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Foreword

Error Correcting Coding for Solid State Disk Data Storage

Wireless communication had existed for half a century when Information Theory
was expounded by Claude Shannon in the Bell System Technical Journal in 1948.
Error correcting coding followed in primitive formulations which brought early
digital communication systems only a short way toward the Shannon capacity limit.
Various generations of algebraic codes: Hamming, BCH and Reed Solomon made
gradual progress. With the advent of digital satellite transmission and soft-decision
decoding of convolutional codes, the gap between uncoded performance and the
Shannon limit was cut in half. Similar technology was used in second and third
generation (2 G and 3 G) mobile phone voice modems. Finally turbo codes and low-
density parity check (LDPC) codes, which arrived about two decades ago, gradually
were shown to greatly decrease the distance to the capacity limit. These technologies
have entered predominant use for data transmission in 3 G and 4 G mobile modems.

High density data storage technology has followed a similar trajectory though
with a more contracted time span. BCH and Reed Solomon codes were the norm
until recently for hard disk drives (HDD). Recently though LDPC has taken root
here too with major improvements in data density and reading and writing controller
speeds. With the advent of the “smart phones” and tablets, solid state drives (SSD)
became ever more important for their low latency and low power operation. For this
use LDPC is becoming the norm as well. This book which covers all aspects of SSD
technology also provides coverage of the important topic of ECC.

Andrew Viterbi
President, Viterbi Group, LLC

La Jolla, California, USA
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Preface

Solid State Drives (SSDs) are gaining momentum in enterprise and client applica-
tions, replacing Hard Disk Drives (HDDs) by offering higher performance and lower
power. In the enterprise, developers of data center server and storage systems have
seen CPU performance growing exponentially for the past two decades, while HDD
performance has improved linearly for the same period. Additionally, multi-core
CPU designs and virtualization have increased randomness of storage I/Os. These
trends have shifted performance bottlenecks to enterprise storage systems. Business
critical applications such as online transaction processing, financial data processing
and database mining are increasingly limited by storage performance.

In client applications, small mobile platforms are leaving little room for batteries
while demanding long life out of them. Therefore, reducing both idle and active
power consumption has become critical. Additionally, client storage systems are in
need of significant performance improvement as well as supporting small robust
form factors. Ultimately, client systems are optimizing for best performance/power
ratio as well as performance/cost ratio.

SSDs promise to address both enterprise and client storage requirements by
drastically improving performance while at the same time reducing power.

Inside Solid State Drives walks the reader through all the main topics related
to SSDs. Chapter 1 provides an overview of the SSD market and applications,
including a review of client PC, tablet, and enterprise computing usage models.

A Solid State Drive is a very complex system: Chap. 2 contains an overview of
the main blocks, including hardware and software.

Chapters 2 and 3 cover different SSD implementations with host interfaces
ranging from SAS/SATA to PCI Express (PCIe). SAS/SATA offer compatibility
with legacy storage infrastructure. However, for many applications, NAND Flash
read and write speeds are exceeding the capabilities of these legacy interconnects.
PCIe SSDs overcome this bottleneck and deliver unparalleled performance while,
at the same time, reducing latency, power and cost by eliminating the traditional
storage infrastructure and attaching directly to a platform’s PCIe I/O interconnect.

SSDs and HDDs can also be combined together in various forms, as explained in
Chap. 4 where “hybrid” storage is analyzed.

ix
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x Preface

At the end of the day, a SSD is made up of NAND memories and a controller.
Therefore, to understand SSDs it is important to understand all the basics of NAND
Flash technology (Chap. 5) as well as design (Chap. 6).

To realize a low-power high-speed SSD, the overall performance of the NAND
Flash memory and the NAND controller should be optimized by co-designing both
NAND and controller circuits. Chapter 7 describes the most advanced circuits in
this field. Furthermore, 3D-integration in the SSD system becomes a key topic and
an example of low power 3D-integrated SSD is shown.

When aiming to replace HDDs, particularly in enterprise applications, another
key consideration is reliability. SSDs are complex electronic systems prone to wear-
out and failure mechanisms mainly related to NAND. SSD reliability is analyzed at
different levels in Chap. 8. The basic physical mechanisms affecting the traditional
floating-gate cells and the possibility of anomalous erratic behavior is discussed, as
well as disturbs arising because several cells share the same control lines. Solutions
adopted to improve system reliability are presented, such as the use of RAID and
protection against power loss during write operations. Test methods for endurance
and retention verification are also described.

The physical constraints of Flash memory pose a lifetime limitation on these
storage devices. Multilevel Flash technologies (MLC) further degrade endurance,
as 2 bits are stored in the same physical cell. As a result, NAND devices may
experience an unexpectedly short lifespan, especially when accessing these devices
at high frequencies. In order to enhance the endurance, wear leveling algorithms
are used to evenly erase blocks. Chapter 9 describes some existing wear leveling
algorithms, highlighting their pros and cons.

Despite all the possible Flash management algorithms run by the memory
controller, the residual BER needs to be properly managed in order to achieve a
reliable system. That is why Error Correction Codes (ECCs) are so important in
SSD design. Two main issues arise when an ECC is used inside an SSD. First,
the ECC engine should not limit the performance of the drive. This requirement
is addressed with a hardware ECC implementation that supports multiple devices
(channels) in parallel. Second, ECC must avoid erroneous corrections when the error
correction capability of the code is overcome; that is, it must have a high detection
property.

Nowadays, the most popular ECC approach in commercial SSDs is BCH, which
is covered in Chap. 10. As the NAND technology scales down, NAND raw BER
becomes worse and a more powerful ECC is needed. Chapter 11 covers LDPC codes
which are capable to get closer to the Shannon limit; in other words, they can handle
higher BER at the expense of a higher complexity.

SSD security is another key requirement because sensitive data must be protected
against external attacks. Unfortunately, existing methods in the HDD world cannot
be applied to SSDs. These days encryption is the most popular method to secure
SSDs. Chapter 12 covers encryption basics and their application to solid state drives.

Finally, Chap. 13 covers Flash signal processing techniques. When NAND raw
BER overcomes the Shannon limit, NAND-controller interaction jumps to a deeper

http://dx.doi.org/10.1007/978-94-007-5146-0_5
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Preface xi

level. In other words, parameters like retention time, floating gate coupling, number
of erase cycles, etc., need to be considered during runtime.

We are in the midst of an exciting storage market transition, where Flash is
expanding its reach to replace HDDs with dramatically faster and more efficient
SSDs. After reading this book, the reader will get a comprehensive look at SSD
applications and technologies. As you’ll see, a Solid State Drive is a complex mix
of digital and analog circuits working in concert with firmware and I/O software
protocols. We hope you enjoy this tour inside Solid State Drives.

Rino, Alessia and Kam
The Editors
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Chapter 1
SSD Market Overview

G. Wong

Abstract The unparalleled cost and form factor advantages of NAND flash
memory has driven 35 mm photographic film, floppy disks and one-inch hard
drives to extinction. Due to its compelling price/performance characteristics, NAND
Flash memory is now expanding its reach into the once-exclusive domain of hard
disk drives and DRAM in the form of Solid State Drives (SSDs). Driven by the
proliferation of thin and light mobile devices and the need for near-instantaneous
accessing and sharing of content through the cloud, SSDs are expected to become a
permanent fixture in the computing infrastructure.

1.1 Computing Market and Applications

In the January 2006 issue of IEEE Spectrum, Solid State Drives (SSDs) developed
by Samsung were declared a “Loser: Too Little, Too Soon.”1 The article argued that
SSDs were too expensive at $45/GB and that Hard Disk Drives (HDDs) outclassed
SSDs in performance. Today SSDs for PCs are now priced twenty times less than the
price quoted in the IEEE Spectrum article, sequential read and write performance
are close to saturating SATA 6 Gbps interface speeds and random performance is at
least an order of magnitude better than HDDs.

During this time, NAND Flash memory manufacturers, Flash memory card
suppliers, controller makers and startups have piled into the market. Even HDD
vendors are being forced to react to the stampede by developing their own SSD
offerings. Altogether, there may be 200 companies offering SSD products.

1Loser: Too Little Too Late, Harry Goldstein, IEEE Spectrum, January 2006.

G. Wong (�)
Forward Insights, Toronto, Canada
e-mail: greg@forward-insights.com

R. Micheloni et al., Inside Solid State Drives (SSDs), Springer Series
in Advanced Microelectronics 37, DOI 10.1007/978-94-007-5146-0 1,
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2 G. Wong

Prior to the current interest in NAND Flash-based SSDs, SSDs have a long and
uncolorful history, starting out with RAM-based SSDs pioneered by StorageTek in
1978. It wasn’t until late 1980’s and early 1990’s when the first Flash memory-
based SSDs were developed. Western Digital demoed a 2.500 NAND Flash SSD in
1989, however the main promoters of Flash-based SSDs, SanDisk and Intel, based
their SSDs on NOR Flash technology in the early 1990’s. Due to the higher cost of
NOR Flash versus DRAM, Flash-based SSDs were relegated to niche markets.

M-Systems pioneered Flash memory-based SSDs in 1995 for use in industrial
and military applications. However, it wasn’t until NAND Flash memory surpassed
DRAM in process technology in 2004 that the economics of NAND Flash memory
opened up new opportunities for SSDs in enterprise and client computing applica-
tions just a few years later.

The following provides an overview of the computing market and applications
for SSDs.

1.2 SSD Overview

1.2.1 What Is a Solid State Drive?

A solid state drive (SSD) is a storage device that incorporates solid-state memory
and emulates a hard disk drive to store data. Because a SSD emulates a hard disk
drive, it usually uses hard disk drive interfaces and protocols such as Parallel ATA,
Serial ATA, Serial Attached SCSI and Fibre Channel and can readily replace it in
most applications. However, SSDs based on non-HDD interfaces and protocols such
as USB and PCI Express are also available.

As CPU performance has scaled through faster cores and multi-core architec-
tures, hard disk drive (HDD) performance has stalled due to limitations in increasing
the rotational speed of the magnetic media. Since 1996, CPU computing and
processing performance of mobile and desktop systems has grown a remarkable
30 times whereas the performance of hard disk drives has managed to grow around
30% over the same period (Fig. 1.1).

Solid state storage employing NAND Flash memories offer the promise of im-
proving the performance and reducing the access latency of storage as a replacement
or complement to HDDs in both client and enterprise computing environments.

1.2.2 The Memory Hierarchy

The memory hierarchy along with accompanying attributes are summarized in
Fig. 1.2. As it is shown, there is an inverse relationship between cost and perfor-
mance. The temporary storage of information and the random accessing of data
become more important as storage technologies interface more directly with the
processor of an electronic system.
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At the bottom of the pyramid is magnetic tape or optical storage. Magnetic
tape/optical storage has the lowest cost per MB of all the technologies and stores
data sequentially. It is primarily used for archiving.
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The next level of storage technology, hard disk drives is more expensive but
provides better performance attributes and is used for data storage as well as archival
storage. HDD technology performs best when the data is sequential.

The realm of semiconductor storage technologies is next. NAND Flash has the
lowest cost of all the semiconductor storage technologies. Its serial architecture
means it is more well suited to handling sequential data and its retention char-
acteristics of 10 years makes it suitable as a data storage medium and less so
for archival storage. NAND Flash has also been used to store code in store-and-
download configurations in cellular phones as well as a cache in PC and enterprise
systems. However, caching involves the reading and writing of small random files
which is better suited to semiconductor memories with a parallel architecture.

In contrast to NAND Flash, NOR Flash has a parallel architecture making it
suitable for storing and executing code. NOR Flash has much faster read and
program times than NAND Flash but higher cost. Both NAND and NOR Flash are
non-volatile memories which means they continue to retain information after power
is switched off.

DRAM and SRAM are volatile semiconductor memories requiring power to
maintain the information. Both memories are mainly used as a cache and code
can be executed directly from the devices. Due to its fast speeds and compatibility
with the CMOS logic process, SRAM is used extensively as on-chip cache for CPU
designs.

Historically, SSDs have employed SRAM and DRAM, particularly in enterprise
storage applications to improve overall system performance; however, as the cost of
NAND Flash has fallen dramatically since 2004, NAND Flash SSDs have begun to
encroach on the enterprise space as well as in the consumer space.

The crossover point between DRAM and NAND Flash in terms of process
technology occurred in 2005 at the 90 nm generation. Ever since, NAND Flash
has become and remained the main process technology driver.

1.2.3 SSD vs. HDD

Figure 1.3 compares the major components of a SSD and HDD. The HDD, being
based on storage in a spinning magnetic platter, requires an actuator and actuator
arm to move the head to the appropriate sector to be read or written. The HDD
controller, particularly if it is a system-on-chip, incorporates the processor, servo
control logic, interface, error correction code, disk sequencer and buffer controller.
HDDs typically contain a DRAM buffer to hide the seek time.

In contrast, the SSD contains no mechanical parts and consists of a few major
components: Flash memory, SSD controller, connector, DRAM buffer, PCB and
passives.

Because of the simple structure of the SSD, the main cost driver for SSDs is
the Flash memory. Also due to the lack of mechanical parts, failure rates can be
significantly lower than for HDDs.
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Fig. 1.3 Major components of SSD and HDD (Source: Toshiba Corp., Forward Insights)

Data from Intel Corp. has shown lower annual failure rates (AFR) of 90% or
better2 for SSDs compared to HDDs which reduces user downtime as well as
IT costs for troubleshooting, rebuilding laptops and providing loaner PCs during
troubleshooting or repair.

1.3 Client PC Applications

SSDs are being offered as a replacement for HDDs in client PC systems. To facilitate
this replacement, SSDs have been designed in standard 2.500 and 3.500 HDD form
factors. As illustrated in Fig. 1.4, SSDs provide an advantage over HDDs in a host
of performance and power metrics. However, SSDs suffer from high costs – roughly
ten times the $/GB of a HDD – which limits their capacity footprint in systems with
a storage budget.

The fast responsiveness and better performance of a SSD over a HDD results in
productivity benefits. Table 1.1 summarizes the time savings for a notebook PC with
Intel’s 160 GB series 320 SSD running Windows 7 for various tasks such as boot
up, standby, e-mail usage, etc. versus a HDD-based system. Over a 36 month PC
lifecycle, 80.4 h can be saved translating into cost savings of $4,821 assuming an
employee salary of $60/h.

2http://www.intel.com/content/dam/doc/white-paper/enterprise-reliability-accelerating-
deployment-of-intel-ssds-paper.pdf

http://www.intel.com/content/dam/doc/white-paper/enterprise-reliability-accelerating-deployment-of-intel-ssds-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/enterprise-reliability-accelerating-deployment-of-intel-ssds-paper.pdf
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SSDs vs. HDDs in PCs-Performance Characteristics
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Fig. 1.4 2.500 SSDs vs. HDDs in PCs – performance characteristics (Created by Forward Insights)

Table 1.1 Intel Corp. http://www.intel.com/design/flash/NAND/tco tool/demo.htm

Intel Corp. has retrofitted their employee notebooks with SSDs instead of HDDs.
Based on empirical data and estimates from empirical data, SSDs have a 90% lower
failure rate than HDDs over a 3-year refresh period. This translates into 90% less
employee time lost due to drive failures and a 96% reduction in IT support time for
PC rebuilds. These are direct cost savings and do not include the cost of loaner PCs
which would tide the employee over while his/her PC is being re-built and should
also be included in the calculation.

Time savings due to faster booting and loading of software is estimated at 44%.
In addition, SSD-based notebooks showed a lower thermal footprint as they ran 12%
cooler than HDD-based notebooks (Fig. 1.5).

http://www.intel.com/design/flash/NAND/tco_tool/demo.htm
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Fig. 1.5 SSD Benefits compared to HDDs (Source: Intel)

Based on current SSD prices, the reduced failure rates and productivity benefits
of a SSD are already more than sufficient to justify the adoption of SSD-based
notebooks for businesses.

In addition, large capacity storage is not a prerequisite in the corporate environ-
ment where files can be stored and pulled from the company intranet. Local storage
of 128 GB is more than sufficient to store the operating system, work applications
and files.

1.4 Notebook PCs and Tablets

A SSD actually does not have to come packaged in a HDD form factor. The NAND
Flash memory components and SSD controller can be soldered onto a printed circuit
board or the NAND Flash memory die and controller die can be packaged in a BGA
package.

These small form factors enable thin, lightweight portable devices such as ultra-
thin laptops and tablets. Ultra-thin laptops which include Apple Corp.’s MacBook
Air and ultrabooks are less than 21 mm or 0.800 thick making it difficult to
incorporate a thin 7 mm high 2.500 HDD. A modular SSD such as the Toshiba Blade
X-Gale SSD (Fig. 1.6) is only half the z-height of a thin HDD.

To make a slim, sturdy outline, ultra-thin laptops will require aluminum unibody
or glass fiber casing. Lithium-polymer batteries, such as those used in the MacBook
which are roughly one-third the thickness of conventional cylindrical lithium-ion
batteries, may also be required. These design modifications along with others
including SSDs raises the bill of material of ultra-thin laptops. However, costs are
expected to fall with economies of scale due to increased production and price
declines for NAND Flash memory.

Tablets primarily incorporate NAND Flash on the motherboard or eMMC for
storage device. Some Intel-based tablets incorporate mSATA SSDs. However as
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Fig. 1.6 Toshiba Blade
X-Gale SSD

Fig. 1.7 SanDisk iSSD

tablet performance requirements increase and devices become sleeker, �SSD or
SSDs in a BGA package such as SanDisk’s iSSD (Fig. 1.7) are expected to become
more widely adopted.

1.5 Desktop PCs

The benefits of SSDs in desktop systems are less apparent than for notebook PCs.
The small form factor, lightweight and low power advantages of SSDs compared to
HDDs are of less value here. The primary selling point is the faster response times
and better performance and reliability compared to HDD-based systems.

In the corporate environment, SSDs may be incorporated in thin clients. Since
thin clients are used to access information and data through corporate networks,
minimal local storage is sufficient.

However for the consumer segment, users are used to large storage capacities.
A desktop PC offers extra drive bays to add storage. By adding a small capacity
SSD to store the operating system and applications and HDD for data, a mix of
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high capacity storage and high performance can be attained. Such hybrid dual drive
systems will appeal to gamers who value performance and are willing to pay a
premium for that performance.

1.6 Client PC and Tablet SSD Forecast

SSDs in client PCs consist of product sold directly to OEMs, i.e. already installed
in systems sold to the end user or sold to the channel. The channel includes retail,
e-tail and value-added resellers. In the nascent stages of the SSD market, the channel
comprised the majority of shipments, however, as SSDs become more prevalent in
PCs, the channel portion is expected to shrink.

Tablets and PC Flash cache/hybrid dual drive SSDs are expected to be future
growth products. The market for PC and tablet SSDs is forecast to grow from
$600 million in 2009 to almost $7 billion in 2015 (Fig. 1.8).

1.7 Enterprise Computing Applications

In the enterprise space, high throughput and low access latencies are key. Enterprise
HDDs employ several techniques to improve system throughput and decrease the
access latency. High performance 15 k rpm HDDs may be organized in a RAID
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Table 1.2 Enterprise SSD vs. HDD key metrics [2, 3]

SPECIFICATION Enterprise Class SSD1 Enterprise Class HDD2

Form Factor 2.5" 2.5"
Capacity 100/200/400GB 147/300GB
Media SLC NAND 1-2 disks/2-4 heads
Interface SAS 6Gbps SAS 6Gbps
Spindle Speed - 15k rpm
Performance
     Average Access/Seek Time 0.1ms 3.0ms (read)/2.7ms (write)
     Random
         Read 90,000 IOPS 385 IOPS (est)
         Write 16,000 IOPS 325 IOPS (est)
     Sequential
         Read 500MB/s (64k) 200MB/s
         Write 250MB/s (64k) 200MB/s
Reliability
     MTBF 2.0 m hrs 1.6 m hrs

     Non-recoverable read errors 1 per 1017 1 per 1016

Power
     Voltage 5/12V 5/12V
     Sleep/Idle mode <1W 4.5W
     Operating mode 6.5W 8.7W
Environmental
     Operating shock 1,000G (0.5ms) 100G (1ms)
     Non-operating shock 1,000G (0.5ms) 400G (1ms)
     Operation temperature 0-55�C 5-55�C
     Noise 0dB 3.3 bels
Dimensions (mm) 69.85(W) x 100(D) x 15.4(H) 69.85(W) x 100.45(D) x 15.4(H)
Weight 152g 220g
Warranty 5 years 5 years
1
Toshiba MKxxx1GRZB

2
Toshiba MKxxx1GRRB-R

configuration with the data being striped across multiple disks, thereby increasing
the bandwidth of the total system. Adding HDDs increases system bandwidth but
results in increased space, power and cooling requirements.

“Short-stroking” the HDDs whereby data is placed on the outer tracks of the disk
to reduce the seek time of the mechanical heads reduces system access latencies.
However, this entails that only part of the HDD is being used to achieve the required
performance resulting in excess storage capacity than would otherwise be necessary.
Since performance in a SSD is relatively consistent regardless of where the data sits
in the drive, a SSD can replace several striped, short-stroked HDDs.

Table 1.2 compares an enterprise class SSD with an enterprise class HDD. As can
be seen, access times for a SSD are in the microseconds versus milliseconds for a
HDD and the random IOPS performance is two times greater. Moreover, on all other
counts, including sequential performance, power consumption, shock resistance and
weight, the SSD outclasses the HDD.

The only area where the SSD lags is in price per gigabyte where a SLC SAS SSD
is currently about ten times more expensive than a SAS HDD. The price differential



1 SSD Market Overview 11

Fig. 1.9 SSD vs. HDD in the enterprise – performance characteristics (Created by Forward
Insights)

can be reduced to about five times by employing MLC NAND Flash memory instead
of SLC NAND. This comes at the expense of slightly lower performance for a MLC
SSD. Nevertheless, the higher cost versus a HDD is more than made up by the much
better performance and power characteristics. SSDs are far more superior if metrics
in terms of $/IOPS, IOPS/GB or $/W are considered.

A graphical comparison of the performance characteristics of an enterprise class
SSD with an enterprise class HDD is shown in Fig. 1.9. This is just the storage
comparison. The superior performance of the SSD translates into significant savings
in the total storage system.

Figure 1.10 shows a total cost of ownership calculation for an array employing
HDDs versus SSDs. Due to the much higher performance of a SSD, an array of
forty-eight high performance 15 k rpm HDDs can be replaced by seven SSDs. The
lower number of SSDs drives savings in other areas as well, such as lower energy
costs, smaller footprint and enclosure costs, lower power and cooling costs and
reduced maintenance costs.

When the price of the SSDs and these ancillary costs are considered, the total
cost of ownership is 60% less than the array of forty-eight 15 k rpm HDDs.

In summary, SSDs offer a clear benefit under the following conditions:

• System performance is I/O limited not CPU limited. If the system is CPU limited,
improving the I/O performance will not help;

• I/O profile is skewed towards small random files;
• low power consumption is required.
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Fig. 1.10 Total system cost (Intel Corp.)

The enterprise market can be segmented into the following main categories:
transaction processing, video server, high performance computing and internet
server.

1.7.1 Transaction Processing

Fast, real-time processing and accessing of data is a characteristic of transaction
processing. Relatively small data files of 2 kB or less are frequently written and
retrieved and, due to the real-time nature, system reliability and high IOPS are a
prerequisite. The databases are typically large and must be scalable. Transaction
processing systems are typically running 24 h a day, 7 days a week.

Applications include stock trading, electronic banking, financial currency ex-
change, credit card processing, reservation systems and e-commerce.

Although Flash-based SSDs are limited by write endurance of 100 k cycles
per block, the write endurance can be extended if the specifications for retention
are made less stringent. In transaction-oriented applications, the SSD is acting as
temporary store for data, meaning that data retention of weeks could be acceptable.
In such a case, the block write endurance can be extended to one million cycles
per block.
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1.7.2 Video Server

Video-on-demand (VOD) is becoming more prevalent as the bandwidth of home
broadband connections improves. Ever larger storage capacities will be required as
video transitions from standard definition to high definition. Time-shifted playback
of video and network digital video recording will further increase in storage
capacity. In addition to storage capacity, the VOD system must be able to rapidly
upload large amounts of content quickly.

Fast and reliable play-out of video streams or broadcasts is necessary to provide
a satisfactory customer experience. HDDs are not capable of switching in real-
time between video selections on the same storage device. In contrast, SSDs have
performance levels that allow real-time low-latency switching between random
video streams stored in the same storage device necessary for satisfying the demands
of multiple users. SSDs also provide benefits in terms of low power consumption,
small footprint and system robustness.

VOD systems employ tiered storage systems where high demand titles can be
accessed via RAM; medium demand content accessed via Flash and HDD used as
a library for content.

1.7.3 High Performance Computing

High Performance Computing (HPC) includes scientific and engineering modelling,
simulation and problem solving and includes heavy computational fluid dynamics,
seismic tomography, aerospace design and aerodynamic modelling, climate and
biological modelling and simulation. This heavy computational number crunching
is achieved through clusters of high performance computers. In some cases, the
footprint of the cooling systems is as large as the space occupied by the computers:
therefore, power savings is as much a consideration as performance.

SSDs augment HDDs in network storage as the Tier 0 layer. SSDs can also serve
as boot drives for metadata and paging.

1.7.4 Internet/Network Server

Internet/network servers service many users. As a consequence, response times
increase exponentially as the number of operations per second or number of user
requests increases. In addition, these user requests are not usually constant or
predictable and the servers have to be able to manage spikes in demand. The low
latency and high IOPS characteristics of SSDs is especially important for fulfilling
these requirements.
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Complex server systems also require more time to power up hardware and load
the Operating System. Low capacity SSDs may be used in general purpose servers
or blade servers as a boot-Flash.

1.7.5 Server-Attached vs. Storage-Attached SSDs

SSDs can either be attached directly to the host server or externally in the storage
arrays in NAS/SAN configurations. Within the network storage, there also resides a
storage server whereby a SSD may be attached directly to the storage server. Host-
or server-attached SSDs are primarily used as a cache to improve system throughput.
In the storage-attached configuration, a SSD resides between each storage cluster
and the host and acts to improve retrieval time of data stored in the storage array.
Server-attached SSDs are dedicated to the server whereas SSDs are shared in the
network-attached configuration.

The SSD in the server-attached configuration generally stores a smaller amount
of index files than in the storage-attached configuration and is less expensive to
implement.

Currently, there is a debate between server vendors and storage vendors as to the
merits of attaching the SSD on the server side or storage side. The configuration will
largely depend on the system architecture, the application and application workload.

General purpose servers including blade servers with Itanium or x86 CPU cores
contain a capacity-optimized 5.4 k rpm HDD for booting. These HDDs are low
capacity drives in the 80 GB range directly attached to the server. A low capacity
16 GB or 32 GB SSD can replace these drives directly.

High end servers use network storage, so the SSD is likely to be storage-attached.
Mid-range servers may use a combination of network storage plus a server-attached
boot SSD.

Although heavy computational computing performed by high end servers have
storage-attached architectures, SSDs could be attached close to the CPU via the
PCIe slot to speed up processing. Applications which require intense searching or
mining of databases on indexes such as internet/networking and video applications
may benefit from a storage-attached configuration. Depending on the application,
either server- or storage- attached may be suitable for transactional operations,
however, to date all are storage-attached.

1.8 Enterprise SSD Forecast

The total enterprise market for SSDs consists of SSDs either attached to the host
server or residing in the storage array. In the storage array, SSDs are replacing HDDs
with standard interfaces such as SAS and Fibre Channel. The majority of the SSDs
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Fig. 1.11 Enterprise SSD segmentation [4]

deployed in servers use a SATA interface. These are the lowest cost SSDs available
and may be used either for booting or to improve performance. SSDs employing a
PCIe interface are used as a cache or accelerator.

Figure 1.11 provides an applications segmentation of the enterprise SSD market
into entry level, mainstream and performance categories. High speed interfaces
such as PCIe and SAS will be required to satisfy the fast access and high IOPS
characteristics of online transaction process, high performance computing and
database applications.

At the other end of the spectrum, the entry level will be serviced by low
cost SATA SSDs whereas webserver applications which require a combination of
performance and low cost will be supported by SATA and SAS SSDs.

The following summarizes some of the attributes of the different SSD interfaces.

1.8.1 PCIe SSD

PCIe SSDs are slotted near the CPU in servers or in the storage (SAN/NAS)
controller head. Since there are only a few PCIe slots available in a server, the PCIe
SSD tends to be higher capacity than, for example, a SATA SSD. Lower capacity
PCIe SSDs, i.e. less than 1 TB, is typically used for caching or acceleration whereas
higher capacity SSDs, greater than 1 TB, can be used for storage.

The disadvantage of a PCIe SSD is that the device is slotted into a server
which makes it difficult for the information stored to be shared amongst several
servers. In addition, since PCIe SSDs are relatively new to the memory and storage
hierarchy, vendors need to provide custom drivers to enable PCIe-based solutions;
however, this will change with the implementation of the NVM Express standard
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(http://www.nvmexpress.org) which defines an optimized register interface, com-
mand set and feature set for PCIe SSDs. Also, new PCIe SSDs are already in the
market that support standard 2.500 from factor. These new SSDs are hot-pluggable,
front loadable and are designed for mainstream applications.

In many use cases, the PCIe SSD acts as a read cache. Since retention require-
ments are less stringent, MLC technology is sufficient for this type of usage model.

1.8.2 SATA Boot Drives

Boot drives are low capacity SSDs residing in servers. Traditionally, low capacity
5.4 k rpm HDDs have been used for booting the server after it is down due to, for
example, a power outage. The booting function is primarily a sequential reading
operation.

SSDs are well suited to booting because of the fast read access times and low
capacities required – in the 40 GB or so range. Boot drive SSDs have less demanding
performance requirements and require no overprovisioning due to the sequential
read nature of the application.

1.8.3 SATA Drives

SATA drives are slotted into servers and also in disk arrays for accelerating
performance. They are typically greater than 100 GB in capacity and in some cases,
multiple SATA drives are RAIDed and connected through an HBA and slotted into
a PCIe slot. This type of implementation has the disadvantage of longer latency due
to the additional HBA connection.

1.8.4 Fiber Channel/SAS

Fiber channel (FC) drives are used in SANs. SAS drives reside in servers and
SANs/NAS. In a SAN/NAS, multiple drives are connected in a disk array with the
SSD acting as a Tier 0 storage layer, storing data which needs to be accessed quickly.
The performance benefits are so compelling compared to a HDD that multiple
high performance 15 k rpm HDDs can be replaced by one SSD. In a SAN/NAS
configuration, the data that resides in the SSDs can be accessed and shared amongst
multiple servers. Due to ability to implement multiple drives in a network of tiered
storage layers, capacities for FC/SAS SSDs will on average be smaller than in
server-attached PCIe implementations. The trend is for SAS to replace FC in NAS
implementations.
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Fig. 1.12 Enterprise SSD forecast [1]

SATA SSDs currently dominate shipments in servers, however as the price gap
between SAS and SATA SSDs close, the dual port performance benefits of SAS is
likely to expand its presence in servers.

The initial enterprise class SSDs were implemented in SANs/NAS, however the
potential market on the server-side is actually much larger than the storage-side. The
total enterprise SSD market is forecast to increase from $390 million in 2009 to $5.7
billion in 2015 with server-attached SSDs accounting for two-thirds of the market
in 2015 (Fig. 1.12).
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Chapter 2
SSD Architecture and PCI Express Interface

K. Eshghi and R. Micheloni

Abstract Flash-memory-based solid-state disks (SSDs) provide faster random
access and data transfer rates than electromechanical drives and today can often
serve as rotating-disk replacements, but the host interface to SSDs remains a
performance bottleneck. PCI Express (PCIe)-based SSDs together with an emerging
standard called NVMe (Non-Volatile Memory express) promises to solve the
interface bottleneck.

This chapter walks the reader through the SSD block diagram, from the NAND
memory to the Flash controller (including wear leveling, bad block management,
and garbage collection). PCIe basics and different PCIe SSD architectures are
reviewed. Finally, an overview on the standardization effort around PCI Express
is presented.

2.1 Introduction

Creativity is just connecting things. When you ask creative people how they did something,
they feel a little guilty because they didn’t really do it, they just saw something. It seemed
obvious to them after a while.

– Steve Jobs

Solid-state drives promise to greatly enhance enterprise storage performance. While
electromechanical disk drives have continuously ramped in capacity, the rotating-
storage technology doesn’t provide the access-time or transfer-rate performance
required in demanding enterprise applications, including on-line transaction pro-
cessing, data mining, and cloud computing. Client applications are also in need of
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an alternative to electromechanical disk drives that can deliver faster response times,
use less power, and fit in smaller mobile form factors.

Flash-memory-based Solid-State Disks (SSDs) can offer much faster random
access to data and faster transfer rates. Moreover, SSD capacity is now at the point
that the drives can serve as rotating-disk replacements. But for many applications
the host interface to SSDs remains a bottleneck to performance. PCI Express
(PCIe)-based SSDs together with emerging host control interface standards address
this interface bottleneck. SSDs with legacy storage interfaces are proving useful,
and PCIe SSDs will further increase performance and improve responsiveness by
connecting directly to the host processor.

2.2 SSD Architecture

Flash cards, USB keys and Solid State Disks are definitely the most known examples
of electronic systems based on non-volatile memories, especially of NAND type
(Sect. 2.4).

Several types of memory cards (CF, SD, MMC, : : :) are available in the market
[1–3], with different user interfaces and form factors, depending on the needs of
the target application: e.g. mobile phones need very small-sized removable media
like �SD.

SSDs are the emerging application for NAND. A SSD is a complete, small sys-
tem where every component is soldered on a PCB and is independently packaged:
NANDs are usually available in TSOP packages.

A basic block diagram of solid state disk is shown in Fig. 2.1. In addition to
memories and a controller, there are usually other components. For instance, an

Fig. 2.1 Block diagram of a SSD
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external DC-DC converter can be added in order to derive the internal power supply,
or a quartz can be used for a better clock precision. Of course, reasonable filter
capacitors are inserted for stabilizing the power supply. It is also very common to
have a temp sensor for power management reasons. For data caching, a fast DDR
memory is frequently used: during a write access, the cache is used for storing data
before transfer to the Flash. The benefit is that data updating, e.g. in routing tables,
is faster and does not wear out the Flash.

In order to improve performances, NANDs are organized in different Flash
channels, as shown in Fig. 2.1.

2.3 Non-volatile Memories

Semiconductor memories can be divided into two major categories: RAM (Random
Access Memories) and ROM (Read Only Memories): RAMs lose their content
when power supply is switched off, while ROMs virtually hold it forever. A third
category lies in between, i.e. NVM (Non-Volatile Memories), whose content can be
electrically altered but it is also preserved when the power supply is switched off.
NVMs are more flexible than the original ROM, whose content is defined during
manufacturing and cannot be changed by the user anymore.

NVM’s history began in the 1970s, with the introduction of the first EPROM
memory (Erasable Programmable Read Only Memory). In the early 1990s, Flash
memories came into the game and they started being used in portable products,
like mobile phones, USB keys, camcorders, and digital cameras. Solid State Disk
(SSD) is the latest killer application for Flash memories. It is worth mentioning that,
depending on how the memory cells are organized in the memory array, it is possible
to distinguish between NAND and NOR Flash memories. In this book we focus on
NAND memories as they are one of the basic elements of SSDs. NOR architecture
is described in great details in [4].

NAND Flash cell is based on the Floating Gate (FG) technology, whose cross
section is shown in Fig. 2.2. A MOS transistor is built with two overlapping gates

Control Gate (CG) 

Drain (D)Source (S)

Floating Gate (FG) 

Tunnel Oxide (TOX) Interpoly Oxide

(D) (B) (S) 

(FG) 

(CG) 

Bulk (B)

CPP

CS CB  CD

Fig. 2.2 Schematic representation of a floating gate memory cell (left) and the corresponding
capacitive model (right)
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rather than a single one: the first one is completely surrounded by oxide, while
the second one is contacted to form the gate terminal. The isolated gate constitutes
an excellent “trap” for electrons, which guarantees charge retention for years. The
operations performed to inject and remove electrons from the isolated gate are called
program and erase, respectively. These operations modify the threshold voltage VTH

of the memory cell, which is a special type of MOS transistor. Applying a fixed
voltage to cell’s terminals, it is then possible to discriminate two storage levels:
when the gate voltage is higher than the cell’s VTH, the cell is on (“1”), otherwise it
is off (“0”).

It is worth mentioning that, due to floating gate scalability reasons, charge trap
memories are gaining more and more attention and they are described in Chap. 5,
together with their 3D evolution.

2.4 NAND Flash

2.4.1 NAND Array

A Flash device contains an array of floating-gate transistors: each of them acts as
memory cell. In Single Level Cell (SLC) devices, each memory cell stores one bit
of information; Multi-Level Cell (MLC) devices store 2 bits per cell.

The basic element of a NAND Flash memory is the NAND string, as shown
in Fig. 2.3a. Usually, a string is made up by 32 (MC0 to MC31), 64 or 128 cells
connected in series. Two selection transistors are placed at the edges of the string:
MSSL ensures the connection to the source line. MDSL connects the string to the
bitline BL. The cell’s control gates are connected through the wordlines (WLs).
Figure 2.3b shows how the matrix array is built starting from the basic string. In the
WL direction, adjacent NAND strings share the same WL, DSL, BSL and SL. In
the BL direction, two consecutive strings share the bitline contact. Figure 2.4 shows
a section of the NAND array along the bitline direction.

All the NAND strings sharing the same group of WL’s form a Block. In Fig. 2.3b
there are three blocks:

– BLOCK0 is made up by WL0< 31:0>;
– BLOCK1 is made up by WL1< 31:0>;
– BLOCK2 is made up by WL2< 31:0> .

Logical pages are made up of cells belonging to the same WL. The number of
pages per WL is related to the storage capabilities of the memory cell. Depending
on the number of storage levels, Flash memories are referred to in different ways:

• SLC memories stores 1 bit per cell;
• MLC memories stores 2 bits per cell;
• 8LC memories stores 3 bits per cell;
• 16LC memories stores 4 bits per cell.

http://dx.doi.org/10.1007/978-94-007-5146-0_5
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Fig. 2.3 NAND String (a) and NAND array (b)

Fig. 2.4 NAND array section along the bitline direction
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Fig. 2.5 32 Gbit memory logic organization

If we consider the SLC case with interleaved architecture (Chap. 6), even cells
belong to the “even” page (BLe), while odd pages belong to the “odd” page (BL0).
For example, a SLC device with 4 kB page has a WL of 32,768C 32,768D 65,536
cells. Of course, in the MLC case there are four pages as each cell stores one Least
Significant Bit (LSB) and one Most Significant Bit (MSB). Therefore, we have MSB
and LSB pages on even BL, and MSB and LSB pages on odd BL.

In NAND Flash memories, a logical page is the smallest addressable unit for
reading and writing; a logical block is the smallest erasable unit (Fig. 2.5).

Each page is made up by main area (data) and spare area as shown in Fig. 2.5.
Main area can be 4 kB, 8 kB or 16 kB. Spare area can be used for ECC and is in the
order of hundred of bytes every 4 kB of main area.

Figure 2.5 shows the logic organization of a SLC device with a string of 32 cells,
interleaving architecture, 4 kB page, and 128 bytes of spare.

NAND basic operations, i.e. read, program, and erase are described in Chap. 5
and Chap. 6 of this book.

2.4.2 NAND Interface

For many years, the asynchronous interface (Fig. 2.6) has been the only available
option for NAND devices.

Asynchronous interface is described below.

• CE# : it is the Chip Enable signal. This input signal is “1” when the device is in
stand-by mode, otherwise it is always “0”.

• R/B# : it is the Ready/Busy signal. This output signal is used to indicate the target
status. When low, the target has an operation in progress.

http://dx.doi.org/10.1007/978-94-007-5146-0_6
http://dx.doi.org/10.1007/978-94-007-5146-0_5
http://dx.doi.org/10.1007/978-94-007-5146-0_6
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Fig. 2.6 TSOP package (left) and related pinout (right)

• RE# : it is the Read Enable signal. This input signal is used to enable serial data
output.

• CLE : it is the Command Latch Enable. This input is used by the host to indicate
that the bus cycle is used to input the command.

• ALE : it is the Address Latch Enable. This input is used by the host to indicate
that the bus cycle is used to input the addresses.

• WE# : it is the Write Enable. This input signal controls the latching of input data.
Data, command and address are latched on the rising edge of WE#.

• WP# : it is the Write Protect. This input signal is used to disable Flash array
program and erase operations.

• DQ< 7:0> : these input/output signals represent the data bus.

As a matter of fact, this interface is a real bottleneck, especially looking at high
performance systems like SSDs.

NAND read throughput is determined by array access time and data transfer
across the DQ bus. The data transfer is limited to 40 MB/s by the asynchronous
interface. As technology shrinks, page size increases and data transfer takes longer;
as a consequence, NAND read throughput decreases, totally unbalancing the ratio
between array access time and data transfer on the DQ bus. A DDR-like interface
(Chap. 6) has been introduced to balance this ratio.

Nowadays two possible solutions are available on the market. ONFI (Open
NAND Flash Interface) organization published the first standard at the end of 2006
[5]; other NAND vendors like Toshiba and Samsung use the Toggle-Mode interface.
JEDEC [6] is now trying to combine these two approaches together.

Figure 2.7 shows ONFI pinout. Compared to the Asynchronous Interface, there
are three main differences:

• RE# becomes W/R# which is the Write/Read direction pin;
• WE# becomes CLK which is the clock signal;
• DQS is an additional pin acting as the data strobe, i.e. it indicates the data valid

window.

http://dx.doi.org/10.1007/978-94-007-5146-0_6
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Hence, the clock (CLK) is used to indicate where command and addresses should
be latched, while a data strobe signal (DQS) is used to indicate where data should
be latched. DQS is a bi-directional bus and is driven with the same frequency as the
clock. Toggle-Mode DDR interface uses the pinout shown in Fig. 2.8.

It can be noted that only the DQS pin has been added to the asynchronous
interface. In this case, higher speeds are achieved increasing the toggling frequency
of RE#.

2.5 Memory Controller

A memory controller has two fundamental tasks:

1. to provide the most suitable interface and protocol towards both the host and the
Flash memories;

2. to efficiently handle data, maximizing transfer speed, data integrity and informa-
tion retention.

In order to carry out such tasks, an application specific device is designed,
embedding a standard processor – usually 8–16 bits – together with dedicated
hardware to handle timing-critical tasks.

Generally speaking, the memory controller can be divided into four parts, which
are implemented either in hardware or in firmware (Fig. 2.9).

Proceeding from the host to the Flash, the first part is the host interface, which
implements the required industry-standard protocol (PCIe, SAS, SATA, etc.), thus
ensuring both logical and electrical interoperability between SSDs and hosts. This
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Fig. 2.9 High level view of a Flash controller

block is a mix of hardware – buffers, drivers, etc. – and firmware – command
decoding performed by the embedded processor – which decodes the command
sequence invoked by the host and handles the data flow to/from the Flash memories.

The second part is the Flash File System (FFS) [7]: that is, the file system which
enables the use of SSDs like magnetic disks. For instance, sequential memory access
on a multitude of sub-sectors which constitute a file is organized by linked lists
(stored on the SSD itself) which are used by the host to build the File Allocation
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Table (FAT). The FFS is usually implemented in form of firmware inside the
controller, each sub-layer performing a specific function. The main functions are:
Wear leveling Management, Garbage Collection and Bad Block Management. For
all these functions, tables are widely used in order to map sectors and pages from
logical to physical (Flash Translation Layer or FTL) [8, 9], as shown in Fig. 2.10.
The upper block row is the logical view of the memory, while the lower row is
the physical one. From the host perspective, data are transparently written and
overwritten inside a given logical sector: due to Flash limitations, overwrite on the
same page is not possible, therefore a new page (sector) must be allocated in the
physical block and the previous one is marked as invalid. It is clear that, at some
point in time, the current physical block becomes full and therefore a second one
(Buffer) is assigned to the same logical block.

The required translation tables are always stored on the SSD itself, thus reducing
the overall storage capacity.

2.5.1 Wear Leveling

Usually, not all the information stored within the same memory location change with
the same frequency: some data are often updated while others remain always the
same for a very long time – in the extreme case, for the whole life of the device. It’s
clear that the blocks containing frequently-updated information are stressed with a
large number of write/erase cycles, while the blocks containing information updated
very rarely are much less stressed.

In order to mitigate disturbs, it is important to keep the aging of each page/block
as minimum and as uniform as possible: that is, the number of both read and
program cycles applied to each page must be monitored. Furthermore, the maximum
number of allowed program/erase cycles for a block (i.e. its endurance) should be
considered: in case SLC NAND memories are used, this number is in the order of
100 k cycles, which is reduced to 10 k when MLC NAND memories are used.
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Fig. 2.11 Garbage collection

Wear Leveling techniques rely on the concept of logical to physical translation:
that is, each time the host application requires updates to the same (logical) sector,
the memory controller dynamically maps the sector onto a different (physical)
sector, keeping track of the mapping either in a specific table or with pointers. The
out-of-date copy of the sector is tagged as both invalid and eligible for erase. In
this way, all the physical blocks are evenly used, thus keeping the aging under a
reasonable value.

Two kinds of approaches are possible: Dynamic Wear Leveling is normally used
to follow up a user’s request of update, writing to the first available erased block
with the lowest erase count; Static Wear Leveling can also be implemented, where
every block, even the least modified, is eligible for re-mapping as soon as its aging
deviates from the average value.

2.5.2 Garbage Collection

Both wear leveling techniques rely on the availability of free sectors that can be
filled up with the updates: as soon as the number of free sectors falls below a given
threshold, sectors are “compacted” and multiple, obsolete copies are deleted. This
operation is performed by the Garbage Collection module, which selects the blocks
containing the invalid sectors, copies the latest valid copy into free sectors and erases
such blocks (Fig. 2.11).

In order to minimize the impact on performance, garbage collection can be per-
formed in background. The equilibrium generated by the wear leveling distributes
wear out stress over the array rather than on single hot spots. Hence, the bigger the
memory density, the lower the wear out per cell is.
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2.5.3 Bad Block Management

No matter how smart the Wear Leveling algorithm is, an intrinsic limitation of
NAND Flash memories is represented by the presence of so-called Bad Blocks
(BB), i.e. blocks which contain one or more locations whose reliability is not
guaranteed.

The Bad Block Management (BBM) module creates and maintains a map of bad
blocks, as shown in Fig. 2.12: this map is created during factory initialization of
the memory card, thus containing the list of the bad blocks already present during
the factory testing of the NAND Flash memory modules. Then it is updated during
device lifetime whenever a block becomes bad.

2.5.4 Error Correction Code (ECC)

This task is typically executed by a specific hardware inside the memory controller.
Examples of memories with embedded ECC are also reported [10–12]. Most
popular ECC codes, correcting more than one error, are Reed-Solomon and BCH
[13]. Chapter 10 gives an overview of how BCH is used in the NAND world,
including an analysis of its detection properties, which are essential for concatenated
architectures. The last section of Chap. 10 covers the usage of BCH in high-end
SSDs, where the ECC has to be shared among multiple Flash channels.

With the technology shrink, NAND raw BER gets worse, approaching the
Shannon limit. As a consequence, correction techniques based on soft information
processing are required: LDPC (Low Density Parity Check) codes are an example
of this soft information approach and they are analyzed in Chap. 11.

http://dx.doi.org/10.1007/978-94-007-5146-0_10
http://dx.doi.org/10.1007/978-94-007-5146-0_10
http://dx.doi.org/10.1007/978-94-007-5146-0_11
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2.6 Multi-channel Architecture

A typical memory system is composed by several NAND memories. Typically,
an 8-bit bus, usually called channel, is used to connect different memories to the
controller (Fig. 2.1). It is important to underline that multiple Flash memories
in a system are both a means for increasing storage density and read/write
performance [14].

Operations on a channel can be interleaved, which means that a second chip can
be addressed while the first one is still busy. For instance, a sequence of multiple
write operations can be directed to a channel, addressing different NANDs, as shown
in Fig. 2.13: in this way, the channel utilization is maximized by pipelining the
data load phase; in fact, while the program operation takes place within a memory
chip, the corresponding Flash channel is free. The total number of Flash channel
is a function of the target applications, but tens of channels are becoming quite
common. Figure 2.14 shows the impact of interleaving. As the reader can notice,
given the same Flash programming time, SSD’s throughput greatly improves.

The memory controller is responsible for scheduling the distributed accesses
at the memory channels. The controller uses dedicated engines for the low level
communication protocol with the Flash.

Moreover, it is clear that the data load phase is not negligible compared to
the program operation (the same comment is valid for data output): therefore,
increasing I/O interface speed is another smart way to improve performances: DDR-
like interfaces are discussed in more details in Chap. 6. Impact of DDR frequency
on program throughput is reported in Fig. 2.15. As the speed increases, more NAND
can be operated in parallel before saturating the channel. For instance, assuming a
target of 30 MB/s, 2 NANDs are needed with a minimum DDR frequency of about
50 MHz. Given a page program time of 200�s, at 50 MHz four NANDs can operate
in interleaved mode, doubling the write throughput. Of course, power consumption
has then to be considered.

Fig. 2.13 Interleaved operations on one Flash channel

http://dx.doi.org/10.1007/978-94-007-5146-0_6
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After this high level overview of the SSD architecture, let’s move to the
interface towards the host. PCI Express (PCIe) is the emerging interface for high
performance SSDs.
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2.7 What Is PCIe?

PCIe (Peripheral Component Interconnect Express) is a bus standard that replaced
PCI and PCI-X. PCI-SIG (PCI Special Interest Group) creates and maintains the
PCIe specification [15].

PCIe is used in all computer applications including enterprise servers, consumer
personal computers (PC), communication systems, and industrial applications.
Unlike older PCI bus topology, which uses shared parallel bus architecture, PCIe is
based on point-to-point topology, with separate serial links connecting every device
to the root complex (host). Additionally, a PCIe link supports full-duplex commu-
nication between two endpoints. Data can flow upstream (UP) and downstream
(DP) simultaneously. Each pair of these dedicated unidirectional serial point-to-
point connections is called a lane, as depicted in Fig. 2.16. The PCIe standard is
constantly under improvement, with PCIe 3.0 being the latest version of the standard
(Table 2.1).

Fig. 2.16 PCI Express lane and link. In Gen2, 1 lane runs at 5 Gbps/direction; a 2-lane link runs
at 10 Gbps/direction

Table 2.1 Throughput of
different PCIe generations

PCIe version Year introduced Throughput per lane

PCIe 1.0 (Gen1) 2003 250 MB/s
PCIe 2.0 (Gen2) 2007 500 MB/s
PCIe 3.0 (Gen3) 2010 1 GB/s
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Fig. 2.17 Various PCIe slots. From top to bottom: PCIe� 4, PCIe� 16, PCIe� 1

Other important features of PCIe include power management, hot-swappable
devices, and the ability to handle peer-to-peer data transfers (sending data between
two end points without routing through the host) [16]. Additionally, PCIe simplifies
board design by utilizing serial technology, which eliminates wire count of parallel
bus architectures.

The PCIe link between two devices can consist of 1–32 lanes. The packet data
is striped across lanes, and the lane count is automatically negotiated during device
initialization.

The PCIe standard defines slots and connectors for multiple widths: �1, �4, �8,
�16, �32 (Fig. 2.17). This allows PCIe to serve lower throughput, cost-sensitive
applications as well as performance-critical applications.

There are basically three different types of devices in a native PCIe system as
shown in Fig. 2.18 [17]: Root Complexes (RCs), PCIe switches, and EndPoints
(EPs). A Root Complex should be thought of as a single processor sub-system
with a single PCIe port, even though it consists of one or more CPUs, plus their
associated RAM and memory controller. PCIe routes data based on memory address
or ID, depending on the transaction type. Therefore, every device must be uniquely
identified within the PCI Express tree. This requires a process called enumeration.
During system initialization, the Root Complex performs the enumeration process
to determine the various buses that exist and the devices that reside on each bus, as
well as the required address space. The Root Complex allocates bus numbers to all
the PCIe buses and configures the bus numbers to be used by the PCIe switches.

A PCIe switch behaves as if it were multiple PCI-PCI Bridges, as shown in the
inset of Fig. 2.18. Basically, a switch decouples every UP and DP ports so that each
link can work as a point-to-point connection.

Within a PCIe tree, all devices share the same memory space. RC is in charge of
setting the Base Address Register (BAR) of each device.

In multi-RC systems, more than one processor sub-system exists within a PCIe
tree. For example, a second Root Complex may be added to the system via the DP
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of a PCIe switch, possibly to act as a warm stand-by to the primary RC. However,
an issue arises when the second RC also attempts the enumeration process: it sends
out Configuration Read Messages to discover other PCIe devices on the system.
Unfortunately, configuration transactions can only move from UP to DP. A PCIe
switch does not forward configuration messages that are received on its DP. Thus,
the second RC is isolated from the rest of the PCIe tree and will not detect any PCIe
devices in the system. So, simply adding processors to a DP of a PCIe switch will
not provide a multi-Root Complex solution.

One method of supporting multiple RCs is to use a Non-Transparent Bridging
(NTB) function to isolate the address domains of each of the Root Complexes [18].
NTB allows two Root Complexes or PCIe trees to be interconnected with one or
more shared address windows between them.

In other words, NTB works like an address translator between two address
domains. Of course, multiple NTBs can be used to develop multi-RC applications.
An example of PCIe switch with embedded NTB functions is shown in Fig. 2.19:
an additional bus, called NT Interconnect, is used for exchanging Transaction Layer
Packets among RCs.

PCIe uses a packet-based layered protocol, consisting of a transaction layer, a
data link layer, and a physical layer, as shown in Fig. 2.20.

The transaction layer handles packetizing and de-packetizing of data and status-
message traffic. The data link layer sequences these Transaction Layer Packets
(TLPs) and ensures they are reliably delivered between two endpoints (devices A
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and B in Fig. 2.5). If a transmitter device sends a TLP to a remote receiver device
and a CRC error is detected, the transmitter device gets a notification back. The
transmitter device automatically replays the TLP. With error checking and automatic
replay of failed packets, PCIe ensures very low Bit Error Rate (BER).

The Physical Layer is split in two parts: the Logical Physical Layer and the
Electrical Physical Layer. The Logical Physical Layer contains logic gates for
processing packets before transmission on the Link, and processing packets from the
Link to the Data Link Layer. The Electrical Physical Layer is the analog interface
of the Physical Layer: it consists of differential drivers and receivers for each lane.

TLP assembly is shown in Fig. 2.21. Header and Data Payload are TLP’s core
information: Transaction Layer assembles this section based on the data received
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from the application software layer. An optional End-to-End CRC (ECRC) field
is can be appended to the packet. ECRC is used by the ultimate targeted device
of this packet to check for CRC errors inside Header and Data Payload. At this
point, the Data Link Layer appends a sequence ID and local CRC (LCRC) field in
order to protect the ID. The resultant TLP is forwarded to the Physical Layer which
concatenates a Start and End framing character of 1 byte each to the packet. Finally,
the packet is encoded and differentially transmitted on the Link using the available
number of Lanes.

Today, PCIe is a high volume commodity interconnect used in virtually all
computers, from consumer laptops to enterprise servers, as the primary motherboard
technology that interconnects the host CPU with on-board ICs and add-on peripheral
expansion cards.

2.8 The Need for Storage Speed

The real issue at hand is the need for storage technology that can match the
exponential ramp in processor performance over the past two decades. Processor
vendors have continued to ramp the performance of individual processor cores, to
combine multiple cores on one IC, and to develop technologies that can closely-
couple multiple ICs in multi-processor systems. Ultimately, all of the cores in such
a scenario need access to the same storage subsystem.

Enterprise IT managers are eager to utilize the multiprocessor systems because
they have the potential of boosting the number of I/O operations per second (IOPS)
that a system can process and also the number of IOPS per watt (IOPS/W) in
power consumption. The ramping multi-processing computing capability offers
better IOPS relative to cost and power consumption – assuming the processing
elements can get access to the data in a timely fashion. Active processors waiting
on data waste time and money.

There are of course multiple levels of storage technology in a system that
ultimately feeds code and data to each processor core. Generally, each core includes
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local cache memory that operates at core speed. Multiple cores in a chip share a
second-level and sometimes a third-level cache. And DRAM feeds the caches. The
DRAM and cache access-time and data-transfer performance has scaled to match
the processor performance.

The disconnect has come in the performance gap that exist between DRAM and
rotating storage in terms of access time and data rate. Disk-drive vendors have done
a great job of designing and manufacturing higher-capacity, lower-cost-per-Gbyte
disk drives. But the drives inherently have limitations in terms of how fast they can
access data and then how fast they can transfer that data into DRAM.

Access time depends on how fast a hard drive can move the read head over the
required data track on a disk, and the rotational latency for the sector where the data
is located to move under the head. The maximum transfer rate is dictated by the
rotational speed of the disk and the data encoding scheme that together determine
the number of bytes per second read from the disk.

Hard drives perform relatively well in reading and transferring sequential data.
But random seek operations add latency. And even sequential read operations can’t
match the data appetite of the latest processors.

Meanwhile, enterprise systems that perform on-line transaction processing such
as financial transactions and that mine data in applications such as customer
relationship management require highly random access to data. Cloud computing
also has a random element and the random issue in general is escalating with
technologies such a virtualization expanding the scope of different applications
that a single system has active at any one time. Every microsecond of latency
relates directly to money lost and less efficient use of the processors and the power
dissipated by the system.

Fortunately Flash memory offers the potential to plug the performance gap
between DRAM and rotating storage. Flash is slower than DRAM but offers a
lower cost per Gbyte of storage. That cost is more expensive than disk storage,
but enterprises will gladly pay the premium because Flash also offers much better
throughput in terms of Mbytes/s and faster access to random data, resulting in better
cost-per-IOPS compared to rotating storage.

Ramping Flash capacity and reasonable cost has led to a growing trend of
SSDs that package Flash in disk-drive-like form factors. Moreover, the SSDs have
most often utilized disk-drive interfaces such as SATA (serial ATA) or SAS (serial
attached SCSI).

2.9 Why PCIe for SSD Interface?

The disk-drive form factor and interface allows IT vendors to substitute an SSD for
a magnetic disk drive seamlessly. There is no change required in system hardware or
driver software. An IT manager can simply swap to an SSD and realize significantly
better access times and somewhat faster data-transfer rates.
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Fig. 2.22 Interface performance. PCIe improves overall system performance by reducing latency
and increasing throughput

Neither the legacy disk-drive form factor nor the interface is ideal for Flash-based
storage. SSD manufacturers can pack enough Flash devices in a 2.5-in. form factor
to easily exceed the power profile developed for disk drives. And Flash can support
higher data transfer rates than even the latest generation of disk interfaces.

Let’s examine the disk interfaces more closely (Fig. 2.22). Most mainstream
systems today are migrating to third-generation SATA and SAS that support
600 Mbytes/s throughput, and drives based on those interfaces have already found
usage in enterprise systems. While those data rates support the fastest electrome-
chanical drives, new NAND Flash architectures and multi-die Flash packaging
deliver aggregate Flash bandwidth that exceeds the throughput capabilities of SATA
and SAS interconnects. In short, the SSD performance bottleneck has shifted from
the Flash devices to the host interface. Therefore, many applications need a faster
host interconnect to take full advantage of Flash storage.

The PCIe host interface can overcome this storage performance bottleneck and
deliver unparalleled performance by attaching the SSD directly to the PCIe host bus.
For example, a 4-lane (x4) PCIe Generation 3 (Gen3) link, shipping in volume in
2012, can deliver 4 GByte/s data rates. Simply put, PCIe affords the needed storage
bandwidth. Moreover, the direct PCIe connection can reduce system power and
slash the latency that’s attributable to the legacy storage infrastructure.

Clearly an interface such as PCIe could handle the bandwidth of a multi-channel
Flash storage subsystem and can offer additional performance advantages. SSDs
that use a disk interface also suffer latency added by a storage-controller IC that
handles disk I/O. PCIe devices connect directly to the host bus eliminating the
architectural layer associated with the legacy storage infrastructure. The compelling
performance of PCIe SSDs has resulted in system manufacturers placing PCIe SSDs
in servers as well as in storage arrays to build tiered storage systems (Fig. 2.23) that
accelerate applications while improving cost-per-IOPS (Input/Output Operations
per Second).
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Fig. 2.23 Enterprise memory/storage hierarchy paradigm shift

Moving storage to a PCIe link brings additional challenges to the system
designer. As mentioned earlier, the SATA- and SAS-based SSD products have
maintained software compatibility and some system designers are reluctant to give
up that advantage. Any PCIe storage implementation will create the need for some
new driver software.

Despite the software issue, the move to PCIe storage in enterprises is already
happening. Performance demands in the enterprise are mandating this transition.
There is no other apparent way to deliver improving IOPS, IOPS/W, and IOPS per
dollar characteristics that IT managers are demanding.

The benefits of using PCIe as a storage interconnect are clear. You can achieve
over 6x the data throughput relative to SATA or SAS. You can eliminate components
such as host bus adapters and SERDES ICs on the SATA and SAS interfaces –
saving money and power at the system level. And PCIe moves the storage closer to
the host CPU reducing latency, as shown in Fig. 2.24.

So the question the industry faces isn’t really whether to use PCIe to connect
with Flash storage, but how to do so. There are a number of options with some early
products already in the market.

Let’s now take a deeper look at PCIe-based SSD architectures.

2.10 PCIe SSD Implementations

The simplest PCIe SSD implementations can utilize legacy Flash memory controller
ICs that while capable of controlling memory read and write operations, have no
support for the notion of system I/O. Such Flash controllers would typically work
behind a disk interface IC in existing SATA- or SAS-based SSD products (Fig. 2.25).
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Fig. 2.24 PCIe SSD vs. SAS/SATA SSD

Fig. 2.25 RAID-based PCIe SSDs not optimized for performance/power
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Fig. 2.26 Running flash management algorithms on the host drains the host CPU/RAM resources
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Fig. 2.27 Native PCIe Flash Controller improves performance, while reducing cost & complexity

Alternatively, it is possible to run Flash-management software on the host
processor to enable a simple Flash controller to function across a PCIe interconnect
(Fig. 2.26).

That approach has several drawbacks. First it consumes host processing and
memory resources that ideally would be handling more IOPS. Second it requires
proprietary drivers and raises OEM qualification issues. And third it doesn’t deliver
a bootable drive because the system must be booted for the Flash-management
software to execute and enable the storage scheme.

Clearly, these designs have found niche success. These products are used by early
adopters as caches for hard disk drives rather than mainstream replacements of high-
performance disk drives.

Longer term, more robust and efficient PCIe SSD designs are relying on a
complex SoC that natively supports PCIe, integrates Flash controller functionality,
and that completely implements the storage-device concept (Fig. 2.27). Such a
product offloads the host CPU and memory of handling Flash management, and
ultimately enables standard OS drivers that support plug-and-play operations just as
we enjoy with SATA and SAS today.
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2.11 Standards Driving Broader Adoption of PCIe SSDs

New standards will ultimately deliver plug-and-play functionality for PCIe-
connected SSDs. Table 2.2 is a summary of the industry effort in this direction.

The NVM Express (NVMe) 1.0 specification, developed cooperatively by more
than 80 companies from across the industry, was released in March, 2011, by the
NVMHCI Work Group – now more commonly known as the NVMe Work Group.
The specification defines an optimized register interface, command set, and feature
set for PCIe SSDs. The goal of the standard is to help enable the broad adoption of
PCIe-based SSDs, and to provide a scalable interface that realizes the performance
potential of SSD technology now and into the future. By maximizing parallelism
and eliminating complexity of legacy storage architectures, NVMe supports future
memory developments that will drive latency overhead below one microsecond and
SSD IOPS to over one million. The NVMe 1.0 specification may be downloaded
from www.nvmexpress.org.

The NVMe specification is specifically optimized for multi-core system designs
that run many threads concurrently with each thread capable of instigating I/O
operations. Indeed it’s optimized for just the scenario that IT managers are hoping
to leverage to boost IOPS. NVMe specification can support up to 64 k I/O queues
with up to 64 k commands per queue. Each processor core can implement its own
queue.

In June, 2011, the NVMe Promoter Group was formed to enable the broad adop-
tion of the NVMe Standard for PCIe SSDs. Seven companies hold permanent seats
on the board: Cisco, Dell, EMC, IDT, Intel, NetApp, and Oracle. NVMe supporters
include IC manufactures, Flash-memory manufacturers, operating-system vendors,
server manufacturers, storage-subsystem manufacturers, and network-equipment
manufacturers.

SCSI Express is another industry initiative that is planning to address the host
control interface of PCIe SSDs, with support for legacy enterprise storage command
set. SCSI Express uses SCSI over PCIe (SOP) and PCIe architecture queuing
interface (PQI) model being defined within the T10 Technical Committee.

Table 2.2 Industry standards for PCIe SSDs

Standard Status Benefits

NVMe Spec 1.0 released March 2011 Designed for servers and
clientsStandard OS driver

implementations available
(Windows and Linux)

80C members of NVMe working
group

SCSI over PCIe (SOP) Under development in T10 Utilizes SCSI software
infrastructure

SSD Form Factor Working
Group [19] (2.5” with
new connector)

Spec 1.0 released December 2011 Serviceability
Hot-plugability

www.nvmexpress.org
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The NVMe and SOP standards do not address the subject of form factors for
SSDs and that’s another issue that has been addressed through another working
group.

In enterprise-class storage, devices such as disk drives and SSDs are typically ex-
ternally accessible and support hot-plug capabilities. In part the hot-plug capability
was required due to the fact that disk drives are mechanical in nature and generally
fail sooner than ICs. The hot-plug feature allows easy replacement of failed drives.

With SSDs, IT managers and storage vendors will want to stay with an externally-
accessible modular approach. Such an approach supports easy addition of storage
capacity either by adding SSDs, or replacing existing SSDs with more capacious
ones.

Indeed another standards body was formed to address the form factor issue.
The SSD Form Factor Working Group is focused on promoting PCIe as an SSD
interconnect. The working group is driven by five Promoter Members including
Dell, EMC, Fujitsu, IBM, and Intel.

Enterprise SSD Form Factor Version 1.0 specification was released in December
2011, focusing on three areas:

• a connector specification that will support PCIe as well as SAS/SATA;
• a form factor that builds upon the current 2.5-in. standard while supporting the

new connector definition and expanding the power envelope in support of higher
performance;

• the support for hot plug capability.

The building blocks are all falling into place for broader usage of PCIe-connected
SSDs and deliverance of the performance improvements that the technology will
bring to enterprise applications. And while our focus has been more on the
enterprise, the NVMe standard will also trickle down to client systems, offering a
performance boost even in notebook PCs while reducing cost and system power. The
standard will drive far more widespread use of PCIe SSD technology as compatible
ICs and drivers come to fruition.
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Chapter 3
SAS and SATA SSDs

S. Yasarapu

Abstract This chapter focuses on the different types of solid state drives. The
chapter details the differences between consumer and enterprise solid state drives
and also details the differences between SAS and SATA solid state drive and what
lies ahead for SATA and SAS protocols for SSDs.

