇ̌
x0

;
@

@s

ˇ̌
ˇ̌
x0

�
D
�
@2y1

@s2

�
x0

@

@y1
C
�
@2y2

@s2

�
x0

@

@y2
: (7.45)

The proof is simple and it is based on direct calculation of the Hessian of
transformation from x to y coordinates, and on the fact that the Christoffel symbols
for the Riemannian connection in R

3 are zero (see for example second volume of
[158], Chap. VII). It is easy to check that (7.45) includes the Serret-Frenet relations
(5.3), namely (7.45) represents ˘ .t; t/ D �n. Let us choose y1 D s; y2 D
�r.s0/ � n.s0/, and y3 D r.s0/ � b.s0/. We have

@2y2

@s2

ˇ̌
ˇ̌
s0

D � @
@s
.r s � nC r � ns/s0 D .�sy3 C �2y2 � �sy1 C � C �2y2/s0 D �;

and in the same way @2y3=@s2 D 0 at s0 which proves the affirmation.

7.5 Kinematics of Three-Dimensional Curves

In the following we relate the general frame bundle formalism developed in Sect. 7.4
to three-dimensional curve motions in space. On each point of arc-length coordinate
s along the parameterized curve � we define the adapted (orthonormal) Serret-Frenet
frame fei giD1;2;3 D ft;n;bg of vectors in the principal bundle OF.R3; �/ over � ,
(7.43). Let be .s; n; b/ the local coordinates in this frames, and .s; n; b; ˛1; ˛2; ˛3/
local coordinates in the principal bundle, where ˛i represent the three angles of
frame rotations in O.3;R/. The canonical 1-form has the generic expression

� D �1ds C �2dnC �3db C
3X
iD1

� id˛i ;
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and its action on tangent vectors from the principal bundle is given by (4.33), (4.39)
in the form

dr D .� i IX/ei D W t C UnC Bb; (7.46)

with W;U;B arbitrary 1-form coefficients. When we consider the time motion of
the curve these coefficients become the pull-back 1-forms of a cross-section in the
principal bundle determined by � . Namely, they are the coefficients of the velocity
of the curve in the local Serret-Frenet frames

dr D V .s; t/dt D @r

@t
dt D .W dt/t C .U dt/nC .B dt/b;

according to the definition of curve velocity introduced, for example, in [109, 168,
172, 233, 289, 289], which is basically the same definition used in Sect. 7.1. Let us
denote by � k

ij the Christoffel symbols associated with the connection defined on this
principal bundle. We determine them by using (7.44) and (4.42)

Dt t D �n! r1e1 D D1e1 �˘ .e1; e1/ D 0; so � 1
11 D 0;

Dtn D ��t C �b! r1e2 D D1e2 �˘ .e1; e2/ D ��e1; so � 1
12 D ��;

� � �
Dbb D �b � @t

@b
t � b � @n

@b
n! r3e3 D D3e3 �˘ .e3; e3/ (7.47)

D �b � @t
@b

e1; so � 1
33 D �b � @t

@b
;

and so on. In order to obtain the connection form, in addition to the Christoffel
symbols, we need the transformations of the orthonormal adapted frames in the
bundle of frames, (4.41). in the form of three 2�2 rotation matrices OR as 1-parameter
Lie subgroups of O.2;R/

@e i

@xq
D ORijq ej

with i D 2; 3, q D 1; 2; 3 and x1 D s; x2 D n; x3 D b. For q D 1 we have
obviously

OR1 D
�
0 �

�� 0
�
:

By applying the structure conditions (4.37) in the (4.38) form, we obtain the
relations describing the change of frames along the local frame directions, that is
the Gauss-Weingarten (4.39), in the form

dei D !ijq dxqej : (7.48)
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There is a simple curvilinear coordinates-like language in which the connection
form coefficients have an intuitive form [289]

@

@n

0
@ t

n

b

1
A D

0
@ 0 �� 1

22 �� 1
23

� 1
22 0 b � @n

@n

� 1
23 �b � @n

@n
0

1
A
0
@ t

n

b

1
A ; (7.49)

@

@b

0
@ t

n

b

1
A D

0
@ 0 �� 2

32 �� 1
33

� 2
32 0 b � @n

@b

� 1
33 �b � @n

@b
0

1
A
0
@ t

n

b

1
A ; (7.50)

and of course the derivatives with respect of s are the Serret-Frenet relations (5.5).
Moreover, by defining the vector field

X D t
@

@s
C n

@

@n
C b

@

@b
2 TOF.R3; �/; (7.51)

we can construct the other curvilinear differential operators like the curvilinear
divergence of the tangent

r � t D n � @t
@n
C b � @t

@b
; (7.52)

where we used t � @t=@s D 0

r � n D �� C b � @n
@b
; r � b D �b � @n

@n
:

The curvilinear curl has the form

r � t D t � @t
@s
C n � @t

@n
C b � @t

@b

D �bC n �
�
@t

@n
� b
�

bC b �
�
@t

@b
� n
�

n D �bC˝st;

where ˝s D t � .r � t/ is called the total moment of the t field or abnormality.
Similarly we have

r � n D �.r � b/t C˝nn � � 1
22b;

r � b D .� Cr � n/t C � 1
33nC˝bb;

with ˝n D � 2
32 � �;˝b D �� 1

23 � � being the other two abnormalities.
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It is interesting to mention a relation between the three rotational abnormalities

˝s � � D 1

2
.˝s C˝n C˝b/:

According to [289] this relation is a consequence of the Dupin’s theorem (i.e. the
intersections of surfaces of orthogonal curvilinear coordinates are lines of curva-
ture). Expressing the motion of three-dimensional curves through the abnormalities
forms has the advantage of classification of motions in three categories, function
of which abnormality we choose to keep zero. For example, the very well known
binormal motion happens when the normal abnormality vanishes, ˝n D 0. This
is typical vortex filament motion, and it will be studied in more detail in Chap. 15.
In the binormal motion the s�lines and b�lines are contained in a one-parameter
surface U Dconstant, perpendicular on n D rU=jrU j. Consequently, the normal
field is quasi-potential (is derived as the product between a scalar function and a
gradient). All equations and forms of the surface generated by a binormal motion
can be easy calculated. For example, following the Weatherburn theorem ([338] XII,
121) K D N � curlU t � curlUb, we have the Gaussian and mean curvature in the
form

K D ��.� Cr � n/� �2; H D r � n;
respectively, while the Gauss-Codazzi equations and Gauss’ Theorema Egregium
are encapsulated in a very simple expression

K D @� 1
33

@s
C .� 1

33/
2:

In the case when the b parameter can be considered time (the so-called pure
binormal motions) it results that rb D r t D g1=2b and, most importantly, st D 0

which draws a spectacular conclusion: pure binormal motions are possible only for
inextensible curves. This could be the geometrical insight of the strong stability of
vortex filaments having this type of motion.

From the structure equations for the connection form d! D �! ^ ! C ˝ we
obtain the expression of the curve motion in time, as function of the velocity. It is
easy to note that @b=@t D B; @n=@t D U and we have

@

@s

0
@WU
B

1
A D

0
@ 0 � 0

�� �� 1
22 �� 2

32 C �
0 �� 1

23 � � �� 1
33

1
A
0
@WU
B

1
AC

0
B@
Pg
2g

0

0

1
CA ;

where we note that the change in time of the arc-length accounts for a non-zero
curvature of the connection. We can re-write (7.49–7.50) in terms of the components
of the velocity
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d t

dt
D
�
@U

@s
� �B C �W

�
nC

�
@B

@s
C �U

�
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dn
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D �

�
@U

@s
� �B C �W

�
t C

�
1

�

@

@s

�
@B

@s
C �U

�
C �

�
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@U
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� �B C �W

��
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D �

�
@B

@s
C �U

�
t �

�
1

�

@

@s

�
@B

@s
C �U

�
C �

�

�
@U

@s
� �B C �W

��
n;
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D 2g

�
@W

@s
� �U

�
: (7.53)

The total (material) time derivative can be broken into the partial derivative and an
extra term

d

dt
D @

@t
C
�
W �

Z s

�Uds0
�
@

@s
:

From the above relations we can derive the dynamical connections between the
velocity components and curvature and torsion of �

@�

@t
D @2U

@s2
C .�2 � �2/U C @�

@s

Z s

�Uds0 � 2� @B
@s
� B @�

@s
; (7.54)

@�

@t
D @

@s

�
1

�

@

@s

�
@B

@s
C �U

�
C �

�

�
@U

@s
� �B

�

C �
Z s

�Uds0
�
C ��U C � @B

@s
: (7.55)

On behalf of the fundamental theorem of curves (Theorem 10), once we integrate
(7.54) and (7.55) and find �; � the curve is uniquely determined in the arc-length
parametrization, up to rigid motions in space. Obviously, as a check, if we cancel
the torsion we obtain the equations of motion for the two-dimensional curves.

7.6 Mapping Three-Dimensional Curve Motion
into Nonlinear Integrable Systems

Like in the case of motion of two-dimensional curves, there are integrable three-
dimensional motions in direct relation with integrable evolution equations (in
this case it will be the cubic nonlinear Schrödinger (NLS) hierarchy), and also
nonintegrable motions.

In order to map the three-dimensional curve motion into a nonlinear integrable
system we follow [123, 168], as well as an older suggestion of Darboux, and we
introduce the complex curvature–torsion function by the Hasimoto transformation

˚.s; t/ D �.s; t/ei
R s
�.s0;t /ds0 : (7.56)
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By introducing (7.56) in (7.54) and (7.55), we obtain a complex equation in the form

@˚

@t
D
�
@2

@s2
C j˚ j2 C i˚

Z s

�˚�ds0 C @˚

@s

Z �
˚�ds0

�
Uei

R s
�.s0;t /ds0

C
�
i
@2

@s2
C i j˚ j2 C ˚

Z s

�˚�ds0 � i˚
Z s @˚�

@s0
ds0
�
Bei

R s
�.s0;t /ds0 ;

(7.57)

where � is complex conjugation, and the square parentheses are operators acting to
the right. A simple example is immediate: if we choose a binormal type of motion
with B D �, and zero normal velocity U D 0, (7.57) reduces to the (focusing)
version of the nonlinear Schrödinger equation

i
@˚

@t
C @2˚

@s2
C 3

2
j˚ j2 @˚

@s
D 0: (7.58)

If we consider a more complex type of motion with U D ��s , and B D ��� we
obtain instead the equation

@˚

@t
C @3˚

@s3
C 3

2
j˚ j2 @˚

@s
D 0; (7.59)

which is an MKdV equation for a complex function. Of course (7.57–7.59) reduce
to the previously studied two-dimensional case if � D 0, i.e., the imaginary part of
all equations vanishes.

Another example of mapping is provided by the binormal motion of curves with
constant curvature, i.e. ˝n D 0 (or @r=@b D g1=2b) and � Dconst. The resulting
equation for torsion can be mapped, after a scaling, into either the Dym nonlinear
equation, or the Camassa-Holm equation from hydrodynamics. If the initial curve
is a helix, a binormal motion with constant curvature generates the so-called soliton
surfaces, [289], which are periodic surfaces of revolution representing the motion
of a soliton along a circular helix.

7.7 Problems

1. Find the PDE equation fulfilled by the curvature of a moving curve on the surface
of a unit sphere S2. Find criteria for this curve to be closed.

2. Show that (7.26) is integrable for p D 1 and for p D �4, and find the solutions
for �. Study the integrability of (7.26) function of p.

3. Find a more compact form for (7.4), by introducing a complex vector� D tCin.
Hint: use (7.6).

4. Prove that a rigid unit circle in uniform rotation around its venter has indeed
U D W D 0.
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5. Show that the most general Euclidean motion of a rigid curve fulfills the
equations Ws D �U , Us D ��W C C0e

˙i'.t/, where '.t/ is an arbitrary
rotation angle and C0 is an arbitrary constant. Show that in the tangent angle
representation these equations read W� D U;U� D �W C C0e˙i'.t/ or simply
W�� CW D C0e˙i'.t/; U�� C U D 0.

6. Re-obtain the results for the motion of plane curves by using differential forms,
including a tangent motion with velocity W . Hint: �1 D ds CWdt . Show that
in this case we can obtain the complete dynamical equation for curvature �t D
Uss C �2U C �sW .

7. Show that in the case of 2-dimensional curves, the Cartan frame method provides
� D dst C Udtn, and d t D !12n; dn D �!21t. From the structure conditions
we have d�1 D !12 ^ �2; d�2 D �1 ^!12: which provide the nontrivial solutions
!12 D �ds, !12 D Usdt , that is the Serret-Frenet relations for the W D 0 case:
d t D .�ds C Usdt/n; dn D �.�ds C Usdt/t.



Chapter 8
Theory of Motion of Surfaces

In this chapter we focus on the kinematics and dynamics of moving surfaces, in
the same way we did in Chap. 7 for curves. The boundary conditions obtained
from this geometrical approach will be used in the next chapters for the study of
nonlinear oscillations and waves of liquid drops. In this chapter we assume that all
transformations of coordinates are continuous at least of class C2, and they have
nonvanishing Jacobian functions.

8.1 Differential Geometry of Surface Motion

In the following we consider a time parameterized family of regular surfaces defined
by the immersions r.t; u˛/ W Œ0;1	 � U � R � R

2 ! ˙.t/ � R
3. We assume it is

possible to define at any moment of time t an orthonormal basis fe˛;N g˛D1;2 in R
3

where e˛ D .@r=@u˛/=jj@r=@u˛jj and g�� D ru � rv is the first fundamental form.
We apply the Cartan frame formalism described in Sect. 7.4 for the principal bundle
of adapted frames OF.R3;˙.t// over ˙.t/ which are actually the Darboux frames
(Definition 59), and we can write the canonical form

.� IX/ D dr D r�du� CW �e�dt C UNdt

D
2X

˛D1
.
p
g˛˛du˛ CW ˛dt„ ƒ‚ …

�˛

/e˛ C UNdt„ƒ‚…
�3

; (8.1)

where W ˛;U are the tangent and normal components of surface velocity, respec-
tively. By using the Gauss and Weingarten equations, with the notations from
Chap. 6, namely r�� D � �

��r� C ˘ �� , ˘ D ˘N , and N� D �g��r�˘��, and
such that the Christoffel symbols are derived from the Riemannian metric on ˙.t/,
we can write the connection form

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 8,
© Springer-Verlag Berlin Heidelberg 2012
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.!IX /jT˙ D dr� D � �
��r�du� CN˘��du� C ���r�dt C��Ndt;

dN jT˙? D �g��˘��r�du� C ��r�dt C�Ndt; (8.2)

where the 1-forms Udt;W �dt; ���dt; ��dt;��dt;�dt are responsible for the
motion (tangent and normal) of the surface. By applying the structure conditions
(4.37–4.38), we obtain a PDE system with eight equations for these nine unknown
functions [217,234]. The indeterminacy is related to the fact that there is no natural
parametrization on the surface. Also, from the structure equation (i.e. d2r D 0) we
obtain six equations for the time dependence of the surface metric and of the second
fundamental form

g��;t D g�˛W ˛
� C g�ˇW ˇ

� � 2� �
��W

˛g˛� � 2˘��U;

˘��;t D U;�� C˘��W
�
;� C˘��W

�
;� C .˘���

�
�� C˘���

�
��/W

�

C� �
��U;� � g��˘��˘��U: (8.3)

The comma subscript represents differentiation with respect to the variables after
this comma. (8.3) represent the intrinsic formulation of surface motion, which (as
opposed to the local formulation r.u1; u2; t/) is not redundant and does not have
the “z-axis” type of singularities. If we are given the surface velocity components,
by integration of equations above we obtain the evolution of the surface at any
moment of time, through the knowledge of its fundamental forms. Similar to the
curve motion case, the W ˛ tangent velocity components are not essential: they just
re-parameterize the surface, or “pushing” particles along the surface. We can note
this by askingU D 0 for example and noticing that the resulting equations are linear
in W components.

In order to verify if (8.3) describe the motion of the surface for real, we perform
a limiting procedure reducing the surface to one of its curves of coordinates, and
expecting to re-obtain the equations of motions for curves. However, like in any
limiting process, we first have to write these equations in covariant form

g��;t D r�W� Cr�W� � 2˘��U; (8.4)

˘��;t D r�.r�U /C .˘��r� C˘��r�/W � � g��˘��˘��U: (8.5)

In this form (8.4) plus the ten Gauss-Codazzi conditions (d2e� D d2N D 0)
provide sixteen equations for nine functions describing the surface and its motion:
E;F;G; e; f; g;W 1;W 2; U . We apply the following limiting verification proce-
dure: if we make @r=@u2 D 0, and consequently the surface shrinks to a moving
plane curve ˙.t/ ! �.t/;N ! n we expect g��.u1; u2; t/ ! g.s; t/, W ! W ,
while U keeps having the same interpretation. Also, since the principal curvatures
will approach �1 ! �; �2 ! 0 we have
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H D �1 C �2
2

D eG � 2fF C gE
2.EG � F 2/

! e

2E
;

that is ˘�� ! g�. In this limit (8.4) reduces to the regular time variation of the
curve metric, (7.5), gt D 2g.Ws � �U /. In the same plane curve limit we have (8.5)
approaching (7.10), namely �t D Uss C �2U C

R s
�Uds0.

In literature there are basically three simplification approaches of the surface
motion equation. The first one uses a sort of “diagonal philosophy” by using
orthogonal particle-frozen coordinates in the surface that push back the particles
in their original position when the surfaces changes. The other two approaches
investigate particular cases of surfaces like developable surfaces (K D 0) or K-
surfaces (K < 0 and constant).

In the first approach we use surface coordinates along the principal directions
(the surface should have no umbilical points, though!) in ˙.t/ such that

g�� D
�
ea1 0

0 ea2

�
; ˘�� D

�
�1e

a1 0

0 �2e
a2

�
; (8.6)

with a�; �� 2 C2.R2/. The “frozen particles” rigidity constraints g12;t D ˘12;t D 0
reduce the equation of motion (8.4–8.5) to a system of total differentials with respect
to time for the unknown functions a�; ��

�
@

@t
�W � @

@u�

�
a� D 2W �

;� � 2��U;� .� w.s./ (8.7)

�
@

@t
�W � @

@u�

�
�� D �2�U C U;���� C

1

2
e�a�0a�;��0

U;��0
; .� w.s./; (8.8)

with � D 1; �0 D 2 or viceversa, without summations and we need to introduce the
following coordinate transformation [217]

�1 D
Z u1

e
1
2 a1.u

01;u2/du1
0

;

and a similar expression for �2. The moving surface is then described by the
following Gauss-Weingarten relations

@

@�1

0
@ r�1

r�2

N

1
A D

0
BBBB@

1

2
a1;1 �1

2
a1;2e

a1�a2 �1ea1

1

2
a1;2

1

2
a2;1 0

��1 0 0

1
CCCCA

0
@ r�1

r�2

N

1
A ; (8.9)
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@

@�2

0
@ r�1

r�2

N

1
A D

0
BBBB@

1

2
a1;2

1

2
a2;1 0

�1
2
a2;1e

a2�a1 1
2
a2;2 �2e

a2

0 ��2 0

1
CCCCA

0
@ r�1

r�2

N

1
A : (8.10)

When we confine to developable surfaces, the kinematic equations for the surface
simplify considerable because the Gauss-Weingarten equations reduce to a vector
form from a 2-tensor form. It is interesting that the motion of surfaces with constant
non-positive Gauss curvature can be mapped into either the MKdV or sine-Gordon
integrable systems [24].

8.2 Coordinates and Velocities on a Fluid Surface

In the case of moving fluid surfaces, it is more delicate to introduce Lagrangian,
Eulerian, and convected coordinates. This is mainly because there is no natural
differential mapping like in the case of the full three-dimensional space. To define
such coordinates for fluid surface, we follow the geometric approach for shells given
for example in [210, Sect. 1.5]. We define a fluid surface by a domain F in R

2

and a general system of nonsingular curvilinear coordinates .X˛/; ˛ D 1; 2 for the
points in this domain. Actually, these coordinates label the particles in the surface.
Of course we can always endow R

2 with a system of Euclidean coordinates .Z˛/

for F. We have the coordinate transformations Z˛ D Z˛.X1;X2/ and the inverse
X˛ D X˛.Z1;Z2/. The Euclidean coordinates have their unit Euclidean vectors
as a basis, f OI˛g˛D1;2, while in the curvilinear coordinates we introduce the tangent
vectors to the lines of coordinates, namely

E˛ D @Zˇ

@X˛
OIˇ; ˇ D 1; 2: (8.11)

A configuration of F is a mapping r W F ! R
3, namely r.Z/. We set the similar

curvilinear .xk/ and Euclidean .zk/; k D 1; : : : ; 3 coordinates in R
3 with their

corresponding transformations of coordinates, and the basis

ek D @zj

@xk
Oij : (8.12)

Let C.F/ DSrWF!R3
r be the set of all configurations. A curve in C.F/ represents a

motion of the fluid surface F. We can parameterize this curve with time, and we have
the mapping from the curvilinear coordinates into the Euclidean three-dimensional
space, as an embedding t ! x ı r t ıZ D x ı r ıZ.X; t/ D .xi .r t .X///. For the
graphical intuition we present these systems in the left part of Fig. 8.1. We define the
material (or Lagrangian) velocity of the fluid surface by the mapping V L W F ! R

3
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Fig. 8.1 The geometric description of a fluid moving surface. There are both Euclidean and
curvilinear coordinate systems for both the surface F and R

3, as well as basis vectors. The possible
coordinate transformations, the configuration mapping (motion of the surface), and their inverses
are drawn in gray arrows. The material and space velocities are also presented in the tangent bundle

V L D V .X; t/ D @xi .X; t/

@t
: (8.13)

This vector is the three-dimensional velocity of the material particle labeled X
and belonging to the configuration of the fluid surface. In components it reads
V L D V i

Lei .
A motion is regular motion if the mapping r t is invertible with r�1t W r t .F/! F,

and the mapping and its inverse are smooth functions. In this case we can define a
spatial (or Eulerian) velocity by the composition of mappings

r t .F/ � R
3 �����!

r�1
t

F.Z˛/ �����!
X.Z/

R
2.X˛/ �����!

V L

TR3: (8.14)

In other words the space velocity reads

vE.r; t/ D V L ıX ı r�1t : (8.15)
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This velocity is what is measured at a certain moment, at a point r in space, of
course if that point belongs to the configuration. Equation (8.15) coincides with the
three-dimensional case, which will be represented later on in (9.3) and (9.4).

In addition to these two velocities, we need to define a convective velocity like
in the three-dimensional case. The problem is that there is no natural mapping
between the two-dimensional manifold F and the three-dimensional space. We
need to decompose the space velocity at any point into its normal and parallel
components, with respect to the configuration.

vE.r; t/ D vnN C vÎ; (8.16)

where N is the unit normal to the configuration, and the parallel component vÎ 2 T F
is a vector in the tangent space to the configuration. The pull back of the mapping
r t (Definition 14) acting on this parallel component is the convective velocity

vc D .X ı r t /
�vE Î D v˛cE˛; (8.17)

and it is a tangent vector field on F for every time t . Actually, the convective velocity
is the velocity of the material points within the surface, or with respect to the surface,
while the normal component is the velocity of the surface itself.

The coordinates .X˛/ are the Lagrangian coordinates in the space of labels of the
fluid surface. It requests some caution to introduce Eulerian (space) coordinates and
convected coordinates in a moving fluid surface. In [210] the convected coordinates
for moving surfaces are introduced simply by the mapping

ht W r t .F/! R
2; h˛t .r/ D X˛.r�1t /; (8.18)

so these coordinates label the points of the moving surface directly with the
curvilinear (suitably chosen for this purpose) coordinates on F, and in that appear
to be convected by the motion and move together with the surface. The convected
coordinates defined like this have an interesting property.

Lemma 6. The components of the convective velocity with respect to the coor-
dinates .X˛/ are exactly the same as the components of parallel projection of
the space (or material) velocity on the surface with respect to the convected
coordinates h˛t .

A proof of this lemma is to be found in [210]. We give here another proof. Since the
basis vectors E˛ are pushed forward by the differential of h�1 into the basis vectors
of the convected coordinates, �˛ D d.h�1t /.E˛/, we can write from (8.17)

vE Î D d.h�1t /.vc/ D d.h�1t /v˛cE˛ D v˛c d.h
�1
t /E˛ D v˛c �˛; (8.19)

with ˛ D 1; 2, which proves the affirmation.
Now, if we want for a system of coordinatesX˛

E D h˛t .r/ to move together with
the moving surface r t .F/, this coordinates should involve zero convected velocity
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vc D 0. According to Lemma 6, from vc D v˛cE˛ we have V L Î D vE Î D v˛�˛ , and
if vc D 0, by components the space and material velocities are normal to the surface
in this points. Consequently they move together with it. In Aris’ formalism [10], the
convected coordinates are directly introduced by requesting that the points labeled
by such coordinates move only in the normal direction to the surface. That is they
“move” together with the surface. This definition works in many situations, but
there are situations where this definition may request a special curvilinear coordinate
system. In the following we give two examples.

Example 1. First example is in favor of using Eulerian coordinates. Let us introduce
F as a half-plane of coordinates .X˛/, X1 being the distance from the point
to the edge of this half-plane. The configuration will be this half-plane making
a certain variable angle with a fixed system in R

3, and the motion is the uni-
form rotation of this half-plane around the fixed edge with angular velocity !.
We can consider a thin layer of fluid adherent to this rotating half-plane and
flowing away from the fixed axis, but in the half-plane, because, say, of the
centrifugal force. A particle of Lagrangian label .X˛/ is mapped into r t D
.
.t/ cos!t; 
.t/ sin!t; 0/ with 
.0/ D X1. The Lagrangian velocity is in this case
V L D .�
! sin!t; 
! cos!t; 0/, the space velocity is vE D .�
! sin!t C

 0 cos!t; 
! cos!t C 
 0 sin!t; 0/, and the convective velocity is .
 0; 0/ 2 T F.
In this case it is easy to associate Eulerian fixed coordinates: these are fixed
points in the half-plane, describing concentric circles around the edge, because their
velocities are normal.

Example 2. In our second example the Eulerian coordinates will not work so
natural. It is the case of translation motion of closed surfaces. In such situation it
is really difficult to construct a “fixed” coordinate system in a moving membrane
(like an air bubble ascending to the surface, or the membrane of a motile cell while
swimming). Let us consider Ft ;N .X; t/ being the configuration surface moving in
time, and its normal, respectively, in the X parametrization. From any point r t .X/

of the configuration Ft , we can construct a flow box of curves which are always
tangent to the instantaneous vector N

r�.X; t/ D r.X; t/C �N .X; t/;

with arbitrary � > 0. This equation is just the normal variation of a surface, defined
in (10.36) in Sects. 10.4.1 and 10.4.2. At tCdt moment of time, the family of curves
r�.X; t/ generated normally at t intersects the moved surface FtCdt in some new
points. These intersections represent the change from Lagrangian coordinates r t to
the Eulerian ones. If r�.X; t/ represent the Eulerian coordinates at moment t , the
intersection between the normals at t and the moved surface at t C dt are the new
Eulerian coordinates. If the flow of the fluid surface is regular, and by using the
flow box theorem (Theorem 6) in Sect. 4.4, we can integrate such positions for finite
interval of time.
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Fig. 8.2 Trying to assign “fixed” coordinates in a compact surface in translational motion.
Upper part: the thick circle is the initial position of the surface, with the radii providing the
normal directions to the surface. The intersections between these normals and the moved sphere
(thin circle) provide the instantaneous Eulerian coordinates on the new sphere. Bottom part:
transformation of the Eulerian coordinates in time, trying to keep moving only in the normal
direction

Let us practice this definition by considering a sphere of radius R moving with
constant translation velocity V along the z1-axis, like it is represented in the upper
part of Fig. 8.2.

The Lagrangian coordinates on the sphere move together with the sphere and
keep for example the same polar and azimuthal angles. For example we can choose
B D .'; �/ 2 Œ0; 2�	 � Œ0; �	 and have spherical coordinates r t D R.sin � cos' C
V t; sin � sin'; cos �/. In the following we focus on the big circle � D �=2. We have
V L D vE D .V; 0; 0/, and
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vE Î D V z2.z1 � V t/
.z1 � V t/2 C .z2/2

�
z2

z1 � V t ;�1
�
:

From (4.6) and (8.17), we have vc D �V sin '. The motion of the convected polar
coordinates with this vc can be noticed in the bottom frame of Fig. 8.2.

The Euler coordinates need to represent points that move only normal to the
sphere (Fig. 8.2). Consequently the � polar angle will transform according to the
relation

tan �t D R sin �tCdt
V t CR cos �tCdt

; (8.20)

and we present an example of this transformation in the bottom part of Fig. 8.2.
For longer intervals of time transformation, (8.20) becomes singular. So, in this
example, it is easier to work with Lagrangian coordinates.

To eliminate such nonconventional transformations of coordinates, we could
introduce Eulerian coordinates in the moving configuration as follows. Begin with
Lagrangian pair .X˛/ at a certain moment of time. The transformation from this
Lagrangian coordinates to the Eulerian coordinates is made by calculating V L.X; t/,
and then by moving the r t point along the surface with some tangent vector w such
that the new Lagrangian velocity of this new point V LCw is normal to the surface.
The relation between r t and this new translated point provides the transformation
from Lagrangian to Eulerian coordinates. To do this in the example with translating
sphere, we have to expand (8.20) in Taylor series, take the first order of smallness
and integrate the corresponding linear PDE

�.t/ D ˙2 arccos
1r

1C e 2vt
R tan2

�.0/

2

:

For more elaborated discussions on the Eulerian, Lagrangian, convective
coordinates or velocities, the reader can use any of the following sources [10,
210, 241, 292].

In the end, we make an observation regarding the mixed character of geometric
objects in the kinematics of surfaces. For three-dimensional configurations, like
theory of elasticity, it is more natural to define the convective velocity as a pull
back, since all involved spaces are Riemannian manifolds of dimension 3. In the
case of surfaces, we first have to project the space velocity on the tangent plane
(8.16), then perform the pull back. However, there is a more general treatment,
namely, to introduce a sort of mixed covariant derivative which assures the
contravariant/covariant tensor character simultaneous in all spaces involved, no
matter of the number of dimensions (2 or 3). We briefly introduce this mixed
derivative with (4.59). A comprehensive treatment of the topic, for submanifolds and
hypersurfaces in a general Riemannian space or dimension n, can be found in [181].
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8.3 Kinematics of Moving Surfaces

Let .X˛/ be the parametrization of the domain F and r t D r.X; t/ be the
corresponding moving regular configuration, i.e., a regular parameterized moving
surface (Fig. 8.1). The convective velocity (8.17) vc can be written in components
in the form

vc.X; t/ D dh˛t
dt

�˛; ˛ D 1; 2; (8.21)

and represents the velocity vector belonging to the tangent space to the surface,
while its push forward by dh�1t is a velocity vector field tangent to the moving
surface X ı r t .F/, v.X; t/ D vjE ÎOij D v˛h�˛ (8.19). Also h˛t are the convected
coordinates in the surface (8.18). In the following the curvilinear coordinatesX˛ are
time-independent coordinates, so they will be understood as Lagrangian coordinates
on the surface, while the convected coordinates are time dependent by construction.

The area element is given by the first fundamental form of the surface g (or the
metric tensor g in some books; Definitions 51 and 52): dA.t/ D p

gL.t/dX1dX2 Dp
gc.t/dh1t dh2t , where labelsL and c refer to chosen system of coordinates. We need

to mention that in the following, the symbol g is used in the sense of Sect. 6.1, and
not in the sense of the unit basis vectors, like we did above (i.e., not the fg˛g˛D1;2).
We define by

OJ .t/ D @h˛t
@Xˇ

; (8.22)

the Jacobian matrix of transformation of coordinates. From (8.13) and (8.19), we
can write

d OJ
dt
D d

dt

@h˛t
@Xˇ

D @v˛E
@Xˇ

D @v˛E
@h

�
t

@h
�
t

@Xˇ
D O� OJ ; (8.23)

with O� defined as the surface velocity-gradient matrix. Consequently we write the
time variation of the element of area in terms of the time-independent coordinates
through the Jacobian matrix

d

dt
dA D

�
1

2gc

dgc

dt
J C dJ

dt

�p
gcdX

1dX2; (8.24)

with J D det OJ . We can formally integrate the matrix differential equation (8.23)

OJ .t/ D OJ .0/e
R t O�.t 0/dt 0 ; (8.25)

and take OJ .0/ Dgd. By using the matrix identity det eA D eTrA, we have

J D det OJ .t/ D eTr
R t O�.t 0/dt 0;

and
dJ

dt
D Tr O�.t/J.t/; (8.26)
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since the trace operator is linear and hence commutes with the time derivative. We
can express the trace of the surface velocity-gradient matrix by using the surface
divergence operator (6.42) (Sect. 6.5.2), Tr O� D r˙vc D �˛ � r˛vc , ˛ D 1; 2, where
the surface ˙ becomes here the time-dependent surface configuration F . We can
write the equation for the rate of change in time of the element of moving area

d

dt
dA D

�
1

2gc

dgc

dt
CrF vc

�
dA: (8.27)

We mention that the area being a scalar, the time derivative coincides with the
convective time derivative, which should actually be used.

To find the stretching of the surface along different directions, we need to find
the equation for the rate of change in time of the arc-length in different coordinates

ds2 D gL;˛;ˇdX˛dXˇ D gc;˛;ˇdh˛t dhˇt :

We have

1

ds

ds

dt
D

�
d
dtgL;˛ˇ

�
dX˛dXˇ

2gL;˛ˇdX˛dXˇ
;

and we can define the Lagrangian strain tensor as

SL D 1

2

dgL

dt
; Sc D 1

2

dgc

dt
: (8.28)

If we work in the convected coordinates, the appropriate approach is the use of the
convective time derivative (see (9.16) in Sect. 9.2.6). Consequently, we can write a
convected strain tensor in the form

Sc;˛ˇ ! 1

2

dcgc;˛ˇ

dt
D 1

2

@gc;˛ˇ

@t
C 1

2
.vc�r�gc;˛ˇ C gc;˛�rˇv�c C gc;�ˇr˛v�c /;

where r represents here the covariant derivative. The first term in the RHS
parenthesis is zero from (4.53), and for the remaining terms the action of the metric
tensor g is just to lower the superscripts. So, the surface strain tensor reads

Sc;˛ˇ D 1

2

@gc;˛ˇ

@t
C 1

2
.rˇvc;˛ Cr˛vc;ˇ/: (8.29)

It is useful to compare this surface covariant result with the rate of strain tensor for
the bulk flow in Euclidean three-dimensional space [111, 167, 171, 220, 224]

duij
dt
D 1

2

�
@vi

@xk
C @vk

@xi

�
: (8.30)
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8.4 Dynamics of Moving Surfaces

In the following, for simplicity, we denote the moving surface configuration
.X ı r t /.F / by ˙ , and since we calculate everything in the convected coordinates,
we will drop the subscript c. Like in the three-dimensional hydrodynamics or
elasticity [11, 170, 210], we can define a surface stress, i.e., the force acting on the
unit of arc-length on the surface, as a contravariant vector field on the fluid surface
t˛; ˛ D 1; 2. Following the same similarity we define a two-dimensional stress
tensor by the relations

�˛ˇn˛ D f ˇ; (8.31)

where n˛ D n � �˛ are the projections of the principal normal of the arc-length
(three-dimensional Euclidean vector) on the local basis vectors of the convective
coordinate system. We can write the integral version of this stress equation to find
the total stress on the surface in some arbitrary direction. Let D � ˙ and � D @D
be its boundary curve. For any arbitrary smooth covariant vector field w W ˙ ! T˙

we can write

I
�

f � wds D
I
�

�˛;ˇn˛wˇds D
“

D

r˛�˛ˇwˇdA; (8.32)

where we used the regular Green theorem. For a stationary surface we assume
that the surface stress is perpendicular to the surface, so from (8.31) it results that
�˛;ˇ � g˛;ˇ with the proportionality constant being defined as surface tension, � .
Moreover, since the stationary surface is in equilibrium, we have zero total stress
on any domain D, so by using (8.32) we obtain r˛�˛ˇ D 0, and consequently
r˛� D 0, since the covariant derivative of the metric tensor g is always zero. It
results that the surface tension � must be constant over an equilibrium surface. There
is a whole section devoted to the surface tension (namely Sect. 10.4), investigating
it from the point of minimal surfaces.

Equations (8.31) and (8.32) can be used to obtain the three linear conservation
laws of the fluid surfaces. If we denote by & the surface mass density, and we assume
that there is no exchange of matter between the surface and its surroundings, we
have the conservation of mass

d

dt

“
D

&dA D 0:

By using (8.27) for the action of the time derivative we obtain the surface continuity
equation

d&

dt
C &r˛v˛c C &

1

2g

dg

dt
D 0; (8.33)

where r is the covariant derivative, and g D det.g˛ˇ/. Similarly with the deduction
of (8.32), we can obtain the momentum conservation equation. By using again an
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arbitrary vector field w W ˙ ! T˙ , and considering F W ˙ ! T˙;F D .F ˛/

some arbitrary external force tangent to the surface, we obtain

&A˛ D F ˛ Crˇ�˛ˇ D 0; (8.34)

where

A˛ D dV ˛

dt
D @V ˛

@t
C V ˇrˇV ˛; (8.35)

is the material acceleration on ˙ . The time derivative in (8.35) is the material time
derivative, and V is the convective velocity (actually it is the image of the convective
velocity vc through the differential of the map Z ı r t ı x).

In a similar way one can obtain an integral version for the angular momentum
conservation equation for the fluid surface, by using (8.34) and (8.31) we have

“
D

�˛ˇ
p
g&A˛h

ˇ
t dA D

“
D

�˛ˇ
p
gF ˛h

ˇ
t dAC

I
@D

�ˇ�
p
gf ˇh

�
t ds; (8.36)

where �˛ˇ is the Levi–Civita antisymmetric tensor in two dimensions, i.e.,
�12 D 1; �21 D �1, etc. Using the arbitrariness of D and the Green theorem
on (8.36), we simply reduce it to �˛ˇ D �ˇ˛ , i.e., the stress tensor is a symmetric
.2; 0/-type of tensor.

To write dynamical equations for the fluid surface, one needs to make constitutive
hypotheses on the relations between stress and strain. The most usual hypothesis is
the so-called Newtonian fluid surface model. A Newtonian fluid surface is described
by a stress tensor that depends only on the strain tensor in a linear manner (if it is an
arbitrary function of the strain, the fluid surface is called Stokesian), is an isotropic
surface with respect to the stress, and in absence of the strain the stress is just the
surface tension. Like in the case of a three-dimensional fluid, the only isotropic
combination possible in two dimensions is provided by

�˛ˇ D .� C kg��S��/g˛ˇ C �.g˛�gˇ� C g˛�gˇ� � g˛ˇg��/S��; (8.37)

where g˛ˇ is the matrix of the first fundamental form of the surface ˙ (the metric
tensor), and the constant coefficients k and � are called coefficient of interfacial
dilatational viscosity and coefficient of interfacial shear viscosity, respectively.
For the rigorous deduction of (8.37), the reader can consult one of the following
references [10,11,54,167,171,210,305]. It is useful to compare this covariant result
with the stress tensor for the bulk flow in Euclidean three-dimensional space

�ik D �Pıki C �
�
@vi

@xk
C @vk

@xi

�
: (8.38)

Indeed, the surface tension term � in (8.37) becomes for the bulk fluid the pressure
(modulo some convention of change of sign), and, because the metrics reduces to
Kronecker symbol, the other terms in (8.37) group together in a symmetric tensor
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with combined coefficient � C k which is just the bulk kinematic viscosity � [111,
167, 171, 220, 224].

In the end, we can put together the dynamical equation for a Newtonian fluid
surface, by using the constitutive equation (8.37) together with (8.31) and (8.34).
Also, we can take profit of the symmetry of the stress tensor, and write

&A˛ D F ˛ Crˇ�g˛ˇ C kg˛ˇrˇ � .g��S��/
C �rˇŒ.g˛�gˇ� C g˛�gˇ� � g˛ˇg��/S��	: (8.39)

The different terms in (8.39) have different physical interpretations. The second term
on the RHS is the surface gradient of the surface tension that introduces a force if
this coefficient is not homogenous along the surface. The third term on the RHS can
be processed by using (6.5), namely

dg

dt
D gg˛ˇ dg˛ˇ

dt
:

For the last term on the RHS, we use the noncommutativity property of the covariant
derivative (see (4.54) and (4.66)). Because the surface ˙ is two dimensional and it
is embedded in a three-dimensional Euclidean space, (4.54) and (4.66) reduce to

.rˇr� � r�rˇ/V ˇ D Kg˛�V ˛; (8.40)

where K is the Gaussian curvature of ˙ . After some tedious algebra on (8.39), and
following Aris’ suggestion [10] to artificially combine kC � in the third term on the
RHS of (8.39), we can express this equation in a two-dimensional covariant vector
form

&A D F Cr� C kr.r � v/C �
�
4V CKV � r �cgg � r

�
1

2g

dg

dt

��
(8.41)

where cggˇ˛ D g˛�dg
�ˇ=dt , and all vectors in the equation are two dimensional,

expressed in the covariant coordinates of T˙ , A D .A˛/;r D .r˛/, etc.
Equation (8.41) is the net force acting on the surface to be introduced in the
equations for the balance of momentum across the surface, i.e., (10.22) in Sect. 10.2.
We note that (8.41) contains terms which are nonzero only when the surface is time
dependent. Also, there is one term proportional to the Gaussian curvature, which
is responsible for a part of the shear surface viscosity. In different books there are
different physical interpretations or definitions for each of the terms in (8.41), for
example [10]. Here we limit ourselves to write the three-dimensional Navier–Stokes
equation in comparison with (8.41)

�a D F � rP C �4v: (8.42)
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8.5 Boundary Conditions for Moving Fluid Interfaces

In the following we obtain the most general dynamic equation of motion for a fluid
surface that makes the separation between two bulk fluids. We follow the definitions
and the geometric approach from Sects. 4.11 and 6.3, and for closer details we
encourage the reader to check [10, Chap. 10]. Let xk.u˛; t/ be the equation of
motion of the particle labeled u˛ in ˙ . The Lagrangian velocity of this particle
belonging to the surface (defined in (8.13)) is an Euclidean vector

V k
L D

dxk

dt
D Bk

˛ v˛c C
@xk

@t
;

where B is defined in (6.20). In general, next to the interface the fluid can flow past
the interface so we can have sliding on both sides of the fluid surface. Consequently
we need to define two more velocities V i;e as Lagrangian velocities of the bulk
fluid next to the surface, interior and exterior, respectively. Each such Euclidean
velocity induces a surface convective velocity vc;˛jint D Bk

˛V
k
i ; vc;˛jext D Bk

˛V
k
e .

In general there is no kinematical constraint between these velocities, but if we
request a no slip condition we need to equate their tangent components, i.e., the
kinematical boundary condition at the interface reads

vc;˛ D Bk
˛

�
V k
i �

@xk

@t

�
D Bk

˛

�
V k
e �

@xk

@t

�
: (8.43)

If, in addition, there is no normal flow of fluid from or into the interface, we also
have continuity of the normal components of the bulk and surface velocities

Nk.V
k
i;e � V k

L / D 0; (8.44)

and from here, with the help of (8.33), we can write the equation of continuity for
the interface˙ . Namely, from the isolated fluid surface equation of continuity

d&

dt
C &r˛v˛c C

&

2g

dg

dt
D 0; (8.45)

where & is the surface mass density, we obtain

d&

dt
C &r˛v˛c C

&

2g

dg

dt
D Œ�eV k

e C .�i � �e/V k
L � �iV k

i 	Nk; (8.46)

which reduces back to (8.45) if there is no interchange of matter through the
interface. That is V k

i Nk D V k
e Nk D V k

LNk D @xk=@tNk. If, in addition, we have
no slip the equation of continuity reduces even drastically to V k

L D V k
e D V k

i . The
equations obtained in this section may be related to the general Euclidean equations
from Sect. 10.2.
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8.6 Dynamics of the Fluid Interfaces

Let a domain D � ˙ and � D @D be its boundary. Let also n˛ be the principal
normal (Sect. 5.1) of the � curve which is a surface vector lying in T˙ . The surface
stress acting on an infinitesimal element of arc of � in ˙ is �˛ˇnˇds, and its
Euclidean components are

�ids D Bi
˛�

˛ˇnˇds: (8.47)

In a neighborhood of˙ , we have an Euclidean body force F in the bulk fluid which
can be written in terms of its tangent components and the normal

F k D Bk
˛F

˛ CNkNjF
j : (8.48)

Same equation applies to the material acceleration A

Ak D Bk
˛A

˛ CNkNjA
j : (8.49)

In the following we follow the same procedure of using an additional vector field
�.xi / in a region of space containingD. The momentum balance in the � direction
reads

d

dt

“
D

&V k
L �kdA 


“
&Ak�kdA D

“
D

F k�kdAC
I
@D

�k�kds; (8.50)

from where, given the arbitrariness of �, D, and using Green theorem, we obtain

&Ak D �k Crˇ.Bk
˛�

˛ˇ/: (8.51)

Now it is the time to take profit of the formulas for the differential geometry of the
surface from Chap. 6. Namely, from (6.35) we have

rˇBk
˛ D ˘˛ˇN

k;

where ˘ is the .0; 2/-type of tensor associated to the second fundamental form of
the surface. From (8.47)–(8.49), (8.51), and the above relation, we can write the
balance equations in the tangent plane (along the basis Bi

˛) and along the normal,
respectively

&A˛ D F ˛ Crˇ�˛ˇ; tangent (8.52)

&NjA
j D NjF

j C˘˛ˇ�
˛ˇ; normal: (8.53)

We can run a simple check of these relations by considering a fixed surface, i.e.,
Ai D 0. In this case we have �˛ˇ D �g˛ˇ , and by denoting F D F Î C F?N , we
obtain
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F ˛ D �g˛ˇrˇ�; tangent (8.54)

F? D 2H�; normal: (8.55)

So, for the stationary case, tangent forces occur if the coefficient of surface tension
is not homogenous along the surface, but we always have a normal surface pressure
(see for completion Sect. 10.4).

Equations (8.52) and (8.53) can be expressed even in more detail as functions of
the velocity of the surface, the strain tensor, and the material coefficients k; � defined
in Sect. 8.4. We do not provide here the proof of the following balance equation, but
the reader can find details in [10, Chap. 10]. The momentum balance equation for
an interface reads in terms of Euclidean contravariant vectors

&
dV

dt
D F C OBr˙� C .k C �/ OBr˙. OBr˙ � V /C 2�K OB OBV � �

g
OBr˙

� .r˙ � OBV / � 2�
g
OB � Ŏ .r˙ � V ?/C 2NH�

C 2NH.k C �/. OBr˙ � V /C 2�

g
N OB � Ŏ r˙ � V : (8.56)

In this equation we have V DV i;e and OBD .Bi
˛/. Also we introduced V ?D

.V � N /N and OB � Ŏ D .Bi
˛�
˛�˘�ˇ�

ˇ�/, etc. The first five terms on the RHS
are tangent terms, and the last four terms are normal terms. The second term is
the gradient of the surface pressure. This term occurs if the coefficient of surface
tension is not uniform over the surface, or if it depends on the local curvature or
velocity. The third term is dilatational force, and it is important, for example, for
a surface that is highly contaminated with an insoluble surfactant. The fourth term
has pure geometrical nature (proportional with velocity and Gaussian curvature).
The fifth term is just the surface equivalent of a r �r� curl–curl type of term, and
the sixth term is responsible for surface vortexes. The seventh term is the normal
surface tension term, and usually the dominant term in the dynamics of liquid drops,
bubbles, and shells. The eighth term is also dilatational force (but normal) and the
last one is the normal shear.

Equation (8.56) is the net force F net acting on a material interface to be
introduced in the equations for the balance of momentum across the surface, i.e.,
(10.22) in Sect. 10.2. To handle all the terms in (8.56) in different systems of
curvilinear coordinates, we need to write them in components

&
dV i

dt
D F i CBi

˛g
˛ˇr˙;ˇ� C .k C �/Bi

˛g
˛ˇr˙;ˇ.g��Bj

�r˙;�Vj /

C 2�KBi
˛g

˛ˇB
j

ˇ Vj � �Bi
˛�
˛ˇr˙;ˇŒ���r˙;�.Bj

�Vj /	

� 2�Bi
˛�
˛�g�ˇ�

ˇ�r˙;�.N j Vj /C 2�HN i

C 2H.k C �/N iB
j

� g
��r˙;�Vj C 2�N iB

j

� �
�˛g˛ˇ�

ˇ�r˙;�Vj (8.57)
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where �˛ˇ is the Levi–Civita symbol, and should not be mistaken for the dilatational
viscosity coefficient � which carries no labels.

8.7 Problems

1. Prove, by using properties of the normal to the surface, that points of constant
convected coordinates on a moving surface have their space velocity normal to
the surface. Hint: parameterize the surface F with .Z1;Z2/ like in (8.11). Use
the fact that we can define a direction normal to the surface ru � rv as a 2-form
in R

3 like

!N D @zi

@Z1

@zj

@Z2
dxi ^ dxj :

Then show that this 2-form is related to the area 2-form A dZ1 ^ dZ2 defined in
the two-dimensional manifold r t .F/ by the relation

s�
!N I @r t

@Z1
;
@r t

@Z2

�
dZ1 ^ dZ2 D A dZ1 ^ dZ2;

where .!I v1; v2/ is the inner product between forms and vector fields defined in
Sect. 4.6.

2. Generalize the definition of the convective velocity from Sect. 8.2 in terms of the
action of the mixed covariant derivative (4.59) on a tensor field defined on F .



Part II
Solitons and Nonlinear Waves

on Closed Curves and Surfaces

Many physical, chemical, and biological systems can be described to a satisfactory
extent through the properties of their shapes. To model such systems, a description
in terms of the dynamics of the boundaries is necessary, i.e., the evolution of shapes
or contours, and their interactions with the inside and the exterior. The interaction
with the inner part of the system is usually described through mathematical
representation theorems, like the well-known Stokes, Gauss, Green, or Cauchy
relations.

Examples of such systems can be given at any physical scale [32, 137, 138, 147,
270,332]. In heavy and superheavy exotic nuclei, the potential energy of the nuclear
shape is relevant for many phenomena including alpha decay, exotic radioactivity,
existence of cold valleys, neutron-less fission, and ultra-heavy ions generation. Such
topics are important subjects of fundamental physics, like the extension of the
Periodic Table of Elements into the antimatter and strange-matter areas [113]. Other
examples are provided by the flow of an incompressible fluid with free boundary,
like droplets, bubbles, and liquid shells. Here the mechanics and thermodynamics of
the free surface are related to the couplings between surface oscillation modes and
waves, formation of necks, breakup process, etc. [9, 61, 91, 130, 157, 253, 319, 332].
Other examples are polymer chains, dynamics of vortex filaments in fluid dynamics,
growth of dendritic crystals in a plane, or motion of interfaces.

A very important and recent field of research is represented by vortex patterns
and dynamics in (mesoscopic) superconductors with direct applications in quantum
dots, new generation of computers, spintronics and high temperature supercon-
ductivity [211, 229, 254]. At mesoscopic scale the characteristic length for the
magnetic field diffusion in a superconductor of type II, and its size are larger
than the average transverse size of a vortex (coherence length). This situation
favors the penetration of stable quantized vortices in the material. The vortices
can be detected through their induced currents, so they are an excellent candidate
for fast and large capacity memory devices. The vortices are stable solutions of
the nonlinear Ginzburg–Landau equation (GLE) and their dynamics resembles the
solitons dynamics. Moreover, the geometry and topology of these vortex structures
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are strongly influenced by the boundaries (also a feature of the mesoscopic scale)
which makes the subject interesting for the topics treated in this book.

The dynamics of the free surface is also important for biology, in swimming
mechanisms, motile cell dynamics, pathogen agents spreading, and even the evolu-
tion of large populations of individuals like bird flocks or fish schools, etc. [222]. At
a larger scale, the dynamics of the free surface of a neutron star is important in the
study of the gravitational waves emitted by such tides or deformations [48,175,247].

In the description of systems with free boundaries, where the dynamics of
the contours/shapes is important, there are interesting connections between local
and global geometrical quantities. The local quantities are those intrinsic math-
ematical properties of the boundaries defined within neighborhood of points,
like the fundamental forms, contact structures, curvature, torsion, etc. The global
geometrical quantities are the integral quantities, like surface area, curve length or
perimeter, geodesics structure, etc. The global quantities are related to geometrical
and topological invariants, like homotopy and homology structure, and ultimately
they are connected to the physical conservation laws of the system. In general,
mathematical global constrains applied to free boundary systems result in long
range, nonlocal interactions. Usually, such constraints are handled by considering
them as Lagrange multipliers coupled to the general bulk plus surface conserved
quantities, like mass, momentum, angular momentum, etc. In the case of contours
or surfaces described by nonlinear integrable systems, with cnoidal waves, solitary
waves, or soliton solutions for example, the Hamiltonian generates itself an infinite
countable set of conservation laws, without introducing any other global constrains.



Chapter 9
Kinematics of Hydrodynamics

The goal of this chapter is to discuss the general frame of hydrodynamics, like
particle trajectories (path lines), stream lines, streak lines, free surfaces, and fluid
surfaces, and to compare their behavior in the Eulerian and Lagrangian frames.
The following sections and chapters proceed on the assumption that the fluid is
practically continuous and homogenous in structure. Of course, the concept of
continuum is an abstraction that does not take into account the molecular and nuclear
structure of matter. In that, we assume that the properties of the fluid do not change if
we consider smaller and smaller amounts of matter [167]. May be the wisest point
of view while we remain at the level of general laws of fluid dynamics (or fluid
mechanics) is to keep the physical scales rather vague [220]. This aspect is in direct
relation with the fact that these laws can be made dimensionless in a large variety of
situations.

9.1 Lagrangian vs. Eulerian Frames

In fluid dynamics there are two possible approaches for the dynamical equations: the
Lagrangian (also called material or convected) frame and the Eulerian (also called
the spatial) frame. In the Lagrangian frame we identify and label individual particles
of fluid, and we setup the frame such that particles retain their coordinate labels
in time. In this approach, it is more likely to use topology and group continuous
transformation tools. The Eulerian frame describes the fluid from a stationary lab
frame. The motion of fluid is recorded at a fixed point vs. time. In this approach the
mathematical tools are more related to geometry and field theory. In the following,
we use the Eulerian approach, unless an explicit statement is made to the contrary.
The fields that characterize the fluid are defined on some domains in the three-
dimensional Euclidean space and they have a certain degree of mathematical
smoothness. The degree of smoothness is chosen for a given fluid model such
that the coarse grain structure of the infinitesimal fluid particles introduced above

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 9,
© Springer-Verlag Berlin Heidelberg 2012

179



180 9 Kinematics of Hydrodynamics

is not seen by the differential equations (i.e., the molecular structure of the matter).
In other words, the fluid particle is small enough to allow the existence of smooth
space–time differentials, but large enough to average the molecular and quantum
properties over its volume. The fields under consideration are the velocity field
v.r; t/, the nonnegative defined mass density �.r; t/, and the pressure field P.r ; t/.
Of course, function of necessity, we can add the distribution of energy, free energy,
enthalpy, entropy, force density, or other fields of interest [167, 171] to these fields.
We assume, unless otherwise specified, that these fields are smooth enough so that
the standard calculations may be performed on them.

9.1.1 Introduction

In practice we consider r D .x; y; z/ 2 D a point in domain D filled with fluid,
and consider the particles moving in space and time. In the Lagrangian approach, at
every moment of time t we defined the spatial velocity of a certain particle of fluid
as V D dr

dt
.

The Eulerian velocity field (spatial velocity field) V .r ; t/, in principle not
constant in time, is the velocity of a fluid particle that passes at moment t through
the point r. The Lagrangian frame is attached to that fluid particle, and it records
the changes in velocity, density, etc., happening with this particle vs. its own local
time, measured with a clock attached to it. In such a Lagrangian system, physical
quantities have a complex time dependence. While traveling, the fluid particle has
its physical quantities measured in the local frame, so they experience a global
time variation (also called total or Lagrangian or material time derivative) denoted
by d

dt
, or identified by placing a dot on the top of the quantity (sometimes it is

also denoted D
Dt

). A part of this time variation happens because the particle travels
through different domains of space, hence experiencing different constraintts. Such
a partial variation is called Eulerian, or partial, and it is denoted @

@t
or simply by

the subscript t . For example, we choose a fluid particle moving according to the
law rL.t/, and we measure the scalar quantity q.t/ 
 q.rL.t/; t/ associated to this
particle, in this frame. The same quantity can be described in a fixed Eulerian frame,
Q.r; t/. The relation between these two formalisms is given by

Pq D dq

dt
.rL.t/; t/ D @Q

@t
.r ; t/C V .r ; t/ � rQ.r; t/; (9.1)

where r is the gradient operator . @
@x
; @
@y
; @
@z /, and � represents the usual Euclidean

scalar product. Equation (9.1) is a well-known transformation law in hydrodynamic
literature, yet is valid in a very restricted sense, namely only for scalar quantities
and for the fluid velocity vector. If we try to apply the transformation (9.1) to
a general vector field or to a covariant tensor field, the result fails, because the
resulting quantity is not anymore a geometrical object of the same type. To keep
the geometrical properties intact, we need a generalization of (9.1) for arbitrary
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covariant/contravariant geometrical objects !. This is the covariant time derivative
(also called convected or material time derivative) and it is defined by

dc!

dt
D @!

@t
C v.!/; (9.2)

where v.!/ is the Lie derivative with respect to the flow v. This generalization is
introduced in Sect. 9.2.6.

9.1.2 Geometrical Picture for Lagrangian vs. Eulerian

We introduce the working space .t; r/ 2 R � R
3. From the Lagrangian point of

view, the fluid particle motions are nonintersecting regular curves �L in this base
space, parametrized by time and described by equations rL.t; r0/. They are called
paths or material lines [10] or lines of motion [167]. Since they do not intersect,
each such curve is labeled by one of its points, r0, for example the position of the
particle when t D 0. The tangent to this curve is

tL D .1; vL/q
1C v2L

;

where vL D @rL.t; r0/=@t is the Lagrangian velocity of the particle along the path.
All these paths do not intersect and completely fill the base space when r0 2 R

3.
If we choose a fixed point in space r , some of the paths r0 will intersect this

fixed point, rL.t; r0/ D r , so that we can write the “list” of these particles vs. time:
r0 D r0.t; r/. Now, we can define the Eulerian velocity at .t; r/ by substituting this
r0.t; r/ list in the velocity expression

vE.t; r/ D vL.t; r0.t; r//: (9.3)

Example 1. We can illustrate the relation between Lagrangian and Eulerian veloci-
ties (9.3) with a simple one-dimensional example. Water is dripping downward from
a hole in gravitational field, and different water molecules depart from the hole at
different initial moments of time t0. So the �L curves are vertical parallel lines.
Their laws of motion are

z.t/ D g.t � t0/2
2

:

In terms of some initial position z0 their Lagrangian equations of motion read

zL.t; z0/ D g

2

�
t �

s
2z0
g

�2
;



182 9 Kinematics of Hydrodynamics

with

vL.t; z0/ D g
�
t �

s
2z0
g

�
:

If we choose a reference level at z and equate z D zL, we obtain

z0 D g

2

�
t �

s
2z

g

�2

with the following signification: What is the initial position z0 (at t D 0) of a particle
to pass through the level z at the moment t? The resulting Eulerian velocity is,
according to (9.3),

vE.t; z/ D vL.t; z0.z; t// D
p
2zg D const:;

as it should be from mechanics.

Now, we introduce a physical quantity Q defined for any fluid particle. For the
particle labeled by r0 the Lagrangian valueQL.t; r0/ is defined along �L. Suppose
this �L intersects a fixed line r Dconst. at rL.t; r0/ D r . By solving this equation
with respect to r0, we have r0 D r0.t; r/. We can define now the Eulerian value of
Q by

QE.t; r/ D QL.t; r0.t; r//: (9.4)

While following the particle in its motion, the quantity QL has a variation
dQL.t; r0/ D .dQL=dt/dt . At r Dconst., the quantity QE has another variation
dQE D .@QE=@t/dt . By differentiation of (9.4) we have dQL D dQE C .drL �
rQE/dt . Since we follow the particle in its motion we have drL D vLdt . Since
all these relations are infinitesimal, and all are taken at .t; r/, we can use either
vE or vL in them. In the end we obtain the classical relation between the Lagrangian
and Eulerian variations of a physical quantity

dQL

dt
D
�
@QE

@t
C .vE � r/QE

�
: (9.5)

In local (Eulerian) coordinates .t; r/, this equation reads

.t; r/! dQL

dt
.t; r0.t; r// D

�
@QE

@t
C .vE � r/QE

�
.t;r/

: (9.6)

In the Lagrangian coordinates .t; r0/, same equation reads

.t; r0/! dQL

dt
.t; r0/ D

�
@QE

@t
C .vE � r/QE

�
.t;rDrL.t;r0//

: (9.7)
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The Lagrangian motion of particles is represented by a family of curves �L filling
the base space, and the Lagrangian velocity is a vector field defined on this base
space, parametrized by the flow lines. The Eulerian velocity is the same differential
vector field, except is parametrized by local coordinates, like any regular field.
Consequently, a Lagrangian physical quantity QL is represented by a family of
curves �Q lying in a base space R � R

3 � OQ, where Q 2 OQ. The Eulerian value of
the same quantity is a regular surface QE.t; r/ parametrized by the base space and
immersed in R � R

3 � OQ. The Eulerian derivative is the partial derivative of QE .
The particle paths �L have tangents

tL D 1q
1C v2L

.1; vL/:

The curves forQL lying in the base space have tangents

OtQ D 1q
1C v2L C PQ2

L

.1; vL; PQL/;

where the dot means time differentiation. In this geometrical context, the relation
between Lagrangian and Eulerian variations (9.5) reads

PQL D Dt�L
QE; or PQL.t/ D .QE ı �L/0.t/:

The Lagrangian derivative is just the directional derivative of the functionQE along
the particle path, see Fig. 9.1.

9.2 Fluid Fiber Bundle

Hydrodynamics studies the motion of fluid particles. The combination between the
discrete labeling of the system of particles on one hand, and the smooth dependence
of physical quantities on time on the other hand enhances the importance of families
of curves for hydrodynamical systems. Somehow, this fact has a geometrical
background arriving from the importance of compact submanifolds (closed curves,
closed surfaces) for vector fields and flows (see Sect. 4.5) and [196].

9.2.1 Introduction

Curves of special interest, parametrized by time, are the path lines, stream lines,
streak lines, and vorticity lines, studied from both Lagrangian and Eulerian points
of view (Sect. 9.1.2). Moreover, there are the fluid particle lines (also called material
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Eulerian: a surface QE(x,t)

Lagrangian: a curve QL(xo,t)

Q

x

t

xo x=cst.

dQE
dQL

xL (xo,t)

Fig. 9.1 The Lagrangian–Eulerian point of view for a one-dimensional flow. The path of a fluid
particle is represented in the base horizontal plane by the curve xL.x0; t /; all such fluid paths are
labeled by their x0 initial points. The mapping of the fluid path into the base space of a physical
observable Q is a curve xQ.x0; t /, i.e., the Lagrangian value of the physical quantity QL.x0; t /.
The Lagrangian variation along the fluid path is dQL in a certain dt . But, if we measure Q at a
constant position x, we have its Eulerian value, and consequently its Eulerian variation dQE for
the same time interval dt . The Eulerian value QE.x; t/ actually represents the Lagrangian value
associated to another particle (dashed line) that actually moves through the same spot x at t C dt .
When fluid particles fill up the space x and move, the Lagrangian values of the physical quantities
associated to the particles of fluid generate curves, but the Eulerian values generate a surface

lines, particle contours, or circuit lines) and filaments especially important in
conservation laws. We can raise the question if such particle contours are stable
or they break at a certain point, or if they are invariant, etc. For example, to use the
Kelvin or Ertel’s theorems for closed contours (Theorem 10.3) related to invariants
of the fluid dynamics, we need to have rigorous definition for the material lines of
fluid particles than just intuition.

Example 2. To exemplify such a possible situation, when a particle contour can
deform up to a breaking point (because of a stagnation point of the flow, for
example) we choose an incompressible inviscid irrotational two-dimensional flow
past a cylinder. To solve the flow we use a conformal mapping procedure. The
velocity field is represented by v.z/ D �x C i�y , z D x C iy, and it is tangent
to the curves � Dconst. because of the Riemann–Cauchy conditions. We build the
holomorphic functionH.z/ D ˚.x; y/Ci�.x; y/ where˚ is the potential function
and � is the stream function, i.e., the harmonic conjugate function to ˚ . We have

v D dH�

d z
;
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and the cylinder contour � equation is x2Cy2 D 1. We perform the transformation
u C iv D ! D f .z/ D z C z�1. The cylinder contour transforms into
f .� / D fzjv D 0g. A solution of the Laplace equation in the ! coordinates and
for the boundary condition ! D 0 on f .� / is G.˚/ D ˚0!. We have

H.z/ D G ı f .z/ D A
�

zC 1

z

�
:

For example, in polar coordinates the stream lines (� Dconst.) become

�0

�
r � 1

r

�
sin � D C D const.

The equation of the stream lines becomes

r.�/ D
r0 C

q
r20 C 4 sin2 �

2 sin�

and the Eulerian velocity is

v D �0
��y cos�.x2 C y2 � 1/C x sin �.x2 C y2 C 1/

.x2 C y2/3=2 ;

�x cos�.x2 C y2 � 1/C y sin�.x2 C y2 C 1/
.x2 C y2/3=2

�
:

From the Euler equation the pressure becomes

P D �2
0 �
2.x2 � y2/� 1
2.x2 C y2/2 ;

where � is the density. In Fig. 9.2 we present the pressure distribution around the
cylinder contour. The Lagrangian paths of fluid particles are obtained by numerical
integration of the equations

@2x

@t2
@x

@x0
C @2y

@t2
@y

@x0
D �1

�

@P

@x0
; : : : etc.

In Fig. 9.3 we present the isobaric and stream lines, and the evolution of a particle
contour line (thick line). Initially we choose all particles of this contour line to lie
along a vertical segment. Then, we calculate their Lagrangian positions at a later
moment of time. We notice the tendency of the contour line to spread and tear. In
an extreme example this line may even be broken by possible abrupt changes in
the Lagrangian velocities. This example shows that it makes sense to analyze the
geometry and stability of particle contours for a general flow.
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Fig. 9.2 Pressure distribution
for a two-dimensional
incompressible inviscid
irrotational flow past a
cylinder

x
y

P

Fig. 9.3 Stream lines and isobaric lines (thin lines) for a two-dimensional incompressible inviscid
irrotational flow past a cylinder. Thick lines: a finite particle contour at t D 0 (the vertical segment),
and its Lagrangian flow at a later moment of time

9.2.2 Motivation for a Geometrical Approach

We can alwaysfs present a fluid using the following traditional picture of the
flow, also introduced in Sect. 9.1.2. We introduce the available space for the fluid
(the reference fluid container [212, 215]) as a domain D of R3, and add an extra
dimension for time to form a base space D � R. The particle paths rL.r0; t/

are smooth time-parametrized curves in this base space. The projection on the
horizontal planes (projections perpendicular on the time axis) of the tangent vectors
to these curves represents the velocity fields of the particles. The two velocities,
i.e., the Lagrangian (material) and Eulerian (spatial) velocities, have the same value
at the same point of the base space. The only difference between these two types
of velocities consists in the parametrization of the vector fields. The Lagrangian
velocity field is defined along the particle paths in the base space, while the Eulerian
velocity field is defined on the horizontal plane, in points where these paths intersect
it, at a moment of time t . The integral curves of the Eulerian velocity field contained
in any “horizontal” plane are the stream lines at that moment of time. However, the
path lines do not identify with the lift of the stream lines in the base space. Namely,
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D(ro)

vL

vL

vL

Path line

Stream
 lines

Stream lines

vE

vE

rL(D(ro),t)

t=0

Path line

t

Space rL rL

vE

Fig. 9.4 A two-dimensional fluid domainD.r0/ shown at two moments of time 0; t , and two path
lines rL.t/ whose tangents are the Lagrangian velocities vL. The projection of the Lagrangian
velocity field on the tangent space of the fluid domain is the Eulerian velocity field vE . The integral
curves of the Eulerian vector field in the fluid domain, at a given moment of time t , are the stream
lines at that moment (dotted lines). The projections of the path lines on the fluid domain do not
coincide with path lines in general

if we choose a point r in some horizontal plane t and we compare the path line
crossing through this point, and the vertical lift of the stream line crossing the same
point, these two curves are different in general. An example is presented in Fig. 9.4.

In Fig. 9.5 we show another example of path lines and stream lines, when the
particle moves along an open path, but locally the stream lines may appear to be
closed.

For any given fixed point r0 in the initial plane, we can draw all paths crossing
this at different moments of time (Fig. 9.6). The intersections of all these paths with
a certain horizontal plane t generate a streak line initiated by a “nozzle” placed at
r0. In traditional approaches, see for example [11, 54, 220, 305], the motion of the
particles is described by a one-parameter (time) group of diffeomorphisms acting on
the domain D.r0/. The Lagrange coordinate of a particle is the result of the action
of this group on the corresponding element r0. If the motion is incompressible, the
group of diffeomorphisms is volume preserving. In this formalism, the infinitesimal
generator of the group is the Lagrangian field of velocities.

However, even practical, such a model is not quite perfect. That is because
we tend to associate the same geometrical space to physical spaces with different
signification, namely the material points (initial positions space), and the spatial
points per se. Even if initially (t D 0) the positions r0 of all fluid particles,
r0 2 D, belong to the position space during the motion, these vectors actually form
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Fig. 9.5 A two-dimensional example. A path line in the physical space R2 (horizontal solid curve)
and in the base space X (lifted solid curve), and associated stream lines at different moments of
time (dashed lines)

Fig. 9.6 Same space as in
Fig. 9.4, except we present
several paths emerging from
the “nozzle” point r0
(dashed-dotted axis) at
different moments of time.
The intersections of all such
paths with a horizontal plane
t provide a streak line
(dotted) generated by the
“nozzle” at t

Streak line

t=0

t

rL

rL
rL

rL

r0

r0

Streak line

a space of parameters, labeling the particles. On the other hand, the positions of
the particles at any arbitrary moment of time (given by the Lagrangian equations of
motion rL.r0; t/) belong to a space of positions. The above picture does not make
this difference a geometrical difference, and in that is incomplete and difficult to
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generalize for more complicated flows. For example, in Fig. 9.4, we can see that the
stream lines at different moments of time belong to different planes. We need to
make the distinction between the material space and the space of positions from a
geometrical perspective. This is possible by using a fiber bundle structure instead of
a common space.

9.2.3 The Fiber Bundle

We present a formalism in which a fluid is described using cross-sections � in a
fiber bundle F over some base manifold X . For the definitions and properties of a
fiber bundle, the reader can check Sect. 4.9 and its references [101,212,215,306]. An
intuitive picture of a fiber bundle consists in taking a certain manifold called fiber F ,
and assigns a homeomorphic transformation of F to any point of a base manifold
X , constructing a sort of a local cartesian product. In the case of a fixed container
for the fluid (even the case of the whole space), the traditional model is to consider
the base as the space of particles (usually labeled by their initial positions) and the
fiber is the space available for particle positions (see Fig. 9.7, left). On the contrary,
a free surface introduces one more freedom in the problem. We cannot construct it
using the same pattern (see Fig. 9.7, center) because we allow different particles to
belong to different shapes simultaneously, which is impossible. A possible choice
to build a fiber bundle is borrowed from the mechanics of deformable bodies (see
Fig. 9.7, right). The base space is the manifold of all possible shapes, and the
standard fiber is particle position space. The role of the particle labeling space is
taken over by the nontrivial structure group.

Time

F=Particles

F=Positions

Cross-section

Shapes

Particles

Positions

M=Shapes

F=Positions

Time

Fig. 9.7 Possible fiber bundle structures (M;F ) for fluid dynamics problems. Left: In the case of
no free surface the base space is the space of particles, and the fiber is the space available for the
particles positions; Center: A free fluid surface introduces more freedom in the problem making
the previous (Left) structure inoperable. It would allow different particles to belong to different
shapes simultaneously, which is impossible; Right: Mechanics of deformable bodies model for the
fiber bundle. The base space is the manifold of all possible shapes, and the standard fiber is particle
position space. Dotted line means that time does not need necessarily to be included explicitly in
the geometry picture
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The base manifold (for the nonrelativistic case) is usually a space–time manifold
built as a product between a smooth three-dimensional oriented Riemannian
manifold .M; g/, where g is the metric, and R for time, i.e., X D M � R. The
coordinates in X are x D .x�/ D .xi ; t/ 2 X , with i D 1; : : : ; 3; � D 1; : : : ; 4.
For fluid dynamics we can choose the fiber F D M with coordinates y 2 F [215].
Consequently, the local coordinates in this F bundle over X are .x; t; y/, and the
projection is ˘ W F ! X; .x; t; y/! .x; t/. Transformations and operations that
affect only the base (spatial changes like rotations, etc.) are called fiber-preserving
transformations. A lift of any geometrical object � (a curve, surface, function,
form, etc.) defined in the base space is a map of this object into the fiber bundle,
� ! � 0 2 F , such that it projects back down to the original object inM ,˘ı� 0 D � .

Cross-sections in this bundle � W X ! F represent time-dependent configu-
rations, i.e., particle position fields. The cross-section has the coordinates �.x/ D
.x�; �i .x// D .x�; yi /. On the top of the configuration bundle E , we can construct
another fiber bundle J 1F over F called the first jet bundle [215,242], with the fiber
above .x; y/ consisting of linear maps from the tangent space of the base space to
the tangent space of the bundle, � W TxX ! T.x;y/F , satisfying d� ı � D IdTxX .

For any cross-section � in F over X , the differential d�x at x (also called
tangent map, see Sect. 4.1) is an element of the jet bundle J 1F�.x/. Consequently,
the map x ! d�x is a cross-section of the jet bundle over X . This section,
denoted j 1� , is called the first jet extension of � . In coordinates, it is given by
j 1�.x/ D .x�; �i .x/; @��

i /, where @� D .@i ; @t /. It is this triple which represents
the fluid motion. The first three base coordinates space components xi , originally
coming from the initial positions of the fluid particles, now represent the particle
labeling. The �i .x/ components identify the position of the x particle in space, and
the @t�i components represent the velocity of the particle x.

