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Preface

This book is devoted to the theory of interactions between ultrashort electro-
magnetic pulses (USPs) and matter, including both the classical and quantum
cases. This is a hot topic in modern physics thanks to significant progress in
generating and shaping USPs over a wide range of carrier frequencies.

Special attention is given to the peculiarities of the USP–matter interaction,
namely, the phase dependence of photoexcitation and the nonlinear dependence of
the total process probability upon the USP duration for one- and sub-cycle USPs.

One of the important items in the book is the derivation and example appli-
cations of a simple new formula which describes the total photoprocess probability
under the action of USPs in the framework of perturbation theory. This formula
expresses the total probability in terms of the cross-section of the process in a
monochromatic field and the Fourier transform of the electric field strength. It
describes the phenomenon in the situation when the standard approach based on
the concept of radiation intensity and process rate becomes inadequate. The
resulting expression can be considered as the analog of the Fermi golden rule in
the physics of ultrafast electromagnetic phenomena. The formula is used to
describe the photoexcitation by USPs of atoms and optical centers in solids and
also the scattering of USPs on atoms and in plasmas.

A significant place is devoted to the formalism of the optical Bloch vector,
which gives a visual geometrical interpretation of radiative processes, making it
possible to represent the time evolution of the quantum system under radiation
through the rotation of a three-dimensional vector representing the state of the
system. Strong field–matter interactions are treated using the Bloch formalism in a
two-level approximation for USPs with variable characteristics, including chirped
USPs.

The book is intended for a wide circle of readers, including students of the
corresponding specialities, graduate students and scientists, university lecturers,
and in fact anyone taking an interest in the physics of ultrafast electromagnetic
interactions. It is hoped that representatives from each of the above groups will
find useful material for their specific needs, whatever their scientific or pedagogic
interests and qualifications.
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Chapter 1
Oscillator in an Electromagnetic Field

The model of a harmonic oscillator is widely used in the most diverse fields of
physics. This is connected first of all with the fact that, for small deviations from
the equilibrium position x0; the potential energy of the system U xð Þ is approxi-
mately described by a quadratic x-coordinate dependence, and a quadratic
dependence of the potential energy is a characteristic feature of a harmonic
oscillator. In actual fact, in the equilibrium position the force f acting on a particle
is equal to zero. Since the force is defined by the first derivative of the potential
energy with respect to the coordinate ðf ¼ �U0xÞ; the linear term in the potential
energy expansion in terms of the deviation from the equilibrium position x� x0ð Þ
is also equal to zero, and the quadratic dependence remains:

U x � x0ð Þ ffi U x0ð Þ þ
1
2

d2U

dx2
x� x0ð Þ2: ð1:1Þ

Given that the choice of potential energy origin is arbitrary, the potential energy
of the system at the equilibrium point may be assumed to be zero, so that
U x0ð Þ ¼ 0. Now, the total energy of a harmonic oscillator is equal to the sum of
the kinetic and potential energies (for simplicity we consider a one-dimensional
case):

E ¼ m _x2

2
þ m x2

0 x� x0ð Þ2

2
; ð1:2Þ

where _x is the velocity, m is the mass, and x0 is the eigenfrequency of the
oscillator. Comparing the potential energy of the harmonic oscillator [the second
summand on the right-hand side of (1.2)] with the right-hand side of the expansion
(1.1), we find that

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U00x2 x0ð Þ
�

m
q

; ð1:3Þ

where the double prime denotes the second derivative of the potential energy with
respect to the coordinate. It is assumed that U00x2 x0ð Þ 6¼ 0.

V. Astapenko, Interaction of Ultrashort Electromagnetic Pulses with Matter,
SpringerBriefs in Physics, DOI: 10.1007/978-3-642-35969-9_1,
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Thus for small deviations from the equilibrium position, any physical system
can be treated approximately as a harmonic oscillator, the eigenfrequency of which
is determined in the one-dimensional case by (1.3).

The harmonic oscillator model is widely used to study the physics of oscillation
processes. It can also be applied to the description of quantum transitions of
electrons between stationary states under the action of an electromagnetic field on
various physical systems, using the spectroscopic conformity principle.

1.1 Harmonic Oscillator in a Monochromatic Field

We begin by considering an elementary case of interaction between a charged
harmonic oscillator and the electric field of a monochromatic electromagnetic
wave. Hereafter we will assume that the wavelength k is much longer than the
oscillator dimension a:

k� a: ð1:4Þ

The inequality (1.4) is a precondition for applying the dipole approximation,
which plays an important role in the physics of electromagnetic processes. It is
easy to check that the relation (1.4) is true for a wide wavelength range if one
considers the interaction of radiation with atomic particles, the characteristic size
of which is defined by the Bohr radius: a � aB ffi 0:53 Å (it will be recalled that
1 Å = 10-8 cm). In the classical picture, the Bohr radius defines the size of the
electron orbit nearest to the nucleus in a hydrogen atom.

When (1.4) is satisfied, the coordinate dependence of the electromagnetic field
can be neglected, and for a monochromatic electric field strength, one can set

E tð Þ ¼ E0 cos x t þ u0ð Þ; ð1:5Þ

where E0; x; u0 are the amplitude, frequency, and initial phase of the electric
field, respectively. A monochromatic field is characterized by the fact that its
amplitude and initial phase are constants. The electric field amplitude determines
the radiation intensity in vacuum averaged over the period T ¼ 2p=x according to
the equation

I ¼ c
E2

0

8 p
; ð1:6Þ

where c is the velocity of light in free space. It will be recalled that the intensity is
the quantity of radiant energy passing through a unit area per unit time, usually
measured in watts per square centimeter.

For the quantitative characterization of an electric field in atomic physics, the
usual reference quantity is the atomic strength Ea; equal to the strength of the
atomic field at the first Bohr orbit of a hydrogen atom:
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Ea ¼
m2

e e5

�h4 ffi 5:14 � 109 V=cm; ð1:7Þ

where me is the electron mass. According to (1.6), the atomic radiation intensity
corresponding to the atomic strength of the electric field (1.7) is

Ia ¼ c
E2

a

8 p
¼ m4

e e10 c

8 p �h8 ffi 3:52 � 1016 W

cm2
: ð1:8Þ

The harmonic oscillator approximation can be used to describe the interaction
between radiation and atomic particles for small enough electric field amplitudes
and radiation intensities:

E� Ea; I � Ia: ð1:9Þ

When the inequalities (1.9) are satisfied, the influence of radiation on atomic
electrons can be treated as a weak disturbance.

In the dipole approximation (1.4), the equation describing oscillations of the
charged oscillator under the action of the electric field E tð Þ has the form

€xþ 2 d0 €xþ x2
0 x ¼ e

m
E tð Þ; ð1:10Þ

where x is the deviation of the oscillator coordinate from the equilibrium position,
while e, m, x0; d0 are the charge, mass, eigenfrequency, and damping constant of
the oscillator, respectively, and dots denote time differentiation. The constant d0

determines the free oscillation decay time for the oscillator: T2 ¼ 1=d0: The time
T2 is called the phase relaxation time or the transverse relaxation time. It plays an
important role in the physics of electromagnetic interactions, determining in
particular the width of the spectrum of radiation absorption by an ensemble of
oscillators with the same eigenfrequencies (see Sect. 1.4.5).

It is not difficult to solve (1.10) by switching from time-dependent values to
their Fourier transforms, that is, to frequency-dependent values. The Fourier
transform of an arbitrary time function f tð Þ is defined by

f xð Þ ¼
Z

1

�1

f tð Þ exp ix tð Þ dt: ð1:11Þ

The benefit in using Fourier transforms comes from the fact that, after the
transformation (1.11), time differentiation amounts to multiplication by the factor
�i x; while integration is equivalent to division by this factor. As a result, the
differential equation (1.10) becomes algebraic, and for the Fourier transform of the
coordinate we obtain

x xð Þ ¼ e

m

E xð Þ
x2

0 � x2 � 2ixd0
: ð1:12Þ

1.1 Harmonic Oscillator in a Monochromatic Field 3



The inverse Fourier transform of the right-hand side of (1.12), viz.,

f tð Þ ¼
Z

1

�1

f xð Þ exp �ixtð Þ dx
2p
; ð1:13Þ

gives the time dependence of the oscillator oscillations:

x tð Þ ¼ e

m

Z

1

�1

E x0ð Þ exp �i x0 tð Þ
x2

0 � x02 � 2ix0 d0

dx0

2 p
: ð1:14Þ

Naturally, the integral in (1.14) depends on the explicit form of the function
E x0ð Þ: For a monochromatic field the Fourier transform of the strength (1.5) is
given by

E x0ð Þ ¼ p E0 exp i u0ð Þ d x0 � xð Þ þ exp �i u0ð Þ d x0 þ xð Þ½ �; ð1:15Þ

where d xð Þ is the Dirac delta function. As can be seen from (1.15), in the case of a
monochromatic field, the Fourier transform of the strength contains two fre-
quencies x0 ¼ 	x: It can be shown that the positive frequency corresponds to
processes of radiation absorption, while the negative frequency is responsible for
the radiation of electromagnetic waves.

Substituting (1.15) into (1.14) and carrying out elementary algebraic transfor-
mations results in the following expression for forced oscillations of the harmonic
oscillator under the action of the monochromatic field:

x tð Þ ¼ s xð Þ cos x t þ u0ð Þ þ q xð Þ sin x t þ u0ð Þ; ð1:16Þ

where the functions s xð Þ and q xð Þ are given by

s xð Þ ¼ x0
x2

0 x2
0 � x2

� �

x2
0 � x2

� �2þ 4 xd0ð Þ2
� x0

2
x0 � xð Þ x0

x0 � xð Þ2þ d2
0

; ð1:17Þ

q xð Þ ¼ x0
2 x x2

0 d0

x2
0 � x2

� �2þ 4 xd0ð Þ2
� x0

2
d0 x0

x0 � xð Þ2þ d2
0

; ð1:18Þ

and x0 ¼ e E0
�

m x2
0 is the amplitude of the oscillations of a free charge in a

monochromatic field of amplitude E0 and frequency x0: The approximate equa-
tions in (1.17)–(1.18) are valid for low radiation frequency detuning from the
oscillator eigenfrequency, i.e., when

x� x0j j 
 d0 � x: ð1:19Þ

This a condition for resonance between the electric field and the harmonic
oscillator, and the strong inequality here corresponds to an oscillator with low
damping.
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From the formula (1.16) it follows that the forced oscillations of the oscillator
contain a component with the amplitude (1.17) that is in phase with respect to the
electric field and a quadrature part with the amplitude (1.18) that is shifted by 90�
with respect to the field phase (1.5). Furthermore, at the resonance frequency
x ¼ x0; the in-phase amplitude is equal to zero and the quadrature amplitude
takes its maximum value proportional to the ratio x0=d0:

Thus at the exact resonance and in the presence of damping, the forced oscil-
lations of the harmonic oscillator are phase-shifted by 90� relative to the phase of
the exciting monochromatic field. The oscillation amplitude in this case is
inversely proportional to the damping constant of the oscillator and does not
depend on the initial phase of the field u0:

In the case of forced oscillations of a free charge, when the eigenfrequency is
equal to zero, (1.17)–(1.18) with neglected damping imply that s ¼ �e E0

�

m x2;

and q ¼ 0; so the free charge (without damping) oscillates in antiphase with
respect to the field causing the oscillations. Among other things, this explains
reflection of electromagnetic waves from the surface of a conductor if their fre-
quency is less than the plasma frequency characterizing collective properties of the
electron density. Taking into account damping in the case of a free charge gives
rise to a quadrature component proportional to the ratio d0=x:

It should be emphasized that the quadrature amplitude of oscillations deter-
mines the average power Ph iT of energy exchange between the field and the
oscillator over the electromagnetic wave period ðT ¼ 2p=xÞ; defined as

Ph iT ¼
1
T

Z

T

0

e €x tð ÞE tð Þ dt: ð1:20Þ

Substituting (1.16) into (1.20) and using cos2 x t þ u0ð Þ
� �

T
¼ 1=2; we find

Ph iT ¼
e E0

2
x q xð Þ; ð1:21Þ

whence the power of energy exchange between the field and the oscillator is
determined by the quadrature component of the forced oscillations (1.18). The
contribution of the in-phase amplitude to the power disappears after averaging
over the period of the electric field oscillation since cos x t þ u0ð Þh
sin x t þ u0ð ÞiT ¼ 0:

In the case under consideration, the power of electromagnetic interaction is
positive ð Ph iT [ 0Þ; that is, radiant energy is absorbed by the oscillator and
expended by losses due to damping of its oscillations.

The in-phase amplitude of the forced oscillations does not take part in energy
exchange with radiation, but it nevertheless plays an important role since it defines
the value of the refractive index of a substance. In the absence of damping ðd0 ¼
0Þ; when the quadrature amplitude is equal to zero, the expression for the forced
oscillations of the harmonic oscillator in the monochromatic field simplifies to
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x t; d0 ¼ 0ð Þ ¼ e E0

m x2
0 � x2

� � cos x t þ u0ð Þ: ð1:22Þ

Hence it follows that, in the low-frequency range x\x0; the oscillator oscil-
lates in phase with respect to the electromagnetic wave field (1.5). As one goes
through the resonance to frequencies x [ x0; the oscillator begins to oscillate in
antiphase with respect to the external electric field. Connected with this is the
appearance of negative values of the dielectric permittivity and magnetic perme-
ability of a substance, a situation exploited to create meta materials with negative
refraction.

Plots of the in-phase and quadrature amplitudes of oscillations of the harmonic
oscillator in the monochromatic field are presented in Fig. 1.1.

Figure 1.1 shows that the quadrature amplitude is everywhere positive, while
the in-phase amplitude changes sign as one passes through the resonance. With
decreasing damping constant, the maximum values of the amplitudes grow and the
widths of the maxima decrease. According to (1.18), the spectral width of the
quadrature amplitude is d0: This means that the effective excitation of the har-
monic oscillator by the monochromatic field occurs in the spectral range
x0 � d0; x0 þ d0ð Þ:

The expression (1.14) can be transformed to a time integral if the order of the
frequency and time integrations is swapped in the determination of the Fourier
transform of the field. As a result, we obtain

x tð Þ ¼ e

m

Z

1

�1

dt0 G t � t0ð ÞE t0ð Þ; ð1:23Þ

where

Fig. 1.1 The in-phase (solid
line) and quadrature (dotted
line) amplitudes of forced
oscillations of the harmonic
oscillator in a monochromatic
field as functions of the
frequency ratio
r ¼ x=x0 for d0=x0 ¼ 0:1
and x0 ¼ 1
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G sð Þ ¼
Z

1

�1

exp �i x0 sð Þ
x2

0 � x02 � 2ix0 d0

dx0

2 p
ð1:24Þ

describes the harmonic oscillator response to the action of the electric field, also
called the Green function. An explicit expression can be obtained for this function
if the integral on the right-hand side of (1.24) is calculated by means of the residue
theorem. The singularities of the integrand lie in the lower half-plane of the
complex frequency x0: Therefore the integral is equal to zero for s\ 0; that is, for
t \ t0: This is a manifestation of the causality principle: the cause (electric field)
cannot occur before the effect (oscillation of the oscillator coordinate). Calculation
of the integral (1.24) gives

G sð Þ ¼ H sð Þ exp �d0 sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
0 � d2

0

q sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
0 � d2

0

q

s

� 	

; ð1:25Þ

where H sð Þ is the Heaviside theta function (a unit ‘‘step’’), equal to zero for s\0
and unity for s� 0:

In the absence of damping the Green function (1.25) takes the rather simple
form G sð Þ ¼ H sð Þ sin x0 sð Þ=x0:

Substituting the right-hand side of (1.25) into (1.23), we obtain

x tð Þ ¼ e

m ~x0

Z

1

0

exp �d0 sð Þ sin ~x0 sð ÞE t � sð Þ ds; ð1:26Þ

where ~x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
0 � d2

0

q

is the ‘‘renormalized’’ eigenfrequency that takes into

account the oscillator damping. Physically, it is clear that the presence of damping
should reduce the oscillator eigenfrequency. When writing down the right-hand
side of (1.26), we went from integration with respect to the time t0 to integration
with respect to the time difference s ¼ t � t0:

It should be emphasized that the explicit form of the electric field strength was
not used to derive (1.26), so this formula is of a universal nature: it describes the
response of the harmonic oscillator to arbitrary disturbances.

1.2 Harmonic Oscillator in a Pulsed Electromagnetic Field

1.2.1 Forced Oscillations

Let us consider the action of a Gaussian pulse on the oscillator, when the radiated
electric field strength varies according to
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E tð Þ ¼ E0 exp �t2
�

Dt2
� �

cos x t þ U tð Þð Þ; ð1:27Þ

where E0 is the amplitude of the electric field strength, Dt is the pulse width, x is
the carrier frequency, and U tð Þ is the carrier phase with respect to the pulse
envelope, which is in this case Eenv tð Þ ¼ E0 exp �t2

�

Dt2
� �

: It should be noted that
the constant phase U is called the carrier envelope phase (CE phase). The case of a
monochromatic field corresponds to an infinite pulse width ðDt!1Þ and
U ¼ const.

To determine the coordinate position describing forced oscillations, (1.26) can
be used. It is convenient to introduce a new variable t0 ¼ t � s: Then, applying the
formula for the difference between two sine functions, we find

x tð Þ ¼ e

m ~x0
sin ~x0 tð ÞC tð Þ � cos ~x0 tð Þ S tð Þf g; ð1:28Þ

where

C tð Þ ¼ e�d0 t

Z

t

�1

ed0 t0 cos ~x0 t0ð ÞE t0ð Þ dt0; ð1:29Þ

S tð Þ ¼ e�d0 t
Z

t

�1

ed0 t0 sin ~x0 t0ð ÞE t0ð Þ dt0 ð1:30Þ

are the ‘‘cosine’’ and ‘‘sine’’—the images of the electric field strength. Under the
assumption E t! �1ð Þ ! 0; solution of (1.28)–(1.30) describes an oscillator that
is not excited before the action of the field pulse: x t! �1ð Þ ! 0:

If the damping constant is greater than the reciprocal pulse width, then after
cessation of the pulse action t [ Dt; the amplitude of the oscillations of the
oscillator goes to zero. Hereafter we will be interested in an opposite case, when
damping is low ðd0 � 1=DtÞ and there is a time interval Dt� t� 1=d0 during
which the pulse has ceased, but oscillator damping has not yet been manifested.
Considering such times in the formulas (1.28)–(1.30), the parameter d0 can be
neglected and the integration can be extended to infinity. Then the values C 1ð Þ
and S 1ð Þ are expressed in terms of the Fourier transform of electric field strength
according to

C 1ð Þ ¼ Re E x0 ¼ x0ð Þf g and S 1ð Þ ¼ Im E x0 ¼ x0ð Þf g: ð1:31Þ

In view of these relations, in the time interval Dt� t� 1=d0; the formula
(1.28) can be rewritten as

x tð Þ ¼ e

m x0
E x0ð Þj j sin x0 t � arg E x0ð Þ½ �ð Þ; ð1:32Þ
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where E x0ð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Re E x0ð Þð Þf g2þ Im E x0ð Þð Þf g2
q

is by definition the magnitude

of the Fourier transform of the electric field strength at the eigenfrequency of the
harmonic oscillator and arg E x0ð Þ½ � ¼ arctg Im E x0ð Þð Þ=Re E x0ð Þð Þf g is the argu-
ment of this Fourier transform.

Thus the formula (1.32) gives a compact representation of oscillations of the
harmonic oscillator after termination of an exciting pulse of an electric field at
times when oscillation damping can be neglected. For short, we will call such
oscillations asymptotic oscillations. Since the field pulse has already ceased, it is
natural that oscillations (1.32) occur at the eigenfrequency x0: From the expres-
sion (1.32) it follows in particular that an electric field pulse determines not only
the amplitude, but also the phase of asymptotic oscillations. It will be shown in the
following that under certain conditions this phase does not coincide with the initial
phase of the electromagnetic pulse, but can differ noticeably from it.

1.2.2 Oscillator Excitation by Phase-Modulated Pulses

Let us consider two concrete examples of the Gaussian pulse (1.27) which are of
interest from the point of view of applications to modern laser physics and
chemistry (Fig. 1.2).

In the first case we assume that the carrier phase with respect to the envelope
(the CE phase) is constant: U tð Þ ¼ u0 ¼ const; but that its value can be changed in
a predetermined manner from one pulse to the next. The control of light-induced
processes by changing the CE phase is called phase control. Phase control can now
be achieved in practice. Indeed, fairly accurate methods of CE phase control have
now been developed. In this case pulse widths can be very small, of the order of
the period of oscillation at the carrier frequency:

α = 0, ϕ
0

= 0 
α = 0, ϕ

ϕ
0

= π/2
α = 1,

0
= 0

0 10 20 30
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Fig. 1.2 Electric field pulses
with different CE phases and
chirps
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Dt ¼ np T ¼ 2 p
x

np; ð1:33Þ

where np is a number of order unity. Pulses satisfying this condition are called
ultrashort pulses. If np ¼ 1; a pulse is called a single-cycle pulse, and if np\1; it is
called a subcycle pulse.

It should be noted that, for subcycle pulses, (1.27) is replaced by other
expressions for the electric field strength in the literature. We present here the
expression from [1]:

E tð Þ ¼ Re �i E0
1þ i 2t

x Dt2

� �2þ 2
x2 Dt2

1þ 2
x2 Dt2

" #

exp �t2
�

Dt2
� �

exp ix t þ u0ð Þ
( )

:

ð1:27aÞ

It should be noted that the conventional electric field pulse (1.27) and the
modified pulse (1.27a) give the same results for np� 2 [1].

Single-cycle Gaussian pulses with different CE phases are presented in Fig. 1.2
for u0 ¼ 0 (a cosine pulse) and u0 ¼ p=2 (a sine pulse). It can be seen that the
change in the CE phase influences the pulse shape.

In the second case of interest to us, U tð Þ ¼ j t2 holds. Such a pulse is called a
chirped pulse, and the parameter j is the so-called time chirp. In the chirped pulse
under consideration the carrier frequency depends linearly on time: xc ¼ xþ j t:
Chirped pulses find wide application in laser equipment operating at the femto-
second and attosecond time scales.

A single-cycle pulse with time chirp j ¼ Dt�2 is shown in Fig. 1.2.
It follows from (1.32) that, in order to determine the asymptotic oscillations of

the harmonic oscillator after the action of an exciting pulse, one must know the
Fourier transform of the electric field strength in this pulse. In the first case under
consideration ðU tð Þ ¼ u0 ¼ constÞ; the Fourier transform of the field is

E x0ð Þ ¼ E0

ffiffiffi

p
p

2
Dt exp �i u0 �

x� x0ð Þ2 Dt2

4

" #

þ exp i u0 �
xþ x0ð Þ2 Dt2

4

" #( )

:

ð1:34Þ

For the pulse given by (1.27a),

E x0ð Þ ¼ E0

ffiffiffi

p
p

2
Dt i

x02Dt2

2þ x2Dt2

� 	

exp �i u0 �
x� x0ð Þ2 Dt2

4

" #(

� exp i u0 �
xþ x0ð Þ2 Dt2

4

" #)

:

ð1:34aÞ

One can see that the difference between (1.34) and (1.34a) consists in the first
factor in square brackets and the sign of the last term in the brace.
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The Fourier transform (1.34a) does not contain the constant component of the
electric field strength ðE x0 ¼ 0ð Þ ¼ 0Þ and satisfies some additional requirements
for subcycle pulses (see [1]).