3.1 Introduction

Data centers today require fast and reliable storage to provide end-users with high
quality of service. Data centers operators are continuously challenged to improve
performance to keep up with the demands of high throughput applications. Space,
power and cooling limitations require data centers to find the most cost-, space-,
and energy efficient products. Solid state drives increase the performance and
reliability of the enterprise while reducing the overall space, power, energy footprint
of the data centers. However, not all data center and enterprise environments are
created equal. Depending on the size, number of users, serviceability requirements
and applications running in the data center, the need for performance and storage
capacity varies and so do the solid state devices used within these environments.

In fact, not all SSDs are created the same. Some are designed for the enterprise
and some are designed for consumer applications. Even in the enterprise segment,
some are intended for direct attach to servers and some are designed for shared
storage enclosures. Understanding the differences between the various solid state
drives helps consumers, as well as, enterprises to select the right solution for their
intended applications.
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3.2 Enterprise vs. Consumer SSDs

Let’s first start by understanding the difference between enterprise and consumer
solid state devices [1]. To really understand the differences between consumer
and enterprise solid state drives, let’s start by first observing where these devices
are used. This will highlight the fundamental assumptions made by designers of
consumer and enterprise solid state drives.

Consumer solid state devices are used in laptops, desktops, and mobile devices
where conserving power is the most important criteria to ensure long battery life
of the device. Now, let’s think about the typical usage pattern of a laptop user.
Laptop user, either a business or a home user, generally turns on the laptop at the
beginning of the day. Typical applications running on the laptop are email, internet
explorer, Microsoft Word, Excel, PowerPoint. For the majority of time, user reads
information – reading emails, browsing the web etc. The laptop is perhaps left idle
during meetings; is left idle during lunch time. Laptop is turned off at the end of
the day. Let’s take another example – a desktop user’s typical day. In addition to
everything the laptop user does, desktop users may also play video games, listen to
music and access other digital content. Again, this involves fetching of relatively
large amounts of data from the storage -> fast reads. So, what makes the laptop
and desktop users happy? Laptops should turn on as soon as they are powered on
to minimize the wait for system boot up -> fast boot times; user would like to use
the laptop on battery for as long as possible -> low power footprint and email and
browser applications should load up fast -> fast reads. Now let’s contrast this with
typical usage patterns in an enterprise data center.

Enterprise Solid State Drives are used in corporate data centers where uninter-
rupted operations and high reliability are the most important criteria. Data center
of an enterprise is the information technology hub that holds the most important
intellectual property of any business/enterprise – DATA. The data stored in the
data center is made available via different applications such as Oracle databases,
email applications, customer relation management systems and is used by multiple
users – R&D, finance, sales, operations, customer service etc. Data is accessed
from different locations, at different times. Loss of data is not an acceptable event
because of its disastrous consequences to the business. Let’s take the example
of a financial institution where customers make deposits/withdrawals of money
from their accounts. If a withdrawal transaction is lost due to loss of data in the
institution’s data center then the financial institution loses money. Now this may
not seem like a big deal but if it happens systematically, then this could add
up to millions of dollars in losses. Or worse, if a deposit amount is not posted
to a customer’s account, then customer loses money which could be even more
disastrous because the bank loses its credibility and hence customers -> loss of
revenues. So what makes the Chief Information Officer (CIO) happy? All systems in
the data center should run uninterrupted -> 24 h/day – 7 days/week – 365 days/year
operations with minimal maintenance; there should never be a case leading to
data loss –> high reliability; ability to service multiple users at any time -> high
performance.
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Table 3.1 Application level usage pattern

Criteria Consumer SSD Enterprise solid state drive

Hours of operation Interrupted 24/7/365 Uninterrupted operation
Fast boot time for frequent power up

Performance Fast large block reads only Fast small block random reads
and writes

Access pattern Single threaded accesses Multi user accesses
Power consumption Low power to improve battery life Reduce total data center power

and energy footprint
High availability Not required High availability
Reliability Ease of replacement High reliability

Loss of data is managed Loss of data is catastrophic

As summarized in Table 3.1, we can conclude that the usage pattern of a
consumer solid state drive is dramatically different from that of an enterprise solid
state drive. This primarily drives completely different design criteria.

Let’s see how the consumer and enterprise solid state drives differ in their
construction. This will highlight the fundamental assumptions made by the testers
and integrators of consumer Flash and enterprise solid state drives. To do this, let’s
first understand the composition of consumer and enterprise solid state drive. The
basic composition of an SSD is a controller and a Flash as shown in Fig. 3.1. But
that is where the similarity ends.

What really separate enterprise solid state drive from consumer SSD is the design
of the controller hardware and more importantly the controller firmware features and
the rigors of testing and qualification process the enterprise solid state drive is put
through before it makes it to the market in a product form.

Controller hardware and firmware running on the Enterprise SSDs are the
brains of the device. Their primary functions are to respond to host commands,
to transfer data between the host and Flash media and to manage the Flash media to
achieve high reliability and endurance throughout the operational lifetime of the
drive. How well a controller handles Flash management and host data transfers
simultaneously is what differentiates it from a consumer SSD. In addition, enterprise
SSDs have additional built-in features to improve the reliability and endurance
of the Flash and hence the enterprise SSD. Enterprise solutions require 24/7/365
uninterrupted operation. Therefore, controllers in enterprise SSDs are designed to
maintain consistent performance behavior while transferring data irrespective of the
amount of Flash capacity in use and also the traffic generated to the drive. Wear
leveling operations and background media error correction algorithms are designed
such that data transfer performance to the host is unchanged while these operations
run in the background to the Flash.

Enterprise solutions are required to support a large number of users, i.e., multiple
initiators running different types of traffic patterns independent of one another
resulting in random traffic. Therefore, the controller hardware and firmware is
designed to support multi-threaded access where up to hundreds of streams of
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Fig. 3.1 Consumer (left) and enterprise (right) solid state drives

data per drive can be pushed between host and the device while maintaining the
performance as well as integrity of data. Therefore, enterprise SSDs are designed
to perform extremely well even for small transfers of varying sizes and for
simultaneous reads and writes.

Data integrity and availability is of the highest importance in enterprise solutions.
Therefore, enterprise SSDs are designed to provide full data path protection with
ECC and CRC coverage and power fail protection against unscheduled power loss.

Reliability and high endurance are extremely important for enterprise application
because solutions deployed into enterprise have a long working life. Unlike
consumer deployments, enterprise deployments have a long service life. Therefore,
enterprise SSDs are designed to survive in mission critical storage area networks
under 24/7/365 workloads for over 10 years. To this effect, enterprise SSDs have
built-in redundancy to ensure that even if Flash die fails, the SSD can successfully
recover data by using the redundancy built into the data stored on the Flash.

Enterprise SSDs are also built with features to improve the endurance of the
Flash – one such feature is CellCareTM . Though this capability is not yet available
on all enterprise SSDs, it is absolutely required to counter the deterioration in Flash
endurance as technology nodes shrink.



3 SAS and SATA SSDs 51

Enterprise SSDs have the characteristics of drives designed for use in all environ-
ments (like the ones on Mars): this allows for drive to operate in environments that
do not require human presence and can handle unknown conditions as they arise.

The above mentioned design capabilities are driven by the application use cases
where enterprise solid state drives are used. Consumer SSD, unlike enterprise SSD
is not designed with these assumptions and is therefore unsuitable for enterprise
applications.

Consumer SSDs are designed for cost, which may or may not include robust
controller/Flash management technology. Consumer SSD doesn’t have power fail
protection and do not have ECC and CRC protection that ensures full data-path
protection. Consumer SSDs are not designed to endure under enterprise workloads;
they are designed for laptops and desktops not expected to work beyond a few years.

Since consumer SSD is focused on providing faster boot time, and application
load time, they are optimized to provide fast large block read transfers. Given that
consumer SSD is left idle for long durations, consumer SSD depends on host side
to manage the SSD media. This in turn leads to short lifetime of the consumer SSD.
In addition, consumer SSD is designed for single operation management, for data
loading, installing, saving, etc.

Consumer SSDs have been designed for single user usage and are only designed
for less than a year of operation because of higher rate of Flash wear out due to sub-
standard wear leveling, where only a small amount of data is written and up time is
average of 4 h with many hours of idle time.

Therefore, consumer SSDs though suitable for low end applications where the
devices are not challenged to work at high performance levels, are not suitable for
high performance, high reliability enterprise deployments. Typically consumer SSD
uses SATA interface to connect to host systems.

Enterprise SSDs come in different form factors with different interfaces. There
are 3 main interface protocols used to connect SSDs into server and/or storage
infrastructure: Serial Attached SCSI (SAS), Serial ATA (SATA) and PCIe. PCIe
based SSDs delivering the highest performance are mainly used in server based
deployments as a plug in card inside a server. SAS SSDs deliver high levels of
performance and are used in both high end server and midrange – high end storage
enclosures. SATA based SSDs are used mainly in client applications and in entry
and midrange server and storage enclosures as shown in Fig. 3.2.

Per a recent IDC study [2], SAS and SATA SSDs combined continue to hold the
lion share of the enterprise SSD market, >70%, as shown in the Fig. 3.3 below.

In this chapter, let’s focus on the SAS and SATA SSD – protocol differences, key
feature highlights, similarities and differences and where they are used.

3.3 SAS vs. SATA Protocol

Serial Attached SCSI (SAS) is a communication protocol traditionally used to move
data between storage devices and host. SAS is a point to point connection using a
serial physical connection. It uses a standard SCSI command set to drive device
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Fig. 3.2 Different types of SSDs
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Fig. 3.3 Enterprise SSD market share by protocol [2]

communications. Today, SAS based devices most commonly run at 6 Gbps. There
is ongoing development of a faster 12 Gbps SAS based devices that will be brought
to market in the near future. On the other side, SAS interface can also be run at
slower speeds – 1.5 Gbps and/or 3 Gbps to support legacy systems.

SAS also offers backwards-compatibility with second-generation SATA drives.
The T10 technical committee of the International Committee for Information
Technology Standards (INCITS) develops and maintains the SAS protocol; the SCSI
Trade Association (SCSITA) promotes the technology.

Serial ATA (SATA or Serial Advanced Technology Attachment) is another
interface protocol used for connecting host bus adapters to mass storage devices
such as hard disk drives and solid state drives. Serial ATA was designed to replace
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Fig. 3.4 SAS connectivity

the older parallel ATA/IDE protocol. SATA is also a point to point connection using
a serial physical connection. It uses ATA and ATAPI command set to drive device
communications. Today, SATA based devices most commonly run either at 3 Gbps
and/or 6 Gbps.

Serial ATA industry compatibility specifications originate from The Serial ATA
International Organization [3] (aka. SATA-IO).

3.3.1 Connectivity and High Availability

A typical SAS eco-system consists of SAS SSDs plugged into a SAS backplane or
a host bus adapter via a point to point connection, which in turn is connected to the
host microprocessor either via an expander or directly, as shown in Fig. 3.4.

Each expander can support 255 connections to enable a total of 65535 (64 K)
SAS connections. Therefore, SAS based deployments enable use of a large number
of SAS SSDs in a shared storage environment.

SAS SSDs are built with two ports. This dual port functionality allows host
systems to have redundant connections to SAS SSDs. In case one of the connections
to the SSD is either broken or malfunctions, host systems still have the second
port that can be used to maintain continuous access to the SAS SSD. In enterprise
applications where high availability is an absolute requirement, this feature, unique
to SAS SSDs, makes it the SSD of choice for enterprise applications. Figure 3.5
below shows the dual port connector used with SAS SSDs.

SAS SSDs also support hot plug. Hot plug feature enables SAS SSDs to be
dynamically removed or inserted while the system is running. This feature allows for
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Fig. 3.5 Dual port SAS connector

automatic detection of newly inserted SAS SSDs. While a server or storage system
is running, newly inserted SAS SSDs can be dynamically configured and put to use.
Even more importantly, even if SAS SSDs are pulled out of a running system, all
the in-flight data that is committed by the host system is properly stored inside a
SAS SSD and can be accessed once the SSD is powered back on.

As opposed to SAS, a typical SATA eco-system consists of SATA SSDs
connected to host bus adapter via a point to point connection, which in turn is
connected to the host microprocessor. In addition, SATA SSDs are built with one
port unlike SAS SSDs. These two main differences make SATA based SSDs more
suited for entry or mid-range deployments and consumer applications.

SATA SSDs also support hot plug which enables SSDs to be dynamically
removed or inserted while the system is running. While a server or storage system is
running, newly inserted SATA SSDs can be dynamically configured and put to use.
However, not all SATA SSDs are designed to withstand hot plug functionality and
to ensure that if pulled out of a running system, all the inflight data that is committed
by the host system is properly stored inside a SATA SSD. This capability, also
commonly known as power failure protection, is an extremely important feature
and is generally only supported by selected enterprise grade SATA SSD vendors.
Most SATA SSDs are not built with this feature.

SATA drives may be connected to SAS backplanes, but SAS drives may not be
connected to SATA backplanes.

This is an important feature, in that physically SAS infrastructure is designed to
accommodate SATA SSDs. Connector on SATA SSDs is designed such that they
can be plugged into SAS receptacles though the reverse is not true. This enables
SATA SSDs to be plugged into SAS based storage system making the SATA SSD
more ubiquitous for use.

In addition, even though SAS uses SCSI as the primary communication pro-
tocol, SAS also supports STP (Serial ATA Tunneled Protocol) that allows SAS
infrastructure is built to ensure communication with SATA SSDs hence enabling
interoperability. Again, reverse is not true, in that SAS SSDs cannot be plugged into
SATA based deployments.
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SAS and SATA Similarities
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Fig. 3.6 Similarities between
SAS and SATA technologies

Similarities between SAS and SATA technologies are summarized in Fig. 3.6;
differences between the two are in Fig. 3.7.

3.3.2 Form Factor and Capacity

SAS and SATA SSDs come in a variety of capacities and form factors.
SAS SSDs are designed in two popular form factors – 2.500 and 3.500 drive form

factors. This form factor is primarily defined and driven by the small form factor
working group and the T-10 organization. Since SAS SSDs are designed primarily
for the enterprise, the capacity of SAS SSDs varies from 100 GB up to 2 TB in
capacity.

SATA SSDs are designed in a variety of form factors – 2.500, 1.800 as well as
smaller form factors – MO-297, SlimSATA, mSATA (Fig. 3.8). Typical enterprise
applications use either 1.800 or 2.500 SATA SSDs. For example, 1.800 SATA SSDs are
popularly used in blade servers as boot devices. The smaller form factors enable
SATA to be used in space constrained embedded applications. SATA SSDs in
capacity vary anywhere between 25 GB–400 GB and are generally used either in
consumer or entry and mid-range data center applications.
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SAS vs. SATA Differences

SATA devices are less expensive.

SATA devices use the ATA command set, SAS the SCSI command
set.

SAS drives have dual porting capability and lower latencies.

While both types of drives plug into the SAS backplane, a SATA
backplane cannot accommodate SAS drives.

SAS drives are tested against much more rigid specs than are
SATA drives. (At STEC, SATA SSDs are tested to the same rigor as
SAS) 

SAS drives are faster, and offer several features not available on
SATA, including variable sector sizes, LED indicators, dual ports
and data integrity.

SAS supports link aggregation – wide porting

Fig. 3.7 Main differences between SAS and SATA

3.3.3 Performance

SAS uses SCSI command set to transfer data. SCSI is a more efficient command
set with features such as command queuing that enable higher performance of
SAS SSDs. Therefore, SAS SSDs are used where extremely high performance is
required. Unlike SAS, SATA SSDs using the ATA protocol have lower performance
compared to SAS and therefore are more widely for mid-range and entry level
system.

However, a point to note is that both SATA and SAS SSDs are orders of mag-
nitude faster than hard disk drives (HDDs). To better understand the performance
characteristics of SSDs first, it is important to know what is inside an SSD compared
to HDD.

Hard disk drives are electro-mechanical devices which inherently is limited by
the mechanical element utilized to build them, i.e., rotating magnetic disk. In order
to retrieve data that is stored on the magnetic disk, one must rotate the disk to place
it under the media head (rotational latency), moving the head to the right track (seek
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Fig. 3.8 SATA form factors

latency) and then using a combination of electronics and mechanics to transfer the
data to/from the host devices (transfer time). The only way to hide rotational and
seek latencies is by transferring large sequential data from the disk once the right
track on the disk is located. Therefore, hard drives are inherently sequential devices
and limited in random performance. Sequential performance is generally measured
in MBps or GBps, whereas, random performance is measured in IO per seconds
(IOPs). The fastest hard drives on the market today provide at best 350 IOPS under
random workloads. However, real world applications are random by nature.

In contrast to hard drives, solid state drives are electronic devices. There are no
mechanical elements on a solid state drive. Data is stored in NAND Flash devices,
and is retrieved from the NAND Flash by on board controller. All blocks of data on
the NAND Flash are equally accessible by the controller, i.e., there are no rotational
and/or seek latencies to get to the right block of data.

Performance, reliability, and endurance of SSDs are highly dependent on the
design of the SSD controllers as discussed in earlier sections.

How efficiently HW (Hardware) and FW (Firmware) of the SSD controller
handle data streaming while also performing Flash management determines the
performance of the SSD. Controllers in enterprise SAS and SATA SSDs are
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Fig. 3.9 Effect of preconditioning on performances

designed to maintain consistent performance behavior while transferring data,
regardless of the amount of Flash capacity in use, and irrespective of the volume
of traffic being generated to the drive at any point in time. Wear-leveling operations
and background media error correction algorithms are designed so that data transfer
performance to the host is unchanged while these operations run in the background.
An enterprise-class SSD is designed to handle these heavy workloads 24/7/365 for
5 years or more.

To be of real value, SSD performance needs to be measured after the SSD reaches
steady. Performance measured on a fresh out of the box SSD – SAS or SATA will not
truly represent the performance of the drive in a real deployment. Therefore, before
measuring SSD performance, one must precondition the SSD under test. This is
accomplished by writing random data patterns to completely fill all NAND blocks
and engage the drive’s wear-leveling and Flash management routines. Properly
managing data flow and internal NAND will make the measurement a more useful
gauge of SSD performance under real-world conditions. Figure 3.9 illustrates the
higher performance of fresh out of box SSDs that reach steady state after pre-
conditioning the SSD.

To understand the real world benefits of SAS and SATA SSDs, performance is
usually measured for large block 128 KB or larger sequential and small block 4 KB
or 8 KB random read, write and mixed workloads.

Figures 3.10 and 3.11 show a real world comparison between SAS and SATA
SSDs. As seen in these charts, SAS SSDs deliver almost 2x higher performance
compared to SATA SSDs.

As seen from the charts above, both type of enterprise SSDs – SAS or SATA,
have place in the data center. SAS SSDs are used for high end performance critical
enterprise systems and SATA SSDs are used with mid-range or entry level systems.
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3.4 What’s Ahead

SATA and SAS based SSDs are increasingly being adopted in consumer and
enterprise applications [4]. This adoption is expected to continue and expand in the
coming years. Data center and enterprise applications are using increasingly large
amounts of SSDs and also SSDs of higher capacities to deliver on the need for ever
increasing demands for data storage. As the NAND Flash geometries shrink, the
capacity of SATA and SAS SSDs is expected to increase to address this need for
higher capacity SSDs.
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Fig. 3.12 SAS speed evolution

On the SATA front, the SATA protocol is expected to continue to deliver 6 Gbps
interface speeds for the near future. There is ongoing discussion in the industry to
determine the next generation technology after SATA 6 Gbps.

In addition to the explosive growth in data, the definite shift in consumer and
data center demands for instant data delivery is driving the need for even higher
performing SSDs in the enterprise. To enable this, SAS interface is expected to
double its speed to support 12 Gbps and then 24 Gbps interface speeds as shown in
Fig. 3.12.

As discussed above, enterprise solid state drives increase the performance and
reliability of the enterprise while reducing the overall space, power, and energy
footprint of the data centers. Key features for the enterprise are long service life, high
endurance, consistent and high performance, high reliability which are delivered by
SAS and/or SATA SSDs.

Choosing the right SSD – SATA or SAS, depends on the end user application.
Use of SSDs leads to improved performance, higher reliability and reduced power
space and energy consumption which reduces CapEx and OpEx of next generation
data centers. This is what makes SSDs a great product to enable highest levels of
performance and fast access to data in consumer as well as enterprise applications.
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Chapter 4
Hybrid Storage

R. Micheloni, L. Crippa, and M. Picca

Abstract In recent years, both industry and academia have increased their research
effort in the hybrid memory management space, developing a wide variety of
systems. It is worth mentioning that “hybrid” is a generic term and it can have
different meanings depending on the context. For instance, a storage system can
be hybrid because it combines HDD and SSD; an SSD can be hybrid because it
combines SLC and MLC Flash memories, or it combines different non-volatile
memories like NAND and ReRAM. In this chapter we look at all these different
meanings.

The last section covers over-provisioning and the Write Amplification Factor
(WAF): these parameters have a great impact on SSD performances and reliability,
as well as on the available storage capacity.

4.1 NAND Flash Memory and HDD

If we look at the DRAM history [1], DRAM data access speeds have increased at a
faster rate than Hard Disk Drives (HDDs), leaving a gap in the memory hierarchy
as shown in Fig. 4.1. The gap in read and write performances between DRAM and
HDD has widened in the last years, leaving an opportunity for a new intermediate
memory/storage technology between HDDs and DRAM: NAND Flash memory can
fill this performance gap.
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Fig. 4.1 Memory hierarchy

While HDDs are the most common secondary storage devices, their high power
consumption and low shock resistance limit them as an ideal mobile storage solution
[2]. On the other hand, Flash memories (especially of NAND type) overcome the
main problems of HDDs, but they are still more expensive and can only support a
limited number of erase cycles [3].

Researchers generally agree that disk-storage performance is subject to the
handling of small files and filesystem metadata. Unlike traditional disk storage, flash
memory has no seek penalty, but is subject to garbage collection and wear leveling.

To avoid excessive wear-out of Flash memories, and to mitigate their low write
throughput, it is a good approach to migrate frequently-read data to the Flash and
frequently-written data to HDD, as sketched in Fig. 4.2. In other words, there should
be a caching software that dynamically manages the use of the entire drive capacity
for superior overall storage performance, where the most frequently/recently used
“hot” data are cached for ultra-fast access, while the “cold” data remains on the
primary storage partition.

The trade-offs associated with HDDs and Flash memories motivate lots of
storage system designs [4–8]. Many applications use Flash memory as a non-volatile
cache storing data blocks which are likely to be accessed in the near future, and thus
allowing the disk to spin down for longer periods.

However, these schemes treat flash memory as complement of DRAM buffer
cache, and only a subset of data blocks are cached in flash memory; as a result, the
disk is used quite frequently due to cache misses or flushing. As flash memory’s
capacity increases, a real hybrid secondary storage solution is expected to be more
effective [9]. Different from data block level cache, Flash memory stores files and
can be accessed independently in hybrid secondary storage system.
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In recent years, both industry and academia have increased their research effort
in the hybrid memory management space, developing a wide variety of systems
[10–12]. At this point it is worth mentioning that “hybrid” is a generic term and it
can have different meanings depending on the context. Figure 4.3 is a summary of
what a hybrid storage could be.

We will look at each of these ways to combine Flash memory and HDDs in the
following sections. The reader can refer to Chap. 13 for an example of an SSD
integrating different non-volatile technologies (NAND/ReRAM).

4.2 External NAND C HDD

One of the first examples of NAND used as an external memory was ReadyBoost
[13–15]. It works by using flash memory, a USB flash drive, SD card, CompactFlash
or any kind of portable flash mass storage system as a cache, as shown in Fig. 4.4.

The core idea of ReadyBoost is that a flash drive has a much faster seek time than
HDD, allowing it to satisfy requests faster than reading files from the hard disk.

When an EXternal Memory (EXM) is plugged into the computing device, the
system populates EXM with disk sectors and/or memory sectors. The system routes
I/O read requests directed to the sector to the EXM cache instead of the actual sector.
The use of EXMs increases performance and productivity on the computing device
systems for a fraction of the cost of adding memory to the computing device.

http://dx.doi.org/10.1007/978-94-007-5146-0_13
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The system detects when an EXM is used for the first time. Once the type of
EXM is discovered, a driver is installed and it is used to cache disk sectors on the
external memory. Sectors from any disk and/or slower memory device on the system
can be cached to EXM. Without a prior knowledge of which sectors are valuable
in terms of frequent access, the system may use data on the computing machine
to determine which sectors are used to populate the EXM cache. Alternatively, the
system populates the EXM cache with a particular sector when that particular sector
is accessed during operation. The next time that particular sector is to be accessed
for a read operation, the system directs the read operation to access the copy from
the EXM. The system may track usage patterns and determine which disk sectors
are most frequently accessed. On subsequent uses of the EXM, the system caches
those sectors that are most frequently accessed onto the EXM. If the EXM is present
when the computing device is powered up, the EXM can be pre-populated with data
during start-up of the operating system [13].

4.3 NAND on Motherboard C HDD

Computer motherboards contain the processor chip and some high performance
SRAM and DRAM memories. In the last few years there have been proposals to
add Flash memory to the computer motherboard for a non-volatile memory layer
to the motherboard memory/storage architecture. The motherboard Flash memory
could be inserted into the motherboard with an ONFI module or DIMMs similar
to those currently used for DRAM, allowing memory replacement when faster or
larger memory becomes available.

Intel introduced a motherboard Flash memory technology in 2007, known as
“Robson Technology” or “Turbo Memory” [16, 17]. This early implementation ran
into issues due to lack of support for management of Flash/HDD partition in main
operating systems. In fact, central to the operation of any hybrid storage computer
architecture is management to determine which data is to be kept on the HDD and
which data will be kept on the Flash memory.

Figure 4.5 shows a storage management controller that determines what data
should be stored on each memory device. This storage management function must
balance the needs of data access, power savings opportunities, and data security.

As with any NAND based memory product solution, the NAND flash memory
controller is also key in executing the NAND wear leveling algorithm, managing
the reads, writes, erases, and performing the ECC (Error Correction Code) as
needed [16].

With NAND moving into the demanding computing environment, the wear
leveling algorithm must comprehend not only the usage statistics of the NAND flash
but also track the key reliability statistics. In other words, the controller must track
all the failure mechanisms known in the NAND Flash industry (Chap. 8): program
disturb, read disturb, program/erase cycles, data retention, etc.

http://dx.doi.org/10.1007/978-94-007-5146-0_8
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In the next section, HDD is combined with another drive, a Solid State
Drive (SSD).

4.4 NAND/SSD C HDD

A block diagram of the monolithic HDD C SSD solution, usually referred to as
hybrid drive, is shown in Fig. 4.6 [18–25]. A Solid State Drive is made up of several
NAND chips plus a controller: therefore, all the considerations of this section also
apply to a storage system composed by HDD and a single NAND device. Unlike
standard HDDs, the hybrid drive in its normal state has its platters at rest, without
consuming power or generating heat. When reading data from the platters, extra data
are read and stored in buffer memory in the hope of anticipating future requirements
as in any disk cache. For example, data required for the next boot-up can be stored
in the non-volatile buffer before shutting down the computer.

In 2010 Seagate released the Momentus XT [20, 21], which uses so-called
“adaptive memory” for its SSD portion, which does not rely on driver support from
the operating system. This removes the need for a special operating system, and the
speed benefits can be used by any OS.

The Flash memory is used to store frequently accessed content using an adaptive
memory algorithm. This algorithm monitors data access transactions and maintains
frequently accessed data on the Flash memory. The drive includes software that
tracks a person’s use trends and then uses the SSD component of the drive to
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optimize performance, and it can adjust that performance over time with changes
in user behavior. Up to 50% performance improvement is seen between the first and
second iteration of data access [18].

Manufacturers claim several benefits of the hybrid drive over standard hard
drives, especially for use in notebook computers: among them, speed of data access
and consequent faster computer boot process, decreased power consumption, and
improved reliability.

There are some drawbacks too, especially when accessing non-cached data. In
fact, if the data being accessed is not in the cache and the drive has spun down,
access time will be greatly increased since the platters will need to spin up.

Another concern is the lower performance for small disk writes. NAND is
significantly slower when writing small data; an effect that is amplified when the
file system is using journaling techniques.

Anyhow, hybrid drives have a great potential and the industry is actively working
in this field. As a matter of fact, Windows Vista and Windows 7 natively support the
use of hybrid drives (ReadyDrive) [22].

As mentioned, a NAND device can experience a limited number of pro-
gram/erase cycles. With the hybrid drive, a simple solution to mitigate this wear-out
effect would be to place all the data that is accessed by read operations on the Flash
memory device, and the remaining data on the HDD. This placement would save a
substantial amount of the energy consumption while a longer lifetime for the Flash
memory device is expected [12].

However, in practice, we cannot know in advance whether data should be placed
on the Flash memory device or the hard disk.
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We now review an existing method of skewing frequently accessed data, called
Popular Data Concentration (PDC): it was proposed by Pinheiro et al. [23] to
deal with the highly skewed file access frequencies exhibited by the workloads
of network servers. The idea of PDC is to concentrate the most popular (i.e.
most frequently accessed) disk data by migrating it to a subset of the disks, so
that the other disks can be sent to a low-power mode to conserve energy. PDC
redistributes data across the disk array according to its popularity, so that the first
disk stores the most popular data, the second disk stores the next most popular data,
and so on.

However, if the frequency of file access varies significantly with time, PDC
may cause a lot of file migrations, which will increase energy use, in particular
by disturbing idle disks. This also happens when new files are created, because they
will be stored on the disk with the least popular data, which has to be woken up.

PDC concentrates on popular data without considering whether I/O accesses
are reads or writes. If we split I/O transactions into reads and writes and move
only the data corresponding to one sort of access, we can reduce the amount of
migrations. For instance, if the total amount of data associated with reads is less
than that associated with writes, then transferring the data that is being read will be
more profitable. This scheme is called PB-PDC (pattern-based PDC): it improves
the PDC technique by moving frequently-accessed read and write data to separate
sets of disks [9].

Thus, while the disks containing data which are accessed in one way (read or
write) are being accessed frequently, the disks storing data accessed in the other
way can be sent to a low power mode to conserve energy.

We can apply PB-PDC to a hybrid drive. Because a Flash memory device has
low write throughput and limited erasure cycles, PB-PDC moves the popular write
data to the hard disk and the popular read data to the Flash memory device.

Another possible approach when looking at data partitioning within a hybrid
drive is to employ cache device organization where a subset of disks are treated in
the storage system as cache disks to absorb I/O traffic [24].

Summarizing, PDC does not ask for file duplication while, in the caching
approach, files in Flash memory are a copy of that on disk.

The cached file selection algorithm decides files to be cached in Flash. Usually,
both static and dynamic types of selections can be used. The static approach is more
suitable for files frequently accessed by users: for example, the operating system,
compiler and some C libraries.

When the remaining capacity of Flash memory cache device reaches a threshold
value, replacement is needed. The main guideline for replacement algorithm is
that files accessed less frequently and files that will not be accessed in near future
should be removed from Flash memory cache. The oldest and yet still widely used
algorithm in cache management is LRU [12].

The above mentioned algorithms are just a small part of what is available in
the open literature: it is clear that in order to really exploit all the benefits of hybrid
storage, it is fundamental to decide where it is the right place to store data, depending
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on their characteristics. Of course, workloads are application and user specific:
therefore, the storage management algorithm should be able to adapt to different
needs.

At the end of this section it is worth mentioning that another term is becoming
very popular in the hybrid storage world: SSD-Cache [26].

SSD-Cache is a discrete, separate memory component, as sketched in Fig. 4.7:
in other words, HDD and SSD are housed separately. While all the hot/cold topics
mentioned above remain valid, discrete cache SSDs and HDDs are easier to scale,
with a broad selection of drive manufacturers [27–32].

4.5 Hybrid SSD

NAND Flash memories fall into different categories, depending on the number of
bits stored in the same physical cell [33], as shown in Fig. 4.8. SLC and MLC store
1 and 2 bits per cell, respectively. Triple-Level Cell (TLC) stores 3 bits within a
memory cell; 4 bit/cell is still a research topic.

Downsides of storing more bits per cell are slower speeds, higher error rates and
lower endurance/retention [34, 35]. The advantage is clearly the reduced silicon
area, and therefore cost. Of course, NAND with equal number of bits per cell can
have different performances: this can be related to either process or design aspects.
For example, when the process technology moved from 5X nm to 3X nm, MLC
endurance changed from 10 k program/erase (P/E) cycles to 5 k. 2X nm is now in
the range of 3 k [30, 36, 37].
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Table 4.1 SLC and MLC specifications

NAND type SLC MLC

Page read 25 �s 50–60 �s
Page write 200 �s 800–1,200 �s
Block erase 1–2 ms 1–2 ms
Endurance 100 K 5–10 K
Operating (read, write, erase voltage/current) 3.3 V/15 mA 3.3 V/15 mA

eMLC and eSLC (“e” stands for enterprise) offer a higher number of
erase/program cycles. For instance, if standard MLC and SLC run for 10 k and
100 k program/erase, respectively, eMLC can sustain 30 k and eSLC 300 k [38].

Table 4.1 compares typical SLC and MLC specifications [38]: SLC is much faster
than MLC during both read and write.

Performances of an individual Flash device are still insufficient to meet the band-
width requirements of the interface (SAS/SATA/PCIe) and, therefore, interleaving
is very common in most high-performance SSDs. The interleaving technique is also
useful to extend the endurance because write operations can be distributed over
multiple devices [39].

Because of the cost benefit, there have been many attempts to address per-
formance and endurance problems in MLC-based storage systems. One possible
approach is to combine SLC and MLC Flash memories inside a single SSD, which
is called “hybrid” [40–46]. A basic block diagram is shown in Fig. 4.9. The goal
of this hybrid-SSD design is to achieve the response time of SLC, while having the
cost structure of MLC. In other words, SLC capacity must be small.

The basic idea is to use SLC for storing small random (hot) data and MLC for
large sequential (cold) data [47–54]. In fact, SLC has better endurance and small
random data tend to be updated more frequently. However, MLC is still the limiting
factor when long sequential data writes frequently occur to the storage.

From a design perspective, it is quite easy to create a hybrid SSD starting from
a conventional SSD, as many typical SLC and MLC chips share the same pin
definition and package dimensions.
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Figure 4.10 shows a possible data flow during write. Every write request enters
in the “Data Sensor”: cold data directly go to MLC. Hot data move to another block
called “Utilization Limiter”. If the SLC NAND wears out too fast, this limiter has
the task to reduce the write traffic to the SLC Flash. In other words, a second level
of data classification is adopted: hot-data go to SLC and quasi-hot-data are switched
to MLC.

As mentioned, SLC capacity has to be small; therefore, when data become cold,
they should be removed from SLC in order to maximize the space for hot data.

At this point it is clear that the foundation of this approach is the ability of
classifying data. A lot of methods to identify hot data have proposed, including
LRU, LRU-k [55], hash-table-based approaches [56], and [48, 49]. The reader can
refer to this extensive literature for more details.

Li-Pin et al. [49] showed that, by adding a 256 MB SLC Flash to a 20 GB
MLC-Flash array, the hybrid SSD improves over a conventional SSD by 4.85 times
in terms of average response. The average throughput and energy consumption
are improved by 17% and 14%, respectively. The hybrid SSD is only 2% more
expensive than a purely MLC-Flash-based SSD.

Of course, the hybrid concept can be extended to a Solid State Drive made up by
different types of NAND memories, as shown in Fig. 4.11.

4.6 Over-Provisioning

When looking at the overall capacity of a solid state drive, over-provisioning must
be taken into account. Over-provisioning is the difference between the physical
capacity of the Flash memory and the logical capacity available for the user. Of
course, this is also true for hybrid SSDs [57].
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The idea behind over-provisioning is to have a “reserve” of spare blocks that can
be used by the controller

Let’s assume an application that wants to randomly write data to the SSD drive.
The drive controller writes these data to some erased pages in a particular block.
After a while, the application decides to update the content: given the nature of Flash
memories, this would imply erasing the block. In order to improve performances,
the drive controller just marks those pages as unavailable and writes the new content
to different physical pages: actually, no electrical erase takes place. When the entire
block has been used and another write comes in, a real erase operation is needed. At
this point, the controller needs to go through the following process:

• copy the entire content of the block to a temporary location (likely cache);
• remove the unused data from the cache;
• add the new data to the block in cache;
• erase the addressed block on the SSD drive;
• copy the entire block from the cache;
• empty the cache.
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This sequence is very time consuming and kills write throughput performances
[57, 58]. When over-provisioning is used, the flow can be different. Instead of having
to erase the unavailable portion of the block to accommodate new data, the controller
can use some of the spare space instead. This means that the sequence of reading
the entire block, merging the new data, erasing the block, and writing the entire new
block back, can be avoided. The controller just maps spare space to be part of the
drive capacity (so it is seen by the OS) and moves the unused pages to the spare
capacity portion of the drive.

Anyhow, at some point the unavailable pages will have to be erased forcing the
erase/write sequence mentioned above. In real world applications, 100% random
writes are unlikely and the Flash controller does the erase/write sequence in
background or when the drive is not in use. To get to the worst case, the host has to
randomly write across all the drive’s capacity without stopping to read.

Some controllers may not actively defragment the space to save costs, so the
worst case performance becomes typical after the drive has been written few times.
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Spare capacity can also be used when “bad” areas develop in the drive. For
example, if a certain set of pages/blocks has much fewer remaining erase/write
cycles than most of the drive, then the controller can remap them to spare
pages/blocks. Moreover, the controller can watch for bad writes and use the spare
capacity as a “backup” (similar to extra blocks on hard drives). The controller can
check for bad writes by doing read-after-write (reads are much faster than writes).

During the garbage collection, wear-leveling, and bad block mapping operations
inside the SSD, the additional space from over-provisioning helps lowering the
Write Amplification Factor (WAF) [58–61]; this factor corresponds to the additional
writes caused by garbage collection (see flow above) and wear leveling (Chap. 9).
Jedec defines WAF as the data written to the Flash divided by data written by the
host to the SSD [62].

Figure 4.12 sketches a typical behavior of WAF vs. over-provisioned capacity. In
commercial products over-provisioned capacity is usually around 30%. On one side,
with a very small over-provisioning percent, the amount of data “moves” that have
to take place can be very high, lowering the achievable write IOPS. On the other
side, still looking at Fig. 4.12, 30% looks a good trade-off between performances
and area (cost): in fact, beyond 30% WAF reduces at a lower rate [58].

In summary, reducing the amount of over-provisioned capacity can lower the cost
per GigaByte, but then WAF can become a real problem. Please bear in mind that
the over-provisioned space shrinks over time as it is also intended to countermeasure
wear out of Flash blocks.
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Chapter 5
NAND Flash Technology

M.F. Beug

Abstract This chapter describes the basic operating principle and presents the
major reliability and scaling limitations of floating gate NAND non-volatile memory
as used in SSD applications. It further discusses charge trapping memory cells as
a potential replacement for floating gate cells in the NAND array and evaluates the
potential of both memory cell principles in future 3D memory approaches.

5.1 Flash for SSD Application

Flash memory for non-volatile data storage was introduced commercially in the
mid-1980s. Since then, common ground NOR and NAND architecture have become
the most common memory array architectures. Traditionally, NOR Flash is used for
code storage due to faster memory cell access. NAND Flash is used for mass data
storage as a result of its higher memory density, enabling higher storage capacities.

The memory cell area difference can already be seen from the schematic NOR
and NAND array images in Fig. 5.1. In the NOR array, two memory cells each
share one contact to ground and one contact to the bit line (see Fig. 5.1a). This
results in an effective memory cell area of about 10 F² (where F is the minimum
feature size). The effective memory cell area of NAND cells is only slightly more
than 4 F². Figure 5.1b shows the so-called NAND string with up to 64 memory cells
connected in a row. To operate the NAND string two additional select transistor
devices (GSL: “Ground Select Line” and SSL: “String Select Line”) and contacts to
ground (SL: “Source Line”) and the bit line (BL) need to be added. These additional
structures cause the effective cell area consumption to be slightly higher than 4 F²
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Fig. 5.1 Schematic memory cell organization of the NOR array (a) and the NAND array (b). The
word lines (WL) run perpendicular to the bit lines (BL)

Fig. 5.2 SEM picture of a NAND string with 32 cells per string in a 48 nm floating gate NAND
technology [2]

- the theoretically smallest effective cell size. The cross section of a 48 nm NAND
technology with 32 cells per string is shown in Fig. 5.2.

For SSD application, only NAND Flash is a viable option due to the required
high memory capacity and bit cost structure. Therefore, the following sections will
focus on operation, reliability, and scaling topics of NAND Flash.

5.2 Introduction to Floating Gate NAND Operation

A floating gate memory cell stores information in terms of charge in an isolated
gate electrode (floating gate: FG). The FG is located between the memory transistor
channel and the active gate electrode (control gate: CG). This data storage principle
was proposed by Kang and Sze in 1967 [1] and enables data to be stored without
the connection of a supply voltage over time periods of several years.
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Fig. 5.3 Schematic structure of a floating gate NAND array in word line (WL) (a) and bit line (BL)
direction (b). Corresponding TEM pictures of a 48 nm floating gate NAND technology [2] in WL
direction (c) and BL direction (d)

5.2.1 The Floating Gate NAND Memory Structure

The schematic structure of floating gate NAND cells is shown in Fig. 5.3a, b.
Figure 5.3c, d shows the cross sections of a 48 nm floating gate NAND technology
[2]. The FG and the CG are typically made of polysilicon. For all operations of the
floating gate cell, the active control gate electrode capacitive couples to the floating
gate. The dielectric between the FG and the CG is referred to as inter-poly dielectric
(IPD) and is typically made of a silicon oxide/silicon nitride/silicon oxide triple
layer (ONO). The alterable threshold voltage of a floating gate cell, which represents
the bit information, consequently depends on the coupling strength between the FG
and the CG, and the amount of charge on the FG.

The FG NAND structure in word line direction is shown in Fig. 5.3a, c.
The CG is wrapped around the FG to improve the capacitive coupling from the

CG to the FG. This reduces the operating voltages of the floating gate cells and
ensures a reliable operation as will be described in the next section. The active areas
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(AA) of two neighboring NAND strings are separated by shallow trench insulation
(STI) and are about 200 nm deep in current generations. The memory cell transistor
gate oxide is denoted as tunnel oxide (TOX) because the charge for bit information
storage is transferred through this SiO2 dielectric by quantum mechanical tunneling.

Generally, it is a very crucial point for reliable floating gate cell operation that
charge during program and erase operations is only transferred through the TOX.
Every charge transfer through the IPD (between FG and CG) needs to be urgently
avoided to prevent severe reliability issues.

In BL direction, the cell strings run as shown in Fig. 5.1a, c and d. The floating
gate cells are patterned by a vertical WL etch step. In the etched spaces between
the floating gate cells, shallow nC junctions are implanted in order to define the
memory cell transistors and reduce the string resistance. To improve the charge
retention of the memory cells, the side wall of the floating gate is passivated by a
thermal oxidation process.

The generated high quality thermal side wall oxide (SWOX) forms an effective
tunnel barrier against charge loss from the FG. Subsequently, the space between the
FG cells is filled with a deposited silicon oxide (inter-word line dielectric: IWD)
which generally has a reduced electrical quality. The select devices (GSL and SSL)
are processed together with the floating gate cells and consequently use the TOX
as the gate dielectric. The select transistor gate length is typically in the range of
150–200 nm. To obtain a real transistor for the select devices, the word line layer
is connected to the floating gate layer. This contact is made by removing the ONO
IPD in the middle of the select transistors prior to the CG poly-Si deposition (see
Fig. 5.3d).

The complete process of a floating gate NAND technology is typically based on
30–40 lithographic mask steps and includes 2 poly-Si and 3 metal levels. To obtain
the highest memory density in each technology generation, typically 3 levels are
structured in the most advanced technology node. The levels of advanced feature
size are active area/STI, word line and bit line. The bit line is either done in the first
or second metal layer. There are some more process steps with stringent lithographic
requirements, such as the contacts to the bit line, but also the source contacts, the
CG to FG contacts in the select devices, and others.

5.2.2 The Floating Gate Cell Capacitive Coupling Model

It was described that floating gate NAND cells are arranged in strings with up to 64
memory cells in actual NAND technologies. However for the basic understanding
of the floating gate cell functionality it is necessary to look at a single FG cell first.

Since the floating gate is isolated from the active control gate, all voltages for
operation of the memory cell need to be capacitively coupled to the floating gate. In
principle, the floating gate cell forms a capacitive voltage divider which is typically
described with the aid of the FG cell capacitive coupling model [3] as shown in
Fig. 5.4.
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Fig. 5.4 Capacitance model
of a floating gate memory
device

It describes the voltage of the floating gate as a function of the other terminals of
a FG cell. These terminals are typically source (VS), drain (VD), the bulk terminal
(VB), the control gate (VCG), and a number of other (parasitic) terminals. All these
terminal voltages are capacitive coupled to the floating gate. The floating gate
voltage can be written as

VFG D ˛G � VCG C ˛S � VS C ˛D � VD � CTOX

CT
� §S C QFG

CT
C
X

˛other � Vother:

(5.1)

The gate coupling ratio ’G in Eq. (5.1) is an important factor and is defined as

˛G D CCG
CT
: (5.2)

CT is the total capacitance and is given by

CT D CCG C CTOX C CS C CD CPCother: (5.3)

The sum of Cother contains all other terminals which couple to a specific floating
gate and represent neighboring bit and word lines or neighboring floating gates.
The capacitive components in the sum are traditionally small compared to the other
terms, but gain significantly in importance when floating gate cells are scaled to
feature sizes below 50 nm [4].

The gate coupling ratio ’G describes the portion of the voltage applied between
the CG and the channel that drops across the TOX. For grounded source, drain, bulk,
and other terminals during program operation, the floating gate voltage is given by

VFG D ˛G � VCG: (5.4)

A control gate voltage VCGD 20 V in combination with a gate coupling ratio
of ’GD 0.6 results in a voltage drop of VFGD 12 V across the tunnel oxide.
Consequently, the CG voltage is concentrated on the tunnel oxide, when a high
CCG to CT ratio and therefore a high ’G can be realized.
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Under such coupling conditions, the requested floating gate cell operation can
be obtained, where charge is only transferred between the channel region and the
floating gate.

The FG voltage formulation Eq. (5.1) and ’G formula in Eq. (5.2) were described
in [5] and only take into account the voltage drop across the tunnel dielectric (across
COX). It does not consider the voltage drop in the Si substrate (across CSi) [6].

The source and drain coupling ratios have the same form as the ’G expression
Eq. (5.2) and are given by ’SDCS/CT and ’DDCD/CT.

The capacitive coupling model and Eq. (5.1) also yield the formula for the
floating gate cell threshold voltage shift �Vth caused by charge stored on the
floating gate. The threshold voltage shift is in principle the voltage increase which
is necessary at the control gate to compensate the floating gate charge induced field
effect. Therefore, it is the additional CG voltage for resuming the floating gate
voltage that would be present without the FG charge and results in a defined TOX
field which is necessary to invert the memory cell channel. For constant potentials
at source and drain during the read operation, Eq. (5.1) can be rearranged to

�Vth D �VCGj�VFGD0 D ��QFG
˛G�CT

D ��QFG

CCG
: (5.5)

This means that for an optimized high gate coupling ratio value and a given
threshold voltage shift, the number of stored electrons is increased (which is
beneficial for charge retention). The required high CCG value can be either obtained
by a large coupling area between the CG and the FG, (the previously described CG
wrapped around the FG), or a reduction in the electrical IPD thickness.

The effect of the latter option on the ability to program and erase floating gate
cells will be discussed in the following section.

5.2.3 Program and Erase of a Single Floating Gate Cell

Floating gate cells in NAND applications are programmed and erased by the Fowler-
Nordheim (FN) tunneling mechanism [7]. This quantum mechanical tunneling
mechanism is based on a strong electric field across the tunneling barrier of the
TOX. The electric field across the typically 8 nm thick tunnel oxide causes a band
distortion. The induced FN tunneling current has a strong electric tunnel oxide
field (ETOX) dependency. The FN current density changes over several orders of
magnitude and is the result of a significant reduction in the effective tunneling
distance xt, as shown in Fig. 5.5 and its inset.

The Fowler-Nordheim tunneling current density is given by

JFN D At � E2ox � exp
�
� Bt

Eox

�
; (5.6)

with the two tunneling constants At and Bt which are given by
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: (5.7)

In Eq. (5.7), q is the electron charge, me and m* the mass of the electron and the
effective electron mass in the SiO2, h is Planck’s quantum andˆB the tunnel barrier
height between Si and SiO2. The Fowler-Nordheim tunneling current density for a
8 nm thick Si02 tunnel dielectric with an exponential dependence on the electric
oxide field Eox is shown in Fig. 5.5.

Significant amounts of charge are transferred during a program pulse typically
shorter than 1 ms, where the TOX electric field is in the strong Fowler-Nordheim
tunneling regime above 10 MV/cm. Such strong oxide fields reduce the effective
tunnel distance xt of the triangular barrier to values below 3 nm as shown in Fig. 5.5.

When a floating gate cell is intended to be programmed to a certain Vth state, this
is typically accomplished by the so-called “incremental step pulse programming”
(ISPP) scheme [8]. To reach a targeted cell threshold voltage, programming pulses
with durations in the range of tppD 100 �s are applied with increasing pulse
amplitude. Each programming step is followed by a sense operation to evaluate
whether the target Vth has already been reached. The increment of program pulse
voltage steps depends on the required accuracy of the programmed Vth value.
Therefore, the program step voltage directly affects the cell Vth distribution width
in a memory array with large numbers of cells [9].
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Fig. 5.6 Band diagram of a floating gate cell with tTOXD 8 nm, an ONO IPD of 4/4/4 nm and a
gate coupling ratio ’GD 0.6 for the program voltages VCGD 8 V, VCGD 18 V, and VCGD 26 V
after the program charge transfer, if applicable (compare Fig. 5.7). For VCGD 8 V, the tunnel oxide
field ETOX is too low for electron injection through the TOX. For VCGD 18 V, charge is injected
into the FG until ETOX is reduced to 12 MV/cm (shown here), the threshold program field. For
VCGD 26 V in the assumed simplified model, the FG charge increases until the electric fields in
the TOX and the IPD suboxide equal each other. The FG charge remains constant in principle,
but a strong tunneling current continuously passes through the hole FG stack and would in reality
cause significant damage

For a relatively low programming voltage of only VCGD 8 V at the beginning
of the ISPP sequence, this voltage is divided between the tunnel oxide and the IPD
according to the gate coupling ratio ’G. The band diagram of a floating gate cell for
such a small voltage is shown in Fig. 5.6. However, for the assumed values ’GD 0.6
and IPD layer thicknesses of O/N/OD 4 nm/4 nm/4 nm, no significant amount of
charge is transferred to the floating gate, since the TOX field is only 6 MV/cm (see
Fig. 5.7). The assumed ONO layer thicknesses of 4 nm for each layer are already
very small values as similarly used in state-of-the-art floating gate NAND Flash
technologies in the range of 25 nm [10, 11]. Due to the exponential field dependency
of Fowler-Nordheim tunneling, programming starts at a certain program threshold
voltage which is equivalent to a fixed threshold electric TOX field. For the threshold
field conditions a significant amount of charge can be injected into the FG within
the short program pulse time of typically tppD 100 �s. A typical value for the
program start or threshold field is in the range of 12–13 MV/cm and depends on the
process of the tunnel oxide formation which can influence the oxide barrier height.
In addition, factors like the TOX thickness profile and the STI edge shape can affect
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Fig. 5.7 Electric field condition in the tunnel oxide (ETOX) and the IPD suboxide (ESubOx) during
ISPP programming of a floating gate cell with tTOXD 8 nm, ’GD 0.6, and ONO IPD layer
thicknesses of 4 nm each for the suboxide, the silicon nitride and the top oxide. Programming
with an ideal ISPP slopeD 1 takes place until ESubOx at the end of programming equals the TOX
electric threshold field of 12 MV/cm

this value. Due to this programming threshold field (which will be assumed to be
12 MV/cm in the following), it can be assumed that the same field strength will be
present at the end of programming. This assumption is realistic because at a constant
programming voltage, negative charge (electrons) is transferred to the floating gate
as long as the additional charge has reduced the electric TOX field (Eq. (5.1)) to
such an extent, that no more significant charge transfer can take place.

For the described exemplary FG cell configuration used for Fig. 5.6 and Fig. 5.7,
programming with no significant IPD current takes place in the CG voltage range
between VCGD 16 V and VCGD 22 V. The ISPP slope in this VCG range is
essentially at unity [2]. At around VCGD 22 V and beyond this CG voltage value it
can be observed that the TOX and the IPD suboxide electric fields equal each other.
This results in an electron tunneling to the FG and at the same time an electron
tunneling out of the FG towards the CG. For an IPD purely consisting of SiO2, the
same fields in TOX and IPD would result in the same currents tunneling into and
out of the floating gate, which results in program saturation.

For an ONO IPD with additional SiN layer, charge can be injected into the SiN
layer and will be stored in this layer as in a charge trapping memory cell storage
layer. The charge injected and trapped in the ONO increases the effective barrier
height [12] (compare Fig. 5.16b) and is therefore able to block weak and leaky
spots of the ONO IPD by this means. This is one reason why an ONO IPD is
generally used.



88 M.F. Beug

Fig. 5.8 Effect of FG cell geometrically increased gate coupling ratio ’G on program saturation.
The TOX thickness tTOXD 8 nm and the ONO layer thicknesses (tSubOx/tSiN/tTopOxD 4/4/4 nm) are
unchanged

However, the electrons injected and finally stored in the ONO IPD beyond the
program saturation starting point cause a permanent FG memory cell threshold
voltage shift [10]. In addition to the stored charges, a large current is transferred
through the whole FG cell stack from the channel towards the control gate
which will substantially damage the memory cell. These large permanent currents
become clear when looking at the strongly reduced TOX and IPD suboxide xt for
VCGD 26 V in Fig. 5.6.

By equating the electric fields in the TOX and the IPD suboxide, a simple model
for the onset of program saturation can be derived [13].

Finally, an expression for the maximum reachable programmed threshold voltage
(program saturation point) can be obtained, which is given by

Vth;max D 12 MV

cm
�
�

tTOX C tIPD � EOT � tTOX

˛G

�
(5.8)

It can be seen from Eq. (5.8) that in principle a thick tunnel oxide and a
large equivalent oxide thickness of the IPD (tIPD-EOT) are beneficial for good
programmability of floating gate cells. Also a large gate coupling ratio improves
Vth,max. However, due to the middle term in Eq. (5.7) the increase of the control gate
to floating gate area is preferred over a reduction of tIPD-EOT to obtain a large ’G.

Figure 5.8 examines the effect of an increased ’G due to cell geometry means
while keeping the TOX and IPD thicknesses unchanged.



5 NAND Flash Technology 89

It can be observed that for increasing the gate coupling ratio the initial (uncharged
FG) field difference between the TOX and IPD electric fields increases. Conse-
quently FG cells with a higher gate coupling ratio can be programmed to higher Vth

levels before program saturation occurs. The program saturation point (Vth,max) can
be found in the Vth ISPP curves in Fig. 5.8, where the ISPP slope changes from unity
to a value significantly lower than one. ISPP slopes lower than unity [14] generally
show that the combination of cell geometry and IPD current blocking ability is not
sufficient to avoid an IPD electron tunneling current during program operation.

The floating gate memory cell erase works principally in the same way, but with
control gate voltages negative with respect to the cell channel region. Consequently,
the electric field direction is reversed and the erase is mainly due to electron
tunneling from the floating gate towards the channel. Again, as described for
program saturation, the TOX erase field is reduced for decreasing erase cell Vth

values while the IPD field increases. In practice, erase saturation can in principle
also become a problem, e.g. for bi-layer high-k dielectric containing IPD options.
However, for NAND FG Flash only one single erase Vth distribution needs to
be placed in the negative Vth range which generally does not require erasing the
cells to large negative threshold voltages. For the positive Vth range the situation
is different, because for a multi-level cell (MLC), four, and for a triple-level cell
(TLC), eight different Vth distributions need to be placed, which requires at least
that a VthDC4 V can be programmed.

Consequently, program saturation is usually a more severe issue than erase
saturation.

5.2.4 Program, Erase, and Read of FG Cells in the NAND
String

When a large number of a floating gate cells need to be operated in the NAND array
it has to be taken into account that one floating gate cell is located at every crossing
point of bit lines and word lines. Therefore, the memory cells in the NAND array
cannot be operated independently of each other anymore. In the word line direction
(depending on the page size), a couple of thousand FG cells are controlled by the
same word line. In bit line direction, the string size (64–66 cells in latest NAND
generations) defines the number of cells that cannot be operated independently.
Consequently, it is very important to bear in mind what is happening with all
neighboring cells when one cell is treated. This is even more important since the
threshold voltage of each memory cell needs to be carefully adjusted as shown for
SLC and MLC cells in Fig. 5.9.

The erased Vth cell distribution is placed at negative Vth values. In an ISPP-like
sequence the erase voltage is increased until all cells are erased below the erase
verify (EV) level. The programmed Vth distributions are placed in the positive Vth

range. For a single level cell (SLC) the ISPP programming is continued until all cells
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designated for programming are above the program verify (PV) level. In the case of
multi-level cells (MLC), there are consequently three program verify levels (PV1,
PV2, and PV3). In addition, it has to be guaranteed that the margins between the
different programmed Vth distributions are large enough to place the read levels
and have sufficient margin for charge/retention loss-caused Vth reductions (see
Sect. 5.3). To obtain these kinds of narrow cell Vth distributions it is necessary to
apply a specific distribution shaping algorithm with a small program step increase
in certain stages of ISPP programming [9].

5.2.4.1 NAND Cell Programming and Self-Boosted Program
Inhibit (SBPI)

Figure 5.10 shows the voltage condition in the NAND array when the FG cell at
WL3 in BL2 is programmed. For this purpose, a program pulse with the pulse
amplitude of VppD 20 V is applied to WL3. To conduct a successful program it
is also required to transfer 0 V to the channel region of the programmed cell as
shown in Fig. 5.10i. Consequently, the 0 V potential is applied to BL2 and then
needs to be transferred to the whole string including the programmed cell at WL3.
This is done by applying the pass voltage (e.g. VpassD 10 V) to all other word lines.

In principle, all cells addressed by WL3 could be programmed by this means at
the same time. However, the programming of arbitrary information requires that
specific memory cells at WL3 are excluded from programming. The cell at the
crossing point of BL1 and WL3 represents, in this example, the cells which should
be prevented from programming (program-inhibited cell in Fig. 5.10ii). In former
FG NAND generations, programming in certain NAND strings was avoided by
actively applying a positive voltage to the corresponding bit lines. As a result, the
voltage difference between the channel and the control gate was not high enough
for programming in these strings. This procedure was complicated and the voltage
pumps used for this purpose required additional power and chip area. Therefore, in
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Fig. 5.10 Voltage conditions during program operation in the NAND array. The memory cell at
the crossing point of WL3 and BL2 is programmed; several other cells are disturbed by either
program disturb or pass disturb

later generations the so-called “Self-Boosted Program Inhibit” (SBPI) scheme was
introduced [8]. The principle of the SBPI scheme is that the channel potential in the
inhibited strings is not actively raised by applying a voltage, but capacitively raised,
as will be seen in the following.

The voltages applied to different word lines, bit lines and select devices in the
SBPI sequence are shown in Fig. 5.10. The corresponding detailed timing of the
signals at different signal lines is shown in Fig. 5.11. For a successful program
inhibit at the programmed word line an inhibit channel potential in the range of
typically 6–8 V is required. The exactly required channel potential further depends
on the maximal used programming voltages.

In the first step (t1), VCC (e.g. 3 V) is connected to the SSL and the inhibit strings
at the same time (Fig. 5.11a). This results in a pre-charge of the inhibit string to
a channel potential of Vpre-chDVCC – Vth,SSL as shown in Fig. 5.11d. During this
pre-charge of the string the channel side of the select transistor acts as the source.
Accordingly, a charging current flows until the gate-to-source voltage equals the
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Fig. 5.11 Signal timing for the self-boosted program inhibit (SBPI) scheme

threshold voltage of the select transistor. In the second time step t2, all word lines
are raised to the program pass voltage Vpass (Fig. 5.11b, c) and the channel inhibit
potential is increased by capacitive coupling. This can be done because the select
transistor is closed since the pre-charge was finished. At time t3 the word line
selected for programming (WL3 in Fig. 5.10) is raised to the full program voltage
in the ISPP sequence which further increases the channel potential to its full inhibit
voltage Vinh.

In this last step, only a small channel voltage increase is achieved which results
from the CG to channel capacitance ratio of one cell in relation to the whole cell
string. Therefore, a larger channel voltage increase can be obtained when not the
whole string is boosted, but only a few cells in the vicinity of the programmed
word line. Such an approach is called the “local self-boosted program inhibit” (local
SBPI) scheme [15, 16].

It is clear that a major part of the inhibit channel potential depends on the pass
voltage, since Vinh is partly generated by the capacitive channel boosting.

On the one hand, the ability to prevent programming at the “program disturbed
cell” (WL3 of BL1 in Fig. 5.10ii) improves with increasing pass voltage Vpass as
shown in Fig. 5.12. On the other hand, the pass cells located in a string with a
memory cell dedicated for programming (BL2) experience a soft programming
when the pass voltage is increased beyond a certain limit (pass disturbed cell in
Fig. 5.10iii).

The general effect of a pass voltage variation on a program disturbed and a pass
disturbed cell in a 48 nm FG NAND technology is shown in Fig. 5.12. Since both
effects, program and pass disturb, result in a threshold voltage increase and are
more severe on erased cells, the memory cells in Fig. 5.12 were first erased to a
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Fig. 5.12 Program and pass disturb characteristic and the resulting “pass voltage window” of a
48 nm floating gate cell in the NAND array

threshold voltage below VthD�4 V before the program and pass disturbs could
be measured. In addition to the pass voltage pulse amplitude value, the number of
disturbing pulses is very important for the disturb strength. The determining factor
here is the number of program operations (NOP) carried out at each word line [18].
In the example given in Fig. 5.12, the operation of a FG memory cell used in MLC
mode was chosen which results, e.g., in NOPD 10. This is because every word line
is logically divided into different pages which need to be separately programmed.
Finally, a NOPD 10 results in approximately 100 program pulses with the highest
program voltage assumed for the slowest cell in programming and about 5000 pass
voltage pulses, because each of the 64 cells in the string needs to be programmed.

It can be observed that the selection of the pass voltage results in a trade-off
between program and pass disturb. Generally it needs to be guaranteed that the Vth

of all erased cells remains (with a certain margin) below VthD 0 V.
Therefore, a “pass window” with suitable pass voltages could be determined at

the level VthD�1 V. The optimum for the trade-off between program and pass
disturb can be found in Fig. 5.12 slightly below VpassD 10 V.

5.2.4.2 Erase and Read of FG Cells in the NAND String

The advantage of the NAND Flash erase operation is that a whole erase block is
erased at once. The voltage conditions during erase are shown in Fig. 5.13. All
word lines are at ground potential (VCGD 0 V) and the erase voltage is applied to
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Fig. 5.13 The erase of floating gate cells in the NAND array is carried out in electrically separated
erase sectors. By applying a positive voltage (e.g. VBD 18 V) to the well of the erase sector, all
cells are erased at the same time

Fig. 5.14 Read operation in the NAND flash array

the well of the erase block. Very important during erase is that the select transistors
as well as the bit line and the source line are left floating. For this purpose, the
usually grounded source line needs to be disconnected from the ground potential.
By this means, the source line and the bit line, and to a certain extend the select
transistors, can follow the bulk potential, and large currents into the source line and
the bit line are avoided. Due to the improved coupling when the same voltage is
applied to all cells, the voltage difference between the control gate and the channel
required for erase (e.g. VBD 18 V) is lower than the programming voltage. The
erase operation is successful when all cells in the erase block are erased below the
EV level as described above.

The read operation in the NAND array is carried out word line by word line.
For a current sensing read scheme the bit line which is selected for read operation
(BL2 in Fig. 5.14) can be set to the read voltage (e.g. VBL2D 1 V). For a SLC read
operation the word line at the read cell is set to 0 V, while typically 5 V are applied
as read pass voltage for all other word lines.
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By this means it can be detected if the cell at WL3 in the string of BL2 is in
the programmed or erased cell. It is clear that for reading one cell, the read current
needs to flow through all cells in the 64 cell string and that only one cell in the string
can be read at a time.

It needs to be mentioned that also the read pass voltage of only VrpassD 5 V can
result in a change of the threshold voltage (read disturb [19]) when only the number
of read operations is high enough. For SLC FG NAND cells it is assumed that 106

read operations with 15 �s durations need to be guaranteed without read fails. This
results in a total disturb time of about 15 s. Again, erased cells are most susceptible
to read disturb as described before for program and pass disturb.

5.3 Reliability of Floating Gate NAND Memory Cells

The reliability of FG NAND Flash memory is one of the most important criteria,
since typically 10 years of charge retention and 1 k to 100 k program/erase cycles
need to be guaranteed for a NAND Flash product chip.

In Fig. 5.15, a typical charge retention requirement is shown. It needs to be
guaranteed for a successful read-out of the stored information that the programmed
Vth (above the PV level) is not decreased more than 10% over the product relevant
time period of 10 years.

In principle, there are multiple leakage paths which can lead to a loss of the
programmed floating gate electron charges as shown in Fig. 5.16a. The electrons can

Fig. 5.15 Charge retention of an FG cell. A certain amount of charge loss needs to be tolerated
(e.g. 10% Vth loss over the time period of 10 years)
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Fig. 5.16 Possible leakage path for charge loss from the floating gate (a). Tunnel oxide damage
due to program/erase cycling and the resulting stress-induced leakage current (SILC) are usually
the main reasons for retention loss (a), (b). Negative trap charge built up over cycling additionally
induces a barrier distortion which results in an increased tunnel barrier (b) [12]

be lost through the IPD towards the control gate (IIPD-leak) or leak through the cell
side wall oxide (SWOX! ISW-leak) and the inter-word line oxide (IWD! IIWD-leak)
to the cell junction area.

However, the most severe charge loss component of an optimized floating gate
cell process is the leakage through the TOX (ITOX-leak). This is not only because
the TOX is physically the thinnest dielectric layer which holds the electrons on the
floating gate, but there are additional processes which cause wear of the FG cells.
As shown in Fig. 5.16a, b, the charge transfer during program and erase generates
electric states in the TOX (and the TOX should be the only dielectric where charge
is transferred, as previously discussed) which are called oxide traps. These traps
are broken bonds of the atoms in the oxide matrix due to the electron tunneling
processes [20]. The density of traps in the tunnel oxide consequently increases with
the number of program/erase cycles which cause so-called oxide stress. The traps
in the TOX barrier can act as stepping stones when floating gate electrons leak via
a trap-assisted tunneling process towards the cell channel region. The probability
of this trap-to-trap tunneling (called stress-induced leakage current, SILC) [21] is
much higher than a direct tunneling process through the whole TOX thickness. The
reason is that the effective tunnel distance of each tunneling step is significantly
reduced for the SILC.

