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Preface

This is the second volume of the book series of Sciences of Geodesy. This series of
reference books describes different, but complementary fields involving geodesy in
seven chapters. Each chapter describes the history, theory, objectives, technology,
development and highlights of the research and applications of the individual field.
In addition, challenges and future directions are discussed. The subjects covered
by this reference book include Computation of Green’s Functions for Ocean Tide
Loading, General Relativity and Space Geodesy, Global Terrestrial Reference
Systems and their Realisations, Photogravimetry, Regional Gravity Field Model-
ling, Regularisation and Adjustment, and Very Long Baseline Interferometry for
Geodesy and Astronomy.

The first volume in this series contains chapters that detail the subjects:
Absolute and Relative Gravimetry, Adaptively Robust Kalman Filters with
Applications in Navigation, Airborne Gravity Field Determination, Analytic Orbit
Theory, Deformation and Tectonics, Earth Rotation, Equivalence of GPS Algo-
rithms and Its Inference, Marine Geodesy, Satellite Laser Ranging, Supercon-
ducting Gravimetry and Synthetic Aperture Radar Interferometry.

The above mentioned fields cover the most active areas related to geodesy.
These individual subjects are, for the first time, combined in a two-volume series
thereby providing a comprehensive overview of the multi-disciplinary nature of
geodesy. The series serves as a reference for teaching and learning the basic
principles of many subjects related to geodesy. The material is suitable for high-
level geodetic researchers, educators as well as engineers and students. Some of
the chapters are written to fill voids in the current literature of the related areas.
Most chapters are written by international scientists, well known in their specific
field of expertise.

The chapters are arranged in alphabetical order of their titles. Summaries of the
individual chapters and introductions of their authors and co-authors are as
follows:

Chapter 1 “Computation of Green’s Functions for Ocean Tide Loading”
describes the theory and the methods of the point load problem for a radially
symmetric, elastic Earth. A researcher or Ph.D. student who wants to learn more
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about this classic topic will find in this chapter a good starting point where all
assumptions are clearly explained and where enough details are given to imple-
ment the equations into a computer program. First, the differential equations for
the gravitational elastic deformations are derived from first principles. Then the
boundary conditions to solve these equations are presented, and analytical solu-
tions and numerical values of Love numbers for two simple Earth models are
discussed. This chapter also contemplates the problem related to periodic loading
of a model Earth with a fluid core as the period goes to infinity, the so-called
Longman paradox. The degree-1 deformation, the centre-of-mass centre-of-ref-
erence problem, receives special attention. Next, several numerical methods to
solve the equations are explained. Finally, the formulas for computing Green’s
functions are listed.

The author and co-authors of Chap. 1 are Dr. Machiel Bos and Dr. Hans-Georg
Scherneck.

Machiel Bos studied Aerospace Engineering at Delft University of Technology,
The Netherlands. After his graduation in 1996 he performed his Ph.D. research at
Proudman Oceanographic Laboratory, Liverpool, United Kingdom. In 2001 he
spent 7 months as postdoc at Onsala Space Observatory, Sweden. From 2001 to
2003 he worked as a postdoc at the Faculty of Geodesy of Delft University of
Technology. From 2003 to 2008 he held a postdoc position at the Astronomical
Observatory of Porto, Portugal and since 2008 he has been working at CIIMAR
(Centre of Marine and Environmental Research of the University of Porto). His
scientific interests include ocean tide loading, GPS time-series analysis and the
geoid.

Hans-Georg Scherneck studied Physics and Geophysics at J. W. Goethe
University in Frankfurt/M., Germany. He received a Ph.D. degree in geodesy from
Uppsala University in 1986. In 1993 he joined the Department of Earth and Space
Science at Chalmers University of Technology, Gothenburg, Sweden. He holds a
Docent degree (associate professor) in geodynamic measurement techniques and
occupies a position as a Lecturer. His major research interests are the use of
gravity and space geodetic techniques in application to solid earth deformation,
most prominently Glacial Isostatic Adjustment.

Chapter 2 “General Relativity and Space Geodesy” introduces the general and
special relativity theory as it is applied to space geodesy. Section 1 sketches some
basic implications of GRT for space geodesy and the need to incorporate GRT in
all high accuracy space geodetic applications. Section 2 discusses GRT implica-
tions for satellite laser ranging, specifically the Shapiro delay and accelerations as
described by the Schwarzschild field, Lense-Thirring precession (frame dragging)
and de Sitter (geodesic) precession. A short discussion on using SLR to test the
effects of GRT is included and Sect. 2 is concluded with sections on lunar laser
ranging and interplanetary laser ranging. Special and general relativity theory
considerations for GPS are discussed in some detail in Sect. 3, including reference
frame issues, effects on GPS satellites’ clocks and how GRT corrections are
incorporated. Section 4 consists of a short overview of VLBI estimates of
parameterised post-Newtonian parameter Gamma.
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The author of Chap. 2 is Dr. Ludwig Combrinck of the Hartebeesthoek Radio
Astronomy Observatory (HartRAO) located near Krugersdorp, South Africa, a
facility of the National Research Foundation (NRF). Ludwig Combrinck was
awarded a Ph.D. by the University of Cape Town in 2000; his thesis focussed on
GNSS applications for precise positioning. He is responsible for the Space
Geodesy Programme at HartRAO, which includes the NASA satellite laser ranging
station, MOBLAS-6. In 2009 he was appointed as Professor-extraordinaire at the
University of Pretoria. His main research interests currently include applications of
space geodetic techniques, specifically related to tests of general relativity theory,
reference frame development for Africa and the development of a new high
accuracy satellite and lunar laser ranger for South Africa. His diverse interests in
the applications of space geodesy have resulted in the establishment of geodetic
stations throughout Africa, Marion Island and Antarctica, in collaboration with
international partners.

Chapter 3 is entitled “Global Terrestrial Reference Systems and their Real-
izations”. It is organised in six parts. In Sect. 1 the authors give an introduction
and address the key role of geodetic reference systems and frames for measuring
the surface structure, the rotation and the gravity field of the Earth along with its
variations in time, which is a prerequisite for Earth system studies and for the
monitoring of physical processes of global change. The next section provides some
basic concepts and fundamentals for the definition and realisation of reference
systems. Section 3 deals with the International Terrestrial Reference System
(ITRS), its definition and the conventional modelling of station positions and
displacements of reference points, which materialise the system. The next two
sections focus on its realisation, the International Terrestrial Reference Frame
(ITRF), which is the key topic of this chapter. Thereby Sect. 4 provides some
general information and gives an overview about the history and the latest
developments in the field of global terrestrial reference frame realisations.
Section 5 deals with the latest realisation, the ITRF2008, which has been computed
from a combination of time series of station positions and Earth orientation
parameters from VLBI, SLR, GPS and DORIS observations. In the last section, the
present status of the terrestrial reference frame computations is discussed and
challenges for future improvements are provided.

The author and co-authors of Chap. 3 are Dr. Detlef Angermann, Dr. Manueal
Seitz and Prof. Dr. Hermann Drewes.

Detlef Angermann has been senior research scientist at Deutsches Geoditisches
Forschungsinstitut (DGFI) in Munich since 1999. He graduated in geodesy from
University Hannover in 1985 and received his Ph.D. from Technical University in
Berlin in 1991. He occupied the following positions: Scientific Assistant at
Technical University in Berlin (1985-1990); research scientist at DGFI
(1990-1992); senior scientist at GeoForschungsZentrum (GFZ) Potsdam
(1992-1999); senior scientist at DGFI (since 1999), where he has been head of the
research field “Earth system observations” since 2002. Major areas of scientific
interests are GNSS and SLR data analysis for geodetic research and geodynamics,
the combination of space geodetic techniques and the realisation of geodetic
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reference systems. He served as chair and as a member in various sub-commis-
sions and working groups of the International Association of Geodesy (IAG) and
as a principal investigator of various research projects at DGFI. In 2009, he was
nominated as the Secretary of the GGOS Bureau for Standards and Conventions
and took over the responsibility of the Director in 2011.

Manuela Seitz studied Geodesy at the Technische Universitidt Dresden (TUD).
After her graduation in 2001 she joined the Deutsches Geoditisches Forschungs-
institut (DGFI) in Munich, where she collaborated on various projects in the field of
combination of space geodetic techniques for the realisation of reference systems.
She developed strategies for the realisation of the International Terrestrial Reference
System (ITRS) on the basis of normal equations for which she obtained her doctorate
from TUD in 2008. In addition to her research activities she was strongly involved in
the computation of the DGFI solution of the International Terrestrial Reference
Frame ITRF2005 and was responsible for the computation of the recent realisation
DTRF2008. Her main scientific interests are the global as well as regional realisation
of the ITRS as well as the consistent realisation of terrestrial and celestial reference
systems. Her focus of attention also comprises the development of combination
strategies for the generation of other combined geodetic products, e.g., Earth
orientation parameter or tropospheric parameter series.

Hermann Drewes is the Secretary General of the IAG and the past Director of
the German Geodetic Research Institute (Deutsches Geoditisches Forschungsin-
stitut, DGFI), Munich, Germany. He graduated (Dipl.-Ing.) and received his
doctor’s degree (Dr.-Ing.) from Technische Universitit Hannover, Germany,
where he worked as assistant professor and chief engineer. From 1977 to 1979 he
was a professor at Universidad del Zulia in Maracaibo, Venezuela. His scientific
work concentrated at that time on precise gravimetry and geoid determination.
In 1979 he moved to DGFI and changed the field of research to geodynamics and
geodetic reference systems. In parallel he got a lectureship at Technische
Universitdt Miinchen (TUM) and at Universitit der Bundeswehr, Miinchen.
In 1994 he became the Director of DGFI and received an honorary professorship at
TUM. From 1995 to 2003 he was at first the Secretary and then the President of the
TAG/COSPAR Commission on Space Techniques for Geodesy and Geodynamics
(CSTG), and from 2003 to 2007 the President of the IAG Commission on Ref-
erence Frames. Since 1994 he has been the TAG representative to the Sistema de
Referencia Geocéntrico para las Américas (SIRGAS), and since 2003 the repre-
sentative of IUGG to the Pan-American Institute for Geography and History
(PAIGH). In 2007 he became the IAG Secretary General. In the same year he was
awarded the Order of Merit of the Federal Republic of Germany.

Chapter 4 “Photogrammetry” gives an overview about the methods and appli-
cations of aerial photogrammetry, focusing on those for geoinformation acquisition.
After a short introduction in Sect. 1, three sections follow: Image Acquisition, Image
Georeferencing and Image Processing. Large format analogue and digital aerial
cameras are described in Sect. 2, as well as the aspects to consider when planning a
photo flight. Section 3 deals with several strategies for establishing a georeference for
aerial images considering the cases of frame and line scanner images. Spatial
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resection, ground and GNSS supported triangulation and GPS/IMU supported photo
flights are presented in this section. Section 4 describes the most important photo-
grammetric products and how they are obtained today: line maps, 3-D elevation
models, 3-D urban models, orthophotos and realistic virtual models.