9.2.4 Fixed Fluid Container

For the case when the fluid moves in a fixed region, i.e., with fixed boundaries,
the group structure of the fiber bundle F is the identity, and the bundle is trivial,
F D X � M . The spatial part of the base manifold M represents the reference
configuration (initial positions of all fluid particles). Actually, the coordinate x
ceases to represent the initial position, but remains attached to the particle and
labels it for the rest of the evolution. So, the space part of the base manifold x (the
material points) labels the fluid particles through the one-to-one correspondence
between particles and their initial positions in the reference fluid container. The
time base X corresponds to the time evolution. The fiber over any base point is
the same manifold, meaning that the space available for any particle is the same
at any moment of time. Its coordinates y are called spatial points. The fiber at any
point F.x;t/ represents the available space for particle x at the moment t , and it is
diffeomorphic with M , i.e., the reference fluid container [212, 215]. In the case of
F , the requirement for the existence of a projection˘ W F ! X from the definition
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of a fiber bundle (Sect. 4.9, Definition 30) guaranties that all points of the fiber, at
any point of the base, are filled with fluid.

The fluid motion is described by a cross-section �.x; t/ of the bundle F
representing the particle placement field. Not any cross-section can represent a real
motion of the fluid, and some minimal constraintts are needed. First, � is not allowed
to create or annihilate fluid particles, and second, two different particles cannot
hold the same spatial point at the same moment of time. In the traditional approach
presented above (the one not using geometry of a fiber bundle) these two constraintts
are fulfilled by requesting that the Lagrangian paths of the fluid particles represent
a diffeomorphism of the reference fluid container. In the fiber bundle formalism,
these two physical constraintts require a similar thing. The restriction of the cross-
section �.x; t/jtDt0 at a constant t D t0 (for every moment of time t0) needs to be
a diffeomorphism of the manifold F D M . Of course, this is also possible because
the bundle is trivial, and there is a canonical diffeomorphism between any two fibers
at any two points.

Let us ignore for a second the deep geometrical implications of the existence
of the group of diffeomorphisms, and let us just look at these conditions locally,
in terms of coordinates. For some more insight into this topic, we recommend
for example [11, 212, 215]. This condition is equivalent to the vector field to be
divergence free. This means that the infinitesimal generator of this diffeomorphisms
is a divergence-free vector field, or in other words that the flow is incompressible.

In addition, the specific cross-section form should result from a solution of the
dynamic equations of motion, for example Euler (10.15) or Navier–Stokes (10.13)
equations, under some additional boundary, initial or regularity conditions which
may be required, too. This constraint will be addressed in the next chapters. For an
explicit discussion of this topics, see for example [215, Theorem 2.1] and reference
herein.

In the local coordinates of a given fiber, y.x; t/ 2 F.x;t/ represents the spatial
position of the particle x at moment t , .x; t; y/�.x; t/. The path lines are the
restrictions of the cross-section rL.x0; t/ D � jxD.x0;t / for fixed point in the space
part of the base space. The tangent vectors to these curves can be expressed in
two ways. If we write vL.x; t/ D @�v.x; t/=@t we have the Lagrangian (material)
velocity field. The superscript v (as in vertical) represents the components of the
cross-section along the fiber. The Lagrangian velocity field is actually represented
by the last three components of the cross-section in the first jet bundle d� . Namely
j 1� D .�; @i �; vL/.

Conversely, if we invert the equation y.x; t/ with respect to y, we can express
the velocity field in coordinates vL.x.y/; t/ D vE.y; t/, which is nothing but the
Eulerian velocity field. So, even if locally the Eulerian and Lagrangian velocities
coincide at the same point of the fiber bundle F , they are vector fields in different
spaces. The Eulerian velocity is a vector space defined on the standard fiber
manifold F . Indeed, because the fiber at any point F.x;t/ is diffeomorphic with
the standard fiber F , according to the minimal constraintts, we can map vectors
tangent to any fiber into vectors tangent to the standard fiber F D M . So, a cross-
section � in F generates a vector field on F at any moment of time, the Eulerian
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flow. The integral curves of this field are, at every moment of time, the collections
of time-dependent stream lines, they lie in the standard fiber, and they have no
special assigned parameter (the stream lines collection is also called flow net [111]).
Contrary to the stream lines, the path lines are time parametrized, hence constant,
and they lie in the fiber bundle. Again, the collection of path lines do not coincide
with the flow net in general (they coincide if the flow is stationary). It is also true
that the path lines never cross the flow net lines.

If we come back to Fig. 9.4, we understand now the trihedron presented there
as the base space, and the horizontal planes as fibers at different points, with their
associated Eulerian fields of velocities. The reunion of all path lines forms the cross-
section � .

Since �.M; t0/ ' M is a diffeomorphisms because of the minimal constraintts,
the image of any compact set in M is a compact set in F.x;t/. Such sets are the
particle structures that remain “stable” to this extent. If such a set is a submanifold
of dimension 1, we call it particle line or material line or circuit line, or filament.
Once identified in the reference fluid container, this line conserves its topological
proprieties in time. If the submanifold is two dimensional, it is a particle surface,
or free fluid surface, etc., and so on. We noticed above that the particle paths are
restrictions of the cross-sections describing the dynamics for constant x. Similarly,
particle lines are restrictions of the cross-section for constant time, and on subsets
of the M manifold: �.x; t/j.x2D;tDt0/ D O�.x/jx2D.

There is another interesting approach about the path lines as orbits of a group of
diffeomorphisms of the spatial part of the base space. Actually, any such diffeomor-
phism (any flow) can be understood as a relabeling operation of the fluid particles.
Such a relabeling operation is connected with a continuous symmetry of the system.
If we consider the fluid a Lagrangian system and the flow is incompressible, the
Noether current associated to this symmetry is the fluid momentum conservation,
see Fig. 9.8.

In the following, we give an interpretation of the transformation between
variation of Eulerian and Lagrangian quantities (9.1), (9.6), or (9.7) in terms of a
connection.

Let us consider again the fiber bundle F representing a fluid confined in a fixed
space domain identified by the manifoldM 3 .xi /, where i; j D 1; : : : ; 3 and � D
0; : : : ; 3. The base space is the direct product X D M � R 3 .x�/ D .xi ; x0 D t/.
We choose the fiber F D M , a trivial identity structure group G D feg, the
projection ˘ , Fx D ˘�1.x/ and a cross-section � W X ! F . The cross-section

Fig. 9.8 Structure of the
fiber bundle associated with a
fluid. The axes here are the
base space (M ), the fiber (F ),
and the time (t D x0)
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maps x D .x�/ ! �a D .x; �j .x//, and its differential d� W TX ! TF maps
TxX 3 Ov.x/ D .v; v0/ D .vi ; v0/ D .v�/ ! Ow D .w;w0; Nw/ D .wi ;w0; Nwj / 2
T�.x/F , with a D .�; j /. In components, the action of the differential, which is a
section in the first jet fiber bundle over F , reads

d�.Ov/ D
�
@�a

@x�
v�
�
D
�
@��

@x�
v�;

@�j

@x�
v�
�
D
�
@x�

@x�
v�;

@�j

@xi
vi C @�j

@t
v0
�

D
�

v�;

�
vi
@

@i

�
�j C v0

@�j

@t

�
D
�

v; 1; .v � r/� C v0
@

@t
�

�
; (9.8)

according to (4.4). If we restrict ourselves on curves being path lines in the time
parametrization, the tangent vectors are Ov D .v; 1/, i.e., v0 D 1. The interpretation
of (9.8) is as follows. Spatial part � of vectors in the tangent space to the base is
in one-to-one correspondence with vectors in the tangent space to the fiber, by the
triviality of F . So � is actually a fiber vector, i.e., an “Eulerian” vector in a local
space frame. This Eulerian vector is mapped to a vector in the tangent space to the
bundle, which is a “Lagrangian” vector

TM 3 v!
�
.v � r/C @

@t

�
� ; with O� D .x; � / 2 TF : (9.9)

If we put vE D � , (9.9) reads d�.vE/ D vL, i.e., the well-known transformation
between the partial time derivative and the material (total) derivative. In this sense,
(9.9) describes a connection in F in the first jet bundle J 1 (for example, see
Olver’s book [242]). Coming down to the F bundle, we note that the only possible
connection is a trivial one, with zero coefficients. This is because the bundle is
trivial, so the only admissible infinitesimal transformations are translations. The
situation is different if the shape of the fluid container is allowed to change in time.

Even if we used such a complicated fiber bundle construction for the
transformation of the time derivatives, the Eulerian–Lagrangian transformation
formula (9.9) is useful so far only for the tangent vectors (i.e., tangent to the path
lines), and it cannot be applied to more general vector fields, not mentioning higher
rank mixed tensorial fields.

9.2.5 Free Surface Fiber Bundle

If the shape of the reference fluid container changes with time (boundaries not
fixed anymore), the fiber Fx depends on the point .xi ; t/ 2 X through the time
dependence and the bundle is not anymore a global cartesian product. Consequently,
it has a nontrivial structure group G. If the fluid has only one compact free surface,
the fiber bundle F has a different structure than the one described in Sect. 9.2.4.

We consider the fluid “drop” as a connected, simple-connected domain D˙ '
D3 � R

3 with smooth boundary (shape) @D D ˙ , and under no external forces or
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torques. By' D3 we mean a diffeomorphisms with the three-dimensional disc x2C
y2C z2 <D 1. The drop has a set of possible shapes. If we can parameterize the set
of all possible shapes with coordinates, we could set the structure of a manifoldM .
The shape coordinates can be determined by the expansion in spherical harmonics,
for example, and we can associate to M the l2.C/ space structure with the topology
induced by the norm. We call M the shape space of the drop. The base space will
be, like in the previous case, X DM �R 3 .˙; t/.

For any shape we choose a trihedron fixed in this shape, for example the origin in
the center of mass, and the axes directed toward the positions of some chosen zeros
of the spherical harmonics. The configuration of the fluid within the given shape ˙
will be referred to this trihedron. For a given shape˙ , all possible configurations of
the fluid particles frjr 2 D˙g can be described by the set of diffeomorphic (shape
invariant) transformation of D˙ onto itself. These transformations form a Lie group
of diffeomorphisms Diff˙ . Any element g˙ of this group maps some distribution
of particles inside this shape into another distribution of particles within the same
shape. So, by the minimal constraintts, the fiber over x D .˙; t/ 2 M is represented
by the group of diffeomorphisms of the shape ˘�1.˙; t/ DDiff˙ . The structure
group is the group of diffeomorphisms of the three-dimensional disc, DiffD3 , which
is the group model for all the other diffeomorphisms groups. Consequently, F is
a principal bundle, and the coordinate on the fiber over .˙; t/ is a certain group
transformation Diff˙ 3 g˙ W D˙ ! D˙ .

This construction must be carried out for all possible shapes. Thus, the total
configuration space of the fluid F is a fiber bundle over the base X , of fiber Diff˙ .
A shape evolution will be identified by a (time-like) curve � 2 X , i.e., a regular
curve of shapes ˙.t/ parametrized by time. For any particular shape, we have to
integrate a set of dynamical equations4.˙; r ; t/ to find the positions of the particles
associated to that shape. The shape at any moment of time determines the position
of particles within the fiber. Hence, a cross-section � W X ! F represents the
evolution of the drop, namely in components t ! ˙.t/ ! rL.r0; t/ D g˙.t/.r0/.
From the geometrical point of view, the dynamical equations of the free surface
fluid are equations for this section. These are basically the equation of continuity,
equations for momentum conservation (Euler or Navier–Stokes equations), and
energy transfer equation.

For any shape in M , we need to specify its fixed reference trihedron and its
reference (we may call it initial) distribution of particles r0. This choice is not
unique, and the freedom involved is a typical gauge freedom. A similar gauge
freedom is encountered in electromagnetism when we study magnetic monopoles,
in the dynamics of elastic bodies or in the study of the geometric phase change of
the wave function for time variable Hamiltonian (Berry’s phase). Making a choice
for the trihedron orientation and the reference particle distribution with respect to
any shape is nothing but a cross-section in F . However, the physical results should
be independent of this choice, i.e., gauge invariant.

Translation of the drop center of mass could be eliminated from the beginning,
but the shapes should also conserve total angular momentum. Angular momentum
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can be changed by deformations (motion in the base space) and also by particle
rotations (motions in the fiber). We need to “synchronize” the succession of defor-
mations with a unique succession of rotations, such that total angular momentum
to be constant. In that, we can introduce a new type of connection, different from
that one introduced above between Eulerian and Lagrangian approach on tangent
vectors (9.9).

For any given smooth curve � in the base spaceM , we need to lift it to a curve � 0
in the total space F in a unique way. Remember that a lift is a map � 2 M! � 0 2 F
such that ˘.� 0/ D � . However, the lift of a path is not unique by definition.
The mathematical tool needed to make it unique is the connection [74, 101]. A
connection, or better said its differential expression, would assign to any tangent
vector v.x/ 2 TxM , an element in TFx , which is the Lie algebra of the group
Diff˙ . Globally, when we move along a closed path in M the corresponding lifted
path in F may not be closed. That is for �.x0/ D �x1 we may have � 0.x0/ D � 0x1
in F . Two different points on the same fiber mean a relabeling of the particles, or a
motion inside the drop. Such a relabeling could be associated with a finite nonzero
rotation of the drop. The drop begins to move by changing its shape and ends up
to the same initial shape after a finite amount of time. But during this motion, it
actually undergoes a net rotation.

A similar situation happens when we build the configuration space of a
deformable body. Again, we choose for any shape a trihedron fixed in this shape.
The orientation of the body, ignoring free translations of the center of mass, could
be described by a proper rotation matrix OR 2 SO.3/ which maps the body-fixed
trihedron to a space frame contained in the ambient space in which the drop is
constrainted to move, i.e., R3. Thus, the total configuration space F is a fiber
bundle over the base M � R, of fiber SO.3/.

Like in the case of the drop, the angular momentum of the body can be changed
by deformations (motion in the base space) and also by rotations (motions in the
fiber). In this example, the connection assigns to any tangent vector v.x/ 2 TM ,
an element in TSO.3/, which is nothing but the Lie algebra so.3/. When we move
along a closed path in M the corresponding lifted path is not closed in general.
Two different points on the same fiber mean a change in the orientation, a rotation.
The body moves and changes its shape, but during this motion, it undergoes a
rotation. However, because the SO.3/ Lie group is not commutative, there are
problems in integrating this lifted path in the fiber. The problem is solved, for
example in gauge field theory, by the so-called Wilson integral. In [101] there is
an eloquent example, namely the falling cat problem. The cat is dropped from an
upside down position, but it lands on its feet, even if it is isolated. The cat manages
to deform its body during the flight, such that all in all involves a net rotation of the
body, to conserve its angular momentum, see also [278]. Similar examples of free
deformable compact shapes occur in the theory of swimming of microorganisms
in zero Reynolds number [231]. In that case the systems are investigated by using
the theory of a gauge field over the space of shapes. The topics of fiber bundles in
hydrodynamics have plenty of online and printed resources out of which we mention
for example [11, 141, 212–215].
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9.2.6 How Does the Time Derivative of Tensors
Transform from Euler to Lagrange Frame?

In Sects. 9.2.4 and 9.2.5, we have seen that changing the frame from the Eulerian to
Lagrangian is actually mapping vectors from the tangent space of the base space to
the tangent space of the fiber. To transform higher-order tensors we need to introduce
a new time derivative through a covariant formalism. Equations (9.1) and (9.5)–
(9.7) are not covariant because the time is not explicitly included in the metric, yet
the Lagrangian! Eulerian transformation !.x; t/ ! ˝.�; t/ is a time-dependent
coordinate change. Consequently, the partial time derivative does not transform
like a tensor because of the time-dependent basis vectors, the same reason that
ordinary derivatives are not covariant (see for example in Sect. 4.10 the comment
right after (4.45)).

The traditional material derivative is covariant just for the coordinates, the
velocity vector, and (obviously) for scalars, as we know from (9.1) and (9.5)–(9.7),
and it was proved geometrically in (9.9), because the velocity belongs to the tangent
space. Let us have an .r; s/ Lagrangian tensor !.x; t/ depending on the Lagrangian
coordinates .x; t/. Its time derivative, i.e., the rate of change d!=dt of the tensor
while keeping the Lagrangian coordinates constant, does not transform into the time
derivative of the corresponding Eulerian tensor, !.x; t/! ˝.�; t//.

@!

@t
.x; t/ ¹ @˝

@t
.�; t/:

To provide a covariant time derivative for arbitrary vector fields and higher-order
tensors, we need to calculate the pull-back transformation of (9.9), and make sure
that the result is a tensor of the same type. That is, to introduce a covariant time
derivative operator (e.g., [314] where it is called convected or convective) which
describes the change in time for a certain geometrical quantity ! along (or with
respect to) the flow lines of the fluid, in the Eulerian frame .�1; t/. The covariant
variation of this quantity is the sum of its internal time variation described by the
partial derivative, and the Lie derivative of ! with respect to the flow described by
the vector field vE D .vi /

dc˝.�; t/

dt
D @˝

@t
C vE.˝/: (9.10)

For scalars, (9.10) reduces to the well-known formula (9.1) or (9.8). We will refer
in the following to (4.19) and (4.20), describing the action of the Lie derivative on
various geometrical objects.

For example, the time covariant derivative acts on a contravariant vector field
A.�; t/ D .Ai / defined in the Eulerian frame, according to the form (4.19)

dcA

dt
D @A

@t
C ŒvE;A	: (9.11)
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The covariant time derivative action on a covariant vector ! D .Ai / is given by the
sum between the partial derivative with respect to time and the Lie derivative with
respect to vE acting on the 1-form (4.20)

dc˝i

dt
D @˝i

@t
C vk

@˝i

@�k
C˝k

@vk

@�i
; (9.12)

The action on an Eulerian tensor of rank .0; 2/ is

dc˝ij

dt
D @˝ij

@t
C vk

@˝ij

@�k
C !kj @vk

@�i
C˝ik

@vk

@�j
; (9.13)

and so on. The physical signification of the covariant derivative on the LHS of all
(9.11)–(9.13) is the following. First, we calculate the partial time derivative of a
Lagrangian tensor, then we transform this quantity into the Eulerian frame. This
transformed Eulerian object is not anymore the simple partial derivative of the
Eulerian tensor, but the covariant time derivative of the Eulerian tensor.

To exemplify (9.10) in a direct and even more intuitive way, we obtain the
transformation of the time derivative for a tensors of rank .1; 1/ for example by
a simple matrix transformation formalism based on formula (4.46). Similar calcu-
lations in components are done in [10, Chap. 8]. We write the tensor transformation
of components of ! when changing frame from Lagrangian to Eulerian

˝ D J!J�1; that is ˝p
q D

@�p

@xi
@xj

@�q
!ij : (9.14)

By time differentiation of (9.14) with respect to time, we have

d˝

dt
J C˝dJ

dt
D dJ

dt
! C J d!

dt
:

Since ˝ is Eulerian we have ˝.� ; t/ and further˝.� .x; t/; t/, so

d˝
p
q

dt
D @˝

p
q

@t
C vj

@˝
p
q

@�j
:

Moreover, we can write

dJ
j
i

dt
D @vj

@xi
D @vj

@�k
@�k

@xi
;

and define the matrix of gradients of velocity

�
j
i D

@vj

@�i
:
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With these notations we have

˝�J C d˝

dt
J � �J! D J d!

dt
;

and by using dJ=dt D �J and by multiplication with J�1 to the right, we obtain

J
d!

dt
J�1 D d˝

dt
C Œ˝; �	 
 dc˝

dt
; (9.15)

where the commutator on the RHS arises from ˝� � �.J!J�1/. Equation (9.15)
represents the transformation of the time derivative d!=dt , and since the RHS is an
operator applied to the Eulerian tensor ˝ , we define the LHS as the covariant (or
convected) time derivative. In components it reads

�
J
d!

dt
J�1

�j
i


 dc˝
j
i

dt
D @˝

j
i

@t
C vk

@˝
j
i

@�k
C˝j

k

@vk

@�i
�˝k

i

@vj

@�k
; (9.16)

where we used the notation dc=dt for this covariant derivative. It is easy to check
that (9.16) is in agreement with the general formulation from (9.12) and (9.13). For
the action of the covariant time derivative on other types of tensors, see Exercises 4
and 5 at the end of the chapter. Also the action of dc=dt can be expressed entirely
in terms of covariant derivatives [10]. For example for a .0; 2/-tensor, we have

dc˝ij

dt
D @˝ij

@t
C .vkrk/˝ij C .rj vk/˝ik C .rivk/˝kj : (9.17)

Let us choose a simple example to understand how (9.16) works. We consider
a stationary viscous flow next to a rigid wall at �3 D 0 (or simply z D 0) with
velocity vE D .0; v; 0/. The velocity is subjected to a boundary layer effect and it
depends on the distance to the wall, v D v.�3/. In the Lagrangian (convected) frame
the pressure is constant in time and so is its gradient, having nonzero component in
the �3-direction, rP D .0; 0; @P=@�3/ D .˛1; ˛2; ˛3/. The time derivative of this
gradient, which is a .0; 1/ covariant vector, is zero. However, in the Eulerian frame
by using (9.16), we have a nonzero material time derivative

dcrP
dt

D
�
0;
@vE
@�3

.rP/3; 0
�
:

There is a change in time for the gradient in the Eulerian frame even if the same
gradient is constant in the Lagrangian frame, and this contribution comes from the
last term in the RHS of (9.16), and not from the first two traditional terms on the
same RHS. Physically, it means that the gradient is initially vertical, but because of
the horizontal shearing of the layers of fluid, this gradient is “tilted” more and more
horizontally.
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This treatment presented above is not the only way to introduce a covariant
time derivative. For example in [145] the authors introduce a corotational derivative
where the local vorticity of the flow is incorporated into the derivative. However, the
covariant time derivative defined by (9.15) and (9.16) is the most familiar one, and it
was initially introduced in [241] in formulating rheological equations of state. This
derivative was used in [292] to develop a theory of fluid motion on an interface,
and later was geometrically extended in [10, 314]. In this last citation there are
enumerated some disadvantages of the covariant time derivative. For example, it
is not compatible with the metric tensor, and it involves gradients of the velocity
so it is not directional. On the other hand, the importance of the covariant time
derivative (9.15) and (9.16) is not only mathematical. Many nonlinear transport and
mixing processes are described by advection–diffusion equations [314], consisting
in a material time derivative for the concentration of the quantity advected, and a
divergence of the diffusivity tensor. In the Lagrangian frame (along the direction
of compression of fluid elements) the advected terms drop out, and the governing
equation reduces to a simple diffusion equation, much more tractable. Moreover,
because of the formalism presented in this section, this simplified diffusion equation
is still covariant. This allows the introduction of a Riemannian metric on the
tangent space to the coordinate space, and allows in principle the use of spectral
approximation procedures.

9.3 Path Lines, Stream Lines, and Particle Contours

In this section, we present a parallel between the Eulerian and Lagrangian
approaches from the point of view of the flow box theorem (see Sect. 4.4). We
discus here only finite time flows with t 2 Œt1; t2	;�1 < t1 < t2 < 1. We
begin our construction with the fluid initial reference container, i.e., a domain
D0 � R

3. We construct the base space X D R
3 � Œt1; t2	, and we assign a local

coordinate system in r0 2 D0. We assume that we are given the fluid flow as smooth
homeomorphisms rL W D0 � Œt1; t2	 ! R

3 such that the restriction rLjD0�ftg is
injective for any fixed t 2 Œt1; t2	. In coordinates this reads .r0; t/ ! rL.r0; t/.
The family of curves L D f�L ) rL.r0; t/jr0 2 D0g is the particle paths, with
tangents PrL D vL and metric gL D v2L. These curves can be lifted in the base space
and mapped into a family QL D f� 0L ) .rL.r0; t/; t/ 2 R

3 � Œt1; t2	jr0 2 D0g. The
metric of � 0L is QgL D v2L C 1. Both �L and � 0L are Lagrangian path lines viewed in
different spaces.

For any t 2 Œt1; t2	we can construct Dt D rL.D0; t/ � R
3. A particle contour is a

parametrized curve �0 D f�0.s/ � D0; s 2 I g � D0. The question is what happens
to such a particle contour in time. Is �t D f�.s; t/ D rL.�0.s/; t/g a regular curve
with the same topology as �0? We have the following result.

Lemma 7. The set �t defined by �.s; t/ as above is a regular parametrized curve if

OJ .rL.r0; t//jtDconst. � t�0 ¤ 0;
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for 8s 2 I; t 2 Œt1; t2	. Here t is the tangent vector to a curve.

Proof. We have
@r

@s
.s; t/ D @xiL

@�j
d�j

ds
D @xiL

@x
j
0

� tj�0.s/; (9.18)

which represents the requested inequality. ut
In other words, a particle contour at the initial moment of the flow remains a
regular curve while transported by the flow in time if the unit tangent of this initial
curve is not in the kernel of the Jacobian matrix of the Lagrangian path function
of the initial coordinates (the flow). If conditions in Lemma 7 are fulfilled, the
particle contour �0 remains a regular curve during the flow, so one can apply
circulation or other types of theorems on it. The Jacobian matrix plays a basic role
in hydrodynamics [331]. It allows the determination of the main flow parameters
and the geometrical characteristics, in particular the metric properties.

As an application, we can use Lemma 7 criterium in Example 2. The initial
vertical particle contour (for example x0 D 0; y0 2 Œ�a; a	) will breakup at a certain
moment of time t if, according to (9.18),

@rL

@y0
.t/ D 0;

where we consider y to be the vertical axis in Fig. 9.3. Obviously, from the
continuity of the cylinder contour, the coordinates of all path lines depend on y,
so (even it looks hard to believe) the above derivative is nonzero everywhere and
consequently the path lines will not disrupt.

The question is whether the set [t2Œt1;t2	Dt is a submanifold of R3. If it is, we
can assign local coordinates for its points in the form p D .r0; t/. In other words,
if the reunion of all path lines over a certain finite interval of time is dense enough
to form a topological space. The answer can be given at least locally, by using the
flow box theorem (Theorem 6). Obviously, the Lagrangian velocity field of any
particle vL fulfills the conditions for the existence of flow boxes on X . Indeed, for
any t 2 Œt1; t2		 and any point p D .r; t/ � Dt , we can find a neighborhood V.r/
and t ˙ ıt such that it exists a > 0 and the triple

..V .r/; .t � ıt; t C ıt//a; �L.rL.r0; t/; t C �//;

is a flow box.
Moreover, we assume that the fluid flows in such a way that X is a topological

space with the product topology of R3 �R. We also assume that the fluid flows in a
bounded region (bounded fixed region or free compact surface), so the Lagrangian
velocity field has compact support in X . Consequently �L.r0; t/ are maximal
integral curves and form a foliation of X (see Sect. 4.4). Since the field of velocities
of particles has compact support, according to Lemma 2, it is complete, and any
of its integral curves can be extended so that its domain of parameter becomes R.
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Fig. 9.9 Cross-section into
a spherical drop of
incompressible inviscid fluid
in oscillation in an l D 2

mode. The thin curves are the
stream lines, while the thick
curve is an example of a path
line

So the Lagrangian paths �L.r0/ form a foliation of the manifold Dt which is homeo-
morphic with D0. We mention again that inside each Dt , we have vE.rL.r0; t/; t/ 

PrL.r0; t/, but inside the same Dt the integral curves of PrL are not the �L curves.

There are of course differences and similarities between the stream and path
lines.

Example 3. In Fig. 9.9 we present a cross-section into a spherical drop of incom-
pressible inviscid fluid in oscillation with an l D 2 mode. The thin lines are the
stream lines and the thick line is a path line.

Example 4. To illustrate better these differences, we present a simple example of a
two-dimensional flow. We assume that we know the flow of this two-dimensional
fluid in the Eulerian frame, and hence we know the Eulerian velocities vE.r ; t/ at
every point and every moment of time. For example let us choose

vE.x; y; t/ D .x; y C �t/; (9.19)

where � is an arbitrary parameter. The stream lines, lying in the instantaneous plane
R
2, are obtained by integrating

dx

x
D dy

y C �t ; (9.20)

resulting in the implicit equation

yE D y0 C �t
x0

xE � �t; (9.21)

or in the parametric form rE.sI x0; y0I t/
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x D ss
1C

�
y0 C �t
x0

�2

y D y0 C �t
x0

ss
1C

�
y0 C �t
x0

�2 � �t: (9.22)

Equations (9.21) and (9.22) represent the stream line passing through a point
.x0; y0/. From the Eulerian velocity we obtain the Lagrangian velocity by integrat-
ing the equations

dxL

dt
D xL.x0; y0; t/

dyL

dt
D yL.x0; y0; t/C �t:

The lifted path lines in parametric form have the expression �L.xL.x0; y0; t/;

yL.x0; y0; t/; t/ with

xL.x0; t/ D x0et

yL.x0; y0; t/ D .y0 C �t/et � �.t C 1/; (9.23)

and in implicit form read

yL.x0; y0; t/ D .y0 C �/xL
x0
� �

�
ln
xL

x0
C 1

�
: (9.24)

Of course the path lines and the stream lines have different expressions, not
forgetting the fact that they belong to different spaces. For a check, we notice that
if we eliminate the time dependence by setting � D 0, these lines (9.21)–(9.24)
have the same expression. In stationary flow the stream lines and the path lines
coincide in the horizontal space. We can also check the definition condition vL.t/ D
vE.rL.t/; t/. Indeed, we can write

vEx D xE jrL.t/ D xL.t/ D x0et D vxL.t/;

and from (9.23)

vLy.t/ D .y0 C �/et � � D yE jrDrL.t/ C �t D vEy:

Another check is to verify the relation between the Eulerian and Lagrangian
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dvLy
dt
D .y0 C �/et D y C �t C �

@vEy
@t
C.vE �r/vEy D �Cx @.y C �t/

@x
C.yC�t/@.y C �t/

@t
D yC�tC�; (9.25)

and a similar equation for vx.
For any t , the stream lines (9.22) form a family of curves �E.sI r0I t/ labeled

by the points r0 2 �E , parameterized by the arc-length s. These curves provide
foliations of each horizontal space R

2, for each moment of time. The vector field
vE.r ; t/ generates also a family of integral curves in the base space R3 D R

2�Rt ime
determined by the equations

dx

x
D dy

y C �t D
dt

1
: (9.26)

At t D 0 we have
�E.sI r0I 0/ D sq

x20 C y20
.x0; y0/ (9.27)

and the solutions of (9.26) and (9.27) coincide modulo a reparameterization. This
means that the Eulerian stream lines are the projections of the lifted Lagrangian
path lines in the horizontal planes only at t D 0. The above example is also shown
in Fig. 9.10.

In Fig. 9.11, we present the same flow described by (9.21) and (9.23) in the base
space (a three-dimensional representation, where time is the vertical axis).

9.4 Eulerian–Lagrangian Description for Moving Curves

This section is very short, and its purpose is to recall that the idea of establishing
a Lagrangian–Eulerian change of frames in lower-dimensional flows is not quite
trivial. We elaborated a little about Eulerian–Lagrangian coordinates and velocities
in Sects. 8.2 and 8.3 together with the introduction of the convective velocity. Here
we just mention one possibility to introduce Eulerian coordinates on a moving
curve, like for example a thin vortex filament in motion. We can consider that
the Lagrangian coordinates along a curve of length L are given by the arc-length
parameterized form of the curve r.s; t/. The curve is in motion, and the velocity
can be expressed in its Serret–Frenet local frame ft;ng in the form V .s; t/ D
U.s; t/nCW.s; t/t . We introduce the mapping e W Œ0; L	! C

e.s; t/ D
Z s

ei�.s
0;t /ds0;
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Fig. 9.10 Two dimensional plot (x � y) of flow lines. Upper graphic: stream lines �E.t/ in the
horizontal plane generated by (9.21) at t D 0 (dashed lines) and t D 1 (continuous lines). Lower
graphic: a region of the same flow, with stream lines at t D 0 (dashed) and t D 1 (smooth), and
a path line (thick line) of a particle moving from t D 0 to t D 1. The path line is tangent to
vE.t D 0/ (dashed line) at its upper left end, and tangent to vE.t D 1/ (smooth line) at its lower
right end, respectively
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Fig. 9.11 Upper box: Lagrangian velocity field represented in the base space with arrows. Three
Lagrangian paths as particular integral curves of this field are shown. Lower box: same Lagrangian
paths �L (continuous line). If we project the unit tangent of each such Lagrangian path onto the
horizontal plane, we obtain the Eulerian velocity field vE . The dotted lines are integral curves of
this Eulerian field. The three longer dotted lines on the base of the box are three such stream lines,
intersecting the three Lagrangian path lines at t D 0, respectively. The other three dotted (shorter)
lines in the upper plane are other three stream lines, occurring at t D 1, and intersecting the same
three Lagrangian path lines at t D 1, respectively
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from the Lagrangian coordinate to the Eulerian one, where � D R s
�.s0; t/ds0 is

the tangent angle of the curve, and � is its curvature (Sect. 5.1). In the Eulerian
coordinate, we can express all the intrinsic properties of the curve, namely � D
�i ln.es/; � D �iess=es , and the dynamics of the transformation of coordinates is
given by est D Œ.W � iU /es	s [152]. In terms of the new coordinate e and time,
the dynamical equation for the velocity components is �t ei� D e2i� .W � iU /e . Let
us choose now a curve motion with zero normal velocity and constant tangential
velocity. Since such a motion is only a reparameterization of the curve, i.e., it is not
a real motion, we expect the Eulerian coordinate to remain constant. Indeed, from
the above relations we have est D 0 so e Dconst.

9.5 The Free Surface

Physically, free surface is the bounding surface of a certain amount of fluid under
consideration. From the mathematical point of view, we consider the free surface˙
to be a piecewise smooth, orientable, regular surface. The free surface is described
by the relation S.r; t/ D 0. This free surface has to fulfill the so-called free surface
kinematic condition. In the Lagrangian description this equation reads

dS

dt
D 0; (9.28)

which means [167] that a particle lying in the surface can not have normal velocity
with respect to this surface, otherwise will produce a normal flow of fluid across the
surface, which contradicts the free surface definition. To use the Eulerian picture,
and to express the kinematic condition in terms of the velocity field v, we choose
a particle P that moves together with the moving surface ˙ . The particle has a
velocity vP˙.t/ D drP .t/=dt . If the particle P moves together with ˙ , there is a
relation between v and S given by

vP˙ � rS C @S

@t
D 0: (9.29)

It is easy to prove this equation if we assume that the particle is contained in the
surface at an arbitrary moment t and also at t C ıt . That is: if S.rP˙.t/; t/ D 0,
then S.rP˙.t C ıt/; t C ıt/ D 0. Equation (9.28) can also be written as

�
v � rS C @S

@t

�
˙

D 0;

and this is a possible form for the free surface kinematics condition. The˙ subscript
means that this equation is taken only on ˙ , or in other words that, in this equation
.r; t/ have to fulfill S.r; t/ D 0. This form is more useful if the surface equation S
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is provided explicitly. For example if S D 0! z D �.x; y; t/, we have

d�

dt
D vz D @�

@t
C vx

@�

@x
C vy

@�

@y
: (9.30)

We would like to comment that, in some literature, this free surface kinematics
condition is explained as “a fluid particle originally on the boundary surface will
remain on it.” This is not, in general, true. The P particle may sink inside the
fluid (like in the case of dragging of the capillary surface by adherence forces) or
evaporate. A more general physical statement would be that, for any particle lying at
moment t in the surface, its velocity is tangent to the surface at that moment. From
the mathematical point of view, this problem is equivalent to the fact that dr=dt

is not well defined at the surface, because the set of points forming a geometrical
surface ˙ admits many mappings into itself. To eliminate this ambiguity, one can
use just the normal velocity, as it is suggested by Meyer [220]. We can define the
unit normal to the regular surface S.r; t/ D 0 by n D rS=jrS j. The normal
component of the velocity of ˙ is

vn D
�

n
dr

dt

�ˇ̌
ˇ̌
˙

�n D �n
@S

@t

1

jrS j :

By using (9.28) for S , we have

vn D �
@S
@t

jrS j D �
dS
dt
� .V � r/S
jrS j D .V � r/S

jrS j ;

where the last RHS is nothing but the velocity field along the normal to the surface
V � n. So we have obtained

vn D V n; (9.31)

which is the most compact (and precise) form of the free surface kinematic
condition: the normal component of the Lagrangian fluid particle velocity is equal,
in any point of the surface, with the normal component of the Eulerian velocity.

9.6 Equation of Continuity

In Sects. 9.6.1 and 9.6.2, we analyze the equation of continuity. There are two
reasons for choosing this topic. The first reason is that this equation provides a
simple working application of the basic theorems of existence and uniqueness of
the solutions of (linear or nonlinear) PDE. The second reason is that the equation
of continuity has variable coefficients and it represents also a good toy model for
such type of equations. However, it is still linear PDE, yet interesting in some of
its particular solutions so it makes a “smooth” pedagogical transition from linear to
nonlinear.
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9.6.1 Introduction

In the nonrelativistic approximation mass is neither created nor destroyed, so we
have the law of conservation of mass, i.e., a positive invariant

m D
Z
D

�dV > 0;

integrated on the closure of the domain D filled with fluid. From its invariance we
find the so-called equation of continuity integral or differential form

Z
D

�
@�

@t
C div.�V /

�
dV D 0; @�

@t
C div.�V / D 0; (9.32)

in either integral or differential form. V .r ; t/ is the velocity field and V is the
volume. In fluid mechanics, the equation of continuity is coupled with other
equations for conservation of momentum (Euler or Navier–Stokes) and for energy or
entropy transfer, such that in total we have five scalar PDEs for the five scalar fields
for the problem: �;V , and p the pressure (by scalar we mean here also a component
of a vector field). The continuity equation alone is not useful for physics, and some
of its solutions do not have physical signification, unless coupled with the other
dynamical equations. However, we present in the followings a theorem of existence
and uniqueness, and some applications for (9.32). Such examples are not usually
analyzed in books of fluid dynamics, but they can work as a good exercise of
mathematical physics.

We study the equation of continuity when the velocity field is given, and we
integrate it to find the density distribution. The continuity equation (9.32) is a
homogenous linear PDE of order 1, with variable coefficients, defined in a certain
domain D � R

4 of space–time. The main tool we need is the Cauchy–Kovalevskaya
theorem for existence and uniqueness of the solutions of a general (not necessarily
linear) PDE [63]. According to this theorem, the continuity equation has one
unique real analytic solution �.r; t/ for a given analytic velocity field V .r; t/

and given Cauchy condition provided by �.r; t/j˙ D g.
1; 
2; 
3/, where g is an
analytic function defined on a regular hypersurface ˙ � R

4. The Cauchy–
Kovalevskaya theorem can be applied to any nonlinear PDE, for arbitrary Cauchy
conditions expressed in terms of analytic functions, if one of the highest order
derivative of the PDE can be explicitly written as an analytic function depending
on the other terms and variables in the PDE. For example in (9.32), PDE of order 1,
we can write the time derivative of the unknown function � on the LHS, and express
it as an analytic function of the variable coefficients V i and partial derivatives
of � with respect to the other coordinates xi , on the RHS (named generically
f .r ; t; �; @�=@xi ; : : : /)
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@�

@t
D f �

3X
iD1

@.�Vi /

@xi
:

The function f is analytical because the finite sum and multiplication preserve
analyticity, so we are in the frame of the Cauchy–Kovalevskaya theorem. In general,
if the PDE is of order m we need m Cauchy conditions, one for each derivative of
order 0 to m� 1 of the unknown function, with respect to a nontangent direction on
the Cauchy hypersurface.

Theorem 23 (Theorem of Existence and Uniqueness Cauchy–Kovalevskaya).
If a PDE of order m in the unknown function u.x1; : : : ; xn/ can be written in the
form

@mu

@xm1
D f

�
x1; : : : ; xn; u;

@u

@x1
; : : : ; ;

@mu

@x
m1
1 : : : @x

mn
n

�
; (9.33)

where m D m1 C � � � C mn and where the term @mu
@xm1

does not appear on the RHS,
then the Cauchy problem attached to this PDE:

@j u

@lj

ˇ̌
ˇ̌
˙

D gj ; j D 0; 1; : : : ; m � 1 (9.34)

with functions gj defined on the .n�1/-dimensional regular hypersurface˙ � R
n,

where l is an arbitrary not tangent direction on ˙ , admits a unique analytical
solution u, if the functions f; gj are analytical on their domains of definition.

For a proof see [63,64,274,317]. This theorem states the existence and uniqueness of
an analytic solution, but this does not exclude the existence of other, nonanalytical
solutions of the same Cauchy problem. However, if the PDE is linear (Holmgren
uniqueness theorem) there are no solutions except the analytical ones. This last
result shows that possible compact supported solutions or very localized solutions
(like solitons, compactons, peakons, etc.), which of course are not analytical
functions, could not arise from a linear PDE. High localization is strictly related, or
generated, by the nonlinearity in the PDE. We remind here that there is one special
case in which linear equations provide compact supported solutions, i.e., the discrete
wavelets 2-scale equation [336]. For example, the Haar scaling function (the step
function), defined as 1 on Œ0; 1	 and zero in the rest of real axis, is a solution of the
finite difference equation˚.x=2/ D ˚.x/C˚.x�1/. This result reveals a possible
deeper connection between linear finite difference equations (or infinite-order linear
PDE equations) and nonlinear PDE.

Returning to the continuity equation we prove the existence and uniqueness
theorem for its Cauchy problem. In the course of this proof we use special Cauchy
condition defined on the hyperplane t D t0. However, it is easy to generalize the
following proof for general Cauchy conditions on an arbitrary hypersurface. This
is because any arbitrary Cauchy hypersurface is regular, and hence we can find a
local change of coordinates .x; t/! .x0; t 0/, such that the hypersurface in the new
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coordinates is determined by the equation t 0 D t
0

0, without any loss of generality
or analyticity. Choosing the Cauchy condition on the hyperplane t D t0 means
knowing the density at the initial moment in the whole space, or in the domain
of definition of the position vector. In the general Cauchy hypersurface case, the
condition can be both initial condition and boundary condition, for example if ˙ is
defined by ˙ D f.x; t/jt D t0 and x 2 DgSf.x; t/jt 	 t0 and x 2 @Dg, etc.
Moreover, we can always reduce any Cauchy condition to a null Cauchy condition.
If the function Q� is a solution of the equation

@ Q�
@t
D �div. Q�V /� div.gV / (9.35)

under the null Cauchy condition Q�.r; t0/ D 0, then � D Q� C g.r/ is a solution of
the continuity equation (9.32) for the same V , and the general Cauchy condition
�.r; t0/ D g.r/. The analyticity of the functions involved is not changed by
this functional substitution. In the following, we use a generic function f instead
of the RHS of the PDE under consideration, no matter if it is (9.32), (9.33), or
(9.35).

The sketch of the proof of existence and uniqueness of the solution of the
continuity equation can be presented briefly as follows. We construct the Taylor
series of a hypothetic analytic solution � of (9.32), by using the initial condition
and the equation itself. If such a solution exists, then by construction it is unique.
To prove its existence, we construct an upper bound function f ub for the RHS
of (9.32). Such a construction is always possible, and the good news is that its
associate solution, i.e., the solution of @�=@t D f ub , is an upper bound function
for �. By using the comparison criterium, �  �ub , it results that � is uniformly
convergent, hence analytical. This concludes the proof. Now we proceed with the
detailed discussion.

To construct the Taylor series we use the following.

Lemma 8. If the velocity field V .r ; t/ and the Cauchy condition �.r; t0/ D g.r/

are analytic in a neighborhoodV.r0; t0/, then the Cauchy problem for (9.32) admits
one unique analytic solution in V .

Proof. Since this hypothetic solution is analytic, we can construct it as a Taylor
series in the form

�.r; t/ D �.r0; t0/C .t � t0/@�
@t

ˇ̌
ˇ̌
0

C
3X
iD1
.xi � xi0/ @�

@xi

ˇ̌
ˇ̌
0

C 1

2Š

�
.xi � xi0/.xj � xj0/

3X
i;jD0

@2�

@xi @xj

ˇ̌
ˇ̌
0
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C
3X
i

.xi � xi0/.t � t0/ @
2�

@xi@t

ˇ̌
ˇ̌
0

C.t � t0/2 @
2�

@t2

ˇ̌
ˇ̌
0

�

C 1
3Š

� 3X
i;j;kD0

.xi � xi0/.xj � xj0/.xk � xk0/ @3�

@xi @xj @xk

ˇ̌
ˇ̌
0

C� � �
�
C � � �;

(9.36)

where by subscript 0 we understand that the value is taken in the point .r0; t0/.
Substitute in this series the initial Cauchy and the equation itself

�.r0; t0/ D g.r0/
@�

@t

ˇ̌
ˇ̌
0

D �div.�V /j0 D �div.gV /

@�

@xi

ˇ̌
ˇ̌
0

D
�
@

@xi
�.r; t0/

�
r0

D @g

@xi
.r0/

@I �

@xi1@xi2 : : : @xin

ˇ̌
ˇ̌
0

D @Ig

@xi1@xi2 : : : @xin
.r0/

@2�

@xi @t

ˇ̌
ˇ̌
0

D �div
@

@xi
.gV .r ; t0//r0 ; etc.; (9.37)

and so on, for all terms. The hypothetic analytic solution is now fully determined,
which proves its uniqueness. To prove its existence, we need to introduce the
concept of upper bound function in general in R

n. ut

Definition 61. Let x0 2 R
n and f is an analytic function defined on a neighbor-

hood V.x0/, such that

f .x/ D
X

i1;i2;:::in

Fi1;i2;:::in.x1 � x01/i1 � � � .xn � x0n/in ;

for x 2 V.x0/. We define an analytic function on V.x0/

f ub.x/ D
X

i1;i2;:::in

Gi1;i2;:::in .x1 � x01/i1 � � � .xn � x0n/in ;

called upper bound of f , if 8i1; : : : in we have:

1. jFi1;:::in j < Gi1;:::in .
2. 0 	 Gi1;:::in .
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The notation is f  f ub . The next step is to find an upper bound function for the
RHS term of the continuity equation.

Theorem 24. For any function

f D
X

i1;i2;:::in

Fi1;i2;:::in .x1 � x01/i1 � � � .xn � x0n/in ;

analytic on a neighborhood V.x0/, there is a neighborhood W.x0/ � V.x0/ where
f has an analytic upper bound function of the form

f ub.x/ D M

1 �
Pn

iD1.xi � x0i /
˛

C C; (9.38)

where M > 0; ˛ 2 R, and C is a constant.

Proof. Obviously, 9
 2W such that the numeric series

X
i1;i2;:::in

Fi1;i2;:::in .
1 � x01/i1 � � � .
n � x0n/in ;

is uniformly convergent, which implies that the sequence Fi1;i2;:::in .
1 �
x01/

i1 � � � .
n � x0n/in ! 0, so it is bounded, i.e., 9M > 0 such that

jFi1;i2;:::in .
1 � x01/i1 � � � .
n � x0n/in j < M:

Then

M
X
i1;:::in

.x1 � x01/i1 � � � .xn � x0n/in
j.
1 � x01/i1 � � � .
n � x0n/in j ;

is an upper bound for f on W , according to Definition 7. Since the above series is
also a geometric progression, we can calculate its sum. Then we can find an upper
bound function f ub for this progression in the form

M�
1 � x1 � x01
j
1 � x01j

�
� � �
�
1 � xn � x0n
j
n � x0nj

� <
M

1 �
Pn

iD1.xi � x0i /
˛

C cst. D f ub.x/;

(9.39)
with ˛ D minfj
1 � x01j; : : : j
n � x0njg. The next step is to take this type of upper
bound function in n D 4 and use it in the RHS of the continuity equation, instead
of its original RHS, with an appropriate choice of the arbitrary constant cst:

@�ub

@t
D M

1 �
t C x C y C zC �CP3

iD1
@�

@xi
˛

�M: ut (9.40)
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Lemma 9. The null Cauchy problem for (5.14) has a unique analytic solution �ub

in a neighborhood of 0, whose Taylor series has all coefficients nonnegative.

Proof. We introduce the variable  D t C x C y C z and we look for solutions of
(5.14) of the form �.t; x; y; z/ D u./ under the initial condition u.0/ D 0. The
PDE (5.14) reduces to an ODE

u0.˛ �  � 3M/� uu0 � 3.u0/2 �M u �M D 0;

and according to the Peano theorem (remember, it is based on the fixed point
theorem [160]) this equation has a unique analytical solution in the initial condition
u.0/ D 0. When  D 0 we have a possible solution u0.0/ D 0. By differentiating
the ODE one more time, and by calculating it again in  D 0, we have u00.0/ D
M=.˛ � 3M/. If we choose ˛ � 3M it results u.k/.0/ � 0 for k D 0; 1; 2. In
general, after n successive differentiations, we have

u.n/.0/ D 1

˛ � 3M
� nX
k;jD0

jCkj ju.k/.0/u.j /.0/C .˛M C n/u.n/.0/
�
:

It results, by induction, that 8k; u.k/.0/ � 0 if ˛ > 3M . This result proves that
the null Cauchy problem for (9.40) has always an unique analytic solution, whose
Taylor series coefficients are nonnegative:

�ub.r; t/ D
X
jCi0;i1;i2;i3 jt i0xi1yi2zi3 : (9.41)

There is no loss of generality by choosing null Cauchy conditions in Lemma 4.
We proved in (9.35) that any null Cauchy conditions can be changed into arbitrary
Cauchy conditions, so Lemma 4 is general. Now we attack the final step of our
proof.

The uniqueness of the Cauchy problem for (9.32) was proved in Lemma 3, so
we just need to prove the existence of analytic solution �. Since the actual RHS
term of the continuity equation is analytic in all its variables, we can find an upper
bound function for the PDE in the form of (9.38). We solved this auxiliary PDE
(Lemma 9) and its solution �ub has the property: �  �ub . This is true because we
build the solutions term by term, by using the functions f , f ub , and the Cauchy
data g (like we did in (9.36) and (9.37)). The upper bound property transfers
from the f s to the �s. Consequently, all the coefficients (partial derivatives in 0)
of the Taylor series for � are upper bounded by the corresponding coefficients
(corresponding partial derivatives in 0) of �ub . Since the series in (9.41) is analytic,
by the comparison criterium, it results the analyticity of the series � (see (9.36)
and (9.37)). But this is the actual solution of (9.32), which proves the whole
theorem.

We briefly present the above proof in the equation (9.42)
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@�

@t
D f

�.r ; t0/ D 0 �����!T10
9f ub � f �����!

@�ub

@t
D f ub

�ub.r ; t0/ D 0
L 3
??yTaylor

??yL4
Unique sol.

(5.10)
�����! � �ub  ����� �ubhas all

coeff. � 0??yComparison crit.

9Š�
�.r; t0/ D 0??ySubstitution

9Š�
�.r; t0/ D g.r/

ut (9.42)

9.6.2 Solutions of the Continuity Equation on Compact Intervals

In Sect. 9.6.1 we discussed the general conditions under which the continuity
equation has a unique analytical solution. In this section we investigate some
special one-dimensional situations having exact solutions. That is a Cauchy one-
dimensional problem for �.x; t/ for given V.x; t/. We focus especially on the
behavior of the solutions at the boundaries of a compact interval of length 2L. The
one-dimensional version of the continuity equation reads

@�

@t
C �@V

@x
C V @�

@x
D 0; (9.43)

for x 2 Œ�L;L	, t � 0. At the boundaries of the interval, we should have no flow
of matter so we impose the BC v.˙L; t/ D 0, in addition to the Cauchy condition.
It is easy to build the general solution from the Fourier expansions

�.x; t/ D
X
n�0

�n.t/e
i�nx
L ; V .x; t/ D

X
n�0

Vn.t/e
i�nx
L ; (9.44)

and from the BC we have X
n�0
.�1/nVn.t/ D 0: (9.45)

If we plug the formulas from (9.44) in the continuity equation (9.43), we obtain a
recursion relation
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�0k.t/ D �
i�k

L

kX
nD0

�nVk�n: (9.46)

With the notation
V
k.t/ 
 e� i�kL

R t
0 V0.t

0/dt 0 ;

we have (9.46), the new recursion relation

�k.t/ D V
k.t/

�
�k.0/� i�k

L

Z t

0

V
�k.t 0/

k�1X
nD0

�n.t
0/Vk�n.t 0/dt 0

�
; (9.47)

where �k.0/ are determined by the initial condition through the inverse Fourier
transform

�n.0/ D 1

2�

Z L

�L
�initial.x/e

� in�xL dx: (9.48)

We choose a simple physical example, where the initial density is the same
everywhere within the compact Œ�L;L	, and zero outside. That is �.x; 0/ D
m=.2L/, wherem is the total mass of the fluid inside the bounded segment. It results
�0.0/ D m=.2L/ and �n.0/ D 0 for n > 0. We also choose a simple configuration

for the velocity, namely V.x; t/ D a sin.!t/

�
e
i�x
L C e 2i�xL

�
. That is V1.t/ D V2.t/.

This is a stationary (longitudinal) oscillation in velocity along the segment, with
zero velocity in the ends. We have Vn.t/ D 0 for n D 0; 3; : : : . By substituting
these expressions for the velocity components in (5.23), we obtain V

˙k D 1 and

�k.t/ D � i�ka
L

Z t

0

sin.!t 0/.�k�1 C �k�2/dt 0; k D 1; 2; : : : (9.49)

This recursion provides the unique solution for k � 1.
Apparently, finding general solutions for the continuity equation in

one-dimensional, �t C �Vx C �xV D 0, is a simple procedure (subscripts represent,
again, differentiation). However, there is a hidden problem at the boundaries,
produced by the zeros of the coefficients in the PDE. At the ends of the interval, we
have to assume no flow of fluid, so V.˙L; t/ D 0. In a neighborhood .L� �; L/ of
the right boundary for example, we can test the behavior of a Fourier component of
the solution �!.x; t/ D r.x/ei!t , and we obtain

d.ln r!/

dx
V! D �

�
dV!

dx
C i!

�
; (9.50)

which means that in this neighborhood, even if Vx D 0, we still have the RHS
nonzero. But, when V ! 0, it seems that d.ln r!/=dx ! 1. So, the zeros
of velocity at boundaries may introduce singularities in density (by reciprocity,
in the inverse problem, isolated zeros of density can also introduce singularities
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in velocity). Let us suppose that the velocity approaches the zero as a power
law V.L � �; t/ ' �a, a > 0. If a < 1 we have limx!L.�/ < C1. But if
a > 1 we expect limx!L.�/ D C1. If V is a rapidly decreasing function in that
neighborhood, we can neglect the third term in (9.43) and use the approximation

@�

@t
' ��@V

@x
;

to investigate the behavior of �. By direct integration we obtain

�.L � �; t/ ' �Le�
R t
0 Vx.L� �; t 0/dt 0;

where �L is a constant. This asymptotic solution is a very rapidly increasing function
toward L, but it is not anymore a singularity.

Let us illustrate with examples. We take a simple form for velocity in a compact
interval x 2 Œ�L;L	

v.x; t/ D V0 sin!t coskx;

as stationary oscillations, where k D .2nC1/�=.2L/, n arbitrary integer and V0; !
are constants. The solution can be easily obtained by the procedure indicated above
or by simple separation of variables. The general solution is a real integral over the
label � of the following components

�.x; t; �/ D �0e� �
! cos!t

�
cos

kx

2
C sin

kx

2

�a�1
�

cos
kx

2
� sin

kx

2

�aC1 ;

where a D ��=.kV0/, and �0 are constants. Obviously this solution has singularities
within Œ�L;L	, provided by the trigonometric zeros of the denominator. The reason
is the cancellation of velocity in different points (function of how large is n)
including the boundaries. Velocity approaches zero by following a quadratic law:
V.L � �; t/ ' k2�2=2.

What can be done to eliminate these singularities? Of course, by coupling the
continuity equation with Euler and energy conservation equations, the nonphysical
solutions will be eliminated. However, one simple possibility to eliminate the
singularity in density is to introduce an artificial constant term in velocity

V D V0.sin!t cos kx C V1/:

From the physical point of view, it means that we have a little (V1  1) constant
“leakage” of fluid at the boundaries. With this new expression for velocity we have
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Fig. 9.12 Plot of velocity and density from one-dimensional continuity equation on an interval
Œ�1; 1	. Velocity has stationary oscillations – up and down in this figure means motion of the fluid
to right and left – and the fluid is accumulating in the right end. The density has itself push–pull
oscillations

�.x; t; �/ D �0e� �
! cos!t

0
BBBBB@

1C V1 � 1q
1 � V 2

1

tan
.2nC 1/�x

4L

1 � V1 � 1q
1 � V 2

1

tan
.2nC 1/�x

4L

1
CCCCCA

2L�

.2nC1/�V0

p
1�V 21

� 1

V1 C cos
.2nC 1/�x

2L

:

The solution is not anymore singular in ˙L and it is illustrated in Fig. 9.12.
Global longitudinal oscillations of the fluid induce oscillations in the amount of

fluid accumulated to the right end of the domain.
It is interesting to check the reverse phenomenon, namely if zeros in density

provide singularities in velocity. For the stationary oscillating density inside Œ�L;L	

�.x; t/ D �1 sin kx sin!t;

with !; �1 constants and k defined as above, we compute the velocity in the form

V.x; t/ D V/ cot!t
C1 C !�1 cos kx

k.�0 C �1 sin kx/
;

where V0; C1, and �0 are constants. In Fig. 9.13 we plot both the velocity and the
density for this example for L D 1. Indeed, the density-isolated zeros provided by
sin kx result in singularity in velocity given by the cot function.

Another example is presented for a semi-infinite domain x 2 .�1; 0	. We
choose the velocity of the form
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Fig. 9.13 At t D 0 density is
uniformly distributed, and
velocity has a positive
maximum centered around
x D 0, and two symmetric
negative minima. Initially, the
matter is pushed from left and
right into two points, placed
with approximation at
x D 0:25 and x D �1.
Around t D 2 one can see in
the density plot the resulting
accumulation of fluid in these
two points. At this moment
the velocity is almost zero
and we have
quasiequilibrium. Next, the
velocity changes the sign, and
the fluid is pushed toward two
other centers, namely x D 0

and x D 1. As a result, at
t D 5 we have more
accumulation of fluid in these
points. About t D 4 velocity
has its singularity
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V.x; t/ D � ax

at C �0 cosh tx
b

;

where a; b, and �0 are arbitrary constants. Around zero the velocity behaves like
V.0/ ' x which provides a “milder” type of singularity for �. The corresponding
solution for density is

�.x; t/ D �0 C atsech
tx

b
:

The results are presented in Fig. 9.14.
In the last example, we present some localized traveling wave solutions along

the axis. We assume the propagation of a KdV solitary wave on the free surface of
a one-dimensional channel
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Fig. 9.14 Velocity (dotted
lines) and density (continuous
lines) for a one-dimensional
semi-infinite axis. The
velocity has a localized bump
which pushes the fluid against
the right wall, creating a fluid
accumulation
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4v(x,t) and r(x,t)

for t=0,...3

�.x; t/ D Asech2
x � vt

L
;

where A is the wave amplitude, L the half-width, and v the group velocity. The
tangent velocity of the fluid at the free surface is given by

V.x; t/ D �2A
L

sech2
x � vt

L
tanh

x � vt

L
:

We neglect that the KdV equation for shallow water was deduced in the
incompressibility approximation, at least for a very thin layer on the surface [169].
Let us presume that this layer is compressible (like a surfactant layer on the surface
of the incompressible fluid) and the density in it is the solution of the continuity
equation for the velocity given above. The density reads

�.x; t/ D �0 1

v � V.x; t/ ;

where �0 is the equilibrium density in the absence of the wave. Density has no
singularities in this example. We present the results in Fig. 9.15. We can obtain a
similar result for an MKdV soliton. We choose the velocity profile as a modulated
breather [169]

V.x; t/ D V0sech
x � vt

L
sin!.x � vt/:

The density profile is given by a similar equation as in the KdV case

�.x; t/ D �0

V .x/ � v
;

see Fig. 9.15.
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Fig. 9.15 Surface density
and tangent velocity at the
free surface for an MKdV
soliton

-4 -2 0 2 4 6
Space-time

-0.2

0

0.2

0.4

0.6

0.8
Density

Velocity

9.7 Problems

1. Show that the free surface condition, i.e., the path of a fluid particle rL does not
leave a surface ˙ (see (9.5), (9.28), and (9.29)), is the equivalent of requesting
the Lagrangian path of the particle to belong to the time variable surface, both
described in extended space R � R

3 for time and positions.
2. Consider a sphere of radius R at rest surrounded by inviscid, incompressible,

and irrotational fluid of density �. The fluid moves past the sphere such that
the velocity at infinite distance from the sphere is a constant and uniform field
v1 D .0; 0;�u/. Find the Eulerian velocity, the pressure field and the stream
lines. Find the Lagrangian paths and compare them with the stream lines.

3. Let us have the following field of Eulerian velocity

vE.r ; t/ D .a1.t/x˛1 ; a2.t/y˛2 ; a3.t/z˛3 /;

where ai .t/ are arbitrary smooth functions and ˛i 2 R. Find the equations of the
stream lines and the path lines. Show that if ai .t/ are constant, the stream and
path lines coincide for an appropriate choice of integration constants.

4. Consider the Lagrangian paths of some fluid particles rL.r0; t/ as a one-
parameter t group of diffeomorphisms mapping the initial positions of the
particles into the current ones r0 ! rL, acting in R

3. Consider a time-dependent
physical quantity ˝ described by a differentiable 1-form ! defined on T �rLR

3.
Prove that the Lie derivative of this 1-form with respect to the tangent directions
to the diffeomorphism transformations

LrL.r0;t /.!/ D lim
dt!0

dr�L.!/� !
dt

D d

dt

�
!j
@x

j
L

@xi0
� !i

�
dxi

provides the Eulerian–Lagrangian law of transformation for˝ .
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5. Equations (9.12) and (9.13) were obtained by using the Lie derivative with
respect to the fluid flow. Try to find the same equations from a different approach,
namely a new law of covariant differentiation on a four-dimensional manifold
.�0; �i / with a linear connection. The last two and three terms, respectively, in
the RHS of (9.12) and (9.13) could be understood as connection coefficients with
the Christoffel symbols of the second kind fulfilling

� i
k0 D �

@vi

@�k
:

Hint: we need to introduce a metric on this manifold, g�� , with �; � D
0; 1; : : : ; 3. The Christoffel symbols of first and second kind are related by
� ˛
ˇ� D gı˛�ˇı� , and the last one is defined by the metric

�˛ˇ� D 1

2

�
@g�ˇ

@�˛
C @gˇ˛

@��
� @g˛�
@�ˇ

�
;

see for example [10, 19, 158, 181, 299]. A possible hypothesis could be gi0 D 0,
g00 Dconst. The remaining PDE equations for gij may result in an exponential
matrix solution. It is interesting to relate the skew-symmetry property of this PDE
in the metric coefficients with the fact that the integral curves of a rotational flow
are singular.

6. Prove that the covariant time derivative (9.12) and (9.13) has the following
actions

dcA

dt
D dA

dt
C �tA; on covariant vectors;

dcA

dt
D dA

dt
� �A; on contravariant vectors;

dc˝

dt
D d˝

dt
� �˝ �˝�t ; on .2:0/ tensors;

dc˝

dt
D d˝

dt
C �t˝ C˝�; on .0:2/ tensors:



Chapter 10
Dynamics of Hydrodynamics

The mathematical description of the states of a fluid is based on the study of three
fields defined on the domain occupied by the fluid: the velocity field V , the density
�, and the pressure field P . These three “unknowns” are determined by integrating
other five scalar equations, namely the mass conservation (continuity equation), the
three components of the equation of momentum balance (Euler or Navier–Stokes),
and the energy balance. This last equation needs in addition information about the
thermodynamics of the fluid, so it may need to be supplied with some equation of
state. In addition to these five equations, we request regularity, asymptotic and, if
it is the case, boundary conditions, to provide a unique solution. When we study
the dynamics of the fluid confined in a compact domain with free boundaries, the
system is slightly more complicated, and we have to add the kinematical equation of
the free surface, as well as equations of momentum balance at the surface. If we take
into account the nonlinear terms in the dynamical equations, and in the associated
curved geometry, some interesting solutions occur. Special nonlinear effects related
to fluids on compact domains with free surface could be Gibbs–Marangoni effect,
dividing the flow in cells (Bènard effect), couplings between different modes,
collective effects, separation of flow in layer (boundary layer, turbulence), standing
traveling surface waves, etc. In this chapter, we introduce some elements of general
hydrodynamics which we will use later on in the book, boundary conditions
especially at free surfaces, surface pressure theory, and representation theorems.

10.1 Momentum Conservation: Euler and Navier–Stokes
Equations

The continuity equation for fluid dynamics (9.32) was derived in Sect. 9.6 and it has
the form

@�

@t
Cr � .�V / D 0; (10.1)
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where V D .Vi / is the Lagrangian or material velocity of the fluid particle, and � is
the fluid density. Because we study the fluid in the three-dimensional Euclidean
space of flat metric, there is no difference between covariant and contravariant
character of the Euclidean vectors, so we will place the label as subscripts as a
rule in this section. The momentum of the unit of fluid volume is given by

pi 
 @

@t
.�Vi / D fi D Fi

V
; (10.2)

where f D .fi / is the volume force density, derived for the total force field in the
fluid F . From (10.1) and (10.2), we have

@Vi

@t
C Vk

�
@

@xk
Vi

�
D � @

@xj
.P ıij C �ViVj / 
 � @

@xj
�ij ; (10.3)

where P is the pressure, and we define the fluid symmetric momentum flux tensor
as O�. In the inviscid case, where we have no loss of momentum in viscosity and
internal frictions, this tensor has the property

fi D @pi

@t
D @

@t
.�Vi / D � @

@xi
�inviscid
ij : (10.4)

If we draw an imaginary smooth surface with unit normal N , (10.4) can be written
in the form

Ŏ inviscid �N D PN C �V .V �N /; (10.5)

which represents the balance of reversible momentum. The LHS term represents
how much momentum is transferred per unit of time and cross-section area in the
direction N , the first term on the RHS is the change of momentum by molecular
motion and interaction, and the last term is the change of momentum by bulk flow
only.

If we consider the viscosity, �, we have to extend the momentum flux tensor with
an extra term, namely

�inviscid
ij ! �ij D Pıij C �ViVj � � 0

ij : (10.6)

In literature [50, 111, 167, 171, 220, 224, 305], authors use another tensor, namely
the fluid stress tensor O� , inspired from the study of elasticity, representing the total
momentum transferred by molecular motion both reversible and irreversible, and
defined by

�ij D �Pıij C � 0

ij ; (10.7)

so that
�ij D ��ij C �ViVj : (10.8)

So far we took for granted that these stress tensors are symmetric. The proof is based
on the judgment that the total torque, dMi D �ijkxj @�kl=@xldV , produced by fluid
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forces in an infinitesimal domain depends only on the surface of the domain, because
inside forces between different elements cancel each other in action–reaction pairs.
From the Green theorem applied on this domain, we obtain that �ijk�jk D 0, where
from�ij D �ji ; �ij D �j i .

To have an expression for the stress tensor, we need to use the Newtonian
fluid hypothesis, namely the part of the momentum flux tensor which results from
frictional interaction of the fluid in relative motion (represented by the viscous stress
tensor � 0) depends only on the instantaneous gradient of fluid velocity. In addition,
this dependence is approximated to be linear. If we keep the general dependence
on the gradient, the fluid is called Stokesian fluid, but the hypothesis need to be
supplemented by requiring smoothness, isotropy, and homogeneity [10, 294]. So,
we can write

�
0

ij D Cijkl
@Vk

@Vl
: (10.9)

To determine the tensor C , we note that a global rotation of the fluid should not
introduce any stress, so we have Cijkl D Cijlk. In addition we require C to be an
isotropic tensor, namely invariant to any rotation. We know that the only rotational
invariant tensors of rank 0 is a scalar, of rank 1 there is none, of rank 2 is the
Kronecker symbol ıij , and of rank 3 is the Levi–Civita tensor �ijk . The number
of linear independent isotropic tensors of rank k is given by the Motzkin recursion
formula

Nk D k � 1
k C 1.2Nk�1 C 3Nk�2/; k D 1; 2; : : : ;

from where it results N4 D 3 [304]. To obtain the general formula for the C tensor,
we can use a theorem from elasticity [143, 256]. This theorem states that a rank 2
symmetric tensor (i.e., O� 0

) generated by all possible linear combinations between
another rank 2 tensor rV and a rank 4 isotropic tensor OC with the above listed
properties is a linear combination of the symmetric part of rV and the Kronecker
tensor times the trace of rV . That is

O� D �P OI C �.rV C .rV /t /C �Tr.rV / OI ; (10.10)

where O.I / D ıij , and where the second term on the RHS is the symmetric part of
rV (containing the transpose), also called the rate of deformation (or rate of strain),
and Tr.rV / D r � V is called rate of expansion [50, 167]. The last assumption on
the stress tensor (Stokes’ assumption) namely O� 0 makes no contributions to the mean
normal stress, so we have � D �2=3 from here. It results

O� D �P OI C �
�
. OrV C .rV /t / � 2

3
Tr.rV /

�
OI

D �Pıij C �
�
@Vi

@xj
C @Vj

@xi
� 2
3

@Vk

@xk
ıij

�
: (10.11)
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If we neglect the Stokesian assumption, and we also consider the contribution of a
dilatational viscosity, we correct (10.11) into

�ij D �Pıij C �
�
@Vi

@xj
C @Vj

@xi
� 2
3

@Vk

@xk
ıij

�
C � @Vk

@xk
ıij ; (10.12)

where � is the coefficient of dilatational viscosity. In the non-Newtonian fluid, we
have �; � D f .@vi =@xk/.

We can rewrite (10.12) in a vectorial form, such that the dynamical equation for
a viscous fluid reads

�

�
@V

@t
C .V r/V

�
D �rP C �f C �4V C

�
� C �

3

�
r.r � V /; (10.13)

which is the famous Navier–Stokes equation of a fluid in the presence of a volume
density force f . In the case of incompressible fluid, (10.14) becomes

@V

@t
C .V r/V D �1

�
rP C f C �

�
4V ; (10.14)

which reduces to the Euler equation in absence of viscosity

@V

@t
C .V r/V D �1

�
rP C f : (10.15)

10.2 Boundary Conditions

Boundary conditions at the surface of a fluid ˙ can be of three types: separation
between two fluids (fluid interface), free surface of a fluid in a rarefacted gaseous
atmosphere (or vacuum), and contact with rigid surfaces. The expressions of the
conditions of continuity in each case depend if the fluid (fluids) is viscous or
inviscid. Basically, we can write a general continuity condition for the separation
of two fluids (say fluids 1 and 2), and this condition can be modified for the other
two cases.

The continuity of the velocity at the interface is a relation strongly dependent on
the model (viscous or not, slipping interface or not, etc.), so we will use it for every
situation in particular. Nevertheless, we can write a provisional continuity condition
in the form V 1j˙ D V 2j˙ or

V n;1j˙ D V n;2j˙; V Î;1j˙ D V Î;2j˙; (10.16)

where the two components are the normal and the parallel one to the surface. In
many models, it is more practical to rewrite the continuity conditions (10.16) in
another form,
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V n;1j˙ D V n;2j˙;
N � .r˙ � V 1j˙/ D N � .r˙ � V 2j˙/;

N � .r˙ � V 1j˙/ D N � .r˙ � V 2j˙/; (10.17)

namely the continuity of the normal components of the velocity, of the divergence
and the curl of the velocity. The last one is nothing but the continuity of the normal
component of the vorticity ! D r � V . The operator r˙ is the surface gradient.
Basically, it represents the gradient expressed in surface curvilinear coordinates,
acting on vectors in the tangent plane to ˙ . Its rigorous definition and properties
are described in Sect. 6.5. Equations (10.17) represent mixed Dirichlet and von
Neumann boundary conditions, and guarantee the uniqueness of the solution of the
(elliptic type partial differential equations) Euler or Navier–Stokes equations (see
(10.13) and (10.15)).

In the case of rigid surface in contact with the fluid, because of the cohesive
forces, we ask V j˙ D 0. Such a relation cannot be fulfilled by the Euler equation (it
would generate zero solutions all over the space), but it can be fulfilled at least for the
normal components in the case of inviscid fluids (or actually the normal component
of fluid velocity should be equal to the local velocity of the rigid surface), while
V Î ¤ 0 for ideal fluids. Consequently, the separation between the fluid and the rigid
boundary is a special zone, so-called “vortex-sheet” or “boundary layer” where we
model the discontinuity for the tangent velocity. In the boundary layer the vorticity
is nonzero, but because the equation for vorticity in the viscous case is a diffusion
type of equation

@!

@t
D �4!;

where we eliminate the volume forces for simplification, we expect the vorticity to
decay toward the bulk of the fluid, away from the boundary layer. This also implies
that out of the boundary layer the velocity is almost potential.

The balance of the momentum across the surface is

F 1j˙ D F 2j˙ ! Ni�
1
ikj˙ D Ni�2ikj˙ (10.18)

or in tensor form
. O�1 � O�2/ �N D 0; on ˙: (10.19)

For a free surface, (10.18) reduces to

Ni�
01
ikj˙ D P j˙Nk: (10.20)

In tensor form the continuity condition across a free surface reads

. O� 0 �N /˙ D P j˙ �N D 2�H;
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. O� 0 � ta;b/˙ D 0; (10.21)

where ta;b form a basis in the tangent space of the surface, � is the coefficient of
surface tension, andH is the mean curvature of the surface. These equations will be
elaborated in detail in Sect. 10.4. In this case of an isolated droplet, the driving force
(the surface tension) acts always perpendicularly to the free surface. Therefore, the
tangential stress on the surface vanishes, and the normal stress is the driving force.
In Chap. 8, we have noticed that there are a lot of other interactions at the interface
between two fluids, especially if the surface is material and it is moving.

If the surface of separation carries some material properties, for example it has
mass distribution, internal viscoelastic forces, etc. (in this case the separation is
called an interface), the continuity equations for the stress (10.19) and (10.21)
change correspondingly

. O�1 � O�2/ �N j˙ D F net;˙ ; (10.22)

where the RHS is the net force per unit of surface area acting upon the physical
surface, sometimes denoted �˙ . This surface density force, F net D FnN C F Î,
contains the surface tension and many other terms related to the existence of surface
elasticity, viscosity, shear, surfactants, mass transfer, etc. Its expression is obtained
on differential geometry grounds in Sect. 8.4 (see (8.41) and (8.56)).