The TOX trap generation during the product lifetime and the corresponding
SILC is the reason for a general TOX thickness scaling limitation in floating gate
cells [22]. Therefore the TOX cannot be scaled below 8.0–7.5 nm. To understand
this TOX thickness limitation in more detail we need to determine the oxide
electric field, or alternatively, the oxide voltage during retention conditions, which
is given by

VFG;Ret: D ˛G ��Vth;prog; (5.9)
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Fig. 5.17 Leakage current density through the tunnel oxide of an FG cell under retention
conditions for different TOX thicknesses [22]

where ’g is again the gate coupling ratio and�Vth,prog. is the programmed threshold
voltage shift as shown in Fig. 5.15. For assumed values of �Vth,prog. D 4–5 V
and ’gD 0.6, the TOX voltage under retention conditions is about 3 V. The
second criterion of interest is the acceptable leakage current for the 10-year charge
retention.

The number of stored floating gate electrons in a 50 nm FG NAND technology
for a threshold voltage shift of �VthD 4 V is about 600 (the exact number will be
discussed in Sect. 5.4.4). The 10% loss criterion over the time period of 10 years
results in a tolerable loss of one electron every two months (or a leakage current of
3E-26 A). Converted to a current density this is equivalent to 1E-15 A/cm².

Figure 5.17 shows the Fowler-Nordheim leakage current densities for TOX
thicknesses of 6 nm, 8 nm, and 10 nm as a function of the TOX voltage. It
can be seen that for an unstressed TOX and the estimated TOX retention voltage
VFG,RetD 3 V and current criterion, a tunnel oxide thickness of 6 nm would
be sufficient. However, 2 nm additional TOX thickness is required to fulfill the
retention criterion for a damaged TOX with trap-to-trap SILC leakage as discussed
above.

Figure 5.18 shows the endurance of FG cells in a 48 nm NAND technology. All
program and erase cycles were carried out with unchanged program and erase cycle
voltages of VCG,progD 23 V and VeraseD�19 V for the indicated pulse times. For
low cycle numbers the Vth window is slightly increases, whereas for higher cycle
number above 300 cycles the Vth window closes. Furthermore, a general Vth upward
shift is visible.
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Fig. 5.18 Program/erase cycling endurance of a FG cell in a 48 nm NAND technology

This behavior can be explained with positive charge trapping at low cycle counts
which leads to a reduced TOX barrier and negative charge trapping which results in
an increased barrier height (see Fig. 5.16b) at higher cycle numbers.

For a reduced tunneling barrier, more electrons can be transferred through the
TOX for unchanged program and erase voltages, whereas for an increased barrier
this number of transferred electrons is reduced. Additionally, the fixed negative
charges which are generated in the TOX for higher cycle counts generally increase
the cell Vth. In the case shown in Fig. 5.18, the erased cell Vth is shifted by one
volt after 10 k program/erase cycles. Besides the increased retention problem for
higher cycle numbers due to trap generation, the window closing and the general
Vth upward shift will result in increased pulse voltages, especially for erase.

5.4 Scaling of Floating Gate NAND Memory Cells

The NAND Flash memory scaling of the last 15 years was accomplished by reduc-
ing the cell dimensions, whereas the cell construction principle was unchanged. The
effective cell size of NAND Flash in 1995 was in the range of 1 �m² which resulted
in a product chip memory capacity of 32 Mb [8]. In 2010, the cell size was reduced
to 0.0028 �m² [10] with a chip capacity of 64 Gb. This strong reduction of the cell
geometry leads to scaling issues which are discussed in the following.
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Fig. 5.19 Bit line pitch scaling limitation for the typical control gate to floating gate enhanced
coupling area FG NAND cell. To fit two times the IPD thickness plus the poly plug (a) with an
assumed minimum width of 10 nm, the active area (AA) width can be reduced below the half pitch
F to clear a space for the CG plug (b)

5.4.1 Scaling of the Floating Gate Cell Geometry

As described in Sect. 5.2.3, it is very important for a programmability of floating
gate cells to have an enhanced control gate to floating gate area by a control gate
which is wrapped around the floating gate. However, this requires a certain space
between adjacent floating gates, since this space needs to fit two times the IPD
thickness plus the poly plug. Depending on the FG NAND ground rule (or half
pitch F), this has some implications for the remaining control gate plug width as
shown in Fig. 5.19a.

Figure 5.19b shows the remaining control gate plug width as a function of the
bit line half pitch F. To obtain more space for the control gate plug, the width
of the floating gate can be reduced with respect to the space between the floating
gates as done in the latest FG NAND generations [23], [24]. The space between
adjacent floating gates consequently becomes wider, as indicated in Fig. 5.19a.
Additionally, the physical IPD thickness can be reduced. These two options are
combined in Fig. 5.19b with the result that for an FG width of 0.6 F and a physical
IPD thickness of only 8 nm a control gate plug width of 10 nm can be realized down
to a bit line half pitch of 20 nm. Due to this bit line pitch scaling limitation it can
be observed in the latest FG NAND technology generations that the bit line pitch is
less aggressively scaled than the word line pitch [10, 11, 23].

In case of very narrow control gate plugs, it may be that the poly-Si doping level
in the CG plug cannot be maintained sufficiently high. This would result in poly-Si
depletion and consequently in an electrically inactive CG plug. An alternative could
be a metal control gate material as presented in [2].
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Fig. 5.20 Floating gate NAND cell scaling: The requirement for a continued reduction in the
floating gate cell dimensions in combination with a high gate coupling ratio leads from the typical
ONO IPD cell with a control gate wrapped around the floating gate to a high-k containing IPD,
and finally due to the lack of space for the control gate plug to a planar floating gate cell

Continued scaling of floating gate NAND cells (see Fig. 5.20) in combination
with a sufficiently high gate coupling ratio requires efforts to reduce the electrical
IPD thickness (EOT). One option to do so is the introduction of high-k dielectrics
in the IPD stack. However, at a certain floating gate NAND technology node there
won’t be sufficient space for the control gate plug, which automatically leads to a
planar floating gate cell as shown in Fig. 5.20.

It was discussed in Sect. 5.2.3 that for insufficiently high gate coupling ratios
together with an electrically thin IPD, tunnel currents can flow through the IPD
during the program and erase conditions. The IPD leakage results in degraded
program and erase behavior, visible in reduced ISPP and erase slopes [25].
Consequently, a fully planar floating gate cell with ONO IPD cannot be programmed
and erased in the traditional manner where charge is transferred through the tunnel
oxide only. Even an IPD layer combination of SiO2 and high-k or a pure high-k IPD
layer is problematic with respect to program/erase saturation [13].

A possible way out of the planar floating gate cell scaling dilemma may be a dual
layer floating gate as proposed in [26]. Figure 5.21 illustrates the advantages of a
dual layer floating gate with an n-doped poly-Si bottom part (adjacent to the tunnel
oxide) and a high work function metal layer on top (adjacent to the high-k IPD) with
respect to program and erase saturation.

Figures 5.21a, b shows the conditions during program operation. The n-poly-Si
floating gate in Fig. 5.21a has the problem of the insufficient effective IPD barrier
which does not provide sufficient current blocking margin to program the cells to
high Vth levels. The situation is improved by the introduction of the high work
function metal gate layer, as shown in Fig. 5.21b, where the barrier height and
the effective electron tunneling barrier (shadowed area) is significantly larger. The
advantage of the dual layer floating gate under erase conditions and why simply a
single layer high work function metal FG cannot replace the poly FG are illustrated
in Fig. 5.21c, d, respectively. The single layer metal floating gate has a larger
barrier between the FG and TOX which would hinder the erase when electrons are
tunneling out of the FG towards the channel region (Fig. 5.21c). Consequently, a
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Fig. 5.21 Field improvement in planar floating gate cells and how program and erase saturation
can be avoided by the usage of a dual layer FG structure [26]

higher erase voltage would be necessary with the even more problematic effect that
at the same time electrons tunnel from the control gate to the floating gate (electron
back tunneling) and cause erase saturation. This electron back tunneling will be seen
in Sect. 5.6 to be one of the major issues of charge trapping memory cells, but is
less problematic for the dual layer FG as seen in Fig. 5.21d.

5.4.2 Floating Gate Cell Cross-Coupling

Another general problem for floating gate NAND cells in technology generations
below 50 nm is the cell-to-cell cross-coupling. This effect is the direct coupling from
one floating gate to the nearest neighboring floating gates as shown in Fig. 5.22.
It is clear that this direct coupling increases for reduced dimensions since the cells
move closer together and therefore the relative coupling capacitance increases. Most
significant is the FG to FG coupling in the direction along the bit lines (y-direction
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Fig. 5.22 Floating gate
cross-coupling in scaled
NAND Flash
technologies [27]

in Fig. 5.22). This is because the floating gates are directly face each other with
the full FG height and full FG width in this direction. Consequently, CFG,y is the
largest of the FG to FG coupling capacitance terms. In the direction along the word
lines (x-direction), parts of the FG to FG coupling are screened by the control gate
plug and therefore CFG,x is typically smaller than CFG,y. To minimize the coupling
capacitance in x-direction it would be beneficial to have a very deep position of the
CG plug, ideally down to the STI level, which would mean a complete screening in
x-direction. However, the full programming voltage drop between the control gate
plug and the channel limits the minimum CG plug to channel distance. The diagonal
coupling components CFG,xy and CFG,yx are typically the smallest ones.

In cell programming schemes, where even and odd bit lines are programmed
separately (because they belong to different logical pages), the programming of
a cell can change the threshold voltage of a directly neighboring cell which was
already programmed. This effect is called floating gate cross-coupling or floating
gate interference [27].

The cell-to-cell coupling potentially leads to a decreased gate coupling ratio
since all increased capacitance terms from FG cross-coupling are added in the
denominator of the gate coupling ratio Eq. (5.3). Therefore, the gate coupling ratio
decreases at least in the case where the floating gate cell dimensions are scaled
proportional to the technology node, while TOX and IPD thicknesses are kept
constant.
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Fig. 5.23 Gate coupling ratio (a) and threshold voltage shift (MLC shift) due to the programming
of five directly neighboring cells (b) by a �Vth,progD 5 V as a function of cell technology
generation. For each point, the floating gate height and the IPD EOT value (e.g. 2 F/11 nm) are
given. The floating gate width is 1 F for each technology node and the TOX thickness is always
8.5 nm

This behavior can be seen in the lowermost curve of Fig. 5.23a obtained from 3D
simulations with a commercial field solver [28]. It can be seen that for a constant
IPD EOT of 11 nm in combination with a floating gate whose height is two times
the width (widthDF, heightD 2 F in points A, B, and C), the gate coupling ratio
decreases from 0.63 in the 50 nm technology node to only 0.52 in the 30 nm
technology. A slight gate coupling ratio improvement can be seen for an increased
floating gate height to width ratio with decreasing half pitch in the middle curve
(points A, D, and E) of Fig. 5.23a. A slightly increasing ’g for smaller dimensions
is only obtained here for an increased FG height to width ratio in combination with
a decreased IPD effective thickness (points A, F, and G).

However, in Fig. 5.23b, it is apparent that all efforts to keep the gate coupling
ratio value high do not significantly improve the Vth shift due to neighboring cell
programming in conventional cell programming schemes. For the simulation of the
depicted�Vth MLC shift it is assumed that five neighboring cells influence the Vth

of each ready programmed cell in worst case, as indicated in the inset of Fig. 5.23b.
In detail, this five cell consist of two neighboring cells in word line direction, two
diagonal cells, and one directly neighboring cell in bit line direction, resulting
from an assumed conventional word line by word line programming scheme for
serial even and odd bit line addressing. In the NAND chip layout belonging to the
serial WL programming of even and odd bit lines the serial treatment is necessarily
performed, since two neighboring bit lines share one single sense amplifier for
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reading the Vth state during ISPP programming. The cross-coupling capacitance
terms were again taken from the 3D field simulations, and for the depicted MLC
shift it is assumed that all five cells are programmed by a�VthD 5 V. This would be
the threshold voltage shift for erased FG cells which are programmed to VthD 4 V.

The fact that for conventional programming schemes the simulated MLC shift at
30 nm cannot be reduced below 500 mV leads to the conclusion that at a certain
point in shrinking the FG NAND Flash dimensions the program algorithm needs
to take care of the floating gate cross-coupling issue. The strategy is simply to
reduce the number of neighboring cells that are programmed after reaching the final
programming target Vth of each cell, in combination with a reduction of the amount
these neighboring cells increase their Vth.

One component for reducing the unwanted FG cross-coupling is the all bit line
(ABL) architecture, where each bit line has a separate sense amplifier and therefore
all bit lines can be programmed at the same time.

Together with the improved program algorithm with respect to the order in which
the cells are programmed, it was possible to master FG cross-coupling even for three
bit per cell (TLC) and four bit per cell (XLC) technologies [11, 29, 30].

5.4.3 Word Line to Word Line Leakage Current

The reduced cell–to-cell distances with scaled dimensions also cause strongly
increased electric fields between neighboring word lines during program operation.

The WL-to-WL voltages during erase are uncritical because all cells are erased
at the same time and therefore all word lines are at the same potential.

High WL voltage differences during program operation are even more critical
since the programming voltage does not scale or rather increase slightly, as
described above. As a result of the strong electric fields between word lines,
electrons can tunnel from a programmed floating gate to the control gate that is
on the high program voltage Vpgm [31] or generally introduce WL-to-WL leakage
currents as shown in Fig. 5.24. The electric field strength in an assumed SiO2 IWD is
shown for different WL-to-WL distances as a function of the WL difference voltage
in Table 5.1.

Generally speaking, electric fields up to 4 MV/cm can be handled with deposited
oxides as the IWD with sufficient reliability. The field range above 4 MV/cm
becomes critical, but the range of 8 MV/cm and above is already in the Fowler-
Nordheim tunneling regime for a thermally grown oxide which would not allow a
reliable operation anymore.

Options to reduce WL-to-WL leakage by use of a special program algorithm
would include limiting the difference voltage between adjacent word lines. This
could be accomplished with a specific handling of the word lines close to the
program word, similar to the individual word line treatment in local program inhibit
schemes [16]. However, effectively increasing the pass voltage at the cells adjacent
to the programmed cell will adversely affect the pass disturb.
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Fig. 5.24 The voltage
conditions during the
program operation can cause
a leakage current between
neighboring word lines or
from an already programmed
FG to the actually
programmed WL

Table 5.1 WL-to-WL IWD (SiO2) electric field in MV/cm as a function of the
voltage and the distance between different word lines. The light grey shaded WL-
WL distance and voltage combinations represent electric IWD fields above the usual
4 MV/cm operation conditions. The dark grey shaded electric IWD field range above
8 MV/cm represent very high values in the Fowler-Nordheim tunnelling regime (see
Fig. 5.5)

5.4.4 Number of Stored Floating Gate Electrons

When the dimensions of floating gate cells are scaled down, also the number of
floating gate electrons needed for a certain threshold voltage shift �Vth is reduced.
On the one hand, this reduced number of stored floating gate electrons is critical
for reliability and charge retention because the loss of one electron has increasing
impact on the cell Vth loss. On the other hand, the charge granularity of single
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Fig. 5.25 Number of electrons as a function of the technology node F. To havethe programming
voltages remain similar over different technology generations, the gate coupling ratio is optimized
by means of an IPD EOT reduction and an increase of the CG-FG to TOX area ratio

electrons affects, at a certain stage, the ability to program narrow Vth distributions.
The effect is most critical in TLC or XLC NAND technologies with very narrow
Vth distributions in case one electron causes a significant threshold voltage shift.

The approximated number of floating gate electron can be derived from Eq. (5.5)
and is given as a function of the feature size F for different NAND technology
nodes by

N D CCG

e
��Vth D ©0©r

e

ACG�FG

tIPD�EOT
��Vth D ©0©r

e

AIPD=ATOX

tIPD�EOT
� F2 ��Vth (5.10)

where e is the electron charge and AIPD/ATOX is the CG-FG area to TOX area ratio.
As shown in Fig. 5.25 and discussed beforehand, this area ratio needs to be

increased in combination with a reduction of the IPD EOT value to have the
programming voltages remain the same. The shown values for the AIPD/ATOX ratio
and IPD EOT are similar to the values used by major NAND Flash manufacturers
in recent generation.

The simple planar plate capacitor approximation of Eq. (5.10) results in the
estimate of about 200 stored electrons, in case a 25 nm FG NAND cell is
programmed to �VthD 4 V above the UV level, as depicted in Fig. 5.25. The
tolerable electron loss per year for this technology node is already less than ten,
if a relaxed retention criterion compared to Sect. 5.3 with 20% tolerable Vth loss
after 5 years is assumed.

However, the general trend of the number of stored electrons as a function of
the FG cell technology node in Fig. 5.25 shows a strong reduction with reduced
dimensions.
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Fig. 5.26 Locations of
trapped charges in an FG
NAND memory cell which
cause a threshold voltage shift

Table 5.2 Electron
sensitivity of different FG
NAND Flash technology
generations

Technology 50 nm 35 nm 25 nm

QTOX,B/e 4 2 1

QTOX,T/e 9 7 4

QFG/e 18 12 10

QIPD,B/e 22 17 11

QIPD,T/e 149 103 100

QS/e 33 9 5

QD/e 61 16 10

The table indicates the number of elec-
trons required at different locations in an
FG cell for a 100 mV threshold voltage
shift as determined by TCAT simulations
in [10]

A similar consideration based on TCAD simulations was carried out and
presented in [10]. The result of the number of electrons stored in different FG cell
locations (see Fig. 5.26) that cause a threshold voltage shift of �VthD 100 mV
is shown in Table 5.2 for 50 nm, 35 nm, and 25 nm technology generations. The
number of electrons required for a �VthD 4 V shift in a 25 nm technology taken
from these values is 400 and therefore two times higher than the estimate of Eq.
(5.10), but the trend over different technology generations is the same.

Table 5.2 indicates that especially electrons stored in tunnel oxide traps which are
generated during program and erase operations cause higher Vth shifts per electron
than electrons in the FG. Therefore, uncontrolled electron storage in the TOX can
be a significant issue as discussed in the following section.

5.4.5 Random Telegraph Noise

Random telegraph noise (RTN) can be observed in different types of field effect
devices and can be explained by electron capture and emission processes in oxide
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Fig. 5.27 Random telegraph noise of 48 nm FG cells in a NAND string configuration. The
variation in the string current (a) due to charging and discharging of one oxide trap in the channel
region can be converted by the string transfer curve (b) into a Vth variation (c)

traps close to the channel of a MOSFET device [32]. As mentioned previously, the
same process can take place in the TOX of a floating gate NAND cell [33, 34].

Figure 5.27 shows RTN measurements in a 32 cell string of a 48 nm FG
NAND technology. Operated in the sub-threshold region, the drain current of the
investigated cell (or the string current) shows a characteristic two level Id signature
as shown in Fig. 5.27a. The two level signature and the time constants for capture
and emission in the second range indicate that a single tunnel oxide trap about
1–2 nm from the channel/TOX interface [35] is charged and discharged by direct
tunneling.

With the aid of the string Id – VWL transfer curve in Fig. 5.27b, the current signal
can be converted into a threshold voltage shift �Vth as depicted in Fig. 5.27c. The
resulting RTN amplitude is about 70 mV and in this case higher than expected from
the TCAD simulations [10] in Table 5.2.
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However, for scaled dimensions the RTN threshold voltage shifts can cause read
fails, which is even more significant for MLC and TLC functionality with small
distances between Vth distributions.

5.5 Shrinking the Floating Gate NAND Technology Beyond
the Direct Optical Lithography Limitation

The effects of scaled dimension on the functionality of floating gate NAND cells as
described in the last section are one aspect of the shrinking issues. Another aspect
is the generation of the extremely small structures in NAND Flash memory cells
which currently arrived in the sub-20 nm range [23].

This development of the feature size or critical dimension (CD) is even more
impressive, because the size of actual cell structures is one order of magnitude
smaller than that of the 193 nm wavelength of the ArF laser which is used for
illumination.

To understand the challenge to generate such small structures, Fig. 5.28 shows the
CD development of the NAND Flash technology half pitch and the used lithography
wavelength since 1996.

At the end of the 1990s, the NAND Flash CD in the cell array was close to the
lithography wavelength. However, since the 193 nm was the last reduction of the

Fig. 5.28 NAND Flash technology generations and lithographic resolutions
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wavelength used as a light source for lithography, the gap between the NAND Flash
technology node and the lithographic wavelength has been increasing since then.

The ability of a lithographic system to generate a minimum CD is described by

CD D k1
�

NA
(5.11)

where k1 is a constant, œ is the wavelength, and NA is the numerical aperture of
the optical illumination system. For a single exposure, dry 193 nm lithography
with optimized illumination conditions with, e.g., k1D 0.28 in combination with a
numerical aperture in the range of NAD 0.93, the minimum CD is limited to values
slightly below 60 nm [36].

With the introduction of immersion lithography with a liquid on top of the wafer
during illumination, the NA could be improved to 1.35, which is also the reason
why the 193 nm immersion lithography wavelength is shown in Fig. 5.28 “virtually”
reduced by this factor. The smallest achievable half pitch for single exposure 193 nm
immersion lithography is therefore about 38 nm [37].

To bridge the gap to extreme UV (EUV) lithography (see litho gap in Fig. 5.28),
which is currently not expected to be available for industrial volume production
before 2013, the semiconductor industry introduced special process sequences to
generate small structures that cannot be obtained by single exposure direct printing.

For logic circuits, such as microprocessors, it is usually sufficient to generate
the required small gate length by a trimming of larger lithographically generated
structures. The required short gate length in logic circuits can therefore be obtained
by tapered trim etch processes.

In memory products such as DRAM or NAND Flash it is not the small memory
cell structure itself that is important, but the high memory cell density. Besides, the
memory cell arrays have the great advantage that the basic structure consists of a
very regular line and space pattern, which can be printed more easily than complex
state-of-the-art SRAM structures.

Consequently, it is necessary to generate additional features that cannot be
directly printed by lithography.

Most common for NAND Flash memory are process sequences which generate
two smaller lines with a corresponding space out of one larger line that can be
printed lithographically. This kinds of process sequences which basically make two
lines out of one are known as self-aligned double patterning (SADP) [38, 39], or
sometimes pitch fragmentation [28]. The typical SADP approach is schematically
shown in Fig. 5.29.

The starting point is a multiple layer stack of CVD-deposited materials like a-Si,
Si3N4, SiO2, and carbon hard masks which can be selectively etched to each other.
Double patterning starts with a directly printed equal line and space pattern which
has two times the half pitch of the final structures (Fig. 5.29a). For a 20 nm target
half pitch, the initial line and space half pitch consequently would be 40 nm. With
the aid of the tapered trim etch process, this pattern is transferred to the underlying
layer with a line width half of the initial line. Subsequently, a conformal liner is
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Fig. 5.29 Schematic double patterning sequences line-by-spacer (LBS) (i) and line-by-fill (LBF)
(ii) [28]. The line width of an equal line and space pattern (a) is reduced by a trim etch process and
a conformal liner is deposited (b) in order to generate spacer (c) of the same width as the trimmed
lines. In the line-by-spacer sequence the spacers are used after line removal (d) to generate the
final pattern (e), in contrast to the line-by-fill sequence where additional “fill” lines are generated
in between the spacers (f) and the carrier and fill lines are used after spacer removal (g) to generate
the target pattern (h)

deposited (Fig. 5.29b) to generate a spacer with the width of the target half pitch as
shown in (Fig. 5.29c). Proceeding from this processing stage, two different SADP
final sequences can be principally chosen. Option (i) is the so-called line-by-spacer
(LBS) sequence because it uses the generated spacer (Fig. 5.29d) to transfer the
obtained pattern into the underlying hard mask. Prior to this, the carrier needs to be
removed. The resulting hard mask structure is the equivalent of a single exposure
lithographically generated pattern at larger half pitches, which is, in turn, used for
patterning of the active chip structure as shown in Fig. 5.29e). Processing images of
a LBS SADP sequence is shown in Fig. 5.30.

Figure 5.30a shows the situation after the trim etch step with a line width one
quarter of the initial pitch. Fig. 5.30b, c illustrates the process after the spacer etch
and the carrier recess etch, where the trimmed initial line is removed. In Fig. 5.30d
the spacer pattern is transferred into the hard mask and the spacer is removed in (e).
When the small SADP-generated structures in the memory array are generated, the
close connection of every two neighboring lines needs to be etched away. This cut
etch process can be carried out together with the patterning of periphery structures
or, e.g., the select transistors as shown in Fig. 5.30f.
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Fig. 5.30 Exemplary line-by-spacer process sequence [28], [39]

The second SADP processing option (ii) in Fig. 5.29 is the line-by-fill (LBF)
sequence. Subsequent to the spacer formation in Fig. 5.29c, a material that can be
as selectively etched to the spacer (e.g. the same material as the carrier) is filled in
between the spacers. Therefore, the material is called “fill” as shown in Fig. 5.29f.
Before the spacer material in between the carrier and fill lines can be removed as
depicted in Fig. 5.29g, a chemical-mechanical planarization (CMP) process step is
needed to have a better exposure of the spacer material to the etch chemistry. In
the final step, the pattern can be transferred into the hard mask which is shown in
Fig. 5.29h.

With respect to CD variations, it should be mentioned that generally the spacer
width in SADP schemes can be better controlled than the carrier and fill width. The
spacer width variations mostly depend on thickness conformity of the deposited
spacer liner. In contrast, the carrier and fill line widths essentially depend on two
critical processes, which are the carrier trim etch and the spacer formation.

The knowledge of this different CD control can be used to guarantee a reliable
operation of FG NAND cells. It was described that the control gate plug is essential
for the gate coupling ratio and consequently for the FG cell performance.

Based on this, it is beneficial to use the LBF sequence for the one-step patterning
of the active area and floating gate width in a self-aligned STI (SA-STI) cell
approach [40] as shown in Fig. 5.31a.
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Fig. 5.31 Major variations in LBF (a) and LBS (b) pitch fragmentation sequences [28]

This choice has the major advantage that the space for the critical control gate
plug has a good controllability [28]. For the patterning of the word line level which
defines the length of the FG cells it could be beneficial to use the LBS sequence. The
consequential spacer-defined good control of the FG cell length can help to reduce
cell-to-cell Vth variations since the latest NAND cell generations are definitely in
the short channel regime which increases cell length effects.

As shown in Fig. 5.28, it is required for FG NAND technologies beyond 20 nm
half pitch to use quadruple patterning (QP) techniques [23, 37] to generate such
small structures. Quadruple patterning is essentially two times the consecutive usage
SADP with its logical consequences for the CD control of lines and spaces.

5.6 Charge Trapping NAND Memory Cells as Floating Gate
Cell Replacement

The construction of charge trapping (CT) memory cells for NAND application is
at first glance not very different from the floating gate NAND cell construction.
The major difference is that charge is stored in a non-conducting dielectric layer
with high trap density instead of the conducting floating gate. This non-conducting
charge storage layer has two major consequences:

1. The surface of the dielectric charge storage layer is not an equipotential surface
as the floating gate. The stored charge can be inhomogeneously distributed when
the injection is locally enhanced.

2. In a planar cell structure, no capacitive voltage divider can be formed to
concentrate the voltage drop and, therefore, the electric field to the tunnel oxide
as in floating gate cells (with optimized gate coupling ratio ’g).
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Fig. 5.32 Charge trapping stacks in SONOS (a) and TANOS [48] (b) memory cells

The typical layout of CT memory cells is shown in Fig. 5.32. The traditional
SONOS (poly-Si/SiO2/Si3N4/SiO2/Si) cell, as shown in Fig. 5.32a, stores the charge
in a Si3N4 (SiN) layer. SiN is widely used as the charge trapping layer (CTL) due
to its high trap density of a few times 1019 cm�3 and its good process compatibility
with Si and SiO2. Sometimes other dielectrics are used for charge storage, such as
Al2O3 [41].

CT memory cells typically have a planar cell layout and therefore resemble
planar FG cells, layout-wise. Due to the lack of an increased gate coupling ratio
it cannot be realized that charge is only transferred through the tunnel oxide during
program and erase operation. Under the Fowler-Nordheim program condition in
the CT cell the injected electron current tunnels through the whole CT stack. Only a
certain part of this tunneling current is trapped in trap states and cause a Vth increase.
The rest of the injected electron current leaves the charge trapping layer towards the
gate electrode. Consequently, the ISPP slope for CT memory cells is not at unity,
but rather in the range between 0.6 and 0.8 [42]. This tunneling current passing
the whole memory cell stack resembles FG cells in the program saturation regime
as described in Sect. 5.2.3. However, the program operation is generally not the
problem of CT cells, since usually high Vth levels (even suitable for MLC) can be
reached.

One of the major issues of SONOS memory cells is the erase. It can be observed
that the erasability of SONOS cells significantly deteriorates when the tunnel oxide
thickness is increased above 2 nm [43]. In the TOX thickness range up to 2 nm the
erase mechanism is based on direct tunneling of holes from the channel region to
the SiN CTL. For thicker tunnel dielectric layers the direct tunneling probability is
significantly reduced and for an efficient erase operation the electric field strength
needs to be increased up to the Fowler-Nordheim tunneling regime. The problem
that occurs in SONOS cells with thick tunnel oxide under FN erase conditions is
the so-called erase saturation which is illustrated in Fig. 5.33a. Under FN tunneling
conditions for holes from the cell channel, the electric field in the top SiO2 (blocking
oxide: BLOX) layer is already high enough to inject electrons from the gate towards
the storage SiN (back tunneling). These injected gate electrons compensate the
positive charge of the injected holes and stop the Vth decrease (erase saturation).
Other erase mechanisms which do not suffer from erase saturation, such as hot hole
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injection (HHI) [44], are limited to the NOR array structure where NROM-like cells
[45] are commercially available, but cannot be implemented in the NAND array.

Erase saturation in planar CT cells can be improved when a gate material with
high work function and/or a high-k blocking oxide is used, as shown in Fig. 5.33a.
A higher work function can be obtained by a p-doped poly-Si layer instead of the
n-doped poly-Si gate [46], or by the use of a high work function metal gate [47]. The
combination of both program saturation improvement approaches was the reason for
the introduction of so-called TANOS (TaN/Al2O3/Si3N4/Si) CT memory cells [48].
In the ideal TANOS image, the erase mechanism is solely due to hole tunneling
from the channel, the charge is only stored in the SiN CTL, and the Al2O3 blocking
oxide is assumed to be trap free.

However, there are several indications that the ideal TANOS image is not fully
true. Other investigations of the TANOS erase even describe that electron detrapping
from SiN traps is the predominant effect [49], as illustrated in Fig. 5.33b.

It was additionally found that the Al2O3 BLOX of the TANOS stack is not trap-
free and acts as a charge trapping layer as well [41, 42]. Consequently, detrapping
from Al2O3 traps could be another contribution to the improved erase performance
of TANOS memory cells.

The major reason why CT Flash memory cell containing NAND product chips
are to date not commercially available is the observation of a general trade-off
between erasability and retention of CT memory cells.

Assuming that detrapping is an important component for CT cell erase, this could
be principally understood since energetically deep trap levels would be beneficial for
a good retention, but hinder the erase, and vice versa.

Compared to FG NAND cells, the retention of TANOS memory cells is generally
not sufficient for MLC application. This can be seen for TANOS cells in a 48 nm
NAND Flash technology in Fig. 5.34. The TANOS cell (without sealing oxide)
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Fig. 5.34 Trade-off between erasability and retention performance for 48 nm TANOS NAND cells
with an additional SiO2 layer at the interface between the SiN charge trapping layer and the Al2O3

blocking layer [42]

shows a good erase level for VersD�23 V with a long tersD 300 ms erase pulse,
but the retention loss of nearly 550 mV after a 2 h retention bake at 200ıC is not
suitable for MLC. This high retention loss is most likely due to a combination of
electrons lost from the storage SiN due to hopping conduction over Al2O3 traps and
a direct charge loss of electrons stored in Al2O3 BLOX traps. Figure 5.34 shows
the retention improvements at the expense of erase performance when parts of the
Al2O3 BLOX adjacent to the SiN charge trapping layer are replaced by an SiO2

layer (sealing oxide) with identical electrical thickness (EOT). The reduction of
the retention loss to 250 mV for the 3.5 nm sealing oxide results in CT TAONOS
(TaN/Al2O3/SiO2/Si3N4/Si) cells that can hardly be erased below VthD�1 V (both
values are critical for MLC).

A similar trade-off between erase performance and retention was obtained from
large area CT memory cells in the �m range, where the SiN CT composition was
varied with respect to the Si content [50] (see Fig. 5.35a), or with an additional high-
k BLOX layer, introduced on top of the Al2O3 to reduce gate back tunneling during
erase [51] (see Fig. 5.35b). In all cases shown in Fig. 5.35a, b, the standard TANOS
cell behavior is among the best performing CT cells, or only the described trade-off
between retention and erase performance is seen.

The endurance behavior of TANOS or similar CT cells is also generally worse
than that of floating gate cells. This might be correlated to the inevitable tunnel
currents through the hole CT stack as mentioned before.

Besides, the charge storage in a non-conducting layer can lead to inhomoge-
neously distributed charges which adversely affect the erase performance of CT
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cells [52, 53] and can also be responsible for the worse retention performance of
small ground rule CT cells compared to large CT cells [42, 54].

All described reliability issues (erase performance, retention, and endurance) of
CT memory cells are responsible for the fact that TANOS cells have so far not been
able to replace floating gate cells in NAND Flash applications.

The traditional SONOS CT memory cell with thick bottom oxide, which is able
to fulfill the required retention criteria, may experience a revival in combination
with the FN erase mechanism when realized in a cylindrical cell geometry, as will
be discussed in the following section.

5.7 3D Memory Cell Integration for Future Mass Storage
Applications

In the last few sections it was discussed that planar memory cells (either FG or CT)
constitute one option for extending the shrink roadmap of conventional floating gate
NAND memory cells with a control gate wrapped around the floating gate. However,
the planar shrinking will end somewhere around the 10 nm technology node. At
these dimensions the number of atom layers is already countable. Further scaling is
limited due to the need for conducting and isolating layers to build memory cells.
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Each layer dimension in horizontal direction is already in the direct tunneling regime
at such small feature sizes which is contradictory to non-volatile charge storage.

The only option for a continued memory density increase is the introduction of
3D memory cell arrangements.

Examples of 3D stacked NAND memory cell arrangements were presented with
an integration of two TANOS layers [55] and two floating gate layers [56]. The
schematic two layer stacked NAND structure is shown in Fig. 5.36. Both memory
layers use a common source line and a common bit line. The process sequence for
generating these two NAND Flash layers on top of each other is the consecutive
processing of two times almost the whole NAND process. Therefore this approach
is very complex and nearly doubles the number of process steps. It additionally
requires the use of epi-Si growth in order to form the channel region of the top
memory cell level.

The problem with this kind of 3D stacking approach is that each doubling of
the number of stacked layers nearly doubles the processing cost and eventually
requires additional space for the WL decoders of the different levels [56]. It also
becomes more critical to activate the cell transistor junction implants of higher cell
levels since the acceptable thermal budget of the lower levels is very limited once
completed.

For these reasons it appears more attractive to think of 3D memory cell
integration schemes, where a larger number of layers can be processed at once.

The schematic structure of a 3D memory cell array [57] that follows this
approach is shown in Fig. 5.37. Examples of this kind of array structure are the
p-BICS (pipe-shaped Bit Cost Scalable) Flash approach [58] and the TCAT (Terabit
Cell Array Transistor) technology [59].
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The starting point for both concepts is a multiple stack of conducting and
isolating, or two different conducting layers. The channel regions are generated in
the vertical direction subsequent to a vertical punch etch process step through all
layers.

In the p-BICS the memory cell transistors are generated in holes vertically etched
into the word line planes. In order to be able to separately operate all memory cells it
is necessary to separate the word lines into slices by vertical slits. One of the major
challenges is to generate the CT memory cells into the etched vertical holes.

Consequently, the CT cell formation process is carried out in a reversed order
since the deposition of the charge trapping stack is performed before the poly-Si
channel formation. The principle challenge of this reversed processing order is the
quality of the channel Si and the tunnel oxide of the CT cell, which in a planar cell
integration is a high quality bulk Si channel and a high quality thermal SiO2.

The TCAT technology is in principle similar to p-BICS. Due to a special process
integration sequence, it can be achieved in TCAT that an active CTL is only present
in the memory transistor region. This measure avoids lateral charge movement and
therefore principally improves the retention [60]. The cylindrical shape of the CT
cells in the p-BICS and TCAT 3D array approaches have one major advantage
over planar CT cells, namely the electric field enhancement in the TOX and the
field reduction in the BLOX [61]. The band diagram and the electric fields under
erase conditions (VCG,ersD�20 V) for a planar MONOS cell vs. a cylindrical
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reduced fields in the BLOX of the cylindrical SONOS cell. The SONOS CT stack dimension
(ONO) used in the simulations was TOX/CTL/BLOXD 5 nm/6 nm/8 nm (c)

MONOS with a 6 nm inner-channel diameter are shown in Fig. 5.38a, b. The ONO
stack dimensions used in the field calculations were tTOXD 5 nm, tSiND 6 nm, and
tBLOXD 8 nm. It is clearly visible that the cylindrical cell geometry with an inner
cell channel position strongly increases the TOX field in relation to the BLOX field.
Therefore, the cylindrical geometry effectively acts as an increased gate coupling
ratio of a floating gate cell. The TOX electric field enhancement can also be seen in
the form of denser E-field lines in Fig. 5.38c. Consequently, it could be possible to
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Fig. 5.39 Schematic structure of vertical gate 3D CT memory arrays [57] as used in VG TFT
NAND [62] and VG-NAND [63]

use high-quality deposited SiO2 as BLOX material in cylindrical CT cells instead
of Al2O3 and by this means improve the CT charge retention without deterioration
of the erase performance.

Other 3D array integration approaches use vertical gates (Vertical Gate Thin
Film Transistor (VG TFT) NAND [62] and VG NAND [63]) or another option
to generate vertical memory transistor channels (Vertical-Stacked-Array-Transistor
(VSAT) [64]). Both concepts use a multiple layer of deposited conducting (poly-
Si, or metal) and isolating layers patterned in stripes. The CT layer is deposited at
the side walls of this multiple line structure, and perpendicular to these lamellar
structures, an equal line and space conducting structure which is used as side gates
in VG NAND (see Fig. 5.39) and as a side wall channel in VSAT, is generated.

Generally speaking, the VG TFT NAND [62], VG NAND [63], and VSAT [64]
concepts are 3D arrays based on planar CT cells. Therefore, the memory cells in
these concepts suffer in principle from the same erasability and retention problems
as the one layer planar CT NAND cells discussed in Sect. 5.6.
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Another important criterion is the minimal final footprint of one layer of the 3D
integrated memory arrays. Compared to p-BiCS, TCAT, and VSAT with vertical
channel direction, the 3D array option with planar devices (channel direction
parallel to the substrate plane) and with vertical gates (VG NAND [62, 63]) have
smaller footprints and seem to scale to smaller half pitches (F) [65].

However, the 3D cell array options presented so far are all based on CT cells
which have never yet been in production in planar NAND strings.

For this reason it can be easily understood that NAND memory producers would
principally aim to continue the use of the approved floating gate cell approach in 3D
arrays. One option for integrating FG cells into 3D vertical strings was presented in
[66]. The proposed 3D memory cell integration concept is very complex as evident
in previous CT 3D memories. It additionally generates the poly-Si channel after the
IPD, FG and TOX formation. This reversed processing order again yields the risk
of low TOX quality and reduced retention and endurance performance.

Whether one of the numerous proposed 3D cell integration concepts will finally
be able to extend the memory density scaling of planar floating gate NAND Flash
will strongly depend on the memory array functionality, reliability and manufac-
turability. Especially the strong difference between MOSFET-based 3D memory
cell integration and planar cell integration with decades of process experience will
make it challenging to establish a yielding 3D NAND chip production.
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34. K. Seidel, R. Hoffmann, D. A. Löhr, T. Melde, M. Czernohorsky, J. Paul, M. F. Beug, V.
Beyer, Comparison and analysis of trap mechanisms responsible for random telegraph noise
and erratic programming on sub-50 nm floating gate flash memories, in Non-Volatile Memory
Technology Symposium (NVMTS), Portland, USA, Oct 2009 pp. 67–71

35. M.F. Beug, R. Ferretti, K.R. Hofmann, Analysis and modeling of the transient local tunneling
in gate oxides. IEEE Trans. Device Mater. Reliab. 4(1, March), 73–79 (2004)

36. M.C. Chiu, B. Szu-M. Lin, M.F. Tsai, Y.S. Chang, M.H. Yeh, T.H. Ying, C. Ngai, J. Jin, S.
Yuen, S. Huang, Y. Chen, L. Miao, K. Tai, A. Conley, I. Liu, Challenges of 29 nm half-pitch
NAND Flash STI patterning with 193 nm dry lithography and self-aligned double patterning.
Proc. SPIE 7140, Taipei, Taiwan, November 2008, 714021 (2008) doi:10.1117/12.804685

37. P. Xu, Y. Chen, Y. Chen, L. Miao, S. Sun, S.-W. Kim, A. Berger, D. Mao, C. Bencher, R. Hung,
C. Ngai, Sidewall spacer quadruple patterning for 15 nm half-pitch. Proc. SPIE 7973, San Jose,
USA, Feb. 2011, 79731Q (2011) doi:10.1117/12.881547

http://dx.doi.org/10.1117/12.804685
http://dx.doi.org/10.1117/12.881547


5 NAND Flash Technology 125

38. C. Bencher, Y. Chen, H. Dai, W. Montgomery, L. Huli, 22 nm half-pitch patterning by CVD
spacer self alignment double patterning (SADP). Proc. SPIE 6924, San Jose, USA, Feb. 2008,
69244E (2008), doi:10.1117/12.772953

39. C. Ludwig, S. Meyer, Double patterning for memory ICs, in Recent Advances in
Nanofabrication Techniques and Applications, ed. B. Cui, ISBN: 978-953-307-602-7, InTech,
pp. 417–432 (2011), Available from http://www.intechopen.com/articles/show/title/double-
patterning-for-memory-ics

40. S. Aritome, S. Satoh, T. Maruyama, H. Watanabe, S. Shuto, G.J. Hemink, R. Shirota, S.
Watanabe, F. Masuoka, A 0.67 �m2 self-aligned shallow trench isolation cell (SA-STI
cell) for 3 V-only 256 Mbit NAND EEPROMs, in IEEE International Electron Devices
Meeting(IEDM), San Francisco, USA, Dec 1994, pp. 61–64

41. M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R.J. Luyken, W. Rösner, M.
Grieb, L. Risch, Charge trapping memory structures with Al2O3 trapping dielectric for high-
temperature applications. Solid-State Electron. 49(5, May), 716–720 (2005)

42. M.F. Beug, T. Melde, M. Czernohorsky, R. Hoffmann, J. Paul, R. Knoefler, A.T. Tilke, Analysis
of TANOS memory cells with sealing oxide containing blocking dielectric. IEEE Trans.
Electron Devices 57(7, July), 1590–1596 (2010)

43. R. van Schaijk, M. van Duuren, W.Y. Mei, K. van der Jeugd, A. Rothschild, M. Demand,
Oxide–nitride–oxide layer optimisation for reliable embedded SONOS memories. Microelec-
tron. Engineering 72(1–4, April), 395–398 (2004)

44. T.Y. Chan, K.K. Young, C. Hu, A true single-transistor oxide-nitride-oxide EEPROM device.
IEEE Electron Device Lett. 8(3, March), 93–95 (1987)

45. B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, D. Finzi, NROM: A novel localized
trapping, 2-bit nonvolatile memory cell. IEEE Electron Device Lett. 21(11, November),
543–545 (2000)

46. H. Bachhofer, H. Reisinger, E. Bertagnolli, Transient conduction in multidielectric silicon–
oxide–nitride–oxide semiconductor structures. J. Appl. Phys. 89(5, March), 2791–2800 (2001)

47. A. Goda, M. Noguchi, Improvement of erase saturation for a highly reliable MONOS memory
cell, in IEEE Non-Volatile Semiconductor Memory Workshop (NVSMW), Monterey, USA, Feb
2003, pp. 65–68

48. C.H. Lee, K.I. Choi, M.K. Cho, Y.H. Song, K.C. Park, K. Kim, A novel SONOS structure of
SiO2-SiN-Al2O3 with TaN metal gate for multi-giga bit flash memories, in IEEE International
Electron Devices Meeting (IEDM), Washington, USA, Dec 2003, pp. 613–616

49. S.-C. Lai, H.-T. Lue, J.-Y. Hsieh, M.-J. Yang, Y.-K. Chiou, C.-W. Wu, T.-B. Wu, G.-L. Luo, C.-
H. Chien, E.-K. Lai, K.-Y. Hsieh, R. Liu, C.-Y. Lu, Study of the erase mechanism of MANOS
(metal/Al2O3/SiN/SiO2/Si) device. IEEE Electron Device Lett. 28(7, July), 643–645 (2007)

50. G. Van den bosch, A. Furnemont, M.B. Zahid, R. Degraeve, L. Breuil, A. Cacciato, A.
Rothschild, C. Olsen, U. Ganguly, J. Van Houdt, Nitride engineering for improved erase
performance and retention of TANOS NAND flash memory, in Proceedings of the Joint
NVSMW/ICMTD 2008, Opio, France, 18–22 May 2008, Joint, pp. 128–129

51. L. Breuil, C. Adelmann, G. Van Den Bosch, A. Cacciato, M.B. Zahid, M. Toledano-Luque, A.
Suhane, A. Arreghini, R. Degraeve, S. Van Elshocht, I. Debusschere, J. Kittl, M. Jurczak, J.
Van Houdt, Optimization of the crystallization phase of Rare-Earth aluminates For blocking
dielectric application in TANOS type flash memories, in Proceedings of Solid-State Device
Research Conference (ESSDERC), Sevilla, Spain, 14–16 Sept 2010 pp. 440–443

52. M.F. Beug, T. Melde, M. Isler, L. Bach, M. Ackermann, S. Riedel, K. Knobloch, C. Ludwig,
Anomalous erase behavior in charge trapping memory cells, in Proceedings of the Joint
NVSMW/ICMTD, Opio, France, May 2008, pp. 121–123

53. Y.-J. Chen, L. H. Chong, S.-W. Lin, T.-H. Yeh, K.-F. Chen, J.-S. Huang, C.-H. Cheng, S.-H. Ku,
N.-K. Zous, I-J. Huang, T.-T. Han, T.-H. Hsu, H.-T. Lue, M.-S. Chen, W.-P. Lu, K.-C. Chen, C.-
Y. Lu, Source/Drain dopant concentration induced reliability issues in charge trapping NAND
flash cells, in IEEE International Reliability Physics Symposium (IRPS), Anaheim, USA, May
2010, pp. 634–638

http://dx.doi.org/10.1117/12.772953
http://www.intechopen.com/articles/show/title/double-patterning-for-memory-ics
http://www.intechopen.com/articles/show/title/double-patterning-for-memory-ics


126 M.F. Beug

54. M.F. Beug, T. Melde, J. Paul, R. Knoefler, TaN and Al2O3 side wall gate-etch damage influence
on program, erase, and retention of sub-50 nm TANOS NAND flash memory cells. IEEE Trans.
Electron Devices 58(6, June), 1728–1734 (2011)

55. S.-M. Jung, J. Jang, W. Cho, H. Cho, J. Jeong, Y. Chang, J. Kim, Y. Rah, Y. Son, J. Park,
M.-S. Song, K.-H. Kim, J.-S. Lim, K. Kim, Three dimensionally stacked NAND flash memory
technology using stacking single crystal Si layers on ILD and TANOS structure for beyond
30 nm node, in International Electron Devices Meeting (IEDM), San Francisco, USA, Dec
2006

56. K.-T. Park, M. Kang, S. Hwang, D. Kim, H. Cho, Y. Jeong, Y.-I. Seo, J. Jang, H.-S. Kim, Y.-T.
Lee, S.-M. Jung, C. Kim, A fully performance compatible 45 nm 4-gigabit three dimensional
double-stacked multi-level NAND flash memory with shared bit-line structure. IEEE J. Solid-
State Circuits 44(1, January), 208–216 (2009)

57. R. Micheloni, L. Crippa, A. Grossi, P. Tessariol, Chapter 6, in Memory Mass Storage (Springer,
2011)

58. R. Katsumata, M. Kito, Y. Fukuzumi, M. Kido, H. Tanaka, Y. Komori, M. Ishiduki, J.
Matsunami, T. Fujiwara, Y. Nagata, L. Zhang, Y. Iwata, R. Kirisawa, H. Aochi, Pipe-shaped
BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density
storage devices, in Symposium on VLSI Technology, Kyoto, Japan, June 2009, pp. 136–137

59. J. Jang, H.-S. Kim, W. Cho, H. Cho, J. Kim, S.I. Shim, Y. Jang, J.-H. Jeong, B.-K. Son, D.W.
Kim, K. Kim, J.-J. Shim, J.S. Lim, K.-H. Kim, S.Y. Yi, J.-Y. Lim, D. Chung, H.-C. Moon, S.
Hwang, J.-W. Lee, Y.-H. Son, U-In Chung, W.-S. Lee, Vertical cell array using TCAT (Terabit
Cell Array Transistor) technology for ultra high density NAND flash memory, in Symposium
on VLSI Technology, Kyoto, Japan, June 2009, pp. 192–193

60. J.S. Sim, J. Park, C. Kang, W. Jung, Y. Shin, J. Kim, J. Sel, C. Lee, S. Jeon, Y. Jeong, Y.
Park, J. Choi, W.-S. Lee, Self aligned trap-shallow trench isolation scheme for the reliability of
TANOS (TaN/AlO/SiN/Oxide/Si) NAND flash memory, in IEEE Non-Volatile Semiconductor
Memory Workshop (NVSMW), Monterey, USA, Aug 2007, pp. 110–111

61. E. Nowak, A. Hubert, L. Perniola, T. Ernst, G. Ghibaudo, G. Reimbold, B. De Salvo, F.
Boulanger, In-depth analysis of 3D silicon nanowire SONOS memory characteristics by TCAD
simulations, in IEEE International Memory Workshop, (IMW), Seoul, South Korea, May 2010

62. H.-T. Lue, T.-H. Hsu, Y.-H. Hsiao, S.P. Hong, M.T. Wu, F.H. Hsu, N.Z. Lien, S.-Y. Wang, J.-Y.
Hsieh, L.-W. Yang, T. Yang, K.-C. Chen, K.-Y. Hsieh, C.-Y. Lu, A highly scalable 8-layer 3D
vertical-gate (VG) TFT NAND flash using junction-free buried channel BE-SONOS device, in
Symposium on VLSI Technology, Honolulu, Hawaii, USA, June 2010, pp. 131–132

63. W. Kim, S. Choi, J. Sung, T. Lee, C. Park, H. Ko, J. Jung, I. Yoo, Y. Park, Multi-layered vertical
gate NAND flash overcoming stacking limit for terabit density storage, in Symposium on VLSI
Technology, Kyoto, Japan, June 2009 pp. 188–189

64. J. Kim, A.J. Hong, S.M. Kim, E.B. Song, J.H. Park, J. Han, S. Choi, D. Jang, J.-T. Moon,
K.L. Wang, Novel Vertical-Stacked-Array-Transistor (VSAT) for ultra-high-density and cost-
effective NAND flash memory devices and SSD (Solid State Drive), in Symposium on VLSI
Technology, Kyoto, Japan, June 2009, pp. 186–187

65. Y.-H. Hsiao, H.-T. Lue, T.-H. Hsu. K.-Y. Hsieh, C.-Y. Lu, A critical examination of 3D
stackable NAND flash memory architectures by simulation study of the scaling capability,
in IEEE International Memory Workshop (IMW), Seoul, South Korea, May 2010

66. S.J. Whang, K.H. Lee, D.G. Shin, B.Y. Kim, M.S. Kim, J.H. Bin, J.H. Han, S.J. Kim, B. M.
Lee, Y.K. Jung, S.Y. Cho, C.H. Shin, H.S. Yoo, S.M. Choi, K. Hong, S. Aritome, S.K. Park,
S.J. Hong, Novel 3-dimensional Dual Control-gate with Surrounding Floating-gate (DC-SF)
NAND flash cell for 1 Tb file storage application, in IEEE International Electron Devices
Meeting (IEDM), San Francisco, USA, Dec 2010, pp. 668–671



Chapter 6
NAND Flash Design

L. Crippa and R. Micheloni

Abstract A Solid-State-Disk is made up by a Flash controller plus a bunch of
NAND Flash devices. This chapter focuses on design aspects of NAND chips. The
information stored in each memory cell is fully analog because it is related to the
number of electrons stored in the floating gate. When we program, erase or read,
electrons must be injected, extracted and counted, respectively. All these operations
require a mix of analog and digital circuits that need to be properly and timely
driven.

Starting from a generic floorplan of a NAND memory, we guide the reader
through the main building blocks. First of all, we describe the logic part of the chip,
from the embedded microcontroller, who is in charge of running all the internal
algorithms, to the fast DDR interface.

Counting the number of electrons in the floating gate is definitely one of the most
challenging task, considering that has to be performed with few transistors: sensing
techniques are described in Sect. 6.5.

Programming and erasing floating gate cells require voltages higher than the chip
power supply. Therefore, charge pumps are used to generate all the needed voltages
within the chip. In multilevel storage, cell’s gate biasing voltages need to be very
accurate and voltage regulators become a must. All these circuits are described in
the High Voltage Management section.

Last but not least, the row decoder is introduced. This circuit has the task of
properly biasing each single wordline in the NAND array, transferring the regulated
high voltages to the gate of the memory cell.
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6.1 NAND Flash Memories

A NAND chip contains a lot of different circuits, both digital and analog. Figure 6.1
sketches a floorplan of a Flash device. The basic architecture of the NAND array
has already been presented in Chap. 2. With reference to Fig. 6.1, the memory array
has been split in two independent planes. On the horizontal direction a wordline
(WL) is highlighted, while a bitline (BL) is shown in the vertical direction. The
Row Decoder is the block in charge of addressing and biasing each single wordline
and it is located between the planes. BLs are connected to a sensing circuit (Sense
Amp). The purpose of sense amplifiers is to read the analog information stored in the
memory cell. In the periphery, we find charge pumps, voltage regulators, reference
circuits, digital circuits, and redundancy structures. This chapter gives an overview
of all the above mentioned circuits.

6.2 Logic Device View

Let’s start our analysis from the peripheral circuits. First of all, we have the
“Logic”, a set of digital gates which enables the communication to the external
host and manages data inside the device. In other words, it is the real brain of the
memory.
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Fig. 6.1 A typical NAND Flash floorplan [1]
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Fig. 6.2 Logic view of a NAND device

We can identify some basic logic blocks, as shown in Fig. 6.2.

1. Control Interface (CI) [2–4]. It is the command interface between the NAND
Flash and the external user;

2. Microcontroller. It stores and executes all the internal algorithms, such as read,
program, erase and testmode operations.

3. Error Correction Code (ECC) [5] could be embedded in the memory device. ECC
improves the reliability of the read operation.

4. Memory testing is a fundamental functionality. For this reason, there is a Test
Interface (TI) block, i.e. the interface to the user when device is in test mode.

5. Datapath. Basically, it is the fast link between I/Os and read circuits.
6. There are also a lot of registers, mainly for storing the configurations of the

analog circuitry.
7. Redundancy: it can be managed by the microcontroller or it can be implemented

as a finite state machine (FSM). This logic is used to increase the wafer yield.

6.2.1 Command Interface

In order to talk with the external user, Flash memory has to understand commands,
take data and output data.

The logic block implementing this functionality is basically a finite state machine
and is represented by the Command Interface (CI) when the device is in user mode
and by the Test Interface (TI) when the device is in test mode.

CI understands legal or illegal command sequences, defined in the device
specifications and interacts with other logic blocks as datapath and microcontroller.
Control signals have been already described in Chap. 2. CI is composed by a huge

http://dx.doi.org/10.1007/978-94-007-5146-0_2
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Fig. 6.3 Command interface and its interaction blocks

finite state machine clocked by WE# and driven by all I/O signals such as ALE or
CLE. Figure 6.3 represents CI and its interaction blocks.

1. I/Os are all control signals: R/B#, CLE, ALE, WP#, WE#, RE#, CE#, DQ[7:0].
2. Reset Interface exchanges reset information with logic global reset.
3. Datapath interface controls input and output datapaths.
4. Test interface toggles between user mode and test mode.
5. Firmware Control Interface enables microcontroller to execute internal algo-

rithms.

CI is made up by multiple finite state machines, one for each basic function. The
Command Interface Controller disables a specific FSM if that specific command
is not allowed. During power up, CI Controller disables every commands, so that
all the FSMs are disabled too. There is also a FSM that recognizes if a specific
command is a read, a program or an erase and enables the correct sub-FSM. Every
time the Controller receives an illegal sequence, the device goes into an IDLE state.

When the internal microcontroller executes a specific algorithm, the device is
busy. In this situation, the only commands that the CI can accept are a reset and a
testmode entry command.

6.2.2 Test Interface

Test Interface (TI) is used when we want to test some particular features, usually
not accessible during normal operations (usermode). Test Interface is enabled by a
specific command sequence, called testmode entry. Generally speaking, a NAND
device can have these modes:

• Usermode that represents the standard functionality, where commands described
in the device specification are available;

• Usertestmode that represents the standard functionality plus some particular
commands;

• Testmode that is the test operational mode.
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Fig. 6.5 Testmode registers

Figure 6.4 represents how it is possible to change the operational modes with
proper command sequences recognized by the CI Controller.

Once TI is enabled, it substitutes CI: TI recognizes the command set and
drives input and output data/address on the logic bus. Test Interface is allowed to
access the different registers and different memory circuits without the aid of the
microcontroller.

TI is built as a finite state machine in a similar way to the Command Interface.
Let’s now explain what testmode registers are. All the circuits added for test

purposes can’t influence the standard user mode functionality and can’t worsen
performances. The adopted solution is sketched in Fig. 6.5. A TM register is
associated with a UM register: when the signal TESTMODE is high, the output
takes the value contained in the register TM, influencing the behavior of the circuitry
downstream. When the signal TESTMODE goes low, the standard usermode
functionality is enabled.

6.2.3 Datapath

Till few years ago, NAND memories had an asynchronous interface and it was very
difficult to run frequencies higher that 40 MHz for data download/upload [6]. NAND
chips have linear dimensions easily higher than 10 mm so that data have to flow
through a long path with an unavoidable impact on the transmission time through
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the chip. One of the most adopted solutions to overcame this problem is the use of
a pipeline on the datapath [7].

In the following we will describe datapath structure for a NAND memory with
double side architecture and with control pads on the opposite side with respect to
data pads.

With reference to Fig. 6.6 the data input sequence is here described.

1. During the low-phase of WE#, input buffers on I/O PADS block and latches on
DP UP and DP DW blocks are enabled. In this way, input data flow to the latches
placed in DP UP and DP DW blocks.

2. On the rising edge of WE#, I/O PADS input buffers are disabled. Data are latched
in DP UP latches till the next falling edge of WE#. The counter addresses the
appropriate page buffers for the following write operation.

3. On the high-phase of WE#, IO CONTROL latches are open and the COLUMN
DECODER is addressing the right page buffers.
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4. On the falling edge of WE#, data are latched in the IO CONTROL latches.
5. On the next low-phase of WE#, while I/O PADS input buffers and DP UP latches

receive new data from the user (as in phase 1), IO CONTROL generates write
pulses for loading the latched data into the page buffer latches.

A similar approach is adopted for data output.
Performance driven applications like Solid-State-Disks (SSDs) are now forcing

the NAND towards the adoption of a DDR interface, as described in Sect. 6.3.

6.2.4 Microcontroller

As already said, the microcontroller inside the memory is the “brain” of the device.
Microcontroller implements the needed algorithms for a Flash memory. In order to
be able to perform the necessary operations, these conditions must hold true:

• each sequence of operations that must be executed for a specific algorithm (read,
program, erase etc.) has to be non-volatile;

• the microcontroller needs to perform arithmetical, logical and output operations.

Usually, microcode (FW) is stored in a ROM memory (Fig. 6.7). There could
also be a Code RAM memory containing the specific firmware for testing and
debugging.

The microcontroller contains a number of different blocks. First of all there is
the Program Counter. It stores the address of the memory location containing the
instruction that must be executed. It is also able to handle the address increment, the
absolute or relative jumps and the calls to subroutines with different stack levels.
The levels of stack indicate how a subroutine is far away from the main program.

Another important block is composed by the Internal Registers: they are neces-
sary for the execution of an operation or a sequence of operations. A register can be
either loaded with a constant value or with a value read from the ROM, and it can
also be the result of an operation.

The microcontroller computational center is the Arithmetic Logic Unit or ALU.
The ALU executes an operation associated with a specific opcode and implemented
in the microcontroller. The operations can be with one or two operands. The
operands can be internal registers, flags or constants read from the ROM. The result
of the operation is stored in the internal registers, with the exception of test and
compare operation.

Finally, the last block of the microcontroller is constituted by the Output Registers.
Each register is made up by a number of latches. The most advantageous structure
for the output registers is based on the dual ports concept.

With this structure, the registers are handled by two independent ports called
port A and port B. For instance, port A operates over all the outputs, while port B
operates only over some output registers.

The dual ports structure allows the use of two different bank registers at the same
time, so that it is possible to move more control signals at each clock cycle.
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Fig. 6.7 Microcontroller structure with ROM and RAM memories

Apart from the internal structure, the characterizing feature of a microcontroller
is what it is able to do, that is its Instruction Set. Before designing a microcon-
troller, we need to understand the must-have operations. In fact, general purpose
microcontrollers are not useful in the NAND memory environment, because they
are generally bigger and slower, in order to guarantee a full flexibility not needed in
the device. In other words, it is useless to implement operations not used, but it is
better to optimize the used ones.

6.3 NAND DDR Interface

Flash based systems are made up by several NAND memory devices and one
controller. The controller has the primary function to communicate with NANDs
and conveys data from/towards the external interface. Especially, SSDs call for a
higher Read/Write throughputs; in other words, SSDs need to manage more NAND
dies in parallel. Basically, there are a couple of options.

The first one is to increase the number of dies per channel as shown in Fig. 6.8a.
This solution encounters limitations from channel parasitic loading. It has the
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Fig. 6.8 SSD system enhancement: (a) increased number of dies per channel (b) increased number
of channels

advantage of lower pin count and lower hardware cost, especially for the controller,
but it might not satisfy the requirements of Write throughput.

The second option is to increase the number of channels (Fig 6.8b). This solution
shifts all the problems inside the memory controller which has to manage the
parallel data flow coming from all the memory channels. The drawback is that the
controller has to manage the ECC for each channel and have the need of dedicated
SRAM. On the positive side, this solution is scalable and flexible and allows to
reach very high Read/Write throughput. Nowadays, multiple channel architectures
are quite common in SSD design.

In every case, power and signal integrity must be addressed with careful interface
design considerations. In this section, we mainly deal with the I/O bottleneck
problem which must first be solved by a proper interface roadmap.

6.3.1 DDR Interface

High speed NAND introduced a Double Data Rate (DDR) interface in year 2008.
As a matter of fact, NAND memories are now following the same path that DRAMs
experienced from year 2000.
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The challenge in the coming years will be the standardization of the interface
among vendors. Two solutions are available in the market, as draft in Fig. 6.9. On
one side, ONFI organization [8] introduced an interface with a clock and data strobe,
ready for a DRAM-like evolutionary path. Pinout differences between legacy and
ONFI 2.0 interfaces are:

• WE# becomes a fast CLK;
• RE# handles data direction by becoming W/R# (Write/Read#);
• I/O[7:0] renamed to DQ[7:0] (name change only, functionally identical);
• DQS, a new bi-directional signal, is enabled.

On the other side, Samsung decided for a different approach named “Toggle” [9]
where only data strobe has been added to the legacy NAND pinout; Toggle mode
adds DQS data strobe signals; RE# is used to trigger the read cycle as done in
asynchronous interface; DQS is used to strobe the data on both edges.

As usual, JEDEC is now working on combining the above interfaces in a single
standard.

ONFI has already released the third generation of specifications where they
target 400 MB/s throughput, and Toggle is targeting the same speed. The interface
roadmap stays with LVTTL bus driving style as long as possible in order to ease
integration, but some design tricks have to be introduced in order to sustain higher
bandwidths. This will include the proper scaling of interface voltage, the use of
a specific termination type, On-Die Terminations, differential strobes and, going
beyond, synchronization circuit. Finally, it will include DLL/PLL and the change to
a SSTL class of terminated bus.

The DDR protocol diagrams are sketched in Fig. 6.10. A Synchronous clock
must be provided to the memory chips (not needed in Toggle-mode interface).
Bidirectional Data bus DQ is driven at every clock edge. Therefore, data throughput
is doubled compared to a Single data rate system, assuming the same clock
frequency.
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Data strobe signal DQS behaves like all other DQs and it is used as data capture
signal on the receiver side. Systems scalability benefits from this approach since
DQS load always matches that of DQ lines, ensuring same timings: this is very
important in SSD design because the parasitic load of a Flash channel changes when
more dies are used.

6.3.2 Power

Let’s consider an SSD where multiple Flash channels are used. Due to the channel
parasitic capacitance, each time a single NAND die is written or read, the entire
capacitance of data lines needs to be driven.

I/O power consumption in a DDR system can be written as [10]:

P D 9 � � � f � C � V 2 (6.1)

where � is the bit activity ratio, f is the DDR frequency, C is the capacitance of a
single line and V is the supply voltage of the interface. Figure 6.11 shows the impact
of I/O power supply. Therefore, scaling the I/O interface voltage becomes a must,
especially looking at higher clock frequencies.

6.3.3 Capacity

SSD storage capacity can be increased in two ways:

• by increasing the number of Flash channels;
• by increasing the number of NAND dies connected to a single channel.

As already mentioned, the first solution has been widely adopted, even if it
increases the hardware complexity of the SSD controller
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The adoption of the second solution is mainly limited by the resulting I/O
parasitic capacitance of the Flash channel. To partially overcome this limitation, it is
possible to use advanced System in Package technologies such as Through Silicon
Vias (TSV) [11]. TSV creates interesting opportunities for stacking, thanks to its
low parasitic capacitance.

Figure 6.12 depicts a system in which memory chips are stacked and connected
using a Local Interconnect Bus. The Interface Chip provides data translation from
local interconnect bus to the external bus (i.e. Flash channel) by means of a standard
off chip driver (OCD). It is worth mentioning that the local bus can be driven by
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standard CMOS buffers instead of OCD ESD-compliant structures. Furthermore,
by using simplified ESD structures, the bus parasitic capacitance can become even
lower.

6.4 I/O Design

This section starts with an overview of I/O design problems in legacy asynchronous
NAND products available in the market. Design of high-speed I/O is then reviewed.

6.4.1 Basic CMOS Output Buffer Design

Usually, NAND output buffers need to drive large capacitive loads, in the range of
50–100 pF. In this situation the output capacitance transition is very long compared
to the buffer switching time. The buffer conductance is usually made very large to
reduce the charge/discharge time and match the specifications.