For chirped pulses, when U tð Þ ¼ j t2; one has

E x0ð Þ ¼
ffiffiffi

p
p

E0 Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a24
p exp �x2 þ x02 þ 2 i a x x0

Dx2


 �

cos
1
2

arctg að Þ � a x2 þ x02ð Þ � 2 i x x0

Dx2


 �

; ð1:35Þ

where a ¼ jDt2 is the dimensionless chirp and Dx ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

�

Dt is the chirped
pulse spectrum width.

Equations (1.34)–(1.35) are obtained by substituting (1.27) into the formula for
the Fourier transform (1.11) and using tabulated values of the relevant integrals.

Substituting the Fourier transform of the electric field (1.34) into (1.32), we
obtain the following expression for the coordinate of the harmonic oscillator after
cessation of action of a short ðDt� d�1

0 Þ electromagnetic radiation pulse:

x tð Þ ¼
ffiffiffi

p
p e E0 Dt

2 m x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G x0; x; Dtð Þ 1þ K x0; x; Dtð Þ cos 2 u0ð Þð Þ
p

sin x0 t þ wð Þ;

ð1:36Þ

where

G x0;x;Dtð Þ ¼ exp �Dt2 x0 � xð Þ2

2

" #

þ exp �Dt2 x0 þ xð Þ2

2

" #

ð1:37Þ

is the spectral line of excitation of the harmonic oscillator,

K x0; x; Dtð Þ ¼ sech x0 x Dt2
� �

ð1:38Þ

is the oscillation amplitude phase modulation factor [3], and

w x0; x; Dtð Þ ¼ arctg th x0 x Dt2
�

2
� �

tg u0ð Þ
� 


ð1:39Þ

is the initial phase of oscillations of the oscillator after the pulse ceases to act.
It is of interest that the oscillation amplitude phase modulation factor for the

pulse (1.27a) is given by the same expression (1.38) obtained for the conventional
pulse (1.27).

The spectral line of excitation of the harmonic oscillator by the pulse (1.27a)
has the form
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Gs x0; x; Dtð Þ ¼ x2
0Dt2

2þ x2Dt2

� 	2

exp �Dt2 x0 � xð Þ2

2

" #

þ exp �Dt2 x0 þ xð Þ2

2

" #

ð1:37aÞ

rather than the analogous formula (1.37) obtained for the conventional electric
pulse (1.27).

The phase modulation factor (1.38) describes the dependence of the oscillation
amplitude of the oscillator on the CE phase ðu0Þ of the electromagnetic pulse. For
not too short pulses ðnp� 1Þ; the condition x0 x Dt2 � 1 is satisfied, when
K x0; x; Dtð Þ ffi 0; and phase modulation is absent. Figure 1.3 shows the depen-
dence of the phase modulation factor on the dimensionless pulse width g ¼ x0 Dt
for different ratios of the carrier frequency to the oscillator eigenfrequency
r ¼ x=x0:

Figure 1.3 shows that the phase modulation factor has an appreciable value
only for subcycle pulses, beginning with a half-cycle pulse, when g\ 3; and also
that the value K x0; x; Dtð Þ grows with decreasing carrier frequency.

Plots of the spectral line of excitation of the harmonic oscillator calculated
using (1.37) and (1.37a) are presented in Fig. 1.4 for different electromagnetic
pulse durations. From the given dependences it follows that the excitation line
broadens with decreasing pulse width. For long pulses, the spectral line of exci-
tation has the usual form of a Gaussian bell-shaped curve with a maximum at the
oscillator eigenfrequency for both exciting pulses. There is also a blue shift of the
spectral maximum due to excitation by the pulse (1.27a).

It should be noted that, for short multicycle pulses with controlled CE phase
satisfying d0 � 1=Dt; the width of the spectral line of excitation of the harmonic
oscillator is determined by the pulse width and is equal to Dx ¼ 2=Dt: It will be
recalled that, in the monochromatic case, an analogous value is determined by the
damping constant of the oscillator d0:

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

K

η = ω0Δt

r = 0.5
r = 1
r = 2

Fig. 1.3 Dependence of the
modulation factor on the
dimensionless parameter
g ¼ x0 Dt for different values
of the ratio r ¼ x=x0 under
excitation by a pulse with the
controlled CE phase
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When the harmonic oscillator is excited by a chirped pulse, the formula for
asymptotic oscillations has a structure similar to (1.36), except that, instead of the
CE phase, the dimensionless chirp a ¼ jDt2 will appear as control factor. The
corresponding expressions are:

~x tð Þ ¼
ffiffiffi

p
p e E0

2 m x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a24
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~G 1þ ~K cos f að Þ
� �

q

sin x0 t þ ~w
� �

; ð1:40Þ

~G ¼ exp � x� x0ð Þ2

Dx2

( )

þ exp � xþ x0ð Þ2

Dx2

( )

; ð1:41Þ

~K ¼ sech
4 x x0

Dx2


 �

; ð1:42Þ

f að Þ ¼
2a x2

0 þ x2
� �

Dx2
� arctg að Þ; ð1:43Þ

~w ¼ arctg

tg
a x2

0 þx2ð Þ
Dx2 � 1

2 arctga

� 	

th 2 x x0
Dx2

� �

� tg 2 x x0
Dx2

� �

1þ tg
a x2

0 þx2ð Þ
Dx2 � 1

2 arctga

� 	

th 2 x x0
Dx2

� �

tg 2 x x0
Dx2

� �

8

>

>

<

>

>

:

9

>

>

=

>

>

;

; ð1:44Þ

where Dx ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

�

Dt is the chirped pulse spectrum width.
Equation (1.41) implies that the pulse spectrum width will also determine the

width of the spectral line of excitation of the harmonic oscillator. Since this width
grows with the parameter a ¼ j Dt2; the coefficient ~K will be somewhat greater
than its CE analog (1.38) for the same pulse widths. Besides, the chirp dependence,
though rather weak, is in the pre radical multiplier of the formula (1.40).

Fig. 1.4 The spectral
function of excitation of the
harmonic oscillator by pulses
(1.27), (1.27a) for different
pulse durations. Solid line
half-cycle pulse (1.27a).
Dashed line half-cycle pulse
(1.27). Dotted line two-cycle
pulse (1.27a). Dash-dotted
line two-cycle pulse (1.27)
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In the limit of a long pulse, when Dx� x and hence th 2 x x0
�

Dx2
� �

ffi 1;
(1.44) simplifies to

~w ¼
a x2

0 � x2
� �

Dx2
� 1

2
arctga; ð1:45Þ

so at the resonance we then have a simple relation for the shift in the harmonic

oscillator phase ~w ¼ � 1=2ð Þ arctga: For low chirps ð aj j\1Þ; it thus follows that
the phase shift resulting from the action of a chirped pulse on the harmonic

oscillator is proportional to the dimensionless chirp ~w � �a=2: Figure 1.5 shows
the shift in the phases of asymptotic oscillations as a function of the chirp value.

From Fig. 1.5 it follows that the distinction between the phase shift of (1.44)

and the simple dependence ~w � �a=2 is essential only for subcycle pulses and
chirp values of greater magnitude.

1.2.3 Harmonic Oscillator Radiation

In the time interval Dt� t� 1=d0 when the exciting pulse has already ceased and
oscillation damping has not yet set in, the charged harmonic oscillator will emit
electromagnetic waves according to the laws of electrodynamics.

The instantaneous power of dipole radiation is determined by the acceleration
of the charged particle according to the well known formula

Q ¼ 2 e2 €x2

3 c3
; ð1:46Þ

where €x is the charge acceleration. This formula is true in the dipole approxi-
mation, when the inequation (1.4) holds, so the value (1.46) is called the dipole
radiation power.

Fig. 1.5 Dependence of the
phase shifts of asymptotic
oscillations of the harmonic
oscillator on the chirp value
for different exciting pulse
widths. Solid line one-cycle
pulse. Dashed line half-cycle
pulse
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Of interest for practical purposes is the average radiation power over the
oscillation period Qh iT � Qh i: In the case under consideration for the harmonic
oscillator, this power can be expressed in terms of the total energy E of the
oscillator by using the equation of motion, according to which €x ¼ �x2

0 x: Hence
we find €x2 ¼ x4

0 x2: On the other hand, x2
0 x2 ¼ 2 U=m; where U is the potential

energy of the harmonic oscillator, so €x2 ¼ 2x2
0 U
�

m and Q ¼ 4 e2 x2
0 U
�

3 m c3:

Averaging the last equation over the period and taking into account the fact that
2 Uh iT ¼ E; we obtain the required representation:

Qh i ¼ Asp E; ð1:47Þ

where

Asp ¼
2 e2x2

0

3 m c3
ð1:48Þ

is a coefficient with physical dimensions of reciprocal time that describes the
probability of spontaneous emission, that is, emission arising in the process of free
oscillations of a charged particle.

Emission of electromagnetic waves results in a loss of energy by the harmonic
oscillator and in damping of its oscillations. Thus, if there are no other sources of
losses, the coefficient (1.48) is equal to the damping constant d0 appearing in the
equation of motion (1.10). It will be shown below that the parameter Asp coincides
with the Einstein coefficient for spontaneous radiation. In the optical range, when
x0 � 1015 to 1016 s-1, (1.48) implies a numerical value of 108 s�1 for the coef-
ficient Asp: This value represents a characteristic probability per unit time for
spontaneous radiation in a transition of an atomic electron from one orbit to
another.

The ratio of the spontaneous radiation coefficient (1.48) to the eigenfrequency
can be written Asp

�

x0 � re=k0; where

re ¼
e2

me c2
� 2:8 � 10�13 cm ð1:49Þ

is the classical electron radius and k0 ¼ 2 p c=x0 is the wavelength at the oscillator
eigenfrequency. So when Asp ¼ d0; the condition for weak damping of oscillations
of the harmonic oscillator, viz., d0=x0 � re=k0 � 1; is true down to very short
wavelengths, corresponding to the gamma range of light quantum energies.

The total energy of the oscillator is related to the amplitude of its free oscil-

lations xamp according to E ¼ m x2
0 x2

amp

.

2; obtained after averaging the squared

coordinate over the period. In view of this relation, the average radiation power
over the period is

Qh i ¼ 2 e2x4
0

3 c3
x2

amp: ð1:50Þ
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Determining the amplitude of the asymptotic oscillations xamp from (1.36) and
using (1.50), we obtain the average radiation power for the harmonic oscillator
after its excitation by a Gaussian pulse with controlled CE phase [2]:

Qh i ¼ p
6

e4

m c3
x0 Dtð Þ2 E2

0 G 1þ K cos 2 u0ð Þð Þ; ð1:51Þ

where the spectral line of excitation of the oscillator G and the phase modulation
factor K are determined by (1.37) and (1.38).

The expression (1.51) indicates that by changing the CE phase it is possible to
control the charged oscillator radiation power after cessation of action of a pulse,
provided the factor K has an appreciable value. In the case under consideration this
is possible only for subcycle exciting pulses, according to the formula (1.38) and
the plots of Fig. 1.3.

For excitation of the harmonic oscillator by a chirped pulse, instead of (1.51), a
similar formula holds for its radiation power:

~Q
� �

¼ p
6

e4

m c3

x0 Dtð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p E2

0
~G að Þ 1þ ~K að Þ cos f að Þð Þ

� �

; ð1:52Þ

where a ¼ j Dt2 is the dimensionless frequency chirp and the functions ~G; ~K
and f are determined by (1.41)–(1.43). In this case the phase parameter (chirp) is
included (through the pulse spectrum width Dx ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

�

Dt) in the deter-

mination of the spectral line of excitation of the oscillator (1.41), the factor ~K að Þ;
and the common factor in the power expression (1.52). Therefore the radiation
power of the oscillator excited by a chirped pulse can also be controlled for
multicycle pulses, though with low efficiency.

1.3 Harmonic Oscillator in a Thermal Radiation Field

In thermal radiation, the amplitudes, phases, and polarizations of the electromagnetic
field vary with time in a random manner. However, radiation averages, such as the
spatial energy density u, are constant in time and space. It can be said that thermal
radiation belongs to the class of random stationary and spatially uniform fields. The
spectral density of stationary random field energy per unit volume is

q xð Þ ¼ 1

2 pð Þ2
Z

1

�1

exp i x sð Þ E tð ÞE t þ sð Þh i ds; ð1:53Þ

where angle brackets designate averaging over the field state and E tð ÞE t þ sð Þh i is
the electric field strength autocorrelator which, under the assumption of
stationarity, does not depend on the instant of time t: The formula (1.53) can be
obtained from the expression for the spatial density of field energy u ¼ E2

� ��

4 p
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in an electromagnetic wave in vacuum by expanding into the Fourier integral and
comparing with the equation u ¼

R1
0 q xð Þ dx (see Appendix I).

Let us derive a useful relation between the average of the product of the Fourier
transforms of electric field strengths and the spectral density of radiant energy. The
relation has the form

E xð ÞE �x0ð Þh i ¼ 2pð Þ3 q xð Þ d x� x0ð Þ: ð1:54Þ

To prove this, we substitute the expressions for the Fourier transforms of
strengths (1.11) into the left-hand side of this equation:

Z

1

�1

exp i x tð ÞE tð Þ dt

Z

1

�1

exp �i x0 t0ð ÞE t0ð Þ dt0
* +

¼
Z

1

�1

Z

1

�1

exp i x t � i x0 t0ð Þ E tð ÞE t0ð Þh i dt dt0:

We now introduce a new integration variable s ¼ t � t0 and take into account
the fact that the stationarity condition implies E tð ÞE t0ð Þh i ¼ E t0 þ sð ÞE t0ð Þh i ¼
E sð ÞE 0ð Þh i: Then we have

Z

1

�1

Z

1

�1

exp i x t � i x0 t0ð Þ E tð ÞE t0ð Þh i dt dt0

¼
Z

1

�1

Z

1

�1

exp i x t0 þ sð Þ � i x0 t0ð Þ E sð ÞE 0ð Þh i ds dt0

¼ 2 p d x� x0ð Þ
Z

1

�1

exp i xsð Þ E sð ÞE 0ð Þh i ds ¼ 2 pð Þ3 d x� x0ð Þ q xð Þ ð1:55Þ

To obtain the last equation, we used the expression (1.53) for the spectral
density of the electromagnetic field energy and the integral representation

d að Þ ¼ 1
2 p

Z

1

�1

exp i a tð Þ dt ð1:56Þ

for the delta function. This proves (1.54).
Using (1.54), we can obtain the important relation between the power absorbed

by the harmonic oscillator under the action of electromagnetic radiation and the
spectral density of radiant energy (1.53). For this purpose we use the expression
for the instantaneous power of interaction between the electric field E tð Þ and a
charge e moving along the x axis, with the one-dimensional oscillator in mind:
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P tð Þ ¼ e _x tð ÞEx tð Þ: ð1:57Þ

For the harmonic oscillator, the coordinate position of forced oscillations x tð Þ is
given by (1.14), and it is easy to find the velocity _x tð Þ:

_x tð Þ ¼ �i
e

m

Z

1

�1

x0 Ex x0ð Þ exp �i x0 tð Þ
x2

0 � x02 � 2 ix0d0

dx0

2 p
: ð1:58Þ

Substituting (1.58) and the representation of the field Ex tð Þ in terms of the
Fourier transform (1.13) into (1.57), then averaging over field states with the help
of (1.54) and integrating over positive frequencies, we find for the average power

P � Ph i ¼ 2 p e2

3 m

Z

1

0

4 x02 d0 q x0ð Þ dx0

x2
0 � x02

� �2þ 2x0 d0ð Þ2
� 2 p2 e2

3 m

Z

1

0

G hð Þ x0ð Þ q x0ð Þ dx0;

ð1:59Þ

where

G hð Þ x0ð Þ ¼ d0=pð Þ
x0 � x0ð Þ2þ d0ð Þ2

ð1:60Þ

is the homogeneous line shape. In the derivation of (1.59), we also took into
account the fact that, in a random electromagnetic field, all polarizations are
equiprobable, so E2

x

� �

¼ E2
� ��

3: The approximate equality in the formula (1.59)
corresponds to the assumption of weak damping of the harmonic oscillator
d0 � x0: In the limit of zero damping d0 ! 0; the line shape (1.60) is approxi-
mated by the delta function:

G hð Þ x0ð Þ ! d x0 � x0ð Þ: ð1:61Þ

The expression (1.59) describes the energy that is absorbed by the harmonic
oscillator per unit time under the action of radiation with spectral density q x0ð Þ:
For an electromagnetic field with a broad spectrum, much broader than the width
of the harmonic oscillator line Dx� d0; the replacement (1.61) can be made on
the right-hand side of (1.59). As a result, we obtain

P ¼ 2 p2 e2

3 m
q x0ð Þ: ð1:62Þ

The relation (1.62) describes, in particular, interaction of thermal radiation with
the harmonic oscillator when the condition Dx� d0 is satisfied. Clearly, the
absorbed power is defined by the spectral density of radiant energy at the oscillator
eigenfrequency.

In a state of dynamic equilibrium between thermal radiation and the oscillator,
the energy of (1.62) absorbed per unit time by the oscillator should be compen-
sated for by energy that is expended per unit time for radiation, as given by (1.47):
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P ¼ Asp E: ð1:63Þ

Using the expressions (1.48) and (1.62), we thus obtain the relation between the
spectral density of energy of thermal (blackbody) radiation qT xð Þ and the energy
E of an oscillator in a state of thermodynamic equilibrium with this radiation:

qT x0ð Þ ¼ x2
0

p2 c3
E: ð1:64Þ

Equation (1.64) was obtained by M. Planck at the end of the nineteenth century.
It was used to derive the formula for qT xð Þ which marked the beginning of the
new quantum physics.

1.4 Morse Oscillator in an Electromagnetic Field

1.4.1 Definition and Main Characteristics

The harmonic oscillator model describes real physical systems in the limit of small
deviation from the equilibrium position. As this deviation grows, more and more
anharmonicity begins to show itself. The mathematical manifestation of anhar-
monicity consists in the fact that the potential energy is no longer described by the
quadratic coordinate dependence (1.1). Physically, anharmonicity manifests itself
first of all in nonlinear processes that are absent for harmonic systems.

An important model of an anharmonic oscillator is the Morse model, in which
the potential energy is given by

U Morseð Þ xð Þ ¼ D exp �2 k xð Þ � 2 exp �k xð Þf g; ð1:65Þ

where D is the binding energy, k the potential parameter, and x the displacement of
the oscillator coordinate from the equilibrium position. The Morse model well
describes oscillations of atoms in diatomic molecules. In this case x ¼ r � re;
where r and re are the current and equilibrium distances between the nuclei [not to
be confused with the classical electron radius (1.49)].

In the limit of small deviations from the equilibrium position x \ 1=k; the
Morse potential turns into the parabolic dependence of the potential energy on the
coordinate displacement that characterizes a harmonic oscillator: U Morseð Þ xð Þ �
D k2 x2 � 1
� 


: Comparing this approximation with the potential energy of the

harmonic oscillator U harmð Þ xð Þ ¼ m x2
0 x2
�

2� D; we find the expression k ¼
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

m=2 D
p

for the Morse potential parameter in terms of the characteristics of the
harmonic oscillator.

Figure 1.6 is a plot of the Morse potential constructed for parameters describing a
carbon monoxide (CO) molecule and the corresponding parabolic approximation.
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For a CO molecule we have: D ¼ 11:1 eV; �h x0 ¼ 0:27 eV;m ¼ 1:2 � 104 me

(me is the electron mass), k ¼ 1:19 a�1
B (aB ffi 0:53 � 10�8 is the Bohr radius),

re ffi 1:128 � 10�8 cm:
A qualitative distinction between the Morse potential and the harmonic

potential is its asymmetric form with horizontal asymptote U ¼ 0 in the region
x� 1=k: This asymptote divides the energy spectrum of the oscillator into two
parts: the positive part ðU [ 0Þ and the negative part ðU \ 0Þ: The negative part
of the spectrum corresponds to finite motion, when the oscillator coordinate varies
between finite limits. In contrast, the positive part of the spectrum corresponds to
infinite motion, when the oscillator coordinate increases indefinitely (oscillations
turn into recession). When the Morse potential describes a diatomic molecule, in
the region of negative energies, the atoms forming the molecule oscillate in a
bounded region of space. The positive part of the spectrum of a diatomic molecule
corresponds to a dissociated state, in which the interatomic distance tends to
infinity. In this context, the binding energy D has the meaning of a molecule
dissociation energy. Thus the Morse potential describes not only oscillatory
motion, but also dissociation of atoms.

Within the framework of the quantum–mechanical formalism, the region of
negative energies corresponds to a discrete spectrum, where the system energy
changes stepwise (in a quantum manner). Positive energies correspond to a con-
tinuous spectrum, in which the system energy can change by an arbitrarily small
value. The harmonic oscillator in the quantum picture has only a discrete spec-
trum, in which the energy levels are evenly spaced. The Morse oscillator has both
a discrete and a continuous energy spectrum, and the energy levels in the discrete
spectrum are not evenly spaced: the distance between them decreases as one
approaches the edge of the continuous spectrum.

In classical language, nonequidistance of levels corresponds to anharmonicity
of oscillations of the oscillator, and this anharmonicity is characterized by the
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Fig. 1.6 The Morse potential
constructed for parameters of
a CO molecule (solid thick
curve) and the corresponding
harmonic approximation
(dash-and-dot curve)
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dimensionless parameter xe; with value 0.00612 for the CO molecule. The an-
harmonicity parameter serves as a measure of the deviation of the discrete spec-
trum of a real oscillator from the equidistant approximation. In the Morse model
the anharmonicity parameter is unequivocally related to other characteristics of the
potential according to the formula xe ¼ �h x0=4 D Hence for a CO molecule we
obtain the theoretical value for the anharmonicity parameter xe ¼ 0:00608:
Comparing this value with the above experimental value, we come to the con-
clusion that in this case the Morse model gives a relative error of only 0.65 %.
Thus the Morse potential is a very good approximation to a real potential in the
case of diatomic molecules.

1.4.2 Free Oscillations of the Morse Oscillator

In the classical context, nonequidistance of a discrete energy spectrum corresponds
to the fact that the period of oscillations of the Morse oscillator depends on its
energy, in contrast to the constant period of oscillations of the harmonic oscillator
T ¼ 2 p=x0: To determine this dependence and other peculiarities of the motion,
we begin by considering free oscillations of the Morse oscillator in the negative
part of the spectrum, when e \ D [e is the oscillator energy measured from the
bottom of the potential well (Fig. 1.6)]. It is convenient to introduce the dimen-
sionless displacement q ¼ k x of the coordinate from the equilibrium position and
the dimensionless time s ¼ x0 t: Then the equation of motion of the Morse
oscillator can be written in the form

€qs2 ¼ exp �2 qð Þ � exp �qð Þ: ð1:66Þ

It should be noted that the dimensionless equation (1.66) does not contain the
binding energy D and the potential parameter k, that is, it is universal for the given
kind of potential energy.