10.3 Circulation Theorem

This subject was initially investigated by Thomson [315] and Helmholtz [125].
Some different proofs of the theorems on vortex motion were given later by Lord
Kelvin [153]. The circulation theorem states that:

Theorem 25 (Kelvin Circulation Theorem). The line integral of the fluid velocity
v along a closed circuit � (the circulation of the velocity) which moves together
with the fluid is constant in time if the fluid is perfect

Cv;� D
I
�

v � tds D const: (10.23)

Here v is calculated in the Lagrangian frame and t is unit tangent to � .
By perfect fluid we understand here inviscid isentropic flow, governed by Euler

(10.15) in the presence of only potential external forces

a D dv
dt
D @v
@t
C .v � r/v D �1

�
rP � rU; (10.24)

where a is the Lagrangian acceleration and U is the potential of external forces
acting on the fluid. This result is important both for vortex motion and potential
motion. However, in spite of the fact that the concept of closed circuit moving with
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the fluid is intuitive, and it is based on the Lagrangian point of view, this concept
is not quite rigorously defined geometrically. In the following, we give two proofs
for the circulation theorem differing in the degree of rigorousness and geometry
involved [167, 171, 224].

Proof 1. Equation of State Approach. The rate of change of the circulation is

dCv;�

dt
D
I
�

a � tds C
I
�

v � d
�
dr

dt

�
: (10.25)

The second integral on the RHS is a total differential (vdv) and it provides zero
contribution on the closed circuit. According to the hypotheses, the acceleration is
given by the Euler (10.15). If the flow is isentropic, the Lagrangian variation of the

entropy of the unit of mass of the fluid is zero, d

�
S
m

�
D ds D 0. Consequently, we

can write the variation of the enthalpy of the unit of mass

dh D VdP C TdS
m

D 1

�
dP; (10.26)

where P is the pressure. In this way the acceleration becomes a gradient
a D �r.h C U /, and the first integral in (10.25) is also zero. The circulation
of velocity on any closed circuit moving with the fluid is indeed constant. ut

In other approaches (for example [224]) Theorem 25 is formulated with a
different hypothesis. It is stated that in the inviscid fluid the density is either
constant or function of pressure only (barotropic flow). The equivalence of the two
formulations is obvious: if the fluid is isentropic, then the constancy of entropy
provides an equation of state in terms of density and pressure only, s D s.p; �/,
from where the requested dependence [171].

It is interesting to observe that, for inviscid fluids which are not isentropic (not
barotropic fluids) and for which the circulation is not conserved, the acceleration
has the property

r � a D rP � r 1
�
: (10.27)

This means that the rate of change of circulation can be expressed through the Stokes
theorem in the form

dCv;�

dt
D
Z
˙

�
rP � r 1

�

�
�NdA; (10.28)

where˙ is a surface bounded by the circuit � . That means that the average (over a
small surface) rate of change of the circulation is directed along the intersection
between isobaric surfaces and surfaces of constant density. A lot of convection
effects, including for example the surface vs. bottom salted water current between
the Black Sea and the Mediterranean Sea, are generated by this mechanism [224].
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On the other hand, the circulation Theorem 25 helps to understand the permanent
character of the potential flow: once the curl of velocity is zero in some region and
at some initial moment of time, the velocity will be irrotational in any region of
the space and at any later moment, by circulation (zero in this case) conservation.
The irrotational character of the flow is transported by physical fluid particles in all
the flow region.
Proof 2. Free Surface Approach. The physical hypotheses are the same: ideal
inviscid isentropic fluid with potential external forces. We need to work with the
concept of moving particle circuit, i.e., the closed curve of particles moving with
the fluid. In other words a closed contour always consists of the same fluid particles.
For a rigorous geometric definition of particle lines and circuits in terms of fiber
bundles, the reader can return to the Sects. 9.2, 9.2.2, 9.2.4, and 9.2.5.

We prepare the proof of the Kelvin theorem by using traditional definitions of
path lines and particle contours, like those introduced in Sects. 9.1.2, 9.2.3, and 9.3.
Later on we reformulate the theorem in terms of differential geometry. Let us choose
at t D 0 a compact, connected, and simply connected surface ˙ made by fluid
particles, and consider its boundary the closed curve � D @˙ . We call � a particle
circuit. The existence and stability in time of such a curve are discussed in the above-
mentioned sections. We parametrize this curve with the equation r0.s/, where s
labels the fluid particles in the circuit. At a later moment of time, within some finite
time interval t 2 Œ0; T 	, we construct a diffeomorphic deformation of ˙ into ˙ 0,
i.e., the fluid flow. This mapping induces a diffeomorphic deformation of � into
� 0, described by r0.s/ ! r.t; s/. The r.t; s/ function represents the position of
the s fluid particle at moment t . When time runs, the diffeomorphism generates a
family of curves (particle circuits moving with the fluid) each one parameterized by
the same label s. The set of these closed curves is called a tube of flow based on the
particle sheets˙ and˙ 0. The question is if this tube of flow described by the curves
r.t; s/ is a regular surface. The answer is given by Theorem 26.

Theorem 26. Let a.r/ be a differential vector field on an open domain D � R
3

and � � D be an arc-length parameterized regular simple closed curve of equation
r� .s/ with s 2 Œ0; L� 	 and r� .0/ D r� .L� /. For every s 2 Œ0; L� 	 we build a
regular simple parameterized curve �s of equation r.�; s/ with � 2 Œ0; �max	 as
follows:

1. The equation r.�; s/ D r� .s/ has one and only one solution � D 0.
2. If t�s .�/ is the unit tangent for each �s curve, then 8� 2 Œ0; �max	

@r

@�
.�; s/ 
 t�s .�/ D a.r.�; s//;

a.r.�; s// � dr�

ds
.s/ ¤ 0:

r.�; s/ is a regular parameterized surface ˙�
Œ0;�max 	

for � 2 Œ0; �max	; s 2 Œ0; L� 	.
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Proof. See Fig. 10.1. Since the field a is differentiable, the curves �s are its integral
curves and depend smoothly on their natural arc-length parameter � . Also, from the
Frobenius existence and uniqueness theorem (Theorem 5), all these curves depend
smoothly on their initial data, i.e., the s parameter (see also [46, Theorem 1, p. 176]).
Consequently r.�; s/ is a differentiable function. From the hypotheses each integral
curve intersects the contour only one time. The Jacobian matrix

OJ r.�; s/ D
�
@xi

@�
;
@xi

@x
j
�

dx
j
�

ds

�
D .ai .r.�; s//; ıij tj� .s// ¤ 0

is nonzero by hypothesis. The Jacobian has rank 2 and hence the tangent map dr is
one-to-one. Consequently r.�; s/ is a regular parametrized surface. ut

From Theorem 26 we know that moving particles arranged in a closed contour
� generate a tube of flow r.t; s/ based on � and � 0. Now we can come back to the
second proof of the Kelvin circulation theorem. We write (10.23) in the form

I
�

v � tds D
I
� 0

v � tds;

where �; � 0 represent the particle contour at two different moments of time.
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Fig. 10.1 Left: particle circuit � (horizontal circle) and corresponding particle paths (�s , arrows).
Right: resulting tube of flow ˙�

Œ0;�max 	
. Top: the regularity condition in Theorem 26 is fulfilled, i.e.,

a.r.�; s// � r0

� .s/ ¤ 0
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The vorticity ! D r � v has the property r � ! D 0 which means that, for any
domain D, we have

Z
D
r �!dV D

I
@D

! �NdA D 0;

where dV; dA are the volume and area elements and N is the unit normal to ˙ .
We choose D to be the inside of a tube of flow bounded by ˙;˙ 0 and a side area
described by the flows r.t; s/, denoted in the following˙f . We have

0 D
I
˙[˙ 0[˙f

! �NdA D
Z
˙f

! �NdAC
Z
˙[˙ 0

! �NdA: (10.29)

Because ˙;˙ 0 are particle surfaces, we have

vj˙ �N˙ D 0; vj˙ 0 �N˙ 0 D 0; (10.30)

and hence we have vj� � t� D vj� 0 � t� 0 D 0.1 Consequently

0 D
I
�

v � tds D
Z
˙

! �NdA

0 D
I
� 0

v � t 0ds D
Z
˙ 0

! �N 0dA0; (10.31)

which cancel the second term on the RHS of (10.29). So, we have

Z
˙f

! �NdA D 0; (10.32)

i.e., the flux of vorticity through the side surface is zero.2 Now we choose t D 0

and another moment of time t , and s0; s0 C ıs two close points on � and � 0. We
integrate v along a closed curve lying in˙f , composed by r� js2Œs0Cıs;s0	, connected
to rjŒ0;t 	�fs0g, connected to r� 0 js2Œs0;s0Cıs	, and finally connected to rjŒt;0	�fs0Cısg, like
in Fig. 10.2.

We integrate v along the curve in Fig. 10.2 in the limit ıs ! 0, and from (10.32)
we have

lim
ısD0

I
v � tds D

Z
˙f

! �NdA D 0: (10.33)

1For the proof of these relations, see Problem 5 at the end of this chapter.
2The fact that the flux of vorticity is zero on a tube of flow surface is an interesting result by itself.
For more discussions, also see Problem 5 at the end of this chapter.
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But

I
v � tds D

Z
�

v � tdsC
Z r.s0;t /

r.s0;0/

v � tds�
Z
� 0

v � tdsC
Z r.s0Cıs;0/

r.s0Cıs;t /
v � tds: (10.34)

In the limit limısD0, the second and the fourth terms in the RHS of (10.34) cancel
each other, and by using (10.33) we prove the Kelvin circulation theorem.

Traditional proofs of the same theorem can be found, for example, in Article 146
from [167], in Sect.. 3.51 from [224], or in Sect. 8 from [171].

Comment. There is a geometrical way to prove (10.32). Since we work only on the
fluid particle surface, it is natural to use the surface differential operators instead
of the full three-dimensional ones. We apply the surface divergence theorem (6.61),
where we substitute A D v�N . From the formula (6.69) in the problems at the end
of Chap. 6, we have r˙f � .v�N / D N � .r˙f �v/�v � .r˙f �N / and this reduces
to N � .r˙f � v/ because of the property of the normal from in (6.54). It results

“
˙f

r˙f � .v �N /dA D
I

! �NdA;

where the contour integral is taken along the curve in Fig. 10.2. Both RHS terms in
the surface divergence theorem formula cancel. On one hand we have

I
.v �N / � t?ds D

I
.t? � v/ �Nds D 0;

because v k t? by the definition of ˙f . The second term on the RHS of the
divergence theorem formula cancels by construction

�2
“

H.v �N / �NdA D 0;

Sf

s0

s0

s0+ds

s0+ds G �

Gt=0

t

Fig. 10.2 Closed contour of integration on a tube of flow
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so it results (10.32). The reason we wanted to mention this geometric amendment is
related to (10.30). In Proof 2, these equations are somehow postulated on physical
grounds (i.e., particles contained in the surface move together with the surface),
however in this comment they result automatically as a rigorous consequence.

10.4 Surface Tension

10.4.1 Physical Problem

In this section, we study certain phenomena that occur in the neighborhood of a
closed surface of separation between two continuous media that do not mix. In
reality, the two systems in contact are separated by a thin boundary layer having
special properties. However, in the following, we neglect the internal structure of
this transition layer, and we assimilate it with an infinite thin geometric surface. In
the neighborhood of a curved surface of separation, the pressure in the two media
is different, and we call this pressure difference surface tension. In Sect. 8.4 (see
(8.32)), we introduce the same surface tension in another manner, starting from
dynamical considerations. Here, we assume that the free energy of this state of ten-
sion (the stress between two adjacent elements of surface) depends only on the area
of the common boundary, on the nature of the two media, and on temperature. The
special case of additional electric, acoustic, etc., fields, or presence of surfactants
will be discussed later in another chapter. For a more detailed discussion on the
topic, see Article 265 in [167]. Although, the original first treatment of the problem
belongs to Lagrange who first determined a minimal surface in 1760. A review on
the topics of capillarity is presented in [259] and references herein.

In the stationary case v D 0 for a fluid with free boundary S , the Euler equation
reads

� 1
�
rP C f D 0; (10.35)

where � is the fluid density,P is the pressure, and f is the mass density of the force
field acting inside the fluid. If the force field is potential, f D �4u, the stationary
Euler equation reduces to the simplest Bernoulli type of equation, namely P D
P0 � �u. However, this equation cannot predict the pressure infinitesimally close to
the surface, where stronger nonlinear effects occur. To obtain the pressure next to
the fluid surface, we have to use other approach [171].

The expression of surface tension can be obtained by using the equations of ther-
modynamic equilibrium. Let us assume that locally the surface of separation suffers
a variation in the form of an infinitesimal displacement. The only displacement that
counts physically is that one normal to the surface, because we neglect the internal
structure of the surface, and we consider it to be homogenous from the physical
point of view. Let us describe the surface of separation as a parameterized regular
geometrical surface r.u; v/ W U ! S (see Chap. 18) with unit normal N .u; v/.



10.4 Surface Tension 235

Fig. 10.3 A normal variation
of r.U /

r

r– t h N

r t h N+

We define the normal variation of the surface S as the function

r t .u; v; t/ D r.u; v/C t h.u; v/N .u; v/; (10.36)

where .u; v/ 2 U , t 2 .�"; "/ is a parameter, and h.u; v/ is a differential real
function defined on U . For each t , the map r t W U � .�"; "/ ! R

3 is a regular
parameetrized surface (see Fig. 10.3). For t D 0, the normal variation reduces to the
original surface.

We assume that the original surface suffered a normal variation determined by the
h.u; v/ function, and it is not anymore in thermodynamic equilibrium. The elemen-
tary volume of an infinitesimal element of space bounded by the original surface and
by the graphs of the function r t is t h.u; v/dA.u; v/, where dA is the elementary area
of the original surface, dA D pEG � F 2dudv (from Definition 52). We denote
by P1 and P2 the pressures in the medium 1 and medium 2, respectively, separated
by S , in the neighborhood of the surface, and we choose the direction from 1 to 2 in
the direction of the unit normal N . The work produced by a compression upon this
elementary volume, which is also the change in its free energy F , is

Wvol D ıFvol D t
“
NU
.P2 � P1/h

p
EG � F 2dudv: (10.37)

The total change in the free energy of the system is given by ıWvol plus the work
associated with the variation of the area of the separation surface, i.e., the superficial
(or surface) energy. In a simple model, this second part of the free energy is given
by the product between a constant � and the variation of the area ıA. The constant
� is called surface tension coefficient and depends on the nature of the two media,
and on temperature. The total variation in the free energy becomes

ıF D t
“
NU
.P2 � P1/h

p
EG � F 2dudvC �ıA: (10.38)
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The equilibrium condition is ıF D 0, and from here we obtain the expression of
the surface tension, P jS D P2 �P1. We prove in Sect. 10.4.2 that the expression of
the surface tension at a point r on the surface is

P2 � P1 D Pr2S D �.�1 C �2/;

where �1;2 are the two principal curvatures of the surface at p. In all our examples,
we choose the orientation of the surfaces such that the normal is toward the
convexity of the curve, and the direction from medium 1 to medium 2 is chosen
along this normal. To check the correct sign of the surface pressure expression,
we choose for the surface the graphics of a differential function z D �.x/. The
profile depends only on x, and we have full symmetry along the other coordinate
y. In this one-dimensional case, we have just one principal curvature nonzero, this
�1 D � (�2 D 0) is called the curvature of the function �, and it has the expression
� D �00

.1C�02/
3
2

. If we choose a convex function with �00 < 0, we have � < 0 and

consequently P1 > P2. That pressure P1 inside the concavity is larger, as it should
be. A more geometrical definition of the surface tension can be found in Sect. 8.4
or in [10, 292].

10.4.2 Minimal Surfaces

To find the explicit expression for the surface tension in the most general situation,
we need to calculate the RHS term in (10.38). The coefficients of the first
fundamental form of the modified surface r t are

Et D E C 2thru �N u C t2h2N u �N u C t2.hu/
2;

F t D F C th.ru �N v C rv �N u/C t2h2N u �N v C t2huhv;

Gt D G C 2thrv �N v C t2h2N v �N v C t2.hv/
2: (10.39)

By using the definition relations for the second fundamental form of the surface (see
Chap. 18)

e D �ru �N u; f D �.ru �N v C rv �N u/=2; g D �rv �N v

and the definition of the mean curvature of a surface (6.10)

H D Eg � 2fF CGe
2.EG � F 2/

; (10.40)

we obtain

EtGt � .F t/2 D EG � F 2 � 2th.Eg � 2fF CGe/CO.t/

D .EG � F 2/.1 � 4thH/CO.t/; (10.41)
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where O.t/ is a term that approaches zero more rapidly than t when t ! 0. From
(10.41), it results that, if " is small enough, the surface r t is a regular parameterized
surface. Just now we can use r t as the equation of a surface in the calculation of the
free energy and surface tension. The area A.t/ of r t . NU / is given by

A.t/ D
“
NU

p
EtGt � .F t/2dudv

D
“
NU

r
1 � 4thH C O.t/

EG � F 2

p
EG � F 2dudv: (10.42)

It follows that, in the limit of small ", A.t/ is differentiable with respect to t , and its
derivative at t D 0 is

dA

dt
.0/ D �2

“
NU
hH
p
EG � F 2dudv D �

Z
hHdA: (10.43)

So, the variation of the area during this deformation parameterized by the parameter
t is ıA D .dA=dt/dt . At t D 0 we have

ıA D �2
“
NU
h H
p
EG � F 2du dv dt D �

Z
.~1 C ~2/hdAdt; (10.44)

where ~1;2 are the principal curvatures of the surface at the point of coordinates .u; v/
(see Chap. 18). Equation (10.44) can provide an interesting interpretation of the
mean curvature, in terms of the minimal surfaces. We can define the mean curvature
vector by H D HN , and by choosing h D H in (10.44) we can write

ıA D �2
“
NU

H �H
p
EG � F 2du dv dt: (10.45)

Equation (10.45) means that the area of the deformed surface r t .U / always
decreases if we deform it in every point toward the direction of the mean curvature
vector. For a given surface, the mean curvature vector points toward the direction
where this surface tends to become a minimal surface. For example, in the case of
an infinitesimal normal variation of a spherical surface, the mean curvature is still
negative (the corrections in the first order in " are smaller than 1) and since the
normal is directed outside the sphere and H < 0, the vector H points toward the
center. This is indeed the direction along which the area of an elementary spherical
surface would become smaller, by flattening toward a plane.

The unit normal field for S is a divergence-free vector field. This comes from the
fact that the mean curvature is related to the normal direction of the surface by the
equation

H D �1
2
rS �N ;
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from Proposition 5 (Sect. 6.5.2), whererS � is the surface divergence operator. From
here it results

Proposition 9. For a minimal surface the normal vector field is surface divergence
free.

Coming back to the dynamics of the surface, if we consider the variation of
the original area from t D 0 to a certain small value of t , we have dt D t , and
introducing (10.44) in (10.38), we have the condition of equilibrium in the form

“
NU
.P2 � P1 � �.~1 C ~2//t h

p
EG � F 2dudv D 0:

Since the function h is arbitrary, we have to fulfill

P2 � P1 D �.~1 C ~2/ D 2�H (10.46)

which determines the expression of the surface pressure (Laplace formula for
capillarity). H is the mean curvature. For a more physical proof the reader can
check (8.55). If, for example, the principal curvatures are positive, it results that
P1 > P2, i.e., the pressure is larger in the medium located inside the concavity of
the surface.

We end this section with a property of minimal surfaces which results as a
consequence of the divergence integral theorem (6.61). From the relation

rS � r D 0;

where rS� is the surface curl and r is the position vector, we can write two integral
conditions valid for any closed curve � on any minimal surface S

I
�

t?ds D 0 (10.47)

I
�

r � t?ds D 0; (10.48)

where t? D N � t with t; r having their regular interpretation and s being the arc-
length along � . These two equations can be regarded as the dynamical equilibrium
conditions for the minimal surface. The first one represents force balance, and the
second one represents the momentum balance of a domain of S surrounded by � .

10.4.3 Application

To have a better intuition of the direction of the surface tension gradient, we present
in the following a simpler example. Let us choose a parameterized surface S as the
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graph of a differential function z D h.x; y/ and U is an open set of the xOy R
2

plane. The parameterizations of the surface are r D .u; v; h.u; v// with u D x and
v D y. We have

N .x; y/ D .�hx;�hy; 1/
.1C h2x C h2y/1=2

(10.49)

and

H D .1C h2x/hyy � 2hxhyhxy C .1C h2y/hxx
.1C h2x C h2y/1=2

: (10.50)

For a more concrete example, we consider the surface of a semicylinder having the
axis alongOx and its points at z D f .x; y/ > 0. If it rains from above, this cylinder
will not keep the water. Close to the top of the cylinder, we have N ' .0; 0; 1/, and
the normal is oriented upward, toward positive z. It means medium 1 (we choose
medium 1 to be liquid) is under the cylinder, inside its concavity, and medium 2 (we
choose medium 2 to be air) is above the cylinder. We also assume that the cylinder
radius R is large enough so we can neglect nonlinear terms in the expression of the
mean curvature. At points close to the top of this cylinder (x ' 0; z ' R), we have,
according to (10.46) and (10.50)

P2 � P1 D �.~1 C ~2/ ' hyy; (10.51)

and because at this points hyy < 0 it results P2 < P1, so the liquid is under more
pressure than the ambient atmosphere, which is in agreement with the Laplace law
of capillarity.

We can use the condition (10.46) to find the equilibrium free surface S for P1 D
P2D constant. This is a system subjected to the same internal and external pressure
in all its points, i.e., a system consisting only in free surfaces, like soap films in
microgravity. The total free energy of this system is proportional to the area of the
surface, and attains its minimum when the area is minimal. The surface equation r

is a minimal surface (i.e., H D 0) if and only if ıA D 0, i.e., when A0.t D 0/ D 0,
for all normal variations of the surface S . Indeed, if the surface is minimal, H D 0
and according to (10.43), A0 D 0. Conversely, let us assume that A0 D 0 but let us
make the hypothesis that H ¤ 0, at least in a certain open subset of U . Then, we
can always choose h D H in that open set, and zero elsewhere, and it results that
A0 < 0 which contradicts the hypothesis.

To understand the role of surface tension in the geometry of the free surface,
we analyze a region of fluid, in the stationary case, and in absence of any external
(bulk) forces. The Euler equation reduces to rP D 0, so the pressure is the same
everywhere inside the fluid (Pascal principle). Because the pressure outside of the
liquid P0 is also considered to be the same, we find the equilibrium condition

P � P0 D .P � P0/S D �2�H D �2�.�1 C �2/ D const. (10.52)



240 10 Dynamics of Hydrodynamics

Fig. 10.4 Simulation of an
experimental minimal surface
produced by dipping a
4-circles wire frame into a
soap solution

Consequently, the free boundary of a stationary, isolated (no external forces) drop
of liquid should have the mean curvature constant all over it. If the mean curvature
is constant and there are no other superficial constraints, the surface is spherical.
The H D const. condition is not dependent on the compressibility of the fluid, as
far as the forces are absent. However, if the free surface is supported by a fixed
curve, the shape is much more complicated (see for example Fig. 10.4). In the case
of rigid boundaries for the free surface, the parameterized surface is not anymore
regular. In the general case there will be singularities along the rigid boundaries.
This problem was first formulated in the following form: for any given closed curve
˛ 2 R

3, there is a surface S of minimum area with ˛ as boundary. There is a
special case when this problem becomes simpler, namely when the liquid forms
itself one or more very thin layers, like the above-mentioned soap films, suspended
by some closed rigid curves, and exposed to the same external pressure P0 in every
point. Actually, no matter how thin the films are, there are always three-dimensional
regions of liquid bounded by these surfaces. Because the liquid region is very thin
compared to its overall dimensions, we can describe the liquid film as being bounded
by two identical surfaces, separated by a very small distance along the common
unit normal. We consider locally these two surfaces as two identical copies of the
same surface, separated by a very small normal displacement. By local we mean
here any open domain of the surfaces which do not intersect the boundary curves.
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Fig. 10.5 The pressure
inside a thin liquid film
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N2
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P0
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On every such open domain, the unit normals H1;2 of these two surfaces have the
same support, except they point in opposite directions (Fig. 10.5).

Any point inside the fluid is infinitesimally close to any of these two identical
surfaces, so we can write the surface tension condition as

P � P0 D �2�H1 D �2�H2 D 2�H1: (10.53)

It results that the only possibility is to have zero mean curvature in all points.
In conclusion, in the absence of forces and in the stationary case, the surface tension
and the mean curvature of the free surface are either constant for a free regular
surface surrounding the liquid or zero for a thin liquid film. When H D 0 we call
these surface minimal, because they have indeed the minimum area under given
constraints. Some of the properties of the minimal surfaces also apply to surfaces of
constant mean curvature [246].

10.4.4 Isothermal Parametrization

According to (10.40) and (10.44), the local criterium for the existence of minimal
surfaces is played by the PDE H DEg � 2fF C GeD 0. The structure of
this equation simplifies considerably if the coordinate system on the surface
S is orthogonal, namely F D ru � rvD 0. It is always possible to choose
such an orthogonal parametrization (also called orthogonal curvilinear system
of coordinates) for a regular surface. Indeed, for any point p 2S there is a
parametrization r.u; v/ in a neighborhood of p, V.p/, with the property that the
curves uD const. and vD const. are perpendicular. For example, if we choose two
differentiable vector fields on S defined by w1D ru and w2D� F

E
ruCrv. Moreover,

if the vectors of the local basis have equal norms, EDG, then the minimal surface
local condition reduces to a Laplace equation.
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We call isothermal [46], a parameterized surface r.u; v/ fulfilling the conditions

ru � ru D rv � rv; ru � rv D 0; (10.54)

which basically means E D G and F D 0. Isothermal parameterized surfaces are
endowed with orthogonal, yet not normalized, curvilinear coordinates. Orthonor-
mality would imply E D GD const. In the isothermal case the norms of the local
basis vectors are equal, but not constant on the surface. It is not easy to parameterize
surfaces with isothermal or orthonormal coordinates. For example, the graphs of
a differentiable function as a parameterized surface in the independent variable
parametrization, .u; v; f .u; v//, can never be an isothermal surfaces, because, by
using (10.50), we would need fu D fv D 0 (the only isothermal surface emerging
from a graphics is the plane). However, we can provide the following result.

Theorem 27. Given a parameterized surface r.u; v/, we can change the
parametrization .u; v/! .˛; ˇ/ by the map .u; v/D˚.˛; ˇ/ W W �R

2 ! U � R
2

such that . Qr ı ˚/.˛; ˇ/ is isothermal.

Proof. We have ˚.u.˛; ˇ/; v.˛; ˇ// and

Qr˛ D Qruu˛ C Qrvv˛; Qrˇ D Qruuˇ C Qrvvˇ;

and we request Qr˛ � Qrˇ D 0 and Qr˛ � Qr˛ D Qrˇ � Qrˇ. These conditions are equivalent
with the following system of two nonlinear PDE

(
Eu˛uˇ C F.u˛vˇ C uˇv˛/CGv˛vˇ D 0
Eu2˛ C 2F u˛uˇ CGu2ˇ D Ev2˛ C 2F v˛vˇ CGv2ˇ

: (10.55)

The two solutions of this PD system of equations u.˛; ˇ/; v.˛; ˇ/ should also fulfill
the compatibility conditions u˛;ˇ D uˇ;˛; v˛;ˇ D vˇ;˛ . By using the theorem of
existence and uniqueness from Sect. 4.3, we can always find solutions for (10.55)
defined in a neighborhood, under Cauchy arbitrary conditions. Consequently, we
can always provide the given parameterized surface with new isothermal curvilinear
coordinates. ut

For example, if S D f.x; y; z/ 2 S2 � R
3jz > 0g, x D u; y D v, originally

parameterized as the graphics of the function z D f .u; v/ D p1 � u2 � v2, we have
r D .u; v; f .u; v//

ru D .1; 0; fu/; rv D .0; 1; fv/; N D .�fu;�fv; 1/p
1C f 2

u C f 2
v

;

and ED 1 C f 2
u , GD 1 C f 2

v , and F Dfufv. Obviously this surface is not
isothermal, but if we map u; v into spherical coordinates �; ' we have Qr D
.sin.�/ cos.'/; sin.�/ sin'; cos.�//. The new first fundamental form reads QE D 1,
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Fig. 10.6 From left to right: a domain of a sphere represented in cartesian coordinates, in spherical
coordinates, and in the ˛; ˇ coordinates

QF D 0, and QG D sin2 � . We need to map these new coordinates into a new set of
curvilinear coordinates, ˛; ˇ, which have to fulfill again the isothermal conditions
(10.54), i.e., (

�˛�ˇ C sin2 �'˛'ˇ D 0
�2˛ C sin2 ��2ˇ D '2˛ C sin2 �'2ˇ

:

A possible solution of the above system is provided by ' D ˇ and �.˛/ D
2 arctanC0e˙˛, with arbitrary constant C0. In Fig. 10.6 we present a subset of the
surface S in all these three parameterizations.

The main result of this section can be expressed by the following affirmation
regarding minimal isothermal surfaces.

Theorem 28. If the parameterized surface r.u; v/ is isothermal, we can write

H D HN D 1

2E
4r; (10.56)

where4 D @uuC@vv is the Laplace operator in the surface curvilinear coordinates,
and we introduce the mean curvature vector H .

Proof. By differentiating ru � rv D 0 and ru � ru D rv � rv with respect to u and v,
we obtain rv � 4r D ru � 4r, so 4r is parallel to N . On the other side, we have
H D .e C g/=.2E/ D N � 4r=.2E/ so H D N .N � 4r/=.2E/. ut

Theorem 28 has a different expression if instead of the full three-dimensional
Laplace operator we use the surface Laplace operator4S defined in Sect. 6.5.3. In
the surface differential operator case, we have

Proposition 10. On a surface ˙ parameterized with orthogonal coordinates, we
have
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4Sr D 2HN ;

and the Laplacian of the position vector is zero for minimal surfaces.

The proof follows from (6.47). In case of orthogonal coordinates (F D 0) this
relation becomes (6.48). Even more interesting, in the case of a minimal surface,
the normal component of the position vector of the surface rn D r � N is given by
(6.51), namely4S.rn/ D 2rnK .

As a direct consequence of Theorem 28, an isothermal parameterized surface
is minimal if and only if its parametrization function is harmonic (i.e., 4r D
.4x.u; v/;4y.u; v/;4z.u; v// D 0). Theorem 28 provides an invaluable tool to
find minimal surfaces through a very well-studied PDE. For example, if we identify
the parameter space with the complex plane by setting z D uCiv 2 C; .u; v/ 2 U �
R
2 and if we express the regular parameterized surface r through the equations

'j D @xj
@u � i @xj@v , j D 1; 2; 3, then, the parameterized surface r is isothermal if

and only if '1 C '2 C '3 D 0 and this surface is minimal if and only if the three
complex functions 'j are analytic. Indeed, analyticity implies harmonicity of the
coordinate functions by the Cauchy–Riemann conditions. In Fig. 10.7 we present
some traditional examples of minimal surfaces. The Scherk’s surface [46] is such
an example of complex surface.

In addition to their simplification over the minimal surfaces equation, the
isothermal surfaces (EDG;F D 0) have another interesting property related to the
Laplace operator. The Gaussian curvature is K D 1

2E
4 logE [299].

10.4.5 Topological Properties of Minimal Surfaces

Minimal surfaces have a lot of interesting topological properties. The zeros of the
Gaussian of a minimal surface are isolated, meaning that if a minimal surface has
planar or parabolic points, they are isolated. In other words, there is no straight
escaping line along a minimal surfaces, they are really “very twisted.” Also, there
are no compact minimal surfaces. This is easy to prove, because all the points of a
regular minimal surface are hyperbolic. If a minimal surface S is compact (bounded
and closed), we can find an S2 sphere of radius R containing S . We can choose R
such that S2 \ S D ¿. Then, we decrease R continuously until the intersection
between S and the sphere becomes nonempty. If the intersection is an open set for
the first time, this set should be homeomorphic to an open part of S2, having all
its points elliptic points, which is forbidden by H D 0. If the intersection consists
in only isolated points q 2 S \ S2, we can find neighborhoods of these points
V.q/ � S lying both inside and outside S2, contradicting hence the hypothesis. So,
all (regular) minimal surfaces are unbounded, hence noncompact. We remember
here that compact regular surfaces have at least one elliptic (K > 0) point.

If S is a regular closed minimal surface which is not a plane, the image of the
Gauss map is dense in the sphere S2. When a point moves along the surface, the
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Fig. 10.7 Examples of minimal surfaces. Upper line: catenoid and helicoid. Middle line:
Enneper’s polynomial surface. Lower line: Scherk’s periodical surface from complex analysis

normal N takes “almost” all possible orientations in R
3. That is, for every arbitrary

direction N 0, there are open sets of points on S , such that the corresponding normal
of these points approaches the given direction as close as we want.

We also mention another property of the minimal surfaces. If S is minimal and
has no planar points (K ¤ 0 on S ), then the angle of intersection of any two curves
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on S and the angle of intersection of their spherical images (images through the
tangent map of the Gauss map) are equal up to a sign. In terms of equation this fact
reads 8p 2 S;8v;w 2 TpS , dN p.v/ �dNp.w/ D �Kpv �w. In terms of thin layers
of fluid, this behavior of the free minimal surface means that the two variations of
the gradient of pressure, when we move toward two perpendicular directions of the
tangent plane, are perpendicular.

10.4.6 General Condition for Minimal Surfaces

In the following we want to provide a general expression for the local condi-
tion H D 0 for a minimal surface, expressed in different systems of curvilinear
coordinates. In such systems we use for the surface parameters two of the three
curvilinear coordinates, and one free function (the shape function) depending on
these two coordinates. In the cartesian case .u; v/D .x; y/, we have rD u; v; h.u; v/
where h.u; v/ is the shape function. The mean curvature is

H D huu C hvv C h2vhuu � 2huhvhuv C h2uhvv

.1C h2u C h2v/
3
2

: (10.57)

In cylindrical symmetry, the surface can be parameterized in cylindrical coordinates
(.u; v/ D .'; z/) in the form r D .�.u/ cos u; �.u/ sin u; v/ with shape function �.u/.
The mean curvature is

H D �3 C 2��2u � �2�uu

.�2 C �2u/2
: (10.58)

In spherical symmetry .u; v/D .�; '/, the surface becomes r D ..R C
�.�; '// sin � cos'; .R C �.�; '// sin � sin'; .R C �.�; '// cos �/ and, in terms
of the shape function �.u; v/, the mean curvature is

H D B � ..RC �/2 C �2� /�� sin � cos � C C sin2 �

2

�
.RC �/2 C �2� C

�2'

sin2 �

�2
sin2 �

; (10.59)

where

B D 3R�2' C 3��2' � R2�'' � 2R��'' � �2�'' � �2��''
C2���'��' � ����2' � 2���2' cot �;

C D .RC �/.2.RC �/2 C 3�2� �R��� � ���� /:

If the shape function is small compared to the radius, � R, we have the following
hierarchy of orders of smallness in �=R forH
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O.0/ D � 1
R
;

O.1/ D �

R2
C 1

2R2
4˝�;

O.2/ D � �
2

R3
C �2�
2R3
� ���
R3
C �2'

2R3 sin2 �
� ��''

R3 sin2 �
� ��� cot �

R3
; (10.60)

where
4˝ D ��� C cot ��� C �''

sin2 �

is the angular part of the Laplace operator in spherical coordinates.
In all these examples, the expression of H is very close to the Laplacian of the

free function describing the surface in the corresponding curvilinear coordinates. If
the curvilinear coordinates are isothermal, the mean curvature equation is precisely
the Laplace equation, and this behavior is natural in view of (10.56). It is interesting
to check how does the Laplacian of 4r reduce to the Laplacian of the shape
scalar function, 4h or 4�, like in the examples above. In general, orthogonal
curvilinear coordinates are not isothermal, so we expect H to contain in addition
to the Laplacian of the free function, also some other terms. The question is: to
what extent, in some given curvilinear coordinates, we can approximate the minimal
surface equation H D 0 and the surface pressure expression, with the Laplace
equation of the curvilinear coordinates? It would be of practical application to
find the approximate expression of the surface tension for surfaces that are small
deviation from an isothermal, or at least orthogonally parameterized surface.

10.4.7 Surface Tension for Almost Isothermal Parametrization

We consider a thin liquid surface S , initially in “equilibrium,” parameterized by
isothermal coordinates, r0.u; v/ defined in an open set .u; v/ 2 U , with E D
G;F D 0. Next to this surface, the pressure is the surface tension and it has the
expression provided by (10.52) and (10.56)

P D 2�

2E
j4rj:

We consider that some external interaction occurs (like the presence of a force field
or a nonuniform change in temperature) and produces a deformation of this surface.
This deformation, or variation, is defined as a new parameterized surface r.u; v/ D
r0.u; v/ C ��.u; v/. We consider this new surface to be a small variation of the
original isothermal one if �max.u;v/2U fj�jg  jr0j. In the following we denote
any quantity that refers to the original isothermal surface with a zero label, like for
example r0u � r0u D r0v � r0v D E0 D G0 and r0u � r0v D F0 D 0. The surface
tension expression



248 10 Dynamics of Hydrodynamics

P.u; v; �; �.u; v// D � Eg � 2fF CGe
.EG � F 2/

(10.61)

reduces in the limit lim�D0 P D P0 D 2�H0 D �.g0Ce0/=E0. For small variations
we work in the first linear approximation of � and we neglect O.�2/.

In the following we choose a normal variation � D �.u; v/N 0.u; v/. There
is no loss of generality in this choice, because any arbitrary deformation can
be reduced to a normal one by a reparameterization. Besides, in the case of
orthogonal curvilinear coordinates, the deformed surface is always normal, since
the deformation occurs along the orthogonal parameter. For example in the spherical
case, r0 D .R sin u cos v; R sin u sin v; R cos u/ with R D const., the usual variation
of the coordinate surface has the form � D ��.u; v/.sin u cos v; sin u sin v; cos u/,
which means r0 ? �, and consequently the variation is normal.

Since we are interested in surfaces close to the isothermal one, we follow the
calculations just in the first order in �. From the definition of the normal variation,
and from E0 D G0; F0 D 0, we obtain

ru D r0u C ��uN 0 C ��N 0u;

rv D r0v C ��vN 0 C ��N 0v;

and consequently we have the coefficients of the first fundamental form of the
deformed surface in the first order in �

E D E0 � 2��e0; G D E0 � 2��g0; F D �2��f0: (10.62)

We notice that it is impossible to have, in general, a surface and its infinitesimal
normal variation, simultaneously isothermal, F0 D F D 0. This is possible in the
linear approximation only if f0 D 0. The unit normal has the form

N D N 0 � �

E0
.�ur0u C �vr0v/CO.�2/:

The second fundamental form has the coefficients

e D e0 C �
�
�uu � 1

2E0
.�uE0u � �vE0v/ � �

E0
.e20 C f 2

0 /

�
;

g D g0 C �
�
�vv � 1

2E0
.�vE0v � �uE0u/ � �

E0
.g20 C f 2

0 /

�
;

f D f0 C �
�
�uv � 1

2E0
.�uE0v C �vE0u/ � �f0

E0
.e0 C g0/

�
:

By introducing all these coefficients in (10.40), we obtain

H D e0 C g0
2E0

C � �.e
2
0 C g20/
2E2

0

C � 4�
2E0
CO.�2/; (10.63)
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which describes the mean curvature of the infinitesimal normal variation of an
isothermal surface in the linear approximation. This form is a linear operator in
� with variable coefficients, and the surface tension may be written as

PS D �2�.AC �B�C �C4�/CO.�2/; (10.64)

where the three variable coefficients A, B, and C can be identified from (10.63).
Such a simple form as (10.63) for the surface pressure is not always available.

In practical situations one uses orthogonal curvilinear coordinates which are not
necessarily isothermal, mainly because E0 ¤ G0. In the following we obtain
a similar first-order approximation of the mean curvature for a normal deviation
starting from an orthogonal parameterized surface.

Definition 62. Three families of smooth (of rank 3) surfaces are a triply orthogonal
system in an open U � R

3 if one unique surface of each family passes through any
point P 2 U , and if the three surfaces that pass through each point p 2 U are
pairwise orthogonal.

The second constraint means that ru; rv, and rw are always orthogonal. The curves
of intersection of any pair of surfaces from different system are lines of curvature
in each of the respective surfaces, i.e., the intersection lines are principal directions.
The traditional 12 systems of curvilinear coordinates are the examples (cartesian,
cylindric, spherical, elliptic, parabolic, bowls, etc.). In the case of orthogonal
parametrization, the coefficients of the first fundamental form are similar to (10.62).
The normal is different

N D N 0 � �
�
�ur0u

�vr0v

�
:

The coefficients of the second fundamental form are different

e D e0 C �
�
�uu � 1

2E0G0
.�uE0uG0 � �vE0vE0/ � �e

2
0G0 C f 2

0 E0

E0G0

�
CO.�2/;

g D g0 C �
�
�vv � 1

2E0G0
.�vG0vE0 � �uG0uG0/ � �f

2
0 G0 C g20E0
E0G0

�
CO.�2/;

f D f0 C �
�
�uv � 1

2E0G0
.�vG0uE0C�uE0vG0/��f0 e0G0 C g0E0

E0G0

�
CO.�2/:

In the end, the form for the mean curvature of the deformed surface in the first order
of approximation is

H D e0G � 0C g0E0
2E0G0

C �
�
G0�uu C E0�vv

2E0G0
� �uE0u

4E2
0

� �vG0v

4G2
0

C�uG0u C �vE0v

4E0G0
C �g20
2G2

0

C �e20
2E2

0

C 3�f 20
2E0G0

�
CO.�2/:
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It is easy to check that (10.65) reduces to the particular cases discussed above for
spherical, cartesian, etc., coordinates. Still this expression is a linear second-order
differential operator acting on � with variable coefficients.

10.5 Special Fluids

There are important differences between Newtonian (traditional or small molecule)
fluids obeying Newtonian fluid dynamics and “polymeric” (macromolecular) fluids.
The features of the macromolecular architecture influence the flow behavior.
Polymeric fluids have molecular weights several orders of magnitude higher than
normal fluids, and besides, this molecular weight is not uniformly distributed in
the mass of the fluid. In addition, the polymers have a huge number of metastable
configurations at equilibrium, and consequently the flow is altered in time and space
by the local stretching and alignment of macromolecules. In high concentration
polymers (melts), the macromolecules can form entanglement networks, and the
number of entanglement junctions can change with the flow conditions. In [22]
there is a detailed discussion of such types of flow. The most important property of
macromolecular fluids is the non-Newtonian viscosity, i.e., the fact that the viscosity
of the fluid changes with the shear rate. In viscoplastic (or dilatant) fluids, there
is present the phenomenon of shear thickening, namely the viscosity of the fluid
increases with the shear rate. Such fluids will not flow at all unless acted on by at
least some critical shear stress, called yield stress. In some other polymeric fluids, we
have the phenomenon of elasticity and memory of the flow, called the viscoelastic
property. After the external pressure is removed, the fluid begins retreating in the
direction from which it came. The fluid, however, does not return all the way to
its original position (like an ideal rubber band for example), since its temporary
entanglement junctions have a finite lifetime, and they are continuously being
created and destroyed by the flow. Such a viscoelastic fluid behaves like having
a fading memory.

10.6 Representation Theorems in Fluid Dynamics

10.6.1 Helmholtz Decomposition Theorem in R
3

Theorem 29 (Helmholtz Theorem for the Whole Space). Any single-valued
continuous vector field v.r/ W R3 ! R

3 satisfying

r � v! 0; r � v! 0; when r !1;
9� > 0; jvj < 1

r1C�
; when r !1;
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may be written as the sum of an irrotational (or conservative or lamellar) part and
a solenoidal part

v D r˚ Cr �A;

such that

˚.r/ D 1

4�

•
R3

r 0 � v.r 0/
jr � r 0j d

3r 0

A.r/ D 1

4�

•
R3

r 0 � v.r 0/
jr � r 0j d

3r 0 and r �A D 0:

For a proof of the theorem see [10, 34, 50].
Usually, the Helmholtz theorem is formulated as “source plus condition at

infinity” problem. Given the source fields �.r/; j .r/ defined on R
3 with the

regularity propriety at jrj ! 1, �; j ! 0, and the vector field equation

r � v D �; r � v D j ;

there is a unique solution for the unknown vector field v D r˚ C r �A, with the
potentials �;A solutions of the equations

4˚ D �; 4A D j ; r �A D 0:

Also, the potentials are not uniquely determined up to their gauge transformations.
Namely, ˚ is defined modulo addition of an arbitrary harmonic function ˚ ! ˚ C
f .r/, 4f D 0, and A is defined modulo addition of the gradient of an arbitrary
function A ! A Crg.r/.

The Helmholtz theorem (Theorem 29) can be extended by using a
Neumann–Debye decomposition [34]. Instead of using one scalar ˚ and one vector
function A plus the divergence constraint (i.e., 1C 3 � 1 D 3 degrees of freedom),
we can use three scalar functions. If the field v is continuous and single-valued, and
it fulfills the same regularity conditions at1 as in the Helmholtz theorem, we have
the following decomposition

v D r˚ Cr � .r�/Cr � .r � r/ D r˚ CL� CQ; (10.65)

where the operators are L D �r � r (angular momentum) and Q D r � L. The
functions �;  are the so-called Debye potentials and are related to the operators by
the equations

˚.r/ D 1

4�

•
R3

r 0 � vd3r 0
jr � r 0j

�.r/ D 1

4�

•
R3

r 0 � .r 0 � v/ ln.1 � r 0 � r/d 3r 0
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.r/ D 1

16�2

•
R3

d 3r 0ln.1 � r � r 0/.r 0 � r 0/
•

R3

r 00 � v.r 00/
jr 0 � r 00j d

3r 00

� 1

4�

•
R3

ln.1 � r � r 0/r 0 � vd3r 0:

The operators involved in this generalized Helmholtz theorem fulfill interesting
algebraic relations. The angular momentum operator is closed under commutation
relation and spans the su.1; 1/ Lie algebra by ŒLi ; Lj 	 D EijkLk . The operator Q

is a left ideal of this algebra ŒLi ;QJ 	 D EijkQk, and the Laplace operator is the
Casimir element of this algebra ŒL;4	 D ŒQ;4	 D 0.

A very useful version of the Neumann–Debye (10.65) is related to the linear
Navier–Stokes fluid dynamics equation in absence of external forces

@V

@t
D �1

�
rP � �r � .r � V /; (10.66)

where the fluid velocity field V .r ; t/ is a smooth nonsingular time-dependent
(Euclidean) vector field defined on a domain D � R

3 with values in TR3; � and �
are positive constants, density and viscosity, respectively, andP.r ; t/ is the pressure
scalar field, also defined onD � R

3. If we ask for the velocity field to be divergence
free onD, i.e., to have no net sources of fluid,

r � V D 0; (10.67)

it is possible to apply the representation theorem (10.65) for solutions of (10.67) in
D. We have

Theorem 30. Let us define a vector field

V D r � .Qˇ/Cr � r � .Qb/Crc

and the scalar field

P D ��@c
@t
;

where Q.r ; t/ is an arbitrary smooth vector field on D � R, and ˇ; b; c are
arbitrary smooth scalar fields depending on .r; t/ 2 D � R. Then V ; P defined
above are solutions for the Navier–Stokes equations (10.66) in the divergence-free
condition (10.67) if the following conditions are fulfilled on D �R

�4ˇ D @̌

@t
; �4b D @b

@t
; 4c D 0; Q D C0r;

with C0 an arbitrary constant.



10.6 Representation Theorems in Fluid Dynamics 253

The proof of the theorem is by direct calculation. Details and applications can be
found in [16, 31].

An interesting version of the Helmholtz theorem in a domain D with boundary
@D ¤ ; is presented in Chorin and Marsden’s book [54], under the name of
Helmholtz–Hodge theorem. In this formalism, a vector field v is decomposed into a
potential field r˚ and an incompressible vector field u; d ivu D 0 which is parallel
to the boundary of D, .u � N /@D D 0. The existence of the Helmholtz–Hodge
decomposition is guaranteed by the existence of a solution to the Neumann-
associated problem for˚ . Uniqueness is guarantied by the fact that the two terms of
the decomposition are orthogonal in an average taken through an integration overD.
Indeed,

R
D u�grad˚ D 0 through Gauss formula and because of the properties of u.

Consequently, any two distinct Helmholtz–Hodge decompositions must have same
u and same˚ , up to an additive constant. In this form the theorem is more adapted to
hydrodynamics problems where one has incompressible fluid in a bounded region.
Because the velocity is divergence free and vanishes on the boundary, the Navier–
Stokes equation can be projected into a divergence-free component which does not
contain the pressure, i.e., the gradient term.

Hydrodynamics is perhaps one of the best-studied fields of application of
nonlinear equations, waves, and their solutions, and we have barely touched the
subject. A very comprehensive and extended treatment of hydrodynamics in general,
toward the nonlinear problems open at the time when the book was written, is [167].
The book is dense in solved examples and problems in almost any field of basic
hydrodynamics. The book goes hand in hand with mathematical physics text books
like [64,317] or in the same style. The calculations are detailed and comprehensive,
very much relying on expansions in series of functions and independent mode
analysis. A book which complements Lamb’s book on hydrodynamics and is written
in the same grand style is [50], especially for magnetohydrodynamics and fluid
and plasma stability problems. Another comprehensive book on hydrodynamics,
where very special problems are solved in very original ways, is [171]. If the reader
is more concerned about mathematical rigorousness, toward functional analysis
and operator approach in hydrodynamics, a good lecture would be [305]. More
restrictive topics, yet presented on a fundamental basis and mathematical rigorous,
are approached in [10, 111, 220]. In this last mentioned spectrum, more oriented
toward mathematics is the attractive and clear book of Chorin and Marsden [54], or
more toward applied mathematics [315]. For specific topics on waves in general and
nonlinear waves in fluids, the reader may consider to consult [169, 174].

10.6.2 Decomposition Formula for Transversal Isotropic
Vector Fields

This special decomposition works for axially and/or translational symmetric vector
fields. It is particularly useful in convective hydrodynamics stability calculations,
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and in general in physical systems exhibiting transport and transformation pro-
cesses. It is also useful in the dynamics of viscous drops submerged in viscous
fluids [223]. This decomposition formula was introduced for a particular axisym-
metric field in [50, Sect. 61], and later, for spherical surfaces and even for more
general situations in [286]. The big advantage of this decomposition consists in the
fact that the vector field v can be expressed as function of the radial component vr ,
the divergence divv and the radial component of the vorticity,!r , where ! D r�v.
When the flow is incompressible, and the velocity field has spherical symmetry,
this decomposition becomes very useful because of its simplicity. Moreover, for
solenoidal fields, like vorticity, this divergence term is also canceled and the vector
field can be constructed from the radial components only.

In general, the formula works for any curvilinear orthogonal system of
coordinates of the form .r; q1; q2/ with a local basis fer ; q1; q2g, where r D const.
describes closed coordinate surface homotopic to the sphere S2. At the same time,
we can expand any vector field v.r; q1; q2/ in an orthogonal basis of functions
defined on the compact surface rD const. This surface S , being homotopic to S2,
allows the existence of an L2.S/ Hilbert space with countable basis of harmonic
polynomials defined on S2. In the case of spherical coordinates, these are the
spherical harmonics Yl;m. In the following we introduce this vector decomposition
in spherical coordinates .r; �; '/. For the calculation of components and operator
action, we refer to Sect. 18.3.

Any vector field, like for example the velocity field v, can be decomposed in its
normal (radial for spherical) and parallel components

v D vrer C vk; (10.68)

and also the gradient and Laplace operators can be decomposed in a similar way

rk D r � er .er � r/ D r � er
@

@r
; 4 D 4r .r; @=@r/C4k.�; @=@�; '; @=@'; /:

(10.69)
From vector analysis we have the formula

4vk D r.r � vk/� r � .r � vk/

D rk.r � vk/ � Œr � .r � vk/	k; (10.70)

where we retain on the RHS only the parallel terms (the normal terms cancel each
other), because the LHS in (10.70) contains by definition only parallel terms. We
have

4vk D rk.r � v/� rkDvr � Œr � .r � vk/	k; (10.71)

where D D 1
r2

@
@r
.r2/, i.e., the radial part of the div operator in the curvilinear

coordinates.
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We can expand the vector field v.r; �; '/ in spherical harmonics. We have

v D vrer C vk D
X
l;m

vl;m.r; t/Yl;m.�; '/; (10.72)

where vl;m D ervr;lm C vk;lm. With these notations we obtain

4vk D 4rvk C4kvk D 1

r2
@

@r

�
r2
@

@r
vk
�
C4˝vk; (10.73)

where ˝ is the angular (parallel) part of the Laplace operator (see Sect. 18.3). For
any l; m component we can write

4vk;lm D 1

r2
@

@r

�
r2
@

@r
vk;lm

�
� l.l C 1/

r2
vk;lm; (10.74)

accordingly to the action of the angular Laplacian operator on spherical harmonics.
It results

vk;lm D r2

l.l C 1/.4rvk �4vk/: (10.75)

In the following equations, we skip the labels l; m, but we refer to the l; m

component, unless otherwise stated. From (10.68), (10.71), and (10.75), we have
the following preliminary form for the decomposition

v D vrer C r2

l.l C 1/
�
4rvk CrkDvr � rk.r � v/C Œr � .r � vk/	k

�
: (10.76)

In the following, we focus on the first and fourth term in the RHS parenthesis in
(10.76). We have

4rvk C Œr � .r � vk/	k D 4rvk C .r �!/k � Œr � .r � urer /	k; (10.77)

where ! D r � v is the vorticity field. We also notice that !r D er � .rk � vk/. This
is possible because of the relation

r � v D rk � vk C er .er � r/ � vk � rk � ervr � er .er � r/ � ervr ;

where all the last three terms are perpendicular on er , hence they have only parallel
components. The only normal component in the RHS of the equation above is
contained the first term. We also notice the identity [286, Equation (H1.12)]

r � v D er!r C er �
�
1

r

@

@r
.rvk/� rkur

�
: (10.78)

From (10.77) and (10.78), we have
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4rvk C .er .er � .rk �!k///C er

�
1

r

@

@r
.r!k/� rk!r

�
k
� Œr � .r � vrer /	k

D 4rvk C er �
�
1

r

@

@r
.r!k/

�
� Œr � .r � vrer /	k � er � rk!r

D �er � rk!r : (10.79)

The last equality holds because the first three terms in the second line of (10.79)
cancel each other, as one can check by direct calculations in spherical coordinates
components. Consequently we have

4rvk C Œr � .r � vk/	k D �er � rk!r : (10.80)

From (10.76) to (10.80), we can write the final decomposition formula

v D vrer C r2

l.l C 1/
�
rkDvr � rk.r � v/ � er � rk!r

�
: (10.81)

That is, we can express the velocity field function of its radial component, and
function of the radial component of the vorticity and the divergence of velocity.

10.6.3 Solenoidal–Toroidal Decomposition Formulas

Another version of the above decomposition formula can be obtained for an
axisymmetric solenoidal vector field. We use a cylindrical system of coordinates
.rc; '; z/, and the axis of symmetry is taken in the z-direction. In this case the field
can be expressed as a superposition of a poloidal and toroidal field in terms of two
azimuth-independent scalar functions U.rc; z/ and V.rc; z/ [50]

v D �rc @U
@z

erc C rcV e' C 1

rc

@

@rc
.r2c U /ez: (10.82)

An equivalent and unified way of writing (10.82) and the curl of velocity is

u D ez � rV Cr � .ez � rU /; and
r � u D �ez � r45U Cr � .ez � rV /;

(10.83)

where 45 is the Laplacian operator in a five-dimensional Euclidean space in
cylindrical coordinates. According to Chandrasekhar [50, Sect. 61], there is a
particular advantage of this representation in that no matter of how many times
one applies curl operator to the velocity and vorticity fields, the representations in
(10.83) have the same type of expression.
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In spherical coordinates, the Chandrasekhar poloidal–toroidal decomposition of
an axisymmetric solenoidal field has the form

u D � 1

sin �

@

@�
.sin2 �U /er � sin �

r

@

@r
.r2U /e� C r sin �V e': (10.84)

The interpretation of the scalars U; V is straightforward. Since fields derived only
from the scalar U have components only in the meridional planes, it results that
the U field is nothing but the Stokes’ stream function for motions in these planes
(meridional motions). The field V defines motions which are entirely rotational.
Another advantage is this types of representations reciprocity: a poloidal field has
toroidal vorticity and, conversely, a toroidal field has poloidal vorticity.

10.7 Problems

1. In Sect. 10.3 we conjecture (10.30) and (10.32) by using the physical intuition
that particles contained in particle surface move together with the surface, and
never tangent to it. Prove this affirmation on a more geometrical background.
Hint: use the integral formulas in Sect. 6.5.

2. Monge’s potential representation: show that an arbitrary differentiable vector
field v can be always represented as

v D r' C  r;

where the first term on the RHS is irrotational field, and the second term has the
property of being perpendicular to its curl, . r/ � .r �  r/. Such fields are
called complex lamellar fields [10].



Chapter 11
Nonlinear Surface Waves in One Dimension

In this chapter, we present some examples of nonlinear evolution equations in
one space dimension. We re-discuss the traditional Korteweg–de Vries (KdV)
equation for the shallow water long channel case, and its cnoidal waves and
soliton solutions. Then we briefly present the MKdV equation and some nonlinear
dispersion extension of it. In the last sections, we discuss some possible dynamical
generalizations of the shallow water models on compact intervals, for any depth of
the fluid. The resulting equation is an infinite-order differential one, and it reduces to
a finite difference differential equation. We show that this generalized KdV equation
approaches the KdV, MKdV, and Camassa–Holm limiting equations, both at the
equation and at the solution level, in the appropriate physical conditions. In the last
part we discuss the Boussinesq equations on a circle.

11.1 KdV Equation Deduction for Shallow Waters

The one-dimensional KdV equation for shallow water and infinite long channels,
and its cnoidal waves and soliton solution, represent a well-established model for
water waves [7, 135]. The KdV equation has the dimensionless form

ut C 6uux C uxxx D 0;

and has an infinite set of conservation laws, out of which the first two are

ut C .3u2 C uxx/x D 0; .u2/t C .4u3 C 2uuxx � u2x/x D 0:

The basic configuration is presented in Fig. 11.1 The model consists of an infinite
long channel along Ox axis, filled with stationary liquid, in normal gaseous
atmosphere, up to a height h measured along Oy axis. The fluid velocity is
V D .u; v/ and the free surface ˙ is described by the equation yj˙ D hC �.x; t/.

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 11,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 11.1 Shallow water
model and traveling localized
disturbance on the free
surface

x

y

A

h uv

h

We denote a D maxj�j. In this section, the subscript ˙ means that the quantity
is evaluated at the free surface. The KdV one-dimensional infinite long model is
obtained [2, 169], under the following hypotheses:

1. Incompressible fluid �.x; y; t/ D const.
2. Irrotational flow r � V D 0.
3. Inviscid fluid. Dynamics is governed by Euler equation.
4. At a certain point in the demonstration we need to make some approximations

based on the size of the disturbance. It is the so-called “shallow water, long
waves” approximation, and basically consists in the introduction of two small-
ness dimensionless parameters, � and ı, and an expansion of the equations in
terms of order of magnitude of these two parameters.

5. At a certain point we will introduce an approximation based on time scales, also
in terms of �; ı.

6. There are two interactions taken into account. One is an external vertical uniform
field of force (e.g., gravitation g D .0;�g/), and the other is the surface pressure
at the free surface in contact with the atmosphere.

From hypotheses (1) and the equation of continuity we have div V D 0. From this
relation, hypothesis (2) and the Helmholtz representation theorem (Theorem 29)
in Sect. 10.6.1, we have a velocity field potential ˚ , V D r˚ which fulfills the
Laplace equation

4˚ D 0: (11.1)

In principle one should be careful while using this Helmholtz representation, since
it is sensitive to the topology of the domain of definition. Because the roots of the
Helmholtz theorem are in the Poincaré Lemma (Sect. 4.8), it inherits the restrictions
of this lemma, namely about the domain on which it applies: it should be star shaped,
or contractible to a point. In other words, if the flow space has holes or compact
obstacles, one has the rethink the representation of the potential as a multiform
function.



11.1 KdV Equation Deduction for Shallow Waters 261

The kinematic condition at the free surface (see Sect. 9.5) reads

d.yj˙/
dt

D vj˙ D d�

dt
D @�

@t
C @�

@x

dx

dt
: (11.2)

The surface pressure is given by [171, 174, 271]

P j˙ D � �R D ��
�xx

Œ1C .�x/2	3=2 ; (11.3)

where � is the coefficient of surface pressure of the fluid (material constant), R is
the local radius of curvature of the curve describing the surface˙ , and the x labels
represent differentiation (from now on in this section, it is easier to use such labeling
for derivatives). The Euler equation (hypothesis (3)) together with hypothesis (6)
provide the equation

dV

dt
D @V

@t
C .V � r/V D �1

�
rP C g; (11.4)

where P is the pressure. The Euler equation can be written in terms of the potential
of flow, and then integrated once with respect to the gradient. It results

˚t C 1

2
.r˚/2 D �P

�
� gy; (11.5)

where an arbitrary additive function of time resulting from the space integration can
be neglected because it represents just a gauge transformation for the velocity field.
Next step we evaluate (11.4) and (11.5) on the surface ˙ and then, we differentiate
it with respect to x. Then we express the potential flow derivatives in terms of the
components of the velocity field, and use (11.3) for pressure at the free surface. All
in all we obtain

�
ut C uux C vvx �

�
��xx

�Œ1C .�x/2	3=2
�
x

C g�x
�
˙

D 0; (11.6)

which is the Euler equation of momentum conservation at the free surface ˙ . The
sign in front of the pressure surface term is minus because the surface pressure acts
toward inside the fluid if the curvature is negative. Same sign analysis is discussed
in [271] ((5B.24) and Chap. 5.4 and Appendices 5B and 5C), [174] ((48), p. 223),
and [171] (p. 298). Practically, the dynamics of the surface is obtained by solving
(11.2) and (11.6).

The domain of the Laplace equation is bounded by the rigid bed y D 0 and by
the free surface y D hC�. If the functions involved are analytical, we can solve the
Dirichlet problem for ˚ and obtain a unique analytical solution, for example in
the form of a Taylor series

˚.x; y; t/ D
X
n�0

yn˚n.x; t/: (11.7)
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By substituting (11.7) in (11.1) we obtain the recursion relations

˚k;xx C .k C 1/.k C 2/˚kC2 D 0: (11.8)

The rigid bed condition v.x; 0; t/ D ˚y.x; 0; t/ D 0 results in annihilation of the
odd coefficients ˚2nC1.x; t/ D 0, and expresses all the even coefficients functions
of ˚0;x D f which we denote by a new symbol, f .x; t/. For example, we have the
velocities

u D f � y
2

2
fxx C y4

24
fxxxx � � � � ;

v D �yfx C y3

6
fxxx � y5

120
fxxxxx C � � � : (11.9)

In the following, to fulfill hypotheses (4) and (5), we introduce substitutions which
provide dimensionless quantities:

x D lx0 y D hy0 @x D 1

l
@x0

t D l

c0
t 0 @t D c0

l
@t 0

� D a�0
u D �c0u0
v D �ıc0v0
f D �c0f 0: (11.10)

Here, l is an arbitrary length which should be of the same order of magnitude as
the half-width (wavelength) of the localized solutions. The speed of sound in fluid
is c0 D

p
gh [167, 171, 174]. We can also introduce the Bond number

Bo D �

�gh2
D
�
lc

h

�2
; where lc D

r
�

�g
; .capillary length/: (11.11)

The two dimensionless parameters are � D a
h

and ı D h
l
. So far the model has two

free parameters (a; l) and two physical parameters (h; g).
Hypothesis (4) requests that �  1 and ı  1. As a consequence we will

approximate all equations to the first orders in �; ı. With this notations, and with
velocities expressed in (11.9), we can rewrite the dynamical equations (11.2) and
(11.6) in the form

�0t 0 C f 0x0 C ��0f 0x0 C ��0x0f
0 � ı

2

6
f 0x0x0x0 D O.�ı2; : : : /; (11.12)
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f 0t 0 C �0x0 C �f 0f 0x0 � ı
2

2
f 0x0x0t 0 � ı2Bo�0x0x0x0 D O.�ı2; : : : /: (11.13)

The next step is the logical consequence of the linearization of equations. If we
neglect all nonlinear terms, we obtain f 0 D �0, so it is natural to expand f 0 in a
series of orders in the two parameters. We have

f 0.x0; t 0/ D �0 C �f .1/ C ı2f .2/ CO.�ı2/: (11.14)

By introducing the approximation (11.14) in (11.12) and (11.13), we obtain

�0t 0 C �0x0 C �.f .1/

x0 C 2�0�0x0/C ı2
�
f
.2/

x0 � 1
6
�0x0x0x0

�
D O.�ı2; : : : / (11.15)

�0t 0 C �0x0 C �.f .1/

t 0 C �0�0x0/C ı2
�
f
.2/

t 0 �
1

2
�0x0x0t 0 � Bo�0x0x0x0

�
D O.�ı2; : : : /:

(11.16)
By subtracting (11.16) from (11.15), and by identifying the coefficients of the
same orders of magnitude (we assume here that different powers of the smallness
parameters, corresponding to different scale phenomena, are independent), we
obtain the series for the f 0 function

f 0.x0; t 0/ D �0� 1
4
.�0/2C 1

12
�0x0x0� Bo

2
�0x0x0� 1

4
�0x0t 0CC CO.�ı2; : : : /; (11.17)

whereC is an arbitrary constant of integration. The last step is to plug back this final
expression for f 0 into (11.15), and to come back to original physical quantities. The
result, approximated up to the orders � and ı2, is one of the forms of the well-known
KdV equation

�t C c0�x C 3

2

c0

h
��x C c0h

2

2

�
�
�
1

6
C Bo

�
�xxx � 1

2c0
�xxt

�
D 0: (11.18)

If we apply the fifth hypothesis, we have to make an order of smallness evaluation
of space and time derivatives. By using the traveling wave reduction

.x; t/! 
 D x � V t;

and by keeping V as a free parameter, and changing @=@t ! �Vd=d
 we have
�0x0x0t 0 D ��0x0x0x0 C O4.�

0/ so we obtain the second (and most used) form for the
KdV equation

�t C c0�x C 3

2

c0

h
��x C c0h

2

2

�
1

3
� Bo

�
�xxx D 0: (11.19)

In the end of this section we present a flow chart of the full deduction of the
KdV equation for shallow channels. This chart is useful for the reader who wants to
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understand the logical steps, and the play of the approximations. It is also useful in
the following sections, where we will use the same chart to find a generalized KdV
equation, valid for any height, and more importantly, valid on compact intervals
(finite rectangular tanks of water). In the blocks of the chart we wrote briefly the
operation done and the number of the resulting equation from the text. Next to the
arrows we indicated the operation performed from one block to another.

Euler
(11.4)

P D � �
R ������ Surf. press.

(11.2)??yR dr

Bernoulli
(11.5)

V D r˚ �������
div V D 0

Ideal fluid
Hyp. 1,2,3

Laplace������!4˚ D 0

˚ series
(11.7)??y˙ and @x

??y
Dynamic eq.
on ˙ (11.6)

 ����� B.C., and
bottom (11.2)

˚2nC1 D 0�������! u; v
(11.9)??yO.�;ı2/

??yO.�;ı2/
??y

(11.13)  �����
f

(11.12)  �����
f

Lineriz.
(11.14)??y

??y f

??y

Substract, identify orders, and solve: f .1/; f .2/ (11.17)??y
KdV (11.18) or (11.19)

(11.20)

11.2 Smooth Transitions Between Periodic
and Aperiodic Solutions

To find the one-soliton solution of the KdV equation (also called the steady-state
solution) we convert the KdV PDE into an ODE by the traveling wave substitution

.x; t/! 
 D x � V t;

keep V as a free parameter, and use the substitutions @=@t ! �Vd=d
. We trans-
form (11.19) into
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A�
 C B��
 C C�


 D 0; (11.21)

where A D c0�V , B D 3c0=2h, and C D c0h2.1� 3B0/=6. After integrated once,
multiplied with �
 , and integrated again, (11.21) becomes

C.�
/
2

2
D �B�

3

6
� A�

2

2
C C1�C C2 D 0; (11.22)

where C1;2 are constants of integration. We can always factorize (11.22) in the form

.�
/
2 D �4.�� a1/.� � a2/.� � a3/; (11.23)

where all roots are real because the RHS is a positive function. Without any loss of
generality we assume a1 < a2 < a3. We substitute � � a3 D �.a3 � a2/f .
/ and
we have

.f
/
2 D .a3 � a1/.1 � f 2/.1� k2f 2/; (11.24)

with
k D a3 � a2

a3 � a1 :
Equation (11.24) is nothing but the ODE for the cnoidal sine function (18.7). So,
one steady traveling solution for the KdV equation is

�.x � V t/ D a3 � .a3 � a2/sn2Œ
p
a3 � a1.x � V t/jk	: (11.25)

This solution represents the cnoidal wave KdV solution, which is a periodic function
of period T D 2K.k/.a3 � a1/�1=2, where K.k/ is the complete elliptic integral of
the first kind (Sect. 18.3). When a3 D a2, k D 0 and in principle the solution should
reduce to a linear wave. However, because the amplitude of the cnoidal wave is equal
to the numerator of k, the solution reduces to a trivial constant in this case. This is a
consequence of the fact that the KdV equation is nonperturbational. Of course, for
a3 � a2 the solution behaves very close to a small amplitude linear oscillation. If
a2 D a1, we have k D 1 and the cnoidal wave reduces to one-soliton solution

�sol .x � V t/ D a2 C .a3 � a2/sech2Œ
p
a3 � a2.x � V t/	: (11.26)

This smooth transition effect from a periodic function to a nonperiodic one is a
very peculiar property of the nonlinear equations. This limiting process is actually
responsible for a transition from discrete to continuous, and from compact to
noncompact. For example, if such a traveling cnoidal wave is obtained on a circle
(x ! '), the one-soliton solution cannot exist because of nonperiodicity condition,
but the cnoidal wave, even if close enough to a soliton, could fulfill the periodicity
constrain if it exists an integer n such that

nK

�
a3 � a2
a3 � a1

�
D �pa3 � a1:
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The form of the KdV equation in (11.22) is called the potential picture associated
to the KdV equation. We can interpret the LHS term as a kinetic energy of an
abstract point in one-dimensional motion, whose law of motion is � D �.
/. The
RHS has the interpretation of minus the potential energy associated to this point.
An analysis of the consequences of this interpretation on the KdV equation is given
in [86].

The general cnoidal solution in (11.25) and the soliton in (11.26) are not written
in a practical form in terms of the roots ai . By substituting these equations back into
a general form of a KdV equation like

�t C a�x C b��x C c�xxx D 0; (11.27)

we can write the cnoidal solution of (11.27) in the form

�.x; t/ D Asn2
�
x � V t
L

ˇ̌
ˇ̌k
�
C B; (11.28)

with

L D 2
r
�3ck
Ab

; V D Ab

3

�
1C 1

k

�
C aC bB: (11.29)

Also, a soliton solution of the same (11.27) reads

�sol .x; t/ D Asech2
�
x � V t
L

�
; (11.30)

with

L D 2
r
3c

Ab
; V D Ab

3
C a: (11.31)

The classical one-soliton solutions for the KdV (11.18) and (11.19) have the form

�.x; t/ D Asech
x � V t
L

; with V D Ac0

2h
C c0; (11.32)

This soliton profile is valid for both versions of the KdV equations, while the
difference is made by the half-width. For (11.19) we have

L D 2
r
h3.1 � 3B � o/

3A
; (11.33)

and for (11.18) we have

L D
r
3Ah2 C 4h3 � 12Boh3

3A
: (11.34)
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Fig. 11.2 Arrow representation of the velocity field in a one-soliton solution of the KdV equation
in shallow infinite channels. The soliton is moving to the right

In Fig. 11.2, we present a KdV soliton solution (11.19) moving to the right,
together with its velocity field under the free surface. The velocity field v.x; y; t/
is calculated on the base of (11.9), (11.17), and (11.19). We notice the horizontal
velocity of the envelope on the top of the soliton. Basically, the fluid is rising in
front of the soliton wave (right of x D 1), then it performs almost a closed loop in
the inverse trigonometric sense (clockwise), for 0 < x < 1, and has a symmetric
behavior to the left of the maximum. Around x D 0, in a vertical section there is a
strong sheer in the flows. Although, apparently there are vortices in this flow, actu-
ally the contours are open. One can check directly to calculate r � V from (11.9),
(11.17), and (11.19), and note that the flow is indeed irrotational up to the order �ı2.
A more detailed illustration of the flow next to the top of the soliton is presented in
Fig. 11.3. In Fig. 11.4, we present a contour plot of the potential ˚.x; y; t/ lines for
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Fig. 11.3 Detail of the
velocity field in Fig. 11.2,
zoomed around the top of the
soliton
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Fig. 11.4 A cross section in
the KdV soliton from
Fig. 11.2 and the potential ˚
contour lines of its flow. The
light areas represent higher
values of potential. One can
see the complicated structure
of the flow right below the
soliton envelope,
the perpendicularity of the
equipotential lines at
the boundaries – including
the free surface – and a bias
of potential from left to right,
which produces the actual
translation
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the flow for the same soliton solution. In Fig. 11.5, we present the hydrodynamic
pressure inside the fluid in the case of a soliton wave, calculated with (11.5), where
we plugged (11.7), (11.8), (11.17), (11.21), and (11.22). Multisoliton solutions of
the KdV equations are obtained by using the inverse scattering theory (IST) [2, 78,
79, 169, 271]. In this book we do not intend to elaborate on the IST method, since
we rather focus on identifying nonlinear integrable models for compact systems.
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Fig. 11.5 Isobaric contours
of the pressure distribution in
a KdV shallow water soliton,
including the surface pressure
effect
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11.3 Modified KdV Equation and Generalizations

The modified KdV equation (MKdV) is of the form:

ut C 6u2ux C uxxx D 0 (11.35)

and is a model that appears in the context of ion acoustic solitons, van Alfvén
waves in collisionless plasma, Schottky barrier transmission lines, models of traffic
congestion as well as phonons in anharmonic lattices among others (see, e.g., [155]
and references therein). By the help of Miura transformation we know to map any
solution v.x; t/ of the MKdV equation, into a solution u.x; t/ D �v2�vx of the KdV
equation. The MKdV equation has also an infinite number of laws of conservation.
The conserved densities of the first three of them have the form

C1.x; t/D�v2�vx; C2.x; t/D�.v2Cvx/x; C3.x; t/D�.v2Cvx/xxC.v2Cvx/
2:

The solitary wave solution of (11.35) is given by u D AsechŒ.x�V t/=L	, with L D
1=A and V D A2. There are also different classes of solutions of the equation, like
solutions with compact support (the so-called MKdV compactons) of the form [165]

u.x; t/ D
p
32k cosŒk.x � 4k2t/	2

3

�
1 � 2

3
cosŒk.x � 4k2t/	2

� : (11.36)
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A general class of equations containing the KdV and MKdV as special cases is
the nonlinear convective–dispersive class of the so-called K(m,n) [276]:

ut C .um/x C .un/xxx D 0: (11.37)

In this case, there is no general known solution for arbitrary combinations of the
exponentsm and n. From the nonlinear dispersion relations results

L D
�

n3An�1

V �mAm�1
�1=2

: (11.38)

In particular, this predicts the scaling of V as V � Am�1 and indicates that ifm D n,
then this scaling results in a constant length, an indication of compactly supported
solutions which are well known to exist in the frame of the K(m,n) [276]. In fact for
m D n, it is known that such solutions exist in the form:

u D A
�

cos

�
x � V t
L

�� 2
n�1

(11.39)

for jx � vt j 	 2n�=.n � 1/ (and u D 0 otherwise). For these solutions L D 4n=

.n � 1/ D constant and A D .2V n=.nC 1//n�1, in agreement with the predictions
of the nonlinear dispersion relation. Compactons of a parabolic profile such as, e.g.,
u D Œ37:5V � .x � V t/2	=30 form D 3 and n D 2 may also exist [276].