The author of Chap. 4 is Prof. Dr. Paula Redweik. She is an Assistant Professor
at the Faculty of Sciences of the University of Lisbon, Portugal, in the Department
of Geographic Engineering, Geophysics and Energy. She is also a researcher at the
Centre of Geology of the same faculty. After obtaining a B.Sc. in Mathematics in
1983 and a degree in Geographic Engineering from the University of Lisbon in
1985, she worked as a researcher in the Institut fiir Photogrammetrie und
Ingenieurvermessungen (IPI) of the University of Hannover, Germany, where
during 1993 she obtained a Ph.D. in Photogrammetry. Since 1993 she has been
responsible for the education in photogrammetry in several bachelor and master
courses at the University of Lisbon; currently, she is the coordinator of the Geo-
graphic Engineering bachelor course. She worked in projects for modelling coastal
retreat and has supervised M.Sc. theses and co-supervised Ph.D. theses in this
subject. She is co-author of one book (two volumes) about topography and several
papers on different applications of photogrammetry.

Chapter 5 “Regional Gravity Field Modeling: Theory and Practical Results”
gives an overview of high-precision gravity field modelling on a provincial to
national and continental scale. In this context, the geoid and quasigeoid are of
major interest, e.g., for the transformation between the purely geometric GNSS
(Global Navigation Satellite System) ellipsoidal heights and physical heights
in geodesy, for the modelling of dynamic ocean topography, as well as for
geophysical applications, requiring accuracies at the level of about 1 cm or even
below. After the motivation, some fundamentals of physical geodesy are provided,
including reference systems, basic gravity field properties, the geoid and height
systems, the normal gravity field, as well as some remarks about temporal gravity
field variations, tidal systems and atmospheric effects; the intention of this section
is to provide the basics for regional gravity field modelling with as few approxi-
mations as possible. The next section covers the methodology of gravity field
modelling, where the disturbing potential is the primary quantity of interest; in
particular, geodetic boundary value problems, the linearisation of the boundary
conditions (observation equations), the spherical and constant radius approxima-
tions and the associated classical integral formulas of Poisson, Hotine and Stokes,
solutions of Molodensky’s and Stokes’s boundary value problem, the spectral
combination approach, least squares collocation, astronomical leveling, as well as
the remove-compute-restore technique are described, the latter providing the basis
for regional computations. The subsequent section gives some practical results
related to the European geoid and quasigeoid calculations carried out at the Institut
fir Erdmessung (IfE), Leibniz Universitdt Hannover (LUH), Germany; the data
requirements, the collected gravity field data sets and the development and eval-
uation of the European Gravimetric (Quasi) Geoid model EGG2008 are discussed.
Finally, a short summary of the results and an outlook are given.
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The author of Chap. 5 is Dr. Heiner Denker, a senior scientist employed at the
Leibniz Universitit Hannover (LUH), Germany. His major areas of scientific
interest are regional and global gravity field modelling (especially geoid and
quasigeoid), including the combination of terrestrial and satellite data, vertical
reference systems and height determination, as well as geodynamics research.
Heiner Denker graduated in 1984 from Universitdt Hannover (now LUH) and
received a Ph.D. in 1988, also from Universitit Hannover. In 1989 he was
employed as a researcher at The Ohio State University, Columbus, U.S.A., where
he investigated the global analysis of satellite altimeter data for dynamic ocean
topography estimation. At the end of 1989, Heiner Denker returned to Universitit
Hannover on a permanent position, where he specialised in gravity field modelling
and has given lectures since 1996, covering the areas of physical geodesy, advanced
physical geodesy, geometric geodesy and signal analysis. Since 1990, Heiner
Denker has been responsible for the computation of the geoid and quasigeoid in
Europe, a task supported by the International Association of Geodesy (IAG)
in different ways, presently as IAG Sub-Commission 2.4a “Gravity and Geoid in
Europe” (Chair: H. Denker). Furthermore, he chaired an IAG Special Study Group,
has been a member of several special study groups as well as the advisory boards of
some IAG bodies, and since 2008 he has served as Associate Editor for “Geodetic
Theory and Applications” of the scientific journal “Marine Geodesy”.

Chapter 6 “Regularization and Adjustment” consists of two parts. The first part
focuses on regularised solutions for ill-posed problems, while the second provides
an overview of the adjustment theory. Following a brief introduction in the first
part of the chapter, unstable and ill-posed problems, regularisation algorithms and
determination of the regularisation parameters (including suitable examples) are
discussed. In the second part, least squares adjustment, sequential application of
least squares adjustment via accumulation, sequential least squares adjustment,
conditional least squares adjustment, a sequential application of conditional least
squares adjustment, block-wise least squares adjustment and a sequential appli-
cation of block-wise least squares adjustment are described. In addition, an
equivalent algorithm to form the eliminated observation equation system and the
algorithm to diagonalise the normal equation and equivalent observation equation,
a priori constrained adjustment, a priori datum method and a quasi-stable datum
method are discussed, before a short summary.

The author and co-author of Chap. 6 are Prof. Dr. Yunzhong Shen and
Dr. Guochang Xu.

Yunzhong Shen is a professor in the Department of Surveying and
Geo-informatics Engineering of Tongji University where he was the dean from
2003 to 2006. He graduated from Tongji University with a bachelor’s degree in
Surveying Engineering in 1983, and obtained his master’s degree in Geodetic Data
Processing in 1986 and a Ph.D. degree in Geophysical Geodesy in 2001 from the
Institute of Geodesy and Geophysics. He is an editor of “Acta Geodetica et
Cartographica Sinica”. His main research interests are theory of geodetic data
processing, satellite positioning and satellite gravimetry. He was a visiting member
of the staff of Stuttgart University in Germany (1999-2000), visiting scientist of
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GeoForschunsZentrum GFZ Potsdam (8.-11.2006), research fellow of Hong Kong
Polytechnic University (5.-6.2008) and professorial visiting staff in Queensland
University of Technology (5.-6.2009). In the past 5 years, he has published more
than 40 refereed journal papers in geophysical geodesy, GNSS theory and appli-
cation, geodetic data processing theory, of which six papers have appeared in
Journal of Geodesy, four in GPS Solutions, and the others in J Surveying Engi-
neering, Chinese Science Bulletin etc.

After graduating in Mathematics and Geodesy from Wuhan University and the
Chinese Academy of Sciences (CAS) in 1982 and 1984 respectively, I, Guochang
Xu, obtained the Dr.-Ing. degree from the Technical University (TU) Berlin in
1992. Having worked as a research associate at the TU Berlin from 1986 to 1993,
as a scientist at the GFZ Potsdam from 1993 to 1998 and as a senior scientist at the
National Survey and Cadastre, Denmark, from 1998 to 1999, I returned to GFZ as
a senior scientist in 1999. I have authored and co-authored several scientific books
and software and acted as supervisor of several Ph.D. and post-doctoral studies.
From 2003 to 2008 I was an overseas assessor, adjunct professor, and winner of an
overseas outstanding scholar fund of CAS. I have been an overseas communication
assessor of Education Ministry China since 2005, adjunct professor of Chang’an
University since 2005, National Time Service Center, CAS, Neubrandenburg
University of Applied Sciences since 2009, and National Distinguished Expert of
Chinese Academy of Space Technology since 2010. In 2011 I was honoured by an
appointment as an honorary professor by the South-west Jiaotong University.

Chapter 7 entitled “Very Long Baseline Interferometry for Geodesy and
Astrometry” provides an overview of this space geodetic technique which is
essential for the determination of the complete set of Earth orientation parameters
as well as for the celestial reference frame. After an introduction in Sect. 1 with
information about the concept of VLBI and the historical and technological
developments, the computation of the delays is discussed in detail in Sect. 2.
It covers all models necessary to reach mm-accuracy of the theoretical delays.
Section 3 deals with the least squares adjustment which is widely used for the
estimation of geodetic parameters in VLBI analysis, such as the Earth orientation
parameters, the celestial reference frame expressed by radio source coordinates, or
the terrestrial reference frame realized by station coordinates. VLBI observations
are coordinated globally by the International VLBI Service for Geodesy and
Astrometry (IVS; Sect. 4), and ideas and plans for VLBI2010, the next generation
VLBI system, are given in Sect. 5.

The author and co-author of Chap. 7 are Prof. Dr. Harald Schuh and Prof. Dr.
Johannes Bohm.

Harald Schuh is a full professor and Director of the Institute of Geodesy and
Geophysics, Vienna University of Technology, Austria. Major areas of scientific
interest are Very Long Baseline Interferometry (VLBI), Earth rotation, investiga-
tions of the troposphere and ionosphere. He graduated in 1979 from Bonn
University, Germany and received his Ph.D. in 1986. He occupied the following
positions: Scientific assistant and associate professor at Bonn University
(1980-1988); program scientist at the German Air and Space Agency (1989-1995),
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senior scientist and head of the Earth Rotation Division at DGFI, Munich
(1995-2000); Chair of the IVS Directing Board since 2007; President of IAU
(International Astronomical Union) Commission 19 “Rotation of the Earth”
(2009-2012); President of the Austrian Geodetic Commission since 2008 and
President of the Austrian National Committee of the IUGG since 2009; Vice-Pres-
ident of the IAG (International Association of Geodesy) since 2011; member of
various directing and governing boards; editorial board of the Journal of Geodesy
(2003-2007), and served as president, chair, member or consultant of various
commissions, sub-commissions and working groups in geodesy (IAG) and astron-
omy (IAU); coordinator of the German Research Group on Earth Rotation
(1999-2003); supervisor, co-supervisor, or examinator of more than 25 disserta-
tions. In 2009 Harald Schuh received the degree of a doctor honoris causa (Dr. h.c.)
and in 2011 the Vening-Meinesz Medal of the European Geosciences Union.

Johannes Bohm is associate professor at the Institute of Geodesy and
Geophysics, Vienna University of Technology, Austria, where atmospheric effects
in space geodesy and very long baseline interferometry (VLBI) are his main fields
of interest and research. In 1999 he graduated from the Vienna University of
Technology with a thesis about modern geopotential models and received his
Ph.D. in 2004 with a dissertation on troposphere delays in VLBI. Troposphere
delay modelling for all space geodetic techniques at radio wavelengths with the
application of numerical weather models was the topic of his habilitation thesis in
2008. Johannes Bohm is President of IAG Sub-Commission 1.4 “Interaction of
Celestial and Terrestrial Reference Frames”, and he has been chair or member of
various working groups of the IVS and the IAG. He has been on the editorial board
of Journal of Geodesy since 2007 and has been leading various research projects
related to VLBI at the Vienna University of Technology. Johannes Bohm received
the Guy Bomford Prize of the IAG in 2011.