To determine the dependence q sð Þ; it is better not to solve the equation of
motion (1.66) directly, but to use the energy conservation law which becomes, in
dimensionless variables,

€q2
s þ e�2 q � 2 e�q ¼ ~e� 1; ð1:67Þ

where ~e ¼ e=D is the dimensionless energy. For finite motion (oscillation mode)
1 [~e [ 0: From (1.67) it is easy to obtain

s� s0 ¼
Z

q

q0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~e� 1þ 2 e�y � e�2 y
p ; ð1:68Þ

where s0 is the integration constant. The formula (1.68) gives the dependence q sð Þ
in implicit form. To obtain the explicit form of the function q sð Þ; one must
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calculate the integral on the right-hand side of (1.68) and express q in terms of the
dimensionless time s: As a result, we find

q sð Þ ¼ ln
1�

ffiffi

~e
p

sin
ffiffiffiffiffiffiffiffiffiffiffi

1� ~e
p

sþ v ~e; q0ð Þ
� �

1� ~e

( )

; ð1:69Þ

where v ~e; q0ð Þ is the initial phase of oscillations defined by the initial condition
q0 ¼ q s ¼ 0ð Þ: The resulting expression is valid in the dimensionless energy range
1 [~e [ 0; that is, in the negative part of the spectrum.

The harmonic approximation is true for low energies of excitation of the Morse
oscillator, that is, for ~e� 1 ðe� DÞ: Then (1.69) turns into the well-known
expression for free oscillations of the harmonic oscillator (in dimensionless
variables):

q s; ~e� 1ð Þ ffi �
ffiffi

~e
p

sin sþ vð Þ: ð1:70Þ

As expected, the oscillation amplitude is proportional to the square root of the
energy, and the oscillations themselves follow the harmonic law.

From (1.69) it follows that the period of oscillations of the Morse oscillator is
energy-dependent and equal to

T Morseð Þ eð Þ ¼ 2 p

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e=D
p : ð1:71Þ

Hence the period grows with increasing energy and as e! D; one finds
T Morseð Þ ! 1: Thus, at the boundary of the negative part of the spectrum ~e ¼ 1ð Þ;
the periodic motion of the Morse oscillator transforms into aperiodic motion. In
dimensionless variables, the law of motion for the boundary energy e ¼ D is

q sð Þ ¼ ln
1
2

1þ s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 exp q0ð Þ � 1
p

� �2
� 	
 �

; ð1:72Þ

where q0 ¼ q 0ð Þ is the value of the dimensionless coordinate at the initial time,
and one must have q0� � ln 2 for the radicand on the right-hand side of (1.72) to
be positive. In the limit of long times s!1; the dimensionless coordinate of the
Morse oscillator at the spectrum edge grows logarithmically: q / ln s: In this case,
the dimensionless velocity is obviously _qs ! 1=s; and hence decreases to zero at
infinity.

For energies in the positive part of the spectrum ~e [ 1; calculation of the
integral (1.68) results in the law of motion

q sð Þ ¼ ln
~v2 þ A ~v;q0ð Þ exp �~v sð Þ � 1½ �2

2~v2A ~v;q0ð Þ exp �~v sð Þ

( )

; ð1:73Þ
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where

A ~
v;q0ð Þ ¼ ~

v
2

exp q0ð Þ þ 1þ ~
v exp q0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~
v

2 þ 2 exp �q0ð Þ � exp �2q0ð Þ
q

ð1:74Þ

is the constant defined by the initial conditions and ~v ¼
ffiffiffiffiffiffiffiffi

~e�1
p

is the dimensionless
velocity. From (1.73), it follows that, for long times s� ~v�1; the oscillator
coordinate is q / ~vs: So for a positive total energy of the Morse oscillator ð~e [ 1Þ;
linear recession occurs.

The time dependences of free motion of the Morse oscillator in the three above
modes are presented in Fig. 1.7 for zero initial coordinate ðq0 ¼ 0Þ:

Figure 1.7 shows that, for increasing total energy, oscillations (curve 1) change
into recession under the logarithmic law (curve 2) for zero total energy, and finally
linear recession (in the time interval s� 1) for positive energy (curve 3). Oscil-
lations of the Morse oscillator, in contrast to the harmonic oscillator, are of an
asymmetric nature. This is connected with the asymmetry of the Morse potential
(Fig. 1.6).

The three modes of one-dimensional motion of the Morse oscillator described
here have an analogy in the two-dimensional case. Motion in an attractive Cou-
lomb field or a gravitational field can be elliptic (negative energy), parabolic (zero
energy), or hyperbolic (positive energy).

1.4.3 Morse Oscillator in an Electromagnetic
Radiation Field

Let the charged Morse oscillator be acted on by a Gaussian electric field pulse
(1.27). The equation of motion of the oscillator in dimensionless variables can be
written in the form [3]
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Fig. 1.7 Three modes of free
motion of the Morse
oscillator: 1—oscillation
mode ~e ¼ 0:3: 2—recession
in the mode of zero total
energy. 3—recession in the
positive energy mode ~e ¼ 1:5
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€qs2 ¼ exp �2 qð Þ � exp �qð Þ þ c ~E sð Þ; ð1:75Þ

where c ¼ k q E0
�

m x2
0 is the dimensionless parameter characterizing the binding

force between the electric field and the Morse oscillator with q the effective charge
of the oscillator, and ~E s;u0ð Þ ¼ E s=x0ð Þ=E0 is the dimensionless electric field
strength as a function of the dimensionless time s ¼ x0 t:

The effective charge of the oscillator in the case of a diatomic molecule can be
determined by the formula q ¼ ol rð Þ=or; where l rð Þ is the dependence of the
dipole moment of the diatomic molecule on the distance between the nuclei (not to
be confused with the constant dipole moment of the molecule, if any). The
effective charge of the oscillator describing a CO molecule, calculated using the
‘‘Gaussian’’ quantum-chemical program, is q ¼ 0:78 e (here e is the elementary
charge). For the interaction between an electric field and a carbon monoxide
molecule, the above numerical values for characteristics of the Morse potential can
be used to obtain the following expression for the binding force parameter as a
function of the amplitude of the electric field strength and the atomic strength:
c ¼ 0:65 E0=Ea; where Ea ffi 5 � 109 V=cm: Thus, the parameter c is close to unity
for rather high values of the electric field strength (of the order of the atomic
strength).

Numerical analysis shows that solution of (1.75) differs from its harmonic
analog for c[ c
 ¼ 0:05: The critical value c
 depends weakly on the carrier
frequency, initial phase, and pulse width in the ultrashort pulse mode g\10:

Thus in the region of weak binding force c \ 0:05; the phase dependence of
excitation of the anharmonic oscillator in the Morse model is described by the
same formulas as for the harmonic oscillator. Using the given inequation for the
pulse width Dt\30 fs, we obtain the following restriction on the energy flux
density in an exciting pulse: dE=dS\10 J/cm2 When this holds, the harmonic
approximation for a CO molecule is valid.

Initially at rest, the Morse oscillator will gain energy according to the formula

e ¼ 2 c D

Z

1

�1

_q sð Þ ~E sð Þ ds ð1:76Þ

under the action of the electric field. This follows from the standard expression
(1.57) for the power. Here, as before, energy is measured from the bottom of the
potential well (Fig. 1.6). The calculated dependence of the Morse oscillator energy
on the parameter c after the action of a single-cycle Gaussian electric field pulse
(1.27) with constant CE phase is presented in Fig. 1.8 for different values of the
CE phase.

We thus find that the dependence of the Morse oscillator energy on the field
force for an ultrashort pulse depends essentially on the initial (CE) phase. As the
phase varies from �p=2 to p=2; this dependence changes from a monotonically
increasing curve to a curve with a minimum at c ¼ 0:52: In this case it thus follows
that diatomic molecule dissociation (that is, reaching the value ~e ¼ 1) proceeds
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more easily for the CE phase u0 ¼ �p=2: But if u0 ¼ p=2; dissociation by a pulse
g ¼ 4 is possible only for c [ 1:

1.4.4 Morse Oscillator Radiation

According to the general laws of electrodynamics, the excited charged Morse
oscillator will radiate electromagnetic waves. As in the case of the harmonic
oscillator, the Morse oscillator radiation power at times t [ Dt can be expressed in
terms of the oscillator energy e (see Appendix II):

Q Morseð Þ ¼ 2q2 x2
0

3 m c3
e

ffiffiffiffiffiffiffiffiffiffiffiffi

1� e
D

r

: ð1:77Þ

Comparing the expression (1.77) with the formulas (1.47)–(1.48) describing the
harmonic oscillator, we come to the conclusion that the Morse oscillator dipole
radiation power as a function of the energy e differs from its harmonic analog by

the multiplier
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e=D
p

: Thus for excitation of the charged Morse oscillator in
the range of energy values near the dissociation energy e � D; the radiation power
tends to zero. This is connected with the decrease in the oscillation frequency for
increasing oscillator energy. From (1.77), it follows that the maximum dipole
radiation power of the Morse oscillator is achieved at the energy e ¼ 2 D=3:
The linear mode of radiation excitation takes place for low energies e� D: An
appreciable deviation from linearity (more than 10 %) arises when e [ D=5

Figure 1.9 shows the results of calculation of the Morse oscillator dipole
radiation power as a function of the CE phase after the action of a subcycle electric
field pulse for different values of the field force parameter c and x ¼ x0 r ¼ 1ð Þ:

From Fig. 1.9 it follows that sensitivity of the Morse oscillator radiation power
to the CE phase after excitation by a single-cycle pulse is observed only in the
nonlinear mode c[ 0:1: Otherwise c\ 0:1ð Þ; when the harmonic approximation
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is justified, the phase dependence disappears. For the harmonic oscillator, the
expression (1.38) for the radiation power phase modulation factor is valid.
Substituting in the numerical values of the parameters, we find
Kðr ¼ 1; g ¼ 4Þ � 2 � 10�7:

Thus for single-cycle and longer exciting pulses with controlled CE phase, the
phase dependence of the Morse oscillator radiation power manifests itself only in
the nonlinear excitation mode. Then the behavior of the phase modulation differs
from the harmonic law (1.51) and strongly depends on the value of the parameter c
describing the binding between the field and the oscillator. Appreciable phase
sensitivity of the Morse oscillator excitation in the linear mode arises only for
subcycle field pulses at g\ 2 Dt \ 3ð Þ; when the formula (1.38) is valid.

1.4.5 Morse Oscillator in a Chirped Pulse Field

As in the case of the harmonic oscillator, excitation of the Morse oscillator by a
chirped pulse exhibits a stronger dependence on the phase parameter (frequency
chirp). Oscillations of the Morse oscillator calculated by numerical solution of (1.75)
for different values of the dimensionless chirp a ¼ j Dt2ð Þ are shown in Fig. 1.10.

In this case, it can be seen that the oscillation amplitude varies considerably in
going from one value of the parameter a ¼ j Dt2 to another. In particular, the
minimum amplitude corresponds to the value a ¼ 0:68:

From the formula (1.69), it follows that the amplitude of oscillations of the
Morse oscillator is defined by the oscillator energy according to the expression
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qamp ~eð Þ ¼ 1
2

ln
1þ

ffiffi

~e
p

1�
ffiffi

~e
p

( )

; ð1:78Þ

so it is clear that the greater the excitation energy, the greater the oscillation
amplitude.

To explain the dependences of Fig. 1.10, Fig. 1.11 shows the dimensionless
energy of the Morse oscillator as a chirp function for single-cycle and two-cycle
exciting pulses. ~e að Þ was calculated using (1.76) with numerical solution of (1.75).

Here we see that, with growing pulse width, the dependence of the excitation
energy on the chirp value becomes stronger, and the function ~e að Þ becomes more
asymmetric in relation to the change of chirp sign. For a two-cycle pulse at the
specified values of the parameters, the excitation energy has a deep minimum for
a = 0.68. This is reflected in the corresponding time dependence of Fig. 1.10 by a
small value of the asymptotic oscillation amplitude. In contrast, Fig. 1.11 shows
that, for a = 0.77, the Morse oscillator excitation energy has a local maximum, so
according to the formula (1.78) oscillations corresponding to this chirp value have
a large amplitude. The straight line in the same figure shows the value ~eopt ¼ 2=3
of the excitation energy which maximizes the Morse oscillator radiation power
after cessation of action of the pulse.

Thus using the Morse potential in the framework of the classical approach
allows one to simulate the interaction of electromagnetic radiation with molecular
systems in order to investigate their excitation and dissociation.
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Appendix I

Here we obtain the relation (1.53) between the spectral density of energy of a
random stationary field and the autocorrelation function of the electric field
strength. By definition, the spatial density of the energy E of the uniform
electromagnetic field occupying the volume V is

u ¼ E

V
¼ E2 þH2

8 p

� �

¼
E2 tð Þ
� �

4 p
: ðA:1Þ

The angle brackets denote averaging over the electromagnetic field state, that is,
over amplitudes, phases, and polarizations of its monochromatic components. In
the third equality of (A.1), we use the fact that, for an electromagnetic wave in
vacuum, the strengths of the electric and magnetic fields coincide. By definition,
the stationary electric field strength correlator is

KEik sð Þ ¼ Ei tð ÞEk t þ sð Þh i ¼
Z

1

�1

KEik xð Þ exp �i x sð Þ dx
2 p

: ðA:2Þ

The Fourier transform of the correlator KEik xð Þ is called the field spectral
density tensor.

Using (A.2), (A.1) can be rewritten as

u ¼
E2 tð Þ
� �

4 p
¼ KEii s ¼ 0ð Þ

4 p
¼ 1

2 pð Þ2
Z

1

0

KEii xð Þ dx: ðA:3Þ

Here the Einstein summation convention is implied. In going to integration over
positive frequencies alone, we use the fact that the function KEii xð Þ is even, which
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Fig. 1.11 Dimensionless
energy of the Morse oscillator
as a chirp function for single-
cycle and two-cycle exciting
pulses ðc ¼ 0:3; r ¼ 1Þ: The
straight line shows the
optimum energy value, at
which the oscillator radiation
power, averaged over the
period after cessation of
action of the electromagnetic
pulse, is maximum
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is easily shown from its definition and from the reality of the electric field strength
Ei tð Þ:

We now compare (A.3) with the determination of the spectral density of the
field

u ¼
Z

1

0

q xð Þ dx; ðA:4Þ

from which it follows that

q xð Þ ¼ 1

2 pð Þ2
KEii xð Þ; ðA:5Þ

KEii xð Þ ¼
Z

1

�1

KEii sð Þ ei x s ds ¼
Z

1

�1

ei x s E tð ÞE t þ sð Þh i ds: ðA:6Þ

Equations (A.5)–(A.6) imply (1.53).

Appendix II

Here we derive the formula (1.77) for the power of dipole radiation of the charged
Morse oscillator averaged over the oscillation period after cessation of an exciting
electromagnetic field pulse ðt� DtÞ; when the oscillations can be considered to be
free. We proceed from the expression for the instantaneous dipole radiation power
of one-dimensional oscillations of the oscillator with energy e :

Q t; eð Þ ¼
2 €d t; eð Þ
�

�

�

�

2

3 c3
; ðA:7Þ

where d t; eð Þ ¼ q x t; eð Þ is the dipole moment of the oscillator, k ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

m=2 D
p

is
the Morse potential parameter, D is the binding energy, and m is the oscillator
mass. Let us rewrite (A.1) in dimensionless variables q ¼ k x and s ¼ x0 t and
average over the dimensionless oscillation period

~T Morseð Þ ¼ T Morseð Þx0 ¼
2 p
ffiffiffiffiffiffiffiffiffiffiffi

1� ~e
p ; ðA:8Þ

where ~e ¼ e=D is the normalized energy. The result is

Q t; eð Þh iT ¼
4 q2 x2

0 D

3 m c3
€q2

s2

� �

~T
: ðA:9Þ
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We must therefore calculate the average of the squared dimensionless second
derivative €q2

s2

� �

~T
: This average can be written

€q2
s2

� �

~T ¼
2
~T

Z

q2 ~eð Þ

q1 ~eð Þ

€q2

_q
dq ¼2

ffiffiffiffiffiffiffiffiffiffiffi

1� ~e
p

2 p
IM ~eð Þ

¼ 2

ffiffiffiffiffiffiffiffiffiffiffi

1� ~e
p

2 p

Z

q2 ~eð Þ

q1 ~eð Þ

exp �2 qð Þ � exp �qð Þð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~e� 1þ 2 exp �qð Þ � exp �2qð Þ
p dq; ðA:10Þ

where q1 ¼ � ln 1þ
ffiffi

~e
p

� �

and q2 ¼ � ln 1�
ffiffi

~e
p

� �

are the turning points at which
the oscillator velocity is zero. They correspond to zeros of the radicand in the
denominator of the right-hand side of (A.10). In writing (A.10), we used the fact
that the electromagnetic pulse had ceased and that the dynamics of the Morse
oscillator is defined solely by its potential energy, validating the expression for
acceleration of the free oscillator (1.75) and its velocity following from (1.67).

It is not difficult to calculate the integral IM ~eð Þ on the right-hand side of (A.10)

if we make the change of variable q ¼ � ln 1þ
ffiffi

~e
p

y
� �

: Then after elementary
transformations we find

IM ~eð Þ ¼ ~e
Z

1

�1

y2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p dy ¼ p

2
~e: ðA:11Þ

Substituting the right-hand side of (A.6) into (A.5) and the resulting expression
into (A.4), we arrive at the formula (1.77) ~e ¼ e=D:

Q t; eð Þh iT ¼
2 q2 x2

0 D

3 m c3
~e
ffiffiffiffiffiffiffiffiffiffiffi

1� ~e
p

: ðA:12Þ
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Chapter 2
Interaction of Ultrashort Electromagnetic
Pulses with Matter: Description
in the Framework of Perturbation Theory

Considerable advances have been made in the generation of ultrashort electro-
magnetic field pulses of controlled shape over a wide spectral range [1]. In the
infrared, visible, and far-ultraviolet spectral regions, pulses have been produced
with widths equal to the period of the electromagnetic field oscillation at the
carrier frequency (single-cycle pulses). Single-cycle pulses have widths of a few
femtoseconds in the near–infrared and visible regions and of the order of a hundred
attoseconds and less in the far-UV range. Such pulses provide the basis for
studying electron dynamics with resolutions approaching one atomic time unit (24
as). In the terahertz range, half-cycle pulses are generated with widths of the order
of a picosecond, which is promising in particular for quantum calculations using
Rydberg states [2].

With the development of techniques for generating ultrashort pulses of electro-
magnetic radiation, it has become urgent to consider the peculiar features of inter-
actions between radiation and specific substances, and to develop adequate ways of
describing electromagnetic processes in ultrashort fields. The use of ultrashort laser
pulses opens up new possibilities in superfast monitoring of light-induced phe-
nomena, attosecond metrology, spectroscopy, microscopy, and plasmonics.

The interaction between single-cycle and subcycle pulses and matter has
characteristic features that differ from the case of multicycle pulses. For the latter,
it is well known that the photoprocess probability does not depend on the phase of
the electromagnetic field, but is determined by the strength and carrier frequency.
An important peculiarity of ultrashort interactions is the dependence of the
photoprocess probability on the phase characteristics of the radiation, and in
particular the carrier phase with respect to the envelope and the frequency chirp.
(The frequency chirp in the linear case is a coefficient determining the time
dependence of the frequency.) This phase dependence can be used both to obtain
information about wave functions of atomic electrons and also to use the phase
method to control light-induced processes.

In the previous chapter we considered the elementary case where the interaction
of a substance with ultrashort pulses can be described by a classical oscillator.
Hereafter (Chaps. 2 and 3), these interactions will be investigated in the framework

V. Astapenko, Interaction of Ultrashort Electromagnetic Pulses with Matter,
SpringerBriefs in Physics, DOI: 10.1007/978-3-642-35969-9_2,
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of a more realistic approach, the semiclassical theory, where the substance is
described at the quantum level and the radiation is described classically.

In this chapter it is assumed that the electric field in the ultrashort pulse is not
too high (or the photoprocess cross-section is small enough) to justify applying the
quantum–mechanical perturbation theory.

2.1 Derivation of the Basic Formula

When perturbation theory is applicable and one considers the action of relatively
long radiation pulses on a substance, the response to the electromagnetic action is
usually described with reference to the photoprocess probability per unit time w.

This can be determined from the cross-section r of the photoprocess by the
formula

w ¼
Z

r x0ð Þ I x0ð Þ
�h x0

dx0; ð2:1Þ

where I(x0) is the spectral intensity of radiation which, for a monochromatic field
of frequency x, is I x0ð Þ ¼ I0 d x � x0ð Þ; with I0 the integrated intensity.

It should be noted that the cross-section r(x0) corresponds to the action of a
monochromatic field at a specified frequency x0, while the integration over fre-
quencies on the right-hand side of (2.1) takes into account the non-monochro-
maticity of the radiation. If the pulse lasts much longer than the period of
oscillation T = 2p/x at the carrier frequency, the spectral intensity of radiation is
determined in terms of the electric field strength autocorrelator by the formula

I x0ð Þ ¼ c

2 pð Þ2
Z

1

�1

Ei tð ÞEi t þ sð Þh it exp i x0 sð Þ ds; ð2:2Þ

where the symbol . . .h it denotes the time average (see the derivation of (2.2) in
Appendix 1 and note that I x0ð Þ ¼ c q x0ð Þ).

In going to ultrashort pulses consisting of a small number of optical cycles or
even of part of a cycle, the concept of photoprocess probability per unit time
becomes inadequate, and a description of the electromagnetic interaction through
the total probability for the whole time of action of the pulse is more physically
meaningful. So for ultrashort pulses, the formulas (2.1)–(2.2) are no longer valid.

To describe processes in ultrashort fields within the framework of the pertur-
bation theory, (2.1) is replaced by a calculation of the total photoprocess proba-
bility W for the whole time of action of the ultrashort pulse, retaining the
description of the properties of the excited system in terms of the cross-section
r x0ð Þ: This is the problem to which this section is dedicated.

So let us consider photoexcitation of a quantum system from the ground state
0j i to some excited state nj i under the action of a dipole perturbation
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V̂ tð Þ ¼ �d̂i Ei tð Þ; ð2:3Þ

where d̂ is the electric dipole moment operator of the system and E(t) is the
electric field strength, taken to be a classical quantity that is independent of
the spatial coordinate (dipole approximation). To first order in perturbation theory,
the amplitude of this process for the whole time of action of the field is

cn0 ¼ �
i

�h

Z

1

�1

nh jd̂i tð Þ 0j iEi tð Þ dt; ð2:4Þ

where d̂i tð Þ ¼ exp i Ĥ0 t
�

�h
� �

d̂i exp �i Ĥ0 t
�

�h
� �

is the dipole moment operator in

the interaction representation and Ĥ0 is the zero-order Hamiltonian of the system.
The probability of photoexcitation with the transition 0j i ! nj i for the whole

time of action of the perturbation is

Wn0 ¼
1

�h2

Z

1

�1

Z

1

�1

0h jd̂i t0ð Þ nj i nh jd̂k tð Þ 0j iEi t0ð ÞEk tð Þ dt dt0: ð2:5Þ

The total photoexcitation probability taking into account transitions to all states
of the system is then

Wtot ¼
X

n

Wn0 ¼
1

�h2

Z

1

�1

Z

1

�1

0h jd̂i t0ð Þ d̂k tð Þ 0j iEi t0ð ÞEk tð Þ dt dt0: ð2:6Þ

In the derivation of (2.6) from (2.5), we used the completeness of the set of

functions nj i; and the fact that 0h jd̂i tð Þ 0j i ¼ 0 for a spherically symmetrical
system, so to satisfy the completeness condition in the sum (2.6), a summand can
be included that corresponds to the invariable state of the system W00.