The memory data bus can be 8/16 bits: the current sunk by the parasitic capacitor
of a single output buffer has to be multiplied by the number of switching data bits.
Moreover, the inductance of the bonding wire (5�10 nH in TSOP packages) might
generate bounces on internal power supply lines that could affect the functionalities
of analog circuits [12]. This effect is called Simultaneous Switching Noise (SSN)
and will be treated in more details later.

A basic output buffer with push-pull architecture is shown in Fig. 6.13.
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Fig. 6.13 Output buffer
model
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In order to reduce the current peak, switching time of push-pull drivers have to be
carefully controlled. As a consequence, if gates of PMOS and NMOS are driven at a
lower speed, crowbar current becomes an issue. Crowbar occurs when both PMOS
and NMOS are ON at the same time. To avoid this situation, the buffer structure of
Fig. 6.14 can be adopted [3, 13]. In this configuration the pull-up is switched-off
before the pull down is turned on (and vice versa).

NAND and NOR gates can be tuned to obtain a fast switching-off and a proper
switching-on time. In the figure it is also shown the output enable signal OE that is
used to turn the output stage in high impedance: in this way, data bus can be driven
by somebody else.

Another important design constraint is the slew rate of the output driver. In asyn-
chronous devices, the slew rate is generally controlled by acting on the pre-driver,
so that the pull-up and pull-down transistors are gradually switched on/off [13, 14].

Generally, this is optimized in the slow corner and the result is a big variation
with Process/Voltage/Temperature (PVT). The pre-driver RC output constant must
be much smaller than the data window, otherwise there is a risk to have a data
dependent jitter. If a wide data bus is used, it could be beneficial to consider skewing
the output enable by a proper small delay and consequently spreading in time the
current requests.

6.4.2 Simultaneous Switching Noise (SSN)

One of the main responsible for data window margins degradation is the simultane-
ous switching noise [13, 15–18]. SSN is an inductive noise caused by several outputs
switching at the same time. One single buffer could have a good transient behavior,
but, when all the data buffers are switching at the same time, the data AC behavior
could be corrupted. The problem is serious in output buffer memory design because
of two effects:
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• jitter and signal bounces are increased and data window margin is reduced;
• the generated noise could affect other circuits, especially analog circuits and

memory sense amplifiers, reducing operating margin or creating systematic non-
working windows.

With a large capacitive load, a large current is requested to charge the load and the
power network must supply that current. The current flows in inductances, typically
in the bonding wires or leads of the package, and the resulting noise is injected into
power and ground supplies. This noise is transferred to the output and the output
AC characteristics are affected.

The simultaneous switching noise is determined, in principle, by the following
equation:

VSSN D N � L � @I
@t

(6.2)

where N is the number of switching outputs, L the equivalent inductance in which
current must flow, and I the current per driver.

Since this mechanism is dependent on the number of output switching N, this
makes the noise dependent also on the data sequence.

To deal correctly with SSN it is necessary to understand the complete signal
current paths in the memory. In Fig. 6.15 a complete path is shown. Local
metal resistances are omitted but they should be evaluated as possible sources of
interference. It is straightforward to understand that the problem is really connected
with the package. When TSOP packages are used, very long bonding wires can be
present leading to high inductance values. Moving to higher data rates requires to
leave such packages for more controllable Ball Grid Arrays.
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6.4.3 High Speed NAND I/O Design

Output buffer in high speed signal transmission is often named Off-Chip Driver
(OCD). In addition to the task of being the interface circuit between inside and
outside, OCD in high speed memories has to accomplish several additional tasks.

• Translate data flow between single data rate (SDR) and DDR domains.
• Voltage domain change. The core of the memory could operate at a different

voltage level than the I/O interface and the data signals have the need to be shifted
from the core level to the interface voltage.

• Provide the AC/DC requirements such as VOL/VOH, slew rate or impedance
matching.

• Provide the On-Die-Termination (ODT).
• ESD protection.

Various types of OCD are used in memory design depending on the interface
type and speed. In order to introduce all the basic concepts, we focus here on the
single ended CMOS buffer, which is widely used in DDR designs.

6.4.4 Double Data Rate OCD

A DDR OCD is a synchronous output buffer. In synchronous systems, OCD includes
a register stage used to synchronize the output with the internal data bus. In DDR
design a block named serializer is included in the buffer design as shown in
Fig. 6.16. Serializer block performs the Single Data Rate (SDR) to DDR conversion:
it receives 2n data at a given rate R (SDR) and multiplexes these data onto an internal
line at a higher rate 2R (DDR).

We should highlight that the OCD is operating at a frequency higher than the
one used by other blocks in the memory chip. Therefore, since we have to deal
with smaller delays inside the OCD, it is necessary to take more countermeasures in
designing the block to avoid jitter eating almost all margins.
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6.4.4.1 OCD Linearity: Push-Pull and Open-Drain Configurations

It is of primary importance to offer a linear behavior of the output characteristics
because of the system signal integrity. In other words, OCD linearity is key for
impedance matching with the external line.

6.4.4.2 Slew Rate Control and Bandwidth

Drivers should be designed in order to avoid driving frequencies greater than the
signaling rate. Simple and sophisticated methods can be used, such as passive delays
after the pre-driver or current control technique for the pre-driver stage. A time-split
method is widely used. The basic principle is to split output pull-up and pull-down
devices into branches and activate them serially with proper sequential delays. This
time-distributed driver can be implemented in a simple analog form suitable for
relative low operating frequency or digital form [13, 19, 20]. Figure 6.17 shows
a basic implementation of the analog form where the pull-up/down branches are
driven by a resistive line which contributes to define the RC delay element for each
branch. Each branch can be “weighted” to obtain the best slew rate conditions.

6.4.4.3 Voltage Domain Change: Level Shifting

I/O voltage usually differs from the power supply of the NAND core. For example,
the memory could internally operate at 1.5 V by means of a DC-DC down-converter,
whereas the data interface needs a 3 V or 1.8 V driving. Voltage domain change
occurs also when the memory has different power pins for core supply voltage and
I/Os. This situation allows the use of independent supply generators to separate the
noise coming from data bus and from the core region. In a simpler system design
it is still possible to connect the pins to the same supply on the PCB. The OCD
structure implements the level shifting function which consists in shifting the levels
of the digital signals from the core voltage GND/VDD to the interface voltage
GNDQ/VDDQ. Figure 6.18 shows a modified structure where NMOS transistors
M5 and M6 are added in order to speed up the transition of nodes from low
to high.
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Fig. 6.18 Level shifter modified

The level shifting circuit or, more generally, the point where the data change
voltage domain, is critical in jitter generation. The two domains provide two
different references for the signal detection; therefore, any disturbs on the power
supply lines lead to the introduction of additional distortion.

6.4.4.4 Jitter Sources and Duty Cycle Distortion

Off-Chip Driver complexity implies that data is travelling along many gates before
reaching the output stage. The design of the chain of inversions is fundamental in
the control of duty cycle distortion. Duty cycle distortion occurs when:

• positive and negative slopes are different;
• number of inversion is odd;
• ground or power shifts.

To reduce the jitter in a chain of inverters it is necessary to keep the same slope in
the chain, i.e. using the same ratio between the driver strength and the load, instead
of trying to minimize the number of inverters in the chain. Another source of jitter
is hidden in level shifters and voltage domain change. Level shifter sketched in
Fig. 6.18 introduces asymmetric positive/negative slopes detected by a receiver gate
with different time delay.

In conclusion, high-speed NANDs require a very sophisticated I/O design
because of its impact on SSD’s power, performances and signal integrity.

6.5 Read Operation: The Sense Amplifier

Let’s now move in the core region. The reading operation is designed to address
specific memory cells within the array and measure their information content. As
in other types of Flash memories, the stored information is associated with the
cell’s threshold voltage VTH: in Fig. 6.19 the threshold voltage distributions of
cells containing one logic bit are shown. If the cell has a VTH belonging to the
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Fig. 6.19 Threshold voltage distributions of erased (“1”) and programmed (“0”) cells

erased distribution, it contains a logic “1”, otherwise it contains a logic “0”. Cells
containing n bit of information have 2n different levels of VTH.

Flash cells act like usual MOS transistors. Given a fixed gate voltage, the cell
current is a function of its threshold voltage. Therefore, through a current measure,
it is possible to understand which VTH distribution the memory cell belongs to.

The fact that a memory cell belongs to a string made up by other cells has some
drawbacks. First of all, the unselected memory cells must be biased in a way that
their threshold voltages do not affect the current of the addressed cell. In other
words, the unselected cells must behave as pass-transistors. As a result, their gate
must be driven to a voltage (commonly known as VPASS) higher than the maximum
possible VTH. In Fig. 6.19 VPASS has to be higher than VTHMAX.

However, the presence of 2n-1 transistors in series has a limiting effect (satura-
tion) on the current’s maximum value; this maximum current is, therefore, much
lower than the one available in NOR-type Flash memories.

Figure 6.20 shows the I–V (current-voltage) characteristic of a NAND cell
(string): VREAD is applied to the selected gate while VPASS bias the unselected gates.
VPASS is a fixed voltage. Three main string working-regions can be highlighted.

1. Region A: the addressed cell is not in a conductive state.
2. Region B: VREAD makes the addressed cell more and more conductive.
3. Region C: the cell is completely ON, but the series resistance of the pass

transistors (unselected cells) limits the current to ISSAT.

The string current in region C can be estimated as:

ISSAT D VBL

.n � 1/RON (6.3)

where RON is the series resistance of a single memory cell, VBL is the voltage
applied to the bitline and n is the number of the cells in the string. RON , at a first
approximation, is the resistance of a transistor working in the ohmic region.
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Fig. 6.20 Cell current characteristics versus gate voltage

For a MOS transistor in ohmic region the following equation holds true:

ID D k �
"
.VGS � VTH / � VDS � VDS

2

2

#
(6.4)

For small VDS values, as in our case, Eq. (6.4) may be simplified as:

ID D k Œ.VGS � VTH / � VDS � (6.5)

Therefore, RON is equivalent to

RON D VDS

ID
D 1

k .VGS � VTH / (6.6)

Equation (6.6) shows that RON is a function of VTH. In other words, ISSAT depends
on the VTH values of the n cells in series. When all the cells are programmed to
VTHMAX, RON takes its maximum value (dashed line in Fig. 6.20). RON influences
the I–V characteristic also in region B but in a more negligible way. In order to
reduce the dependency from RON , the cell has to be read in region B as near as
possible to point O.

The order of magnitude of the saturation current, in the state-of-the-art NAND
technologies, is a few hundreds of nA, that means a reading current of some tens of
nA. It is very hard to sense such small currents with the standard techniques used
in NOR-type Flash memories, where the reading current is, at least, in the order
of some �A. Moreover, in NAND devices, tens of thousands of strings are read in
parallel. Therefore, tens of thousands of reading circuits are needed. Due to the mul-
tiplicity, a single reading circuit has to guarantee a full functionality with a very low
area impact. As a matter of fact, the first memory NAND prototypes used traditional
sensing methods, since the said currents were in the order of tens of �A [21].
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The reading method of the Flash NAND memories consists in integrating the
cell current on a capacitor in a fixed time (Fig. 6.21). The voltage 	VC across a
capacitor C, charged by a constant current I for a time period 	T, is described by
the following equation:

�VC D I

C
�T (6.7)

Since the cell current is related to its VTH, the final voltage on the capacitor (�V)
is a function of VTH too.

There are different reading techniques, starting from the one using the bitline
parasitic capacitor, ending with the most recent sensing technique which integrates
the current on a little dedicated capacitor. The above mentioned techniques can be
used both in SLC and MLC NAND memories. In the MLC case, multiple basic
reading operations are performed at different gate voltages.

Historically, the first reading technique used the parasitic capacitor of the bitline
as the element of the cell current integration [22–24].

In Fig. 6.22 the basic scheme is shown. VPRE is a constant voltage. At the
beginning, CBL is charged up to VPRE and then it is left floating (T0). At T1 the
string is enabled to sink current (ICELL) from the bitline capacitor. The cell gate is
biased at VREAD. If the cell is erased, the sunk current is higher than (or equal to)
IERAMIN. A programmed cell sinks a current lower than IERAMIN (it can also be equal
to zero). CBL is connected to a sensing element (comparator) with a trigger voltage
VTHC equal to VSEN. Since IERAMIN, CBL, VPRE and VSEN are known, it follows that
the shortest time (TEVAL) to discharge the bitline capacitor is equal to:

TEVAL D CBL VPRE � VSEN

IERAMIN
(6.8)

If the cell belongs to the written distribution, the bitline capacitor will not
discharge below VSEN during TEVAL. As a result, the output node (OUT) of the
voltage comparator remains at 0. Otherwise, if the cell is erased, VBL drops below
VSEN and the OUT signal is set to 1.
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Fig. 6.22 Basic sensing scheme exploiting bitline capacitance and the related timing diagram
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The basic sense amplifier structure is sketched in Fig. 6.23. During the precharge
phase TPRE, MSEL and MPCH are biased to VPRE and VDDCVTHN respectively. VTHN

is the threshold voltage of a NMOS transistor and VDD is the device’s power supply
voltage.
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As a consequence, CBL is charged to the following value:

VBL D VPRE � VTHN (6.9)

During this phase, the SO node charges up to VDD. Since VGS and VDS can be
higher than 20–22 V, MHV has to be a high voltage (HV) transistor. In fact, during
the erase phase, the bitlines are at about 20 V and MHV acts as a protection element
for the sense amplifier’s low voltage components. Instead, during the reading phase,
MHV is biased at a voltage that makes it behave as pass-transistor. Moreover, during
the precharge phase, the appropriate VREAD and VPASS are applied to the string.
MBLS is biased to a voltage (generally VDD) that makes it work as pass transistor.
Instead, MSLS is turned off in order to avoid cross-current consumption through the
string.

Typically, VBL is around 1 V. From Eq. (6.9), VPRE values approximately
1.4� 1.9 V, depending on the VTHN (NMOS threshold voltage). The bitline
precharge phase usually lasts 5 � 10 �s, and depends on many factors, above all
the value of the distributed bitline parasitic RC.

Sometimes this precharge phase is intentionally slowed down to avoid high
current peaks from VDD. In order to achieve this, the MPCH gate could be biased
with a voltage ramp from GND to VDDCVTHN.

At the end of the precharge phase, PCH and SEL are switched to 0. As a
consequence, the bitline and the SO node parasitic capacitor are left floating to a
voltage of VPRE -VTHN and VDD respectively. MSL is then biased in order to behave
as pass transistor. In this way the string is enabled to sink (or not) current from the
bitline capacitor.

At this point, the evaluation phase starts. If the cell has a VTH higher than VREAD,
no current flows and the bitline capacitor maintains its precharged value.

Otherwise, if the cell has a VTH lower than VREAD, the current flows and the
bitline discharges.

6.5.1 Interleaving Architecture

Given the Eq. (6.8), it is clear that the bitline capacitance has a direct influence on
the evaluation time. CBL must fulfill the following requirements:

– it must be a known parameter;
– it must be immune to external noise.

Figure 6.24 is a bitline cross-section showing the different contributions
to CBL:

– CAD is the parasitic capacitor between the bitline and the lower plane (usually it
is the wordline plane);

– CAU is the parasitic capacitor between the bitline and the upper plane (usually it
is the source-line plane);
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– CC is the parasitic capacitor between two adjacent bitlines;
– CC2 is the parasitic capacitor between a bitline and its second nearest bitline.

Therefore, CBL can be written as:

CBL D CAU C CAD C 2CC C 2CC2 (6.10)

The above mentioned contributions depend on the bitline geometrical values
(width W, height H and spacing S in Fig. 6.24), on the distance between upper and
lower ground levels and on the oxide thickness. These parameters are not uniform
among different wafers, dice and even within the same die. However, a correct
reading must be ensured.

In all the explained theory, another important assumption is that the bitline
capacitor has one of its terminals fixed to ground. Actually, looking at Fig. 6.24,
CBL ground terminal is physically distributed over four nodes:

1. the upper plate, usually the source-line;
2. the lower plate, usually the wordline or the source-line;
3. the left bitline;
4. the right bitline.

During the evaluation time the first two nodes are forced at a fixed voltage.
Instead, the adjacent bitlines could be discharged by the strings connected to them.

With the continuous bitline shrinking (W and S in Fig. 6.24), the coupling
capacitances play an important role. In sub-40 nm NAND technologies they
contribute 80�90% of the total bitline capacitance. To overcome this issue, the
interleaving architecture is introduced. While the even (or odd) bitlines are read,
the odd (or even) bitlines are forced to a fixed voltage (generally ground), acting as
electrical shield [22–24]. As shown in Fig. 6.25, MSLe and MSLo (bitline selectors)
are placed between the bitlines and the page buffer PB(i). If the even bitlines BLe
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Fig. 6.25 Interleaving bitline architecture

are read, MSELe acts as a pass-transistor. Transistor MSELo is turned off. The DISo
signal turns on the MDISo transistor, forcing the odd bitline BLo to the fixed BIAS
voltage. MDISe is turned off.

In order to minimize the power consumption, BIAS and the source line (SL)
should be biased at the same voltage. In fact, these two nodes are shorted if a
cell with VTH<VREAD belongs to the unselected bitlines. SL and BIAS are usually
grounded during the reading operation.

With this architecture, the noise injection effect through the CC coupling
capacitors is eliminated. However, the coupling through CC2 (Fig. 6.24) is still in
place. This contribution is not negligible: in the state-of-the-art technologies, CC2

contributes 5–10% of the total bitline capacitance. This problem is solved by the
architecture described in the next section.

6.5.2 All BitLine (ABL) Architecture

The sensing technique is basically the same used in the interleaving architecture.
An intentionally placed capacitor is used instead of the CBL bitline parasitic
capacitor [25].
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Figure 6.26 shows the main elements of the ABL sense amplifier. The latch is
replaced by a voltage comparator with a VTHSA trigger voltage. The other elements
are those ones already described in the interleaved architecture, but here used in a
different way. The capacitor CSO is involved in the integration of the cell current: it
can be done using either MOS gates or poly-poly capacitors.

Figure 6.27 shows the timings used in a single read operation. The precharge
phase is similar to that one described for the interleaving architecture, where MPCH

and MSEL gates are biased to VDDCVTHN and VPRE respectively. MHV HVNMOS
has the behavior already described and, during the single read operation phase,
works as pass transistor. The signals which drive the string gates (VREAD, VPASS

and BLS) are activated as usually. Instead SLS signal is immediately activated in
order to stabilize the bitlines during the precharge phase. In fact, if the SLS had
been activated during the evaluation phase, there would have been a voltage drop on
those bitlines with an associated sinking current string.
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The precharge final condition

VBL D VPRE � VTHN (6.11)

is, therefore, valid only for the bitlines which have an associated string in a non
conductive state.

Equation (6.11) should be replaced by:

VBL D VPRE � VTHN �� (6.12)

where� is the voltage drop on the bitlines resistance (typical values are in the order
of hundreds of k
 up to one M
).

At the end of the precharge phase (T1), the bitlines are biased to a constant
voltage and VSO is equal to VDD. At this point, MPCH is switched off and the
evaluation phase starts. Actually, MPCH is biased to a VSAFE voltage value in order to
make MPCH behave as a clamp transistor of the SO voltage. The following relation
must be valid:

VSAFE � VTHN � VPRE � VTHN ) VSAFE > VPRE (6.13)

This clamp value must not influence the current integration on the SO capacitor,
i.e. the clamping function can’t take place above the VTHSA trigger voltage:

VSAFE � VTHN � VTHSA (6.14)

Therefore, from Eqs. (6.13) and (6.14), the following conditions must hold true:

VPRE � VTHN � VSAFE � VTHN � VTHSA (6.15)

When MPCH is switched off, the cell current (through MPRE) discharges the CSO

capacitor. If, during the evaluation time, VSO<VTHSA (trigger voltage of Fig. 6.26
comparator), than OUT N switches (dotted lines in Fig. 6.27). The “threshold
current” IREADTH is defined as:

IREADTH D �V � CSO
TEVAL

(6.16)

where

�V D VDD � VTHSA (6.17)

Observe that, because the bitline is biased to a fixed voltage, a constant current
IREADTH flows.
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It is possible to extrapolate the evaluation time:

TEVAL D �V � CSO
IREADTH

(6.18)

Given the same read currents, it follows that the ratio between Eqs. (6.8) and
(6.18) is determined by the ratio between CBL and CSO. CBL is a parasitic element
and has a value of 2�4 pF. Instead, CSO is a design element and has typical values
around 20�40 fF, i.e. two orders of magnitude lower than CBL. The reduction of the
evaluation time from 10 �s to hundreds of ns is another advantage of the All Bitline
architecture.

In addition, ABL architecture gives further advantages such as energy saving,
bitline-coupling reduction and Floating-Gate-coupling reduction during program
and read, and program stress reduction [2].

6.5.3 Read Voltage with Thermal Tracking

In a 2bit-per-cell multilevel Flash NAND memory, four different threshold voltage
(VTH) distributions exist, as shown in Fig. 6.28. All the cells are in the “11” state
after electrical erase. During programming phase, the threshold voltage of the cells
is incremented in small steps until the desired value is reached. At the end of each
program step, a verify operation is performed, in order to evaluate whether VTH

has gone above one of the verify voltages, VFY1, VFY2 or VFY3. Of course, verify
voltage depends on which bits have to be stored in a given cell. For instance, in
order to reach “00” logic value, threshold voltage has to go above VFY2. Once target
distribution is reached, further program pulses are not applied to that cell.
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In order to univocally determine the logic value stored in the selected cell, read
operation uses three voltage values, VREAD0, VREAD1, and VREAD2 as shown in
Fig. 6.28. Each read voltage is centered between two adjacent distributions so that
read margins are maximized. For instance, the distance between VREAD1 and the
rightmost side of “10” distribution should be equal to the distance between VREAD1

and the leftmost side of “00” distribution. With multilevel memories, the typical
value for such distances is 300 mV.

In order to achieve the required precision, voltages to be applied to the cells
are generated by means of voltage regulators which exploit band-gap techniques
to generate a precise reference voltage. In this way, the voltages generated on-chip
are independent from temperature, at least to a first approximation. On the other
hand, the VTH distributions of the memory cells are highly sensitive to temperature
variations: as temperature increases, VTH decreases and vice versa (see Fig. 6.29).

As a result, read margins are reduced when temperature varies, because the tails
of the distributions get nearer and nearer to read voltages. For instance, as shown
in Fig. 6.29, “00” distribution gets nearer to VREAD2 at low temperature, while it
gets nearer to VREAD1 at high temperature. The same is true for each distribution.
Threshold voltage of the cell typically shifts of �1.5 mV/ıC. As a consequence,
overall variation is approximately 200 mV if a temperature range of�40ıC to 90ıC
is considered.

Therefore, a specific type of read voltage regulator is needed [26–28]: that
is, the thermal coefficient of its output voltage has to be as similar as possible
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to the coefficient of the cell’s VTH. In this way, read voltages rigidly shift with
distributions, keeping the margins unaltered. (Fig. 6.30). A similar constraint is true
for verify voltages.

6.6 Program

As described in Chap. 5, VTH is modified by means of the Incremental Step
Pulse Programming (ISPP) algorithm (Fig. 6.31): a voltage step (whose amplitude
and duration are predefined) is applied to the gate of the cell. Afterwards, a
verify operation is performed, in order to check whether VTHR has exceeded a
predefined voltage value (VVFY). If the verify operation is successful, the cell has
reached the desired state and it is excluded from the following program pulses.
Otherwise another cycle of ISPP is applied to the cell, where the program voltage is
incremented by �Vpp.

During the program operation, the cells share the high programming voltage on
the selected wordline but the program operation has to be bit selective. Therefore,
a high channel potential is needed to reduce the voltage drop across the tunneling
dielectric and prevents the electrons tunneling from the channel to the floating gate
as indicated by Fig. 6.32a. In the first NAND flash devices the channel was charged
by applying 8 V to the bitlines of the program inhibited NAND strings. This method
suffers from several disadvantages [29], especially power consumption and high
stress on the oxide between adjacent bitlines.

The self boost program inhibit scheme is less power consuming. By charging
the string select lines and the bitlines connected to inhibited cells to Vcc, the

http://dx.doi.org/10.1007/978-94-007-5146-0_5
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Fig. 6.31 Incremental Step
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select transistors are diode connected (Fig. 6.32b). By raising the wordline potential
(selected wordline to Vpp and unselected wordlines to Vppass) the channel potential
is boosted by the coupled series capacitance through the control gate, floating gate,
channel and bulk.

In fact, when the voltage of the channel exceeds Vcc – VTH,SSL, then SSL
transistors are reverse biased and the channel of the NAND string becomes a floating
node.
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Two important typologies of disturbs are related to the program operation: the
Pass disturb and the Program disturb, as described in Chap. 5.

6.7 Erase

The erase operation resets the information of all the cells belonging to one block
simultaneously.

Tables 6.1 and 6.2 summarize the erase voltages. During the erase pulse, all the
wordlines belonging to the selected block are kept at ground, the matrix ip-well
must rise (through a staircase) to 23 V and all the other nodes are floating. This
phase lasts almost a millisecond and it is the phase when the actual electrical erase
takes place.

Since the matrix ip-well (as well as the surrounding n-well) is common to all the
blocks, it reaches high voltages also for the unselected blocks. In order to prevent
an unintentional erase on those blocks, wordlines are left floating; in this way, their
voltage can rise thanks to the capacitive coupling between the wordline layer and
the underneath matrix layer. Of course, the voltage difference between wordlines
and ip-well should be low enough to avoid Fowler-Nordheim tunneling.

After each erase pulse an erase verify (EV) follows. During this phase all the
wordlines are kept at ground. The purpose is verifying if there are some cells that
have a VTH higher than 0 V, so that another erase pulse can be applied. If EV isn’t
successful for some columns of the block, there are some columns too programmed.

Table 6.1 Electrical erase
pulse voltages for the selected
block

T0 T1 T2 T3 T4

BLeven Float Float Float Float Float
BLodd Float Float Float Float Float
DSL Float Float Float Float Float
WLs 0 V 0 V 0 V 0 V 0 V
SSL Float Float Float Float Float
SL Float Float Float Float Float
ip-well 0 V VERASE VERASE 0 V 0 V

Table 6.2 Electrical erase
pulse voltages for unselected
blocks

T0 T1 T2 T3 T4

BLeven Float Float Float Float Float
BLodd Float Float Float Float Float
DSL Float Float Float Float Float
WLs Float Float Float Float Float
SSL Float Float Float Float Float
SL Float Float Float Float Float
ip-well 0 V VERASE VERASE 0 V 0 V

http://dx.doi.org/10.1007/978-94-007-5146-0_5
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If the maximum number of erase pulses is reached (typically 4), than the erase exits
with a fail. Otherwise, the voltage applied to the matrix ip-well is incremented by
�VE and another erase pulse follows.

6.8 MLC and XLC Storage

The obvious advantage of a 2 bit/cell implementation (MLC) with respect to a 1
bit/cell device (SLC) is that the area occupation of the matrix is half as much;
on the other hand, the area of the periphery circuits, both analog and digital,
increases. This is mainly due to the fact that the multilevel approach requires higher
voltages for program (and therefore bigger charge pumps), higher precision and
better performance in the generation of both the analog signals and the timings, and
an increase in the complexity of the algorithms.

Figure 6.33 shows an example of how 2 bits are associated to the four read thresh-
old distributions stored in the cell, and how the set of programmed distributions is
built starting from the erased state “E”. In this case the multilevel is achieved in two
distinct rounds, one for each bit to be stored [2], [30, 31].

E D1 

VVFY1

1st round 

D2 D3 

1 

1 

1 

0 

2nd round 

VVFY2 VVFY3

0 

0 

0 

1 

Upper page 

Lower page 

ΔISPP 
ΔISPP ΔP

Lower Page PGM Upper Page PGM

VVFY1

VVFY2

VVFY3

VTHR

Fig. 6.33 Two rounds MLC program operation
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In the first round, the so-called lower-page (associated to the Least Significant
Bit – LSB) is programmed. If the bit is “1”, the read threshold of the cell VTH does
not change and, therefore, the cell remains in the erased state, E. If the bit is “0”,
VTH is increased until it reaches the D1 state.

In the second round, the upper-page (associated to the Most Significant Bit –
MSB) is programmed. If the bit is “1”, VTH does not change and, therefore, the cell
remains either in the erased state, E, or in the D1 state, depending on the value of
the lower-page.

When MSB is “0”, VTH is programmed as follows:

– if, during the first round, the cell remained in E state, then VTH is incremented to
D3;

– if, during the first round, the cell was programmed to D1, then, in the second
round, VTH reaches D2.

As usual, the program operation makes use of ISPP, and the verify voltages are
VVFY2 and VVFY3. Lower-page programming only needs the information related to
LSB, while for the upper-page it is necessary to know both the starting distribution
(LSB) and the MSB.

Because of technological variations, VTH is not perfectly related to the amplitude
of the program pulse (during ISPP): there are “fast” cells which reach the desired
distribution with few ISPP pulses, while other “slow” cells require more pulses.

The amplitude of the first program pulse (VPGMLSB0) of the lower-page should
not allow the threshold VTHR of the “fastest” cell to exceed VVFY1. If it happens, an
undesired widening of distribution D2 occurs or, in the worst case scenario, VTHR

might reach D2 distribution at once.
Typical VPGMLSB0 is around 16 V. In case of program of “slow” cells from E to

D1, the last programming step needs values as high as 19 V. Assuming�ISPP equal
to 250 mV, it takes 12 steps to move from 16 to 19 V.

Similarly, the starting pulse of the upper-page VPGMMSB0 should have an ampli-
tude such that the “fastest” cell does not go beyond VVFY2.

VPGMMSB0 D VPGMLSB0 C .V VFY 2 � VVFY1/ (6.19)

The value of VVFY2 – VVFY1 is typically around 1 V and, therefore, the initial
voltage is about 17 V.

As shown in Fig. 6.33, the upper-page ISPP does not start from the last voltage
used for the lower-page programming, but it begins at VPGMLSB0 –�P. For example,
instead of starting at 19 V, it could start at 17 V, eight steps below.

Driven by cost, Flash manufacturers are now developing 3 bit/cell (8 VTH

distributions) and 4 bit/cell (16 VTH distributions) [32–34]. Three and four bits per
cell are usually referred to as XLC (8LC and 16LC, respectively). Unfortunately,
due to reliability reasons, the VTH window remains the MLC one; in fact, the highest
verification level must be low enough to prevent bit failures caused by program
disturb and read disturb. The more states a memory cell is made to store, the more
finely divided is its VTH window.
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Fig. 6.34 4 bit/cell programming algorithm

Of course, the main drawback is a slow program time. As the distribution width
needs to be tighter, ISSP program step is smaller and the number of verify operations
increases, as depicted in Fig. 6.34.

6.9 High Voltage Management

Modifying or reading the number of electrons stored into the floating gate requires a
big set of voltages. The High Voltage (HV) system has to provide all these voltages
with the desired precision, timing and granularity. On top of that, many voltages
have a value greater than the NAND power supply VDD, asking for an on-chip
charge pump. This section deals with the HV basic building blocks.

6.9.1 Charge Pumps

In the NAND environment, one of the most used type of charge pumps is the Voltage
Doubler [3]. The basic stage is shown in Fig. 6.35. It is a feedback system that
can duplicate the input voltage and, essentially, it is made up by two n-channel
transistors (MN1, MN2), two p-channel transistors (MP1, MP2) and two capacitors
(C1, C2) of the same size.

In order to understand the principle of operation of this circuit, it can be
assumed that, at the beginning, nodes A and B, as well as CK (pump clock) and
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Fig. 6.35 Basic stage of a voltage doubler

its complement (CK#), are at GND. In this way, both transistors MN1 and MN2 are
off. Voltage on the node IN (VIN) is set to VDD (i.e. the chip power supply).

As soon as CK toggles from GND to VDD, VA becomes VDD, activating
transistor MN2. Since CK# remains at GND, the charge starts flowing from power
supply to capacitor C2 until VB reaches a value equal to VDD – VTH,MN2. When CK
goes to GND, transistor MN2 turns off.

At the same time, CK# gets to VDD and, therefore, VB becomes (VDD –
VTH,MN2CVDD), turning on transistor MN1. As a result, C1 is charged up to VDD.
Of course, when CK# goes to GND again, VB is, in principle, equal to VDD –
VTH,MN2. Since the signal CK is used as a clock, each capacitance is continuously
charged and discharged between VDD and 2VDD. In other words, during each
period of the clock either VA or VB is at 2VDD.

At this point, in order to build a real charge pump, voltages on nodes A and
B have to be transferred to the next pump stage. Now MP1 and MP2 come into
the game. When CK is at VDD, VA is 2VDD and VB is VDD. Transistor MN1 is,
therefore, turned off while MP1 is active, transferring the voltage of node A to node
OUT. In the meanwhile MP2 is off, MN2 is on and the capacitor C2 is charged up.
When CK goes back to GND and CK# becomes VDD, then the circuit behaves in the
opposite way: MN1 and MP2 are active (the former charges capacitor C1, the latter
transfers the voltage of node B to the output) while MN2 and MP1 are turned off. It
is worth to note that no active direct paths between IN and OUT are allowed: these
paths would result in a loss of charge and, therefore, in a reduced output voltage.

As usual, when designing a charge pump, one issue to cope with is the biasing
of the transistor body terminals. The easiest solution is to connect the body of the
n-channel transistor to the power supply and the body of the p-channel transistor to
the output node.

The drawback of this solution is that the output voltage is considerably reduced
by the body-effect of the transistors itself. In Fig. 6.35a “dynamic biasing” has been
chosen: bodies are continuously switched between VA and VB. As a result, the body
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of the NMOS transistors is always kept at the lowest voltage (through MN3 and
MN4) while the body of the PMOS transistors is always at the highest voltage
(through MP3 and MP4).

The basic stage of Fig. 6.35 can be used to build up more complex structures as
depicted in Fig. 6.36. Usually, two stages are used in parallel in order to decrease
the ripple of the output voltage.

In fact, due to the internal switching activity of the capacitors, the output of the
pump can be more or less noisy. When talking about ripple, we generally refer to
the height of the “peaks” that can be found in the output node waveform.

In order to properly control the output voltage, voltage doubler stages are inserted
in a feedback loop as described in Fig. 6.37. A block called “Hireg” is used to limit
the output voltage. Thanks to a resistive divider (it could also be made by CMOS
diodes), the output voltage is compared with VREF (usually a band-gap reference
voltage). CK drivers are then enabled/disabled depending on the comparison result.
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Fig. 6.38 Conceptual scheme of a DC-DC converter

In order to find the best configuration, the output voltage of the charge pump is
measured varying the CK period. A faster clock means higher output voltage, but
faster clocks means bigger area of the CK drivers. The right trade-off has to be found
considering that, in most of the NAND applications, silicon cost is the main driver.
Optimum CK period is usually in the range of 60�80 ns considering an output
resistance of around 10 k
. The voltage doubler pump can easily achieve voltages
above 25 V starting from the chip VDD of 2.5 V. Power efficiency �P can be as high
as 20�30% if the current load remains in the range of few hundreds microAmpere.

�P D VOUT � IOUT

VIN � IIN
(6.20)

6.9.2 Internal Supply Voltage Regulator

In many NAND devices, external supply voltage VDD is not directly applied to
all the circuits [35, 36]. Some of them are powered by an internal supply (VINT)
filtered by a proper voltage regulator and this solution brings several advantages.
For instance, in case of devices supplied at 3.6 V, a VINT equal to 2 V allows the
use of transistors whose oxide thickness is reduced, which are smaller and better
performing. In the case of page buffers, by using VINT it is possible to mitigate the
dependency of the triggering threshold from VDD (i.e. several tens of milliVolt),
which turns into a reduction of the width of the distributions. Of course, inside the
NAND memory, there could be more than one VINT regulators, depending on the
design constraints (noise, power consumption, precision required by the circuits).

VINT regulator is a DC-DC converter. Its conceptual scheme is shown in Fig. 6.38.
For the sake of simplicity, VDD supplies only logic ports. When inverters are
switching, voltage drop of VINT is a function of the filtering capacitance CFILTER,
of the parasitic capacitance (gates, routing, junctions), and of the cross-conduction
current.
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Fig. 6.39 Voltage regulator with high voltage PMOS

Beyond a given maximum switching frequency of the logic, VINT dramatically
drops. This frequency is directly related to the cutoff frequency of the regulator.
Since the DC-DC converter is designed using the same technology of the inverters,
its cutoff frequency cannot be higher than the one of the plain inverter.

6.9.3 Double-Supply Voltage Regulator

Both program and erase operations require voltages higher than VDD. For instance,
the programming staircase voltage starts at 14�15 V and arrives at 25 V and beyond.
High voltages are generated by a charge pump and filtered by a proper voltage
regulator: in this way it is possible to reduce the ripple and obtain the desired output
voltage value.

In 1 bit/cell Flash memories, voltage regulator is omitted and the output voltage
of the pump is directly used, regulated by means of an on-off type of control. Typical
ripple values are in the order of 1�2 V. In case of multilevel memories, the target
voltage precision cannot be achieved without a voltage regulator.

NAND technology does not usually provide High Voltage (HV) PMOS transis-
tor; therefore; it is not possible to implement traditional voltage regulators like the
one shown in Fig. 6.39. In fact, the use of a low-voltage transistor for MPOUT would
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mean that the voltage drop across its terminals must be guaranteed not to exceed
4�5 V. This must be true both in static and in transient conditions. On top of that,
all the required values for the staircase program pulse must be generated out of the
pump output voltage (�30 V), beginning at 15 V: that is, MPOUT must be a HV
transistor.

In order to solve the issue it is possible to design a voltage regulator [37] whose
first differential stage is supplied by VDD, while the second one is supplied by a
charge pump so that the HV value can be provided at the output (Fig. 6.40).

By supplying the first stage with VDD, PMOS LV transistors can be used to
realize the current mirror (MP1 - MP2). The second stage is instead designed using
an NMOS HV (MNOUT) together with a resistive pull-up (Rpull-up).

6.10 Wordline Decoder

One of the most critical circuits of the High Voltage (HV) system is the one used
to bias the WordLine (WL). Actually, when it comes to NAND memories, a single
wordline is not enough: all the wordlines belonging to the same NAND string must
be properly biased at the same time. As a result, the Row Decoder, also called
Wordline Decoder or Wordline Driver [4], has to provide a set of voltages: these
values are defined by the algorithms described in Sects. 6.5 and 6.6.

When NAND technology provides only NMOS-type HV transistors, a possible
implementation of the wordline driver is shown in Fig. 6.41. The wordline driver
comprises:
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Fig. 6.42 Simulation of the circuit sketched in Fig. 6.39

• a Pass-Transistor (PT) for each wordline. These transistors are used to transfer
voltages from the Global WordLines (GWLs), i.e. electrical signals, to the
physical wordlines (WLs);

• a circuit to bias the gates of the above mentioned pass-transistors.

The biasing circuit of the gate of PTs consists of only one high voltage NMOS
(M1). At first, all the gates are biased at a high voltage VPRECH through M1.
Then, M1 is switched off and, thanks to the gate-drain parasitic capacitance, the
rising transient of GWL performs a boost of VBLC, switching PTs on, as shown in
Fig. 6.42.

However, there are several critical aspects to consider. First of all, the designer
has to deal with a precharge phase of the PT gates: this phase must occur before
biasing the global wordlines, otherwise the boost effect would be lost.
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The precharge voltage VPRECH has to match VMAX, which is the maximum
voltage required during each algorithm. VMAX is not an issue during the read
operation, when the voltages are relatively low, but it ends up being close to the
breakdown voltage during the program operation. The duration of the precharge
phase must be calibrated to allow VPRECH reaching VMAX: this time increases the
overall operation time, especially during programming.

With reference to the circuit of Fig. 6.41, precharge is driven by the ENABLE
signal. To fully exploit the precharge benefit, ENABLE has to be biased with a
voltage greater than VPRECH, in order to recover the threshold voltage VTH,M1 of
transistor M1.

Particular attention deserves the boost operation. Once the boost has occurred,
VBLC has to guarantee that, even varying temperature and technological parameters,
each GWL and its corresponding WL are biased with the same voltage. Unfortu-
nately, process and temperature variations mean that the VTH of the pass transistors
can vary as much as 100%. Therefore, the risk is to overcome the breakdown voltage
of the oxide in some PVT (Process Voltage Temperature) corners allowed by the
electrical specification of the NAND Flash memory.

Designers have developed a lot of different solutions for the row decoder,
including a hierarchical approach [2, 3, 38]: due to the huge numbers of wordlines
contained in a NAND array, the challenge is always to trade off performances with
silicon area.

At this point the reader should be reasonably convinced that a NAND Flash
memory is not a “pure” digital device: it is a real mix of digital and analog circuits,
working at high and low voltages, and designed on a silicon technology developed
for floating gate transistors : : : have fun!
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Chapter 7
NAND and Controller Co-design for SSDs*

K. Takeuchi

Abstract SSD is made up by NAND Flash memories, DRAMs and a NAND
controller. To realize a low-power high-speed SSD, the overall performance of
the NAND Flash memory and the NAND controller should be optimized by co-
designing both NAND and controller circuits. This chapter describes the most
advanced circuits in this field.

Furthermore, 3D-integration in the SSD system becomes a key topic and an
example of low power 3D-integrated SSD is shown.

Finally, a couple of techniques, Asymmetric Coding and Stripe Pattern Elimina-
tion Algorithm, for reducing the NAND raw BER are presented.

7.1 Introduction

With highly scaled technologies below 20 nm, the memory capacity increases to
several Gbit as shown in Fig. 7.1. By using Gbit-capacity NAND Flash memories,
SSDs, Solid-State Drives, that uses NAND as a mass storage of personal computers
and enterprise servers are the new killer application of NAND Flash memories.

The hardware architecture of SSD is shown in Fig. 7.2. SSD is composed of
NAND Flash memories, DRAMs and a NAND controller. To realize a low power
high speed SSD, the overall performance of the NAND Flash memory and the
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NAND controller should be maximized by co-designing NAND Flash memory
and NAND controller circuits [1–3]. Furthermore, an intelligent 3D-integration of
various circuits in SSD such as the NAND controller, the NAND Flash memory and
voltage generators are essential [4].
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7.2 Analysis of SSD Performance

As shown in Fig. 7.2, SSD contains more than 8 NAND chips. For example, in
Fig. 7.2, each NAND Flash memory is assumed to have 16 Gbit or 2 GByte capacity.
One SSD is composed of 64 NAND chips and the total capacity is 128 GBytes,
which is most suitable for the lap top computers. In Fig. 7.2, 4-channel configuration
is adopted. The NAND controller can operate four channels independently.

The NAND controller can issue a write command to 4 channels, writing 4 NAND
chips at the same time and improving the system-level write performance.

In a channel, 16 NAND Flash memory chips are connected together.
I/O signals and control signals such as the WE (Write Enable)-signal, the RE

(Read Enable)-signal, the CLE (Command Latch Enable)-signal, and the ALE
(Address Latch Enable)-signal are shared to save area for the bonding and the
packaging. To select one NAND chip in a channel, different CE (Chip Enable)-
signals and R/B (Ready/Busy)-signals are assigned to the NAND chips in a channel.

Figure 7.3 shows the software architecture of SSD. The NAND controller is
composed of the host interface, the Flash Translation Layer (FTL) and the NAND
interface. FTL is the central part of the NAND controller and perform a bad block
management, a logical-physical address translation, a wear-leveling, ECC and an
interleaving. The intelligent write algorithm described in Sects. 7.5 and 7.6 is also
controlled with FTL.

In a NAND Flash memory, the programming is slower than the read by one
order of magnitude [1]. The typical random read time of a 2 bit/cell NAND Flash
memory is 50 �s while the typical random program time is 800 �s. Considering the
read/write access time of HDD is a few milliseconds, the key design challenge of
SSD is to improve the write performance. To accelerate the write speed of SSD, an
interleaving is proposed where multiple NAND chips in SSD are programmed at the
same time [5]. The write speed of SSD with an interleaving is expressed as follows:

Performance SSD D N � Performance NAND (7.1)

N is the number of NAND Flash memories operated simultaneously. Perfor-
mance NAND is the program speed of one NAND Flash memory. As a memory
cell is scaled down or more bits are stored in a memory cell such as 3 bit/cell or 4
bit/cell, a more precise control of the memory cell VTH is required and accelerating
the NAND speed, Performance NAND, becomes difficult. Actually, the program
time of the 56 nm 3 bits per cell is 1.2 ms [6] and that of the 70 nm 4 bits per cell
is 6 ms [7] which are much longer than that of the 2 bits per cell. Thus, the best
strategy to improve the SSD speed is to increase the number of NAND chips in
parallel, N. However, if N is maximized and all NAND chips in SSD, for example
64 NAND chips, are programmed simultaneously, 64 times as much current flows
and the current consumption increases to an unacceptable high value, two amperes.
Therefore, in an actual SSD operation, the maximum number of N is restricted by
the current consumption constraint.
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As the NAND cell is scaled down, the bit-line capacitance drastically increases
[8] and consequently the current consumption increases. Figure 7.4 shows the
schematic diagram of the NAND Flash memory cell array. The bit-line is arranged
with the minimum feature size. Figure 7.5 describes the cross sectional view of the
bit-line and the memory cell. As the design rule is decreased, the space between
the bit-lines is also decreased. On the other hand, the height of the bit-line is not
decreased to keep the low resistance of the bit-line. As a result, the inter bit-line
capacitance, CBL-BL shown in Fig. 7.5a increases and the bit-line capacitance also
increases as shown in Fig. 7.6. The total bit-line capacitance in a chip exceeds
200 nF and the current consumption to precharge the huge bit-line capacitance
increases as shown in Fig. 7.7.
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Since the current consumption increases for sub-30 nm generation, the number
of chips in parallel, N should be smaller as shown in Fig. 7.8 and the SSD speed
drastically degrades as shown in Fig. 7.9. To overcome this power consumption
problem, new circuit technologies are described in the following sections.



7 NAND and Controller Co-design for SSDs 179

7.3 Selective Bit-Line Precharge Scheme

A bit-by-bit program algorithm of the NAND Flash memory [9] is shown in
Fig. 7.10a.

First, the program data is input to the page buffers. Next, the program pulse is
applied to the memory cells. Then, the verify-read to check if the memory cells
are successfully programmed is performed. The re-program data in the page buffers
are modified so that the re-program pulse is applied only to memory cells which are
insufficiently programmed. The re-program pulse and the verify-read are repeated
until all memory cells are successfully programmed.

In case of the multi-level cell, two bits in a memory cell are assigned to the 1st

and 2nd pages and the two bits are programmed at different operations [10]. In the 1st

page program, the memory cell is programmed from the erased state to the “A”-state
shown in Fig. 7.10b. In the 2nd page program, the memory cell is programmed to
the “B”- or “C”-state. The selective bit-line precharge scheme decreases the current
consumption during the verify-read.

Figure 7.11 compares the conventional verify-read and the selective bit-line
precharge scheme. In the conventional verify-read, all bit-lines are precharged
irrespective of the program data and a lot of current flows. In the selective bit-line
precharge scheme, bit-lines are selectively precharged based on the program data
in the page buffer. By eliminating the unnecessary bit-line precharge, a low current
operation is achieved.
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& ”A”verify
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Fig. 7.10 (a) Program algorithm of a NAND Flash memory, (b) 1st page and 2nd page program
of a multi-level cell
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This novel operation is realized by adding five transistors shown in Fig. 7.12
to the conventional page buffer [11]. The die size penalty is less than 1% of the
chip size.

In the 1st page verify-read, the data in the page buffer is the program inhibit, the
“A”-program complete or the “A”-program incomplete. The program data stored
in a page buffer for the “A”-program incomplete is updated so that the program
pulse is applied only to the memory cells which are insufficiently “A”-programmed.
In the conventional “A”-verify read, all bit-lines are precharged to 1 V as shown in
Fig. 7.11a. On the other hand, in the proposed “A”-verify read, in case of the “A”-
program complete and the program inhibit, the data in the page buffer does not
change and thus the bit-line precharge can be removed. The bias condition of the
proposed page buffer is summarized in Table 7.1. By activating PRE1- and PRE2-
signals in Fig. 7.12, only bit-lines of the “A”-program incomplete are precharged to
1 V as shown in Fig. 7.11b. Then, the control gate is raised to VA in Fig. 7.10b and
the bit-line is discharged.
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Table 7.1 Bias condition
of the selective bit-line
precharge

PRE1 PRE2

“A” – verify “High” “High”
“B” – verify “High” “Low”
“C” – verify “Low” “High”

In the 2nd page verify-read, “B”- and “C”-verify read are sequentially performed.
In the conventional “B”-verify read, all bit-lines are precharged to 1 V, irrespective
of the program data as shown in Fig. 7.11c. In the proposed “B”-verify read shown
in Fig. 7.11d, the PRE1-signal is turned-on and only bit-lines of the “B”-program
incomplete are precharged.

The bit-lines of the “C”-program, the “B”-program complete and the program
inhibit are not precharged to save current. Similarly, in the proposed “C”-verify
read shown in Fig. 7.11d, the PRE2-signal is activated and only bit-lines of the “C”-
program incomplete are precharged.

By removing an unnecessary bit-line precharge, the current consumption de-
creases by 23% for sub-30 nm NAND as shown in Fig. 7.7.

7.4 Advanced Source-Line Program

The advanced source-line program reduces the current during the program pulse.
Figure 7.13 compares the conventional program [12] and the source-line program
[13]. In the conventional program shown in Fig. 7.13a, to realize a program
inhibit operation a higher program inhibit voltage, 2.5 V, is applied from the high
capacitance bit-line to the memory cell, consuming a lot of current. Contrarily, in
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the source-line program shown in Fig. 7.13b, the current consumption is reduced by
applying a higher voltage, 2.5 V, from the low capacitance source-line.

By using Fig. 7.5, the capacitance of the bit-line and the source-line is compared.
The bit-line capacitance, CBit-line, and the source-line capacitance, CSource-line, are
expressed as follows:

CBit� line D CBL� BL C Cjunction (7.2)

CSource� line D CSource� line;wire C Cjunction (7.3)

where CBL-BL, CSource-line,wire and Cjunction are the inter bit-line wiring capacitance, the
source-line wiring capacitance and the junction capacitance, respectively as shown
in Fig. 7.5. The junction capacitance of the bit-line is the same as that of the source-
line.

In the NAND Flash memory, the inter bit-line wiring capacitance, CBL-BL, is
much larger than the source-line wiring capacitance, CSource-line,wire, or the junction
capacitance, Cjunction. As shown in Fig. 7.4, the bit-lines cover all memory cells. On
the other hand, one source-line is arranged every 64 or 128 control gates and 4 select
gates. Thus, the source-line wiring capacitance, CSource-line,wire, is much smaller than
the inter bit-line capacitance, CBL-BL. Similarly, the junction capacitance, Cjunction,
is much smaller than the inter bit-line wiring capacitance, CBL-BL, because one
contact is also shared by 64 or 128 memory cells and 4 select transistors. As a
result, the source-line capacitance, CSource-line, is as small as one tenth of the bit-line
capacitance, CBit-line.

The source-line program was demonstrated with a 0.25 �m NAND Flash
memory [13]. Yet, in the sub-50 nm gigabit-capacity NAND Flash memory since the
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Table 7.2 Operation
principle of the switch in the
source-line decoder in the
advanced source-line program

Selected
sub-array

Unselected
sub-array

Read ON ON
Program ON OFF
Erase ON ON

number of source-lines increases, the total source-line capacitance in a chip exceeds
20 nF and the current consumption to charge a source-line capacitance becomes
significant.

To solve this problem, the advanced source-line program is introduced [1]. In this
scheme, the source-line is divided to reduce the load capacitance during the program
pulse. As shown in Fig. 7.14, one memory cell array is divided to 16 sub-arrays.
The source-line has a hierarchy structure where a local source-line in a sub-array
connects to the global source-line through the source-line decoders.

Note that only the source-line is divided and that the active region, bit-lines,
control gates and select gates are not divided. As the hierarchical source-line
structure is realized by changing the layout of the metals and contacts in the memory
cell array, there is no cell area overhead with this new architecture. The additional
source-line decoders increase the area by less than 1% of the chip size.

During the program pulse, the source-line decoder of the selected sub-array is
turned-on and the source-line decoders of the unselected sub-arrays are turned off
as shown in Table 7.2.

As a result, only the local source-line of the selected sub-array is biased to 2.5 V
and the remaining local source-lines of unselected sub-arrays are not charged. Since
the load capacitance of the source-line is reduced by 90%, the total current decreases
by 48% as shown in Fig. 7.7.

On the other hand, during the read and the verify-read operations, all source-line
decoders are turned on and thus all local source-lines are connected to the global
source-line so that the source-line resistance is minimized. Consequently, the circuit
noise caused by the source-line bounce [14] is suppressed.
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By using the selective bit-line precharge scheme and the advanced source-line
program, the current consumption reduces by 60% for sub-30 nm generation SSD.
Assuming the same current budget of 250 mA, 2.5 times as many NAND chips
operate simultaneously as shown in Fig. 7.8 and the SSD speed improves by 150%
as shown in Fig. 7.9.

7.5 Intelligent Interleaving

Figure 7.15 illustrates the current waveform of the NAND Flash memory. A current
peak appears during the bit-line precharge and the charge pump ramp-up [8]. In
the interleaving operation, if the current peak of two or more NAND chips occurs
at the same time, huge current flows in SSD and the power supply drops by more
than 0.3 V. To avoid this power supply noise and realize a both highly-reliable and
high-speed program, an intelligent interleaving is introduced.

In this scheme, the PD (Power Detect)-signal is added. The PD-signal is
connected with wired-or configuration among NAND Flash memories and the
NAND controller as shown in Fig. 7.16. In Fig. 7.16, the NAND chips can belong
to the same channel or the different channels in Fig. 7.2. If one of the NAND chips
starts a bit-line precharge or a charge pump ramp-up that causes a current peak, the
NAND chip pulls down the PD-signal. When PD is low, the NAND controller does
not issue a write command to avoid the power supply noise.

Time
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Fig. 7.15 Current waveform and operation principle of the intelligent interleaving
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To monitor the status of each NAND chip, the R/B (Ready/Busy)-signal is
connected between the NAND controller and each NAND Flash memory chip.
The R/B-signal is low if the NAND chip operates a read, program or erase and
therefore is in the busy state. When both the PD- and the R/B-signals are high,
Program Enable-signal shown in Fig. 7.17 in the controller becomes low. In that
case, there is no current peak and the NAND chip is ready. Then, the NAND
controller issues a write command to the NAND chip and the program starts.

By using the intelligent interleaving, multiple NAND chips are programmed
at the same time without causing a power supply noise as shown in Fig. 7.15.
Therefore, a highly reliable and high speed operation of SSD is achieved.

7.6 Sector Size Optimization

To further improve the write performance of the NAND Flash memory, it is essential
to optimize the sector size. The sector size is the minimum file unit for the computer
system. The data is transferred from the OS (Operating System), to the memory
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storage such as SSD and HDD with the unit of the sector. With current operating
systems such as Windows, the sector size is optimized for the magnetic drives and
is typically 512 Bytes. The 512 Bytes sector size is much smaller than the page size
of the NAND Flash memory, typically 4–8 KBytes. The discrepancy between the
sector size and the page size significantly degrades the performance of SSD.

In a NAND Flash memory, all memory cells connected to the same control-
gate belong to the same page and are programmed at the same time as shown in
Fig. 7.18a.

A page can be written only once to avoid a program disturbance shown in
Fig. 7.19. In Fig. 7.19, Cell A is programmed. Cell B and Cell C are unselected
and are under a weak program bias condition [12], which is called the program
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disturbance. If a page is programmed more than once, the stress time of the program
disturbance becomes longer and the unselected Cell B or Cell C are programmed,
causing a data failure.

Considering that a page can be written only once, if one sector write is performed,
only 512 Bytes of the page is programmed and the remaining more than 80%
of the page are wasted as a garbage as shown in Fig. 7.18b. Since the NAND
Flash memory in SSD is seriously fragmented, in order to efficiently use SSD,
the garbage collection frequently happens. During the garbage collection, the block
copy operation of the NAND Flash memory is performed [8]. The block copy is
composed of the cell-read, cell-program, data transfer between the NAND Flash
memory and the NAND controller, and the ECC calculation. As the block copy
takes as long as 100 ms, if the block copy happens frequently, the system-level
write performance degrades drastically [1].

To avoid a block copy operation and maximize the system-level write perfor-
mance, it is crucial to minimize the data fragmentation by optimizing the sector
size. The sector size should be the same as or multiples of the page size so that the
garbage would not happen in case of the one sector write operation. Figure 7.20
shows the page size trend of the NAND Flash memory. As the memory capacity
increases, the number of memory cells connected to the same control gate increases
and as a result the page size also increases. Furthermore, in case of the interleaving
operation, the effective page size is increased to the number of chips in parallel, N
times the page size of one NAND Flash memory. Therefore, the optimal sector size
should be 128–256 KBytes.

The most straightforward method to increase the sector size is to change the file
system of the OS [1]. However, the software size of the OS is very large and it needs
huge engineering efforts to change the OS. The OS is usually changed every about
5 years and it is almost impossible to change the OS in accordance with the frequent
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page size change of the NAND Flash memory. Thus, optimizing the sector size by
efficiently using a write buffer in the NAND controller is essential.

In case of the one sector write operation, one sector program data is transferred
from the OS to the NAND controller. The NAND controller temporarily stores the
program data in the write buffer and the data is not programmed to the NAND
Flash memory. Then, multiple program data are transferred from the OS to the
NAND controller and are accumulated in the write buffer. When the program data
size in the write buffer of the NAND controller becomes comparable with the page
size, the write operation to the NAND Flash memory is performed. By efficiently
using the write buffer in the NAND controller and optimizing the sector size, the
fragmentation of SSD is eliminated and the SSD performance is maximized.

7.7 Adaptive Program-Voltage Generator for 3D-SSD

As mentioned in the previous sections, decreasing power consumption is the key
design issue of SSDs. The best strategy to decrease the power is lowering the
supply voltage, VDD from 3.3 V to 1.8 V. Yet, at 1.8 V VDD the power consumption
of the conventional charge pumps to generate the program voltage, VPGM (20 V),
drastically increases and the total power consumption of the NAND only slightly
decreases as shown in Fig. 7.21a. What’s worse, the area of the charge pump more
than doubles, which increases the NAND chip area by 5–10%. To overcome this
dilemma, a low power program voltage generator (PVG) using a boost converter
with an adaptive frequency and duty cycle (AFD) controller is proposed [4].

The 3D-integrated SSD proposed in [4] is shown in Fig. 7.21b. NAND chips,
DRAM, a NAND controller and the proposed PVG are integrated with SiP, System
in Package. The PVG consists of an inductor in an interposer, the high voltage
MOS (HVMOS) and the AFD controller. In the system, the cost is also minimized.
An inductor is available with no area penalty by using wiring in the interposer
connecting the NAND controller, NAND Flash memories and DRAMs. The die
size of the NAND decreases by 5–10% because no charge pump is needed. The
HVMOS is fabricated with a matured NAND process and its area is just 15% of
the conventional charge pump. Since the die size of the AFD controller is only
0.188 mm2 with a 0.18 �m CMOS process, it can be integrated in a NAND
controller with a negligible area increase.

A PVG using a boost converter was reported for a NOR Flash memory [15]. A
comparison between the PVG for a NOR Flash memory and for a NAND Flash
memory is summarized in Fig. 7.22a. In a NOR Flash memory, the load of the PVG
is resistive.

The PVG continuously supplies load current of 20 mA at an output voltage, 5 V.
In such a resistive load and a low output voltage condition, a conventional PWM is
employed [15]. Conversely, in a NAND Flash memory, the load is capacitive and
VPGM is 20 V. During the program, VPGM is applied to the word-line and a DC load
current of 20 �A flows. Also, a PVG for a NAND Flash memory should operate
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on-and-off to save power. In this condition both switching frequency and duty cycle
must be dynamically optimized and the conventional PWM changing only the duty
cycle cannot be used.

To identify the most power efficient frequency and duty cycle, an input supply
current, IDD is measured with the PVG. As shown in Fig. 7.22b, each VPGM has
different optimal frequency and duty cycle minimizing IDD. In other words, the
power efficiency is a function of VPGM, a switching frequency and a duty cycle
since the PVG operates in a discontinuous mode with a capacitive load. With a bit-
by-bit program verifying scheme, in each program cycle, VPGM is incremented by
0.5 V from 15 V to 25 V [16, 17].

For each VPGM, the AFD controller adaptively manages the switching frequency
and the duty cycle simultaneously so that the energy loss is minimized.



190 K. Takeuchi

0

10

20

30

40

70 75 80 85 90 95 100
Duty cycle [%]

S
up

pl
y 

cu
rr

en
t I

D
D

 [m
A

]

0

10

20

30

40

15 20 25 30 35
Switching frequency [MHz]

S
up

pl
y 

cu
rr

en
t I

D
D

 [m
A

]
VPGM=22V20V18V

16V

VPGM=22V 20V 18V 16V

Optimal

Optimal

PWM [4] This work

Load Resistive Capacitive

VPGM 5V 20V

ILOAD 20mA 20µA

Operation
Continuously 

on
On-and-off

Control
Duty cycle 

only

Frequency 
and duty 

cycle

a

b

Fig. 7.22 (a) Comparison of the conventional boost converter [15] and adaptive program voltage
generator [4]; (b) Measured optimal switching frequencies and duty cycles for various VPGM

Figure 7.23 shows the schematic diagram of the PVG with the AFD controller.
VPGM is monitored with three comparators and the control logic selects the proper
switching frequency and duty cycle from the register sets, Reg.L, Reg.M, and Reg.H.
These registers store a table of the frequency and the duty cycle which minimize
both the power and the output voltage fluctuation. The digital controlled oscillator
(DCO) is depicted in Fig. 7.24. The DCO consists of current reference circuits
and a couple of capacitor arrays. The DCO enables the clock shape to be only
determined by the resistor and the capacitor since the reference current IREF is
copied to the node VCAPA and VCAPB with the current mirror [18]. The frequency
and the duty cycle are robust against VDD fluctuation, transistor global VTH variation
and temperature variation. Switching time of DCO, TON and TOFF are expressed
as R�CA1-An and R�CB1-Bn, respectively. Since CA1-An and CB1-Bn are independently
selected according to the data in the registers, TON and TOFF, that is, the switching
frequency and the duty cycle are independently controlled.

To suppress the VPGM fluctuation, the AFD controller dynamically changes the
frequency and the duty cycle in three steps as shown in Fig. 7.25.

In the first step, the power efficient lower frequency is chosen. The AFD
controller outputs pulses with the switching frequency and duty cycle set, fL/DL

determined by Reg.L. VPGM rises coarsely and rapidly until VPGM reaches VREFL.
With fL/DL, the voltage increment for each pulse is 5 V. The frequency becomes
higher in the second and the third steps. In the second step, the AFD controller
changes the switching pulse from fL/DL to fM/DM determined by Reg.M.
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Fig. 7.23 Circuit diagram of the adaptive program voltage generator

Finally, the AFD controller finely raises VPGM with fH/DH toward the target
voltage. When VPGM reaches the target voltage, the AFD controller stops switching
pulses to save power. As a result, the PVG raises VPGM more than three times
faster than the conventional charge pump with a minimum power. VPGM is precisely
controlled with less than 0.3 V fluctuation, which enables a tight memory cell VTH

distribution.
Figure 7.26 shows the microphotograph of the bread board model of SSD

consisting of the HVMOS chip (0.35 mm� 0.50 mm), the AFD controller chip
(0.67 mm� 0.28 mm), a 270nH, 0.5
 inductor in an interposer (5 mm� 5 mm),
and a 56 nm 16 Gb NAND Flash memory chip. Key features are summarized in
Fig. 7.27. The measured waveforms during the program of a 56 nm 16 Gb NAND
Flash memory with the PVG is shown in Fig. 7.27. When a write command inputs
to the NAND, the Ready/Busy-signal turns to low and the NAND goes into the
busy state. The program voltage is supplied from the PVG and the program pulse is
applied to the memory cells. Then, the verify-read detects that all memory cells are
successfully programmed and the Ready/Busy-signal returns to high.

The measured power consumption of the PVG is 30 nJ, which is only 12% of
the conventional charge pump. Measured rising time of the PVG is 0.92 �s (at VDD,
1.8 V and VPGM, 15 V), while that of the charge pump is 3.45 �s. As the rising time
of the VPGM decreases by 2.53 �s, the program pulse width can be shortened by
2.53 �s. As a result, the total program time of a NAND Flash memory, a sum of the
program pulse width and the verify-read time is 7.8% shorter than the conventional
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Fig. 7.26 Die microphotograph of 3D-integrated SSD

1.8 V NAND Flash memory. The area of the HVMOS chip is just 15% of the charge
pump without a control circuit or an oscillator. By decreasing VDD from 3.3 V to
1.8 V, the total power consumption of a NAND Flash memory decreases by 68% as
shown in Fig. 7.21a.

7.8 Asymmetric Coding

With the technology shrink, also the NAND raw BER requires special attention.
This section deals with the asymmetric coding which decreases memory errors by
95% [19].

Figure 7.28 shows the measured memory cell error in the data retention and
program disturb of 4X, 3X and 2X nm NAND Flash memories.

As the cell size decreases, both data retention and program disturb errors
increase due to the interference, random telegraph noise and reduced electrons [20].
In the scaled NAND, the electric field in the channel increases [21] and the program
disturb due to GIDL-induced hot electron injection becomes more significant
(Fig. 7.28c). In conventional SSDs, 20–40 bit correction per 1 KByte codeword
Error Correcting Code (ECC) is used to correct errors [22].

As a stronger ECC such as LDPC is developed [23], the capability of ECC is
close to the Shannon limit of a few percent error correction. Thus, the additional
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high-reliability scheme is required. To improve the reliability in SSDs, Asymmetric
Coding is described to improve the memory cell reliability by 95% without access
time penalty.

Figure 7.29 shows the measured error analysis. The key observation is that for
both data retention and program disturb errors, the number of “0!1”-errors and
“1!0”-errors are NOT equal.

The origin of the data retention error is the electron ejection from the floating
gate due to the stress-induced leakage current (SILC). During the data retention, the
memory cell VTH moves to VTHi, the thermally equilibrium VTH, where no electron
exists in the floating gate. VTHi is around 0 V. Most errors correspond to the VTH

decrease of “10!00” or “00!01” due to the higher electric field across the tunnel
oxide (Fig. 7.29a). Also, if the memory cell VTH is higher, the program voltage is
also higher.

The enhanced voltage stress to memory cells increases the trap density in the
tunnel oxide. As a result, SILC increases and the data retention errors also increase.
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Fig. 7.28 Measured memory cell error rate in SSDs during (a) the data retention and (b) the
program disturb of 4X, 3X and 2X nm NAND Flash memories. The memory cell scaling degrades
the cell reliability. (c) The data retention errors are 100 times more than the program disturb errors

The program disturb error is caused by the electron injection due to GIDL to the
floating gate. Thus, the program disturb error corresponds to the VTH increase of
“01!00” or “00!10” (Fig. 7.29b). In the multi-level cell NAND Flash memory,
two bits stored in a memory cell are assigned to two different page (row) addresses,
upper and lower pages [24]. For the data retention, the major error is “0!1” of the
lower page and “1!0” of the upper page. In contrast, the major error of the program
disturb is “1!0” of the lower page and “0!1” of the upper page.