The book has been subjected to an individual review of chapters. I am grateful to
reviewers Prof. Trevor Baker of the Proudman Oceanographic Laboratory in the
United Kingdom, Dr. Bert Vermeersen of Technical University Delft, Dr. Roberto
Peron of the Institute of Physics of Planetary Space (IFSI-INAF) in Rome, Prof.
Zhiping Lii and Dr. Xiguang Zhang of Zhengzhou Institute of Surveying and
Mapping (ISM), Prof. Shulong Zhu of Zhengzhou ISM, Prof. Rene Forsberg of
Danish Space Centre, Dr. Karsten Jacobsen, Dr. Ludger Timmen of the University
Hannover, Prof. Wolfgang Torge and Dipl.-Ing. Christian Voigt of the Leibniz
Universitdt Hannover, Prof. Bernhard Heck of Karlsruher Institut fiir Technologie,
Prof. Guigen Ni of the Information Engineering University (IEU) in Zhengzhou,
Prof. Yuanxi Yang and Dr. Tianhe Xu of the Institute of Surveying and Mapping
(ISM) in Xi’an, Dr. Axel Nothnagel of the University Bonn, Prof. Ludwig Combr-
inck of the Hartebeesthoek Radio Astronomy Observatory (HartRAO), Dr. Svetozar
Petrovic, Dr. Monika Korte, and Dr. Matthias Forster of GFZ. As editor I made a
general review of the whole book. A grammatical check of technical English writing
has been performed by Springer Heidelberg.
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I wish to thank sincerely the key authors of the individual chapters: Dr. Machiel
Bos of University Porto, Dr. Hans-Georg Scherneck of Chalmers University of
Technology in Sweden, Dr. Ludwig Combrinck of Hartebeesthoek Radio
Astronomy Observatory, Dr. Detlef Angermann, Dr. Manueal Seitz and Prof.
Hermann Drewes of DGFI in Munich, Prof. Paula Redweik of University of
Lisbon, Dr. Heiner Denker of Leibniz University Hannover, Prof. Yunzhong Shen
of Tonji University in Shanghai, Prof. Harald Schuh and Prof. Johannes Bohm of
Technical University Vienna. Without their consistent efforts such a book would
never have become available. I also wish to sincerely thank those scientists
who made great efforts for enriching this book. They are Dr. Ludger Timmen of
Leibniz University Hannover, Dr. Luisa Bastos of University Porto, Dr. Dietrich
Ewert of University Berlin, Prof. Cheinway Hwang and Prof. Tianyuan Shih of
Central University of Taiwan.

I wish to express my gratitude towards the former directors Prof. Dr. Ch. Reigber
and Prof. Dr. Markus Rothacher of GFZ for their support and trust during my research
activities at the GFZ and for granting me special freedom of research. Acting heads
Dr. Christoph Forste, Dr. Frank Flechtner and Dr. Jens Wickert of GFZ are thanked
for supporting my editorial activities in this book series. I also wish to thank sincerely
Prof. Yuanxi Yang of ISM in Xi’an, Prof. Qin Zhang of Chang’an University in
Xi’an, Prof. Heping Sun, Prof. Jikun Ou and Prof. Yunbin Yuan of IGG in Wuhan for
their friendly support by organising the International Geodetic Forum Xi’an 2006,
which is the origin of the idea to write and edit such a series of scientific books. The
Chinese Academy of Sciences is thanked for the Outstanding Overseas Chinese
Scholars Fund, which greatly supported the valuable scientific activities.

Special thanks go to Springer, Heidelberg; their support and their evaluation for
such a series of books are preconditions for successfully organising this publication.
I am also grateful to Dr. Chris Bendall of Springer, Heidelberg for his valuable
advice.

November 2011 Guochang Xu
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Chapter 1
Computation of Green’s Functions
for Ocean Tide Loading

M. S. Bos and H.-G. Scherneck

The devil is in the details

1 Introduction

This chapter will discuss the computation of the deformation of the solid Earth due
to external forces. It is a classical problem that was studied more than a century ago
by famous people such as Thomson and Tait (1867) and Lamb (1895). They were
followed by Love (1911) and Hoskins (1920) in the beginning of the twentieth
century. Since then it has been studied extensively by seismologists who are
interested in modelling the free oscillations of the Earth that occur after large
earthquakes. Important contributions to this area were made by Pekeris and Jarosch
(1958) and Alterman et al. (1959) which still forms the basis of what we will
describe in this chapter. A thorough description of the the theory of the free
oscillations of the Earth can be found in the textbook by Dahlen and Tromp (1998).
An older but still good reference is the review article by Takeuchi and Saito (1972).

The reader could therefore accuse us of writing about a topic that has already
been described. However, we feel that current literature does not pay much
attention to the practical details of how a given profile of the density and elastic
properties of the Earth are to be used to compute these deformations and it is our
objective to fill this gap. We hope that a researcher or Ph.D. student who wants to
learn more about this topic finds in our chapter a good starting point where all
assumptions are clearly explained and where enough details are given to imple-
ment the equations into a computer program.

M. S. Bos (X))

Centro Interdiscriplinar de Investigacio Marinha e Ambiental, Universidate do Porto,
Rua dos Bragas 289, 4050-123, Porto, Portugal

e-mail: mbos@ciimar.up.pt

H.-G. Scherneck (BX)

Chalmers University of Technology, Earth and Space Sciences, SE-412 96,
Gothenburg, Sweden

e-mail: hgs@chalmers.se

G. Xu (ed.), Sciences of Geodesy - II, DOI: 10.1007/978-3-642-28000-9_1, 1
© Springer-Verlag Berlin Heidelberg 2013



2 M. S. Bos and H.-G. Scherneck

We will only look at deformations caused by the varying weight of the ocean
tides, also known as ocean tide loading (OTL). With the current accuracy by which
these tidal deformations can be observed at the surface, we can ignore the ellip-
ticity of the Earth and its rotation and assume that the mechanical properties of the
Earth are the same for all orientations and only vary along the radius of the Earth.
With sufficient accuracy we can also assume that the deformation is elastic or at
least deviates only slightly from a pure elasticity.

Next, the weight of the ocean tides is normally decomposed into a sum of point
loads. The advantage is that, once you know the deformation of the Earth under a
single point load, and assuming that the deformations are small enough so that the
principle of superposition holds, you can compute the deformation of all point
loads in a similar way and add them up to get the total. The deformation due to a
point load, which is a Dirac delta function, is called a Green’s function. One of the
first attempts to compute such a Green’s function was given by Slichter and
Caputo (1960) although they used a circular disc load instead of the actual limit of
reducing the radius of the disc to zero and they ignored any gravity effects due to
the mass distribution inside the Earth.

Longman (1962, 1963) was the first to develop the point load into a sum of
Legendre polynomials and computed this sum up to degree 40. Farrell (1972)
continued the work of Longman and extended the summation up to a degree of
10,000. Farrell’s contribution was also a better understanding of the problem at
degree 1 where the deformation is invariant with respect to a simple translation of
the whole Earth. He also emphasised the use of the analytical solution of the
deformation of a half-space as the asymptotic solution of the deformations of
the spherical Earth. These asymptotic solutions can not only be used to check the
numerical solutions but are also essential to find the value of the infinite sum of
Legendre polynomials.

Longman and Farrell used the elastic properties and density profiles of the Earth
that were computed by seismologists. An example is the Preliminary Reference
Earth Model (PREM) published by Dziewonski and Anderson (1981). The earth-
quakes that are being studied by seismologists have periods of several seconds and,
since tides have a period of several hours, one can wonder whether the same elastic
properties should be used. So far, no observations that challenge this assumption
have ever been presented.

In this chapter we explain how the these elastic properties and density profiles
can be transformed in so-called Love numbers. These numbers can be used to
compute the necessary Green’s functions. The summation of Love numbers has
already been described in detail by, among others, Farrell (1972), Francis and
Mazzega (1990), Jentzsch (1997), Guo et al. (2004) and recently by Agnew
(2007), and therefore will only be discussed briefly. It is the computation of the
Love numbers that we will focus on. We will start at the very beginning, which
means we need to start by deriving the set of differential equations that govern the
deformation of the solid Earth.
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2 Equations of Motions and Rheology

This section will derive the linearized equations of motion in the same way as
Dahlen (1974) although we give more attention to the interpretation of all the terms.

We restrict our discussion to models of the Earth that are symmetric, non-
rotating and elastic isotropic (SNREI) and everywhere in hydrostatic equilibrium.
The positions of the mass particles of the Earth are denoted by x. At the same time
we will use these initial locations to label the particles. Let r(x,7) be the position
of particle with label and initial position x after the deformation at time t. Now we
can write the Lagrangian displacement sy (x, ¢) as (Dahlen 1974)

r(x,t) = x + s.(x, 1) (L.1)

Instead of following the deformation of a particle with label x that was initially
at position x, one may describe the deformation over time one finds at the fixed
position r inside the Earth. This is the Eulerian description of the deformation.

It will be convenient to write the changes in density p and potential ¢ as small
perturbations from a reference state. We have (Dahlen 1974)

pL(%,1) = po(X) + pi(%,1) (1.2)
pe(r,1) = po(r) + pi(r,1) (1.3)
bL(x,1) = o (%) + $7(x.1) (1.4)
Pr(r,1) = do(r) + ¢1(r,1) (1.5)

The subscript or superscript L and E indicate whether we are dealing with a
Lagrangian or a Eulerian function. Generally, the coefficients of the functions p;
and pg are not equal, neither those of ¢; and ¢, because they depend on a
different set of variables, the Lagrangian or Eulerian positions. Nevertheless, they
describe the same changes in density and potential in the Earth. The subscript 0
represents the reference state. The subscript 1 indicates that it is a perturbed
quantity.

It is good to be aware of the difference between the Lagrangian and Eulerian
description, especially at the boundaries. However, we will derive here a linearized
set of equations that describe small perturbations from the reference state. As a
result, we will encounter many situations where this difference of description is of
no importance. An example is the case where the reference density is multiplied by
a small value e. In these case we have p,(X)e &~ p,(r)e, where x and r are related
through (1.1). In addition, for the perturbed density we have pf(x,1) ~ p¥(r,1).
Similar relations hold for the reference potential ¢, and the perturbed potential ¢, .

We will assume that no mass is created or destroyed which leads to the
following equation of continuity:
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Pr(r, 1)+ po(r)V - sL(%,1) +8.(%, )V - py(r) = 0

! (1.6)
P (I’, t) =-V: [pO(X)SL(Xv t)]

Note the change of p,(r) to py(x) in the second line of this equation which is
allowed as long as s is small.

In words, the first line of (1.6) states that the sum of the perturbed density in a
small element plus the density change caused by the deformation of the element
plus moving the element to another position where the reference density is dif-
ferent is constant.

Note that we have written the changes in density as the sum of the reference
state plus a small perturbation. The small element can thus be considered to have a
density p; and to be floating through a reference density field of p,.

The gradient in density can be smooth or abrupt. At a layer interface the
gradient is abrupt. A vertical displacement of the interface implies a density
perturbation in the Eulerian system, and this density perturbation appears in
Poisson’s equation as the source of the perturbed potential to be discussed next.