We now use the fact that the correlator of dipole moments of a system that is
stationary in the unperturbed state depends only on the time difference s ¼
t0 � t : Kik sð Þ ¼ 0h j d̂i t0ð Þ d̂k tð Þ 0j i; something that is easy to check directly. Then
the formula (2.6) can be rewritten as

Wtot ¼
1

�h2

Z

1

�1

Z

1

�1

K sð ÞEi t þ sð ÞEi tð Þ dt ds: ð2:7Þ

Here we note that, for a centrosymmetric system, Kik sð Þ ¼ dik K sð Þ; where
K sð Þ ¼ Kii sð Þ=3: Replacing the terms in the integrand of (2.7) by Fourier trans-

forms f tð Þ ¼
R

1

�1
f x0ð Þ exp i x0 tð Þ dx0

2 p ; we obtain
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Wtot ¼
2 p

�h2 c

Z

1

�1

Z

1

�1

K x0ð ÞI x0; tð Þ dx0dt; ð2:8Þ

where we have introduced the function

I x0; tð Þ ¼ c

2 pð Þ2
Z

1

�1

Ei tð ÞEi t þ sð Þ exp i x0 sð Þ ds: ð2:9Þ

This function can be called the spectral density of instantaneous radiation
intensity. The Fourier transform of the dipole moment correlator is by definition

K xð Þ ¼ 1
3

Z

1

�1

0h j d̂i tð Þ d̂i t þ sð Þ 0j i exp i x sð Þ ds: ð2:10Þ

Starting from (2.9), it is not difficult to prove that

Z

1

�1

I x0; tð Þ dt ¼ c

2 pð Þ2
E x0ð Þj j2: ð2:11Þ

Substituting the expression (2.11) into the right-hand side of (2.8), we obtain

Wtot ¼
1

2 p �h2

Z

1

�1

K x0ð Þ E x0ð Þj j2 dx0: ð2:12Þ

Let us apply this to a monochromatic field E tð Þ ¼ E0 cos x tð Þ; where the
average intensity over the period T ¼ 2p=x is

I x0; tð Þh iT ¼ I0 d x � x0ð Þ 1 þ exp �2 i x tð Þh iT ¼ I0 d x � x0ð Þ; ð2:13Þ

with I0 ¼ c E2
0

�

8 p: Integrating (2.13) over the finite time interval Dt as in (2.8),
we find

Wtot ¼
2 p

�h2 c
K xð Þ I0 Dt; ð2:14Þ

whence the photoexcitation probability per unit time is

wtot ¼
2 p

�h2 c
K xð Þ I0: ð2:15Þ

On the other hand, by definition of the photoabsorption cross-section in a
monochromatic field of frequency x, we have

wtot ¼ r xð Þ I0

�h x
: ð2:16Þ
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The value I0=�h x represents the monochromatic radiation photon flux density.
Comparing (2.15) and (2.16), we find the expression for the Fourier transform of
the dipole moment correlator in terms of the photoabsorption cross-section in the
dipole approximation:

K xð Þ ¼ �h c

2 p x
r xð Þ: ð2:17Þ

This implies the important formula for the photoabsorption cross-section:

r xð Þ ¼ 2 p x
�h c

K xð Þ: ð2:18Þ

Substituting (2.17) in (2.12), we obtain the expression for the total probability
of the process under consideration for the whole time of action of the radiation
pulse. Since the case in point is photoabsorption, the integration in (2.12) is
necessarily restricted to positive frequencies, so finally we find

Wtot ¼
c

2 pð Þ2
Z

1

0

r x0ð Þ E x0ð Þj j2

�h x0
dx0: ð2:19Þ

Obtained within the framework of the perturbation theory, the expression (2.19)
is the basic formula describing the total photoprocess probability under the action
of ultrashort pulses. Of course, it is true whenever Wtot\1; according to the
mathematical definition of probability.

For the photoabsorption cross-section the equation can be written

r x0ð Þ ¼ 2 p2 e2

m c

X

n [ 0

fn0 Gn0 x0ð Þ þ gc0 x0ð Þ
( )

¼
X

n

rn0 x0ð Þ þ rc0 x0ð Þ;

ð2:20Þ

where the contributions to the total cross-section of the discrete spectrum (the sum
over n) and the continuous spectrum (the second summand in the braces) have
been separated. Here fn0 are the oscillator strengths, Gn0 x0ð Þ is the spectral shape
of the line for the transition 0j i ! nj i; and gc0 x0ð Þ is the spectral function of
dipole excitation to the continuous energy spectrum. The right-hand side of (2.20)
involves rn0 x0ð Þ; the cross-section for photoexcitation of the discrete power level,
and rc0 x0ð Þ; the cross-section for excitation of a state in the continuous spectrum.
In view of (2.20), the following expression for the total probability of photoex-
citation of the nth state of the discrete spectrum can be obtained from (2.19):

Wn0 ¼
c

2 pð Þ2
Z

1

0

rn0 x0ð Þ E x0ð Þj j2

�h x0
dx0 ð2:21Þ

or
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Wn0 ¼
e2

2 m
fn0

Z

1

0

Gn0 x0ð Þ E x0ð Þj j2

�h x0
dx0: ð2:22Þ

Equations (2.21) and (2.22) are valid within the range of applicability of the
perturbation theory, when Wn0 \ 1:

When the spectral pulse width Dx / 1=Dt is much greater than the spectral
width of the bound–bound transition Dx� Dxn0; the line shape function can be
replaced by the delta function Gn0 x0ð Þ ! d xn0 � x0ð Þ: With this replacement,
and in view of the expression for the oscillator strength fn0 ¼ 2 m xn0 j
dn0j2

.

3 �h e2 (2.21) yields a simple expression for the phototransition probability:

Wn0 ¼ X xn0ð Þj j2; ð2:23Þ

where X xn0ð Þ ¼ dn0 E xn0ð Þ=�h is the Fourier transform of the instantaneous Rabi
frequency calculated at the eigenfrequency of the excited transition. Naturally,
(2.23) can be obtained directly from the electric field strength to first order of the
perturbation theory using (2.4) and (2.5).

For the probability of excitation of an arbitrary state in the continuous spectrum
over the whole time of action of a field pulse, (2.19) and (2.20) imply

Wc0 ¼
c

2 pð Þ2
Z

1

IP=�h

rc0 x0ð Þ E x0ð Þj j2

�h x0
dx0; ð2:24Þ

where IP is the ionization potential of the system under consideration. For the
differential probability of photoexcitation to a state of the continuous spectrum
with energy e, (2.24) yields

dW

dxe0
¼ c

2 pð Þ2
rc0 xe0ð Þ E xe0ð Þj j2

�h xe0
; ð2:25Þ

where xe0 ¼ IP þ eð Þ=�h is the frequency of transition to a specified state of the
continuous spectrum. The formula (2.25) is obtained from (2.24) by substituting
the delta function d xe0 � x0ð Þ into the integrand on the right-hand side of (2.24).
This substitution separates out the transition of the system from the ground state to
a state of the continuous spectrum with a specified energy 0j i ! ej i:

For an arbitrary photoinduced process in a quasi-monochromatic field, one can
obtain the following expression for the probability per unit time in terms of the
process cross-section:
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wtot tð Þ ¼
Z

1

0

r x0ð Þ I x0; tð Þ
�h x0

dx0: ð2:26Þ

Here the cross-section r x0ð Þ can describe not only photoabsorption, but also
other photoprocesses, such as scattering, stimulated bremsstrahlung, and stimu-
lated photorecombination. Integrating (2.26) with respect to time, the probability
for the whole time of action of the pulse is

W ¼
Z

1

�1

w tð Þ dt ¼
Z

1

0

r x0ð Þ
Z

1

�1

I x0; tð Þ
�h x0

dt dx0: ð2:27Þ

Hence in view of (2.11), we arrive at the formula (2.19).
For a quasi–monochromatic field, analogously to (2.21)–(2.25), the expression

for the electromagnetic pulse energy absorbed by the quantum system over the
whole time of interaction with the radiation is

DE ¼
Z

1

�1

Q tð Þ dt ¼
Z

1

0

r x0ð Þ
Z

1

�1

I x0; tð Þdt dx0: ð2:28Þ

Hence in view of (2.11), we find

DE ¼ c

2 pð Þ2
Z

1

0

r x0ð Þ E x0ð Þj j2 dx0: ð2:29Þ

Thus (2.19) and (2.25) can be used to describe not only photoabsorption in an
ultrashort pulse, but also other photoprocesses, such as radiation scattering and the
stimulated bremsstrahlung effect. For this purpose, a suitable cross-section must be
substituted in the right-hand side of (2.19).

Let us consider photoexcitation of the system under the action of a laser pulse
with a Gaussian envelope i.e., with electric field strength

E tð Þ ¼ E0 exp �t2
�

Dt2
� �

cos x t þ uð Þ; ð2:30Þ

where E0 is the amplitude, x is the carrier frequency, u is the CE phase, and Dt is
the parameter proportional to the pulse duration Dtp.

The Fourier transform of the field (2.30) has the form

E x0ð Þ ¼ E0

ffiffiffi

p
p

2
Dt exp �i / � x � x0ð Þ2 Dt2

4

" #

þ exp i /� x þ x0ð Þ2 Dt2

4

" #( )

:

ð2:31Þ
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It is natural to define the pulse duration Dtp as the ratio of the probability W for
the whole time of action of the pulse to the probability per unit time w for the same
pulse shape in the limit of long duration Dtp � x�1

� �

:

Dtp  
W

w
: ð2:32Þ

Then for the field (2.30), the relationship between the parameter Dt and the
pulse duration Dtp is

Dtp ¼
ffiffiffi

p
2

r

Dt ffi 1:253 Dt: ð2:33Þ

To derive (2.33), we took the limit Dt!1 in the Fourier transform of the

pulse (2.31): E x0ð Þj j2! p=2ð Þ3=2 E2
0 Dt d x� x0ð Þ; whence (2.12) leads to Wtot !

ffiffiffiffiffiffiffiffi

p=2
p

K xð Þ
�

4 �h2
� �

E2
0 Dt: Comparing the last relation with the expression

w ¼ K xð Þ
�

4 �h2
� �

E2
0 for the photoexcitation rate in a monochromatic field,

(2.32) then implies (2.33).
We now consider the number nc of cycles in a pulse:

nc ¼
Dtp
T
¼ xDtp

2 p
; ð2:34Þ

where T ¼ 2 p=x is the period of oscillation at the carrier frequency. Using
(2.33), we obtain the following expression for the parameter Dt appearing in the
formulas (2.30)–(2.31) in terms of the number of cycles in a pulse:

Dt ¼ 2
ffiffiffiffiffiffi

2 p
p

nc

x
: ð2:35Þ

Hereafter we will consider ultrashort pulses, for which the number of cycles at
the carrier frequency is nc C 1 and less.

Expressed in terms of the number of cycles, the squared magnitude of the
Fourier transform of the field (2.31), which according to (2.19) defines the pho-
toexcitation probability for the whole time of action of the radiation, has the form

E x0ð Þj j2¼ 2p2 nc E0

x

� �2

GE x0;x; ncð Þ 1 þ Kph x0;x; ncð Þ cos 2 uð Þ
� 	

; ð2:36Þ

where (compare with (1.36) and (1.37) in Chap. 1)

GE x0;x; ncð Þ ¼ exp �4 p n2
c 1 � x0

x

� �2
" #

þ exp �4 p n2
c 1 þ x0

x

� �2
" #

;

ð2:37Þ
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Kph x0;x; ncð Þ ¼ sech 8 p n2
c

x0

x

� �

: ð2:38Þ

For the probability of excitation of the discrete power level for the whole time
of action of the pulse, (2.22) and (2.36) yield

Wn0 ¼ 2p2 dn0 E0

�hx
nc

� �2

GE xn0;x; ncð Þ 1 þ Kph xn0;x; ncð Þ cos 2 uð Þ
� 	

ð2:39Þ

under the assumption that Wn0 \ 1. We see here that the function GE xn0;x; ncð Þ
describes the spectral form of an excitation line of the bound–bound transition,
while Kph xn0;x; ncð Þ is the phase modulation factor since it specifies the depen-
dence of the process probability on the CE phase.

Note that, for a pulse of the form (1.26a), instead of the equality (2.37), one
should use (1.36a), taking into account the relation (2.35) between the parameters
Dt and nc.

From the resulting expression (2.39) it follows that, under the conditions of
validity of the perturbation theory, the dependence of the total probability of
photoexcitation of the bound–bound transition under the action of a pulse of the
form (2.30) on the CE phase is given by the function cos 2 uð Þ: From numerical
analysis of the right-hand side of (2.38), it follows that the phase modulation factor
has an appreciable value only for subcycle pulses: nc \ 0.5. For a fixed value of
the parameter nc, the factor Kph grows with carrier frequency x, and in this case,
according to the expression for the spectral function of excitation (2.37), the
process probability decreases.

In the limit of a pulse (2.30) of zero duration Dt! 0ð Þ; when E x0ð Þ !
ffiffiffi

p
p

E0 Dt cos u; (2.19) takes the form

Wtot ¼
c

4 p �h
E0 Dtð Þ2 cos2 u

Z

1

0

r x0ð Þ
x0

dx0: ð2:40Þ

Thus in this case the total photoabsorption probability is defined by the fre-
quency integral of the ratio r x0ð Þ=x0: In this case the carrier envelope (CE) phase
dependence is given by the function cos2 u; which corresponds to the formula
(2.39), since Kph ! 1 as Dt! 0:

Note that, for excitation by a pulse of the form (1.26a), Eq. (2.40) should be
rewritten as

Wtot ¼
c

16 p �h
E2

0 Dt6 sin2 u
Z

1

0

r x0ð Þx03 dx0: ð2:40aÞ

For the total absorbed energy over the whole time of action of the pulse and in
the limit Dt! 0; (2.29) implies
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DE ¼ p
2

Ne re c Dtð Þ2 E2
0 cos2 u; ð2:41Þ

where re ¼ e2
�

m c2 is the classical electron radius and Ne is the number of
electrons in the atom. To derive (2.41), we used the sum rule for the photoab-
sorption cross-section:

Z

1

0

r x0ð Þ dx0 ¼ 2 p2 e2

m c
Ne: ð2:42Þ

Equations (2.40)–(2.41) are valid within the framework of applicability of the
perturbation theory, when Wtot\1: It follows from (2.19) that the limit of zero
pulse duration is realized while satisfying Dt\1=Dxa; where Dxa is the frequency
interval giving the main contribution to the process cross-section integrated with
respect to the frequency.

Thus the formulas (2.19) and (2.27) derived in this section express the total
photoprocess probability for the whole time of action of the radiation in terms of
the cross-section of this process and the Fourier transform of the electric field
strength in the pulse. The resulting equations describe a photoprocess induced by
an ultrashort electromagnetic pulse, when the concepts of probability per unit time
and radiation intensity are inapplicable but it is nevertheless possible to use the
perturbation theory.

2.2 Excitation of a Substance Under the Action
of Ultrashort Pulses

2.2.1 Phase Control of Photoexcitation by an Ultrashort
Laser Pulse

We now use (2.19) obtained in the previous section to calculate the photoexci-
tation of a multielectron atom by an ultrashort Gaussian pulse of radiation (2.30) in
the local plasma frequency model. Within the framework of this model the
expression for the photoabsorption cross-section of the atom is [3]

r BLð Þ
ph x0ð Þ ¼ 2 p2 e2

m c

Z

n rð Þ d x0 � xpl rð Þ
� �

dr; ð2:43Þ

where xpl rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 p e2 n rð Þ=m
p

is the local plasma frequency and n(r) is the
spatial distribution of electron density in the atom. Substituting (2.43) into (2.19),
we find
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W phð Þ
tot ¼

ffiffiffi

p
p

e
ffiffiffiffi

m
p

�h

Z

1

0

E xpl rð Þ;u
� �













2 ffiffiffiffiffiffiffiffiffi

n rð Þ
p

r2 dr; ð2:44Þ

where E xpl rð Þ;u
� �













2
is the squared magnitude of the Fourier transform of the

electric field in a pulse of the form (2.31), calculated at the local plasma frequency,
in which the CE phase dependence is explicitly specified. To analyze the phase
effects in the total probability of photoexcitation by ultrashort laser pulses, we
introduce the phase modulation factor by the formula

K phð Þ
tot ¼ 2

W phð Þ
tot u ¼ 0ð Þ � W phð Þ

tot u ¼ p=2ð Þ
W phð Þ

tot u ¼ 0ð Þ þ W phð Þ
tot u ¼ p=2ð Þ

: ð2:45Þ

The phase modulation factor of the total probability of photoabsorption by an
atom with charge Z = 30 calculated using the statistical model for the electron
density is presented in Fig. 2.1 for three pulse widths as a function of the carrier
frequency. It will be recalled that the dimensionless parameter nc is the number of
periods at the carrier frequency in the radiation pulse. We note that appreciable
dependence of the photoabsorption probability on the CE phase occurs only for
nc \ 0.5, and also in the case of a bound–bound transition. The phase modulation
factor for the fixed parameter nc grows with carrier frequency. It should be noted
that the probability of photoabsorption at the high-frequency boundary of the
interval presented in Fig. 2.1 is 15 % of its maximum value, corresponding in this
model to the frequency xmax = 0.4 a.u.

The expression (2.19) for the total photoabsorption probability can be applied to
the interaction of an ultrashort pulse with a metal nanosphere in a dielectric
medium. When the radiation wavelength is much longer than the nanoparticle
radius rs, its dynamic polarizability can be described by the Lorentz formula
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Fig. 2.1 Phase modulation
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bs xð Þ ¼ em
es xð Þ � em

es xð Þ þ 2 em
r3

s ; ð2:46Þ

where es (x) is the dielectric permittivity of the nanoparticle metal and em is the
dielectric permittivity of the matrix. Hence we can use the optical theorem to find
the photoabsorption cross-section in the dipole approximation and then (2.19) to
calculate the total photoabsorption probability for the whole time of action of the
pulse.

The results of calculations to find the probability of photoabsorption of an
ultrashort pulse by a silver nanoparticle in a glass matrix are shown in Fig. 2.2 for
two values of the CE phase. The frequency dependence of the dielectric permit-
tivity of silver is restored using data for the real and imaginary parts of the
refractive index.

We thus that in this case (nc = 0.25) photoabsorption depends heavily on the
CE phase, especially for photon energies at carrier frequencies exceeding
the maximum energy. With increasing pulse duration, the phase dependence of the
probability becomes less noticeable, and for nc [ 0.5 it practically disappears.

In a number of cases quantum systems are excited by a sequence of identical
pulses separated by some time interval T (not to be confused with the oscillation
period). It is not difficult to obtain a Fourier transform of the electric field strength
for such a sequence consisting of N identical pulses in terms of the Fourier
transform of a single pulse E(x0):

EN x0ð Þ ¼ sin x0 T N=2ð Þ
sin x0 T=2ð Þ exp i

N � 1ð Þx0 T
2

� �

E x0ð Þ: ð2:47Þ

Substituting (2.47) into the right-hand side of (2.19), we find the probability of
photoexcitation of a quantum transition under the action of N identical pulses:

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

W
to

t, r
el

. u
.

ω, eV

n
c
 = 0.25

ϕ = 0
ϕ = π/2

Fig. 2.2 Total probability of
photoabsorption of an
ultrashort pulse (nc = 0.25)
on a silver sphere
(rs = 5.3 nm) as a function of
the carrier frequency for two
values of the CE phase
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W21 Nð Þ ¼ c

4p2 �h

Z

r21 x0ð Þ
x0

sin x0 T N=2ð Þ
sin x0 T=2ð Þ

� �2

E x0ð Þj j2 dx0: ð2:48Þ

We now use these expressions to describe photoionization of a hydrogen atom
under the action of a series of short pulses. In this case the process cross-section
r21(x) is given by the Sommerfeld formula

rH m ¼ �h x
Ry

� �

¼ 29 p2 a2
B

3 � 137 � m4

exp � 4 arctg
ffiffiffiffiffiffiffi

m� 1
p
ffiffiffiffiffiffiffi

m� 1
p


 �

1 � exp �2 p
�
ffiffiffiffiffiffiffiffiffiffiffiffi

m � 1
p

� � ; ð2:49Þ

where aB % 0.53 Å is the Bohr radius and Ry % 13.6 eV denotes the Rydberg
energy. Figure 2.3 shows the results of calculations using (2.48) and (2.49) to find
the probability of photoionization of a hydrogen atom by a series of laser pulses
with a width of two oscillation periods at the carrier frequency. Plotted on the
abscissa is the value m ¼ e=Ry þ 1; where e ¼ �h x � Ry is the energy of an
ionized electron. Clearly, with a growing number of pulses, the spectral depen-
dence of the photoexcitation probability narrows near the maximum value deter-
mined from the equation x T ¼ 2 pk (where k is a natural number). Since the
energy of an electron knocked out of an atom is Ry m � 1ð Þ and the number of
these electrons is proportional to the probability W(N), the figure shows that the
energy spectrum of the photoelectrons can be controlled by changing the param-
eters of the series of exciting pulses.
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Fig. 2.3 Probability of photoionization of a hydrogen atom under the action of a sequence of N
two-cycle laser pulses, m ¼ �h x=Ry
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2.3 Dependence of the Excitation Probability
on the Duration of Ultrashort Pulses

We now consider the dependence of the photoexcitation probability on the dura-
tion of ultrashort Gaussian pulses (2.30) for the example of a multielectron atom in
the Lenz–Jensen statistical model [4]. For the photoabsorption cross-section we
use the local plasma frequency model (2.43). Then the process probability is
determined by the basic formula (2.19) and the Fourier transform of the electric
field strength in the pulse.

2.3.1 Atom in the Lenz–Jensen Statistical Model

Common to all statistical models of an atom, the expression for the local electron
density has the form

nLJ rð Þ ¼ Z2 f x ¼ r=rTFð Þ a�3
B ; ð2:50Þ

rTF ¼
b
ffiffiffi

Z3
p aB; b ¼

ffiffiffiffiffiffiffiffi

9 p2

128
3

r

ffi 0:8853

where Z is the charge on the atomic nucleus, rTF is the Thomas–Fermi radius,

aB ¼ �h2

me2 is the Bohr radius, and f(x) is an universal function of the dimensionless
distance to the nucleus x ¼ r=rTF depending on the specific statistical model of
the atom. Lenz and Jensen proposed the following expression for this function:

fLJ xð Þ ffi 3:7e�
ffiffiffiffiffiffi

9:7x
p 1 þ 0:26

ffiffiffiffiffiffiffiffiffi

9:7x
p� �3

9:7xð Þ3=2
: ð2:51Þ

This provides a more realistic description of the electron density distribution in
a multielectron atom than the Thomas–Fermi function. The spectral photoab-
sorption cross-section of an atom in the Lenz–Jensen model calculated using
(2.43), (2.50), and (2.51) is presented in Fig. 2.4 for two values of the charge on
the atomic nucleus.

2.3.2 Total Photoabsorption Cross-Section

We now write down the expression for the total photoabsorption cross-section
(2.19) separating out the dependence on the duration of the ultrashort pulses as
expressed through the number of cycles nc [see the determination of the number of
cycles (2.34)]:
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Wtot ncð Þ ¼
c

2 pð Þ2
Z

1

0

r xð Þ E x; ncð Þj j2

�h x
dx; ð2:52Þ

where r(x) is the spectral cross-section of the process, c is the velocity of light,
and E x; ncð Þ is the Fourier transform of the electric field strength in the pulse.

The advantage of ultrashort pulse width measurements in terms of the number
of pulses in the expression for the total photoabsorption probability consists in the
universal nature of the resulting dependences, which hold over a wide spectral
range.