Figure 7.30 shows the Randomizing Coding and Asymmetric Coding. Consider-
ing the data retention error is over 100-times more than the program disturb error
(Fig. 7.28c), the Asymmetric Coding improves the data retention by increasing
“1”- and “0”-data of the lower and upper pages, respectively. In the Randomizing
Coding, the population of “10” and “00” is about 25% of the total data. In the SSD,
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Fig. 7.29 Measured asymmetric memory errors. The observed errors strongly depend on the data
pattern. The data retention error is “0!1” of the lower page and “1!0” of the upper page. The
program disturb error is “1!0” of the lower page and “0!1” of the upper page

Asymmetric Coding Encoder modifies the data programmed to NAND so that at
least 60% of the lower and upper pages are “1” and “0”, respectively. As a result,
“10” and “00” occupy about 16% and 24% of the total data. By decreasing the
population of “10” and “00”, the data retention error decreases because (1) the lower
program voltage decreases the voltage stress to memory cells and (2) the lower
memory cell VTH decreases the electric field across the tunnel oxide and reduces
SILC.

The code length, data unit where Asymmetric Coding is applied, is 16. If Data
unit1 in Fig. 7.30 contains more than or equal to 8 bit of “0”, Data unit1 is flipped to
increase the number of “1” and the flag is set to “1”. On the other hand, if Data unit2
contains less than 8 bit of “0”, the data is not modified. As shown in Fig. 7.31a, the
smaller code length realizes a higher population of “1” with a drawback of a larger
overhead due to the flag. If the code length is 16, the overhead is 6.3%. The number
of “1” of the lower page and that of “0” of the upper page becomes 60% of the
total data. Figure 7.31b shows the measured data retention error vs. the program
voltage stress. In Asymmetric Coding, the population of high VTH states, “10” and
“00”, is lower and the program voltage stress to memory cells is reduced. As a
result, the data retention error decreases by 91%. Figure 7.31c shows the measured
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Fig. 7.30 Asymmetric Coding. The program data of NAND is modified to decrease the population
of “10” and “00”

errors vs. the data pattern during the data retention. Again, as the asymmetric data
pattern decreases the population of the high VTH states, the data retention improves
by 40%. Due to two effects mentioned above, the total retention error decreases by
95% (Fig. 7.31d).

7.9 Stripe Pattern Elimination Algorithm

In Sect. 7.2 we have explained how the power consumption is a function of
the bit-line capacitance of NAND [2]. Besides the circuit technologies presented
in previous sections, Stripe Pattern Elimination Algorithm (SPEA) can be used
to eliminate the worst program data pattern, thus reducing the overall power
consumption during programming [19].

Figure 7.32 shows the Stripe Pattern Elimination Algorithm. During the program
of NAND, the selected and unselected bit-lines are biased to VCC and VSS, respec-
tively. When bit-lines are alternately biased to VCC and VSS, which corresponds to
the column-stripe data pattern “1010 : : : ”, all inter bit-line capacitance is charged
and a large current flows. On the other hand, when every bit-line is biased to VCC
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Fig. 7.31 Measured reliability improvement of Asymmetric Coding. (a) At least 60% of the
program data to NAND is “1” with 6.3% overhead. (b) Measured data retention error vs. the
program voltage stress. The reduced program voltage stress in Asymmetric Coding decreases
the data retention error by 91%. (c) Measured errors vs. the data pattern during the data retention.
Decreased population of the higher VTH states, “10” and “00”, in Asymmetric Coding reduces the
data retention errors by 40%. (d) Measured overall data retention error

with all “1” data pattern, inter bit-line capacitance diminishes and the program
current decreases. SPEA Encoder in Fig. 7.30 modifies the original data from
the host to avoid the worst case column-stripe pattern and save the power. SPEA
calculates the number of “1” in even and odd columns. Then, SPEA calculates the
difference.

If the difference is larger than a threshold value, NTH, the data programmed to
NAND is modified so that the odd column data are arranged first and the even
column data are arranged next (Fig. 7.32). As a result, the column-stripe pattern
which consumes the maximum power is changed to decrease the power. In the SSD
(Fig. 7.30), data from the host is first modified by SPEA Encoder to save the power,
then modified again with the Asymmetric Coding Encoder to improve the reliability
and finally programmed to NAND.
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Fig. 7.32 Stripe Pattern Elimination Algorithm (SPEA)

Figure 7.33 shows the measured power consumption. With SPEA, the program
current of 4X nm and 3X nm NAND decreases by 35% and 43%, respectively. SPEA
is more effective in the scaled NAND because as the memory cell size decreases,
the bit-line capacitance as well as the power increase.

7.10 Conclusions

In this chapter, circuit technologies for co-designing NAND and the system
controller are described. As a result, a highly reliable and high speed operation of
SSD is achieved.

Two low power circuit technologies, the selective bit-line precharge scheme and
the advanced source-line program, are discussed. By eliminating the unnecessary
bit-line precharge during the verify-read and reducing the load capacitance during
the program pulse, the operative current of sub-30 nm NAND Flash memories is
reduced by 60%. Moreover, a low noise circuit technology is discussed: by using
the intelligent interleaving, multiple NAND chips are simultaneously programmed
with a reduced power supply noise. With these new circuit technologies, the
performance of sub-30 nm generation SSD improves by 150% without a cost
penalty. Furthermore, an intelligent 3D-integration of SSD is described. A PVG
using a single-stage boost converter for a NAND Flash memory is introduced.
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Fig. 7.33 Measured power reduction with SPEA

The PVG with the AFD controller brings a voltage scaling merit for a NAND Flash
memory and realizes a drastic power reduction of the 3D-integrated SSD.

Besides circuit technologies, Asymmetric Coding can be used to reduce the
number of errors that ECC needs to handle: the population of high VTH states is
decreased and the cell error is reduced by 95%. Finally, Stripe Pattern Elimination
Algorithm eliminates the worst program data pattern and decreases the overall
power during programming.
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Chapter 8
SSD Reliability

C. Zambelli and P. Olivo

Abstract SSD are complex electronic systems prone to wear-out and failure
mechanisms mainly related to their basic component: the Flash memory. The
reliability of a Flash memory depends on many technological and architectural
aspects, from the physical concepts on which the store paradigm is achieved to
the interaction among cells, from possible new physical mechanisms arising as
the technology scales down to the countermeasures adopted within the memory
controller to face erroneous behaviors.

The SSD reliability is here analyzed at different levels: from the basic physical
mechanisms affecting the traditional floating-gate cells and the possibility of
anomalous erratic behavior, up to the disturbs arising because several cells share the
same control lines. Solutions adopted to improve system reliability are presented,
such as the use of RAID or the protection against power loss during write operations.
Finally, test methods for endurance and retention verification are described.

8.1 Introduction

Flash-based Solid State Drives (SSD) envision a complex electronic system featur-
ing different components, each one constituted with a proper wear-out and failure
mechanisms’ characteristics. However, analyzing in depth the reliability metrics
exposed by the SSD to the end-user, it is possible to evidence the bottleneck of
the overall system reliability: the non-volatile NAND Flash memories constituting
the SSD core.

NAND Flash memories come with unique reliability concerns ascribed both to
the physical nature of the storage medium and to the architectural nature of the
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memory (i.e. how the storage of the information is arranged within the memory).
To ensure correct and reliable operations of SSD devices it is mandatory to
guarantee correct and reliable operations of the NAND memories. This criterion
needs to be pursued along the whole lifetime of the SSD device. In particular, the
minimum number of write operations and the ability of keeping unaltered the stored
information for years must be guaranteed.

Such a goal is difficult to achieve since new physical mechanisms and archi-
tectural issues arise as the technology scales down. To deal with such a target,
the co-integration of the NAND memories with external reliability management
systems (e.g. ECC, wear leveling, etc.) is required, with the drawback of an
increased SSD complexity.

This chapter tackles the SSD reliability issues at different levels. The first
part of the chapter will provide an overview of the main reliability mechanisms
affecting the traditional floating-gate based NAND Flash showing as these effects
increase dramatically their impact in Multi-Level Cells (MLC) architectures. Then,
solutions adopted to improve system reliability are described, such as the use of
RAID (Redundant Array of Independent Disks) techniques or the protection against
power down during programming. Finally, the last part of this chapter will describe
the SSD endurance and retention test methods at a system level, considering the
NAND memories as a black-box where data are written (and read from) without
any knowledge of their technology and architecture.

8.2 Reliability at Physical Level

As stated in the introduction, the core of the SSD is the NAND Flash. Its concept
is based on a metal oxide semiconductor device with a floating gate electrically iso-
lated by means of a tunnel oxide and of an interpoly oxide as sketched in Fig. 8.1 [1].
The former oxide plays a basic role for the control of the device threshold voltage
whose value represents, from a physical point of view, the stored information.
Electrons transferred into the floating gate produce a threshold voltage variation,
thus varying the logic data stored within the memory. In quiescent conditions, thanks
to the two oxides, the charge stored does not leak away (theoretically), thus granting
the nonvolatile paradigm fulfillment.

The cells are rearranged into an array organization [2] whose architecture
determines the memory operations in terms of algorithms and applied voltages.

The physical mechanism used for both injecting and extracting electrons to/from
the floating gate is the Fowler-Nordheim (FN) tunneling [3]. High electric fields
applied to the tunnel oxide allow for electron transfer across the thin insulator to
and from the floating gate. In NAND architectures the electron tunneling involves
the MOS channel/substrate and requires appropriate biasing of control gate and
bulk terminals, whereas drain and source are left floating. The choice of using
the tunneling mechanism for writing and erasing the information in the NAND
memories is due to the relatively high parallelism of the operation (i.e. thousands of
cells belonging to the same page can be written or erased in parallel), although this
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Fig. 8.1 Typical NAND
Flash cell structure

significantly impact the reliability of the memory causing progressive degradation
of the tunnel oxide. All the NAND Flash modules constituting the SSD undergo a
large number of Write/Erase cycles. Every cycle involves very high electric fields
applied to the tunnel oxide, eventually mining the reliability of the memory.

In the forthcoming sections we will analyze the basic physical mechanisms
related to the tunnel oxide degradation, affecting both memory endurance and data
retention. The thin tunnel oxide may be also responsible for other detrimental
effects, such as over-programming and erratic bits, possibly causing performance
loss in terms of write and read throughput reduction.

8.2.1 NAND Flash Endurance

The endurance of a NAND Flash is defined as the minimum number of Write (i.e.
Program/Erase) cycles that the module can withstand before leading to a failure. The
erased and programmed statistical threshold distributions along the NAND array
must be suitably separated, in order to correctly read the logical state of a cell. The
difference between EV (Erase reference Value) and PV (Program reference Value)
is defined as the “read window”. However, keeping a correct read window is not
sufficient to guarantee a correct read operation: if during its lifetime the threshold
voltage of an erased cell exceeds the EV limit and approaches 0 V, the current
flowing through the cell may be not high enough to be identified as “erased” by the
reading circuitry, thus producing a read error. Similarly, a programmed cell could
be read as “erased” if its threshold voltage becomes lower than PV and approaches
0 V. As for the programmed distribution, it is also important that the upper threshold
limit does not increase significantly with time, since a too high threshold can block
the current flowing through the strings during read operations.



206 C. Zambelli and P. Olivo

Fig. 8.2 Band diagram
during a program operation:
without traps (solid lines in
the oxide region) and with
traps (dashed lines in the
oxide regions)

FN tunneling leads intrinsically to oxide degradation [4]. As a result of con-
secutive electron tunneling, traps are generated into the oxide [5]. When filled by
electrons, charged traps can increase the potential barrier thus reducing the tunneling
current, as shown in Fig. 8.2.

Since the programming and erasing pulses feature constant amplitude and
duration, less charge is transferred to and from the floating gate causing an efficiency
reduction of both the program and erase operations. A narrowing of the read margin
window is then expected.

The charge trapped inside the oxide also produces a threshold shift directly
proportional to its amount. This shift is symmetrical due to the trap nature and
increases the threshold voltage of both erased and programmed cells.

Writing waveform optimization can help in limiting the trapped charge. For
example, it has been shown that the window closure can be reduced by using low
voltage erasing pulses able to remove the charge accumulated in the oxide [6].

As shown in Fig. 8.3, the threshold voltage shifts increase with the number
of program/erase operations until an endurance failure occurs. Threshold voltage
shifts could be recovered by applying specific procedures that, however, result
inconvenient when comparing their effects with the required architectural overheads
and time consumption.
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Fig. 8.3 Threshold voltage degradation during cycling of NAND Flash with different geometrical
features [7]

As evidenced in Fig. 8.3, the most critical effect is the increase towards 0 V of the
erased threshold. To check whether all cells of a sector have been correctly erased
(all threshold voltages must be below 0 V), an erase verify procedure is applied
after any erase operation. It consists in a particular read operation performed by
driving simultaneously all the word lines of the sector at 0 V: if the read current in a
bitline is 0, it means that at least a cell blocked the current flow because its threshold
voltage was higher than 0 V. The entire block is marked as bad block by the memory
controller and no longer addressed [2].

8.2.2 NAND Data Retention

The retention concept is the ability of the NAND memory to keep a stored
information over time with no biases applied. Electron after electron, charge loss
could slowly leading up to a read failure: a programmed cell can be read as erased
if its threshold voltage shifts below 0 V.

The intrinsic retention is mainly limited by tunneling (see Fig. 8.4) through the
oxide. The minimum limit imposed by present standard is the retention of the data
for 10 years at a temperature defined by the application segment where NAND Flash
memory is targeted on [8].

The cells retention worsens with memory cycling and this effect is appreciable as
a reduction of the threshold voltage levels as sketched in Fig. 8.5. Charge loss from
the floating gate moves the threshold voltage distribution towards lower values.
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Fig. 8.4 Band diagram of the
cell when programmed and
not biased. The main
mechanism for data loss is
tunneling through the tunnel
oxide [2]

Fig. 8.5 Cumulative distribution of a NAND array in program state. Both de-trapping and SILC
effects are appreciable on the time evolution

In additions, a tail in the lower part of the distribution indicates that a small
percentage of cells is losing charge faster than average.

The rigid shift of the cumulative VT distribution can be related to the oxide
degradation within the oxide and at the Si – SiO2 interface. As described in
the previous section, successive electron tunneling leads intrinsically to oxide
degradation, characterized by traps generation. These traps may be responsible
for charge loss from the floating gate towards the silicon substrate. In fact, an
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Fig. 8.6 Example of erratic behaviors in four Flash cells. Cells threshold voltage VT plotted versus
the number of cycles exhibits RTN features [9]

empty trap suitably positioned within the oxide can activate Trap Assisted Tunneling
(TAT) or SILC (Stress Induced Leakage Current) mechanisms [8] characterized by
a significantly higher tunnel probability. In addition, an electron trapped within the
oxide during writing operations and responsible for the threshold voltage increase
leading up to endurance failures may be de-trapped when the program pulse is
switched off, when the cell is read or even when the cell is not addressed.

It is clear that these mechanisms are strongly related to the oxide degradation and
therefore data retention decreases with the number of applied writing pulses.

The position of failure retention cells within the array, however, does not show
any clustering that could be related to a technological process.

8.2.3 Erratic Bits and Over-Programming

The FN tunneling mechanism for writing and erasing data in NAND Flash has
demonstrated to guarantee a sufficient level of reliability and performance as it has
been continuously used throughout various technological generations of Flash up to
nowadays.

Nevertheless, it has been found that anomalous FN tunneling currents can occur
in random periods of time that can lead to significant variations of the threshold
voltage achieved by the cell after the writing operation [9] (see Fig. 8.6). This
phenomenon is known as erratic bits.
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Fig. 8.7 Effect of an
over-programmed cell in a
NAND Flash string. In
normal conditions the status
of the cell to be read
(supposed to be erased, thus
ON) is correctly detected,
since all other cells behave as
ON pass transistors. In the
presence of an
over-programmed cell, the
current flow through the
string is inhibited and the
absence of current is
attributed to a programmed
status of the cell to be read,
thus producing a logical
error [9]

In a NAND array, the presence of this phenomenon is detrimental for the
performances of the memory as the sudden major increase of the cells threshold
voltage may eventually induce the over-programming issue. As shown in Fig. 8.7,
erased cells are erroneously read as programmed since over-programmed cells,
featuring relatively large threshold voltage, can electrically isolate the NAND string,
thus causing read errors and consequent read throughput loss due to the additional
work done by the Error Correcting Codes (ECC) trying to repair the failed bits.

Since erratic behaviors are intimately related to the electron tunneling mecha-
nism, they can potentially affect all the cells of an array [9].

Anomalous tunneling has been related to the presence/absence of a cluster of
positive charges in the tunnel oxide that strongly affects the result of the FN
tunneling operation. In first approximation, erratic behaviors can therefore be
described in terms of a two level Random Telegraph Noise (RTN) affecting the
threshold voltage during cycling, in which the normal and the over-programmed
threshold voltage levels are the result of the presence of a cluster of more than 2, or
less than 3, positive charges in the tunnel oxide, respectively.

8.2.4 Reliability Considerations on SLC/MLC NAND
Architectures

MLC (Multi Level Cells) architectures are more prone to reliability effects related to
oxide degradation with respect to SLC (Single Level Cells) memories. In the MLC
approach, the separation between two adjacent threshold levels is a fraction of the
read margin typical of a SLC architecture. Therefore, even a slight threshold voltage
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Fig. 8.8 Logic Block
Address (LBA) to Physical
Block Address (PBA)
translation in wear leveling
systems for NAND Flash [11]

variation may lead to a logical error. As a consequence, while a SLC architecture
can usually withstand 100 k write-erase cycles, the typical cycle number for a MLC
memory is 10 k or even less for advanced scaled technology nodes [2]. Indeed,
the aggressive scaling of the NAND cells geometry arise new reliability threats
principally ascribed to the discretization of the storage medium. Nowadays, the
number of electrons deputed to effectively change the threshold voltage of a cell
during the write operation are ruled by discrete statistics, further enhancing the cell-
to-cell variability effects.

MLC architectures are anyway preferred to SLC ones when high storage density
is required, but at the additional cost of increasing the overhead due to the
appropriate management policies adopted for mitigating the issues presented in the
previous sections of this chapter.

For instance, it is important to distribute the writing stress over the entire
population of cells rather than on a single hot spot, thus avoiding that some blocks
are updated continuously while the others keep unaltered their charge content.

It is clear that blocks whose information is updated frequently are stressed with a
large number of write-erase cycles. In order to keep the aging effects as uniform as
possible, the number of both read and write cycles of each block must be monitored
and stored by the memory controller. Wear Leveling techniques [2, 10] are based on
a logical to physical translation for each sector, as shown in Fig. 8.8.



212 C. Zambelli and P. Olivo

Fig. 8.9 Effects of wear leveling on the NAND endurance feature [12]

Wear leveling is a process that reduces premature wear in NAND Flash devices
by equalizing the endurance of a memory on its whole addressable space (see
Fig. 8.9). The most common implementation of wear leveling occurs in the SSD
Flash controller, which manages access to the memory device and determines how
the NAND Flash blocks are used. Depending on the wear-leveling method used, the
controller typically either writes to the available erased block with the lowest erase
count (dynamic wear leveling); or it selects an available target block with the lowest
overall erase count, erases the block if necessary, writes new data to the block, and
ensures that blocks of static data are moved when their block erase count is below a
certain threshold (static wear leveling).

In this way all the physical sectors are evenly used, thus reducing the overall
oxide aging. Wear Leveling techniques are described in more details in Chap. 9.

To reduce possible errors caused by oxide aging and erratic events, Error
Correcting Codes (ECC) are widely used in NAND memories and in particular in
MLC architectures [10]. BCH and LDPC are the most popular ECC algorithms and
they are described in Chaps. 10 and 11, respectively.

8.3 Reliability at Architectural Level

Architectural solutions for memory operations may also affect the overall reliability,
by producing errors and even cell failures. The most common effects are the so
called “disturbs”, that can be interpreted as the influence of an operation performed
on a cell (Read or Write) on the charge content of a different cell.

Read disturbs are the most frequent source of disturbs in NAND architectures.
This kind of disturb may occur when reading many times the same cell without any

http://dx.doi.org/10.1007/978-94-007-5146-0_9
http://dx.doi.org/10.1007/978-94-007-5146-0_10
http://dx.doi.org/10.1007/978-94-007-5146-0_11
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Fig. 8.10 Representation of
read disturb in a NAND Flash
array. The cells potentially
affected by the disturb are
marked in gray

erase operation. All the cells belonging to the same string of the cell to be read
must be driven in an ON state, independently of their stored charge. The relatively
high Vpass bias applied to the control gate and the sequence of Vpass pulses applied
during successive read operations may induce a charge increase. These cells suffer a
positive shift of their threshold voltage that may lead to read errors, when addressed.
Figure 8.10 shows the typical read disturb configuration.

The probability of suffering from read disturb increases with the cycle number
(i.e. towards the end of the memory useful lifetime) and it is higher in damaged
cells. Read disturbs do not provoke permanent oxide damages: if erased and then
reprogrammed, the correct charge content will be present within the floating gate.

Two other important typologies of disturbs are related to the write operation: the
Pass disturb and the Program disturb, which are shown in Fig. 8.11a, b, respectively.
The former is similar to the read disturbs and affects cells belonging to the same
string of a cell to be programmed. With respect to the read disturb, the Pass one
is characterized by the higher Vpass voltage applied to cells that are not to be
programmed (thus enhancing the electric field applied to the tunnel oxides and the
probability of undesired charge transfer). On the other side, the pass disturb may
be provoked, in the worst case, by a program operation on all the string cells but
the one affected by the disturb (when a string has been fully programmed, an erase
operation must be necessarily performed before any other reprogram): therefore the
disturb duration is much shorter and the cumulative effect of successive read pulses
encountered in read disturbs is not present.

The Program disturb, on the contrary, affects cells that are not to be programmed
and belong to the same wordline of those that are to be programmed.

ECC systems in SSD memory controller efficiently manage these reliability
threats as most of the time the errors triggered by disturb are easily identifiable
and correctable.
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Fig. 8.11 Representation of
pass disturb (a) and program
disturb (b) in a NAND Flash
array. The cells potentially
affected by the disturbs are
marked in gray

8.4 Reliability at System Level

Since NAND Flash modules are the most critical parts of an SSD, it is obvious
that focusing the attention on the Flash reliability is the best way to improve the
overall system reliability. From a system point of view, however, it is also possible to
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implement some specific solutions that may improve the SSD reliability. A practical
example in the hard disk drive (HDD) world is the use of RAID (Redundant Array of
Independent Disks) protection or the use of cache to buffer HDD from small block
random inputs and outputs. These solutions can be applied to Flash-based solid state
storage as well [13].

8.4.1 RAID Systems

In a traditional HDD storage array, RAID techniques are based on the storing of the
same data in different locations (thus, redundantly) on multiple hard disks. Placing
data on multiple disks increases the mean time between failures and fault tolerance,
thus increasing reliability. RAID concepts can also be applied to an array of Flash
boards (modules or disks), resulting in similar increases in reliability.

While wear leveling and ECC handle the majority of Flash reliability problems
at the module level, a few other concerns need to be addressed by the system
designer, such as failures in the module responsible for error correction or other
system failures that are not related to the memory blocks. It is worth to point out
that NAND Flash is constituted not only by the memory array, but also by several
sub-systems such as controllers, data interfaces, etc. Thanks to RAID protection, a
failure external to the cell array does not result in data loss.

A brief textual summary of the most commonly used RAID levels is here
reported [14].

RAID 0 (block-level striping without parity or mirroring) has no (or zero) re-
dundancy. It provides improved performance and additional storage but no fault
tolerance. Any SSD drive failure destroys the array, and the likelihood of failure
increases with more drives in the array due to the fact that the data are broken
into fragments called blocks along different SSD drives. The number of blocks is
dictated by the stripe size, which is a configuration parameter of the array. The
blocks are written to their respective drives simultaneously on the same sector.
This allows smaller sections of the entire chunk of data to be read off each drive
in parallel, increasing bandwidth. RAID 0 does not implement error checking, so
any error is uncorrectable.

In RAID 1 (mirroring without parity or striping), data is written identically to
two drives, thereby producing a “mirrored set”; at least two drives are required to
constitute such an array. The array continues to operate as long as at least one drive is
functioning. With appropriate operating system support, there can be increased read
performance, and only a minimal write performance reduction; implementing RAID
1 with a separate disk controller for each drive in order to perform simultaneous
reads (and writes) is sometimes called multiplexing (or duplexing when there are
only two drives).
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In RAID 2 (bit-level striping with dedicated Hamming-code parity), all SSD
operations are synchronized, and data are striped such that each sequential bit is
on a different drive. Hamming-code parity is calculated across corresponding bits
and stored on at least one parity drive.

In RAID 3 (byte-level striping with dedicated parity), all SSD operations are
synchronized, and data are striped so each sequential byte is on a different drive.
Parity is calculated across corresponding bytes and stored on a dedicated parity
drive.

RAID 4 (block-level striping with dedicated parity) is identical to RAID 5 (see
below), but confines all parity data to a single drive. In this setup, files may be
distributed between multiple drives. Each drive operates independently, allowing
I/O requests to be performed in parallel. However, the use of a dedicated parity drive
could create a performance bottleneck; because the parity data must be written to
a single, dedicated parity drive for each block of non-parity data, the overall write
performance may depend a great deal on the performance of this parity drive.

RAID 5 (block-level striping with distributed parity) distributes parity along with
the data and requires all drives but one to be present to operate; the array is not
destroyed by a single drive failure. Upon drive failure, any subsequent reads can be
calculated from the distributed parity such that the drive failure is masked from the
end user. However, a single drive failure results in reduced performance of the entire
array until the failed drive has been replaced and the associated data rebuilt. RAID
5 requires at least three disks.

RAID 6 (block-level striping with double distributed parity) provides fault tolerance
of two drive failures; the array continues to operate with up to two failed drives.
This makes larger RAID groups more practical, especially for high-availability
systems. This becomes increasingly important as large-capacity drives lengthen the
time needed to recover from the failure of a single drive. Single-parity RAID levels
are as vulnerable to data loss as a RAID 0 array until the failed drive is replaced
and its data rebuilt; the larger the drive, the longer the rebuild takes. Double parity
gives additional time to rebuild the array without the data being at risk if a single
additional drive fails before the rebuild is complete.

8.4.2 Caching

It is somewhat unusual to think of caching as a mechanism to improve system
reliability, but the use of a large RAM cache in front of Flash RAID is an excellent
way to improve both endurance and performance of the write operation. If several
write accesses are to be performed within a Flash module, each one characterized
by data dimensions smaller than a page, the number of memory accesses affects the
SSD endurance. The large RAM cache aggregates small data blocks into patterns
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that are Flash friendly, i.e. that make the most efficient use of every Flash cycle
by writing optimized data lengths. In this way caching techniques can reduce the
number of program/erase cycles thus improving both performances and reliability.

8.5 Reliable Data Management in Power Failure Scenarios

When programming a NAND Flash memory, the program operation must complete
to ensure that data are stored reliably within the page. Data are at risk if power is
lost when Flash memory cells are in the process of being programmed [15]. SSD
have three causes of potential data loss or corruption when system power fails:

Loss of data. This can occur due to the implementation of write caching to achieve
peak performance. In this case, the host system is informed that a write operation
has completed when, actually, it is still in process. If power fails while the controller
is “catching up” with the write operation, the data in the write buffer are not
yet hardened and can be lost. When the data are requested later by the host,
the controller can either report that data are irrecoverable or (depending on the
controller design) it can deliver a previous “stale” version of those sectors to the
host. In the latter case, this translates to silent data corruption, since the host system
is not informed that the data delivered are incorrect.

Loss of mapping information. Every SSD controller uses mapping information to
translate from the host’s Logical Block Address (LBA) to physical Flash memory
locations. Mapping information must be created and maintained if the data is to be
later retrieved from the drive, and must be updated whenever new data is written to
a previously written LBA. If the mapping information is lost when power fails, the
drive may show data corruption, deliver stale (corrupted) data or may not be capable
of supporting logical I/O on the next power up.

Lower page corruption. MLC NAND Flash uses each physical page to store the data
of two logical pages (each memory cell stores two bits). In a tow-rounds algorithm
[2] the lower page (the logical page addressed by the lower of the two addresses) is
programmed first, followed by the upper page. When programming the upper page,
programming voltages are applied to the same cells already storing valid data in the
lower page. If power fails while the upper page is being programmed, data in that
page are lost, and already-stored data in the lower page are corrupted as well. When
these data belonging to the lower page are requested later by the host, the SSD will
report the data as irrecoverable.

8.5.1 Power Failure Circuitry in SSDs

Most enterprise and industrial-class SSDs rely on power failure circuitry that
monitors the supply voltage and generates an “early warning” signal to the SSD
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Fig. 8.12 Block diagram of a power failure circuit in a standard SSD [15]

controller if the voltage drops below a predefined threshold (see Fig. 8.12). A
secondary voltage hold-up-circuit is implemented to ensure the drive has power
for a sufficient time to harden data whenever that warning is received. In addition,
writes are not accepted by the drive until the secondary voltage source has been
sufficiently charged to protect against loss of data upon power failures.

The secondary voltage source can be a high capacity “supercapacitor” or a
bank of discrete capacitors. These solutions are not the same from a performance
and reliability standpoint. Descriptions and relevant tradeoffs of a supercapacitor
solution and a bank of discrete capacitors in an Enterprise-class SSD design are
presented below.

8.5.2 Supercapacitors

A supercapacitor is an electrolytic capacitive charge storage device. It is capa-
ble of storing a large amount of energy in a relatively small three-dimensional
space. A generic supercapacitor-based voltage hold-up circuit is consistent with
the block diagram shown in Fig. 8.12. Designing a supercapacitor-based power
failure protection circuit is easy to do, and many SSDs employ this approach
for this reason. Unfortunately, there are a number of concerns related to long
term supercapacitor reliability that makes the use of this component questionable
for Enterprise-class SSDs. Supercapacitors are typically Aluminum Electrolytic
Capacitors, featuring a high capacitance-to-size ratio and, therefore, they are an
attractive choice for applications requiring large bulk capacitance like an SSD.
However, like all electrolytic capacitors, supercapacitors suffer from a well known
set of deficiencies with regard to long term reliability. In particular, supercapacitors
“wear out”, resulting in reduced capacitance over time. They use a wet electrolyte,
and the packaging is subject to ongoing losses via leakage and diffusion. The
performance of the supercapacitor degrades slowly with electrolyte loss, until
the onset of total failure occurs with little or no warning. In addition, loss rate
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Fig. 8.13 Supercapacitor failure rate with respect to temperature [15]

increases with higher operating voltage, and in higher operating and non-operating
temperature environments. For every 10ıC of ambient operating temperature rise,
the life expectancy of a supercapacitor can be cut approximately in half.

For these reasons, supercapacitors may be not enough reliable to meet the
required reliability standards for the enterprise and industrial computing markets
served by the SSDs product line. Figure 8.13 shows an example of a supercapacitor
reliability projection, based on component life test data. Due to the reliability
concerns associated with this capacitor type, it is imperative that an SSD constantly
monitors the capacitor’s operating capabilities to ensure continued reliable opera-
tion as the SSD ages. This is done by periodically measuring the supercapacitor’s
charge/discharge (“Hold Up”) time under a controlled load. The challenges associ-
ated with performing this test seamlessly and transparently to the host system are
many. Because the secondary power system is under a “live test” during hold up time
measurements, the SSD must harden data prior to testing (in case the test fails). This
operation and the test time itself almost always result in extended latencies (as much
as 100 ms or more) for host commands issued during the test interval.

8.5.3 Discrete Capacitors

This approach requires more design expertise, but overcomes the supercapacitor
limitations. A discrete capacitor-based voltage hold-up circuit employs a bank of
discrete capacitors connected in parallel, as shown in Fig. 8.14.

Nowadays SSDs utilize either Niobium Oxide or Polymer Tantalum capacitors.
These discrete capacitors do not employ a “wet” electrolyte and are not susceptible
to the leakage related issues that plague supercapacitor technology. Niobium and
Polymer Tantalum capacitors are rated to 85ıC, providing a higher temperature
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Fig. 8.14 Discrete capacitor rail Hold-up sub-circuit [15]

operating range with respect to supercapacitors (70ıC). As a result of these factors,
a discrete component based hold up circuit is more able to meet the demands of
enterprise and industrial computing environments. Another advantage of discrete
capacitors over supercapacitors is that they are highly predictable and reliable.
Provisioning can be selected so that it is optimal for the SSD’s needs over its
lifetime. However, lacking the compactness of supercapacitors, the capacitance-to-
size ratio of a discrete solution is less space efficient and its implementation require
a more careful design.

8.6 Endurance and Retention Verification in SSDs

As already stated in the previous sections, the overall SSD endurance and retention
majorly depend on that of the NAND memories that represent the heart of such
devices. The following sections of this Chapter will present the SSDs’ reliability
requirements in terms of endurance and retention, the criteria adopted to verify these
requirements and the possible verification methods.

When testing SSDs (and not single NAND flash chips) it is important to detect or
estimate functional failures, errors in reading data, without considering the physical
causes that produced such errors or failures. If the amount of errors or functional
failures exceeds the acceptable limits, a successive failure analysis will try to
investigate on the possible physical causes. Therefore, it is important to remind the
basic difference between testing NAND chips and verifying SSDs reliability: the
former operation requires to adopt all the possible test procedures to excite physical
or architectural weaknesses, the latter consider the SSD as a black box where data
are to be written, read and retained at their endurance and retention limits.
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Table 8.1 Relationship between User-addressable logical block count (LBC) and SSD capacity
for different Logical block sizes

Logical block size [bytes] 512 4,096
User-addressable logical block

count (LBC)
21,168C (1,953,504 � SSD

capacity)
2,646C (244,188 � SSD

capacity)
SSD capacity [Gbytes] (LBC – 21,168)/1,953,504 (LBC – 2,646)/244,188

It must be observed, however, that the use of different technologies for NAND
memories produces different expectations in terms of both endurance and retention.
To deal with different applications, NAND technologies, and producers, stan-
dard committees define the conditions of use and the corresponding endurance
verification requirements. The following sections will refer to the JEDEC standard
JESD218A (Solid-State Drive Requirements and Endurance Test Method) [16],
that defines parameters for standardized endurance rating so that the end user may
consider the endurance rating as a factor in determining if an SSD is suitable for his
particular application.

Since there are different levels of requirements for an SSD based on specific
applications and different levels of testing should be applied to verify the SSD suit-
ability for the particular application, it is necessary to group different applications
characterized by similar requirements in a limited number of classes: to this purpose,
the JESD218A standard considers just two application classes: client and enterprise.
These classes, of course, are not all-inclusive and it is clear that variations such as
the operating systems and application architectures make a significant impact to the
workload of an SSD, that represents the detailed sequence of host writes and reads
(including data content and timing) applied during endurance testing. The actual
workloads are defined in the JEDEC standard JESD219 [17] for the two considered
classes and they are not reported in this text.

8.6.1 SSD Endurance and Retention Rating

A SSD manufacturer shall establish an endurance rating for an SSD that represents
the maximum number of terabytes that may be written (TBW) by a host to the SSD,
such that the following conditions are satisfied:

1. the SSD maintains its capacity, defined as the user-addressable capacity as
calculated in Table 8.1 (nonvolatile memory areas reserved for device use are
not included in this calculation);

2. the SSD maintains the required Uncorrectable Bit Error Rate (UBER) for its
application class, where the UBER is a metric for the rate of occurrence of data
errors, equal to the number of data errors per bit read:

UBER D number of data errors

number of bits read
(8.1)
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Table 8.2 SSD class and requirements

Application class Client Enterprise

Active use (power on) 8 h/day @ 40ıC 24 h/day @ 55ıC
Retention use (power off) 1 year @ 30ıC 3 months @ 40ıC
FFR �3% �3%
UBER requirement �10�15 �10�16

It is important to state that, in the JESD218A standard, the UBER values for
SSDs are to be lifetime values for the entire population. The numerator is the
total count of data errors detected over the full TBW rating for the population
of SSDs in the endurance verification. A sector containing corrupted data is to
counted as one data error even if it is read multiple times and each time fails to
return correct data. The denominator is the number of bits written at the TBW
rating limit;

3. the SSD meets the required Functional Failure Requirement (FFR) for its
application class, that is the allowed cumulative number of failed drives that,
over the TBW rating, fail to function properly in a way that is more severe than
having a data error;

4. the SSD retains data with power off for the required time for its application class.

The requirements for standard classes of SSDs are based on a scenario in which
the SSD are actively used for some periods of time during which the SSDs are
written to their endurance ratings, followed by a power-down time period in which
data must be retained. The requirements for the two SSD classes are reported in
Table 8.2.

SSD case temperatures are reported in Table 8.2 and they are intended to repre-
sent the relevant temperatures over the respective time periods, for the purpose of
endurance and retention estimation, not the maximum and minimum specifications
to be found on the SSD datasheets. For the client class, the retention temperature
(30ıC) is also the temperature for the 16 h/day in which the SSD is off.

8.6.2 Endurance and Retention Stress Methods

There are two approaches for endurance verification: a direct method and a set of
extrapolation methods. Both consist of endurance verification followed by retention
verification. If the full TBW rating can be reached in a 1,000-h stress, the direct
method is to be followed. If this is not possible, then an extrapolation method is
acceptable. If an SSD product from a qualification family has been qualified using
the JESD218A standard, the subsequent products need only data from a 1,000-h
direct method evaluation, even if this results in those drives not being fully stressed
to their endurance rating limits.



8 SSD Reliability 223

8.6.3 Direct Method

The endurance stress is to be performed both at high and low temperature; then,
a retention test shall be performed. Since the retention time requirements are long
(see Table 8.2), extrapolation or acceleration is required to validate the retention
requirements.

8.6.3.1 Sample Size

For the first product to be qualified in a qualification family, the sample shall
consist of SSDs from at least three nonconsecutive production lots and from all
the fabrication plants responsible for the manufacture of the NAND memories used
in the SSD. For subsequent products from a qualification family, a single production
lot is sufficient. The number of SSD in the sample shall be sufficient to establish that
both the FFR and UBER requirements are met at 60% confidence.

The sample size and acceptance criteria are defined by the following equations,
which mathematically embody the 60% confidence requirement:

UCL.ff / � FFR � SS (8.2)

UCL.de/ � min.TBW; TBR/ � 8 � 1012 � UBER � SS (8.3)

where ff and de are the acceptable numbers of functional failures and of data
errors, respectively; TBR represents the number of TBytes Read; SS is the sample
size in number of drives; FFR and UBER are expressed as fractions; UCL(x) is an
upper confidence limit function that depends on the maximum number of accepted
errors x.

For instance, for an accept-on-zero plan (no failures/error are accepted),
UCL(0)D 0.92, while if 1 failure/error is accepted, UCL(1)D 2.03 and for 2
failures/errors accepted, UCL(2)D 3.11.

As an example, consider an accept-on-zero plan, FFRD 0.03 (corresponding
to 3%); UBERD 10�16, TWBD 100, all data read back and verified (therefore
TBRD 100). Two sample sizes SS can be calculated from Eqs. (8.2) and (8.3),
respectively:

SS � UCL.0/ =FFR D 0:92 =0:03 D 30:1 (8.4)

SS � UCL.0/=
�
min.TBW; TBR/ � 8 � 1012 � UBER

�

D 0:92=.100 � 8 � 1012 � 10�16/ D 11:5 (8.5)
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The required sample size is the larger of the two results and, therefore, at least
31 SSD must be tested. If the minimum sample size of 31 were chosen, than
the verification test would pass if there were no functional failures in 31 drives.
However, with SSD 31, from Eq. (8.3),

UCL.de/ � 100 � 8 � 1012 � 10�16 � 31 D 2:48 (8.6)

Since UCL(1)D 2.03< 2.48< 3.11DUCL(2), up to one data error would be
acceptable. Therefore, the verification would pass if there were no functional
failures and no more than one data error.

It is important to notice that UBER is defined in terms of bits read, but for the
purpose of endurance verification Eq. (8.3) counts the minimum of bits read and bits
written. The rationale is twofold.

First, many data errors are transient with respect to rewriting of an SSD, but
repeatable with respect to repeated reading. This means that a sector with corrupted
data may pass without error if rewritten, however reading non-failing sectors
multiple times is unlikely to detect additional errors. This means that if reads are
less frequent than writes, then many errors will be missed. All data errors will
be detected only if all written data are read before those sectors are rewritten. If
the TBR is less than the TBW, then the UBER should be increased because of the
likelihood that transient data errors went undetected. Using the TBR in place of the
TWB accomplishes that goal.

Second, the JEDEC JESD218A standard is aligned to a reference read/write ratio
of unity. If the TBR is equal to the TBW, then the UBER may be considered to be
an error rate per bit read or per bit written: both are equivalent. If the TBR in the
endurance stress is greater than the TBW the UBER must be TBW based.

It is important to remind that the previous criterion deals with endurance
functional failures and endurance data errors. Failures that are not related to the
act of writing data to its endurance limit, or by the subsequent retention stress, are
to be excluded from the endurance verification, even it they must be considered
in the drive qualification process. In some cases it is not easy to clearly identify
endurance and non-endurance function failures. Failures that are not in the circuit
path of the written data are clearly identified as non-endurance failures, while some
failures that are in the circuit path of the written data may be considered as non-
endurance failures if the cause of the failures were unrelated to the quantity of data
written.

8.6.3.2 Endurance Stress

To verify the endurance capabilities, the drives are stressed to their full endurance
specification (in TBW). The stress time depends on the drives performances and
on those of the test equipment. If performance variations between test systems or
the SSDs themselves cause some SSD to receive more writes than other in a given
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Table 8.3 Endurance stress
temperatures by drive class

Application class Client Enterprise

Low temperature � 25ıC � 25ıC
High temperature 40ıC�T�Tmax 60ıC�T�Tmax

stress time, then the endurance specification must be reached by the average amount
of data written. All data errors throughout the stress must be recorded, even if those
errors are transient in nature. Testing the drive only at the end of the stress cannot
be accepted.

Two approaches are acceptable for incorporating both high and low temperatures
into the endurance stressing: the ramped-temperature approach and the split-flow
approach.

In the ramped-temperature approach the temperature during the stress shall
be switched periodically between the low and the high temperatures reported in
Table 8.3, so that half of the test is at low and at high temperature, respectively.
The ramp timing shall be such that no more than 25% of the stress is performed at
intermediate temperatures during the transition between the two limit temperatures.
As for the temperature switching frequency, no more than 10% of the endurance
stress can be performed within any single half-cycle.

In the split approach, the sample is divided in two groups. The former undergoes
endurance testing at a fixed low temperature, the latter at a fixed high temperature.
The two temperature ranges are the same as for the ramped approach (see Table 8.3).

The Tmax values are chosen so that the endurance stress time would be equivalent
to 1 year at the active-use temperature and hours/day shown in Table 8.2 assuming
an activation energy of 1.1 eV. In fact, although an SSD would be expected to reach
its TBW rating over a lifetime of several years, for the specific purpose of calculating
Tmax, the full TBW is assumed to occur within a single year. This is a conservative
assumption, since a shorter time allows less relaxation between writes.

In addition, the endurance stress Tmax values may also account for a realistic
amount of delay for relaxation which would occur if the stress temperature were too
high. These delays, consisting of the drive being powered down or being powered
up but not being written to, combined with the effect of the elevated temperature
endurance stressing, must stay within the 1-year equivalent time.

The temperature Tmax as well the additional delay time and temperatures may be
extracted by solving
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where tD, tS, tU are the delay time, the stress time and the use time, respectively;
TD is the temperature applied during the delay; TSH and TSL are the high and the
low temperatures during the endurance stress in ıK, respectively; TUH and TUL are
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the high and the low temperatures during the use conditions in ıK, respectively;
FHS and FHU are the fraction of time spent at high temperature during endurance
stressing and use condition, respectively; K is the Boltzmann’s constant equal to
8.6171 �10�5 eV/ıK while Ea is the activation energy equal to 1.1 eV.

For example, consider the client application class from Table 8.2, TUHD 40ıCD
313.15ıK; TULD 30ıCD 303.15 ıK; FHUD 1/3 (8 h/day); a 1,000 h stress time
using the ramped approach (tsD 1,000 h, TSLD 25ıCD 298.15ıK and FHSD 1/2)
and no additional delays (tdD 0). From Eq. (8.7) it possible to derive the endurance
stress high temperature, considering that 1 year of normal use corresponds to
tUD 8,766 h:
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Hence, the maximum temperature Tmax for a 1,000-h stress, for the client
application class, ramped approach, no delays is 58ıC.

If it is chosen to perform the test at 50ıC instead of 58ıC, it is possible to add an
additional delay, whose duration and temperature can also be derived from Eq. (8.7)
by imposing TSHD 50ıCD 323.15ıK.
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For example, if a 100-h delay is added to the 1,000-h endurance stress, a
TDD 67ıC can be directly calculated as in Eq. (8.10):
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Therefore, the endurance test would consist of 1,000 h of active endurance stress
with the temperature ramped between 25ıC and 50ıC, with an additional 100 h
spent in a non-writing mode at a temperature not greater than 67ıC.
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Table 8.4 Retention stress temperatures and times

Application class Client Enterprise

Stress duration and
temperature

96 h @ T� 66ıC or 500 h @
T� 52ıC

96 h @ T� 66ıC or 500 h @
T� 52ıC

8.6.3.3 Retention Stress

After the endurance stress, SSDs are to be powered down and baked at elevated
temperatures in order to establish the data retention capability. For the ramped-
temperature approach, all drives in the sample are to be baked while, for the split
approach, only the drives stressed at high temperatures are to baked. The SSDs are to
be fully written with data prior to the bake and fully read after the test with internal
error correction bypassed. The number of data errors resulting from the retention
stress is to be added to that resulting from the endurance stress.

The temperatures required for the retention verification are reported in Table 8.4.
Two equivalent options are given for the bake temperature and durations and

they are chosen to correspond to the required data retention times for the common
temperature-accelerated mechanism responsible for data degradation in non-volatile
memories, assuming an activation energy of 1.1 eV.

Not all mechanisms responsible for data loss, however, are accelerated by
temperature and therefore a second evaluation is required at room temperature. This
requirement holds only for the first product in a qualification family to be qualified;
subsequent products are exempt. In the ramped-temperature approach the low
temperature retention qualification is performed before the high temperature stress:
in the split-flow approach, only the drives stressed at low temperatures undergo
the low temperature retention test. Since time acceleration via higher temperatures
is impossible, the room-temperature retention evaluation requires mathematical
extrapolations based on drive-level or component-level bit-error-rate data.

When basing the extrapolation on drive-level bit-error-rate data, low-temperature
retention tests require at least 500 h at a temperature between 10ıC and 30ıC. The
bit error rate can be measured at several times (for instance, 48, 168 and 500 h) and
then the trend can be extrapolated. The fraction of error bits with respect to the total
bit number, called the Raw Bit Error Rate (RBER), depends on the program/erase
cycle count and the retention time. For BER<<1,

RBER D RBER0 C B0 � tm (8.11)

where RBER0 is the Bit Error Rate at the beginning of the retention period, B0 is an
arbitrary scale factor dependent on materials and processes, t is the retention time
and m is a retention power low coefficient (typically 1 or 2).

To verify the useful retention lifetime, the RBER can be measured as a function
of time and the parameters RBER0, B0 and m fit Eq. (8.11). The resulting fitted
equation may then be used to estimate the RBER at the desired retention time of
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Table 8.5 Calculated RBER
(example)

Retention time (h) RBER

0 0
48 5.63 �10�8

168 2.23 �10�7

500 7.41 �10�7

1,000 1.59 �10�6
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Retention Time [hours]

ECC capability with safety margin

Fig. 8.15 Example of the
verification of the retention
requirements via
extrapolation of the
drive-level bit error rate

Table 8.2 and such a value must be below the ECC capability of the SSD controller,
also considering a safety margin between the calculated ECC capability and the
RBER.

Consider for example an SSD with a calculated ECC capability of 4 � 10�5 and a
safety margin equal to 2. Also consider that the RBER data of Table 8.5 have been
obtained:

The extrapolated RBER at tD 8,776 h (D 1 year) must be below the ECC
capability with safety margin whose value is 2 � 10�5. As it can be seen in Fig. 8.15,
the extrapolated RBER reaches the ECC capability with safety margin after 10,000 h
and, therefore, the retention requirement of Table 8.2 is met.

The mathematical extrapolation can also be performed using raw bit error rate
data from nonvolatile memory components, if available: at the end of the endurance
stress, the room-retention evaluation can be derived by using the retention data
calculated for the nonvolatile memory components inside the SSD for the specific
number of program/erase cycles experienced during the extrapolation test.

8.6.4 Extrapolation Method

If the direct method would require more than 1,000 h of endurance stress, an
extrapolation method can be used. Some of the proposed methods require special
access to SSD internal operation or to nonvolatile memory components information
which make these methods possible only for the SSD manufacturer.
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Independently of the extrapolation method used for endurance and retention
verification, some general requirements are to be ensured:

• the SSD must meet the requirements of Table 8.2 for FFR and UBER, for the
temperatures and times stated in the Table;

• the FFR and UBER requirements must be met for both low-temperature and
high-temperature endurance stressing, with temperature ranges of at least 25ıC
to 40ıC for client SSD and 25ıC to 60ıC for enterprise SSD;

• data retention is to be verified under the assumption that the endurance stressing
in use takes place over no longer than 1 year at the endurance use temperature
and hours per day of Table 8.2;

• data retention is to be verified both for a temperature-accelerated mechanism
(assuming an activation energy of 1.1 eV) and a non-temperature-accelerated
mechanism;

• all requirements are to be established at a 60% statistical confidence level.

8.6.4.1 Accelerated Write Rate Through Modified Workload

With this method, the workload in the endurance test can be modified so that more
program/erase cycles are performed on the nonvolatile memories for a given amount
of time. In this framework, an SSD is considered to have been stressed to its full
endurance rating regardless of the actual TB written if the nonvolatile memory
experiences as many program/erase cycles as expected with the standard workload
at the actual TBW rating.

Example of modified workload are:

• a workload with different ratio of sequential to random writes;
• a workload with a different transfer size;
• a workload which includes proprietary instructions to the SSD to perform internal

data transfers from one location to another, which result in writes that bypass the
host;

• reduced number of reads, that must be, of course, considered in solving Eq. (8.3).

8.6.4.2 Extrapolation of FFR and Bad-Block Trends

For the endurance evaluation, an SSD may be stressed to only some fraction of the
TBW rating. During the endurance stress, functional failures may occur, as well as
a certain number of blocks marked as “bad”. The increase in these two quantities
may be plotted as a function of TB in a lognormal or Weibull plot and extrapolated
to the TBW rating to obtain estimates of the final levels of FFR and bad blocks.

This extrapolation method is not acceptable for verifying that the UBER require-
ments are met, because UBER may have a highly steep dependence on TBW that
makes extrapolations from low TBW data quite unreliable.
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8.6.4.3 FFR and UBER Estimation from Reduced-Capacity SSDs

The capacity of an SSD may be artificially reduced so that some nonvolatile memory
components or blocks are not written, while the remaining ones are written more
extensively than would be the case of the full-capacity SSD. In this context, an SSD
will be considered to have reached its endurance rating limit if the stressed fraction
of the nonvolatile memory components reaches the target program/erase cycles.

For this approach to be used, the manufacturer must ensure that the method of
capacity reduction does not significantly distort the normal internal operation of the
SSD. Simply reducing the logical span of written data is generally not sufficient,
since the SSD controller and firmware make use of the full nonvolatile memory
capacity, if not instructed.

A variation of this method is to extend the nonvolatile memory program/erase
cycles beyond the target expected at the TWB rating, in order to generate functional
failures and data errors. The resulting data can then be plotted and FFR and UBER
can be extrapolated for the expected, lower, TWB rating.

8.7 Evaluating SSD Reliability Versus HDD Reliability

In terms of mechanical reliability, conventional HDDs pale when compared to
SSDs. The absence of mechanical arms and spinning platters is the reason behind
their improved reliability. In demanding environments, SSDs provide the type of
ruggedness required for mobile applications. Unlike the HDDs, SSDs can withstand
extreme shock and vibration with data integrity and without any danger of data loss.
This feature is very important in industrial applications where exposure to highly
combustible materials and electromagnetic radiation are typical. Their ability to
deliver unnerving performance in extreme conditions also makes SSD play a vital
role in military operations, be it in defense, aerospace or aviation applications.
Military applications require, in most cases, an operating temperature range of
�60ıC to C95ıC. On the contrary, shock, vibration, and temperature ratings of
HDDs hardly comply with military standards.

In addition, SSDs also consume much less power than traditional HDDs. No
additional power is required to activate the platters or the mechanical arms present in
most HDDs. Their power consumption is practically only a fraction of that of a hard
disk drive. In addition, Flash-based SSDs are associated to a significantly lower heat
dissipation, because of the absence of the heat generated by the rotating/movable
media.

The reduced power requirements and heat dissipation allow reducing the overall
power supply in an electronic system and also allow getting rid of large cooling
fans, thus contributing to an increased system reliability.
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Chapter 9
Efficient Wear Leveling in NAND Flash Memory

Yuan-Hao Chang and Li-Pin Chang

Abstract In recent years, flash storage devices such as solid-state drives (SSDs)
and flash cards have become a popular choice for the replacement of hard disk
drives, especially in the applications of mobile computing devices and consumer
electronics. However, the physical constraints of flash memory pose a lifetime
limitation on these storage devices. New technologies for ultra-high density flash
memory such as multilevel-cell (MLC) flash further degrade flash endurance and
worsen this lifetime concern. As a result, flash storage devices may experience
a unexpectedly short lifespan, especially when accessing these devices with high
frequencies. In order to enhance the endurance of flash storage device, various wear
leveling algorithms are proposed to evenly erase blocks of the flash memory so as
to prevent wearing out any block excessively. In this chapter, various existing wear
leveling algorithms are investigated to point out their design issues and potential
problems. Based on this investigation, two efficient wear leveling algorithms (i.e.,
the evenness-aware algorithm and dual-pool algorithm) are presented to solve the
problems of the existing algorithms with the considerations of the limited computing
power and memory space in flash storage devices. The evenness-aware algorithm
maintains a bit array to keep track of the distribution of block erases to prevent
any cold data from staying in any block for a long period of time. The dual-pool
algorithm maintains one hot pool and one cold pool to maintain the blocks that
store hot data and cold data, respectively, and the excessively erased blocks in the
hot pool are exchanged with the rarely erased blocks in the cold pool to prevent
any block from being erased excessively. In this chapter, a series of explanations
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and analyses shows that these two wear leveling algorithms could evenly distribute
block erases to the whole flash memory to enhance the endurance of flash memory.

9.1 Introduction

NAND flash memory has been widely adopted in various mobile embedded ap-
plications, due to its non-volatility, shock-resistance, low-power consumption, and
low cost. It is widely adopted in various storage systems, and its applications have
grown much beyond its original designs. The two popular NAND flash memory
designs are single-level-cell (SLC) flash memory and multi-level-cell (MLC) flash
memory. Each SLC flash-memory cell can accommodate 1-bit information while
each MLC�n flash-memory cell can contain n-bit information. As n increases, the
endurance of each block in MLC flash memory decreases substantially.1 In recent
years, Well-known examples are flash-memory cache of hard drives (known as
TurboMemory) [13, 40, 48], fast booting devices (for Microsoft Windows Visa),
and solid-state disks (SSD) (for the replacement of hard drives).

As the low-cost MLC flash-memory designs are gaining market momentum [11],
the endurance of flash memory is an even more challenging problem. For example,
the endurance of an MLC�2 flash-memory block is only 10,000 (or 5,000) erase
cycles whereas that of its SLC flash memory counterpart is 100,000 erase cycles
[35, 41]. As the number of bits of information per cell would keep increasing for
MLC in the near future, the endurance of a block might also get worse, such as
few thousand or even hundred erase cycles. This underlines the endurance issue of
flash memory. However, improving endurance is problematic because flash-memory
designs allow little compromise between system performance and cost, especially
for low-cost flash storage devices. Such developments reveal the limitations of flash
memory, especially in terms of endurance.

A NAND flash storage device or storage system, e.g., a solid-state disk (SSD) and
flash cards, may be associated with multiple chips. Each chip is composed of one
or more sub-chips or dies. Each sub-chip might have multiple planes. Each plane is
organized in terms of blocks that are the basic unit for erase operations. A block is
further divided into a fixed number of pages and can only endure limited erase cy-
cles. A page (that is the unit of read and write operations) consists of a user area and
a spare area, where the user area is for data storage, and the spare area stores house-
keeping information such as the corresponding logical block addresses (LBAs),
status flags, and error correction codes (ECCs). When a page is written with data,
it is no longer available unless it is erased. This is called the “write-once property”.
As a result, “out-place updates” are adopted so that data are usually updated over
free pages. Pages that contain the latest copy of data (i.e., valid data) are considered
as live (or valid) pages, and pages with old versions (i.e., invalid data) are dead (or

1In this chapter, we consider NAND flash memory, which is the most widely adopted flash memory
in storage-system designs.
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invalid) pages. Therefore, address translation is needed to map logical addresses of
data to their physical addresses, and “garbage collection” is needed to reclaim dead
pages. Because each block has a limited number of erase cycles, “wear-leveling” is
needed to evenly erase blocks so as to prevent wearing out some blocks excessively.

Engineers and researchers have recently become concerned with how long flash
storage devices can withstand daily use when they are adopted in applications with
high access frequencies. The host systems, e.g., smart phones and notebooks, access
their secondary storages (such as hard drives and SSDs) with temporal localities
[33, 32, 46, 6]. Frequently updated data and rarely updated data coexist under such
workloads. When reclaiming free space, block erases are always directed to the
blocks with few valid data so as to reduce data-copy overheads. Thus, blocks having
many static (or immutable) data are rarely chosen for erases, while other blocks are
erased many times to circulate frequently updated data. As a result, some blocks
are worn out when other blocks remain fresh. The problem of wearing out blocks
is a crucial concern for new-generation flash memory, and wear leveling is the
policy of evenly erasing all flash-memory blocks to keep all the blocks alive as
long as possible. Strategies friendly to wear leveling can be adopted in various
system layers, including applications, file systems, and firmware. To closely monitor
wear in all blocks, the flash management strategies that are usually implemented as
firmware implements wear leveling. However, wear leveling is not free, since extra
data movement is required. Alleviating wear-leveling overheads is an important
task, as wear leveling activities themselves wear flash memory too.

Many excellent wear leveling algorithms have been proposed by academia and
industry. Updating data out of place is a simple wear-leveling technique [12, 38,
24, 20, 30]. However, this simple policy is vulnerable in the presence of static data
because static data are rarely invalidated and need to be copied out before their
residing blocks are erased. In order to reduce live-data-copying overhead, blocks
storing a lot of static data rarely participate in the activities of reclaiming free space.
Therefore, the key to wear leveling may be to encourage the blocks with static data
to participate in block erases. Kim et al. [21] and Chiang et al. [9] proposed value
functions for choosing victim blocks. In their approach, a block receives a high
score if it currently has few valid data or its number of accumulated erase cycles
is low. Another technique is to erase blocks in favor of reclaiming free space most
of the time, but periodically, a block is erased in favor of wear leveling [25, 47].
A typical strategy is to occasionally erase a random block. Wear leveling activities
can also be completely detached from free-space reclaiming. Hot-cold swapping
[28,6,17,10,21] involves swapping data in a frequently erased block with that in an
infrequently erased block whenever the wear of all blocks is unbalanced.

These existing approaches share a common idea: encouraging infrequently
erased blocks to contribute to erases cycles. Under the workload of most real access
patterns, most block erases are contributed by a small fraction of blocks if wear
leveling is not used. According to such observations, static wear leveling algorithms
are proposed to move static data away from infrequently erased blocks [7, 2, 43].
However, some existing static wear leveling algorithms don’t consider the limited
computing power or restricted RAM space, while some don’t consider the access
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patterns and data access frequencies [18, 3, 39, 4, 42]. As a result, these existing
static wear leveling algorithms either consume too many hardware resources or
introduce too many overheads on extra live page copies and block erases. In order
to achieve static wear leveling effectively with limited computing power, limited
main memory, and limited overheads, two efficient wear leveling algorithms (i.e.,
the evenness-aware algorithm and dual-pool algorithm) are proposed and presented
in this chapter. The evenness-aware algorithm [8] maintains a house-keeping data
structure, i.e., a bit array, with a cyclic-queue-based scanning procedure to keep
track of the distribution of block erases to prevent any static or cold data staying in
any block for a long period of time. The objective is to improve the endurance of
flash memory with limited overhead and without excessively modifying popular
implementations of flash management designs, such as FTL, NFTL, and BL
[1, 16, 45, 14]. The dual-pool algorithm [5] maintains one hot pool and one cold
pool to maintain the blocks that store hot data and cold data, respectively, and
the excessively erased blocks in the hot pool are exchanged with the rarely erased
blocks in the cold pool to prevent any block being erased excessively. Whenever a
block is excessively erased, it is filled with static data. In this way, such blocks stop
participating in free-space reclaiming. This strategy helps conserve data movement
because the major contributors of block erases are only a small fraction of all blocks.
Second, blocks recently involved in wear leveling should be temporarily isolated
from wear leveling activities. For example, after static data are written to a block
which has been erased many times, the dual-pool algorithm decides how long this
block should wait before it can contribute more erase cycles.

The rest of this chapter is organized as follows: Sect. 9.2 presents the evenness-
aware algorithm with the worst-case analysis. In Sect. 9.3, the dual-pool algorithm
is presented with a real case study. Section 9.4 concludes this chapter.

9.2 Evenness-Aware Algorithm

9.2.1 Algorithm Design

9.2.1.1 Overview

The motivation of the evenness-aware algorithm is to prevent static data from
staying at any block for a long period of time. It minimizes the maximum erase-
count difference between any two blocks, so flash memory lifetime is extended. This
algorithm could be implemented as a module. In this algorithm, it maintains a Block
Erasing Table (BET) that identifies the blocks erased during a given period of time
(Sect. 9.2.1.2). The BET is associated with the process SW Leveler that is activated
by some system parameters for the needs of static wear leveling (Sect. 9.2.1.3).
When the SW Leveler runs, it either resets the BET or picks up a block that has
not been erased so far (based on the BET information), and triggers the garbage
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Fig. 9.1 The mapping mechanism between flags and blocks. (a) One-to-One Mode. (b) One-to-
Many Mode

collector to do garbage collection on the block (note that the selection procedure of
a block must be performed efficiently and within a limited time). Whenever a block
is recycled by the garbage collection, any modification to the address translation is
performed as in the original design of a flash management design. The SW Leveler
can be implemented as a thread or as a procedure triggered by a timer or the garbage
collector based on some preset conditions. Note that, whenever a block is erased, the
BET must be updated by a triggering action to the SW Leveler. The design of the
BET is scalable to accommodate rapidly increasing flash-memory capacity [34] and
the limited RAM space on a controller.

9.2.1.2 Block Erasing Table

The Block Erasing Table (BET) attempts to remember which block has been erased
in a pre-determined time frame, referred to as the resetting interval, so as to locate
blocks of cold data. A BET is a bit array in which each bit corresponds to a set
of 2k contiguous blocks where k is an integer that equals or exceeds 0. Whenever
a block is erased by the garbage collector, the SW Leveler is triggered to set the
corresponding bit as 1. Initially, the BET is reset to 0 for every bit. As shown
in Fig. 9.1, information maintenance is performed in one-to-one and one-to-many
modes, and one flag is used to track whether any one of the corresponding 2k blocks
is erased. When k D 0, one flag is used for one block (i.e., in the one-to-one mode).
The larger the value of k, the greater the chance in the overlooking of blocks of cold
data. However, a large value for k could help reduce the RAM space required by a
BET controller.

The worst case for a large k value occurs when hot and cold data co-exist
in a block set. Fortunately, such a case is eventually resolved when hot data are
invalidated. As a result, cold data could be moved to other blocks by the SW Leveler
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(See Sect. 9.2.1.3). The technical problem relies on the tradeoff between the time to
resolve such a case (bias in favor of a small k) and the available RAM space for the
BET (bias in favor of a large k).

Another technical issue is efficiently rebuilding the BET when a flash-memory
storage system is attached. One simple but effective solution is to save the BET in
the flash-memory storage system when the system shuts down, and then to reload it
from the system when needed. Meanwhile, the whole BET is stored in flash memory
and loaded to main memory in an on-demand fashion, so that the required main
memory could be minimized. If the system is not properly shut down, we propose
loading any existing correct version of the BET when the system is attached. Such
a solution is reasonable as long as loss of erase count information is not excessive.
Note that the crash resistance of the BET information in the storage system could
be provided by the popular dual buffer concept. Scanning of the spare areas of
pages when collecting related information should also be avoided because of the
potentially huge capacity of a flash-memory storage system.

9.2.1.3 SW Leveler

The SW Leveler consists of two procedures in executing wear leveling:
SWL-Procedure and SWL-BETUpdate (Please see Algorithms 1 and 2). SWL-
BETUpdate is invoked by the garbage collector to update the BET whenever
any block is erased by the garbage collector during garbage collection. The SWL-
Procedure is invoked whenever static wear leveling is needed. Such a need is tracked
by two variables, fcnt and ecnt , which denote the number of 1s in the BET and the
total number of block erases performed since the BET was reset, respectively.
When the unevenness level, i.e., the ratio of ecnt and fcnt , equals or exceeds a
given threshold T , SWL-Procedure is invoked to trigger the garbage collector to do
garbage collection over selected blocks such that cold data are moved. Note that a
high unevenness level reflects the fact that a lot of erases are done on a small portion
of the flash memory.