Poisson’s equation relates the gravitational potential to the density inside the
Earth. Before we present this equation, the sign convention of the potential must
be discussed. Normally, a potential ¢, of a particle represents the amount of
energy it contains. Thus, if we consider a particle above the Earth’s surface, then
the higher it is, the more gravitational potential energy it will have.

To get the reference gravitational force per unit mass, g, at a fixed point inside
the Earth, one must take the negative gradient of the potential ¢ :

go(r) = =V (r) (1.7)

The perturbed gravity force per unit volume:

po(r)gy (r,1) = —po () Vi (r, 1) — py (r, 1) Vpy(r)
= —po(X) VT (x,1) = V- [po(x)s.(x, 1)]go ()

Here we have made use of (1.6) to substitute p; and again replaced r vectors for
X vectors.

In geodesy, one sometimes inverses the sign of ¢ to make the force equal to the
gradient of the potential, without adding a minus sign (Jekeli 2007). Depending on
the sign convention of ¢, Poisson’s equation is

(1.8)

V2o (r) = +4mp,(r)G (1.9)
V2t (r,t) = +4npt(r,t)G (1.10)

where G is the gravitational constant. Farrell (1972), Dahlen (1974), Wu and
Peltier (1982) and Dahlen and Tromp (1998) all use the plus sign while Pekeris
and Jarosch (1958) and Alterman et al. (1959) used the minus sign in (1.9). Since
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the work of Alterman et al. was very influential, their convention has been fol-
lowed by many people such as Kaula (1963), Okubo (1988), Sun and Sjoberg
(1999) and Guo et al. (2004). In this chapter we will follow the definition of
Dahlen (1974) which means that we keep the potential energy interpretation of ¢
and use the plus sign in (1.9) and (1.10).

Next, since we assume that the Earth is in hydrostatic equilibrium, there is a
uniform pressure pg at each depth layer in the reference state. This pressure pg
inside the Earth increases with depth because the weight of the layers of rock
above increases. A particle that is displaced to a deeper layer will therefore
experience an upward buoyancy force b;. Remembering that we have to take the
negative gradient to compute the force of our potential, the buoyancy force per unit
volume to first order is

b (x,1) = V[sL(x,1) - po(x)8o(x)]
= —VI[s(x,1) - po(x)Vpy(x)]

In addition, a force is required in a solid body to change the relative distances
between the particles. In fact, it is the gradient of the change in distances between
the particles, the strain, that relates linearly with the elastic force. This is called
Hooke’s law, and it is a linear law for small displacements. In three dimensions
this linear relation for an isotropic material is given by the Cauchy stress tensor
T,. It requires a constant for the change in volume, the bulk modulus x, and
another constant for the amount of shearing called p. For our purpose we will
assume that we can use the adiabatic bulk modulus. The relation of the Cauchy
stress tensor T, with the deformations sy (x, ), also known as the constitutive law,
is given by

(1.11)

Ty (x,t) = (K - 23—”) (Vs (x, )+ p[Vsp(x,1) + (Vs (x, t))T] (1.12)

where I is the identity tensor. We again add a subscript L to T to indicate it is
Lagrangian: The elastic forces act on the deforming body. We implicitly assume
that these deformations are so small that there is no significant change in the
surface of the body. Otherwise the amount of pressure that is acting on the body
would be different before and after the deformation. It is convenient to introduce
another variable A which is defined as A = k — 2u/3. The pair A and p are called
the Lamé parameters. The elastic parameters are the entry point where—more
generally speaking—the rheology of the Earth can enter. Rheology is the umbrella
concept under which elasticity may be generalised to comprise a range of prop-
erties of solids describing how they deform, either instantaneously, by creep, or, in
the extreme limit, by fluid-like flow or brittle failure. We will remain in the realm
of linear laws (ignore stress-dependence of the moduli), avoid the brittle regime,
and also ignore heat flow, convective instabilities and phase changes.

From (1.12) it is clear that when there are no displacements, there is no elastic
force. However, the Earth is already in a strained situation even without external
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forcing because of the weight of the layers inside the Earth that are pressing on
the layers beneath them (Love 1911). This weight causes the hydrostatic pressure
po discussed before for the buoyancy force. Therefore, (1.12) must be interpreted
as the deviatoric stress tensor, which is the stress difference with respect to the
reference stress state Ty. Any additional stresses introduced into the Earth due to,
for example, earthquakes, plate tectonics or mantle convection, which would
create a itr(To) # po, are neglected.

The last equation we need is Newton’s second law of motion, linearised, that
states that the acceleration of a small element is determined by the sum of the
gravity force of (1.8), the buoyancy force b, of (1.11), the divergence of the stress
tensor T, and a body force f. It is also known as the momentum equation

po(X)D7sL(x,1) = —po(X) Vb (x,1)—
V- [po(x)se(x, 1)]go (x) — (1.13)
V[SL(Xv t) ' p0<x)g0 X)} + V- TL(Xa t) + f(X7 t)

The term D? on the left is the second order material (or Lagrangian) derivative
with respect to time ¢. The f(x,¢) is body force per volume and assumed to be
small enough so that f(x,1) = f(r, 7).

Equations 1.10 and 1.13 are the same as those presented by Farrell (1972). Note
that (;’)f is the only Eulerian variable which will require some attention at the
boundaries.

3 Spheroidal and Toroidal Motions

The tensor equations derived in Sect. 1.2 are concise and clear but they are not
very convenient for numerical computations. To solve the tensor equations of
motions we will chose a reference frame with the origin at the centre of mass of the
undeformed Earth and use spherical coordinates (r, 8, 1) containing the radius, co-
latitude and longitude, and unit direction vectors e,, eg and e,. This will produce
expressions for the gradient, divergence and Laplacian that are more complicated
than for a Cartesian coordinate system but it will facilitate the definition of the
boundary conditions that will be discussed in Sect. 1.6

Since the east, north and up direction are always orthogonal to each other, one
can avoid the theory of general curvilinear tensor components and use the more
straightforward method described by Malvern (1969, App. II), Arfken (1985,
Chap. 2) and Dahlen and Tromp (1998, App. A) to derive the desired expressions.
Malvern and Dahlen and Tromp also list the expression for the Cauchy stress
tensor in spherical coordinates. Hoskins (1910, 1920) and Pekeris and Jarosch
(1958) present a complete set of all equations of motion expressed in spherical
coordinates.
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We will now repeat their derivation of these equations, but to do so we first
need to put some limits on the shape of our deformation. According to Helmholtz’s
theorem, any differentiable vector field, thus also our deformations s, can be
represented as the sum of an irrotational vector field which is the gradient of a
scalar potential f plus a solenoidal (equivoluminal) vector field which is the curl of
a vector potential A; see Arfken (1985, Chap. 1) and Malvern (1969, Chap. 8):

s=Vf+V-A (1.14)

with V - A = 0. In the presence of a body force b the equation of motion in terms

of the potentials is
> > o°f G

()u+2u)VVf+uV><VA+pb=pvw+pVxV¥ (1.15)

This equation is separable into a solenoidal part, independent of f, and a

spheroidal part, independent of A, if we know how to partition the body force b

into a curl-free and a divergence-less component (Lamb 1895). If the body force is

zero, then (1.15) decouples into the two seismic wave equations, compressional

waves with speed v, = /(4 + 2u)/p and shear waves with speed vg = /u/p.
The division of s into a spheroidal part which is both compressible and curl-

free, and a complementary solenoidal part affords us a road fork in our story.
Before we start to walk down the spheroidal road, let us remind ourselves of the
decomposition of the vector potential A into a poloidal and a toroidal part
according to Backus (1986):

VxA=V(gr)+Vx (hr)=S+T (1.16)

where
S:V{g(rg)] —rVig (1.17)
T=-rx (Vh) (1.18)

It shows that the divergence-free displacements can themselves be related to
scalar potentials g and h. The poloidal part, S, will take part in the deformation due
to a gravitating surface load with traction along the surface normal; the toroidal
part, T, is insensitive to potential forces but susceptible to surface shear tractions.

In a radially symmetric planet the body force is due to the gravity potential of
the load, and thus the curl of this force is zero. However, this part can be regarded
as a particular solution of a non-homogeneous problem. The general problem with
zero boundary conditions contains both the spheroidal and the toroidal part, and its
solution the full array of free oscillations. We will restrict ourselves to the sphe-
roidal part:

s = Vf + V*(gr) (1.19)
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For deformations due to traction, see Merriam (1985, 1986). Expanding (1.19)
into its spherical coordinates gives us

df 1d’g 1 dg 1 d’g

dr  rd0* rtan0d0 rsin2 0d*

u
s=|(v|= 1df+1dg+dg (1.20)
W rdd rdb drd0
1 i+ 1 lngr d’g
rsinfdl  sinO \rdl drdl

Owing to radial symmetry, the spheroidal deformation can be decomposed with
spherical harmonics as angular base functions and radial factor functions for the
depth-dependence:

u="> " Urryo, (1.21)

n=0 m=—n

V—ZZ " M (1.22)

n=0 m=—n

o0 n 6 A/
B z:: Z: sin HdA) (1.23)

We can see that U(r) is associated with the radial deformation and V(r) with
the horizontal deformation. We may regard

W= VYo, 2) (1.24)

n=0 m=—n

as a potential of horizontal displacement, delivering the vectorial components

when we let the horizontal gradient operator [édg, }v(sin 0)71071] act on it.

The perturbed potential ¢, that appeared in (1.13) can also be written as the
sum of spherical harmonics and, following tradition, the part containing the radial
function will be represented by P(r). Note that for the horizontal displacement we
need to differentiate the spherical harmonics by 6 or 4.

As we will argue below, we can restrict our treatment of the Spherical Har-
monics of order m = 0, i.e. Legendre Polynomials of the first kind. At the same
time we can avoid discussing normalisation and in particular the different variants
that you may encounter in the literature.

The restriction to m = 0 comes without any sacrifice as to physics, since the
physically relevant properties relate only to the spherical harmonic degree, while
the spherical harmonic order carries information about such arbitrary things like
pole location and azimuthal orientation; after all our model planet is radially



Computation of Green’s Functions for Ocean Tide Loading 9

symmetric (Phinney and Burridge 1973). Thus, for (1.21) we can equally well
write

i Z Con¥™(0, 1)
n=0

m=—n

and mutatis mutandis for v and w, where the dimensionless coefficients C,,,, come
from the expansion of the forcing field (so the same set applies to u, v and w). We
are only interested in the radial functions, so contemplating the simplest case for
m, m = 0 suffices.