11.4 Hydrodynamic Equations Involving
Higher-Order Nonlinearities

In the majority of liquid models for solitons one uses two main approximations.
The first one is the about small perturbation waves, i.e., the amplitude of the wave is
small compared to other geometrical parameters of the perturbation or environment,
like the wavelength or depth of the liquid layer, for example �0  L; h. The second
approximation requires that the depth of the fluid is either very small compared to
the wavelength (shallow water, or long waves approximations), or the depth of the
fluid is much larger than the wavelength (deep water approximations), i.e., h L

[2, 169]. In the shallow water case, beyond the traditional KdV model, there are
several other models that try to extend the two limits mentioned above. For example
the Boussinesq, Gear–Grimshaw, Benjamin–Onno, Bona–Smith–Chen, Whitham-2,
Camassa–Holm equations, and their generalizations [3,17,25,26,42,73,80,90,100,
105, 121, 163, 313, 340, 341]. In the limit of deep waters the traditional equation
is the nonlinear Schrödinger equation (NLS) and various versions or extensions
of it [3, 17, 26, 121, 163]. Some models try to unify the two limits for the depth,
but the integrability of such equations is questionable both from the point of view
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of the physical values of the coefficients of the equation, and from the point of
view of “near”-integrability in numerical procedures [245]. Basically, all these
models start from the Euler equations and perform different types of truncations
or approximations based on scaling criteria.

In this section we present a somehow different model for a generalization of the
KdV equation for liquids of arbitrary depth, and more importantly, for flow in a
one-dimensional compact domain [187]. In this model it is used only one of the
two smallness conditions for the KdV equation obtained from a one-dimensional
liquid free surface problem, i.e., only the smallness of the amplitude of the soliton
�0 with respect to the depth of the channel, h. This condition, � D �0=h 1 is the
only one used. Here h is taken to be arbitrary parameter, especially when compared
to wavelength. Moreover, the model does not limit to infinite long channels, and
we study the evolution of the surface in a finite dimensional “tank.” Therefore, we
study the nonlinear dynamics of a fluid of arbitrary depth in a bounded domain.
These different constraints lead to a new type of equation which generalizes in some
sense the KdV equation and the other above mentioned models. Such type of one-
dimensional nonlinear models find their applications not only in fluid dynamics, but
also in biological systems dynamics (swimming of motile cells, [193], nerve pulse
propagation, [200, 226]), and mesoscopic superconductivity [197, 199].

11.4.1 A Compact Version for KdV

Let us have a one-dimensional inviscid incompressible irrotational fluid layer of
depth h and density � under uniform gravity g. The Laplace equation for the
potential ˚ of the velocity field V D .u; v/ is solved for appropriate boundary
conditions, i.e., within a two-dimensional domain x 2 Œx0 � L; x0 C L	 (as the
“horizontal” coordinate) and y 2 Œ0; 
.x; t/	 (as the “vertical” coordinate), where
x0 is arbitrary so far, L is the arbitrary length of the tank, and 
.x; t/ is the shape of
the free surface of the fluid. We have rigid boundary conditions for the lateral walls
ujxDx0˙L;y2Œ0;
.x;t/	 D 0 and the bottom vjyD0;x2Œx0�L;x0CL	 D 0, and the kinematic
condition for the free surface

vj˙ D .
t C 
xu/j˙; (11.40)

where ˙ the free surface of equation y D 
.x; t/, and the subscript indicates the
derivative. By taking into account the boundary conditions we can write a general
solution for the Laplace equation in the form

˚.x; y; t/ D
X
k�0

˛k.t/
cosh

k�y

L

cos
k�x0

L

cos
k�

L
.x � x0/; (11.41)
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where ˛k are time dependent coefficients, so far arbitrary. Apparently, this solution
should be an even function in x, because it is symmetric with respect to x0. However,
the physical part of the domain is just Œx0; x0 C L	 so the symmetry is just an
“artificial” mirroring. Consequently, the BC at vertical wells reduces to aperiodicity
condition

u

ˇ̌
ˇ̌
xDx0
D 0; u

ˇ̌
xDx0CjLD 0; j 2 Z: (11.42)

Actually instead of even solutions on x 2 Œx0 � L; x0 C L	 we look for periodic
solutions on x 2 Œx0 C jL; x0 C .j C 1/L	 with j integer. In the infinite channel
limit, L!1 we can choose x0 D 0 without loss of generality. With this potential
the velocities read

u.x; y; t/ D ˚x D
X
k�0

˛k.t/
k�

L

cosh
k�y

L
sin

k�.x0 � x/
L

cos
k�x0

L

(11.43)

v.x; y; t/ D ˚y D
X
k�0

˛k.t/
k�

L

sinh
k�y

L
cos

k�.x0 � x/
L

cos
k�x0

L

; (11.44)

and indeed we have u.x D x0/ D u.x D x0 C L/ D 0 and v.y D 0/ D 0 We
introduce the test function

f .x; t/ D
X
k�0

˛k.t/
k�

L

sin
k�.x0 � x/

L

cos
k�x0

L

; (11.45)

such that the velocity field can be formally written

u D ˚x D cos.y@/f .x; t/

v D ˚y D � sin.y@/f .x; t/: (11.46)

where, for simplicity, the operator @ represents the partial derivative with respect
to the x coordinate. It easy to check that these expressions for velocity fulfill
the irrotational condition r � .u; v/ D 0, and again the same requested BC.
Equations (11.46) do not depend on L, therefore any approach toward the long
channel limit must include the L ! 1 (unbounded) limit. We also notice the
relation

f .x; t/ D ˚xjyD0 D ujyD0; (11.47)

which provides the physical interpretation of the test function f : it is the horizontal
velocity of fluid along the rigid bed (bottom) level. In other words, if we introduce
a complex potential flow !.x; y; t/ D u C iv, we have !bot tom D u.x; 0; t/, so at
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the bottom the potential becomes pure real, and we have

eiy@x!bot tom D !; (11.48)

which means that the velocity field at any height is given by a local translation
through a one-parameter � D iy complex Lie group of transformations. Possibly,
this happens because the general Lie group of diffeomorphisms that conserves
density and irrotational flow for the general Euler equation reduces for this
rectangular one-dimensional geometry to this one-parameter subgroup.

Rigorous treatment of the functional operators in (11.46) is found in the exponen-
tiation theory, or in the theory of formal Taylor series of operators, or finally in the
theory of pseudodifferential operators [136, 146, 164, 251]. In all these formalisms,
the exponential of a functional coefficient differential operator is approached in the
sense of a continuous representation of a Lie group in a complex Banach space.
Basically, one uses the associate formal Taylor series of the trigonometric functions
and act with it term by term on the functions. The domain of definition of such
trigonometric functions of operators is provided by L2 differentiable functions. Real
problems occur when one needs to handle algebraically such operator equations,
because @x and �.x; t/@x do not commute and do not close any finite dimensional
Lie algebra. The algebraic relations have to be substituted by the Baker–Campbell–
Hausdorff (BCH) type of formulas. Even the classical BCH formula in terms of
noncommuting linear operators need to be replaced in this case by a generalized
commuting relation where instead of the infinite series of commutators one has the
exponential of the adjoint operator. However, in the following, we work only on the
set of differentiable functions �.x; t/ defined on compact interval Œx0; x0 C L	 �
Œ0; T 	, T < 1, and as a consequence we can use the regular BCH formula. Also,
we use a simplified functional formalism by treating the exponential operator as a
formal Taylor series, and its action upon functions is taken term by term. The region
of convergence of the series, as well as the domain of definition of the operators
should be studied for any specific choice of solutions.

11.4.2 Small Amplitude Approximation

In the following we describe the resulting equations for small height compared to
the depth, but not necessarily for large wavelengths. Consequently, we write all
equations for y D 
.x; t/ D h C �.x; t/, and expand all equations in formal
Taylor series in the first order in �. This approximation is valid in the limit
maxx2Œx0;L	 j�j  h. In this situation (11.46) need to be approximated accordingly
to the formula

cos.y@/ D cos .hC �/@ D cos .h@C �@/
cos .h@/ cos .�@/ � sin .h@/ sin .�@/ ' cos .h@/ � sin .h@/ �@;
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but exact calculation needs more functional analysis. The algebraic part of the
problem can be solved by using the BCH formula [43, 44, 124] which expresses the
product of two noncommuting operators as an infinite sum of repeated commutators.
We actually use the Zassenhaus formula (derived by Magnus in 1954 [204]
citing unpublished work by Zassenhaus) which is the dual of the BCH formula,
and expresses the product of two noncommuting exponential operators as an
infinite product of their repeated commutators. The classical BCH formula for two
noncommuting operators A;B can be expressed in the form given by Wilcox [343]

eAeB D e.
P
i�1 Di /; (11.49)

whereDi are polynomials in A;B of degree i . We have

D1 D AC B
D2 D 1

2
ŒA;B	

D3 D 1

12

�
ŒA; ŒA;B		 � ŒB; ŒA;B		

�

D4 D � 1
24
ŒA; ŒB; ŒA;B			; (11.50)

and more terms can be found in the recent analysis [230]. The Zassenhaus formula
can be given in the form

eACB D eAeB
Y
i�2

eCi ; (11.51)

where again Ci are polynomials of degree i in A;B . Such formulas are treated by
Feynnman’s method for disentangling noncommutative operators [98]. The first four
coefficients are calculated [64, 230]

C2 D 1

2
ŒB;A	

C3 D 1

3
ŒŒB;A	; B	C 1

6
ŒŒB;A	; A	

C4 D 1

8

�
ŒŒŒB;A	; B	; B	 C ŒŒŒB;A	; A	; B	

�
C 1

24
ŒŒŒB;A	; A	; A	: (11.52)

We mention that there are numerical procedures attempting to get past the obstacle
of noncommuting operators. One possible approximation is provided by the split-
step Fourier numerical method [95, 144]. However, in the following we follow an
analytical approach. On one hand we have the exact expression of the operators in
(11.46) defined on the free surface
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cos.h@C �@/ D eih@Ci�@ C e�ih@�i�@
2

; (11.53)

and a similar expression for sin. To apply a smallness criterium we need to bring
this equation as close as possible to the form

cos.h@/ cos.�@/ � sin.h@/ sin.�@/ D eih@ei�@ C e�ih@e�i�@
2

: (11.54)

We have the commuting relations Œih@; i�@	 D ��x@, Œih@; Œih@; i�@		 D �ih�xx
and Œi�@; Œih@; i�@		 D i.�2x@ � ��xx/, which do not entitle us to use the simplified
version of the BCH formula, i.e., the finite one. By using (11.51) and (11.52) for
A D ih@; B D i�.x/@ we obtain

C2 D �h
2
�x@

C3 D � ih
3

�
�2x � ��xx �

h

2
�xx

�
@; (11.55)

and so on. Finally, we obtain

cos.hC �/@ D
�

cos.h@/ � sin.h@/�@

��
1 � h

2
�x@C h2

4
.�x�xx@C �2x@2/C : : :

�

� ih
3

�
sin.h@/ � cos.h@/�@

��
.�2x � ��xx �

h

2
�xx/@C : : :

�
:

(11.56)

By plugging (11.55) and (11.56) in (11.46), we have a first-order approximation
of the operator series, with �=h being the smallness parameter

u.x; 
.x; t/; t/ D Œcos.h@/ � �.x; t/@ sin.h@/	 f .x; t/

v.x; 
.x; t/; t/ D � Œsin.h@/C �.x; t/@ cos.h@/	 f .x; t/: (11.57)

The advantage of these approximations is that instead of having a complicated
differential operator function with variable coefficients, we reduced it, in the limit
of small waves, to series of differential operators with constant coefficients.

The dynamics of the fluid is described by the Euler equation at the free surface.
The equation that results is written on the surface ˙ in terms of the potential and
differentiated with respect to x. By imposing the condition y D 
.x; t/; and by
using a constant force field we obtain the form

ut C uux C vvx C g�x C 1

�
Px D 0; (11.58)
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where g represents the force field constant and P is the surface pressure. Following
the same approach as used in the calculation of surface capillary waves [43], we
have for our one-dimensional case

P j˙ D � �R D
��xx

.1C �2x/3=2
' ���xx; for small �; (11.59)

where R is the local radius of curvature of the surface (in this case, the curvature
radius of the curve y D 
.x; t/) and � is the surface pressure coefficient. Inside the
fluid the pressure is given by the Euler equation. Consequently, we have a system of
two differential equations (11.40) and (11.58) for two unknown functions: f .x; t/
and �.x; t/ since u and v depend only on � and f through (11.46) or (11.57). With
f and � determined we can come back and find the expressions for the velocities u
and v, which completely solves the problem.

11.4.3 Dispersion Relations

From the linearization of the free surface kinematic condition (11.40) v D 
t D �t
we obtain

� sin.h@/f D �t ; (11.60)

and from the linearization of (11.58)–(11.60), we have

cos.h@/ft C g�x � �
�
�xxx D 0: (11.61)

By defining the speed of sound c0 D
p
gh, applying the operator sin.h@/ to (11.62),

and using (11.61) we obtain the general dispersion relation for our system

cos.h@/�t t D sin.h@/

�
c20
h
�x � �

�
�xxx

�
: (11.62)

In the zeroth approximation cos.h@/ ' 1; sin.h@/ ' h@ we have

�t t D c20�xx �
�h

�
�xxxx: (11.63)

By using the notations lc D �
�g

for the “capillary length,” and Bo D �
�gh2
D
�
lc
h

�2

for the Bond number, we reobtain the linear surface water wave for our system

1

c20
�t t D �xx � Boh2�xxxx: (11.64)
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In the following, we discuss the dispersion relation for some limiting situations.
For example, if the surface pressure is negligible (Bo ' 0) we reobtain the simplest
dispersion relation of a linear wave

! D c0k: (11.65)

In the presence of capillary effects we obtain from the same equations

! D
r
ghC �

�
hk2; (11.66)

which is precisely the dispersion relation for shallow water equations. In the general
case, by choosing � D �0ei.!t�kx/, and by noting that

cos.h@/� D cosh.hk/�; sin.h@/� D �i sinh.hk/�;

we obtain the dispersion relation

! D
s�

gk C �k3

�

�
tanh.hk/; (11.67)

which is the same dispersion relation obtained directly from the Euler equations
in more particular cases [174, 271]. Of course, from (11.68) we can recover both
the shallow water dispersion relation, in the limit h ! 0 (11.67), and, in the limit
h!1, the dispersion relation for the deep water waves

! D
s
g

k
C k�

�
: (11.68)

11.4.4 The Full Equation

To obtain our final system of equations, we introduce the velocity operators (11.57)
in the first approximation for small amplitude waves in the physical equations.
Namely from (11.40) for the free surface BC we obtain

Œ� sin.h@/ � �@ cos.h@/	f � �t � �xŒcos.h@/ � �@ sin.h@/	 D 0 (11.69)

and from the Euler (11.58) and (11.60) in presence of gravity (uniform vertical field)
and surface pressure (11.59) we obtain

Œcos.h@/ � �@ sin.h@/	ft � �t@ sin.h@/f C g�x � �
�
�xxx � Œcos.h@/

� �@ sin.h@/	f � Œ.cos.h@/ � �@ sin.h@//fx � �x@ sin.h@/	f � Œsin.h@/

C �@ cos.h@/	f � fŒ� sin.h@/ � �@ cos.h@/	fx � �x@ cos.h@/gf D 0: (11.70)
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These two equations are a set of infinite-order nonlinear PDE in �; f . In the
following we use a system of dimensionless quantities defined by the rules @ D
@0=l; @t D .c0= l/@0

t 0
; � D a�0; h@ D ı@0; f D �c0f

0 where � D a=h; ı D h=l and
a; l are free parameters. In principle we have the restriction maxj�j < a. We also
introduce two more notations of operators

A D cos.ı@0/� �ı�0@0 sin.ı@0/

D D � sin.ı@0/� �ı�0@0 cos.ı@0/:

With this notations the dynamics (11.69) and (11.70) in the first order in � read

Af 0t 0 � �ı�0t 0f 0x0 C �.Af 0/ � .Af 0x0/C �.Df 0/ � .Df 0x0/C �0x0 � ı2Bo�0x0x0x0 D O.�2/;
(11.71)

�0t 0 C
1

ı
sin.ı@0/f 0 C ��0 cos.ı@0/f 0x0 C ��0x0 cos.ı@0/f 0 D O.�2/: (11.72)

Next we introduce the same type of hypothesis as in the classical theory of the KdV
equation, namely

f 0 D �0 C �f .1/ C ı2f .2/; (11.73)

where the functions f .1;2/ are to be determined. The last steps in obtaining the main
dynamic equation consist in: introducing f given by (11.73) in (11.71) and (11.72)
and subtract them one from another. Identify coefficients of the terms having the
same orders, expand operators A;D in Taylor series, and find the functions f .1;2/.
After subtracting (11.71) and (11.72) we obtain

.1 � A/�0t 0 C
�
1

ı
sin.ı@0/ � @0

�
�0 C �

�
1

ı
sin.ı@0/f .1/ C .�0 cos.ı@0/�0/x

�Af .1/

t 0 �
1

2
.A�0/2x0 � 1

2
.D�0/2x0

�
C ı2

�
1

ı
sin.ı@0/f .2/ � f .2/

t 0 C Bo�0x0x0x0

�

� �ı�0t 0�0x0 C �ı2
�
.�0 cos.ı@0/f .2//x0 � Œ.A�0/ � .Af .2//

C .D�0/ � .Df .2//	x0

�
� �ı3�0t 0f .2/

x0 � �ı
4

2
Œ.Af .2//2 C .Df .2//2	x0 D O.�2/:

(11.74)

After the identification of coefficients of the same order and solving f we can write
the final dynamical equation up to the eighth order of smallness

�0t 0 C �0x0 C �
�
3

2
�0�0x0

�
C ı2

�
� 1
4
�0x0x0t 0 �

1

12
�0x0x0x0 � 1

2
Bo�
0
x0x0x0

�

C �2
�
C1�
0
x0 � 3

4
�02�0x0

�
C �ı2

�
C2�
0
x0 C 1

8
�0t 0�0x0x0 C 7

12
�0x0�

0
x0x0 � 5

12
�0�0x0x0x0
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� 1
2
Bo�
0�0x0x0x0 � 1

2
Bo�
0
x0�
0
x0x0 � 1

2
�0x0�

0
x0t 0 �

5

8
�0�0x0x0t 0

�
C �2ı2

�
C4�
0
x0 C 1

8
�0t 0.�0x0/

2

C 2

3
.�0x0/

3 � 5
8
�0�0x0�

0
x0t 0 C

1

8
�0�0t 0�0x0x0 C 5

3
�0�0x0�

0
x0x0 � 3

8
�02�0x0x0t 0 C

1

6
�02�0x0x0x0

�

C �ı4
�
1

8
�0x0x0�

0
x0x0t 0 �

1

4
�0x0�

0
x0x0t 0t 0 �

13

36
�0x0x0�

0
x0x0x0 C 13

48
�0x0�

0
x0x0x0t 0 �

1

48
�0�0.5/

C 5

24
Bo�
0�0.5/ 1

8
Bo�
0�0.4;1/ C 1

8
Bo�
0
x0�
0
x0x0x0t 0 C

1

6
�0�0.4;1/ � 1

4
�0�0.3;2/ � 1

48
�0t 0�0.4/

� 19

144
�0x0�

0.4/ C 5

24
Bo�
0�0.4/

�
C �ı6

�
1

8
�0x0�

0.4;2/ C 1

96
�0x0�

0.5;1/ � 1

16
Bo�
0
x0�
0.5;1/

C 1

8
�0�0.5;2/ � 1

288
�0x0�

0.6/ C 1

48
Bo�
0
x0�
0.6/ C 1

96
�0�0.6;1/ � 1

16
Bo�
0�0.6;1/

� 1

288
�0�0.7/ C 1

48
Bo�
0�0.7/

�
C ı4

�
1

144
�0.5/ C 1

24
Bo�
0.5/ � 1

4
�0.3;2/ � 1

48
�0.4;1/

C 1

8
Bo�
0.4;1/

�
C ı6

�
1

24
�0.5;2/ C 1

288
�0.6;1/ � 1

48
Bo�
0.6;1/ � 1

864
�0.7/

C 1

144
Bo�
0.7/
�
D 0; (11.75)

where Ci are arbitrary integration constants and the superscripts represent dif-
ferentiation, like for example �0.5;2/ D �0

x0x0x0x0x0t 0t 0
, etc. Equation (11.75) is an

approximation of the general system described by the pair (11.70). This long
equation is still very general. It can be reduced, for different ranges of � and ı,
to several well-known equations in nonlinear fluid dynamics.

11.4.5 Reduction of GKdV to Other Equations and Solutions

Equation (11.75) is unreasonably complicated, and to understand it, we plot in
Fig. 11.6 a diagram of the relative contribution of the terms in this equation, function
of the ranges of smallness of the two free parameters

� D max j�j
h

; ı D maxL

h
;

describing the amplitude and the wavelength of the solution with respect to the depth
of the finite liquid layer. Along the vertical direction we provide different ranges for
�; ı, represented in the first two columns. Each row represents the coefficients of
the terms in (11.75), written in decreasing order from left to right, for that specific
values of the parameters �; ı written in the first two left boxes. In the figure we
denoted � ! e and ı ! d for graphical purpose. The arrows show how different



280 11 Nonlinear Surface Waves in One Dimension

1 e e3d2

e3d2

e3d2

e3d2

e3d2

e3d2

e3d2

e3d2

e3d2

e3d2

e3d2

e2d2

e2d2

e2d2

e2d2

e2d2

e2d2

e2d2

e2d2

e2d2

e2d2

e2d2

e2d2

ed2

ed2

ed2

ed2

ed2

ed2

ed2

ed2

ed2

ed2d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d4

d4

d4

d4

d4

d4

d4

d4

d4

d4

e2

e2

e2

e2

e2

e2

e2

e2

e2

e2

e2

e3

e3

e3

e3

e3

e3

e3

e3

e3

e3

e3

1 e

1 e

KdV

Towards smaller orders

10

0.1 0.3

0.1 0.1

e d

1 e

MKdV

0.3 0.1

1 e

1 e

e1

1 e

1 e

1

10

100

1 10-1

10-1

10-1

10-1

10-2

0.7 0.9

1 e

1 e d4

0.8 0.6

0.8 0.8

C-H

Fig. 11.6 The relative contribution of the terms in the general (11.75), as function of the relative
smallness of �; ı. The arrows show how the traditional KdV main terms � (full arrow) and ı2

(dotted arrow) change their importance in the smallness hierarchy in (11.75) function of their
values. We denoted �! e and ı! d for graphical purpose

terms change their importance for different ranges of the parameters. We emphasize
in the gray boxes the reduction of (11.75) to KdV and MKdV, respectively.

From Fig. 11.6, it is easier to note how (11.75) can be reduced toward different
other models, function of the choice of the parameters �; ı in different ranges, and
by neglecting the rest of smaller terms. For example, if � / ı, by taking into account
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only the first four orders of magnitude, we reobtain the KdV equation, and its
generalization with the corresponding higher-order dispersion terms. In the normal
dimensional form it reads

�t C c0�x C 3c0

2h
��x C c0h

2

2

�
1

3
� Bo

�
�xxx C C2ahc0

l2
�x

C c0h

2

�
23

12
� Bo

�
�x�xx C c0h

2

�
5

12
� Bo

�
��xxx � c0h

4

6

�
1

3
C Bo

2

�
�xxxxx D 0;

(11.76)
where C2 (and consequently the scaling factor l) are arbitrary integration constants.
We notice the exact version of the KdV equation. The extra higher-order dispersion
terms are useful in the research of the transition between soliton and antisoliton
solutions, when the fourth term in (11.76) vanishes. From the physical point of
view, this range for �; ı provides the shallow water regime.

In the range ı / � we obtain a combination between the KdV and the
MKdV equation. This range of the parameters can model the deep water situation.
Moreover, if we take into account the first five orders of magnitude we obtain the
Camassa–Holm equation [42, 80] for fluids.

It is interesting to investigate the behavior of soliton solutions of the GKdV
equation in the Bo D 1=3 limit, when the coefficient of the main dispersion term
�xxx vanishes. Experimental investigation have been performed for this range with
Mercury [90]. The range of the parameters is � 2 Œ0:1; 0:03	; ı 2 Œ0:57; 0:26	. In
this range, we can approximate the GKdV equation (11.75) by a KdV equation plus
a fifth-order dispersion term (�xxxxx), and two nonlinear dispersion terms of the
form �x�xx and ��xxx . However, in this parameter range the term in ı2 is small, so
we can neglect it, too. Also, for both soliton range (positive amplitude soliton) for
� ' 0:1; ı ' 0:57 and antisoliton range (negative amplitude) � ' 0:03; ı ' 0:26

we notice that we can also neglect the ��xxx term. Consequently, for this transition
regime, the equation becomes

�0t 0 C .1C C2�ı2/�0x0 C 3�

2
�0�0x0 � ı4 11

36
�0x0x0x0x0x0 C �ı2 19

24
�0x0�

0
x0x0 D 0;

and we found two types of solutions. One is a traveling linear wave in the form

�0.x; t/ D a0 cos
x0 � V 0t 0
L0

; L0 D
p
19

6
ı; V 0 D 361C1 � 396

361
;

in the dimensionless notation, and with no restriction on the amplitude a0. Another
solution is a compacton-like

�0 D a0 cos2
�
x0 � V 0t 0
L0

�
; L0 D

p
19

�
ı; V 0 D 1083�a0C 1444C1 � 1584

1444
:
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In the following, we discuss the existence of different exact solutions for different
ranges of parameters. For example, if we neglect the order �2, we have linear
traveling solutions in the form

� D a cos
x � V t
L

; L D 1

3

p
7 � 6Boı (11.77)

V D 136� 201Bo C 36B2
o C 196C2ı2� � 336BoC2ı2� C 144B2

oC2ı
2�

4.6Bo � 7/2 :

as well as compacton type of solutions

� D a cos2
�
x � V t
L

�
; L D 2

3

p
7 � 6Boı; (11.78)

V D Œ544� 804Bo C 144B2
o C 483a� � 666a�Bo C 216a�B2

o C 784C2�ı2

� 1344BoC2�ı2 C 576B2
oC2�ı

2	 � Œ16.6Bo � 7/2	�1;

where we note that these last two solutions exist also in the limit Bo D 1=3. In the
same limit we have a cnoidal wave solution in the form

� D Acn2
�
x � V t
L

;L

�
(11.79)

for

A D � 12.31m� 15BomC 36B2
0m/

�.2m � 1/.55� 192Bo C 144B2
o/
;

and

L D
s
10.�10ı2C 9Boı2 C 36B2

oı
2 C 20mı2 � 18Bomı2 � 72B2

omı
2/

9.31� 15Bo C 36B2
o /

:

In the following, we present exact solutions for (11.62), which represent another
approximation range of the generalized (11.75). We can rewrite (11.62) in the form

cos.h@/ D g

h
sin.h@/.1 � Bo.h@/2/.h@/�: (11.80)

The solution describes a combination of incident and reflected waves in the form

�.x; t/ D �0ei!t .e�ikx C e�2ikx0eikx/; (11.81)

where ! and k fulfill the dispersion relation

!2 D gk.1CBoh2k2/ tanh.kh/;
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and the velocity potential has the form

˚.x; y; t/ D 2i!�0 cosh.ky/

sinh.kh/
cos.k.x � x0//ei.!t�kx0/:

This solution can be generalized to

�.x; t/ D
X
k2Z

�
ake

.3C4k/�x
2h C cot

h C bke�
.3C4k/�x

2h � coth
�
; (11.82)

with the coefficients aK and bk determined by initial conditions.
The generalized equation (11.75) can be also related to some classes of evolution

equations of the general form

ut C ux C .f .u//x � Lux D 0; x 2 .�1;1/; t � 0;

ut C ux C .f .u//x C Lut D 0; x 2 .�1;1/; t � 0;
where f is typically a polynomial andL is a Fourier multiplier operator with symbol
˛, and L and ˛ are related by cLv.
/ D ˛.
/bv.
/ for all wave numbers 
. Such
equations arise in the description of waves in quite a number of physical situations
[18,255]. The circumflex connotes the Fourier transform (with respect to the spatial
variable x) of the function In [27,33,118,313] Bona and Chen discuss the existence
of periodic traveling wave solutions of the above equations which is the analog of
the cnoidal wave solutions of the KdV equation. They show that the solutions in
question have the form

u.x; t/ D u.x � ct/ D
1X

nD�1
une

i n�l .x�ct/

where l > 0 and c > 0 are constants. The theory depends on topological
methods coupled with degree theory of positive operators. The coefficients un are
shown to fulfill a set of nonlinear recursion relation very similar to those we have
obtained for some solutions of (11.75) (see Sect. 18.4). The generalized action of
the trigonometric operators given in (11.46) on the free surface of the fluid, namely
y ! h C �.x; t/, is developed in Appendix 18.4, too. One merit of such types
of generalized equations consists in providing a larger number of higher-order
dispersion terms that survive in the Bo D 1=3 limit. This behavior can be used
to investigate the soliton antisoliton transition in variable depth waters.

11.4.6 The Finite Difference Form

Confining a nonlinear differential equation in a compact domain, like in the model
we discussed in the last three sections (or like the oscillating drops) results in a
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behavior similar with the behavior of solutions of finite difference equations. This
is similar to the quantization effects (i.e., spectrum becomes discrete) happening
with linear differential systems when they are compactified by boundary condi-
tions (Sturm–Liouville, or bilocal, or simply compact eigenvalue problems). We
discussed in Sect. 1.1 an example.

We present a property of the free surface nonlinear condition (11.69) with f
given by (11.73), valid for any depth h of the liquid tank. We work this in the
first order in �, which is one of the two KdV limits. If we consider only traveling
solutions of the form �.x; t/ D �.x C Ac0t/ D �.X/ where A 2 R and
X D x C Ac0t . Equation (11.69) can be written in the form

Ah�X.X/C �.X C ih/� �.X � ih/
2i

C �X.X/�.X C ih/C �.X � ih/
2

C �.X/�.X C ih/C �.X � ih/
2

D 0; (11.83)

if we suppose that � is an analytic function. We study rapidly decreasing solutions
at infinity, and we make the substitution v D eBx for x 2 .�1; 0/ and v D e�Bx for
x 2 .0;1/; where B is a positive constant. By introducing �.X/ D �hA C f .v/
we obtain a differential-finite difference equation for the function f .v/

f .v/
ıf 2

v .v/

ıfv.v/
C f .v/ ıf

2.v/

ıf .v/
C 2 sin.Bh/

B
ıf .v/ D 0; (11.84)

where we define the finite difference operator as

ıf .v/ D f .eiBhv/� f .e�iBhv/

eiBhv � e�iBhv : (11.85)

We can write the solution of (11.83) (or (11.84)) as a power series in v

f .v/ D
1X
nD0

anvn; (11.86)

and we choose a0 D hA to have limx!˙1 �.x/ D 0: Equation (11.83) results in a
nonlinear recursion relation for the coefficients an, i.e.,

�
Ahk C 1

B
sin .Bhk/

�
ak

D �
k�1X
nD1

n .cos .Bh .k � n//C cos .Bh .k � 1/// anak�n: (11.87)
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By taking k D 1 in the above relation, we obtain a1
�
AhC 1

B
sin .Bh/

� D 0.
Without loss of generality and because of the arbitrariness of B we can write

A D � sin .Bh/

Bh
: (11.88)

This relation fixes the velocity of the envelope of the perturbation if its asymptotic
behavior is fulfilled. To have A ¤ 0, we need Bh ¤ k� for k integer. Under this
condition a1 is still arbitrary and by writing ak D ˛ka

k
1 we have ˛1 D 1 and the

recursion relation

˛k D
2B cos Bh.k�1/

2

k sin .Bh/ � sin .kBh/

k�1X
nD1

n cos
Bh .2k � n � 1/

2
˛n˛k�n; (11.89)

for k � 2. This recursion relation gives the coefficient for k in terms of those for
k � 1 and lesser values. For a smooth behavior of the solution �.X/ at X D 0, i.e.,
continuity of its derivative, we must introduce the condition

fv.1/ D
1X
nD1

n˛na
n�1
1 D 0; (11.90)

or require that the derivative of the power series f .v/ with coefficients given in
(11.83) to be zero in z 2 R; z D a1: This sets the value for a1: In the following we
study a limiting case of the relation (11.87), by replacing the sin and cos expressions
with their lowest nonvanishing terms in their power expansions

˛k D 6

B2h3k .k2 � 1/
k�1X
nD1

n˛n˛k�n: (11.91)

It is straightforward exercise to prove that

˛k D
�

1

2B2h3

�k�1
k; (11.92)

is a solution of the recursion equation. This can be done using mathematical
induction and by taking into account the relations

k�1X
nD1

n2 D k.k � 1/.2k � 1/
6

;

k�1X
nD1

n3 D
�
k.k � 1/

2

�2
: (11.93)
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We can write the power expansion

g.z/ D
1X
kD1

k

�
1

2B2h3

�k�1
zk; (11.94)

which has the radius of convergence R D 2B2h3 (due to the Cauchy–Hadamard
criteria). The function g.z/ can be written in the form

g.z/ D z

 
1

1 � z
2B2h3

!

z

2B2h3 D � z�
1 � z

2B2h3

	2 : (11.95)

Conditions (11.91) and (11.92) result in a1 D �2B2h3 and

˛k D k
�

1

2B2h3

�k�1 ��2B2h3
	k D 2B2h3 .�1/k ; (11.96)

which provides

�.x/ D 2B2h3
1X
kD1

k


�e�BjX j

�k

2B2h3
e�BjX j�

1C e�BjX j	2 D
B2h3

2

1�
cosh

�
BX
2

		2 : (11.97)

As expected, this solution is exactly the single-soliton solution of the KdV equation
and it was indeed obtained by assuming h small in the recursion relation (11.87).

11.5 Boussinesq Equations on a Circle

Another type of integrable nonlinear PDE defined on a compact interval is the
Boussinesq equation on a circle for u.t; '/

ut t � u'' C u'''' C .f .u//'' D 0; (11.98)

where ' 2 Œ0; 2�/ is the angular coordinate in the unit circle, t 2 R, and f .u/ is
a polynomial function depending on u; juj. The solution is supposed to satisfy the
initial conditions

u.0; '/ D u0.'/; ut .0; '/ D u1.'/: (11.99)

Such equations can model water waves (the original Boussinesq model), nonlinear
strings, or shape-memory alloys, see [92]. The linearized version of (11.98)
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ut t � u'' C u'''' D 0;

has solutions that are periodic in space but aperiodic in time, namely the solutions
are linear combinations of functions with different noninteger periods. In contrast
with the Boussinesq equations on the real axis, (11.98) has no dispersion and no
decay in the time variable. For comparison, see experiments described in Sect. 17.2
about similar long-life nonlinear dispersionless excitations on glass spheres. The
Boussinesq equation on the circle can be written as a Hamiltonian system in the
form

ut D v'; vt D u' � u''' � .f .u//': (11.100)

The system in (11.100) has at least two conserved quantities, namely the energy

E D 1

2

Z 2�

0

Œv2 C u2 C .u'/2 � 2F.u/	d';

with F' D f and F.0/ D 0, and the momentum

P D
Z 2�

0

uv d':

If the energy is positive defined, its conservation can lead to global existence of
stable solutions on the circle. If the energy is not positive defined the solutions may
blowup in finite time.

Traveling solutions along the circle for (11.98) read

u.t; '/ D �.' � ct/ D �.
/;

and fulfill the equation

�

 C .c2 � 1/�� f .�/ D 0:

This equation has also a quadrature in the form

.�
/
2 C .c2 � 1/�2 C 2F.�/ D 0;

which enables us to determine the conditions on F such that (11.98) possess solitary
wave solutions. According to [92] the allowable functions are

f .u/ D ˙u2; f .u/ D jujp�1u; with jcj < 1; p > 1;

or more general
f .u/ D �jujq�1u� jujp�1u;
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for � > 0; 1 < q < p. Solitary wave solutions on the circle are described by
the following existence theorems. If the initial data of the problem (11.99) satisfy
u0 2 H1; ut 2 H�1, and if we choose f .u/ D �jujq�1u � jujp�1u with 1 < q < p
and � real, the solution u.t; '/ of (11.98) is unique, and it exists for all time. Here
Hs are Sobolev spaces, i.e., normed spaces of functions obtained by imposing on a
function u and its weak derivatives up to some order the condition of finite Ls norm.



Chapter 12
Nonlinear Surface Waves in Two Dimensions

Two-dimensional flow is a very useful model for practising applications of differ-
ential geometry in fluid dynamics. This flow still contains all the special features of
the compact three-dimensional flow but is simpler in calculations. In addition, it is
not just an idealization, because there are systems that can be modeled with two-
dimensional drop systems. Examples of such systems are highly flattened droplets
in gravity moving frictionless on rigid surfaces, cell motility and division, electron
drops in high magnetics field, long wavelength jets emitted from orifices, evolution
of oil spots surrounded by water in oil extraction or ecologic accidents, or closed
polymer chains surrounding water bodies. In the following, we discuss some general
geometrical properties of two-dimensional flow, and then we study a model of a two-
dimensional drop in oscillation, both theoretical and experimental (see Fig. 12.1).

12.1 Geometry of Two-Dimensional Flow

In this section, we introduce few elements of two-dimensional ideal flow, and we
discuss their differential geometry interpretation. If we consider a flow in the R2

plane v D .u; v/, we can use the Helmholtz theorem of representation (Theorem 29).
That is, if the velocity field is single-valued, continuous, and if div v; curl v ! 0

when r Dpx2 C y2 !1, we can always represent the flow in the form

v D r˚ C curl � ; (12.1)

with
div v D 4˚; and curl v D grad div � �4� : (12.2)

The two functions are called:˚ , the velocity field potential, and � , the stream func-
tion. Of course, in the two-dimensional case � D .0; 0; �/. Also � D curlv is
the vorticity, and it has the property that its Lagrangian time derivative is zero.
These functions are not unique, modulo a gauge transformation: ˚ ! ˚ C const.,

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 12,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 12.1 Two-dimensional
drop with free surface

r (f , t )

� ! � C rf . The arbitrary gauge function f can be always chosen such that
div � D 0, and hence we have curl v D �4� . Among different types of flows in
two dimensions, there are two ideal cases which allow a special treatment. All in
all, in the two-dimensional case we have

u D ˚x C �y; v D ˚y � �x;

with

˚.x; y/ D
“

R2

d iv0v
4�jr � r 0jd

2r 0; �.x; y/ D
“

R2

curl 0v
4�jr � r 0jd

2r 0:

We define an irrotational flow if curl v D r � v D 0, and we defined an
incompressible flow if div v D r � v D 0. A flow is potential if 9˚; v D r˚ , and a
flow is rotational (or solenoidal) if 9� ; v D curl � . According to these definitions,
for a flow under the Helmholtz theorem hypotheses, the velocity can be always
written as the sum of a potential flow and a rotational flow. Obviously, a potential
flow is also irrotational, and a rotational flow is also incompressible. The converse
affirmations are controlled by the Poincaré Lemma (Sect. 4.8), and consequently by
the topology of the domain of definition of the velocity field. If this domain is the
whole space, or just simply connected domain, the converse theorems are true: for
a flow in a simply connected domain, the properties of potential and irrotational are
equivalent. Since we are interested in this book in the dynamics of fluid with free
boundary, we will assume in this section that the flow exists in a simply connected
domain. If a flow is both irrotational and incompressible, it is called Laplacean and
we have 4v D 0. Such a flow is a very special situation, but is an important tool
for understanding more complicated flows. Usually, irrotational and incompressible
flows can coexist in the same domain, especially in the presence of boundaries. For
example, there are flows when vorticity is concentrated in some thin layers, or even
in some points of the fluid, while the flow is irrotational outside these layers or
points. This is the so-called almost potential flow and a good example is worked
out in [54, Sect. 2]. For such types of flow, the mechanism for producing vorticity
is the interaction of fluid with rigid boundaries. For example, in the case of a flow
past a rigid obstacle, the flow is irrotational everywhere, except two streamlines
emanating from the body, in which vorticity is not zero. To provide a geometrical
interpretation for the potential and the stream function, we consider the graphics
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of these two functions, namely the parametrized surfaces S˚ and S� defined by
r˚.x; y/ D .x; y; ˚/ W R2 ! R3 and r� .x; y/ D .x; y; �/ W R2 ! R3,
respectively. The curvatures of these surfaces are in interesting relations with the
corresponding types of flow.

In the irrotational case the flow is vortex free (� D 0), and the circulation of
the velocity on any closed curve is zero. The forces acting upon the fluid are only
conservative forces. In the irrotational flow the velocity field behaves exactly like an
electric field, and v D r˚ or u D ˚x; v D ˚y (some books prefer the v D �r˚
notation). From curl v D 0 we have uy D vx and both the velocity potential and
the stream function are Laplacean fields, 4� D 4˚ D 0. This type of motion
is of particular interest for this book since the flow pattern depends solely on the
boundary conditions. If the fluid has no free surface, the flow pattern depends only
on the motion of the boundaries, and it is independent of the external fields of force.
In this case the fields of force affect only the pressure field. The proof is based on a
uniqueness theorem via the Gauss formula for kinetic energy of the fluid. Moreover,
if all the boundaries are at rest, or if the fluid has zero velocity at infinity, then in
the irrotational flow the fluid must be in equilibrium at rest. Sometimes the single-
valued irrotational flow is also called acyclic [315] to make the distinction with the
multivalued irrotational flow which may hold in multiply connected regions (i.e.,
cyclic). In irrotational flow the maximum values of the speed occur on the boundary.
If in addition the flow is stationary, from Bernoulli’s theorem, the pressure has its
minimum values on the boundaries. The proof is immediate because the velocity
potential is a harmonic function, and its maxima must occur on its boundaries.

The incompressible flow div v D 0 occurs when density is constant (from
continuity equation we have the divergence zero condition) and the velocity field
behaves like a magnetic field. We have v D curl � , ˚ D const., i.e., u D ��y ,
v D �x . The stream function fulfills the equation

@

@t
4� C .r� � r4� /z D 0; (12.3)

where � D .0; 0; �/, and the subscript z shows that we take only the third
component of the resulting vector. In geometric notation this equation means that
the directional derivative of the stream function along the velocity field is zero,
Dv� D 0. That is, the stream function is constant along the streamlines. In the
stationary case, d�=dt D 0, from (12.3) it results that the fields r� and r.4�/
are parallel on the surface S� . Since in the linear approximation the mean curvature
is almost the Laplacean of the stream function, H.S�/ ' 4� , it results that the
streamlines lie in the level lines of the stream function parametrized surface r D
.x; y; �.x; y//. That is, in stationary rotational two-dimensional flow, in the linear
approximation, the fluid flows along the lines of constant mean curvature of the
surface S� . An incompressible flow cannot start from a fluid at rest (only irrotational
flow can start from a stationary state), and the rotational flow is permanent (in
absence of dissipation). This is because d�=dt D 0.
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If we consider the parametrized surface associated with the velocity potential,
S˚ , defined by r˚.x; y/ D .x; y; ˚/ W R2 ! R3, we notice that the velocity
“source” field �.r/ D divv D ux C vy D 4˚ is equal to the mean curvature
of S˚ , in the linear approximation H˚.x; y/ ' 4˚ . Same thing happens for
parametrized surfaces of vorticity S� , defined by r� .x; y/ D .x; y; �/ W R2 ! R3,
since H�.x; y/ ' 4� . This fact has the following interpretation. We know that
a minimal surface (H D 0) cannot be compact (see Sect. 10.4.2). So, in the case
of irrotational flow, because S˚ is nearly minimal, it either must extend to infinity
or must have singularities. The same thing happens in the case of incompressible
flow: because S� is almost minimal, the flow either should extend to infinity or has
singularities.

In a two-dimensional irrotational flow, we call stagnation point a point where
v D 0. At a stagnation point the velocity potential surface S˚ is quadratic, and it
has its first fundamental form coefficients .1; 1; 0/

E D ˚2
x C 1! 1;G D ˚2

y C 1! 1; F D ˚x˚y ! 0:

Let us assume that we choose the origin of the plane in the stagnation point. It
results that there is a neighborhood of the origin V.O/, where the surface S˚ has
E ' G;F ' 0, so it is nearly isothermal (see Sect. 10.4.2). In other words, 8� > 0,
9ı.�/ such that

jE �Gj < �; jF j < � if x2 C y2 < ı.�/2:
In this neighborhood we can expand the velocity potential in Taylor series

˚ jV.O/ ' 1

2
.x2˚xx C 2xy˚xy C y2˚yy/CO.3/;

and its expression is just the Hessian of ˚ . On the other hand, the Hessian
of a function defining a surface is just the second fundamental form on the surface
(see Definition 54 in Chap. 6), so ˚ ' ˘O . If we map the velocity field lines
from V.O/ on the surface S˚ , and the resulting curves have unit tangent t, we
can write ˘O.t; t/ D �n.t/, where �n is the normal curvature (Chap. 6) of S˚ .
That provides a nice geometrical interpretation: in the vicinity of a stagnation
point, the velocity potential (of a two-dimensional irrotational flow) is equal to the
normal curvature of the potential surface S˚ , up to third-order terms in the Taylor
expansion. Similar configurations are presented in Figs. 12.3 and 12.4, except
we change the values of the curvatures. The flow in these figures is just nearly
incompressible. There is another connection between irrotational incompressible
two-dimensional flow and the curvature of the potential surface. Being divergence
free, the velocity potential is harmonic, 4˚ D 0, and in the linear approximation
the mean curvature is zero, H˚ ' 4˚ D 0. If the mean curvature of the potential
surface S˚ is zero at a nonplanar point (K ¤ 0), then this point has two orthogonal
asymptotic directions. An asymptotic direction is a direction in the tangent plane to
the surface such that the normal curvature is zero along it. From the flow point of
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H=0
K=−8

Fig. 12.2 A stagnation point for a potential and incompressible two-dimensional flow. Left: The
two-dimensional velocity flow v.x; y/. Right: plot of the velocity potential ˚.x; y/. The mean
curvature of the surface ˚.x; y/ is zero at the stagnation point, and it is approximatively equal to
H 	 4˚ . The Gaussian curvature at the stagnation point isK D �8
Fig. 12.3 Two-dimensional
nearly incompressible H D 1

potential flow, and plot of the
velocity potential around a
stagnation point H=1

K=−50

view, such a direction in the velocity potential surface is equivalent to a reflection
at a “rigid” wall. If the fluid is nearly incompressible (jdiv vj 	 �), the Laplacean
of the potential is not zero, but still of the same order of smallness as �. Because
the mean curvature is not zero anymore, the principal curvatures are not equal and
opposite, and hence the Gaussian curvature is not necessarily negative. The sign of
the Gaussian curvature KS˚ can be anything and describes somehow the degree of
compressibility. We have4˚ D ˚xx C ˚yy D � 1, and consequently

K ' ˚xx˚yy �˚2
xy D ˚xx.� �˚xx/ �˚2

xy D �˚xx � .˚2
xx C ˚2

xy/ < 0;

the real stagnation points are always hyperbolic. SinceK < 0 we have a hyperbolic
point, and there is a real flow where the fluid passes by the stagnation points. If K
would be positive, we should have an elliptic point, and the flow must have a sink
point, or a source as stagnation point.

In Figs. 12.2–12.8, we present the two-dimensional potential flow of velocity
and the graphic of the S˚ surface in different such situations. In Fig. 12.2 we have
potential incompressible flow with4˚ ' H D 0 and negative Gaussian curvature.
The fluid passes by a stagnation point placed in the origin, where the velocity field
has a singular point of index I D �1.
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Fig. 12.4 Two-dimensional
nearly incompressible
H D �2 potential flow, and
plot of the velocity potential
around a stagnation point

H=-2 
K=-4

Fig. 12.5 A source .H > 0/

line produced by the
cancellation of the Gaussian
curvature H=8

K=0

Fig. 12.6 A sink .H < 0/

line produced by the
cancellation of the Gaussian
curvature H=−4

K=0

Fig. 12.7 A sink point
produced by an irrotational
flow with negative mean
curvature of the velocity
potential surface

H=−6
K=8

The index I.v; P / of an isolated singular point P of a vector field v defined on a
surface is, in general, the number of full 2� rotations performed by v when it runs
along an infinitesimal simple closed regular curve around P . The stagnation point
is hyperbolic, and it creates two asymptotic directions along which the fluid runs
away. If the Gaussian curvature of the velocity potential surface is zero (parabolic
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Fig. 12.8 A source point
produced by an irrotational
flow with positive mean
curvature of the velocity
potential surface

H=8
K=4

Flow

Vorticity

x
y

x

Hy

x
y

x

Ky

x

y

Velocity Potential

x
y

x

Hf

x
y

x

Kf

x
y

x

Fig. 12.9 Velocity field for a general two-dimensional flow. The potential and stream function are
plotted, together with the graphics of their mean and Gaussian curvatures
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point), we have a whole stagnation line of points. If the mean curvature is positive,
it is a source line (Fig. 12.5), and if the mean curvature is negative, it is a sink line
(Fig. 12.6). If the Gaussian curvature of the velocity potential surface is positive,
the stagnation point is elliptic, and we have either a sink (H < 0) or a source
(H > 0) point, and two orthogonal asymptotic fluid “escape” directions (Figs. 12.7
and 12.8). To understand what is the relative contribution of each of the potential and
rotational terms in the velocity field, we give some examples. In Fig. 12.9 we
present the velocity field of a general compressible two-dimensional flow with
one stagnation sink-like point. The positive value of the Gaussian curvature of the
potential surface produces an elliptic singular point, and the hyperbolic behavior
of the stream function surface produces a small amount of vorticity to the flow
(counterclockwise rotation of the fluid). In Fig. 12.10 we present a two-dimensional
nearly potential flow. The velocity potential is much larger than the vorticity. The
stagnation point present in the origin generates two orthogonal asymptotic directions
in the flow. The top frame shows how the velocity is orthogonal on level potential
lines.

The bottom frame shows that far away from the obstacle, the velocity is
orthogonal to lines of constant Gaussian curvature. In Fig. 12.11 we present a
two-dimensional real flow with the rotational part enhanced, i.e., the potential is
negligible compared with vorticity. The stagnation point present in the origin does
not produce asymptotic directions in the flow because the mean curvature is not
zero. The top frame shows how the velocity is orthogonal on level stream function
lines. In such a nearly incompressible flow, the mean curvature characterizes the
symmetry of the flow (four lobes), while the Gaussian curvature characterizes the
global rotational aspect of the flow.

12.2 Two-Dimensional Nonlinear Equations

A large number of applications, both in mathematics and in physics (for example hot
and dense thermonuclear plasmas, BEC), are related to the Kadomtsev–Petviashvili
equation (KP) [218]

.�4ut C 6uux C uxxx/x D �3uyy: (12.4)

A soliton solution can be found from the Wronskian form by means of a logarithmic
transformation, and can be put in the form [159]

u.x; y; t/ D .k1 � k2/2
2

sech2
�1 � �2
2

; (12.5)

where the phase functions are given by

�j D �kj x C k2j y � k3j t C �0j :
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Fig. 12.10 Real two-dimensional flow with negligible vorticity, around a stagnation point. Level
lines from top to bottom: velocity potential ˚ , mean curvature, and Gaussian curvature of the
velocity potential graphics S˚ . All superimposed on the velocity field
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By denoting

A D .k1 � k2/2
2

; L D 2

k2 � k1 ; V D �.k
2
1 C k1k2 C k22/;

we can write the solution in a soliton form

u D A sech2
x � .k1 C k2/y � V t

L
:

The nonlinear dispersion relation analysis requests to choose two possible space–
time scales for the two different directions. To remain as general as possible, we
make the following hypothesis

ut D �V1u
 � V2u�;

where 
 D x�V1t; � D y�V2t is the transformation of coordinates into a arbitrarily
diagonally moving frame. It results

L2 D 1

3AC 4V1 C 3V 2
2

;

which describes pretty much the real behavior of the dispersion relation for the exact
soliton solution in (12.5). However, the solutions have long tails, and they are not of
interest for the following topics of this chapter.

12.3 Two-Dimensional Fluid Systems with Boundary

We consider a bounded two-dimensional variable domain D.t/ in R
2 with moving

frontier described by a smooth closed curve � .t/ D @D.t/ of equation r D r.˛; t/,
where ˛ is a time-invariant parameter along the curve ˛ 2 Œ0; ˛max	. We define
for this curve the metrics g.˛; t/, its Serret–Frenet local frame t;n, the curvature
k.˛; t/, and the local velocity of the curve V.˛; t/ D UnCW t, namely (5.3). The
frontier curve (also called contour or free boundary) has a length and encloses an
area, provided by (7.36) and (7.40), with the flows given by

@L

@t
D �kUds; @A

@t
D �Uds: (12.6)

In the following we want to relate the normal and tangent velocities (which are
defined in terms of the r.˛; t/ equation for the contour) to the free surface kinematic
condition (9.5), (9.29), and (9.30), which is expressed in terms of the equation
S.r; t/ D 0. The first formalism represents the Lagrangian point of view, where
we describe the motion of a certain entity (the arc-length of the curve), and we can
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establish a correspondence between a certain value of ˛ and a fluid particle lying
on the surface. The second approach in terms of the function S tells us [167] that
the normal velocity of a particle inside the surface is equal to the normal velocity
of the surface itself, Vn; particle D vn;S D �U , because by definition we have no flux
of particles across the surface � . Like we proved in Sect. 9.5, from S.r ; t/ D 0 we
infer S.r C nıu; t C ıt/ D 0, where ıu is the displacement of the surface toward
its normal direction. From here n D rS

jrS j , and we can write

vn;surface D � 1

jrS j
@S

@t
D �U; or

1

jrS j
@S

@t
D @r

@t
� r: (12.7)

When the contour is parameterized by r D r.˛; t/, we have

jrS j D

s�
@x
@˛

�2
C
�
@y

@˛

�2

@x
@˛

and
@S

@t
D j

@r
@t
� tj

g1=2 @x
@˛

:

These two equations check @r
@t
D UnCW t.

In the following we use polar coordinates for the expression of the contour
function, in the form

x D .RC 
.�; t// cos�; y D .RC 
.�; t// sin �;

where ˚ is a time-invariant parameter, ˛ D � 2 Œ0; 2�/, R is a fixed radius and 

describes the perturbation of a circle into the actual contour. The metric is

g.�; t/ D .RC 
/2 C
�
@


@�

�2
; ds D

s
.RC 
/2 C

�
@


@�

�2
:

We have the Lagrangian velocity of the contour

v.�; t/ D @r

@t
D .
t cos�; 
t sin�/ D UnCW t D vrer C v�e�; (12.8)

where subscripts denote differentiation, and er;� are the polar unit vectors and
velocity components in the radial and angular directions. In polar coordinates,
v D .vr ; v�/ and r D .@r ; @�=r/. The free surface kinematic condition reads in
polar coordinates

vr

ˇ̌
ˇ̌
�

D
�
@


@t
C @


@�

v�
RC 


�
�

: (12.9)
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The tangent to the contour has the expression

t D g� 12 @r
@�
D .
� cos� � .RC 
/ sin �; 
� sin � C .RC 
/ cos�/q

.RC 
/2 C 
2�
; (12.10)

and the curvature reads

k D .RC 
/2 C 2
2� � .RC 
/
��
..RC 
/2 C 
2�/3=2

: (12.11)

From (12.8), (12.10), and (12.11), we obtain the relations between the local normal
and tangent components of the velocity of the curve, and its polar components

vr D �
t
.RC 
/2 � 
2�

g
; v� D 
�
t 2.RC 
/

g
; (12.12)

and

U D �
t RC 

g1=2

; W D 
t 
�

g1=2
: (12.13)

Finally, we write the length of the contour, and the area inside it

L.t/ D
Z 2�

0

q
.RC 
/2 C 
2�d�; A.t/ D

1

2

Z 2�

0

.RC 
/2d�: (12.14)

To find the linear oscillations limit, we assume the variable contour to be very
close to a circle of radius R, i.e., r.�; t/ D R C 
.�; t/ with max j
j  R. The
calculation of the pressure surface needs the expression of the infinite small variation
of the arc-length. We use ıdL D �kUıtds, where k is given in (12.11). However,
to understand how the polar coordinates work in this case, we double-check the
arc-length variation formula, by obtaining it again, through variational calculations
directly in polar coordinates. We introduce an arbitrary infinitesimal variation of the
contour shape ı
, and we have

ıLDL.t; 
Cıxi/�L.t; 
/ D
Z 2�

0

�
RC 
q

.RC 
/2 C 
2�
ı
C 
�q

.R C 
/2 C 
2�
ı
�

�
d�:

After an integration by parts we have

ıL D
Z 2�

0

.RC 
/kı
d�: (12.15)

This result is in perfect agreement with previous expressions for ıL as it can be
checked by substituting ı
 into k.R C 
/ı
d� D �kUıtds.
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In the second order of approximation with respect to ı
, we have

ıL D
Z 2�

0

�
1 � 
��

R
C 2

�� C 
�2

2R2
CO.3/

�
ı
d�: (12.16)

Using the same variational approach, we obtain the infinitesimal variation of
the area

ıA D
Z 2�

0

.RC 
/ı
d�: (12.17)

12.4 Oscillations in Two-Dimensional Liquid Drops

We consider a very flatted drop of equilibrium radius R0 on a horizontal surface,
described in spherical coordinates by the radial coordinate

r.�; '; t/ D R0 sin �
q
.1C �f .'; t//2 C ı2 cot2 �; (12.18)

where � is the ratio between the maximum planar perturbation of the drop from a
circular shape, and ı is the ratio between the vertical height of the drop andR0. That
is ı D 0 will describe a totally flat drop, and ı D 1 will describe an axisymmetric
three-dimensional shape. In the following, � and ı are free small (much less than 1)
parameters in this formulation. The dynamics of the drop is described by oscillations
and waves along the contour � of the drop, i.e., r.�=2; '; t/ D R0.1C �f .'; t//,
so the problem is solved if we find the f .'; t/ shape function. To account for the
surface tension effects, we need to estimate the mean curvature of this drop. From
(10.60) we can write in the first order of smallness in �; ı

H.�; '; t/ D � 1

R0
C r

R20
� r2

R30
C r2'

2R30
� rr''

R30
� rr�
R30
C r2�

2R30

Cr'' C r��
2R20

C O3.r=R0/; (12.19)

with r is the general shape of the droplet, and subscripts denote differentiation. If
we substitute r from (12.18) we obtain in the first order in �

H ' ı2 � 3
2R0

� � .3C ı
2/f C f''
R0

; (12.20)

and consequently the surface tension at the boundary of the drop is given by (10.53)

P D �
�
ı2 � 3
2R0

� � .3C ı
2/f C f''
R0

�
C P0 C O2.�; ı/: (12.21)
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In the following we assume, for simplicity, that the drop is incompressible and
inviscid, and the flow is irrotational, so the velocity is obtained from the velocity
potential ˚.r; �; '; t/. We assume that the horizontal surface of the drop is flat,
so there will be no contribution to the potential energy from this part. The only
important region is � , the closed contour of the drop parameterized by ', where
� � �=2. The dynamics is hence controlled by the Laplace equation for potential
in the bulk, the Euler equation for the contour, and boundary conditions: free liquid
surface on one side and rigid core (if it is the case) on the other side. The general
three-dimensional treatment of the associated linear problem for the dynamics of the
free surface will be given in Chap. 13, Sect. 13.1, and here we will follow the same
procedure. So, in this section we just mention the guiding lines for this simpler
two-dimensional system. We assume the two-dimensional approximation, so the
potential is chosen

˚.r; '; t/ D
1X
lD0

fl .r/ cos.l'/e�i!l t : (12.22)

From4r;'˚ D 0, we have

fl .r/ D Alrl C Bl

rl
: (12.23)

The dynamic equation (Euler equation on the contour) and the two boundary
conditions (the first one from (9.30) and second on the rigid core) are, respectively,

@˚

@t

ˇ̌
ˇ̌
�

D �P
�

ˇ̌
ˇ̌
�

;
@˚

@r

ˇ̌
ˇ̌
�

D �@f
@t

ˇ̌
ˇ̌
�

;
@˚

@r

ˇ̌
ˇ̌
rDa
D 0; (12.24)

where the last condition requests zero normal velocity on a rigid core of radius a.
From these equations we obtain Bl D Ala2l and

!2l D
�l.l2 � 3/

�
1 �

�
a
R0

�2l�

�R30

�
1C

�
a
R0

�2l� : (12.25)

Equation (12.25) describes the linear modes of oscillations of this two-dimensional
ideal drop, for l D 1; : : : . We can make a few remarks. First, the modes l D 1; 2 are
not forbidden like in the three-dimensional case. For no core, or for inner core and
external free surface, this equation gives good results. However, for inner modes,
i.e., when the rigid surface is exterior and the drop becomes a two-dimensional
shell with inner free surface, (12.25) does not work so well because the frequencies
become imaginary. This means that all such internal oscillation modes should
be damped. This equation cannot predict traveling waves along the inner free
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surface, which is actually the experimental situation (see Sect. 12.6). To explain the
existence of traveling modes along the inner contour, one should introduce both
viscosity and vorticity. Indeed, if we keep the irrotational hypothesis, change the
potential structure into

˚.r; '; t/ D
1X
lD0

fl .r/gl .'; t/;

and try to bring more nonlinear terms into the mean curvature (10.60), still the
Laplace equation will force the angular dependence to be linear, i.e., gl.'; t/ !
cos.l' C ˇl.t//, and to have nonzero vorticity, we need the viscosity.

The viscous, yet irrotational, two-dimensional case was recently modeled, for
example in [323], by a numerical boundary integral method. The dynamical
equation used by these authors was an unsteady Bernoulli equation for the potential
flow in the form

d˚

dt

ˇ̌
ˇ̌
�

D 1

2

�
�
�
@˚

@s

�2
D V 2

n

�
� �.s/; (12.26)

where the LHS is the material derivative of the contour, the contour is parameterized
by the arc-length s, Vn is the normal velocity at the contour, n is the normal unit
vector to the contour, and � is the curvature of � . The equation is coupled with area
and energy conservation

A D 1

2

I
�

r � rdA D 1

2

Z L

0

n � r.s/ds; K D 1

2

I
�

jr˚ j2dA D
Z L

0

˚.s/Vn.s/ds:

(12.27)
However, even with this improvements, and even by taking into account
the shear viscosity and the surface dilatational viscosity (see Sect. 8.4), the
solution does not provide stable localized traveling waves like those obtained
experimentally and presented in Sect. 12.5. Only by introducing the vorticity,
one can explain such nonlinear effects. We describe such a nonlinear model in
Sect. 16.6 [340, 341] when we refer to application of contour nonlinear waves in
microscopic systems, so we do not repeat the calculations here. We just mention
that the two-dimensional liquid drop nonlinear approach can predict solitons on the
surface of the droplets, and can even work in the presence of rigid cores, inside or
outside the two-dimensional drop or shell, respectively. The additional condition is
given in (16.86).

12.5 Contours Described by Quartic Closed Curves

An interesting application of the contour dynamics is the planar flow of a drop of
incompressible homogenous viscous fluid through a porous medium [323]. In this
situation the Bernoulli equation is replaced by the Darcy’s law
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V D �crP; (12.28)

where c > 0 is a constant, inversely proportional to the dynamic viscosity �. Since
the potential of flow is harmonic, we can represent it as being generated by a finite
sum of sources and sinks of coordinates rj and intensities

qj D
Z
�j

V � nds;

˚.r ; t/ D
X
j

qj

2�
ln jr � rj j C ˚0.r; t/; (12.29)

where ˚0 is a smooth function defined in the domain, �j are contours surrounding
the sinks and sources, and nj are the principal normals of these contours. The prob-
lem is to find the motion of the boundary of the fluid saturating this porous surface.
The problem is nonlinear, and the solutions, that are the evolution of the boundary
of the planar drops, have an interesting soliton property. Namely, there is an infinite
series of conservation laws associated with this flow. The proof of this property can
be obtained through the Richardson’s integrability theorem [273]. Namely, for any
time variable domain D.t/ of viscous fluid under the hypotheses enounced above,
and for any arbitrary harmonic function in the plane u.x; y/, there is the relation

d

dt

Z
D.t/

udxdy D
nX

jD1
qj u.rj /: (12.30)

As a simple example, for u D 1, the above relation assures the conservation of the
area. The Richardson’s problem is useful mainly since one can reconstruct the shape
of the domain by using these first integrals.

12.6 Surface Nonlinear Waves in Two-Dimensional
Liquid Nitrogen Drops

Some experiments with fluid in rotating vessels, [142], prove the existence of
very interesting nonlinear patterns in almost two-dimensions. Liquid nitrogen
(� D 808 kg m�3, � D 31 dyn cm�1 compared to water � D 72 dyn cm�1, T D
�195:8ıC at P D 1 atm,� D 0:15 cP compared to water 1 cP) is an ideal system for
testing the theory of nonlinear two-dimensional oscillations of liquid drops. Having
very low viscosity but large enough surface tension, and being always “coated” by
a layer of vapors, it can be considered pretty isolated for the container walls. On a
horizontal flat surface, a droplet will take a radius of about 3–15 cm and a height of
about 2 mm which qualify it for a two-dimensional model.
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Fig. 12.12 Internal nonlinear surface waves in a two-dimensional shallow circular layer of liquid
nitrogen around a rigid core (dark ring). Triangular and square modes with amplitude in the range
1–5 mm and rotating with a circular speed of 20–40 cm s�1 are obtained. In the figure the core has
a diameter of 3 cm. The waves are stable for about 4 s, and then brake up because of evaporation
and volume loss

If the droplets are surrounded by rigid contours, they will perform a wide range of
motions because of the fast evaporation process (18.2 g evaporated per hour per Watt
of surface thermal energy). Studies of small droplets of liquid nitrogen have been
performed and several types of waves and patterns have been detected.1 Moreover,
because during the experiment the mass and the volume of the droplets or layer
continuously decrease by evaporation, one can watch in real time succession of
resonant modes and circular traveling waves corresponding to those dimensions
of the system. Basically, on the free contour of the drop we notice initially the
existence of high modes with l D 20–30. Later on, through evaporation, the high
modes decay, and lower modes become more stable. At l D 6 we notice a special
long time stability. After couple of seconds the l D 6 modes transform into lower

1We acknowledge Mrs. Tamika Thomas (NSU and JOVE) who performed the experiments and
obtain the pictures with precision and accuracy.
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Fig. 12.13 Pentagonal internal waves inside rigid liquid nitrogen contours

Fig. 12.14 Traveling and decaying of cnoidal waves on the external contour taken at three
different moments of time

Fig. 12.15 Soliton traveling
on the external free surface of
a two-dimensional layer of
liquid nitrogen
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modes, l D 4; 3, ending up into a fast oscillating dipole which eventually freezes
with water vapors. In the case of a rigid core and very shallow layer (R D 15mm,
h D 4mm), the modes are more stable. We notice a dynamical regime of transitions
between modes because of the loss of mass. The change of modes is accompanied
by change of direction of rotation, in between stable modes, one can notice a sort of
turbulent regime. Also, the localized waves tend to breakup or decay after a couple
of rotations. In addition to the free surface modes, or the modes around a rigid core,
internal modes inside of a hollow ring can be measured. These waves have slower
modes l D 4–8, and the l D 6 mode is very stable. Usually, the waves are powered
by the bubble from evaporation, and sometimes the surface waves travel together
with a trapped bubble in their area. The most interesting patterns are presented
in Figs. 12.12, 12.13 showing rotating triangles, squares and pentagons. Nonlinear
waves, Fig. 12.14, that fit pretty well a cnoidal wave pattern can be noticed on the
external region, and occasionally one can notice the occurrence of a soliton, like in
Fig. 12.15.



Chapter 13
Nonlinear Surface Waves in Three Dimensions

The study of shape oscillations of drops has a wide variety of applications at
different space and time scales. At microscopic scales this includes the liquid
drop models of nuclei, especially heavy nuclei, super- and hyperdeformed nuclei,
nuclear breakup and fission, where the surface energy plays an important role.
They also play a role in the modeling of atomic clusters and clouds of electrons
in high magnetic fields. Zooming out from the AngstrRom scale, the study of drops is
important in the study of motion and swimming of motile cells, and cellular division
in biological systems. Bubble sonoluminescence represents a recent application
of bubbles and droplets formed inside the bubbles [326, 328]. At lab scale there
is a huge spectrum of applications, including container-less liquid processing in
space, rheological and surfactant theory, pharmaceutical industry, mixture of fluids
in droplet form, behavior of long wavelet jets emitted from noncircular orifices,
coalescence of liquid drops [219], and surface oscillations of liquid drops, bubbles,
and shells in combination with surfactants. At larger scales drops are important for
calculations of the radar cross-section of rain clouds, modeling of impacts between
stellar objects and neutron star tides, important for the gravitational waves emitted
by such oscillations.

Nonlinear terms from Navier–Stokes equations and from the boundary condi-
tions usually introduce couplings between modes of oscillations, even between
modes of different nature, like radial and shear ones. Nonlinear terms coming from
the geometry of curved, eventually closed, surfaces provide additional coupling.
One general nonlinear phenomenon introduced by such couplings is the interrelation
between kinematics and shape. For example, in the case of one-dimensional solitary
waves, the dependence of the amplitude and the width on the group velocity is
well known. Similarly, in the case of drops, bubbles, and shells, couplings induce
interesting behavior.

For example, it is known that in the linear case [167], the core of the drop tends
to have potential flow, while next to the free boundary the flow is rather vortical.
This artificial fact is generated by the linear approximations. It can be explained
by the existence of surface singularities of the spherical Bessel functions when the

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 13,
© Springer-Verlag Berlin Heidelberg 2012
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damping constant becomes imaginary and the oscillation modes become weakly
dissipative and even conservative. When we introduce the nonlinear terms in the
model, because of the coupling between the vorticity and shape, the singularity is
removed and the vorticity field is controlled by the local shape, i.e., surface vorticity
is enhanced in regions with large curvature values.

Another example of coupling effects is the physical difference in the behavior of
a flat fluid surface and a curved one. In the plane case the rate of local expansion
of the surface ˙ is given by the surface divergence of the tangent velocity, i.e.,
r˙ � V Î, and usually this term is involved in nonlinear terms in the Navier–Stokes
equations. So, surface elements can have radial displacement without producing
local expansion. That implies radial oscillations to involve no tangent motion at the
surface, and so shear deformation can be absent. This further implies that if we
investigate interfaces with very high coefficient of surface dilatation (elastic and/or
viscous), D ! 1, but small and finite coefficient of surface shear S (also elastic
and/or viscous), the motion is not frozen, and still small oscillations can occur. This
situation happens even if both coefficients have very large values, like in the case of
cellular membranes which are practically inextensible. So, even in the limit S;D !
1 the plane surface can radially oscillate.

However, in the case of curved interfaces, the rate of local expansion contains
two terms, like, for example, in the spherical case

D

�
r˙ � V Î C 2

R
Vr

�
:

Consequently, a dilatation-rigid curved surface (high values for D) will have
the rate of local expansion zero only if it either does not oscillate at all, or it
performs radial oscillations, but these are coupled with tangent motion. So, for an
inextensible curved surfaces, radial oscillations should be accompanied by sliding
at the interface. This tangent sliding involves shear deformation, which is controlled
by S , the coefficient of surface shear. Consequently, it is impossible to have large
values for S , because such values will forbid tangent motions. In conclusion, in
curved fluid interfaces it is impossible to have simultaneously high values for the
coefficient of surface dilatation and the coefficient of surface shear. So, in the case of
closed surfaces it is impossible to have motion under both shear (S ) and expansion
(D) resistance.

Another particularity of free surface oscillations and waves for (nonlinear)
viscous drops is given by the fundamental parabolic nature of the equations (Navier–
Stokes) [263]. That is, given the distribution of the energy balance between the
vorticity terms and the velocity terms, the dynamics of the system is history depen-
dent, hence can be correctly described only through integrodifferential equations.
Indeed, if in the beginning the vorticity is zero, dissipation arises only through the
velocity, i.e., through a term of the form

“
˙

.V � r/V �NdA:
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As the motion develops, vorticity is created at the free surface and dissipates toward
the inside of the drop, introducing another channel of dissipation through the term

•
D

! �!dV:

Consequently, the energy dissipation depends on the vorticity, hence on the past his-
tory of the flow, and so the mathematical description should be integrodifferential.

There are many distinct features between the nonlinear drops and the linear
ones: mode coupling, large amplitude oscillations, frequency shift, cubic or higher
resonances, quasiperiodic motions, surface solitary waves, etc. In the following we
present the Navier–Stokes normal mode approach, and the Lagrangian approach,
for both linear and nonlinear three-dimensional drops with axial symmetry. This
constraint does not introduce too much loss of generality concerning nonlinear
effects, and it does not change the final theoretical expressions for frequencies.
A short history of the models for linear toward nonlinear drops is presented in the
introduction of Basaran [13].