Algorithm 1 shows the algorithm for the SWL-Procedure: the SWL-Procedure
simply returns if the BET is just reset (Step 1). When the unevenness level, i.e.,
ecnt=fcnt , equals or exceeds a given threshold T , the garbage collector is invoked
in each iteration to do garbage collection over a selected set of blocks (Steps 2–15).
In each iteration, it is checked up if all of the flags in the BET are set as 1 (Step 3).
If so, the BET is reset, and the corresponding variables (i.e., ecnt , fcnt , and findex)
are reset (Steps 4–7). The findex is the index in the selection of a block set for
static wear leveling and is reset to a randomly selected block set or to a predefined
block set, e.g. 0. After the BET is reset, SWL-Procedure simply returns to start the
next resetting interval (Step 8). Otherwise, the selection index, i.e., findex , moves
to the next block set with a zero-valued flag (Steps 10–12). Note that the sequential
scanning of blocks in the selection of block sets for static wear leveling is very
effective in the implementation. We surmise that the design approximates that of an
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Algorithm 1: SWL-Procedure
Input: ecnt ,fcnt , k, findex , BET , and T
Output: nul l

1 if fcnt D 0 then return;
2 while ecnt =fcnt � T do

/* size(BET) is the number of flags in the BET. */
3 if fcnt � size.BET / then
4 ecnt  0 ;
5 fcnt  0 ;
6 findex  RANDOM.0; size.BET /� 1/ or 0;
7 reset all flags in the BET ;
8 return;
9 end

10 while BET Œfindex � D 1 do
11 findex  .findex C 1/ mod size.BET /
12 end
13 EraseBlockSet(findex ; k) ; /* Request the garbage collector to do garbage collection

over the selected block set. */
14 findex  .findex C 1/ mod size.BET / ;
15 end

Algorithm 2: SWL-BETUpdate
Input: ecnt , fcnt , k, bindex , and BET
Output: ecnt , fcnt and BET are updated based on the erased block address bindex and k in

the BET mapping.
1 ecnt  ecnt C 1 ; /* Increase the total erase count. */

/* Update the BET if needed. */
2 if BET Œbbindex /2kc� = 0 then
3 BET Œbbindex /2kc� 1 ;
4 fcnt  fcnt C 1 ;
5 end

actual random selection policy because cold data can virtually exist in any block in
the physical address space of the flash memory. The SWL-Procedure then invokes
the garbage collector to do garbage collection over a selected block set (Step 13)
and moves to the next block set (Step 14) for the next iteration. We must point out
that fcnt and BET are updated by SWL-BETUpdate because SWL-BETUpdate is
invoked by the garbage collector during garbage collection. The loop in static wear
leveling ends when the unevenness level drops to a satisfactory value.

The SWL-BETUpdate is as shown in Algorithm 2: Given the address bindex of
the block erased by the garbage collector, SWL-BETUpdate first increases the num-
ber of blocks erased in the resetting interval (Step 1). If the corresponding BET entry
is not 1, then the entry is set as 1, and the number of 1s in the BET is increased by
one (Steps 2–5). The remaining technical question is how to maintain the values of
ecnt , fcnt , and findex . To optimize static wear leveling, ecnt , fcnt , and findex should
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C blocks storing static data

H-1 blocks storing hot data

Flash Memory
(H+C blocks in total)

1 free block

Fig. 9.2 Flash memory of only static data and hot data

be saved to flash memory as system parameters and retrieved in the attachment of
the flash memory. Notably, these values can tolerate some errors with minor modifi-
cations to SWL-Procedure in either the condition in Step 3 or the linear traversal of
the BET (Steps 10–12). That is, if the system crashes before their values are saved
to flash memory, it simply uses the values previously saved to flash memory.

9.2.2 Worst-Case Analysis

9.2.2.1 Worst-Case Model for Extra Overheads

Block recycling overhead is indeed increased by the proposed evenness-aware
algorithm. A very minor cause of the increase is the execution of SWL-BETUpdate
whenever the garbage collector erases a block, i.e., the value updates of ecnt and fcnt
as well as the BET flags (compared to the block erase time, which could be about
1.5 ms over a 1 GB MLC�2 flash memory [29]). As astute readers might point out,
the garbage collector might be triggered more often than before because of wear
leveling. That might increase the number of block erases and live-page copyings.
The increased overheads caused by extra block erases and extra live-page copyings
are apparent in the following worst-case scenario: the flash memory contains blocks
of hot data, blocks of static data, and exactly one free block in a resetting interval.

Figure 9.2 shows the worst-case model based on a block-level address translation
mechanism. In the block-level address translation mechanism, each LBA is divided
into a virtual block address (VBA) and a block offset, and a mapping table is adopted
for VBAs and their physical block addresses (PBAs). For each write operation, a
free block is allocated to save the data of the remaining valid pages of the original
mapped block and the new data of the write operation. Assume there are .H � 1/
blocks of hot data and C blocks of static data where the number of blocks in the
system is .H C C/. The worst-case situation occurs when the C blocks are erased,
only due to the evenness-aware algorithm. The worst case occurs when hot data are
updated with the same frequency and only to the free block or the blocks of hot data,
where k D 0. Sections 9.2.2.2 and 9.2.2.3 show the analyses for extra block erases
and extra live-page copyings in the worst-case model, respectively.
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Table 9.1 The increased
ratio of block erases of a
1 GB MLC�2 flash-memory
storage system

H C H:C T Increased ratio (%)
256 3,840 1:15 10 9.46
2048 2,048 1:1 10 5.03
256 3,840 1:15 100 0.95
2,048 2,048 1:1 100 0.50
256 3,840 1:15 1,000 0.09
2,048 2,048 1:1 1,000 0.05

9.2.2.2 Extra Block Erases

When k D 0, the BET contains .H C C/ bits, i.e., .H C C/ 1-bit flags. In each
resetting interval, when the updates of hot data result in .T � H/ block erases,
SWL-Procedure is activated to recycle one block of cold data for the first time
because only H bits of the BET are set, and the unevenness level reaches T (i.e.,
.T �H/=H ). After one block of cold data is recycled by SWL-Procedure, .H C 1/
bits of the BET are set, and the number of block erases reaches .T �H C 1/. The
unevenness level (i.e., .T � H C 1/=.H C 1/) is then smaller than the threshold
T . Thereafter, SWL-Procedure is activated to recycle one block of cold data on all
other .T � 1/ block erases resulting from hot data updates. Finally, this procedure
is repeated C times such that all BET flags are set and the resetting interval
ends. Therefore, the resetting interval has T � .H C C/ block erases. For every
T � .HCC/ block erases in a resetting interval, SWL-Procedure performsC block
erases. Therefore, the increased ratio of block erases (due to static wear leveling) is
derived as follows:

C

T � .H C C/� C 	
C

T � .H C C/; when T � .H C C/
 C:

The increased ratio is even worse when C is the dominant part of .H C C/ (an
earlier study [18] showed that the amount of non-hot data is often several times
that of hot data). Table 9.1 shows different increased ratios in extra block erasing
for different configurations of H , C , and T . As shown in the table, the increased
overhead ratio in extra block erasing is sensitive to the setting of T . Therefore, to
avoid excessive triggering of static wear leveling, T must not be set too small.

9.2.2.3 Extra Live-Page Copyings

The extra overheads in live-page copyings due to the static wear leveling mechanism
can be explored by the worst-case model. Let N be the number of pages in a block.
Suppose that L is the average number of pages copied by the garbage collector
when erasing a block of hot data. Thus, in the worst case, totally .C � N/ live-
pages are copied when erasing C blocks of static data (due to the evenness-aware
algorithm) in a resetting interval, and .T � .H C C/� C/ � L live-page copyings
are performed in the course of regular garbage collection activities in a resetting
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Table 9.2 The increased ratio in live-page copyings of a 1 GB MLC�2

flash-memory storage system

H C H:C T L N
T�L

Increased ratio (%)

256 3,840 1:15 10 16 0.800 75.72
2,048 2,048 1:1 10 16 0.800 40.02
256 3,840 1:15 10 32 0.400 37.86
2,048 2,048 1:1 10 32 0.400 20.00
256 3,840 1:15 100 16 0.0800 7.57
2,048 2,048 1:1 100 16 0.0800 4.00
256 3,840 1:15 100 32 0.0400 3.79
2,048 2,048 1:1 100 32 0.0400 2.00
256 3,840 1:15 1,000 16 0.0080 0.76
2,048 2,048 1:1 1,000 16 0.0080 0.40
256 3,840 1:15 1,000 32 0.0040 0.38
2,048 2,048 1:1 1,000 32 0.0040 0.20

interval. The increased ratio in live-page copyings, due to static wear leveling, can
be derived as follows:

C �N
.T � .H C C/� C/ � L 	

C �N
T � L � .H C C/; when T � .H C C/
 C:

Table 9.2 shows varying increases in the ratios of live-page copyings for different
configurations ofH , C , T , and L, whenN D 128. The increased ratio of live-page
copyings can be estimated by N

L
times the increased ratio of extra block erases. For

example, when T D 100, L D 16, N D 128, and H
C
D 1

15
, the increased ratio of

block erases is 0.95 % (the third row of Table 9.1) and its corresponding increased
ratio of live-page copyings is 7.57 %, i.e., 0.95 % � 128

16
(the fifth row of Table 9.2).

As shown in Tables 9.1 and 9.2, the increased ratios of block erases and live-page
copyings would be limited with a proper selection of T and other parameters. The
increased ratios could be limited to very small percentages of flash management
strategies when the evenness-aware algorithm is supported.

9.3 Dual-Pool Algorithm

9.3.1 Algorithm Design

9.3.1.1 Algorithm Concept

This section introduces the basic concepts of the dual-pool algorithm. Let write
requests arriving at the flash storage device be ordered by their arrival times. Let
the temperature of a piece of data be inversely proportional to the number of
requests between the two most recent writes to that data. A piece of data is hot
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if its temperature is higher than the average temperature of all data. Otherwise, the
data is cold or non-hot. A block is referred to as a young(/old) block if its erase-cycle
count is smaller(/larger) than the average erase-cycle count of all blocks.

We say that a block contributes or accumulates erase cycles if garbage collection
erases this block to reclaim free space. Garbage collection avoids erasing a block
having many valid data. If a block has more cold data than other blocks, then it will
stop contributing erase cycles. This is because cold data remains valid in the block
for a long time. Conversely, if a block has many hot data, then it can accumulate
erase cycles faster than other blocks. This is because hot data are invalidated faster
than cold data, and the block can become a victim of garbage collection before other
blocks. After the block is erased, it can again be written with many hot data, because
writes to hot data arrive more frequently than writes to cold data. Thus, this block is
again erased and is written with many hot data.

The dual-pool algorithm monitors the erase-cycle count of each block. If an
old block’s erase-cycle count is larger than that of a young block by a predefined
threshold, wear leveling activities are triggered. Cold data are moved to the old block
to prevent it from being erased by garbage collection. This strategy is referred to as
cold-data migration. After this, the old block should stop accumulating erase cycles.
Compared to encouraging young blocks to contribute erase cycles, this strategy
reduces data-movement overhead. This is because only a small fraction of blocks
are worn into old blocks, while the majority are young blocks. Right after cold
data are written to an old block, the old block still has a large erase-cycle count. If
we are not aware that the old block has been involved in cold-data migration, we
may again write some other cold data to the old block. This pointlessly reduces the
block’s lifetime. Similarly, after a young block is involved in cold-data migration,
cold data previously stored in the block are removed. At this point, the young
block has no cold data, even though its erase-cycle count is small. So, right after
a block is involved in cold-data migration, it should be protected from immediate
re-involvement. This strategy is called block protection. The protection of an old
block is no longer required when other blocks become older than it. The protection
of a young block expires when it is worn into an old block.

The access patterns from the host to the flash storage devices can change
periodically. For example, a user application in the host may finish using some
files and then begin accessing other files. These application-level behaviors can
change the frequency with which a piece of data is updated, and thus cold data
can change into hot data. Consider an old block written with cold data for cold-data
migration. The old block is then protected against cold-data migration. Now suppose
that the cold data in the old block happens to become hot. The protected old block
will again start participating in garbage collection, and continues to age without
interruption from wear leveling because its protection cannot expire. Now consider
a young block under protection. The block should accumulate erase cycles. If the
young block happens to be written with many cold data, then it stops contributing
erase cycles. The young block draws no attention from wear leveling because its
protection cannot expire. This dilemma highlights the special cases that must be
carefully considered by block protection.
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Table 9.3 A summary of symbols used in the dual-pool algorithm

Symbol Definition

C The cold pool, a collection of blocks
H The hot pool, a collection of blocks
U A collection of all blocks. C \H D ; and C [H D U

Qw
P A priority queue that sorts blocks in pool P in terms of information w

M.Qw
P / The element with the largest priority inQw

P

m.Qw
P / The element with the smallest priority in Qw

P

ec.b/ The erase-cycle count of block b
rec.b/ The recent erase-cycle count of block b
TH The threshold parameter for wear leveling

9.3.1.2 The Dual-Pool Algorithm: A Basic Form

The dual-pool algorithm, as implied by its name, uses a hot pool and a cold pool.
A pool is merely a logical aggregation of blocks. Initially, a block arbitrarily joins
one of these two pools. Note that the dual-pool algorithm is not to write cold data to
blocks in the cold pool. Instead, it migrates blocks storing cold data to the cold pool.

The dual-pool algorithm uses priority queues to sort blocks in terms of different
wearing information. The following section defines some symbols for ease of
presentation: Let C andH denote the cold pool and the hot pool, respectively. Each
element in C andH is a block. Let U be a collection of all blocks. C \H D ; and
C [H D U are invariants. Let Qw

P be a priority queue that prioritizes all blocks in
pool P in terms of wearing information w. The larger the value of w is, the higher
the priority is. Each element inQw

P corresponds to a block. For block b, let function
ec.b/ present its erase-cycle count. In priority queue Qw

P , M.Qw
P / is the element

with the highest priority andm.Qw
P / is the element with the lowest priority.M.Qw

P /

and m.Qw
P / are referred to as the largest queue head and the smallest queue head,

respectively. For example, m.Qec
C / denotes the block with the smallest erase-cycle

count of all the blocks in the cold pool.
The dual-pool algorithm adopts a user-configurable parameter TH to direct how

even the wear of blocks is to be pursued. The smaller the value of TH is, the
more aggressive the wear-leveling activities would be. Table 9.3 summarizes the
symbol definitions, and the following section defines cold-data migration (CDM for
short): Cold-Data Migration (CDM): Upon the completion of block erase, check
the following condition:

ec.M.Qec
H //� ec.m.Qec

C // > TH:

If this condition is true, then the largest erase-cycle count of the blocks in the hot
pool is larger than the smallest count of the blocks in the cold pool by TH . Perform
the following procedure:

Step 1. Copy data fromm.Qec
C / to M.Qec

H /

Step 2. Erase m.Qec
C /; ec.m.Q

ec
C // ec.m.Qec

C //C 1
Step 3. C  C [ fM.Qec

H /g; H  HnfM.Qec
H /g

Step 4. H  H [ fm.Qec
C /g; C  Cnfm.Qec

C /g
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Because cold-data migration checks the condition immediately after a block is
erased, block ec.M.Qec

H // must be the most-recently erased block if the condition
is true. Whenever ec.M.Qec

H //�ec.m.Qec
C // is found larger than TH , it is deduced

that, on the one hand, blockm.Qec
C / has not been erased for a long time because of

the storing of many cold data. On the other hand, garbage collection had erased
block M.Qec

H / many times, because this block infrequently stores cold data. Next,
migrate cold data from block m.Qec

C / to block M.Qec
H /. Step 1 moves data from

block m.Qec
C / to block M.Qec

H / to complete cold-data migration. After this move,
block M.Qec

H / can stop being erased by garbage collection. Step 2 erases block
m.Qec

C / and increases the block’s erase-cycle count. This erase does not affect the
pool membership of block m.Qec

C /.
Step 3 moves block M.Qec

H / to the cold pool, and Step 4 moves block m.Qec
C /

to the hot pool. These steps swap the two blocks’ pool memberships, and enable
block protection. When the young block (previously m.Qec

C /) joins the hot pool,
it may be younger than many blocks in the hot pool. That is because most of the
blocks in the hot pool are old. The young block is then protected, because cold-data
migration is not interested in a young block in the hot pool. Analogously, when the
old block (previously blockM.Qec

H /) migrates to the cold pool, it may be older than
many blocks in the cold pool. The old block in the cold pool is then protected, as
cold-data migration is concerned with the youngest block in the cold pool.

The young block in the hot pool (previously m.Qec
C /) starts accumulating erase

cycles. When the block is worn into the oldest in the hot pool, it will again participate
in cold-data migration. On the other hand, the old block in the cold pool (previously
M.Qec

H /) now stops being erased. When the block becomes the youngest in the cold
pool, it is again ready for cold-data migration.

9.3.1.3 Pool Adjustment

The cold pool collects blocks that store cold data. However, the cold pool may also
contain blocks that have no cold data. This may be because all the blocks’ pool
memberships were arbitrarily decided in the very beginning, as all blocks’ erase-
cycle counts are initially zero. Another possible cause is that applications in the
host may change their data-access behaviors. These changes can turn a piece of
cold data into hot data.

Garbage collection selects erase victims based on how many invalid data a block
has, regardless the block’s pool membership. If a block has no cold data, it will
continue participating in garbage collection even if it is in the cold pool. In this case,
the block’s erase-cycle count increases without interruption from wear leveling. This
is because cold-data migration always involves the youngest block in the cold pool.
Similarly, if a block in the hot pool has many cold data, garbage collection avoids
erasing this block. The block cannot be erased into the oldest block in the hot pool,
and cannot attract attention from wear leveling.

To deal with this problem, the dual-pool algorithm introduces two operations,
cold-pool adjustment (CPA for short) and hot-pool adjustment (HPA for short).
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Table 9.4 A summary of the
five queue heads used by the
dual-pool algorithm

Queue heads Belongs to Used in

M.Qec
H / The hot pool Cold-data migration and

hot-pool adjustment
m.Qec

H / The hot pool Hot-pool adjustment
m.Qrec

H / The hot pool Cold-pool adjustment
m.Qec

C / The cold pool Cold-data migration
M.Qrec

C / The cold pool Cold-pool adjustment

These two operations identify and correct any improper pool membership in
the blocks. Specifically, blocks’ pool membership is adjusted according to how
frequently they have been erased since their last involvement in cold-data migration.
Hot-pool adjustment removes the blocks that do not accumulate erase cycles from
the hot pool. Cold-pool adjustment removes the blocks that actively contribute
erase cycles from the cold pool. To enable these operations to function, new block-
wearing information (i.e., the recent erase-cycle count) is introduced. A block’s
recent erase-cycle count is initially zero. It increases as along with the erase-cycle
count, but reset to zero whenever the block is involved in cold-data migration. Thus,
cold-data migration includes a new step:

(CDM) Step 5. rec.M.Qec
H // 0; rec.m.Qec

C // 0

The hot-pool adjustment and cold-pool adjustment operations also require new
priority queues and queue heads, which are summarized in Table 9.4. Let function
rec./ return the recent erase-cycle count of a block. The hot-pool adjustment and
cold-pool adjustment are then as follows:

Cold-Pool Adjustment (CPA): Upon completion of block erase, check the follow-
ing condition:

rec.M.Qrec
C //� rec.m.Qrec

H // > TH:

If it holds, then the largest recent erase-cycle count of the blocks in the cold pool
is larger than the smallest count of the blocks in the hot pool by TH . Perform the
following steps:

Step 1. H  H [ fM.Qrec
C /g ; C  C n fM.Qrec

C /g
If a block has a large recent erase-cycle count, then the block has contributed

many erase cycles since the last time it was involved in cold-data migration. Cold-
pool adjustment evicts such a block from the cold pool. This is because the last
attempt to stop the block from being erased was not successful, or the block did not
have cold data in the very beginning.

Hot-Pool Adjustment (HPA): Upon completion of block erase, check the following
condition:

ec.M.Qec
H // � ec.m.Qec

H // > 2 � TH:
If this condition holds, then in the hot pool the smallest erase-cycle count is smaller
than the largest count by 2 � TH . Perform the following steps:

Step 1. C  C [ f m.Qec
H /g ; H  H n f m.Qec

H /g
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Whether or not a block should be written with cold data for wear leveling
depends on its erase-cycle count. If a block in the hot pool accumulates erase
cycles more slowly than other blocks, then the block contains cold data, and the
hot-pool adjustment operations removes this block from the hot pool. Readers may
question that why 2 � TH is in this condition. It is to prevent hot-pool adjustment
from conflicting with cold-data migration: when cold-data migration moves a young
block from the cold pool to the hot pool, the young block’s erase-cycle count is
already smaller than the oldest block in the hot pool by TH (see the condition for
cold-data migration). To prevent hot-pool adjustment from immediately bouncing
the young block back to the cold pool, the condition of hot-pool adjustment allows
additional TH cycles (2 � TH in total).

In the worst case, every time after cold-data migration writes cold data to an
old block and moves this block to the cold pool, the cold data become hot. Cold-
pool adjustment can identify this old block and move it to the hot pool, after the
block contributes TH more cycles of erase operations. Right after this, cold-data
migration makes another attempt to write cold data to the block. So in this worst
case, the dual-pool algorithm guarantees to involve this old block every other TH
erase operations to this block.

9.3.1.4 Algorithm Demonstration

This section presents an example demonstrating how the dual-pool algorithm
accomplishes wear leveling.

In Fig. 9.3, there are six flash-memory blocks, labeled from PBA 0 to PBA 5.
The threshold parameter TH is 16. In the illustration, each block corresponds to
two boxes, which indicate the block’s erase-cycle count (ec) and recent erase-cycle
count (rec). If a block currently stores cold data, then “C” appears under the block’s
boxes, and “H” otherwise. The example includes 11 steps. At each step, a block’s
boxes are shaded in gray if the block has been erased by garbage collection since
the last step. A block’s boxes are indicated black if it is currently involved in wear
leveling. The following discussion refers to a block at PBA x as Block x, where x
can be from 0 to 5.

In Step 1, the first three blocks join the hot pool and the rest join the cold pool.
Step 2 shows that Blocks 0, 1, and 4 start accumulating erase cycles because they
store no cold data. At this point, the largest erase-cycle count in the hot pool and
the smallest erase-cycle count in the cold pool are 17 and 0, respectively. As this
difference is greater than TH = 16, cold-data migration is triggered. Step 3 shows
that the cold data in Block 3 are moved to Block 0, and the pool memberships are
switched for both blocks. Notice that a block’s wearing information sticks together
with that block during cold-data migration. In Step 4, garbage collection erases
Blocks 1, 3, and 4 because they had no cold data since Step 3.

Block 0, an old block previously involved in cold-data migration, is written with
cold data and stops accumulating erase cycles since Step 3. Even though Block 0 is
the oldest among all the blocks in the cold pool, it is now protected against cold-data



248 Y.-H. Chang and L.-P. Chang

Fig. 9.3 A scenario of the dual-pool algorithm. There are six flash-memory blocks, labeled from
PBA 0 to PBA 5. Each block is associated with an erase-cycle count (ec), a recent erase-cycle
count (rec), and the attribute of its data (hot or cold)
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migration because it is not youngest in the cold pool. In Step 5, cold-data migration
is triggered by Blocks 1 and 5, and cold data are migrated from Blocks 5 to 1. In
Step 6, Blocks 3–5 contribute some more erase cycles since Step 5. Note that after
two cold-data migrations, Blocks 0 and 1, which were previously the contributors
of erase cycles in Step 2, now store cold data in the cold pool and are no longer
being erased.

In Step 6, Block 4 in the cold pool stores no cold data. In Step 7, it is evicted
from the cold pool by cold-pool adjustment, because the difference between Block
4s recent erase-cycle count and the smallest recent erase-cycle count in the hot
pool (i.e., that of Block 2) is greater than TH = 16. In Step 8, Blocks 3–5 keep
accumulating erase cycles, and have done so since Step 5. In Step 9, hot-pool
adjustment is triggered because the difference between the erase-cycle counts of
Blocks 2 and 3 is greater than 2�TH D 32. Hot-pool adjustment moves Block 2 to
the cold pool. Right after Step 9, cold-data migration for Blocks 2 and 3 occurs in
Step 10. In Step 11, garbage collection erases some more blocks. At this point, the
wear of all blocks is considered even, with respect to TH D 16.

9.3.2 Case Study: An SSD Implementation
of the Dual-Pool Algorithm

9.3.2.1 The Firmware and Disk Emulation

The SSD platform in this study is the FreeScale M68KIT912UF32 development kit
[15, 26]. This platform integrates an MC9S12UF32 SoC (referred to as the SSD
controller hereafter), various flash-memory interfaces, and a USB interface. The
controller contains a 16-bit MCU M68HCS12, 3 KB of RAM, 32 KB of EEPROM,
a USB 2.0 interface controller, various flash-memory host controllers, and a DMA
engine with an 1.5 KB buffer. The MCU is normally rated at 33 MHz. The NAND
flash considered in this study is a 128 MB SmartMedia card (abbreviated as SM
card hereafter). SM cards have the same appearance as bare NAND-flash chips
in terms of physical characteristics. The block size and the page size of the SM
card are 16 KB and 512 bytes, respectively, and it has a block endurance of 100 K
erase cycles. Readers may notice that its geometry is finer than that of mainstream
NAND flash memory [37]. However, the design and implementation of the proposed
algorithm is independent of the block size and the page size.

An SSD presents itself to the host system as a logical disk,2 so ordinary disk-
based file systems (such as FAT and NTFS) are compatible with SSDs. The flash-
translation layer (FTL), which is a part of SSD firmware, performs disk emulation
[22,27,44,23]. Basically, FTL implements a mapping scheme, an update policy, and
a garbage-collection policy. For ease of presentation, this section introduces some
necessary terms and assumptions: Let a disk be addressed in terms of disk sectors,

2A logical disk is also referred to as a logical unit (i.e., LUN) [31].
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each of which is as large as a flash-memory page. A physical block refers to a flash-
memory block. Let the entire disk space be partitioned in terms of logical blocks,
each of which is as large as a physical block. LBAs and PBAs are abbreviations of
logical-block addresses and physical-block addresses, respectively. Let a physical
segment be a group of contiguous physical blocks, and a logical segment be a group
of contiguous logical blocks.

The FTL needs logical-to-physical translation because data in flash memory are
updated out of place. However, a solid-state-disk controller cannot afford the space
overhead of the RAM-resident data structures for this translation. To save RAM-
space requirements, the FTL adopts a two-level mapping scheme. The fist level
maps eight logical segments to eight physical segments. This first-level mapping
has a one-to-one correspondence. The first level uses a RAM-resident segment
translation table (“segment L2P table” for short). This table is indexed by logical-
segment numbers, and each table entry represents a physical-segment number. As
the first level maps a logical segment to a physical segment, the second level uses
a RAM-resident block translation table (“block L2P table” for short) to map the
1,000 logical blocks in the logical block to the 1,024 physical blocks in the physical
segment. This table is indexed by logical-block addresses and each table entry
represents a physical-block address. Each physical segment has 1; 024�1; 000D 24
unmapped physical blocks, which are spare blocks for garbage collection and bad-
block retirement. Thus, the SSD has a total volume of 8 � 1; 000 D 8; 000 logical
blocks, while the SM card has 8 � 1; 024 D 8; 192 physical blocks.

The FTL sequentially writes all sectors of a logical block to the physical block
mapped to this logical block, because the smallest granularity for address translation
is one block. To translate an LBA into a PBA, first divide the LBA by 1,000. The
quotient and the remainder are the logical-segment number and the logical-block
offset, respectively. Looking up the segment L2P table and the block L2P table
generates a physical segment number and a physical-block offset, respectively. The
final PBA is calculated by adding the physical-block offset to the physical-segment
number multiplied by 1,024.

For this FTL, there are two types of sector write operations: a write no larger
than 4 KB (i.e., eight 512-byte disk sectors) and a write larger than 4 KB. A write
larger than 4 KB effectively rewrites a logical block with the necessary copy-back
operations: Unchanged sector data are copied from the logical block encompassing
the written sectors, and combined with the newly written sector data. A spare block
is allocated from the physical segment to which the logical block is mapped, and
the combined data are then written to the spare block. The block L2P table is then
revised to re-map the logical block to the spare block. The old physical block of the
invalidated logical block is erased and converted to a spare block. Spare blocks are
allocated in a FIFO fashion for fair use.

Writes no larger than 4 KB are handled in a different way. In this case, a separate
spare block collects the newly written data. This spare block is referred to as a
log block, as it can be seen as a log of small writes. Whenever the log block is full,
the logical blocks modified by the writes recorded in the log block must be rewritten
with copy-back operations to apply the changes. In this way, rewriting logical blocks
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Fig. 9.4 A scenario of our disk-emulation algorithm

is delayed until the log block is full. After rewriting all the involved logical blocks,
the physical blocks previously mapped to the logical blocks and the spare blocks
can be erased and converted to spare blocks. Note that the 4 KB threshold is an
empirical setting, and this study provides no further discussion on it. erase and data
copy activities for free-space reclaiming are referred to as garbage collection.

Figure 9.4 depicts a scenario of the proposed disk-emulation algorithm involving
three logical blocks and five physical blocks. Let each physical block have four
pages, and let each page be as large as a disk sector. A write is considered large if
it is larger than two sectors. The left upper corner shows the initial state. Let a write
be denoted by sector numbers enclosed within a pair of braces. Three small writes
f0g,f0g, and f0,1g arrive in turn. As they are small, they are appended to the free
space in the log block at PBA 1 in Step 1. At this point, the log block is full. Step 2
then conducts copy-back operations to gather valid data from blocks at PBAs 0 and
1, and then rewrites the valid data to the block at PBA 3. Step 3 erases the blocks at
PBAs 0 and 1. Step 4 revised the block L2P table. In Step 5, the fourth write f5,6,7g
arrives. This write is large, and therefore requires that a logical block be rewritten.
However, the unchanged data of Sector 4 are first copied from the block at PBA 4
to the log block at PBA 0. Step 6 then appends f5,6,7g to the log block, and Step
7 erases the block of invalid data. Step 8 then revises the block L2P table. Note
that disk emulation is traditionally considered to be an issue independent of wear
leveling. Refer to [19,23,22,44] for further discussion on disk-emulation algorithms.
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The segment L2P table is small enough to be kept in RAM because it has only
eight entries. There are eight block L2P tables, one for each pair of a logical segment
and a physical segment. As mentioned above, since RAM space is very limited,
only two block L2P tables can be cached in RAM. Whenever a block L2P table
is needed but is absent from RAM, the least-recently used table in the cache is
discarded. The needed table is then constructed by scanning all the physical blocks
of the corresponding physical segment. This scanning involves only the spare areas
of every physical block’s first page, which contain the mapping information.3

9.3.2.2 Block-Wearing Information and Priority Queues

The dual-pool algorithm keeps track of every block’s wearing information. This
includes an erase-cycle count, a recent erase-cycle count, and pool membership.
Ideally, this information should be kept in RAM for efficient access. However,
this is not feasible because the SSD controller has only about 1 KB of RAM as
working space.

One option is to write a block’s wearing information in its spare areas [27].
In this approach, a block’s wearing information must be committed to one of its
spare areas immediately after the block is erased. Later on, when user data are
written, error-correcting codes and mapping information are also written to these
spare areas. However, this approach can overwrite a spare area multiple times. This
is prohibited by many new NAND flash [37, 36]. One alternative is to exclusively
write the wearing information to a spare area, but this spoils the existing data layout
in spare areas for disk emulation.

Our approach is to reserve one physical block for writing the wearing
information. An on-flash block-wearing information table (“BWI table” for short)
keeps the blocks’ wearing information. A new BWI-table can be written to an
arbitrarily allocated spare block, which means that the BWI table is subject to wear
leveling. Since the entire flash memory is divided into eight physical segments, each
segment has its own BWI table. A BWI table contains 1,024 entries, one for each
physical block. Each table entry has 4 bytes, including a 18-bit erase-cycle count,
a 13-bit recent erase-cycle count, and 1 bit for pool membership. Note that 13 bits
are large enough for a recent erase-cycle count because it is reset upon cold-data
migration. A BWI table is 1; 024�4 D 4KB large, so one 16-KB physical block can
accommodate four revisions of a BWI table. If the block is full, another spare block
is allocated for writing the BWI table, and the prior block is discarded for erase.

The on-flash BWI table can be entirely rewritten every time a block’s wearing
information changes. However, this method considerably increases write traffic to
flash memory. Instead, the PBAs of the recently erased blocks are temporarily
logged in a RAM buffer. In the current design, this buffer, named the erase-history

3The scanning is read-only and does not affect wear leveling. Previous research has developed
excellent methods for reducing the time overhead of this scanning. Refer to [22, 19] for details.
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table (“EH table” for short), has eight entries. If the EH table is full, a new version
of the BWI table is written to the block reserved for the BWI table to apply the
changes. After this, the in-RAM EH table is emptied.

Blocks are sorted in terms of different wearing information, and the dual-pool
algorithm must check queue heads every time it is invoked. To scan the on-flash
BWI table to find the queue heads is very slow. To reduce the frequency of BWI-
table scanning, a small number of queue-head elements can be fetched for later use.
For example, for fast access toM.Qec

H /, after the BWI table is scanned, the wearing
information of the two blocks with the two largest erase-cycles counts in the hot
pool can be stored in RAM. An in-RAM queue-head table (“QH table” for short) is
created for this purpose. The size of the QH table is fixed, and each of the five types
of queue heads (shown in Table 9.4) is allocated to two table entries. A QH-table
entry consists of a 2-byte PBA and 4-byte block-wearing information. Cold-data
migration, hot-pool adjustment, and cold-pool adjustment check the QH table for
queue heads. Wear leveling consumes QH-table entries and modifies the wearing
information in the entries. A modified table entry is treated as an EH-table entry.
The following section discusses when and how a QH table can be refreshed.

9.3.2.3 Segment Check-In/Check-Out

This section shows how the proposed wear-leveling data structures can be integrated
into the segmented management scheme for disk emulation.

Disk emulation uses a two-level mapping scheme, as previously mentioned in
Sect. 9.3.2.1. The segment L2P table is indexed by logical-segment numbers, has
only eight entries, and is always stored in RAM. Second-level mapping manages the
physical segments as if they were small pieces of flash memory. Each segment has
an in-RAM L2P table, which maps 1,000 logical blocks to 1,024 physical blocks.
Only two segments can have their block L2P tables cached in RAM. A segment is
cached if its block L2P table is in RAM.

Each of the two cached segment uses an in-RAM EH table and an in-RAM QH
table. Whenever a logical block is accessed, the corresponding physical segment
is located by the segment L2P table. The dual-pool algorithm then checks if the
segment’s block L2P table, the EH table, and the QH table are in RAM. If they
are absent, the following procedure, named segment check-in, is performed to bring
them in: The in-RAM block L2P table is constructed by scanning the spare areas of
each block’s first page containing the mapping information. During scanning, if a
block is found storing the on-flash BWI table, then the most up-to-date BWI table
in the block is scanned to create the in-RAM QH table. By the end of this segment
check-in procedure, the QH table and the block L2P table are ready. The in-RAM
EH table is emptied, and the segment is all set for data access.

As the EH table continues to record the PBAs of erased blocks, sooner or later
it will become be full. In this case, a new version of the on-flash BWI table should
be created to merge the wearing information in the current on-flash BWI table, the
in-RAM EH table, and the in-RAM QH table. The QH table is involved because
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Fig. 9.5 Relationship between the in-RAM/on-flash data structures and how they are used by wear
leveling, disk emulation, and segment operations

QH-table entries could have been switched to EH-table entries. This merging
procedure, called the BWI-table merge, is as follows: First the block storing the
current BWI table is located. The dual-pool algorithm creates a new BWI table in
the same block right after the current BWI table. If there is no free space left, a
new spare block is allocated. The four flash-memory pages storing the current BWI
table are then copied to the new location. During copying a BWI-table page, the
DMA engine first loads one of the four pages from flash memory into the DMA
buffer, and then the dual-pool algorithm performs a three-way synchronization that
involves the wearing information from the DMA buffer, the QH table, and the EH
table. By the end of this merging procedure, the QH table is refreshed to contain
new queue-head physical block addresses and their wearing information, and the
EH table is emptied.

A segment’s in-RAM data structures can also be evicted from RAM to accommo-
date those of a newly accessed segment. Before a segment vacates RAM space, its
EH table and QH table must be merged with the on-flash BWI table. This process is
called segment check-out. To check out a segment, the BWI-table merge procedure
is first performed, and the in-RAM structures of the segment can then be discarded.

Figure 9.5 shows how by wear leveling, disk emulation, and segment operations
use the proposed data structures. Step 1 shows that when a segment is checked in,
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the spare areas of the blocks in that segment are scanned to build the in-RAM block
L2P table. This scanning process also locates the block storing the on-flash BWI
table. Step 2 refreshes the in-RAM QH table of the segment with information in
the on-flash BWI table. Step 3 shows that QH-table entries are consumed by wear
leveling. If any block is erased by garbage collection, then a record of the erase is
appended to the in-RAM EH table, as shown in Step 4. When the segment is checked
out, Step 5 merges the information in the in-RAM QH table, in-RAM EH table, and
on-flash old BWI table and writes it to a new BWI table on flash.

9.4 Conclusion

This work addresses a key endurance issue in the deployment of flash memory
in various system designs. Unlike the wear leveling algorithms proposed in the
previous work, two efficient wear leveling algorithms (i.e., the evenness-aware algo-
rithm and dual-pool algorithm) are presented to solve the problems of the existing
algorithms with the considerations of the limited computing power and memory
space in flash storage devices. The evenness-aware algorithm proactively moves
static or infrequently updated data with an efficient implementation and limited
memory-space requirements so as to spread out the wear-leveling actions over the
entire physical address space. It proposes an adjustable house-keeping data structure
and an efficient wear leveling implementation based on cyclic queue scanning. Its
goal is to improve the endurance of flash memory with only limited increases in
overhead and without extensive modifications of popular implementation designs.
The dual-pool algorithm is to protect a flash-memory block from being worn out
if the block is already excessively erased. This goal is accomplished by moving
rarely updated data to excessively erased blocks. Because the micro-controllers of
flash storage devices are subject to very tight resource budgets, keeping track of
wear levels for a large number of blocks is a very challenging task. The dual-pool
algorithm keeps only the most frequently accessed data in RAM, while the rest is
written to flash memory.
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Chapter 10
BCH for Solid-State-Drives

A. Marelli and R. Micheloni

Abstract Given that the NAND Flash memory is not a very reliable medium, it
follows that a Solid State Disk needs some help to achieve a reliability suitable for
computing applications: the Error Correction Code (ECC).

As the NAND technology scales down, ECC becomes a critical design topic.
This chapter deals with BCH, the most common ECC in solid state disks.

Two main issues arise when an ECC is used inside an SSD. First of all, the
ECC should not limit the bandwidth, being the bottleneck of the entire drive:
this translates in a hardware implementation that needs to handle multiple devices
(channel) in parallel. At the same time, ECC must avoid erroneous corrections when
the error correction capability of the code is overcome, i.e. it must have a high
detection property.

In this chapter the ECC definitions are reviewed, then the BCH code is presented
with its detection property. Finally, the multi-channel topic is addressed.

10.1 Error Correction Codes Basic Definitions

In 1948 Claude Shannon’s article “A Mathematical Theory of Communication”
gave birth to the two twin disciplines: information theory and coding theory. The
article specifies the meaning of efficient and reliable information and, there, the
very well known term “bit” has been used for the first time [1]. Anyway, it was only
with Richard Hamming in 1950 that a constructive generating method and the basic
parameters of Error Correction Codes (ECC) were defined.

Hamming made his discovery at the Bell Telephone’s laboratories during a study
on communication on long telephone lines corrupted by lightening and crosstalk.
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Fig. 10.1 Representation of coding and decoding operations for block codes

The discovery environment shows how the interest in error-correcting codes has
taken shape, since the beginning, outside a purely mathematical field.

The codes discovered by Hamming are able to correct only one error, they are
simple and widely used in several applications where the probability of error is small
and the correction of a single error is considered sufficient.

More powerful codes, such as BCH and Reed-Solomon, were discovered
between 1958 and 1960. The first ones were described by Bose and Chaudhuri
[2] and through an independent study by Hocquengheim [3]; the second ones were
defined by Reed and Solomon a few years later, between 1959 and 1960 [4]. They
were immediately used in space missions, and today they are still used in compact
discs.

Afterwards, they stopped being of interest for space missions and were replaced
by convolutional codes, introduced for the first time by Elias in 1955. Convolutional
codes can also be combined with cyclic codes. The study of optimum convolutional
codes and the best decoding algorithms continued until 1993 when turbo codes were
presented for the first time in the communication environment [5]. In fact, it is in
the sector of telecommunications where they have received greater success.

A singular history is that of LDPC (Low Density Parity Checks) codes first
discovered in 1962 by Gallager [6], but whose applications are being studied only
today [7].

Error correction codes add redundant bits called parity bits to the information
data bits so that, on reception, it is possible to detect the errors and to recover the
message that has most probably been transmitted.

One of the biggest families in coding theory is block codes [8–10]. Block coding
deals with messages of fixed length. Schematically (Fig. 10.1), a block m of k
symbols is encoded in a block c of n symbols (n> k) and written in a memory. Inside
the memory, different sources may generate errors e, so that the block message r is
read. The block r is then decoded in d by using the maximum likelihood decoding
strategy, so that d is the message that has most probably been written.

A Code C is the set of codewords obtained by associating the qk messages of
length k of the space A to qk words of length n of the space B in a univocal way.
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A code is defined as linear if, given two codewords, also their sum is a codeword.
When a code is linear, encoding and decoding can be described with matrix
operations.

Definition 10.1.1 G is called generator matrix of a code C when all the codewords
are obtainable as a combination of the rows of G.

Each code has more than one generator matrix, i.e. all its linear combinations.
It follows that each code has infinite equivalent codes, i.e. all those obtained by
permutations or linear combinations of the matrix G.

Definition 10.1.2 A set of equations that gives parity positions in terms of data
positions is called parity equations set.

It is possible to express all these equations as a matrix. The matrix H is called
parity matrix for a block code.

Therefore, with reference to Fig. 10.1, encoding a data message m consists in
multiplying the message m by the code generator matrix G, according to Eq. (10.1).

c D m �G (10.1)

Definition 10.1.3 G is said in standard form or in systematic form if GD (Ik, P),
where Ik is the identity matrix k x k and P is a matrix k x (n – k). If G is in standard
form then the first k symbols of a word are called information symbols.

Theorem 10.1.1 If a code C[n,k] has a matrix G – (Ik,P) in standard form, then a
parity matrix of C is HD (- PT,In-k) where PT is the transpose of P and it is a matrix
(n – k) x k and In-k is the identity matrix (n – k) x (n – k).

Systematic codes have the advantage that the data message is visible in the
codeword and can be read before decoding. For codes in non – systematic form
the message is no more recognizable in the encoded sequence and it is necessary to
have the inverse encoding function to recognize the data sequence.

Definition 10.1.4 The code rate is defined as the ratio between the number of
information bits and the codeword length. Given a linear code [n,k] the ratio k/n
is defined as code efficiency.

Definition 10.1.5 It is called minimum distance or Hamming distance d of a code,
the minimum number of different symbols between any two codewords.

We can see that for a linear code the minimum distance is equivalent to the
minimum distance between all the codewords and the codeword 0.

Definition 10.1.6 A code has detection capability v if it is able to recognize all the
messages, containing v errors at the most, as corrupted.

The detection capability is related to the minimum distance as described in
Eq. (10.2).

v D d � 1 (10.2)
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Definition 10.1.7 A code has correction capability t if it is able to correct each
combination of a number of errors equal to t at the most. The correction capability
is calculated from the minimum distance d by the relation:

t D
�
d � 1
2

	
(10.3)

where the square brackets mean the floor function.

Definition 10.1.8 Given a code C[n,k] Ai represents the number of codeword with
weight i. The set fAig is called weight distribution of the code C and fAig are called
the weights of C.

The code C has a symmetric distribution if Eq. (10.4) holds true.

Ai D An�1 0 � i �
�
n � 1
2

	
(10.4)

Definition 10.1.9 The dual code C* of a code C[n,k] is the set of vectors orthogonal
to all the codewords of C:

C � D ˚v 2 
Fq
�njv � c D 08c 2 C � (10.5)

The weight distribution or the distance of the dual code gives a lot of information
on the code itself as the following sections show.

Definition 10.1.10 Given a code C, its dual code C* and fAig with iDf0, : : : ,ng its
weight distribution, we define the weight enumerator of the code C the polynomial

WC .x; y/ D
nX

iD0
Aix

n�i yi 2 Z Œx; y� (10.6)

A fundamental theorem that describe the relationship between WC(x,y) and
WC*(x,y) is MacWilliams theorem. Here it will be present only the version for linear
binary codes.

Theorem 10.1.2 MacWilliams equality for binary codes Given a linear binary
code C[n,k] and C* its dual code the following equation holds true

WC� .x; y/ D 1

jC jWC .x C y; x � y/ (10.7)

where jCj D 2k is the number of words in C. In other words:

nX

iD0
A�i xn�i yi D 1

jC j
nX

iD0
Ai .x C y/n�i .x � y/i (10.8)
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Fig. 10.2 Schematic diagram of code concatenation

This latter equality is called MacWilliams identity.

There is an important operation we can apply to a linear code C called extension.
Also in this case, there is a relationship between the original code weights and the
weights of its extension.

Definition 10.1.11 Given a code C[n,k,d] we call extension of the code CE the code
obtained from C by adding one more parity bit computed as the logical XOR of all
the other bits. The code CE has only even weighted codeword and

– if d is even CE is a code [nC 1,k,d]
– if d is odd CE is a code [nC 1,k,dC 1]

Given a code C with weight distribution faig, and fAig the weight distribution of
its extension code CE , we have

A2i D a2i C a2i�1 (10.9)

with 2� 2i� n-1.
Given a code C[n,k,d] and CE its extension: if n is odd and C has a symmetrical

weight distribution, then CE has symmetrical weight distribution.
In a lot of applications there are external factors not subject to error check which

determine the length permitted to an error correction code. Non volatile memories,
for example, operate on codewords that have a length power of 2.

When the “natural” length of the code is not suitable it is possible to change it
with the shortening operation.

Definition 10.1.12 A code C[n,k] is shortened into a code C’[n-j,k-j] by erasing j
columns of the parity matrix.

Codes can be combined together in order to improve their correction capabilities.
One way to combine them is with concatenation. In this operation we have an inner
code (CIN) and an outer code (COUT) that work together (Fig. 10.2).
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Typically, CIN is decoded with a maximum-likelihood approach and COUT is a
block code of length n. In this way the concatenation combines the error probability
property of the inner code and the decoding time property of the outer code.

As sketched in Fig. 10.2 the message is firstly encoded with the outer code and
the resulting codeword is encoded with the inner code. During the decoding phase
the message is decoded with the inner code and the result is then decoded with the
outer code. From this description it is clear that a key feature is that the inner code
must have a good detection property, since we must be sure that the inner code
doesn’t perform erroneous correction when the correction capability of the code is
overcome.

10.2 BCH Codes

BCH codes belong to the family of cyclic codes. These are, perhaps, the most used
codes in applications, since they can be implemented by using high-speed shift-
register encoders and decoders [11–13].

Definition 10.2.1 A linear code C[n,k] is called cyclic if (x1,x2, : : : ,xn) C– C
D> (xn,x1, : : : ,xn-1) C– C.

In other words, if we write the vector a(x)D (a0, : : : ,an-1) as the polynomial
a0C a1xC a2x2C : : : C an-1xn-1, the previous definition states that, if a(x) C– C, then
also the right shift belongs to C.

As seen in the previous section, the distance is a key feature in characterizing a
code; in BCH codes the minimum distance can be ensured during construction.

Generally speaking, in order to know the minimum distance for a linear code
with generator polynomial g(x), it is necessary to compute the distance between all
the possible codewords. BCH codes, by imposing some constraints on the generator
polynomial, are able to ensure a “designed distance”.

Definition 10.2.2 Let ˇ be an element of GF(qm). Let b be a non-negative integer.
A BCH code with “designed” distance d is generated by the polynomial g(x) of
minimal degree that has d-1 consecutive powers of ˇ: ˇb, ˇbC1, : : : , ˇbCd-2 as roots.
Given � i the minimal polynomial of ˇbCi for 0� i< d-1, g(x) is computed as:

g.x/ D LCM f 0.x/;  1.x/; : : : ;  d�2.x/g (10.10)

and the data protected by the code is kD n-deg(g(x)).

It is possible to show that the designed distance d is at least 2tC 1, hence the code
is able to correct t errors. The number of parity bits for a binary BCH code is less
than or equal to mt. Generally, this number is equal to mt; it is less only when the
minimum distance is greater than the designed distance the code is constructed with.
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If we assume bD 1, and ˇ a primitive element of GF(qm) the code becomes a
narrow-sense and primitive BCH code of length qm-1 able to correct t errors. We
shall now consider primitive BCH codes.

As regards the distance, the important result of Carlitz-Uchiyama inequality is
proven.

Theorem 10.2.1 Carlitz-Uchiyama inequality Given a binary BCH code C of
length nD 2m– 1 with designed distance ıD 2tC 1, for the minimum distance of
the dual code C* the following inequality holds true

d� � 2m�1 � .t � 1/ 2Œm2 � (10.11)

The general decoding structure is represented in Fig. 10.3.
In BCH structure there is only one step to encode a message, while there are

three steps to decode a message. Generally, we can state that the decoding is ten
times more complex than encoding.

The encoding of a systematic BCH code is performed by multiplying the message
m(x) by xn-k and calculating the parity bits as the remainder of the division of this
multiplication by the generator polynomial, in accordance with Eqs. (10.12) and
(10.13).

m.x/ � xn�k
g.x/

D q.x/C r.x/

g.x/
(10.12)

c.x/ D m.x/ � xn�k C r.x/ (10.13)

The structure that implements this division is represented in Fig. 10.4.
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Fig. 10.4 Binary BCH encoder

The decoding operation follows three fundamental steps, as shown in Fig. 10.3.

• calculation of the syndromes;
• calculation of the coefficients of the error locator polynomial;
• calculation of the roots of the error locator polynomial.

Errors in the storage media can be represented by a polynomial that has
coefficient 1 in correspondence with every error’s position:

E.x/ D E0 C E1x C : : :C En�1xn�1 (10.14)

Observe that, in order for the code to be corrector of t errors, at most t non-null
coefficients are allowed in Eq. (10.14). The read vector R(x) is therefore:

R.x/ D c.x/C E.x/ (10.15)

The first decoding step consists in calculating the 2t syndromes for the read
message:

R.x/

 i .x/
D Qi.x/C Si.x/

 i .x/
with 1 � i � 2t (10.16)

Si .x/ D Qi.x/ �  i .x/CR.x/ with 1 � i � 2t (10.17)

In accordance with Eqs. (10.16) and (10.17), the received vector is divided
by each minimal polynomial � i forming the generator polynomial, thus getting a
quotient Qi(x) and a remainder Si(x) called syndrome.

At this point the 2 t syndromes must be evaluated into the elementsˇ, ˇ2, ˇ3, : : : ,
ˇ2t whose � i are the minimal polynomials. With reference to Eq. (10.18), this
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evaluation is computed as the evaluation of the message received in ˇ, ˇ2, ˇ3, : : : ,
ˇ2t, since � i(ˇi)D 0 (for 1� i� 2 t) by definition of minimal polynomial.

Si


ˇi
� D Si D Qi



ˇi
� �  i



ˇi
�CR 
ˇi � D R 
ˇi � (10.18)

Consequently, the i-th syndrome can be calculated either as the remainder of
the division between the received message and the minimal polynomial � i, then
evaluated in ˇi, or as the evaluation in ˇi of the received message.

Observe that, in case no errors occur, the polynomial received is a codeword:
therefore the remainder of the division of Eq. (10.16) is null and all the syndromes
are identically null. On the other hand, verifying if the syndromes are identically
null is a necessary and sufficient condition to understand if the read message is a
codeword or if some errors occurred.

An useful property described in Eq. (10.19) can be exploited to compute only t
syndromes.

S2i D S2i (10.19)

The syndromes calculation for a BCH code existing over GF(2m) involves t
structures which contemporarily calculate the remainder of the divisions between
the received polynomial and the t minimal polynomials. These structures are very
similar to the one depicted in Fig. 10.4.

Once the syndromes are computed, they are used to search the error locator
polynomial.

By indicating the error positions with X and the number of errors that occurred
with v the following equality holds true:

Si D
vX

lD1
Xi
l (10.20)

Definition 10.2.3 It is defined error locator polynomial�(x) the polynomial whose
roots are the inverse of the error positions.

From the definition we have:

ƒ.x/ D
vY

iD1
.1 � xXi / (10.21)

Please observe that the degree of the error locator polynomial gives the number
of errors that occurred. The degree of�(x) is t at most, hence, in the case more than
t errors occur, the polynomial�(x) could erroneously indicate t or less errors.

The most used algebraic method to perform this step of the decoding is the
Berlekamp-Massey algorithm [14]. The complexity of this algorithm grows in a
linear way, enabling the construction of efficient decoders able to correct dozens of
errors.
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Fig. 10.5 Flow diagram for the Berlekamp algorithm

Berlekamp algorithm finds the coefficients of the error locator polynomial in
an iterative way. At the i-th step of the algorithm we find a polynomial�(x) whose
coefficients solve the first i equations of Eq. (10.20). Then, we test if�(x) also solves
the equation iC 1; if not, we calculate the discrepancy term d so that�(x)C d solves
the first iC 1 equations. After 2t iterations�(x) is the error locator polynomial.

In the binary case it is possible to perform the Berlekamp algorithm in t iterations.
There are a number of different implementations of Berlekamp algorithm [15–17],
here below we will explain the one following the diagram of Fig. 10.5.
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Equation (10.22) shows the syndrome polynomial and the initial conditions for
the algorithm:

1C S D 1C S1zC S2z2 C : : :C S2t�1z2t�1

ƒ.0/.z/ D 1 d .0/ D 1 (10.22)

At the i-th step we proceed as follows:

• if S2iC1 is unknown the algorithm is finished;
• otherwise we define	(2i) the coefficient of z2iC1 in the product (1C S(z))�(2i)(z).

ƒ.2iC2/.z/ D ƒ.2i/.z/C�.2i/ � d .2i/.z/ � z (10.23)

d .2iC2/.z/ D

8
<̂

:̂

z2d .2i/.z/ if �.2i/ D 0 or if degƒ.2i/.z/ > i

zƒ.2i/.z/

�.2i/
if �.2i/ ¤ 0 or if degƒ.2i/.z/ � i

(10.24)

The polynomial�(2t)(z) is the error locator polynomial.
A number of paper have been published to avoid the inversion or to parallelize

the structure. It is not the purpose of this chapter to present these paper but they can
be found in [15–17].

The last step of the decoding process consists in searching for the roots of the
error locator polynomial. If the roots are separate and they are in the field, then it is
enough to calculate their inverse to have the error positions. If they are not separate
or they are not in the correct field, it means that the word received has a distance
from a codeword greater than t. In this case an uncorrectable error pattern occurred
and the decoding process fails.

The algorithm used to search the roots, known as Chien algorithm, is a method
based on trial and error. Substantially each field element is substituted in the error
locator polynomial: if it satisfies the equation it is a root, otherwise the following
element is tested. The inverse of the found root indicates an error location.

Recall that the error locator polynomial �(x) of degree t at the most, for a
BCH[n,k], is defined as:

ƒ.x/ D 1Cƒ1x C : : :Cƒtx
t (10.25)

Hence, verifying if a field element ˛i satisfies the equation means verifying
Eq. (10.26):

1Cƒ1˛
i C : : :Cƒt



˛i
�t D 0 (10.26)

If the equation is not satisfied the following element is considered, otherwise ˛i

is a root. In this case the inverse is an error position, i.e. the position 2m-1-i is the
erroneous one.



270 A. Marelli and R. Micheloni

10.3 BCH Decoding Failures

BCH codes are not perfect codes: for this reason it is difficult that a codeword
with more than t errors moves in the correction sphere of another codeword. The
codewords of BCH codes are well separated one from another and only a number of
errors much greater than t could partially overlap their correction spheres.

This is the reason why, when more than t errors occur, most of the time the
decoding process fails but erroneous corrections are not performed. It is therefore
possible to use an error message showing that more than t errors have occurred.

Suppose we have a message containing more than t errors and see how the
decoding proceeds. At the exit of the syndromes calculation block it is not
possible to detect if the correction capability has been exceeded; on the contrary,
the calculation is completed with success by finding t, apparently valid, syndromes.

The syndromes are transferred to the block that searches for the error locator
polynomial. As mentioned, the Berlekamp algorithm is a recursive algorithm that
searches for the coefficients of the error locator polynomial using successive
approximations, by adding at the i-th iteration a discrepancy term d so that�(x)C d
solves the first iC 1 equations. The discrepancy term is a monomial that is added to
the error locator polynomial previously found. When the degree of the monomial to
be added is greater than t, the correction capability of the code has been exceeded.
Recalling that the degree of the error locator polynomial is equal to the number of
errors that most likely occurred, we can state that this number is reliable up to t.
If a degree higher than t is detected at some point in the algorithm, the decoding
terminates with an error message.

Unfortunately it is not granted that, when the correction capability of the code
is exceeded, this is what happens. On the contrary, most of the times this does
not happen and the error locator polynomial apparently seems a valid one with a
degree smaller than or equal to t (most of the times equal to t). Consequently, these
coefficients, apparently valid, are loaded into the Chien machine.

When the correction capability of the code is exceeded, the Chien algorithm
discloses it, since one of the following cases occurs:

• there are coincident roots;
• a sufficient number of roots is not found. Remember that a number of roots equal

to the degree of the error locator polynomial has to be found;
• in case of shortened codes it can also happen that the shortened positions, those

ones ideally filled in with 0 s, are recognized as erroneous.

In practical implementations the first condition never happens because, given
the implementation of the Chien machine, the same element is never tested more
than once.

The second condition is the one that actually occurs in real applications. At the
end of the Chien algorithm we verify, through a comparator, if the number of roots
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found is equal to the degree of the error locator polynomial. If this condition is not
satisfied, an error message shows that the correction capability of the code has been
exceeded.

Finally, the third condition generally never occurs in shortened codes cases,
because the use of an “initialization” constant avoids the testing of shortened
positions.

However, remember that if the number of errors is much greater then the
correction capability, the received message can be found in a correction sphere
of another codeword: in this case the code might not be able to understand if the
correction capability has been exceeded and might perform erroneous corrections.

Summarizing, we can state that the BCH decoder can be approximate with an
ideal one, since erroneous correction are very unlikely to occur [8], unless the
received message really falls in another correction sphere. These cases must be
studied based on the algebraic structure of the code and will be presented in the
next sections.

10.4 Detection Properties

As explained in the previous section, it is unlikely that the BCH decoding algorithm
makes erroneous corrections, i.e. we can approximate it with an ideal decoding. It
follows that the erroneous corrections are made only when the received message is
located in a correction sphere different from the original codeword.

Definition 10.4.1 Given a binary linear code C able to correct t errors, we call
the probability of miscorrection PME the probability that an ideal bounded distance
decoder executes erroneous corrections.

Definition 10.4.2 The weighted probability PE(w) is the probability of executing
erroneous corrections when w errors occurred.

Observe that the probability PME depends on the code C and on the transmission
channel.

Theorem 10.4.1 The weighted probability PE(w) is computed as:

PE.w/ D Dw�
n

w

� (10.27)

where Dw is the number of decodable words and w is in the range [tC 1,n].
The number of decodable words can be computed as

Dw D
nX

iD0
ai

tX

sD0
N.i;wI s/ (10.28)
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where N(i,w;s) is the number of words with weight w with a distance s from a word
of weight i. This is computed by Eq. (10.29)

N .i;wI s/ D

8
<̂

:̂

�
n � i
sCw�i
2

��
i

s�wC1
2

�
if jw � i j � s

0 if jw � i j > s
(10.29)

Substituting Eq. (10.28) in Eq. (10.27) we have:

PE.w/ D

nP
iD0

ai
tP

sD0
N.i;wI s/

�
n

w

� (10.30)

PME is computed based on PE(w) as described in Eq. (10.31)

PME D
nX

wDtC1
PE.w/
.w/ (10.31)

where ˚(w) is the probability that a word has weight w.
For a binary symmetric channel BSC we have:

PME D
nX

wDtC1
Dwp

w.1 � p/n�w (10.32)

where p is the bit error probability.
It follows that we have to compute the value Dw. This value can be computed

according with Eq. (10.28). Unfortunately the weights ai are unknown for BCH
codes and must be estimated.

10.5 BCH Weight Estimation

There are a number of different theorems that helps in estimating the weight of
a BCH code. Here below we will see the major ones and how they behave in
comparison with real weights.

First of all, we present a result that establishes a relationship between the weight
distribution of a BCH code and the weight distribution of its dual code.
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Theorem 10.5.1 Given C a BCH[n,k,d] code and CE its extension, C has weight
distribution faig and CE has weight distribution fAig. The following equations
hold true:

a2i�1 D 2i

n
A2i

a2i D n� 2i
n

A2i

(10.33)

Observe that a BCH code has symmetrical weight distribution and the word
composed by all 1 is a valid codeword. Moreover, given that BCH has an odd
length (i.e. nD 2m-1), also for the extension BCHE the word composed by all 1
is a valid codeword. Finally, observe that the dual code of CE has only even weight
codewords.

One of the most important weight estimation is the Peterson one. It was the first
estimation and it is not an upper or a lower bound but an approximation.

Theorem 10.5.2 [18] Peterson Estimation The weight ai of a primitive BCH code
of length n and error correction capability t can be approximated as

ai Š

�
n

i

�

.nC 1/t (10.34)

In order to have upper bounds, different correction terms are added to Eq. (10.34).
In other words, for the extension code BCHE the estimations use the following
relationship:

Ai D

8
<̂

:̂

0 i � 1 mod 20

@n

i

1

A

2mt
.1CEi/ i � 0 mod 2

(10.35)

In order to compare different estimations a real case is shown. For BCH[255,
207,13] the weights w are known. Figure 10.6 shows the relative errors with respect
to the real weights with different estimations for this code. On the x-axis there is the
weight w, while on the y-axis we find

R.w/ D A.w/EST � A.w/REAL
A.w/REAL

(10.36)

We distinguish three different behaviors. The first estimation set has a very low
error on the first weights but a very high error in the middle.
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Fig. 10.6 Relative error between real weights and different estimations for BCH[255,207,13]

The following theorems describe the estimations belonging to this set:

Theorem 10.5.3 [19] Given

t � 3;w D n � 2d�;t < i � n � w

4

For cases:

i D t C 1; t D 3;m � 5
t D 4;m � 9
t D 5;m � 15

i D t C 2; t D 4;m � 7
t D 5;m � 9
t D 6;m � 11
t D 7;m � 15

Equation (10.37) holds true

E2i

2
� 2�m.i�t /

2i�1Y

hD1

�
1 � h

nC 1
��1 iY

hD1
.2h� 1/ 
2i�1 � 1� (10.37)
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For all other cases Eq. (10.38) holds true

E2i

2
� 2�m.i�t/

2i�1Y

hD1
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nC 1
��1

8
<̂

:̂
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hD1
.2h� 1/

b i2cX

hDb i�t2 cC1

�
i

2h

�
C

iY

hD1
.2h� 1/ .2i/ŠŒ2 .t � 1/�

2i�2q�2t

2qqŠ .2i � 2q/Š

)

q D
"
i C 3

4
C .t � 1/2 �

s
1

16
C
�
2i C 3

2

�
.t � 1/2 C .t � 1/4

#

(10.38)

The proof of this theorem is behind the purpose of this chapter. However, note
that this is a very complex equation that estimates very well the weights, but the
big drawback is that it can be applied only to some cases. For BCH[255,207,13]
sketched in Fig. 10.6 this estimation (labeled as FKL 1) is applicable only for weight
w in the range [13,64] and in the range [256–64, 256]. However, there is another
estimation (labeled as FKL 2 in Fig. 10.6) extended to all weights.

Theorem 10.5.4 [19] For t< i� 2m-2 the following inequality holds true:

ˇ̌
ˇ̌E2i
2

ˇ̌
ˇ̌ � 2�m.i�t /
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�
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2i � 1
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.2j � 1/ j2 .t � 1/j�2t

�
t � 1C
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2i C .t � 1/2

�2i
e2ib .2i/

9
=

;

c .u; x/ D 1 � .ln 2/H
�x

u

�
� 5u

2 .nC 1/

H.x/ D

8
ˆ̂<

ˆ̂:

�xlog2x � .1 � x/ log2 .1 � x/ 0 � x �
1

2

1
1

2
< x � 1

b.s/ D �1
2
C 5s

8 .nC 1/ C
1

1Cp1C 4s .nC 1/ u�2

(10.39)

As shown in Fig. 10.6 this estimation is very similar to the previous one for small
weights but it has a huge error in the middle.

Another family of estimations has a big error on the first weights but a very low
error in the middle.
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Theorem 10.5.5 [20] For a primitive BCH code of length nD 2m-1, an upper bound
for the weight distribution is:

ai D

�
n

i

�

.nC 1/t .1C Ei�/ (10.40)

where i*D iC 1 if i is odd and i*D i if i is even and Ei is computed with the
following inequality:

jEi j �
nt
�
nC 1
nC1
2

��
nC1
2
1
2

�

�
nC 1
i

��
nC 1
d�

� (10.41)

Another estimation of the correction term Ei is proposed in the following theorem

Theorem 10.5.6 [21] The correction term Ei can be estimated as:

jEi j � .nC 1/t

vuuuuuut

.2i .nC 1 � i/C nC 1/ .nC 1/t
�
i
i
2

��
nC 1 � i
nC1�i
2

�

2 .n � d�/
�
nC 1
d�

��
nC 1
i

�

(10.42)

As before, the proof of this theorem is behind the purpose of this chapter.
However, it is important to state that it is based on the maximization of a specific
class of polynomials called Krawtchouk polynomials.

Definition 10.5.1 For every positive integer n we call Krawtchouk polynomial of
degree k Pk(x,n)DPk(x)

Pk .x; n/ D
kX

jD0
.�1/j

�
x

j

��
n � x
k � j

�
(10.43)

By using a result of [22] it is possible to prove that:

jEi j � 2mt
�
n

i

� max
d��x�2m�1

jPi.x/j (10.44)

It follows that an upper bound for max jPi(x)j is an upper bound for Ei.
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It is possible to compute exactly this maximum value, with the drawback of
a high computational cost. Hence, it is not always possible for all the length and
correction capability. In Fig. 10.6 the relative error obtained with the maximization
of Krawtchouk polynomials is labeled as “Kr”. Finally the last estimation is
presented below.

Theorem 10.5.7 [23] Given f(x) and g(x) even function with respect (nC 1)/2
described by Eq. (10.45)

f .x/ D
kX

iD0
f2iP2i .x/ and g.x/ D

kX

iD0
g2iP2i .x/ (10.45)

with the following properties

f2k > 0

g2k > 0

f .x/ � 0 8x
g.x/ � 0 d� � x � n � d�

(10.46)

It follows that
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2k D

�
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f2iA2i
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1 � Eg

2k

� D
g.0/

2mt
� g.0/ �

k�1P
iDtC1

g2iA2i

g2k
(10.47)

A convenient choice for function f(x) and g(x) is proposed by the authors and is the
following

f .x/ DP2
k .x/

g.x/ D .P2.x/C Ct/P 2
k�1.x/ Ct D �P2



d�
� (10.48)

Figure 10.7 shows the relative error with respect the real weights (as described
in Eq. (10.36)) for the estimation made with the maximization of Krawtchouk
polynomials, for the best estimation among all the theoretical estimation and for
the estimation with linear programming technique.