If we now fill in (1.20) for given degree n and order O into the equations of
motion, (1.10) and (1.13), in spherical coordinates and drop the subscript n and
superscript 0 from the coefficients U°, VO and P9, we get (Alterman et al. 1959;
Wu and Peltier 1982)

dP d d dU
wZPoU—Pod—-i-gopoX—Pod—(goU)+d (AX—|—2ud—)+
4 w (1.25)
e {4d—r—4U—&-n( —&—l)(—U—r%—&-E‘V)] —0
d av vV U
2Vr — poP — U+X — —_——
P Vr — poP — gopoU + +’d { (dr r+r)]

+5[5U+3rd—V—V—2n(n+1)v] —0
r dr

(1.26)
d*P 2dP n(n+1) dpy
S = TP = 4nG(2U + poX) (1.27)
with
au 2 1
X:—+—U—wv (1.28)
dr r

Equation 1.28 represents the dilatation of the material. Due to the sign differ-
ence in Poisson’s equation, Alterman et al. use —P in (1.25)—(1.27). In addition,
we have assumed that the deformation is periodic with an angular velocity of w.
The second time derivative of the deformation s can in this case be written as
—’s.

Next, (1.25) and (1.27) have been divided by Y,? and (1.26) has been divided by
dY?/do. This is important to remember for the case n =0 which results in
dY,?/dO = 0. For n = 0 one should simply set V = 0 and discard (1.26).

To derive (1.25)—(1.27) from (1.10) and (1.13) we not only needed the
expressions of the gradient and divergence in spherical coordinates but also made
use of the following relation:
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2y? ar? 0
e + cotl 0= —n(n+1)Y, (1.29)

The result is that we have reduced the set of coupled differential equations from
three to one dimensions, although one has to compute them repetitively for all
values of degree n. In addition, since we are using spherical coordinates, we can
more easily define the boundary conditions.

While some numerical methods, such as the spectral method discussed in Sect.
1.9, may integrate the second-order differential equations (1.25)—(1.28) with suf-
ficient accuracy, we also give the six equations of first order in O,, using the
auxiliary variables

4 2
oc:;c+§,u ﬁ:K—g,u n=23Kk+2u

R:Trr S:Trf)

(1.30)

where o and f§ relate to the seismic longitudinal (compressional) and shear
velocities

ve=valp  vy=vB/p (131)

respectively, parameters that are normally tabulated by seismologists for vari-
ous depths of the Earth. As before, « is the bulk modulus, which is the inverse of
the compressibility, and u is the shear modulus or rigidity. R and S are two
components from our Cauchy stress tensor T, and represent the radial and shear
stress. Rewriting their definition provides us with two of the six first order dif-
ferential equations:

du 1 2 1
_:_(__ﬂU +MV +R> (1.32)
dr o r r
dv 1 1 1
—=—-—-U +-V +-§ (1.33)
dr r r I

Note that to here we deviate from (Dahlen and Tromp 1998, p. 271) who define
our scalar V as n(n+ 1)V. The third equation is provided by rewriting the defi-
nition of the auxiliary variable Q which denotes the perturbed gravity plus a term
(n+ 1)P/r:

dpP n+1

4 _
dr nGpU r

P +0 (1.34)

In Sect. 1.6 we will see that this auxiliary variable will facilitate defining the
boundary condition at the surface. Filling in the definitions of R, S and Q into
(1.25, 1.26, 1.27) gives us (Dahlen and Tromp 1998):
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dR 12 4 6
_:(_wzp+ﬂ_ﬁ)u +n(n+1>(_ %@)v

> 2
dr ar r \ O‘rl r (1.35)
or r
ds 6 Ptn-2
“_ (_L5+Q)U B (wng‘(”*iz”))v
r or r r3 (1.36)
_|_BP —ﬁR —=S
r or r
d 4nG —1
d_g:_nTp[(n_i—l)U —nn+1)V] +2 0 (1.37)

Gravity acceleration g = g(r) can be computed from the density model. To
derive these equations we also made use of the relation:
d 2
£80 _ =80 | unGp, (1.38)
dr r
Outside the Earth, only the first term on the right side of (1.38) would be
necessary. However, inside the Earth to the second term is also necessary. With the

usual notation y = [U, V, P, R, S, Q]T :

dy
dr A
Another convention followed, for example, by Alterman et al. (1959), Long-
man (1962, 1963) and Farrell (1972) is to label vector y as [y, ..., y¢]. However,
note that the definition of ys by Alterman et al. (1959) is different from our
O because it lacks the (n+ 1)P/r part and represents the true perturbed gravity
value. We prefer our semi-perturbed gravity parameter Q because it simplifies the
formulation of the boundary condition at the surface.
At large n the radial functions run over many orders of magnitude, so that the
equation system needs stabilisation. One method is to replace r and Y as follows

(1.39)

F=_, q=(n+1)logi and Y=1LZ (1.40)
a

respectively, where a is the mean radius of the Earth and
073
L = exp< diag |aVF, naV'r, ag(a)\ﬁ’, M, K(O)\/?_3, gla)vi
(n+1)
(1.41)

where x( is the maximum incompressibility in the Earth, and to transform (1.39)
according to Lyapunov (Gantmacher 1950) into
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dz.
= _BZ 1.42
4 (1.42)
where
_y-1{_@ 4q _dL
B=L (nﬂexp{nﬂ] AL dq) (1.43)
in which
dL
L'—=_—_—"__diag[1, 1, 1, 3, 3, 3 1.44
dq 2(I’l+ 1) lag[ 9 I ) ) ) ] ( )

Matrix B has been given in full in Appendix 1. This scaling is particularly
useful when one uses a numerical integration method such as Runga—Kutta to
solve the differential equations; see Sect. 1.9

4 Fluid Core

So far we have assumed that the Earth is a solid body but seismologists tell us that
the Earth has a fluid core. A fluid differs from a solid by having zero rigidity. Thus,
by setting the shear modulus yu to zero in the Cauchy stress tensor, the equations
presented in Sect. 1.3 continue to be applicable and we are treating the fluid as a
very weak solid.

However, problems arise when the forcing period is taken to infinity to simulate
static forcing. This phenomenon has received a relatively large amount of attention
in the literature. We will now try to point out some main conclusions that have
been derived.

It was Longman (1963) who showed that, for the case of w = 0, the (1.25) and
(1.26) are no longer independent in the fluid core. This can be seen by writing
these two equations in the following form:

dpy _
dr

po(P—goU)+1X=0 (1.46)

d
—[po(P — goU) + /X] + pogoX — (P — goU)

- 0 (1.45)

From (1.46) one can deduce that the term within the square brackets of (1.45)
must be zero. If (1.46) is then used to rewrite (1.45) we have:

1
(80AP0 +_dP0)X -0 (1.47)
A Lo dr
NZ
-——X= (1.48)
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Here we made use of the definition of the Brunt—Viisili frequency N(r) that is
related to the stratification of the fluid:

2
N2(r) = — 80Po _ 80.dPo (1.49)

In a fluid 4 = k. As was explained before, X is the dilatation of the material; see
(1.28). For a real Earth the dilatation is not always zero which leads us to the
conclusion that N = 0 in (1.47) and this puts a new condition on the properties of
the fluid that was not needed before. This situation corresponds to the so-called
Adams—Williamson or neutral buoyancy condition. It means that the compress-
ibility of the fluid is such that, when a small parcel of liquid is pushed to a deeper
and denser layer, it will compress exactly to a volume with the same density as the
surrounding fluid. If, however, the parcel afterwards rises up again, then the
stratification of the fluid is stable, N > 0. If the parcel continues to sink the
stratification is unstable, N <0.

The fact that the fluid core can only be in neutral buoyancy seems strange and is
called the Longman paradox (Dahlen 1974; Wunsch 1974; Chinnery 1975). One part
of the solution of this paradox is that one should be careful when taking the limit of
o — 0. The result of this limit also depends on the real stratification of the fluid.

If the stratification is unstable, a boundary layer develops that gets thinner for
increasing forcing period. In the extreme case of w = 0, it represents an infinitely
thin layer but it still has a finite influence on the dynamics. The radial stress
experiences a jump in the boundary layer and is zero in the fluid. Because in a fluid
the radial stress is proportional to the dilatation, this means that X is zero in fluid
after all and that the Adams—Williams condition, or neutral buoyancy, is no longer
necessary to satisfy (1.47). In Sect. 1.7 we will discuss a homogeneous fluid which
means dp,/dr =0 and N <0. Thus, the stratification is unstable and, near the
boundary of the fluid core with the mantle, such a boundary layer develops.
Pekeris and Accad (1972) also discuss the results for a fluid with N = 0. In this
case no boundary layer develops. For a stable stratified fluid, N > 0, core oscil-
lations develop which get shorter and shorter wave-lengths for & — 0.

Although Pekeris and Accad (1972) provide analytically correct solutions for
the static deformation of the Earth with a fluid core, the fact that for an unstable
stratification the horizontal displacement goes to infinity in the boundary layer and
the fact that for a stable stratification an infinite amount of core oscillations are
produced, indicates that there are still some problems.

Dahlen and Fels (1978) opposed the notion of trying to solve a Fourier-trans-
formed problem in a fluid at the limit & = 0 from extrapolating solutions for small
|w| > 0. Before we revisit the arguments of Dahlen and Fels (1978) we give our
conclusion and recommendation. The static response cannot be obtained from
sinusoidal load responses as a limit @ — 0; we endorse the use of a non-zero
frequency when solving the load problem.

Stripping the problem down to the essentials, Dahlen and Fels (1978) showed
that the same problem occurs in a stratified fluid in a box with hard side walls and a
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deformable lid exposed to a laterally homogeneous gravity field. The normal
modes of this system pile up around zero frequency. The inverse Fourier transform
employs the Cauchy principal value theorem for cases like this; however, as the
open interval (0, Q) contains infinitely many poles, albeit countably many, the
principal value does not converge. In fact, if you expect a finite displacement to
result, the Fourier integral of such a signal does not exist, since it is not square-
integrable. Thus, if you expect a finite response at zero frequency (a doubtful
concept per se), or, alternately, a finite response at infinite time, in Fourier the time
is indistinguishable whether it is +0o or —oo. Thus, you need to involve causality.
Thus, Laplace transform and a Heaviside load history is the concept that is
applicable, not Fourier transform.

Our task is perhaps not to estimate the time it takes for the system to reach the
finite state within a given margin, but rather to determine the finite state. For that
purpose, Dahlen and Fels (1978) suggest that an ad hoc viscosity be used for the
core fluid. This will displace the poles of the inviscid system from the real fre-
quency axis, giving them a slight imaginary part. The system can now be solved
using the residual value theorem. The bottom line is that you would continue to
exploit the 6 x 6 differential equations, changing the role of the shear modulus into
a viscosity and Laplace-transform the equations such that the constitutive relation
is expressed by

0=2ué o—eqg=2suc (1.50)

and the —w? factors are replaced by s°, s being the Laplace transform parameter.

Farrell (1972) circumvented these difficulties by setting w equal to the tidal
period of harmonic M, (12.42 h). Since our main interest is to compute Green’s
functions for ocean tide loading, this approach is sufficient for us. Thus, it seems
more instructive to represent the problem for non-vanishing w, and again we
follow Dahlen and Tromp (1998, Chap. 8).