13.1 Oscillations of Inviscid Drops: The Linear Model

In this section we study linear surface oscillations of an isolated (no gravitation,
inert atmosphere) three-dimensional liquid drop with surface tension liquid surface
under three simplifying hypotheses: the flow is inviscid (viscosity coefficients are
zero), incompressible (density �0 D constant), and irrotational (r � V D 0).
These conditions, together with the Euler equation, form a system of seven partial
differential equations (PDEs) for seven unknown functions of three variables:
velocity V , velocity potential ˚ , density �0, pressure P , and the shape function

.�; '; t/ of the free surface of the drop r.�; '; t/ D R0 C 
.�; '; t/. To have
a unique solution we add to this system boundary and initial conditions. The
expression for the surface tension occurs for the first time within the boundary
conditions. For drop without core and for bubbles the boundary condition is taken
only on one closed surface, the free surface of the fluid. For drops with core or
liquid shells we take into account two or more surfaces in the boundary condi-
tions. In the following we use the spherical coordinates .r; �; '/, so for example
V D .Vr ; V� ; V'/.

The flow inside the drop is potential and incompressible, and so the velocity
potential V D r˚ fulfills the Laplace equation 4˚ D 0. In the absence of any
external force field, Euler equation reduces to the Bernoulli equation. In the linear
approximation Bernoulli equation has the form

@˚

@t
D �1

2
.r˚/2 � 1

�0
P ' � 1

�0
P; (13.1)
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where �0 is the constant density. In spherical coordinates and in the same linear
approximation, the kinematic condition for the free surface (9.30) reads in spherical
coordinates

@˚

@r

ˇ̌
ˇ̌
S

D Vr jS D @


@t
C @˚

@�
V� C @


@'
V' ' @


@t
; (13.2)

where the free surface of the drop was defined as r.�; '/ D R C 
.�; '/ and R
is the equilibrium radius of the stationary drop. The general approach of solving
such linear problems is to expand the potential in a convenient series of orthogonal
functions (e.g., (13.5) for spherical symmetry), then solve Laplace equation for the
potential in the corresponding boundary conditions, and then plug the coefficients
of the potential in the free surface equation (13.2) to find the shape 
.

The surface pressure is

PS D P0 C �.�1 C �2/ D P0 C 2�H;

according to (10.35), where P0 is the constant pressure outside the drop. From
Sect. 10.4.6 we have the expression of the mean curvature H in spherical coordi-
nates. According to the hierarchy of orders of smallness in 
=R performed there,
we will use for our linear case orders up to O.2/ in (10.60)

2H D �

R2
C 1

2R2

�
��� C cot ��� C �''

sin2 �

�
: (13.3)

The order zero term 1=R2 in the mean curvature was absorbed in P0 and the sign
of the mean curvature is chosen according to the convention that a positive surface
pressure is directed toward inside the drop. If we differentiate with respect to time
(13.2) and substitute 
 with ˚ , we can write

@2˚

@t2

ˇ̌
ˇ̌
S

' �

�0R2

�
2
@˚

@r
C @

@r
4˝˚

�
S

: (13.4)

Since the potential is a harmonic function, it can be written as a series of spherical
harmonics Ylm , and from the uniqueness warranted by the Cauchy condition
through (13.2) we can determine its time-dependent coefficients.

˚.r; �; '; t/ D
X

l�0;jmj�l
flm.r/Ylm.�; '/ sin.!lmt C 'lm/: (13.5)

From the Laplace equation we have

flm D const.rl C const.

rlC1
; (13.6)

and we introduce this form of potential in (13.4). By using 4˝YlmD
�l.l C 1/ylm, after identification of the coefficients of the spherical harmonics,
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and in the linear approximation .R C 
/l ! Rl , we obtain the normal frequencies
all linear modes of this type of oscillation

!2lm D !2l D
�.l C 2/.l C 1/

R3�0

lAlmR
2lC1 � Blm.l C 1/

AlmR2lC1 C Blm : (13.7)

In the first case, for drops and bubbles, we have no core, and just one free
surface. The fluid domain contains the origin of the coordinate axes, and to have
differentiable solutions, we have to cancel theBlm coefficients. The resulting normal
modes for simple drops are

!2l D
�

R3�0
l.l C 2/.l � 1/: (13.8)

The modes l D 0; 1 are eliminated by the center of mass position conservation and
by the incompressibility hypothesis, respectively.

13.1.1 Drop Immersed in Another Fluid

The second case we investigate is the case of a liquid drop of density �int surrounded
by infinite liquid of density �ext , both in inviscid potential flow. We define the
velocity potential in two distinct regions, inside (r < 
) and outside (r > 
) the
drop, and we match these two functions according to physical continuity conditions
(13.10) and (13.12). The potential in each zone is harmonic, and according to (13.5)
and (13.6), we can write the two expressions by eliminating those terms that become
singular in each zone

˚int DPl;m Almr
lYlm cos.!l t C 'lm/

˚ext DPl;m
Blm
rlC1 Ylm cos.!l t C 'lm/: (13.9)

In the case of two fluids, the linearized free surface condition (13.2) becomes a
continuity condition for the radial component of the velocity vr

@˚int

@r

ˇ̌
ˇ̌
S

D @˚ext

@r

ˇ̌
ˇ̌
rD

D @


@t

ˇ̌
ˇ̌
rD

; (13.10)

where the condition S for surface is again realized by the relation r D 
. From the
first part of (13.10) we have

Blm D � lAlmR
2lC1

l C 1 : (13.11)
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The second matching condition is given by equating the pressures P at the free
surface. We have

@˚int

@t
D � 1

�int
.P C �.�1 C �2//

@˚ext

@t
D � 1

�ext
.P � �.�1 C �2//:

(13.12)

and we have

� �int @˚int
@t
C��ext @˚ext

@t
D 2�.�1 C �2/ D �

�
� 2

R2
� 1

R2
4˝


�
: (13.13)

From (13.10) and (13.13) we obtain, by equating the terms with the same l; m, the
expression of the normal modes frequencies of the two fluids case

!2l D
�l.l C 1/.l C 2/.l � 1/
Œ�int .l C 1/C �ext l 	R3 : (13.14)

This expression was obtained first time by Lamb in Article 275 of [167]. We notice
the absence of the first two modes (l D 0; 1) because of incompressibility and
momentum conservation conditions, respectively.

In the limit �0� >! 0, (13.14) approaches the ideal case of (13.8) for
oscillations of a liquid drop in vacuum (linearized results). In Fig. 13.1, we present
the variation of the frequencies of normal oscillations of such a drop in the linearized
approach, for nine values of l , vs. the ratio of the density of medium over the
density of the drop. Around zero we have the frequencies of free oscillations of
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Fig. 13.1 Frequency of normal modes for a drop of density � submerged in a fluid of density �0,
in the linear approximation, vs. the ratio of the densities �0=� for R D 1 cm
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drops in vacuum, while moving toward the right we increase the ambient density.
For �0=� D 103 we have almost the oscillations of an air bubble in water

!2l;bubble D
�.l C 1/.l C 2/.l � 1/

�extR3
: (13.15)

We notice that in principle there is a “zero” radial mode (l D 0) for bubbles.

13.1.2 Drop with Rigid Core

The third case is a liquid drop containing a spherical rigid core of radius a < R.
Such experimental configurations are easy to obtain for two- dimensional drops,
but rather complicated for three-dimensional drops. However, such a model helps
understanding the dynamics of heavy nuclei, where the external nuclear shells cover
a stable (or even a double) magic number nucleus. They can also be used in motile
cell investigations, where the cell nucleus can play the role of the rigid core. Also, in
some neutron star models, the main dynamic part of the system is a deformable crust
oscillating around a rigid core. For a rigid core the second boundary condition is the
cancellation of the normal velocity at the core surface, .@˚=@r/rDa D vr jrDa D 0.
Again from the continuity conditions we have

Blm D la2lC1

l C 1 Alm; (13.16)

and consequently, the normal modes frequencies of drop plus rigid core in the linear
approximation read

!2l D
�l.l � 1/.l C 2/

�
1 � . a

R
/2lC1

�

�0R3
�
1C l

lC1 .
a
R
/2lC1

� : (13.17)

In Fig. 13.2, we present the frequency of the normal linear modes for a liquid drop
with rigid core. The frequencies are practically equidistant when the core is small,
and approach the modes without core, but tend to decrease to smaller values when
the radius of the core increases. In the limit a� >! 0, (13.17) approaches the ideal
case of (13.8) for oscillations of a liquid drop in vacuum (linearized results).

In the following we calculate the velocity and pressure field within the oscillating
drop. We begin with the coreless drop, and so we put a D 0; B D 0 in (13.16). From
(13.5) we have

˚.r; �; '; t/ D
X

l�0;jmj�l
Almr

lYl;m.�; '/ sin

�s
�l.l C 2/.l � 1/

R3�0
t C 'lm

�
:

(13.18)
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Fig. 13.2 Frequency of normal modes for a water drop with rigid core, in the linear approximation,
vs. the ratio between the core radius and the drop radius, a=R. R D 1 cm

The velocity is given by

v D r˚ D
�
@˚

@r
;
1

r

@˚

@�
;

1

r sin �

@˚

@'

�
: (13.19)

From (13.2) in the linear approximation @
=@t ' .@˚=@r/˙ , by integrating once
with respect to time, we obtain the expression of the shape in terms of the Alm
coefficients of the potential


.�; '; t/ D �
X

l�0;jmj�l

lAlmR
l�1

!l
Yl;m.�; '/ cos

�s
�l.l C 2/.l � 1/

R3�0
t C 'lm

�
:

(13.20)

We consider the shape known at the initial moment of time, and given by


.�; '/jtD0 D
X

l�0;jmj�l
ClmYl;m.�; '/; (13.21)

where we choose 'lm D 0, and Clm are given. By identifying (13.20) at t D 0 with
(13.21) we obtain

Alm D �!lClm
lRl�1

; (13.22)

where !l is given by the core free frequency’s formula (13.8). By introducing
(13.22) in (13.20) and in (13.18) and (13.19), we determined the shape and velocity
field inside the drop at any moment of time. We mention a technical calculation
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detail needed to adjust the form of the coefficients, since the spherical harmonics
are complex functions and the shape and velocity must be real functions. Instead of
(13.20) we use


 D
X
l�2

�
Cl0Yl;0 cos.!l t/C

lX
mD1

.Blm cosm' CDlm sinm'/�lm cos.!l t/

�
;

where �lm are the Legendre generalized functions (Ylm D �lm.�/eim') and the new
coefficients are related to the old ones by

Cl;˙m D .˙1/m
2

.Blm ˙ iDlm/; m > 2:

Then, the velocity potential may be written as

˚ D �
X
l�2

!lCl0

lRl�1
rlYl0 sin.!l t/ �

X
l�2

!lr
l

lRl�1
lX

mD1
sin.!l t/.Blm cos.m'/

CDlm sin.m'//�lm:

In Fig. 13.3, we present some frames during the oscillation of such a liquid drop,
starting from a given octupole shape, as an application of (13.20). In Fig. 13.4, we

Fig. 13.3 Oscillations of an incompressible irrotational liquid coreless drop calculated from a
given initial octupole shape
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Fig. 13.4 Incompressible irrotational liquid drop: shape and velocity field

present the shape and the velocity field at a certain moment of time, with velocity
calculated through (13.18) and (13.19).

In the case of liquid drops with rigid core we use for the shape a similar equation
as (13.20), except we need to make sure that j
j > a at all times


 D R C �R.
X
l�2

Cl0Yl0 cos.!l t C 'lm/

C
X
l�2

lX
mD0

.Alm cosm' C Blm sinm'/�lm cos.!l t C 'lm//:

Here the frequencies !l are calculated by using (13.17). We obtain the following
relation between the initial shape spherical harmonics expansion coefficients Clm
and the solution coefficients Alm

Alm D �R!lClm

l

�
a2lC1

RlC2 � Rl�1
� : (13.23)

The resulting potential has the form

˚ D �R
X
l�2

!lR
lC2

l.l C 1/rlC1
.l C 1/r2lC1 C la2lC1

a2lC1 �R2lC1
lX

mD0
ClmYlm sin.!l t C 'lm/:

With initial condition provided by the initial shape through the coefficients Clm and
'lm, and by using (13.17) and (13.23) we obtain the velocity field and the shape at
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any moment of time. In Figs. 13.5 and 13.6, we present several snapshots of exact
calculation of the shape of the drop linear oscillations plus core.

In Figs. 13.7 and 13.8, we present cross-sections in oscillating drops for two
different core radii. One can notice the effect of the linearization of the free surface
(13.2): oscillations happen only along the normal direction to the surface.

In Figs. 13.9 and 13.10, we present cross-sections and velocity field of oscillating
drops for different core radii and different initial shapes, in irrotational incompress-
ible flow.

Now it is easy to calculate the pressure distribution in the drop, by using (13.1)

P.r; �; '; t/ D ��@˚
@t
:

In Figs. 13.11 and 13.12, we present the pressure field for two oscillating drops
from three different orthogonal cross-sections. We notice that the pressure contour
lines are always perpendicular on the boundaries. Close to the regions of the free
surface where the shape is convex, we remark that the higher pressure contour
lines extend more toward inside. This behavior can trigger different types of
instabilities, or formation of inner jets of higher pressure like in the case of bubble
sonoluminescence, for example.

Fig. 13.5 Linear oscillations of a water drop of equilibrium radius R D 10mm with a rigid core
of radius r D 7mm taken at intervals of 0.25 s. The smallness parameter was chosen � D 0:12, and
we have � D 103 kg m�3 and � D 0:0728N m�1. For these parameters we have !2 D 0:145 s,
!3 D 0:301 s
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Fig. 13.6 Same parameters as in Fig. 13.5 except r D 4mm
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Fig. 13.7 Drop oscillations similar to those presented in Fig. 13.5, shown in a meridian cross-
section
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Fig. 13.8 Same as Fig. 13.7, but for a larger core
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Fig. 13.9 Irrotational incompressible flow for a liquid drop with core

13.1.3 Moving Core

Another interesting situation occurs if we impose a certain type of motion to the
core, a D f .t/. The inner boundary condition becomes Vr.r D f .t// D 0. By
plugging this boundary condition in a general potential of the form



322 13 Nonlinear Surface Waves in Three Dimensions

-0.01 -0.005 0.005 0.01

-0.01

-0.005

0.005

0.01

Fig. 13.10 Same drop as in Fig. 13.9, but for different initial shape

˚.r; �; '; t/ D
X
l;m

�
Alm.t/r

l C Blm.t/

rlC1

�
Ylm.�; '/ (13.24)

we obtain the coefficient relation

Blm D l

l C 1f
2lC1.t/Alm: (13.25)

By following the same procedure as in the constant radius core, and by using the
approximation of small core compared to the equilibrium radius, f .t/  R, and
the linear approximation 
  R, we obtain a differential equation in time for each
coefficient Alm.t/

A00lmRl C
2l.2l C 1/
.l C 1/RlC1 A

0
lmf

2lf 0 C l.2l C 1/
.l C 1/RlC1Alm.f

2lf 0/0

D �.l C 2/.l � 1/
�

Rl�3Alm: (13.26)

This ODE is difficult to be solved exactly in the general case. For an exponential
core motion, like, for example, the expansion of gas bubbles in a fluid f .t/ D bect ,
with b; c constants, we have
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Fig. 13.11 Pressure contour lines for an incompressible irrotational flow in a liquid drop with
rigid core, taken simultaneously in three orthogonal cross-sections



324 13 Nonlinear Surface Waves in Three Dimensions

Fig. 13.12 Pressure contour lines similar with those presented in Fig. 13.11 except for different
initial data of the flow
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A
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lm .t/ D Alm;0 exp

�
lb2lC1

.l C 1/R2lC1 e
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� In
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.l C 2/.l � 1/�
c.2l C 1/p�R3 ;

lb2lC1

.l C 1/R2lC1 e
.2lC1/ct

�
; (13.27)

where In.˛; ˇ/ is the modified Bessel function of the first kind. This expression for
the coefficients is plugged in (13.25), and then back in the potential (13.24) to obtain
the flow. Such a solution can model situations like submarine explosions, see for
example in Thomson [315, Sect. 16.21]. In this section Milne–Thomson supposes
that a spherical cavity containing gas begins to expand rapidly in surrounding
unbounded liquid, such that the gravity can be neglected. The potential can be
approximated with the first singular term in the series (13.24), namely ˚ ' 1=r ,
and introduced in the Euler equation (13.1) it gives

P

�
C 1

2

�
f 2f 0

r2

�2
� f

2f 00 C 2ff 02
r

D C.t/:

The arbitrary function of time C.t/ can be taken zero if the pressure is negligibly
far away from the free surface.

13.1.4 Drop Volume

None of the above calculations guaranties the drop volume conservation. A correct
treatment would request writing the Lagrangian of the drop and imposing volume
conservation as a Lagrange multiplier. Obviously, the volume obtained from 
 is
not conserved, but we can make estimations about the range of error in time for the
volume conservation. In general we have

V D
Z 2�

0

d'

Z �

0

sin �d�
Z RC�
.��t/

a

r2dr: (13.28)

Without too much loss of generalization we expand (13.28) in the situation without
core and we have
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with

V0 D 4�R3

3
; 
 D

X
l�2;jmj
l

ClmYlm cos.!l t C l /:
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The first term on the RHS of (13.29) is zero because all terms inside it have
multipoles larger than 2, which are orthogonal on sin � . The order 2 in � term
contributes only with those products of spherical harmonics YlmYl 0m0 that fulfill the
conditions l D l 0 and m D �m0. The order �3 contains even less nonzero terms, for
example, only those terms fulfilling m1 C m2 C m3 D 0. These triple products of
spherical harmonics are determined by the Wigner 3j -symbols

Z 2�

0

d'

Z �

0

Yl1m1Yl2m2Yl3m3 sin �d� D
r
.2l1 C 1/.2l2 C 2/.2l3 C 1/

4�

�
�
l1 l2 l3
0 0 0

��
l1 l2 l3
m1 m2 m3

�
: (13.30)

In general, the higher the order l , the “less” nonzero terms we have in the
summations, compared to the total “number” of terms. We mention this in the sense
of the measure theory applied to the “number” of terms in the series expansion.
Consequently, the higher corrections are smaller and smaller on the top of the
decrease produced by higher powers of �. In Fig. 13.13, we show the ratio V=V0 for
a l D 4 mode vs. time. To have an estimation of the error we provide an example
in the quadratic order in �. We plot the relative change in volume jV � V0j=V0 vs.
the maximum distance to the center of the free fluid surface, in a certain amount of
time, over R. To estimate this we consider the shape function known, and given in
terms of some arbitrary coefficients Clm of 
, namely

0 0.5 1 1.5
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ε=0.25 lmax=6
Random Clm coefficients

between [−3,3]

Fig. 13.13 Oscillations in the volume of the drop compared to the initial one in time
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where we use the upper bound of the maximum value taken by a spherical function.
The quadratic term in � normalized by the initial volume has the form

ˇ̌
ˇ̌V.O.�2//
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ˇ̌
ˇ̌ 	 V0 C 3�2
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X
l�2;jmj
l

jClmj2 4�

2l C 1
.l Cm/Š
.l �m/Š ; (13.32)

where we use the well-known norms of the spherical harmonics. The ratio between
the two numerical series in (13.31) and (13.32) provides a numerical criterion about
the errors in volume estimations compared to the deformations.

13.2 Oscillations of Viscous Drops: The Linear Model

In this section we study oscillations of three-dimensional liquid drops with
surface tension and viscosity, embedded into a viscous fluid. Rayleigh described
for the first time the small oscillations of a drop of liquid about the spherical
form oscillation in air in Rayleigh [268]. In Article 275 in [167] Lamb
slightly generalized the question by supposing that the liquid globule, of
density �, is surrounded by an infinite mass of other liquid of density �0.
Recent treatment of the same problem can be found in monographes like
[171, Sect. 61], [50, Chap. VI], [147, 332], or in articles like [35, 61, 156, 157,
223, 263–265, 269, 316, 321, 346]. In all these approaches one takes the center of
the stationary incompressible inviscid drop of initial (before oscillations) radius R
as the origin of a spherical coordinate system, and describes the shape of the drop
by the function r.�; '; t/ D R.1C f .�; '; t//. In the linear approach, the velocity,
vorticity, pressure, and the shape of the drop are expanded in modes. That is series
of orthogonal functions: spherical harmonics Ylm.�; '/ for the angular variables,
spherical Bessel functions jl .!r/; nl .!r/ for the radial variable, and trigonometric
functions of time, eiˇl t . We have shown in Sect. 13.1 that the frequencies of linear
inviscid isolated oscillations are

!2l D
�

�R3
l.l � 1/.l C 2/ (13.33)

where � is the surface tension coefficient. The lowest two modes (l D 0; 1) are
eliminated by the mass and momentum conservation, since radial oscillations are
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forbidden by incompressibility, and translation are not interesting. The influence of
the external fluid and of the viscosity generate variations of this basic equation.

13.2.1 Model 1

If viscosity is taken into account, the standard frequency spectrum of the drop
changes (even in the linear approximation), and in addition, the damping of
oscillations occur. Miller and Scriven [223] calculated such oscillations for a three-
dimensional incompressible, Newtonian drop immersed into another fluid, with
viscosity. This type of dynamics of fluid drops occurs in many physical systems
like transfer of one fluid immersed in another fluid, dispersed in small droplets and
offering a large interfacial contact, in emulsions or biological cells. The space is
Euclidean .xi / and so all components of vectors will be considered contravariant by
default, and on the tangent space to the compact surface of the deformed drop we
can use the natural frame given by the outer normal .r/ and the tangent spherical
coordinates. To neglect gravity we consider

gR24�
�

 1; (13.34)

where g is the gravitational acceleration and 4� is the difference between drop
density and exterior medium density. The smallness parameter that controls the
nonlinear effects is 4r

�
 1: (13.35)

That is, if the radial displacement4r (one can take for example 2�r for the order
of magnitude) is small compared to the wavelength of the oscillations along the
surface we are in the linear approximation, and we can neglect nonlinear terms in
the Navier–Stokes equation

@V

@t
D �1

�
rP C �4V ; r � V D 0; (13.36)

with � the viscosity of the drop fluid and4 is the Laplacian. The density is denoted
�, and we also denote by �i;e the density of the fluid inside the drop and outside
it. The general approach to solve the problem is to first eliminate pressure from
the Navier–Stokes equations by using vorticity, then we decouple the radial part
from the angular part in the unknown functions. Because of the Laplace type of
equations we can take profit of representation formulas in Sect. 10.6.2 and calculate
velocity, vorticity, and pressure only from the radial components. Then, by including
the boundary conditions we can write the whole algebraic system of equations to
determine the coefficients of the spherical harmonic expansions. The determinant
of this system will provide the damped modes exponents.
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To eliminate the pressureP we apply a curl operator on (13.36) and we introduce
the vorticity ! D .!rer ; !�e� ; !'e'/ in spherical coordinates,

@!

@t
� �4! D 0; (13.37)

where obviously r �! D 0.
Equations (13.36) and (13.37) can be further reduced to two scalar equations for

the radial components of the velocity and vorticity. This is possible because V is a
divergence-free poloidal field. Once we obtained the radial components it is easy to
calculate the whole vectors by using the representation theorem from (10.81) and
Sani [286]. We have

V D erVr C r2

l.l C 1/
�
r˙
�
1

r2
@r2Vr

@r

�
� er � r˙!r

�
; (13.38)

where r˙ is the surface gradient operator (Sect. 6.5.1).
To decouple the radial and tangent components in the equations we can use the

relation

4
 

3X
iD1

xi!i

!
D 4.r!r/:

Consequently, we obtain from (13.37) the system

�
@

@t
� �4

�
r!r D 0; (13.39)

4
�
@

@t
� �4

�
rVr D 0: (13.40)

We assume that there is no external excitation to maintain the oscillations, so that the
only physical regime will be exponential damping in time. We expand all quantities
in spherical harmonics

.r!r /.r;˝; t/ D
X
l;m

e�ˇl tWlm.r/Ylm.˝/;

.rVr/.r;˝; t/ D
X
l;m

e�ˇl tVlm.r/Ylm.˝/; (13.41)

as well as the pressure itself

P D
X
lm

Plm.r/e
�ˇl tYlm.˝/; (13.42)
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where we denoted the angular spherical coordinates by ˝ D .�; '/. From (13.36)
and (13.42) we obtain for the pressure coefficients that depend only on the radial
components of the velocity. We have the form

Plm D ��

l.l C 1/
@

@r

�
r

�
ˇl

�
C4.rVr /

��
e�ˇl t : (13.43)

or the form

Plm.r/ D ��

l.l C 1/
@

@r

�
r

�
ˇl

�
C 1

r2
@

@r
r2
@

@r
� l.l C 1/

r2

�
rVr

�
; (13.44)

and then use (13.42)

P.r;˝/ D
X
lm

��

l.l C 1/
@

@r

�
r

�
ˇl

�
C4

�
rVr

�
e�ˇl tYlm: (13.45)

By introducing (13.41) in (13.39) we obtain for the radial functions Wlm a
spherical Bessel functions differential equation

r2W
00

lm C 2rW
0

lm C
�
ˇl

�
r2 � l.l C 1/

�
Wlm D 0; (13.46)

with general solution

Wlm D aljl
�r

ˇl

�
r

�
C blnl

�r
ˇl

�
r

�
C hlm; (13.47)

where jl ; nl are the spherical Bessel functions and h is a harmonic function, which
in this case reduces to hlm.r/ D a1l r l C a2l r�l�1. For the radial velocity we obtain
from (13.40) the differential radial equation

�
@2

@2
C 2

r

@

@r
� l.l C 1/

r2

��
�ˇlVlm � �V 00

lm �
2�

r
V

0

lm C
�l.l C 1/

r2
Vlm

�
D 0;
(13.48)

with the solution

Vl D C1rl C C2r�l�1 C C3jl
�r

ˇl

�

�
: (13.49)

We present more details about this solution in Exercise 1 at the end of this chapter.
Solutions of types (13.47) and (13.49) have a polynomial part responsible for the
inviscid type of flow and the Bessel part responsible for viscous flow.

From (13.47) and (13.49) we can write the final explicit form of the radial
components of the velocity and vorticity, and the shape function. First we mention
that we have two types of solutions: external and internal with respect to the
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drop and its exterior environment, labeled by subscripts e; i . In all the following
equations the labels lm are suppressed, but all quantities actually contain them. We
will make a note when we come back to explicit writing of the labels. We denote
e;i D

p
ˇ=�e;i . The free coefficients a1; : : : ; a4 and b0; : : : ; b2 are dimensionless

and B is the speed. We have

Vri D B

�
a1
rl�1

Rl�2
C a3R2 jl .i r/

r

�
e�ˇtY;

Vre D B

�
a2
RlC3

rlC2
C a4R2 nl .er/

r

�
e�ˇt Y;

!ri D BRb1
jl .i r/

r
e�ˇt Y;

!re D BRb2
nl .er/

r
e�ˇt Y;

r D b0Re
�ˇtY: (13.50)

We recall that jl .
/; nl .
/ are the Bessel spherical functions. For properties and
relations the author can use any of the books [5, 129, 238, 281, 284].

The last step is to include the boundary conditions for the surface˙ of the drop.
Miller and Scriven [223] use seven special boundary conditions, namely free surface
(linearized) kinematic condition (9.5), (9.29), and (9.30)

Vri j˙ D dr

dt

ˇ̌
ˇ̌
˙

! ˇb0 C a1B C a3Bj.iR/ D 0; (13.51)

continuity of the radial velocity

Vri j˙ D Vrej˙ ! a1 C a3j.iR/ D a2 C a4n.eR/; (13.52)

continuity of the radial vorticity

!ri j˙ D !rej˙ ! b1j.iR/ D b2n.eR/; (13.53)

and continuity of the surface divergence of the velocity

r˙V i D r˙V e ! a1.l � 1/C a3Œ.l � 1/j.iR/� iRjlC1.iR/	

D �a2.l C 2/C a4Œ.l � 1/n.eR/� eRnlC1.eR/	: (13.54)

We note that j; n without a subscript means jl ; nl , but where it is the case we
wrote explicitly jlC1, etc. For the surface differential operators in (13.54), and in
the following equations, we refer to Sect. 6.5 or Weatherburn [338] and Sani [286].
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Next boundary conditions refer to balance of forces at the interface. Instead of
using the continuity of the three components of the Euclidean forces, it is more
convenient (in the spherical symmetry case) to use other three quantities: radial
component of Euclidean force (Fr ), surface divergence (r˙ � F ), and radial part of
the surface curl (r˙�F ) of the surface force. To write these boundary conditions we
need to introduce some physical parameters specific to fluid interface physics. For
reference the reader can consult [35,223]. We denote like before by � the coefficient
of surface tension, we introduce �l D �elC�i .lC1/ but we shall skip the subscript
l in � , k is the coefficient of interfacial dilatational viscosity, � is the coefficient of
interfacial shear viscosity, � is the coefficient of interfacial dilatational elasticity,
and M is the coefficient of interfacial shear elasticity. If the interface is clean
and simple, the coefficients of interfacial viscosity and elasticity vanish, i.e., K D
0;� D 0;D D 0. On the contrary, very large values for D describe an inextensible
interface like in the case of biological membranes [104]. Also, if S  D we
have an interface where the viscous dissipation of energy is mainly due to the
boundary layer flow in the underlying bulk fluid, and much less due to shearing
deformation. The densities and kinematic viscosities of the fluid inside and outside
the drop are �i;e; �i;e, respectively. Based on these coefficients, it is useful to use the
symbols

Sl D �

R
� M

ˇlR
; Dl D k

R
� �

ˇlR
;

namely S is the combined coefficient of surface shear elastic and viscos-
ity and D is the combined coefficient of surface dilatational elastic and
viscosity.

The boundary condition for the radial component of the surface force can be
obtained from the Navier–Stokes (10.13) in radial coordinates .r; �; '/ [171]

F r D �rr D �P C 2�� @vr
@r
; (13.55)

where it is usual to introduce a correction in the viscosity by taking into account
the interfacial dilatational elasticity since the interface may have elastic properties,
too. Forces of elastic nature depend on the interfacial strain in the same manner that
viscous forces depend on the interfacial rate of strain [223]. The correction is

�! �� D � �D D �� k

R
C �

ˇR
:

From (13.50) and (13.55), and the expression of surface tension (13.43) we can
write for the pressure as the contribution of the internal, external, and surface terms
(where again we skip writing the l subscript for ˇ, etc.)



13.2 Oscillations of Viscous Drops: The Linear Model 333
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where jl ; nl are the Bessel and von Neumann functions and the first term is the
surface tension obtained from the linear fluid drop model in Sect. 13.1, or from
literature, for example in Article 274 from [167], [50, Chap. VI], or [171, Chap. VII].
The derivative of the velocity in (13.55) can be calculated from (13.50) and (13.55)

2.�� �D/@vr;i
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��
: (13.57)

From (13.56) and (13.57) we have the next boundary condition for (13.55)

�b0.l � 1/.l C 2/
R

� a1 �iBˇR
2

l
� a3 �iˇBR

2

l.l C 1/

2
4
�
l C 3

2

�
jl

�s
ˇ

�i
R

�

�
s
ˇ

�i
RjlC1

�s
ˇ

�i
R

�3
5C 2a1B.�i �D/.l � 1/

C 2a3B.�i �D/
�
.l � 1/jl

�s
ˇ

�i
R

�
�
s
ˇ

�i
RjlC1

�s
ˇ

�i
R

��
� �eˇBa2R

2

l C 1

D 2B.�e �D/
2
4�a2.l C 2/C a4

�
.l � 1/nl

�s
ˇ

�e
R

�

�
s
ˇ

�e
RnlC1

�s
ˇ

�e
R

��3
5 � B�eˇa4R2

l.l C 1/

2
4
�
l C 3

2

�
nl

�s
ˇ

�e
R

�

�
s
ˇ

�e
RnlC1

�s
ˇ

�e
R

�3
5 : (13.58)

Similar equations can be written for the surface divergence and radial component of
the surface curl of the surface force [223], where the surface differential operators
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are defined in Sects. 6.5.2 and 6.5.4. Finally, we have sets of seven equations from
the seven boundary conditions in seven unknowns: b0; : : : ; b2 and a1; : : : ; a4, each
set for one value of l . Once we obtained these series coefficients (13.47) and (13.49)
for the radial parts of the velocity and vorticity, it is easy to calculate the full V ;!

vectors by using the representation formula (13.38).
For each l , the system of seven equations splits into two systems, S 2�2 in

b1; b2 and S 5�5 in b0; a1; : : : ; a4, where the first one is responsible for the vorticity
coefficients only. The compatibility of these systems is provided by vanishing
of the corresponding determinants, and this determines the ˇl coefficients. This
decomposition in 2 C 5 equations induces two types of solutions corresponding
to two types of waves.

If we choose solutions with detS 2�2 D 0 and detS 5�5 ¤ 0, the second condition
implies that we have no radial motion vr D 0, and so the wave generated by
these equations are shear waves or purely rotational waves without any oscillations
involved. The first condition provides radial component of the vorticity and hence,
by (13.38) we have only tangent components for the velocity. These waves always
decay in time without oscillations because the corresponding coefficients ˇ are pure
real [35, 223, 293].

In Fig. 13.14, we present a numerical check of this fact for air, water, and
oil. We used �water D 10�6 P, �air D 1:82 � 10�3 P, �oil D 1:5 � 10�4 P,
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Fig. 13.14 The contour plots of the determinant of the system of equations S 2�2 D 0 vs. the real
and imaginary part of ˇ, for two values of l , and different types of fluids. It is easy to see that the
only zeros (closed contours) are along the Imˇ D 0 axis



13.2 Oscillations of Viscous Drops: The Linear Model 335

�water D 103 kg m�3, �air D 1 kg m�3, and �oil D 750 kg m�3 for l D 2; 5. In all
these examples the result does not change with the value of the combined coefficient
of surface shear in the range S D 0! 500 kg s�1.

If we choose detS 2�2 ¤ 0 and detS 5�5 D 0 we obtain solutions with radial
velocity, but zero radial vorticity. The condition of zero determinant provides
complex values for ˇ, hence we have both oscillations and damping. In Fig. 13.15,
we present numerical calculation of the roots of the 5 � 5 determinant to check the
occurrence of both real and imaginary parts for ˇ.

Figures 13.14 and 13.15 provide a numerical estimation of the evolution of the
roots ˇ. To have a better understanding on the influence of physical parameters on
oscillating and damping regimes of the drop, we analyze the exact expression of ˇ
in some special cases. We use the same convention of subscript, i.e., .i; e/ for inner
and outer part of the drop.

In the case of low viscosities, for the droplet configuration, i.e., �e  �i , we can
write the following expressions

0 20 40 60 80 100
-100

-50

0

50

100

Oil drop in water,l=3

0 10 20 30 40 50

Re(b)

Re(b)Re(b)

Re(b)

-60

-40

-20

0

20

40

60

I
m
(

b)
I
m
(

b)

I
m
(

b)
I
m
(

b)

Air bubble in water,l=3

0 10 20 30 40 50

-60

-40

-20

0

20

40

60

Water drop in air,l=3

0 20 40 60 80 100
-150

-100

-50

0

50

100

150

Water drop in air,l=6

Fig. 13.15 The contour plots of the determinant of the system of equations S 5�5 D 0 vs. the real
and imaginary part of ˇ, for two values of l , and different types of fluids. It is easy to see that the
zeros (closed contours) involve both real and imaginary parts of ˇ D 0
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where
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Here we choose to write the ratio of exterior parameters over the inner parameters
to have a formula available for series expansion. The new symbols introduced are

˝L D
r

�

�R3
; Lamb frequency; (13.60)

and
ˇL D �

R2
; Lamb damping factor: (13.61)

In a similar way we calculate the imaginary part of ˇ for the droplet configuration
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In the case of a bubble, �e � �i , we have for the real part of ˇ
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The imaginary part of ˇ for the bubble case is

Imˇl D ˝L;e
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: (13.64)
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From the general behavior of (13.59–13.64) we note that no matter if the system
is droplet or bubble, the damping (real part) depends on both ˇL;i ; ˇL;e , while the
oscillations (imaginary part) depend only on ˝L of the denser medium. Moreover,
we can write

˝2
drop

˝2
bubble

D
�
˝L;i

˝L;e

�2
l

l C 1 D
�bubble;e

�drop;i

l

l C 1 D
l

l C 1 ; (13.65)

meaning that the higher modes, large l , namely the modes with more complicated
shapes, have same frequencies no matter if they are drops or bubbles, but for lower
modes, the droplet system is slower in oscillations.

To figure out how do (13.59), (13.62)–(13.64) work in a case study, we choose a
drop of water of radiusR D 1 cm, � D 73:4� 10�3N m�1, and we plot Reˇ vs. the
mode l and the external density �ext in Fig. 13.16.

From this figure we infer that in the range �e=�i D 0:1 ! 10 the aspect
of the Reˇ.l; �e/ does not change qualitatively. For viscous droplet Reˇ has a
maximum when �e 	 �i and decreases when the two densities become more and
more different. The highest dissipation happens when the densities are equal. If
the exterior viscosity is higher than the internal one, dissipation increases with the

Fig. 13.16 Reˇ for a water droplet, R D 1 cm, � D 73:4 � 10�3 N m�1, submerged in different
fluids
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density of the exterior fluid. For very viscous drops the dissipation increases if the
exterior fluid is less dense.

In Fig. 13.17, we present the imaginary part of ˇ as function of the same
parameters and variables. We notice that the frequency of oscillations decreases
with the density of the exterior fluid and increases with l . However, there is no
significant variation of the frequencies with �e=�i . This happens because in the
expression of Imˇ (13.62) and (13.64), the first term (that one independent of �e) is
always much larger than the second one, and there is no way to increase the second
term for any range of R; �; �i ; �i . Even if we approach �e ! 1 still there is no
significant change in frequencies because this term has a horizontal asymptote in
this limit. If �i increases very much we meet a new qualitative behavior. Imˇ ! 0

and the frequency of oscillations decreases to zero (especially if �e has large values)
until some oscillation modes completely vanish. This is shown by the gap in the
right lower corner of Fig. 13.17. This occurrence of an aperiodic mode on behalf of
annihilation of an oscillating mode when viscosity increases was noticed first time
in Willson [346].

Other limiting situations. For inviscid fluids, �i;e D 0 we have the well-known
Lamb frequencies denoted ˇ in literature [167], [50, (280) and (283), Sect. 98], and

Fig. 13.17 Imˇ for same water droplet, R D 1 cm, � D 73:4 � 10�3 N m�1, submerged in
different fluids
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[269], with

ˇ D i
s
�l.l � 1/.l C 1/.l C 2/
R3Œ�el C .l C 1/�i 	 ; (13.66)

which becomes

ˇbubbles D i
s
�.l � 1/.l C 1/.l C 2/

R3�e
; (13.67)

for bubbles, and

ˇdrops D i
s
�l.l � 1/.l C 2/

R3�i
; (13.68)

for droplets.
For small viscosities, �i;e � 0, it is easy to verify the occurrence of the slip effect

between the exterior and interior fluid layers. In this case the solutions are dominated
by the terms expressed in terms of rational functions, while the Bessel function
terms become negligible. The coefficients a3;4 vanish, which cancels a whole
column in the determinant of S 2�2. Consequently, ˇ becomes pure imaginary, i.e.,

ˇ D ˙i˝L

s
l.l � 1/.l C 1/.l C 2/

l C .l C 1/ �i
�e

:

From (13.50), by neglecting jl ; nl , we obtain a3 D a4 D b1 D b2 D 0. By plugging
this result in (13.38) we obtain a simple relation between the tangent velocities at
the fluid interface

VÎ;i
VÎ;e

ˇ̌
ˇ̌
˙

D � l C 1
l

;

which put into evidence the strong slip effect for this situation.
If the viscosity of the exterior fluid is very large, the imaginary part of ˇ

approaches zero and the real part approaches infinity (Fig. 13.18). Consequently,
the drop enters in a very rapidly decaying mode. For a bubble, �i ; �i � 0, in a
viscous fluid we obtain

ˇ D ˝L;e

s
.l � 1/.l C 1/.2l C 1/R2

2.2l2 C 1/�e ;

while for a bubble in an inviscid fluid (�e D 0) we have

ˇ D .2l C 1/.l C 2/�e
R2

˙ i˝L;e

p
.l � 1/.l C 1/.l C 2/:

Finally, in the limit of inextensible surface (controlled by large values of D
compared to S ) we have large values for Reˇ (see Fig. 13.18). This effect happens
because of the enhancement of the boundary layer flow next to the surface, pretty
much like in the case of flat interfaces.
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Fig. 13.18 The damping coefficient Reˇ for R D 1 cm water drop in vacuum

A comprehensive analysis of small-amplitude axisymmetric shape oscillations of
an isolated viscoelastic drop is performed in the paper [156]. The authors investigate
the characteristic equation for the complex frequency and find exact solutions
in several regimes: high-viscosity limit, viscoelastic drop (for different ranges of
elasticities), low-viscosity limit, and quadrupole oscillations. The same authors
contribute in Kishmatullin and Nadim [157] to the applications of the same model
to the radial oscillations of gas microtubule encapsulated by a viscoelastic solid
shell and surrounded by slightly compressible viscous liquid. These calculations are
useful for research in the medical field, for example, the description of pulsations of
such encapsulated bubbles in the blood flow for ultrasound diagnosis.

As an alternate approach to the drop and bubble shape oscillations in the small-
amplitude viscous case, we mention the work of Prosperetti. Instead of using the
traditional expansion of the potential, velocity, and pressure in spherical harmonics,
in articles [61, 263–265] the author uses a decomposition in terms of poloidal and
toroidal normal modes (Sect. 10.6.3) inspired by Chandrasekhar [50]. For example,
we can represent the vorticity as ! D r � .A Cr �B/ with

A D T .r/Ylm.�; '/e�ter ;

B D S.r/Ylm.�; '/e�ter ;
where the functions T and S describe the toroidal and poloidal modes, respectively.
Next, we can express the velocity

V D A Cr �B Cr�;

with
4� D �r �A:
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Basically, such decomposition still uses the spherical harmonics, but combines them
in more useful way to handle the curl, and curl(curl) operators occurring in the
vorticity equations. We have

V D
X
lm

.V
.1/

lm T lm C V .2/

lm S lm/

where

S lm D r � r � ŒSlm.r; t/Ylmer 	; T lm D r � ŒTlm.r; t/Ylmer 	:

The algebra of these modes is described in Sect. 10.6.3. The radial dependence is
not anymore controlled by spherical Bessel functions, like in the previous section,
but by the Hankel H.1;2/

k and Bessel functions Jn. The resulting equation is related
to the Plesset equation, which lately raised interest in bubble sonoluminescence
problems [328]. The big advantage is that the toroidal and poloidal normal modes
are effectively decoupled. The T modes, where S D 0, describes shape oscillations
of the drop, and one can find the same results that have been obtained by the
previously presented formalism. The S modes (T D 0) describe a motion in
which different shells of fluid rotate about the center, i.e., shear waves or purely
rotational waves. Since there is no tangent restoring force for these modes they will
be aperiodically damped. In Prosperetti [264] an extended analysis on these modes
is presented, for drops and bubbles embedded in fluids of different viscosities.

13.3 Nonlinear Three-Dimensional Oscillations
of Axisymmetric Drops

Like in the case of viscous linear models, nonlinear viscous droplets oscillations
are investigated by solving the Navier–Stokes equations in the incompressible fluid
approximation, by using the same mode expansion. Several theoretical models
describing the nonlinear drop dynamics were developed in the last three decades.
For example, in [237, 321] inviscid nonlinear drops are investigated, and in
[13,203,253,283] the analysis is extended to viscous droplet, but only numerically.
The boundary integral method [203] and the Galerkin-finite element method [13]
give good results in principle, but cannot model drops with viscosities in the physical
range of interest. Also, the finite element methods have been used but limited to low
viscosities, since higher Reynolds numbers require long computational times and a
very fine discretization mesh. Another approach [16] still uses the modes expansion
method for axisymmetric drops, but handles the resulting differential equations by
the variational principle of Gauss.

In the following we describe a theoretical model for the nonlinear axisymmetric
oscillations of viscous drops, which provided a good agreement with experimental
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data and also offers several predictions [16]. We consider a drop of viscous incom-
pressible fluid, uniform surface tension coefficient, � D �i ; � D �i ; � constant,
freely oscillating in a fluid of negligible density, and viscosity, �e D �e D 0. We
study the case of an axisymmetric drop, with the symmetry axis along Oz. We use
polar coordinates .�; z/ so that the interface is parametrized by the shape function

r.�; '; t/ D r.�; t/ D R0ŒA0.A2; A3; : : : /C
X
l�2

Al.t/Pl .cos �/	; (13.69)

where Pl are the Legendre polynomials and A0 < 1, � 2 Œ0; �	. The dependence
of the free term A0 on the other coefficients fulfills the constraint of preserving
constant volume (Sect. 13.1.4).

By momentum conservation the center of mass of the drops moves along the Oz
axis with a displacement s.t/. The law of motion of the center of mass is given by

s.A2; A3; : : : / D 3

8
R0

Z 1

�1
cos �

2
4A0 CX

l�2
AlPl .cos �/

3
5
4

d.cos �/: (13.70)

In the (noninertial) frame of the center of mass the Navier–Stokes equation (10.13)

@V

@t
C .V � r/V � 
ez D �1

�
rP � �r � r � V ;

r � V D 0; (13.71)

where 
 D st t , the acceleration of the center of mass, and ez is the unit vector in the
direction of the Oz axis. By applying r� on (13.71) we obtain

@!

@t
Cr � .V � r/V D ��r � r �!; (13.72)

where ! D r�V is the vorticity. The kinematic condition for the free fluid surface
(see (9.5), (9.29), and (9.30)) reads

V � .rer � r�e� / D r @r
@t
; (13.73)

where e� is the tangent unit vector (Sect. 4.12) and subscripts like r� ; 
t t mean
differentiation. The driving force of the oscillations is the surface tension, which
always acts normal to the surface (see (8.53) and (8.55)), while the tangent stress
here is zero. Consequently, we can write the boundary conditions in the form (8.55)

�ijNj t�;i D 0; �ijNj t';i D 0



13.3 Nonlinear Three-Dimensional Oscillations of Axisymmetric Drops 343

�ijNjNi D 2�H; (13.74)

where we use for the stress tensor its three-dimensional Euclidean components, N

is the unit normal to the surface, t�;' is the spherical coordinates basis of the tangent
space to the surface, and H is the mean curvature of the surface (6.9).

To solve the system of nonlinear equations (13.72)–(13.74) we use the ansatz
inspired by Becker et al. [16] and Brosa [31] and based on the representation
Theorem 30 applied to the linearized version of the (incompressible) Navier–Stokes
equation in an inertial frame

@V

@t
D �1

�
rP � �r � r � V ; r � V D 0: (13.75)

The procedure is a sort of method of variation of constants doubled by an implicit
substitution. Namely, we first build solutions for the linearized version of the
Navier–Stokes equation, and write the velocity, pressure, and shape as series of
spherical Bessel functions in r , Legendre polynomials in � , and exponential in t ,
with constant coefficients. The linear coefficients of these series are calculated at
r D R0, which is again a linear approximation. To move to the nonlinear solution
we couple the coefficients in the velocity and pressure series with the coefficients
in the shape (13.69). In that, we assume that the linear constant coefficients depend
actually on ai . Also, where ever we have R0 in the solutions we substitute it with
r.�; t/. Finally, with these implicit equations at hand, we can run a numerical
code.

From Theorem 30 we know that

V D r � .Qˇ/Cr � r � .Qb/Crc; P D ��@c
@t
; (13.76)

form a solution of (13.75) if ˇ and b fulfill the diffusion equation

�4ˇ D @̌

@t
; �4b D @b

@t
;

where c is harmonic function4c D 0 and Q D r �const. From the above conditions
we can build solutions for ˇ and c

ˇ; b � e��t jl
�r

�

�
r

�
Ylm

c � e��t
�
r

R0

�l
Ylm; (13.77)

where we eliminated the second type of spherical Bessel function from the solution,
nl , as being singular in r D 0. We obtain
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r � .rˇ/ D 1

sin �
ˇ'e� � ˇ�e';

r � .r � .rb// D l.l C 1/
r

ber C
�
b�r C b�

r

�
e� C

�
b'r

sin �
C b'

r sin �

�
e';

rc D l

r
cer C c�

r
e� C c'

r sin �
e';

where subscripts denote differentiation and fer ; e� ; e'g is the orthonormal basis in
spherical coordinates (Sect. 4.12). The velocity field (13.76) becomes

V D er
l.l C 1/b C lc

r
C e�

�
ˇ'

sin �
C br� C b� C c�

r

�

C e'

�
�ˇ� C 1

sin �

�
br' C b' C c'

r

��
: (13.78)

Because the fluid flow is divergence free, the divergence-free Newtonian tress tensor
can be written in the form

�ij D �
�
@V i

@xk
C @V k

@xi

�
: (13.79)

The boundary conditions (13.74) in spherical components are

�ij NiNj D �rr ;

�ij Ni t�;j D �r� ; �ijNi t';j D �r': (13.80)

By using (13.79) and (13.80), we obtain the components of �ij in spherical
coordinates. For reference, these components can be also found in literature, like
for example in Landau and Lifchitz [171].

�r� D �
�
1

r

@Vr

@'
C @V�

@r
� V�
r

�
;

�r' D �
�

1

r sin �

@Vr

@'
C @V'

@r
� V'
r

�
;

�rr D �P C 2�@Vr
@r
: (13.81)

If we want to eliminate the interface slip (that is not to take into account this
phenomenon in our present solutions) we need to equate �r' D �r� D 0. To do this,
the only possibility is to choose ˇ D 0, otherwise ˇ and b have always Ylm terms
of different orders, and it is impossible to balance the tangent stresses. Using this
ansatz and taking profit of the cylindrical symmetry of the present model we have
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V l D e��t
�
b0l r � r �

�
rjl

�r
�

�
r

�
Pl.cos �/

�
C c0l r

�
r

R0

�l
Pl .cos �/

�
;

Pl D ��e��t c0l
�
r

R0

�l
Pl .cos �/; (13.82)

where b0l and c0l (in m2 s�1) are so far arbitrary initial conditions for the coefficients.
The coefficients bl describe the vortex flow and the coefficients cl describe the
potential flow.

It is natural to introduce now the hypothesis that the coefficients al .t/ of the
shape function (13.69) have the same type of time dependence, to fulfill the
kinematic surface condition (13.73)

al .t/ D a0l e��t : (13.83)

We plug (13.81–13.83) in the kinematic condition for the free interface (13.73), and
in the normal and tangent stress (13.74), we obtain a 3� 3 set of linear homogenous
systems of equations, one for each l , in the unknowns al ; bl ; cl . We need to make
some dimension adjustments to have in the end dimensionless determinants for the
systems. Where ever it occurs, we substitute jl;rr with

jl;rr

�r
�

�
r

�
D l.l C 1/

r2
jl � �

�
jl � 2

r
jl;r ;

from the corresponding spherical Bessel [5, 238, 284]. From now on we will denote
the differentiation with respect to r with a prime, a second, etc. For example
jl;r D j 0

l . Also, we introduce an arbitrary constant B of dimensions m2 s�1 and
rescale the coefficients Qbl D bl=B and Qcl D cl=B . With all these, we can write the
equation for the determinant of the system of order l , taken at r D R0 as linear
approximation. This equation gives the compatibility condition for the systems and
it results in the admissible values for �. With the equations of the system in the order
(from above) (13.73), (13.74) tangent, and (13.74) normal

det

0
BBBB@

�R0
l.lC1/jlB

R0

lB
R0

0 B

�
2l.lC1/
R20
� 2

R20
� �

�

�
jl � 2Bj

0

l

R0

2.l�1/B
R20

� �.lC2/.l�1/
R0

2B�l.lC1/
R0

�
j

0

l � jl
R0

�
B

�
���C 2�l.l�1/

R20

�

1
CCCCA D 0�

(13.84)

With the notations

X D R0
r
�

�
; ˛ D

�
��l.l � 1/.l C 2/R0

��2

� 1
4

; (13.85)
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the determinant (13.84) becomes

jl .X/

�
�4l2.l � 1/.l C 2/� 2l ˛

4

X2
C 2.2l2 � 1/X2 � X4 C ˛4

�

CXj 0

l .X/

�
�2X2 C 4l.l2 C l � 2/� 2˛

4

X2

�
D 0: (13.86)

This equation was obtained, for example, in Becker et al. [16] and same equation,
in a different notation, is noted by Chandrasekhar in (280) of Article 98 in [50].
Equation (13.86) is a transcendental equation in �, which allows only numerical
solutions. As a check, we will expand it in the asymptotical limit � ! 0, i.e.,
x !1. For the spherical Bessel functions we use the asymptotic formulas

jl .X/! 1

X
sin

�
X � �l

2

�
;

Xj
0

l ! cos

�
X � l�

2

�
� 1

2X
sin

�
X � l�

2

�
;

and we obtain

�2 ! !
�l.l � 1/.l C 2/

�R30
; (13.87)

which is exactly the linear limit for the inviscid droplet oscillations (13.33), (13.68),
and also [50, 167, 171]. In the approximation of small viscosity, (13.86) reduces to

X4 � 2.2l C 1/.l � 1/X2 � ˛4 D 0

with exact solutions

�i;l D .2l C 1/.l � 1/�
R20

˙
s
�l.l � 1/.l C 2/

�R30
�
�
.2l C 1/.l � 1/�

R20

�2
; (13.88)

where i , called the radial wave label, counts the solutions of the polynomial
equations, and l is called here the polar wave label. In this form, the solution for the
damping and oscillating modes was obtained in [16, 167, 264, 265]. In Fig. 13.19,
we present some numerical results for the general equation for � (13.86). We plot
the value of the determinant (LHS in (13.86)) function of X D R0

p
�=� > 0

parameter for several values of l and ˛. The real roots are numerically obtained and
are represented by vertical bars in the figures. These roots form an almost periodic
countable set and they are responsible for the damping or aperiodic modes. The
real roots have a rather weak dependence on ˛ (upper frames in Fig. 13.19), even
if ˛ runs in the range 5–107. This means that the aperiodic modes, especially the
strongly dissipative modes for high values of real �, are not very much influenced by
the actual surface of the drop. These are modes of internal velocity fields that leave
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the drop surface at rest [16]. However, the dependence on l for fixed ˛ is stronger
(lower frames in Fig. 13.19), i.e., the roots are slightly shifted. This calculation
also predicts existence of dissipative modes for l D 1, when the shape is not
deformed.

The solutions of (13.86) depend on two labels i and l , where i labels solutions
for a given l . We plug these solutions for Xli into the systems of equations,
and we calculate the series coefficients for the velocity, pressure, and shape. We
introduce a different notation for the initial values of the coefficients a; b; c, namely
A.0/; B.0/; C.0/. We have

V .r; �; t/ D
X
l

X
i

e��li t ŒBli .0/bli .r; �/C Cl.0/cl .r; �/	; (13.89)

where we defined

bli .r; �/ D l.l C 1/
r

jL

�
Xli

r

R0

�
Pl.cos �/er

�
�
Xli

R0
j

0

l

�
Xli

r

R0

�
C
jl

�
Xli

r
R0

�

r

�
P

0

l .cos �/ sin �e� ; (13.90)
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Fig. 13.19 Determinant in (13.86) plotted against X parameter showing real roots (the vertical
bars) responsible for dissipative modes. The upper frames show a weak dependence of the real
roots on ˛, but the lower frames show some shift in the roots induced by different l
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cl .r; �/ D lr l�1

Rl0
Pl.cos �/er � r

l�1

Rl0
P

0

l .cos �/ sin �e� : (13.91)

r.�; t/ D R
�
A0 C

X
l

X
i

Ali .0/e
��li tPl .cos �/

�
: (13.92)

To introduce the contribution of nonlinearity, we generalize (13.89) to the form

V .r; �; t/ D
X
l

X
i

Bli .t/bli .r; � IAk/C
X
l

Cl .t/c l .r; �/: (13.93)

This nonlinear ansatz consists of two main ideas. On the one hand it is breaking the
fixed coupling between the time evolution of the vortex flow and the potential flow.
The new coefficients Bli .t/ and Cl.t/ are independent, compare new (13.93) with
the previous linear (and exponential time dependence) equation (13.89). This linear
coupling assures that the tangent stress of any mode vanishes at the undeformed
drop surface.

On the other hand, the nonlinear ansatz introduces the implicit dependence
between the geometry and the dynamics. This is the typical shape-velocity coupling
for nonlinear systems. For example, in the case of a one-dimensional Korteweg–
de Vries soliton, the shape (amplitude A, width L) is coupled with the dynamics
(velocity V ) in one equation L � const.=

p
A˙ const.V . In the Korteweg–de Vries

case this happens because we obtain the velocity field of the fluid directly from
the shape [169]. In this sense, the introduction of the dependence on the shape
coefficient is justified. In the nonlinear drop case this coupling is introduced in
two ways. One way is to let the vortex velocity coefficients bli to depend on the
shape coefficients Ali .t/. The second way is to consider the radius as variable and
substitute everywhere in the velocity equationR0 ! r.�; t/. The coefficients of the
vortex velocity become

bli D b0lir � r �
�
jl

�
Xli

r

r.�; t/

�
rPl.cos �/

�
:

To eliminate the confusion between r as variable and r as shape function we denote
from now on r.�; t/ D 
.�; t/. The above expression becomes

bli D b0li .Ak/
��
Xli


2
Pl

sin �

�
2
�



j

0

l � 
��j
00

l �
Xli 


2
�


2
rj

00

l � 
�j
0

l

�

C jl

r
.P

00

l sin � � P 0

l cot �/

�
er
Xli


2

�

�

r
j

0

l Pl C
Xli 
�



j

00

l Pl

C 
 sin �

r
j

0

l P
0

l

�
e�

�
: (13.94)
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With the b coefficients from (13.94), and the c coefficients from (13.91) plugged in
(13.93) we have the velocity in explicit form, depending on the Ak coefficients. The
vorticity can be calculated in a similar way

! D
X
l

X
i

b0li .Ak/r � r � r �
�
rjl

�
Xli

r




�
Pl

�
e� : (13.95)

The final step in solving the nonlinear drop dynamics is to plug (13.69), (13.93), and
(13.95) in the kinematical and dynamical (13.71–13.73), and minimize numerically
the mean square errors.

A first consequence of taking into account the nonlinearities by the coupling
between shape and vorticity is the generation of a more realistic dependence
of vorticity on the distance to the center of the drop. In the linear case, the
drops experience a singular concentration of vorticity in a thin layer below the
drop surface for the weakly damped modes. For such modes � is dominantly
imaginary and spherical Bessel functions of imaginary argument have exponential
growth. In the nonlinear case, because of the dependence bli .Ak/, the vorticity
depends strongly on the shape. Numerical simulations show [16] an increase of
vorticity below the surface where this has larger curvature and a diminishing of
the vorticity under neighborhoods with low curvature. The flow in the bound-
ary later becomes dominant when the Reynolds number, R D .�R0=�/

1=3��1,
exceeds 1,000 [13]. Still, the asymptotic behavior of the spherical Bessel functions
next to the surface is in effect, but is controlled by the coefficients Ak . This
thin exterior layer of finite vorticity effect, also noticed [167], is again a direct
consequence of the introduction of nonlinearities. Like in the one-dimensional
soliton case (which we use here like a Guinea pig for comparison) nonlinear
waves tend to occur rather in thin layers than in deep layers. Consequently, in
numerical models based on the above calculations, one can split the drop in a
thin exterior boundary layer where (13.94) and (13.95) are used for calculation of
velocities and vorticity, and the nonlinear effects are dominant, and an inner core of
spherical shape where the flow is dominantly potential [16, 203]. This approach
is also used when the nonlinearities becomes stronger, like we will present in
Sect. 13.3.1.

Following numerical minimization of the mean square errors of the above
solutions, one can note the occurrence of specific features of the nonlinearity.
The most important result is probably the fact that linear predictions are not anymore
valid for modes with l > 3 and/or for Reynolds number larger than 100. For
such higher modes the nonlinear shapes become less symmetrical and the time
scale changes. Lower modes oscillate more slowly than higher modes, and higher
modes decay faster than lower modes, and do not reach their linear solutions.
Another typical nonlinear effect is the coupling between different modes. Through
the dependence bli .Ak/ higher modes, of lower energy, can be generated by strong
nonlinear coupling with lower modes. This effect can be detected if the coupling
between two modes is time persistent and it does not depend on the initial conditions
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of the drop motion. For example, if we set up the initial condition with a certain
shape described by a multipole of order l0 (this can be experimentally done by
applying ultracoustic waves or variable electric field on levitated droplets), after
a while, new modes are excited (the new modes appear to have always the same
parity as l0) and an amplitude-dependent shift in the frequency of the initial mode
is noticed. The higher modes dissipate faster than the lower ones because the mode
coupling is inhibited by increase in viscosity, and so higher modes have no energy
reserves to survive and die out. The coupling between modes can be detected either
by checking for the coincidence in time of the extrema and zeros of different modes
(Fig. 13.20), or by plotting the shape coefficients Ak of different modes in a phase
space, i.e., plot one coefficient vs. another one in time.

Another effect induced by the nonlinearity is changing the relations between
the frequency, viscosity, and the amplitude of oscillation. For small amplitude
oscillations the frequency decreases monotonically with the increase of the viscosity
[264, 265]. In the nonlinear case the frequency has a maximum at a value different
from � D 0 [13, 318]. Not only the frequency is affected by nonlinear couplings,
but also the periodicity of oscillations. For drops undergoing l D 2 modes there
is slight tendency to spend more time in the prolate shape than in the oblate one
(about 60–70% more) [321]. This asymmetric type of oscillation is a sign for the
occurrence of nonlinear surface waves, like, for example, cnoidal waves. Such
nonlinear waves can trigger the occurrence of solitary waves on the surface of the
drop, and for stronger oscillations, can even initiate the breakup of the drop. In
Sect. 13.3.1, we will show how the resonant approach will clarify the existence of
such time asymmetric oscillations. Extensive examples of numerical simulations of
shapes of nonlinear drops can be found in [13, 203, 321].
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Fig. 13.20 An example of how the coupling between two different modes, k and j , can be
detected by checking the simultaneous occurrence of their zeros and extrema in time
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13.3.1 Nonlinear Resonances in Drop Oscillation

The approach toward analysis of nonlinear oscillations of drops presented above
is based on substitution of amplitude-dependent corrections in the linear solutions.
In this process, nonlinear terms that may have the same spatial dependence and
frequency as some linear terms (secular terms) can alter linear oscillations in
an unexpected way, or can build blowup solutions. Such solutions grow in time
enough fast (usually polynomial law) to disturb the perturbational structure of the
system. A nonlinear mechanism responsible for such situations is the existence
of resonant terms. By definition, resonance involving two or more linear normal
modes is possible when the frequencies of these modes are commensurate, i.e., if
a linear combination of the frequencies with integer coefficients is zero. For the
inviscid drop oscillations, for example (13.8), the typical low modes resonances are
!4 ˙ 3!2 D 0; !8 ˙ 2!5 D 0, and !16 ˙ 2!10 D 0, in general

NX
jD1

kj !lj D 0; kj ; lj 2 Z: (13.96)

Such resonances occur usually in the third order of approximation in the amplitude
(smallness parameter being in this case �, the ratio between the amplitude of the
oscillations and the radius of the drop in equilibrium) either by cubic self-interaction
of the linear modes or by interaction between the linear modes and second-order
harmonics [236, 237, 321]. There is one more interest in studying resonances.
They produce couplings between modes that allow transfer of energy and angular
momentum between these modes in addition to the usual amplitude dependence
frequency shifts discussed in Sect. 13.3.

For an inviscid linear drop the frequencies are given by (13.8). In Fig. 13.21, we
present all possible resonances between modes up to l D 100, in comparison with
the possible resonances for a bubble in linear oscillations in an inviscid fluid (13.14).
The interacting modes are denoted with n;m and the resonances are denoted by
symbols. The above mentioned resonances for drops are presented in this figure. We
notice that the resonances for drops differ from those for the bubbles. In Fig. 13.22,
we present the evolution of possible resonances for an inviscid linear drop with rigid
core of radius a D �R0 (13.17), function of the radius of the core. In this figure each
sector of circle represents a resonance, and the angle of this sector is related to �.
For example, no core is represented by a black sector lying between 0 and �=6, an
� D 0:1 core resonance is represented by a black sector lying between �=6 and
2�=6, etc. In this way we can identify the figure resonances that persists when the
core grows or resonances vanish. Of course l D 100 is nonrealistic, but it just gives
an idea about the distribution of the resonances in this discrete phase space. For
example, the traditional resonances at n D 5;m D 8, n D 10;m D 16, n D 11,
andm D 96 are pretty stable no matter of the radius of the core, while lower modes
resonances vanish when the fluid layer becomes thinner. The dependence of the
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Fig. 13.21 Comparison between the resonances of linear oscillating modes !n and !m (n < m)
for a three-dimensional inviscid drop (stars) and a bubble (squares)
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Fig. 13.22 Each sector of circle represents a resonance between two linear oscillating modes !n
and !m (n < m) for a three-dimensional inviscid drop with rigid core. � is the radii ratio core/drop.
While the core extends (in the figure the black sector rotates CCW) some resonances vanish, some
new occur, and some are stable
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resonance pairs from the core is not a simple or smooth function because it is given
actually as a solution of a two-dimensional diophantine equation with parameter.
Unexpected new resonances can become abundant next to a situation where there are
no resonances. For example, in Fig. 13.22, we have for � 2 Œ0:4; 0:8	 in between four
and six resonant pairs, but for � D 0:63 we have nine resonant pairs. A numerical
estimation of the density of resonances in this discrete phase space function of the
radius of the core can be performed by applying the Rouche theorem for complex
functions [303] to the function

f .n;m; �/ D sin

�
P�

!n.�/

!n.�/

�
:

For a given core (i.e., �), when the two frequencies are commensurate, the function
f .n;m; �/ becomes zero if the integer P is chosen sufficiently large in the domain
of definition of n;m. Then we can estimate the number of zeros of f for fixed n
and � as a function of m, i.e., the number of possible resonances with a given n, in
a given range, by the Rouche formula

Nzeros D 1

2�i

I
�

F 0. Om/
F. Om/ d Om;

where � is a contour surrounding the real domain of definition for n;m,
F.z/ D f .n; z; �/, and Om 2 C is prolongation of m in the complex plane. In
Fig. 13.23, we present such an estimation for � D 0:7 and n;m 2 Œ2; 100	.
The possible resonances can be found by looking for closed contours in the
figure.

An efficient tool for the resonances analysis is the Lagrangian approach [202,
236, 301, 342], if the hypotheses of the flow allow its existence. For an inviscid
isolated incompressible drop in potential flow we define its Lagrangian in spherical
coordinates as the functional LŒ˚;˚� ; ˚'; ˚r ; ˚t ; 
; 
� ; 
' ; 
t ; ıP 	, where ˚ is
the velocity potential, 
 is the shape function defined here in the form r j˙ D
Qr.�; '; t/ D R0.1 C �
/, and ıP is the difference between the ambient pressure
and the pressure for the spherical equilibrium shape. The action is the integral of the
Lagrangian taken between two fixed moments of time. The Lagrangian depends also
on the derivatives with respect to the coordinates and time. The Lagrangian density
contains a term responsible for the kinetic energy density of the drop �V 2=2, one
for the surface tension potential energy �dA and a Lagrange multiplier term for the
volume conservation V D 4�R3=3. So the Lagrangian reads

L D
•

V

�.r˚/2
2

dVC
“
˙

�
� C ıP

� Qr3
3
� V
4�

��
dA; (13.97)

where V is the volume of the drop, ˙ is the boundary of the drop, � is the
density, and dA is the spherical area element. The parameter ıP works here
as a Lagrangian multiplier. In spherical coordinates r D .r.�; '; t/ sin � cos';
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Fig. 13.23 Structure of possible resonant pairs for an inviscid drop with core

r.�; '; t/ sin � cos'; r.�; '; t/ cos �/, we have the first fundamental form coeffi-
cients (Sect. 6),E D r2Cr2� ,G D r2 sin2 �Cr2' , andF D r� r' . The area element is

dA D
p
EG � F 2d�d' D r2

s
1C r2�

r2
C r2'

r2 sin2 �
sin �d�d':

With these notations the Lagrangian reads

L D �

2

Z 2�

0

Z �

0

Z Qr
0

�
˚2
r C

˚2
�

r2
C ˚2

'

r2 sin2 �
� 2˚t

�
r2dr sin �d�d'

C
Z 2�

0

Z �

0

�
� Or2

�
1C 
2�


2
C 
2'


2 sin2 �

�1=2

C ıP
� Or3
3
� V

4�

��
sin �d�d': (13.98)

Next step is to expand the velocity potential and the shape function in series of
orthogonal functions
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.�; '; t/ D
X
l

�l.t/Ylm.�; '/;

˚.r; �; '; t/ D
X
l

Cl .t/r
lYlm.�; '/; (13.99)

where the r dependence is imposed by the constraint that any term of the sum
(13.99) should fulfill Laplace equation and should also be so regular in origin
[236, 237]. We plug (13.99) in the Lagrangian equation (13.98) and write the
corresponding Euler–Lagrange equations

d

dt

@L

@ P�l
� @L

@�l
D 0;

d

dt

@L

@ PCl
� @L

@Cl
D 0; (13.100)

where the dot represents differentiation with respect to time. The general analysis
of these equations is a difficult algebraic task. For this reason the Euler–Lagrange
equations are expanded themselves in series with respect to the smallness parame-
ter �. Order zero is always identical zero, and so the main analysis is concentrated
on the second and third orders in this formalism. The time variation of the physical
quantities is divided into two disparate time scales: the fast time scale of the primary
oscillations (usually linear oscillations excited from initial conditions) and the slow
time scale on which the amplitude and frequency are modulated because of the
nonlinear coupling. The fast time scale is the time parameter t itself, while the slow
time scale is taken as an independent coordinate t1 D �t .

In the second order in �, the Euler–Lagrange equations are still linear so that
the time dependence of �l and Cl is exponential, i.e., �l ; Cl � ei!l t . Moreover,
the linear structure of the differential equations in (13.100) in order �2 allows us to
reduce “half” of the system. Namely, we will obtain linear relations between the
coefficients of the potential and shape function series expansions [236]

Cl D C0
l .!l ; l/�l ; (13.101)

where C0
l are obtained directly. For example, in the case of three-dimensional

inviscid isolated incompressible irrotational drop, we obtain in this order C0
l D�i!l= l .

The coefficients in front of this exponential are not considered constant, like in
the linear theory, but they are allowed to depend on the slow time scales to account
for the resonant modulation of the amplitudes and the frequencies of the primary
oscillations. This next step could be approached either by numerical procedures or
by focusing on certain modes and trying to find the behavior of resonance modes.
Under these approximations we chose to limit the t-time dependence of the potential
and shape only through a finite number N of frequencies, namely those fulfilling a
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resonance condition of the type (13.96). From (13.101), for anN -coupling, we have


.�; '; t/ D
NX
jD1

�j .�; '; t1/e
i!lj t

˚.r; �; '; t/ D
NX
jD1

rlj C 0
lj
.!lj ; lj /�j .�; '; t1/e

i!lj t : (13.102)

This substitution reduces the infinite number of equations in (13.100) to a finite
number, reducing hence the dynamical problem to a description of the interaction
of N resonant modes. Next, we plug (13.102) in L and we average L over the
most rapid time scale. The procedure works if this fast scale is small compared
to the other slow modulation scales. We assume, without loss of generality, that
we can average with respect to the first frequency, !l1 . Through this proce-
dure the averaged Lagrangian density becomes a functional depending only on
LaveŒlj ; !lj ; �j .�; '; t1/	. When we plug the finite sums (13.102) in the quadratic
terms in (13.98), we obtain the coupling terms, as quadratic products of coefficients
�lj �lk . We expand again the N selected � coefficients in terms of spherical
harmonics over the shape degeneracy of the frequencies

�j .�; '; t1/ D
ljX

mjD�lj
�0
lj ;mj

.t1/Ylj ;mj .�; '/; (13.103)

and write again a new set of N Euler–Lagrange equations for �0
lj ;mj

.t1/ that
emerges in the form

d�0
li ;mi

dt1
D

NX
kD1

NX
pD1

lkX
mkD�lk

lpX
mpD�lp

E
li ;mi
lk ;mk;lp ;mp

�0�
lk ;mk

�0�
lp ;mp

; i D 1; : : : ; N;

(13.104)
where � represents complex conjugation. Equation (13.104) is a nonlinear ODE sys-
tem of N C 2PN

jD1 lj equations. The coefficient matrix E is not symmetric. Equa-
tion (13.104) represent a system of generalized Riccati-type equations (Sect. 18.2),
and consequently, we expect it to have first integrals. For quadratic coupling the
two first integrals are the total energy and the angular momentum [236]. In general,
for higher orders of nonlinear coupling it is rather the exception than the rule to
find N C 2

PN
jD1 lj first integrals, unless the system is integrable, and it has an

infinite number of invariants and hence soliton solutions. Otherwise, the system
behaves stochastically. The system (13.104) has always trivial stationary solutions

of the form �0
lj
D ı

lj 0
lj

const. for some j0 D j1; : : : ; jN . This is an oscillation with
frequency !lj0 corresponding to a unique mode, with shape degeneracy of the order
2lj 0 C 1.
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The interesting solutions are the time periodic ones. To accomplish an exact
calculation we choose a quadratic resonance N D 2 similar to those presented
in the beginning of the section, k1!l1 C k2!l2 D 0; k1;2 2 Z. In this case the
system (13.104) reduces to two ordinary differential equations in t1, in the two �0

functions. We mention that, because we integrate the initial Lagrangian over the
period of one of the two resonant frequencies, say !l1 , the averaged Lagrangian is
not symmetric in the two frequencies or in the two shape functions�0. We have

d�0
l1;m1

dt1
D

l2X
mD�l2

l2X
nD�l2

A
l1;m1
l2;l2;m;n

�0�
l2;m
�0�
l2;n

d�0
l2;m2

dt1
D

l1X
mD�l1

l2X
nD�l2

A
l2;m2
l1;l2;m;n

�0�
l1;m
�0�
l2;n
; (13.105)

where the coefficients A are obtained directly from (13.104), and in general are
represented by products of 3 � j symbols and rational functions of l1;2 [236, 237].
To work a simple example we assume that we confine all the energy of the drop
in one single component of each of the l1;2 modes. This reduces the summations
in (13.105) to one single term in the RHS of each equation, and for compatibility
reasons this is m D m1 D �2m2 D �2n

d�0
l1;m1

dt1
D A1.�0�

l2;m
/2

d�0
l2;m2

dt1
D A2�0�

l1;m1
�0�
l2;m2

; (13.106)

where A1;2 is just a simplified way of writing the coefficients from (13.105) in the
no-summation case. In the following, we use a procedure similar to those used in
the nonlinear Schrödinger equation, namely break the functions in a magnitude and
a complex phase

�0
lj ;mj

D Rj ei�j ; Rj .t1/; �j .t1/ 2 R: (13.107)

If we plug these forms in (13.106) and separate the real and imaginary parts, we
form a system of four real differential equations for Ri ; �i . By multiplying the real
and imaginary parts of the first equation in (13.106) and then we subtract them, we
have

A1R
2
2 sin.�1 C �2/C A1R1 d�1

dt1
D 0: (13.108)

By substituting this derivative of �1 back in the real part of the first equation in
(13.106) we obtain

dR1

dt1
D cos 2�2 � sin �1 sin.�1 C 2�2/

cos �1
A1R

2
2: (13.109)
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We use another simplification hypothesis, namely we choose that the phases do not
depend on time, i.e., the derivatives of �1;2 are zero, which implies from (13.108)
the constraint �1 D �2�2. In this situation (13.109) reduces to

dR1

dt1
D CR22; (13.110)

where C is the abbreviation for the constant resulting from (13.109). From the real
and imaginary part of the second equation in (13.106) we have

cos.�1 C �2/A2R1R2 D cos �2
dR2

dt1
;

sin.�1 C �2/A2R1R2 D � sin �2
dR2

dt1
; (13.111)

and it results
dR2

dt1
D A2R1R2 cos.�1 C �2/

cos �2
;

or simply denoted
dR2

dt1
D DR1R2: (13.112)

From the (13.110) and (13.112) we obtain the relation

R22 D
�

D

C

�2
R21 C E; (13.113)

with E arbitrary constant of integration. If we plug the invariant (13.113) in the
system (13.110) and (13.112) the equations for R1;2 decouple and the resulting
equation for say R1 becomes

d2R1

dt21
D 2CDER1 C 2D2R31: (13.114)

But this last equation is just the differential equation for the Jacobi elliptic functions
(18.3). One solution for (13.114) is the well-known cnoidal cos function

R1.t1/ D R01cn.�t1 C t01 jm/; (13.115)

with the relation between its amplitude R01 and scaling coefficient � given by
D2.R01/

2 D �2 and the modulus m given by �2.m C 2/ D �2CDE. The number
t01 is an arbitrary constant. The modulus m is a real number between 0 and 1 and
is related to the period T of the cnoidal cos function cn.�t1 C T jm/ D cn.�t1jm/,
namely T D 4K.m/, where K.m/ is the complete elliptic integral of the first kind



13.3 Nonlinear Three-Dimensional Oscillations of Axisymmetric Drops 359

(Sect. 18.3). For m D 0 the cn function is precisely the regular cos. For m 2 .0; 1/
the function is still periodic and oscillating and the period increases with m. In the
limit m D 1 cn.�t1j1/! sech.�t1/. The other mode has the amplitude

R2.t1/ D
r
E C D

C
.R01/

2cn2.�t1 C t01 jm/: (13.116)

It results that the motion of the drop in the quadratic resonance, under the above
simplifications, is a nonlinear oscillation whose period and amplitude are strongly
dependent on the initial conditions. In some specific limit the motion becomes
aperiodic and slows down toward an asymptotic approach toward an equilibrium
position, i.e., the profile of a soliton in time (in the slow time scale). However, this
is just radial oscillations, and no actual solitary wave travels on the surface of the
drop. This is because we neglected from the beginning the vorticity of the velocity.