Once normalized (to the squared magnitude of the Fourier transform of the

electric field strength peak value E0 xð Þj j2), the total photoprocess probability in
the monochromatic limit nc � 1 can be written

~W monð Þ
tot ¼ W monð Þ

tot

E0 xð Þj j2
! c r xð Þ

�h x2
nc: ð2:53Þ

Thus the photoprocess probability in the monochromatic limit (the long pulse
limit) grows linearly with the number of cycles nc in the pulse, as expected from
traditional considerations. Moreover, in the monochromatic limit the photoprocess
probability does not depend on the CE phase u.

In the opposite limiting case of a pulse of zero width (nc � 1) and constant CE
phase (U = u = const), it can be shown that (2.36)–(2.38) lead to
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Fig. 2.4 Spectral photoabsorption cross-section of a Lenz–Jensen atom calculated in the local
plasma frequency model for two nuclear charges: solid line Z = 30, dotted line Z = 60
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Wtot ncð Þ ¼
4 p
3

E0

�h x

� �2

n2
c 0h jd̂2

0j i cos2 u; ð2:54Þ

where 0h jd̂2
0j i is the quantum–mechanical mean value of the squared magnitude

of the atomic electron electric dipole moment operator and E0 is the electric field
amplitude in the pulse. The sum rule was used to derive the right-hand side of
(2.54).

Thus in the limit of a pulse of zero width the total photoprocess probability is
proportional to the squared number of cycles in the pulse and the squared cosine of
the CE phase.

Here we are interested in the dependence of the total photoprocess probability
on the parameter nc in the low value region nc * 1 and nc B 1. To determine this
dependence, we use the above formulas describing photoabsorption in the
framework of the local plasma frequency model, and with the atomic electron
density in the Lenz–Jensen model. The results of our calculations are given in
Figs. 2.5, 2.6, 2.7, and 2.8 for a Lenz–Jensen atom with nuclear charge Z = 30 and
normalized total photoabsorption probability ~Wtot determined by

~Wtot ¼
Wtot

E0j j2
: ð2:55Þ
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Fig. 2.5 Total photoabsorption probability for ultrashort pulses with different values of the CE
phase, calculated for a Lenz–Jensen atom: solid line u = 0, dotted line u = p/4, dashed line
u = p/2, dash-and-dot line—monochromatic limit, �h x ¼ 10 a.u., Z = 30
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The probability of photoabsorption under the action of ultrashort pulses with
constant CE phase U(t) = u = const is shown in Fig. 2.5 for a specified value of
the carrier frequency and different values of the parameter u.

Fig. 2.6 Total photoabsorption probability for ultrashort pulses with the CE phase equal to zero,
at two different carrier frequencies and for a Lenz–Jensen atom: solid line �h x ¼ 500 eV, dash-
and-dot line �h x ¼ 1000 eV. Straight lines show corresponding monochromatic limits

totW
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Fig. 2.7 Total photoabsorption probability for chirped ultrashort pulses and for a Lenz–Jensen
atom, �h x ¼ 10 a.u., Z = 30: solid red line a = 0, dotted line a = 0.5, dashed line a = 1, dash-
and-dot line a = 2, solid cyan line—monochromatic limit
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For subcycle pulses, it can be seen that the probability depends strongly on the
CE phase. For example, for a cosine pulse (u = 0), photoabsorption has a max-
imum at nc B 0.5. The amplitude of this maximum decreases with growing CE
phase.

The straight line in Figs. 2.5, 2.6, 2.7, and 2.8 represents the photoabsorption
probability in the monochromatic limit, when the function ~W ncð Þ has linear
behavior [see (2.53)]. As can be seen from Fig. 2.5, the total photoabsorption
probability tends to a straight line for nc C 1, as it should in the monochromatic
limit. Thus in the case considered, the probability ~W ncð Þ depends nonlinearly on
the pulse width (the parameter nc) only for subcycle ultrashort pulses.

Figure 2.6 shows the dependence of the total probability of atomic photoab-
sorption on the parameter nc for a cosine pulse (u = 0) and different carrier
frequencies x expressed in electron-volts. From this figure it follows in particular
that, for the case under consideration, the function ~W ncð Þ has a smaller angle of
inclination to the X axis for higher values of the carrier frequency.

2.3.3 Excitation of an Atom by a Chirped Pulse

Let us consider the dependence of the photoexcitation probability on the duration
of ultrashort pulses when an atom is acted on by a chirped electromagnetic pulse
and the initial phase U is quadratically time-dependent: U(t) = kt2. The Fourier
transform of the electric field strength in such a pulse is given by (1.34).
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Fig. 2.8 Total photoabsorption probability for chirped ultrashort pulses and for a Lenz–Jensen
atom, �h x ¼ 30 a.u., Z = 30: solid red line a = 0, dotted line a = 0.5, dashed line a = 1, dash-
and-dot line a = 2, solid cyan line—monochromatic limit
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The results of the corresponding calculations are shown in Figs. 2.7 and 2.8 for
different values of the carrier frequency in the Lenz–Jensen model.

We see that the function ~W ncð Þ is in this case somewhat more complex than for
a fixed CE phase (compare with Figs. 2.5 and 2.6). For example, for high enough
values of the dimensionless chirp a there are several maxima of the photoab-
sorption probability as a function of the number of cycles in a pulse, and the value
of these maxima decreases with growing parameter nc. It is significant that for a
chirped pulse the photoabsorption probability maxima occur not only for subcycle
ultrashort pulses, but also in the region nc [ 1.

In the case of a multicycle chirped pulse, coincidence of the process probability
with the monochromatic limit is retained for high enough values of the parameter
nc. However, the number of cycles in a pulse at which this coincidence begins to
occur depends on the value of the dimensionless chirp a ¼ j Dt2 (see (1.34)). The
higher the chirp value, the more cycles are required in the pulse to reach
the monochromatic limit (linear dependence of the probability ~W ncð Þ on the
parameter nc).

From comparison of Figs. 2.7 and 2.8 it follows that, as for the constant CE
phase, in the monochromatic limit the photoabsorption dependence on the number
of cycles in a pulse becomes weaker with growing carrier frequency. This is
explained by reduction of the photoabsorption cross-section of a Lenz–Jensen
atom with growing frequency in the spectral range x[ 10 eV (see Fig. 2.5).

2.4 Scattering of Ultrashort Pulses by Atoms
and in a Plasma

Most works treating the interaction of ultrashort pulses with a material substance
are devoted to photoionization and photoexcitation of atomic particles [1]. The
description of photoprocesses within the framework of the perturbation theory then
has a rather limited domain of applicability since, for characteristic values of the
radiation intensity used in modern experiments, nonlinear effects are rather
significant.

For radiation scattering by atomic particles, due to the low value of the process
cross-section, the perturbation theory turns out to be applicable over a much wider
region of parametric variation than in photoionization and photoexcitation.
However, application of the usual formulas of perturbation theory obtained in the
long pulse limit in the case of single-cycle and subcycle pulses becomes, generally
speaking, incorrect. In this section we develop a method to describe scattering of
ultrashort electromagnetic pulses by an atom and in a plasma, taking into account
possible excitation of the target and the non-dipole nature of the electromagnetic
interaction.
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2.4.1 Scattering of an Ultrashort Pulse by an Atom

Let us consider scattering of an ultrashort electromagnetic pulse by an atom, taking
into account possible excitation of the target [5]. We assume that the spatio-
temporal dependence of the electric field strength in the pulse has the form

E t; rð Þ ¼ e E0 g t � nr

c


 �

; ð2:56Þ

where e is the unit polarization vector, E0 is the field amplitude, n is the unit vector
in the direction of the electromagnetic pulse propagation, g(s) is the dimensionless
function defined by a concrete realization of the pulse, and c is the velocity of
light.

We will decompose the strength (2.56) into plane waves with frequencies x and
wave vectors k = (x/c)n. Then scattering of an electromagnetic field pulse can be
represented as scattering of a set of plane waves to a plane wave with frequency
x0, unit polarization vector e0, and wave vector k0 = (x0/c)n0.

With the above picture, the differential probability of scattering for the whole
time of action of the pulse with simultaneous excitation of the target from the state
ij i to the state fj i can be obtained in the form

dWfi

dX0 dx0
¼
Z

1

0

drfi k0; kð Þ
dX0 dx0

dNph

dx dS
dx; ð2:57Þ

where

drfi k0; kð Þ
dX0 dx0

¼ d x � x0 � xfi

� � x03 x
c4

e0�l es cls
fi k0; kð Þ



















2
ð2:58Þ

is the differential scattering cross-section with respect to the solid angle and fre-
quency for a plane wave, with cls

fi k0;kð Þ the radiation scattering tensor taking into
account excitation of the target, and

dNph

dx dS
¼ c

2 pð Þ2
E xð Þj j2

�h x
ð2:59Þ

is the number of photons forming the electromagnetic pulse field in the spectral
range x; x þ dxð Þ that passed through the unit area during the whole time of
action of the radiation, with E(x) the Fourier transform of the electric field
strength. Substituting (2.58) into the right-hand side of (2.57), we arrive at an
expression for the differential photoprocess probability over the whole time of
action of the field that generalizes the expression obtained in [6] to take into
account excitation of the target and the non-dipole nature of the electromagnetic
interaction.
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Gathering the results (2.56)–(2.58), we find the following basic equation:

dWfi

dX0 dx0
¼ x03

c3

E2
0

4 p2 �h
g x0 þ xfi

� �












2
e0�l es cls

fi k0; kð Þ


















2
; k ¼ x0 þ xfi

c
n;

ð2:60Þ

where g(x) is the Fourier transform of the temporal pulse shape function g(s) and
twice-repeated indices are summed over.

Equation (2.60) can also be obtained using second order perturbation theory in a
consistent quantum–mechanical approach [6].

Hereafter we assume that the scattering tensor reduces to the scalar cls
fi ¼

dls cfi ðcfi ¼ 1=3ð Þ cll
fiÞ; with summation over twice-repeated indices. Then on the

right-hand side of (2.60) we have a scalar product of polarization vectors of
incident and scattered waves, averaged in the usual way for non-polarized scat-
tered radiation.

We consider two cases: (1) scattering without excitation of the target (so-called
elastic scattering) and (2) scattering with excitation of the target into an arbitrary
state.

For scattering without change of the atomic state and in the multiplicative
approximation, we have

cii k0; kð Þ ’ bi x0ð Þ ~Fii k0 � kð Þ; ð2:61Þ

where bi x0ð Þ is the dynamic dipole polarizability of an atom in the initial state and
~Fii qð Þ ¼ Fii qð Þ=Z is the atomic form factor normalized by the number of elec-
trons. In view of (2.61), after summation over polarizations of the scattered
photon, (2.60) implies

dWii

dX0 dx0
¼ 1 � e n0ð Þ2

4 p2

x0

c

� �3 E2
0

�h
g x0ð Þj j2 bi x0ð Þj j2 ~F2

ii 2
x0

c
sin

h
2

� �� �

; ð2:62Þ

where h is the scattering angle. Here, when we write Dk in the argument of the
atomic form factor, we take into account the fact that x0 = x.

The formula (2.62) can be rewritten in terms of the atomic polarization charge

Zpol xð Þ ¼ m x2

e2
b xð Þj j ð2:63Þ

as

dWii

dX0 dx0
¼ 1 � e n0ð Þ2

4 p2

e2

�h c

� �3
I0

Ia

� �

Z2
pol x0ð Þ xa g x0ð Þj j2

x0
~F2

ii 2
x0

c
sin

h
2

� �� �

;

ð2:64Þ

where Ia ¼ c m4 e10

8 p �h8 ’ 3:5 � 1016 W/cm2, xa ¼ m e4

�h3 are the atomic units of radia-

tion intensity and frequency, and I0 ¼ c E2
0

�

8 p is the mean radiation intensity. In
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the high-frequency limit x � xt (xt is the characteristic eigenfrequency of the
target), the polarization charge is equal to the number of electrons in the target.

The frequency dependence of the polarization charge of a krypton atom cal-
culated using experimental photoabsorption data is presented in Fig. 2.9. The solid
curve in the figure is obtained by calculating the imaginary part of the polariz-
ability of the krypton atom with the optical theorem and restoring the real part by
means of the Kramers–Kronig relation.

When the carrier frequency xc of the pulse is close to one of the eigenfre-
quencies of excitation of the atom in the discrete spectrum xc & xri (in this case
the oscillator strength for the corresponding transition is nonzero fri = 0), the
resonant approximation can be used for the polarizability:

bi x0 � xrið Þj j2ffi p
2

e2

m x02

� �2
x0

dri
f 2
ri x

0 Gri x0ð Þ; ð2:65Þ

where dri and Gri(x) are the width and shape of the resonance transition line. Then
instead of (2.62) we have

dWii xc � xrið Þ
dX0 dx0

¼ 1 � e n0ð Þ2

8 p
e2

�h c

� �3
I0

Ia

� �

x0

dri
xa g x0ð Þj j2f 2

ri Gri x0ð Þ: ð2:66Þ

In writing (2.66), we have taken into account the fact that, in the spectral range
under consideration, the atomic form factor can be assumed equal to unity.
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Fig. 2.9 Polarization charge of a krypton atom as a function of frequency. The dashed line
shows the number of electrons in the atom
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In particular, the resulting formula implies resonant amplification of scattering due
to the presence of the multiplier x0=dri:

For an ultrashort pulse with carrier frequency in the optical range, the spectrum
is generally much broader than the line of a resonance transition in an atom, so the
spectral dependence of the scattering probability will be defined mainly by the
shape Gri x0ð Þ of the spectral line of the transition. In the general case, the spectrum

of a scattered pulse will also be influenced by the function g x0ð Þj j2:
The resonance probability (2.66) can be generalized to the case where the atom

is excited in the scattering process if the frequency of scattered radiation is close to
one of the eigenfrequencies for transition of the atom from the intermediate state to
the final state.

The probability of scattering with target excitation to an arbitrary state (the
entire scattering spectrum) is obtained by summing the probability (2.60) over all
possible states fj i: Let us consider the entire scattering spectrum in the high-
frequency range (x � xt), when the approximate expression for the electro-
magnetic field scattering tensor is valid:

c hfð Þ
fi k0; kð Þ ’ � e2

m x0x
Ffi k0 � kð Þ: ð2:67Þ

Substituting the right-hand side of (2.67) into the formula (2.60) and summing
over all possible final states, we find the following expression for the scattering
probability with excitation of the atom:

dW hfð Þ
tot

dx0dX0
¼ c E2

0

4p2�h
1 � e n0ð Þ2
h i

r2
e

Z

1

0

g xð Þj j2Si x0 � x; k0 � kð Þ dx
x
; ð2:68Þ

where

Si Dx;Dkð Þ ¼ 1
2 p

Z

1

�1

dt e�i Dx t ih jn̂ Dk; tð Þn̂ �Dkð Þ ij i ð2:69Þ

is the dynamic form factor (DFF) of an atom in the ith state (see Appendix III).
In the elementary approximation, the DFF of a hydrogen-like atom is

S Dx; Dkð Þ ’ d Dx þ �h

2 m
Dk2

� �

: ð2:70Þ

Substituting the right-hand side of (2.70) into (2.68) and integrating with
respect to the frequency x, we find

dW hfð Þ
tot

dx0dX0
� 2

p
1 � e n0ð Þ2
h i I0

�h
r2

e

g x x0; hð Þ½ 	j j2

x x0; hð Þ ; ð2:71Þ

where
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x x0; hð Þ ¼ xr þ x0 cos h � xr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4
x0

xr
sin2 h

2

� �

� x0

xr

� �2

sin2 hð Þ

s

;

xr ¼
m c2

�h
ð2:72Þ

For x0 � xr; we have x x0; hð Þ ffi x0; and instead of (2.71) we obtain

dW hfð Þ
tot

dx0dX0
� 1 � e n0ð Þ2

4 p2

e2

�h c

� �3
I0

Ia

� �

xa g x0ð Þj j2

x0
: ð2:73Þ

This expression describes the entire spectrum for scattering of an ultrashort
pulse by a one-electron atom in the high-frequency approximation.

In the high-frequency limit, when Zpol ffi Z; the ratio of the probability of
‘‘elastic’’ scattering of an ultrashort pulse by a hydrogen-like atom (2.64) to the
total probability (2.73) is equal to the squared normalized form factor of the atom:

R hfð Þ x0; hð Þ 
 dW hfð Þ
ii

dW hfð Þ
tot

¼ ~F2
ii 2

x0

c
sin

h
2

� �� �

: ð2:74Þ

Let us consider scattering of an ultrashort Gaussian electromagnetic pulse by an
atom. Then the function determining the time dependence of the electric field
strength in (2.56) looks like

g sð Þ ¼ exp �s2
�

Dt2
� �

cos xc s þ uð Þ; ð2:75Þ

where xc is the carrier frequency, Dt is the time parameter proportional to the
pulse width, and u is the carrier phase with respect to the envelope (the CE phase).
It is convenient to express the parameter Dt in terms of the number of periods in
the pulse at the carrier frequency nc: Dt ¼ 2

ffiffiffiffiffiffi

2 p
p

nc

�

xc: In view of this fact, the
squared magnitude of the Fourier transform of the function (2.75) appearing in the
expressions for the scattering probability can be represented as

g xð Þj j2¼ 2p2 nc

xc

� �2

GE x;xc; ncð Þ 1 þ Kph x;xc; ncð Þ cos 2 uð Þ
� 	

; ð2:76Þ

where

GE x;xc; ncð Þ ¼ exp �4 p n2
c 1 � x

xc

� �2
" #

þ exp �4 p n2
c 1 þ x

xc

� �2
" #

ð2:77Þ

is the spectral form of the pulse and
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Kph x;xc; ncð Þ ¼ sech 8 p n2
c

x
xc

� �

ð2:78Þ

is effectively the phase modulation factor. It follows from (2.78) that the phase
modulation factor has an appreciable value only for ultrashort pulses, when nc� 1:

Figure 2.10 presents the spectrum of ‘‘elastic’’ scattering (i.e., without target
excitation) of a single-cycle pulse by a krypton atom, as calculated using (2.62) for
a scattering angle of 45� and several values of the carrier frequency.

As can be seen from this figure, in the case of a single-cycle pulse, the form of
the scattered radiation spectrum essentially depends on the carrier frequency value.
Far from the minimum of the frequency dependence of the polarization charge of a
krypton atom, which falls approximately on 107 eV (see Fig. 2.9), the spectral
scattering curves have a symmetric form with a maximum at the centre. Near the
minimum frequency (�hxc = 110 eV), a dip appears in the scattering spectrum. It
follows from (2.64) that the described evolution of the scattering spectrum is
explained by superposition of two frequency dependences: one is the ultrashort
pulse spectrum (2.76) and the other the atomic polarization charge spectrum. For a
single-cycle pulse with spectral width broad enough to be comparable with the
scale of spectral singularities of the krypton atom polarization charge, this
superposition modifies the form of the spectral scattering curve. The situation
changes in going to longer pulses, for example, to a three-cycle pulse, whose
spectrum for scattering by a krypton atom is presented in Fig. 2.11 for different
carrier frequencies.

We see that for a three-cycle pulse the scattered radiation spectrum is a bell-
shaped curve. Its shape is defined by the spectrum of the incident pulse (2.76) and
the amplitude depends on the value of the polarization charge of the atom at the
carrier frequency.

Figure 2.12 shows the result of calculations using the expression (2.74) for the
ratio of the probability of ‘‘elastic’’ scattering of a single-cycle pulse by a hydrogen
atom in the high-frequency limit summed over all scattered radiation frequencies to
the analogous value for the process with arbitrary excitation of the atom.
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Fig. 2.10 Spectrum of
‘‘elastic’’ scattering of a
single-cycle pulse by a
krypton atom for different
values of the carrier
frequency: solid curve
�hxc = 80 eV, dashed curve
�hxc = 110 eV, dotted curve
�hxc = 140 eV, dash-and-dot
curve �hxc = 180 eV
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This ratio is calculated as a function of the carrier frequency of the pulse for
different scattering angles. Shown in the same figure by a solid curve is the con-
tribution of the ‘‘elastic’’ process summed over the scattering angles. From
Fig. 2.12 we see that, for low values of the carrier frequency of the electromagnetic
pulse, scattering occurs mainly without excitation of the atom. For wide scattering
angles, the role of the elastic channel decreases more rapidly with growing fre-
quency. For the process probability integrated with respect to the angles, the
contributions of the elastic and inelastic channels are compared for a carrier fre-
quency of about 112 a.u., which corresponds to a photon energy of about 3 keV.

2.4.2 Scattering of an Ultrashort Pulse in a Plasma

Here we use the approach developed for an atomic target to describe scattering of
an ultrashort pulse in a plasma [7]. We proceed from the formula (2.68), obtained
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Fig. 2.11 The same as
Fig. 2.10 but for a three-cycle
pulse
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Fig. 2.12 Ratio of the
probability of ‘‘elastic’’
scattering of a single-cycle
pulse by a hydrogen atom to
the total probability
calculated in the high-
frequency limit for three
scattering angles and for
probabilities integrated with
respect to the angles (solid
curve): dashed curve
h = 30�, dotted curve
h = 90�, dash-and-dot curve
h = 180�
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in the high-frequency approximation for an atom. It will be recalled that, since
plasma electrons are free, the high-frequency condition x� xt ¼ 0 (xt is the
characteristic eigenfrequency of a plasma electron) is satisfied automatically for
them, so (2.68) is applicable. In this expression the dynamic form factor of an atom
should be replaced by the dynamic form factor of an electron component of the
plasma. This is given by (A.3) and (A.19) in Appendix III.

Scattering of electromagnetic radiation in a plasma can be of two types:
Compton scattering and transition scattering. Compton scattering corresponds to
large variations of the wave vector Dkj j[ r�1

D (Dk = k0 2k), when the electro-
magnetic interaction proceeds in the single-particle regime. This means that the
energy–momentum excess during scattering is transferred to one plasma electron
as in Compton scattering of X-radiation by an atom, when an atomic electron is
knocked out of the atom, taking away the energy–momentum excess. Corre-
sponding to Compton scattering in the plasma is the first summand on the right-
hand side of (A.19), describing the normalized electron dynamic form factor.

For transition scattering, the situation is quite the opposite: the inequation
Dkj j\r�1

D is satisfied, implying that scattering of an electromagnetic field occurs
by a Debye sphere surrounding an ion in the plasma as by an unit. In this case the
energy–momentum excess is transferred to the plasma ion.

Using (2.68) and the explicit expression for the plasma DFF (see Appendix III),
then averaging over the polarization of incident radiation and integrating with
respect to the scattered radiation frequency, we obtain the following angular
distribution (in terms of one ion) for the probability of transition scattering of an
ultrashort pulse:

dWi

Ni dX0
’ c E2

0 r2
e

8 p2
Z2

i 1 þ cos2 h
� �

Z

1

0

g x0ð Þj j2 dx0

�h x0 1 þ 2 rD x0=cð Þ sin h=2ð Þð Þ2
h i2;

ð2:79Þ

where Ni ¼ ni dV is the number of ions in the scattering volume dV.
The analogous expression for the Compton scattering channel in terms of one-

electron looks like

dWe

Ne dX0
’ c E2

0 r2
e

8 p2
1 þ cos2 h
� �

Z

1

0

2 rD x0=cð Þ sin h=2ð Þð Þ4 g x0ð Þj j2 dx0

�h x0 1 þ 2 rD x0=cð Þ sin h=2ð Þð Þ2
h i2; ð2:80Þ

where Ne = nedV. In deriving (2.79)–(2.80), we made the replacement

exp � Dx2

2 Dk2 v2
T


 �

ffiffiffiffiffiffi

2p
p

vT Dkj j
! d Dxð Þ; ð2:81Þ

which is justified if Dxj j �; vT Dkj j; as supposed here. The relation (2.81)
amounts to equating the scattered frequency x0 with the frequency x in the Fourier
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expansion of the ultrashort pulse (x0 % x), that is, it neglects inelastic processes
during scattering.