The vanishing shear stress in a fluid region has the consequence that horizontal
displacement becomes directly related to vertical displacement, potential pertur-
bation, and vertical stress:

_ po&(r)U + poP — R

Vv
@?por

(1.51)

This equation has been derived from (1.26) by setting u = 0 and using the fact
that the radial stress R is in this case equal to 4X. One can use (1.51) to substitute V
in (1.25) and (1.27) after which we are left with two second order differential
equations.

When we use the six first order differential equations, then in the fluid we lose
two rows from the differential equations, which reduce to
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r2 r

K @?pyr?

W_ (a2 (Lonl D

(1.52)
nn+1)
0272
dR 4pogo  n(n+1)pgs n(n+1)go
B (g 00 M0 )00
r r w3r w*r (1.53)
n(n+1)pogo  po(n+1) '
+< w?r? B r P poQ
dp n+1
o= —4nGpU ———P+Q (1.54)
d 1 1 1
d—Q4nGp0(”(”t z)go—’H >U—4nGn(nf+2)R
r w?r r w?r (1.55)

nn—+1 n—1
+4TCGPO (wzrz )P+ . Q

At n = 0, the matrix elements on the right-hand side simplify considerably. The
outcome being fairly obvious, we do not write it out. Since V = 0 for n = 0 the
Earth just inflates or deflates a bit but remains spherically symmetric (Dahlen and
Tromp 1998). As a result, the perturbed gravity is zero. If this is so, then we have
the following relation for our semi-perturbed gravity parameter Q :

1

which also provides us with the relation that states that no potential perturbation
is possible except for the Bouguer effect due to vertical displacement:
dp
— = —4nGpyU
dr TGP
If we do not suppose a solid inner core, the differential equations for the fluid
interior can for n = 0 be shortened to a 2 x 2 system in U and R (Longman 1963):

dU 2 1
—=——U+—-R 1.57
dr r * K ( )
dR 2 4gopy
== <co po+ =2 )U (1.58)

The general solution in a homogeneous sphere (constant k) is
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—iw 2ig | 2iw
U(r)—rexp[ X r:| {C2L<—2—m,3,7r>

i o (1.59)
ig iw
CGU|2+—,4,—
. 2i 2i
R(r):;cexp{ ;{w r] {ZCzer(—Z—%,:%,%r)
)
(1.60)

. 2ig  2iw
+C1 X (2—1E r) U(2+k—(;)7477 V>}

where k = /i/p the compressional wave speed in the fluid, L*(z) = L(n, ,z) is
the generalised Laguerre polynomial and U(a, b, z) the Confluent Hypergeometric
function of the second kind. The latter is singular at » = 0 so we only need the Ls.

5 Resonance Effects

We will tacitly assume that the Earth-Moon system has reached a stationary
situation. If you assume for the moment that there is no Moon and it suddenly
appears, you will have some start up effects, among others starting seismic free
oscillations which, owing to internal friction, slowly die out, resulting in the
periodic tidal deformations that we experience today. So, when we say that we
solve the tidal loading problem, we assume that the load acts on the surface with a
temporal periodicity sufficiently different from the resonance frequencies that
mode excitation can be neglected. In a purely elastic Earth, resonance occurs at
sharply defined frequencies; however, in a visco-elastic mantle the resonance loses
quality and the susceptible frequencies widen to finite intervals. As much as we are
aware of this complication, we will avoid it by restricting the claims of our
simplified approach to load frequencies well below one cycle per hour.
However, there is one resonance that needs attention, and it comes from the
shape and fluidity of the core in a rotating planet. The core and the mantle rotate
around slightly different axes, and the relative motion is known as Free Core
Nutation or Nearly-Diurnal Free Wobble. Both astronomical tides of degree two
and order one with a nearly-diurnal frequency and the associated ocean tides are
able to excite the resonance although none of the forcing frequency exactly
matches the 1 + 1/435 cycles per sidereal day frequency of the resonance. Wahr
and Sasao (1981) have solved this problem by separating out the resonance in the
load Love numbers and adding the effect to the normal Love numbers 4, k, and I,
(see Sect. 1.7 for their definition). This is possible since the resonance effects are
primarily in the degree n = 2, order m = 1 spherical harmonics, and the excitation
is due to the corresponding pro-grade ocean tide harmonic coefficients C5,; for
amplitude and €5 for phase; see Lambeck and Balmino (1974) for the notations. It
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adds a complex-valued contribution that can conveniently be computed for dif-
ferent ocean models with the parametrisation in Scherneck (1991):

Ahz(w) + Y

. 4nGp,,aQd C;, . h
Ab(w) p = 15(w ~ 00 0, exp(iey;) S,l (1.61)
Akz(w) Sk

where Qf is the angular rate of the resonance, @, the potential coefficient of the
luni-solar tide that generated the ocean tide whose pro-grade order-1 surface height
is represented by (C5;, €4;) and the S’ coefficients signify the resonance strength in
the respective load Love numbers (Wahr and Sasao specified S), = —2.88 x 1074,
§)=19.16 x 107% and S, = —1.45 x 10~*). Further modification is needed unless
an observed tide at the exact frequency  has been used to compute (C5;, €5,). If
we are forced to resort to frequency-domain interpolation, a factor is needed to
take the effect of resonance in the body and load tide Love numbers into account at
the instance of ocean tide generation, and possibly we have additional knowledge
of the variation in ocean dynamics across the resonance band. These are the factors
R(w, mp) and D(0, A, w, o) in Wahr and Sasao (1981, Egs. 4.5 and 4.6).

6 Boundary Conditions

Now that the differential equations are in place, we will address the boundary
conditions that they have to fulfil. Since our set of equations are only valid in
material that shows smooth variations in density and elastic properties (their radial
derivative must exist), we need to divide our Earth into spherical layers in order to
cope with the jumps in density and elastic properties. As a result, we must pre-
scribe boundary conditions at the Earth’s centre, at the boundaries between the
layers and at the Earth’s surface. We will start with the boundary conditions at
the centre of the Earth where the solutions are regular. This means that, for n # 1,
the displacements and perturbed potential are zero. Mathematically this statement
can be presented as

U0)=0, V(0)=0, P0)=0 (1.62)

In the case n = 1 we have a situation where displacements and potential per-
turbation require an additional constraint owing to the fact that a rigid translation
can be added to the displacements. The only effect of this translation is a gravity
term 0P = —g/u.. While this will be dealt with in detail in Sect. 1.8, we note for
the conditions in the centre that the particular displacement field that causes no
perturbation of gravity potential at both » = 0 and r = a does imply a shift of the
figure and thus of its centre. The relation with the normal-stress function S is as
follows:
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487G 3w?
U0) = — Hmop =30 5(0) (1.63)
(8nGp)“p — 80nGp*w? — 3pw*

atn=1if w # 0 and

3

U(0)=———=5(0 1.64

0) = 3G7250) (1.64)
if @ =0. That U(0) = V(0) =0 may be deduced from the fact that we have a
symmetric loading for n % 1 which cannot affect the position of the origin. The

reason P(0)=0 can be seen from Poisson’s equation

V2 [P(1)Y0(c03 0)] = ~4nGYV - (p|U(r)2 (cos O)F + V(r)3s¥(cos 0)0] )
(1.65)

Lifting the divergence from this equation and working out the components of
the gradient, the 0-component of the equation tells us that

1
~P(r)dpY(cos 0) — V(0)3pY’(cos ) for r — 0 (1.66)
,

If V(0) would some how settle at a non-zero value, the left-hand side would
grow to infinity, which is a contradiction. And obviously, horizontal displacement
cannot grow as O(1/r) when r — 0. Thus, both V(0) and P(0) are zero.

Next, at the interface of two solid layers we have continuity in radial and
horizontal displacements, in radial and horizontal stresses and in semi-perturbed
gravity and potential. Mathematically this is represented as

RUT)=RG), S0 =S07), e =e0) o

u@rt)=u(r), V(@) =V(0r), Pr)=P() '
where r denotes the radius of the interface, r* just above it and r~ just below it. Of
course the true perturbed gravity is also continous over the boundary, ys(rt) =
y6(r™). At the boundary of a solid and fluid layer the situation is a little different. If
we indicate the radius of this mantle core boundary by ¢ and assume the mantle
lies above the core, we have S(c*) = 0 while shear stresses in the fluid core are
undefined because y = 0. Furthermore, continuity in the horizontal displacement
V is no longer required, so this equation disappears. Another relation we have at
the mantle-core boundary for n = 0 is

r=c (1.68)
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Fig. 1.1 In the left panel the
definition of angle and
distances is given. In the right
panel we schematically show
the behaviour of the external
and internal perturbed
potential

Finally, we need to describe the boundary conditions at the surface which
depend on the type of loading is applied. Since we are interested in ocean tide
loading, we assume that we have a parcel of tide-water lying on the Earth’s
surface. This parcel has a mass that generates a perturbation in the potential field
of the solid Earth. Due to its weight, this parcel also presses on the ocean bottom.
Therefore, in the ocean loading problem we must prescribe at the surface a per-
turbation in the potential and a normal stress. For the tidal deformation of the Earth
caused by the Moon and Sun, this surface stress is zero.

Now it becomes important to distinguish between the Lagrangian and Eulerian
descriptions that were explained in Sect. 1.2 The perturbed potential is a Eulerian
function, evaluated at the undeformed boundary layers. Since deformation moves
mass, the perturbed potential sees a ‘Bouguer’ effect. The stresses and displace-
ments are evaluated at the deformed boundaries (Lagrangian) but to second order
one can also just evaluate them at the undeformed boundaries.

To define our boundary conditions at the Earth’s surface, it is convenient to
assume that we have a unit point mass m, at a distance R away from the Earth’s
centre; see Fig. 1.1. The external potential ¢, of this unit point mass m, can be
written as a sum of spherical harmonics:

d

We have added a minus sign because the potential should increase, become less
negative, with increasing distance. Since the Earth is not completely rigid, it
deforms due to the presence of this external potential, creating an additional
internal potential ¢;. Outside the Earth this internal perturbed potential can also be
written as a sum of spherical harmonics:

b(r,0) = G —gi<£)”Y3(cos 0) forr<R (1.69)
a 0 a

G a1
¢;(r,0) = p ;kn(a)(r) Y)(cos0) forr>a (1.70)
where k,(a) are some unknown constants which will be determined later. Inside
the Earth (1.70) is not valid. The total perturbed potential is ¢; = ¢, + ¢;. In Sect.
1.3 we have shown that for each degree n the radial part of ¢, can be written as a
function P(r). Using the same scaling of Sect. 1.3 and setting r = a we have
P, =G/a and P; =k/(a)G/a. At the surface the radial derivatives of these
functions are
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dpP,
(r) _" P.(r) underneath the load (1.71)
dr r
dP; 1
d;('r) = _ % P;(r) above the surface (1.72)

The perturbed gravity just below (7) and above () the surface should be equal.
Remembering that the Earth’s surface has been displaced due to the deformation
our equation of continuity of perturbed gravity is

V¢IE<X7 t)7 + SL(Xv t)7 ! V2¢0(x, t)7 = V(JSIIE(X, t)+ + SL(Xa t)+ : V2¢)0(Xa t)+
(1.73)

Using Poisson’s relation, one can replace the V¢, on the left side of the
equation with 4nGp,, while the same term on the right is zero because we neglect
the density of the atmosphere and put p, = 0 outside the Earth.