As shown in Fig. 10.7, Krawtchouk estimation is better compared with the
minimum among all other theoretical estimations. Anyway, we have the special case
of linear programming estimation which shows a quasi-null error.
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Fig. 10.7 Relative error between real weights and Krawtchouk estimation, linear programming
estimation and the minimum among all theoretical estimations for BCH[255,207,13]

A linear programming problem (LP) with N real variables x1, : : : ,xN with M
constraints like

NX

jD1
˛ij xj � ci or

NX

jD1
˛ij xj D ci (10.49)

with ci and ˛i positive real variables, can be represented in a matrix form:

0

B@
˛11 � � � ˛1N
:::
: : :

:::

˛M1 � � � ˛MN

1

CA

0

B@
x1
:::

xN

1

CA .REL/

0

B@
c1
:::

cN

1

CA (10.50)

where REL represents the relationship for each components. The purpose is to find
a solution x able to maximize or minimize the objective function

NX

iD1
oixi (10.51)

Linear programming technique is applied to the BCH weight estimation by
means of Fujiwara algorithm described in [19, 24].
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MacWilliams identity is the objective function we need to maximize, where Bj is
the weight distribution for the extension of the dual code:

max
2m�d��1P
iDd�

Ps.j /Bj s D d�; :::; 2m � d� � 1 (10.52)

The constraints that we need to add on Bj are the Pless power-moment identi-
ties [14]

2m�d��1X

jDd�

�
2m

2
� j

�2l
Bj D 22m�kM2l � .1C Bn/

�
2m

2

�2l
0 � l � t

Mi D 2�i
�
d i

dxi
cosh2

m

x

�

xD0
(10.53)

The more constraints we add the easier to find a solution in a fast way. In this
case we can add constraints involving the distance of the extension of the dual code
as shown in the following example.

Example 1 Let’s take the extension of BCH[2048,1992] with distance 12. We can
exploit the properties of Reed-Muller codes [9, 10] so that

RM .r;m/ 
 BCHE .2
m; 2m�r � 1/

RM .7; 11/ 
 BCHE .2048; 16/ 
 BCHE .2048; 12/

RM .7; 11/ � BCHE
� .2048; 16/ � BCHE

� .2048; 12/

RM .11� 7 � 1; 11/ 
 BCHE
� .2048; 12/ (10.54)

The weights of this Reed-Muller code are non-null and multiple of 2s with
sD 3. It follows that the weights of the code EBCH*(2048,12) are non-null and
multiple of 8 starting from the minimum distance. By using Reed-Muller properties
this distance is d*� 2m-rD 256, while we obtain d*� 2m-1– (t-1)

p
2mD 844 with

Carlitz-Uchiyama inequality.
The estimation made with Krawtchouk maximization and Linear Programming

technique are the most effective ones even if they are prohibitive for long codes
due to computational complexity. Moreover, it’s not always possible to find all the
constraints and, even if they would be available, it could take a year to find an
estimation with today’s computers.

10.6 BCH Weight Estimation: Real Cases Analysis

In this part we will analyze different cases to compare different behaviors among
estimations.
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Fig. 10.8 PME behavior
for BCH[255,207,13]

10.6.1 BCH[255,207,13]

In this case the weights of the code are known, since the code is short and the
error correction capability of the code is small, i.e. six errors. Figures 10.6 and 10.7
represent the weight estimation comparison for this code. Observe that the weight
estimation depends a lot on the estimation on the first weight.

PME graph is shown on Fig. 10.8. As it is possible to see the behavior
is monotonic increasing. The comparison graph for PE estimation is shown in
Fig. 10.9. In the graph, there is the PE computed by taking the minimum among
all the theoretical estimations, the estimation obtained with linear programming
technique and the real one (as we know the real weights).

As it is possible to see, the real PE is a monotonic increasing function, while all
the estimations are very good in the middle but have a bump on the first (and last)
weight.

10.6.2 BCH[1023, 993,7]

Also in this case the weights are known since the error correction capability of the
code is only 3. Figures 10.10 and 10.11 shows the relative error for different weight
estimations compared with the real weights and compared with the minimum among
all the estimations.

As it possible to see the two figures are quite identical. Figure 10.12 shows PE

behavior for this code using real weights. Also in this case we note that the behavior
is monotonic increasing with a very long floor in the middle.
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Fig. 10.9 PE behavior for BCH[255,207,13]. The graph shows the real PE, the one obtained with
linear programming technique and the one obtained by taking the minimum among all the theorical
estimations

Fig. 10.10 Relative error between real weights and different estimations for BCH[1023,993,7]
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Fig. 10.11 Relative error between different estimations and the minimum among all the different
estimations for BCH[1023,993,7]

Fig. 10.12 PE behavior for BCH[1023,993,7]

In Fig. 10.13 PME is shown. The x-axis represents a probability belonging to the
range [0,1/2] and is divided in 500 subsets.

10.6.3 BCH[4095, 3975,21]

This is the first case where we don’t know the real weights (Fig. 10.14). The
behavior is similar to the previous cases, but a bump on the first weight estimation
pops up. This is partially due to the fact that we don’t know the minimum distance
of the dual code of the extension.



10 BCH for Solid-State-Drives 283

Fig. 10.13 PME behavior for BCH[1023,993,7]

Fig. 10.14 Relative error between different estimations and the minimum among all the different
estimations for BCH[4095, 3975,21]

For example, in BCH[255,207,13] case the distance of the code with Carlitz-
Uchiyama bound is 48, while the real one is 64. Note that here it is not possible
anymore to use Linear Programming technique due to computational complexity.

Figure 10.15 shows PE behavior: it has the usual long floor, but for the first time
we see a bump on the first weights. This behavior is shown also in Fig. 10.16 where
we have a zoom on the first weights.

PME function is not represented here, since it has the same behavior as PE.
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Fig. 10.15 PE behavior for BCH[4095, 3975,21]

Fig. 10.16 PE zoom on the
first weights for BCH[4095,
3975,21]

10.6.4 BCH[16383, 15851,77]

Also in this case the real weights are unknown. Moreover, it is not possible anymore
to use the Krawtchouk estimation and the linear programming estimation due
to computational complexity. As shown in Fig. 10.17, we have an error on the
first weights of hundreds of order of magnitudes. This is mainly due to the poor
estimation on the distance of the dual code that gives also a big error on PE and PME

estimation (Figs. 10.18 and 10.19).
Please observe that, in this case, PME is almost 1 for low p values!
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Fig. 10.17 Relative error between different estimations and the minimum among all the different
estimations for BCH[16383, 15851,77]

Fig. 10.18 PME behavior for
BCH[16383, 15851,77]

10.7 BCH Detection Conclusion

As shown in the previous section, the error on the estimation on the first weights has
a huge effect on PE and PME. In particular a poor estimation shows up as a bump on
the first weights that become greater as the code length increases.
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Fig. 10.19 PME zoom on the
first weights for BCH[16383,
15851,77]

Fig. 10.20 PE behavior for
BCH[255,207,13] using
Peterson estimation

One of the best estimation, even if it is not an upper bound, is the Peterson
estimation (Theorem 10.5.2). Figures 10.20 and 10.21 shows PE and PME behavior
for BCH[255,207,13] using Peterson estimation. We can see that we have the
monotonic increasing behavior that we expect when real weights are known.

Figure 10.22 shows PME behavior for BCH[16383, 15851,77] using Peterson
estimation. Recall (Sect. 10.6.4) that here the real weights are unknown and we had
a bump at the beginning using upper bound estimations. Instead, by using Peterson
estimation a monotonic behavior can be seen.

It follows that the real PE and PME profile should be monotonic with a wide floor
in the middle. When the code length is high and the code rate is high this floor can
be approximate with [25].
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Fig. 10.21 PME for
BCH[255,207,13] for
Peterson estimation

Fig. 10.22 PME for
BCH[16383, 15851,77] for
Peterson estimation

Q D 2�.n�k/
tX

sD0

�
n

s

�
(10.55)

Summarizing, we can state that when the length is high, the BCH code has a very
good detection properties that made it suitable for the implementation in SSDs. In
fact, when a catastrophic error occurs or when the error correction capability of
the code is passed, the BCH code declares a decoding failure without attempting
erroneous corrections. This is a key point when using BCH code concatenated with
another code.



288 A. Marelli and R. Micheloni

10.8 Multi-channel BCH

Solid State Disks are built with many Flash channels connected to the host through
a high-speed interface such as SATA or PCI Express (Chap. 2). In this scenario the
performance of the SSD is determined by the ECC needed to overcome the high
error-rate. It follows that binary BCH code must have a structure able to handle a
number of channels together, without being the performance bottleneck.

It has already been studied [4] how the native serial structure of BCH can be par-
allelized to work on one byte or dword at a time. In multi-channel architectures, this
is not enough and multiple encoding and decoding machines must be implemented.
In particular, given raw bit error rate higher than 10-4, the most likely situation is
that almost all the pages read in parallel need correction.

Figure 10.23 shows the probability that n chunks require correction given a
bit error probability. For example, if the bit error probability is 10�5, we have a
probability of around 10�2 of having 32 error-free chunks, a probability of 10�1

that three chunks over 32 require correction, a probability of 10�10 that 24 chunks
require correction and so on. The highest curve in the graph is the most likely
number of correction required: for example, at BER of 10�5 3-err and 6-err are
the highest.

If BER is higher than 2*10�4 the most likely number of correction over 32
chunks is 32; in other words every chunk requires correction.

Fig. 10.23 Probability of n chunks over 32 requiring correction

http://dx.doi.org/10.1007/978-94-007-5146-0_2
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In order to keep up with the bandwidth requirements, the most straightforward
solution would be to have one encoder and one decoder per channel. However, this
approach is extremely area consuming, especially because of the decoder.

As far as the encoding is concerned, it is very important that data coming from the
host are dispatched to the various channels without latency. There are three possible
approaches, starting from the less area consuming:

• single encoder shared among all Flash channels [26];
• a pool of encoders;
• one encoder per channel.

The right hardware choice comes from the tradeoff between silicon area and
latency.

The decoding is trickier than encoding since the algorithm is composed of three
steps as shown in Fig. 10.3. Please note that null syndromes mean an error-free
message: therefore, decoding doesn’t need to go through Berlekamp and Chien.
This situation is very common when the solid state drive is fresh.

As the reader can notice, Fig. 10.3 shows a pipelined structure. In order to design
each decoding step in the correct way, we need to study its latency:

• the input of the syndrome computation is the read codeword of length n. If
the t syndrome machines works with a parallelism of b bits, the latency of the
syndrome computation is proportional to n/b;

• Berlekamp algorithm takes the t syndromes as input and finds the error locator
polynomial coefficients in t iterations. It follows that it has a latency proportional
to t;

• Chien search takes the error locator polynomial computed by Berlekamp as input.
It substitutes n elements in the polynomial to see if they are roots. If the machine
is able to work on c elements at a time, its latency is proportional to n/c. If the
degree of the error locator polynomial is v, the Chien machine stops when it finds
v roots, without substituting the remaining elements of the field. Hence n/c is the
worst case latency.

In order to exploit the pipelined architecture we must have numbers n/b, t, and
n/c as similar as possible. However, n is generally much higher than t and there are
design constraints on b and c. Hence, we can achieve a balance by adding more
machines either to syndrome or Chien.

Let’s assume n1 HW machines to perform syndrome computation, n2 HW
machines to execute Berlekamp algorithm and n3 HW machines to perform Chien
search. We choose n1, n2 and n3 so that Eq. (10.56) holds true:

n

.n1 � b/ 	
t

n2
	 n

.n3 � c/ (10.56)

The resulting decoding structure is sketched in Fig. 10.24.
Finally we can use probabilistic consideration in choosing the number and the

size of Chien machines. The size of the Chien block depends on the parallelism and
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Fig. 10.24 ECC decoding structure for handling multiple channels
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Fig. 10.25 For a 2112-Byte page, representation of single error probability, of two to five error
probability and of Page Error Rate using an ECC able to correct five errors

on the error correction capability. In other words, a machine able to correct x errors
is half in area with respect to a machine able to correct 2x errors (given the same
parallelism). What happens in a real SSD is that the decoding (and so the Chien
machine) is always needed but the number of errors that must be corrected is not
always t.

Figure 10.25 shows, for a 2112-Byte page, the probability of having to correct
only one error, the probability of having to correct two to five errors, and the
probability of error (PER) after 5 bits correction as a function of the BERin. For a
value of BERin around 10�6, we have that the probability of a single error is equal to
3*10�2 and the probability of two to five errors is equal to 6*10�4 respectively. The
probability of a single error is definitely more significant and since the Berlekamp
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algorithm exactly indicates the number of errors to correct, it may be useful to
exploit this information [8]. For example, suppose that from Eq. (10.56) we obtain
n3D 3. If t is equal to 5 and the area of a Chien machine able to correct one error is 1
U, we obtain an area of 5*3D 15 U for implementing three machines able to correct
five errors. However, from Fig. 10.25 we see that most of the time the correction of
only one error is required. It follows that we can implement twomachines able to
correct one error and only one complete Chien machine able to correct five errors.
The area would be 1C 1C 5D 7 U with a gain of 6 U at same performances.

This approach can always be used when the error density function is known.
The result is that we can have a pool of Chien machines with different correction
capabilities and parallelism. It’s Berlekamp machine’s task to dispatch the message
to the correct Chien machines depending on its degree.

With a good optimization in the number of machines per each step, BCH does
not limit the bandwidth between the drive and the host.

As explained in this chapter, multi-channel management and detection properties
are the key points to address when developing a BCH engine for Enterprise Class
Solid State Disks.
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Chapter 11
Low-Density Parity-Check (LDPC) Codes

E. Paolini

Abstract In this chapter, low-density parity-check (LDPC) codes, a class of pow-
erful iteratively decodable error correcting codes, are introduced. The chapter first
reviews some basic concepts and results in information theory such as Shannon’s
channel capacity and channel coding theorem. It then overviews the Flash memory
channel model. Finally, it addresses LDPC codes describing both their structure and
efficient implementation, and their decoding algorithms. Simulation results are also
provided.

11.1 Shannon Limit

11.1.1 Entropy and Mutual Information

Let X be a discrete random variable taking its values in a set X , according to some
probability mass function (pmf) p.x/ D PrfX D xg. The entropy ofX is defined as

H.X/ D �
X

x

p.x/log2p.x/:

Intuitively, the entropyH.X/ may be thought as the uncertainty associated with
the random variable. For example, a deterministic variable is characterized by a zero
entropy while, for a given positive integer M , the random variable with the largest
entropy among all discrete random variables whose support set X has cardinality
M is the uniform one, i.e., p.x/ D 1=M for all x 2 X . In this latter case we obtain
H.X/ D log2M:
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Consider now a second discrete random variable Y 2 Y characterized by a pmf
p.y/. Let p .yjx/ D PrfY D yjX D xg be the pmf of Y conditioned to the event
fX D xg. The entropy of Y given the event fX D xg is defined as

H.Y jX D x/ D �
X

y

p.yjx/log2p.yjx/:

Next, the conditional entropyH .Y jX/ is defined as

H.Y jX/ D
X

x

p.x/H .Y jX D x/

D�
X

x

X

y

p .yjx/p.x/log2p .yjx/ :

Finally, the mutual information I.X IY / between X and Y is defined as

I.X IY / D
X

x

X

y

p .yjx/ p.x/log2
p .yjx/p.x/
p.x/p.y/

: (11.1)

It can be shown that I.X IY / D H.Y / �H.Y jX/ D H.X/ �H.X jY /. As such,
I.X IY / intuitively represents the reduction of uncertainty about X due to the fact
that we can observe Y (equivalently, reduction of uncertainty about Y due to the fact
that we can observeX ). The mutual information is well-defined also for continuous
random variables. In this case, p.x/, p.y/, and p .yjx/ are probability density
functions (pdfs), and we have

I.X IY / D
Z
p .yjx/p.x/log2

p .yjx/ p.x/
p.x/p.y/

dxdy: (11.2)

Moreover, if X is a discrete random variable and Y is a continuous one, I.X IY / is
defined as

I.X IY / D
X

x

p.x/

Z
p .yjx/ log2

p .yjx/ p.x/
p.x/p.y/

dy: (11.3)

11.1.2 System Model and Channel Capacity

The fundamental limit of point-to-point digital communication over a noisy channel
was established in 1948 by C. Shannon, who showed that a vanishing error
probability can be attained at a finite information rate, provided this rate is smaller
than the capacity of the noisy channel.
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Fig. 11.1 Communication model

With reference to Fig. 11.1, a source S of information generates messages that
must be delivered to a destination D through a noisy channel. The generic message,
denoted by W , is drawn from a set of M possible messages f1; 2; : : : ;M g, where
all messages are a priori equally likely. Prior to transmission over the channel, the
messageW is encoded through a channel encoder, that maps deterministically (and
univocally) each message onto a codeword x D Œx0; x1; : : : ; xn�1�, i.e., an n-tuple
of symbols belonging to some alphabet X . The ratio

R D log2M

n

is the code rate of the channel code and the code is named an .n; 2nR/ code. All
n codeword symbols are then transmitted sequentially over the channel, resulting
in a sequence y D Œy0; y1; : : : ; yn�1� whose symbols belong to an alphabet Y .
A decoding algorithm is then performed by a channel decoder to decide which
codeword, out of the set of M candidate codewords, had been transmitted over the
channel, given the noisy observation y . The codeword Ox returned by the decoder
is converted back to the corresponding message

_

W that is finally delivered to the
destination. As error occurs wheneverW ¤ _

W , i.e., a wrong message is delivered.
A probability of error can be defined for each of the M transmitted mes-

sages as follows. The probability of error associated with the j -th message,
j 2 f1; 2; : : : ;M g, is denoted by Pe;j and is defined as

Pe;j D Pr



_

W ¤ W jW D j
�
:

Furthermore, the maximum probability of error is defined as

Pe;max D max
j2f1;2;:::;M g

Pe;j (11.4)

and the average probability of error as

Pe D 1

M

MX

jD1
Pe;j : (11.5)

The channel code along with its decoding algorithm shall be designed in order to
make the maximum probability of error over the given channel as small as possible.



296 E. Paolini

Fig. 11.2 Binary symmetric
channel (BSC) model

Assume that both the input alphabet X and the output alphabet Y are discrete.
Let X 2 X and Y 2 Y be two discrete random variables, representing the input
to the channel and the corresponding output. Moreover, assume that the channel is
fully defined by the transition probabilities p .yjx/ D PrfY D yjX D xg. In this
case, the channel is called a discrete memory-less channel (DMC). The capacity of
a DMC is defined as

C D max
p.x/

I.X IY / (11.6)

i.e., as the maximum amount of uncertainty we can remove from the input symbol
(which cannot be observed directly) by observing the output symbol, where the
maximum is taken over all possible pmfs for the input symbol. The capacity is an
intrinsic parameter of the channel, only depending on the cardinalities of X and Y
and on the transition probabilities p .yjx/. It is expressed in terms of information
bits (or Shannon) per channel use.

Example 1. The DMC depicted in Fig. 11.2 is characterized by X D Y D
f�1;C1g and by PrfY D C1jX D C1g D PrfY D �1jX D �1g D
1 � p; PrfY D C1jX D �1g D PrfY D �1jX D C1g D p, This channel is
known as binary symmetric channel (BSC), and p is called the error (or crossover)
probability. Every binary symbol input to the channel is received in error with
probability p and is correctly received with probability 1 � p. The capacity of the
BSC is achieved for Pr fX D C1g D Pr fX D �1g D 1=2 and is given by1

C D 1 � Œ�plog2p � .1 � p/log2.1 � p/� : (11.7)

As we shall see later, the BSC is a possible channel model for SLC Flash memories.
Assuming p� 1=2, its capacity is maximum for pD 0, where we haveC D 1 (every
binary symbol outcoming from the channel is reliable) and is minimum for p D
1=2, where we have C D 0 (no uncertainty is removed from X by observing Y ).

The concept of capacity, so far introduced for a DMC, can be extended to
time-discrete memory-less channels whose input symbol is either a discrete or a

1The capacity of the BSC only depends on the crossover probability and not on the values assumed
by X and Y.
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Fig. 11.3 Binary-input
additive white Gaussian noise
channel model

continuous random variable and whose output symbol is a continuous one. The
capacity is still defined by Eq. (11.6), where the mutual information is now given
by Eq. (11.2) if X is continuous, and by Eq. (11.3) if X is discrete. As opposed
to the DMC case, however, additional constraints to the optimization problem may
be introduced (for example, an upper bound on the average transmitted power).
The reason is that the solution to the unconstrained optimization problem may
correspond to an input variable X for which the channel is essentially noiseless.

Additive noise channels represent an important class of such channels. Here, the
output symbol is obtained as Y D XCZ, whereZ is a continuous random variable,
namely, an additive noise. IfZ is independent ofX and is normally distributed with
zero mean and variance �2,

p.z/ D 1p
2��2

e
� z2

2�2 ;

then the corresponding channel is called an additive Gaussian channel.

Example 2. Consider the additive Gaussian channel depicted in Fig. 11.3, and
assume that X is a Bernoulli (i.e., discrete with a binary alphabet) random variable.
Without any further constraint, it is possible to achieve the capacity C D 1

(corresponding to a noiseless channel) regardless of �2 by letting X 2 f�A;CAg,
where A > 0 is a real, choosing Pr fX D �Ag D Pr fX D CAg D 1=2, and
letting A ! 1. On the other hand, if the maximization problem is constrained to
.1=n/

Pn�1
iD0 x2i � Es for any transmitted codeword, then the maximum is attained

for X 2 f�pEs;C
p
Esg and Pr

˚
X D �pEs

� D Pr
˚
X D CpEs

� D 1=2. In
this case Eq. (11.3) yields

C D �
Z
p.y/log2

�
p.y/
p
2�e�2

�
dy;

where

p.y/ D 1p
8��2

�
e
� .y�

p

Es/
2

2�2 C e� .yC

p

Es/
2

2�2

�

and where the capacity, that does not admit a closed-form expression, must be
computed via numerical integration. This channel model is known as the binary-
input additive white Gaussian noise (Bi-AWGN) channel. It is possible to show that
its capacity is a function of parameter Es=N0, where N0 D 2�2. In general, the
larger Es=N0 the higher C . Moreover, C ! 1 as Es=N0 !1.
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Example 3. Consider a channel X ! Y 0 ! Y composed of the cascade of a Bi-
AWGN channel and a one-bit quantizer, returning Y D C1 if Y

0

> 0 and Y D �1
otherwise (if Y

0 D 0, C1 or �1 is returned with equal probability). It is readily
shown that this channel is equivalent to a BSC whose crossover probability p is

p D 1

2
erfc

 s
Es

N0

!
(11.8)

where

erfc.x/ D 2p
�

1
s
x

e��2d�:

Again, the capacity is a monotonically increasing function of parameter Es=N0,
and again C ! 1 as Es=N0 ! 1. For the same value of Es=N0, the capacity of
the output-quantized Bi-AWGN channel is always smaller than the capacity of the
corresponding unquantized channel.

With reference to the last two examples, if Y is allowed to assume q > 2

different quantized values (which corresponds to adopting log2q quantization bits),
the capacity of the obtained channel is upper bounded by that of the unquantized
Bi-AWGN channel and is lower bounded by that of the one-bit quantized channel.
(Note that the q � 1 quantization thresholds shall be properly designed.) In general,
the higher q the larger the capacity.

11.1.3 The Channel Coding Theorem

Adopting the formulation in [10], which makes use of the maximum error prob-
ability defined in Eq. (11.4), Shannon’s channel coding theorem can be stated as
follows. “For every rate R < C there exists a sequence of .n; 2nR/ codes for which
lim
n!1Pe;max.n/ D 0. Conversely, if lim

n!1Pe;max.n/ D 0 for a sequence of .n; 2nR/

codes, then R � C .” Note that lim
n!1Pe;max.n/ D 0 implies lim

n!1Pe.n/ D 0, where

Pe.n/ is the average error probability defined in Eq. (11.5).
Essentially, Shannon’s channel coding theorem states that communication over

a noisy channel is possible with an arbitrarily small maximum error rate if and only
if the code rate of the employed channel code does not exceed the channel capacity.
On the other hand, from the proof of the converse, it is possible to show that, when
R > C , the average probability of error probability is bounded away from zero.
Specifically, we have

Pe.n/ � 1 � C
R
� 1

nR
(11.9)

! 1 � C
R

(11.10)
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Fig. 11.4 Plot of the Shannon limit for code rate R D 9=10, over the Bi-AWGN channel and over
the BSC obtained via one-bit quantization of the output of the Bi-AWGN channel

in the limit where n ! 1. Eq. (11.9) defines a non-achievable region for the
considered communication channel. No channel code of length n exists whose
average probability of error over the considered channel is smaller than the right-
hand side of Eq. (11.9). For n ! 1, the non-achievable region is identified by
Eq. (11.10). For a channel parametrized by some parameter � (e.g., the crossover
probabilityp for a BSC, orEs=N0 for the Bi-AWGN channel or its output-quantized
version), the non-achievable region can be reported in the Pe.n/ versus � plane for
a specific code rate R, as illustrated in the following example.

Example 4. In Fig. 11.4 the non-achievable region is depicted for both the
unquantized Bi-AWGN channel and its one-bit output-quantized version, for code
rate R D 9=10 and infinite codeword length. Specifically, for fixed R D 9=10 the
right-hand side of Eq. (11.10) is plotted as a function of Eb=N0 (in logarithmic
scale), where Eb D REs . If Es is interpreted as the energy per transmitted binary
symbol, Eb can be regarded as the energy per information bit. The dashed curve
identifies a non-achievable region over the unquantized Bi-AWGN channel (i.e.,
no .Eb=N0; Pe/ point inside the corresponding area is achievable), while the solid
one a non-achievable region over its one-bit output-quantized version. The fact
that the unquantized non-achievable region is contained in the quantized one is
coherent with the fact that the capacity of the Bi-AWGN channel is larger than the
capacity of its output-quantized version, for the same value of Es=N0. In general, if
q > 2 quantization levels are allowed, the corresponding non-achievable region
is identified by a curve falling between the two plotted curves. This serves to
illustrate how soft information at the decoder can be exploited to improve the system
performance. The smallest value of Eb=N0 for which communication is possible
with a vanishing error probability at the given rate R D 9=10 over the Bi-AWGN
channel is about 3.198 dB. The corresponding value over the one-bit quantized Bi-
AWGN channel is about 4.400 dB.
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11.2 Maximum a Posteriori and Maximum Likelihood
Decoding of Linear Block Codes

As from Sect. 11.1, decoding is essentially a decision problem. Given the obser-
vation y from the communication channel, the decoder has to decide which of the
M codewords has been most likely transmitted, in order to minimize the maximum
probability of error. Optimum decoding is based on maximum a posteriori (MAP)
decision criterion, and consists of assuming as the transmitted codeword the one
maximizing the a posteriori probability:

Ox D argmaxxp .xjy/:

When the codewords are a priori equally likely, then MAP decoding is equivalent
to maximum likelihood (ML) decoding, that returns the codeword

Ox D argmaxxp .y jx/ :

It is readily shown that, over a BSC, ML decoding is equivalent to returning
the codeword exhibiting the minimum Hamming distance from the received word
y. (Recall that the Hamming distance between two sequences is the number of
positions at which the corresponding symbols are different.) Moreover, over a Bi-
AWGN channel, ML decoding consists of returning the codeword (whose symbols
belong to the set f�pEs;CpEsg) exhibiting the minimum Euclidean distance
from y.

Optimum decoding is unfeasible for most codes (including linear codes), due to
the need of computingM metrics, with M prohibitively large. Low-density parity-
check codes, introduced in Sect. 11.10, are capable to perform close to the Shannon
limit at a manageable complexity.

11.3 NAND Flash Memory Channel Model

In NAND Flash memories, the generic memory cell is a floating gate transistor.
Writing the cell consists of exploiting Fowler-Nordheim tunneling effect [14] to
inject a certain amount of charges into the floating gate in order to program the
threshold voltage Vth of the transistor. For an MLC memory with b bits per cell,
there are 2b nominal values for threshold voltage Vth, each bijectively associated
with a word of b bits. (There are two nominal values for Vth in the particular case of
an SLC memory.) The whole range of possible values of Vth is then partitioned into
2b intervals, each corresponding to a nominal value of the threshold voltage.

Reading a cell is a decision problem consisting of picking one of the 2b nominal
values of Vth and forwarding the corresponding binary b-tuple. The value of Vth,
however, cannot be observed directly. In order to read the cell, a word-line voltage
must be applied and the corresponding transistor drain current measured. In this
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chapter, we refer to the word-line voltage simply as the “read voltage”, denoting
it by VREAD . If for some VREAD a sufficiently high drain current is detected then
we conclude that VREAD > Vth, otherwise we conclude that VREAD < Vth. In this
sense, the application of a specific read voltage value is capable to provide exactly
one bit of information. Therefore, in order to read the full content of a cell in an
MLC memory the drain current must be analyzed for a sufficiently large number of
read voltage values. A single VREAD value is sufficient in the SLC case unless we
wish to extract some soft information to improve the performance of the adopted
error control coding scheme.

In ideal Flash memories, after a cell is written the corresponding value of Vth is
exactly equal to one of the 2b nominal values. In real memories, however, the actual
value of Vth may differ, even significantly, from its nominal value due to a number
of possible physical impairments. For a thorough description of these impairments
we refer the reader to Chaps. 6, 8 and, for example, to [21,Ch.4, 22]. As such, the
actual value of Vth may fall into a voltage interval whose nominal voltage threshold
is different from the one we attempted to set during the write operation. When this
happens the forwarded binary b-tuple after a read operation differs from the one that
was written into the cell. A bit error generated by an erroneous decision about the
interval of voltage values Vth belongs to is called a raw bit error, and the probability
of occurrence of raw bit errors is called the raw bit error probability.

The raw bit error probability may be analyzed by modeling the threshold voltage
Vth of the generic cell as a continuous random variable whose pdf is here denoted
by p.Vth/. It must be pointed out that p.Vth/ is not constant during the memory
lifetime, as it is modified by subsequent write and read operations, leading to
a progressive degradation of the channel in terms of increasing raw bit error
probability. The threshold voltages for two different memory cells are typically
assumed to be independent and identically distributed (i.i.d.) random variables. In
the following two subsections, the channel model for SLC and MLC Flash memories
is addressed.

11.3.1 SLC Channel Model

The simplest channel model for an SLC Flash memory consists of modeling the
threshold voltageVth of the generic cell as the weighted sum (with the same weights)
of two independent Gaussian random variables with the same variance �2 neglecting
that, in principle, Gaussian random variables assume their values over an infinite
range. The mean values of the two Gaussian distributions are the two nominal values
of the threshold voltage, namely,Vth;1 and Vth;2 where we assume Vth;1 < Vth;2. Let
X 2 f0; 1g be a Bernoulli random variable with equiprobable values, representing
the bit originally written into the memory cell. Moreover, let Y be the symbol read
from the cell. Conditionally to X , the threshold voltage Vth is a Gaussian random
variable with variance �2 and whose mean is Vth;1 if X D 1 (erase state) and Vth;2
if X D 0. This is depicted in Fig. 11.5. Overall, we have

http://dx.doi.org/10.1007/978-94-007-5146-0_6
http://dx.doi.org/10.1007/978-94-007-5146-0_8
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Fig. 11.5 Plot of p.VthjX D 1/ and p.VthjX D 0/ for an SLC Flash memory where the threshold
voltage Vth is modeled as the sum of two independent and identically distributed (i.i.d.) Gaussian
random variables

p.Vth/ D 1

2
p .VthjX D 1/C 1

2
p .VthjX D 0/

D 1p
8��2

�
e
� .Vth�Vth;1/

2

2�2 C e�
.Vth�Vth;2/

2

2�2

�
:

If we apply only one read voltage Vth;1 < VREAD;1 < Vth;2w we get information
about the actual value of Vth being larger or smaller than the applied read voltage
value. Hence, if only one read voltage value is used, Y is a Bernoulli random
variable as well as X . In particular, we have Y D 1 if Vth < VREAD is detected,
and Y D 0 otherwise. A raw bit error occurs any time Y ¤ X , and the raw bit
error probability is trivially minimized by setting VREAD;1 D .Vth;1 C Vth;2/=2,
as depicted in Fig. 11.5. In this situation, the channel is clearly equivalent to the
cascade of a Bi-AWGN channel and a one-bit quantizer described in Example 2
(i.e., to a BSC), and the raw bit error probability is given by Eq. (11.8) where
Es=N0 D .Vth;2 � VREAD;1/2=2�2. At the beginning of the memory life, �2 is very
small and the memory is almost ideal. Then, �2 increases with the memory use,
increasing the raw error probability and degrading the channel. A typical value of
the raw bit error probability towards the end of the memory life is 10�2.

If an error correcting code is employed to protect the data stored in the Flash
memory, hard-decision decoding must be necessarily performed if only one VREAD
value is used as no soft information is available at the decoder. As it will be
shown in Sect. 11.7, however, the availability of soft information at the decoder
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Fig. 11.6 Equivalent channel
model for an SLC Flash
memory where the threshold
voltage is modeled as the sum
of two i.i.d. Gaussian random
variables and where three
read voltage values are
employed. Each read
operation involves two read
voltages

input represents an essential feature to boost the performance of the coding
scheme. In order to provide the decoder with soft information, and consequently
to increase its coding gain, more read voltages must be applied sequentially. For
example, with reference again to Fig. 11.5 we may employ three read voltage
values VREAD;1, VREAD;2, and VREAD;3 and apply two of them for each cell read
operation. Specifically, VREAD;1 is applied at first. if Vth < VREAD;1 then VREAD;2
is applied to discriminate between Vth < VREAD;2 and VREAD;2 < Vth < VREAD;1.
On the contrary, VREAD;3 is applied to discriminate between Vth > VREAD;3 and
VREAD;1 < Vth < VREAD;3. In this case the output symbol Y is a discrete random
variable assuming the four possible values in the set fY1; Y2; Y3; Y4g and the channel
may be represented as the DMC depicted in Fig. 11.6.

Each arrow in the depicted DMC is associated with a transition probability
p .yjx/, where the transition probabilities depend on the choice of the read voltages
VREAD;2 and VREAD;3. A “natural” approach to choose them consists of maximizing
the mutual information between the random variables X and Y under the setting
Pr .X D 0/ D Pr .X D 1/ D 1=2. This approach, proposed in [32], may be easily
extended to any number of read voltages. It may also be easily extended to different
choices of the pdf p.Vth/, and therefore to MLC Flash memories.

11.3.2 MLC Channel Model

While the channel model for SLC Flash memories is rather well-established,
the development of an MLC channel model is still a subject of research and
measurement campaigns, and several models may be found in the literature. These
models typically assume the random variable Vth to be the weighted sum (with the
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Fig. 11.7 Representation of the four conditional probability density functions p .VthjX i / of the
threshold voltage in an MLC Flash memory with b D 2 bits per cell

same weights) of 2b independent random variables, each corresponding to a nominal
value of the threshold voltage. Among these models, the one described next has
been adopted in several works [17]. Letting X denote the binary b-tuple that was
written in the cell, the pdf p.VthjX 1 D 11 : : : 1/ associated with the lowest nominal
threshold voltage value Vth;1 (erase state) is modeled as Gaussian with mean Vth;1
and variance �20 , while the pdf p.VthjX i / associated with any other nominal value
Vth;i (X i ¤ 11 : : : 1) is characterized by a uniform central region of size �V
centered in the mean value Vth;i and by two Gaussian tails of variance �2 < �20 .
Formally, for i 2 f2; 3; : : : ; 2bg we have

p .VthjX i / D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1p
2��2C�V e

� .Vth�Vth;i��V=2/
2

2�2 Vth > Vth;1 C �V
2

1p
2��2C�V Vth;1 � �V

2
< Vth < Vth;1 C �V

2

1p
2��2C�V e

� .Vth�Vth;iC�V=2/2

2�2 Vth < Vth;1 � �V
2

and

p.Vth/ D 1

2b

2bX

iD1
p .VthjX i / :

A pictorial representation of the four conditional pdfs p .VthjXi/, i 2 f1; 2; 3; 4g,
for an MLC Flash memory with b D 2 bits per cell and equally spaced threshold
voltages is shown in Fig. 11.7.
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In an analogous way as for the SLC case, a read is performed by applying
sequentially a certain number of read voltagesVREAD in order to identify the interval
in which the actual value of the threshold voltage belongs. If N � 2b � 1 different
read voltages are employed, the equivalent communication channel is a DMC with
2b equiprobable input symbols X andNC1 output symbols Y . Again, the larger the
number of employed read voltages (i.e., the larger the number of intervals in which
the range of possible Vth values is partitioned) the more accurate the soft information
at the decoder input, the lower the bit error rate after decoding. Again, the values
of the N read voltages must be properly designed, for instance, maximizing the
mutual information I.X IY / under the assumption Pr.X D X i / D 2�b for all
i 2 f1; 2; : : : ; 2bg.

11.4 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were introduced by R. Gallager in [15]
and have been almost forgotten for about 30 years. They gained a new interest only
after the discovery of turbo codes [2], when it was shown that iterative decoding
schemes can attain performances very close to the Shannon limit with a manageable
complexity [3, 26].

A binary LDPC code is defined as a binary linear block code whose parity-check
matrix H is characterized by a relatively small number of 1 entries, i.e., whose
parity-check matrix is sparse. LDPC codes are often represented graphically through
a bipartite graph G D .V [ C; E/ called the Tanner graph [28]. In the Tanner graph
there are two different types of nodes, namely, the variable nodes (whose set is V)
and the check nodes (whose set is C). The n variable nodes and the m check nodes
are associated in a bijective way with the n encoded bits of the generic codeword
and with the m parity-check equations, respectively. Each edge e 2 E in the Tanner
graph connects a variable node V 2 V with a check node C 2 C if and only if
the bit corresponding to V is involved in the parity-check equation corresponding
to C . Note that in general not all the m parity-check equations may be linearly
independent, so that the actual code rate R of the LDPC code fulfills

R � n �m
n

where equality holds when all m equations are independent. In the Tanner graph of
an LDPC code a cycle (or loop) is any closed path starting from a node and ending
on the same node. The length of a cycle is the number of edges involved in the
cycle. Moreover, the girth g of the Tanner graph is the length of its shortest loop.
For reasons that will be clear in the next section, the Tanner graph of an LDPC code
should exhibit a large girth. In the Tanner graph, the degree of a variable node or
check node is the number of edges incident to it. An LDPC code is said to be regular
if all of its variable nodes have the same degree and all of its check nodes have the
same degree, and is said to be irregular otherwise.
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Fig. 11.8 Tanner graph of a .7; 4/ Hamming code represented by H D Œ1110100; 1101010;

10111001�. There are seven variable nodes variable nodes fV0; : : : ; V6g, one for each encoded
bit, and three check nodes, fC0; : : : ; C2g, one for each parity-check equation

The representation of LDPC codes in terms of their Tanner graphs is very
convenient in order to describe their iterative decoding algorithm, known as belief
propagation (BP). In fact, as it will be addressed in Sect. 11.5, BP decoding of
LDPC codes may be interpreted as an iterative exchange of messages between the
variable nodes and the check nodes along the edges of the Tanner graph. In principle,
the Tanner graph can be drawn for any H matrix of any linear block code. As an
example, in Fig. 11.8 the Tanner graph is depicted for the (7, 4) Hamming code
represented by H D Œ1110100; 1101010; 10111001�.

In this section we provide a few details about binary LDPC code design, while
LDPC decoding is discussed in the next section. One of the major issues in LDPC
coding is represented by efficient encoding, i.e., the efficient computation of the en-
coded codeword of n bits from a messageW represented by a binary k-tuple. Hence,
we focus on the design of quasi-cyclic LDPC (QC-LDPC) codes based on circulant
matrices, a class of LDPC codes characterized by low-complexity encoding and
good performances [13]. In general, a linear block code is said to be quasi-cyclic
when there exists some positive integer q such that a cyclic shift by q positions of
any codeword results in another codeword. The encoder of QC-LDPC codes may
be implemented very efficiently in hardware using shift register-based circuits [18].
Efficient hardware implementations for the decoder are also available [20].

11.4.1 LDPC Code Ensembles

As opposed to classical algebraic codes, LDPC codes are typically analyzed in terms
of average ensemble properties, where an LDPC code ensemble is formed by all
LDPC codes having the same codeword length n and nominally the same rateR, and
sharing common properties. This approach was introduced by Gallager to analyze
his regular LDPC codes [15], and has been successfully adopted to design irregular
LDPC codes performing very close to the Shannon limit [24, 9].
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Fig. 11.9 Conceptual example of copy-and-permute protograph procedure

An example of LDPC code ensemble is the unstructured irregular one [24]. Let
n andm be the numbers of variable and check nodes, respectively. Moreover, let ƒi

and Pi be the fractions of variable nodes and check nodes of degree i , respectively.
Hence, in the Tanner graph there are ƒin variable nodes with i sockets and Pim

check nodes with i sockets and the number of edges is E D n
DP
iD2

iƒi D m
HP
iD2

iPi

where D is the maximum variable node degree and H the maximum check node
degree. For given ƒi , i D 2; : : : ;D and Pi , i D 2; : : : ;H ,2 the unstructured
C.n;ƒ;P/ ensemble includes all LDPC codes corresponding to all possibleEŠ edge
permutations between the variable node and the check node sockets, according to a
uniform probability distribution.

Another example is the protograph ensemble [30] (see also the work [31] on
LDPC codes from superposition). A protograph is defined as a small Tanner graph
and represents the starting point to derive a larger Tanner graph via a “copy-and-
permute” procedure. Specifically, the protograph is first copied Q times. Then, the
edges of the individual replicas are permuted among the replicas, leading to a larger
graph. The edge permutation is performed in such a way that, if an edge e connects
a variable node V to a check node C in the protograph, then in the final graph any of
theQ replicas of e may connect only a replica of V to a replica ofC:Note that, while
parallel edges between nodes are allowed in the protograph, they are avoided in the
permutation phase. An example of this copy-and-permute procedure is depicted in
Fig. 11.9. For a given protograph and a given Q the ensemble is composed of the

2For unstructured ensemble, the minimum variable and check nodes are usually set to 2. The reason
for this choice is out of the scope of this chapter.
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LDPC codes corresponding to all possible edge permutations fulfilling the described
constraints (again, the probability distribution over such permutations is uniform).

11.4.2 QC-LDPC Codes Construction

A very popular technique to design finite length LDPC codes consists of two
subsequent steps. An ensemble of LDPC codes with desired properties is first
designed and then a code from the ensemble is picked constructing its Tanner
graph according to some graph-lifting algorithm. In the first design phase (ensemble
optimization) asymptotic ensembles are considered, i.e., ensembles of LDPC codes
whose codeword length tends to infinity (examples are the unstructured C.1; ƒ;P/
ensemble and the protograph ensemble defined by a specific finite-length protograph
in the limit where Q ! 1). The main parameter characterizing an asymptotic
ensemble of LDPC codes under iterative decoding is the asymptotic decoding
threshold [25, 24]. Letting ` be the iteration index and assuming that the com-
munication channel is parameterized by some real parameter � such that �1 < �2
means that the channel corresponding to �2 is a degraded version of the channel
corresponding to �1, the asymptotic threshold �� is defined as

�� D sup
˚
� s:t:P1e;` ! 0 as `!1�

where P1e;` is the average error probability under iterative decoding over the
asymptotic ensemble (i.e., the expected probability of error for an LDPC code
randomly picked in the asymptotic ensemble). For example, over a BSC the
parameter � is the crossover probability p, while over a Bi-AWGN channel it
is the noise power �2 for given Es (therefore over the Bi-AWGN channel the
threshold may be expressed as .Eb=N0/

� where Eb D REs and R is the nominal
ensemble rate). Note that for the same ensemble, the threshold is different for
different message passing decoders. For unstructured ensembles the threshold may
be calculated exactly via a procedure called density evolution [24] or approximately
via a tool known as EXIT chart [29]. For protograph ensembles it may be calculated
with good approximation via multi-dimensional EXIT analysis [19]. In Sect. 11.6.2
density evolution is reviewed for unstructured regular LDPC ensembles and for a
very simple decoder called the Gallager B decoder.

Once a protograph ensemble with a satisfying threshold over the channel
of interest has been designed, a QC-LDPC code can be constructed from the
protograph. This step is usually performed by first representing the protograph as
a base matrix B. The number of rows and columns in the base matrix equal the
number of check and variable nodes in the protograph, respectively. Moreover, the
.j; i /�th entry of B is equal to the number of connections between check node Cj
and variable node Vi in the protograph. For example, the base matrix corresponding
to the protograph depicted in Fig. 11.9 is
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B D
�
1 2 1

1 1 1

	
:

In order to construct the parity-check matrix H of a QC-LDPC code from B,
each entry in the base matrix is replaced with a Q � Q circulant matrix, where
a circulant matrix is any square matrix such that every row is obtained from the
previous row by a cyclic shift to the right by one position. An entry in B equal
to t is replaced by a circulant matrix whose rows and columns all have Hamming
weight t . (Null entries in B are replaced by zero Q � Q square matrices.) If the
number of variable nodes in the protograph is np then the final LDPC code has
length Qnp. Moreover, it is a QC-LDPC code as the cyclic shift of any codeword
by np positions results in another codeword. The specific circulant matrices used to
replace the entries of the base matrix are chosen according to algorithms aimed at
increasing the girth g of the graph, making it suitable to iterative message-passing
decoding. It is pointed out that sometimes the parity-check matrix H is obtained by
lifting the base matrix in several steps. For example, instead of replacing each entry
of B by a Q �Q matrix (for large Q), QQ � QQ circulant matrices may be used at
first, with Q being a multiple of QQ, and then circulant permutation matrices of size
Q= QQ may replace each entry in the “intermediate” matrix.3

11.4.3 Error Floor

Finite length LDPC codes are affected by a phenomenon known as the “error
floor” [8, 23]. Considering again a communication channel parameterized by a real
parameter � indicating the level of channel noise, the error floor consists of a sudden
reduction in the slope of the LDPC code performance curve when � becomes lower
than some value. For example, over the BSC the error floor appears at sufficiently
low values of the error probability p, while over the Bi-AWGN channel it appears
at sufficiently high values of Eb=N0. An example performance curve in term of
bit error rate (BER) vs. Eb=N0 exhibiting an error floor is depicted in Fig. 11.10.
In NAND Flash memories applications, very pressing requirements are usually
imposed on the error floor. More specifically, it is often required that the error floor
must not appear above page error rate (i.e., codeword error rate) 10–15.

The error floor of LDPC codes under belief propagation decoding is mainly
due to graphical structures in the Tanner graph called trapping sets [23]. Given
a subset W of the variable nodes, the subgraph induced by W is the bipartite
graph composed of W , of the subset U of check nodes connected to W and of
the corresponding edges. By definition, an .a; b/ trapping set is any size-a subset
W of the variable nodes, such that there are exactly b check nodes of odd degree
(an arbitrary number of check nodes of even degree) in the corresponding induced

3The described protograph-based technique is not the only one to construct good QC-LDPC codes.
Another possible approach is based on Euclidean and projective finite geometries [5, 27].
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Fig. 11.10 Performance curve (in terms of BER vs. Eb=N0) exhibiting an error floor at BER �
10�7 (Eb=N0 > 4:6 dB)

subgraph. The parameter a is called the size of the trapping set. If there are only
degree-1 and degree-2 check nodes in the induced subgraph, then the trapping set
is said to be elementary. Elementary trapping sets of small size are a major cause
of error floor for iteratively decoded LDPC codes. We point out that small weight
codewords may also contribute to the error floor together with trapping sets.

The need to construct LDPC codes characterized by very low error floors
imposes some modifications to the QC-LDPC code design procedure described in
the previous subsection, which becomes more involved. The asymptotic decoding
threshold is not the only metric to be taken into account during the ensemble
optimization phase, as other asymptotic parameters such as the typical relative
minimum distance or smallest trapping set size must be considered [1, 12]. We also
point out that reliable error floor analysis at very low error rates of LDPC codes for
storage applications still represents an open issue. In fact, Monte Carlo software
simulation is not feasible at very low error rates because of prohibitively long
simulation times. Approaches proposed in the literature are hardware simulation,
importance sampling [17, 4], and estimation techniques [11].

11.5 Belief Propagation (BP) Decoding of LDPC Codes

11.5.1 Introduction

As opposed to MAP and ML decoding algorithms (Sect. 11.2), that are block-
wise algorithms, BP is a bit-wise decoding algorithm, working iteratively. More
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specifically, at the end of each decoding iteration a separate decision is taken about
each bit in the codeword, and then it is checked whether the currently decoded
hard-decision sequence is a codeword or it is not. Letting y D Œy0; y1; : : : ; yn�1�
denote the sequence outcoming from the communication channel, the decision about
encoded bit ci , i D 0; : : : ; n�1, is taken according to its a posteriori likelihood ratio
(LR), namely,

L.ci jy/ D Pr .ci D 0jy/
Pr .ci D 1jy/

Oci D 0
? 1

Oci D 1
:

Unfortunately, the only information available at variable node i at the beginning
of the decoding process is the a priori LR

L.ci jyi / D Pr .ci D 0jyi /
Pr .ci D 1jyi /

i.e., the LR conditioned only to the local observation, not the a posteriori LRL.ci jy/
as required. Indeed, the task of the BP decoder consists of calculating the a posteriori
LR for each variable node, starting from the individual a priori LRs, exploiting an
iterative exchange of information among the nodes of the bipartite graph. In the
following description of the BP decoder, we will not make any assumption on the
communication channel, but that the channel is memory-less with binary input and
equally likely input values.

11.5.2 Preliminaries

We start with some preliminary material that will be useful to properly describe BP
decoding of LDPC codes.

Let us consider a Bernoulli random variable B taking the values 0 and 1 with
equal probabilities. As depicted in Fig. 11.11, assume that N random experiments
are performed to get information about the value assumed by B and that all these
experiments are independent. The outcome of the n-th experiment (n-th observa-
tion) is denoted by !n, while the vector ofN observables by ! D Œ!1; !2; : : : ; !N �.
We define the likelihood ratio (LR) of B conditioned to the observation !n as

L.Bj!n/ D Pr .B D 0j!n/
Pr .B D 1j!n/ (11.11)

and the a posteriori likelihood ratio of B (i.e., conditioned to the whole set of N
independent observations), as

L.Bj!/ D Pr .B D 0j!/
Pr .B D 1j!/ : (11.12)
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Fig. 11.11 N random
experiments are conducted to
obtain some information
about the value of a Bernoulli
random variable B . The
observation associated with
the n-th random experiment
is !n

We now seek for an expression of the a posteriori LR, L.Bj!/, as a function of
the individual LRs, each conditioned to a specific observation. By Bayes rule we
have

L.Bj!/ D p .!jB D 0/
p .!jB D 1/

D
NY

nD1

p .!njB D 0/
p .!njB D 1/

D
NY

nD1
L .Bj!n/ ; (11.13)

where the second equality follows from independence of the random experiments.
We also observe that, through Eq. (11.12) and the relationship Pr .B D 0j!/ C

Pr .B D 1j!/ D 1, the probabilities Pr .B D 0j!/ and Pr .B D 1j!/ may be
expressed as functions of the a posteriori LR as follows:

Pr .B D 0j!/ D L.Bj!/
1C L.Bj!/ ; (11.14)

Pr .B D 1j!/ D 1

1CL.Bj!/ : (11.15)

This is sometimes referred to as soft bit. Analogous relationships may be derived
for Pr.B D 0j!n/ and Pr.B D 1j!n/.

Next, consider n statistically independent Bernoulli random variables
B1;B2; : : : ; Bn each taking its value in f0; 1g. We allow Pr .Bk D 1/ ¤ Pr .Bl D 1/
if k ¤ l . We ask what is the probability that the n variables sum to 0 (in binary
algebra), i.e., the probability that an even number of such random variables take
value 1. This problem was solved in [15], where it was shown that
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Pr.B1 C B2 C : : :C Bn D 0/ D 1CQn
kD1 .1 � 2 Pr.Bk D 1//

2
: (11.16)

Consider now n Bernoulli random variables B1;B2; : : : ; Bn fulfilling a parity
constraint B1 C B2 C : : : C Bn D 0. Moreover, assume that some reliability
information is known about variables B1; : : : ; Bi�1; BiC1; : : : ; Bn, in terms of LRs
L.Bk/, k 2 f1; : : : ; i � 1; i C 1; : : : ; ng and that B1; : : : ; Bi�1; BiC1; : : : ; Bn are
statistically independent. We seek for an expression of the LR L.Bi /, conditional
on all available information about the other n � 1 variables. Since Pr.Bi D 0/ D
Pr.B1 C : : : Bi�1 C BiC1 C : : :C Bn D 0/, through Eq. (11.16) we obtain

Pr .Bi D 0jL.B1/; : : : ; L.Bi�1/; L.BiC1/; : : : ; L.Bn//

D 1CQk¤i .1 � 2 Pr.Bk D 1//
2

and, consequently,

Pr .Bi D 1jL.B1/; : : : ; L.Bi�1/; L.BiC1/; : : : ; L.Bn//

D 1 �Qk¤i .1 � 2 Pr.Bk D 1//
2

:

Note that each term Pr .Bk D 1/ involved in the multiplication may be expressed in
terms of the correspondingL.Bk/ through Eq. (11.15). From the term-by-term ratio
between these two latter equations, we obtain

L .Bi jL.B1/; : : : ; L.Bi�1/; L.BiC1/; : : : ; L.Bn// D
1CQk¤i .1 � 2 Pr.Bk D 1//
1 �Qk¤i .1 � 2 Pr.Bk D 1// :

Through Eq. (11.15), after a few calculations this leads to

L .Bi jL.B1/; : : : ; L.Bi�1/; L.BiC1/; : : : ; L.Bn// D
Q
k¤i

L.Bk /C1
L.Bk /�1 C 1Q

k¤i
L.Bk/C1
L.Bk /�1 � 1

: (11.17)

11.5.3 Algorithm Description

11.5.3.1 Overview

For ease of presentation, in the description of the algorithm we omit the decoding
iteration index. We denote by r

j
i the message sent by variable node Vi , i D

0; : : : ; n � 1, to check node Cj , j D 0; : : : ; m � 1 during the current iteration,
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Fig. 11.12 Tanner graph of an LDPC code. The message sent by variable node Vi to check node
Cj and the message sent by check node Cj to variable node Vi are denoted by rji and mi

j ,
respectively

and by mi
j the message sent back by check node Cj , to variable node Vi , during

the same iteration. For i D 0; : : : ; n � 1, we also denote by wi the a priori LR for
variable node Vi , i.e.,

wi D Pr .ci D 0jyi /
Pr .ci D 1jyi / :

This is illustrated in Fig. 11.12.
Belief-propagation decoding is composed of four steps, namely4:

• initialization;
• horizontal step;
• vertical step;
• hard decision and stopping criterion step.

Out of them, the initialization step is executed only once, at the beginning of
decoding. The other three steps are executed iteratively, until a termination condition
is verified or a maximum number of iterations, denoted by Imax , is reached. Each
decoding iteration is split into two half-iterations. During the first half-iteration
(horizontal step), check nodes process messages incoming from their neighboring
variable nodes. Then, each check node sends one message along every edge incident
on it. Thus, every check node sends one message per iteration to each of its
neighboring variable nodes. During the second half-iteration (vertical step) variable
nodes process messages incoming from their neighboring check nodes. Similar to
the previous half-iteration, at the end of this processing each variable node sends
one message along each edge incident on it. Thus, every variable node sends one

4The words “horizontal” and “vertical” remind us that the check nodes and the variable nodes are
associated with the rows and the columns of the parity-check matrix, respectively.
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message per iteration to each of its neighboring check nodes. At the end of the two
half-iterations, a hard decision is taken in each variable node, about the value of the
corresponding encoded bit.

The message transmitted by check node Cj , j D 0; : : : ; m � 1, to variable node
Vi , i D 0; : : : ; n�1, where Vi belongs to the neighborhood ofCj , may be interpreted
as the best estimate Cj has about the value of Vi up to the current iteration. This is
the estimate of the value of Vi given all information about Vi the check node has
got from the variable nodes connected to it other than Vi . This is known as extrinsic
information. Analogously, the message sent back by variable node Vi to check node
Cj may be interpreted as the best estimate Vi has about itself up to the current
iteration. This is the estimate of its value given all information the variable node
has got from the communication channel and from the check nodes connected to
it other than Cj (extrinsic information). All messages exchanged between variable
nodes and check nodes are LRs or, equivalently, soft bits.

At the end of the vertical step, each variable node takes a hard decision about
the value of its associated bit, based on the a priori information incoming from the
channel and on all estimates incoming from the check nodes connected to it. If the
obtained hard-decision binary sequence Oc is a codeword of the LDPC code, i.e., if
every check node is connected to an even number of variable nodes whose current
estimate is 1, then a decoding success is declared, decoding is terminated, and Oc is
returned as the decoded codeword. Otherwise, a new iteration is started, unless the
maximum number of iterations has been reached. In this latter case, no codeword
has been found and a decoding failure is declared. LDPC codes decoded via belief
propagation are then characterized by two different error events: detected errors and
undetected errors. A detected error takes place whenever no codeword is found up
to the maximum number of iterations. An undetected error takes place whenever, at
some iteration, the hard-decision sequence Oc is a codeword but not the transmitted
one. Undetected errors may be extremely dangerous in some contexts, including
NAND Flash memories (Chap. 10).

11.5.3.2 Initialization

At the beginning, each variable node broadcasts to all its neighboring check nodes
the a priori LR received from the communication channel. Hence, we have

r
j
i D wi

for all j 2 N.i/, where N.i/ is the set of indexes of check nodes connected to
Vi . The expression of wi depends on the nature of the channel. For example, it
is easy to check that over a BSC with error probability p and antipodal mapping
xi D 1 � 2ci 2 f�1;C1g, we have

wi D

8
ˆ̂<

ˆ̂:

1 � p
p

if yi D C1
p

1 � p if yi D �1:
(11.18)

http://dx.doi.org/10.1007/978-94-007-5146-0_10
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Fig. 11.13 Check node
processing of incoming
messages during the
horizontal step

As another example, over a Bi-AWGN channel and again antipodal mapping xi D
1 � 2ci , (meaning Es normalized to 1) we have

wi D e.2=�2/yi : (11.19)

Importantly, the initialization step requires a knowledge of the channel. For instance,
in the case of a BSC the error probability p must be known, as well as the noise
power �2 in the Bi-AWGN case.

11.5.3.3 Horizontal Step

For j D 0; : : : ; m�1, check node Cj , of degree hj , sends to each of the hj variable
nodes connected to it its current estimate of the corresponding bit. If variable node
Vi is connected to Cj , the message from Cj to Vi is the LR of bit ci , conditional on
the information available at Cj incoming from all its neighboring variable nodes,
except the information incoming from Vi . A pictorial representation of this process
is provided in Fig. 11.13. Note that two different variable nodes connected to Cj
will receive, in general, different messages.

The message mi
j from Cj to Vi can be calculated exploiting one of the results

introduced in Sect. 11.5.2. In fact, each of the hj incoming messages is the LR
of a specific bit on which the check node imposes a parity constraint. Hence, under
independence hypothesis, denoting byN.j /nfig the set of indexes of variable nodes
connected to Cj except Vi , from Eq. (11.17) we immediately obtain

mi
j D

Q
k2N.j /nfig

r
j
kC1
r
j
k�1
C 1

Q
k2N.j /nfig

r
j

kC1
r
j

k�1
� 1

: (11.20)
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Fig. 11.14 Variable node
processing of incoming
messages during the vertical
step

Note that the independence hypothesis is fulfilled only during the first g=2 decoding
iterations, where g is the girth of the Tanner graph. On the other hand, it represents
an approximation during all subsequent iterations.

11.5.3.4 Vertical Step

For i D 0; : : : ; n � 1, variable node Vi , of degree di , sends to each of its di
neighboring check nodes its current estimate of the associated bit. With reference to
Fig. 11.14, the message rji sent to check node Cj is the LR about bit ci , conditional
on the a priori information available from the communication channel and on the
information incoming from all check nodes connected to it, except Cj . Again, two
different check nodes connected to Vi will receive, in general, different messages.

The message rji that variable node Vi sends to check node Cj connected to it
can be easily computed based on the result in Sect. 11.5.2. In fact, each of the di
messages incoming towards the variable node (including the message wi incoming
from the channel), represents the LR of ci conditioned to some observation. Under
the hypothesis of independence for the di observations, denoting by N.i/nfj g the
set of indexes check nodes connected to Vi except check node of index j , we have

r
j
i D wi

Y

k2N.i/nfj g
mi
k: (11.21)

(Again, the independence hypothesis is valid rigorously only during the first g=2
decoding iterations.)
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11.5.3.5 Hard Decision and Stopping Criterion

At the last step of each iteration, every variable node takes a decision about its
associated encoded bit. This decision is based on all currently available information
about the bit, i.e., on the a priori information from the communication channel
and on all messages incoming from the check nodes. Let mi denote the list of
all messages incoming towards the variable node Vi . Applying again the result
developed in Sect. 11.5.2 under the hypothesis of independence of the incoming
messages, we may write

L


ci jwi ;mi

� D wi
Y

k2N.i/
mi
k: (11.22)

(Again, the independence hypothesis is fulfilled rigorously only during the first g=2
decoding iterations.) The decision about encoded bit ci at the end of the generic
iteration is then

L


ci jwi ;mi

� Oci D 0
? 1

Oci D 1
:

If the current hard-decision sequence Oc is a codeword ( OcH T D 0, where H

is any parity-check matrix of the code) then the algorithm is terminated and Oc is
returned as the decoded codeword. Else, if Oc is not a codeword and the maximum
number of iterations Imax has been reached, the algorithm is terminated and a failure
is reported. Else, a new iteration is started jumping to the horizontal step. Belief
propagation decoding of LDPC codes may be summarized as follows.

Belief-Propagation Decoding of LDPC Codes

1: set I D 1. For i D 0; : : : ; n� 1, for j 2 N.i/, set rji D wi ;
2: for j D 0; : : : ; m� 1

for i 2 N.j / calculate mi
j according to Eq. (11.20);

3: for i D 0; : : : ; n� 1
for j 2 N.i/ calculate rji according to Eq. (11.21);

4: for i D 0; : : : ; n� 1 f
calculate L



ci jwi ;mi

�
according to Eq. (11.22);

if L


ci jwi ;mi

� � 1 then set Oci D 0;
else set Oci D 1;
g

if OcH T D 0 then return Oc;
else f

if I D Imax exit;
else f

I D I C 1I
goto 2;
g

g
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11.5.4 Log-Domain BP Decoder

The main issue when implementing BP decoding described in Sect. 11.5.3 is rep-
resented by the need to handle and combine, through multiplications and divisions,
likelihood ratios whose values may differ by several orders of magnitude. For this
reason, a log-domain implementation is usually preferred from an implementation
viewpoint. In the log-domain version of BP decoding, log-likelihood ratios (LLRs)
of the encoded bits are exchanged between variable and check nodes. Next, we
discuss how the above-described BP decoding shall be modified in the log-domain.
All logarithms are assumed to be natural logarithms. Moreover, sgn.x/ will denote
the sign function, i.e., sgn.x/ D C1 if x � 0 and sgn.x/ D �1 otherwise.

The initialization step remains the same, the only difference being that the first
message each variable node sends to all its neighboring check nodes is the a priori
LLR of the corresponding encoded bit. Neglecting again the iteration index and
denoting by Rji the message sent from variable node i 2 f0; : : : ; n � 1g to check
node j 2 N.i/, we have

R
j
i D Wi;

whereWi D log wi . For instance, assuming antipodal mapping xi D 1� 2ci , over a
BSC with error probability p we have

Wi D
8
<

:
log 1�p

p
if yi D C1

log p

1�p if yi D �1
(11.23)

while, over a Bi-AWGN channel,

Wi D 2

�2
yi : (11.24)

The development of check node message processing (horizontal step) in the log
domain is more involved. Denoting Rji D log rji and Mi

j D logmi
j , from Eq.

(11.20) we may write

Mi
j D log

Q
k2N.j /nfig e

R
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Fig. 11.15 Plot of function '.x/D �log.tanh.x=2//

where we have exploited the fact that any odd function fulfills f .x/ D sgn.x/f .jxj/
and the fact that f .x/ D .ex C 1/=.ex � 1/ is odd. The obtained expression of Mi

j

can be further developed through the identity log..x C 1/ =.x � 1// D sgn.x/ �
log..jxj C 1/ =.jxj � 1// and through the fact that ejRj � 1. This yields
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where, for x > 0, we have introduced the nonlinear function

'.x/ D log
ex C 1
ex � 1 D � log .tanh.x=2// :

A plot of this function is depicted in Fig. 11.15. Note that the function coincides
with its inverse, i.e., ' .'.x// D x.
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The transposition of the variable node processing (vertical step) to the logarith-
mic domain is much simpler. In fact, from Eq. (11.21) we immediately obtain

R
j
i D Wi C

X

k2N.i/nfj g
Mi
k: (11.26)

Analogously, Eq. (11.22) shall be updated as

logL


ci jWi ;M

i
� D Wi C

X

k2N.i/
M i
k: (11.27)

The algorithm may be then summarized as follows.

Log-Domain Belief-Propagation Decoding of LDPC Codes

1: set I D 1. For i D 0; : : : ; n� 1, for j 2 N.i/, set Rji D Wi ;
2: for j D 0; : : : ; m� 1

for i 2 N.j / calculate Mi
j according to Eq. (11.25);

3: for i D 0; : : : ; n� 1
for j 2 N.i/ calculate Rji according to Eq. (11.26);

4: for i D 0; : : : ; n� 1 f
calculate logL



ci jWi ;M

i
�

according to Eq. (11.27);
if logL



ci jWi ;M

i
� � 0 then set Oci D 0;

else set Oci D 1;
g
if OcH T D 0 then return Oc;
else f

if I D Imax exit;
else f

I D I C 1I
goto 2;
g

g

Although an enhanced numerical stability is achieved operating on log-likelihood
ratios, as well as a lower complexity (as, for instance, products in Eqs. (11.21)
and (11.22) are transformed in sums in Eqs. (11.25) and (11.26), respectively),
check node processing in the log-domain imposes the evaluation of the nonlinear
function'. For a single check nodeCj of degree hj , this function should in principle
be evaluated .hj /

2 times per iteration (even if techniques to limit the number of '
evaluations exist). The calculation of function ' is typically performed by means of
lookup-tables. Note that, however, for small x the graph of '.x/ is very steep, thus
requiring a very fine (in general, nonuniform) discretization of the corresponding
region of the function domain, and that the implementation of '.x/ through a
lookup table may be quite inconvenient in hardware implementation. For these
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reasons, extensive work has been carried out to develop either approximations of
the log-domain BP decoder or other reduced-complexity decoding schemes. All of
these decoders offer a reduced error correction capability than actual BP. However,
they also exhibit a lower decoding complexity and, hence, a higher decoding
speed.

11.6 Reduced-Complexity Decoders

So far we have focused on the BP decoder (both in probability domain and
log-domain) originally developed by Gallager. Next, we present a few reduced-
complexity, implementation-friendly decoders for LDPC codes. It must be pointed
out that a large amount of reduced-complexity decoding schemes for LDPC codes
have been developed in the last decade [7]. Most of these decoding schemes may be
seen as approximations of the BP decoder, in the sense that they are characterized
by approximations of the most complex step of BP decoding, namely, the horizontal
step (consisting of the calculation of extrinsic messages from the check nodes to
the variable nodes). As such, these approximate BP decoding algorithms can be
formalized via the same pseudo-code we have adopted for the log-domain BP
decoder, with a difference in step 2.