For the total probability of scattering of an ultrashort pulse in a plasma by the
transition channel, integrating the right-hand side of (2.79) with respect to the solid
angle of scattering, we find

Wi

Ni
’ c E2

0 r2
e

4 p
Z2

i

Z

1

0

Fi 2 rD x0=cð Þð Þ2
h i g x0ð Þj j2 dx0

�h x0
; ð2:82Þ

Fi xð Þ ¼ 2
1 þ x

x3

2 x 1 þ xð Þ
2 x þ 1

� ln 2 x þ 1ð Þ
� �

:

The analogous expression for Compton scattering is

We

Ne
’ c E2

0 r2
e

4 p

Z

1

0

Fe 2 rD x0=cð Þð Þ2
h i g x0ð Þj j2 dx0

�h x0
; ð2:83Þ

Fe xð Þ ¼ 2
2 x 4x3 þ 11x2 þ 15x þ 6ð Þ � 4x3 þ 8x2 þ 7x þ 2ð Þ ln 2x þ 1ð Þ

3x3 2x þ 1ð Þ :

Let us use these expressions to describe scattering of an ultrashort Gaussian

pulse (2.75) in a plasma. The value of g x0ð Þj j2 to be included in the above
expressions is given in this case by (2.76)–(2.78). In the long pulse limit nc � 1,
(2.76)–(2.78) imply

g xð Þj j2! p2 nc

xc
d x � xcð Þ: ð2:84Þ

In this case (2.82) and (2.83) simplify, and for the total probability of scattering
by both channels normalized by the number of electrons Ne ¼ Zi Ni; we have

W nc �; 1ð Þ
Ne

’ p
4

c E2
0 nc

�h x2
c

r2
e F 2 de xc=cð Þð Þ2

h i

; ð2:85Þ

where F ¼ Fe þ ZiFi: This analysis shows that the difference between the
probability of scattering of an ultrashort pulse in a plasma as calculated using
(2.82) and (2.83) and in the monochromatic limit (2.85) exists only for subcycle
pulses nc B 1. This difference increases with growing carrier frequency of the
pulse and has a non-monotonic dependence on the Debye radius.

The results of calculations of the spectral and angular probability of scattering
of an electromagnetic pulse in plasma are illustrated in Figs. 2.13, 2.14, 2.15, and
2.16. Plotted on the ordinate in these figures is the scattering probability for the
whole time of action of a pulse normalized to the intensity I0 ¼ c E2

0

�

8 p: We
assume everywhere that xc [ xpe; where xpe is the electron plasma frequency.
The dependence of the spectral curve of scattering of ultrashort pulses on the CE

58 2 Description in the Framework of Perturbation Theory



0 2 10 5−× 4 10 5−× 6 10 5−× 8 10 5−× 1 10 4−×
0

100

200

300

400

500Wscat, arb.u.

ω c, a.u.

Fig. 2.13 Dependence of the normalized probability of scattering of a quarter-cycle pulse in a
plasma on the carrier frequency for three values of the CE phase, rD = 105 a.u. solid curve
u = 0, dotted curve u = p/4, dash-and-dot curve u = p/2
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Fig. 2.14 Normalized probability of scattering of a half-cycle pulse as a function of the Debye
radius for different values of the CE phase, xc = 3�10-4 a.u. solid curve u = 0, dotted curve
u = p/4, dash-and-dot curve u = p/2
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phase is manifest only for subcycle pulses nc \ 1. In this case, as can be seen from
Fig. 2.13, growth of the CE phase in an interval from 0 to p/2 results in decreasing
scattering probability.
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Fig. 2.15 Angular dependence of the normalized probability of scattering of a quarter-cycle
pulse (xc = 10-4 a.u., rD = 106 a.u.) by different channels: solid curve compton scattering,
dotted curve transition scattering for Zi = 1
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Fig. 2.16 The same as in Fig. 2.15 but for a five-cycle pulse

60 2 Description in the Framework of Perturbation Theory



The dependence of the scattering probability for the whole time of action of a
half–cycle pulse on the value of the Debye radius is presented in Fig. 2.14 for the
carrier frequency xc = 3�10-4 a.u. and three values of the CE phase. It can be
seen that corresponding curves have a minimum near the value rD & 5�105 a.u.
The calculation shows that, with decreasing carrier frequency, the minimum in the
dependence of the scattering probability on the Debye radius is shifted to the
region of greater values. With growing pulse duration, this minimum is weakly
shifted to the region of smaller Debye radii.

Figures 2.15 and 2.16 show the values for the two process channels as a
function of the angle of photon scattering for quarter-cycle (Fig. 2.15) and five-
cycle (Fig. 2.16) pulses.

We see that with increasing angle the probability of Compton scattering grows,
and the probability of transition scattering has a non-monotonic dependence.

From Figs. 2.15 and 2.16, it follows that, with decreasing pulse width, the
relative contribution of Compton scattering of an ultrashort electromagnetic pulse
in a plasma decreases in comparison with the contribution of transition scattering.

To characterize the dependence of the probability of ultrashort pulse scattering
on the CE phase, it is convenient to introduce the phase modulation factor for the
scattering probability by the formula

Ktot ¼ 2
W u ¼ 0ð Þ � W u ¼ p=2ð Þ
W u ¼ 0ð Þ þ W u ¼ p=2ð Þ : ð2:86Þ

The results for calculations of this value for scattering of a half-cycle pulse in a
plasma are shown in Figs. 2.17 and 2.18. Figure 2.17 graphs the dependence of the

1 10
4× 1 10

5× 1 10
6× 1 10

7×
0.1

0.2

0.3

0.4

0.5K tot

rD, a.u.

Fig. 2.17 Dependence of the phase modulation factor on the Debye radius for different values of
the carrier frequency of a half-cycle pulse: solid curve xc = 10-4 a.u., dotted curve
xc = 2�10-4 a.u., dash-and-dot curve xc = 3�10-4 a.u
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phase modulation factor (2.86) on the value of the Debye radius for different
values of the carrier frequency of a pulse. It is found that this dependence has non-
monotonic behavior, the maximum being shifted to the region of smaller radii with
increasing carrier frequency. Furthermore, from Fig. 2.17 we see that the phase
dependence of the scattering probability grows with increasing carrier frequency
of the ultrashort pulse. The same fact follows from the plots of Fig. 2.18, in which
the phase modulation factor is presented as a function of the carrier frequency for
different values of the Debye radius.

The above analysis thus shows that the dependence of the probability of scat-
tering of an ultrashort electromagnetic pulse on the Debye radius in plasma has
non-monotonic behavior. The minimum of the pulse scattering probability is
shifted to the region of smaller values of the Debye radius with decreasing carrier
frequency and increasing pulse duration.

From the analysis of angular dependences of two channels of scattering of an
ultrashort pulse in plasma, it follows that, with decreasing pulse duration, the
contribution of Compton scattering to the total probability of the process
decreases, and in this case the probability of transition scattering for wide angles
increases.

It is found that the phase dependence of scattering is manifest only for subcycle
pulses nc \ 1, with growth of the CE phase in an interval from 0 to p/2 resulting in
decreasing process probability, and increased carrier frequency resulting in
increasing phase modulation factor (2.86).
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Fig. 2.18 Dependence of the phase modulation factor for scattering of a half-cycle pulse on the
carrier frequency for different values of the Debye radius: solid curve rD = 105 a.u., dotted curve
rD = 106 a.u., dash-and-dot curve rD = 107 a.u
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A.1 2.5 Appendix III Dynamic Form Factor of Plasma Particles

The dynamic form factor (DFF) defines the probability of electromagnetic inter-
actions with participation of plasma particles, during which the subsystem of
plasma electrons or ions absorbs the energy–momentum excess. Such processes
are exemplified by radiation scattering in plasma, bremsstrahlung and polarization
bremsstrahlung on plasma particles including the stimulated bremsstrahlung effect,
and a number of other phenomena.

The determination of the DFF of a specified plasma component has the form

S x; kð Þ ¼ 1
2 p

Z

1

�1

dt ei xt n̂ k; tð Þ n̂ �kð Þh i; ðA:1Þ

where n̂ kð Þ; n̂ k; tð Þ are spatial Fourier transforms of the operators representing the
concentration of plasma particles of a specified type in the Schrödinger and
Heisenberg pictures, and the angle brackets include both quantum–mechanical and
statistical averages.

It will be recalled that the Heisenberg representation of quantum–mechanical
operators takes into account their time dependence, in contrast to the Schrödinger
representation, in which the whole time dependence is transferred to the wave
function of the system. The relationship between these representations for an
arbitrary operator Q̂ is

Q̂ tð Þ ¼ exp i Ĥ t
�

�h
� �

Q̂ exp �i Ĥ t
�

�h
� �

;

where Ĥ is the Hamiltonian of the quantum–mechanical system. In this appendix,
however, the quantum–mechanical formalism will not be used, and the quantum
description is given only for completeness. Equation (A.1) can be obtained from
the formula

S x; kð Þ ¼
X

f ;i

w ið Þ d x þ xfi

� �

nfi kð Þ












2
; ðA:2Þ

averaging over initial states ij i and summing over final states fj i of the plasma
particles (w(i) is the probability of a plasma particle being in the ith state). As
usual the delta function in (A.2) reflects energy conservation.

Depending on the type of plasma particles, the DFF can be electronic, ionic, or
mixed. For the mixed DFF, the product of the density operators for electrons and
ions appears in the determination of (A.1).

Physically, the DFF defines the probability of plasma absorption of the four-
dimensional wave vector k = (x, k) in terms of the action of an external distur-
bance on a specified plasma component. When the charge distribution in the
plasma is uniform, this probability is equal to zero, since then the Fourier
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transform of the density of charged particles reduces to the delta function n kð Þ !
n d kð Þ: Thus the DFF is connected with charge fluctuations in the plasma.

In fact, the dynamic form factor reflects the dynamics of plasma particles
interacting with each other through long-range Coulomb forces. Interactions are
then taken into account within the ensemble of one type of particles and also
between electrons and ions.

For an uniform plasma, it is convenient to introduce the DFF of the unit volume
(the normalized DFF) by the formula

~S x; kð Þ ¼ S x; kð Þ
V

; ðA:3Þ

where V is the volume of the plasma. This equation follows from the fact that, for
an uniform medium, the pair correlation function of the concentration depends
only on the relative distance between spatial points:

Kn r; r0; tð Þ 
 n̂ r; tð Þ n̂ r0; 0ð Þh i ¼ Kn r � r0; tð Þ:

To calculate the normalized DFF, it is convenient to use the fluctuation–dis-
sipation theorem connecting the DFF of a plasma component with the function
describing the plasma response to the external electromagnetic disturbance [8].
This theorem for the electron DFF is expressed by

~Se x; kð Þ ¼ �h

p e2

Im Fee x; kð Þf g
exp ��hx=Tð Þ � 1½ 	 ðA:4Þ

where Fee x; kð Þ is the linear function describing the electron component response
to the fictitious external potential acting only on plasma electrons, and T is the
temperature of the plasma in energy units. The imaginary part of the response
function appearing in (A.4) describes energy dissipation in the plasma, whence the
name for the theorem.

With reference to [8], we introduce a second linear function describing the
response to the external potential Fei x; kð Þ; i.e., describing the response of the
electron component of the plasma to the action of the fictitious external potential
acting only on plasma ions. Here for convenience we use the Coulomb gauge of
the electromagnetic field, in which the divergence of the vector potential is equal
to zero (divA = 0) and the charge density is related only to the scalar potential of
the electromagnetic field u via the Poisson equation. So the external potential
uext(k) acts on the plasma, where k = (x, k) is the four-dimensional wave vector.
Then the density of the electron charge induced in the plasma is expressed in terms
of the above response functions as follows:

q̂e kð Þh i ¼ Fee kð Þ þ Fei kð Þ½ 	uext kð Þ: ðA:5Þ

q̂j kð Þ
� �

¼ ej n̂j kð Þ
� �

is the charge density of the jth type of plasma particles.
Equation (A.5) indicates that the electron charge density arises in the plasma due
to direct action of the external potential on plasma electrons [the first summand in
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the square brackets of (A.5)] and also as a result of the action of the external
potential on plasma ions that are bound to electrons by Coulomb forces. If
interaction between particles of type i and type j is weak, one can use the technique
described in [8] to express Fij in terms of the characteristics of noninteracting
particles. For this purpose the new response function aj (k) is introduced—the
response function for particles of type j to the total potential in the plasma. It takes
into account the action on charged particles of the potential uind (k) induced in the
plasma due to redistribution of the charged particles under the action of the
external potential. With the help of the function aj (k), the induced charge density
for the jth component can be expressed in terms of the total potential:

q̂j kð Þ
� �

¼ aj kð Þutot kð Þ: ðA:6Þ

As the response function aj(k) describes the action of the total potential on the
plasma particles, the characteristics of noninteracting particles can be used to
calculate it, since interaction between them is already taken into account in the
total potential. This technique is widely used in plasma physics to describe
screening and initiation of collective excitations. In the approach under consid-
eration, corresponding to the random phase approximation [8], aj (k) can be
expressed in terms of the function Qj kð Þ characterizing the noninteracting particles
according to aj ¼ e2

j Qj; where

Qj kð Þ ¼
Z

nj p þ �h kð Þ � nj pð Þ
Ej p þ �h kð Þ � Ej pð Þ � �h x � i 0

2 dp

2 p �hð Þ3
: ðA:7Þ

Here nj(p) is the dimensionless momentum distribution function of plasma
particles of type j and Ej pð Þ ¼ p2

�

2 mj: Hereafter we need to know the imaginary
part of the function Qj kð Þ; which can be determined from (A.7) using the
Sokhotsky formula. For the Maxwell velocity distribution of the electrons, we find

Im Qj kð Þ
� �

¼ p e��h x=T � 1
� �

nj

exp �x2
.

2 k2 v2
Tj

n o

ffiffiffiffiffiffi

2 p
p

k vTj

: ðA:8Þ

The functions introduced above to describe the response to the total potential
are related to the longitudinal part of the dielectric permittivity by

e l;jð Þ kð Þ ¼ 1 � 4 p

k2 aj kð Þ: ðA:9Þ

We can now solve the original problem, i.e., we will find the function Fee(x,
k) and express it in terms of the function describing the response to the total
potential. For this purpose we introduce the fictitious external potential u�ext acting
only on electrons. Then according to the definition of Fee(x, k), we have

q̂�e kð Þ
� �

¼ Fee kð Þu�ext kð Þ: ðA:10Þ
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On the other hand, q̂�e
� �

can be expressed in terms of ae:

q̂�e kð Þ
� �

¼ ae kð Þ u�ext kð Þ þ u�ind kð Þ
� 	

; ðA:11Þ

where u�ind is the potential induced under the action of u�ext; determined in terms of
the density of all plasma charges with the help of the Poisson equation:

u�ind kð Þ ¼ 4 p

k2 q̂�e kð Þ
� �

þ q̂�i kð Þ
� �� 	

: ðA:12Þ

Here

q̂�i kð Þ
� �

¼ ai kð Þu�ind kð Þ; ðA:13Þ

Since the potential u�ext is assumed to act only on electrons. Solving the system
of Eqs. (A.8–A.12), we find the following expression for Fee:

Fee kð Þ ¼
ae kð Þ 1 � 4 p

�

k2
� �

ai kð Þ
� 	

1 � 4 p
�

k2
� �

ae kð Þ þ ai kð Þ½ 	
: ðA:14Þ

Substituting (A.13) into (A.4) and using (A.8) and (A.7), we obtain

~Se kð Þ ¼ el ið Þ kð Þ
el kð Þ

























2

dne kð Þj j2þ z2
i

1 � el eð Þ kð Þ
el kð Þ

























2

dni kð Þj j2; ðA:15Þ

where

dne;i kð Þ












2¼ ne;i
ffiffiffiffiffiffi

2p
p

vTe kj j
exp � x2

2 k2 v2
Te;i

 !

ðA:16Þ

are the spatio-temporal Fourier transforms of the squared thermal fluctuations of
the electron and ionic components of the plasma calculated for the four-dimen-
sional wave vector k ¼ k; xð Þ: zi is the charge number of the plasma ions and it is
implied that the quasi-neutrality condition is satisfied, so that ne = zi ni.

The expression for the normalized ionic DFF is found in exactly the same way
as the electron DFF. For this purpose, one must make the index replacement e� i
and take into account the fact that, in the denominator of (A.4), the ion charge
ei ¼ zi e now appears. Then we obtain:

~Si kð Þ ¼ el eð Þ kð Þ
el kð Þ

























2

dni kð Þj j2þ z�2
i

1 � el ið Þ kð Þ
el kð Þ

























2

dne kð Þj j2: ðA:17Þ

The mixed normalized DFF is given by

~Sei kð Þ ¼ z�1
i

1 � el ið Þ kð Þ
el kð Þ

























2

dne kð Þj j2þ zi
1 � el eð Þ kð Þ

el kð Þ

























2

dni kð Þj j2; ðA:18Þ
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which follows from the fluctuation–dissipation theorem (A.4) (with the replace-
ment e2 ! e ei) and the formula for the linear response function Fei describing the
initiation of an electron charge induced by the fictitious potential that acts only on
ions. This formula has the form

Fei kð Þ ¼
4 p
�

k2
� �

ai kð Þae kð Þ
1 � 4 p

�

k2
� �

ae kð Þ þ ai kð Þ½ 	
: ðA:19Þ

Equation (A.18) is obtained by analogous reasoning to the deduction of (A.13).
Let us explain the physical meaning of the expression (A.14) for the electron

DFF. The first summand is connected with the deficiency of electron charge
around the electron density fluctuation, caused by electron–electron repulsion. The
second summand in this expression describes the electron charge screening the
fluctuation of the ionic plasma component. It results from electron–ion attraction.
By analogy, in the expression (A.16) for the ionic DFF, the second summand
describes the ionic charge screening the electron density fluctuation, while the first
summand describes the deficiency of ionic charge around the ionic fluctuation.
Finally, in the formula (A.16) for the mixed DFF, the first summand describes the
ionic charge screening the electron density fluctuation, and the second summand
describes the electron charge screening the ionic density fluctuation.

Let us consider the explicit form of the electron DFF satisfying the inequations
k vTe � x� k vTi; xpi: Then the low frequency approximation is valid for the
longitudinal electron dielectric permittivity of the plasma, and the high-frequency
approximation is valid for the ionic component. Using the expressions for the
longitudinal part of the dielectric permittivity of the plasma and the formula
(A.15), we find

~Se kð Þ ’ k2 r2
De

1 þ k2 r2
De

� �2

dne kð Þj j2þ z2
i

1 þ k2 r2
Deð Þ2

dni kð Þj j2: ðA:20Þ

From this formula we see that, in the case of long-wavelength fluctuations,
when k2 r2

De � 1 k ¼ 2 p=kð Þ; the first summand describing the deficiency of
electron charge around the electron density fluctuation is small. The second
summand connected with electron screening of ionic density fluctuations is large.
Hence it follows that, in the long-wavelength limit, the transfer of energy–
momentum to the plasma proceeds through the electron charge of the Debye
sphere around a plasma ion which reacts in a coherent manner to the electric field.
That is, interaction is of a collective nature. In the short-wavelength case k2 r2

De �
1; the situation is opposite: electromagnetic interaction is realized through exci-
tation of individual plasma electrons, under which the Debye sphere ‘‘falls apart’’
due to the strong spatial non-uniformity of the electric field.
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Chapter 3
Two-Level System in the Field
of Ultrashort Electro-Magnetic Pulses

3.1 Optical Bloch Vector Formalism

An elementary quantum object, with which an electromagnetic field can interact, is
a system consisting of two energy levels connected by a dipole-allowed transition.
Such a system is called a two-level system (TLS) and is characterized by two
parameters: the eigenfrequency x0 and the dipole moment of a transition d0 6¼ 0.
The TLS describes, in particular, a transition between bound states of an optical
impurity center in a solid (a bound–bound transition) if the resonance condition is
fulfilled:

x� x0j j �Dx; ð3:1Þ

where x is the circular frequency of the electromagnetic field and Dx is the width
of the spectral line of a transition at the optical center. It will be recalled that the
spectral line describes the field frequency dependence of the binding force between
the electromagnetic field and the transition under consideration.

An example of an optical center in a solid that can be described by a TLS is a
nitrogen-vacancy (NV) center in diamond. The structure of this formation is
presented in Fig. 3.1.

It should be noted that NV centers in diamond have many applications in various
problems of photonics and cryptography, and in biomedical investigations [1].

In the case of a NV center, the two-level system is formed by the ground state
3A (orbital singlet) and the excited state 3E (orbital doublet). The transition 3A$
3E is a dipole-allowed transition with an energy of 1.945 eV and a high oscillator
strength.

We now investigate this scenario in its most general form. We thus consider the
interaction of an electromagnetic radiation pulse with a two-level system with
lower level energy E1 and upper level energy E2 (E2 [ E1). According to the Bohr
postulate, the eigenfrequency is therefore x0 ¼ E2 � E1ð Þ=�h. It is convenient to
choose the zero energy level halfway between E1 and E2, whence E1 ¼ ��h x0=2
and E2 ¼ �h x0=2 (see Fig. 3.2).

V. Astapenko, Interaction of Ultrashort Electromagnetic Pulses with Matter,
SpringerBriefs in Physics, DOI: 10.1007/978-3-642-35969-9_3,
� The Author(s) 2013
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The amplitude of the probability that the system is at the jth level is given by the
complex number aj (j ¼ 1; 2). The probability amplitudes are related to the level

populations Nj by the simple relation Nj ¼ aj

�

�

�

�

2
. If interaction of the two-level

system with the environment can be neglected, the normalization condition

a1j j2þ a2j j2¼ 1 or N1 þ N2 ¼ 1 is satisfied. States of the TLS with a specific energy
E1 or E2 are called energy states, denoted by the Dirac ket vectors 1j i and 2j i. It is
known from quantum mechanics that state vectors satisfy the Schrödinger steady-
state equation

Ĥ0 jj i ¼ Ej jj i; ð3:2Þ

Fig. 3.1 Structure of a NV
center in diamond

Fig. 3.2 The two-level
system
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where Ĥ0 is the Hamiltonian of the TLS. It will be recalled that the Hamiltonian in
the quantum mechanics formalism corresponds to the energy of classical physics.
From the mathematical point of view, (3.2) is an eigenvalue equation, with
eigenvectors jj i and eigenvalues Ej. It is well known that the eigenvectors of (3.2)
must be mutually orthogonal, i.e., j j ih i ¼ dij, where dij is the Kronecker symbol.
This fact will be used hereafter.

The Dirac vectors (or state vectors) are identical with the wave functions. They
completely describe the properties of the quantum system in a given state if its
interaction with the environment can be neglected (the pure state). In the general
case, at an arbitrary instant of time t, the state of the isolated TLS is specified by a
linear superposition of energy states with coefficients aj:

tj i ¼ a1 tð Þ 1j i þ a2 tð Þ 2j i; ð3:3Þ

where tj i is the state vector for the TLS at the specified time. It should be
emphasized that the whole time dependence is contained in the coefficients aj,
since the energy state eigenvectors jj i are assumed to be time-independent. Thus
the time evolution of the TLS is specified by two complex functions aj tð Þ. If the
normalization condition is taken into account, it can be concluded that the state of
the TLS at an arbitrary instant of time is described by three real numbers, that is,
by some vector in a three-dimensional space. It is convenient to specify this vector
in such a way that its components have a clear physical meaning, for example,
with the first component describing the dipole moment of the TLS and the third
component describing the TLS energy. The state vector R ¼ R1;R2;R3ð Þ so
determined is called the Bloch vector or, in the case of an electric dipole transition,
the optical Bloch vector, since it corresponds to electric dipole transitions which
have optical eigenfrequencies in atoms.