To first order, we will only need to consider the radial derivative and can
replace the V operator by d/dr. If we again decompose (1.73) into spherical
harmonics, then for each degree n we have

dP~ dpP*
7 + 47TGp0U = 7

If for the moment we assume that there is no external potential P, and use (1.72)
to substitute the term on the right:

(1.74)

dr

If we add the both the internal and external potential in (1.74), we get at the
surface

Pi 4 4nGpyU =0 (1.75)

—+ P+ 4nGp,U =Q = —
dr r a

P 1 2 1
dP n-+ n-+ <G> (1.76)

a

Equation 1.76 provides the boundary condition for the semi-perturbed gravity
Q at the surface. The beauty of (1.76) is that it does not contain the unknown
internal potential ¢; explicitly.

Now we will derive the expression for a unit point load ¢. According to
Longman (1962), the Legendre expansion of the Dirac é-function on a sphere with
radius a is

=2n+ 1
= ZOWYB(COS 0)

G\ =2n+1_,
== —Y 0
(a) 4~ 4nGa " (cos 0)

(1.77)
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Our unit mass exerts a point load of magnitude —g at the surface which means
that the boundary condition for the normal stress R for degree n is

2n+1 g (G
R=-— — | — 1.78
a 4nG (a) ( )

Together with the boundary condition that the horizontal stress is zero, S = 0,
(1.76) and (1.78) provide three boundary conditions at the surface.

7 Simple Earth Models and Love Numbers

At this point it is instructive to discuss the deformation of an elastic solid Earth
with constant density and constant elastic properties. For this particular situation
there exist three analytical solutions for each parameter which, combined, describe
the radial and horizontal deformation and perturbed potential throughout the Earth.
These analytical solutions are provided by Dahlen and Tromp (1998) and are
reproduced in Appendix 2. For example, the radial displacement, for degree n, is

U(r)=U"(r)+ U (r)+ U(r)

1.79
=y Jn(yTr) +y020n(yr) +y13 1" (1.79)

Note that these solutions automatically produce zero displacements and dis-
turbed gravity at the Earth’s centre.

In the second line of (1.79), we have factored out the terms containing the
spherical Bessel functions j, and " and formed new coefficients y;q,y;2 and y;3
(Okubo 1988). This is not necessary but has been done to emphasise the fact that
each term depends on a different function. The solutions for the horizontal dis-
placement V and perturbed potential P can be written in the same format. All these
coefficients can be grouped in a matrix:

yir Yz Yi3
D=dyu1 y y3 (1.80)
Y51 Ys2 Ys3

The displacement vector s can now be computed as DJ# where J is a 3 x 3
matrix with our j,(y*r),j,(y"r) and r* terms on the diagonal. Vector 6 contains
scale factors because each separate solution can be multiplied with an arbitrary
constant.

From the solutions for U, V and P, we can derive the analytical solutions for the
radial stress R, tangential stress S and semi-perturbed gravity Q. Again we can
factor out the j,(y*r), j.(y~r) and 7" terms and form a new matrix E in such a way

that the vector (R, S, Q)T is EJO. Matrix E is defined in a similar ways as matrix D:
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Y21 Y22 Y23
E=1<¢yu Yoo a3 (1.81)
Ye1 Y62 Y63

Each row of matrix E is associated with the radial stress, tangential stress and
semi-perturbed gravity. For example, the radial stress is written as

R(r) = 21 ju(y7r) + y22 ju(y"7) + 323 7" (1.82)

Our next task is to estimate the scale factors 0 in order to fulfil the boundary
conditions at the surface described in Sect. 1.6 Following Okubo (1988) we will
compute the scaling factors for the three solutions for the body tide and load tide
simultaneously. These boundary conditions, for degree n, at the surface are stored
in the columns of the following matrix x :
0

_8
2n+1 4nG
X =

a 11

(1.83)

The first column of x shows that for the body tide, only the potential is non-zero
at the surface. In the second column, one can see that for the load tide there is an
additional radial stress. Note that the factor —G/a has disappeared. Instead of a
unit-mass, we are computing the deformation due to a unit-potential.

The scale factors 0 are determined with (EJ(a))'x. Since the matrix EJ can be
ill-conditioned, it makes sense to scale each row of EJ in such a way that the
largest entry is 1. This will not change the value of 0 if vector x is scaled by the
same factors, but will improve its numerical accuracy.

Now that these scale factors are known, we can compute the deformations
U and V and the perturbed potential P at any radius r using DJ(r)@. Remember that
we have computed the radial deformations U(r) for a unit potential load on the
Earth’s surface. It was Love who represented these deformations as the product of
a function A, (r) divided by g. For any other external potential ¢,, that again can be
developed into spherical harmonics with a radial function at the surface P,(a), the
radial deformations are, for degree n

P,
U(r) = —hy(r) (@) (1.84)
8
For the tangential displacements a similar function /,(r) is defined:
P
V(r) = —iy(r) P (1.85)

The same can be done for the perturbed potential although it is customary to
introduce a function k,, that is only associated to the internal perturbed potential ¢; :

P(r) = (1 + ku(r))Pe(a) (1.86)
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Table 1.1 General constants

Constant Unit Value

G m’kg s 2 6.673x10711

a m 6.371x10°

) rad/s 1.40526x 107+
Table 1.2 Properties of a Model §  Model o
homogeneous Earth (model R —
B) and an Earth with a Constant Unit All Core Mantle
homogeneous mantle and a ~ Mean density p (kg/m?) 5517 11020 4460
fluid core with a radius of Shear modulus g (GPa) 146 0 174
0.55a (model a) Lamé parameter . (GPa) 347 950 231

The minus sign in (1.84) and (1.85) is the result of our definition of the potential
with the opposite sign as Love (1911) and Alterman et al. (1959). The definitions
of the functions 4, (r) and ,(r) already have a long tradition and it would cause too
much confusion if we were to define new Love numbers with the opposite sign.
Wu and Peltier (1982) follow the same sign convention of the potential as we use
here but compute the deformation of the Earth due to a negative unit potential.
This causes the minus sign to disappear in the definition of &, (r) and ,(r) but then
it reappears in (1.86).

Normally, the values of h,(r),l,(r) and k,(r) are only given for the Earth’s
surface which turns them into numbers instead of functions. The [,(a) Love
number is also called the Shida number. The Love numbers are needed to compute
our Green’s functions to compute the ocean tide loading as we announced in Sect.
1.1 and which we will explain in more depth in Sect. 1.11

Love (1911) studied the deformation of the Earth due to the tidal force of the
Moon and thus had no pressure forces on the surface. To distinguish between load
Love numbers and the body tide Love numbers, the former are normally written as
K, I' and k,, a notation that was introduced by Munk and MacDonald (1960). As
an example, we give the values of normal Love numbers and load Love numbers
for a homogeneous Earth, called model . The values for the Gravitational con-
stant G, the mean radius of the Earth a and the angular velocity of the forcing o
(corresponding to the main tidal period of 12.42 h) are given in Table 1.1. The
properties of the homogeneous Earth are listed in Table 1.2 and were taken from
Alterman et al. (1959). The results are listed in Table 1.3 where we have multi-
plied the [, I', k and k' numbers by degree n, just to get a convenient size. The
functions #,,(r) and k) (r) are plotted in Figs. 1.2 and 1.3 for various degrees
n. Note that for high values of degree n, the functions /4, (r) and k},(r) are very
small throughout the Earth and only increase near the surface. As a result, the

! Almost ignore; you need to assume that g(r)/r = const. in order to retain the structure of the
analytical solution (Vermeersen et al. 1996).



24

M. S. Bos and H.-G. Scherneck

Table 1.3 The normal and load Love numbers for Earth model f for several degrees

Degree hy, nl, nk, h, nl, nk),

1 —18.22448 —18.22448 —18.22448 —0.18599 0.14700 0.00000
2 0.52221 0.28413 0.60384 —0.58502  —0.02167  —0.44057
10 0.10622 0.01229 0.14818 —0.88125  0.14981 —0.91403
100 0.01167 0.00014 0.01736 —1.00537 0.22378 —1.14968
1000 0.00118 0.00000 0.00177 —1.02022  0.23250 —1.17926

Fig. 1.2 The load love [
numbers /), for n = 2, 10 and 0.0
100 for a homogeneous Earth

as a function of the Earth’s

radius
h’-0.5

-1.0

Fig. 1.3 The same as 2
. n=
Fig. 1.2 but for &, 0.0

properties of the Earth just underneath the station increase in importance for
increasing degree n.

Another interesting case is the deformation of an Earth with homogeneous
mantle and a homogeneous liquid core. Following Alterman et al. (1959), we will
call this model «. Its density and elastic properties are given in Table 1.2 . In each
layer, analytical solutions for the deformation can be derived; see Appendix 2.
However, in contrast to the case of the completely homogeneous Earth, in the
mantle we now also need spherical Bessel functions of the second kind and
solutions that contain 1/r" terms. Therefore, we must extend our D,E and J
matrices discussed before to include these terms; see Martinec (1989).

As we discussed in Sect. 1.4 and Appendix 2, in a fluid we can derive the
tangential displacement and stress from the other parameters: U, R, P and Q. In
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Table 1.4 Love numbers for our model o Earth for degree n = 2 for different periods of forcing
(T =27n/w)

T hy 21, 2k, h 21, 2K
6 h 0.69216 0.27579 0.72544 —0.87766 —0.08390 —0.65887
12 h 0.68037 0.27254 0.71343 —0.86444 —0.08128 —0.64730
24 h 0.67741 0.27174 0.71048 —0.86035 —0.08067 —0.64433
00 0.67633 0.27148 0.70949 —0.85782 —0.08051 —0.64316
Fig. 1.4 The radial stress 0.7 -
R inside the Earth for 06
different values of the forcing F
. 0.5 -
period L
__ 04
< o3[
T 021
0.1
0.0
01 L I I I 1 J
0 0.2 0.4 0.6 0.8 1

addition, we only have one solution of the spherical Bessel functions of the first
kind. As a result, our E becomes a 2 X 2 matrix.

We will ignore the fact that the gravity can no longer be described as 4nGpyr/3
throughout the Earth, which was one of the assumptions in deriving these ana-
lytical solutions.'

Of course we can generalise this procedure and divide the Earth into multiple
layers with constant density and constant elastic properties. Describing the prob-
lem of the deformation of the Earth as a set of propagating matrices is called the
Thomson—Haskell method (Gilbert and Backus 1966) and is popular among post-
glacial rebound modellers although they use something more complicated than just
constant elastic properties.