We only present the most famous approximation of the BP decoder, called
the Min-Sum (MS) decoder. We then move to describe decoders exhibiting an
even lower complexities. More specifically, we present a binary message-passing
algorithm known as “Gallager B” (and originally proposed in [15]) and a class of
non-message-passing decoders named “flipping algorithms” (the idea of bit flipping
appears again in [15]). These very low complexity decoding algorithms (along
with some of their modifications, not addressed in this chapter) are of interest in
NAND Flash memories at the beginning of the memory life, when the raw bit error
probability is extremely low.

11.6.1 Min-Sum Decoder

The MS decoder can be directly developed from the log-domain BP decoder as
follows. From Fig. 11.15 observe that the graph of function '.x/ is very steep for
small values of x. Then, when x assumes small values, a small perturbation in terms
of x determines a large deviation in terms of '.x/. For this reason, if at least one
of the magnitudes jRjk j in the summation appearing in (11.25) is sufficiently small,

the corresponding value of '.jRjk j/ dominates the other summands. Hence, we can
write
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where the last equality follows from '.x/being self-invertible (i.e., ' .'.x// D x)
and monotonically decreasing. The MS decoding algorithm is summarized next.

Min-Sum Decoding of LDPC Codes

1: set I D 1. For i D 0; : : : ; n� 1, for j 2 N.i/, set Rji D Wi ;
2: for j D 0; : : : ; m� 1

for i 2 N.j / calculate Mi
j according to Eq. (11.28);

3: for i D 0; : : : ; n� 1
for j 2 N.i/ calculate Rji according to Eq. (11.26);

4: for i D 0; : : : ; n� 1 f
calculate logL



ci jWi ;M

i
�

according to Eq. (11.27);
if logL



ci jWi ;M

i
� � 0 then set Oci D 0I

else set Oci D 1I
g
if OcH T D 0 then return Oc;
else f

if I D Imax exit;
else f

I D I C 1I
goto 2;
g

g

Several improvements to the MS decoder have been proposed in the literature,
to reduce the gap between its performance and that of BP decoding, at the expense
of a small increase in terms of computational cost. These refinements are out of the
scope of this book. Interested readers may refer, for example, to [6, 33].

11.6.2 Gallager B Decoder

The BP and MS decoders are characterized by real-valued (properly quantized, in
hardware implementation) messages exchanged between the variable nodes and
the check nodes. Moreover, as previously emphasized, both algorithms remain
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unchanged over a wide range of communication channels. In contrast, Gallager
B decoder, first proposed in [15], is a message-passing decoding algorithm for
LDPC codes characterized by binary-valued messages and is specifically tailored
for the BSC (i.e., no soft information is available at the decoder input). Although its
performance is poor compared with that of BP and MS algorithms over the BSC, it
has been proved that it represents the optimum LDPC decoder over the BSC when
the extrinsic messages are constrained to be binary.

The algorithm works as follows. Assuming transmission over a BSC with error
probability p and input and output alphabets X D Y D f0; 1g, for i D 0; : : : ; n� 1
variable node Vi is fed with the corresponding binary symbol yi 2 f0; 1g received
from the channel. (In contrast, to perform BP decoding over the BSC variable node
i is initialized according to Eq. (11.18) or to its logarithmic version Eq. (11.23).)
The symbol yi is broadcasted by variable node Vi to each of its neighboring check
nodes. The algorithm is then structured in a similar way as BP or MS, where the
horizontal, vertical, and stopping criterion steps are specified as follows.

During the horizontal step, for j D 0; : : : ; m � 1 the message propagating from
check node Cj to variable node Vi , i 2 N.j /, is simply the modulo-2 summation of
all binary messages incoming from variable nodes connected to Cjbut the message
incoming from Vi . Hence, we can write

mi
j D

X

k2N.j /nfig
r
j

k (11.29)

where the summation is modulo-2. (Note that rji D yi for all i D 0; : : : ; n � 1 at
the first iteration.) During the vertical step, for i D 0; : : : ; n � 1 the message from
variable node Vi to check node Cj , j 2 N.i/, is equal to the modulo-2 complement
of yi if the number of incoming extrinsic messages different from yi is above some
threshold, and is equal to yi otherwise. Letting

Xi
j D

ˇ̌˚
mi
k ¤ yi s:t:k 2 N.i/nfj g

�ˇ̌

and T .i/ be the number of such extrinsic messages and the threshold at the current
iteration, respectively, and letting C.yi / be the modulo-2 complement of yi , we
have

r
j
i D

(
C.yi / ifXi

j � T .i/
yi otherwise:

(11.30)

At the end of each decoding iteration, for each variable node Vi the decision
about the current value of the local bit Oci is taken according to a majority policy.
More specifically, if the variable node degree di is even, then Oci is set equal to the
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value assumed by the majority of the incoming messagesmi
j and of yi . On the other

hand, if the variable node degree is odd, then Oci is set equal to the value assumed by
the majority of the incoming messagesmi

j (yi is not considered).

Gallager B Decoding of LDPC Codes

1: set ID 1. For i D 0; : : : ; n� 1, for j 2 N.i/, set rji D yi ;
2: for j D 0; : : : ; m� 1

for i 2 N.j / calculate mi
j according to Eq. (11.29);

3: for i D 0; : : : ; n� 1
for j 2 N.i/ calculate rji according to Eq. (11.30);

4: for i D 0; : : : ; n� 1 f
if di mod 2 D 0 then set Oci to the value assumed by the majority of the incoming messages
mi
j and of yi ;

else set Oci to the value assumed by the majority of the incoming messages mi
j ;

g
if OcH T D 0 then return Oc;
else f

if I D Imax exit;
else f

I D I C 1I
goto 2;
g

g

Appropriate values for the threshold T .i/ range between .di � 1/=2 and di , as
the number of incoming extrinsic messages enforcing an outgoing message different
from Qyi must be sufficiently high. Note that in principle, for irregular codes the value
of the threshold may be different for two different variable nodes, even during the
same iteration. Also note that, for the same variable node, the value of the threshold
may not remain constant with the iteration index, as it may be adjusted dynamically.
In [15] it was shown that for a regular .d; h/ LDPC code, the optimum value of
the threshold (the same for all variable nodes at the same iteration) is the smallest
integer T for which the inequality

1 � p
p
�
 
1C .1 � 2"/h�1
1 � .1 � 2"/h�1

!2T�dC1
(11.31)

is fulfilled, where p is the BSC error probability and " is the extrinsic error
probability. This latter parameter represents the average probability that an edge
in the Tanner graph carries an error message from the variable node set to the check
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node set at the considered iteration, and varies over iterations. In the asymptotic
setting where the Tanner graph is assumed to be cycle-free, the update equation for
" for regular LDPC codes is [15]

"`C1 D p � p
d�1X

zDT`

�
d � 1

z

�"
1C .1 � 2"`/h�1

2

#z"
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��
1 � .1 � 2"`/

2

	z "
1C .1 � 2"`/h�1

2

#

(11.32)

where ` � 0 is the iteration index and where "0 D p.

Example 5 Equation (11.32) represents density evolution recursion for Gallager
B decoding of regular unstructured .d; h/ LDPC code ensembles. The asymptotic
decoding threshold p� for this ensemble under Gallager B decoding is then the
sup of the set of all p > 0 such that lim

`!1 "` D 0. For given d and h, whether

or not some p is above or below threshold can be easily checked by running the
recursion (with starting point "0 D p), adapting the value of T` at each iteration
according to Eq. (11.31) for the current value of "`. For example, for d D 4 and
h D 40 (which corresponds to a rate R D 9=10 ensemble) we obtain a threshold
p� D 0:0041. Through Eq. (11.8) and Es D REb, this corresponds to a threshold
.Eb=No/

� D 5:892 dB, about 1.5 dB away from the Shannon limit relevant to the
one-bit quantized Bi-AWGN channel.

11.6.3 Flipping Algorithms

Flipping algorithms are a class of low-complexity, iterative decoding algorithms
for LDPC codes over the BSC different from message-passing ones. The decoding
strategy consists of flipping, at the end of each decoding iteration, the current value
of a subset of variable nodes for which a certain flipping condition is fulfilled. If the
obtained binary sequence is a codeword, decoding is stopped and the codeword
is returned. Otherwise, a new iteration is started. The process continues until a
codeword is found or a maximum number of iterations is reached. Different flipping
algorithms are characterized by different criteria to identify the variable nodes to be
flipped.

A popular flipping algorithm, hereafter referred to simply as bit-flipping (BF)
algorithm, consists of flipping at each iteration those variable nodes for which the
number u of unsatisfied check nodes is maximum. A BSC with input and output
alphabets X D Y D f0; 1g is assumed.
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Bit-Flipping Decoding of LDPC Codes
1: set I D 1. For i D f0; : : : ; n� 1g, set Oci D yi ;
2: if OcH T D 0 then return Oc;
3: for i D 0; : : : ; n� 1

calculate ui ;
4: calculate umax ;
5: for each i such that ui Dumax set Oci D . Oci C 1/mod2;
5: if OcH T D 0 then return Oc;

else f
if I D Imax exit;
else f

I D I C 1I
goto 2;
g

g

11.7 Numerical Example

In this section, we present some numerical results aimed at comparing the perfor-
mance of LDPC and BCH codes, with the purpose to highlight the potential of
LDPC codes in Flash memories applications. We assume an SLC memory as the
reference channel model. We compare the performance of a regular QC-LDPC code,
under several decoding algorithms offering different tradeoffs between performance
and complexity, with the performance of a narrowsense binary BCH code with
similar parameters, decoded via bounded distance decoding.

The LDPC code is characterized by a length nLDPC D 8200 and a dimension
kLDPC D 7379 bits, and therefore by a code rate R very close to 9=10. Its
minimum distance, estimated with the impulse method proposed in [16], is equal
to dLDPC D 114. All variable nodes of the LDPC code have degree 4, and all of
its check nodes have degree 40. Its 820� 8,200 parity-check matrix is in block
circulant form, where the generic block is a 205� 205 circulant permutation matrix,
and has been constructed according to a block circulant version of the progressive
edge-growth (PEG) algorithm. The performance of this code has been evaluated
via Monte Carlo software simulation, under BP, MS, and BF decoding algorithms.
The performance curves under both BP and MS decoding have been obtained under
two different settings, namely, soft-decision and hard-decision decoding. These two
settings correspond to assuming the Bi-AWGN channel with unquantized output
(Example 2) and with one-bit quantized output (Example 3), respectively, as the
channel model. The first setting is equivalent to assuming an SLC memory with
an infinite number of reads per bit, while the second one to assuming an SLC
memory with one read per bit. The variable nodes are initialized according to
Eq. (11.19) in the unquantized case and according to Eq. (11.18) in the quantized
one. In the quantized case, the raw bit error rate of the channel can be obtained
from Eb=N0 according to Eq. (11.8), where Es=N0 D REb=N0. For instance,
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Eb=N0 D 5dB corresponds to a raw bit error rate pD 8.5 10�3. The Shannon limit
for the unquantized case and for the one-bit quantized case are also evaluated, for
benchmarking purposes.

The competitor BCH code has nominal parameters nBCH D 8191, kBCH D 7372,
t D 63 (error correction capability), and minimum distance dBCH D 127. Its code
rate is approximately equal to 9=10, similar to the code rate of the QC-LDPC code.
The codeword error rate (CER) and the bit error rate (BER) of the BCH code
under hard decision bounded distance decoding have been evaluated analytically
according to the relationships

Pe D
nBCHX

rDtC1

�
nBCH

r

�
pr.1 � p/nBCH

�r (11.33)

And

Pb 	 dBCH

k
� Ps (11.34)

respectively.
With reference to Fig. 11.16, we see that over the hard-decision channel (SLC

with one read) the BCH code exhibits nearly the same performance as the QC-
LDPC code decoded via BP and that its performance is even slightly better at
low error rates. This is not surprising, as BCH codes are well known to offer
very good performances over hard-decision channels, especially at high code rates.
As opposed to BCH codes, however, LDPC codes can handle in a very natural
way soft information incoming from the communication channel, which allows to
attain substantial performance improvements over the error correction capabilities
achievable with hard-decision decoding. In our example, when the LDPC decoder is
fed with unquantized soft information, its coding gain with respect to that achieved
under hard-decision decoding is improved by about 1.6 dB under both BP and
MS decoding algorithms at CER D 10�4. Moreover, again at CER D 10�4, the
LDPC code under unquantized BP decoding performs only 0.8 dB away from the
corresponding Shannon limit, in terms of BER.

For the same decoding algorithm (BP or MS), the performance curves of the
LDPC code labeled as “soft” and “hard” represent the two extreme cases in which
unconstrained soft information is available at the decoder, and no soft information is
available. In general, when a finite number of cell reads is performed with different
read voltage values, the corresponding performance curve will lie between the two
extreme curves: The larger the number of cell reads, the closer the performance
curve to the “soft” one. Therefore, LDPC codes can largely outperform BCH codes
in Flash memory applications, provided a sufficient amount of soft information is
available at the decoder. It is also pointed out that the design of appropriate QC irreg-
ular LDPC codes can favor an even larger coding gain with respect to BCH codes.

We also highlight how very simple decoding algorithms of LDPC codes such as
BF (or Gallager B) decoding, can be of interest at the beginning of the memory life,
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Fig. 11.16 Bit and codeword error rates for an (8191,7372) QC-LDPC code (under different
decoding algorithms) and an (8191,7372), tD 63 narrowsense binary BCH code under bounded
distance decoding, over an SLC Flash memory channel. Curves corresponding to filled and empty
symbols illustrate the codeword error rates and the bit error rates of the LDPC code, respectively.
The dashed and dot-dashed lines illustrate the codeword error rate and the bit error rate of the BCH
code, respectively. The two straight solid lines are the Shannon limits for rate RD 9/10 under soft-
decision and hard-decision decoding, respectively

i.e., when the raw bit error rate is very small. For example, as from Fig. 11.16,
BF decoding could become of interest for values of Eb=N0 larger of 70 dB,
corresponding to a raw bit error rate smaller than 1.3�10�3.
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Chapter 12
Protecting SSD Data Against Attacks

A. Marelli and R. Micheloni

Abstract When a drive is broken and we have to throw it away, we want to be
sure that no hackers can recover the data stored in that disk, especially in the
enterprise environment where sensitive date are stored on the drive, such as financial
transactions or military applications.

As the SSD market is growing, the security issue must be carefully considered.
Some methods used with HDDs, such as degaussian, are not applicable to SSDs,
due to the different storage technique. Recent studies indicate that encryption is the
necessary step to protect data stored in SSD against hackers attacks.

This chapter describes the SSD security approach in comparison to HDD, then
it walks the reader through the encryption world: how a cryptosystem is built,
how a cryptosystem is broken, different encryption applications, and then the AES
cryptosystem as it is the most used in SSDs; finally, it addresses the security
applications in SSDs.

12.1 Challenges of SSD Security vs. HDD

Hard Disk Drives as well as Solid State Disks contain a number of sensible data that
must be kept secret. When a disk is thrown away or stolen, it is very important that
nobody can access these data.

The purpose of HDD is to store data and protect them from corruption or
accidental erase. In this latter case, procedures like folder or un-erase are used.
In addition, data erasure is unlikely to occur because it takes a lot of time, hence
reducing performances. The drawback is that user data are vulnerable to recovery
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by unauthorized person. Increased storage of sensitive data, combined with rapid
technological change and the shorter lifespan of IT assets, has driven the need for
permanent data erasure of electronic devices as they are retired.

If data erasure does not occur when a disk is retired or lost, an organization
or a user faces the possibility that data will be stolen and compromised, leading
to identity theft, loss of corporate reputation, threats to regulatory compliance
and financial impacts. There are well-known cases of sensible data loss such as
CardSystems Solutions where Credit card breach exposed 40 million accounts in
2005. In addition, government laws oblige disk makers to have a method to secure
data. Nowadays, there are four methods to secure data:

• physical drive destruction;
• degaussian;
• secure erase;
• encryption.

In the following we will see what these methods are and how they are applied to
SSD and HDD.

To prevent data from recovery, disks can be broken up to microscopic pieces.
However, such physical destruction is not absolute if any remaining disk pieces are
larger than a single 512-byte block. In case of HDD this is not easy and a magnetic
microscopy is able to recover the data. In case of SSD it is easier to destroy the
physical component but this method is old and not used.

Degaussian uses magnetic field to erase data stored on HDD. Degaussers
create high intensity magnetic fields that erase all the magnetic recordings in
a hard disk drive, including the sector header information on drive data tracks.
Like physical destruction, once this procedure is applied, the disk is no longer
usable. However, as the storage density increases, higher magnetic fields are
required, so that old degaussers cannot be reused in modern HDD. In addition,
new perpendicular recording drives my not be erasable by present degaussers
designed for past longitudinal recording drives. Due to the different physical media,
degaussian procedure is not applicable to SSD. However, there are companies [1]
that build a self-destructive SSD by applying an over-current to the NAND Flash
memories.

As regards erase, four security levels are defined: weak erase (deleting files),
block erase (overwrite by external software), secure erase and fast secure erase.
There is a big difference in terms of security achieved and time required by these
four levels as depicted in Fig. 12.1.

Sanitation of HDD through erase is not easy, because when we delete a file,
we just remove its name from the directory structure. The user data remain on the
drive where they can be retrieved until the sectors are overwritten by new data.
Even reformatting the drive only file directories and links among sectors are cleared,
but the user data remain and can be recovered. Moreover, software utilities that
overwrite files are susceptible to error or malicious virus attack and require constant
update.
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Fig. 12.1 Trade-off between
speed and security among
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Secure Erase (SE) is the name given to a set of commands available in PATA and
SATA hard drives. The Secure Erase commands are used as data sanitization method
to completely overwrite all the data on a hard drive. The method is very simple: it
writes a binary one or zero in all the locations.

After SE file recovery programs will not be able to extract data from the drive.
Secure Erase is a simple addition to the existing “format drive” command and adds
no cost to hard disk drives. Usually, HDDs ask for multiple SE operations; in the
SSD case a single erase should be enough because data are erased in blocks. The bad
news is that the operating system is not aware of where data are physically stored;
only the Flash controller inside the SSD knows the logical-to-physical mapping
(Chap. 2). Recently it has been published [2] a study on limitations about secure
erase applied to SSDs.

• First, ATA and SCSI built-in commands are effective, but manufacturers some-
times implement them incorrectly. Moreover, sometimes they are not imple-
mented in SSDs.

• Second, overwriting the entire visible address space of an SSD twice is usually,
but not always, sufficient to sanitize the drive. In addition, due to the Firmware
Transaction Layer (FTL) (Chap. 2) the procedure is more complex and time
consuming compared to HDD.

• Third, none of the existing hard drive techniques for individual file sanitization
are effective on SSDs.

Even if there is a lot of effort on developing a stronger secure erase for SSDs,
nowadays encryption is the preferred method. Encryption should be used on the
drive since beginning of life: when we want to destroy data, it is enough to delete
all the keys in order to be sure that all the data are un-recoverable.

The next section walks the reader through the encryption world before discussing
encryption applied to SSDs.

http://dx.doi.org/10.1007/978-94-007-5146-0_2
http://dx.doi.org/10.1007/978-94-007-5146-0_2
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12.2 Introduction to Cryptography

The fascinating art of cryptography was born as soon as the civilized man began to
communicate information to another man. In fact, quite at the beginning he felt the
need of secrecy or privacy, so that if Alessia wants to send a message to Rino, she
doesn’t want Kam, who heard the message, to understand its meaning.

There are evidence of cryptographic schemes in the ancient Jew population
and their atbash schemes, the Spartans with their scytale (Fig. 12.2) but the first
“published” encryption scheme is the Caesar ciphrary invented by emperor Caius
Julius Caesar. From then a number of different schemes were used during the ages,
till the popular Enigma during the Second World War, used by the Germans to send
encrypted messages to U-boots (Fig. 12.3).

Together with encryption methods, more and more efforts were put on the op-
posite side of the story: the codebreakers that invented the science of cryptanalysis.
The most famous were the scientists of Bletchey park (Alan Touring was one of
them) that were able to decrypt the messages sent with Enigma. This was a key
point in the defeat of Germany in the Second World War.

Modern encryption science was born in 1949 with Claude Shannon [3], the father
of Information theory with the paper “Communication Theory of Secrecy Systems”.
After that, the encryption science was pushed by military industry and then applied
to telephone lines, computer networks, financial transactions and so on.

More and more complex schemes were discovered and then analyzed to find their
weakness. The next sub-sections introduce the basic concept of a cryptographic
system and how it is possible to find if it is secure or not. Last sub-section
describes encryption applied to MAC (Message Authentication Code) and digital
signatures.
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Fig. 12.2 The scytale used by spartans to encrypt codes: it was a wooden stick used to roll the
message to be encrypted
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Fig. 12.3 The enigma
machine

12.2.1 Basic Concepts

As the name cryptography suggests (from the greek kryptosD hidden and
graphiaDwritten language) the purpose of this science is to hide an information
under an apparent random message.

Let’s say Alessia wants to send a message to Rino and be sure that listener Kam
doesn’t understand the message (Fig. 12.4). The message Alessia wants to send is
called plaintext. She applies an encryption function, that generally involves a key, to
the plaintext in order to get a ciphertext to be sent to Rino. On the other side, Rino
receives the ciphertext and applies his decryption function, that generally involves
another key, in order to recover the original plaintext. If Kam hears the ciphertext,
he is unable to recover the plaintext because he hasn’t the key.

A basic example of an encryption scheme is based on letter substitution.
Figure 12.5 shows the Caesar code (Fig. 12.5). The key is the width of the rotation,
3 in this example.

Alessia wants to send the plaintext “Caesar” to Rino. She uses her key (rotation
of 3 positions) to obtain the cyphertext “Zxbpxo”. Rino receives the message and
rotates back of 3 positions to read the original message.

This is a very simple example where Rino and Alessia have the same key. Of
course, a number of modifications have been introduced in order to have a different
number of rotations for each letter of the message (Vigenère codes) or different keys
for Alessia and Rino, or different encryption methods.
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Fig. 12.4 A cryptographic system

Fig. 12.5 Caesar codes
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However, it is necessary to have a “metric” to evaluate the security of a
cryptosystem.

Shannon was able to give a mathematical structure to the encryption science,
first of all by evaluating the secrecy of a system. In fact there are different levels of
security of a cryptosystem as shown in Fig. 12.6.

The low level of security is the computational security. This is a measure of the
computational effort required to break a cryptosystem; in other words a system is
considered computational secure if it requires at least N operations. However, given
the speed of the technology evolution, what is secure today will unlikely be secure
tomorrow. Moreover, there aren’t any practical secure cryptosystems based on this
definition. The problem is that people study the computational security of a system
under a specific attack, but this does not guarantee its security under another attack.

The second level of security is the provable security. A cryptosystem is said to be
provable secure if its construction is based on a very difficult mathematical problem,
not yet theoretically solved. For example, as it will be discussed later, RSA system
is based on integer factorization. Until now, there aren’t any methods that can easily
factorize an integer. If some day a method will be found, RSA will be easily broken,
but until then it is provable secure.

The highest level of security is the unconditional security. In this case there are
no bounds on the computational effort that Kam can use: the cryptosystem can’t be
broken even with infinite computational resources.

We won’t go through all the mathematical description of this analysis, but we
report here only an interesting result: the Vigenère cipher is unconditional secure if
the keyword has the same length of the plaintext. It is even more secure if the key is
used only once.
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Fig. 12.7 Example of One-Time pad encryption

Nowadays, there is only one cryptosystem known as unconditional secure: the
One-Time Pad. Historically, this encryption method was used by KGB agents. The
system was so secure that some messages have been decrypted only when agents
re-used the same key more than once or some spies have been arrested and revealed
the keys. We explain this method with an example.

Alessia wants to send the message “hello” to Rino. They have the same pads of
keys to be used only one time and they decided for “xmckl” (same length of the
message). The encryption method follows Fig. 12.7. Based on the alphabet, letters
are translated in numbers, and the sum of message and key gives the ciphertext.

The sum is performed mod(26). Alessia immediately destroys the key. Rino
receives the message “eqnvz”, translates it in numbers, and subtracts the key to
obtain the original message. At this point Rino destroys the key.

If Kam hears the cipthertext and tries to decrypt it with infinite computing power,
he fill find “xmckl” as key but also “tquri” that gives the word “later” with same
probability.

This is a very simple and fast encryption method, easily performed by xoring the
key with either the plaintext (during encryption) or ciphertext (during decryption).

Difficulties arise in the key management: the key must be as long as the message,
it must be random, it must be used only once and destroyed immediately after use.
In addition, it is very difficult to distribute keys among multiple users. Especially
the requirement on the key length is so difficult to achieve that different encryption
methods are preferred, such as AES (Sect. 12.3) even if not unconditional secure.

This discussion leads us to the problem of the key. In fact, till few years ago all
those methods were based on a symmetric encryption [4, 5]. In other words it is very
easy to understand the key that Rino has, given Alessia’s key. In particular most of
the time the key is the same. It follows that this key must be secret otherwise all the
messages will be decrypted by Kam.

This leads us to some kind of paradox: we want to send secret messages but we
must exchange a secure key over a secure channel. This is what happens in internet,
when we are accessing a secure channel (e.g. home banking, credit card payment,
etc.): we are exchanging a secure key to encrypt and decrypt messages. In financial
transactions, however, we have the logistic problem of keys distribution. In other
words, a bank must provide a different key to each user: handling of all these keys
is translated in time and cost. It’s not the purpose of this chapter to address the
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Fig. 12.8 The asymmetric cryptosystem

problem of keys distribution. One way to solve it is the use of the Diffie-Hellman
algorithm, i.e. an asymmetric encryption. The interested reader can refer to [5–8].

In order to overcome the problem of the key exchange, the public-key cryptosys-
tem has been developed. The idea behind is that it might be unfeasible to find out
Alessia’s key d, given Rino’s key k. It follows that Rino can publish his key and
Alessia uses it to encrypt the message (Fig. 12.8). The sent message is received by
Rino, that now uses his private key to decrypt the message.

Observe that this method can also be reversed, that is Rino can use his private
key to encrypt the message and sends it to Alessia. Alessia uses Rino’s public key
to decrypt the message. In this case everyone can decrypt the message, since Rino’s
key is public, but we are sure of the authenticity of the message, because it was
encrypted using Rino’s private key (Sect. 12.2.3).

The advantage of the public-key cryptosystems is that Alessia can send messages
using the public key without any secret prior exchange of keys and be sure that only
Rino is able to decrypt the message.

The public-key cryptosystem was first discussed by Rivest, Shamir and Adleman
in 1978 with the very famous system called RSA [9]. Several systems have then be
proposed, but their security remains computational. In fact, asymmetric encryption
could never provide unconditional security. When Kam intercepts the ciphertext y,
he can encrypt each possible plaintext using the public encryption rule until he finds
the unique solution so that yD e(x). This x is the decryption of y.

Public-key cryptosystem is based on one-way functions which are very easy
to compute but very difficult to be inverted. There are a lot of functions that are
believed to be one-way but never proven.
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An example of such function is the factorization of an integer into two prime
numbers, used in RSA. This cryptosystem can be summarized as follows:

• Rino picks up two large prime numbers p and q,
• Rino sends the number nD p x q to Alessia. Everyone can see it;
• Alessia uses n to encrypt the message;
• Alessia sends the cipthertext to Rino. Everyone can see it but nobody can

decrypt it;
• Rino receives the message and, knowing p and q, is able to decrypt it.

The difficulty of this algorithm is the primality test of large integers. Today only
numbers with al least 300 ciphers are considered secure [10, 11].

Asymmetric cryptosystems are used in a number of different protocols like SSH,
Internet Key Exchange and PGP. The main advantage is that the generation of
the key pair solves the logistic problem of key distribution and the problem of
authentication (Sect. 12.2.3).

These systems are not broadly used because they are too slow and can limit
performances in most of the cases, like in SSDs. A solution that sometimes is
adopted is to transmit the keys with a public-key cryptosystems and then switch
to a symmetric cryptosystem.

12.2.2 Cryptanalysis

Let’s analyze the cryptosystem from Kam’s side. Kam is not the bad guy of the
story; of course, he could be a hacker that wants to intercept our credit card but he
could also be a secret agent that needs to intercept a terroristic attack. This is the
reason why the government puts a lot of effort and money in finding a good code
but also in breaking codes.

Cryptoanalysis science, as the name suggests (from Greek cryptosD “hidden”
and analyeinD “to untie”) has the purpose to break codes.

Generally speaking, we suppose that Kam knows the cryptosystem in use: this
is known as the Kerckhoffs’ principle. Hence, given a ciphertext, Kam’s goal is to
understand the key of the system.

Different attacks are based on the amount of information that Kam has.

• Ciphertext only attack: Kam knows a ciphertext or a part of it.
• Known plaintext attack: Kam knows plaintexts and their corresponding cipher-

texts.
• Chosen plaintext attack: Kam can choose a set of plaintexts and encrypt them.
• Chosen ciphertext attack: Kam can choose a set of ciphertexts and decrypt them.

The attacks are based on available resources, i.e. computing power, storage
memory, and time.

At this point we need to clarify what “break the code” means. Generally
speaking, Kam wants to know the key, but if he is unable to recover the key, he
could attempt a partial break of the code.
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In the pyramid of Fig. 12.9 the highest level is the total break where Kam
understands the key. The second level is the global deduction: Kam does not
know the key but he discovers a functionally equivalent encryption and decryption
method. Then we have instance deduction: Kam produces additional plaintexts or
ciphertexts. Finally, we have distinguishing algorithm: Kam is able to distinguish a
ciphertext from a random permutation.

For example, if we want to discover a key of a ciphertext obtained with a Caesar
code (and all the substitution cryptosystems) we can use an attack called Frequency
Analysis. This attack is based on the analysis of the frequency of letters or group of
letters in a particular language. Typical distribution of letters in English language is
shown in Fig. 12.10.

When Kam intercepts a message, he can easily find out the most frequent letter
and decrypts it as either E or A or T, but unlikely as Z. By analyzing letter’s
frequency, and group of letters together, he can recover the plaintext.

An evolution of this attack, used in more complex cryptosystems, as Vigenère
codes, is called Kasiski method. The purpose of this attack is to understand the
length of the key and then reduce the ciphertext to a cipher substitution that can be
analyzed with frequency analysis attack. The method was discovered by Kasiski in
1863 and independently by Babbage in 1846.

The method is based on these observations:

1. two identical segments of plaintext will be encrypted to the same ciphertext
whenever their occurrence in the plaintext is d position apart;

2. if we observe two identical segments of ciphertext, each of length at least 3, there
is a good chance that they correspond to identical segment of plaintext.
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Fig. 12.10 Typical frequency distribution of letters in an English text

Hence, the first thing to do is to find groups of equal characters, of at least 3
letters, and record their position. Suppose that in a text we have the same group of 3
letters separated of 165, 235, 275 and 285 positions. The greatest common divisor
is 5 and it is very likely to be the keyword length. Now that the length is known,
every group of 5 letters can be broken via the frequency analysis attack.

These two attacks (Frequency analysis and Kasiski method) are based on linguis-
tic statistics, but as the cryptosystems complexity increases, more mathematics and
computational power are required.

There are cases where codes are broken not because of the weakness of the code
itself, but because of an erroneous or insecure usage. For example, encrypting two
messages with the same key is an insecure process, the messages are said to be
in depth: Kam gains a lot of information by analyzing more than one ciphertext
encrypted with the same key.

Another weakness that historically helped breaking a code is the indicator
transmission with the Enigma machine.

The key was kept constant for a period of time, generally a day. However,
a different rotor position (Fig. 12.11) was used for each message, a sort of
initialization message.

The starting position of these rotors was transmitted just before the ciphertext.
It was design weakness and operator sloppiness in this indicator procedure that
broke Enigma. The procedure works as follows: the operator sets the rotor as
indicated by his list to the initial setting, i.e. to some specific combination of letters
(e.g. RDKP) visible in the rotor window. Then the operator chooses a starting
position for his message which becomes the indicator to be sent with the message
(e.g. ABGY). He then types ABGY two times in the machine so that the message is
encoded twice, for example in SWTHNQLM. He transmits this string and then the
encrypted plaintext.
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Fig. 12.11 An example of a rotor position to send an indicator for the Enigma machine

At the receiver side, the operator sets the rotor in the initial settings and then
types SWTHNQLM. Immediately RDKP pops up, the receiver sets the rotors in
that position and starts typing the ciphertext to obtain the plaintext.

The weakness of this scheme is that it is used as a worldwide setting. Moreover,
the repetition of this value causes a security flaw.

The attacks used for symmetric-type cryptosystems are based on difficult
mathematical problems. The most obvious way to attack this system is solving those
mathematical problems. In case of RSA cryptosystem, 3 algorithms seem to be the
most effective to factorize integers: quadratic sieve, elliptic-curve factorization and
number field sieve [12–15].

Today Cryptanalysis tries to break RSA encryption by using a huge computa-
tional power. In 1980 1012 CPU operations were required to factor a number of 50
digits. The same number of operations was required to factor a number of 75 digits
in 1984. Nowadays, it is possible to factor a number of 150 digits. Given the speed
trend of CPUs, more and more digits are required to secure RSA cryptosystems.

12.2.3 Hash Functions

The previous sections described the use of encryption for the general case where
Alessia wants to send a message to Rino and doesn’t want Kam, who hears the
message, to understand. However, encryption is used to solve also a number of other
issues in telecommunication world. In this section we address these issues and how
they are solved.
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hello word
Kidfg rtna

What's Montague? it is nor hand, nor foot, 
Nor arm, nor face, nor any other part 
Belonging to a man. O, be some other name! 
What's in a name? That which we call a rose 
By any other name would smell as sweet. 
So Romeo would, were he not Romeo call'd, 
Retain that dear perfection which he owes 
Without that title. Romeo, doff thy name; 
And for that name, which is no part of thee
Take all myself. 

Ygqw‘z Kqvbmazx? sd lf frr zxpf, bbg wcvb, 
wjg sbh, lhj qofn, emd ayh ijsnd hwnd 
Enfoswghs tn h nsj. T, ns wndk wufmr bsog! 
Bdow‘n ap r nsog? Xaor akgne qm nsol e maof 
Ne amk mbfpq nwov mpnqs napdw nq makqr. 
Qm Kfpqw mapfn, qmfg nq map Onape kqmf‘e, 
Qmtpsn nqot mgos maotnwpoqn nalfr mq mplq 
Tandoenq unsk akntl. Uoame, negg kan mane; 
Han msp hqns mxbc, anfkl mq fk pqmd yn nadh
Nath fnn naidn. 

encrypt
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decrypt

decrypt

Plaintext Ciphertext

Fig. 12.12 General properties of encryption

The hash function is any algorithm that maps a large bunch of data of variable
length to a smaller set of data of fixed length [16, 17]. A cryptographic hash function
is used to provide data integrity: in some way, it builds a fingerprint of data, so
that when data change, the fingerprint is not valid anymore. It is also used when
data are stored in an insecure location: fingerprints are re-computed from time to
time to verify that they have not changed. This fingerprint is usually called digest.
With a good hash function it is easy to compute a digest given a message, but it is
unfeasible to find the message given the hash; in other words it is an unidirectional
function. This is very different from encryption where we encrypt and decrypt, and
the ciphertext has the same length of plaintext (Fig. 12.12). On the contrary, hash
functions are unidirectional and the length of the digest is fixed despite the length
of the message (Fig. 12.13).

Being unidirectional is a basic requirement for security. If a hash function hasn’t
this property, we say that it has preimage resistance. Another bad property is called
collision resistance: given a message and its digest, there is another message with
the same digest.

These bad properties imply that somebody can change a message without
changing its digest. As discussed, hash functions are used to verify data integrity.
For example, when we download a file from the web, our PC computes the hash
function and compares it with the one published on the website as data integrity
check [18, 19]. Please note that the digest is not visible on the screen but embedded
in the properties of the file.

Another application is the password storage (Fig. 12.14).
PCs do not store cleartext password, because it would be too dangerous if the

personal computer is stolen or somebody has access to its storage area. Therefore,
the hash function of the password is stored, since it is unfeasible to recover the
cleartext password from the hash. On the following login, the system re-computes
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hello word
NSY289HN45BSOTH
S3HWNF9T2JA83NH

What's Montague? it is nor hand, nor foot, 
Nor arm, nor face, nor any other part 
Belonging to a man. O, be some other name!
What's in a name? That which we call a rose 
By any other name would smell as sweet. 
So Romeo would, were he not Romeo call'd, 
Retain that dear perfection which he owes 
Without that title. Romeo, doff thy name; 
And for that name, which is no part of thee
Take all myself. 

hash

hash
YQNFO630T1M9HQN
12KN93USNR4J2KG

Plaintext Digest

Fig. 12.13 General properties of hash function

Fig. 12.14 Hash function in the password storage
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Fig. 12.15 Block scheme of the MAC usage

the hash for the cleartext password and compares it with the stored one. Since it is
impossible to have two messages with the same hash, the user must have typed the
correct password to login in the system.

A special application is the Message Authentication Code (MAC). In this case
keyed cryptographic functions are used [20–22]. These functions have stringent
security requirements: specifically, even if the attacker is able to generate MACs
for some messages, the attacker cannot guess the MAC for other messages without
performing unfeasible amounts of computations.

The power of the MAC is that it guarantees both data integrity and authenticity
of the message (Fig. 12.15). Moreover, since MACs require the same key for both
receiver and sender, MAC functions are similar to symmetric encryption functions.

Another important usage of the hash function is the digital signature. There are
three reasons to use a digital signature.

1. Authentication: this is the same reason why we sign documents. We want to
authenticate the source of the messages. This is especially true in financial
transactions.

2. Integrity: sender and receiver want to be sure that the message has not been
corrupted during transition, even if it has been encrypted. Since there is no valid
way to change a message without changing its signature, a non-valid signature
detects a corrupted message.

3. Non-repudiation: once we have signed a document, we can’t later deny it.
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Fig. 12.16 Block diagram of the digital signature

Although the discussion is very complex about how to digitally sign a document,
high level blocks are sketched in Fig. 12.16.

First of all, the asymmetric encryption is used. This is because everybody should
be able to decrypt, but nobody could modify the signed document. The hash function
is computed on data. At this point the resulting digest is encrypted using Rino’s
private key, in order to produce the signature. Finally, there is a certificate that binds
the signature to the document so that they can’t be split.

On the receiver side, Alessia reads the signed message and decrypts the digest
using Rino’s public key to obtain the received cleartext digest.

She computes the hash function on the received document and compares the
result with the obtained cleartext digest. If they are equal, she accepts the message
from Rino, otherwise she repudiates it.

12.3 AES

Advanced Encryption Standard (AES), or its variant XTS-AES, is the encryption
system generally used in Solid State Disks. It is an iterative symmetric encryption
method, it supports 128, 192 and 256 bits as key length, and is available worldwide
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on a royalty-free basis. The algorithm was originally proposed by Daemen and
Rijmen (called Rijndael) and it was published in the Federal Register on December
4, 2001 [23].

AES is iterative and the number of iterations (rounds) Nr depends on the key
length: NrD 10 if the key length is 128, NrD 12 if the key length is 192 and NrD 14
if the key length is 256.

AES works on a basic unit called state. Each state consists of a matrix: 4� 4 bytes
in the 128 case, and 4� 8 bytes in the 256 case. We can split the algorithm in two
parts: key generation and core algorithm [24–27].

12.3.1 Key Generator

Every key is split in 32-bit word. We have 8 words in the 256 case. At iteration i
we have 32-bit word as input and 32-bit word as output. The algorithm proceeds as
follows:

1. copy the input over the output;
2. rotate operation to rotate 8 bits to the left;
3. apply S-box to the 4 bytes individually;
4. on the first (leftmost) byte of the output word, XOR the byte with 2(i-1). In other

words, perform the rcon operation with i as the input, and XOR the rcon output
with the first byte of the output word.

As the name may suggest, the rotate operation cyclically shifts bytes to the left:

rotate (B0, B1, B2, B3)D (B1, B2, B3, B0).

The rcon operation is equal to

rcon(i)D xi-1 in GF(28) or rcon(i)D xi-1 mod x8C x4C x3C xC 1 in GF(2).

For example rcon(1)D 1, rcon(4)D 3 and rcon(9)D 27.
Finally, we define the S-box in Fig. 12.17: it indicates a substitution to be made

for each byte combination.
For example: S-box(9c)D de or S-box(f2)D 89.

12.3.2 AES Algorithm Core

Once we have defined how the keys and sub-keys are computed we now describe
the AES algorithm.

• StateD plaintext. Perform the AddRoundKey operation between the state and the
key.

• For each iteration:

– Execute SubBytes
– Execute ShiftRows
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Fig. 12.17 S-box for AES

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

Keys

XOR

Fig. 12.18 Representation of the AddRoundKey operation

– Execute MixColumns
– Execute AddRoundKey
– Execute SubBytes
– Execute ShiftRows
– Execute AddRoundKey

• The resulting ciphertextDState.

The AddRoundKey operation is simply the XOR (Fig. 12.18) between the State
and the subkey obtained at that point using the key generator.
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a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

S-box

Fig. 12.19 Representation
of the SubBytes operation

shift 1

shift 2

shift 3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,0 a0,1 a0,2 a0,3

a1,1 a1,2 a1,3 a1,0

a2,2 a2,3 a2,0 a2,1

a3,3 a3,0 a3,1 a3,2

Fig. 12.20 Representation of the ShiftRow operation

In the SubBytes step, each byte in the state matrix is replaced with a SubByte
using an 8-bit substitution box, the S-box (Fig. 12.19). This operation provides the
non-linearity in the cipher.

The ShiftRow operation operates on the rows of the State. Each byte of the row
is cyclically shifted to the left by some locations. The first row does not shift, the
second row shifts by one location, the third row by two locations and so on and so
forth (Fig. 12.20).

In the MixColumn operation four bytes of each column of the state are combined
using an invertible linear transformation. Together with the ShiftRow operation it
provides diffusion, i.e. non-uniformity of the ciphertext.

Each column is multiplied by a known matrix which is

0
BB@

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

1
CCA

in the 128 case. Multiplication by 1 means no change, multiplication by 2 means
shifting to the left, and multiplication by 3 means shifting to the left and then
performing XOR with the initial unshifted value. After shifting, a conditional XOR
with 0x1B should be performed if the shifted value is larger than 0xFF. This
operation is represented in Fig. 12.21.
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• c(x)

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

Fig. 12.21 Representation of
the MixColumn operation

So far there aren’t any known successful attacks to AES. Especially AES-256 is
considered very secure, because all the operations are studied to mix data and avoid
any linearity or uniformity.

12.4 SSD Security and Applications

As described in Sect. 12.1, SSDs are gaining popularity, but security is a hard matter.
More and more companies build military-grade SSDs, protecting sensitive data from
environmental and human threats. In fact, this is a very important issue in defense
applications or financial applications where sensitive data are treated.

SSD security is so difficult because they are based on industry-standard NAND
Flash chips that were designed for cameras and MP3 players: these memories have
no physical security hooks that prevent them from being removed from enclosures.
A hacker could easily unsolder NAND chips and read data using a standard Flash
programmer. Once raw data are read, corresponding files could be reassembled
using data recovery software.

When the SSD is broken, we want data to be erased or unreadable before
throwing away the SSD. Secure Erase command exists but it has its own drawbacks.
First of all, if the SSD is broken, it could be possible that some blocks become
un-erasable, but a hacker can read back data from those blocks.

In addition there isn’t a mechanism to erase single files, but the entire SSD must
be erased.

The logical-to-physical mapping of SSDs makes files even harder to be com-
pletely erased. In fact, the erase operation is a slow operation in NAND Flash, so
it happens that files are not really erased but just “marked” as erased to avoid a
drop in performance. The problem is that the file-system does not know the real
blocks where data are stored. Logical-to-physical mapping is managed by the Flash
controller inside the SSD. In other words, it’s like saying that the file-system hasn’t a
full control on the block locations. In this context, the most common way to increase
security is encryption, and it must be done within the SSD itself.



354 A. Marelli and R. Micheloni

Here is what happens. Data are input by the host, encrypted by the Flash
controller, and then stored in NAND. During read operation, data are read from
NAND, decrypted and output to the host. Encryption and key generation are
completely transparent to the host. In this way, when we want to make data
unreadable, it is enough to erase the locations where keys are stored. This location
can be a NAND block or a RAM block in the Flash controller.

As already pointed out, AES-256 or the XTS-AES-256 are generally used in
SSDs. The firmware running on the Flash controller sets the first key; following
keys are computed by the key generator described in Sect. 12.3. All the keys are
stored in specific NAND blocks.

Finally, we can state that encryption is the first step to secure data on SSDs, and
the sooner we use it the more secure system we have. While it is easy to encrypt
data already stored on a HDD, because we can re-write encrypted data in the same
locations, this is not so easy with SSDs. NAND storage doesn’t allow to re-write
data on the same locations: actually, encrypted data are stored in different locations
(logical-to-physical mapping). At the end of the day, encryption must be activated
when the device is fresh in order to secure data from external attacks.
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Chapter 13
Flash Signal Processing and NAND/ReRAM
SSD

K. Takeuchi

Abstract The widespread use of NAND Flash memories in SSDs has unleashed
new avenues of innovation for the enterprise and client computing. System-wide
architectural changes are required to make full use of the advantages of SSDs in
terms of performance, reliability and power. Signal processing technologies are
becoming more and more popular to countermeasure all the parasitic effects of a
Flash NAND array: the first part of this chapter deals with such techniques.

On the other side, the emerging storage class memories (SCM) such as PCRAM,
FeRAM, ReRAM and MRAM are becoming a viable alternative to commonly used
volatile and nonvolatile memories. Being bit-alterable like DRAM and nonvolatile
like a Flash memory, together with CMOS-process compatibility, these non-volatile
random access memories have a potential to revolutionize various aspects of
the computing platform architectures. A 3D TSV-integrated SSD with hybrid
memory configuration which uses storage class memories (SCMs) and NAND
Flash memories is a promising solution for the future memory system. This chapter
describes the signal processing technologies and data management which realizes
the high speed operation, low power consumption and high reliability of the SCM
and NAND Flash integrated hybrid SSDs.

13.1 Error Prediction (EP) LDPC [1]

As the design rule shrinks, the floating gate (FG)-FG capacitive coupling among
neighboring memory cells seriously degrades the memory cell reliability [2].
To enhance the error correction capability, an LDPC ECC is proposed for 1X nm
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Fig. 13.1 Comparison of the conventional and the EP-LDPC ECC. EP-LDPC realizes the higher
reliability with the minimum sequential read cycles. The best reliability is achieved by calibrating
the memory cell information based on the VTH, the inter-cell coupling, the write/erase cycles and
the data retention time

Flash memories instead of the Bose-Chaudhuri-Hocquenghem (BCH) ECC [3].
In the 2 bit/cell, 3 reference voltages (Vref) are needed for the BCH (Fig. 13.1a).
The conventional LDPC requires many, e.g. 21 [4], Vref to get accurate VTH

information (Fig. 13.1b). The inter-cell coupling is also considered to calibrate the
interference [5].

However, the increase in Vref number requires more sequential read cycles.
Assuming 50 �s cell read time and 21 Vref, the read access time is as much as
1050 �s. In case of the 3 bit/cell or 4 bit/cell, the read access time increases by
twice or five-times, which is unacceptably long.

To realize both fast read and high reliability, the error prediction LDPC
(EP-LDPC) utilizing only 3 Vref can be used (Fig. 13.1c).

The read is 7-times faster than the conventional LDPC. The EP-LDPC corrects
errors most effectively because in addition to the VTH and the inter-cell coupling,
the write/erase cycles (NW/E) and the retention time (TRetention) are considered for
the calibration. Figure 13.2 shows the hardware architecture of the SSD. The
error prediction sequence is realized with the simple logic gates in the NAND
controller. The additional NAND controller circuit area to the conventional LDPC
is negligibly small.

The key technology to realize the EP-LDPC is to estimate TRetention by measuring
errors and referring to the pre-recorded tables. During the program, the number of
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Fig. 13.2 Hardware architecture of SSD with EP-LDPC and error recovery scheme. Memory cell
errors are corrected with the EP-LDPC. If the error correction fails, the proposed error recovery
sequencer decreases the memory cell errors by applying the error recovery pulses

“1”s in the initial lower page write-data (N“1”initial) is counted and added to the user
data. During the read, the error prediction unit estimates the bit-error-rate (BER)
by referring to the pre-recorded tables. These tables are stored in a Flash memory
during the test process before shipment. The estimated BER is transferred to the
LDPC decoder. If the error correction succeeds, the corrected data are output to the
host. If the error correction fails, the error recovery (ER) scheme reduces errors.
After the errors are recovered, the error correction is performed again.

Figure 13.3 shows the algorithm of the EP-LDPC.
Figure 13.4 shows the measurement results. The EP-LDPC during the sequential

read consists of 5 steps. In Step1, the number of “1”s (N“1”) in the lower page is
counted (N“1”measured). To secure the high reliability, triplicated N“1” data are stored
with BCH ECC because the EP-LDPC is not performed for N“1”. In Step2, the
BER of the lower page (BERLower) is estimated from jN“1”measured – N“1”initialj/NP.
NP denotes the page size. In lower pages, the data retention error increases N“1”

because the electron ejection from FG decreases the VTH [6]. On the other hand, in
the program disturb error, the electron injection to FG increases the VTH and N“1”

decreases [7]. For the worst-case maximum BER which requires the powerful ECC,
two scenarios are considered where the program disturb error or the data retention
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Fig. 13.3 Calculation algorithm of the EP-LDPC. BER is estimated with a simple logic by
referring to the pre-recorded TRetention table and EP table instead of increasing the number of Vref.
The memory capacity to store the EP table with 34 bit accuracy for each BER is 267 kByte, which
is negligibly small compared with the overall SSD capacity, 512 GByte

error dominates. When jN“1”measured – N“1”initialj is close to 0, the shift of the VTH due
to the program disturb and the data retention are compensated and the BER becomes
smaller, which does not require a strong ECC.

In Step3, the data retention time TRetention is estimated by BERLower, NW/E, and
the TRetention table. The TRetention table represents the relation among BERLower, NW/E,
and the data retention time. In Step4, the inter-cell coupling is estimated from
TRetention and the pre-recorded EP table which stores the dependence of the target
cell BER on the neighboring cell data. In Step5, the BER of each data is estimated
from the inter-cell coupling with the target and neighboring cell VTH data read from
the Flash memory. After that, the LDPC decoding is applied. The corrected data is
finally output to the host if the decoding is successful. The error recovery sequence
is applied if the decoding fails. In the real-world failure, various effects happen at
once. The capacitive interference increasing the VTH and the data retention failure
decreasing the VTH occur simultaneously. Moreover, the VTH shift due to the data
retention strongly depends on NW/E and TRetention. The proposed scheme is most
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Fig. 13.4 Measurement results of the EP-LDPC

efficient because these various effects are considered by estimating TRetention and
using different EP table values for each NW/E and TRetention.

Figure 13.5 shows the measured reliability improvement. n-bit codeword consists
of k-bit user data and (n-k)-bit parity. The code rate (CR) is defined as k/n. The
lower code rate corrects more errors. Figure 13.5a shows the SSD lifetime at 85ıC.
The measured lifetime is extended by 11-times and 2.8-times when the CR is
2/3 and 9/10, respectively. The acceptable BER increases by 3.7-times and 1.8-
times (Fig. 13.5b), and the acceptable NW/E improves by 1.6-times and 1.5-times
(Fig. 13.5c) when the CR is 2/3 and 9/10, respectively. These measured results
demonstrate that the EP-LDPC is more effective for the smaller CR and thus is
more useful for the future reliability degraded Flash memories.
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Fig. 13.5 Measured reliability improvement with the proposed EP-LDPC. With the proposed
architecture, over 10-times longer SSD lifetime, 3.7-times higher acceptable BER, and 1.6-times
higher acceptable W/E cycles are realized

13.2 Error Recovery Scheme [1]

Figure 13.6 describes the error recovery scheme. First, the error mode is determined
to the program disturb or the data retention error. The error mode depends on the
location of memory cell (word-line number), NW/E and TRetention. If the program dis-
turb error is dominant (N“1”measured<N“1”initial), the program disturb error recovery
pulse (PDRP) is applied to the memory cells. In the case of N“1”measured>N“1”initial,
the data retention error is dominant and the data retention error recovery pulse
(DRRP) is applied to the memory cells. The error recovery mechanism is illustrated
in Fig. 13.6a. Electrons at the interface between control gate (CG) and inter-poly
dielectric (IPD) are de-trapped with PDRP. PDRP decreases the VTH and improves
the program disturb error. With DRRP, electrons are injected into the floating gate.
DRRP increases the VTH and mitigates the data retention error.

Figure 13.6b shows the measured program disturb BER vs. the time after PDRP.
The BER with PDRP converges to the BER without PDRP in 200 ms. This
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Fig. 13.6 Error recovery (ER) scheme and the measured results. The error reduction pulse is
applied to the memory cells only when the error correction fails. If N“1”measured is smaller
or larger than N“1”initial, the memory cell errors are dominated by the program disturb or the
data retention errors, respectively. The program disturb error is reduced by 76% with the program
disturb error recovery pulse (PDRP). The data retention error de-creases by 56% with the data
retention error recovery pulse (DRRP)

convergence implies that because the electrons are easily re-trapped, the de-trapping
is from the interface between CG and IPD and not from the inside of IPD as
reported [4].

The ECC is performed for data just after PDRP is applied. The PDRP realizes
76% recovery of the program disturb error (Fig. 13.6c). The data retention BER is
recovered by 56% with 500 times DRRPs (Fig. 13.6d).

Figure 13.7 depicts the photograph of the measured SSD system. The gate count
of the LDPC ECC in the NAND controller is similar to the conventional LDPC [8]
and is twice as large as the BCH ECC. By using sophisticated analog-digital mixed
logic, the circuit size of the LDPC decoder can be reduced by one-tenth [9]. The
SSD lifetime is extended by over 10-times compared with the conventional BCH.
The read is 7-times faster than the conventional LDPC. The error recovery scheme
realizes 76% program disturb error recovery and 56% data retention error recovery.
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Fig. 13.7 Photograph of the measured SSD system. The EP-LDPC scheme realizes the high
reliability with the minimum sequential read cycles. The error recovery scheme reduces the
memory cell error by 56–76%

13.3 3D TSV-Integrated Hybrid ReRAM/MLC
NAND SSD [10]

There is a growing demand for a high performance, highly reliable and low
power SSD. A 3D TSV-integrated SSD with hybrid memory configuration which
uses storage class memories (SCMs) and NAND Flash memories is a promising
solution. Among various SCMs, ReRAM is the best candidate due to its high
speed, low power operation and potentially high scalability [11, 12]. This section
describes detailed specifications for the ReRAM and architecture for the hybrid
SSD. Requirements for the ReRAM in the 3D TSV-integrated hybrid ReRAM/MLC
NAND SSD are clarified. Suitable SSD data management algorithms are also
described and the SSD performance, energy and endurance are evaluated.

ReRAM specifications are discussed. First, I/F (interface) specifications are
discussed. The block diagram of the SSD is shown in Fig. 13.8a.

The ReRAM uses NAND-like I/F. Figure 13.8b shows the physical image of the
SSD with TSVs. The reasons for adopting NAND I/F to the ReRAM are shown in
Fig. 13.9d). The set/reset characteristics of 50 nm ReRAM cells are measured. The
set pulse is 50 ns wide and 2 V high (Fig. 13.9a).

Figure 13.9b is the measured program/erase (P/E) cycles of a ReRAM cell
without write verification. The cell fails at less than 100 program/erase (P/E) cycles.
By using the write verification (Fig. 13.9c), more than 106 P/E cycles are achieved.
Figure 13.9d shows the verification cycles performed in Fig. 13.9c. In fact, multiple
verifications rarely occur but can be more than 10 times in the worst case. This
means that the strict worst latency definition used in a DRAM I/F is not suitable
for ReRAM. Moreover, the limited P/E cycles in ReRAM require logical-physical
address translation and wear leveling tables in the SSD controller. The overhead for
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Fig. 13.8 (a) Block diagram of the 3D TSV–integrated hybrid ReRAM/MLC NAND SSD.
ReRAM uses NAND-like I/F. (b) Physical image of the SSD

Fig. 13.9 (a) Measured set pulse of the 50 nm ReRAM. (b) Measured ReRAM P/E cycles without
verify. (c) Measured ReRAM P/E cycles with verification. (d) Verification cycle performed in (c).
Reset pulse is -2 V, 20 ns



366 K. Takeuchi

Table 13.1 SLC/MLC NAND and ReRAM specifications

SLC/MLC NAND ReRAM

Read latency (Max.) 85us/page <3 �s/sector
Write latency (Typical) Lower page 400 �s (SLC)

Upper page 2,800 �s
(Set/Reset) <3 �s/sector

Erase latency (Typical) 8,500 �s/block Unnecessary
I/O: Toggle/ONFi DDR 400 MHz 1,066 MHz
VDD (Core/I/O) 3.3 V/1.8 V 1.8 V/1.2 V
Access unit Page (16 KiB) Sector (512 B)
Partial write/overwrite Impossible (erase required) Possible
Required endurance 3� 103 105

Fig. 13.10 Partial write or
overwrite policy of the
SLC/MLC NAND and
ReRAM

referring these tables also makes ReRAM difficult to use byte-accessible DRAM
I/F. On the other hand, polling (Ready/Busy status), which is used in NAND I/F,
allows a variable access time. Therefore, NAND-like I/F is suitable for the ReRAM
because the write latency increases with verification.

Secondly, the overwrite policy is discussed. One of the critical issues in SSDs is
the data fragmentation due to random writes [13]. Table 13.1 summarizes the single-
level-cell (SLC) NAND, MLC NAND and ReRAM specifications. Since NAND
Flash memory writes in a page unit (16 KB) and erases in a block unit (4 MB),
overwrite is not allowed. Therefore, a random overwrite with size less than a page
(partial overwrite) requires 1-page read from the old page and 1-page write to a new
page as shown in Fig. 13.10. Then the old page is invalidated. Thus, frequent random
overwrites create many invalid pages. As a result, serious performance, power and
reliability degradation are induced due to the increase of block copy which takes
more than 100 ms [14].
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Fig. 13.11 Anti-fragmentation (AF) algorithm. (a) Introduction of used sector flag table (USFT)
and page utilization ratio R. (b) AF algorithm. (c) Dynamic RTH control. RTH decreases when free
ReRAM region decreases to evict more data to MLC NAND

On the other hand, the ReRAM access unit is a sector (512B) and partial
overwrite is possible. The fragmentation problems can be solved by the suitable
hybrid SSD architecture and data management algorithms, which are presented in
the next section.

13.3.1 Data Management Algorithms [10]

Three data management algorithms are described for the 3D hybrid SSD. The key
idea is to store hot fragmented data less than the page size to ReRAM and use
MLC NAND for sequential data. Two key concepts are introduced as shown in
Fig. 13.11a. The used sector flag table (USFT) located in the SSD controller stores
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information of the used logical sector address (LSA). A flag bit is prepared for each
LSA. If the LSA is used, its used sector flag is switched to 1, otherwise 0. By using
USFT, page utilization ratio R is calculated. R is a ratio of the number of used
LSAs to the number of total sectors in a page. For instance, the page size is 4 KB.
A page has three used LSAs in the logical page address (LPA) 0 in Fig. 13.11a. Then,
RD 3/(4 KB/512 B)D 3/8D 0.375. Here, the sector size is 512 B. The overhead of
USFT is only 0.02% of the total SSD capacity.

First, the anti-fragmentation (AF) algorithm is described in Fig. 13.11b. When
write request is received from a host, USFT of the target LPA is updated. The
used sector flags of the newly used LSAs are turned to 1. Then R is calculated
and evaluated. If the R is larger than the threshold value RTH, the data are written
to MLC NAND as a non-fragmented page. Otherwise, it is written to ReRAM as a
fragmented page. Therefore, only fragmented pages are written in ReRAM.

The MLC NAND data fragmentation due to small data write accesses is avoided.
Afterwards, as data accumulates in the ReRAM, page data in ReRAM become not
fragmented. When R becomes higher than RTH, the data is evicted from ReRAM
to MLC NAND. To avoid ReRAM overflow as well as make full use of the limited
ReRAM capacity, dynamic RTH control is used (Fig. 13.11c). When ReRAM free
region decreases, RTH also decreases to enhance data eviction.

Second, to increase the performance boost of AF, Most-Recently-Used (MRU)
algorithm is proposed (Fig. 13.12). LPAs of the write request from the host are
stored in a MRU table in a FIFO order. The algorithm first evaluates R as AF.

However, if R�RTH, MRU table is searched instead of storing the write data to
MLC NAND. If the write LPA is found in the MRU table, the data go to ReRAM.
If not, the data is stored in MLC NAND.

The SSD performance is significantly enhanced because hot page data are always
kept in ReRAM even when the data are not fragmented.

Finally, reconsider-as-a-fragmentation (RAAF) algorithm is proposed. This al-
gorithm suppresses overwrites to the MLC NAND after the data eviction from
ReRAM to MLC NAND. As shown in Fig. 13.13, once data are evicted from
ReRAM to MLC NAND, R is permanently greater than RTH. The data stay in MLC
NAND.

However, a page in MLC NAND can become hot even after the data eviction.
As a result, small data overwrites could frequently occur to the page of MLC NAND.
This induces data fragmentation again in MLC NAND. To solve this problem,
RAAF is proposed to store back the data from MLC NAND to ReRAM. In this
scheme, the target LPA USFT is reset to 0 when the data are written to the MLC
NAND. Small size overwrite to the MLC NAND page is recognized as fragmented
data again. Thus, AF works again to store hot small data in ReRAM. Note that
actual page data written back to the ReRAM must maintain data consistency.
The target page data are read out from MLC NAND to the SSD controller and
merged with the new overwrite data. Then, the newly merged data are written to
ReRAM.
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Fig. 13.12 Most-Recently-
Used (MRU) algorithm.
Recently accessed LPAs are
stored in the MRU table.
The frequently written hot
data permanently stays in
ReRAM

13.3.2 Performance, Power and Reliability [10]

The 3D hybrid NAND SSD is evaluated. A TLM (Transaction Level Modeling)-
based SSD emulator that can comprehensively simulate performance, energy
consumption and P/E cycles has been developed. The profile of the write data input
obtained from a financial server [15] is shown in Fig. 13.14.

For comparison, conventional MLC NAND and hybrid SLC/MLC NAND SSDs
are also evaluated. SLC NAND is used instead of ReRAM.

The results for the write performance, write energy and average P/E cycles are
shown in Fig. 13.15. Compared with the conventional MLC NAND SSD, the SSD
with AF, MRU and RAAF algorithms shows 11 times higher performance and 79%
lower write energy (Fig. 13.15a, b). By using 3D TSV interconnects, the I/O energy
is reduced by 27 times because the huge capacitance of the wire bonding is almost
eliminated. As a result, the total SSD energy reduction reaches 93%.

The speed and power overhead of the USFT reference are negligibly small.
Furthermore, the slope of the average MLC NAND P/E cycles is decreased by 6.9
times in Fig. 13.15c by the SSD. This directly corresponds to a reduction in the
replacement cost of a SSD storage system because the slope determines the aging
speed of the SSD.
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Fig. 13.13 Reconsider-as-a-fragmentation (RAAF) algorithm. The data evicted from ReRAM to
MLC NAND is stored back to ReRAM
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Fig. 13.14 Distribution of
the write data size used in the
SSD evaluation [15]

Although the MLC NAND P/E cycles of the SLC/MLC NAND SSD also
decreases by the algorithms, the slope of the P/E cycles of the SLC NAND become
250 times of that of the MLC NAND, which is unacceptably high. This is because
serious data fragmentation is induced in the SLC NAND. The frequent block copy
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Fig. 13.15 (a) Write performance, (b) write energy and (c) average P/E cycles of the evaluated
SSDs. The horizontal axis for (a) and (c) is the data size written to the SSD normalized by the SSD
MLC NAND total capacity. P/E cycles for SLC NAND and ReRAM use AFCMRUCRAAF.
100 ns/sector is assumed for the ReRAM write and read latency

of SLC NAND degrades the performance and the energy to the level of MLC only
SSD. In ReRAM, such a data fragmentation does not occur because the partial
overwrite is possible. As a result, the slope of the ReRAM P/E cycles is limited to
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Fig. 13.16 Comparison of the SSD valid page location

Fig. 13.17 (a) Write performance and (b) write energy of the proposed SSD with various ReRAM
write and read latency. AFCMRUCRAAF is used

28 times of that of the MLC NAND in the SSD. Assuming MLC NAND endurance
of 3� 103, the required P/E cycles for ReRAM is less than 105, which is acceptable
for the ReRAM device characteristics.

Figure 13.16 shows the valid page map of the conventional and proposed SSD.
The valid pages are scattered in the conventional SSD indicating that frequent
overwrites have occurred to the MLC NAND.

On the other hand, the hybrid SSD efficiently uses ReRAM and shows less
fragmentation of MLC NAND because overwrites to MLC NAND are suppressed.

The required ReRAM latency to obtain sufficient improvements by the pro-
posed algorithm is also investigated. Figure 13.17 show the proposed SSD write
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Table 13.2 Summary of the 3D TSV-integrated hybrid ReRAM/
MLC NAND SSD

performance and energy as a function of the ReRAM write latency. ReRAM read
latency is also varied. From the figures, both ReRAM write and read latency
should be less than 3 us to maintain high performance and low power operation.
Considering 50 ns write pulse, the 3 us access is achievable for ReRAM in write
verify operation.

Table 13.2 summarizes the hybrid SSD. The proposed 3D hybrid SSD shows 11
times higher performance, 93% lower write energy and 6.9 times higher endurance.

13.4 Conclusions

In this chapter, the signal processing technologies which realizes the high speed
operation, low power consumption and high reliability of the SCM and NAND Flash
integrated hybrid SSDs are described. First, an error prediction (EP) low density
parity check (LDPC) error correcting code (ECC) is described which realizes an
over 10-times extended lifetime without access time penalty. Errors are efficiently
predicted by the write/erase cycles, data retention time and the neighboring cell data.
Second, an error recovery (ER) scheme is discussed, which decreases the program
disturb error and the data retention error by 74 and 56%, respectively. When the
ECC cannot correct errors, the ER scheme can temporarily recover the failures.

Finally, a 3D TSV-integrated hybrid ReRAM/MLC NAND SSD architecture has
been proposed. Data fragmentation of MLC NAND is suppressed and efficient MLC
NAND usage is realized by storing small hot data to ReRAM using the proposed
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SSD data management algorithms. The proposed 3D TSV hybrid SSD realizes
11 times performance increase, 6.9 times endurance enhancement and 93% write
energy reduction from the conventional MLC NAND SSD. Moreover, 68% energy
reduction is achieved by the 3D-TSV interconnects. ReRAM specifications are also
proposed. NAND-like ReRAM I/F, sector-access overwrite policy are necessary.
Both ReRAM write and read latency should be less than 3 us and required endurance
for ReRAM is 105.
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