The components of the Bloch vector are given by the formulas

R1 ¼ a1 a�2 þ a�1 a2 ¼ 2 Re a1 a�2
� �

; ð3:4aÞ

R2 ¼ i a1 a�2 � a�1 a2
� �

¼ �2 Im a1 a�2
� �

; ð3:4bÞ

R3 ¼ a1j j2� a2j j2: ð3:4cÞ

It is easy to check that the third component R3 describes the mean energy (E) of
the two-level system up to a constant factor. According to the quantum mechanics
formalism we have

E ¼ th jĤ0 tj i ¼ a�1 tð Þ 1h j þ a�2 tð Þ 2h j
� �

Ĥ a1 tð Þ 1j i þ a2 tð Þ 2j i½ �

¼ �h x0

2
a2 tð Þj j2� a1 tð Þj j2
h i

¼ � �h x0

2
R3 tð Þ: ð3:5Þ

In going from the first line of (3.5) to the second, the orthogonality of the
energy state eigenvectors jj i was used.
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The dipole moment of the TLS is d tð Þ ¼ th jd̂ tj i, where d̂ is the dipole moment
operator (for simplicity the scalar form of writing is used). We substitute the
expression for the state vector (3.3) in this to obtain

d tð Þ � th jd̂ tj i ¼ a1 a�2 þ a�1 a2
� �

d0 ¼ R1 d0; ð3:6Þ

where d0 � d21 ¼ 2h jd̂ 1j i is the intrinsic dipole moment of the TLS, equal to the

matrix element of the dipole moment. In writing (3.6), the equation 2h jd̂ 1j i ¼
1h jd̂ 2j i was taken into account, along with the fact that, for a spherically sym-

metric system, 1h jd̂ 1j i ¼ 2h jd̂ 2j i ¼ 0.
The second component R2 is related to the angle u of rotation of the projection

of the Bloch vector on the plane 1� 2 (the axes 1, 2, 3 correspond to the pro-
jections of the Bloch vector R1; R2; R3) :

u ¼ arctg R2=R1ð Þ: ð3:7Þ

This angle describes the phase of oscillations of the TLS dipole moment. The
presence of the second component of the Bloch vector makes it possible to rep-
resent the phase of oscillations of the TLS dipole moment as the angle of rotation
of the projection of the Bloch vector on the plane 1� 2.

Thus the Bloch vector unequivocally determines a state of the TLS, and
explicitly specifies its energy and dipole moment (magnitude and phase). From the
normalization condition, it follows that the length of the Bloch vector is equal to
unity Rj j ¼ 1 (with neglected relaxation), whence the end of the Bloch vector
circumscribes a sphere of unit radius (the Bloch sphere) (see Fig. 3.3).

It can be shown that, in the case of a free (without external influence) isolated
TLS, the Bloch vector rotates around axis 3 with angular velocity equal to the
eigenfrequency x0 of the two-level system, in the direction from axis 1 to axis 2.
This motion is called free precession of the Bloch vector. The polar precession

Fig. 3.3 The Bloch vector
and the Bloch sphere
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angle h ¼ arccos R3ð Þ is specified by initial conditions as the initial azimuth
angle /0. During free precession, the energy of the two-level system (E) is con-
served, while the dipole moment oscillates with frequency x0 and magnitude equal
to d0 sin h. The polar precession angle is related to the TLS energy through the
third projection of the Bloch vector: h ¼ arccos �2 E=�h x0ð Þ.

From the above it follows that the dipole moment of the free two-level system is
given by

d tð Þ ¼ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
3

q

cos x0 t þ u0ð Þ: ð3:8Þ

Hence we see that the maximum value of the amplitude of the TLS dipole
moment is reached for states in which R3 ¼ 0, that is, when the Bloch vector lies in
the plane 1� 2. Such states are called coherent states. In a coherent state the mean
energy of the TLS is equal to zero: E ¼ 0 (in view of the chosen zero level). On
the other hand, if R3 ¼ �1, the dipole moment of the TLS is equal to zero. The last
equation is realized for energy states when E ¼ ��h x0=2 (the Bloch vector is
oriented along axis 3). So in energy states, the dipole moment of the two-level
system is equal to zero. It will be recalled that the dipole moment defines the
intensity of intrinsic emission of the system. Thus in energy states the TLS does
not emit, and in coherent states the TLS emission intensity is maximum.

3.1.1 Equation for the Bloch Vector

We now consider interaction of the TLS with an external electric field in the Bloch
vector formalism. From the Schrödinger equation for the TLS and the definition of
the Bloch vector, it can be shown that

dR

dt
¼ R�W; ð3:9Þ

where W ¼ 2 X tð Þ; 0; x0ð Þ is the generalized angular velocity vector, X tð Þ ¼
d0 E tð Þ=�h is the time-dependent ‘‘instantaneous’’ Rabi frequency, and E tð Þ is the
electric field strength. From (3.9), it follows that there is a mechanical analogy for
an optical transition in an external monochromatic field. The optical Bloch vector
is analogous to the angular momentum of a gyroscope: it precesses around the
instantaneous direction of the generalized angular velocity W tð Þ. This angular
velocity is defined by the eigenfrequency of the two-level system and the
parameters of the external field. In the case of free precession, when X tð Þ ¼ 0, it
follows from (3.9) that the Bloch vector rotates counterclockwise around the
positive direction of axis 3. The superposition of the external field results in
additional rotation around axis 1, with angular velocity X tð Þ. The result is a rather
complex motion that is generally difficult to imagine.
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3.1.2 Equation for Bloch Vector Motion in the Rotating
Wave Approximation

For resonant monochromatic radiation or long enough electromagnetic pulses,
when the condition (3.1) is satisfied, the pattern of evolution of the Bloch vector in
the external field can be considerably simplified if the rotating wave approxima-
tion is used. This approximation includes two stages. First, we change to a
coordinate system that rotates around axis 3 with angular velocity x equal to the
electromagnetic field frequency in the direction from axis 1 to axis 2. This change
is intended to pick up the intrinsic precession of the Bloch vector that occurs when
the TLS eigenfrequency x0 is close, according to (3.1), to the frequency of the
external field. If linearly polarized monochromatic radiation is now represented as
the superposition of two circularly polarized waves rotating towards each other,
then one of these waves will rotate with the free precession of the Bloch vector (in-
phase wave), while the other will rotate in the opposite direction (counterphase
wave).

The electric field of the in-phase wave in the rotating coordinate system will be
a constant, while the field of the counterphase wave will oscillate at the doubled
frequency 2x. Therefore it is natural to expect the action of the counter-
propagating wave on the TLS to be rather limited, and in the rotating wave
approximation it is neglected. In view of the above, the equation for the Bloch
vector in the rotating coordinate system takes the form

dR0

dt
¼ R0 �W0; W0 ¼ 2 X0; 0; Dð Þ; ð3:10Þ

where X0 ¼ d0 E0=2�h is the resonant Rabi frequency, D ¼ x0 � x is the frequency
detuning from resonance, and the external field is assumed to vary according to
E ¼ E0 cos x tð Þ. The Eq. (3.10) describes rotation of the Bloch vector around the
vector of constant angular velocity W0. We can then achieve a considerable
simplification in comparison with the situation described by the original Eq. (3.9).
The simplest situation is the case of exact resonance D ¼ 0, when rotation of the
Bloch vector in the rotating coordinate system and under the action of the external
field occurs around axis 1. Then the Bloch vector of a TLS originally in an energy
state with lower energy will rotate in the plane 2� 3. In this case, after rotation of
the Bloch vector through 90�, the system will go from an energy state to a coherent
state, and after the next rotation through 90�, it will go to an energy state with a
higher energy. Finally, after another rotation through 180�, the system will return
to the initial energy state with energy E1. The described cycle of interaction of the
field with the TLS corresponds to self-induced transparency, an effect in which, in
the first half of the period, the TLS receives energy from the field, while in the
second half of the period, it gives up energy to the field. There are other coherent
non-stationary effects in the interaction of radiation with a substance that can be
clearly interpreted geometrically with the help of the Bloch vector.
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Equations (3.9) and (3.10) do not take into account relaxation processes caused
by interaction of the TLS with the environment, so they are true for times shorter
than the time of longitudinal and transverse relaxations t\T1; 2. It is precisely such
times that interest us in our considerations. It will be recalled that the longitudinal
relaxation time T1 describes TLS population relaxation, while the transverse
relaxation time T2 characterizes dipole moment relaxation. In terms of the Bloch
vector, the first time is connected with relaxation of the third component R3, and
the second is connected with relaxation of the first two components R1; 2.

3.1.3 System of Equations for Components of the Bloch
Vector in Dimensionless Variables

The vector equation for the Bloch vector (3.9) in component form is

dR1

dt
¼ x0 R2; ð3:11Þ

dR2

dt
¼ �x0 R1 þ 2 X tð ÞR3; ð3:12Þ

dR3

dt
¼ �2 X tð ÞR2: ð3:13Þ

It will be recalled that here X tð Þ ¼ d0 E tð Þ=�h is the time-dependent ‘‘instanta-
neous’’ Rabi frequency and E tð Þ is the electric field strength.

To be specific, we assume hereafter that the optical center in a solid is acted on
by a short Gaussian laser pulse, the electric field strength of which is given by

E tð Þ ¼ E0 exp �t2



Dt2
� �

cos x t þ U tð Þð Þ; ð3:14Þ

where E0 is the electric field strength amplitude, Dt is the pulse duration, x is the
carrier frequency, and U tð Þ is the carrier phase with respect to the pulse envelope,
which can be time-dependent (in the case of a chirped pulse).

To render the discussion universal, it is convenient to introduce dimensionless
variables: let s ¼ x0 t be the dimensionless time, n ¼ d0 E0=�h x0 the dimension-
less electric field amplitude, g ¼ x0 Dt the dimensionless pulse duration, and r ¼
x=x0 the dimensionless carrier frequency.

In dimensionless variables the system (3.11)–(3.13) can be represented in the
following form, which will be used hereafter for numerical simulation of photo-
transitions in the TLS:

_R1 ¼R2;

_R2 ¼� R1 þ 2 n ~E sð ÞR3;

_R3 ¼� 2 n ~E sð ÞR2;

8

>

<

>

:

ð3:15Þ
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where the dot denotes differentiation with respect to the dimensionless time
s ¼ x0 t. The dimensionless electric field strength ~E sð Þ appearing in (3.15) is
determined by

~E sð Þ ¼ E t ¼ s=x0ð Þ
E0

: ð3:16Þ

The system (3.15) is true for times shorter than the longitudinal and transverse
relaxation times, so it is implied that the pulse duration is short enough, i.e.,
Dt	 T1; 2. Generalization to the case of long times presents no problems, but
lengthens the formulas. In the general case, the system of differential Eq. (3.15)
has no analytical solution, but it is easily solved numerically.

3.2 Photoexcitation in the Perturbation Limit

3.2.1 Harmonic Approximation

If the second component of the Bloch vector is excluded from the system (3.15),
we obtain

€R1 þ R1 ¼ 2 n R3 ~E; ð3:17Þ

the left-hand side of which coincides with the equation for a harmonic oscillator.
Equation (3.17) describes forced oscillations of a harmonic oscillator corre-
sponding to the TLS if we can assume in the perturbation theory limit that R3 ffi 1.
This approximate equality corresponds to weak excitation of the TLS when, in the
zero approximation, it can be considered that N1 � 1 and N2 � 0. Then instead of
(3.17) we have

€R1 þ R1 ¼ c ~E; ð3:18Þ

where c ¼ 2 n ¼ X0=x0 ¼ const is the constant of interaction between the elec-
tromagnetic field and the two-level system (X0 ¼ d0 E0=2�h is the resonance Rabi
frequency). It will be recalled that, according to (3.6), the first component of the
Bloch vector defines the dipole moment of the TLS: d tð Þ ¼ R1 d0. On the other
hand, from (3.8), it follows that the amplitude of oscillations of the TLS dipole
moment in the absence of external disturbance is related to the third component of

the Bloch vector: damp ¼ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
3

p

. In view of the above, we come to the
conclusion that the amplitude of free oscillations of the first component of the
Bloch vector is connected with its third component and defines the TLS population
difference (3.4c) in terms of that component.

Thus when the action of the electromagnetic pulse has ended, and when the
formula (3.8) is valid, the population of the upper level of the TLS is
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N2 t [ Dtð Þ ¼ 1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
1amp

q
� �

: ð3:19Þ

This formula was derived using the normalization condition for the TLS, viz.,
N1 þ N2 ¼ 1, and the determination of the third component of the Bloch vector,
viz., R3 ¼ N1 � N2. Using (3.19) and the known amplitude of asymptotic oscil-
lations (occurring after termination of the pulse) of the first component, one can
find the population of the upper level of the TLS. In the perturbation theory limit,
when R1amp 	 1, (3.19) gives

N2 t [ Dtð Þ ffi R1amp




2
� �2

: ð3:20Þ

So when the perturbation theory is valid (X0 	 x0), solution of (3.18) for times
t [ Dt allows one to find the population of the excited state of the TLS after
termination of the electromagnetic pulse.

To obtain the solution of (3.18), we rewrite it in the form

€R1 þ 2d _R1 þ R1 ¼ c ~E sð Þ: ð3:21Þ

Here we have introduced an infinitesimal damping constant d! þ0. It is
supposed that ~E s! �1ð Þ ¼ ~E s!1ð Þ ¼ 0 and R1 s! �1ð Þ ¼ 0. Introducing
the Fourier transforms of the functions involved in (3.21), we obtain

R1 tð Þ ¼ c
~Et tð Þ

1� t2 � 2 i td
; ð3:22Þ

where ~Et tð Þ is the Fourier transform of the field ~E sð Þ. Hence for the required time
dependence we find the expression

R1 sð Þ ¼ c
Z

1

�1

~Er tð Þ exp �i t sð Þ
1� t2 � 2 i td

dt
2 p
: ð3:23Þ

This can be rewritten in terms of the time integral

R1 sð Þ ¼ c
Z

1

�1

G s� s0ð Þ ~E s0ð Þ ds0; ð3:24Þ

where G sð Þ is the Green function for the harmonic oscillator with damping.
Comparing (3.23) and (3.24) and considering the Fourier expansion for the field
~E s0ð Þ, we obtain the following expression for the Green function of the harmonic
oscillator:

G sð Þ ¼ 1
2 p

Z

1

�1

exp �i t sð Þ
1� t2 � 2 i td

dt : ð3:25Þ
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Thus in the perturbation theory limit, the first component of the Bloch vector
represents a harmonic oscillator, so in the case under examination here, the har-
monic approximation corresponds to consideration of the TLS within the frame-
work of perturbation theory.

It should be noted that (3.25) coincides with (1.23) if in the latter the
replacements x0 ! 1 and x0 ! t are made. This is connected with the use of
dimensionless units in this section. Calculation of the integral on the right-hand
side of (3.25) gives

G sð Þ ¼ H sð Þ exp �d sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d2
p sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d2
p

s
h i

; ð3:26Þ

where H sð Þ is the Heaviside step function.
From (3.26) it follows that, in the absence of damping (d ¼ 0), the Green

function of the harmonic oscillator has the very simple form G sð Þ ¼ H sð Þ sin sð Þ.
Substituting (3.26) into (3.24), we obtain the expression for the time dependence
of forced oscillations of the harmonic oscillator with damping:

R1 sð Þ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d2
p

Z

1

0

e�d s0 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d2
p

s0
� �

~E s� s0ð Þ ds0: ð3:27Þ

If a new variable n ¼ s� s0 is now introduced and it is assumed that d ¼ 0,
(3.27) can be rewritten as

R1 sð Þ ¼ c C sð Þ sin s � S sð Þ cos s½ � ð3:28Þ

The coefficients C sð Þ and S sð Þ are determined by the integrals

C sð Þ ¼
Z

s

�1

~E nð Þ cos n dn; S sð Þ ¼
Z

s

�1

~E nð Þ sin n dn; ð3:29Þ

For instants of time when the exciting pulse has already ceased (s� g), the
upper limit of integration can be replaced by infinity in the formulas (3.29). Then
we have

C s� gð Þ ffi C 1ð Þ ¼ Re ~Et t ¼ 1ð Þ
� �

; S s� gð Þ ffi S 1ð Þ ¼ Im ~Et t ¼ 1ð Þ
� �

:

ð3:30Þ

Substituting the expressions (3.30) into (3.28), we arrive at the final formula

R1 s� gð Þ ¼ c ~Et t ¼ 1ð Þ
�

�

�

� sin s� arg ~Es t ¼ 1ð Þ
� �� �

; ð3:31Þ

where

78 3 Two-Level System in the Field of Ultrashort Electro-Magnetic Pulses

http://dx.doi.org/10.1007/978-3-642-35969-9_1


~Et tð Þ ¼ 1
E0

Z

1

�1

E t ¼ s
x0


 �

exp i tsð Þ ds ð3:32Þ

is the dimensionless Fourier transform of the electric field strength.
Comparing (3.27)–(3.32) and (1.25–1.31), we observe that there is an analogy

between the first component of the Bloch vector and the coordinate of the har-
monic oscillator. This is not surprising, since the coordinate of the oscillator
coincides with its dipole moment up to a constant (the oscillator charge), and the
dipole moment of the TLS is equal to the first component of the Bloch vector R1,
up to multiplication by the matrix element d0 [see (3.6)].

So for the amplitude of oscillations of the first component of the Bloch vector
after termination of the exciting pulse, we obtain

R1amp ¼ c ~Et t ¼ 1ð Þ
�

�

�

�: ð3:33Þ

Hence, appealing to (3.20) and setting c ¼ 2 n, we find

N2 s[ gð Þ ¼ n2 ~Et t ¼ 1ð Þ
�

�

�

�

2 ð3:34Þ

for the population of the upper level of the TLS, where n ¼ d0 E0=�h x0, whence
the required value is determined by the squared magnitude of the Fourier transform
of the field. A condition for validity of (3.34) is fulfilment of the inequation
N2 s[ gð Þ 	 1.

Thus in order to determine the population of the excited state in the perturbation
theory limit, one must know the Fourier transform of the electric field strength in
the radiation pulse (3.14). Hereafter, as in Chap. 1, we consider two kinds of
function U tð Þ: U tð Þ ¼ u ¼ const, of constant CE phase, and U tð Þ ¼ j t2, with
chirped pulse (j is the time chirp).

In the first case, the Fourier transform of the field is

E x0ð Þ ¼ E0

ffiffiffi

p
p

2
Dt exp �i u� x� x0ð Þ2 Dt2

4

" #

þ exp i u� xþ x0ð Þ2 Dt2

4

" #( )

;

ð3:35Þ

and in the second case, it is

Eðx0Þ ¼
ffiffiffi

p
p

E0 Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a24
p exp � x2 þ x02 þ 2 i a x x0

Dx2

� �

� cos
1
2

arctg að Þ � a x2 þ x02ð Þ � 2 i xx0

Dx2

� �

; ð3:36Þ

where a ¼ jDt2 is the dimensionless chirp and Dx ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p




Dt is the pulse
spectrum width.
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Calculating the squared magnitude of the Fourier transform (3.35), changing to
dimensionless variables with t ¼ x0=x0, and carrying out a number of transfor-
mations from the formula (3.34), we obtain

N2 s[ gð Þ ffi p
4

n gð Þ2 G r; gð Þ 1þ K r; gð Þ cos 2 uð Þf g; ð3:37Þ

for the asymptotic population of the upper level of the TLS excited by a pulse with
a variable CE phase. Here we have introduced the function

G r; gð Þ ¼ exp � g2 r � 1ð Þ2

2

" #

þ exp � g2 r þ 1ð Þ2

2

" #

; ð3:38Þ

which describes the shape of a line of TLS excitation by a short electromagnetic
pulse, and the function

K r; gð Þ ¼ sech r g2
� �

; ð3:39Þ

which represents the modulation factor for the TLS population with changing CE
phase. It should be noted that these functions are equal to the functions (1.36) and
(1.37), respectively, if the dimensionless variables r and g are introduced into
them. The plots of the functions (3.38) and (3.39) for different values of the
parameters are presented in Figs. 1.4 and 1.3 of Chap. 1, respectively. From these
figures, we see that, in the limit of long exciting electromagnetic field pulses
g� 11, the phase modulation factor of (3.39) is negligible, and in the line shape
function, the first summand can be retained on the right-hand side of (3.38).

Thus the dependence of the TLS excitation probability on the CE phase in the
perturbation theory limit is true only for subcycle pulses, when g\6.

For a chirped pulse (3.36), instead of (3.37)–(3.39), we have

N2 s[ gð Þ ¼ p
4

n gð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p G0 a; g; rð Þ 1þ K 0 a; g; rð Þ cos f a; g; rð Þð Þ½ �; ð3:40Þ

G0 a; g; rð Þ ¼ exp � g2 r � 1ð Þ2

2 1þ a2ð Þ

( )

þ exp � g2 r þ 1ð Þ2

2 1þ a2ð Þ

( )

; ð3:41Þ

K 0 a; g; rð Þ ¼ sech
r g2

1þ a2

� �

; ð3:42Þ

f a; g; rð Þ ¼ a g2 1þ r2ð Þ
2 1þ a2ð Þ � arctg að Þ: ð3:43Þ

Note that the formulas (3.37) and (3.40) have a similar structure, and the
functions (3.41) and (3.42) coincide with the functions (3.38) and (3.39) for zero
chirp a ¼ 0.
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3.2.2 Rotating Wave Approximation

Within the framework of the rotating wave approximation (3.10) the population of
the excited level in resonance (x ¼ x0) is given by N2 ¼ sin2 h=2ð Þ, where h is the
pulse area defined as h ¼

R

X0 tð Þ dt, with X0 tð Þ the resonance Rabi frequency,
which takes into account the time dependence of the pulse envelope. For a field
with Gaussian envelope (3.14), the pulse area (without considering a chirp) is
h ¼

ffiffiffi

p
p

n g. For a pulse with a frequency chirp, this expression can be changed
somewhat to improve conformity with the exact solution and to take into account
the dependence of the population of the upper level on the chirp value. As a result,
we obtain the following modification of the rotating wave approximation (for
r ¼ 1):

NRWA
2 ¼ sin2

ffiffiffi

p
p

cos 0:5 arctg að Þ½ �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a24
p n g


 �

; ð3:44Þ

which takes into account the dependence of the excitation probability on the chirp
value a.

In the rotating wave approximation it is also possible to describe excitation of
the TLS originally prepared in some superposition state, as specified by the fol-
lowing initial conditions for the expansion coefficients appearing in (3.3):

a1 t ¼ 0ð Þ ¼ cos w=2ð Þ; a2 t ¼ 0ð Þ ¼ sin w=2ð Þ exp �i /ð Þ ð3:45Þ

Here the angle w (the superposition angle) determines the initial populations
and the angle / corresponds to the initial phase of the TLS. The superposition state
(3.45) can be prepared from the stationary state under the action of a resonance
pulse with area w and initial phase /.