Returning to our model o, the normal Love numbers for several values of the
forcing period are given in Table 1.4 and the radial stress R is plotted in Fig. 1.4. In
this last figure one can see that, for decreasing period, a boundary layer develops
underneath the core—mantle boundary. Since in the fluid core the radial stress is
related to dilatation through R = 1X, one can see that in the limit ® — 0,X =0
throughout the core and that the Adams—Williams condition is not needed as an
extra condition (Pekeris and Accad 1972).

It is interesting to see what these Love numbers would be when the limit of
o — 0 is taken. Now we should remember that the stratification of our homoge-
neous fluid is unstable and that a boundary layer develops (Pekeris and Accad
1972). If the jump through the boundary layer is taken into account, then we get
the Love numbers listed in the last line of Table 1.4.
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8 Degree-1 Response and Translational Invariance

At this point we take the opportunity to look at much discussed problem of
separating displacement into a whole-body rigid translation and deformation
notably at spherical harmonic degree 1; see, for instance, Blewitt (2003).

For degree 1 the situation is a little different because the load is not symmetric
and this causes the Earth to move in space, in addition to deforming it. First, we
will discuss the translation of the Earth in space which is equivalent to a constant
sy As aresult, Vs; = 0. Looking at the Cauchy stress tensor, (1.12), we see that a
translation of the Earth in space does not introduce any stress.

As a side note, assume for the moment that we have a homogeneous Earth with
constant density. In this case, the gradient of the reference density p,, is zero. From
the continuity equation, (1.6), it follows that a translation of the solid Earth cannot
perturb the density: p; = 0. Applying Poisson’s equation we see that the perturbed
potential (,i)f is also zero and we can conclude that for a homogeneous Earth, a
translation of the whole Earth does not affect our equations although it will have an
effect on our boundary conditions.

For a non-homogeneous Earth, a translation will create a non-zero perturbed
density p; and perturbed potential qbf field. This is the consequence of defining a
reference density p, and potential ¢ field at the origin of the undeformed Earth,
fixed in space, and describing the deformations as perturbations with respect to this
reference field. A translation z along the 8 = 0 direction causes a perturbation in
the potential equal to

¢y = (ro” — go)zcos 0 (1.87)

Here we have added the potential produced by the acceleration of the trans-
lation. For tidal periods, r®? is much smaller than gy and has therefore probably
been neglected by Farrell (1972).

So far we have only discussed a translation of the whole Earth. However, there
also exists a degree one deformation that will generate a perturbed potential in the
same way as we described in the previous sections. The only difference is that, due
to the asymmetric loading, we no longer have zero displacements and a zero
perturbed gravity value at the centre of the Earth and require three new boundary
conditions.

To find these three new boundary conditions at the centre, we must realise that
in a small ball with radius 0 around this centre the Earth can be considered to be
homogeneous. Repeating the results presented in Sect. 1.7 and invoking the
associated mathematics from Appendix 2, we note that only the analytical solution
that depends on 7" can produce displacements that are non-zero at the centre. This
solution has been reproduced here (for n = 1) :
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Table 1.5 The same as Table 1.3 but for Earth model o.

Degree Iy ky h, L k,
1 —12.80564 —14.38607 —13.12949 —0.52853 —0.27453 —0.32385
n
U =c,—r=c,
1
Ve =¢c,—r=c,
r

4
P® = ¢ (0*r — ?nGpr) = c(w*r — go)

_ (1.88)
R@:crwr:0
r
2(n—1
S@:Cr (11 - )MI":O
r
0% =¢, (2n+ No? = 8r7IGpn(n - 1)/3r = 3c,0”

where ¢, is to be determined from the boundary condition at the surface. From
(1.88) we can see that three new possible boundary conditions are: U(0) =
V(0),R(0) = 0 and S(0) = 0. The other analytical solutions for a homogeneous
sphere containing the spherical Bessel functions j; produce zero displacements and
stresses at the Earth’s centre. The solutions containing terms with 1/r or the
spherical Bessel functions y; are infinite at the Earth’s centre and therefore need to
be set to zero.

Now that we know our new boundary conditions at the Earth’s centre, let us
discuss the Love numbers for our o and f§ Earth models discussed in Sect. 1.7 For
the homogeneous Earth one can see in Table 1.3 that all normal Love numbers are
the same. Because the Earth is homogeneous, no differential forces occur and the
Earth does not deform but only oscillates back and forth in space. The amplitude of
these oscillations is larger the longer the period of forcing. These forces produce
the motion of the Earth around the solar system and are not of interest us here
where we want to study tidal phenomena and our equations are only valid for small
perturbations from the undeformed reference state.

The situation for the load Love numbers is different because, in addition to the
gravitational attraction of the unit potential, it exerts a load on the surface in
the opposite direction. That this produces a zero internal perturbed potential at the
surface is just a peculiarity of a homogeneous Earth. For our Earth with a
homogeneous mantle and fluid core the Love numbers for degree one are given in
Table 1.5 . One can see that now the normal Love numbers are not all the same
because the Earth is no longer homogeneous. Also the k| load Love number is now
different from zero.
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It is customary to keep the origin of the reference frame fixed to the centre of
mass of the deformed solid Earth. For n # 1 this always coincided with the
position of the origin of the undeformed solid Earth which was the origin of our
reference frame in the previous sections. However, now we must shift the frame.
The centre of mass of the solid Earth has the property that it has a zero value for
the perturbed potential at the surface. To achieve this we need to adjust our load
Love numbers as follows (Farrell 1972):

[Mi]cp = Hy — ki
Mee =1 — K (1.89)
[k/l]CE = kll - kll =0

For other choices for the origin of the reference frame, see Blewitt (2003). We
only want to point out that all associated translations of the reference frame and
modifications of the load Love numbers can be derived from our original load
Love numbers A}, [} and k}.

9 Numerical Methods

In Sect. 1.7 we computed the deformation of the Earth using the Thomson—Haskell
method that uses the analytical solutions of the deformation inside each layer with
constant density and constant elastic properties. We have already briefly men-
tioned that we ignored the fact that the gravity can no longer be described by
4/31Gp,yr throughout the Earth. Although there are ways to minimise this last
problem, one would still face problems that the deeper layers in most recent Earth
models, such as PREM (Dziewonski and Anderson 1981), have density and elastic
properties that vary inside each layer. Instead of also trying to minimise this
problem, for example by sub-dividing these layers into layers with constant
properties, we will now present methods that solve the differential equations
numerically. These numerical methods are slightly more elaborate to implement
than the Thomson—Haskell method but provide more flexibility. The most popular
method of solving the six differential (1.32)—(1.37) is the Runge—Kutta method
(Alterman et al. 1959). As with the Tomson-Haskell method, these equations are
solved in each layer separately. One starts by integrating the equations from the
centre of the Earth upwards to the boundary of the first layer. The computed values
for the six parameters U, V, P, R, S and Q at the upper boundary are the starting
values for the integration in the next layer. This process is repeated until one
reaches the surface.

Starting at the centre of the Earth sounds simple. However, inspection of the
differential equations shows that they are singular at » = 0. Secondly, we should
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not forget that the high spherical harmonic degrees for which we seek the load
Love numbers imply extremely small deformation in the deep interior. Factoring
out a scaling function and mapping the radial coordinate on a logarithmic scale
helps to overcome the numerical problems. This is the Lyapunov transformation
mentioned in Sect. 1.3. However, the convenience the trick gives with one hand it
takes away with the other: we need starting solutions for a tiny homogeneous
sphere in order to avoid the singularity problem. This has already been discussed
in Sect. 1.7 but we would like to add that because of the small radius, the spherical
Bessel functions of the first kind, j,, may be approximated for radii\epsilon in the
range 1-10 km,

. V7 €\"
O =332 () (1.90)

where T represents the Gamma function if € < /n + 3/2, which is always ful-
filled except at a few small values of n. Below n = 10 the spherical Bessel
functions are unproblematic.

For the case of an Earth model with a fluid core at its centre we can also
compute these analytical solution using a power-series ansatz. First, we replace g
in (1.52)—(1.55) with 47Gp,yr/3. With power series

((r)) . ui/r
Py | = pf] P (1.91)

j=1
o(r) qj/r
the differential equations produce a set of coupled recursion relations:
—kpdnGpnn+1)=3(+n) o*lu+3[n(n+1)k(si—pp)] = 3pw’sia
pl4nGp)*n(n+1) — 481G pw® — 9wy

—3@nGpnn+1) +3(+n—1)o?s
—3p[(n+1)(@nGpn —*)pj+3w*q] =0

AnGpuj+ 2n+j)pj—q =0

4
?ﬂGp(n+1)(4nGpn —30%)y;

—4nGn(n+1) (s — pp) + (1 —j) 0 q; =0

(1.92)

with starting equations
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p[(47er)2n(n+ 1) —481Gpw® — 9w’
—3n[dnGp(n+1)+30%s
—3p[(n+1)4nGpn —*)p; +30* q1] =0

p(AnGpn =30 u; —3n(s; —pp1) =0 (1.93)

The resolved equations are shown in Appendix 3. The recursion starts with
u; = 0, an arbitrary s; and a compatible p; = s1/p. From this, ¢; can be com-
puted, and the recursion can step ahead to j = 3,5, . ...

For degree n # 1, we know that at the Earth’s centre U = V = P = 0. How-
ever, we do not know the starting values of the radial and tangential stresses R and
S, nor the starting value of the semi-perturbed gravity Q. The solution of this
problem is to solve the differential equations three times and each time set another
one of these three unknowns to 1 and the other two to zero. These three solutions
have to be scaled afterwards to fit the boundary conditions. If we remember that in
Sect. 1.3 we had written our six first order linear differential equations as, 1.39:

d
Y _A

> (1.94)

with y=[U, V, P, R, S, Q]T = [y1,..-, 6], then for the case of ocean tide
loading we can write the three solutions y"),y® and y®) at the surface as:

(1) @) (3) 2n+1 ¢

Yy €1+ Yy, 2+ Y, ¢z = 0 4nG (1.95)
Wer +3Pe +3e =0 (1.96)

2n + 1
yél)cl +yéz)02 +yé3)6‘3 = (1.97)

Solving (1.95)-(1.97) provides us the scale factors cj, ¢, and c3.

We would like to emphasise that we are solving a set of non-homogeneous
differential equations. In principle, we can add to these the solutions for the homo-
geneous differential equations that correspond to the free-oscillation of the Earth.
In fact, the procedure described above is exactly how these free-oscillations of the
Earth are computed. One computes the solutions of the homogeneous differential
equations for various values of the forcing period T = 27/w until (1.95)—(1.97)
become linearly dependent, which indicates that a resonance period has been found.

As before, complications arise due to the existence of a fluid core. If we for the
moment we assume that there is no solid inner core, then only need to integrate U,
P, R and Q from the centre of the Earth to the core-mantle boundary as was
explained in Sect. 1.4. This involves only two unknowns: R and Q. At the bottom
of the mantle the tangential stress § is zero, and only the horizontal displacement
V is unknown and takes the place of S in the procedure described above. If we have
a solid inner core, then the situation is a little more complicated. As before, we
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