The aspect of the cnoidal solution for values of m close to 1 suggests an
explanation for the different amounts of time that the drop spends in different
shapes, contrary to the case of a linear oscillation. In Fig. 13.24, we present the
graphics of R1;2.t1/ for two values of m. We note the odd distribution of different
amplitudes in time. We also note the coupling between the two modes, since they
oscillate in phase. Example of drop shapes for the quadratic resonance for l1 D 5

and l2 D 8 are given in Fig. 13.25.
Some cnoidal oscillations with same resonance l1 D 5 and l2 D 8 are presented

in Fig. 13.26 in a cross-section in the vertical yz-plane (' D �=2). In this case
we choose m1 D m2 D 0 (axial symmetry), �0

1 D �0
2 (equal contribution of

both modes), the modulus of the cnoidal oscillation m D 0:9, and the perturbation
� D 0:3. The period of the oscillation is T D 4K.m/ D 10 s. We note how the
energy is transferred back and forth from the l D 5 mode to the l D 8 mode. From
upper left to lower right, in frame 1 we have a mixture of 5C8modes, then in frame
2 we have a pure l D 5 mode, then in the next two frames we have l D 8. In the
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Fig. 13.24 The two amplitudes vs. time for a quadratic resonance in a nonlinear drop. These are
a cnoidal oscillation, R1.t1/ (the larger amplitude oscillation), and the oscillation of R2.t1/ from
(13.116)
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Fig. 13.25 Different drop shapes for oscillations associated with the quadratic resonance l1 D 5

and l2 D 8. From upper left to lower right we have m1 D m2 D 0 (axial symmetric case),
m1 D 2;m2 D �1 (the case studied in Natarajan and Brown [236]), m1 D 3;m2 D 5, and
m1 D 5;m2 D �6. The deformation is characterized by � D 0:3, and we choose �0

1 D �0
2

first frame of the lower line we have l D 5 again, etc. More cnoidal oscillations
l1 D 5 and l2 D 8 are presented in Fig. 13.27 in a cross-section in the horizontal
xy-plane (� D �=2). In this case we choose m1 D 3,m2 D 8, �0

1 D �0
2 , m D 0:9,

and the perturbation � D 0:3. We note again energy transfer and coupling between
the modes: From upper left to lower right, in frame 1 we have a l D 3 mode, then
in the next four frames we have l D 8 modes, and in the last two frames we have a
mixture 8C 3, and back toward a l D 3 mode.
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Fig. 13.26 Cnoidal oscillations l1 D 5, l2 D 8 in the yz-plane (' D �=2) for axial symmetry
m1 D m2 D 0, �0

1 D �0
2 , m D 0:9, � D 0:3
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Fig. 13.27 Cnoidal oscillations l1 D 5, l2 D 8 in the xy-plane (� D �=2) for m3;m2 D 8,
�0
1 D �0

2 , m D 0:9, � D 0:3

More complex oscillations can be described if we choose to keep all the
terms in the summations in (13.105). Numerical calculations show, however, that
axisymmetric drop oscillations are unstable to nonaxial symmetric perturbations.
Also, in this section we have omitted the effect of cubic or higher-order resonances
which will complicate the interactions.
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13.4 Other Nonlinear Effects in Drop Oscillations

If we include material interface properties in the nonlinear model presented above,
we obtain extra terms in the surface dynamical equation that may create other
special effects. We choose the physical terms related to the surface viscoelastic and
shear properties from Sects. 8.4–8.6. For example, if we include the surface intrinsic
dilatational and shear viscosities k and � we need to include in the Navier–Stokes
equation terms from (8.57). That is, terms in addition to the normal force due to
the surface tension 2�HN , which from the geometrical point of view is a normal
force dominant term proportional to the mean curvature. We use the same spherical
coordinates for the axially symmetric drop.

The extra normal term that can be added is from the second to the last term in
(8.56) and (8.57), and 2HN .k C �/ OBr˙V becomes in spherical coordinates

2HN .k C �/ OBr˙V ! 2�

R

�
1

R sin �

@.Vr/ sin �

@�
C 2Vr

R

�
; (13.117)

where Vr and V� are the normal and tangent components of the material velocity
on the surface. In the above equation and in the following we use the spherical
coordinates expression of surface differential operators for the axial symmetry (i.e.,
independence of ' and independence of r of the V components), namely

r˙ � V D 1

r sin �

@.V� sin �/

@�
C 1

r2
@r2Vr

@r
D 1

R sin �

@.sin �V� /

@�
C 2

R
Vr ;

and

r˙ � V D
�
1

r

@.rV� /

@r
� 1
r

@Vr

@�

�
e' D

�
V�

r
� 1

R

@Vr

@�

�
e':

Regarding extra tangent terms, we can use the second term in the RHS of (8.56)
and (8.57) to be considered as a normal force term, representing the contribution of
variable surface tension coefficient. In spherical coordinates it reads

OBr˙� ! 1

R

@�

@�
: (13.118)

Also, from the term .k C �/ OBr˙. OBr˙ � V / we have in spherical coordinates

.k C �/ OBr˙. OBr˙ � V /! k C �
R

@

@�

�
1

R sin �

@.sin �V�/

@�

�
: (13.119)

Another tangent term can occur from the double curl operator

� �
g
OBr˙ � .rSigma � OBV /! 2�V�

R2
C 2�

R2
@Vr

@�
: (13.120)
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A comprehensive study of the effects of these surface viscoelastic terms was
performed numerically in Tian et al.[316]. In the same spirit of Sects. 13.2 and 13.3
and (13.84) and (13.117), we calculate characteristic equations, i.e., the determinant
of the linear system of equations for the series expansion coefficients as a function
of the complex oscillation frequencies �. From the Navier–Stokes equation (13.71)
plus all the viscoelastic terms from (13.117) to (13.120) we obtain an equation
similar to the condition (13.86)

˛2 CXk � 12X� C 1

˛2
CR0

r
�

�

jlC1
�
R0

q
�
�

�

jl

�
R0

q
�
�

�

�
�
16XkX�

˛2
� .1C ˛4/3Xk � 4X�

˛4

�
D 0; (13.121)

where

˛2 D �

�!L
; X� D �R0 C �

�R30!L
;

Xk D �s.c
�/� �0

�s.c�/
C 2.�R0 � k/

�R30
; !2L D

�0l.l � 1/.l C 2/
�R30

:

In these equations we take into account the variation of the surface tension
coefficient with concentration of the surfactant, c�, namely �s.c�/; �s.0/ D �0.

The results of numerical calculation of the roots of (13.121) [316] show that, in
addition to the roots we found from previous equations, there is one additional one
generated by the term responsible for the surface elasticity, namely the first term
in Xk. This new root is equivalent to the occurrence of a new type of longitudinal
surface waves. These waves are strongly damped, unless there is a nonzero tangent
gradient of surface tension (Marangoni effect). These new modes can be excited by
applying an external tangent stress along the droplet surface or by the nonlinear
coupling between the shape oscillating modes. In Sect. 13.5 we show that such
longitudinal modes can be modeled with nonlinear equations of modified Korteweg–
de Vries type, having for solutions cnoidal waves or their limiting solution, solitary
waves.

A very good review on experimental results, and some theoretical trends about
liquid drops, breaking-up, and collision is done in Eggers [84].

13.5 Solitons on the Surface of Liquid Drops

Several experiments and numerical tests [77, 154, 182, 236, 237, 298] performed on
droplets suggest the existence of standing traveling waves on the surface [77,154]. In
this section we introduce a slightly different nonlinear liquid drop model, compared



364 13 Nonlinear Surface Waves in Three Dimensions

to the models treated in the previous sections of this chapter. The differences
consist first in retaining higher-order nonlinear terms in the dynamical equations,
and second, by searching especially for traveling surface oscillations, instead of
combined radial and transverse modes. The result is that we obtain surface waves in
the form of cnoidal functions that approach in limiting cases solitary waves [189–
192]. In the following we present two parallel approaches: the traditional Euler
equation approach and a Hamiltonian approach, both leading to the same result.
The same model adapted for microscopic systems is considered again in Sect. 16.3.
Another particular feature of this model is that instead of the traditional series
expansion in terms of spherical harmonics, we use other types of localized functions
defined on the sphere surface.

We restrict our model to inviscid irrotational flow; therefore, we have
a velocity potential governed by the Laplace equation 4˚ D 0, and the dynamics
is described by Euler’s equation,

�

�
@

@t
vC .v � r/v

�
D �rP C f ; (13.122)

where P is pressure. If the density of the external force field is also potential,
f D �r� , where � is proportional to the potential (gravitational, electrostatic,
etc.), then (13.122) reduces to Bernoulli’s scalar equation. We apply two types of
boundary conditions: one on the external free surface of the drop,˙1, and one on an
inner rigid core surface of radius a,˙2. These types of boundary conditions are also
used in literature [169, 182, 236, 237, 298]. We can express the boundary conditions
in the form

dr

dt

ˇ̌
ˇ̌
˙1

D
�
@r

@t
C @r

@�

@�

@t
C @r

@'

@'

@t

�
˙1

;
@r

@t

ˇ̌
ˇ̌
˙2

D 0;

respectively. The radial velocity and tangential velocities are, respectively,

@˚

@r
D @r

@t
;
@˚

@�
D r2 @�

@t
;
@˚

@'
D r2 sin �

@'

@t
:

The second boundary condition is applied only if the drop has some rigid core
inside or in the case of liquid shells. An interesting situation which, to our present
knowledge, was not yet studied experimentally is when the liquid layer is bounded
from outside by a rigid circumference and the free surface is toward inside. For
example, a shallow layer of liquid adhering on the inner surface of a hollow sphere.
A convenient geometry places the origin at the center of mass of the distribution
and, according to our previous hypothesis concerning the traveling waves, the shape
is described by

r.�; '; t/ D R0Œ1C 
.�; '; t/	 D R0Œ1C g.�/�.' � V t/	:
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 D g� is dimensionless function. HereR0 is the radius of the undeformed spherical
drop and V is the tangential velocity of the traveling solution 
 moving in the
' direction and having a constant transversal profile g.�/ in the � direction. We
mention that the linearized form of the first boundary condition

@r

@t ˙1
D dr

dt
j˙1;

allows only radial vibrations and no tangential motion of the fluid on ˙1, [169,
182, 236, 237, 298], and so nonlinearity is mandatory for the existence of this
tangent traveling modes. The second boundary condition restricts the radial flow
to a spherical layer of depth h.�/ by requiring ˚r jrDR0�h D 0. This condition
stratifies the flow in two layers: the surface layer, R0 � h 	 r 	 R0.1 C 
/,
and the liquid bulk, r 	 R0 � h. This is again a typical situation in nonlinear,
irrotational, or viscous flow. Usually, inside compact domains of flow, the external
layer develops irrotational flow, while the inside bulk is potential, and they separate
in a natural way [50, 91, 167, 171]. In what follows the flow in the bulk will be
considered negligible compared to the flow in the surface layer. This condition does
not restrict the generality of the argument because h 2 Œ0; R0	 is still arbitrary at
this stage. Nonetheless, keeping h < R0 opens possibilities for the investigation of
more complex fluids, e.g., superfluid, flow over a rigid core, multilayered systems
[216, 236, 237, 319] or multiphasic, etc. Instead of an expansion of ˚ in term of
spherical harmonics, consider the following form

˚.r; �; '; t/ D
1X
nD0

�
r

R0
� 1

�n
fn.�; '; t/: (13.123)

The convergence of the series is controlled by the value of the small quantity
� D maxj r�R0

R0
j [169]. The condition maxjh=R0j ' � is also assumed to hold

in the following development. Laplace’s equation introduces a system of recursion
relations for the functions fn, namely

fn D Œ.�1/n�1.n � 1/4˝f0 � 2.n� 1/fn�1

C
n�2X
kD1

.�1/n�k .2k � .n � k � 1/4˝fk/

n.n � 1/ ; n > 2; (13.124)

where

4˝ D 1

sin �

@

@�

�
sin �

@

@�

�
C 1

sin2 �

@

@'

is the angular Laplacian operator in spherical coordinates. Equation (13.124)
reduces the unknown functions to only two,4˝f0 and f1:
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f2 D �1
2
.4˝f0 C 2f1/;

f3 D 1

6
.44˝f0 � 44˝f1 C 4f1 C 2/;

f4 D 1

24
.42

˝f0 � 144˝f0 C 84˝f1 � 8f1/ : : : : (13.125)

If f0 is harmonic on the sphere surface, still the series does not reduce to
spherical harmonics, because in the second order we have again Laplacian
of f1. In a special case when all fn are harmonic, the series is determined
by f1 only. If we choose the independent functions 4˝f0 and f1 to be
smooth on the sphere, they must be bounded together with all the fns (these
being linear combinations of higher derivatives of f0 and f1) and hence the
convergence of the series in (13.123) is controlled by these two functions
only.

The second boundary condition plus the condition of having a traveling wave
along ' only: 
' D �V 
t , yield, up to second order in �,

f0;' D VR30 sin2 �
.1C 2
/=hCO3.
/; (13.126)

i.e., a connection between the flow potential and the shape, which is typical of
nonlinear systems. Equation (13.126) together with the relations

f1 ' R20
t '
2h

R0
f2 ' � h4˝f0

R0 C 2h; (13.127)

which follow from the boundary condition and recursion, characterize the flow as a
function of the surface geometry. The balance of the dynamic and capillary pressure
across the surface˙1 follows by expanding up to third order in 
 the square root of
the surface energy of the drop

US D �R20
Z
˙1

.1C 
/
q
.1C 
/2 C 
2� C 
2'= sin2 �d˙; (13.128)

and by equating its first variation with the local mean curvature of ˙1 under the
restriction of the volume conservation. The surface pressure, in third order, reads

P j˙1 D �

R0
.�2
 � 4
2 �4˝
 C 3

2� ctg�/; (13.129)

where � is the surface pressure coefficient. Equation (13.129) was obtained in a
general frame in Sect. 10.4, too.

In the above equation, and subsequently, we consider that for all the surface wave
and perturbations studied with this model, the relative amplitude of the deformation
� is smaller than the angular half-width L, i.e.,
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'' � 
�' � 
�� � �2=L2  1; (13.130)

as most of the experiments [130, 154, 216, 318, 319] concerning traveling surface
patterns show. This is a typical request in shallow water soliton deduction, too
[2, 169]. Consequently, we can neglect the terms 
';� , 
';' , and 
�;� in this
approximation. We comment here that, after solving the dynamical equations for
the surface traveling waves and obtaining cnoidal and solitary solutions, we plugged
these solutions back in the dynamical equation to compare the orders of magnitude
of different terms (Fig. 13.28). The comparison of these terms appears to be in good
agreement with the approximations in (13.130).

Equation (13.126) plus the boundary conditions yield, to second order in �,

˚t j˙1 C V 2R40 sin2 �

2h2

2 D �

�R0
.2
 C 4
2 C4˝


�3
2
�cotan�/: (13.131)

The linearized version of (13.131) together with the linearized boundary condition,
˚r j˙1 D R0
t , yield a limiting case of the model, namely, the normal modes
of oscillation of a liquid drop with spherical harmonic solutions [182, 298].
Differentiation of (13.127) and (13.131) with respect to ' yields the dynamical
equation for the evolution of the shape function �.' � V t/:

A�t C B�' C Cg��' CD�''' D 0; (13.132)

which is the Korteweg–de Vries (KdV) equation with coefficients depending
parametrically on �
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Fig. 13.28 Plot of different terms of different orders of magnitude in (13.131), after we found
the solutions, as a general check of the expansions. It is easy to check that the approximations
performed were appropriate
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A D V R
2
0.R0 C 2h/ sin2 �

h
; B D � �

�R0

.2gC4˝g/

g
;

C D 8
�
V 2R40 sin4 �

8h2
� �

�R0

�
; D D � �

�R0 sin2 �
: (13.133)

In the case of a two-dimensional liquid drop, the coefficients in (13.133) are all
constant. Equation (13.132) has traveling wave solutions in the ' direction if
Cg=.B�AV / andD=.B�AV / do not depend on � . These two conditions introduce
two differential equations for g.�/ and h.�/, which can be solved with the boundary
conditions g D h D 0 for � D 0; � . For example, h1 D R0 sin2 � and g1 D P2

2 .�/

is a particular solution that is valid for h  R0. It represents a soliton with a
quadrupole transverse profile, being in good agreement with [236, 237, 318]. We
mention that the next higher-order term in (13.131),�3
2
� ctg� , introduces a �2�'
nonlinear term into the dynamics and transforms the KdV equation into the MKdV
equation. The traveling wave solutions of (13.132) are then described by the Jacobi
elliptic function (Sect. 18.3)

�.�; '; t/ D �1 C �0 sn2
�
' � V t
L

ˇ̌
ˇ̌k
�
; (13.134)

where the �0 and �1 are the constants of integration introduced through (13.132) and
are related to half-width and the velocity (Sect. 18.4) by

V.�/ D B

A
C Cg

3A

�
�0

�
1C 1

k

�
C �1

�

and

L.�/ D
s
�12kD
�0Cg

with k 2 Œ0; 1	, the modulus of the elliptic sn function, being a free parameter.
Different from a traditional soliton, this circular cnoidal wave has all its parameters,
amplitude, width, period, and angular velocity dependent on � . This result for
(13.134) is known as a cnoidal wave solution with angular period T .�/ D
4KŒk	L.�/, where K.k/ is the Jacobi elliptic integral (Sect. 18.3). If m ! 1

and T ! 1 then a one-parameter (�0) family of traveling pulses (solitons or
antisolitons) is obtained,

�sol D �0sech2Œ.' � V t/=L	; (13.135)

with velocity

V D b

A
C Cg

3A

�
�0 C 3�1

�
;
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and angular half-width L D p�12D=Cg�0. Taking for the coefficients A to D
the values given in (13.133) for � D �=2 (the equatorial cross-section), one can
calculate numerical values of the parameters of any cnoidal excitation, function
of the constants �0, �1, k and the structure functions g.�/, h.�/. The solitary
waves, among other wave patterns, have a special shape–kinematic dependence
�0 ' V ' 1=L; a larger amplitude perturbation is narrower and travels faster.
This relation can be used to experimentally distinguish solitons from other modes
or turbulence. When a layer thins (h! 0) the coefficient C in (13.133) approaches
zero on average, producing a break in the traveling wave solution (L becomes
singular) because of the change of sign under the square root (13.134). Such wave
turbulence from capillary waves on thin shells was first observed in Holt and Trinh
[130]. For the water shells described there, (13.133) gives h.�m/ 	 20�=k, i.e.,
h D 15–25�m at V D 2:1–2:5ms�1 for the onset of wave turbulence, in good
agreement with the abrupt transition experimentally noticed (� is the kinematic
viscosity). The cnoidal solutions provide the nonlinear wave interaction and the
transition from competing linear wave modes (C 	 0) to turbulence (C ' 0). In the
KdV (18.8), the nonlinear interaction balances or even dominates the linear damping
and the cnoidal (roton) mode occurs as a bend mode (h small and coherent traveling
profile). The condition for the existence of a positive amplitude soliton is gCD � 0
which, for g 	 0, limits the velocity from below to the value V � h!2=R0, where
!2 is the Lamb frequency for the l D 2 linear mode.

This inequality can be related to the “independent running wave” described in
[318], which lies close to the l D 2 mode. We stress that here we describe the
equatorial modes, i.e., standing traveling profiles in the ' direction, and so the
Legendre polynomials Pl.cos'/ we talk about are defined on '. The periodic limit
of the cnoidal wave is reached for k ' 0, and the shape is characterized by harmonic
oscillations (sn ! sin in (13.134)) which realize the quadrupole mode of a linear
theory P2 limit [182, 236, 237, 298] or the oscillations of Legendre polynomials
(Fig. 13.29). In Fig. 13.30, we present a cross-section in two solitary waves traveling
along the equator.

The NLD model introduced in this paper yields a smooth transition from linear
oscillations to solitary traveling solutions (“rotons”) as a function of the parameters
�0; �1; k; namely, a transition from periodic to nonperiodic shape oscillations.
In between these limits the surface is described by nonlinear cnoidal waves. In
Fig. 13.29, some configurations from this transition from a periodic limit to a
solitary wave are shown, in comparison with the corresponding normal modes
that can initiate such cnoidal nonlinear behavior. This situation is similar to the
transformation of the flow field from periodic modes at small amplitude to traveling
waves at larger amplitude. The solution goes into a final form if the volume
conservation restriction is enforced:

R
˙
.1 C g.�/�.'; t//3d˝ D 4� and requires

�.'; t/ to be periodic. The periodicity condition

2n� D K.k/L;
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for any positive integer n, is only fulfilled for a finite number of n values, and hence
a finite number of corresponding cnoidal modes. In the roton limit the periodicity
condition becomes a quasiperiodic one because the amplitude decays rapidly. This
approach could be extended to describe elastic modes of surface as well as their
nonlinear coupling to capillary waves. The double-periodic structure of the elliptic
solutions [169] could describe the new family of normal wave modes predicted in
Tian et al. [316].

Because the Euler equations reduced to an integrable equation, we expect that
the system should have a Hamiltonian attached to it, at least in some order of
approximation. In Natarajan and Brown [237] the drop has associated a Lagrangian
with volume conservation condition being a Lagrange multiplier. In the third order
of smallness the dynamical equation inferred from hydrodynamics becomes a KdV
infinite-dimensional Hamiltonian system described by a nonlinear Hamiltonian
function H D R 2�

0
Hd'. In the linear approximation, the system has a linear wave

Hamiltonian. If terms depending on � are absorbed into definite integrals (becoming

Cn

l=4
k=0.59,L=0.4,ε=0.325

Sph

Cn

l=7
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Fig. 13.29 Equatorial cross-sections (� D 0) in a drop excited with cnoidal surface waves
(13.134). The soliton limit plus rigid core and a 3-, 4-, and 7-mode solution are shown, together
with the closest matching Legendre functions for each cnoidal wave for comparison. The labels l
for the corresponding Legendre polynomials Pl.cos '/ and the parameters k, L, and � D �0=R0,
of the corresponding cnoidal solution, are given
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Fig. 13.30 Cross-section of the droplet excited by two solitary waves traveling along the equator

parameters) the total energy is a function of � only. Taking the kinetic energy from
Natarajan and Brown [237], ˚ from (13.123), and using the boundary conditions,
the dependence of the kinetic energy on the tangential velocity along � direction,
˚� , becomes negligible and the kinetic energy can be expressed as a T Œ�	 functional.
For traveling wave solutions @t D �V @' , to third order in �, after a tedious but
feasible calculus, the total energy is

E D
Z 2�

0

.C1�C C2�2 C C3�3 C C4�2'/d'; (13.136)

where C1 D 2�R20S
1;0
1;0 , C2 D �R20.S

1;0
1;0 C S

1;0
0;1 =2/ C R60�V

2C
3;�1
2;�1 =2, C3 D

�R20S
1;0
1;2 =2 C R60�V

2.2S3;�1�1;2R0 C S5;�2�2;3 C R0S6;�2�2;3 /=2, C4 D �R20S
�1;0
2;0 =2, with

S
k;l
i;j D R�l0

R �
0 h

lgig
j

� sink�d� . Terms proportional to ��2' can be neglected since
they introduce a factor �30=L

2, which is small compared to �30, i.e., it is in the third
order in �. If (13.136) is taken to be a Hamiltonian, E ! HŒ�	, then the Hamilton
equation for the dynamical variable �, taking the usual form of the Poisson bracket,
gives Z 2�

0

�td' D
Z 2�

0

.2C2�' C 6C3��' � 2C4�'''/d': (13.137)

For the function �.'�V t/ the LHS of (13.137) is zero. Consequently, KdV solitons
�.'/, with appropriate choice of parameters, are allowed solutions, since they cancel
the integral on the RHS, too. Hence, the energy of the NLD model, in the third order,
is interpreted as a Hamiltonian of the KdV equation. This is in full agreement with
the result finalized by (13.132) for an appropriate choice of the parameters and the
Cauchy conditions for g and h.
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The nonlinear coupling of modes in the cnoidal solution could explain the
occurrence of many resonances for the l D 2 mode of rotating liquid drops at a
given (higher) angular velocity [36]. The rotating quadrupole shape is close to the
soliton limit of the cnoidal wave. On the one hand the existence of many resonances
is a consequence of the multivalley profile of the effective potential energy for
the KdV (MKdV) equation: �2x D a� C b�2 C c�3 C d�4. The frequency shift
predicted by Busse and others in [8, 36] can be reproduced in the present theory
by choosing the solution h1 D R0 sin �=2. It results the same additional pressure
drop in the form of V 2�R20 sin2 �=2 like in Busse [36], and hence a similar result.
For a roton emerged from a l D 2 mode, by calculating the half-width (L2)
and amplitude (�max;2) which fit the quadrupole shape, it results in a law for the
frequency shift:#!2=!2 D .1˙4L2=3R0/�1V=!2, showing a good agreement with
the observations of Annamalai et al. [8, 36], i.e., many resonances and nonlinear
dependence of the shift on ˝ D V . The special damping of the l D 2 mode
for rotating drops could also be a consequence of the existence of the cnoidal
solution. An increase in the velocity V produces a modification of the balance of
the coefficients C=D, which is equivalent with an increasing in dispersion.

13.6 Problems

1. Comments on (13.40). The solution used in the text is appropriate for the analysis
of drop oscillations, but this equation has a richer spectrum of solutions. If we
substitute rVR D �.r/ and write the equation like 4D� D D4� D 0, with
the operatorD being the parenthesis in (13.40) we have two classes of solutions.
Solutions with property D� D 0 belong to the class represented in (13.49).
Another possibility is to have 4� D  ¤ 0. Then, it is convenient to solve
D D 0, since we know the solutions from (13.40). With  such a solution we
obtain � as the integral representation of the radial Laplace equation.

2. For the cnoidal solution defined on the sphere in (13.134) calculate the total
angular momentum of the flow in the drop. Since the initial hypothesis was
irrotational motion, we expect this angular momentum to be zero for this
solution.

3. Improve the model presented in Sect. 13.5 by introducing the relative motion of
the center of mass. Solutions should be considered at least in pairs to have the
position of the center of mass unchanged.

4. Verify if cnoidal waves or solitary waves exist on the surface of a drop by
plugging a solitary wave type of test solution for the surface directly in the Euler
equations for the drop.

5. Find a property of the nonlinear tangential surface wave from Sect. 13.5, and
implications on the surface velocity field based on the hairy ball theorem, i.e.,
there is no zero smooth, regular tangent vector field on the two-sphere.



Chapter 14
Other Special Nonlinear Compact Systems

In this chapter we present an interesting back up of the previous chapters devoted to
solitons on closed free surfaces, like drops. Namely, one can predict the possibility
of existence of such exotic shapes from some first geometric principles. In the frame
of geometric collective models, for example, it can be shown that these types of
shapes can be created through the formalism of nonlinear symmetry groups. We
conclude the chapter by presenting an example of Hamiltonian structure for systems
with free closed boundaries.

14.1 Nonlinear Compact Shapes and Collective Motion

In Sect. 13.5 we introduced a special nonlinear mode of oscillation of a liquid
droplet in terms of cnoidal functions and solitary waves. Similar nonlinear compact
shapes can be obtained by using a different geometrical approach, namely by an
integrable nonlinear theory of a many-body system. The theory was applied in the
geometric and Riemannian ellipsoidal models for large amplitude collective modes
of oscillations in heavy nuclei [277, 279, 320].

A geometrical model of collective motion is defined by a group of transfor-
mations, called the motion group, of the three-dimensional Euclidean space. The
motion group acts on the Euclidean space and, among other things, transforms
surfaces into other surfaces. For example, the rotation group SO.3/ is the linear
group of motion for the rigid bodies in mechanics, and it is also the adiabatic
rotational model in nuclear physics. Another example is the real general linear three-
dimensional group GL.3;R/, which is the group for the Riemannian ellipsoidal
models in fluid dynamics or elasticity and also yields the microscopic extension
of the Bohr–Mottelson nuclear model [49, 87]. However, such traditional models
have limitations imposed by the linear character of the transformation. The classes
of shapes generated by these linear groups can never include exotic shapes
like hour-glass, breakup droplet shapes, fissionable shapes, toroidal shapes, etc.

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 14,
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A nonlinear geometrical model, if algebraically closed under commutation, can con-
struct collective models compatible with such nonlinear shapes. Such a collective
model will be integrable on behalf of the closeness property. It could be applied to
many-body collective motion problems in astronomy (nonelliptical galaxies, tides in
neutron stars, cosmic object collisions), in plasma physics, nuclear physics of heavy
ions and superheavy elements, mean field theory, and geometric quantization.

To construct a nonlinear motion group we need first a Hilbert space H of wave
functions. We recall that a Hilbert space is a Euclidean space E of vectors over
the complex numbers which is complete in the norm. The norm is defined in the
Euclidean space as a function jj � jj W E ! R

C, which assigns a positive length
or size to all vectors in the space, other than the zero vector. For example, we
can introduce the space of the square integrable functions as the space of complex
integrable functions defined on E having finite value for the integral of the square
over the whole space Z

E
jf .x/j2dx <1;

denoted L2.E/. Consequently, the above integral is the norm of the L2.E/ space. A
norm is complete if any Cauchy sequence of functions from the space has a limit
in this space. Not any Euclidean space is Hilbert, but the good news are that any
Euclidean space can be densely embedded in some Hilbert space. The Hilbert space
of wave functions we need in the following construction of a nonlinear collective
model isL2.R3/. Its vectors are functions�.r ; t/ W R3 ! C. For more details about
the construction of this space, as well as for more details about the operators acting
in it, the reader can consult one of the best books in axiomatic quantum mechanics,
namely [266].

Next object we need for the geometric model is a nonlinear Lie algebra
(Definition 19) of operators acting on the Hilbert space of wave functions. We
consider for any real number � the following nine differential operators acting on
L2.R

3/

Njk D xj pk � iıjk „
2
C �xj xk

r5
r � p; (14.1)

with j; k D 1; : : : ; 3, xk are Euclidean coordinates in R
3 (so it is not important

if they carry covariant or contravariant indices) and p D �i„r is the momentum
operator. The Planck constant „ has the common meaning from quantum mechanics.
All these nine operators are Hermitian operators, i.e., 8˚;� 2 H the equality holds

Z
R3

˚�Njk�d3r D
�Z

R3

��Njk˚d3r
��
;

which guaranties that Njk represent physical observables. The most important fact
about theNjk operators is that they are closed under commutation relations, i.e., for
any twoNjk andNil we have ŒNjk;Nil 	 D cjkilmpNmp, with cjkilmp being complex
constants. Let us denote N the set of all possible linear combinations of the Njk
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operators with real coefficients. This structure is a Lie algebroid [300]. However,
we can consider it a Atiyah algebra which is a generalization of a Lie algebra.

For any 3 � 3 matrix X D .Xij / with real entries we can build the mapping
� W M3.R/ ! N given by �.X/ D .i=„/XjkNjk. Such a mapping is a linear
representation of the Lie algebra M3.R/ in the Lie algebra N. For example, we can
introduce a representation defined by the following operators

Ll D �jklNjk D xj pk � xkpj ;

Tjk D Njk CNkj � 2
3
ıjk Tr.N /

D
�
xj pk C xkpj � 2

3
ıjkr � p

�
C 2�

r5

�
xj xk � 1

3
ıjkr

2

�
r � p;

S D Tr.N / D
�
1C �

r3

�
r � p � 3

2
i„: (14.2)

The first three operators are closed under commutation and generate the rotation
group Lie algebra so.3/ of the angular momentum L. These operators together
with the next ones, called the quadrupole vibration operators, Tjk , are also closed
and form a Lie algebra isomorphic with sl.3;R/ of traceless matrices fromM3.R/.
The name comes from the fact that their average value over a wave function provides
the third order term in a spherical harmonics expansion. Finally, all the operators in
(14.1) and (14.2), including the nonlinear operatorS , are closed under commutation,
and so they generate the Lie algebra N.

To involve the geometry we map these operators into a system of differential
vector fields defined on R

3

Vjk D i

„Njk �
ıjk

2
;

which reads in the Euclidean coordinates

Vjk D
�
xj ılk C �xj xkxl

r5

�
@

@xl
: (14.3)

Some of these vector fields are divergence free, i.e., r � Vjk D ıjk , and so they
generate transformations that conserve the volume. If � D 0 these vector fields
become linear, and they generate the six-dimensional Lie algebra of rotations and
dilations (when we make� D 0, only six generators remain independent, while the
other three reduce to Casimir elements). The nine vector fields in (14.3) generate
a nine-dimensional Lie algebra, and the exponential of these vector field (i.e.,
infinitesimal generators) form the associate local Lie motion group. This structure
is only a local Lie group because for some values of � the vector fields are not
complete (Sect. 4.4), and their exponential is integrable only locally. In the following
we are looking for the classes of Euclidean compact surfaces that are left invariant
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by the nonlinear motion local group elements. In the original article, Rosensteel
uses the adjoint representation of this Lie algebra to find invariant surfaces. An
alternate possibility to find the invariants is to use the method of the symmetry
group of differential equations [242]. According to Sect. 4.7, a smooth real function
F W R3 ! R is invariant to the action of the motion local Lie group if

Vjk.F / D 0 for all j; k D 1; : : : ; 3: (14.4)

To construct the invariant functions we use (14.3) and the associate characteristic
system of equations becomes

dx1

xj ık1 C� � xj xkx1r5

D dx2

xj ık2 C� � xj xkx2r5

D dx3

xj ık3 C� � xj xkx3r5

; (14.5)

for j; kD 1; : : : ; 3. The general solution of system (14.5) is given by the six
symmetric functions

Qjk D
�
1C �

r3

� 2
3

xj xk; (14.6)

plus some arbitrary constants. These functions are the linear independent invariant
functions of the motion local Lie group, and any linear combination of them is
also an invariant function. In Rosensteel and Troupe [277] it is proved that these
functions also generate a six-dimensional Lie algebra, which in semidirect product
with the Lie algebra generated by the vector fields Vjk form a 15-dimensional
Lie algebra called gcm.3/, i.e., the Lie algebra of the nonlinear motion group. Its
corresponding local Lie group is GCM.3/. For different values of� these algebras
are isomorphic, but their physical interpretation varies. The surfaces parametrized
by the implicit equation

X
jk

Cjk

�
1C �

r3

� 2
3

xj xk D C0; (14.7)

are invariant surfaces to the local Lie group GCM.3/ for any combination of
constants Cjk; C0; j; k D 1; : : : ; 3. Of course, only the symmetric sets of constants
count. In other words, if for a given choice of the constants Cjk and C0 we
generate a surface by (14.7), this surface will be left unchanged by the action of
any of the group transformations, i.e., the GCM.3/ local group transforms a drop
surface in another allowable drop surface of the model. The surfaces described
by (14.7) are compact (Sect. 6.4) if the Cjk are a real positive-definite symmetric
matrix. Actually, if�D 0, these functions reduce to ellipsoids of different semiaxes
and orientation in space. Since Cjk are symmetric they can be diagonalized,
and actually, only the diagonal elements count for different surfaces. Since the
gcm.3/ Lie algebra contains the infinitesimal rotations so.3/ as a subalgebra,
the nondiagonal coefficients Cjk generate same surfaces like the diagonal ones,
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Fig. 14.1 Examples of compact surfaces invariant to the nonlinear motion group GCM.3/. The
values of the three diagonal parameters and the nonlinear one are given next to each surface

except they are rotated. Compact nonlinear surfaces are generated by diagonal
elements .C11; C22; C33/ with positive signature. From dimensional analysis we
note that these coefficients are m�2 units, and so a better physical notation for
them is .a�2; b�2; c�2/. Actually, the numbers a; b; c represent the semiaxes of the
ellipsoidal surfaces generated by (14.7) for � D 0. In Fig. 14.1, we present some
typical nonlinear surfaces obtained through (14.7). To plot these surfaces we just
write (14.7) in polar coordinates

r.�; '/ D
2
4��˙

 
C0

sin2 � cos2 '
a2

C sin2 � sin2 '
b2

C cos2 �
c2

! 3
2

3
5

1
3

:

For positive values of � the invariants Qjk are well defined in all the points,
except the origin. For axially symmetric solutions, the deformed droplets are
surfaces of revolutions with a central neck. When � D a3; b3, or c3 the neck
reduces to zero diameter and the drop breaks-up in two symmetric parts, like in
a fission process. If� < 0 the invariant functions are not defined all over the space,
and so this negative� motion local group could model droplets with missing parts,
i.e., smaller droplets emission, fusion, exotic bubble shapes, and two-fluid models.
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This nonlinear motion group can be used in modeling the nonlinear dynamics of
liquid droplets. For example, we note that in Fig. 14.1 the shapes with coefficients
a D 1; b D 2; c D 1;� D �5 and a D 1; b D 3; c D 1;� D �5 represent one or
two localized bump(s) on the surface, which is in good agreement with the results
from Sect. 13.5, namely modeling one or two solitary waves (rotons) moving on the
droplet surface [57,191,192]. The problem would be to determine which among the
nonlinear shapes corresponds closely to minimum energy surfaces of liquid or even
electrically charged liquid droplets. Even for rapidly rotating drops (or nuclei, or
stars), when the droplet develops an elongated neck, the model can be still used since
it also predicts the hourglass types of shapes presented in Fig. 14.1. This nonlinear
motion group can be also applied in modeling the nonlinear dynamics of a system
of identical fermions, like a nucleus or a neutron star. In that the set of functions
Qjk is defined as a set of one-body operators.The Hamiltonian of the system can be
written as a linear combination of these operators, and since the gcm.3/ Lie algebra
is closed, we can use it as a spectrum generating algebra, like in the IBM model.

14.2 The Hamiltonian Structure for Free Boundary
Problems on Compact Surfaces

A Hamiltonian structure for two- or three-dimensional incompressible flow with
free boundary can be constructed [173]. The dynamic variables are the velocity
field V and the compact surface ˙ that surrounds the fluid domainD˙ . These two
entities form the basic phase space N D f.jvecV ;˙/g for the representation of the
canonical bracket. Incompressibility condition assures r � V D 0. According to
the representation formulas in Ebin and Marsden [82] we can write the velocity as
V D V Î C r˚ , where V Î is both divergence free and tangent to ˙ . The potential
is determined modulo an additive constant by

4˚ D 0; @˚

@N
D V �N ; (14.8)

where N is the normal to ˙ . We introduce three types of formal derivatives for
functions F W N ! R

ıF

ıV
; defined by

�
@F

@V

�
˙

.V ; ˙/ � ıV D
Z
D˙

ıF

ıV
� ıV d3x; (14.9)

where .@F=@vecV /˙ D dcF=dV is the convective derivative with respect to V

(see (9.16) in Sect. 9.2.6).

ıF

ı˚
D ıF

ıV
�N ; (14.10)

ıF

ı˙
; defined by

�
@F

@˙

�
V

.V ; ˙/ � ı˙ D
Z
˙

ıF

ı˙
ı˙d3x: (14.11)
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With these three derivatives we can introduce the Poisson bracket of F;G in the
form

fF;Gg D
Z
D˙

! �
�
ıF

ıV
� ıG
ıV

�
d3x C

Z
˙

�
ıF

ı˙

ıG

ı˚
� ıG
ı˙

ıF

ı˚

�
dA; (14.12)

where ! D r � V is the vorticity. This bracket makes the phase space N into a
Poisson manifold, satisfies Jacobi’s identity, is real bilinear, antisymmetric, and it is
a derivation in F andG. For irrotational flow (14.12) reduces to a canonical bracket
in ˚ and ˙ . The authors in Lewis et al. [173] provide an interesting example of
application of this Hamiltonian system to the dynamics of an incompressible (we
choose � D 1) inviscid liquid drop with free boundary and surface tension. We
recall the dynamical equation in this case: Euler, boundary, incompressibility, and
surface tension balance, namely

V t C .V � r/V D �rP; ˙t D V �N ; r � V D 0; P˙ D 2�H; (14.13)

with H the mean curvature of ˙ . The Hamiltonian is

H D 1

2

Z
D˙

V 2d 3x C �
Z
˙

dA: (14.14)

We have the following theorem. Equation (14.13) is equivalent to

Ft D fF;H g:
The proof is by direct calculation and it can be found in Lewis et al. [173].

This Hamiltonian approach can be applied directly to some nonlinear compact
systems. There are situations, for example, on spheres, when the solutions of the
dynamical system can be expressed as spherical harmonics plus small corrections,
and these solutions retain this property for a long time, i.e., they are near-
monochromatic. Such a situation is provided by a free surface potential flow of a
fluid layer surrounding a gravitating sphere. The dynamical equations for traveling
or standing water waves are obtained in a weakly nonlinear gravitational interaction
on a sphere. Some numerical and classical perturbation theory studies [178, 252]
proved that these solutions possess Hamiltonian structure.

We consider a spherical fluid layer of depth h surrounding a sphere of radius b
in spherical coordinates .r; �; '/. The outer free surface has the equation

r.�; '; t/ D b C hC �.�; '; t/;
and we assume that the flow inside the layer is potential. The Euler equation for the
free surface potential flow takes the form

@�

@t
D @˚

@�
� 1

r2
@˚

@�

@�

@�
� 1

r2 sin2 �

@˚

@�

@�

@�
;
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and at the free surface we have

@˚

@t
D �1

2
jr˚ j2 C 1

b C hC �:

In the region occupied by the fluid we have 4˚ D 0 and at the bottom r D b we
have

@˚

@r
D 0:

The wave amplitude �.�; '/ and the surface potential ˚.�; '/ D ˚.�; '; b C h C
�.�; '// determine uniquely the hydrodynamic potential ˚ inside the layer at any
moment of time t . The above equations can be written as a Hamiltonian system
where the canonical variables are � and ˚ at the surface. The kinetic energy term in
the Hamiltonian can be formally expanded in powers of the wave amplitude �. We
can write

H D
1X
jD0

Hj ;

with the first two terms in the series

H0 D .hC b/2
2

X
�

�
u

0

� .hC b/
u� .hC b/˚�˚

�
� C �����

�
(14.15)

and

H1 D
X

�1;�2;�3

I�1;�2;�3˚�1˚�2˚�3 ; (14.16)

with

I�1;�2;�3 D
.hC b/2

2

 
u

00

�2
.hC b/

u�2.hC b/
� u

0

�1
.hC b/

u�1.hC b/
u

0

�3
.hC b/

u�3.hC b/

!Z
S2

Y�1Y�2Y�3

C1
2

Z
S2

Y�1rY�2 � rY�3: (14.17)

In the above relations we use the notations

� D
X
�

��Y� ; ˚ D
X
�

˚�Y� ;

with � D .l;m/, and

u� .r/ D .l C 1/
�
r

b

�l
C l

�
b

r

�lC1
:
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The Hamilton equations read

P�� D @H

@˚��
; P̊� D � @H

@���
: (14.18)

To solve numerically the initial value problem the authors in [178, 252] used a
Galerkin truncation of the Hamilton equations (14.18).



Part III
Physical Nonlinear Systems

at Different Scales

This last part is devoted to applications of solitons on closed or bounded systems
at different physical scales, from elementary particles to neutron stars. We devote
a whole chapter to the dynamics of free shape one-dimensional nonlinear systems
like filaments, vortex filaments and polymer chains. Application of soliton dynamics
are given at microscopic scale (heavy nuclei, quantum Hall effect) as well as at
macroscopic scale (plasma and MHD systems, elastic spheres and neutron stars).



Chapter 15
Filaments, Chains, and Solitons

One of the most successful applications of the theory of nonlinear integrable systems
on free one-dimensional systems is related to the existence of solitons on filaments.
In the following we describe such systems from the hydrodynamic perspective
and obtain the vortex filament equation, also called the binormal equation. Next,
we describe a gas dynamical model which has an equivalent dynamics, and we
obtain several soliton solutions and corresponding shapes. One interesting special
feature of vortex filaments, namely by representing a unifying model for the
Riccati and the NLS equations, is also presented. There are many applications
of these nonlinear-geometric models, extending from nuclear physics to severe
weather and astrophysics. In solid state physics filament solitons occur through the
complex cubic Ginzburg-Landau equation (CCGLE) which resembles a magnetic
Schrödinger equation, [197], similar to the cubic NLS equation. The nonlinear
solutions of interest are strings and tubes with quantized angular momentum,
namely vortex structures, their stability and their interactions [51, 258].

15.1 Vortex Filaments

Riemann–Christoffel tensor Rotational or vortex motion was first investigated by
Kelvin [153], Helmholtz[125], and Thomson [315]. In absence of viscosity an
isentropic fluid is described by the Euler equation (10.15), which in an Eulerian
frame, takes the form

@

@t
! D r � .v �!/; (15.1)

where !.r ; t/ D r � v.r ; t/ is the vorticity field. Because it is a solenoidal vector
field r � ! D 0, vorticity has some interesting properties, like, for example, it
has zero flux on surfaces represented by tubes of flow (see (10.32)). This is just
a geometric property and has not to do with the specific type of fluid. In the case
of a perfect fluid (inviscid and isentropic) in potential force fields, this property
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of vorticity yields the invariant circulation theorem (Theorems 25 and 26, see
Sect. 10.3), which states that the circulation of the velocity of such a fluid, along
a closed particle contour, is constant in time. If the fluid has nonzero vorticity,
localized on a material surface, then the integral of the vorticity on this surface (the
strength of the vortex) is constant during the motion of the material surface and it is
also constant along the vorticity field lines. The tube of flow generated by the motion
of such a material surface carries in time a constant amount of vorticity. This is the
physical background for the introduction of vortex tubes or simply vortex. Such a
vortex tube contains the vorticity field perpendicular on each of its cross-sections
and oriented along the generator of the tube. An intuitive description is given, for
example, in Article 145 of [167]. If such a vortex has an almost constant cross-
section area along the vorticity lines, and if its diameter is much smaller than its
length, we call it a vortex filament. If we can set the initial conditions such that the
vorticity is almost negligible outside of a vortex filament, following the theorem
of invariance of the circulation, we find out that this vortex filament is a stable
structure and has a dynamics of its own. Moreover, a vortex filament will support
shape solitary waves traveling along it.

To analyze the existence of solitons on vortex filaments we follow an approach
presented in Lamb’s book [169], originally introduced in Hasimoto [123] and
Batchelor [14]. We consider an isolated vortex filament described by a tube (or
tubular neighborhood) of constant radius r0 (see Definition 60) around a simple
regular differentiable curve � of finite length (length L� ). We denote by � and �
the curvature and torsion of � , and we investigate the vortex filament under three
approximating hypotheses:

1. The fluid is considered to be incompressible.
2. The filament is “narrow,” i.e., the ratio � D r0=L�  1 is one smallness

parameter of the problem.
3. We also consider that the filament is not excessively bent or twisted compared to

its length. We introduce a second smallness parameter � D �L� , i.e., the radius
of curvature of the filament is much larger than its length.

Let r.s/ be the equation of the curve � in the arc-length parameterization. We
assume that inside of this tube of constant cross-section�r20 , the vorticity is constant
and uniform in magnitude j!j D !0 Dconst., oriented along the tangent to � , and
it is zero outside of the tube. From r � v D 0 and ! D r � v we can always define a
solenoidal vector potential B.r ; t/, r �B D 0, such that v D r �B and4B D 0.
We calculate the velocity at a point of the tube r1 … � by using the fundamental
solution of the Poisson equation

v.r1/ D � 1

4�

Z
r2�

.r1 � r/ �!.r/

jr1 � rj3 dV; (15.2)

where dV D �r20 ds is the volume element, and we did not write explicitly the
time dependence. From the hypotheses we have !.r/ D !0t.s/, where t is the unit
tangent to � . Equation (15.2) can be written as
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v.r1/ D � C
4�

Z L�

0

.r1 � r.s// � t.s/

jr1 � r.s/j3 ds; (15.3)

where

C D
I
@A

v � d l D
Z

A
.r � v/ � dA D

Z
A

! � dA D !0�r20 ; (15.4)

is the circulation of v along any circle surrounding the tube and A is the cross-section
circular area of the tube.

We choose a point r1 … � placed on the surface of the filament at a distance r0
from its axis. We choose a reference point s D s0 on � as the closest point to r1,
and we expand r.s/ in Taylor series with respect to ıs D s � s0 around s D s0.
By using the Serret–Frenet equations (5.3) for the derivatives with respect to the
arc-length, we obtain

r.s/ D r.s0/C t.s0/ıs C �.s0/

2
n.s0/ıs

2

C1
6

�
�0.s0/n.s0/C �.s0/�.s0/b.s0/ � �2.s0/t.s0/

�
CO.ıs3/;(15.5)

with ıs 2 Œ�l� ; l� 	. By the definition of s0 we have t.s0/ � .r1 � r.s0/ D 0 and
jr1 � r.s0/j D r0, and so we can assume that r1 � r.s0/ D r0.˛n.s0/ C ˇb.s0//

with ˛2 C ˇ2 D 1:We have

.r1 � r.s// � t.s/ D

r0

�
.ˇn�˛b/��0ˇıstC ıs

2

2
..˛�� �ˇ�s/t�ˇ�2nC˛�2b/� �ıs

2

2
b

�
s0

CO.�3/:

(15.6)
The orders of smallness of the terms in the RHS of (15.6) are

r0; r0�.s0/ıs < r0O.�/; r0.�.s0/ıs/
2 < r0O.�2/; �.s0/ıs

2; : : : ;

where �.s0/ıs < �l� D �  1 is from hypothesis (3) introduced above. We can
write �.s0/ıs2 D r0�ıs=r0 > r0� so the last term in RHS of (15.6) has its order
larger than the second term in �. We can approximate (15.6) with

.r1 � r.s// � t.s/ � �r0
�
˛ C �.s0/ıs

2

2

�
b.s0/C r0ˇn.s0/: (15.7)

The denominator of (15.2) has the form

jr1 � r.s/j3 D ıs3
�
1C r20

ıs2
C .�.s0/ıs/

2

4
CO.�3/

� 3
2

; (15.8)

and now we need to compare the contribution of the two terms inside the
parenthesis. The term r0=ıs is lower bounded by � D r0= l� according to



388 15 Filaments, Chains, and Solitons

hypothesis (2). This fact does not help too much in the comparison with the third
term in the parenthesis of (15.8), because ıs runs between zero and l� . In a very
interesting way, the topology of the filament vortex shape will help us here. We
have to compare the terms

�.s0/ıs 7 r0

ıs
;

and we can write this expression as

�.s0/

r0
7 1

ıs2
:

The LHS of the above inequality is actually the Gaussian curvature of the tube
surface at r0, K � �=r0, i.e., the product of the principal curvature �.s0/ along the
generator of the tube and the principal curvature of the base circle 1=r0. According
to the Bonnet Theorem 21 if there is a positive number ı0 such that the Gaussian
curvature of a complete surface K � ı0, then the surface is compact. In the case of
the vortex filament this is false, because the surface is a long cylinder, and so the
Gaussian curvature can be arbitrarily small. As a consequence we have

�.s0/ıs < � r0

ıs
;

and it results that the dominant term in (15.8) is r0=ıs. From (15.3), (15.7), and
(15.8) we obtain the velocity of an arbitrary point on the surface of the vortex
filament obtained in the order �2 of smallness

v.r1/ � r0C

4�

Z
�

�
˛ C �.s/s2

2

�
b.s/ � ˇn.s/

s3
�
1C r20

s2

� 3
2

ds; (15.9)

where r0 is the radius of the filament, the limits of integration for s depend on the
specific position of the chosen point r1 along � , ˛ and ˇ describe the position of
r1 on the base circumference of the tube, and C is the circulation of the velocity
around this circumference, supposed constant.

The equation of motion of the vortex filament (15.9) can be simplified more
[14, 123, 169] if we consider very narrow filaments ˛ � ˇ � 0

v.r1/ � cst.
Z
�

�.s/b.s/
s2

.s2 C r20 /
3
2

ds; (15.10)

and we notice that a part of the integrand
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'.s; r0/ 
 s2

.s2 C r20 /
3
2

is actually a sequence of functions weakly converging toward the ı-Dirac distribu-
tion when s ' 0 [274]

lim
s 0 '.s; r0/ D ı.r0/:

Consequently, we can approximate (15.10) and obtain the most simplified version
of the dynamical equation for a long and narrow vortex filament of incompressible
fluid

v.r1/ � cst. �.s0/b.s0/: (15.11)

The constant term on the RHS can be eliminated by a special choice for the velocity
vector. Equation (15.11) represents the well-known vortex filament equation first
introduced in Hasimoto [123], and later on investigated in many books or articles
among we mention [14, 169], [11, Chap. VI], [12, 45, 117, 139, 166, 172, 232, 240,
243, 250, 257, 272, 285, 289].

In the following we confine the discussion to the investigation of the filaments
governed by (15.11) in its simplest form

dr

dt
.s; t/ D Pr D �b; (15.12)

where for the notation in the following we use Pr for time derivative and r 0 for
dr=ds. That is, we neglect the filament width and consider it just a (time dependent)
regular arc-length parameterized curve r.s; t/. Then (15.12) is equivalent to

Pr D r 0 � r 00; (15.13)

as we can obtain from Serret–Frenet equations (5.3), (5.4), and (5.11) from Chap. 5.
From (15.13) we have

@�2

@t
D @

@t
.r 00 � r 00/ D 2

�
@2 Pr
@s2

�
� r 00;

where we used t 0 D r 00 D �n and r 00 � r 00 D �2. In the following, using (5.3) and
(15.12) their consequences r 0 � r 00 D t � �n D �.t � n/ D �b, and b0 D ��n, we
have

2

�
@2 Pr
@s2

�
� r 00 D 2

�
@2�b

@s2

�
� �n D �2.�2�/0;

where � and � are the curvature and the torsion of the filament. It results a sort of
continuity equation for the curvature and the torsion of the filament

@

@t

�
�2

2

�
C @

@s
.�2�/ D 0: (15.14)



390 15 Filaments, Chains, and Solitons

The same result can be obtained for arbitrary parameterization of the filament curve.
Next, we want to obtain a similar relation for the time derivative of the torsion.

We begin from the time derivative of �2 D b0 � b0 and, by using again Serret–Frenet,
and (15.12) and (15.13) we obtain

P� D �@
2.t � n/

@s@t
� n D �.Pt � nC t � Pn/0 � n: (15.15)

The expression in the RHS parenthesis can be expanded by taking into account the
orthonormality of the Serret–Frenet trihedron and the relation r 000 � n D �. We
obtain

Pt � nC t � Pn D .r 0 � r 00/0 � nC t � Pr
00� � r 00 P�
�2

(15.16)

D ��0t � P�
�

bC 1

�
.t � Pr 00/;

with
Pr 00 D �2�t � .2�0� C �� 0/nC .�00 � ��2/b:

By combining the last two equations we have

P� D �
��
��0t � P� C 2�

0� C �� 0
�

bC ��2 � �00
�

n

�0�
� n; (15.17)

and in the end

P� D ��0 � P��
�
� 2�

0�2

�
� 3�� 0 C ��000

�2
� �

0�00

�2
� (15.18)

To process (15.18) we need (15.14) for the value of P� D �2�0� � �� 0. We obtain

P� C 2�� 0 D
�
�2

2
C �00

�

�0
: (15.19)

It is interesting to write (15.14) and (15.19) with the substitution

�.s; t/ D �2

4
; u.s; t/ D 2�; (15.20)

where usually �2=2 is called the energy density of the filament curve. We have

@�

@t
C @

@s
.�u/ D 0 (15.21)

@u

@t
C u

@u

@s
D @

@s

�
4�C 2p

�

@2
p
�

@s2

�
:
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Equations (15.21) represent the so-called gas dynamics model of the filament
because they describe the filament (15.14) and (15.19), in terms of the velocity
u and density � fields for a one-dimensional fluid. In Arnold and Khesin [11,
Chap. VI], these equations are described as a Marsden–Weinstein Hamiltonian
structure. Different approaches of the filament problem include the Hasimoto model
of the filament equation, derived from the nonlinear Schrödinger equation [123],
which will be analyzed in the next sections.

15.1.1 Gas Dynamics Filament Model and Solitons

In this section we discuss some particular traveling solutions of the gas model for
the filament equation (15.21), or equivalently (15.14) and (15.19). Obviously plane
filaments (� D 0) do not exist. We are looking for traveling solutions in the form

�.s; t/ D R.s � V t/ D R.x/
u.s; t/ D U.s � V t/ D U.x/;

with V an arbitrary constant. By integrating the first of (15.21) we obtain

U.x/ D V � C1

R.x/
; (15.22)

where C1 is a constant of integration. The resulting equation for R reads

V 2

2
C 4R � C2

1

2R2
C 2
p
R 00p
R
C C2 D 0; (15.23)

or in terms of the curvature

�0� D ˙
s
�C2

1 �
�6

4
�
�
V 2

4
C C2

2

�
�4 C C3�2: (15.24)

By substituting in (15.24) ��0 D 2dR=dx, we integrate (15.23), and we obtain

Z R

C4

dR0p
P3.R0/

D ˙x C C5; (15.25)

where P3.R/ D �4.R � R1/.R � R2/.R � R3/ is a third order polynomial in
R.x/ and Ci ; i D 1; : : : ; 5 are integration constants. The three roots of P3 depend
on C1; C2; C3; V; from (15.22) to (15.24). The structure of the roots determine the
structure of the solutions R.x/. Let us study some examples:
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1. Three real solutions, Ri 2 R; i D 1; 2; 3.
In this case the solution reads

1p
R3 �R1

F

�
arcsin

s
R �R3
R2 �R3

ˇ̌
ˇ̌ R3 �R2
R3 �R1

�
D ˙x C C4; (15.26)

where F is an elliptic integral of the first kind

F.˛jm/ D
Z ˛

0

d�p
1 �m2 sin2 �

:

By inverting (15.26) we have

R.x/ D R3 C .R2 � R3/sn2
�
˙
p
R3 �R1; x C C4

ˇ̌
ˇ̌R3 �R2
R3 �R1

�
; (15.27)

where sn.˛jm/ D sin am.˛jm/ is the cnoidal sine Jacobi function obtained from
the Jacobi amplitude am for the Jacobi elliptic functions. As a consequence, the
filament is described by the intrinsic equations

�.s; t/ D 2pR.s � V t/ �.s; t/ D 1

2
U.s � V t/;

with R.x/ given in (15.27) and U from (15.22). This solution is a cnoidal wave
which can approach a trigonometric function or a solitary wave whenm 2 Œ0; 1	.

�.x; t/ D 2
q
R3 C .R2 �R3/sn2.˙

p
R3 � R1.x � V t/C C4jm;

�.x; t/ D V

2
� C1

2ŒR3 C .R2 �R3/sn2.˙
p
R3 � R1.x � V T /C C4jm/	

;

(15.28)

with

m D .R3 � R2/
.R3 � R1/ : (15.29)

The solution for the filament curvature in (15.28) is similar with the solution
given in Lamb [169, (7.2.25)]. For example, to obtain a soliton in curvature we
needm D 1 in (15.29) and also C1 D C4 D 0. To convert the cnoidal sine Jacobi
elliptical function into a hyperbolic tangent we also need .R3 � R2/ D R3. By
using these constraints we obtain R1 D R2 D 0 and

�.s; t/ D 2
p
R3sech.

p
R3.s � V t//; �.s; t/ D V

2
D �0 (15.30)
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which is a single-soliton solution of the cubic nonlinear Schrödinger equation
(NLS) or of the modified Korteweg–de Vries (mKdV) equation. This filament
is a constant torsion helix with a traveling localized soliton-like disturbance
in curvature. Moreover, for such a soliton solution it is easier to integrate
the corresponding Serret–Frenet equations, by mapping them into a Riccati
differential equation, and then finding the shape of the filament.

Since the cnoidal sine is a periodic function, it is interesting to verify if (15.28)
can support closed filaments as parameterized loops. Finding the criterium for a
curve to be closed in terms of a differential equations is still an open problem
[106]. There are no simple conditions on curvature and torsion which would
force a curve to close up. For planar curves, on the other hand, where one is
concerned only with curvature, it is known that any positive periodic function
with at least four extremum points may be realized as the curvature of some
closed planar curve [107]. However, there is no simple condition on curvature
that would guarantee the existence of a closed planar curve parameterized by
arc-length. We can test this behavior by integrating the Serret–Frenet equations
with � and � given in (15.28). For example, in Fig. 15.1, we notice that a periodic
structure for curvature and torsion generates a strongly oscillating filament, yet
still open.

2. Two distinct real solutions, R1;R2 D R3 2 R.
We have P3 D �4.R �R1/.R �R2/2 and by integration we obtain

-10 -5 5 10
-2

2
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6

x
y

z

x

-10 -5 5 10
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6
k and τ

k and τ

xy

z

Fig. 15.1 Left: curvature (the upper curve) and torsion (the lower curve) from (15.28) for
R1 D 2:9;R2 D 3; R3 D 6; C4 D 0; V D 1, and C1 D 1 for the upper part and C1 D 4 for
the lower part. Right: corresponding filament shapes
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R.x/ D R1 C .R2 � R1/ tanh2
�
˙
p
R1 � R2 x

2
C C4

�
; (15.31)

which is a propagating kink, similar to a nontopological solitary wave.
3. One real root R1 D R2 D R3.

The solution can be directly integrated and we obtain

R.x/ D R1 � 4

.˙x C C4/2 :

4. One real root R1 and other two complex conjugated roots.
The polynomial has the form

P3 D �4.R � R1/.R2 C a2/:

The solution can be written again in the form of the Jacobi elliptic integral

�2F
�
i arcsinh

s
R1 C ia
R CR1

ˇ̌
ˇ̌ iR1 C a
iR1 � a

�
D .˙x C C4/

p
R1 C ia;

and we have

R.x/ D �R1 � R1 C ia
sn2

�
˙
p
R1Cia
2

x C C4
ˇ̌
ˇ̌ iR1Ca
iR1�a

� �

15.1.2 Special Solutions

This section is devoted to some special solutions of (15.21). The reader not
interested too much in the “gas dynamic” model for filament can move from here
directly to Sect. 15.1.4. We search solutions of the form

�.s; t/ D �1.t/; u.s; t/ D u1.t/s C u2.t/:

Equation (15.21) becomes
P�1 C �1u1 D 0;

Pu1s C Pu2 C u21s C u1u2 D 0:
We have an “exploding” type of solution

�.s; t/ D 2
s

C1

t � C1 ;
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Fig. 15.2 Filament shapes obtained by numerical integration of the intrinsic equations for � and
� given in (15.32). The two columns represent two different values for the integration constants,
while the time evolution is from top to bottom

�.s; t/ D s C C1
2.t � C1/ ; (15.32)

and a rigid helix type of solution with �; � D const. We present these solutions in
Fig. 15.2.

15.1.3 Integration of Serret–Frenet Equations for Filaments

With curvature and torsion determined by a certain filament model we need to
integrate the Serret–Frenet equations (5.3) and (5.4) to have the filament shape.
A direct integration can be performed, for example, starting with the first two
equations in (5.3) and obtaining

�
1

�

��
1

�
t 0
�0
C �t

� 0
C �

�
t 0 D 0: (15.33)
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In a more detailed form, and order with respect to the derivatives of the unit tangent,
(15.33) reads

t�3.��0 � � 0�/C t 0Œ�2�.�2 C �2/C �0.2��0 C �� 0/ � ���00	

� t 00�.2��0 C �� 0/C t 000�2� D 0; (15.34)

where we denoted by prime the differentiation with respect to the arc-length
parameter. Equation (15.34) is a linear homogenous system of three ordinary vector
differential equations with variable coefficients, and so we expect nine constants
of integration. These constants can be fixed by the nine geometrical conditions
imposed to the Serret–Frenet system. From

jtj D jnj D jbj D 1 (15.35)

t � n D t � b D n � b D 0;

we have six constrains and three more occur from choosing three rotation angles for
the curve. We note that the Serret–Frenet first integrals (5.7) result as a consequence
of (15.34) and need not to be chosen. In addition, when we integrate r D R

tds

we bring three more first integrals that determine the position of the filament in
space. It is interesting that all three components of the tangent fulfill the same
differential equation (15.34), which means that their dynamics is “the same” in a
way. The difference between the three components of the unit tangent is given only
by the choice of initial conditions. More specific, we can map any given solution
of (15.34) into another solution of the same equation by using the symmetry group
of transformations [242]. That is, we can map any component of the tangent to the
curve into another component of the tangent by using the symmetries of the Serret–
Frenet system of equations.

Let us present some particular cases. If � D 0 and � D �0 D const. we choose
b D 0 and we have

t 00 D �0n0 D ��20t;
which results in the general solution

t D .t10 sin.�0s C s10/; t20 sin.�0s C s20/; t30 sin.�0s C s30//

n D .t10 cos.�0s C s10/; t20 cos.�0s C s20/; t30 cos.�0s C s30//
and b D 0. From (15.35) we can choose t30 D 0, s30 D 0, s10 D 0, s20 D �=2, and
t10 D t20 D ˙1=

p
2, so in the end we obtain the solution of circular shape like it

should be.
In the following we give some examples of filament shapes obtained by

numerical integration of the Serret–Frenet relations by using (15.34). For example,
by choosing the solution in (15.28) for the curvature and constant torsion, we obtain
a periodic structure in the filament. The period is given by T D 4K.m/ with m
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κ(s), τ(s)

s

x

yz

Fig. 15.3 Left: periodic solutions in curvature Upper curves) and torsion (lower curve, almost a
constant) from (15.28) for R1 D R2 D 2; R3 D 6; C1 D 0; C4 D 0; V D 2, and � D 1;m D 1 at
times t D 1; 2; 3, and 4. Right: the corresponding numerically integrated filaments

given by (15.29), and

K.m/ D F
�
�

2
jm
�
D
Z �=2

0

d�p
1 �m sin2 �

;

being the complete elliptic integral of the first kind. For a soliton solution we have
m D 1 and hence T D 1. A plot of a traveling soliton in curvature along a very
elongated helix, at different moments of time, is presented in Fig. 15.3.

To visualize the effect of a localized perturbation in curvature on a filament, we
use a single-soliton solution (pretty much like the one in (15.30)). This specific
curvature can be obtained from (15.28) withm . 1, for an appropriate choice of the
parameters. We add this perturbation to a constant curvature, constant torsion helix,
and present the numerical integration of the Serret–Frenet equations in Fig. 15.4.
The soliton-like perturbation is propagating along the filament in the positive z
direction. A wider soliton (left in Fig. 15.4) produces a longer arc-length change in
the filament shape and shrinks it toward smaller radii. A soliton with the half-width
comparable with the helix pitch produces a little wiggle (Fig. 15.4, center) in the
helix and little deformations in the rest. A narrow soliton (Fig. 15.4, right) produces
a sort of global bent in the helix. Also, in Fig. 15.5, we show the propagation of a
soliton in curvature �.s/ D �0 C �1sech.8.s � V t//.

15.1.4 The Riccati Form of the Serret–Frenet Equations

In this section we present a specific procedure to integrate the Serret–Frenet
equations by reducing them to the Riccati differential equation. We work the case of
vortex filaments, especially when soliton solutions are investigated. Such an exam-
ple is worked out in detail in Lamb [169] and Hasimoto [123], while the differential
geometry details are provided in Eisenhart [88] and Struik [310], for example. We
begin by using the Serret–Frenet equations written in components (5.6). From the



398 15 Filaments, Chains, and Solitons

0 2 4 6 8 10 0 2 4 6 8 10

1

2

3

κ(s), τ(s) κ(s), τ(s) κ(s), τ(s)

1

2

3

2

4

6

2

4

6

0 2 4 6 8 10
0

10

20

0

10

20

xy

z

xy

z

xy

z

Fig. 15.4 Effects of localized perturbations in curvature (upper curves) �.s/ D 1:5 C
�1 sech .s=L/ on a helix of curvature � D 1:5 and constant torsion � D 0:5 (the lower constant
curves). Each frame overlaps the un-deformed and the deformed helices for three different values
of the soliton half-width L and amplitude �1
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Fig. 15.5 Propagation of a soliton withL D 1=8 along a helical filament, at three moment of time
V t D 3; 5, and 7. The helix has � D 1:5; � D 0:5
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three first integrals of motion in (5.7) we can define two test vector functions 'j

and j

'j D t j C inj
1 � bj D

1C bj
tj � inj ; (15.36)

and

� 1

j
D '�j D t j � inj

1 � bj D
1C bj
tj C inj ; (15.37)

where j D 1; 2; 3 and � means complex conjugated. We have

t j D 'jj � 1
j � 'j ; n

j D �i '
j j C 1
j � 'j ; b

j D 'j C j
'j � j � (15.38)

Now we can calculate the derivative of the ' test function

d'j

ds
D �i�'j C � ib

j � 'jnj
1� bj � (15.39)

From the two expressions of ' in (15.36) we have

i tj D i'j .1 � bj /C nj and nj 'j D �'j .i tj /C i C ibj ; (15.40)

respectively. By substituting the left of (15.40) into the right one we obtain 2nj 'j D
i.1Cbj�.'j /2.1�bj // and by substituting this result in the derivative of ' (15.39)
we have

d'j

ds
� i�
2
.'j /2 C i�'j C i�

2
D 0: (15.41)

Equation (15.41) is the resulting Riccati equation for any of the three components of
the test function 'j .s/. Similarly, we obtain another Riccati equation in . Indeed,
by coupling the derivative

dj

ds
D ��n

j � i�bj C i�tj C � nj j
1C bj ;

with the two expressions for  from (15.37), we have a Riccati equation in j of the
same form

dj

ds
� i�
2
.j /2 C i�j C i�

2
D 0: (15.42)

We present some basic facts about the Riccati differential equation in Sect. 18.2. To
find the shape of the vortex filament we need to choose the curvature and the torsion
expressions from the physical model. We used similar procedure in the gas dynamics
filament model (Sect. 15.1.1). Usually, the curvature and torsion are related to local
interactions between the filament and the surrounding medium. Once we choose a
model for � and � , we plug them in (15.41) and (15.42) and solve for the auxiliary
functions ' and . Finally, the last step is to introduce these values of ';  in (15.38)
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and to obtain the unit tangent vector field t.s/, hence the shape of the filament
by one more integration. The general solution of each Riccati equation depends
on six arbitrary constants of integration (ODE of order 1, complex solution, three
components) so all in all we need the same number of 12 arbitrary constants of
integration like in the case of the Serret–Frenet equation (15.34).

15.2 Soliton Solutions on the Vortex Filament

To find the motion of such an isolated vortex filament the next step forward from
the previous section is to integrate the Riccati equations (15.41) and (15.42) for a
given model for the curvature and torsion (i.e., the functions �.s/; �.s/). To find
an analytic solution for the filament shape in general, by this integration, is not a
straightforward task. There is no general procedure to integrate the Riccati equation,
unless we know some of its particular solutions [120,133]. However, there are some
interesting particular situations when we can obtain analytic solution, for example,
when we choose a solitary wave profile in the curvature while keeping the torsion
constant. This is again a nice match between the theory of motion of curves and
nonlinear dynamics. The fact that the one-soliton solution of the cubic nonlinear
Schrödinger equation (NLS3) allows the Riccati equation to be integrated exactly is
rather an exception than the rule. Details of the following calculations can be found
in Lamb [169], Eisenhart [88], and Struik [310].