The expression for the amplitude of the upper level of the TLS in the rotating
wave approximation for a case of exact resonance x ¼ x0 and an electric field
pulse (3.14) with constant phase U tð Þ ¼ u (the CE phase) has the form

cRWA
2 t; x ¼ x0ð Þ ¼ i cos w=2ð Þ sin h tð Þ=2ð Þ exp �i /ð Þ

þ i sin w=2ð Þ cos h tð Þ=2ð Þ exp �i /ð Þ; ð3:46Þ

where

h tð Þ ¼ d12

�h

Z

t

�1

E0 t0ð Þ dt0 ð3:47Þ

is the ‘‘current’’ value of the pulse area, with E0 t0ð Þ the slowly varying amplitude
of the electric field strength. From the formula (3.46) for the upper level popu-
lation, we obtain
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NRWA
2 t; x ¼ x0ð Þ ¼ 0:5 1� cos w cos h tð Þ þ sin w sin h tð Þ cos u� /ð Þf g:

ð3:48Þ

It thus turns out that the upper level population is modulated with a phase equal
to the difference between the CE phase u and the initial phase of the superposition
state u. If the CE phase is equal to the initial phase of the superposition, (3.48)

simplifies to NRWA
2 ¼ sin2 wþh

2

� �

. Clearly, for w ¼ 0, the last equation reduces to

the usual formula, in the rotating wave approximation, for excitation of the TLS
from the lower energy state. Using (3.48), the expression for the phase modulation
factor in the approximation under consideration may be written in the form

KRWA x ¼ x0ð Þ ¼ 2
NRWA

2 max � NRWA
2 min

NRWA
2 max þ NRWA

2 min

¼ 2 sin w sin h
1� cos w cos h

: ð3:49Þ

Hence it follows in particular that, in the rotating wave approximation, the
phase modulation factor of the unexcited TLS, when w ¼ 0, is equal to zero. The
calculated curves for the phase modulation factor (3.49) as functions of the angle w
for different areas of the resonance pulse h are presented in Fig. 3.4. Using the
expression (3.49), it is easy to show that, in the approximation under consideration,
a maximum of the phase modulation factor is reached at h ¼ w.

Note that (3.48) implies that, in the limit of small pulse area, the change in the
population of the TLS prepared in the superposition state is proportional to the
electric field strength DN2 / E0, but not to its square, as in the case of the initial
energy state, when DN2 ¼ N2 / h2 / E2

0. This is a consequence of interference
effects resulting from the fact that the initial TLS state is a superposition.
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KRWAFig. 3.4 Phase modulation
factor as a function of the
superposition angle
calculated in the rotating
wave approximation for
excitation of the TLS from
the superposition state under
the action of a resonance
pulse with different areas:
solid curve h ¼ p=24, dash-
and-dot curve h ¼ p=2,
dashed curve h ¼ 5p=6
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3.3 Phase Effects in Photoexcitation of a Two-Level System
in a Strong Field

To describe excitation of the TLS by a high-power electromagnetic pulse, we use
the Bloch equations expressed in dimensionless variables as in (3.15). For this
purpose, we consider ultrashort Gaussian pulses (3.14) with constant CE phase [2].
Then the system of the Bloch equations can be rewritten as

_R1 ¼ R2;
_R2 ¼ �R1 þ 2 n exp � s2

g2

� �

cos rsþ /0ð ÞR3;

_R3 ¼ �2 n exp � s2

g2

� �

cos rsþ /0ð ÞR2;

8

>

>

<

>

>

:

ð3:50Þ

where the dot denotes differentiation with respect to the dimensionless time
s ¼ x0 t; n ¼ d0 E0=�h x0; g ¼ x0 Dt; r ¼ x=x0.

3.3.1 Time Dependence of the Upper Energy Level
Population

We obtain the numerical solution of the system of Eq. (3.50) for the initial con-
dition R ¼ 0; 0; 1ð Þ, corresponding to the unexcited state of the TLS before the
action of the ultrashort pulse.

To determine the upper level population, we take into account the fact that

N2 ¼
1� R3

2
: ð3:51Þ

The relation (3.51) follows from the determination of (3.4c) and the normali-
zation condition N1 þ N2 ¼ 1.

Figure 3.5 shows the time dependence of the population of the upper level of
the two-level system for two different values of the CE phase: u0 ¼ p=5; p=2. The
originally unexcited system was excited by a pulse with duration g ¼ 6 at a high
value of the binding force parameter n ¼ 3. We see that, for the lower value of the
CE phase, the asymptotic value of the upper level population is rather high:
N2 s� gð Þ � 0:76. At the same time, for u0 ¼ p=2, the TLS remains practically
unexcited after action of the pulse, with N2 s� gð Þ � 0:05.

Thus for these values of the parameters, there is efficient phase control of
excitation of the TLS due to the change in the CE phase of the Gaussian electric
field pulse (3.14).

Strong oscillations of the population during a pulse correspond to the optical
nutation of the TLS referred to above in connection with the geometrical inter-
pretation of the evolution of the TLS by means of the Bloch vector.
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The calculation shows that, for a lower binding force n ¼ 1 and the same values
of other parameters, the asymptotic populations of the upper level for u0 ¼
p=5; p=2 practically coincide.

In the following, we consider excitation of the TLS by a high-power short pulse
with variable phase parameters, using the example of the NV center in diamond
(see Fig. 3.1). We carry out the calculation in the ‘‘frozen’’ crystal model, when
the phonon subsystem is not explicitly taken into account [3].

3.3.2 Matrix Element of the Dipole Moment
of the Transition

From the discussion in the previous sections, it follows that, in order to determine
the populations of the NV center levels under excitation within the discrete
spectrum by short laser pulses, one needs to know the matrix element of the dipole
moment of the transition between the levels under consideration

d0 � d21 ¼ 2h jd̂ 1j i. This matrix element is included in the definition of the
dimensionless field amplitude n ¼ d0 E0=�h x0 which appears in the formulas for
the population of the upper energy level of the excited transition.

Thus in order to carry out the calculation, one must use wave functions of the
NV center to find the parameter n. For this purpose, we use the wave functions in
the Slater approximation. The radial Slater functions for the isotropic energy band
of a crystal have the form

R Slð Þ r; mð Þ ¼ 23=2

m anð Þ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 2 mþ 1ð Þ
p

2 r

m an


 �m�1

exp � r

m an


 �

; ð3:52Þ
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where

mn ¼
1
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mn=m

EIn=Ry

s

ð3:53Þ

is the effective principal quantum number corresponding to band n, mn is the
effective mass of the corresponding band, K is the dielectric permittivity of the
crystal, Ry = 13.6 eV, EI is the energy of ionization of the impurity center in the
specified state, and an ¼ K �h2




mn e2 is the effective Bohr radius.
For the reduced matrix element of the dipole moment, in which there are no

angular functions, we have by definition

2h dk k1i ¼ e

Z

1

0

RðSlÞ r; m2ð Þ r RðSlÞ r; m1ð Þ r2 dr; ð3:54Þ

where e is the elementary charge and the radial functions of the initial and final
states (3.52) differ by the values of the effective principal quantum number.
Substituting the wave functions (3.52) into the (3.54), we find the expression for
the reduced matrix element of the dipole moment in the Slater approximation in
terms of the effective principal quantum numbers to be

2h dk k1i ¼ e anv m1; m2ð Þ; ð3:55Þ

where

v m1; m2ð Þ ¼ 2m1þm2þ1 mm2þ2
1 mm1þ2

2 C m1 þ m2 þ 2ð Þ
m1 þ m2ð Þm1þm2þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1 m2 C 2 m1 þ 1ð ÞC 2 m2 þ 1ð Þ
p ð3:56Þ

is a function of the effective principal quantum numbers of the initial and final
states and C zð Þ is the gamma function.

For transitions s! p, there is a relation between the reduced matrix element of

(3.55) and (3.56) and the matrix element d0 � d21 ¼ 2h jd̂ 1j i that takes into
account angular integration: d0 ¼ 2h dk k1i


 ffiffiffi

3
p

. For the optically allowed transi-

tion at the NV center 3A$ 3E: d0 ¼ 2h dk k1i


ffiffiffi

2
p

, since the statistical weight of
the upper energy level (without considering spin) is g2 ¼ 2. In the general case, we
have d0 ¼ 2h dk k1i




ffiffiffiffiffi

g2
p

.
The function v m1; m2ð Þ is plotted in Fig. 3.6 as a function of the parameter m2 for

different values of the effective principal quantum number of the initial state m1.
It is found that the matrix element of the dipole moment increases with the

effective principal quantum number m1 of the initial state. With increasing effective
principal quantum number m2 of the excited state, the matrix element 2h dk k1i
decreases monotonically, except for a narrow range of values m2 near m1.
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In view of the fact that �h x0 ¼ E2 � E1 ¼ mn e4



2 K2 �h2
� �

m�2
1 � m�2

2

� �

, and
given (3.55) and the definition of the parameter n ¼ d0 E0=�h x0, we obtain for this
parameter the expression

n ¼ m1 m2ð Þ2

m2
2 � m2

1

v m1; m2ð Þ 2 K3 �h4

ffiffiffiffiffi

g2
p

m2
n e5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 p I=c
p

; ð3:57Þ

in terms of the effective principal quantum numbers of the states and the param-
eters of the crystal, where I ¼ c E2

0




8 p is the average radiation intensity for the
period. It is convenient to rewrite (3.57) in terms of the atomic strength of the
electric field Ea ¼ m2 e5




�h4:

n ¼ 2
ffiffiffiffiffi

g2
p

m1 m2ð Þ2

m2
2 � m2

1

v m1; m2ð ÞK3 m

mn


 �2 E0

Ea
; ð3:58Þ

where mj ¼ 1
K

ffiffiffiffiffiffiffiffiffiffiffiffi

mn=m

Ejj j=Ry

r

are the effective principal quantum numbers of the initial

and final states of the impurity center (Ry = 13.6 eV).
To take into account the influence of a medium on the electromagnetic field,

one must generally include the multiplier f ¼ Eeff




E (the effective field factor) in
the formula (3.56). This takes into account the distinction between the effective
field Eeff acting on the impurity center and the mean field E in the substance. This
multiplier is usually treated as an adjustable parameter of the theory. For the NV
center, it can be assumed equal to unity.

Thus in view of (3.56), in the Slater approximation, (3.58) gives the expression
for the parameter n ¼ d0 E0=�h x0 appearing in the formulas for the excitation
probability of a bound–bound transition under excitation by a short laser pulse
with a modulated phase.
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Fig. 3.6 The function
v m1; m2ð Þ defining the matrix
element of the dipole moment
in the slater approximation,
according to (3.53) and
(3.54), constructed in
accordance with the effective
principal quantum number of
the excited state for different
values of m1: solid line
m1 ¼ 0:25, dashed line
m1 ¼ 0:6
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For the NV center, the dependence of the dipole moment of the transition
3A! 3E on the binding energy of the upper level E2 is presented in Fig. 3.7 in the
approximation where the dielectric permittivity is assumed equal to unity, viz.,
K ¼ 1, and the effective mass is assumed equal to the electron mass. Shown as a
straight line in Fig. 3.7 is the value of the dipole moment obtained using the
experimental value of the Einstein coefficient A ¼ 7:7� 107 s-1 for the proba-
bility of spontaneous radiation in the transition under consideration. We see that,
corresponding to this value of the Einstein coefficient, given the wavelength of
radiation in the transition 3A! 3E (637.1 nm), the matrix element of the dipole
moment is d0 ’ 3 a.u. The given values and data of Fig. 3.7 correspond to a
binding energy of the upper energy level of 1–2 eV, which agrees with the results
of quantum-chemical calculations for the NV center.

So the value of the dimensionless parameter n ¼ d0 E0=�h x0 required to cal-
culate the population of the upper level of the NV center N2 for the binding energy
E2 ¼ 1:2 eV is n ¼ 43:4 E0=Eað Þ, where Ea ’ 5� 109 V/cm is the atomic strength
of the electric field.

In order to characterize the phase dependence of excitation of the upper level of
the NV center under the action of a laser pulse with controlled CE phase, it is
convenient to introduce the phase modulation factor by the formula

K ¼ N2 u ¼ 0ð Þ � N2 u ¼ p=2ð Þ
N2 u ¼ 0ð Þ þ N2 u ¼ p=2ð Þ ; ð3:59Þ

where N2 is the population of the level 3E after termination of the laser pulse and u
is the CE phase. It is easy to see that, in the harmonic approximation (or the
perturbation theory approximation), the phase modulation factor (3.59) coincides
with the parameter K r; gð Þ appearing in (3.37).
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Fig. 3.7 Dependence of the
reduced dipole moment of the
transition 3A! 3E at the NV
center in diamond on the
binding energy of the level 3E
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The results of calculations of the factor (3.59) as a function of the electric field
strength are presented in Fig. 3.8 for different pulse durations and x ¼ x0. These
calculations were carried out by numerical solution of the system of equations for
the Bloch vector (3.50) and the relation between the population of the upper
energy level and the third projection of the Bloch vector (3.51). From Fig. 3.8, we
find that, for small values E0 \ 0:01 a.u. of the amplitude of the electric field in the
pulse, the phase modulation factor is practically equal to zero for all pulse dura-
tions shown on the plot.

With growing field amplitude, the phase modulation factor exhibits first narrow
dispersion-type extrema, and then wide maxima and minima that are most clearly
manifested in the presented range for single-cycle and one-and-a-half-cycle pulses.
We see that, for the considered electric field amplitudes, the greatest value of the
phase modulation factor occurs for shorter pulses of laser radiation.

Figures 3.9, 3.10, 3.11 show the results from calculations of the population of
level 3E of the NV center as a function of the CE phase for different values of the
electric field amplitude and pulse durations.

From Figs. 3.9, 3.10, 3.11, we find that the phase dependence of photoexcita-
tion of the NV center is stronger when the laser pulse is shorter and more intense.
In this case the form of the phase dependence differs from the phase dependence in
the harmonic limit (3.37). In particular, there is a minimum at u ¼ p, rather than
the maximum indicated by the formula (3.37), and the depth of the minimum
depends on the pulse duration.

3.4 Excitation Under the Action of a Chirped Pulse

For excitation of the two-level system by a high-power short pulse, the rotating
wave approximation may be found to be inadequate since then the radiation
spectrum and the spectral line of the quantum system are considerably broadened,
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Fig. 3.8 Phase modulation
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level 3E of the NV center
after the action of the pulse as
a function of the electric field
amplitude for different pulse
durations: solid curve single-
cycle pulse, dotted curve one-
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Fig. 3.9 CE phase
dependence of the population
of level 3E of the NV center
after excitation by a single-
cycle laser pulse (g ¼ 6) of
different amplitudes: solid
curve E0 ¼ 0:02 a.u., dotted
curve E0 ¼ 0:04 a.u., dashed
curve E0 ¼ 0:08 a.u
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Fig. 3.10 As in Fig. 3.9 but
after excitation by a one-and-
a-half-cycle pulse (g ¼ 9)
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Fig. 3.11 As in Fig. 3.9 but
after excitation by a two-
cycle pulse (g ¼ 12)
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and the very concept of resonance used to derive the rotating wave approximation
formulas becomes inexact.

For arbitrary intensity, duration, and phase dependence of the laser pulse, the
population of the excited state can be found by numerical solution of the system of
equations for the Bloch vector. For dimensionless variables and action of a chirped
pulse on the two-level system, this system has the form [4]

_R1 ¼ R2

_R2 ¼ �R1 þ 2 n exp � m2

g2

� �

cos rmþ a
g2 m2

� �

R3

_R3 ¼ �2 n exp � m2

g2

� �

cos rmþ a
g2 m2

� �

R2

8

>

>

<

>

>

:

ð3:60Þ

where the dot denotes differentiation with respect to the dimensionless time
m ¼ x0 t. Other parameters are determined by the following equations: n ¼
d0 E0=�h x0 is the dimensionless field amplitude, g ¼ x0 Dt is the dimensionless
pulse duration, r ¼ x=x0 is the dimensionless carrier frequency, and a ¼ j Dt2 is
the dimensionless frequency chirp. It is assumed that the carrier frequency in the
chirped pulse varies according to xc ¼ xþ j t, where j is the dimensional fre-
quency chirp.

The system (3.60) is valid for times shorter than the longitudinal and transverse
relaxation times considered in this section.

The third projection of the Bloch vector is related to the population of the upper
energy level N2 according to (3.51).

Therefore, solving the system (3.60) numerically with initial condition
R ¼ 0; 0; 1ð Þ, that is, N1 ¼ 1, N2 ¼ 0, (3.51) can be used to find the population N2

at times when the action of the laser pulse has ceased and relaxation processes
have not yet manifested themselves. We may thus analyze N2 as a function of the
problem parameters, viz., field strength, pulse duration, and frequency chirp.

Figure 3.12 plots the dependence of the population of the excited level of the
two-level system on the dimensionless electric field strength parameter n ¼
d21E0=�hx0 of a resonant single-cycle pulse (g ¼ 6, r ¼ 1) for different values of
the dimensionless chirp a ¼ js2, calculated by numerical solution of the system
(3.60) and in the modified rotating wave approximation by the formula (3.44). It
can be seen that, for zero chirp (a ¼ 0), there is a good agreement between the
exact solution of the system (3.60) and the result of the rotating wave approxi-
mation obtained using (3.44) up to values n � 1 of the strength parameter. And in
this case the population as a function of n oscillates from zero to one. For the chirp
a ¼ 1, a characteristic feature of excitation of the two-level system by a chirped
pulse is manifested: oscillations of the population as a function of the laser field
strength occur from some minimum value N2 min [ 0, increasing to unity with
growing chirp.

The calculation shows that variation of the amplitude of oscillations of the
population of the upper energy level with changing chirp value does not depend on
the pulse duration g. From Fig. 3.12, it can be seen that, for a ¼ 1, the general-
ization (3.44) of the rotating wave approximation taking into account the chirp
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well describes excitation of the two-level system by a single-cycle pulse up to
nmax � 0:6. The value nmax decreases with growing pulse duration.

Figure 3.13 shows the dependence of the population of the upper level of the
two-level system excited by a two-cycle (g ¼ 12) resonant (r ¼ 1) laser pulse of
low intensity n ¼ 0:03 on the value of the dimensionless chirp a ¼ js2, as cal-
culated by numerical solution of the system of Eq. (3.60) within the framework of
the perturbation theory and using (3.40)–(3.43) with the modified rotating wave
approximation (3.44).
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Fig. 3.12 Dependence of the population of the upper level of the two-level system on the electric
field strength parameter for a resonant single-cycle pulse (g ¼ 6, r ¼ 1) and two values of the
chirp a ¼ js2 ¼ 0; 1: solid curve exact solution (a ¼ 0), dashed curve rotating wave
approximation (a ¼ 0), dotted curve exact solution (a ¼ 1), dash-and-dot curve rotating wave
approximation (a ¼ 1)
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Fig. 3.13 Population of the
upper level of the two-level
system excited by a two-cycle
resonant laser pulse of low
intensity n ¼ 0:03as a
function of the chirp value,
calculated by different
methods: solid curve
numerical calculation, dash-
and-dot curve calculation by
the perturbation theory,
dashed curve calculation in
the modified rotating wave
approximation
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There is good agreement between the results of numerical calculation and the
analytical approach within the framework of the perturbation theory. The modified
rotating wave approximation, generalized to take into account a chirp, reproduces
the exact solution somewhat less well, although the error for these parameter
values is insignificant. Note that, in spite of the rather low intensity and the two-
cycle nature of the pulse (g ¼ 12), the dependence of the upper level population on
the chirp value is rather appreciable. This contrasts with excitation of the two-level
system by a pulse with variable CE phase, when the dependence of the excitation
probability on the phase value is vanishingly small under the given conditions.

The calculation shows that the behavior of the probability of excitation of the
two-level system as a function of the chirp value varies with changing electric field
strength in the laser pulse. This fact is illustrated by the plots of Fig. 3.14, in which
the upper level population is shown as a function of the parameter a ¼ js2 for
different values of the field strength, calculated by numerical solution of the
system of Eq. (3.60). Presented in the same figure is the dependence of
N2 a; n ¼ 0:3ð Þ, calculated using the modified rotating wave approximation and the
formula (3.44). From Fig. 3.14, it follows that, with growing electric field strength
in the laser pulse, the dependence of the excitation probability on the chirp value
changes from decreasing to increasing. For n ¼ 0:3, there is an especially strong
dependence of the upper level population on the chirp parameter a. It should be
noted that in this case the modified rotating wave approximation on the whole
correctly renders the behavior of the dependence, but numerically understating the
value N2, especially in the region of small values of the parameter a.

Thus there is a range of values of the problem parameters in which efficient
control of the probability of excitation of the two-level system is possible by
altering the frequency chirp value in the laser pulse. For example, for n ¼ 0:3,
r ¼ 1 and a wide interval of values g[ 10 characterizing the pulse duration, the
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Fig. 3.14 Population of the
upper level of the two-level
system excited by a two-cycle
resonant laser pulse of
different intensities as a
function of the chirp value:
solid curve numerical
calculation (n ¼ 0:03), dotted
curve numerical calculation
(n ¼ 0:1), dashed curve
numerical calculation
(n ¼ 0:3), dash-and-dot curve
modified rotating wave
approximation (n ¼ 0:3)
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probability of system excitation varies from 0.01 to 0.7 when the chirp parameter
a ¼ js2 changes from 0 to 1.

The influence of the duration of an exciting pulse on the sensitivity of the upper
level population to the chirp value is presented in Fig. 3.15 for the dimensionless
strength parameter n ¼ 0:3 and two values g ¼ 6; 12 of the dimensionless dura-
tion. These are the results of numerical calculation based on numerical solution of
(3.60) and data obtained using the modified rotating wave approximation with the
formula (3.44).

Here we see that, at n ¼ 0:3 and for a two-cycle laser pulse (g ¼ 12), the upper
level population grows with the chirp value in contrast to the prediction of (3.37)–
(3.39) obtained within the framework of the perturbation theory. The analysis
shows that, at some values of the electric field strength parameter and pulse
duration, for example, for n ¼ 3 and g ¼ 36, the population of the upper level of
the two-level system is N2 � 1 for all chirp values.

So in this section it has been shown that the analytical solution obtained within
the framework of the perturbation theory agrees with the numerical result for a low
enough value of the dimensionless parameter of the electric field strength n\ 0.1
if the dimensionless pulse duration satisfies the inequation g\ 7. With growing
pulse duration g, the maximum strength n at which the perturbation theory is
applicable decreases.

It has been found that the rotating wave approximation modified to take into
account the influence of chirp on the probability of excitation of the two-level
system is adequate for moderately low values of the field strength and pulse
durations: for a single-cycle pulse the allowed value of the strength parameter is
n� 0:5.

We have also shown that there is a wide range of values of the laser radiation
electric field strength and pulse durations in which the asymptotic value of the
upper energy level population depends essentially on the chirp value. In contrast to

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

N2

α

Fig. 3.15 Population of the
upper level of the two-level
system excited by resonant
laser pulses of different
durations with the field
strength parameter n ¼ 0:3 as
a function of the chirp value:
solid curve g ¼ 6, dotted
curve g ¼ 12, dashed curve
g ¼ 6 (modified rotating
wave approximation), dash-
and-dot curve g ¼ 12
(modified rotating wave
approximation)
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the case of laser pulses with variable CE phase, this population is sensitive to chirp
in the limit of low intensities for multicycle pulses.

It has been shown that the population of the upper level of the two-level system
as a function of the exciting pulse field strength exhibits oscillations with an
amplitude that decreases with growing chirp. This contrasts with the case of a non-
chirped pulse, where the probability of excitation oscillates as a function of the
electric field strength in radiation of unit amplitude.
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