15.2.1 Constant Torsion Vortex Filaments

We work this example for constant torsion vortex filaments � D �0, which restricts
the vortex filament class to helix-like curves. The Riccati equations (15.41) and
(15.42) for 'j and j can be written in a generic form for the unknown function
'.s/ in the form

' 0 � i�0
2
'2 C i�' C i�0

2
D 0: (15.43)

We choose the following form for the curvature

� D �0sech.˛s C ˇt/: (15.44)

The specific choice of this form (which is a NLS3 single-soliton solution) will be
explained in more detail on a physical background in Sect. 15.2.2. For the moment
we take it as a working example. We substitute '.s/ D ˚.˛s C ˇt/ D ˚.z/ and
(15.43) becomes

2˛

�0
˚ 0 � i�0˚2 C 2i sechz ˚ C i�0 D 0; (15.45)
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and becomes integrable if we choose �0 D 2˛. Of course, this is a restrictive
choice, but fortunately the NLS3 single-soliton solution can fulfill such a condition.
Equation (15.45) reads

˚ 0 C 2i sechz ˚ C i�0.1 �˚2/ D 0: (15.46)

To integrate this equation we make one more substitution by

˚ D i

�0

� 0

�
;

and transform (15.46) into

� 00 C 2i sechz � 0 C �20� D 0: (15.47)

We introduce a new substitution

�.z/ D �.z/e�i
R z sechz0d z0

; (15.48)

and (15.47) becomes

� 00 C .�20 C sech2zC i sechz tanh z/� D 0: (15.49)

Equation (15.49) can be mapped in a “harmonic oscillator plus Pöschl–Teller
potential” equation

d2 Q�
d!2
C .4�20 C 2sech2!/ Q� D 0; (15.50)

with 4! D �2zC i� and Q�.!/ D Q�.�z=2C i�=4/ D �.z/. The advantage of this
series of substitutions is that (15.50) can be easily integrated and we have its general
solution in the form

�.!/ D �1e2i�0!.2i�0 � tanh!/C �2e�2i�0!.2i�0 C tanh!/; (15.51)

with �1;2 constants of integration. Equation (15.47) becomes

�.z/ D �.z/ 1 � ie
z

1C iez
; (15.52)

and then we have
� 0

�
D � 0

�
� 2iez

1C e2z
; (15.53)

or

'.z/ D i

�0

� 0

�
C 1

�0
sechz: (15.54)
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We can draw the conclusion of these series of substitution by Proposition 11.

Proposition 11. The general solution of the Riccati equation (15.46) for the
vortex filament dynamics in (15.41) and (15.42), with single-soliton perturbation
in curvature (15.44) has the form

'.z/ D
�
C

�
.1C 2�0/ cosh

z

2
C i.2�0 � 1/ sinh

z

2

�
C .1 � 2�0/e.�C2iz/�0 cosh

z

2

� i.1C 2�0/e�C2iz sinh
z

2

��
cosh

z

2
C i sinh

z

2

��1

�
�
C

�
2�0 � tan

� C 2iz
4

�
C e.�C2iz/�0

�
2�0 C tan

� C 2iz
4

���1
;

(15.55)

where C is an arbitrary constant of integration.

Actually there are three such equations for each component 'j , and we can denote
them Cj . With �0 and Cj chosen we have 'j , and we plug them in (15.37) to obtain
j . Then we plug both 'j and j in (15.38), integrate the unit tangent field, and
obtain the filament shapes function of the parameters Cj ; �0 D 2˛; ˇ and �0. In
Fig. 15.6, we present some typical helical .� D const:/ shapes obtained through
Proposition 11 for different values of the constants of integration. Such shapes are
also described in Lamb [169, Chap. 7]. These filaments twist locally around their
asymptotic direction over an arc-length equal to the width of the single-soliton
perturbation in curvature, i.e., 2=�0. The localized loop travels along the vortex
filament with the soliton velocity �2ˇ=�0.
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Fig. 15.6 Vortex filaments generated by (15.55). Left: C1 D 1; �0 D 0:1 and C1 D 5; �0 D �0:1
for the two intertwined curves and C2 D 1; C3 D �2; for both of them. Right: different vortex
filaments intersecting at the same origin for several values for �10 < C ,�0 < 10. The three axes
show that the filaments are twisted in full 3-D space.
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15.2.2 Vortex Filaments and the Nonlinear Schrödinger Equation

In Sect. 15.2.1, to integrate the vortex filament equation, we used an example
of localized perturbation in the curvature, in the form of a NLS single-soliton
(15.44). The fact that precisely this type of soliton profile is an exact solution for
the Riccati version of the Serret–Frenet equations for the vortex filament is more
than a coincidence. The dynamics of the vortex filament is actually related to the
dynamics of the cubic NLS through all its solutions, not only through traveling
solutions. We noted already in Sect. 15.1.1 a connection between solutions of the
vortex filament equation (15.12) and solitons. In the following, following the line
introduced in Hasimoto [123], we present the connection between the motion of
vortex filaments and the cubic NLS equation. Details of calculations could be found
also in Lamb [169].

For a given smooth parametrized by arc-length curve we can introduce the
complex normal and the complex curvature in the form

N D .nC ib/ei
R s
�.s0/ds0

� D �ei
R s
�.s0/ds0 ; (15.56)

where all quantities depend on arc-length and time. From (15.56) and by using again
the Serret–Frenet relations (5.3) and (5.4), we can write

N 0 D �� t;

Pt D i

2
.� 0N � � � 0�N /;

t 0 D 1

2
.��N C �N �/; (15.57)

where the prime means differentiation with respect to s, the dot means differentia-
tion with respect to time, and � is complex conjugation. The time derivative of N

needs more attention, but in the end we can have it in the form

PN D i

2
.j� j2 C A.t//N � i� 0t; (15.58)

where A.t/ is an integration term. The equation fulfilled by �.s; t/ reads

i P� C � 00 C 1

2
.j� j2 C A.t//� D 0; (15.59)

and by using the substitution

u.s; t/ D �

2
e�

i
2

R t
A.t 0/dt 0;
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we reduce (15.59) to the cubic NLS equation

i PuC u00 C 2juj2u D 0: (15.60)

In conclusion, the procedure to determine the motion of the vortex filament is the
following. We choose a solution u.s; t/ of the cubic NLS (15.60) and an arbitrary
function A.t/, plug them into

� D 2ue
i
2

R t
A.t 0/dt 0;

and then identify the relations

Re � D � cos
Z s

�.s0; t/ds0;

Im � D � sin
Z s

�.s0; t/ds0: (15.61)

After solving (15.61) with respect to � and � we can integrate the equation of motion
of the curve. The previous single-soliton perturbation in the curvature can now be
easily obtained following this procedure. Moreover, the soliton described by (15.28)
can approach the soliton solutions of the cubic NLS equation described here, if we
make C1 D 0 in (15.28).

A direct example of using (15.60) and (15.61) for other vortex filament shapes is
to look for many-soliton solutions. A two-soliton solution of the cubic NLS equation
(15.60) can be constructed in the center of mass frame of the two solitons, which
are moving with relative velocity 2v and amplitude a [72]

u.s; t/ D 2a exp

�
i t

�
a2 � v2

4

��
.�.s; t/� ��.s;�t//

�
�
1C 2e�2as

�
cosh.2avt/ � 4a2Re

�
eivs

.vC 2ia/2
��
C v4

.v2 C 4a2/2 e
�4as

��1
;

(15.62)

where

�.s; t/ D e ivs2
�
e�asCavt C v2

.v � 2ia/2 e
�3as�avt

�
:

In (15.62) a; v are free parameters and the same for both solitons, and the initial
phases and initial positions of the solitons are set equal to zero. In Fig. 15.7, we
present the case of two NLS solitons departing from opposite initial positions, with
equal phases. Consequently, they wind in the same direction. In Fig. 15.8, we present
two solitons also departing from opposite initial positions, but having a phase shift
of � . Consequently, the loops along the vortex filament changes its chirality in time.

As Lamb [169] points out, the relation between the vortex filament dynamics and
the NLS equation is provided by the special binormal equation of motion (15.12).
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Fig. 15.7 Left: Curvature versus arc-length parameter at three different moments of time for the
two-soliton solution (15.62) of the cubic NLS equation. Right: the corresponding vortex filament
shape obtained with (15.61) at the corresponding three moments of time. The solitons have same
phase, and so the localized helices wind in the same direction

This type of motion leads to a special orientation of the rate of change in time of
the unit tangent to the filament, i.e., Pt belongs to the normal plane of the curve. In
general, if Pt has an arbitrary orientation, the equation governing the function u in
(15.60) becomes more general than the cubic NLS. For example, one can relate the
motion of twisted curves with the Hirota equation [128]

PuC 3Ajuj2u0 C iBjuj2uC iCu00 CDu000 D 0;

or, for curves of constant curvature, with the sine–Gordon equation

Pu0 C �0 sin u D 0:
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Fig. 15.8 Left: Curvature versus arc-length parameter at three different moments of time for the
two-soliton NLS solution with opposed phases. Right: the corresponding vortex filament shapes at
the three moments of time, respectively, showing change in chirality

15.3 Closed Curves Solitons

The filament flow can be regarded as a completely integrable PDE, having an infinite
number of conserved integrals

Z
�ds;

Z
�2ds;

Z
�2�ds;

Z �
.�0/2 C �2�2 � 1

4
�4
�
ds; : : : ;

and the associated commuting flows
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t; �b;
1

2
�2t C �0nC ��b; : : :

Some closed curve solutions for the vortex filament equation can be obtained from
special, periodic or non-periodic NLS potential solutions [40, 41]. It is known now
that the position vector of a moving curve representing a vortex filament can be
obtained (Sym-Pohlmeyer reconstruction formula) from the fundamental solution
matrix �.s; �/

r.s; t/ D ��1.s; �/d�.s; �/
d�

;

of a Zakharov-Shabat spectral problem for the NLS equation with real eigenvalues
� [40]

�s D
�

i� q.s/

�Nq.s/ �i�
�
:

The NLS complex-valued potential q.s/ is related through the Hasimoto map to the
curvature of the filament � D jqj, while the torsion is given by � D argŒq.s/	0 � 2�.
For example, for plane wave solutions of the NLS equation the resulting curve
solution is closed and represented by either a multiply-covered circle or a helix.
It has been proved, [140] (and references herein), that the algebraic properties of
the eigenvalue spectrum � are related to the geometry and topology of such closed
vortex filaments. The Floquet spectrum of the Zakharov-Shabat problem for the
NLS equation, for a given potential q, is the set of � which generate bounded NLS
equation solutions � . This spectrum is symmetric under complex conjugation and
is constant in time evolution. It has a discrete part responsible for NLS periodic
solutions, and several continuous components responsible for aperiodic bounded
NLS soliton solutions. Typically, the continuous spectrum consists in the real axis
reunited with finite length open curves in C D R

2 (called ”spine-branches”), each
intersecting maximum at one point of the real axis Im� D 0. The discrete part
of the spectrum contains isolated points placed on these curves, or at their ends.
The algebraic properties (like multiplicity) of the discrete points of the Floquet
spectrum is in relation to the topology of the corresponding filament curves. The
NLS solutions corresponding to isolated points are not necessary periodic, but they
can be quasi-periodic. Namely, they are periodic up to a multiplicative factor called
the Floquet multiplier. Among various types of spectra, the so-called finite-gap
spectra (and consequently the corresponding finite-gap potentials q) have only a
finite number of isolated points of multiplicity one (simple points).

The main result of this theory, [40, 41, 140], shows that the curve associated
to the vortex filament is smoothly closed for a certain real eigenvalue � if that
eigenvalue is a real double point (algebraic multiplicity two), and the derivative
of the corresponding Floquet multiplier with respect to � is zero for this eigenvalue.
Typically, these points are the double multiplicity points on the real axis where those
continuous finite curves intersect it. When the isolated eigenvalue is placed at the
intersection with one spine-branch the resulting filament is a deformation of a circle.
If the isolated point belongs to a multiple intersection of spine-branches the curves
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become knotted curves (like the trefoil, cable knot, or torus knots), or star-shaped
allowing KdV types of flow [39].

15.4 Nonlinear Dynamics of Stiff Chains

We consider a one-dimensional deformable system (neglecting the width) charac-
terized by finite length L, inextensibility, and elastic bending rigidity �, moving
in a very viscous fluid (kinematic viscosity � or friction coefficient between the
polymer and the fluid �). At the macromolecular space scale (L � 100�m; V D
10–100� s�1; � D 10�6 m2 s�1) the flow is dominated by zero Reynolds number

Re D VL

�
� 0:

Because of its geometry (elastic potential energy depending on the square of the
curvature) the stiff polymer problem is strongly nonlinear. There are several models
in literature about the dynamics of such thin rigid systems, and we mention here
just a few of them: DNA molecules [290], actin filaments and motile cells flagella
[30,126,176,193,195,231,324,334], polymeric liquid crystals and stiff polymers in
general [66,109,290,345], etc. In the following we present an interesting nonlinear
geometrical model based on a Lagrangian approach [109]. The Euler–Lagrange
equation for a system described by a smooth parametrized curve r.˛; t/ with
˛ 2 Œ0; 1	 for convenience is given by

d

dt

@L

@r t
� @L

@r
D �@R

@r
; (15.63)

where R is defined as the Rayleigh dissipation function and it measures the rate of
energy dissipation by viscous forces

R D �

2

Z L

0

jr t j2ds; (15.64)

where we used here the arc-length parametrization of the curve. Because of zero
Reynolds number we can neglect the first term in (15.63), i.e., the inertia of the
system [38, 122, 231, 260, 261, 297, 307]. Consequently the Lagrangian reduces to
the minus potential energy of the system. In addition, the unstretching condition
enters into the equations in two places: on the one hand as a Lagrange multiplier,
and on the other hand as the condition for the metrics g to be independent of
time. For a quadratic elastic potential energy (Euler–Bernoulli energy functional
for macroscopic systems, or monomer pair interaction for microscopical ones) the
dynamical equation reads
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@

@r

�
�

Z L

0

.�.s/� �0.s//2ds C �
Z L

0

jr t j2ds �
Z L

0

�.s/ds

�
D 0; (15.65)

where we assume that the polymer chain has an equilibrium shape of curvature
�0.s/, and �.s/ is the linear tension in the polymer [66], which secures through the
last integral (functional Lagrange multiplier) in (15.65), the condition of constant
length. We decompose the local forces acting on the polymer along the Serret–
Frenet frame

F D �r t D T t CNnC Bb: (15.66)

By applying to (15.65) the variational approach, we obtain the following dynamical
equations

��t D
�
@2

@s2
C �2 � �2

�
N �

�
2�
@

@s
C �s

�
B C �sT;

��t D @

@s

�
1

�

��
@2

@s2
C �2 � �2

�
B C

�
2�
@

@s
C �s

�
N

��
C 2��N � �sB C �sT;

@T

@s
C �N D 0; (15.67)

where �; � are the curvature and torsion and the last equation comes from the
condition of time independent metric. The equations are complicated and, except
numerical simulations, it is difficult to sense the contribution of the nonlinear terms.
By using the Hasimoto transformation (7.56)

�.s; t/ D �.s; t/ exp

�
i

Z s

�.s0; t/ds0
�
; (15.68)

in (15.67) the problem is simplified a lot. With the complex notation

� D .N C iB/ exp

�
i

Z s

�.s0; t/ds0
�
; (15.69)

the system (15.67) reduces, like in the case of moving curves (7.57), to an
integrodifferential equation

��t D
�
@2

@s2
C j� j2

�
� C � Im

Z s

�s�
�ds0 C �sT: (15.70)

The dynamics of the stiff polymer should be related to the dynamics of elastic beams
(Euler’s elastica theory [170]). In this theory the inflexion points (� D 0) of the
beam are important because at these points the net torque is zero. For (15.70), in
the plane case V D 0 (to simplify the equations) we have the following condition
holding at inflexion points

��t D Nss C �sT:
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Considering the tangential components to be irrelevant (just a reparametrization of
the curve) this further reduces to a very simple condition

��t D Nss:

From the nonlinear Schrödinger equation type of structure of the dynamical
equations, we expect that some solutions in curvature to have nontopological soliton
behavior. That would imply zero curvature along the polymer chain, except in some
isolated points (many-soliton solutions) where the curvature increases drastically.
Indeed, numerical simulations of the dynamical equations show such multiple
hairpin loop shapes.

15.5 Problems

1. Prove that starting from (15.12) written in an arbitrary parametrization (not the
arc-length one) we obtain the same continuity equation (15.14). Check if the
same continuity equation is obtained if we start from the equation Pr D �r 0 � r 00.

2. Show that any rigid helix (�; � D const:) is a solution of the filament equations
(15.14) and (15.19).

3. By identifying the Navier–Stokes one-dimensional equation with the second
equation in (15.21), find that the pressure associated with the gas dynamics
filament model is

P D �02

�
� �2 � �00:

4. Solve (15.34) and (15.35) for simple examples of �.s/ and �.s/. Consider that
at the initial point s D 0 the Serret–Frenet trihedron has the orientation of the
canonical frame of reference, i.e., t.0/ D .1; 0; 0/;n.0/ D .0; 1; 0/, etc. and
r.0/ D 0. Find the expression of r 00.0/ and r 000.0/ in terms of �.0/ and �.0/.
Show that a better result (faster convergence) of numerically integrating (15.34)
could be obtained if we use for initial conditions a configuration inspired by a
helix:

r.0/ D
�

�.0/

�2.0/C �2.0/ ; 0; 0
�
;

r 0.0/ D
�
0;

�.0/p
�2.0/C �2.0/ ;

�.0/p
�2.0/C �2.0/

�
;

r 00.0/ D .��.0/; 0; 0/; r 000.0/ D .0;��.0/
p
�2.0/C �2.0/; 0/:

5. Find the third-order differential equation fulfilled by b.s/ in the case of constant
torsion, from (15.34).

6. Prove that (15.9) and (15.10) contain a logarithmic divergence in ��1, hence
these expressions for the velocity of the vortex filament are not valid in the limits
r0; r1 ! 0.



Chapter 16
Solitons on the Boundaries
of Microscopic Systems

In this chapter, we focus on some applications of soliton theory in microscopic
compact systems with boundary, like nuclei or quantum Hall liquids. At this space
scale, the solitons correspond to solutions of field equations with finite energy and
with a localized, nondispersive energy density. Since the field theories describing
many-body systems of elementary particles are quantum theories, one should
perform the so-called quantization of solitons procedure. This is done in principle
by using a semiclassical expansion to associate with a classical soliton solution both
a quantum soliton-particle states, and a whole series of excited state by quantizing
the fluctuations around the soliton. Since the soliton solutions are nonperturbative,
their quantum versions are themselves nonperturbative [161, 267].

Soliton models have been successfully used to incorporate the quark structure
of hadrons into nuclear physics, by using phenomenological quantum chromody-
namics field theories. Examples of such simple models are the soliton bag model,
chiral quark-meson models, and color dielectric model, which permit calculations
of nucleon structure and interactions [23]. Soliton solutions are also involved in
semimicroscopic nuclear models like the quasimolecular shapes model [282] and
cluster model [115]. Dynamical calculations in these models are based on the
use of coherent states to provide quantum states corresponding to these solitons.
For example, some authors [116] consider the Glauber coherent states as possible
candidates for the wave functions of the nucleons clustered in the ˛-particle before
decay. Moreover, at mesoscopic scale, localized nonlinear field solutions can occur
in superconductors as vortices [197, 199].

Coming back to our main topic, the description of compact many-body systems
gives best results if performed in terms of collective modes, especially if the
collective modes have lower excitation energies when compared with the single-
particle excitations. By microscopic compact system, we understand a bounded
system of particles having one or more closed boundaries. Collective modes are
coherent, in-phase motion of the nuclear matter, as opposed to individual single-
particle motions. We can divide the collective modes of excitation in two categories:
bulk and boundary. For example, in a nucleus the bulk collective modes could be
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Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 16,
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rotations of deformed nuclei, the photonuclear giant resonance, while boundary,
surface, or contour excitations could be the low-lying “rotation–vibration” surface
modes, or nuclear fission [87]. More example of boundary modes are sound waves
in solids [83, 180, 322], plasmons in charged systems [244], shape oscillations or
surface waves in liquid drops [13, 16, 31, 35, 61, 156, 157, 189, 203, 223, 236, 237,
253, 263–265, 269, 283, 316, 318, 321, 346], vortex patches in ideal fluids [65, 329],
atmospheric plasma clouds [248], pattern formation in ferromagnetic fluids [280],
two-dimensional electron systems, tides in neutron stars [340, 341], etc. If the
collective modes associated with both single-particle and collective bulk excitations
are absent or reduced (gapped as atomic physics people would say), the system
is referred as incompressible and the boundary modes take over. From the energy
point of view, the boundary modes will be lower in energy and “softer,” with lower
frequencies than the bulk modes. In such situations, one has to study the dynamics
of the boundaries or contours, which has the advantage of less calculations than
the whole bulk: the system has lower dimension. Moreover, the global constraints
like length, area, and volume conservation can be useful in the model. These
conservation laws enter into the calculation as Lagrange multipliers and global
conservation laws.

16.1 Solitons as Elementary Particles

In spite of the great progress been made by lattice quantum field theory combined
with perturbative (Feynman diagram) methods, and experiments on particle spectra
and particle scattering there is so far only a primitive understanding of the detailed
geometry of the quark structure of nucleons [208]. Moreover, effective calculation
of the properties of nuclei using QCD is currently too hard, and there is no
agreed understanding of the force between nucleons at short range directly from
QCD. Along these lines, the use of a soliton paradigm for elementary particles
is an attractive direction: the same field equations can explain simultaneously the
existence, structure and interaction of these soliton-like particles [21].

It is not an exception when, by solving the nonlinear field equations precisely, and
deals with quantum aspects perturbatively, one finds solitons solutions that behave
like particles, as we know from the case of pion (the nonlinear sigma model and
Skyrmions), or gluon fields [209]. Such a different paradigm for an elementary
particle travels uniformly with any relativistic velocity in a flat space and along
a geodesic in a constantly curved space; it has mass, momentum, spin, and has
localized field density of energy.

In the case of elementary particles field equations, the stability of the soliton
against radiative dissipation is provided by its topological conservation laws. Pretty
much like in the case of shallow water KdV soliton where the nonlinearity arise from
the geometry through the surface tension (in addition to the intrinsic nonlinearity of
the Navier–Stokes equations), in the case of elementary particles the nonlinearity
arises from the non-trivial topological structure of the field itself. The interactions
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between soliton particles can be obtained exactly when the separation between
solitons is large compared to their size (energy profile half-width), by superimposing
the asymptotical (linearized) soliton fields. The amplitude of the linearized soliton
field far from the soliton core is called the charge of the soliton particle.

There are many developments of the soliton particle field equations, mainly
arising from examples of nonlinear integrable systems like sine-Gordon model,
Skyrme model, Q-balls, [6, 208], etc. A generic example is provided by the
Bogomolny equations, [208]. These equations can describe, for example, magnetic
flux vortices in superconductors at the critical coupling which separates type I
from type II superconductivity. In type II superconductors the vortex structure
is described by the Ginzburg-Landau equation, and the vortices strongly repel
and form Abrikosov lattices at low temperatures. Another possible application
place of the Bogomolny equations is found in supersymmetry or grand unification
theory of elementary particles at higher energy scale where monopoles become
relevant. Other examples of Bogomolny equation occur for abelian Higgs vortices,
pure Yang-Mills theory for four space dimensions where the solitons are called
instantons, types of domain wall models, and in some string theories.

The Bogomolny field equations are obtained from a Yang-Mills-Higgs model
with gauge group SU.2/, and with the fields potentials .Ai ; ˚/ taking values in the
su.2/ Lie algebra, where the potential energy has the form

U D �1
4

Z �
Tr.BkBk/C Tr.rk˚rk˚/

�
d3x;

whereBk D ��ijkFij =2 and Fij D @iAj �@jAiCŒAi ; Aj 	 are the field intensities,
and the operator rk is the covariant derivative, e.g. rk˚ D @k C ŒAk; ˚	. By
using the Bianchi identities, see (4.55),(4.56),(4.36), rkBk D 0 one can re-write
the potential energy in the form

U D �1
4
2 Tr.Bk ˙rk˚/.Bk ˙rk˚/d3x ˙ 1

2

Z
@k.Tr.Bk˚//d3x;

such that the second term can be expressed as a surface integral at infinity. From the
boundary conditions it results that the value of this integral is 2� deg.˚/ D 2�N

withN integer, since the Higgs field ˚ at infinity can be interpreted as a Gauss map
from S2 2 R3 to the unit 2-sphere in su.2/. From the expression of the potential
energy it results that U � 2�jN j, where equality holds if the Higgs field satisfies
the Bogomolny equation

Bk ˙r˚ D 0;
where the sign ˙ is chosen function of the signature of N , respectively. Solutions
of the Bogomolny equation can be physically interpreted as static superposition of
N magnetic monopoles (antimonopoles for N < 0) and describe the minima of the
potential energy for a fixed value for N .
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16.2 Quantization of Solitons on a Closed Contour
and Instantons

Let us consider a real scalar field theory on a circle of radius R, described by the
following Lagrangian density

L D 1

2

˚
˚2
t � .˚2

x � U.˚//2
�
; (16.1)

where x D R� , � 2 Œ��; �	. The function U is left, for the moment arbitrary. We
impose the boundary condition:

˚.t;��R/ D ˚.t; �R/: (16.2)

The Euler–Lagrange equation is

˚tt �˚xx C U.˚/U 0.˚/ D 0: (16.3)

Clearly, this Lagrangian is invariant under time translations, and the corresponding
conserved quantity given by Noether’s theorem (the energy) is:

E Œ˚	 D
Z �R

��R
dx
1

2

˚
˚2
t C .˚x � U.˚//2

�
: (16.4)

The energy functional, given by (16.4) is obviously bounded from below. It attains
its minimum (E D 0) at a field configurations which satisfies

�
˚t D 0
˚x D U.˚/ (16.5)

We prove that a configuration that satisfies (16.5) also satisfies the equation of
motion (16.3). The first equation in (16.5) means that a minimum-energy˚ is time
independent. For time-independent˚ , (16.3) becomes

˚xx � U.˚/U 0.˚/ D 0: (16.6)

Now, taking the x-derivative of second equation in (16.5) and eliminating ˚x with
the same (16.5), we obtain (16.6). So, any minimum-energy configuration satisfies
the equation of motion, i.e., it is a vacuum configuration. Let us take a look now at
second ordinary differential equation (ODE) in (16.5). Clearly

˚.x/ D K D constant; where U.K/ D 0; (16.7)
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is (are) solution(s) of (16.5). In terms of ODE’s language, these are “singular”
solutions. Equation (16.5) has also the “regular” solution given by

Z
d˚

U.˚/
D x � x0 (16.8)

Depending on the explicit form of U , (16.5) could have, also, some singular,
nonconstant solutions. The solution in (16.8) will be referred as the bubble solution.
To be a vacuum, a solution of (16.5) should satisfy the boundary condition (16.2).
This depends on the explicit form of U . We will assume that solution (16.8) do so.
Obviously, a solution like (16.7) satisfies (16.2).

This model has also Hamiltonian structure. The action is

SŒ˚	 D
Z
dtLŒ˚	; (16.9)

where L is the Lagrangian

LŒ˚	 D 1

2

Z �R

��R
˚
˚2
t � .˚x � U.˚//2

� D T � U �

The canonical momenta are

˘.x; t/ D ıL

ı˚t .x; t/
D ˚t.x; t/

and the Hamiltonian becomes

H D
Z �R

��R
dx˘.x; t/˚t .x; t/ � L D T C U � (16.10)

The canonical equations of (16.10) are

( @˘.x;t/

@t
D ˚xx.x; t/ � U.˚/U 0.˚/

@˚.x;t/

@t
D ˘.x; t/

� (16.11)

Clearly, the Hamiltonian (16.10) is the energy of the classical vacua. These solutions
are static, so we may use the standard procedure [267] to find the low excited
states associated with each vacuum solution. Of course, this procedure ignores the
tunneling between the different vacua. The net effect of tunneling is to add an
imaginary part to the energies. In case of the “false” vacua, this imaginary part
is small compared with the real part (the energy obtained if the tunneling is ignored)
(see [58,59]). We expect this to be true for the low excited states also. According to
this procedure, a “tower” of states is associated to each static solution. We will not
discuss here the towers associated with the vacuum solutions. We will present only
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a “tower” that is not associated with a vacuum solution but it is somehow related to
the “bubble” solution.

Let˚.0/.x/ be the “bubble” solution. Because the static Euler–Lagrange equation
(16.6) is of order 2 in x, ˚.1/.x/ D ˚.0/.�x/ it is also a solution. Obviously, ˚.1/

it is not a vacuum solution and it has a nonvanishing energy. Consequently, the
“tower” of states built around ˚.1/ will have the energies higher than the “tower”
built around the “bubble” solution. Note that the shape of ˚.1/ is identical with
the shape of ˚.0/. So, we have two classical configurations that are identical in
shapes. One (˚.0/) is a vacuum configuration; therefore, it might be attainable in
the corresponding quantum theory by spontaneous transitions from other vacuum
configurations (for example “normal” configurations), and the other is a classically
excited configuration. This feature clearly supports the interpretation that the
“bubble” is at least related with a separate object (the cluster) that may exist alone,
separate from the object that created it. The “bubble” vacuum configuration (˚.0/)
would be, in this interpretation, the configuration that consists in a preformed cluster
plus whatever remains if the cluster is emitted (the descendant), and the “bubble”
excited configuration (˚.1/) would be a bound-state configuration of descendant and
cluster.

To study the tunneling between the classical vacua, we will use the standard
instanton-based method [58, 59, 267]. Instantons are solutions of the Euclidean
Euler–Lagrange equation

˚�� C ˚xx � U.˚/U 0.˚/ D 0; (16.12)

having a finite Euclidean action. The Euclidean action for our model is

SEŒ˚	 D
Z
d�

Z �R

��R
dx
1

2

˚
˚2
� C .˚x C U.˚//2

�
: (16.13)

If x would range on the entire real axis, it could be proved that there are no finite-
action, nontrivial solutions of (16.12). This is similar with Derrick’s theorem (see
[267]). We will not present the demonstration here. We note it to show the necessity
for considering the model on a circle. Note that the missing of instantons does not
mean that there is no tunneling, but the tunneling (if exists) cannot be revealed by
the semiclassical instanton-based method. The desired feature is the presence of the
normal vacuum disintegration. Note that in all models studied in [58, 59], the false
vacuum has a higher energy than the true vacuum. We will prove that in this model,
even if the two classical vacua under study (the normal vacuum and the “bubble”)
are degenerate (i.e., we cannot call one of them “true vacuum” and the other “false
vacuum”) the normal (classical) vacuum is quantum unstable. Let ˚.x/ D K be a
constant vacuum (the normal vacuum) and ˚0.x/ a nonconstant one (the “bubble”).
We will suppose that limx!˙1˚0.x/ D K and ˚0 have only one local extremum.
We are interested to find nonconstant (�) solutions of (16.12), which satisfy the
following boundary conditions
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˚.x; � D ˙1/ D K; (16.14)

It can be seen that a satisfactory solution is

˚.x; �/ D ˚0.�/: (16.15)

In Coleman’s terminology, this is a bounce. The fact that a bounce exists, subjected
to boundary conditions (16.14) is the first step to prove the quantum instability of
the normal (classical) vacuum. The last step is to prove that the following operator
has a negative eigenvalue (see [58, 59] for more details)

O D � @
2

@�2
� @2

@x2
C 2U 0.˚.0/.�//

@

@x
C �

UU 00 C .U 0/2	ˇ̌
˚.0/.�/

(16.16)

Let us restrict the study of the eigenvalue problem of the operator (16.16) to the
x-independent eigenfunctions. Of course, by doing this restriction we lose some
eigenvalues. But we are interested only in proving that there is at least one negative
eigenvalue. By this restriction, the eigenvalue problem become:

�
� @2

@x2
C �

UU 00 C .U 0/2	ˇ̌
˚.0/.�/

�
.�/ D �.�/: (16.17)

Note that (16.17) is a time-independent Schrödinger equation. This equation has the
following particular solution

0.�/ D d

d�
˚.0/.�/: (16.18)

This solution corresponds to � D 0 and is associated to �-translation symmetry
of the system. Clearly, 0 has a node where ˚.0/ has an extremum. By the
balancing theorem there is at least one eigenfunction corresponding to an eigenvalue
lower than � D 0. This proves the previous assertion. In principle, the instanton-
based method may be used to compute the disintegration probability.

16.3 Clusters as Solitary Waves on the Nuclear Surface

We devote this section to the application of soliton models on compact shapes in
the study of ˛ or heavier cluster formation in heavy nuclei resulting in radioactive
decay, ˛-cluster states in scattering processes, quasimolecular resonances in heavy
ions, highly deformed exotic nuclear shapes and fission.

The liquid drop model, as a collective model of the nucleus, describes very
well the spectra of spherical nuclei as small vibrations around the equilibrium
shape. On the other hand, it is known that on the nuclear surface of heavy nuclei
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close to the magic nuclei (208Pb, 100Sn) a large enhancement of clusters (alpha,
carbon, oxygen, neon, magnesium, silicon) exists, which leads to the emission
of such clusters as natural decays [262]. Traditional collective models [113] are
unable to give a complete explanation of such natural decays, i.e., they still did not
completely answer the main physical question: why should nucleons join together
and spontaneous form an isolated cluster on the nuclear surface? In the following,
we present how soliton solutions in the nuclear (nonlinear) drop model plus shell
corrections can give an answer in a positive way to this question [105,183–186,188].

We describe the surface˙ of a nucleus as a function of the polar angles � and ',
by writing the nuclear radius in the form

r D R0.1C 
.�; '; t//; (16.19)

whereR0 is the radius of the spherical nucleus. Without loss of generality we choose
a special shape as a traveling perturbation (�) in the '-direction, having a given
transversal profile (g) in the �-direction


.�; '; t/ D g.�/�.' � V t/ (16.20)

with g an arbitrary bounded, nonvanishing continuous function, � a rapidly decreas-
ing function, and V defining the tangential velocity of the traveling solution � on the
surface. This choice is different from the traditional liquid drop model case where
the shape function is expanded in spherical harmonics and we need ten multipoles to
fit a soliton shape [183–185]. In the liquid drop model, we consider the nucleus as
an inviscid incompressible fluid layer described by the irrotational field velocity
v.r; �; '; t/ and by the constant mass density � D const. From the continuity
equation and the irrotational condition, we have the Laplace equation

v D r˚; 4˚ D 0: (16.21)

The dynamics of this perfect fluid is described by the Euler equation (10.15)

@v
@t
C .v � r/v D �1

�
rP C 1

�
f ; (16.22)

where P is the pressure and f is the volume density of the Coulombian force,
f D ��elr� , with � the electrostatic potential and �el the charge density,
supposed to be constant, too. We have

�
˚t C 1

2
jr˚ j2

�ˇ̌
ˇ̌
˙

D �1
�
P � �el

�
� j˙: (16.23)

To determine the functions ˚ and 
, we need in addition boundary conditions for
the scalar harmonic field ˚ , on two closed surfaces: the external free surface of
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the nucleus (9.30) and the inner surface (if it exists) of the fluid layer. The latter
condition requests zero radial velocity of the flow on its inner surface.

dr

dt

ˇ̌
ˇ̌
˙

D
�
@r

@t
C @r

@�

d�

dt
C @r

@'

d'

dt

�ˇ̌
ˇ̌
˙

� (16.24)

This equation allows general types of movements, including traveling and vibra-

tional waves. Equation (16.24) reduces to the form dr
dt

ˇ̌
ˇ̌
˙

D @r
@t

ˇ̌
ˇ̌
˙

in the linear

approximation (the Bohr–Mottelson model). This linearization restricts the oscil-
lations to only collective radial vibrations, and does not allow any motion along the
tangential direction. Equation (16.24) can be written in terms of the derivatives of
the potential of the flow and the shape function 


˚r

ˇ̌
ˇ̌
˙

D R0
�

t C 
�

r2
˚� C 
'

r2 sin2 �
˚'

�ˇ̌
ˇ̌
˙

� (16.25)

where @˚
@r
D vr D Pr is the radial velocity and 1

r
@˚
@�
D v� D r P� , 1

r sin �
@˚
@'
D v' D

r P' sin � are the tangential velocities. We denote here the partial differentiation by
suffixes, @˚=@' D ˚' , etc. The existence of a rigid core of radius R0 � h.�/ > 0,
h.�/ R0, introduces the second boundary condition for the radial velocity on the
surface of this core in the form

vr jrDR0�h D
@˚

@r

ˇ̌
ˇ̌
rDR0�h

D 0: (16.26)

The motion of the fluid is described by the Laplace equation and by the two
boundary conditions. We use for the potential of the flow the expansion

˚ D
1X
nD0

�
r � R0
R0

�n
fn.�; '; t/; (16.27)

where the functions fn do not form in general a complete system on the sphere.
The convergence of (16.27) is assured by the value of the small quantity r�R0

R0
	

maxj
j D �. From the Laplace equation (in spherical coordinates) and the
expansions

1

rn
D 1

Rn0

1X
kD0

.�1/k..n � 1/k C 1/
k; k D 1; 2; (16.28)

we obtain a system of equations that result in the recurrence relations for the
unknown functions fn
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fn D Œ.�1/n�1.n � 1/4˝f0 � 2.n� 1/fn�1

C
n�2X
kD1
.�1/n�k.2k � .n� k � 1/4˝fk/	

1

n.n � 1/ ; (16.29)

with n � 2 and where4˝ D 1
sin �

@
@�

�
sin � @

@�

�
C 1

sin2 �
@
@'

is the angular part of the

Laplacian operator in spherical coordinates. Equation (16.29) reduces the unknown
functions to only two:4˝f0 and f1:

f2 D �1
2
.4˝f0 C 2f1/;

f3 D 1

6
.44˝f0 � 44˝f1 C 4f1 C 2/;

f4 D 1

24
.42

˝f0 � 144˝f0 C 84˝f1 � 8f1/ : : : : (16.30)

If we choose the independent functions 4˝f0 and f1 to be smooth on the sphere,
they must be bounded together with all the fns (these being linear combinations
of higher derivatives of f0 and f1) and hence the series in (16.27) is indeed
controlled by the difference in the radii between the deformed and the spherical one.
However, in the following we will use only truncated polynomials of these series.
By introducing (16.29) and (16.30) in the second boundary condition (16.26), we
obtain the condition

1X
nD1

n

�
� h

R0

�n�1
fn D 0; (16.31)

which reads, in the first order in h=R0

f1 D 2h

R0
f2: (16.32)

From (16.30) and (16.32), the unknown function f1 is obtained, in the smallest order
in h=R0

4˝f0 D �
�
R0

h
C 2

�
f1: (16.33)

Concerning the free surface boundary condition, we need to calculate the derivatives
of the potential of the flow on that surface
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˚r j˙ D
X
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.r � R0/n�1˙

Rn0
fn D f1
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CO2.
/;

˚' j˙ D
X
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nfn;' D f0;' C 
f1;' CO2.
/; (16.34)

˚� j˙ D
X
n


nfn;� D f0;� C 
f1;� CO2.
/:

By introducing the series (16.28) and (16.34) in (16.25) for the traveling wave
solution (16.20), we have the equation

f1 C 2
f2 D R20
t C

'.1 � 2
/

sin2 �
.f0;' C 
f1;'/

C 
� .1 � 2
/.f0;� C 
f1;� /: (16.35)

We keep the nonlinearity of the boundary conditions in the first order in the
expression of f0 and the second order in the expression of f1. Consequently, to
be consistent, it is enough to take the linear approximation of the solution for f1 in
(16.35), like in the case of the normal modes of vibrations

f1 D R20
t CO2.
/: (16.36)

Hence, by introducing the linear approximation for f1 (16.36) in (16.35) we have

2
f2 D 1

sin2 �

�
�
'f0;' C 

'.f1;' � 2f0;'/

�
C 

� .f1;� � 2f0;� /; (16.37)

and by taking the expression of f2 from the recurrence relations (16.32) and4˝f0
from (16.33), we obtain the form of f0, in the second order in 


f0;' D �R
3
0 sin2 �

h



t


'
.1C 2
/ � 
�f0;�


'
CO3.
/: (16.38)

In the case of traveling wave profile of the form 
.�; '; t/ D g.�/�.' � V t/, it
occurs the restriction 
' D �V 
t , and consequently the tangential velocity in the
�-direction becomes zero. Equation (16.38) reads

f0;' D VR30 sin2 �

h

.1C 2
/CO3.
/: (16.39)

Equations (16.36), (16.38), and (16.39) describe, in the second order in 
, the
connection between the velocity potential, the shape function, and the boundary
conditions. This fact is a typical feature of nonlinear systems. The dependence of
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˚ j˙ on the polar angles, in the second order in 
, has the form of a quadrupole
in the �-direction and depends only on 
 and its derivatives in the '-direction.
For traveling wave profiles the tangential velocity in the direction of motion of the
perturbation, v' D ˚'=r sin � is proportional with 
 in the first order

v' D 2VR0 sin �

h

 CO2.
/� (16.40)

To obtain the dynamical equation for the surface ˙ , we follow the formalism
for the normal vibration of droplets described in Chap. 13. The surface pressure is
obtained from the surface energy of the deformed nucleus, US , and according to
Sect. 10.4 is given by

P j˙ D 2�H D �

R0
.�2
 � 4
2 �4˝
 C 3

2� cotan �/C const: (16.41)

where H is the mean curvature of the fluid surface. The terms of order three in

';� ; 
';' , and 
�;� , can be neglected in (16.41) because of the high localization of
the solution (the relative amplitude of the deformation � is smaller than its angular
half-width L, 

''=R20 ' �2=L2  1, etc.).

The Coulomb potential is given by a Poisson equation,4� D �el=�0, with �0 the
vacuum dielectric constant. By using the same method like for ˚ [183], we obtain
in the second order for 
, the form

� j˙ D �elR
2
0

3�0

�
1 � 
 � 


2

6

�
: (16.42)

To write the Euler equation we take the surface pressure from (16.41), the
velocity potential from (16.27), (16.32), (16.36), (16.39), and the Coulomb potential
from (16.42) and we write, in the second order in 
, and in the first order in its
derivatives the dynamic equation
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6

�
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This is a nonlinear PDE in variables � and '. By differentiating it again with respect
to ', and by using (16.33) and (16.36) we obtain in the second order, after reordering
the terms

A.�/�t C B.�/�' C C.�/g.�/��' CD.�/�''' D 0; (16.44)

which is a Korteweg–de Vries (KdV) equation with coefficients depending perimet-
rically on �
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A D VR20.R0 C 2h/ sin2 �
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It is obvious now that the depth of the fluid layer inside the nuclear surface should be
considered as a function of � , itself, h D h.�/. Same reasoning applies to V;L !
V.�/; L.�/. It means that the nonlinear flow under the surface interacts with the
core in a variable way, function of the azimuthal angle. The KdV (16.44) has cnoidal
waves solutions (Sect. 11.2)

�.'; t/ D g.�/sn2
�
' � V.�/t
L.�/

ˇ̌
ˇ̌k.�/

�
C � .�/; (16.46)

depending on three arbitrary parametric functions g.�/; � .�/; k.�/. The angular
(poloidal) velocity and the angular half-width have the forms

V.�/ D B

A
C Cg
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A
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L.�/ D 2
s
�3Dk
Cg2

(16.47)

where all symbols on the RHS are functions of � as shown above. The periodicity
condition on the closed path around a parallel circle reads

K.k.�//L.�/ D �=2; (16.48)

where K.k/ is complete elliptic integral of the first kind (Sect. 18.3). To have
constant traveling waves along the '-direction, the parameters of the soliton solution
must have constant angular velocity V so as to keep the shape of the wave stable
in time and along the equatorial motion. If we couple all these constraints with
the periodicity condition (16.45), (16.47), and (16.48), we have the following
dependence
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� C V 2R40 sin4 �

8h2

�
sin2 �

; (16.49)

where we denoted � D ��=.�R0/ and ˇ D ��2elR20=.3�0�/. We have to further
couple these equations with the expressions of the coefficients of the KdV equation
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l=3 l=2
Soliton

l=6
l=5 l=4

Fig. 16.1 Cnoidal waves excitation of the equatorial plane of the nuclear surface for different
values of the modulus k of the cnoidal function, plotted together with the closest spherical
harmonic combination that matches the nonlinear excitations

(16.45) and with the coefficients in the cnoidal solution (16.47), and of course with
the periodicity condition. The remaining conditions of constancy of V.�/ and the
periodicity condition (16.48), introduce two restrictions in the set of four arbitrary
functions of � : k; g; h and � , which provides the possible shapes, depths of the
layers, amplitude, and velocities with a great deal of freedom. There are boundary
conditions attached to these functions, namely at the poles, � D 0; � , all of them
should be zero. In Figs. 16.1 and 16.2, we present some possible shapes of cnoidal
excitations of the nuclear surface. In Fig. 16.1, the cnoidal solutions are plotted
together with the closest possible match in terms of spherical harmonics. One can
see that, with the exception of the solitary wave all other excitations are close to
the linear modes. In the limit k ! 1, the cnoidal waves approach a solitary wave
profile.

To verify the model we can estimate, in a very simplistic way, the spectroscopic
factors of a certain cluster decay with the experimental results. The spectroscopic
factor S is given by the penetrability of the quantum barrier associated with the
process of preformation of the cluster from the parent nucleus. We can parametrize
this process with the amplitude �0 D max jg.�/j of the solitary wave, from spherical
equilibrium shape �0 D 0 to a certain maximum value. The quantum penetrability
can be calculated with the formula [113]

S D exp

�
�2„

Z �0

0

.Acluster � EŒ�	/1=2d�
�
; (16.50)

where �0 is the final amplitude of the soliton, Acluster is the nuclear mass of the
preformed cluster of a certain ˛ or other decay process, and E is the total nuclear
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Fig. 16.2 Cnoidal waves excitation of nuclear surface in two cases. Left: the arbitrary functions
k.�/; g.�/; h.�/ are chosen to have Gauss bell profiles of the same width with the solitary wave
half-width. Right: the arbitrary functions k; h are chosen constant, and g.�/ is chosen to have a
sech profile

energy calculated function of the amplitude of the excitation. This energy is actually
defined on a multidimensional space of parameters, involving all types of energies
in the model. The liquid drop mechanical energy consists in the sum of the kinetic
energy

K D �

2

•
D

.r˚/2dV

where ˚ can be calculated from (16.27), and potential energy of the surface

U˙ D �.A � A0/;

where A is the area of the deformed surface that can be calculated from (16.20). In
addition to these two terms we have the Coulomb interaction energy

UC Œ�	 D �e

2

Z 0

V

Z
V

1

jr � r 0jdVdV
0

: (16.51)

and the shell correction energy, which, in this model, takes care of the quantum
effects. The shell energy is introduced by considering that the main contribution is
from to the final nucleus, usually close to the double magic nucleus 208Pb in ˛ and
heavier fragments decay. The spherical core r 	 R0�h represents the final nucleus,
which is also unexcited for the even–even case. We introduce the shell energy like
a measure of the overlap between the core and the final nucleus, on one hand, and
between the final emitted cluster and the bump, on the other hand
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Esh D  Vover

V C ŒV0 � .Vcluster C Vlayer/	 � Vover
; (16.52)

where Vover denotes the volume of the overlap between the volumes of the initial
V0 and final V nuclei, Vcluster is the soliton volume, and Vlayer is the layer volume
on which the soliton is moving (i.e., r 2 ŒR0 � h;R0	). We use this form for the
shell energy multiplied with a constant , chosen such that the total energy of the
system in the state of residual nucleus plus cluster to be degenerated with the ground
state energy. When we calculate the energy E along the path from undeformed
nucleus to a certain solitary wave excitation, we have to take into account the volume
conservation condition. Equation (16.50) was calculated for numerical values of
the parameters in [183, 188, 191, 192, 206]. The result was compared with similar
calculations in [206] and with the experimental preformation factors for 208Pb. The
results are enough close given the macroscopic nature of the model, namely Sexp D
0:085, SŒ281;285	 D 0:095, SŒ282;284	 D 0:0063 and Ssoliton D 0:07.

16.4 Solitons and Quasimolecular Structure

Since the soliton model for cluster preformation presented in Sect. 16.3 describes the
dynamics of the nuclear surface, it is natural to search among possible experiments
those in which the main contribution in the reactions is due – to some extent –
to the surface. The soliton model could be proved or disproved more easily in the
light of such measurements. A possible channel for such a goal is provided by the
˛-particle scattering with nuclei, in which the ˛-particle, being composite, interacts
with nuclei in a more complex way than the nucleons namely, its high stability (high
binding energy, zero spin, and isospin) restricts the interaction to a shallow surface
layer region of the nucleus.

First interesting thing revealed by such complex interaction is the occurrence of
a quasimolecular structure, i.e., states with structure polarized strongly into subunit
nuclear clusters, which can be defined as molecule-like structures [114]. Specific
features in all these experiments are a very high density of resonances, a good
spin and parity assignment, irregular spacing of these spectra, and the relatively
small moment of inertia of the ˛C nucleus-systems. There are many theoretical
attempts (microscopical and phenomenological models) to explain such resonances
or the intermediate structure. Some of them were developed for ˛-cluster states
[134, 287], or by anharmonic quadrupole surface vibrations analogues [56]. Other
models include Morse-potential, quadrupole vibration–rotation model, coupled-
channel calculations, two-center shell model, semimicroscopic algebraic models,
and band-crossing models [1, 15, 89, 97, 99, 131, 132, 151].

In all these theoretical models, to explain the above mentioned features of these
interactions, one has to introduce in the shell model a cluster-like component, or the
many-body correlations. A more natural way to explain and/or predict these energy
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spectra is to consider that the ˛-particle interacts with the nucleus as a soliton or a
breather. This is a new coexistence model consisting of the usual shell model and a
cluster-like model describing a soliton moving on the nuclear surface. The energy
spectrum is obtained from the quantum fluctuations around the classical soliton
solutions by a nonperturbative weak-coupling procedure. The corresponding energy
spectra are similar to a sum of nonlinear harmonic oscillators determined uniquely
by the soliton geometry.

In the case of the resonances observed in the scattering of an ˛-particle on 28Si,
this surface soliton quantized model produces a surprising agreement between the
predicted angular momentum states and energies and the measured ones [185,186].
In addition, this model does not use any supplementary fragmentations of levels
because of the neglected collective levels, like in the traditional models mentioned
above. The spectrum obtained from the semiclassical quantization of the soliton
state given in (16.46) reads [186, 267]

En;I;N D E0 C „!1.n1 C 1=2/C „!2.n2 C 1=2/� B.nC 1=2/2 C CJ.J C 1/;
(16.53)

where J is the quantum number associated to the angular momentum and the
corresponding constantC D „2=2I.R0; L; h/ is the reciprocal moment of inertia I ,
which is calculated from the soliton geometry by considering the rotation of the
soliton plus the layer about the center of mass of the system. All the parameters in
this term of rotation are obtained from physical considerations (and not numerical
fit calculations): the daughter nucleus radius R0, the width of the soliton L, and
the depth of the fluid layer under the soliton h (Sect. 16.3; see (16.45) and (16.49)).
The terms in „!k are the excitations of the soliton state, and for the soliton whose
geometry fits the ˛C28Si reaction (�0 D 0:41; L D 0:546; h D 0:17R0) we
obtain „!1 D 0:23MeV, „!2 D 0:801MeV, and N D 0:015MeV. With these
values obtained from the theory, the calculations reproduce about 190 observed
experimental energies and spins of the intermediate states of ˛C28Si (within errors
of 2.5% or less), and predict positions and spins of other levels. Both even and odd
parities are reproduced using the same parameters. This model explains that the
odd–even parity splitting of the band members predicted by other models like RGM
and OCM, etc., is not needed nor supported by the present experimental data or this
nonlinear model. In support of this soliton-like model the experiments show that the
even and odd states form mixed parity bands, which implies that the rotating mass
has an asymmetric shape as it is natural for the ˛C28Si-system, for example. If such
a theoretical description is acceptable it implies that an alpha (or heavier) cluster
modeled as a soliton orbiting on the nuclear surface could be viewed as another
type of large amplitude nuclear collective deformation.

This quantum approach of cluster formation on the nuclear surface was applied
to other resonances in the elastic scattering of alpha particles on 20Ne [186]. For
this lighter nucleus the constants in (16.53) are E0 D 9:465MeV, h D 0:121R20Ne,
L D 0:636, �0 D 0:62, C D 0:13052, „!1 D 0:533MeV, „!2 D 0:1:0655MeV,
and N D 0:07878MeV. About 90 states and spin values are also predicted.
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16.5 Soliton Model for Heavy Emitted Nuclear Clusters

In Sects. 16.3 and 16.4, we presented the nonlinear hydrodynamic model plus
semimicroscopic corrections. To provide a more realistic description of large
cluster formation on the nuclear surface, we have to add more detailed micro-
scopic structure to the parent heavy nucleus and to the emitted cluster. The
microscopic substructure further allows one to add shell corrections to the usual
macroscopic liquid drop energy, and thus to give a complete description of
the system, from the initial undeformed nucleus, to the parent nucleus with a
shape deformation, and out to the cluster emission process. A straightforward
way to accomplish this is to calculate shell effects obtained from the single-
particle levels of an asymmetric shell model. Such nuclear asymmetric models
are called “two-center” shell models, and allow a microscopic description of the
nuclear evolution from one to two independent quantum systems. The procedure
is presented in detail in [105], and involves calculating the total potential energy
as the sum of the macroscopic (hydrodynamic) energy, and shell corrections,
which is then minimized. This approach usually yields a potential energy barrier
along the evolution of the parameter that describes the cluster formation. This
barrier increases with the amplitude of the new formed cluster. We sketch here
the soliton-model calculations for the nuclear reaction 248No ! 208Pb C 40Ca.
Cluster emission processes are described by using soliton-like shapes on the nuclear
surface of the heavy fragment like those developed in Sect. 16.3. For a given cluster
geometry, the model calculates the corresponding soliton parameters (A, L, V )
as functions of the separation parameter, i.e., along the static path of the cluster
emission process.

The deformation energy, Edef, is calculated in a macroscopic–microscopic
approach

Edef D EC C EYCE C ıEshell C ıP; (16.54)

where EC is the Coulomb energy and EYCE is the surface or nuclear energy
calculated within the Yukawa-plus-exponential model [288]. The Coulomb energy
of interaction is calculated by the double-volume integral

EC D 1

2

Z
V

Z
V

�e.r1/�e.r2/d
3r1d

3r2

r12
� (16.55)

The general form of the Yukawa-plus-exponential energy is:

EYCE D � a2

8�2r20 a
4

Z
V

Z
V


r12
a
� 2

� exp.�r12=a/
r12=a

d3r1d
3r2; (16.56)

where r12 D jr1 � r2j, a D 0:68 fm accounts for the finite range of nuclear
forces, and a2 D as.1 � �I 2/. � is the asymmetry energy constant, and the surface
energy constant is as D 21:13MeV. In addition to the macroscopic energy, the
model contains the energy corrections for the two-center shell model, where the two
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centers are taken in the center of the daughter nucleus, and in the center of mass
of the emerging soliton. The energy corrections contain the energy of two coupled
oscillators plus the spin–orbit interaction depending on the mass asymmetry in the
final reaction products.

The level scheme of a soliton shape is used to obtain the shell corrections
of the system. As the soliton is assimilated with an emerging fragment, it will
provide the shell correction value of the independent nucleus of similar shape.
Shell corrections are obtained by means of the Strutinsky procedure [309]. The
relative velocity distribution V of the two presumed solitons along the minimum-
energy path, together with the scaled values of the half-width L and the relative
amplitude a D A=R1, are plotted in Fig. 16.3. In the first stages, the tendency is
that the amplitude and half-width increase with the elongation parameter, when the
emitted cluster is emerging out from the parent nucleus. During the formation of the
cluster the half-width remains practically constant, since the surface energy controls
this stage. When the two nuclei are well separated, the soliton envelope hardly
fits the two spheres, and in this limit, the half-width approaches zero value. This
gives the limiting configuration for this soliton model. The velocity is increasing
with the amplitude of the soliton, hence with the elongation of the cluster-like
emission shape.

2 4 6 8 10 12 14

R

1

2

3

4

5

V
a

L

Fig. 16.3 The evolution of the soliton geometrical parameters a D A=R1, L, and V in relative
units vs. the elongation R in fm for the 40Ca emission. The corresponding nuclear configurations
(parent nucleus, daughter cluster, and embedding soliton shape) are plotted for the initial stage
(when the emitted cluster is only slightly displaced off the common center), an intermediate
stage, and the final stage when the two nuclei are almost separated. The oscillations in the soliton
parameters are related to the shell corrections
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16.5.1 Quintic Nonlinear Schrödinger Equation for Nuclear
Cluster Decay

The soliton descriptions in the above sections are actually extensions of the
traditional geometric collective model (Bohr–Mottelson), which allows not only
the nuclear deformations leading to collective rotational and vibrational motions
coupled with single-particle states, but also the creation of the bumps on the
nuclear surface. The different approach followed by [149, 150] starts from the
nonlinear irrotational hydrodynamic equations in a compact domain of space, with
boundary, and introduces a Hamiltonian system in terms of collective mass and
current densities, which satisfy the Euler and continuity equations. These equations
reduce to nonlinear Schrödinger equation with a nonlocal “potential.” By using
the realistic effective Skyrme contact ı-interaction the “potential” becomes local
polynomial in density [302]. This leads to a new quintic nonlinear Schrödinger
equation whose highest order nonlinear term is essential for the Skyrme interaction,
and describes well the main properties of real nuclei [149, 150].

In the second-quantization formalism, a system of A spin-less and isospin-
less nucleons is described by a nonrelativistic Hamiltonian with a local two-body
potential U.x/

OH D „
2

2m

Z
d3xr�C.x/r�.x/C

Z
d3xd3y�C.x/�C.y/U.x�y/�.x/�.y/;

(16.57)
where the canonically conjugated nucleon fields �C.x/; �.x/ satisfy the equal-
time canonical anticommutation relations

˚
�C.x/; �.y/

�
C D ı.x � y/:

We can introduce the collective mass density, and the current density operators in a
second quantized formalism

O�.x/ 
 �C.x/�.x/; Ojk.x/ D „
2mi

 
�C.x/�;k.x/� �C;k .x/�.x/

!
;

where the subscripts represent differentiation to coordinates, and we use the
Einstein’s mute convention for summation. The mass-current operators fulfill the
following equations of motion

O�t .x/ D 1

i„ Œ O�.x/;
OH	 D � Ojk;k.x/

Ojk;t .x/ D 1

i„ Œ
Ojk.x/; OH	 D � „

2

2m2


 OTnk;n.x/ � 1
2
O�;knn.x/

�
(16.58)

� 2
m
O�.x/

�Z
d3yU.x � y/ O�.y/

�
;k

:
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In the case of irrotational flow, the velocity operator can be defined through a
potential operator O'.x/ in the equation

Ojk.x/ 
 1

2

�
O�.x/; O'; k.x/


C
: (16.59)

Equations (16.58) and (16.59) provide a complete collective hydrodynamical
description of the nuclear system. In the semiclassical limit (16.58) and (16.59)
can be reduced for irrotational flow motion (16.59) to a nonlinear Schrödinger
equation [148]

i„@u

@t
D � „

2

2m
#uC QU Œjuj2	u (16.60)

where the local density and the velocity potential are given by

u.x; t/ Dp�.x; t/e im„ '.x;t /: (16.61)

Equation (16.60), (16.61) result in a natural way from the quantum field formalism if
we think them in terms of Madelung’s analogy between fluid dynamics and quantum
mechanics.

In a case of a general two-body interaction U.x/, the potential QU Œ�	 is a
nonlocal one. The well-known effective Skyrme contact ı-interaction [302] leads
to the following local nonlinear “potential” QU Œ�	, after providing the following
renormalization [148]

Z
d3xd3y�.x/U.x � y/�.y/ H)

Z
d3x

�
3

8
t0�

2.x/C 1

16
t3�

3.x/

�
: (16.62)

The introduction of the Skyrme force involves the following substitutions

m! m� D 1
1
m
C .3t1 C 5t2/ �n8„2

;

„2
8m
! „2

8m
C �n

64
.9t1 � 5t2/;

where �n is the nuclear matter density and ti are parameters of the Skyrme forces.
After a re-scaling, (16.60) becomes

i
@ 

@�
D �# � 4 j  j2  C 3 j  j4  ; (16.63)

that is a nonlinear Schrödinger equation (NLS) with a quintic term in  . Such
an equation is not completely integrable in the sense of the soliton theory. Also,
the corresponding Bäklund transformation does not exist, and it is not possible to
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build exact N-soliton one-dimensional solutions. So we have to deal with the so-
called quasisolitons, which are also under a constant intensive investigation [205].
However, there are methods to build N-soliton solutions of the one-dimensional
cubic nonlinear Schrödinger equation, for example, the inverse scattering method
[330], direct type method [127]. For the alpha and cluster decay we have the
case of axial symmetric interaction of two small overlapping nonlinear waves.
The both initially isolated waves (a large target and a small projectile) are solitary
type spherically symmetric solutions. The general analysis of the collision of two
three-dimensional initially localized nonlinear waves (nuclei) in the framework
of nonlinear hydrodynamics can be made only numerically, where only density
distributions and not the velocity fields are calculated. Example of numerical
calculations for 208PbC20Ne along the z-axes are presented in Fig. 16.4. One can see
the transition from the two well-localized waves to the practically absorbed in the
surface region. The angular dependence of the density distribution for 208PbC20 Ne
is presented in the right frame of the same figure. The quintic Schrödinger equation
(16.63) admits also antisoliton solutions. From the three-dimensional perspective,
such a fast rotation antisoliton (Fig. 16.5), or rather an antisoliton pair where the
two antisoliton are separated with � and travel along the same circle with the

2 4 6 8 10
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0.2
0.4
0.6
0.8

1

Density r(r)/rN

2 4 6 8 10
Separation r[fm]
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0.4
0.6
0.8
1

Density r(r)/rN

Fig. 16.4 Left: the density distribution for 208Pb + 20Ne at the angle � D 0 for three different
separations. Right: the angular dependence of the density distribution for the maximum separation
presented in the left frame, � D 0ı; 10ı; 20ı

ϕ

Fig. 16.5 A fast rotating antisoliton can cut a virtual channel in the nuclear shape, increasing so
the probability for fission through that channel
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Fig. 16.6 Change in the fission barrier produced by the introduction of an antisoliton pair on the
surface

same angular velocity can have interesting consequences on the probability of
preformation of a spontaneous fission, or exotic radioactivity channel [76]. The
rotating antisoliton can create a sort of virtual channel in the surface, so it can
enhance the probability of breakup. Some preliminary numerical calculations show
that the fission barrier (Fig. 16.6) can be lowered by the occurrence of such an
antisoliton.

16.6 Contour Solitons in the Quantum Hall Liquid

An example of a nonlinear integrable system originating from the contour dynamics
formalism at microscopic scale is provided by the excitations on the edge of a
two-dimensional electron system in a perpendicular strong magnetic field. This
practically two-dimensional system was theoretically investigated in [103] by using
field-theoretical treatments of the edge excitations. Also, studies of edge channels
in quantum Hall (QH) samples have shown the presence of nonlinear waves [333].
In this study, the origin of the nonlinearity is the variation of the intensity of
the confining electrical field. From the contour dynamics point of view (theory
of plane curve motion surrounding an incompressible inviscid fluid), this system
was investigated by Wexler and Dorsey [340, 341]. In this study, the nonlinearity
arises here from geometrical effects. These authors obtained explicit MKdV soliton
solutions for the curvature of the contour, in agreement with the theory of motion of
two-dimensional curves (Sect. 7.1), and with the results obtained in Sect. 13.5 [189].

In the following we present elements of this geometric nonlinear model. The
boundary of a two-dimensional electron system, or a QH liquid can be investigated
in a clean and controlled environment because the QH liquid is incompressible, there
are no other low-lying excitations except the boundary ones so dissipative effects
can be eliminated. We consider a bounded two-dimensional system of electrons of
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density n.r ; t/ and velocity field V .r; t/, placed in a high magnetic field BDBez,
and a background (confining) electric field E . We denote the two-dimensional con-
nected, simply connected domain (Sect. 2.1.4) occupied by electrons withD and its
moving boundary � D @D will be considered a regular, simple, plane, parametrized
curve (Sect. 5.1). Because of the inviscid and nondissipative character of the motion
in the QH two-dimensional drop, we can use the Euler equation (10.15)

@V

@t
C .V � r/V D �!cez � V C e

me

E � e2

me�
r
Z
D

n.r 0/
jr � r 0jdA

0 D 0;

@n

@t
Cr � .nV / D 0� (16.64)

In the second equation, !c D eB=me is the cyclotron frequency, me and e are the
mass and charge of electron, and � is the dielectric constant of the medium. The first
two RHS terms are the Lorentz force, and the last one is the Coulomb interaction.
The last equation is the continuity equation. If both velocity and density of electrons
are supposed to oscillate around their equilibrium values V e D 0; ne with some
frequency ! and wave number k, by using (16.64) we note that

! D !c C 2�nee
2

me�
k:

A simple estimation shows that bulk excitations can be neglected since „!c �
200K, while the equilibrium temperature is around 1 K. So, the QH system can
be well modeled with nonlinear contour dynamics approach. This is equivalent with
an incompressible inviscid two-dimensional liquid drop model with sharp contour,
except here we have electromagnetic interactions in addition. The incompressibility
condition introduces already a global conservation law, i.e., constant area of D.
If we multiply in a crossproduct the first equation in (16.64) with ez, neglect the
inertial terms and the drift terms produced by the parasite external electric field
ez �E [341], we obtain a simpler equation the velocity field of confined electrons

V .r/ D � e2

�me!c
r � ez

Z
D

n.r 0/
jr � r 0jdA: (16.65)

Moreover, because of the incompressibility we can pull outside of the integral the
electron density, and by using Stoke’s theorem we have

V .r/ D nee
2

�me!c

I
�

t.s0/
jr � r.s0/jds

0; (16.66)

where t is the unit tangent to the contour � and s is the arc-length (Sect. 5.1).
Equation (16.66) is a nonlocal representation formula (Sect. 10.6) telling us that
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the motion of the boundary is determined by the flow of the electronic fluid at the
surface. The motion of the boundary can be described in the formalism developed
in Chap. 7.1. We parametrize the contour either with the arc-length s or with the
azimuthal angle (it is a simple closed curve) ', i.e., r.'; t/. The contour has the
following geometric parameters

t D
re' C @r

@'
erq

r2 C . @r
@'
/2
; g D

s
r2 C

�
@r

@'

�2
;

n D 1p
g

�
�rer C @r

@'
e'

�
; � D

s
r2 C 2

�
@r
@'

�2
� r

�
@2r
@'2

�2

�
r2 C

�
@r
@'

�2� 3
2

where we define a local orthogonal curvilinear basis attached to the contour fer ; e'g,
er D .cos'; sin '/; e' D .� sin'; cos'/. The plane velocity of the contour can be
expressed by (7.1)

V .s; t/ D U.s; t/n.s; t/CW.s; t/t.s; t/; (16.67)

where .U;W / are the normal and tangential components of the velocity of the
boundary.

Steady traveling contour waves move along the circumference as a perturbation.
Consequently, we can write the parametric equation for the contour in the azimuthal
angle parametrization, r.s; t/! r.'; t/,

r.'; t/! r.' �˝t/; (16.68)

with ˝ being the constant angular frequency of the boundary rotation. From n D
t � ez, and (16.67) and (16.68) we have a condition for the normal velocity

U D n � V jr2˙ D ˝n � .ez � r/: (16.69)

The normal velocity can be obtained from the velocity field of the electron fluid
(16.66) taken at the boundary r.'; t/

U.'; t/ D nee
2

�me!c

Z 2�

0

n.'; t/ � t.' 0; t/
jr.'; t/ � r.' 0; t/j

p
gd' 0; (16.70)

where g is the metric of the � curve (5.1).
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16.6.1 Perturbative Approach

We expand the boundary curve in the azimuthal parameter in a Fourier series

r.'; t/ D R0
�
1C

1X
nD�1

Cne
in'

�
: (16.71)

By using the Serret–Frenet relations for the expression of the unit tangent and
principal normal of the curve in the ' parametrization in (16.69)–(16.71), we have

U.'; t/ D � i˝p
g

�X
n

nCne
in' C 1

2

X
n

X
m

Cn�mCmein'
�
: (16.72)

Equations (16.70) and (16.72) form a nonlinear system of equations for the
coefficients Cn and˝ . The solution of this system provides the nonlinear boundary
standing traveling modes (dispersionless perturbations).

From the expansion (16.71), and by denoting ' 0 D ' C !, we can write the
numerator of the integrand in (16.70) in the form
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�
:

Next step is to expand the whole integrand of (16.70) according to the above sums,
and then integrate over ' 0, i.e., over !. After this integration, if we identify the
coefficients of various products of Cn between (16.70) and (16.72) we obtain an
infinite dimensional nonlinear system for Cn. By considering this system up to the
fifth order in products of Cn coefficients we obtain the condition

Q̋
�
Cn C 1

2

X
n2

Cn�n2Cn2
�
D Q.1/

n Cn
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Cn�n2Cn2�n3Cn3�n4Cn4 C : : : : (16.73)

Here we denoted Q̋ D �me!cR0˝=.nee
2/, and the tensorsQ.k/ have the form
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where � � 0:577216 : : : is the Euler constant, and �.x/ D � 0.x/=� .x/ is the
digamma function, and � .x/ is the gamma function. In these equations above we
used the relation [5, 284]

NX
nD1

1

2n � 1 D 2.� C ln 4/C 1

2
�

�
nC 1

2

�
:

To evaluate the correct orders of smallness, we can expand the digamma function in
a Bernoulli series

Q.1/
n � 4

�
�

2
C ln 2C ln n

2
C B2

8n2
C 7B4

64n4
C : : :

�
;

where Bk are the Bernoulli numbers, i.e., B2 D 1=6; B4 D �1=30; : : : . The first
terms on the RHS of the above series are in orderO.1/, the term containingB2 is in
order O.3/, the next term is in order O.5/, so a pretty good approximation would
be to approximate the series up to order n; n2; � � � 	 5. In Fig. 16.7, we present
numerical estimation of the Q.1/

n sums vs. the order taken into account.
From the above conditions, the solutions for ˝ are introduced in the system

(16.70) and (16.72) allowing to calculate the coefficients Cn up to order five. The
receipe used in [341] consists in choosing the largest coefficient Cmax D Cn� D
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Fig. 16.7 The sums
Pn

kD1.2k � 1/�1 plotted vs. n. Truncation of the sum up to the fifth term
introduces a relative error of about 20%. The series is convergent even if in this figure is not obvious

maxfCngnD1;:::;5 as being of order O.1/. Next, one needs to expand the remaining
coefficients Ck , and the solution ˝ of (16.73), in series of smaller and smaller
orders, of the form Cn D C

.2/
n C C .3/

n C : : : . The linear approximation, i.e., the
first-order term Cn� , provides the fundamental harmonic of the angular frequency

1. Q̋ / D Q.1/

n� C 4:

This result was previously obtained in [103]. Next orders obey the typical behavior
of nonlinear oscillations of drops (Sect. 13.3) that is involving coupling between
modes. The second-order mode in the Cn� expansion couples the fundamental har-
monic with the second harmonic, the third-order term couples the fundamental
mode to the first and third harmonics, the fourth-order couples the fundamental to
the second and fourth harmonics, etc. Also, each next order brings additional
corrections to the angular frequency ˝ . The drop shapes obtained from these Cn
coefficients are presented in [340, 341], and they include: ellipsoids of different
eccentricities, elongated ellipsoids with neck, convex or concave triangular shapes,
and convex or concave four-lobe shapes, with the contours going all the way to
superdeformed ones like cruciform quartic curves, etc. These nonlinear shapes are in
good agreement with the nonaxisymmetric shapes of liquid drops obtained through
other theoretical approaches or experiments [8, 13, 96, 189, 319, 321]. To illustrate
such types of shapes we generated typical examples in Fig. 16.8 by help of cnoidal
sine functions, for different amplitudes and different values for the modulus k.

16.6.2 Geometric Approach

The two-dimensional incompressible inviscid model for the QH electron drop is
susceptible for a geometric approach. We use the boundary velocity formula (16.66)
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Fig. 16.8 Left frames: curvature � in a polar representation along the loop (that is plotting the
function .x D .1 C �.s// cos '.s/; y D .1C �.s// sin '.s//). Right frames: the nonlinear drop
shapes generated by the cnoidal periodic solution in (16.84). For upper figure the coefficients are
A D �0:2; B D 0:3;D D 0:98; F D 10�3, and m D 0:95, and for the lower figure the
coefficients are A D �0:2; B D 0:9;D D 0:98; F D 10�3, and m D 0:993. Both loops
represent octupole shapes. The lower one is an exaggerated case similar to a symmetric breakup or
fission. The period, width, and angular velocity are given by (16.85)

and the formalism of plane curve motion developed in Sect. 7.1. The physics of
the problem allows us to approximate the value of the loop integral (16.66) in
r.s; t/ with an integral along the contour � taken only in a neighborhood of s, i.e.,
integrated on I D Œs�ıs=2; sCıs=2	, where ıs can be chosen relatively small when
compared with the perimeter of � . This is possible because the dominant interaction
is the Coulombian one which, in the plane case, decays as 1=r . Consequently, the
value of the integrand in s can be expanded in Taylor series on s0 2 I . From the
Serret–Frenet equations (5.3)–(5.5), (5.8), we have the series expansion in powers
of ıs
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�
ıs � ıs

3

6
�2 � ıs

4

8
��s C : : :

�ˇ̌
ˇ̌
.s;t /

Cn.s; t/

�
�ıs

2

2
� � ıs

3

6
�s C ıs4

24
.�3 � �ss/ : : :

�ˇ̌
ˇ̌
.s;t /

; (16.74)
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where � is the curvature of � , subscripts mean differentiation, and one should not
make confusion between the scalar symbol t-time and the vector t-unit tangent.
We introduce (16.74) and (16.75) in (16.66), and from the dot product between
(16.67) and t;n, respectively, we obtain the two plane velocities in the first-order
approximation

U D nee
2

�me!c

ıs2

8
�s C : : : ; (16.76)

and

W D nee
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�me!c

�
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2R0
� 11ıs

2

96
�2 C : : :

�
: (16.77)

In deduction of these equations we can double check the expressions for the normal
and tangent velocities from the general theory of planar curve motion, i.e., (7.4)
and (7.7). According with this geometric theory, the dynamics of the moving curve
is controlled by a PDE connecting curvature and the two velocities, i.e., (7.8)
and (7.10)

�t D Uss C �2U C �s
Z s

0

�Uds0: (16.78)

By introducing the expressions (16.76) and (16.77) in (16.78), we obtain exactly the
modified Korteweg–de Vries equation (MKdV) for the curvature �.s; t/ in the form

�t D � nee
2ıs2

8�me!c

�
3

2
�2�s C �sss C

�
5

12
�2.0/ � 8

ıs2
ln
ıs2

2R0

�
�s

�
: (16.79)

The MKdV system is integrable and contains an infinite countable set of integrals
of motion related strictly to the curvature and its derivatives with respect to
s [2]. We need to make here a comment about these integrals of motion. For
this model in particular as well as for two-dimensional incompressible traditional
liquid drops, and actually even for a simple two-dimensional moving curve with
same U;W as in (16.76) and (16.77), there are two conserved quantities that
have nothing to do with this infinite series of conserving quantities of the MKdV
hierarchy. Namely, we have constant perimeter of � and area of @� , and this
is somehow expected to happen since the HQ liquid is incompressible and we
did not associate any elasticity properties with the boundary. Indeed, by using the
expressions of time variation of length L and area A of a plane curve, (7.34) and
(7.37), (7.39), respectively, for the model velocities obtained in (16.76) and (16.77)
we have

dL

dt
D �

Z L

0

�Uds � �2jL0 D 0;
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Fig. 16.9 Same as Fig. 16.8, but for higher-order multipoles. In the upper frames the coefficients
are A D �0:2; B D 0:3;D D 0:9; F D 5 � 10�3 , and m D 0:825, and in the lower frames the
coefficients are AD �0:3; B D 0:9;D D 0:9; F D 10�3, and m D 0:992

since the curve is closed. Some examples are presented in Fig. 16.9. The same
conservation occurs for the area

dA

dt
D �

Z L

0

Uds � �jL0 D 0:

So, the perimeter and area conservation occur actually only because of the special
form of the normal velocity of the contour. The infinite number conservation laws
for the MKdV equation are actually integrals of polynomials of the curvature and
its arc-length derivatives, so they “live in a higher space” (in the sense of lifting
the problem of invariants to the tangent bundle over the equations of motion) than
infinitesimal arc-length and area. We can check this easily, since the we know that
the first conservation laws for the KdV equation in the function �.s/ are given by [2]

I1 D �; I2 D �2; I3 D �3 � 1
2
�2s ; : : :
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Any solution � of MKdV equation �t�6�2�sC�sss D 0 is also a solution of the KdV
equation �tC6��sC�sss D 0 by the Miura transformation [2,169], � D �.�2C�s/.
Consequently, after eliminating the integrable terms in all expressions because of the
closed loop condition, the conservation laws for the MKdV equation become

J1 � �2; J2 � �3�4 C 4�2s � 8��ss; : : :

These quantities are not directly related to perimeter or area, although there are
authors considering that there is a connection through the prolongation structures
[242, 335].

The solutions of the MKdV (16.79) can be expressed in terms of Jacobi elliptic
functions (Sect. 18.3) simply by following the same procedure as in the case of KdV
equation in Sect. 11.2. The cnoidal wave solution has the form

�.s; t/ D Acn

�
s �˝t
�

ˇ̌
ˇ̌m
�
C B; (16.80)

where ˝ is the angular velocity of the MKdV cnoidal wave in curvature, m is the
modulus of the cnoidal function, and A;B are arbitrary integration constants. The
width � and the angular velocity˝ are given by

� D 2

A

p
m; ˝ D e2neıs

2

8me�!c

��
5�.0/

12
� 8

ıs2
ln
ıs2

2R0

�
C A2

4

�
2� 1

m

��
: (16.81)

This solution approaches the MKdV one-soliton solution in the limit m! 1

�sol D Asech

�
s �˝t
�

�
C B; (16.82)

with

� D 2

A
; ˝ D e2neıs

2

8me�!c

��
5�.0/

12
� 8

ıs2
ln
ıs2

2R0

�
C A2

4

�
: (16.83)

However, this solution is not appropriate for our closed contour problem. It is true
that the curvature is a periodic function, and we can even request the tangent of the
contour to be periodic. However, the curve itself obtained by the Fresnel integration
of this curvature (5.15) is open. This is easy to observe: the curvature of a closed
curve should be a constant plus a correction, to guarantee a perturbed closed circle.
The KMdV soliton equation is always oscillating around zero, so the resulting curve
is an oscillating open curve.

To provide the closure of the contour one needs to look for a different solution of
(16.79), more related to a breather one. The authors in [340, 341] found the form

�.s; t/ D
AC Bcn

�
s�˝t
�

ˇ̌
ˇ̌m
�

D C F cn

�
s�˝t
�

ˇ̌
ˇ̌m
� : (16.84)
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If we plug this solution in the differential equation, we obtain the following form
for the parameters of the solution

m D �F.2BF
2 � BD2 �ADF /

2.AD � BF /.D2 � F 2/
;

� D
s

2DF.D2 � F 2/

ŒDF.A2 C B2/� AB.D2 C F 2/	
;

(16.85)

˝ D e2neıs
2

8me�!c

�
5�.0/

12
� 8

ıs2
ln
ıs2

2R0
C AB

3DF

C 2A
2D2 C B2F 2 � 2ABDF

3.D2 � F 2/2

�
:

Such a solution is periodic of period 4�K.m/ (Sect. 18.3). In order for the contour
to be a smooth loop, it needs to fulfill the condition of matching modulo 2� of the
tangent at the ends, i.e., Z L

0

�.s; t/ds D 2�:

This condition can be resolved for the solution in (16.84) and (16.85) and, by the
Fresnel integration, one can obtain all the shapes presented in Fig. 16.8. Because it
depends on four parameters, this solution for curvature generates a large variety of
curves including self-intersecting curves, multifoils, etc., many of them very much
related to the vortex filaments shapes (Sect. 15.1), since the two systems occur from
the same type of nonlinear equation. Of course not all of them are appropriate for
modeling a closed contour. The same type of MKdV dynamics was obtained for
normal liquid drops in Sect. 13.3 by using a different approach.

We close this section with a note concerning the possibility of having rigid cores
inside or outside such droplets, like for example in the experiments described in
Sect. 12.6. Let us assume that a rigid boundary is placed at a radius a. The normal
velocity for any point of coordinate '0 should cancel, so we need

U.a; '0/ �
Z 2�

0

r'.'/
p
g.'/d'

.a cos'0 � r.'/ cos'/2 C .a sin'0 � r.'/ sin'/2
D 0;

(16.86)

where g is the metric of the contour. In principle, the equation of the contour
(and its curvature) need to be expanded in cnoidal modes and then exploit the
orthogonality relations between the Jacobi elliptic functions to cancel this integral,
but this problem would be beyond the purpose of this book.



Chapter 17
Nonlinear Contour Dynamics
in Macroscopic Systems

In this chapter we study several macroscopic applications of the closed contour
dynamics problem by using theorems for differential geometry. A first application
presented is the study of the geometry of trajectories of charged particles in
magnetic fields. We present some closeness trajectories criteria based on Bonnet
and Fenchel theorems. Another example is given by the application of the Gauss–
Bonnet theorem to problems of trapping particles inside closed magnetic surfaces.
At larger physical scales, we present the occurrence of very localized stable waves
orbiting around elastic spheres, and we conclude the chapter with a description of
nonlinear modes in neutron stars.

17.1 Plasma Vortex

17.1.1 Effective Surface Tension in Magnetohydrodynamics
and Plasma Systems

In this section, we consider another situation where the geometry of the free
surface controls the dynamics of the fluid inside. We shall consider the problem
of confining some electrically conducting fluid by an external magnetic field
configuration. This problem, part of a more general subject known under the
name of magnetohydrodynamics, is important in hot and dense plasma systems,
and in controlled thermonuclear fusion installations. To produce extreme pulses of
neutrons through the initiation of a thermonuclear fusion reaction between helium,
deuterium, and tritium for example, matter should be compressed and heated to
ultrahigh densities, pressures, and temperatures for a long enough time. Under
such conditions, matter becomes a dense and hot plasma namely a combination
of positive ions, electrons, neutral particles, and electromagnetic radiation. Left
to itself, a plasma – like a gas – will occupy all the geometrical space available

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
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because of the collisions between the particles. At these high energy densities,
the plasma–wall interaction is enough intense to damage any type of material, so
practically there is no type of material strong enough to keep such a plasma confined.
Consequently, the only possibility for plasma confinement is through magnetic
fields.

17.1.2 Trajectories in Magnetic Field Configurations

Magnetic fields can confine a plasma, because the electrically charged particles
follow helical paths around the magnetic field lines. Indeed, let us assume that a
charged particle moves in a region where there is a constant and uniform field of
force, F 0. This is the case of electric E and/or gravitational field G , only. Let r.t/

be the particle law of motion, as a three-dimensional curve parametrized by time.
We have the metrics g D Pr � Pr D v2 and the arc-length ds D pgdt D vdt . The
velocity is given by v D Pr D vt, where t;n, and b are the three Serret–Frenet unit
vectors associated to the particle trajectory. The acceleration has the form

Rr D ds

dt

d Pr
ds
D
�

v2

2

�
s

t C v2�n;

where �; � are the curvature and torsion of the trajectory, and subscript means
differentiation. Newton’s second law F 0 D ma reads

�
v2

2

�
s

t C v2�n D
�
g

2

�
s

C g�n D F 0

m
: (17.1)

It is easy to identify the geometrical meaning of the kinematics quantities: the linear
acceleration a D gs=2, and the centripetal acceleration acp D g�. Because the force
is constant, by differentiating (17.1) with respect to the arc-length, and by using the
Serret–Frenet equations (5.3) we have

��
g

2

�
ss

� g�2
�
t C

��
g

2

�
s

� C .g�/s
�
n � g��b D 0:

Since v ¤ 0; g ¤ 0 we have from the above equation

8<
:
�� D 0
gss D 2g�2
�gs D �.g�/s

� (17.2)

The first equation shows us that in the case of a constant force the trajectory is
always plane (and in particular can be a straight line). From the last two equations



17.1 Plasma Vortex 447

we obtain �g3=2 D const. Since the trajectory is a plane curve, we can choose locally
a flat coordinate system where r D .x; y.x/; 0/. In these coordinates we have g Dp
1C y02, � D y00=.1C y02/3=2, and it results y00 D 0 so the trajectory in the case

of a constant force field is always a parabola.
In the case of a constant (but not uniform) magnetic field B we have from (17.1)

�
v2

2

�
s

t C v2�n D q

m
.vt �B/� (17.3)

Since t is perpendicular on the RHS of (17.3), we have v D v0 D const. and g D
g0 D v20 D const., which agrees with the well-known fact that magnetic field does
not change the kinetic energy of charged particles. In terms of geometric quantities
(17.3) reads

g�n D qv

m
.t �B/� (17.4)

Also, since the metrics along the trajectory is constant, we can write

ts D q

mv0
.t �B/ D qB

mv0

�
t � B

B

�
;

and we denote by C.s/ D qB.r.s//=mv0 and T .s/ D B.r.s//=B.r.s// the unit
tangent of the magnetic field line that intersects the path of the particle at every point
r.s/. With these notations (17.4) reads

�n D ts D C.t � T /: (17.5)

From here we have �helix D C sin � , where � is the angle between t and T . We
can express the components of the magnetic field in terms of the local Serret–Frenet
frame of the particle path, B D Bt t C BnnC Bbb, and since t �B D Bnb� Bbn
we have Bn D 0, or T � n D 0. Equivalently, T D Tt t C Tbb, T 2t C T 2b D 1.
It means that the particle moves such that the unit normal to its trajectory is always
in the normal plane of the field lines. It also means that the tangent to the field
line is always in the rectifying plane of the trajectory. According to the definition
of a generalized helix (Definition 41), the motion of the particles is always a local
helix with its axis perpendicular on the normal plane to the magnetic field lines,
curvature �helix D C sin � D �CTb. In other words, the particle trajectories wind
locally around the magnetic field lines. If the magnetic field is uniform, or if we
study the motion in a small region where the field is almost uniform, the trajectory
is a cylindrical helix. We know from Definition 41 that a helix has a constant ratio
between its curvature and torsion. It results that locally, if the intensity of the field
increases (hence curvature increases) the torsion increases, too. It means that when
a particle enters a region with increasing magnetic field its “local helix” becomes
flatter and narrower, and this is the magnetic mirror effect. Eventually, for a critical
value of the field, the torsion cancels, the trajectory becomes flat, and the particles
turns around.
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If we differentiate (17.5) with respect to s we obtain

�sn � �2� � ��b D Cs

C
�nC C2T .t � T /� C2t C C�.t � T s/:

If we identify in the equation above the coefficients of b on the LHS with those on
the RHS we obtain a relation defining the torsion of the trajectory

tan� D �

�
� KB cos�

� cos �
; (17.6)

where KB is the curvature of the field line, and � is the angle between n and the
unit normal of the field line, N . Equation (17.6) can also be written in the form

�2 C �2 D C2 CO.KB/:

From b D t � n we obtain

b D �C
�

T b; where T b D .T � b/b D sin �b:

It is easy to note that if the field lines are almost rectilinear, we can neglect the
term containing KB , and then the ratio between curvature and torsion becomes a
constant, i.e., the trajectory is a helix surrounding the field line. Another simple
situation occurs if the magnitude of the magnetic field is constant along the particle
trajectories. In this case we have

�s D C cos ��s

bs D C
�
�s
�

T b � 1
�
T b;s

�
and

T b � T b;s D 0:

Consequently, we can express the angle � as function of the curvature of the
isomagnetic lines, KB

.sin �/s D �KB.N � b/:
This last expression allows us to obtain a simple equation for the torsion of the
particle trajectory, in the isomagnetic field case

� D C
�
1C KB

�
cos 

�
;

where cos D N � n.
An interesting question is to find the structure of the magnetic field lines to have

the particles trapped inside a certain bounded region of the space. This problem is
an interesting exercise for the theory of compact surfaces and closed curves. In the
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following we assume that the magnetic field is constant in time, and the speeds of the
particles are also constant. This is of course an approximation of the real situation
inside a plasma region where the magnetic field is actually perturbed by the field
generated by particle motion itself. Also the field is not stationary, because there is a
combination of electric and magnetic fields. Moreover, the particles collide and their
speeds spread into a thermal equilibrium configuration, and relativistic dynamics
may occur, too. For a general yet comprehensive treatment of the theoretical
problem of hydromagnetic stability we would recommend the reader the book of
Chandrasekhar [50].

We assume that each magnetic field line is a regular parametrized curve B.r.s//

of curvature KB.s/. For any point (r0), and any initial direction of the motion of
a charged particle (t0), we can predict the trajectory of the particle, r D ˛.t/

by integrating the equation of motion (17.3). The question is whether all possible
particle trajectories launched in magnetic field can be organized in regular surfaces
parametrized by time or arc-length, and some other parameter describing the initial
conditions. For example, if the magnetic field is uniform, all trajectories are helices.
All particles having initial position at points placed on a tube of constant radius
along on one magnetic field line, and initial velocities (initial tangents) making the
same angle with this magnetic field, move only on the surface of this tube. The space
can be filled with such disjoint, coaxial tubes of different radii.

Finding the equation of such particle motion surfaces in the general case of an
arbitrary magnetic field is not a typical Frobenius problem (see Theorem 5), because
we do not have two given vector fields in involution to be integrated. One vector field
can be the magnetic field, but the other field is not uniquely defined, since the initial
velocities of particles in different points are arbitrary. We actually have a Cauchy
problem defined by (17.3), and by Cauchy conditions of type 16. Specifically, we
choose the Cauchy initial conditions for one particle in the form r0.v/ and t0.v/,
where v is one real parameter, which labels different initial conditions. To find the
particle motion integral surfaces we use Theorems 3 and 23 in Sect. 9.6, and the
above initial condition to solve (17.5). This equation is an ODE for the unit tangent
vector t.s/ and has the general solution in the form

t.s/ D exp

�
C
R s
0
OT .s0/ds0

�
t0

t.s/i D exp

�
EijkC

R s
0

T k.r.s
0//ds0

�
t0j ;

(17.7)

where the summation indices i; j; k D 1; 2; 3 label the Cartesian components, and
Eijk is the Levi–Civita signature tensor. The coefficient C is written in front of the
integral operator because it is a constant. T .r.s// is the unit tangent to the magnetic
field along the particle path, T ı r . This solution of the unit tangent field is actually
the flow, or the exponential map, of the tensorial field OT , where hat means the dual of
the vector T . This dual is a 3� 3 antisymmetric matrix associated to T . The formal
exponential of a 3 � 3 matrix A is the 3 � 3 matrix obtained from the series
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exp.A/ D
X
i�0

An

nŠ
:

For example, if we have a uniform field in the direction of Oz-axis, B D .0; 0; B0/
and T D .0; 0; 1/, the dual antisymmetric matrix has the form

. OT /ij D .EijkT k/ D
0
@ 0 1 0

�1 0 0
0 0 0

1
A :

The exponential has the form

exp.C OT s/ D exp

0
@ 0 C s 0

�Cs 0 0

0 0 0

1
A D

0
@ cos.C s/ sin.C s/ 0
� sin.C s/ cos.C s/ 0

0 0 1

1
A;

and the solution for the tangent is the well-known helix along the Oz axis

t.s/ D .t01 cos.C s/C t02 sin.C s/;�t01 sin.C s/C t02 cos.C s/; t03/:

Consequently, the general solution of the (17.3) is obtained by one more integration

r.s/ D
Z s

0

exp

�
C

Z s0

0

OT .r.s00//ds00
�
ds0 � t0 C r0: (17.8)

Equation (17.8) is actually an implicit equation for the trajectory of the particle,
because the unknown function r.s/ appears also in the exponent in the RHS. This
inconvenience makes the problem more difficult to solve. Yet, one can check the
validity of (17.8) by trying simple examples of field configurations, like the helical
motion presented earlier.

A possible approach toward the closing or boundness of trajectories is to use
the Bonnet Theorem 20, which provides a sufficient condition for a (complete)
surface to be compact. The hypothesis is to assume that the particles describe helical
trajectories around the magnetic field lines, and remain confined within tubular
surfaces centered on the magnetic lines. Let us consider a set of identical particles,
launched with the same initial speed (they have the same C.s/ function), and at the
same distance from a given the magnetic field line, denoted � . The particles differ
by only one parameter denoted v, which describes the relative position around � of
the initial launching points. Consequently, the particle trajectories lie on a smooth
surface S of equation

r.s; v/ D
Z s

0

exp

�Z s0

0

C OT .r.s00//ds00
�
ds0 � t0.v/C r0.v/: (17.9)

The coordinate curves along this surface are
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r s D exp

�
C
R s0
0
OT .r.s00//ds00

�
� t0 C r0

rv D
R s
0 exp

�
C
R s0
0
OT .r.s00//ds00

�
ds0 � t0v C r0v:

(17.10)

For example, in the case of uniform parallel magnetic field we choose all particles to
start their motion at same distance r from a magnetic field line, i.e., from the surface
of a tube around the magnetic field line. All particles will have the same initial speed,
and their initial velocities (t0) make the same angle with the magnetic field (same �).
The surface is a cylinder of radius r with the magnetic field as axis. This cylindrical
surface will follow and surround the magnetic field lines, even in the case of curved
field lines, if this field lines are not too much bent, i.e., if k � KB . Let us assume
such a situation when the curvature of the magnetic field is much smaller than the
curvature of the particle trajectories. Let us also assume that this surface is complete
and regular. This implies that we study the system for long enough time such that
all trajectories can be considered a dense set in this abstract surface, and that the
system does not contain any “free force” or uniform field regions. Moreover, even
if the completeness condition is not fulfilled, still the surface having its Gaussian
curvature bounded from below by a positive number is bounded. An example is
provided by an ergodic surface winding inside asymptotically. If the field curvature
KB is smaller than that of the particles, we can approximate this surface r.s; v/ with
a tube of radius r around the curve � .s/ (s is the arc-length of the field line). If the
field lines are closed, such a tube is homeomorphic with a torus surface. The surface
equation is

r.s; v/ D � .s/C r.n cos vC b sin v/; (17.11)

and its first fundamental form is

jvec rs � rvj D EG � F 2 D r2.1 � rKB cos v/2:

We assume that rKB  1 and we have the normal to this surface defined by

N D �.n cos vC b sin v/; rs � rv D r.1 � rKB cos v/N :

The Gaussian curvature of the tube surface is

K D � KB cos v

r.1 � rKB cos v/
: (17.12)

and we are ready to apply Bonnet Theorem 20. If the Gaussian curvature in (17.12)
is always strictly larger than a positive number ı, the tube is a compact surface.
Unfortunately, in our case the Gaussian curvature has always a change of sign.
This happens because, even if the magnetic curve is closed, the tube surface is
homeomorphic to a torus and has also negative Gaussian curvature in some regions.
We cannot apply the Bonnet theorem in this form. However, we can relax the local
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condition and substitute it with a global one. Indeed, we have

“
S

KdAD
“
S

K
p
EG � F 2dsdvD

Z l

0

Z 2�

0

KB cos vdsdvD 2
Z l

0

KB.s/ds;

and we can apply the Gauss–Bonnet Theorem 20 for a certain tube radius such
that the LHS of the equation above is 4� . This result conducts us to use another
approach, more related to the intrinsic curve geometry. In addition, it is worth to
mention that we do not need actually to prove that plasma is confined in some region,
but rather to obtain the conditions under which the particles do not move too far
away from the magnetic field lines.

An alternate general approach to find conditions for plasma confinement is to
use the curve equivalent of the Bonnet theorem, namely the Fenchel and Fary–
Milnor Theorems 14 and 15. In that, we can take profit of (17.8) and analyze its
geometrical properties. If the trajectory of a charged particle is a closed and simple
curve, the Fenchel Theorem 14 provides us with a necessary criterion for closeness.
The Fenchel criterion for having the charged particles move along closed paths is

Z l

0

jkjds > 2�: (17.13)

However, it is hard to have the particle trajectories represented by simple curves,
since usually the particles wind many times around the magnetic field lines. The
situation can be slightly improved by taking into consideration more general curves,
like knotted curves. In this case, we have Fary–Milnor Theorem 15 which increases
the minimum allowed value of total curvature from 2� to 4� . Both Fenchel and
Fary–Milnor theorems are valid even if the trajectories are not simple curves, see
[46, Sects. 5–7]. We can require the trajectory to have no just one self-intersection,
and that is the point where this trajectory will close. In this case the RHS in (17.13)
has to be substituted with 2N� , where N is the rotation index of the trajectory.

From (17.5) we have jkj D C j sin � j, where �.s/ is the current angle between
the tangent to the trajectory and the local direction of the magnetic field, cos � D
t.s/ � T .s/. To fulfill the closing condition we need to design the magnetic field,
and to send the particle within the following constraint. We need to find a number
0 < ı < 1 such that j sin �.s/j < ı for all the points of arc-length s along the trajec-
tory, i.e., to fulfill the Fary–Milnor criterion. Consequently, to have closed trajecto-
ries we need to adjust the two parameters: particle velocity and maximum magnitude
of the field, accordingly. The closeness condition reduces to a restriction upon � ,
namely there should be a minimum angle such that 8s 2 Œ0; l	, �.s/ > �min. For
example, launching a particle as parallel as possible to the field lines, or keeping the
field lines straight and open is not a good idea. To find out how this criterion acts on
the field configuration, we choose an arbitrary magnetic field described by B.r/ D
B.r/T .s/, with jT j D 1. The solution of (17.7), written in components, reads



17.1 Plasma Vortex 453

ti D
�

exp
q

mv0
Eijk

Z s

0

Bk.s
0/ds0

�
t0j : (17.14)

The dual antisymmetric tensor associated to the unit tangent T .s/ is

OT D
0
@ 0 CT1 CT2

�CT1 0 CT3
�CT2 CT3 0

1
A � (17.15)

We introduce the notations

�i .s/ D
Z s

0

C.s0/Ti .s0/ds0; �0.s/ D
Z s

0

C.s0/ds0:

Since T is a unitary vector, we have

�0.s/ D
Z s

0

Cds0 D q

mv0

Z s

0

Bds0 	 qBmaxl.s/

mv0
<
lmax

Rmin
;

where Bmax is the maximum value of the magnitude of magnetic field along the
path of the particle (in principle can be taken the maximum value of the magnitude
of magnetic field in all plasma region). Also, v0 is the constant speed of the particle,
l.s/ is the length of the particle trajectory at s, and Rmin is the minimum possible
radius of rotation of the particle, if it would be launched in a region with maximum
magnetic field, perpendicular on the magnetic field. With these notations the matrix
exponential of OT from (17.15) becomes

0
B@

�23 C .�21 C �22/ cos �0 �2�3.1� cos �0/C �1 sin �0 �1�3.1� cos �0/� �2 sin �0
�2�3.1� cos �0/� �1 sin�0 �22 C .�21 C �23/ cos �0 �1�2.1� cos �0/C �3 sin �0
�1�3.1� cos �0/C �2 sin �0 �1�2.1� cos �0/� �3 sin �0 �21 C .�22 C �23/ cos �0

:

1
CA

(17.16)

This matrix exponential has determinant 1, and hence is similar to a three-
dimensional proper rotation. So, the exponential in (17.7) and (17.14) act like a
rotation operator upon the initial direction of the particle.

The closeness criterion can be written
ˇ̌
ˇ̌Ti
�

exp

�
Eijk

Z s

0

OT .s0/ds0
��

ij

t0j

ˇ̌
ˇ̌ < ı < 1; (17.17)

or in more condensed matrix notation

jT Oexpt0j < ı < 1; (17.18)
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where Oexp represents the exponential matrix in (17.17). There is no point in using
the Stokes equation

I
BTk.s

0/ds0 D Eijk
“

S

�
@

@xi
� @

@xj

�
BdA;

because the exponential of each of the two terms in the above transformation do
not commute, so we cannot separate the exponential of the difference in a product
of exponentials. However, such a transformation is useful to prover that for an
axial B D .0; 0; B0/ D const. uniform field, of a pure poloidal or toroidal field,
the exponent is a diagonal matrix, so the exponential matrix is also diagonal.
Equation (17.18) has a maximum value of 1 if the vector t0 is an eigenvector for
the matrix Oexp. This matrix has one real eigenvalue 1, and two complex conjugated
eigenvalues. For the real eigenvalue the eigenvector is .�3=�1; �2=�1; 1/. So, the
necessary condition for closeness of the particle trajectories is to choose the initial
direction such that jt0 � .�3=�1; �2=�1; 1/j > ı > 0.

Let us check this criterion on a toroidal geometry, for example, where we try to
confine the plasma inside a torus surface. The surface of a torus of larger radius R,
and smaller radius r , parametrized by the polar (v), and azimuthal (or toroidal u)
angles has the form

r.u; v/ D ..RC r cos u/ cos v; .RC cos v/ sin v; r sin u/: (17.19)

In the case of a poloidal magnetic field

T pol D .�r cos v sin u;�r sin v sin u; s cos u/; (17.20)

the matrix Oexp is diagonal for all s, so the trajectories will not close. The same thing
happens for a toroidal field

T tor D .�.RC r cos u/ sin v; .RC cos v/cos v; 0/: (17.21)

Only a linear combination of toroidal and poloidal field could fulfill the criterion
in (17.17).

Usually, the particles travel distances longer than their Larmor radius (1=�), so
the exponential matrix cannot be approximated with its Taylor polynomial. The
smallness parameter for such an expansion would be maxs2Œ0;l	�0 D l=Rmin. A
Taylor expansion in this smallness order works rather in escape areas, or for weak
fields, than along regular field lines. For the sake of completeness we present here
such an expansion, in the case of constant magnitude of magnetic field along the
path (C D C0 D const.), and valid only if the length of the trajectory is smaller than
the Larmor radius (s  mv0=qB0). We can write
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cos �.s/ D T .s/ � t0CC0
Z s

0

OT .s0/ds0C C
2
0

2

Z s

0

OT ds0
Z s

0

OT ds00C : : : : (17.22)

The general term in this expansion has the form of toroidal multipoles

.�1/nC n
0

nŠ

Z s

0

Z s1

0

: : :

Z sn

0

T .s/ �T .s1/� .T .s2/� � � � � .T .sn/� t0// : : :/ds1ds2 : : : dsn:

In the first-order approximation we have

cos �.s/ ' t0 �
�
T .s/ � C/

Z s

0

T .s/ � T .s0/ds0

CC20
2

Z s

0

Z s0

0

T .s0/.T .s/ � T .s00// � T .s/.T .s0/ � T .s00//
�
ds0ds00;

and the closeness criterion becomes

Z l

0

T .s/ � t0ds � C0
Z l

0

Z s

0

T .s/ � .T .s0/ � t0/dsds
0 < ı < 1: (17.23)

In conclusion, (17.17) and (17.18) provide the criterion needed by the magnetic
field configuration, and by the initial conditions of the particle velocity to have
the trajectory confined closer to the field lines. The smaller ı in these equations,
the more confinement we realize. It is interesting how theorems from differential
geometry of curves and surfaces help to solve this problem. Apparently Bonnet
theorem is more powerful. First, it provides a sufficient condition for confinement:
if the Gaussian curvature is larger than a given positive limit, the surface carrying
the particle trajectories is bounded. Second, it provides a local, differential criterion,
which is more helpful than a global one. Third, it provides a quantitative criterion.
If one finds a lower positive bound for the Gaussian curvature, this limit provides
a measurement of the diameter of the surface (see Theorem 20). Although the
equivalent theorems for curves, namely the Fenchel and Fary–Milnor ones, are only
necessary conditions, they are only global (integral) conditions, and they do not
provide but a qualitative result. It is also true that the result these theorems provide
for curves is more restrictive than the result provided by the Bonnet theorem for
surface. This is because closeness is a more specific restriction than compactness.

17.1.3 Magnetic Surfaces in Static Equilibrium

If a vessel containing plasma is placed in an uniform magnetic field B0, the plasma
particles cannot reach the side walls, but they will strike the ends of the vessel.
To prevent the particles from coming into contact with the material walls in this
way, special types of magnetic fields configurations are introduced. One can either
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increase the magnetic field intensity at the ends of the container so that the particles
are reflected by tandem magnetic mirror, or one can curve the magnetic filed lines
to form loops, in such a way that the particles are trapped inside a magnetic surface.
The mirror configurations (also called the linear configuration) is not quite the best
because the particle collision effects render the system liable to high particles losses
at the mirror points. Such systems are not being considered as potential controlled
thermonuclear fusion reactors. More interesting from the geometrical point of view,
there are three main types of closed magnetic surfaces configuration: Tokamak,
Stellarator, and Reversed field pinch systems. The confinement solution consists
in closing the magnetic field lines B.r/ on themselves to trap the particles. In such
an ideal configuration, the magnetic field lines would lie on closed surfaces, named
magnetic surfaces. The magnetic field is tangent to this surface at any point and
interacts with the charged particle velocity field, i.e., the plasma current [28, 60].
It can be described by the velocity field v.r/, or by the density of electric current
j .r/ D curlB=�, where � is the magnetic permeability of plasma. In the following
we provide analytical criteria for the magnetic field to create confining surfaces.

Let us have a constant magnetic field B.r/ fulfilling

div B D 0; (17.24)

and let us assume the existence of a regular parametrized surface S of equation
r.u; v/, such that the magnetic field is tangent to S at any of its points, B.r/ 2 TrS .
We can choose the parametrization of S such that it fulfills the condition

ru D B.r.u; v//: (17.25)

The magnetic field lines provide natural coordinate curves on S . In addition we
request that the other coordinate curves on S fulfill the differential equation

rv D r �B.r.u; v//: (17.26)

In this situation, the Lorentz force acting on plasma currents

F L D j �B D 1

�
.r �B/ �B;

fulfills the equation

F L D 1

�
.ru � rv/ D 1

�
jru � rvjN : (17.27)

This configuration provides a Lorentz force parallel to the normal of the magnetic
surface S . If S is oriented and closed we realized a confinement system configura-
tion. This is because the Lorentz force acts always perpendicular on the magnetic
surface, toward its inside, and hence the particles are supposed to be trapped. Even if
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j field

B field

Fig. 17.1 Pure toroidal magnetic field, and corresponding axial current j

(17.24)–(17.26) describe the magnetic surface, we need a criterion for its existence.
The condition for the existence of an integral magnetic surface is provided by the
Frobenius criterion of involution (Theorem 5) between the two vector fields

ŒB � r; .r �B/ � r	 D 0: (17.28)

Equation (17.28) can be also written in the form

DB.r �B/ D Dr�BB; (17.29)

or DBj D Dj B, i.e., the directional derivatives of the magnetic field and the
current with respect to one other should commute. A simple example of such a
surface is provided by an axisymmetric configuration of magnetic field (Fig. 17.1),
where the field is toroidal and the resulting electric current is axial. A more
complicated example of open configuration is presented in Fig. 17.2. Such exact
polynomial solutions are useful in providing estimates of the displacement of the
magnetic boundaries with plasma flow [60].

However, such open surfaces cannot confine the particles because it is open.
To have an equilibrium confinement situation we need two more criteria: one for
compactness and one for closeness of the magnetic surface. The magnetic surface
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Fig. 17.2 Example of cylindrical magnetohydrodynamic surface r.x; y/ D .10x C 30 cos y C
y; 10y siny; 2x/ generated by fj ;Bg containing closed pockets

S is compact if its Gaussian curvature is everywhere larger then a positive constant
ı > 0 (Theorem 20). The unit normal to the magnetic surface is

N D B � curl B

jB � curl Bj ;

and the Gaussian curvature results in a complicated expression

K D
�
.B�curlB/�Œ.B�r/B	

BjB�curlBj
.B�curlB/�Œ.curlB�r/curlB	

jcurlB jjB�curlBj

�
�
.B�curlB/�.B�r/curlB

BjB�curlBj

�2�
� ŒB2curlB2 � .B � curlB/2	�1:

(17.30)

We can write the Bonnet condition (17.30) in a simpler form by using the notation
j� D jr �Bj

B.N �DBB/.N �Dj j /

�j.N �DBj /.N �Dj B/
> 1C ı > 1; (17.31)

where DX Y represents the directional derivative of field Y in the direction of the
field X . Equation (17.31), coupled with (17.24), represents a sufficient condition
for the magnetic field to create a compact magnetic surface. It requests that a
combination of directional derivatives of the magnetic field and the current projected
along the unit normal fulfill a certain inequality. The second criterion (for closeness)
is derived from the Gauss–Bonnet Theorem 20. If the integral of the Gaussian
curvature all over the surface (the total curvature ) is equal to 4�; 0;�4�; : : : , then
the surface is closed. This even multiplier of 2� in the RHS of the total curvature
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is the Euler characteristics .S/ of the surface S. For a sphere  D 2 and for a
torus  D 0. In conclusion, the conditions fulfilled by a magnetic field to create a
stationary confinement system is to have ı > 0 and g D 0; 2; : : : such that

K.u; v/ > ı; and
“
S

KdA D 2�.S/ D 4�.1� g/;

whereK.u; v/ is the Gaussian curvature in the .u; v/ parametrization.
Let us choose, for example, a poloidal magnetic field (Fig. 17.3) described by

B.r/ D .axz; byz; c.z2 C d � x2 � y2//;

together with its curl

r �B D .�.b C 2c/y; .a C 2c/x; 0/;

which is a toroidal field (Fig. 17.4). It is easy to check that the Frobenius
integrability condition ŒB;r � B	 D 0 is fulfilled for the two fields (Theorem 5).
Consequently, (17.25) and (17.26) describe the coordinate curves of an integral
surface

ru D B; and rv D r �B:

A particular solution can be chosen with z D z.u/, and it results x D 
.u/ cos v, y D

.u/ sin v, and a D b. From (17.25) we have 
 0 D a
z.u/ and z0 D .
 00
�
 02/=.a
2/.
Since zu D z0 D c.z2Cd �x2�y2/ we have a.
 00
�
 02/ D c
 02Ca2cd
2�a2c
4.
A solution is


 D
p
B2 � 1

2c.B C cos u/
; d D 1

uc2
; a D 2c;

Fig. 17.3 Poloidal field
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where B is an arbitrary integration constant. If we choose c D 1=2 we can write the
integral surface, i.e., the magnetic surface, equation in the form

r D
�p

B2 � 1 cos v

B C cos u
;

p
B2 � 1 sin v

B C cos u
;

sin u

B C cos u

�
;

which is actually a T1 torus. Indeed, by denoting B D cosh s and from
p
B2 � 1 D

sinh s we can rewrite the surface equation in the toroidal coordinates .s; u; v/

r.s; u; v/ D
�

sinh s cos v

cosh s C cos u
;

sinh s sin v

cosh s C cos u
;

sin u

cosh s C cos u

�
:

Toroidal coordinates form an orthogonal three-dimensional curvilinear coordinate
system (among other 11 orthogonal curvilinear coordinates in R3, like cartesian,
cylindrical, spherical, parabolic, elliptic, hyperbolic, etc.), and are defined in the
theory of separation of variables for Laplace’s equation (cf. [242] and references
herein in Sect. 1.3). The orthogonal coordinate surfaces are represented by concen-
tric coaxial tori s D const. of small radius inversely proportional to s, meridian
planes v D const. localized at different azimuthal angles v 2 Œ0; 2�/, and concentric
spheres u D const., of radius proportional to u (see Fig. 17.5). Expressed in toroidal
coordinates, the magnetic vector field has a “flat” appearance B D �2 @

@u . The
resulting Lorentz force is oriented toward the inside of the integral torus (Fig. 17.6).
It is easy to verify that the total curvature of this configuration is zero.

There are several other approaches on the problem of plasma stability and
confinement inside magnetic surfaces, both analytical and numerical. For example
in [60] the authors use a special type of curvilinear coordinates (Boozer’s flux
coordinates) consisting in a normal coordinate � and two angular coordinates �B; 
B .
The magnetic surface is parametrized by isomagnetic lines defined by B D const.,

Fig. 17.4 Toroidal field
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Fig. 17.5 Toroidal coordinates: s D const., concentric tori, v D const., meridian planes, and u D
const., concentric hemispheres

Fig. 17.6 The magnetohydrodynamic pressure j � B directed toward inside the closed surface,
along N

and another surface solenoidal isomagnetic vector, iB D r.B � r�/, such that the
Frobenius criterion of integrability is fulfilled Œd=d�; d=dB	D 0. The isomagnetic
lines are parametrized by a parameter �, and their equation is

dB

d�
D .r.B � r�/ � r/B

.B � r/B D 0;

where we used the normalized isomagnetic vector iB=jiB j. In this approach,
the condition for the regularity of the surface is related to the property of
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pseudosymmetry (or quasisymmetry) of the magnetic field. This property requests
that the isomagnetic field form no islands on S , and the distance between two
adjacent isomagnetic lines to be the same (omnigenous systems [28]). In vector
notation this condition becomes

B � r.B � r�/
B � r� D bounded:

It is interesting that the sufficient condition for such a pseudosymmetry configu-
ration is provided by the boundness of the third coefficient of the first fundamental
form of S , namely ı D const.> 0, F D r� � rB 	 ı.

17.2 Elastic Spheres

A natural question inspired by the existence of solitons on the surface of shallow
water is whether solitons may also propagate along the surface of a solid medium.
The problem has received new actuality since recent experiments of formation of
solitary elastic surface pulses on metal-oxide films [180]. In this interesting exper-
iment, the soliton was initiated by laser-generated pulse focusing on a flat surface.
To have a medium with both nonlinear elastic response and normal and anomalous
dispersion, Lomonosov et al. prepared a surface made of metal or titanium nitride
film coated with isotropic fused silica. The traveling acoustic waves pulse triggered
by the pulsed laser were registered by a probe-beam deflection technique at two
locations. Function of the treatment of the surface, the measured solitary waves
traveled faster or slower than the corresponding Rayleigh velocity. The dynamics is
modeled by a nonlinear evolution equation with nonlocal nonlinearity and nonlocal
dispersion of the KdV type. The solitary waves have the profile of a “Mexican hat.”

Another favorable experiment, performed this time on a compact surface, put
into evidence the existence of solitary waves on elastic materials [322]. The authors
excited a glass sphere of 80 mm diameter with a finite length ultrasonic transducer
with a frequency of 1 MHz placed on the sphere. The surface waves were detected
with similar PZT transducers at different points on the surface of the sphere.
The surface acoustic waves were propagated along the equator of the sphere in a
direction perpendicular to the line source without beam spreading. The traveling
wave was both very localized (about 30ı width) and propagated around for at
least four round trips with a velocity very close to the corresponding Rayleigh
surface wave speed in glass (3,334 m s�1). Moreover, in another experiment, a signal
produced on the surface at a certain point generated two twin surface wave pulses
that traveled in opposite direction along the equator, intersect, interact, and return
back without damping. This phenomenon is very much in favor of existence of
solitary acoustic waves, even solitons, on the surface of the glass sphere.

A theoretical analysis of the existence of surface acoustic solitons was performed
in [83]. The Rayleigh waves propagating along the surface (x–y plane) of an
elastic medium give rise to a dynamical corrugation of the surface. The strain
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field produced by this corrugation decays into the bulk medium after a distance
when compared with the wavelength. Consequently, for planar homogeneous media,
the Rayleigh waves are nondispersive, and the balance between nonlinearity and
dispersion can be obtained only by modifying the surface, by coating, grating, or
just damaging the surface. In a second-order nonlinearity approach, the dynamics is
governed by the equation

T˛ˇ D C˛ˇ��u�� C 1

2
S˛ˇ���
u��u�
 ;

where OT is the Euler–Piola stress tensor, u˛ˇ D @u˛=@xˇ are the displacement
gradients, and the coefficients are the elastic moduli of the substrate, of second and
second–third order, respectively. The equation of motion is

�A˛ D T˛ˇ;ˇ;

where A is the surface acceleration and � is the mass density of the substrate. The
displacement field is expanded in an asymptotic series in terms of a smallness
coefficient � of the same order of magnitude as the depth of the layer. This
asymptotic series is plugged into the boundary condition at the surface

T˛3jzD0 D d.D˛ˇuˇ;11 � �FA˛/zD0;

where d is the thickness of the layer, D is another material coefficient, and �F is
the film material density. We expand the displacement field in plane waves

u D
X
k

eik.x�V t/
w.z; k/

k
Bk;

where w.z; k/ is the depth profile of the linear Rayleigh wave, k is the wave
number, and Bk are strain amplitudes. By introducing this series in the dynamic
equation, and in the boundary conditions, one obtains a dynamical nonlinear
recursion relations for the strain amplitudes equivalent to the Bejamin–Ono (BO)
equation [83]. Numerical simulations show the existence of traveling waves very
similar to the cnoidal waves of the KdV equation, or the solitons of the BO
equation. Numerical tests show that these solitons are linearly stable. Moreover,
same numerical procedure was used to simulate collision between two such solitons.
The two models show different behavior. The BO solitons repel each other at a
certain minimum distance and bounce off with unchanged shapes. On the contrary,
the KdV pulses strongly contract while accelerating and radiation is shed after
the collision. Consequently, the authors conclude that solitary nonlinear waves can
propagate on the surface of a nonlinear homogeneously coated elastic solid. These
solitary waves are stable with respect to perturbations, but they do not survive
collisions with each other. A possibility to enhance the soliton character of such
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nonlinear waves is to use curved surfaces, and take profit both from the diffraction-
free propagation along curved surfaces, and from the geometrical nonlinearities that
occur in this case.

17.3 Curvature Dependent Nonlinear Diffusion
on Closed Surfaces

Particles motion along a closed surface with thickness, with dynamics controlled
by nonlinear diffusion equations, represents a topic of interest in protein diffusion
within lipid bi-layers, cell membrane processes, patterns on animal skins, [239],
etc. In these models the thickness of the physical surface (membrane, skin) is taken
into account as a perturbation, but stronger effects are expected when the curvature
radius becomes similar in size with the thickness.

The mathematical model for this type of thick surface diffusion consists in using
normal surface coordinates and use the normal variation approach, see Sect. 10.4.1.
In [239] the authors consider a physical medium described by a smooth surface
˙ surface with a constant thickness �. The interesting problem is to describe
the regular three-dimensional diffusion of certain particles (proteins, colorants)
inside this medium as an effective two-dimensional diffusion, imbedded in and
along the surface ˙ , whose Laplace operator and diffusion constant are curvature
dependent. The effective two-dimensional diffusion field is described by the scalar
field ˚.q1; q2; t/ W ˙ � Œ0;1/ ! R which fulfills the two-dimensional diffusion
equation

@˚

@t
D D4eff˚; (17.32)

whereD is the diffusion coefficient, and4eff is a effective two-dimensional surface
Laplace operator, similar to the one defined in section 6.5.3. We need to stress
that this operator is not the Beltrami operator because it contains the thickness
dependence, too. With the usual notations for the surface geometry, qj for surface
coordinates, gij for the surface metric, g D det.gij /, ˘ij the second fundamental
tensor of ˙ , H D gij˘ij the mean curvature of ˙ , and R D 2det.˘i

j / the Ricci
scalar curvature, with i; j; k; � � � D 1; 2 we can write the effective two-dimensional
nonlinear diffusion equation in the form

� @˚
@t
D ri .J iN C J iA/ D g�1=2

@

@qj
g1=2.J iN C J iA/; (17.33)

where

J iN D �Dgij
@˚

@qj
; (17.34)

is the normal diffusion flow,
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J iA D � QD
�
.3˘im˘j

m � 2H˘ij /
@˚

@qj
� 1
2
gij

@R

@qj
˚

�
; (17.35)

is the anomalous flow, and QD D �2D=12. The diffusion into the normal direction
to the surface arrives to an equilibrium in a time scale ıt D �2=D. Consequently,
for larger time scales t >> ıt equilibrium is assumed in the normal direction at all
times. Therefore, the nonlinear diffusion equation (17.33) will be considered up to
order �2.

The consequence of this type of anomalous diffusion is that the flow goes from
smaller Ricci scalar points to larger Ricci scalar points, i.e. from hyperbolic or flat
points to convex or concave points with positive large Ricci scalar curvature. An
example of such a system is provided by the spot pattern on the skin of the Char
fish, [239], which has white spots on the side parts, but labyrinth type of pattern on
the dorsal parts.

17.4 Nonlinear Evolution of Oscillation Modes
in Neutron Stars

The recent discovery of a millisecond pulsar binary system [48], with an orbital
period of 2.2 h, brings the question of the importance of different interaction
mechanisms between the stars in such close binaries. In particular, the tidal
interactions have an important role in producing gravitational waves. In fact, even
if the majority of the gravitational radiation in the binary systems comes from
the orbital mass distribution quadrupole, the asymmetry created in the neutron
star by the tidal bulge can produce certain amount of gravitational waves, and the
effect is even more enhanced if the bulge can rotate fast. The neutron star systems
are very layered so the surface waves induced by the binary interaction are very
dispersive. On the other hand, the neutron star’s oscillations, especially the so-
called r-modes [175], can be highly nonlinear, being driven toward instability by
gravitational radiation. All in all, it looks like such systems are appropriate for
the occurrence of solitary waves on their surface, especially since long duration
movement of tides have been detected. A factor that can suppress the occurrence of
solitons is the existence of strong dissipative mechanisms, many of them are still
completely unknown.

The nonlinear evolution of a neutron star can be modeled using Newtonian
equations of motion, like the equation of continuity and the Euler equation in a
compact domainD

�t Cr � .�V / D 0;
�.V t C .V � r/V / D �rP � �r˚ C �F GR;

where V; �, and P are the velocity, density, and pressure of the neutron fluid, respec-
tively; ˚ is the Newtonian gravitational potential fulfilling the Poisson equation

4˚ D 4�G�;
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and F GR is gravitational radiation reaction force. This last term is due to the time-
varying current quadrupole and can be written [175]

F x
GR � iF y

GR D ��i.x C iy/Œ3V zJ
.5/
22 C zJ .6/22 	;

F z
GR D �� Im

�
.x C iy/2

�
3
V x C iV y

x C iy J
.5/
22 C J .6/22

��
;

where J .n/22 represents the nth time derivative of the quadrupole moment

J22 D
Z
D

�r2V � Y B�
22 d

3x;

where Y B
22 D r � rrY22=

p
6 is the magnetic type vector spherical harmonics. The

parameter describing the strength of the gravitational radiation force is

� D 32
p
�G

45
p
5c7

;

from general relativity theory. The authors mentioned in [175] solve this
complicated nonlinear evolutionary system numerically, and investigated the
evolution of the so-called r-modes. These are modes specific for rotational stars,
whose restoring force is the Coriolis force, and can balance the dissipative effects
even for slow rotations. In time, the r-mode grows to a relative large amplitude on
behalf of the gravitational radiation reaction force. However, shock waves begin to
form at the leading edges of the surface of the neutron star at this point, which have
as result suppressing the r-modes. The shock waves occur most likely because of
the nonlinear coupling between various oscillatory modes within the star, or from
elliptic flow instability similar to the one identified in fluid that are forced to flow
along elliptical stream lines [247].



Chapter 18
Mathematical Annex

This chapter represents a mathematical annex. We briefly remember the properties
of the Riccati equation and of some elliptic functions used in soliton theory. We also
describe the one-soliton solutions of the KdV and MKdV equations. In the end we
present a simple procedure, the so called nonlinear dispersion relation approach,
through which one can find information about the relations between amplitude,
half-width and speed of a soliton solution of any nonlinear equation (scalar, vector,
or system, no matter of the nature of the nonlinearity) without actually solve the
equation, providing such an equation admits soliton solutions. Several examples on
well known cases are also given in order to illustrate how this procedure works.

18.1 Differentiable Manifolds

Definition 63. We define a d -dimensional Cp differentiable manifold M D
.X; p � 1; d � 1; fUi; �igi2I / to be the set of a Hausdorff topological space X ,
and a family (atlas) of pairs of open sets Ui and bijective applications �i W Ui !
�i .Ui/ � R

d fulfilling the properties:

– fUigi2I is an open covering of X .
– 8i; j 2 I; �i .Ui \ Uj / � R

d is open.
– 8i; j 2 I; �j ı ��1i W �i .Ui \Uj /! �j .Ui \Uj / is a Cp diffeomorphism (i.e.,

bijective function of class Cp together with its inverse).

Every such set .Ui ; �i / is called a chart, and 8x 2 X such that x 2 Ui , �i.x/ are
called the local coordinates of x. All the mappings � W U ! �.U / are homeo-
morphisms. Two different atlases are compatible if their reunion is also an atlas.
An equivalence class modulo this compatibility relation is called a differentiable
structure on M. No matter of the original topology ofX , there is always a canonical
topology induced by R

d , where the open sets are reunion of chart domains. In that,

A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces,
Springer Series in Synergetics, DOI 10.1007/978-3-642-22895-7 18,
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the differential manifold is inheriting locally the topological properties of R
d .

Differentiable manifolds are locally compact and locally connected topological
spaces. Moreover, they are connected if and only if they are path connected.

18.2 Riccati Equation

The Riccati differential equation for f .x/ W R! R has the form

f 0 C Af C Bf 2 D C; (18.1)

where A;B , and C are differentiable functions of x. Equation (18.1) can be
linearized if we perform the substitution f D � 0.B�/�1

� 00 C
�
A � B

0

B

�
� 0 � BC� D 0: (18.2)

Conversely, the reduction of order from (18.2) to (18.1) is a consequence of
the invariance of (18.2) under the scale transformation .x; �.x// ! .x; ��.x//.
If �1;2 are two independent particular solutions of (18.2), then the general solu-
tion of the Riccati equation depends only on one free parameter c and has
the form

fgen.x/ D c� 01 C � 02
cB�1 C B�2 : (18.3)

Another representation of the general solution of (18.1) in terms of two
independent particular solutions f1;2 of the same equation can be given in the
form

fgen.x/ D f2 � f1Ce
R x
B.x0/.f1.x

0/�f2.x0//dx0

1 � CeR x B.x0/.f1.x0/�f2.x0//dx0
: (18.4)

If we know just one particular solution fp of (18.1), we still can build the general
solution in the form

fgen.x/ D 1

Fgen
C f1.x/; (18.5)

where Fgen.x/ is the general solution of the adjunct equation

F 0 � .AC 2Bf1/F � B D 0; (18.6)

for which there are quadrature formulas.
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18.3 Special Functions

The solutions of all nonlinear PDEs are very much related to the Jacobi elliptic
functions and Jacobi elliptic integrals. The incomplete elliptic integral of the first
kind is defined as

F.'jk/ D
Z '

0

1p
1 � k2 sin2 �

d�

and the complete elliptic integral of the first kind is K.k/ D F.�=2jk/. Similarly,
we define the incomplete elliptic integral of the second kind in the form

E.'jk/ D
Z '

0

p
1 � k2 sin2 �d�;

and its complete elliptic integral of the second kind is E.k/ D E.�=2jk/. The
inverse of the elliptic integral of the first kind, i.e., if u D F.'jk/ the ' D am.ujk/,
is called the amplitude for the Jacobi elliptic functions. The amplitude can generate
the 12 cnoidal functions, among which the most used in soliton theory is the cnoidal
sine function sn.ujk/ D sin.'/, cnoidal cosine function cn.ujk/ D cos.'/, and
dn.ujk/ D p

1 � k2sn2.u/. The sn and cn functions have the remarkable property
of making smooth transition between periodic functions and aperiodic functions, so
basically they connect the compact and noncompact structures. We have sn.uj0/ D
sin.u/; sn.uj1/ D tanh.u/; cn.uj0/ D cos.u/; cn.uj1/ D sech.u/. The cnoidal sine
and cosine are double periodic functions. The real period is T D 4K.k/, and the
imaginary one is 4iK.k/. The cnoidal sine is the solution of the nonlinear ODE

.fx/
2 D .1 � f /.1 � k2f /; (18.7)

i.e., f .x/ D sn.xjk/.
The spherical harmonics Ylm.�; '/, with l D 0; 1; : : : and Z 3 m 2 .�l; l/, form

an orthonormal complete basis of harmonic (4S2Ylm D 0) polynomial functions
defined on the unit sphere S2 � R

3. The general expression is

Ylm D .�1/m
s
.2l C 1/.l �m/Š
4�.l Cm/Š Pm

l .cos �/eim';

where Pm
l .x/ W Œ�1; 1	! R are the associate Legendre functions defined as

Pm
l .x/ D

.1 � x2/m2
2l lŠ

d lCm

dxlCm
.x2 � 1/l :

The restriction P0
l D Pl is called Legendre polynomial. The orthonormality and

closure relations are
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Z
S2

Y �lmYl 0m0 sin �d�d' D ımm0ıl l 0 ;

1X
lD0

lX
mD�l

Y �lm.�; '/Ylm.� 0; ' 0/ D
1

sin �
ı.� � � 0/ı.' � ' 0/:

From their definition, the spherical harmonics are the natural solutions of the
Laplace equation in spherical coordinates, so any harmonic functions defined on
the unit sphere can be expanded in series of spherical harmonics. The same role is
played by the Legendre polynomial on the unit circle S1. In a physical problem the
angular part of the solution is usually handled by spherical harmonics, and the radial
dependence is usually manipulated with the help of the spherical Bessel functions
jl .r/; nl .r/ W Œ0;1/! R. The ODE for the spherical Bessel functions is

�
1

r

d2

dr2
r C 1 � l.l C 1/

r2

�
ql D 0;

where ql .r/ is either jl .r/ or nl .r/. The jl solution is regular in the origin, and the
nL one (Neumann function) is irregular in the origin. With these solutions we can
also construct the Hankel functions as h1;2l .x/ D jl ˙ inl . More details and proofs,
integral or series representations and summations formulae, recursion formulas, and
asymptotic relations about these special functions can be found in several books,
among which we mention [5, 129, 238, 284].

18.4 One-Soliton Solutions for the KdV, MKdV,
and Their Combination

The Korteweg–de Vries equation (KdV orK.2; 1/) in �.x; t/

A�t CD�x C B��x C C�xxx D 0 (18.8)

with traveling solutions �.x; t/ D f .
/, 
 D x � V t where V is a free parameter,
becomes

� VAf 0 C Bff 0 C Cf 000 CDf 0 D 0; (18.9)

where f 0 D df .
/

d

andA is the original coefficient of the time derivative evolutionary

equation Ad�=dt ! Adf=d
. The

�.x; t/ D �0 sn2
�
x � V t
L

ˇ̌
ˇ̌k2
�
C �1 (18.10)

is the “cnoidal” sine Jacobi elliptic solution to the KdV equation, and k is the
modulus of the cnoidal sine (Sect. 18.3). The solutions depend on the free parameter
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a D �0, i.e., its amplitude. The half-width is L, and the velocity V is given by

L D
s
�12kC
�0B

;

V D D

A
C B

3A

�
�0

�
1C 1

k

�
C �1

�
: (18.11)

In the limit k ! 1, the cnoidal solution approaches the one-soliton solution and the
parameters become

�.x; t/ D �0sech2
x � V t
L

C �1; (18.12)

L D
r
�12C
aB

;

V D D

A
C B

3A

�
�0 C 3�1

�
: (18.13)

We note that the amplitude �0 is proportional to the velocity V (higher solitons run
faster), and the width L is inversely proportional to the amplitude a (higher solitons
are narrower).

Another typical equation is the modified KdV (MKdV or K.3; 1/)

A�t CD�x C B�2�x C C�xxx D 0; (18.14)

which reduces for traveling solutions to

� VAf 0 C Bf 2f 0 C Cf 000 CDf 0 D 0: (18.15)

A one-soliton solution family is

�.x; t/ D asech
x � V t
L

(18.16)

depending on the free a parameter, the amplitude. The half-widthL and the velocity
V of the shape are given by

L D
r
6C

a2B
;

V D a2B

6A
C D

A
: (18.17)

We note that the square of the amplitude a is proportional to the velocity V (higher
solitons run faster), and the width L is inversely proportional to the amplitude a
(higher solitons are narrower).

Another solution of the MKdV equation is given by the topological soliton, i.e.,
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�.x; t/ D aTanh
x � V t
L

; (18.18)

with the following relations among the parameters:

L D
r
� 6C
Ba2

V D D

A
C Ba2

3A
: (18.19)

A mixed nonlinear equation which contains both the KdV and the MKdV specific
terms is always equivalent to a MKdV equation. Suppose we have

�t C d�x C a��x C b�2�x C c�xxx D 0; (18.20)

then this equation is equivalent with

ft C
�
d C a2

4b

�
fx C bf 2fx C cfxxx D 0;

f .x; t/ D �.x; t/C a

2b
: (18.21)

18.5 Scaling and Nonlinear Dispersion Relations1

In this book we focus our investigations on solutions of nonlinear PDE defined on
compact contours or surfaces. Before solving such a system, it is natural to look
for a simple and qualitative criterion to find out if solutions could exist on such
compact spaces. The idea is to extract information on simple properties of possible
soliton solutions, like half-width, amplitude, and velocity, without actually solving
the equation, i.e., to analyze the nonlinear dispersion relation (NLDR) associated
to the system [194, 308]. We present in the table below some NLDR results for
several nonlinear PDEs. In order, the equations analyzed in the first column of this
table are KdV, mKdV, K(n,n), K(n,m), Burgers, a nonlinear dispersion equation,
sine–Gordon, ˚4-equation, Schrödinger cubic, Schrödinger higher nonlinearity,
generalized nonlinear Schrödinger equation, vector nonlinear Schrödinger equation,
and the two-dimensional KP equation.

The NLDR does provide a type of dimensional analysis of the solutions of
nonlinear PDEs. The procedure is the following. For a PDE of the form

G.u; ut ; ut t ; : : : ; ux; uxx; : : : / D 0; (18.22)

1I am indebted to Dr. Panayotis Kevrekidis for the existence of this section.
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where x 2 R, subscripts denote partial derivatives, and u.x; t/ is a real, complex, or
vector-valued function, we substitute in the PDE, according to

PDE Analytic solution and NLDR
parameters (
 D x � V t) (	 means proportional)

ut C 6uux C uxxx D 0 uD A sech2.
=L/; LD 1=
p
3A� V ;

V D 2A; L Dp2=A V 	 A! L 	 1=pA
ut C 6u2ux C uxxx D 0 uD A sech.
=L/; LD 1=

p
2A2 � V ;

V D A2;L D 1=A V D A2! L D 1=A

ut C .un/x C .un/xxx D 0 uD ŒA cos2.
=L/	
1

n�1 LD
q

1
1�˛
D const:

if j
j 
 2n�
n�1

; 0 elseI
L D 4n

.n�1/
; V D .nC1/An�1

2n
if V D ˛An�1

ut C .un/x C .um/xxx D 0 Unknown LD
q

An�1

Am�1
�V
;

if n ¤ m V 	 Am�1! L 	 A.n�m/=2

ut C uux � uxx D 0 uD 2A tan.A
 C C1/C V; LD 1=.A � V /;
A DpC2 � V 2 V 	 A! L 	 1=A

ut C a.um/x � �.uk/xx Only particular cases cA��1L2 C .amAm�1 � V /L
Ccu� D 0 known C�k.2� k/Ak�1 D 0

ut t � uxx C sin uD 0 uD 4 tan�1 e


L ; L2 D �.1� V 2/= cosAL;

L2 D V 2 � 1 ALD cst:! L2 D V 2 � 1
ut t � uxx �m2uC u3 D 0 uD ˙m tanh.
=L/; L2 D 1�V 2

m2�3A2L2

L2 D 2.1� V 2/=m2 if AL ' const:

! L2 	 1� V 2

i�t C �xx C j� j2� D 0 Aei.Vx=2CA2t=2�V 2t=4/sech

�



L

�
; L1 D 1

A2C.V 2=4�!/
;

L Dp2=A ! � V 2=4 	 A2! L 	 1=A
i�t C �xx C j� j�� D 0 Unknown in general LD 1

A
1q

A��1
C

V 2

4A2

if V 	 A; L 	 A�
�C1
2

i @u
@t
C uxx � juj

ku
1C�juj

k e
iŒ V
2
x�. V

2

4
C!�

4

kL2
/t 	 � LD

�V 2˙

r
V 4C4. Ak

1C�Ak
�!/

2. Ak

1C�Ak
�!/

;

D !u � A sech
2
k



L
V 2 	 Ak=2

.1C�Ak/1=2
	 !1=2;

L D


2.2Ck/

k2

� 1
2



Ak

1C�Ak

�
�

1
2

L 	
�

Ak

.1C�Ak/

�
�1=2

iq
.1/
t C q.1/xx 2P�e�2i�xC4i.�2��2/t�i �2 � L.j / D 1

A
;

D �2.jq.1/j2 C jq.2/j2/q.1/; �sech.2�x � 8��t � 2ı0/ A D p
.A.1//2 C .A.2//2

iq
.2/
t C q.2/xx L D 1

2�

D �2.jq.1/j2 C jq.2/j2/q.2/
.�4ut C 6uux C uxxx/x

.k1�k2/
2

2
sech2

�
x
k2�k1

2
L2 D 1

AC˛2� 4
3 V
;

C3uyy D 0 Cy k21�k22
2
C t k32�k31

2

�
˛2 � 4V=3 	 A! L2 	 1=A

for ki << kj
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ut ! �V ux (18.23)

u! A; u.k/xx:::x ! .�1/k�1 A
Lk
; k > 0; (18.24)

Z
udx ! AL; (18.25)

where the superscript denotes the number of derivatives with respect to x. The
result of the substitution is to obtain the NLDR connecting the length scale of the
solution L, its speed V and amplitude A in the form

G

�
A;�V A

L
;�V 2 A

L2
; : : : ;

A

L
;� A
L2
; : : :

�
D 0: (18.26)
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on Mathematical Theory of Elasticity (Dover, New York, 1944)
171. L. Landau, E. Lifchitz, Fluid Mechanics (MIR, Moscow, 1971)
172. J. Langer, R. Perline, J. Nonlinear Sci. 1, 71 (1991)
173. D. Lewis, J. Marsden, R. Montgomery, T. Ratiu, Physica D 18, 391 (1986)
174. J. Lighthill, Waves in Fluids (Cambridge University Press, Cambridge, 1979)
175. L. Lindblom, J. Tohline, M. Vallisneri, Phys. Rev. Lett. 86, 1152 (2001)
176. C.B. Lindemann, Cell Motil. Cytoskel. 29, 141 (1994)
177. M. Lakshmanan, J. Math. Phys. 20, 1667 (1979)
178. R. de la Llave, P. Panayotaros, J. Nonlinear Sci. 6, 147 (1996)
179. R. Loll, arXiv: gr-qc/9701007
180. A.M. Lomonosov, P. Hess, A.P. Mayer, Phys. Rev. Lett. 88, 076104 (2002)
181. D. Lovelock, H. Rund, Tensors, Differential Forms, and Variational Principles (Dover,

New York, 1989)
182. H.-L. Lu, R.E. Apfel, J. Fluid Mech. 222, 351 (1991)
183. A. Ludu, A. Sandulescu, W. Greiner, Int. J. Mod. Phys. E 1, 169 (1992)
184. A. Ludu, A. Sandulescu, W. Greiner, Int. J. Mod. Phys. E 2, 855 (1993)
185. A. Ludu, A. Sandulescu, W. Greiner, K. M. Källmann, M. Brenner, T. Lönnroth, P. Manngärd,
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of the velocity, 228
theorem, 125, 228

Closed
curve, 86
form, 56
map, 15

Closure, 50
property, 27

Cluster models, 411
Cnoidal cos, 358
Cnoidal functions, 469
Cnoidal sine, 392
Cnoidal waves, 9, 265, 392
Co-differential, 39
Coefficient

of dilatational viscosity, 226
of interfacial dilatational elasticity, 332
of interfacial dilatational viscosity, 171,

332
of interfacial shear elasticity, 332
of interfacial shear viscosity, 171, 332
of surface tension, 228, 332

Collective modes, 411
Collective motion, 373
Combined coefficient

of surface dilatational elastic and viscosity,
332

of surface shear elastic and viscosity, 332
Compact, 47, 116, 458

nonlinear surfaces, 377
support, 47

Compactons, 142, 269
Compatible, 34
Complete, 47, 200, 451

elliptic integral of the first kind, 358
surface, 108, 116, 388
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Completely integrable, 54
Complex lamellar, 257
Configuration, 162
Confinement, 446
Connection coefficients, 53, 67
Connection form, 62
Conservation law, 4
Conservative, 251
Conservative forces, 291
Constant of motion, 55
Constitutive hypotheses, 171
Contact, 85
Contour dynamics, 131
Convected, 179

coordinates, 162
Convective time derivative, 169, 196
Convective velocity, 164
Convex curve, 90
Coordinate charts, 34
Coordinate maps, 34
Coupling terms, 356
Covariant derivative, 63, 68, 73, 107, 110
Covariant differential, 67
Covariant time derivative, 51, 181, 198
Covering map, 11
Cross-section, 58, 189, 191
Curvature, 80, 386

form, 63
tensor, 68
vector, 109

Curve parametrization, 79
Curve-shortening equation, 143
Curvilinear coordinates, 241
Cyclic flow, 291
Cylindrical helix, 82

Darboux trihedron, 42, 108
Debye potentials, 251
Decomposition, 253
Diameter, 116
Differentiable, 34, 79

k-forms, 39
manifold, 33, 190

Differential, 35
invariants, 117
k-form , 48
map, 37
system, 54

Dilatational viscosity, 226
Dipole coordinates, 77
Directional derivative, 37, 107, 183
Distance minimizing, 108
Divergence free, 191

Eikonal, 144
Elliptical points, 104
Embedding, 35
Energy density, 390
Equation of continuity, 207
Equation of Gauss, 70
Equation of Maurer-Cartan, 59
Euclidean space, 66
Eulerian, 179
Euler characteristics, 21, 459
Euler equation, 226
Euler-Bernoulli energy functional, 408
Euler-Poincaré characteristic, 83, 115
Exactly solvable system, 54
Exponential map, 45, 48, 449
Extendable surface, 108
Exterior covariant derivative, 63
Exterior derivative, 26, 50
Exterior product, 49

Fary–Milnor Theorem, 91
Fenchel’s Theorem, 90
Fiber, 57

bundle, 57, 189
preserving, 190

Filaments, 184
First fundamental form, 99, 111, 117, 236, 292,

451
Flow, 37, 449

box, 46, 51, 200
net, 192
of a vector field, 47

Fluid, 179
surface, 162

Foliation, 47, 203
1-form, 38
Free action, 22
Free surface, 206
Free surface kinematic condition, 206
Frobenius, 44, 457, 459
Fundamental theorem

of curve theory, 106
of surface theory, 106

Fundamental vector field, 59

Gauge freedom, 194
Gauge transformation, 251, 289
Gauss map, 102
Gauss–Bonnet theorem, 115
Gaussian curvature, 71, 104, 105, 114, 116,

388, 451, 458
Genus, 115
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Geodesic, 108
curvature, 108, 119
torsion, 107, 108

Geometric collective model, 430
Geometrical model, 373
Gradient field, 36
Group of chains, 20

Half-width, 471
Hasimoto transformation, 156
Hausdorff, 33
Helix, 81

pitch, 82
Hessian, 292
Hirota equation, 405
Homeomorphisms, 31
Homogeneous space, 22
Homology group, 21
Homotopy, 18, 32
Horizontal subspace, 62
Hybrid surface covariant derivative, 113
Hybrid tensor, 110
Hyperbolic, 244

points, 105

Immersion, 35
Incompressible, 191, 271, 311, 386, 412

flow, 290
Index, 87

of a vector field, 293
Indicatrix, 84
Infinitesimal generator, 48, 191
Inner modes, 303
Integrable, 41, 44
Integral curve, 36, 45, 46
Integral manifold, 54
Integral of a vector field, 47
Integral submanifold, 43
Interior, 89

product, 50
Intrinsic geometrical property, 83
Invariance, 54
Invariant, 31, 55
Inviscid, 228, 271
Involution, 44, 449, 457
Irrotational, 251, 271, 290
Isentropic, 228, 229, 385
Isometric, 129
Isothermal, 111, 121, 242
Isotropic tensor, 225
Isotropy group, 22

Jacobi elliptic functions, 358
Jet bundle, 190
Jordan curve theorem, 88

Lagrangian, 179
derivative, 180

Lamme coefficients, 71
Laplace operator, 243
Laplacean flow, 290
Leaves, 47
Level curves, 117
Levi–Civita connection, 63
Lie algebra, 44, 195
Lie algebroid, 375
Lie bracket, 44
Lie derivative, 51
Lift, 190
Lifting, 87
Linear modes, 313
Lines of curvature, 104, 107, 249
Lines of motion, 181
Local homeomorphism, 10
Loop, 87

Magnetic surface, 456
Magnetohydrodynamics, 445
Material

acceleration, 171
contour, 184
lines, 181, 183
points, 187, 190
time derivative, 180
velocity, 162

Maximal integral curve, 47
Mean curvature, 71, 104, 114, 228, 292

vector, 243
Metric(s), 80, 100, 190

coefficients, 71
tensor, 111

Minimal, 244
constraintts, 191
surface, 105, 121

Mixed covariant derivative, 70, 167
Modified Korteweg-de Vries, 393, 440
Modulus, 358
Momentum flux tensor, 224
Motion group, 373

Natural parametrization, 80
Navier–Stokes equation, 226
Newtonian fluid, 225
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NLS3, 393, 400
Noether current, 192
Non-compact, 244
Nonlinear dispersion, 142
Nonlinear evolution system, 4
Nonlinear motion group, 376
Nonlinear Schrödinger equation, 393
Non-Newtonian viscosity, 250
Nonplanar point, 292
Normal

curvature, 103, 292
frequencies, 313
lines, 82
plane, 81, 405
variation, 235, 248

Open map, 15
Orbit, 22
Orientable, 98, 206
Orthogonal curvilinear coordinates, 71, 249
Orthogonal parametrization, 241
Osculating plane, 81

Parabolic points, 105
Parallel, 69

displacement, 62
transport, 107

Parameterized curve, 36
Parameterized differentiable curve, 79
Parameterized surface, 97
Partial differential equation, 40
Particle

circuit, 230
contours, 184
lines, 183
path, 186

Pascal principle, 239
Path lines, 201
Paths, 17, 181
Pathwise-connected, 17
PDE, 40, 43
Perfect fluid, 228, 385
Poloidal, 454

field, 257
Polymeric fluids, 250
Positively oriented curve, 89
Potential(s), 251, 311

flow, 290
picture, 142, 266

Principal
bundle, 59
curvatures, 104

directions, 104, 249
normal, 80, 103

Projection, 57, 190
Proper action, 22
Proper function, 15
Pull-back, 39

Quantum Hall, 433
Quasimolecular shapes, 411

Rank, 34
invariant, 37, 44

Rate
of deformation, 225
of expansion, 225
of strain, 225

Rectifying plane, 81
Reference fluid container, 186, 190
Regular, 451

curve, 79, 199
point, 79
surface, 97, 206, 230

Relabeling, 192
Representation formulas, 23
Resonant terms, 351
Riccati, 397, 399, 468
Riemannian connection, 63
Riemannian metric, 67
Riemannian structure, 67
Riemann–Christoffel tensor, 68
Rotational motion, 385
Rotation index, 452

Saddle, 105
Second fundamental form, 70, 103, 114, 152

of the surface, 236
Self-intersection, 86
Serret–Frenet trihedron, 80, 387
Shape

function, 246
space, 194

Simple, 90, 386
curve, 79, 87

Simplex, 20
Simpliceal complex, 20
Simply connected, 290
Sine–Gordon, 405
Smooth

curve, 79
map, 34

Smoothness, 32
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Solenoidal, 251
Solitary wave(s), 9

solution, 4
Solitons, 4, 9, 356
Spatial points, 190
Spatial velocity, 163
Spherical harmonics, 312
Spherical image, 84, 246
Stagnation point, 47, 292
Standard fiber, 60
Stereographic projections, 34
Stokesian fluid, 225
Stokes’ stream function, 257
Strain tensor, 169
Stream

function, 289
lines, 201

Stress tensor, 170, 224
Structure

constants, 45
equation, 63
group, 57

Submarine explosions, 325
Submersion, 35
Substantial time derivative, 196
Surface

continuity equation, 170
curl, 121, 122, 238
divergence, 118
gradient, 91, 111, 117, 122
Laplacian, 120
stress, 170
tension, 170, 234
tension coefficient, 235

Tangent
bundle, 36
functions, 35
map, 37, 38, 102
plane, 97, 292
space, 36
vectors, 36

Tensor of type (r,s), 67

Thermonuclear fusion, 445
Topological group of transformations, 57
Toroidal, 257
Torsion, 80, 113, 386

form, 63
tensor, 68

Total curvature, 90, 115, 458
Total derivative, 180
Total differential system, 54
Trace, 79
Transition functions, 57
Transitive action, 22
Triply orthogonal, 249
Tube, 90, 116, 386, 449, 451

of flow, 230
Tubular neighborhood, 386
Tubular surface, 116

Unit normal, 107, 234
vector field, 98

Unit tangent, 36, 80, 200

Vector
bundle, 58
field, 36

Velocity
field, 180
potential, 289, 311

Vertex, 87
Vertical subspace, 62
Viscoelastic fluids, 250
Viscoplastic fluids, 250
Vortex, 386

filament, 386
filament equation, 389, 403
motion, 385
tubes, 386

Vorticity, 289, 329, 385

Winding number, 87, 88
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